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Abstract

Attainment of software performance assurances in open,
largely unpredictable environments has recently become an
important focus for real-time research. Unlike closed em-
bedded systems, many contemporary distributed real-time
applications operate in environments where offered load
and available resources suffer considerable random fluc-
tuations, thereby complicating the performance assurance
problem. Feedback control theory has recently been identi-
fied as a promising analytic foundation for controlling per-
formance of such unpredictable, poorly modeled software
systems, the same way other engineering disciplines have
used this theory for physical process control.

In this paper, we describe the design and implementa-
tion of ControlWare, a middleware QoS-control architec-
ture based on control theory, motivated by the needs of
performance-assured Internet services. It offers a new type
of guarantees we call convergence guarantees that lie be-
tween hard and probabilistic guarantees. The efficacy of the
architecture in achieving its QoS goals under realistic load
conditions is demonstrated in the context of web server and
proxy QoS management.

1. Introduction

To achieve predictable behavior in distributed, poorly mod-
eled, uncertain environments of today’s open performance-
assured applications, traditional approaches, such as re-
source reservation [23] and a priori knowledge of worst
case execution conditions [27], are no longer applicable.
Several recent research efforts have suggested the use of
control theory [16, 30, 21, 18]. This theory offers a new
type of guarantee that lies between hard and average (e.g.,
probabilistic), which we call convergence guarantees [19].
A basic convergence guarantee states that, upon any pertur-
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bation, the performance variable of choice will converge to
its desired value within a specified bounded time and that
its deviation from that value is always bounded. The suc-
cess of control theory is, in large part, due to its robustness
in the face of modeling errors and external disturbances,
which reduces the need for accurate system models — a
much welcome property when accurate models are difficult
to construct. Recent results have shown that control theory
can also be successfully applied to the control of software
performance [19].

The authors have applied control theory successfully in
several example case studies involving computing applica-
tions. These case studies include performance isolation in
web servers [5], web server delay control [18], proxy cache
relative hit ratio control [21], network-layer active queue
management for delay and loss differentiation [10], and mi-
croprocessor thermal management [29]. In this paper, we
leverage the underlying insights to develop a middleware
layer for QoS control that provides control-theoretic per-
formance guarantees under uncertainty. The middleware is
specifically targeted for Internet services. It allows the user
to express QoS specifications off-line, maps these specifica-
tions into appropriate feedback control loop sets, tunes loop
controllers analytically to guarantee convergence to specifi-
cations, and connects loops to the right performance sensors
and actuators in the application such that the desired QoS is
achieved. One main novelty of the middleware lies in isolat-
ing the application programmer from control-theoretic con-
cerns while utilizing this theory to achieve the desired QoS
guarantees.

The rest of the paper is organized as follows. Section 2
introduces the control theoretical approach in more detail
and explains how QoS specifications are mapped into con-
trol loops. Section 3 presents the middleware architecture.
Section 4 describes the resource management component.
An evaluation of our QoS control functionality using the
implemented middleware prototype in a web application
scenario is presented in Section 5. Section 6 presents re-
lated work. The paper concludes with Section 7.
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2. Middleware-Based QoS Control

The application of feedback control theory to open dis-
tributed QoS-sensitive applications, such as mail servers,
web servers and proxy caches, encounters three main chal-
lenges. First, from a control-theory perspective, there
should exist a general way to convert QoS specifications of a
computing system such as an Internet server, into feedback
loops with known set points and feedback control param-
eters. This is achieved via multiple software tools and li-
braries that we describe in this section. Second, from a sys-
tems perspective, a convenient interface needs to be found
between the service software and the middleware control
loops that manage its performance. In our system, this in-
terface is implemented by an entity called a SoftBus, which
is described in Section 3. Third, appropriate software per-
formance sensors and actuators must be designed. We elab-
orate on this challenge in Section 4. Figure 1 shows an over-
all picture of the middleware components.

SoftBus

Standard
Software
Sensor/Actuator
Interface
Socket

Software Sensor/Actuator

Application Application

Distributed
PlatformMachine Machine Machine Machine

Inserted
API CallComponent

Received info from performance sensors

Middleware for Performance Control Adaptor) commands
Actuator (QoS

Figure 1. Overall Architecture

2.1. Service Development with ControlWare

To illustrate the main features of ControlWare, we first
overview the development methodology of ControlWare-
based performance-assured software. An application de-
signer using our middleware for QoS provisioning would
typically undergo the process shown in Figure 2:

� QoS specification: The required QoS guarantees
should be specified for the system. ControlWare pro-
vides a simple Contract Description Language (CDL),
which is used to describe the desired QoS guarantee.
A partial syntax of CDL is presented in Appendix A.

� QoS to control-loop mapping: A tool called the QoS
mapper interprets the CDL description offline and
maps the required QoS guarantees to a set of feedback
control loops and their set points. The QoS mapper
specifies the feedback control loops using a topology
description language and stores it in a configuration
file.

QoS
Contract

Control
Configuration

File

QoS Mapper Control Loop
Composition Sys ID Controller

Design

Software QoS
Control Loops

ControlWare Library

Controller Monitor GRM

Figure 2. Development Methodology

� Control loop composition: The loop composer config-
ures QoS monitors (also called sensors), actuators, and
controllers in the manner described by the topology de-
scription language. These components can come from
the library of ControlWare, and can also be supplied
by users.

� System identification: To design a controller that
can achieve the desired QoS guarantees, the mathe-
matic model of the system must be known beforehand.
ControlWare provides a system identification service
that automatically derives difference equation models
based on system performance traces [7]. Our prior
publications [13, 18, 1] have already shown the feasi-
bility and success of system identification of software
systems.

� Controller configuration and tuning: Based on the
model derived by system identification, ControlWare’s
controller design service can automatically tune the
controllers to guarantee stability and desired transient
response to load variations [19]. The resultant con-
troller parameters are written into a configuration file.

The above process is somewhat similar to the way con-
trol engineers configure a distributed physical process con-
trol system. What is new here is that the controlled system is
a software service, and the control goal is to provide conver-
gence guarantees on QoS. With ControlWare, software en-
gineers can easily add performance assurances to their sys-
tems without the need for a control-engineer’s background.
Our middleware automates that part of the feedback loop
configuration process.

2.2. QoS Mapping

The cornerstone of a control theoretic paradigm for QoS
guarantees in software systems lies in our ability to convert
common resource management and software performance
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assurance problems into feedback control problems. Our
middleware contains a library of templates written in our
topology description language, each formulating a particu-
lar type of QoS guarantees as a feedback control problem.
The library is extendible in that a control engineer can trans-
form a new guarantee type into a macro that describes the
corresponding loop interconnection topology and store that
macro in the middleware’s library. Currently the library in-
cludes template for absolute convergence guarantees, per-
formance isolation, statistical multiplexing, prioritization,
relative differentiated service guarantees, and optimization
guarantees. As an example, we describe the implementation
of the basic (absolute) convergence guarantee, and its use
in formulating relative guarantees, prioritization, and opti-
mization as feedback control problems.

2.3. The Absolute Convergence Guarantee

Since it is impossible to achieve absolute guarantees in a
system where load and resources are not known a priori,
we define the absolute guarantee problem as one of con-
vergence to a specified performance. The statement of the
problem is to ensure that a performance metric, R, (i) con-
verges within a specified exponentially decaying envelope
to a fixed value, Rdesired, and that (ii) the maximum de-
viation Rdesired � R be bounded at all times, as shown in
Figure 3.

Timedes.R

R

Specified Maximum Deviation

Specified Decay Envelope

Actual Performance, R

Figure 3. The Absolute Guarantee Specifica-
tion

The problem requires that R be both measurable and
controllable. Measurablity requires that in the steady state,
the measured value of R asymptotically approach its true
value. Controllability refers to the requirement that the ap-
plication must have some adaption mechanism, A(R) that
affects the value of R. For example, if R is CPU utilization,
A(R) can be an admission control mechanism.

The absolute convergence guarantee is translated into
the control loop shown in Figure 4. The loop samples the
measured performance, compares it to the desired value
Rdesired, and uses the difference to induce changes in re-
source allocation via the actuator A(R).

(Resource Allocator)
Actuator

Controller
Software
System

Sensor
Performance

Performance
Set Point

Actual
Performance

Measured
Performance

Resource
AllocationError

Correction

Performance

Approximate

System Model

Absolute

Figure 4. Absolute Guarantees

The absolute convergence guarantee loop is the elemen-
tary building block of our middleware from which all other
assurances follow, as described below.

2.4. The Relative Guarantee Problem

The relative guarantee is to keep the ratio fixed between
the performance (such as delay, throughput, etc) of two
traffic classes. In general, let n be the number of classes
in the system, and Hi be the measured performance of
class i. The differentiation policy requires that the per-
formance of different classes be related by the expression:
H1 : H2 : ::: : Hn = C1 : C2 : ::: : Cn, where Ci is a pro-
portionality constant or weight of class i. This kind of guar-
antee can be translated into n control loops, one for each
class. In ith control loop, the sensor measures the relative
performance, Ri = Hi=(H1 +H2 + :::+Hn). This value
is compared with the set point CiP

Cj

to get the performance

error ei. The resource allocation of the class is then altered
by f(ei). It is trivial to prove that

P
1�i�n f(ei) = 0, for

any linear function f . Hence, the feedback loops can op-
erate independently with one loop per class, while the total
amount of allocated resource remains constant if the con-
troller is a linear function of error.

(Resource Allocator)
Actuator

Controller
Software
System

Sensor
Performance

Performance

Performance

Resource
AllocationError

Correction

Performance

i Relative

Measured Relative

C

Cj

Figure 5. Relative Differentiated Service

2.5. The Prioritization Problem

The prioritization problem is defined as one where all ser-
vice clients are partitioned into n classes, such that for every
class i, it is desired that clients of that class do not suffer any
contention over some shared resource r from any clients of
classes i+ 1; :::; n.
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We implement these semantics by a composition of in-
stances of the elementary block described in Section 2.3.
First, we make the entire server capacity available to the
highest priority class using the basic convergence guarantee
loop of Figure 4 with a set point equal to total server ca-
pacity. If that set point is not reached (because there is not
enough demand), the unused capacity of each class is mea-
sured and treated as the set point for the resource allocation
to the lower priority class. This requires a sensor array such
that S(Ri) measures the fraction of resource r consumed by
clients of class i, as well as an actuator array where A(Ri)
controls the resource allocation of class i. The arrays are
implemented by a set of per class performance counters and
admission control limits.

The feedback loop architecture for prioritization is de-
scribed for a two class server in Figure 6. One control loop
is needed per class. Application performance converges to
that of a strictly prioritized system. The approach may be
used to implement logical priorities in middleware when the
controlled server itself does not support priorities by design,
such as the Apache [12] web server. An example and eval-
uation of this use is presented in [3].
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Leftover
Capacity

Unused
Capacity

Unused
Capacity

Approximate

System Model
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Second Class Clients

Leftover
Capacity

Consumption
Resource
Class

Class

Figure 6. Prioritization

2.6. The Utility Optimization Problem

Another type of performance problems addressable using a
control-theoretic framework is that of utility optimization.
Following a microeconomic model [22], consider a com-
puting service which produces an amount of work w. Let
the benefit per unit of work be k. Hence, the total utility U
produced by the service is U = kw. Let the resource con-
sumption of the service be some nonlinear function, g(w),
which represents a measure of cost. It is desired to achieve

the maximum net profit, i.e., maximize kw�g(w). Assum-
ing a concave cost function, g(w), the profit is maximized
when the marginal utility is equal to the marginal cost, or
when dg(w)

dw
= k. The equation can be solved for w which

then becomes the control set point, R. In a computing ex-
ample, w, may be the desired server utilization, the desired
workload size, or other metrics depending in the problem
formulation. The approach is illustrated in Figure 7.
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Correction

Performance

Derived

Marginal Benefit
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Figure 7. Utility Maximization

As shown above, ControlWare can express the
most common guarantee types required in performance-
assurance software by casting them appropriately as feed-
back control problems. Once the control loops are designed
from the QoS specification, the middleware uses textbook
techniques [28] to estimate system models and determine
appropriate feedback controller parameters for guaranteed
convergence of the control loops to the specified perfor-
mance.

3. SoftBus: The Distributed Interface

To promote interoperability, the control engineering com-
munity standardized open layered interface architectures
such as the Fieldbus [9] greatly simplifying the intercon-
nection of sensors, actuators, and controllers in a digital
control system. Similarly, ControlWare implements a Soft-
Bus whose main purpose is to provide a common interface
for efficient information exchange between software perfor-
mance sensors, actuators and controllers across machines
and address spaces. The sensors, actuators and controllers
need not know each other’s locations and need not worry
about distributed communication. Underneath the common
API, different information exchange mechanisms are devel-
oped for different situations.

3.1. Interface Modules

We support two types of software sensors and actuators:
passive and active. A passive sensor or actuator is just a
function call that returns sample data or accepts a command
when called by the controller. An active sensor or actua-
tor, in contrast, is a process or thread which may be running
in its own address space. It is usually awakened periodi-
cally by the operating system scheduler to perform sensing

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02) 
1063-6927/02 $17.00 © 2002 IEEE 



or actuation. For example, an idle CPU-time sensor may be
implemented as an active sensor process which runs at the
lowest priority and computes the percentage of time it has
been executing to infer processor utilization.

Correspondingly, two interface modules are provided to
facilitate the communication between sensors/actuators and
SoftBus. Each component is attached to the SoftBus via
an appropriate interface module. Internally, communication
with local passive components is implemented as a direct
function call, while communication with local active ones
is through shared memory. Section 3.4 describes the trans-
parent distributed communcation between components.

3.2. Registrar

Configurability is achieved through the registration and
deregistration of control loop components. Registration
API is exported by an entity, called the registrar. Inter-
nally, the registrar maintains a cache. For each local com-
ponent, it records in the cache the component’s type (sen-
sor/actuator or controller), a callback function pointer if it
is passive, or a shared memory address if it is active. For
remote components, it will record their location. Origi-
nally, only local components have entries in the registrar’s
cache. When some component’s information is needed but
can not be found in the cache, the registrar contacts an ex-
ternal directory server and caches the received information.
When caching information on remote components, the reg-
istrar also creates a daemon to wait for invalidation mes-
sages from the directory server. When it receives a message
notifying it of the deregistration of some components from
the directory server, the registrar will purge the correspond-
ing entries from the cache accordingly.

3.3. Directory Server

The directory server maintains the location and properties
of all control loop components. To maintain cache con-
sistency, the directory server keeps track of all machines
that cache its information and notifies them when data has
changed. When all the components are on one machine, the
directory server is no longer needed. In this case, SoftBus
optimizes itself automatically by shutting down the unnec-
essary daemons, and inhibiting communication between the
registrars and the directory server. In the present implemen-
tation, the number and identities of the machines which run
SoftBus is stored in a static configuration file. It is reason-
ably straightforward to extend this architecture to allow new
machines to subscribe to the SoftBus dynamically using a
group membership service such as [25, 6, 2].

3.4. Data Agent

The data agent abstracts away remote communication be-
tween sensors, actuators, and controllers. When an interface
module of some component has data to send to another, the
data agent first queries the registrar for information about
the target component. If it is a remote one, the local agent
forwards the request to the data agent on the destination ma-
chine. If the destination is local, data is passed to that com-
ponent’s interface module via shared memory.

Figure 8 depicts the above components and their inter-
actions. The architecture allows easy and flexible configu-
ration of control loops in which the controlled system is a
software process.

Machine BMachine A

Sensor Actuator

Shared
Memory

Data
Agent

Registrar

D
irectory
S

erver

Application

Middleware

Controller

Shared
Memory

Data
AgentRegistrar

Figure 8. The Software Bus

4. Resource Management

An important challenge in applying a control-theoretic
paradigm to software QoS control lies in finding appropri-
ate sensors and actuators for software services. Sensors
typically amount to a modest instrumentation of applica-
tion code. For example, a sensor measuring the request rate
on a particular site can be implemented as a simple counter
that is reset periodically. A sensor measuring delay can be
implemented as a moving average of the difference between
two timestamps. Often the measured metric is already avail-
able as a variable maintained by the controlled software ser-
vice (e.g., some queue length) or the operating system (such
as CPU utilization). All one needs to do to implement a sen-
sor and pass the value to the middleware.

The main application interface challenge, therefore, lies
at the application/actuator boundary. To meet this chal-
lenge, our middleware includes a generic resource manager
that serves as a multipurpose actuator. The manager ex-
ports a uniform API to the application and has a back-end
interface to the machine’s native resource allocation mech-
anisms. In this section, we present the design of our multi-
purpose actuator and the interface between it and the appli-
cation. Note that, custom-made actuators that are not based
on our generic resource manager can still be interfaced to
SoftBus as described in Section 3, since the latter is oblivi-
ous to the type of actuator used.

Our generic resource manager (GRM) is designed for use
with Internet servers such as web servers, DNS servers, mail
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servers, and proxy cache servers. It understands the notion
of traffic classes, and exports the abstraction of resource
quota to represent the amount of logical resources allocated
to a particular class. The action of the manager lies in con-
trolling resource quota allocations.

The structure of the generic resource manager is shown
in Figure 9. In the figure, the Classifier and Resource Allo-
cator are provided by the application. The Resource Alloca-
tor does resource allocation. The Queue Manager maintains
one queue for each class, governed by a certain queuing pol-
icy. The Quota Manager maintains a resource quota for each
class.

Resource
Request

classifier

Queue
Manager

Quota
Manager

Queue
Policy

Resource
Allocator

Actuator

Figure 9. Structure of GRM

4.1. Customizing the GRM

To make this manager general and flexible, we try to expose
as many tunable ‘knobs’ as possible so that the application
can control the behavior of the manager as needed. These
knobs are exposed to the outside world as policies. Some of
the policies are:

1. Space Policy: This policy controls the total space used
by the managed resource queues and the space allo-
cation among the queues. The total space can be un-
limited (limited only by available memory) or lim-
ited. The application can also set a limit on some(all)
queues and let the remaining queues share the remain-
ing space.

2. Overflow Policy: This policy takes effect only when
some queues are sharing limited space and the space
gets used up. Two options are supported: reject and
replace. When the policy is reject, current request will
be simply rejected. If the policy is replace, the last re-
quest of the lowest priority queue that shares the lim-
ited space will be evicted from the queue (application
will be notified via a callback function) and current re-
quest will occupy its space.

3. Enqueue Policy: Apart from the queue for each class,
the queue manager also maintains an ordered list of the

requests in all the queues. This policy influences the
order of the requests in the list. System default policy
is FIFO.

4. Dequeue Policy: This policy influences the dequeuing
of the request. Currently three choices are available:
FIFO, priority and proportional. FIFO means dequeue
the request according to its position in the ordered
list. Priority means always processing the high-priority
queue before processing the low-priority queue. If pro-
portional policy is chosen, the application can specify
the dequeue ratio among the classes. For example, by
setting the ratio to be 2 : 1, the queue for the class 0
will be dequeued twice as fast as the queue for class 1.

4.2. Interaction Between GRM and Application

Figure 10 summarizes the interaction between GRM and the
application. When some resource is requested by the appli-
cation, the request is first classified by the Classifier. Af-
ter that, the request is passed to GRM by calling insertRe-
quest. GRM controls resource allocation by checking the
request against two constraints: (i) the queue length, and
(ii) the quota constraint. If the queue for the given class is
empty and the class has quota, the request is satisfied im-
mediately via the function call allocProc to the resource al-
locator, and the quota is updated accordingly. If the request
can’t be satisfied immediately, it will be buffered in the its
queue. When some resource becomes available, the appli-
cation calls resourceAvailable to notify GRM, which will
try to satisfy as many pending requests as possible.

It’s important to mention that quota is a purely logical
concept. Unlike the traditional resource reservation sys-
tem, in our middleware the mapping of quota to physical
resource consumption need not be known.

In effect, the GRM is a logical queuing, admission con-
trol, and resource allocation policy interface with a back-
end that is capable of executing a primitive service func-
tion such as assigning a request to a service process. The
GRM generalizes the expression of various resource alloca-
tion policies in a common framework and makes it possible
to control logical quota allocations in a trial-and-error fash-
ion until performance constrains are met. The trial and error
is guaranteed to converge because of the way controllers are
designed which is the advantage of using a control-theoretic
approach. Most importantly, the physical mapping of quota
to actual resource consumption need not be known for cor-
rect operation, which separates this approach from resource
reservation systems.

5. Evaluation

To test ControlWare, we instrument the Apache [12] server
and Squid [26] server to interface to the middleware. We
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GRM Application
class = classify (request)

insertRequest (...,class,...)
insertReqest (.....){

 if (queue of this class is not empty){
buffer this request
return

 }
 if (this class still has quota){

allocProc(...)
update quota usage

  } else {
buffer this request

  }
}

resourceAvailable (.....){

  update quota usage
  get requests from class
  that still has quota
  allocProc(...)

}

Resource Allocator

When some resource available
resourceAvailable(...)

allocProc(...){

  do resouce allocation
}

Figure 10. Resource allocation procedure

specify relative service differentiation as the QoS objective.
On the proxy cache, we require differentiation in terms of
hit ratio achieved to different content classes. On the server,
we require differentiation in terms of service delay. While
the semantics of the performance variable being differenti-
ated are not interpreted by the middleware, our choice of
variable is implicitly expressed in the choice of sensors.
Hence, we instrument Squid to measure hit ratio and in-
strument Apache to measure service delay. These sensors
are interfaced to SoftBus. The two servers chosen are quite
different in terms of the resource types managed to achieve
performance differentiation. In Squid, we manage cache
size allocated to each content class. In Apache we man-
age the number of processes allocated to serve requests of
each class. By applying our middleware to these servers,
we demonstrate its versatility and ability to satisfy diverse
performance guarantees. We describe our experiments in
more detail next.

5.1. Providing Hit Ratio Differentiation in Squid

Figure 11 depicts the structure of the instrumented Squid.
Cache space is shared by several classes and each class has a
quota of the space. Generally, the space used by some class
will directly affect its hit ratio. The sensor, actuator and
controller provided by ControlWare constitute the control
loops. ControlWare creates one for each class. Each sensor
S(i) returns the relative hit ratio of class i, i.e., HRiP

k=n

k=0
HRk

.

Each actuator changes the space allocated to its class by a
value proportional to the error. The sensor and actuator are
of the passive type. Periodically, ControlWare invokes the
controller, which reads data from the sensor via SoftBus,
calculates the resource change to be applied, and writes the
result to the actuator via SoftBus.
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Figure 11. Structure of the modified Squid

The above proxy cache prototype was tested on a
100Mbps Ethernet LAN of nine Linux PCs. Each machine
has a 450MHz AMD K6-2 processor and a 256MB RAM.
Three client machines run Surge[8] to generate workload.
Surge is a web workload generation tool known for its
realistic reproduction of real web traffic patterns such as
manifestation of a heavy-tailed request arrival and file-size
distributions, a Zipf requested file popularity distribution,
and proper temporal locality of accesses. Each client ma-
chine simulates 100 users. Three machines were used to
run Apache. Each client machine generates requests for
the content located at one of the Apache machines. In
our experiment, there are 3 content classes. We specified
that the hit ratio of the three classes satisfy the condition
H0 : H1 : H2 = 3 : 2 : 1. Squid is configured to use 8M
bytes as its cache. Figure 12 shows the observed hit ratio
differentiation during the experiment.
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Figure 12. Hit Ratio of three classes

As we can see from Figure 12, the instrumented squid
server successfully provides the specified hit ratio differen-
tiation, illustrating the success of the middleware in provid-
ing performance guarantees.

5.2. Providing Delay Differentiation in Apache

We interfaced the Apache web server to SoftBus as depicted
in Figure 13. We implemented a request classifier, and a
delay sensor. The generic resource manager described in
Section 4 was used as the actuator. The GRM was inter-
faced to a resource allocator which passed accepted requests
(socket descriptors) to background Apache processes when
instructed by the GRM.
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Figure 13. Structure of the modified Apache

Four client machines were used to run Surge and gen-
erate realistic server workload. As before, each client sim-
ulates 100 users. We divided the client machines into two
classes with two machines per class. In the first half of the
experiment, only one machine from class 0 generates re-
quests. The second one is turned on after 870 seconds. We
specified that the connection delay Di of class 0 and class
1 should satisfy D0 : D1 = 1 : 3 at all times. Figure 14
shows the results of this experiment.
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Figure 14. Relative Delay between two classes

From the figure, we can see that before 870 seconds, the
delay of class 1 is about 3 times of the delay of class 0 as
specified. When the second machine of class 0 is turned on,
the delay of class 0 is increased suddenly. The controller
reacts by allocating more processes to class 0. At about
1000 seconds, the delay ratio converge to around 3 again.

The evaluation clearly demonstrates that the middleware
is capable of providing the specified performance guaran-
tees with only a modest instrumentation cost and no control-
theoretical experience required from the software developer.
The middeware is versatile in that it is not tailored for a
specific software service or a specific performance metric.
Not only does the middleware allow new services to be effi-
ciently augmented with QoS provisioning, but also it makes
it easy to retrofit delivery of QoS assurances into services
that were not designed with this purpose in mind. This pa-
per provides a proof of concept of the utility of ControlWare
as an embodiment of a general control-theoretic paradigm
for QoS guarantees in software systems. Relative guaran-
tees were used as an example in our evaluation. The authors

will report on a detailed evaluation of other types of guaran-
tees and other Internet services in a subsequent publication.

5.3. Performance Evaluation

One concern of applying ControlWare is the overhead it
introduces. We argue that the overhead is actually very
small. First, when the application is not distributed, Con-
trolWare can optimize itself by shutting down unnecessary
daemons, and stop communication between the registrars
and directory servers. Even in the distributed case, the di-
rectory server only needs to be contacted when the location
of some component is unknown. After that, this information
is cached locally. Since the control loop structure is very
stable, the overhead of maintaining the cache consistency is
almost neglectible. So the overhead is just the round trip
time over the network for fetching data from remote com-
ponents.

To quantify the overhead, we design a small program
based on ControlWare, and test it on the testbed. The con-
trol loop spans two machines. Sensor and actuator are lo-
cated at one machine, and controller resides at the other.
The directory server runs on a third machine. All the com-
ponents are reactive. Each invokation of the feedback con-
trol costs 4.8ms. Since in a typical application based on
ControlWare, the invokation of control loop will not be so
frequent, usually at the magnitude of second. Hence, the
overhead of ControlWare will be relatively even smaller.

6. Related Work

The control theoretical approach has been successfully ap-
plied to in several computer system projects. At the network
layer, Hollot et. al. [16] applied control theory to analyze
the RED congestion control algorithm on IP routers. Re-
cently feedback control is applied to active queue manage-
ment to provide loss and delay differentiation [10].

In the area of CPU scheduling, Steere et. al. [30] de-
veloped a feedback based CPU scheduler that synchronizes
the progress of consumers and supplier. In [20], feedback
control real-time scheduling algorithms were developed to
provide deadline miss ratio guarantees to real-time applica-
tions with unpredictable workloads.

Recently Internet server software has become a focus
area of feedback control because the unpredictabilities of
the workload. Examples of such QoS control includes de-
lay and bandwidth control in Web servers [4, 18], hit ratio
differentiation in web caches [21] and queue management
in e-mail servers [24].

The above projects demonstrated that feedback control
provides a powerful theoretical foundation to provide ro-
bust QoS guarantees in a wide range of software systems.
However, their feedback control loops are implemented as
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individual cases from scratch. Significant efforts are needed
to develop and tune the feedback control loop in every case.
No middleware has been developed in the above projects to
provide general support for composition and tuning of soft-
ware feedback control loops.

The SoftBus architecture in ControlWare is related to
distributed middleware such as CORBA [15] and DCOM
[11]. Similar to the location-transparent method invoca-
tion in CORBA and DCOM, SoftBus supports plug-and-
play control loop components (i.e., monitors, controllers,
and actuators). However, unlike CORBA and DCOM, Soft-
Bus provides direct support for feedback control by sup-
porting active and passive interaction mechanisms among
monitors, controllers, and actuators, as well as general re-
source managers for server systems. Furthermore, Control-
Ware provides system identification and controller tuning
services that are not supported by other common middle-
ware services.

The SWiFT project [14] at OGI and the Agilos project
[17] at UIUC share some similar goals with ControlWare.
SWiFT is a toolkit for constructing feedback control loops
from libraries. It also supports the visualization and sim-
ulation of software control loops. The Agilos project con-
structs a middleware to support QoS control and adapta-
tion. ControlWare is different from SWiFT and Agilos in its
unique SoftBus architecture that enables flexible plug-and-
play control components in a location independent fashion
(e.g., components of a same control loop can be from differ-
ent address spaces and even remote nodes). In comparison,
Agilos has a fixed two level control structure and a fixed
set of monitors (e.g., CPU and bandwidth monitors). More
importantly, ControlWare is the first middleware that pro-
vides end-to-end support of the whole development process
of creating QoS control in software systems. This process
includes defining QoS contracts, mapping contracts to feed-
back control loops, system identification, controller tuning,
and implementation. For example, neither SWiFT or Agilos
supports the mapping from QoS contracts to feedback con-
trol loops or system identification. They also do not provide
the generic resource manager as in ControlWare.

7. Conclusions

In this paper, we described a new middleware architecture
for QoS guarantees in distributed environments such as the
Internet. The architecture implements a new paradigm for
QoS control, which is especially suitable for systems op-
erating in highly uncertain environments or when accurate
system load and resource models are not available. Our
preliminary evaluation of the ability of this middleware to
provide advertised guarantees in the context of selected dif-
ferent applications illustrates the promise of this approach.
While prior efforts have been made to apply control theory

to QoS control, ours is the first comprehensive middelware
service that incorporates these principles under a clear well
defined set of APIs which substantially reduces the devel-
opment effort of performance assured applications and In-
ternet services.

Future work of the authors will focus on understanding
the limitations of a control-theoretic approach and deriving
new guarantee semantics. A possible disadvantage of us-
ing feedback only as a means to correct performance is the
need for a performance error to occur first before a feed-
back controller can respond. In the future, we shall focus
on mechanisms that combine prediction with feedback to
improve convergence to specifications in a highly dynamic
unpredictable system. We shall also extend the middleware
to allow fully dynamic online re-configuration during nor-
mal system operation, and investigate other types of per-
formance guarantees that might be achievable in a feed-
back control context. For example, it may be interesting
to cast adaptive guarantees on service availability, security,
and fault-tolerance as feedback control problems.
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Appendix A: Contract Description Language

The Contract Description Language (CDL) is used to de-
scribe desired convergence guarantees. Its main syntax is
as follows.
GUARANTEE NAME f
GUARANTEE TYPE = type;
TOTAL CAPACITY = capacity;
CLASS 0 = QoS 0;
CLASS 1 = QoS 1;
......
CLASS num = QoS num;

g
GUARANTEE TYPE: The GUARANTEE TYPEs cur-
rently supported by ControlWare include ABSOLUTE,
RELATIVE, and STATISTICAL MULTIPLEXING. Dif-
ferent guarantee types need different interpretations of the
QoS values and are mapped to different feedback control
loops as described in Section 2.2. Although utility opti-
mization is not listed as a guarantee type, it is equivalent to
absolute guarantees because it is mapped to single feedback
control loop per class.
TOTAL CAPACITY: total capacity is only use-
ful when GUARANTEE TYPE = STATISTI-
CAL MULTIPLEXING. The set point of the best effort
server is the total capacity minus the capacity allocated to
all guaranteed service classes.
CLASS i: Each service class represents a category of re-
quests with a guarantee depending on the application re-
quirements. For example, a service class can be all the
HTTP requests from premium clients. The assignment
CLASS i = QoS i specifies the guaranteed QoS for class
i. Note that the guaranteed QoS have different meanings for
different guarantee types. For ABSOLUTE and STATIS-
TICAL MULTIPLEXING guarantees, QoS i represents the
absolute value for desired QoS, while RELATIVE guaran-
tees are only interested only the relative value (ratio) be-
tween the QoS i’s of different classes.
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