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Abstract

The use of the DFP or the BFGS secant updates requires the Hessian at the solution to be posi-
tive definite. The second order sufficiency conditions insure the positive definiteness only in a sub-
space of R". Conditions are given so we can safely update with either update. A new class of algo-
rithms is proposed which generate a sequence {z;} converging 2-step g-superlinearly. We also pro-
pose two specific algorithms. One that converges g-superlinearly if the Hessian is positive definite
in R" and it converges 2-step g-superlinearly if the Hessian is positive definite only in a subspace.
The second one generates a sequence converging l-step g-superlinearly. While the former costs one
extra gradient evaluation the latter costs one extra gradient evaluation and one extra function '
evaluation on the constraints.

Key words: Constreined Optimization, Convergence Theory, Quasi-Newton Methods, Rate of Con-
vergence, Multiplier Methods.



1.INTRODUCTION

This paper considers the following equality constrained minimization problem:

minimize f{z)

subject to (1.1)
o(z) =0
where R® = R,and gR"™ — R™. Let g=(gy, . ..,0m)"
We define the augmented Lagrangian L:R*XR™"X R, — R
Lixc) = f(x) + g(x)' + (c/2)s(x)'s(x) -
For ¢ equal to zero, the augmented Lagrangian reduces to the Lagrangian function which we
denote

I(x,\) = f(x) + g(x)t)\.

If xteRu is such that wg(x,) is full rank, then a necessary condition for x, to be a solution

of (1.1) is that there exists A, such that
U, Llxg:hrc) =0 (1.2)
g(x,) =0,
and A, is unique. It may be noted that the constant ¢ does not affect condition (1.2), therefore the
constant ¢ will have the value zero unless it is specified otherwise. Let {z;} be a sequence which
approximate z,
To simplify the notation let
vo(z1) = Vi, and Uz} = vy,
A= Vil(z.),c)

A, = Va(xc e )
Further, let

Mz)={y€E R :vdz)y=10)}

and N, = Mz,) and N, = Mz;). All through the paper we will be working with the following



assumptions:

Al. The functions f, and g have second derivatives which are Holder continuous of order

p € (0,1} in a neighborhood  of z.
A2. The solution x, is a nonsingular point of problem (1.1), i.e.

(1) g, has full rank,

One of the most successful methods for solving problem (1.1) is the Diagonalized Quasi-

Newton Multiplier Method (DQMM) as defined in Tapia [18].

For k=0,1,2,...
Mg = Ulxe M By ) (1.3.a)
By = - v llxyx M 4a) (1.3.b)
ye= VAlXe + s¢ M) - Txlxe e ) (1.3.c)
By = B(sc.yx ,Bx ) (1.3.d)
=2+ & | (1.3.¢)

where U is a multiplier update formula [18], and B is a secant update formula [4]. Fontecilla-
Steihaug-Tapia {10} shows that under the assumptions stated above and the nonsingularity of A,
we can get local g-superlinear convergence of the sequence {z;} if in (1.3.a) we use the Newton
multiplier update formula and in (1.3.d) we use the Broyden or the PSB least change secant
updates. In case the DFP or the BFGS least change secant updates are used in (1.3.d) the positive
definiteness of the Hessian A, is required.

Our assumptions guarantee that the Hessian A, is positive definite in the subspace N, Therefore,
it is not obvious whether we can keep the same rate of convergence. However, numerical experi-
ments given by Bertochi-Cavalli-Spedicato |1}, and Tapia [18] show that we can safely use the
DFP/BFGS secant updates with the Newton multiplier update when the Hessian A, is positive
definite only in N,

Few theoretical, and practical algorithms have been given in this area. Powell [16] was the first

one who attacked this problem by adapting the BFGS in such a way that it maintains the posi-



tive definiteness throughout the process. Assuming local g-linear convergence on z;, Powell gives a
sufficient condition to obtain 2-step g-superlinear convergence on z;, but he does not show that his
modified BFGS satisfies that condition. Instead, he could only get R-superlinear convergence.
Coleman and Conn [5] give a new algorithm based on the DQMM idea updating the multipliers
with the Projection multiplier update. They have to construct an orthonormal basis (Z;) for the
tangent space of the constraints that will be used as a projection operator. They need to project
the step, and the difference in gradients in order to work with a projected DFP/BFGS secant
updates. They prove that the sequence {z;} converges to z, 2-step g-superlinearly.

Our work differs greatly on theirs. However, we will prove under what conditions Powell’s
sufficient condition for 2-step g-superlinearity is satisfied as well as giving a new class of algo-
rithms that are 2-step g-superlinear convergent without using any projection, or projecting only
the step. The algorithm given by Coleman and Conn can be viewed as a particular case of this
' class.

In this paper, we use the general convergence theory developed by Fontecilla-Steihaug-Tapia [10]
for the DQMM in order to construct a new class of algorithms, called 2-step algorithms, that

satisfy the characterization of g-superlinear convergence of the sequence {z;}.

In Section 2, a new result on the theory of secant updates is given. We consider this result
to be our main contribution to this area. We prove that the DFP/BFGS maintains all the proper-
ties found by the Broyden-Dennis-More theory when the Hessian is positive definite only in a sub-
space of R™ as long as the step remains in the subspace corresponding to the current iterate, i.e.
A, being positive definite in N, we jus't need the step to be in N;. Using this result in Section 3,
we construct a new class of algorithms that will satisfy the two sufficient conditions to obtain g-
superlinear convergence. First the current step is in N, and also we satisfy the linearized con-
straints property

g+ Vots =0
which is fundamental for g-superlinearity. In Section 4, we prove that the algorithms given in Sec-
tion 3 generate a sequence {z} that converges to z, 2-step g-superlinearly. Some of them are

proved to be equivalent to be using the DQMM with the Newton multiplier update formula. In



Section 5, we give our main contribution to the area of constrained optimization by finally con-
structing an algorithm that take advantage of the positive definiteness of the Hessian A, This
algorithm is characterized by the fact that if A, is positive definite on the whole space (i.e.
yis; > 0 for all k) then it will converge g-superlinearly to z, the reason being it is the DQMM
with the Newton multiplier update formula, and if A, is positive definite in N, (i.e. yisr < 0 for
some k) then we switch to a 2-step algorithm that will be at least 2-step g-superlinear convergent.

Moreover, the switching from one algorithm to the other costs just an extra gradient evaluation.
Definitions and General Results.

In the following, two norms will be needed. “"F will denote the matrix Frobenius norm, and ||

will denote either the 12 norm or its induced matrix norm, for R® as well as for R™.

Definition 1.1: Consider U:R® XR™ XR®*® -> 2R™  We say that the multiplier update for-
mula U is x-dominated if for all B, € R"*" there exists an open neighborhood N, containing

(zoX nB.), and a positive constant ¢ such that for all (z)\,B) € N, and for ali Ay € U(x \,B)
70040 < 8 {22 (1.4)

From Al we know that for a fixed ¢ > 0 there exists ¥ 2> 0 such that
IV2L(z ) 0e) - DiL(zarne)] < 7z - 2. (1.5)
for all z € Q. Where £ and p are as in Al. The next two lemmas, which will be used throughout

the paper can be found in Dennis and Schnabel [8].

Lemma 1.3: Let F:R® — R be continuously differentiable in the open convex set DCR" con-
taining z, Assume F' is Holder continuous of order p € (0,1 in D, and F' (z,)7?! exists. Then

there exist constants ¢ > 0, p > 0 such that

= Jo- ol < |Fo) - W)l S p oo (1.6)

for all u,v € D for which max {|v-x,|,|u-x,|} < e



Lemma 1.3: Let F satisfy the same conditions of Lemma 1.1. Then for any u, v € D there exists

a positive constant K such that

|Flv) - Flu) = F' (z)(v- u)| < K o(u,v) jv-u].

where o{u,v) = max {|v- zd,Ju - z]}.

The following result is from Fontecilla-Steihaug-Tapia [10].

Lemmsa 1.4: Assume Al-A2.For any ¢ 2> 0 there exist positive constants K, K, and ¢ > 0

such that for any X\ € R™, and o{z,z,) < € we have

|v,L(z+,)‘,c) - V‘L(J,)\,C) - A‘Z.‘_ = Z)I S (1.7)

S| Kso(zz)’ + KN -2 ] |24 - 4

where 0(z,2,) = max {|z - zJ,|z4 - z{}.
Definition 1.5: Let {z,} be any sequence which converges to z, Given continuous real-valued
functions g, and h we write
g(z:) = o(k(z;)) as k—oo
if

All throughout the paper we will be using the DFP or the BFGS secant updates given by

BYP = B+ (y- Bs)y' + yy—- Bs)' &y - Ba)yy'

, and 1.8
2 WoF e
¢ t
yy' _ (Bs)(Bs)
BEFSS = B+ P L:}B—s—' (1.9)

For ease the notation of those secant updates which depend on the step s, and the difference on
gradients y we will denote

B, = DFP/BFGS(s,y),
where y = g H{x + s M) - T lx )

Let T be such that A is positive definite.



2.PROPERTIES OF THE DQMM.

We will follow the theory developed by Broyden, Dennis and More [4] for the DFP (1.8) and
the corresponding theory develop by Stachurski [17] for the BFGS (1.9). Their results can be sum-

marized in the following lemma.

Lemma 2.1: Let M be a symmetric nonsingular matrix of order n such that

[My - M| < B 1M1 (2.1)

for some f € (0,%) and vectors y and s in R" with #5£0. Then y's > 0 and B, is well defined by

the DFP/BFGS(s,y). Moreover, there exist positive constant a,a,, and a, such that for any sym-

metric matrix A of order n

IAMy - AWIE!

18, - Allw 101 7 + o 2 - (22
|y - Ad
+ ag lM'lsl
where || Q|l»=||MQMllr, «,E(0,1), and
|MB -~ A)d
I|B - AllsdM 4] forBs£ A (2.3)

0 otherwise

For the remainder of the paper we will also assume the following.

A3. The multiplier update is x-dominated.

In order to satisfy (2.1) the Hessian we are approximating must be positive definite. This is not
case here as our assumptions indicate. The Hessian A, is positive definite only in N, Hence, we
will not be able to satisfy (2.2) unless we find a positive definite matrix A and a matrix M satisfy-
ing (2.1). The following theorem gives the answer to this problem.

For given z, s € R" and A\ € R™ define



y= V,l(x +s ,X+) - Vx l(x ,x.’.).
Theorem 2.2: There exists a symmetric and positive definite matrix A such that for x-dominated
multiplier update formulas there exist an open neighborhood N, containing (z,),A), and nonne-

gative constants a, a;, and @ such that for all (zA B)€N, if s€ Mz) then

B, = DFP|BFGS\s,y) satisfies
1By - Allw S [(1 - @ 897 + ayo(z,2 + )] ||B~ Allw
+ as0(2,2 + ). (2-4)
Proof: We will prove that (2.1) is satisfied. Consider

My - Md < |[MY |y - M2 (2.5)

Since A¢ is a symmetric positive definite matrix there exists a symmetric nonsingular matrix M
such that

Al = M?
Using the definition of A% we get

ly- M2 = |y- Al = |y - Ag - TUg.00].
Since g € N(z) we get

lv - M2 < |y- Al + ugdlvs - volld.
From Al there exists K, such that

ly- M2 < ly- Al + Kilz- 2l (2.6)

Using Lemma 1.6 there exist positive constant K, and K, so that

ly- Asl < [Koo(z,z + o) + Ko hyp = Ml4l. (2.7)
Since A3 we get

v - Al € K o2z + o)l (28)
for some positive K,. Combining (2.5), (2.6), (2.7), and (2.8) there exists a positive constant Kj
such that

|My - Mgl < Kga(z,z + s)|M 4 (2.9)

with Ky = |M|[K, + K;|M]]. Using the techniques of Broyden, Dennis and More [4] we have the

following. By Lemma 1.4 there is an € > 0 and p > 0 such that (1.6) bolds if o{z,z + 5s) < e. Set



Ny = {B € R™™J(4)Y|B- A] < 1/2}

Nio={z€R%z-z] < % and 2J(AY (¢ + ollz- 2d < —;—}
and

Ns= {\ € R™|wgd} - M| < ¢jz- zd}.
Then N = N,X N;X Nj is a neighbourhood of (z.A.A%) and if (z,1,,.B) € N' , then by the
Banach perturbation Lemma the matrix B is nonsingular and

1B < 2 |(4%)7.

Using equation (1.6) and A3 we get

sl = 1B 'wd(x M)l <

< B wA(x M) - Fxlxe A+ [BH@x Mxa Ay) - Dxdxe e )|

Bz - 2] + ¢|B |z - =

IA

<2 l(ade + ol lz-2d < 5
and therefore

[z+8-2{ <] +|2-2d <e
Hence, from (2.9) we have that (2.1) always holds and we obtain
1By - Alln < [(1 - a8 + ayo{z,z + o)) ||B - Aflw

+ a,0(z,z + )
which implies (2.4) with A = A%

Q.E.D.
Note that although (2.4) is relative to AZ the difference in gradients used (i.e. y) does not depend
on . In this point leans all the theory that we are about to develop. Before stating the following
theorem we need to clarify the point # = 0. Having the multiplier update x-dominated and
assuming convergence then we have that # = 0 if and only if z = z,. Therefore, throughout the
paper we will have s#£0.
Now the question is obvious, can we find x-dominated multiplier updates that make the step s to

be in Mz)?. The answer is given by the following result.



Theorem 2.3: Let s be a vector in R* such that

Bs=- Vzl(x ,X+)
for some X, € R™. Then s € N(2) if and only if ) is given by

Ay = - (ve'Blwo) v’ B oL (2.10)
Moreover, the multiplier update (2.10) is x-dominated.

Proof: Consider s = - B¢ l(x ,\,). Then

ve's = - vy'B'vf- vi'B U, (2.11)
Substituting (2.10) in (2.11) we obtain that w7g’ s = O hence, # € N(z). Conversely, we equal to

zero (2.11) and we get (2.10). To prove (2.10) is x-dominated we use the techniques of Fontecilla,

Steihaug and Tapia [10]. It is straightforward to prove that

|wodrs -2 < |PHIANz - 2]
with P} = Blogve'Blve) vy, and Pg = [ - PL. Therefore, (2.10) is x-dominated with

¢ = |PE||Ad. (2.12)
We will call (2.10) the null-space multiplier update.

Define P(z) = I- vo(2)(ve(z)'v9(2))'wo(z)' as the orthogonal projection onto Mz) and let
P, = P(z;) and P, = P(z,).

Theorem 2.4: Let the sequences {z;} and {);} be generated by the DQMM with (1.3.a) given by

(2.10). Then if

=0

Y lze-2d < + 00 (2.13)
=0
then
P' B - A.
k= |3kl :

Proof: It is a direct consequence from Theorem (2.2). Using the same techniques than Broyden,

Dennis and More [4] relation (2.4) together with (2.13) yield
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By - A§
where §, = 1M - Al . Hence,
[|Bx - AdlsdM oy
tim ((B: - Alsd _ 0
b= oo |8,|

since |P,| = 1 we get

|PABy - AJal = |PdB: - As| < |(By- Adad

and since klim P; = P, we obtain (2.14).
— 00

Q.E.D.

There are other multiplier updates which are x-dominated. For those mulitiplier updates which

due to Theorem 2.3 do not satisfy that the step s is in Mz) we have the following result.

Theorem 2.5: Let the sequences {z;} and {\;} be generated by the DQMM with (1.3.e) given by

Zip = 2; + Piop. If (2.13) holds then

. |PdBi- AP
im _—
bt~ o ‘SA

(2.15)

Proof: Assume P.3,540. Let w, = Pys,. Since z;4; = 2, + w;, and [Pig| < |8;| then Theorem 2.2

gives us the bounded deterioration (1.4.b). Assuming (2.13), (2.4) yields

(B: - A)w -

lim = 0

A PN
since |w| < |84 we get (2.15).
If P.s; = O then directly (2.15) holds.

Q.E.D.
Note that Powell’s sufficient condition, i.e. (2.15), for having 2-step g-superlinear convergence is
satisfied. Having conditions (2.14) and (2.15) using the DFP or the BFGS secant updates assuming

that the Hessian is positive definite only in N, is the first step to get g-superlinear convergence of

the sequence {z;} in the DQMM. Is a fact that we 2lso need to satisfy condition (2.13).



3.PROPOSED ALGORITHMS

In spite of the lack of positive definiteness on A, Section 2 gives us a sufficient condition to be
satisfied by the step we are using to update the DFP/BFGS in order to get relations (2.4) and
(2.14). Following Fontecilla-Steihaug-Tapia [10] two conditions are necessary to obtain q-

superlinear convergence of the DQMM. They are

{P{By~ A)sy -0

klimw o (3.1)
. IVg.yk+x|
"ll.mq> T = 0. (3.2)

We know that if the step we are using to update the DFP/BFGS is in N, then (3.1) holds. On the

other hand (3.2) holds if our algorithm satisfy the linearized constraints property, i.e.

g + Vgl = 0. (3.3)

The most natural way to satisfy (3.3) is having the step in the following form

8 = - Vb (3.4)
where vg$ is a right inverse of gt that is given by

Vit = QvadvsiQ@ue)? (3.5)
for an nX n matrix Q such that 7giQwg; is nonsingular. The most naturz! consideration for the
step 8, to be in N, as well as to satisfy (3.3) is to consider steps of the form

= w;+ v, (3.6)
where w; € NV, and it will be used to update the DFP/BFGS, and v, satisfies (3.4). We obtain the

general form of the algorithms proposed, called 2-step algorithms.

2-step algorithms.

Given z,, \,, and B,.

For k=0,1,2,...



Aa = U(xy , M By )
Bihy = - 7:Mxx Ak 1)

wy = Pihi

ve= Vd{xe + Wi M) - Tx Uxie M)
Biy, = DFP/BFGS(wy )

vy = - Vobo

=L+ W+

12

(3.7.3)
(3.7.b)
(3.7.c)
(3.7.4)
(3.7.)
(3.7.0)

(3.7.g)

We point out that for the null-space multiplier update formula step (3.7.c) is unnecessary since

hy € Np. If w; = 0 in (3.7.c) we go to (3.7.f). There are two natural choices for the matrices Q in

(3.5), @ = I, and @ = B;' which give the following

vt = - vadveive)?

9B, = - Bi'vedveiBr v

(2.8.3)

(38.b)

With these two choices for step (3.7.f) and using the null-space multiplier update formula we get

the following algorithms.

ALG!
For k=0,1,2,...

Mewt = = (VoiBi' Vo) walBY Vi
By = - 7 M(xy My 41)

yr= Vdxx + Wi M) = Tx Uxe de )
Biyy = DFP|BFGSwiyy,)

vy = - Ve Veiva) o

T = I+ wpt+ U



13

ALG?
For ¥x=0,1,2,...

M = - (VoiBE Vo) ' wolB v /i
Biw, = - v A(xg M 41)

vi = VAlxe + Wx M) - Vx Hxe A )
By = DFP/BFGS(w,,,y,,})

vi = - Bi'VadvaBi' v

Zipg = S+ wp + vy,

Those two algorithms have the following properties. From Theorem 3.1 the multiplier update for-
mula is x-dominated. Further, consider s, = w; + v, Since either P, = w, for ALG], or
Pg8; = w; for ALG2 then there exists a positive constant K such that

|wd < Kosd. (3.11)
In either case from Theorem 2.3 w; € N, and therefore we have relation {2.4) and assuming (2.13)

as in Theorem 2.4 we can prove, since (3.11) holds that

PUB,- A
im PdB-Aded (3.12)

k=00 |sd
Moreover, since w; € N; the step s, satisfies (3.3). We thus have all the ingredients to get g-
superlinear convergence.
We have two other multiplier updates that are x-dominated. They are the Projection update

M = - (V9iv9) VoV /e (3.13)
and the Newton’s update

Mg = (V9B V90 (9, - WotBr V). (3.14)

From Theorem 2.3 those multiplier updates will not generate a step w; in N, hence the need of

projecting the step. With this idea we get the follbwing algorithms.



14

ALGS
For k=0,1,2,...

M = - (Vi 9) ' ViV
Bihy = - v Mxg M)

wy = Pghy

vi= Vdlxe + Wi M) - Px Mxie A1)
By = DFP|/BFGSwyyy,)

v = - Vo Voiva) o

Zip =+ w+ u;

ALGY
For k=0,1,2,...

A = - (Voiva) ' weiv/ie
By = - v l{x¢ Ay 41)

wy = Pph

Vi = Wallxg + wi My +1) - T xg »Xk+1)

Bk+1 = DFP/BFGS(wk,y,,k)

vy = - BPvedveiBiva) o

= e+ wr + U

Where Pp, = I - Bi'wg{veiBi' v et is a projection operator onto the tangent space of the

constraints.
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ALGS
For k=0,1,2,...

M = (ViB'w o) (9, - VIiBIVf)
Bihy = - v d(xg M 1)

wy = Pihy

v = Vadlxi + Wi M) - Vx Mxie M)
B,y = DFP[BFGS wby,,,k)

v = - VIV IV 0

Ik+1 = zk+ wk+ Vg

ALGS
For k=0,1,2,...

Newt = (V9iBi w9 (9: - VaiBIOS)
Bihy = - v A(xXp Ay 41)
wy = P,
Vi = vdlxx + Wi M) = x 1 e 4a)

Biyy = DFP|BFGSwyy,)

vi = - Bi'ved VoiBi w9 0

=+t w+ v

The reasons for projecting the step A, in ALG3 and ALG4 with PB, instead of P, is seen in the
next two theorems. For ALG2, ALG4 and ALGS5 we obtain the following result.
Theorem 3.1: Let the step s, from ALG2, ALG4 or ALGS satisfy

Bg«?g = - v,l(xk ,p). (315)
for some p in R™. Then 4 is the Newton multiplier update formula (3.14).

Proof: From ALG2 we have that

By = - 9fi + Ve voiBi v veiBi VS

and we also have
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By, = - 9{VoiBi' v ) gk
Recall

Bis; = B{w; + vy)

B, = - Vfi - V9d(VeiBF wai) (9 - VLB V).
using (3.14) we get then (3.15). For ALG4 we get

Bih, = - vfi + VoV aiva) vt
Wy = PBkhk

vp = - BYwgdvoiBi v 0
Since Pp Bi'wvg, = 0 we obtain

wp = - PB,B;1ka

Buw, = - 9f: + Vod(vaiBr vy v aiBi vl

. Summing Bv; on both sides of this equation we get our desired result. From ALGS we get
Bihy = - 9fi - val(VoiBE w9 (9 - ViBI )
wy = Phy

v = - VI{V9ive) o

Doing some algebra on the first equation we get

b= - Pg.Bivf; - BPvodveiBi'va) g

Now projecting with P, and since PEPB, = ng

wy = Ph, = - Pp B{'v/i - PBY gV eiBr V) 0

50
wy = ~ Pg BY'Vfi - BEvodVoiBI w9 ' 0: + Vol voive) g
W = hk - U

Therefore,

hk = w,,+ V.

Q.E.D.

This result is important because it tells us that the DQMM with the Newton update formula and
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ALG2/ALG4/ALGS only differ slightly on the matrices By’s and although they do not generate
the same iterates, asymptotically they will. This fact will be prove in section 5. For the rest of the

algorithms we get the following.

Theorem 3.2: Let the step & from ALG1, ALG3 or ALG6 satisfy (3.15) for some p in R™. Then

s =~ BPvdlxe MY ) x (Ve - v P (3.16)

where A" is the Newton multiplier update formula (3.14).

Proof: For ALG1 we have

B, = - vfi + VId{VeBi v v elBi Ok

and

By, = - Biv9dvaive) " ge
Then we get

Bisi = - vd(xx M) + By (Vs - v Vg
which implies (3.16). Algorithm ALG3 yields

wy = P h| - Bi'Ofi + Bi'vedveaive) veivsy

since PB,BI-IVQI: = 0 we get

v = - B/ + Bivad el Bi v e veiBi v/
which yields (3.16). For ALG6 ’

hy = - Pp,B'vf + ng,yk

hence

wy = - Py B'fi + vk o - volon
Therefore after adding v, we get (3.16).

Q.E.D.



4.CONVERGENCE PROPERTIES

In this section we will prove the convergence properties share by the 2-step algorithms of Section

9
-

Theorem 4.1: Under assumptions Al thru A2. Assume the sequence {z;} is given by either

ALG2, ALG4 or ALGS. Then for any r € (0,1) there exist positive constants ¢,5 such that if

|z,-2z{ <e¢ and |B,-A]<S

the sequence {z;} is well defined and converges to z, with

|Zbg1 - 2d < 7z - 2d.
Moreover, the sequences {|B;]} and {|B;}|} are bounded.

Proof: By the equivalence of norms in R"™" we have that for any A € R"*" thereexist u, 7 > 0
such that

# Al < A1 < 14l

Let r € (0,1), and choose ¢, , § so small that for

8> A
we have 28n6< 1,
r> P (K @+ Ky 642069+ ¢)
—(1'2ﬂ7’6) 1 %y 2" z)s
e,
d 2,6+ < 6.
an (2 az)l—r’-

Now select 6§, small enough so that ||B- AJ| < § whenever |[B- AY < §,. If necessary
further restrict ¢,, &, so that (z,z,, A, B) € N, (z,1,,B) € N, whenever

|B-AY < 2196, and max {|z- 2, , |24 - 2]} < €.



Let |B, - AE] <4, |z,-2 < ¢, from the Banach Perturbation Lemma |15}

(AD] 1B, - AT < BnliB,-AJ < np6<29B5<1;

hence B;! exists, and there exists ¥ > 0 such that

B < =g a4 ¥ 2R

where V3 = |(/- T9{veiB 179, v g.B; L. Furthermore,

IP'(Ba - A')l = IP.(B, - AE)I S I(Bo - AC:)' <2 n 6.

We have

5 =z, - B}'v.l(x, \)

thus from standard arguments

2 =T, = le(v:l(x' r)‘l) - Vx l(xo ’xl) - A, (x' ) ))
+ B?(V:l(xt e ) - Vx l(x' r)‘l))
+ (I' B;lAt) (2, - 2.)-

Now, taking norms and using the triangle inequality

Izl - ZJ S IB;ll IV,I(X. rxl) - Vx l(xo v)‘l) - A' (xt - Xo )I
+ IB;l”(Bo - Az, - 2) - 90 - M)

Using the fact that for the Newton multiplier update formula we have for all k

Vgc()‘k+l - xt) = VNVﬂ'»BElVQ.)qV!J'oB?(Bx - Ao)(zk - Z.)

+ €, (zt - Z,)

where ¢, = K7|z; - z,| we obtain

|2y - zd < |B] [wd(xa M) - 9x1(Xe M) - A (Xe = X, )]
+ |B( - wedwaiB w9 we' B (B, - A)z, - z.))|

+ €]z, - zJ.

Since Vp, = V3 P, we get

(]
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(4.1)
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21 - 2d S |B| [wdxe M) - Dxlxo M1) - Au(Xe =X, )|
+ B VBIIPAB, - A3, - z )| + edz, - 2.

Hence

|21 - 2d < |5 [Wdlxe A1) = Dxlxo M) - Ae (xe = X0 )|
+ [BI VB IIPAB, - Al + |z, - 2.

Therefore,
|z -2) S |IBH Kie?+ Ky, 6+ 2089 + €]z, - 2.
The bound on B;!, and the condition on r yield

|21 - zd < rlz, - 2.

Now by induction, assume for k=0,1, ... ,m-1

1Be - A9l < 25, and |24y - 2 < 72— 2).
. From (1.3.b) we have
|1Besr - A - |1Bi- A < 2y 5 7t + oy e 7

summing both sides from k=0 to m-1 we obtain

- - e?
1B~ AUl S 1B, - All + 2 00 8 + o) 5 'r, <25
50 |Bn- A < 216 and |[P{Bn-A)| <216
Using the Banach Perturbation Lemma B;! exists, and |B| < 1—?%—;?

We complete the induction by observing that form = 0
{Zmp1 -~ 2 S Bl Ky €€+ Ko e, 0+ 2069 + €.
The bound on B;}, and the condition on r yield
|Zmt1 = 2d < 7 lzm - 2d.

B

Notice that the sequence {|B;l|} is always bounded by 12577

, and for all m we have

that



21
1B < 206+ |A].

Q.E.D.

For the rest of the 2-step algorithms we will prove that the sequence {z;} verifies

|z = 2 < 1z - 2] (4.2)
for some r € (0,1). Note that (4.13) is 2-step g-linear convergence and it implies (2.13).

Theorem 4.2: Assume Al thru A2. Let {z,} be generated by ALG1, ALG3, or ALGS. Then for

any r € (0,1) there exist positive constants ¢,6 such that if

|z,-2J < ¢ and |B,-A] <

the sequence {z,} is well defined and converges to z, with

[Z041 = 2d < 12 - 2d.
Moreover, the sequences {|B;|} and {|B;!|} are bounded.

Proof: Choose r € (0,1). By the equivalence of norms for any matrix A € R**" there exist posi-
tive constants u, n such that

#llAll < 1Al < nllAjl-

Choose ¢,, § so small that for
82 |(AY7

we have

€
<

2T]ﬂ6 Sl (2&16 + 02)

1-r2

r> Kol Ki€& + Koe,¢ + 26066 + €] + K,

B __
- 2nB86
Now select &, small enough so that ||B; - Aj| < & whenever |B; - A9 < 6, If necessary further
restric €, &, so that (z,z,, 2, B) € M, (2,2,,B) € N, whenever |B, - AEI < 276 and o(z,7,) < ¢,
Let |B, - A‘:I < &, and |z, - 2 < €, from the Banach Perturbation Lemma we have
(A YIB, - AY < Bn|IB, - AQ| < 6 < 2696 < 1
then B! exists and



Bl g —%—.
1Bl < 1~ 2¢ymé

Furthermore,
IPiBa‘Ac)' <2né.
Using the techniques of Theorem 2.2 we get that |z -z] < ¢ and then with (1.4.b)

l|B, - Ad| < 26 and so

- ye B ’
IPABi - AN S 208 |BY| S =55 and ¥ 2[Va]

From (3.16) we get

|22 - 2d < B wal(xe D) - Fx Ux phg) = Ae (xa = x3)]]
+ BBy - Az - 2) - vadda - M)
+ |[wef - vob)al
From (3.3) and (4.1)
|22 - 2] < |B|9A(xe A2) = TxMx1,2g) - A (Xa - X))
+ |B| VB(By - Al + ellz - 24

+ vt - vadllo - 9. - 99z - 2)|
Using Taylor's Theorem on the last term of the right hand side

lo1 - 9, - 994z - 2)| < Kalz - z.f>.
for some positive Kg. Now
|vsf - votlla - 9, - voil(a - 2l < Kilz, - 2f°
< ¢,Ky|z, - z4.

We get

|72 = zd < [|B|K €8 + Kqe,6 + 26080 + €|z, - 2| + Kqelz, - 2]
Since |z, - z.] < Ko |z, - 2.} we get

|22 - 2] < [Ks|Bi|(Kq€? + Koe, ¢ + 28066 + € + Kne )|z, - 24

The bound on |B;}| and the condition on r give

|- 2d < rlz, - 2d.
* Now by way of induction assume for k=1,...,m-1
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|B: - A| < 26 and |24y - 2] < 1|24y - 2)

From (1.4.b)
- . = r
”B);..H - Af-“ - "Bg- Aﬂl S 20]5?‘ 2 <4 agefr z
s0
- - f:
[IBm - A4l < ||B, -~ AY| + (20,8 + ) —~ < 2
1-r2
therefore, B;! exists
—A) <26 and |BY < —Y—
lP.(B,,‘ A)|—2’7 an Iml-l—?‘l/m&

As for m = 0 we get

|Zms1 = 2d < 1 l2p - 24

The sequence {|B;'|} is always bounded by -1—-_—25,-1-6-, and for all k we have that

|BY < 206 + |A]
QOE.DI

For the rest of the section assume the following.

A4, The iterates z, € 2 and klim z =2z,
EX-

Theorem 4.3: Assume Al thru A4. Let the sequence {z;} be generated by the 2-step algorithms.
Then if
|P{B; ~ AJwy
lim ——————— =10 .
S jwd (43)
then the sequence {z;} converges to z, 2-step g-superlinearly, i.e.

|Ze41 - 24
lim ————— =10 .
*Lm°° [2p1 - 2d )
Proof: Following Theorem 4.4 from Fontecilla-Steihaug-Tapia [10] we have that

|2Zep1 = 2 S |PABe- Aa + Ky [V9ug:al + of]sd). (4.5)

From the g-linearity and (3.16) there exists a positive constant K, such that
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lo < Kiglzey - 24. (4.6)
Dividing (4.5) by |z, - zJ and using (4.6) we have

|2e41 - 24 |P{B: - AJ)ay 7960l of|s4)
—_— < Kyr———eeo 4+ K + .
o -2 =% o B e o4

Since (3.3) is always satisfied the last two terms of the right hand side are o(]s;|). Therefore,

rnsd _ o |PABi-Aded _ ollod)
Tmad <5 T )

Using (4.6) we get

[86a] < Kydze - 2.

Since s, = w;+ v, and v; is either (3.8.3) or (3.8.b) we have either Pis, = w; or Pps; = w,

which imply

lwd < Kislsd-
Therefore,
|Zeg1 - 24 |Pd By - A)wy {zetad
—_—_ <K + K 4.8
EErT I T o] (45)
L olled)
e

Now from (3.3) we have that g, = é(lab_ll). Therefore, taking limits on (4.8) and using (4.3) we
get our desired result.

Q.E.D.

We can now summarized our results.

Theorem 4.4: Assume Al thru A4. The sequence {z;} generated by the 2-step algorithms con-

verges to z, 2-step q-superlinearly.

Proof: It is a direct consequence of Theorem 2.4 since for all the 2-step algorithms w, € N, and

(2.13) is always satisfied.

Q.E.D.
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5.MODIFIED DIAGONALIZED QUASI-NEWTON ALGORITHMS

In this section we modify the DQMM to construct two new algorithms each one of them generat-
ing a sequence {z,} converging l-step q-superlinearly when the Hessian is not positive definite.
The first one is a combination of the DQMM using Newtor’s update formula and a 2-step algo-
rithm, specifically ALG2. The second one is constructed using the idea developed by Coleman and
Conn [5| and also by Gabay [11]. The former costs one extra gradient evaluation over the DQMM
whereas the latest costs one extra gradient evaluation and one extra function evaluation on the

constraints.
The Modified Diagonalized Quasi-Newton Method

From Theorem 3.1 the step given by the DQMM using Newton’s update formula is of the form
= w4+ y;

with w; € N; and v, given by (3.8.b). Noticing that v, = o(],,]) as was proved in Section 4 we

can say that asymptotically both algorithms are equivalent. Moreover, after few iterations on the

DQMM we will be using w; instead of s, and therefore, the reason why we never had any trouble

updating with the DFP/BFGS when the Hessian is positive definite only in N,

Updating with the DFP/BFGS the iylAmer product y's can be negative or equal to zero in the first

few iterations. In order to handle this problem we proposed the following algorithm.

M.D.Q.N.

For k=0,1,2,...
By = (VgiBEIVQk)_IQt . (5.1.a)
Bin = - (VaiBY V0 ' woiB' . (5.1.b)
Mgt = Biga + b (5.1.¢)

Biwy = - A(xx By 41) (5.1.d)

»



By = - V9l (5.1.¢)
= w,+ v (5.1.1)
ve= Tdxe + ¢ M) = Tx X M) (5.1.g)

If y's; > O then

BH’X = DFP/BFG&Wk,y,';) (5.l.h)
else
Ve = wdxe + Wi px) = Vx M px ) (5.1.)
By, = DFP[BFGSw,T) (5.1.j)
end if.
=+ & (5.1.k)

Notice that without steps (5.1.i) and (5.1.j) the MDQMM is nothing but the DQMM with ihe
Newton multiplier update formula. Furthermore, the extra gradient evaluation is made only when

it is strictly necessary. We obtain the following result.

Theorem 5.1: Let the sequence {z;} be generated by the M.D.Q.N. algorithm. If
lz,-2{<¢€¢ and |B,-AJ<é
then {z,} converges to z, g-superlinearly if A, is positive definite and 2-step g-superlinearly if A,

is positive definite only in N,

Proof: In Fontecilla-Steihaug-Tapia [10] it was proved that if the Hessian A, is positive definite
in the whole space then the DQMM with the Newton's update formula is g-superlinear convergent
in z,. If A, is positive definite only in /N, then Theorem 4.4 gives the desired result.

Q.E.D.

The Improved Diagonalized Quasi-Newton Method

The main difficulty to implement the MDQN is that we do rot know when to switch algorithms.
The Hessian A, may not be positive definite and we may still have y's; > 0. We construct an

algorithm that does not have this inconvinient. The idea was given by the Coleman and Conn (5]

)



algorithm although they were not able to prove l-step g-superlinear convergence. At same time
the same idea was given by Gabay [11] but the proof of g-superlinearity was incomplete. The

algorithm is a modification on the 2-step algorithms ALG1/ALG2.

1L.D.Q.N.

For k=0,1,2,...

Myt = - (VoiBI V9 ' VaiBi Vi (5.2.3)
Biw; = - 7d{xy M 41) (5.2.b)
= dxx + Wi M) = Vx lxe Aicga) (5.2.c)
By, = DFP[BFGSwyys) (5.2.d)
v = - vgb o(z + wy) (5.2.¢)
T =L+ wrt v (6.2.1)

The only difference with ALG1/ALG2 is step (5.2.f) where we are doing one extra function
evaluation on the constraints. With this extra function evaluation we are able to prove that the
sequence {Z;= z; + w;} converges lfstep g-superlinearly.

Before stating the theorem we need to clarify certain points. We are assuming Al, A2, and A4;
moreover, we know that the sequence {z;} converges 2-step g-superlinearly. Therefore, since

2= 7; + w; we have
[Ze 2d < |z -z + |wl (5.3)

since w;—0 and z,~z, we have convergence of the sequence {Z;}. We also need to point out that

w; € N hence we have

. |PdB - AJuy
lim ——m—

T el 0 (5:4)

Let us recall from Fontecilla, Steihaug and Tapia [10] that the operator H, defined by
H(z) = Pgl(x X\s) + c 8. 8 (x)

satisfy H{z,) = 0 and H {z,) is nonsingular. We wil! use the following notation
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= 9(7“)-

Theorem 5.2: Assume Al thru A4. Then the sequence {z;} generated by the IDQN algorithm

converges g-superlinearly to z,, i.e.

. [T - 3-!
lim ———— =

0. 5.5
t— I'zk_ 34 ( )

Proof: Let us recall that our system can be written as

PYB; + vd(xi M 41)) = 0.

Consider now

—P-VJ(ik +lr)‘t ) = (Pk - Pt )Vx l(ik +l:)‘t ) - Pk [Vx l(ik +1;>\- ) - Vx l(xk ,kt ) = A- wk}

+ PAB‘» - A.)wk.
Using the same techniques as in Fontecilla, Steihaug and Tapia {10] we get

“P7AXp 41 he ) — € Ve B 1 = (Px -P. )[Vx l(ik.n,k, ) = Ox lXe  he )]
- Pk[v:-'l(ik -HA' ) - Vx l(xk ,X. ) - A, Wy ]

+ Py(Bg - A.)wg - va:yb-n'

Taking norms, using the triangle inequality, and standard arguments on the left hand side there

exist positive constants K, K, K, such that

[Ze41 - 2d € K| Pr - Pd|Te4s - 2d + KoJw®

+ |PYB; - AJuwl + K9l (5.6)
We have that |z, - 2] < |wy + |z: - 2. The relation
wp = - BP'w M xe A1) = - By Ox Xk A1) = Ve 1(Xe e )| = B 7'08a (A1 — M)
together with the fact that the multiplier update is x-dominated yield
|wd < Kdai- 24 (5.7)

for some positive constant K. Using the fact that klim P, = P, we get with (5.7) in (5.6)
~ o



[Zos - 2d < Kilzi - 24° + |PUB, - A)wy + Ky|,4l

for a positive constant Kz We now need to get an estimate on the last term of the right hand

side. Since Y giw; = 0 we can write 7, as
Ter = Tep1 — 91— V90 + 0

so we get

1904l < Kolwd® + 194 (5.8)
but we also have g, = g; - 7; - Vgi,v:; and v, = 2z; - 7. Therefore,

lod < Kilzi - . (5.9)
Now (5.8) and (5.9) yield

[Ze41 - 2d < Kglzi - 24* + |[PYBy - AJwd + Kilz, -z (5.10)
Furthermore, z; = Z; + v., = Z; - VJi10: hence

|ze- 2 < Kolzi - 2d and |2,- 2] < Kyol3, - zd.

Using those two inequalities in (5.10) we get

|Zt41 - 2d £ Kulze - 2% + |PYB; - AJJwd. (5.11)
Since
1 Ky KoK,
[Ze-2zd = lze-zd = |wd

dividing by |z, - z,| (5.11) yields

Ziy — P/(B,- A,
|Ze z) SKth-I-I-l-KuI By )wkl_

2 - 24 | wd

Therefore the sequence {Z;} converges g-superlinearly to z, if the second term on the right hand

side goes to zero, which is true since w; € N,

Q.E.D.
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8.CONCLUSIONS

We have proposed a modification of the Diagonalized Quasi-Newton Multiplier Method when it is
used with the Newton’s multiplier update formula and the matrices are updated with the
DFP/BFGS secant updates. In case the Hessian is positive definite it was proved in Fontecilla-
Steihaug-Tapia [10] that the method generates a sequence {z;} which converges to z, l-step ¢
superlinearly. Assuming this time that the Hessian is positive definite only in the null space of
¢’ we were able to construct a new class of algorithms called 2-step algorithms which generate a
sequence {z;} that converges 2-step q-superlinearly to z,. The algorithms cost one extra gradient
evaluation over the standard DQMM. We also proposed two algorithms. The Modified diagonal-
ized quasi-Newton method which is a combination of the DQMM with a 2-step algorithm. The
main feature of this algorithm can be seen in the following situation. Suppose we are using the
DQMM and suddenly we are unable to update the BFGS or the DFP, for instance if Vs, <0,
then we shift to a modified DQMM which guarantees that the rate of convergence is at worst 2-
step q-superlinear. The price we pay for the shifting is one extra gradient evaluation.

This latest modification has the following drawback. It may be that the inner product y;'s; is
strictly positive during the whole process and the Hessian may not be positive definite. Therefore
the need to find other ways of detecting whether we need to shift to a 2-step algorithm or keep
using the DQMM. In order to overcome this difficulty we also proposed an algorithm, the
Improved diagonalized quasi-Newton method, which guarantees the convergence of a sequence I-
step g-superlinearly even when the Hessian is not positive definite. This algorithm is the only one
to our knowledge that share these features. It costs one extra gradient evaluation and one extra
function evaluation on the constraints over the DQMM.

We feel that all the proposed algorithms need some testing. At the same time we think that what

we have developed constitutes a good start towards finding global convergent algorithms.
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