
Model Problems in Technologies
for Interoperability:
Web Services

Grace A. Lewis
Lutz Wrage

June 2006

Integration of Software-Intensive Systems Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2006-TN-021

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

CMU/SEI-2006-TN-021 i

Contents

Abstract..vii

1 Introduction..1

2 Model Problem Process Applied to an Evaluation of Web Services
for Interoperability ...3
2.1 Identify Model Problem Context..3
2.2 Develop Hypotheses...4
2.3 Develop Criteria for Hypotheses...4
2.4 Design and Implement Model Solution ...5

3 Evaluation...9
3.1 Results for Hypothesis 1...9

3.1.1 Web Services Standards are Emerging....................................10
3.1.2 The Differences Between Development and Deployment

Environments Can Be Problematic for Web Services...............11
3.1.3 Making Wrapper Code Available Simplifies Development

on the Same Platform ...12
3.2 Results for Hypothesis 2...13

3.2.1 WSDL Is Not Enough to Describe All Aspects of Services14
3.2.2 Service Granularity Can Have a Large Impact

on Performance ..17
3.2.3 There Is Not Yet a Market for Services.....................................17

3.3 Results for Hypothesis 3...19
3.3.1 Interoperability Testing is Important..19
3.3.2 Tool Interoperability is Crucial...20
3.3.3 Adding Greater Expectations to Web Services

Makes It Harder to Achieve Interoperability21

4 Conclusions and Request for Feedback ...23

References...24

ii CMU/SEI-2006-TN-021

CMU/SEI-2006-TN-021 iii

List of Figures

Figure 1: Model Problem Process for Technology Evaluation 3

Figure 2: Deployment View for the Complete Set of Model Solutions..................... 7

Figure 3: Class Diagram for the Business and Data Management Logic of the
Extended HR System... 8

Figure 4: Simplified Representation of the Reassignment Service 13

Figure 5: Static Binding to Web Service .. 16

Figure 6: Dynamic Binding to a Web Service .. 16

Figure 7: Web Services Protocol Stack ... 21

iv CMU/SEI-2006-TN-021

CMU/SEI-2006-TN-021 v

List of Tables

Table 1: Hypotheses and Their Criteria for the Web Services Investigation 4

Table 2: Scenario, Model Solution, and C&C View for Hypothesis 1 5

Table 3: Scenario, Model Solution, and C&C View for Hypothesis 2 6

Table 4: Scenario, Model Solution, and C&C View for Hypothesis 3 6

vi CMU/SEI-2006-TN-021

CMU/SEI-2006-TN-021 vii

Abstract

Web service technologies (or Web services) are experiencing a growing popularity in U.S.
Department of Defense, industry, and non-defense government organizations due to their
potential to enable interoperability between applications implemented on different platforms.
This potential stems from Web services being based on standards that have been widely
accepted and implemented, such as the Simple Object Access Protocol and the Web Services
Description Language. The large number of products and tools created to facilitate the
development of Web services has also contributed to their popularity. This technical note
presents the results of applying the model problem approach in an initial investigation of the
potential of Web services to enable interoperability.

viii CMU/SEI-2006-TN-021

CMU/SEI-2006-TN-021 1

1 Introduction

The Integration of Software-Intensive Systems (ISIS) team at the Carnegie Mellon® Software
Engineering Institute (SEI) is examining technologies and approaches for the construction of
systems that are required to interoperate with other systems, with the purpose of identifying
gaps between what these technologies and approaches offer and what users expect of them.
The end goal of this research is to provide users with information about what can be expected
from the current state of technology and to provide technology suppliers with information
about user expectations.

From a technology perspective, there are many current approaches to building systems for
which there are interoperability requirements. Each approach has particular advantages and
disadvantages with respect to interoperability, and each works well in some circumstances
but not in others [Lewis 04]. In this report we investigate Web services, one of many
technologies for accomplishing interoperability.

Web services have been defined by the World Wide Web Consortium (W3C) as follows:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically [Web services description
language] WSDL). Other systems interact with the Web service in a manner
prescribed by its description using [simple object access protocol] SOAP-
messages, typically conveyed using [hypertext transfer protocol] HTTP with
an [extensible markup language] XML serialization in conjunction with other
Web-related standards [W3C 04b].

Web services are an approach to implementing a service-oriented architecture (SOA), where
all of the following apply.

• Service interfaces are described using WSDL [W3C 06].

• Message payload (i.e., content) is transmitted using SOAP over HTTP [W3C 03, W3C
04a].

• Universal Description Discovery and Integration (UDDI) is used for service registration
and discovery [OASIS 05b].1

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.
1 The use of a service registry is optional.

2 CMU/SEI-2006-TN-021

Other combinations of technologies can be used to implement SOAs, but using Web services
is by far the most common approach. For this reason, the acronym SOA is often used in a
way that implies the use of Web services as the implementation technology.

Web services are experiencing a growing popularity due to a number of factors, including
those below.

• Systems can interact with one another via standard Web technologies.

• Services can be built once and reused many times.

• Services can be implemented in any programming language and on any platform.

• Systems can advertise capabilities as services for other systems to use.

• There is tremendous vendor support for Web service technology.

Given these benefits, it is no surprise that there is great interest from U.S. Department of
Defense (DoD), industry, and government non-DoD organizations in using Web services for
interoperability between systems.

In addition to those benefits, there are claims found in literature, experience reports, and
vendor documentation that contribute to this interest.

• The implementation of Web services is very easy.

• Web services are the solution to integration between systems on different platforms.

• There are numerous public repositories and Web sites offering Web services that can be
easily integrated into applications.

To verify these claims about Web services, we chose the model problem approach [Wallnau
01, Lewis 05b]. The model problem approach involves (1) formulating hypotheses about the
technology and (2) examining these hypotheses against very specific criteria through
experimentation. In this way, the hypotheses are either sustained or refuted. The model
problem approach has the advantage of producing very efficient and representative
experiments that not only evaluate technologies within the context of their future use but also
generate hands-on competence with the technologies.

Section 2 presents the definition of the model problems. Results and details about the
experience with Web services are presented in Section 3. Finally, Section 4 presents our
conclusions.

CMU/SEI-2006-TN-021 3

2 Model Problem Process Applied to an Evaluation of

Web Services for Interoperability

Model problems2 are part of a larger process for context-based technology evaluation that
includes steps to establish the context for the model problem and to capture user expectations
on the evaluated technology [Lewis 05a]. A graphical representation of the model problem
process is presented in Figure 1.

Develop Hypotheses

Develop Criteria

Design and Implement Model Solution

Evaluate Model Solution Against Criteria

[Hypothesis Sustained] [Hypothesis Refuted]

Figure 1: Model Problem Process for Technology Evaluation

2.1 Identify Model Problem Context
The context for the model problems in this report is a military human resources (HR) system.
Military personnel are often reassigned to new locations, which triggers additional processes
such as the actual reassignment, payroll adjustment, and flight booking. In this context, it is
common for different systems on potentially different platforms to perform each of those
processes.

2 The model problem technique was initially created to evaluate commercially available software and

system components [Wallnau 01]. For our purpose, the original model problem process has been
slightly modified so that it extends to the evaluation of technology in general.

4 CMU/SEI-2006-TN-021

For example, in a real military HR system that we are familiar with, the data of personnel that
are due for reassignment is transferred in batch mode to a separate reassignment system
where it is processed and transferred (again in batch mode) back to the HR system. On a
similar note, payroll data is processed in a system outside of the HR system with events
transferred in batch mode from the HR system to the payroll system, so that pay is properly
calculated every period.

2.2 Develop Hypotheses
For Web services, we defined the following initial hypotheses based on claims found in
literature, experience reports, and vendor Web sites:

1. It is fairly easy for developers to connect applications developed for the same platform
using Web services.

2. There are a large number of public, easily discoverable, and high-quality Web services
that can be used in applications. (High-quality Web services are those for which the
interfaces are well documented and straightforward to use.)

3. There are no problems regarding data types if Web services are used to connect
applications on different platforms (i.e., Java 2 Enterprise Edition [J2EE] and .NET).

2.3 Develop Criteria for Hypotheses
These are the defined criteria for the hypotheses stated in Section 2.2.

Table 1: Hypotheses and Their Criteria for the Web Services Investigation
Hypothesis Criteria

1. It is fairly easy for developers to connect
applications developed for the same
platform using Web services.

• Documentation is available on how to implement
and access Web services in the selected platform.

• Tools and libraries are available to implement
Web services in the selected platform.

• Tools and libraries are available to generate code
in the selected platform to access a Web-based
service from the associated WSDL document that
describes the service.

• Two applications can connect using Web services.
2. There are a large number of public, easily

discoverable, and high-quality Web
services that can be used in applications.
(High-quality Web services are those for
which the interfaces are well documented
and straightforward to use.)

• Developers are able to locate Web services for use
in their application by using public UDDI
repositories or searching on the Internet.

• The Web services are well documented, and there
is guidance on how to use them.

3. There are no problems regarding data types
if Web services are used to connect
applications on different platforms (i.e.,
J2EE and .NET).

• The two applications can exchange complex, date,
and floating point data types with no data
inconsistencies between the two platforms.

• This exchange can be done using default
mechanisms provided with the Web services tools
and libraries.

CMU/SEI-2006-TN-021 5

2.4 Design and Implement Model Solution
There was no product evaluation for the design and implementation of the model solution; we
used either open-source products or products for which there were existing licenses.
Nonetheless, as will be seen in the scenario descriptions, those products are commonly found
in organizations, and they are readily available. To sustain or refute the above hypotheses, we
defined the following scenarios and technical solutions.

Table 2: Scenario, Model Solution, and C&C View for Hypothesis 1

Hypothesis 1 It is fairly easy for developers to connect applications developed for the same
platform using Web services.

Scenario

It is expected that a person is given a new assignment every year. Personnel
reassignment is processed by a separate system. Every so often, the reassignment
system queries the HR system for employees soon to be reassigned. Employee data is
transferred in batch mode to the reassignment system, which processes the
reassignments and sends the data back to the HR system in batch mode as well.

Model
Solution

The existing personnel data management (PDM) HR system is a J2EE application
that uses a number of Enterprise Java Beans (EJBs) to perform basic Create-Retrieve-
Update-Delete (CRUD) operations and validations on personnel data. The user
interface is implemented as a set of Java Server Pages (JSPs) that are accessed
through a browser [Sun 06]. Apache Tomcat is used as the servlet container [Apache
06]. The J2EE application server used is JBoss Application Server [JBoss 05]. Data is
stored in an Oracle database [Oracle 05].
A Web service with two operations will be added to the HR system: one to download
pending reassignments and the other to upload processed reassignments. The
reassignment processing system is created as a Java application that invokes the Web
service to download and process the data and then invoke the Web service again to
upload the processed data. The reassignment system data is stored in a MySQL
database [MySQL 06]. A component and connector (C&C) view of the model
solution follows [Clements 02].

6 CMU/SEI-2006-TN-021

Table 3: Scenario, Model Solution, and C&C View for Hypothesis 2

Hypothesis 2
There are a large number of public, easily discoverable, and high-quality Web
services that can be used in applications. (High-quality Web services are those for
which the interfaces are well documented and straightforward to use.)

Scenario
The PDM HR system is also used to initiate travel arrangements for reassigned
personnel. It uses external Web services to find travel options to reach the location of
the new assignment.3

Model
Solution

The HR System will be extended with functionality that uses an external Web service
or a collection of Web services to look for travel options given the person’s current
location and the location of the new assignment. A C&C view of the model solution
is presented below.

Table 4: Scenario, Model Solution, and C&C View for Hypothesis 3

Hypothesis 3
There are no problems regarding data types if Web services are used to connect
applications on different platforms (i.e., J2EE and .NET).

Scenario

A person who is reassigned is given a salary adjustment and a relocation bonus. The
payroll system has to be informed of the reassignment so that the adjustment and
bonus can be reflected in the next paycheck. As a confirmation mechanism, once the
adjustment and bonus are processed, the payroll system notifies the HR system.

Model
Solution

The payroll system is implemented as a .NET application. This payroll system will
contain a Web service with an operation for receiving salary adjustments and
bonuses. The HR system will be extended with a Web service to perform an operation
for notification of payroll events. This will allow testing of the Web services in both
directions (J2EE to .NET and .NET to J2EE). The payroll and HR systems will
interact as follows:
• Each time a person’s pay changes in the HR system, HR calls the salary

adjustment service in the payroll application.
• The payroll application stores the received adjustment information in a database

for processing by a payroll specialist.
• Each time a payroll specialist processes a salary adjustment, the payroll system

calls the new Web service in the HR system with the information that the
processing has been completed.

The parameters of Web service operations will include complex (such as a record),
date, and floating point data types, which were expected to cause problems between
these two platforms. A C&C view of the model solution follows.

3 In Section 3.2, we describe why we had to modify this scenario.

CMU/SEI-2006-TN-021 7

Table 4: Scenario, Model Solution, and C&C View for Hypothesis 3 (cont.)

A deployment view for the complete set of model solutions is presented in Figure 2.

Figure 2: Deployment View for the Complete Set of Model Solutions

8 CMU/SEI-2006-TN-021

A class diagram for the extended HR system is presented in Figure 3. In Section 3, we
present the evaluation of the model solution against the model problem criteria described in
this section.

Figure 3: Class Diagram for the Business and Data Management Logic of the
Extended HR System

CMU/SEI-2006-TN-021 9

3 Evaluation

In this section, we provide the results of evaluating the model solutions against the criteria in
order to determine whether the hypotheses are sustained or refuted.

3.1 Results for Hypothesis 1
Our first hypothesis, “It is fairly easy for developers to connect applications developed for the
same platform using Web services,” was sustained. It was easy to connect the reassignment
application developed as a Java client to the HR system developed as a J2EE-based
application.

The Web services interface for the HR system was generated using the same MDA-based4
development tool that was used initially to generate the J2EE infrastructure code and Web-
based user interface for the HR system. This work is described in Model Problems in
Technologies for Interoperability: Model-Driven Architecture [Lewis 05b]. The development
tool generated

• the WSDL file describing the Web services interface

• the code that needs to be present on the server side to handle the calls to the Web service
and the SOAP messages within these calls

• the code that needs to be present on the client to invoke the Web service

• a small test client stub

From conversations with colleagues we’ve seen that this result is common in integrated
development environments (IDEs) that have functionality for Web services development. The
tool also provided a way to easily visualize the messages being exchanged, which was very
useful for troubleshooting.

There were some difficulties associated with the MDA tool and in the actual deployment of
the Web service. Once we overcame those obstacles, however, the deployment of subsequent
services was very simple. A more detailed description of the findings follows.

4 MDA stands for model-driven architecture and is the implementation of model-driven development

maintained by the Object Management Group. The main idea behind an MDA-based development
tool is to separate functionality from infrastructure by means of platform-independent models that
are transformed into platform-specific models through the application of transformation rules. The
end goal for most current MDA-based development tools is to generate code for specific platforms
from models. For more information, go to http://www.sei.cmu.edu/isis/guide/technologies
/mda.htm.

http://www.sei.cmu.edu/isis/guide/technologies

10 CMU/SEI-2006-TN-021

3.1.1 Web Services Standards are Emerging

To understand Web services, it is useful to understand WSDL and SOAP. The primers on
SOAP 1.2 and WSDL 2.0 that are part of the standard documents for Web services were a
good way to learn about the latest versions of these two specifications. However, the MDA
tool generated Web services conforming to SOAP 1.1 and WSDL 1.1, as do most such tools
in the market. There are major differences between versions. For example, just in additional
or changed syntax there are 15 differences between the SOAP 1.1 and SOAP 1.2. While these
changes are beneficial because they make the SOAP 1.2 clearer and more robust, they can
make valid SOAP 1.1 messages become invalid under SOAP 1.2. As a result, once tools and
libraries start supporting SOAP 1.2, existing applications and services will have to follow in
order to continue operation.

The Web Services Interoperability Organization (WS-I) attempts to provide guidance on the use
of Web services standards. Established in early 2002, WS-I is an open industry effort chartered
to promote Web services interoperability across platforms, applications, and programming
languages. This organization brings together a diverse community of Web services leaders to
respond to customer needs by providing resources and recommended practices for developing
interoperable Web services [WS-I 06a]. One of its deliverables is the Basic Profile, which is a
set of nonproprietary Web services specifications that promote interoperability by providing
clarifications, refinements, interpretations, and amplifications in areas of the standards that are
subject to multiple interpretations [WS-I 06b].

As a test, we ran the generated WSDL file against the WS-I Analyzer tool to verify the
conformance of the generated WSDL file to the WS-I Basic Profile. The tool found several
issues related to namespaces and data types. For example, although the tool generated a valid
WSDL document, it used Java types within the WSDL document instead of XML Schema
types. This difference was not a problem during testing with the generated test client because
both service and test client were generated by the same tool, but we suspected that this would
cause problems outside of that setting, which it eventually did as described in Section 3.3. After
we changed the Java types to XML Schema types and fixed other small problems with
date/time data types and invalid portType5 names, the WSDL document passed the
conformance test.

The standards related to other cross-cutting aspects of Web services, such as security or
transactions, are even more undefined and emerging, which adds even more value to the effort
that organizations such as the WS-I are making.

5 The portType element of a WSDL document includes the set of operations supported by the Web

service. Each operation includes the input and the output messages of the operation (e.g., request
message and response message for a certain operation).

CMU/SEI-2006-TN-021 11

3.1.2 The Differences Between Development and Deployment Environments
Can Be Problematic for Web Services

Testing the model solution involved a good deal of troubleshooting; the most problematic
aspect of which was the difference between the development and deployment environments.

The simplest way to explain how Web services work in the model solution is the following
sequence:

1. The client generates a SOAP message that is sent within an HTTP request to an HTTP
server.

2. The HTTP server recognizes this as a SOAP message and sends it to a SOAP servlet
running within a servlet engine such as Tomcat.

3. The SOAP servlet decodes the SOAP message and calls the code associated with the
requested Web services operation.

4. The SOAP servlet receives the return data from the called code and sends a SOAP
message back in an HTTP response.

The generated test client worked with the Apache SOAP servlet running locally within the
Tomcat 3.0 servlet engine that was included in the MDA tool. The model solution called for the
servlet engine to reside on the server instead of the client. JBoss, the application server for the
HR application, comes with Tomcat 4.0. Initially, the difference in versions was not considered
to be a problem because most products are backwards-compatible. Unfortunately, when the
Web services code was moved over to the Tomcat instance on the server, the model solution did
not work. The Apache SOAP servlet included with the MDA tool conformed to the XML
Schema 1999 specification, and the Apache SOAP servlet included with JBoss conformed to
the XML Schema 2001 specification.6

After extensive debugging and troubleshooting, we traced the cause of the problem to a portion
of the code generated by the MDA tool. This code assigned a default message serializer and
deserializer for basic data types and worked without any problems with the older Apache SOAP
implementation included with that tool. After this portion of code was removed, the model
solution worked. Our assumption is that the serializer/deserializer assigned for basic data types
by the MDA tool was different from the one assigned by default by the newer Apache SOAP
implementation. Removing the code portion made the newer Apache SOAP implementation
use its default serializer/deserializer instead of the one wrongly assigned by the MDA tool.
Although the solution to the problem was trivial, we expended a significant amount of effort to
find it. Moreover, this problem is not something that should be discovered towards the end of a
project, especially in a real-world implementation.

The lesson learned from this experience has to do with IDEs in general, as well as with the
emerging characteristics of standards related to Web services. Most modern IDEs come with

6 To complicate matters even further, the reassignment application was developed using Eclipse,

which can also run its own instance of Tomcat.

12 CMU/SEI-2006-TN-021

embedded infrastructure software and a “safe environment” for testing. Because of this, initial
testing happens on a single machine and within this safe environment. Given the potential for
having a large number of components as part of a Web services solution (i.e., HTTP server,
servlet engine, SOAP servlet, application server, and database), the development environment
should resemble the deployment environment as much as possible. Also, a change in one
component of the solution requires the re-evaluation of the appropriateness of the rest of the
components of the solution.

3.1.3 Making Wrapper Code Available Simplifies Development on the Same
Platform

A Web service with two operations was added to the HR system, as indicated in 7Table 2 on
page 5.

1. Retrieve pending reassignments.
This operation retrieves personnel records from the HR system on the people due for
reassignment by a given date. It receives a date as input and returns an array of data of
the type PersonalData.

2. Upload processed reassignments.
This operation uploads to the HR system the processed personnel records with the new
assignment data. It receives an array of data of the type PersonalData as input and
returns the number of records retrieved in the first operation.

The data exchanged was defined as a complex type in the SOAP message and matched the
PersonalData data type (Java class) used inside the HR system (as illustrated in Figure 3
on page 8). This practice is common. Figure 4 shows a simplified class diagram
representation of the reassignment Web service.

The code we had to write for the reassignment system was extremely simple because we
reused the same PersonalData data type, as well as the same client-side wrapper code
that was generated by the MDA tool. On another platform, this code would have to have been
created based on the WSDL file. This situation is not really a surprise; it is similar to what
happens when two applications communicate using other middleware technologies such as a
common object request broker architecture. Organizations that wish to facilitate the
development of client applications can make wrapper and data type code available for
download.

CMU/SEI-2006-TN-021 13

Figure 4: Simplified Representation of the Reassignment Service

3.2 Results for Hypothesis 2
The hypothesis “There are a large number of public, easily discoverable, and high quality
Web services that can be used in applications” was refuted.

The goal of this aspect of our research was to locate public Web services that, given an origin
and a destination, would provide a list of travel options (similar to the response provided on an
airline travel agency Web site). The first step was to search public UDDI repositories such as
IBM’s UDDI Business Registry7 or Web services portals such as WSindex.8 The result of those
searches was quite disappointing. Most entries pointed to nonexistent Web services or “toy”
Web services created by people learning about UDDI. The next step was to use a search engine
to find appropriate Web services. That experience was equally disappointing, because the Web
services found were not related to travel. Given these results, we changed the scenario for
hypothesis 2 to “The HR System uses external Web services to locate the airport that is closest
to the location of the new assignment.”

We found three Web services that, in combination, could find the closest airport. Here is the
process that we devised:

1. Locate airport information using a Web service from WebserviceX.NET.9 We located all
airports in the destination country using the
GetAirportInformationByCountry operation in this Web service. The

7 The IBM UDDI Business Registry, the IBM UDDI Test Registry, and the IBM UDDI Beta Test

Registry Web sites are no longer available.
8 For more information, go to http://www.wsindex.org/
9 For more information, go to http://www.webservicex.net/WS

/WSDetails.aspx?WSID=20&CATID=7

http://www.wsindex.org
http://www.webservicex.net/WS

14 CMU/SEI-2006-TN-021

operation returns a list of airports in a given country, along with their latitude and
longitude values.

2. Find latitude and longitude of the destination city using Microsoft’s TerraService Web
Service.10 The ConvertPlaceToLatLon operation in this Web service takes city,
state, and country input and returns the corresponding latitude and longitude.

3. Use the Calculate Distance between Two Coordinates Web service from InnerGears.11
We used this service to calculate the distance between airports and the destination city.
The CalcDistance2Coords operation takes two coordinates expressed as
latitude/longitude and returns the distance between them.

4. Select the airport that has the shortest distance to the destination.

A WSDL2Java tool from Axis was used to generate all the necessary infrastructure code to
connect to these Web services [Apache 05]. This new scenario for hypothesis 2 also allowed for
the exploration of Web services composition, another interesting topic. A more detailed
description of the findings follows.

3.2.1 WSDL Is Not Enough to Describe All Aspects of Services

Interoperability is much more than the capability to exchange data between systems. It also
requires a shared understanding of that information and how to act upon it.

Interoperability is the ability of a collection of communicating entities to (a)
share specified information and (b) operate on that information according to
an agreed operational semantics [Brownsword 04].

The ability to exchange data is called syntactic interoperability, and the ability to operate on
that data according to agreed-upon semantics is termed semantic interoperability. Both
varieties are necessary prerequisites to achieve interoperability.

In its simplest form, a WSDL document is an XML-based document that describes what a
Web service can do, where it resides, and how to invoke it. A WSDL document does not
convey semantics. WSDL deals with data formats and representations; it does not deal with
meaning and interpretation of data and operations. A simple example of the importance of
shared semantic meaning of data involves price quotes from online vendors. Both the
requesting customer and quoting vendor may share a common understanding of the raw value
of the figure quoted (e.g., $199.99). However, there must also be a deeper understanding of
the meaning of that value. For example, does the quoted price include sales tax? Or is a
shipping charge included? The way semantics are shared can range from information shared
at design time using English text to formal approaches using ontological service descriptions.
All these approaches are outside the scope of WSDL, and unfortunately current technology

10 For more information, visit http://terraserver-usa.com/webservices.aspx.
11 For more information, visit http://www.innergears.com.

http://terraserver-usa.com/webservices.aspx
http://www.innergears.com

CMU/SEI-2006-TN-021 15

has not matured to a point where ontologies are in common use. Syntactic and semantic
interoperability are areas of active research.

All this said, the types of the data being exchanged in the Web services operations are
specified using XML Schema Part 2: Datatypes. The XML Schema standard provides
facilities for defining data types to be used in XML Schemas as well as other XML
specifications [W3C 04c]. It allows the specification of constraints such as value ranges for
numerical values, sizes and valid values for strings, and patterns for dates. Nonetheless, it is
rare to find a WSDL document that specifies anything other than the data type (e.g., int,
string, or double).

One problem that we encountered was that a WSDL document can contain description
elements that document details and assumptions, but we found little helpful documentation in
the WSDL documents we used. As an example, there are different ways to express latitude
and longitude. One way is to use degrees as the unit, with values between –90 and +90 for
latitude and values between –180 and +180 for longitude. Another way is to use radians (a
measurement of angle) as the unit. Another possibility is to use string as the data type and
to represent latitude and longitude as numbers followed by N, S, W or E to indicate direction.
It was necessary to execute tests before binding to the Web services to determine the correct
units and notation. While it was possible to execute these tests in the context of the model
problem, in a production environment this time-consuming activity would not be acceptable.

Another problem was that some aspects of data fall outside of the scope of WSDL. The
reassignment system, illustrated in the figure in Table 2, obtains the reassignment location
data from a Location table in the MySQL database. We had initially loaded the data for
this table from two sites: one that contained a list of countries and capitals and a second that
listed major U.S. cities. That level of detail was enough for our exercise. While preparing the
data for loading, we noticed that some of the country capital city names were in their native
language. Also, some of those native language names contained special characters. The
airport information Web service, however, expected all country names in English. We could
fix this problem by loading the data from another site, but we saw other problems such as the
use of old country names instead of new country names (Burma instead of Myanmar, for
example). Also, U.S. state names were abbreviated in one site and spelled out in another. A
WSDL document by itself would not be able to indicate all these constraints and
requirements, not even if full XML Schema data types were used.

This issue looms larger when the binding to services is to be done at runtime, not at design
time as in our model problem. Binding to services at design time is referred to as static or
fully grounded binding. Figure 5 shows an example of what happens during static binding. In
this case, discovery, composition, and invocation of Web services are done at design time,
allowing the developer to discover the semantics of a service before it is actually used. In the
case of dynamic binding, illustrated in Figure 6, the binding to the Web services is done at
runtime.

16 CMU/SEI-2006-TN-021

Alice (the appli-
cation developer)
obtains the des-
tination of Bob’s
Web service (e.g.,
by searching the
UDDI registry).

Bob (a service
provider) creates a
Web service and
places its description
in an “accessible
place” (e.g., in a
UDDI registry).

Alice adds code to
her application to
invoke Bob’s Web
service.

Joe (the end user)
uses Alice’s appli-
cation without
knowing that there is
a Web service
behind it.

Alice (the appli-
cation developer)
obtains the des-
tination of Bob’s
Web service (e.g.,
by searching the
UDDI registry).

Bob (a service
provider) creates a
Web service and
places its description
in an “accessible
place” (e.g., in a
UDDI registry).

Alice adds code to
her application to
invoke Bob’s Web
service.

Joe (the end user)
uses Alice’s appli-
cation without
knowing that there is
a Web service
behind it.

Figure 5: Static Binding to Web Service

Bob (a service
provider) creates
a Web service,
describes it, and
registers the ser-
vice with a ser-
vice repository.

Alice (the appli-
cation developer)
writes code in her
application that is
able to query the
service repository
at runtime.

Alice writes code
in her application
that selects a ser-
vice from the list
returned by the
query.

Alice writes code
in her application
that can invoke
the selected ser-
vice transparently.

Joe (the end
user) uses Alice’s
application with-
out knowing that
there is a Web
service behind it.

Figure 6: Dynamic Binding to a Web Service

Dynamic binding requires detailed Web services descriptions that convey syntax as well as
semantics. Using our example of finding reassignment location data, how does an application
know that it has to translate the country name into English? How does an application know
that it has to convert from a state’s full name to its abbreviation? A developer who binds to
these services at design time can recognize the discrepancy and include code to translate the
names. However, to develop an application that searches for an airport location service and
automatically binds to it requires enough intelligence in the application to determine that this
translation is needed.

A significant area of current work and research in dynamic binding is that of Semantic Web
Services (SWS), which uses a markup language that is descriptive enough for a computer to
obtain automatically the information it needs to discover, compose, and invoke Web services
without human intervention. SWS is usually described using concepts from an ontology to
provide the shared semantics between service provider and service consumer. If an
application searches for an airport information Web service that takes a Country as input
and produces a list of Airports as output, and both Country and Airport are concepts
within a common ontology, then the application developer and the Web service provider

CMU/SEI-2006-TN-021 17

would be talking about the same thing when they refer to airports and countries. The details
of SWS are outside of the scope of this report. The technical note named Model Problems in
Technologies for Interoperability: OWL Web Ontology Language for Services (OWL-S)
describes the use of OWL-S for the dynamic discovery, composition, and invocation of Web
services [Metcalf 06].

Fully dynamic binding, as described above, is difficult to achieve. In some situations, it is
possible to involve the end user in the selection of services to use. The application can
retrieve a list of appropriate Web services and obtain additional input from the end user to
connect to one of the services. Examples of end user inputs include making a selection from a
service list and providing mappings between application data and service inputs and outputs.

3.2.2 Service Granularity Can Have a Large Impact on Performance

An important design decision when developing Web services is choosing the right granularity
for operations. Service interfaces can affect the end-to-end performance in a system because
services are executed across a network as an exchange of a service request and a service
response. If service interfaces are too coarse-grained, consumers receive more data than they
need in their response message. If service interfaces are too fine-grained, consumers have to
make multiple trips to the service to get all the data they need.

In the modified scenario for hypothesis 2, the CalcDistance2Coords operation in the
Calculate Distance between Two Coordinates Web service had to be called for each airport
returned by the GetAirportInformationByCountry operation in the airport
information Web service. This was necessary because the first Web service did not have an
operation that calculated the closest airport to a given set of coordinates, even though it had all
necessary information to do it. (It would just have been one more call, but the service was not
defined this way. The service provider did not anticipate that someone would want to do what
we wanted to do.) As a result, in the model problem, finding the closest airport took between
three seconds and two minutes depending on how many airports were in the country. These
times are obviously not acceptable for a system from which users expect near real-time
responses.

3.2.3 There Is Not Yet a Market for Services

The quality of public Web services was often poor in our experience, but there were huge
differences in quality even among the Web services used in the model problem. We faced the
following quality problems (or at least unexpected characteristics of the data returned by the
Web services) during development of our model solution:

• The list of airports was returned as a string that contained an XML document instead of a
list with all its elements defined. XML parsing code had to be created to extract the
necessary information.

• There were no airports listed for some countries.

18 CMU/SEI-2006-TN-021

• Some tags contained typographical errors or were inconsistent.

• Duplicate records were returned.

Would these problems be present if someone were paying for the use of these services?
Probably not: businesses must have incentives to provide and maintain high-quality Web
services. Our reference to incentives does not necessarily imply that users must pay for
services; the service provider may also receive a derived business benefit that results in a
positive return on investment.

Companies are just starting to explore the concept of a service market that requires a business
model in which consumers pay for services only when used. This model also imposes
requirements on service providers, consumers, and brokers as follows:

• public service repositories where businesses can advertise and place their services
The problem faced by public (or even private) service repositories is similar to that faced
by component repositories—maintenance. A service repository is even more difficult to
maintain than a component repository because all it has are links to services (rather than
a physical component). Services can disappear or become unavailable for many reasons.
Is a repository provider responsible for notifying users of service failures or outages?
Services also have to be described in such a way that service consumers can find what
they are looking for.

• new cost and contracting schemes
Service brokers and providers have to determine what to charge consumers for services.
Are consumers charged per use? Is there a monthly or annual fee? Do brokers work on
commission? What type of contract exists between consumer and broker? How about
between consumer and provider? All these questions have to be answered.

• robust and reliable services that consumers can trust as part of their applications and
business processes
As we said in Section 3.2, we found the quantity and quality of Web services for our
purpose that are publicly available to be disappointing. The situation may be different with
respect to private service repositories. For public repositories, there is a tradeoff between
openness and how much trust customers can place in the information about services of
interest to them. If the repository is open (i.e., anyone can enter a service), there is no easy
way for a customer to determine the status and seriousness of the service offering. If,
however, the information in the repository is carefully screened and even certified by a
gatekeeper organization, the cost would be quite expensive. A viable model between these
extreme views has not yet been developed.

CMU/SEI-2006-TN-021 19

3.3 Results for Hypothesis 3
Our third hypothesis was this: “There are no problems regarding data types if Web services
are used to connect applications on different platforms (i.e., J2EE and .NET).” This
hypothesis was sustained with regard to our test data exchanges. We were able to use WSDL
documents to generate code to invoke a Web service implemented on .NET from a client on
J2EE and vice versa. However, to make that process work, we had to edit a WSDL file
manually and switch the SOAP implementation on the Java side to a newer version. A more
detailed description of our findings follows.

3.3.1 Interoperability Testing is Important

Although we successfully invoked Web services across platforms, we encountered many
obstacles along the way. All of the problems we saw were related not to Web services but to
defects in tools, differences in supported Web service standard versions, and differences in
how the standards were used.

Standards that define the basic Web service infrastructure include XML Schema, SOAP, and
WSDL. Several intermediate versions of these standards have been defined before the final
versions, and there are some tools and libraries still in use that implement one of the
intermediate versions instead on the final one.

We chose to use an MDA tool to generate a skeleton implementation for our Web services, as
explained in Section 3.1.1. When we tried to use the generated WSDL file in Visual Studio
.NET to develop the payroll application, we discovered that the WSDL file contained a
number of defects that made it almost completely unusable. These problems were irrelevant
for our purpose as long as we used a client on the same platform, because the Java client
proxies were generated correctly. The MDA tool did not use the WSDL file internally to
generate any code, but Visual Studio did. Using the WS-I Analyzer tool, we repaired the
WSDL file and used it to create part of the payroll application. To create the WSDL for the
payroll service, we used built-in capabilities of Visual Studio, which gave us a document that
passed through the WS-I Analyzer tool without any errors.

Having created the correct WSDL service descriptions and the corresponding service
implementations, we tested the interoperation of the J2EE and .NET applications. The first
call to the .NET payroll application failed with an exception. It turned out that the parameters
were in the wrong order in the SOAP message generated by the Apache SOAP
implementation. Parameters were listed in alphabetical order instead of in the order given in
the WSDL service description. Because we could not fix this behavior in the Apache SOAP
implementation, we replaced it with the newer Apache Axis. This change required that we
also replace the MDA tool-generated Java stubs and proxies. Apache Axis provides a tool,
WSDL2Java, to generate these from a WSDL document [Apache 05]. After we regenerated
the Java stubs and proxies, the service interaction worked without any problems. We could
exchange simple data types—including floating point values, records, and date/time values.

20 CMU/SEI-2006-TN-021

(There were some other potential interoperability issues that we did not explore in detail,
such as the handling of empty lists, null values, high precision floating point numbers, very
big numbers, and timestamps across time zones. However, these issues have been
documented elsewhere.12)

As a result of our experiments, we learned that almost all the problems we faced were caused
by the MDA tool’s use of an outdated Web service library. Had we implemented the same
services manually, we would have been successful much earlier. Because our model problem
contained only a few services and service calls, it would have been easy to create the
necessary code. Bigger projects, however, can benefit much more from tool support because
of the potential savings in development time. Also, in a manual approach it is likely that the
code will contain errors, whereas a good tool can produce error-free code. Overall, it was our
impression that achieving basic data exchange and service invocation between J2EE and
.NET using Web services was much easier than with any other technology we have used.

3.3.2 Tool Interoperability is Crucial
As mentioned above, we had problems with the MDA tool because we used an experimental
code generation capability that was clearly not adequate for this part of our model problem.
Also, different standard versions and interpretations used on the two platforms made
development more complex than necessary. To resolve the problems we saw, we had to
inspect SOAP messages exchanged between the systems to find the root causes. Also, for
debugging, we had to learn more about the implementation of SOAP processing than we had
anticipated. Those experiences show that tool interoperability is an important factor in Web
service development.

This familiar lesson was reconfirmed by our experiments: tools and components must
implement the same versions of the standards and use them in the same way to be useful in
developing interoperable applications based on Web services. Consider, for example, our
choice between RPC/encoded and document/literal styles for data encoding in the WSDL
document [Butek 05]. The RPC/encoded style supports a programming model familiar to
developers who have used remote procedure call mechanisms such as Java RMI and .NET
Remoting. Apache SOAP defaults to RPC/encoded. Recently, document/literal has become a
more popular style because it is closer to the paradigm that Web services interact by
asynchronous exchange of XML documents. The advantage of document/literal encoding is
that the WSDL service description contains the complete XML Schema for the exchanged
messages, which allows for message validation using standard XML processing tools. The
default encoding for .NET Web Services is document/literal. In our experiments, we first
tried to use RPC/encoded on both sides, but we switched to document/literal after we had
replaced Apache SOAP with Apache Axis. The encoding style can pose an interoperability
issue if older Web services that have been developed using the RPC/encoded style need to be
integrated.

12 Relevant information is easy to find on the Web. A search using Google (http://www.google.com/),

for instance, lists more than 400,000 Web pages for the search term “Web services interoperability.”

http://www.google.com

CMU/SEI-2006-TN-021 21

3.3.3 Adding Greater Expectations to Web Services Makes It Harder to
Achieve Interoperability

During our learning process, we came across two apparently contradictory articles: “Web
Services Are Not Distributed Objects” [Vogels 03] and “Like It or Not, Web Services Are
Distributed Objects” [Birman 04]. After reading the articles, we saw that both authors came
to the same (and fundamental) conclusion: most people fail to understand that Web services
offer no more than a document exchange using standard Internet protocols.

Both Vogels and Birman blame vendors for this misconception. Birman argues, for instance,
that vendors have been selling Web services technologies as if they offer the same stability,
reliability, and trustworthiness of distributed objects [Birman 04]. The truth is that Web
services technology currently cannot offer all that distributed objects can.

In our model problem, we dealt with elements of Web services that are part of the base stack
of Web services protocols, as illustrated in Figure 7. The standards employed in those
elements are widely accepted and are supported by a large number of vendors. As people
have placed more requirements on Web services, other standards have begun to emerge in the
element of orchestration and composition, as well as in areas that have to be addressed in all
layers of a solution, such as security, quality of service, transactions, and management.

We suspect that our positive answer with respect to the satisfaction of Hypotheses 1 and 3
would have been different if we were dealing with standards in the orchestration and
composition elements or any of those layers, as these standards are mostly emerging and even
competing. For example, in the area of security alone, there are three potential specifications:
(1) Security Assertion Markup Language (SAML), (2) WS-Security, and (3) Web services
Security (based on WS-Security) [OASIS 05a, IBM 02, OASIS 04].

Figure 7: Web Services Protocol Stack13

13 This figure is adapted from XML and Web Services Unleashed [Bloomberg 02].

22 CMU/SEI-2006-TN-021

We can conclude that Web services today can be used successfully in simple cases such as
those described in this report. Any other requirements placed on a Web services solution will
be troubled by partially defined standards, which will have a negative impact on
interoperability.

CMU/SEI-2006-TN-021 23

4 Conclusions and Request for Feedback

Through our exploration of Web services using a model problem approach, we have gained
competence in several technologies while examining various claims about Web services and
the circumstances under which they prove true or false.

The model problem experience shows that it is fairly easy to implement Web services and
connect applications developed on different platforms using Web services. The relative ease
of implementing and using this technology is possible because Web service elements (i.e.,
discovery, description, message format, encoding, and transport) are based on widely
accepted standards that are supported by a large number of vendors. Nonetheless, the
standards behind Web services are still maturing, and most of the problems that we
encountered, as described in this report, were due to incompatibilities between standard
versions implemented by the different tools.

The model problem experience has also shown that too few public Web services are
available. Most of those available are poorly documented and of poor quality. We believe the
state of publicly available Web services is not going to change until there is a market for Web
services that would force (or motivate) service providers to provide quality services.

The ISIS team that is investigating Web services and other technologies using the model
problem approach is interested in feedback from and collaboration with the communities that
are considering technologies for interoperability. In addition to Web services, OWL-S and
MDA, the ISIS team is investigating Open Grid Service Architecture (OGSA), Web Services
Modeling Ontology (WSMO), and other standards and technologies. Write to the ISIS team
at isis-sei@sei.cmu.edu.

mailto:sei@sei.cmu.edu

24 CMU/SEI-2006-TN-021

References

URLs are valid as of the publication date of this document.

[Apache 05] The Apache Software Foundation. WebServices – Axis.
http://ws.apache.org/axis/java
/user-guide.html#WSDL2JavaBuildingStubsSkeletonsAnd
DataTypesFromWSDL (2005).

[Apache 06] The Apache Software Foundation. Apache Tomcat.
http://tomcat.apache.org/ (2006).

[Birman 04] Birman, Kenneth P. “Like It or Not, Web Services Are Distributed
Objects.” Communications of the ACM, 47, 12 (December 2004):
60–62.

[Bloomberg 02] Bloomberg, Jason; et al. XML and Web Services Unleashed.
Indianapolis, IN: Sams Publishing, 2002.

[Brownsword 04] Brownsword, Lisa L.; et al. Current Perspectives on
Interoperability (CMU/SEI-2004-TR-009, ADA443493).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2004. http://www.sei.cmu.edu/publications/documents
/04.reports/04tr009.html.

[Butek 05] Butek, Russell. Which style of WSDL should I use? IBM
Corporation, 2005. http://www-128.ibm.com/developerworks
/webservices/library/ws-whichwsdl/.

[Clements 02] Clements, Paul; et al. Documenting Software Architectures: Views
and Beyond. Boston, MA: Addison-Wesley, 2002.

[JBoss 05] JBoss, Inc. JBoss Application Server.
http://www.jboss.org/products/jbossas (2005).

[Lewis 04] Lewis, Grace A. & Wrage, Lutz. Approaches to Constructive
Interoperability (CMU/SEI-2004-TR-020, ADA431067).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2004. http://www.sei.cmu.edu/publications/documents
/04.reports/04tr020.html.

http://ws.apache.org/axis/java
http://tomcat.apache.org
http://www.sei.cmu.edu/publications/documents
http://www-128.ibm.com/developerworks
http://www.jboss.org/products/jbossas
http://www.sei.cmu.edu/publications/documents

CMU/SEI-2006-TN-021 25

[Lewis 05a] Lewis, Grace A. & Wrage, Lutz. A Process for Context-Based
Technology Evaluation (CMU/SEI-2005-TN-025, ADA441251).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2005. http://www.sei.cmu.edu/publications/documents
/05.reports/05tn025.html.

[Lewis 05b] Lewis, Grace A. & Wrage, Lutz. Model Problems in Technologies
for Interoperability: Model-Driven Architecture (CMU/SEI-2005-
TN-022, ADA441294). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports
/05tn022.html.

[Metcalf 06] Metcalf, Chris & Lewis, Grace A. Model Problems in Technologies
for Interoperability: OWL Web Ontology Language for Services
(OWL-S) (CMU/SEI-2006-TN-018). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports
/06tn018.html.

[MySQL 06] MySQL AB. About MySQL. http://www.mysql.com/company/
(2006).

[OASIS 04] Organization for the Advancement of Structured Information
Standards. Web Services Security v1.0 (WS-Security 2004). March
2004. http://www.oasis-open.org/specs/index.php#wssv1.0.

[OASIS 05a] Organization for the Advancement of Structured Information
Standards. Security Assertion Markup Language (SAML) v2.0.
March 2005. http://www.oasis-open.org/specs/index.php#samlv2.0.

[OASIS 05b] Organization for the Advancement of Structured Information
Standards. OASIS UDDI. http://www.uddi.org/ (2005).

[Oracle 05] Oracle Corporation. Oracle Database: The First Database
Designed for Grid Computing. http://www.oracle.com/database/
(2005).

[Sun 06] Sun Microsystems. Java EE At a Glance. http://java.sun.com/j2ee/
(2006).

[Vogels 03] Vogels, Werner. “Web Services Are Not Distributed Objects.” IEEE
Internet Computing, 7, 6 (November–December 2003): 59–66.

http://www.sei.cmu.edu/publications/documents
http://www.sei.cmu.edu/publications/documents/05.reports
http://www.sei.cmu.edu/publications/documents/06.reports
http://www.mysql.com/company
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.oasis-open.org/specs/index.php#samlv2.0
http://www.uddi.org
http://www.oracle.com/database
http://java.sun.com/j2ee

26 CMU/SEI-2006-TN-021

[W3C 03] World Wide Web Consortium. HTTP - Hypertext Transfer Protocol.
http://www.w3.org/Protocols/ (2003).

[W3C 04a] World Wide Web Consortium. Latest SOAP Versions.
http://www.w3.org/TR/soap/ (2004).

[W3C 04b] World Wide Web Consortium. Web Services Architecture: W3C
Working Group Note 11 February 2004. http://www.w3.org/TR
/ws-arch/#whatis (2004).

[W3C 04c] World Wide Web Consortium. XML Schema Part 2: Datatypes
Second Edition (W3C Recommendation. October 2004).
http://www.w3.org/TR/xmlschema-2/ (2004).

[W3C 06] World Wide Web Consortium. Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language (W3C Candidate
Recommendation 27 March 2006). http://www.w3.org/TR/wsdl20/
(2006).

[Wallnau 01] Wallnau, Kurt; Hissam, Scott; & Seacord, Robert. Building Systems
from Commercial Components. New York, NY: Addison-Wesley,
2001.

[WS-I 06a] Web Services Interoperability Organization. About WS-I.
http://www.ws-i.org/about/Default.aspx (2006).

[WS-I 06b] Web Services Interoperability Organization. Basic Profile Version
1.1 (Final Material 2006–04–10). http://www.ws-i.org
/Profiles/BasicProfile-1.1.html (2006).

http://www.w3.org/Protocols
http://www.w3.org/TR/soap
http://www.w3.org/TR
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/wsdl20
http://www.ws-i.org/about/Default.aspx
http://www.ws-i.org

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

June 2006
3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Model Problems in Technologies for Interoperability:
Web Services

5. FUNDING NUMBERS

6. AUTHOR(S)

Grace A. Lewis and Lutz Wrage
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-2006-TN-021
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Web service technologies (or Web services) are experiencing a growing popularity in U.S. Department of
Defense, industry, and non-defense government organizations due to their potential to enable interoperability
between applications implemented on different platforms. This potential stems from Web services being
based on standards that have been widely accepted and implemented, such as the Simple Object Access
Protocol and the Web Services Description Language. The large number of products and tools created to
facilitate the development of Web services has also contributed to their popularity. This technical note
presents the results of applying the model problem approach in an initial investigation of the potential of Web
services to enable interoperability.

14. SUBJECT TERMS

Web services, services, service-oriented architecture, SOA, model
problem, interoperability

15. NUMBER OF PAGES

36

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Model Problems in Technologies for Interoperability: Web Services
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Model Problem Process Applied to an Evaluation ofWeb Services for Interoperability
	3 Evaluation
	4 Conclusions and Request for Feedback
	References

