Knowledge Strata
Reactive Planning with a
Multi-level Architecture

by L. Spector and]. Hendler

TECHNICAL
RESEARCH
REPORT

S YSTEMS
RESEARCH

T E R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 90-78

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
26 NOV 1990 2. REPORT TYPE 00-00-1990 to 00-00-1990
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Knowledge Strata. Reactive Planning with a M ulti-level Architecture £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland,Systems Resear ch Center,College REPORT NUMBER
Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 37
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Knowledge Strata

Reactive Planning with a Multi-level Architecture!

Lee Spector (spector@cs.umd.edu)
James Hendler (hendler@cs.umd.edu)

11/26/90
Department of Computer Science
University of Maryland
College Park, Maryland 20742

Abstract

This report demonstrates the use of “multi-level” or “layered” knowledge representa-
tion in Artificial Intelligence planning systems. Although multi-level representation
schemes have been in use since the earliest days of Al, certain principles and advantages
of knowledge stratification have never been made fully explicit. In this paper we examine
issues of multi-level knowledge representation in the context of “reactive planning
systems”; that is, in systems which extend the applicability of AI planning systems to
complex, dynamic domains. The complexity and real-time requirements of reactive
planning have lead several researchers to propose multi-level approaches. Our aim is to
improve upon the state of the art in reactive planning by bringing to bear an analysis of
the principles of multi-level event and action representation. Our work has lead to the
implementation of a prototype architecture (called APE, for Abstraction-Partitioned
Evaluator) and, within this architecture, a reactive planner (HomeBot) which operates in
a household task domain.

1. Introduction

This report is about multi-level representation and reasoning architectures, and about their
use in the design of intelligent, reactive systems. It has long been recognized that an Al system can
profit from the division of its computational components into relatively independent modules, and
from the decomposition of its knowledge into relatively disjoint areas of expertise. Systems which
are partitioned in this manner may exhibit several desirable characteristics, including
parallelizability, improved program comprehensibility, and significant reductions in the size of
problem-solving search spaces. While these and other virtues of modularization are well known
(see, for example, the discussions of “decomposable production systems” in [45]), there has been

'Supported in part by NSF grant IRI-8907890 and ONR grant N-00014-K-0560. The authors are also
affiliated with the UM Systems Research Center.

Knowledge Strata page 1

Spector & Hendler
little discussion of the principles of knowledge representation which permit such decomposition.

Among the various proposals for modularization which have appeared in the literature,
schemes involving hierarchical, “layered”, or “multi-level” decomposition have held a
distinguished position. To say that a system is “hierarchically partitioned” is simply to say that an
ordering relation (either partial or total) is defined over the set of modules into which the system is
partitioned.? The nature of this ordering relation, and its effects on the functioning of the system,
may vary from system to system. For example, while the ordering relation might define
communication paths between modules, it might or might not also affect processor allocation,
constitute a partitioning of the type-hierarchy for representations across all modules, etc. While
some of the benefits of partitioned systems are independent of the existence of any hierarchical
structure, the utility of hierarchies is well known, and hence we will concern ourselves only with
hierarchical systems.? Of particular interest will be an analysis of the hierarchies that emerge in
representing events in the world, and the exploitation of these hierarchies in a computational
architecture.

Recent trends in Al research have sparked a renewed interest in multi-level architectures. As
the field has matured, researchers have attempted to extend techniques which worked in simplified
“micro-worlds” to handle more realistic domains. The early techniques generally fail in realistic
domains for two reasons. First, the number of objects and potentially relevant relations in the real
world is far greater than that in any of the experimental micro-worlds. Since many of the reasoning
processes used in early Al systems have exponential complexity, they quickly become impractical
as domains become more realistic (and hence larger). Second, the real world is dynamic in a sense
not applicable to the earlier micro-worlds. Events in the world continue to occur while an agent is
thinking and acting, and an agent’s reasoning processes must be capable of accommodating a
changing, semi-predictable world. We have chosen the “reactive planning” problem — the
problem of planning in complex, dynamic worlds — as the basis for our study precisely because it
forces us to confront directly the difficult, interacting problems of complexity and dynamism.
Multi-level architectures, if employed properly, may provide solutions for both of these problems;
the modularity of partitioned systems mitigates against combinatorial complexity, and hierarchical
organization is a powerful tool for obtaining real-time behavior (as witnessed by the successes in
hierarchical real-time robotic control; for example, see [1] , [6], and [14]).

*We shall treat “hicrarchically partitioned”, “layered”, and “multi-level” as synonymous expressions.

>The use of hicrarchical taxonomies dates at least to Aristotle, and hierarchical representation techniques
are ubiquitous in AL

Knowledge Strata page 2

Spector & Hendler

Significant preliminary work on the design of multi-level architectures has already been
done. In particular, researchers involved in the development of (or influenced by) the HEARSAY-
II speech understanding system have been extending HEARSAY-II's layered “blackboard”
architecture in several ways, allowing for parallelism, alternative models of module
interconnectivity, etc. The motivations of several of the groups involved in the enhancement of
blackboard architectures are remarkably similar to our own. Our concern, however, is not so
much with the design, but rather with the proper use of multi-level architectures. We discuss the
benefits of a principled partitioning of knowledge into levels, and elucidate structures of
knowledge that may be productively employed toward this end. While our implementation (first
described in [54]) can be seen as modification of any of several advanced blackboard system
architectures, our contribution lies in the system of representation used within this architecture, and
in the class of problems that our system can solve.

The following is an outline of the remainder of this paper:

2. Reactive Planning
3. The HomeBot Domain
4. The Desired Behavior: The Banana Peel Problem
5. Architecture
5.1 A Multi-Level Parallel Blackboard System
5.2 The Planner and Operators
5.3 Multiple Levels of Abstraction
5.4 A Digression on Reflection
6. Event Representation
6.1 Towards a Specific Set of Levels
6.2 The Problem of Action Representation
6.3 Events, Actions and Parts
6.4 Levels of Organization
7. Architecture + Representation: Putting it Together
8. HomeBot In Action
9. Future Work
10. Summary
Appendix: The Stepeese Language
Bibliography

Sections 2 and 3 describe the reactive planning problem in general and in the specific domain
in which we have chosen to work. Section 4 briefly describes the correct behavior of our target
system in a particular problem scenario. Section 5 details our multi-level blackboard architecture
and discusses the characteristics which a set of knowledge levels ought to possess in order to make
the most of that architecture. Section 6 provides an analysis of the structure of events and actions
which yields a specific set of knowledge levels appropriate for implementation within our
architecture. In sections 7 and 8 we discuss the use of our event representation within our multi-
level architecture, and briefly report on the behavior of the resulting system in the problem scenario

Knowledge Strata page 3

Spector & Hendler

from section 4. Section 9 describes the directions in which this project is currently moving. We
describe three well-defined shortcomings of the current system, and our plans to overcome them.
Related work by other researchers is mentioned when appropriate throughout this report.

2. Reactive Planning

Intelligent agents must be capable of responding to events in the world even while they are
engaged in high-level symbolic reasoning. Accordingly, much of the recent research in Al
Planning Systems has focused on techniques for planning in domains for which the assumption of
a static world, an assumption that was relied upon in early planning work, does not hold.
Questions concerning the nature of the coupling between reasoning, perception, and external
events have begun to take center stage.

The earliest research in dynamic or reactive planning sought to graft facilities for execution
monitoring and error detection onto traditional, static-world planners (for example, see [25]). Error
analysis and intelligent replanning techniques have been investigated within this framework
[35][44], and the resulting planners are more powerful than their static-world counterparts. It has
been protested, however, that this approach underestimates the complexity of the world; the
protestors argue that intelligent behavior is mainly the result of dynamic interaction with the
environment, and that deliberative planning is rarely if ever necessary. (For a good sumrnary of
this debate, see [55].) Indeed, some proponents of this view have built systems which interact with
the world in seemingly complex ways, but which do not represent the world in the symbolic terms
necessary for deliberation [8]. This paper describes a planner which, like some of its
contemporaries, attempts to have it both ways (see also [3][5][20]{23] and several papers in [31]).
Our view is that planners must continually monitor and react to the world in an event-driven
manner, but that they must also be capable of goal-directed reasoning as performed by traditional
systems. The planning and reaction mechanisms should be smoothly integrated. The term “reactive
planner” has been used for systems which meet these requirements.

In our system, reactive planning is achieved through the use of a multiplicity of
reasoning/reacting processes which run in parallel (although the parallelism is simulated). This
allows the creation of high-level reasoning processes which may be informed or interrupted by
lower-level sensory processes. Several control, communication and representation problems are
introduced, however, by this computational architecture. For example, which processes should be
allowed to communicate with which others? How is competition for processing time to be
arbitrated? How can the large amounts of knowledge, ranging from sensory reports to high-level

Knowledge Strata page 4

Spector & Hendler
goals and plan-steps, be managed efficiently?

It is our contention that the answers to these questions lie in the hierarchical decomposition
of planning and reacting knowledge (see [60] for a similar view). In order for such a
decomposition to be effective, it must be based upon an understanding of the structure of the
underlying planning knowledge, and upon an understanding of operational requirements of
multi-level representational systems.

3. The HomeBot Domain

The difficulties of reactive planning appear only in complex domains. When a domain is
small enough and well enough contained, one can anticipate nearly all eventualities; in this case
even exponential searches may perform reasonably well. We have therefore chosen to work in a
large and complex domain, which is nonetheless familiar enough to us as experimenters that we
can easily introspect about human behavior within it. We feel that our HomeBot domain is
somewhat more suitable for reactive planning research than others which have been proposed
because of its size and complexity (compare, e.g. with [38]), and because of the structural richness
of the real-world events which can occur (compare with [48]).

HomeBot is a simple one-armed, one-eyed robot which lives in a one bedroom apartment,
and which is expected to perform household tasks such as cleaning and protecting the resident
humans from dangerous conditions. The apartment consists of several rooms (bedroom, kitchen,
living room, bathroom and closets), and is quantized into over 70,000 spatial locations. A large
collection of objects (furniture, pieces of laundry, etc.) may be present in the apartment at any
given time. In addition, there are several external occurrences which may be caused to transpire at
any given time. For example, the doorbell may ring, an object can be moved, one of HomeBot’s
sensors might fail, etc. The layout of HomeBot’s domain is shown in Figure 1. The representation
of the apartment, the position of objects within it, etc., is entirely distinct from HomeBot’s
representation of the world. HomeBot knows only that which it can infer from the data it receives
through its sensors.

Knowledge Strata page 5

Halt1

Robot-
Hutch

Closet
2

Hamper

Knowledge Strata

Spector & Hendler

~
(Sink DryingRack
. y

(Fridge)
.

Closet-1 Kitchen
A i i ; Food
Stove Pot Cabinet | Dish Cabinet)
Cabinet
v,
Chair-1
Dining-Table
Chair-2
Coffee-Table
LivingRoom
Couch
Door-3 Door-4 '\
Tub
Door-7
Bathroom
. Door-5)
Toilcej'\
Bedroom v,
Door-6 - -

Figure 1: HomeBot’s Domain

page 6

Spector & Hendler
4, The Desired Behavior: The Banana Peel Problem

In our basic test scenario, HomeBot wanders around the apartment noticing objects that are
out of place and putting them away. We can introduce simple complications such as a ringing
doorbell (answering the doorbell is a high priority task that interrupts clean-up activity) in order to
test the system’s reactivity. Consider, however, what ought to happen when HomeBot, in the
midst of some clean-up chore, notices a banana peel on the hallway floor. Assuming that there is
no pre-wired response for such a situation (which there certainly should not be), HomeBot will
have to do a fair amount of reasoning in order to determine that the peel is a safety hazard for
passing humans. Meanwhile, the chore in progress must continue, since nothing would ever be
accomplished if the robot merely stood still and contemplated the possible problems which might
be caused by every object seen. The proper behavior is for HomeBot to continue working while
reasoning about in the banana peel on the floor. Sensory-motor and navigational problems should
be handled by the lowest levels of the hierarchy, leaving the higher levels free to consider the
effects slippery objects being on the floor, the relative priorities of cleaning up and of removing
safety hazards, the expectations about when humans will be present in the hallway, etc. Once such
the proper inferences are made, HomeBot should suspend work on the current chore, and plan for
the removal of the safety hazard. After disposing of the banana peel, HomeBot should resume the
previous task, preferably with as little replanning as possible.

5. Architecture
5.1 A Muliti-Level Parallel Blackboard System

The basic architectural model upon which our work is based is that of a multi-level
blackboard system. “Blackboard System” refers to any system based on the model pioneered in the
development of the Hearsay-II speech understanding system (see [17] or [18]), in which a
multiplicity of independent procedural components* communicate solely via a shared data area
called a “blackboard.” Even in the earliest blackboard systems, provisions were made for
blackboards which could be partitioned by “level of abstraction,” and for systems in which
procedural components were allowed to execute in parallel. More recently, several researchers have
been exploring techniques for actually realizing the promise of parallelizability inherent in the

“These procedural components are often referred to as “Knowledge Sources” or “KSs.”

Knowledge Strata page 7

Spector & Hendler

blackboard model [4][9][11][33]. Others have been exploring the requirements of real-time Al
systems, and the modifications of the blackboard model which may be necessary for their
satisfaction [15][19][32][42][49]. We have incorporated many of the suggestions provided in these
papers into our architecture, which is called APE (for Abstraction Partitioned Evaluator).

The APE architecture consists of a number of data/processing levels arranged as shown in
figure 2. Each level can communicate only with those levels immediately above and below itself in
the linear hierarchy. Although there would be little difficulty in extending the model to handie a
branching, partially ordered hierarchy, we have not found it necessary to make such a
generalization. Only the lowest level has direct access to sensors and effectors. The levels are
permitted to run in parallel and to communicate asynchronously.

(highest level)

y §

y A

e =
.

i
il

(lowest level)

I
<D

Figure 2. A coarse view of the APE architecture.

Knowledge Strata page 8

Spector & Hendler

Figure 3 shows a single level of the system in greater detail. Each level contains both
procedural and declarative components. The declarative knowledge at each level resides in a
blackboard structure accessible to all procedures at that level. This shared knowledge forms a
representation of the current state of the world as seen by the given level. Borrowing terminology
from [28], we call this state-of-the-world-at-a-given-level a “State of Affairs” or SOA. The
communication channels to adjacent levels allow for the transmission of two kinds of data:
Commands are goal-achievement requests which may only be passed from higher to lower levels,
and World Updates are modification patterns for the SOA at a given level. World Updates are
propagated only from lower levels to higher levels.

Command World
Input Output

v 1

set of operations defined

| system of local
over the representation system

representations

Y

Command World
Output Input

Figure 3. One level of the APE architecture.

Figure 4 adds additional detail to our picture of the individual levels of the APE architecture.
The problem-solving (planning) procedures are located within the “Replanner” unit. Although
these procedures should possess certain general properties (such as interruptability at some level of
temporal granularity — see below) the APE architecture makes no stipulations about the reasoning
strategies or micro-architectures within the planners. In fact, it is possible to use radically different
planning methodologies at each level. For example, one might wish to use a connectionist planning
system at the lowest level, logic programming techniques at intermediate levels, and a traditional
nonlinear planner such as NONLIN at the highest levels. As long as all of the planners can interact
with the blackboard mechanism using a uniform protocol, such a scheme would be in perfect
accord with the APE architectural philosophy. For simplicity, our current implementation uses the

Knowledge Strata page 9

Spector & Hendler

same reasoning mechanism (based on an extension of NOAH-style operators) at each level;
however, there is nothing to prevent us from changing the procedures at any given level if this

becomes desirable.
Requests and Output to
Cancellations from Higher Layer
Higher Layer (WORLD)
(COMMANDS)
Plan Data/Goals
Trigger Replan
Monitors for
Replanner Expectation SOA
Violation

Create/Delete

Monitors /

Create/Delete Plan Data/Goals Add/Delete
Data & Goals Representations

Inter-Layer
Translation
Module

Requests and Cancellations
for Lower Layer
(COMMANDS)

Input from
Lower Layer
(WORLD)

Figure 4. A detailed look at one level of the APE architecture.

Although figure 4 shows a unit containing “Monitors for Expectation Violation,” it is not
actually necessary that each level contains an explicit “monitor” data type. The unit is shown in the
diagram in order to make it clear that the procedural components at each level have a responsibility
to watch for changes in the SOA at regular time intervals and to be capable of responding
appropriately. In our current implementation we do use explicit “monitors” to trigger interrupts to
planning procedures. However, any functionally similar mechanism would be equally acceptable.

Knowledge Strata page 10

Spector & Hendler

Since it is possible that the systems of representation employed in adjacent levels will differ
considerably’, it is necessary to provide some facility for translating Commands and World
Updates from system to system. In our current implementation the Operators (see below) which
are responsible for problem solving also handle inter-level communication and translation tasks.
However, we view these translation processes as distinct from the problem-solving tasks of the
planners, and we will separate the translation and problem-solving procedures in future versions of
the system (see Future Work).

5.2 The Planner and Operators

As mentioned above, the APE architecture does not dictate the type of problem-solving
mechanism to be used at each level. We have developed a planning system that uses complex
operators, as well as specifications for procedural decomposition (similar to the specifications used
in NOAH [51]), which has been used at all levels in our system. In this section we briefly describe
this planning mechanism.

We have modified the operator formalism of traditional planners in several ways in order to
make it suitable for our purposes. As in most modern planning systems, we allow the specification
of information about the hierarchical decomposition of an operator into sub-goals. This information
is specified in a procedural formalism (the steps of an operator, see below) which has been
designed with our multi-level, reactive architecture in mind. Additional modifications, detailed
below, allow the planning algorithm to cope with execution failures and with unexpected changes
in the world. With the given modifications our operators resemble the Knowledge Areas of [22]
and the Reactive Action Packages of [20] in several ways.

The role of operator “preconditions” is played in our system by a list of filter conditions, in
conjunction with a partially ordered set of computational steps. Filter conditions are preconditions
which cannot be achieved by the planner; if a filter condition is not true in a given SOA, then the
operator to which it belongs will not even be considered. Such a filter mechanism may, depending
on other characteristics of the implementation, have a dramatic impact on the system’s efficiency.

The steps of an operator express the achievable preconditions, and, more generally, the
method®, of an operator in a procedural formalism. It is possible to express constraints on the

3Even if similar (or even identical) reasoning mechanisms and data formats are used at all levels, it is
likely that at least the representational lexicon will differ from level to level.

SThe steps specify how to do that which the operator was designed to do. In early operators such as those

Knowledge Strata page 11

Spector & Hendler

order of achievement of APE operator steps, although the steps need only be partially ordered.
Within a step it is possible to set and to access local variables, and to query and to modify the
blackboard. Simple conditional and looping constructs are also provided (as in [16]). These
enhancements help greatly in the specification of operators which achieve complex goals. Similar
procedural mechanisms have been used in other planners (for example the SOUP code of [51] and
the “plots” of [62]).

The steps of an operator also provide the limit to the granularity of potential parallelism in
the APE architecture. Recall that the levels of an APE system may all run in parallel,
communicating asynchronously. It is also permissible for all of the active operators on each level to
run in parallel, communicating with the blackboard asynchronously. In addition, the steps of each
operator can all run in parallel unless there is an ordering constraint in the operator which prohibits
this. However, each step is an atomic operation; it is guaranteed that a step will not be interrupted.
The specifications which are permitted as steps of an operator make up a small, simple parallel
programming language. (We call this language Stepeese and we provide a description of its syntax
in the Appendix.)

APE is designed to function in complex, unpredictable domains; hence it is natural to assume
that APE operators will sometimes fail. Traditional planners provide no facility for describing the
effects of operator failure. In APE, we provide two sets of add and delete lists; one to be used
when an operator succeeds, and one to be used when an operator fails. We can use the failure lists
to assist in recovering from unexpected occurrences, and in some cases to facilitate “meta-
reasoning” about the efficacy of certain operators’.

Whereas previous planners would instantiate operators on the basis of a match between
pending goals and the add/delete lists, APE operators use a separate list, called expect, for this
purpose. This is because an operator may be instantiated in order to bring about some condition
which will be added to the knowledge base not by the given operator, but by a sub-goaling
operator at a lower level of the hierarchy. For example, suppose that we have a high level operator
called put-away-object which effects the overall behavior of getting an object to its proper place.
Further, suppose that we have a lower level operator called move-object which handles the
subtask of getting the object to its destination once that destination has been determined. The add
list of the put-away-object operator contains a representation which indicates that the given object

used in STRIPS this information is to some extent in the preconditions, to some extent in the name of the operator
(which is often a robotic control command) and to some extent absent.

"We discuss meta-reasoning more fully in the section “A Digression on Reflection,” below.

Knowledge Strata page 12

Spector & Hendler

is in its proper place — something like (in-proper-place ?obj). A specific instance of this
operator, instantiated in order to put away the object dirty-sock-23, adds (in-proper-place
dirty-sock-23) to the blackboard upon successful completion. There are many additional
representations which we could reasonably expect to be present after completion of put-away-
object. If the proper place of dirty-sock-23 is in the hamper, then we would expect (in dirty-
sock-23 hamper) to be on the blackboard after the sock has been put away. However, there are
reasons for making the move-object operator, and not the put-away-object operator,
responsible for this latter addition. For example, we want (in dirty-sock-23 hamper) to be on the
blackboard even in cases in which the move-object operation succeeds but the put-away-object
fails. (Suppose that the robot cannot close the hamper lid, and that closing the lid is necessary for
put-away-object to succeed.) The “in” form should still be included in the put-away-object
operator since we can use put-away-object in order to change the location of an object, even
when it is superfluous that the object is being moved to its proper place. For this reason, the “in”
form should be put in the expect list, but not in the add list, of put-away-object.

Two additional components have been added to APE operators. The monitors component

8 and which can

allows for the specification of simple if-then rules which run “continuously
trigger success, failure, suspension, or resetting of the current operator. Each monitor has an
antecedent slot which contains an arbitrary LISP form which may include calls to routines which
look for patterns on the blackboard. If the antecedent returns true then the consequent (which
must be succeed, fail, suspend, or replan) is executed. The consumes component contains a
list of resources (either computational or physical) required by the operator. (A similar mechanism
is used in [62].) The consumes component is used in conjunction with goal priorities in order to

suspend operators with conflicting resource requirements.

A synopsis of the components of an APE operator is provided in figure 5.

$Since parallelism in APE is currently simulated, monitors are run every time the given operator is given
a time-slice for executing a step. One can also specify that a given monitor only be run every n time-slices allocated
for the given operator.

Knowledge Strata page 13

Spector & Hendler

OPERATOR

:name <a symbol>

:level <alevel, e.g., CAUSAL>

:filters <predicates which must be true for instantiation>

:monitors <knowledge-base pattern-match requests which run constantly, and which trigger success,
failure, or local variable re-assignment>

:steps <numbered computational steps, which may include knowledge-base pattern-match requests,
goals for posting, and control constructs>

:step-seq <ordering constraints on the steps>

:succeed-add <forms to be added to the knowledge-base upon success>

:succeed-delete <forms to be deleted from the knowledge-base upon success>

:fail-add <forms to be added to the knowledge-base upon failure>

:fail-delete <forms to be deleted from the knowledge-base upon failure>

:expect <forms which are expected to be true upon success — used in picking operators for
instantiation>

:consumes «<a list of resources consumed by the execution of the operator>

Figure 5. The format of an APE operator.

The planning algorithm used in our current implementation is an “execute immediately”
algorithm in the tradition of NASL [43]. In other words, primitive actions (sensor and motor
commands) are executed as soon as their operators get processing time. While the full planning
algorithm used in our current system is fairly complex, the overall control structure can be
described simply as follows:

Continuously and in parallel:

Instantiate any operators with expect conditions matching a goal.

Suspend lower priority operators with conflicting resource requirements.

Resume suspended operators if conflicts are gone.

Run all monitors for all instantiated operators.

For all instantiated operators execute all steps that are enabled according to
the partial order constraints. Many of these steps may post “reduced”
goals to the blackboard.

For all operators which succeed or fail, perform appropriate additions and
deletions to blackboard.

Abort all operators working on goals already achieved.

The pseudocode for a typical operator from our implementation is shown in figure 6.

Knowledge Strata page 14

Spector & Hendler

OPERATOR:
:name INFER-ON
:level SPATIAL
:filters (ISA !OBJECT MOVABLE-OBJECT)
:monitors (IF (MOVED !OBJECT) THEN REPLAN})
:steps 1: ACHIEVE (KNOWN (COORDINATES |OBJECT ?0BJ-COORDS))
2: ACHIEVE (KNOWN (COORDINATES !SURFACE ?SURF-COORDS))
3: IF (JUST-ABOVE ?0BJ-COORDS ?SURF-COORDS)
THEN SUCCEED
ELSE FAIL
:step-seq STEP 1 BEFORE STEP 3, STEP 2 BEFORE STEP 3
:succeed-add (KNOWN {ON !IOBJECT ISURFACE))
:succeed-delete (CLEAR-TOP ISURFACE)
:fail-add (NOT (KNOWN (ON !OBJECT !SURFACE))), (POSSIBLE (CLEAR-TOP ISURFACE))
:fail-delete (KNOWN (ON IOBJECT ISURFACE))
:expect (KNOWN (ON IOBJECT ISURFACE)), (KNOWN (COORDINATES !OBJECT ?0BJ-COORDS))
(KNOWN (COORDINATES ISURFACE ?SURF-COORDS))
:consumes NIL

Figure 6. A pseudocoded APE operator.

APE's current planner is a powerful reasoning system which provides facilities for
integrated deliberation and reaction. The operator/monitor formalism is still less elegant than we
would like, however, and the coding of functional operators is currently a rather delicate craft. The
refinement of this formalism is one of our research priorities (see Future Work, below).

5.3 Multiple Levels of Abstraction

The previous sections describe a computational architecture designed to operate in a planning
domain in which the planning knowledge has been partitioned into levels. However, we have not
yet discussed the principles by which such a partitioning can be accomplished, or the specific
partitioning scheme which we have found to be useful.

The division of planning knowledge into manageable segments could be accomplished in
many ways. For example, some of the early work on scripts can be seen as exploiting a
partitioning of knowledge by the situations in which the knowledge might be useful [52]. In more
recent work, Lansky’s GEM model used physical location information to structure event-related
knowledge and to guide the decomposition of planning tasks [40]. Lansky has also discussed the
use of subdivisions of planning knowledge based on functional decomposition [41].

Knowledge Strata page 15

Spector & Hendler

We are exploring the use of level of abstraction as the criterion by which to partition
planning knowledge (both declarative and procedural). System decomposition by “level of
abstraction” is not, by itself, a new idea. Hearsay-II, a piece of work mentioned earlier in this
paper for its multi-level blackboard architecture, used multiple levels of abstraction which
corresponded to “separable domains of reasoning” in the speech-understanding domain [18].
Other, more recent research has applied the idea of abstraction-partitioned representation directly to
the problems of reactive planning [301{34](29]. However, one of the issues which has remained
obscure is what people mean by “abstraction” when they refer to “levels of abstraction.” The
phrase has been used in various ways; “levels of description,” “levels of competence,” “levels of
specificity,” and similar expressions have been used, and are not always clearly explained. Within
planning, the concept of abstraction has played many roles, from the early work on ABSTRIPS
[50] to recent discussions such as [36]. The term “abstraction” seems to be, within Computer
Science as a whole, so ambiguous as to be nearly devoid of meaning. The term “level” (or “layer™)
is similarly problematic. We wish to resolve this muddle by spelling out very clearly the
connotations of “abstraction” and of “level” which are appropriate for the design of abstraction-
partitioned reactive planners.

What characteristics should a level-based partitioning meet in order to make effective use of a
multi-level architecture like APE? The first requirement, dictated by the APE architecture (and by
most other multi-level architectures as well) is one of information composition. Since the higher
levels can access the world only through the mediation of lower levels, the higher level
representations must be composable from the lower level representations. When details of the
lower level representations are omitted from the higher level composition’®, then “information
composition” denotes a common use of the word “abstraction.”

Another obviously desirable characteristic is that the temporal granularity of the reasoning
processes should be finer as one moves down in the hierarchy [30]. Since only the lowest level has
direct access to sensors and effectors, it is imperative that the lowest level processes be capable of
responding quickly. The slowest procedures should be at the highest levels, since protracted
uninterruptable computations at lower levels would probably diminish reactivity.

Since the procedures at higher levels will be given longer amounts of time for computation,
it is reasonable to stipulate that this extra time be put to good use in providing competences not
present at lower levels. As one moves up in the hierarchy the time/competence trade-off should

’For example, suppose that (dinner-time) is composed from (on table1 dinner32) and {time
6:30PM).

Knowledge Strata page 16

Spector & Hendler

increasingly be decided in favor of competence. It will further aid in the development of partitioned
systems if the new competences provided by a given level form a coherent, natural class. Finally,
if the parallelism in a multi-level architecture is to be fully exploited, it is necessary that the
partitioning of knowledge allows for simultaneous reasoning at all levels of abstraction.

Is there a way to divide up planning knowledge into a set of partitions which has all of these
characteristics? We believe that it is, and we summarize this view in the following hypothesis:

The Abstraction Separability Hypothesis (ASH): Planning knowledge (both declarative and
procedural) can be neatly partitioned into a set of abstraction levels which meet the following
criteria:

1: Information Composition — Each level constructs its representation of the world from the

representations of lower levels, and only the lowest level is in direct contact with the real world
(through sensors and effectors).

2: Temporal Granularity Stratification — Each level represents a less dynamic world model than
is represented at lower levels; that is, lower levels must respond quickly, and higher levels may
be more sluggish (allowing more time for deliberation).

3: Competence Stratification — Each level provides a well defined set of reasoning services not
available at lower levels.

4: Level Parallelism — Processing can occur at all levels simultaneously and asynchronously.

Note that criterion 1 implies that each level has access to representations not available at
lower levels, but not the converse; information composition does not necessarily imply information
hiding. In hypothesizing that planning knowledge can be “neatly” partitioned into levels as
described above, we mean that a system which partitions knowledge in this way will exhibit
several desirable characteristics, including reactivity, parallelizability, and tractability. Of course,
we have so far said nothing about any particular set of levels; we have only described the set of
properties which such a set should have. Before moving on to the details, however, we will
digress briefly to distinguish the kind of levels that we have described from meta-levels, which
have been used in other Al systems, including reactive planners.

5.4 A Digression on Reflection
“Multi-level” is sometimes used in AI to mean “meta-level.” Meta-reasoning, also called
reflection, refers to a system’s reasoning about itself. While meta-reasoning is a fascinating topic,

with many possible applications and a host of interesting problems (for example, see [46)), it is not
currently one of our central concerns. However, meta-reasoning has been discussed as a tool for

Knowledge Strata page 17

Spector & Hendler

solving many of the same kinds of reactive planning problems as those that are addressed in this
paper. It is possible for a system to reason about the time that the system’s own reasoning is
taking, and to make reasoning/reaction trade-offs on that basis (for example, see [37] or [61]).
Further, some researchers have proposed multi-level architectures, similar to our’s in many
respects, in which each level reasons about the lower levels in the hierarchy [26][27][38][53].

There is little doubt that a meta-reasoning component could be of significant utility to a
reactive planning system. For example, Kraus et. al. discuss a scenario in which Nell is tied to the
railroad tracks as a train approaches [37]. (This scenario originated in [43]). Dudley’s job is to
rescue Nell, and if he is to be successful he must obviously complete all of his planning and
execution tasks before the train runs her down. We agree that the only way that a system can
perform reliably in such circumstances is for it to account explicitly for its own reasoning time, and
for it to choose between reasoning and execution options on that basis.

There is nothing in the APE architecture which prevents its use in such circumstances as a
meta-level architecture. Higher level representations are composed out of lower level
representations, and they might also in some cases be about these lower-level representations. In
addition, the procedural components on a given level are free to post declarative representations of
their algorithms to the blackboard, thereby providing grist for the mills of higher-level meta-
reasoning.

Nonetheless, we have decided to leave consideration of meta-level reasoning issues on the
back burner for two reasons. First, our motivation for the use of a multi-level architecture springs
from the complexity of representations of the world, and from the vast amounts of planning
knowledge required for solving real-world problems. These are problems for any reactive planning
system, whether or not it contains meta-reasoning capabilities, and whether or not it can solve the
Nell and Dudley problem mentioned above. Since we feel that some significant reactive
functionality can be achieved with little or no meta-reasoning, we wish to put aside the difficulties
of meta-reasoning'® at least for the time being. Second, we feel that a good reactive architecture
obviates, to some extent, the need for meta-reasoning in the first place. If the lowest level and
fastest reasoning mechanisms cause Dudley to run immediately to Nell’s aid, and if the higher level
reasoning mechanisms run in parallel and interrupt the rescue only if time permits, then Nell will
probably survive. Of course, in certain circumstances this will be insufficient. For example,
suppose that Dudley, using our non-reflective “run first” architecture, notices at the last moment

%Which we feel are considerable, despite recent advances.

Knowledge Strata page 18

Spector & Hendler

that the rope holding Nell to the tracks is electrified, and that he must get rubber gloves (which are
at the station, some distance from the tracks) before untying her. Due to the time he lost in running
to the tracks before deliberating on the possibilities, he will probably fail in his mission. However,
it is possible that Nell would have been saved by the following chain of meta-reasoning:

Time=0: I have about 60 seconds to save Nell before that train runs her down.

Time=1: It will take about 30 seconds to run and untie her, so I now have about 29 seconds to
pursue other options.

Time=2: It will take about 10 seconds to consider if I should take anything from the train
station with me.

Time=12: 1 should take the rubber gloves, since the villain Snidely has just taken an electronics
course, and since getting the gloves will take only 10 seconds.

Time=22: I now have the gloves and only 8 seconds to spare, so I’ll run and untie her.

Time=52: “Oh Dudley, you’re my hero!” says Nell.

In the normal, non-electrified rope case, however, Dudley can succeed without recourse to
meta-reasoning. Hence while meta-reasoning is necessary in certain reactive planning scenarios, it
is reasonable to assume that rudimentary reactive capabilities are achievable without it. The
representations at all levels of our system will generally be representations of the world at different
levels of abstraction, not representations of the system itself.

6. Event Representation
6.1 Towards a Specific Set of Levels

The Abstraction Separability Hypothesis says nothing about any particular choice of levels; it
says only that some level-based partitioning exists that meets criteria 1 through 4. The question of
how such a partitioning is to be found is intriguing in its own right. One approach would be
empirical; we could collect a large set of representations from our domain and try to divide them
into appropriate classes by inspection. We have opted for an alternative approach, based on a priori
structural properties of the knowledge to be represented.

The knowledge in a reactive planning system is primarily knowledge about events in the
world and about actions that an agent can perform. The representation of events and actions is a
topic with a considerable history both in philosophy [13] and more recently in Al (see [47] and
several papers in [21]). We have developed a theory of event structure which is based upon the

Knowledge Strata page 19

Spector & Hendler

“component” account of Thalberg [57], and which also borrows from the pioneering work of
Goldman [24]. In the next several sections we will sketch this theory and its impact on the
representation of knowledge in multi-level reactive planning systems.

6.2 The Problem of Action Representation

Consider the action of HomeBot putting the banana peel in the trash in the scenario which
we discussed previously. All of the following statements about this action are true and informative:

S1: HomeBot protected a human.
HomeBot prevented a human from falling.
HomeBot prevented a human from slipping on the banana peel.
HomeBot moved the peel before the expected arrival time of humans.
HomeBot put the banana peel in the trash can.
HomeBot let go of the banana peel.

The prospect of representing all of this knowledge raises several questions. For example,
philosophers interested in the theory of action have been concerned with determining, in cases such
as this, how many actions are described by such a list of statements. Is there one action, described
in many ways, or are there several distinct actions? If there are several actions, what are they and
in what ways are they related? This is known as the problem of action individuation, which has
been the subject of considerable controversy (see [13] for a brief summary)

Such questions raise a number of issues that will turn out to be important in the design of
intelligent, reactive systems. We are not particularly interested in the counting of actions per se; it
doesn’t really matter for our purposes if one thinks of the above statements as describing 1, 6, or
1000 of HomeBot’s actions. What does matter is that these statements describe a rich knowledge
structure. We wish to formulate a representation system capable of capturing this knowledge
structure in a natural, useful way.

6.3 Events, Actions and Parts

A first stab at representing the statements in S1 might run as follows:

Knowledge Strata page 20

Spector & Hendler

R1: al: (protected HomeBot human)
a2: (prevented HomeBot (event (fall human)))
a3: (prevented HomeBot (event (slip human)))
a4: (before a5 (expected-time (event (return-home human))))
as: (moved HomeBot banana-peel trash-can (time-interval t1 t2))
a6: (ungrasped HomeBot (time t2))

There are several problems with this representation, but the principal difficulty is that the
representations are not tied together in the proper way. For example, there is nothing to indicate
that the human was protected by preventing the fall, or that the slip was prevented by moving the
banana peel.!! One solution, proposed in theory by Goldman [24] and used in the AI work of
Allen [2] and Pollack [47] is to formalize the “by” locution (with a predicate that has been called
GEN for historical reasons'?) and to add assertions such as the following:

gl: (GEN a2 ai)
g2: (GEN a5 a3)

GEN is an asymmetric, irreflexive, transitive relation between events (including actions) that
has been formalized and discussed extensively by Pollack [47]. While the GEN relation does
allow the representation of event-structure which was previously unavailable to Al systems, we
argue that it is an unnecessary addition to our representational ontology. The philosophical
literature contains several objections to Goldman’s “generation” theory, many of which need not
concern us here. However, some of Goldman’s detractors have proposed a rival account, the
“component” account, which we consider to be better suited to our representational endeavors.
Costa, commenting on the motivations for the for the component account, notes that “The notion of
[generation] is, I am afraid, very obscure... One would like to be able to cash it out in terms of
some already familiar metaphysical relations, but Goldman offers nothing very helpful here.”[10]

The component account, championed primarily by Thalberg [57] and Thomson [58],
replaces the obscure notion of generation with the very familiar “component” relation, a species of
the “part/whole” relation. It remains to be seen if this move is compatible with all of the uses to
which the GEN relation has been put'?, but we submit that the more recognizable territory of
part/whole hierarchies is the proper framework within which to further study the interrelation of

"In the spirit of Davidson and others [11], we could claim that al-a6 are actually all descriptions the same
action, but we would then be left with the similar problem of how these descriptions ought to be interrelated.

?Goldman defined a relation between events called “level-generation.” Subsequent commentators have
dropped the “level” prefix and have sometimes abbreviated “generates” as “GEN.” I will henceforth use “GEN” to
describe the relation, even when discussing Goldman’s views.

Knowledge Strata page 21

Spector & Hendler

actions and events. Within this framework, our representation becomes:

al: (protected human)

a2: (prevented (event (fall human)))

a3: (prevented (event (slip human)))

ad: (before a5 (expected-time (event (return-home human))))
as: (moved banana-peel trash-can (time-interval t1 t2))

ab: (ungrasped HomeBot (time t2))

cl: (components a1 (a2 ad))

c2: (components a2 (a3))

c3: (components a3 (a5))

c4: (components a5 (a6))

This representation has the benefits of the GEN-based approach with at least two
advantages: the novel and confusing concept of generation is no longer present, and inference
techniques developed for use with part-whole relations can now be applied to event and action
knowledge in a straightforward manner.

6.4 Levels of Organization

In his original exposition of GEN, Goldman distinguished four sub-species of the relation:

causal generation, conventional generation, simple generation, and augmentation generation.

Similarly, Thalberg, in his component account, distinguishes several classes of potential
components of a given event, including: “purely relational” consequences, causal consequences,
and conventional consequences.

These analyses begin to reveal a structural property of events (or of sets of events,
depending on how we decide questions of event individuation) which will turn out to be very
useful in the design of intelligent, reactive systems. We express this property, and assert its
applicability, with the following hypothesis:

"*Note that the component relation is (like the generation relation) asymmetric, irrcflexive and transitive
[62]. We are currently preparing a more detailed formal comparison of GEN and the component relation.

Knowledge Strata page 22

Spector & Hendler

The Knowl H hesis for Events (KSH);

1: The representations of the set of event-components of any given event'* can be conveniently
partitioned into the same small set of distinct classes.

2: These classes can be ordered {CO, C1, C2...,Cn}, such that for all i, the representations in
class Ci are composed only of representations from the set of classes Cj with j <1i.

Condition 1 derives from the insights in the analyses of both Thalberg and Goldman,
although in Goldman’s account it is the relations between events that are partitioned, rather than
events themselves. Condition 2, which can be viewed as asserting that higher-level representations
are “composed of”’ or “defined in terms of”” lower level representations, is not stated explicitly in
the previous literature, but it appears to follow from the set of event-classes that the literature leads
us to posit. Within the context of a component account of events, condition 2 states that the classes
form levels of a part/whole hierarchy, such that any given event is composed only of events at the
same or lower levels.

The classes of consequences offered by Thalberg and the types of the GEN relation specified
by Goldman have certain similarities. Both accounts make use of a category based on the existence
of “conventions.” In addition, both accounts have a special place for knowledge based in causality.
Thalberg’s “purely relational” consequences and Goldman’s “simple generation” are also very
close; Goldman says that “In simple generation the existence of certain circumstances, conjoined
with the performance of A, ensures that the agent has performed A’.”

The similarities between the theories of Goldman and Thalberg break down upon closer
inspection (they are, after all, rival theories), and the affinities of these theories to the account we
will now offer are not much deeper. Hence, although the particular decomposition of event-
knowledge that we advocate was strongly influenced by these prior analyses, we will not spend
too much more time on comparisons.

We view event-knowledge as partitioned into five, hierarchically related knowledge
domains: (0) sensory-motor, (1) spatial, (2) temporal, (3) causal, and (4) conventional. We also
refer to these domains as levels, where the conventional level is the highest and the sensory-motor
level is the lowest.

Since knowledge is represented by use of symbolic predications such as those in the

examples above, we can partition event-related knowledge by partitioning the set of predicates.
Each predicate in our system is “defined” at some level in the hierarchy, and is available only at that

Knowledge Strata page 23

Spector & Hendler

level and (possibly) at higher levels.

The sensory-motor level represents events as simple sensory reports and as operators for
effector manipulation (such as (ungrasp (time 3:45-PM))). The only “reasoning’ at this level is
analogous to reflex arcs in animals. The spatial level contains structures which organize sensory
data with respect to spatial relations (for example, (moved banana-peel trashcan (time 3:43-
PM 3:45-PM))). Operators for complex spatial reasoning (such as path planning) reside here. The
temporal level augments spatial representations with temporal relations, allowing for reasoning
about deadlines and temporal projection. (This is where we would put (before (event e5)
(expected-time (event (return-home human)))).) The causal level contains representations
which embody the agent’s conception of the causal structure of the world (including causal rules
and causally deduced facts such as (prevented (event (fall human))) and (prevented (event
(slip human)))). The conventional level contains knowledge about facts that are true by
convention; for example, that a certain hand gesture is a signal for a turn, or that a dirty sock
“belongs” in the dirty clothes hamper. We also put (protected HomeBot human) at the
conventional level, since in our system the concept of “danger”, and hence also that of
“protection”, is defined by convention.

In summary, then, here is the set of levels that emerges from our analysis of event structure:

Level0: Sensory/Motor — Contains sensory reports and operators for effector
manipulation. The only “reasoning” at this level is analogous to reflex arcs in
animals.

Level 1: Spatial — Contains structures which organize sensory data with respect to spatial
relations. Operators for complex spatial reasoning (such as path planning) reside
here.

Level 2: Temporal — Augments spatial representations with temporal relations, allowing
for reasoning about deadlines and temporal projection.

Level 3: Causal — Contains representations which embody the agent’s conception of the
causal structure of the world.

Level 4: Conventional — Contains knowledge about facts that are true by convention; for
example, that a certain hand gesture is a signal for a turn, or that a dirty sock
“belongs” in the dirty clothes hamper.

“Or “the set of descriptions of a given event” or “the set of events GEN-related to a given event,” elc.

Knowledge Strata page 24

Spector & Hendler

The following is a list of some of the major predicates defined at each level:

conventional: protected, Improper
causal: causes, prevented

temporal: before, after, during
spatial: above, below, Iin, on, moved
sensory-motor: sense, control

7. Architecture + Representation: Putting it Together

The Knowledge Strata Hypothesis is a philosophically motivated thesis about the
representation of events. The Abstraction Separability Hypothesis is in implementationally
motivated thesis about knowledge representation for reactive planners. Our five-level
representation scheme was developed in order to satisfy the conditions of both.

Our system may be thought of as maintaining five different models (or “states”) of the
world, one for each level. Facts about the world are generally distributed across multiple levels.
For example, the fact that dirty-sock-23 is not where it ought to be includes a representation at the
conventional level (out-of-place dirty-sock-23), several representations at the spatial level
(concerning the current location of the sock, the locations that would be acceptable, and the
relations between the two), and sensory/motor representations about the sighting of the sock, etc.
Descriptions of actions and events are similarly distributed. For example, the conventional level
put-away-object contains spatial level components (such as compute-path and go-to-place),
sensory-motor level components (such as move-forward and grasp) and so forth. The resulting
part/whole action hierarchy can be used in very much the same ways as the ad hoc task
decomposition networks were used in previous planning research. However, since the hierarchy is
stratified into well-motivated partitions, we can also take advantage of the benefits offered by
multi-level architectures.

8. HomeBot In Action

Our HomeBot system, which has been built on the basis of the principles discussed above,
has reached a moderately functional stage of development and is capable of solving the “Banana
Peel Problem’ mentioned earlier in this paper. A detailed description of its behavior in this scenario

Knowledge Strata page 25

Spector & Hendler

would be very long (and somewhat tedious); we will, however, attempt to convey the highlights of
the system’s operation in a brief and summary fashion.

Apartment @ Height = 1

Trash Can

s Dirty Sock

HomeBot

u

LD

® Banana Peel

Figure 7. A snapshot of the initial state in the banana peel scenario
(irrelevant objects have been suppressed for clarity).

We start the system with HomeBot in its “robot hutch” with the conventional level goal of
earning praise, and we place a dirty sock in a spot where it is likely to be found, and a banana peel
on the floor on the way to the hamper (see figure 7). The goal of earning praise is decomposed into
the conventional level actions of finding and rectifying improper conditions, which in turn further
decompose into spatial and sensory/motor level actions involved in seeking an out-of-place object
(see figure 8). HomeBot’s wanderings soon lead it to the discovery of the dirty sock on the
living-room floor. The representation of this dirty sock propagates up the hierarchy to the conven-
tional level where it becomes, by virtue of conventional level knowledge about the proper places
for dirty socks, an out-of-place-object. Having found an object to be put away, HomeBot

Knowledge Strata page 26

Spector & Hendler

proceeds to decompose the put-away task into its components (see figure 9). Most of these are at
the spatial level (path planning) or at the sensory/motor level (moving, grasping, sensing). One
subtask, that of discovering where the sock should be dropped such that it will fall into the ham-
per, is at the causal level.

After HomeBot has successfully piloted its way to the sock, grasped it, planned its path to
the hamper, and begun to follow that path, it will notice the presence of the banana peel on the
floor. HomeBot will initially continue on its way, but the representation of the banana peel will
soon propagate up to the causal level where it will be recognized as a human-threat through a
simple chain of causal inferences'”. A newly instantiated rectify-improper-condition operator will
post temporal level goals concerning the expected arrival-time of humans, and concerning the time
it will take to complete the sock-moving task. Based on this temporal information, the rectify-
improper-condition operator will suspend work on the sock-moving chore and begin work on
putting away the banana peel (see figure 10). Work on the goal of putting away the banana peel
proceeds similarly to that of putting away the dirty sock. When the banana peel is in the trash can,
HomeBot will plan a path back to the dirty sock and then resume the task of putting the sock in the
hamper.

“Our causal reasoning mechanism is a simple back-chainer which, in this case, reasons roughly as
follows: the banana peel is a slippery object and therefore a potential slip-hazard; the potential slip-hazard is on the
floor, and it is projected that a human will be on the floor in the future, therefore project a potential human-fall in
the future; a human-fall is a human threat, therefore the banana peel on the floor is a human threat.

Knowledge Strata page 27

Spector & Hendler

Conventional

earn-praise
find-improper-condition ‘
rectify-out-of-place-condition T T T 1T T T T T T T T T T T T 7 "N
find-out-of-place-object
check-out-of-place

- U S
* CHECKING IF OUT-OF-PLACE

detect-human-threat
detect-human-fall
detect-slip-hazard p~1—T1—T—Y

Temporal
Spatial * NOT IN HAMPER!
infer-within [T T T 11T I T T T 1T WA 11T 111

infer-on
find-object-position
find-closest-object
find-next-closest-object

Sensory/Motor * SAW DIRTY SOCK
move-forward [T I T T T T W T] W N

]

ook [X—T1T—1 | IS 2 EEEE SEEES S e e
) |
|

feel —x AT T .
turn-clockwise

turn-counter-clockwise
wander

[——=inactive = active, intensive

e = active, moderate [—3= suspended

Horizontal (time) divisions are approximate. Inactive operators have been omitted.

Figure 8. An early stage of processing in the banana peel scenario.

Knowledge Strata page 28

Spector & Hendler

Conventional

earn-praise
find-improper-condition
rectify-out-of-place-condition
put-away-object
find-out-of-place-object

detect-human-threat
detect-human-fall
detect-slip-hazard
find-drop-position

Temporal
Spatial

infer-on
find-object-position
find-next-closest-object
get-object
find-lift-position
go-to-place [T —T—T] ;
compute-path T I T T T T T T T 1T T 1T T T[—T-T17

* PATH PLANNED; GO TO SOCK

move-forward
look
feel
turn-clockwise
turn-counter-clockwise
wander

= inactive Ml = active, intensive

Horizontal {time) divisions are approximate. Inactive operators have been omitted.

= active, moderate [ZZ]= suspended

Figure 9. An intermediate stage of processing in the banana peel scenario.

Knowledge Strata page 29

Spector & Hendler

Conventional
earn-praise E
find-improper-condition
rectify-out-of-place-condition
rectify-human-threat-condition [T
put-away-object [11

Causal

detect-human-threat
detect-human-fall
detect-slip-hazard
remove-obstacle-hazard

~ Temporal * FINISH TASK 1ST?
estimate-completion-time [T~ T 1T T T 1T T 1 [1 | NS 1 1 1 T]
infer-before [T 1T T T T 1T T T 1 % 117
. *NO
Spatial * GET PEEL
infer-on [: 3
find-next-closest-object §

get-object
go-to-place
compute-path

Sensory/Motor
moveforward BN T TN NN BN MM T T T T T [T T T]

ook CTHEN TN T TN TEN TN TN W W T e

feel NN T NN TN T T T T NS T T 7T T T]
turnclockwise T 1T 1 T T T T T 1T T T T T 71T 1]
reach [1 1 1 1 1) |) | 1 | 1 | 11 I | 1 A |
retract-arm I T T T T 1T T T 1T T 1T 1T T T T 1T
ungrasp C I T 1T T 1T T 1T T T 1T T T T T 1T T TN
release-held-object T Tr—TT T T T T T T T T T I T T

wander | S303080 EMEONE SROR0N0 NEIOISE ZLEEEEN TEM00E MRNOEK JSS0R0H 8000n0d IEO00RNM IRSOSESY HCORMRK MEOIERS S00NBED: BE2255H BORONON 06 T E ess

* SAW BANANA PEEL

[—J=inactive = active, intensive EEE@= active, moderate = suspended

Horizontal (time) divisions are approximate. Inactive operators have been omitted.

Figure 10. HomeBot decides to remove the hazard.

9. Future Work

The project described in this paper is incomplete in three respects:

1: The event representation work suggests a cleaner distinction between within-level
problem-solving procedures and inter-level translation procedures than we have implemented. We

propose to reformulate our system to be in stricter accordance with architectural ideas diagrammed
in figure 4; that is, we wish to separate the maintenance of the event-representation hierarchy from

Knowledge Strata page 30

Spector & Hendler

the within-level manipulation of event structures. Recall that our event-representation structure
forms a part/whole hierarchy. We call the combination of this hierarchy, together with the
procedures which propagate (translate) representations from level to level, an inferential part/whole
hierarchy. It is our contention that inferential part/whole hierarchies are interesting in their own
right, and also that the separation of hierarchy maintenance from within-level reasoning will greatly
improve the clarity of our model as well as that of systems implemented within it.

2: Some of our representational mechanisms are still awkward and/or unnecessarily
complex. In particular, the specifications of operators and monitors should be simpler and more
concise. APE operators are similar to those of many other advanced planning systems, and they
have thus far proven to be functionally adequate. Nonetheless, the construction of a functional set
of operators is still too delicate a craft. With further study of the purposes for which operators are
used, we hope to reduce the specification of advanced planning operators to a more elegant
formalism. (The formalism of traditional planning operators is already rather elegant, but it is also
weak.)

3. We wish to make good the promise of parallelizability inherent in the APE architecture.
Our current implementation merely simulates parallel execution, but we are currently exploring
options for real parallel implementation. We have recently obtained a parallel LISP system called
Top Level Common Lisp which uses a model of parallelism based on “futures objects” [S9]. We
are planning to our next implementation on top of this system in order to assess the degree of
speedup that is actually achievable.

The improvements indicated in items 1 and 2 are mutually supporting. As the translation
tasks and the problem-solving tasks become more cleanly distinguished, it should become easier to
simplify the specification of operators (which will then be responsible only for problem-solving
tasks). Conversely, as the specification for operators is streamlined, the interface between the
operators and the blackboard should also be simplified, and hence the functional requirements of
the inferential part/whole hierarchy should come into sharper focus. Item 3, the use of real
parallelism, also interacts with the redesign of the planning operators insofar as the steps of an
operator are the limiting factor in the granularity of potential parallelism. In addition, the separation
of translation from problem-solving tasks should provide further opportunities for the utilization of
real parallelism.

The true test of the improvements which we have described is the ease with which we will
be able to construct a reactive planner, and the class of problems that such a planner will be capable

Knowledge Strata page 31

Spector & Hendler

of solving. In order to assess our progress we will run our planner in the HomeBot domain with
scenarios which are progressively more complex. In addition to the possible presence of the
banana peels and the like (which will not be expected by HomeBot) we will introduce a number of
other complications: objects that are moved; a VCR (an old model, without a timer) which must be
turned on and off at specified times; a dishwasher buzzer that signals that the dishes have been
cleaned and are ready to be put away; a sink that blocks up (requiring that it be unclogged, but
more importantly, requiring that the spigot be turned off and that the puddle on the floor be
mopped up); and a dog with a tendency to bark loudly and to disturb the neighbors (it must be
pacified with milkbones). When HomeBot is capable of functioning reasonably in such scenarios it
will be clear that we have succeeded in extending significantly the state of the art in reactive
planning.

10. Summary

This paper has examined the application of multi-level architectures to the problem of
reactive planning. We have analyzed several criteria by which planning knowledge could be
subdivided into levels, and have developed and implemented a computational architecture (APE)
based on the most suitable of those criteria. Our analysis included a discussion of the functional
requirements for multi-level representation schemes, as well as a discussion of the multi-level
structure of event and action knowledge. Our theories have been applied within a large, complex
and dynamic domain (HomeBot). Although our current system is capable of solving a large class
of reactive planning problems, we have outlined several improvements which will make our

method more comprehensible, and our implementation faster and more robust.

Appendix: The Stepeese Language

The specifications which are permitted in the steps slot of an APE operator make up a
small, simple parallel programming language called Stepeese. The following is a brief description
of this language using an extended BNF notation. Nonterminals are in <angle brackets>, terminal
symbols are inbold type, and optional elements are enclosed within [square brackets].

Knowledge Strata page 32

<steps-spec>
<step-list>
<step>
<step-number>
<step-body>

<achieve-body>
<re-achieve~body>
<post-goal-body>
<if-body>
<do~-again-body>
<set~local-body>

<do-world-sim-body> ::

<delete-all-body>
<succeed-body>
<fail-body>
<goal-form>
<blackbrd-pattern>
<level>

<step-number-list>
<local-variable>
<read-only-ref>
<settable-ref>

B

(1 | | VT | | | I

([T

Spector & Hendler

(<step-list>)

<step> | <step> <step-list>

{ step-number step-body)

<integer>
<achieve-body>|<re—-achieve-body>|<post-goal-body>|
<if-body>|<do-again-body>|<set-local-body>|
<do~-world-sim~body>|<delete-all-body>|
<succeed-body>|<fail-body>

(achieve <goal-form> [:level <level>])
(re-achieve <goal-form> [:level <level>])
(post-goal <goal-form> [:level <level>])

(if <boolean-expression> <step-body> [<step-body>])
(do-again <step-number-list>)

(set-local <local-variable> <lisp-expression>)
(do-world-sim <arbitrary motor command sequence>)
(delete-all <blackbrd-pattern> [:level <level>])
(succeed)

(fail)

<arbitrary lisp form with local variables>
<arbitrary lisp form with local variables>
sensory-motor | spatial | temporal | causal
conventional
<step-number> | <step-number> <step-number-list>
<read-only-ref> | <settable-ref>

!<ligsp-identifier>

?<lisp-identifier>

Notes: The step-seq slot of every operator contains a list of step-number pairs. If a pair (m

n) is in step-seq then step n cannot execute until step m has completed. Otherwise steps m and n
may execute in parallel or in any order. An achieve step posts a goal to the blackboard and does
not complete until that goal has been achieved or until an appropriate failed-to-achieve form

appears on the blackboard. Note that other steps may continue to execute while an achieve step is

waiting. A re-achieve step first deletes any blackboard elements that match the goal and then
functions as an achieve step. A post-goal step posts a goal to the blackboard and then completes
immediately, without waiting. An If step evaluates an arbitrary boolean expression; if the

expression returns true then the first following step-body is executed. Otherwise the second

following step-body (if present) is executed. Nested if steps are not currently allowed. A do-again

step marks as “uncompleted” the steps indicated by the list of step-numbers. These steps may

therefore be executed again (if the operator does not terminate before they get the chance), and

steps constrained to run after these steps will be suspended. A set-local step assigns the value of

an arbitrary lisp expression to a local variable. A do-worid-sim step executes an arbitrary lisp

expression; the intent here is to provide the interface to robotic controllers. A delete-all step

removes from the blackboard all entries that match the given pattern. A succeed step terminates
execution of the operator and causes the operator’s succeed-add and succeed-delete lists to be

processed. A fail step terminates execution of the operator and causes the operator’s fail-add and

Knowledge Strata

page 33

Spector & Hendler

fail-delete lists to be processed.

Bibliography

[1] Albus, James S., Barbera, Anthony J., and Nagel, Roger N., “Theory and Practice of Hierarchical Control,” in
The Proceedings of the Twenty-Third IEEE Computer Society International Conference — Productivity: An
Urgent Priority, 1981.

[2] Allen, James F. “Towards a General Theory of Action and Time,” in Artificial Intelligence 23 (1984), pp.
123-154.

[3] Ambros-Ingerson, Jose A., and Steel, Sam, “Integrating Planning, Execution, and Monitoring,” in The
Proceedings of AAAI-88, 1988.

{4] Bisiani, Roberto, and Forin, A, “Parallelization of Blackboard Architectures and the Agora System,” in
Blackboard Architectures and Applications, V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum,
Editors, Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York, 1989,

[5] Bresina, John, and Drummond, Mark, "Integrating Planning and Reaction: A Preliminary Report," in Planning
in Uncertain, Unpredictable, or Changing Environments, James Hendler, Editor, University of Maryland
Systems Research Center Technical Report SRC TR 90-45, 1990.

[6] Brooks, R. “A Robust Layered Control System for a Mobile Robot,” in IEEE Journal of Robotics and
Automation, Vol. RA-2, No. 1, 1985.

[7] Chapman, David “Planning for Conjunctive Goals,” in Artificial Intelligence Volume 32, 1987,

{8] Chapman, David, and Agre, Philip “Abstract Reasoning as Emergent from Concrete Activity,” in M. Georgeff
and A Lansky, Editors, The 1986 Workshop on Reasoning About Actions and Plans, Morgan Kaufman, 1986.

[9] Corkill, Daniel D. “Design Alternatives for Parallel and Distributed Blackboard Systems,” in Blackboard
Architectures and Applications, V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, Editors,
Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York, 1989.

{10] Costa, Michael J. “Causal Theories of Action,” in Canadian Journal of Philosophy, Volume 17, Number 4,
December 1987, pp. 831-854.

[11] Craig, Iain D. The Cassandra Acrhitecture: Distributed Control in a Blackboard System, Ellis Horwood Limited,
Publishers, Chinchester, England, 1989.

[12] Davidson, Donald, "The Individuation of Events," in Davidson, Donald, Essays on Actions and Events, Oxford
University Press, 1980.

(13] Davis, Lawrence, Theory of Action, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979.

{14] Dean, Thomas, Basye, Kenneth, Chekaluk, Robert, Seungseok, Hyun, Lejter, Moises, Randazza, Margaret,
“Coping with Uncertainty in a Control System for Navigation and Exploration,” in Proceedings of the Eighth
National Conference on Artificial Intelligence, AAAI-90, MIT Press, Cambridge, Mass., 1990.

[15] Dodhiawala, Rajendra T., Sridharan, N. S., and Pickering, Cynthia, “A Real-Time Blackboard Architecture,” in
Blackboard Architectures and Applications, V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum,
Editors, Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York, 1989,

[16] Drummond, Mark E., "Refining and Extending the Procedural Net," in The Proceedings of IJCAI-85, and
reprinted in Readings in Planning, James Allen, James Hendler, and Austin Tate, Editors, Morgan Kaufmann
Publishers, Inc., 1990,

[17]) Erman, Lee D., and Lesser, Victor R., “A Multi-level Organization for Problem Solving Using Many, Diverse,
Cooperating Sources of Knowledge,” in Advance Papers of the Fourth International Joint Conference on
Artificial Intelligence, IJCAI-75, 1975,

(18] Erman, Lee D., Hayes-Roth, Frederick, Lesser, Victor R., and Reddy, Raj D. “The Hearsay-II Speech-
Understanding System: Integrating Knowledge to Resolve Uncertainty,” in Computing Surveys, Vol. 12, No.
2, June 1980.

[19] Fehling, Michael R., Altman, Art M., and Wilber., B. Michael “The Heuristic Control Virtual Machine: An
Implementation of the Schemer Computational Model of Reflective, Real-Time Problem-Solving,” in
Blackboard Architectures and Applications, V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum,
Editors, Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York, 1989,

[20] Firby, James R. “Adaptive Execution in Complex Dynamic Worlds,” Doctoral Dissertation, Department of

Knowledge Strata page 34

Spector & Hendler

Computer Science, Yale University, 1989.

[21] Georgeff, M. and Lansky, A., Editors, The 1986 Workshop on Reasoning About Actions and Plans, Morgan
Kaufman, 1986.

[22] Georgeff, Michael P., and Lansky, Amy L. “Reactive Reasoning and Planning,” AAAI-87.

{23] Georgeff, Michael P., and Ingrand, Frangois Felix “Decision-Making in an Embedded Reasoning System,” in
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 1989.

[24] Goldman, Alvin, 1., A Theory of Human Action, Princeton University, Princeton, 1970.

[25] Hayes, P.J. “A Representation for Robot Plans,” Advance Papers of the Fourth International Joint Conference
on Artificial Intelligence, IICAI-75, 1975.

[26] Hayes-Roth, Barbara, “A Blackboard Architecture for Control,” in Artificial Intelligence 2 6, pp. 251-321, 1985.

[27] Hayes-Roth, Barbara, “Dynamic Control Planning in Intelligent Agents,” in Planning in Uncertain,
Unpredictable, or Changing Environments, James Hendler, Editor, University of Maryland Systems Research
Center Technical Report SRC TR 9045, 1990.

[28] Hendler, James A., and Sanborn, James “A Model of Reaction for Planning in Complex Environments,” In
Proceedings of the Knowledge-Based Planning Workshop, DARPA, Autin, TX, December, 1987.

[29] Hendler, James, and Subrahmanian, V.S., “A Formal Model of Abstraction for Planning”, University of
Maryland Technical Report UMIACSWW-TR-90-75 and CS-TR-2480, May 1990.

[30] Hendler, James, “Abstraction and Reaction,” in Planning in Uncertain, Unpredictable, or Changing
Environments, James Hendler, Editor, University of Maryland Systems Research Center Technical Report SRC
TR 90-45, 1990.

[31] Hendler, James, Editor,Planning in Uncertain, Unpredictable, or Changing Environments, University of
Maryland Systems Resecarch Center Technical Report SRC TR 90-45, 1990.

[32] Hewett, Micheal, and Hayes-Roth, Barbara “Real-Time /O in Knowledge-Based Systems,” in Blackboard
Architectures and Applications, V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, Editors,
Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York, 1989.

[33] Jagannathan, Vasudevan, “Realizing the Concurrent Blackboard Model,” in Blackboard Architectures and
Applications, V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum, Editors, Academic Press, Inc.,
Harcourt Brace Jovanovich, Publishers, New York, 1989.

[34] Kaelbling, Leslie Pack “An Architecture for Intelligent Reactive Systems,” in M. Georgeff and A Lansky,
Editors, The 1986 Workshop on Reasoning About Actions and Plans, Morgan Kaufman, 1986.

[35] Kambhampati, S. “Flexible Reuse and Modification in Hierarchical Planning: A Validation Sturcture Based
Approach,” Doctoral dissertation, Department of Computer Science, University of Maryland, 19§9.

[36] Korf, R. E. “Planning as Search: A Quantitative Approach,” in Artificial Intelligence 22(1), 1987.

[37] Kraus, Sarit, Nirkhe, Madhura, and Perlis, Donald “Toward Fully Deadline-Coupled Planning,” University of
Maryland Technical Report, 1990.

[38] Kuokka, Daniel R., “The Deliberative Integration of Planning, Execution, and Learning,” Carnegie Mellon
University School of Computer Science. Technical Report CMU-CS-90-135, May 1990.

[39] Laird, John E., and Rosenbloom, Paul S., “Integrating Execution, Planning, and Learning in Soar for External
Environments,” in Proceedings of the Eighth National Conference on Artificial Intelligence, AAAI-90, MIT
Press, Cambridge, Mass., 1990,

[40] Lansky, Amy L. “A Representation of Parallel Activity Based on Events, Structure, and Causality,” in M.
Georgeff and A Lansky, Editors, The 1986 Workshop on Reasoning About Actions and Plans, Morgan
Kaufman, 1986.

[41] Lansky, Amy L., “Localized Representation and Planning,” in Readings in Planning, James Allen, James
Hendler, and Austin Tate, Editors, Morgan Kaufmann Publishers, Inc., 1990.

[42] Lesser, Victor R., Pavlin, Jasmina, and Durfee, Edmund H., “Approximate Processing in Real-Time Problem
Solving,” in Blackboard Architectures and Applications, V. Jagannathan, Rajendra Dodhiawala, and Lawrence
S. Baum, Editors, Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York, 1989.

[43] McDermott, D., “Planning and Acting,” in Cognitive Science, 2:71-109, 1978.

{44] Morgenstern, L. “Replanning,” Proceedings DARPA Knowledge-Based Planning Workshop, Austin, TX,
1987.

{45] Nilsson, Nils J. Principles of Artificial Intelligence, Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1980.

[46] Perlis, Donald “Meta in Logic,” in Meta-Level Architectures and Reflection, P. Maes and D. Nardi, Editors,
Elsevier Science Publishers B.V. (North-Holland), 1988.

Knowledge Strata page 35

Spector & Hendler

[47] Pollack, Martha E., “Inferring Domain Plans in Question-Answering,” SRI Technical Note #403, SRI
International, Menlo Park, CA, 1986.

[48] Pollack, Martha E., and Ringuette, Marc,”Introducing the Tileworld: Experimentally Evaluating Agent
Architectures,” in Proceedings of the Eighth National Conference on Artificial Intelligence, AAAI-90, MIT
Press, Cambridge, Mass., 1990.

[49] Raulefs, Peter “Toward a Blackboard Architecture for Real-Time Interactions with Dynamic Systems,” in
Blackboard Architectures and Applications, V. Jagannathan, Rajendra Dodhiawala, and Lawrence S. Baum,
Editors, Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York, 1989.

[50] Sacerdoti, E. D. “Planning in a Hierarchy of Abstraction Spaces,” in Artificial Intelligence, 5(2), 1974.

[51] Sacerdoti, Earl D. “The Nonlinear Nature of Plans,” in Advance Papers of the Fourth International Joint
Conference on Artificial Intelligence, IICAI-75, 1975.

[52] Schank, Roger C., Dynamic Memory, Cambridge University Press, 1982.

[53] Schoppers, Marcel, and Linden, Ted, “The Dimensions of Knowledge Based Control Systems and the
Significance of Metalevels,” in Planning in Uncertain, Unpredictable, or Changing Environments, James
Hendler, Editor, University of Maryland Systems Research Center Technical Report SRC TR 90-45, 1990.

[54] Spector, Lee, and Hendler, James A., “An Abstraction-Partitioned Model for Reactive Planning,” in Proceedings
of the Fifth Rocky Mountain Conference on Artificial Intelligence (RMCAI-90), New Mexico State
University, Las Cruces, New Mexico, 1990.

[55] Swartout, William, (Editor) “DARPA Santa Cruz Workshop on Planning,” in Al Magazine, Vol. 9, No. 2,
Summer 1988.

[56] Tate, Austin “Project Planning Using a Hierarchic Non-Linear Planner,” Department of Artificial Intelligence
Research Report No. 25, University of Edinburgh, Edinburgh, August 1976.

[57] Thalberg, Irving, Perception, Emotion & Action,Yale University Press, New Haven, 1977.

[58] Thomson, Judith Jarvis, Acts and Other Events, Comnell University Press, Ithica, New York, 1977.

[59] Top Level Common Lisp Reference Manual, Top Level, Inc., Amherst, Massachusetts, 1990.

{60] Washington, Richard, and Hayes-Roth, Barbara, “Abstraction Planning in Real-Time,” in Planning in
Uncertain, Unpredictable, or Changing Environments, James Hendler, Editor, University of Maryland Systems
Research Center Technical Report SRC TR 90-45, 1990.

[61] Wilensky, Robert, Planning and Understanding, Addison-Wesley Publishing Company, 1983,

[62] Wilkins, David E. Practical Planning: Extending the Classical Al Planning Paradigm, Morgan Kaufmann
Publishers, Inc., San Mateo, California, 1988.

[63] Winston, Morton E., Chaffin, Roger, and Herrmann, Douglas, “A Taxonomy of Part-Whole Relations,” in
Cognitive Science 11, 1987, pp. 417-444.

Knowledge Strata page 36

