IDIS Laboratory Technical Report No. 105

MADGS: An Architecture for Dynamic, Multi-Commander,
Multi-Mission Planning and Execution

EUGENE SANTOS JR.%* ScorT DELOACHY MicHAEL T. Cox®

SEPTEMBER 2003

Abstract

The Multi-Agent Distributed Goal Satisfaction (MADGS) project facilitates distributed mis-
sion planning and execution in complex dynamic environments with a focus on distributed goal
planning and satisfaction. By understanding the fundamental technical challenges faced by our
commanders on and off the battlefield, we can help ease the burden of decision-making. MADGS
lays the foundations for retrieving, analyzing, synthesizing, and disseminating information to our
commanders. In this paper, we present an overview of the MADGS system and discuss its key
components that has formed our initial prototype and testbed.

@ Department of Computer Science & Engineering, University of Connecticut, Unit-155, Storrs, CT
06269-3155, eugene@cse.uconn.edu

b Department of Computing and Information Science, Kansas State University, Manhattan, KS 66506-
2302, sdeloach@cis.ksu.edu

¢ Department of Computer Science $ Engineering, Wright State University, Dayton, OH 45435-0001

* This project was supported in part by Air Force Office of Scientific Research Grant No. F49620-99-1-
0244.

IDIS LABORATORY TECHNICAL REPORT No. 105 1

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
SEP 2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a CONTRACT NUMBER

MADGS: An Architecture for Dynamic, Multi-Commander, Multi-Mission
Planning and Execution

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Connecticut,Department of Computer Science & REPORT NUMBER
Engineering,Unit-155,Storrs,CT,06269-3155

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S
ACRONYM(S)
11. SPONSOR/MONITOR' S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF

OF ABSTRACT OF PAGES RESPONSIBLE
a REPORT b. ABSTRACT c. THISPAGE 39 PERSON
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

CONTENTS CONTENTS

Contents
1 Introduction and Motivation 4
2 The MADGS Environment 5
3 Carolina Agent Server 7
4 Deploying MADGS 9
4.1 Multiagent Systems Engineering 0oL 9
4.2 agentTool L e e 13
5 DGS 19
5.1 Intelligent Resource Allocation, 22
5.2 Modeling Intra-Organizational Logistics 23
6 PRODIGY 26
6.1 Prodigy/Agent e 26
6.2 GTrans i e e e e e e 26
6.2.1 Goal Transformations 27
6.2.2 GTrans User Interface o Lo 28
7 Putting It All Together 29
7.1 Evaluation. L e e e e 30
7.1.1 GTrans Evaluation Lo e e 30
7.1.2 Re-planning Study L 32
8 Conclusion 35

IDIS LABORATORY TECHNICAL REPORT No. 105 2

LIST OF FIGURES LIST OF FIGURES

List of Figures

2.1
3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
6.1
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

MADGS System. Component/Agent Interaction Flow. 6
Carolina Architecture. L L 8
MaSE Methodology e 10
Role Model L e e 11
Concurrent Task Diagram o o 12
Agent Class Diagram 12
Agent Conversation Diagrams L oo oo 13
Deployment Diagramo e e e 14
agentTool e e 15
Analysis to Design Transformations. 15
Agent Transformation Architecture 16
Basic AgentComponent State Diagram oL oL L. 17
Mobile AgentComponent State Diagram 18
Error Messageso 19
Deadlock Detection o . oL e 19
Conversation Code Generation 20
The GTrans interface. e e e 28
Military Interdiction Scenario. Rivers have target bridges spanning them. 30
Resource allocation and negotiation. 0 0L, 31
Plan execution commences after initial plan generated. 31
Goal satisfaction as a function of cognitie model. 32
Goal satisfaction as a function of problem complexity. 32
Goal satisfaction as a function of expertise. oL, 33
Replanning time for standard (without GTrans) and focused (with GTrans). 34
Replanning nodes explored for standard and focused. 34

IDIS LABORATORY TECHNICAL REPORT No. 105 3

1 INTRODUCTION AND MOTIVATION

1 Introduction and Motivation

The strength of the US military is founded upon the autonomy and independence given to its
battlefield commanders who effectively and efficiently carry out their assigned roles and tasks.
Our commanders draw upon their wealth of training, personal resourcefulness, and sheer ingenuity
in order to accomplish their missions. This is especially critical when faced with the constantly
changing and adverse conditions on the battlefield. Thus, the ability of our individual commanders
has been and still remains the key to US military dominance in the world.

Examining the broader picture of military operations, its success rests not only in the individual
commander but also in the ability of our commanders to cooperate and adapt in a timely manner to
achieve their goals. The need to adapt again arises from the changing conditions on the battlefield
be it changes in overall mission or changes induced from goal failures.

In particular, for the US Air Force, real-time air mission planning and execution occurs in a
highly complex and dynamic environment where new constraints and conditions frequently arise
at all levels of operation from theatre level planning to individual unit tasking and execution.
Some new conditions are “discovered” as planning failures arise while completing local objectives
(goals and sub-goals). Planning failures are caused by factors such as internal planning conflicts,
irrevocable commitments from partial plan execution, and insufficient resources (number of planes,
fuel, etc.). Other, conditions are imposed from outside the system during planning and execution.
Such conditions include command modifications in the mission objectives (human intervention —
friendly and/or enemy) and continuous changes in the external environment (weather changes,
equipment failure, etc.). Moreover, military operations planning is a distributed activity. Planners
at all levels and in all services cooperate (and compete) to create and execute operations.

With all this in mind, the burden faced by our commanders/planners in the modern information
rich battlespace is overwhelming to say the least. To be fully aware of the battlespace situation is
simply not feasible. However, the strength of our commanders lies in what they know combined
with what they can easily access in order to get the job done.

Unfortunately, most of the research to date on mission planning and execution has been based
around the unrealistic assumption of a single “point of planning;” that is, all planning occurs at a
single location with unlimited access to global information. Such an approach does not permit scal-
ing and is unrealistic in today’s information intensive environments. First of all, without the ability
to scale to large problems, automated planning will not be able to fit into existing organizations, or
to permit simultaneous planning with plan execution. A particularly important issue is that local
dynamic conditions, as discussed in the preceding paragraph, can result in a rippling effect of plan
failures all the way up to the highest levels. Secondly, unlimited global access is simply not feasible
given the size, reliability, and dynamic reconfigurability of our information network as well as the
necessity of providing information security in such a critical environment. For mission planning
and execution to work effectively, we must be able to reliably provide commanders the information
when they “need to know” and guarantee the information security if they “need to know.”

In the real-world dynamic and large-scale setting of air mission planning and execution, this
can only be achieved in a distributed manner to provide sufficient levels of efficiency, robustness,
and security. This has been the primary theme for our Multi-Agent Distributed Goal Satisfaction
(MADGS) project.

In our approach, we set out to clearly identify the root causes of plan failures and when and
where such failures can be best addressed by the human commanders. In particular, we posited that
significant planning failures occur during execution when specific resource requirements for a given
task cannot be satisfied because of the dynamic nature of our operational environment. Instead of

IDIS LABORATORY TECHNICAL REPORT No. 105 4

2 THE MADGS ENVIRONMENT

forcing a costly re-planning of the mission, we redefined the problem in terms of satisfying resource
requirements during mission execution. This allows us to avoid planning failures if alternative
resources can be located (in a local fashion) for the human commanders to carry out their tasks.
In the case where resources cannot be allocated, we now have up to date information on relevant
resources and availability that can now be passed up the mission plan hierarchy. Combined with our
developments in mixed-initiative planning through goal-transformations, we can better assist during
re-planning but also limit the scope necessary of the overall re-planning effort. Specifically, we have
achieved the following: We (1) developed and deployed a scalable mobile multi-agent infrastructure
for dynamically reconfigurable networks; (2) designed a model of distributed goal satisfaction to
mitigate plan resource failures; (3) built a framework for automated software agent generation and
validation; and, (4) introduced mixed-initiative planning through goal transformations.

2 The MADGS Environment

The Multi-Agent Distributed Goal Satisfaction (MADGS) environment is a JAVA-based mobile-
agent system that facilitates distributed mission planning and execution in complex dynamic en-
vironments with a focus on distributed goal satisfaction [39]. The MADGS system represents
the union of five separate components, Agent-Server (named Carolina), mobile-agents, Distributed
Goal Satisfaction (DGS), agentTool, and PRODIGY. The primary issues we explored include ro-
bust and reliable communication protocols, agent design, and a system architecture that facilitates
both agent and agent server autonomy.

The target real-world operational environment for the MADGS system is a network topology
that consist of intermittent nodes and uncertain network connections that exist in a large-scale,
multi-platform dynamic network. The resulting design developed for this environment addresses the
communications issues faced when handling massive numbers of mobile-agents in such a topology.
Our development process required the consideration of bandwidth capacities (minimal broadcasts
if any), mobile-agent collaboration issues, and server awareness of available resources. In designing
a system capable of handling an unknown but unrestricted number of communication and agent
migrations over the proposed topology we made an in- depth examination of both agent and server
respousibilities. From this examination we developed a premise that there exists a marriage between
the functionality of the Carolina agent-server and the agents themselves despite their autonomy.
For this reason the MADGS architecture was built around this marriage, maintaining autonomy
for both without depreciating the security or performance of the system. The marriage is one built
of necessity. In order to minimize agent size some functionality was better placed in the server and
offered as a service to the agents.

MADGS mobile-agents are the workhorses of the system providing the functionality the system
users require. Mobile-agents are injected into the system through the agentTool [17] component
responsible for agent creation. The agentTool component is not a standard component present
on all nodes. As an administrative tool, agentTool, is instantiated at predetermined points in the
network expressly as a defined creation and entry point for mobile-agents into the MADGS system.
This architecture will provide an avenue for insuring a level of authenticity and thereby security to
the system. If a new mobile-agent or a clone is needed, the requests for these are filtered through
an agentTool component via an agentToolHandler agent. The DGS module will provide alternative
resource configurations to facilitate the completion of a plan constructed via PRODIGY given
constraint failure without backtracking or replanning. The DGS component will interact with the
resource agent to maintain an accurate record of available resources using a distributed database
of resource attributes and linear programming tools to make replacement determinations. The

IDIS LABORATORY TECHNICAL REPORT No. 105 5

2 THE MADGS ENVIRONMENT

E'.Z‘ifeyr System Interaction

Problem
Descnptlon
D"mb'em h: human agent
escription Plan
s: software agent

Prodigy

Agent ,
%
@ ®~ 12
Report Success @

or Failure

Prodigy Agent
Handler

Action
Agent

Resource @
List

Request Plan E Spawn
Handler Agent Plan Handler

Resource =

Agent AgentTool @ é
Handler Plan Handler
Request resources | T

Committed resource list

Fia. 2.1. MADGS System. Component/Agent Interaction Flow.

DGS component will rely on human operators to make resource substitution decisions. Alternative
resource configurations for resources identified by the plan as mission-critical are given priority
by the DGS component. PRODIGY [48] is a legacy planning system that will provide the initial
master plan for operations. Figure 2.1 illustrates the interactions between agentTool, PRODIGY,
Carolina, and the DGS components of MADGS. In this figure, Carolina is the backplane responsible
for the communications and agent operation environment.

Our MADGS system functions as follows (Figure 2.1): For each human commander, there
is an associated PRODIGY system complete with GTrans interface to assist the commander in
formulating plans for their given missions. Also attached to the commander are a ResourceAgent,
a PRODIGY agentHandler, and agentToolHander. When a plan is completed by the commander
with PRODIGY, it consists of a sequence of specific execution tasks. The PRODIGY agentHandler
now requests agentToolHandler to spawn a specific planHandler agent from agentTool for this
given plan. In this case, the planHandler can be retrieved from a library of agents that agentTool
has created offline. The plan sequence is now picked up by our newly created planHandler agent
where a resource analysis is conducted to determine the resource requirements of each task in the
sequence. Execution of each task is now commenced. For each task being deployed, MADGS
attempts to satisfy the specific resource requirement by querying the commander’s ResourceAgent
and then negotiating with other ResourceAgents “nearby” if necessary. When the requirements are
satisfiable, the planHandler then requests agentToolHandler to now spawn a specific task execution
agent for the task to be executed. This continues until all tasks are executed or a failure in a task
execution or resource requirement is encountered. Once encountered, the planHandler then gathers
the details of the failures and attempts to overcome the failure to send to the prodigy AgentHandler
and mixed-initiative replanning commences. Also, implicit in the diagram is the ability of the
human decision maker to observe activities on the system.

In the following sections, we detail the individual components used in MADGS in our above
description.

IDIS LABORATORY TECHNICAL REPORT No. 105 6

3 CAROLINA AGENT SERVER

3 Carolina Agent Server

For MADGS, the critical element for agent communications lies in the necessity of not having
a singular point of failure in the system. This obviously means that we cannot afford to use
centralized directories or look-up tables. Due to the network constraints we also cannot leave
communications up to individual agents since this will effect the size of mobile agents and thereby
bandwidth consumption. Another communications issue facing development of the MADGS system
was location of agents and resources. Without centralized directories, look-up tables or the ability
to farm communication concerns out to agent resources our research led to the quick determination
that no available system answered the communication issues, resource tools or adaptability our
project called for. For this reason we embarked on the design and implementation of the Carolina
agent server and mobile agent system. Unfortunately no generic agent system with sufficient basic
communications and resource management abilities could be effectively utilized.

Systems identified! made different assumptions and focused on a specific problem without of-
fering some base functionality that all agent systems could build off of. It is hoped that one by-
product of our work is to define the base functionality needed by all agent systems. This is not to
say that all agent systems should or will be based off of our work given all systems do not work off
general models.

The communication protocols we devised in Carolina attempts to insure several things:

1. The size of an agent will not increase significantly with increased interactions;

2. Each node will have a consistent view of the ‘world’;

3. The network load posed by communications can be minimized compared with alternate com-

munication methods;

4. There is no central point of failure in the system; and,

5. All communications can be routed within a reasonable time frame.
These assurances can be made despite the volatile and intermittent nature of our network environ-
ment. The first assurance follows from the need for agents to only have an agent’s unique assigned
name to maintain a communication link with that agent. The second assurance is possible because
our system provides for information sharing between nodes that guarantees all nodes will know the
exact location of all mobile resources (agents are resources) assuming no non-server resource move-
ment for a time-period not to exceed some constant value 7. The third assurance is possible because
our communication protocol negates the need for broadcast except for system-wide alerts that are
hypothesized to be rare in any system. Since our protocol does not utilize a central look-up table
or centrally located directories there can be no single point of failure for communications thus the
forth assurance. The last assurance stems from the second assurance, since all nodes are guaran-
teed to know the location of all mobile-agents it is therefore possible to route ALL communications
within a reasonable time frame.

The foundation of the MADGS system is the agent server named Carolina. Carolina has a
three-tier architecture with several internal components that are described in this section. There
are four main functions of Carolina:

1. Provide an agent execution environment;

2. Insure system integrity through role-based security techniques;
3. Allow access to system resources where appropriate; and,
4. Provide communication services that improve the overall system performance.

!We conducted a survey of all available agent systems and development environments. See
http://excalibur.brc.uconn.edu/madgs/agentsurvey.doc.

IDIS LABORATORY TECHNICAL REPORT No. 105 7

3 CAROLINA AGENT SERVER

Message Client Message Manager
Message Server

............. [

0 G [

System
Manager

Agent Client Agent Manager Agent Server
CAROLINA | Figure 2. Carolina Architecture

F1G. 3.1. Carolina Architecture.

The first function is basic to all agent systems and needs no further mention. Carolina System
Manager Component oversees the agent interactions to insure only appropriate communications
occur between different types of agents using cased-based reasoning techniques. The second function
controls the permissible access of resources by agents through role based security techniques.

The access Carolina provides to system resources to requesting agents. These resources may
only be accessed through proper channels, in other words through the proper agent since agents
represent all resources. For example, an attempt to access a database directly instead of through
the databases interface agent would meet with failure and cause retribution from Carolina as a
hostile act. In this event, the System Manager will sever the agents thread and report the offending
agents class and offense to a system user. The last function of Carolina currently revolves around
communications. There are three things of interest in this area, server-to-server communications,
agent migration, and agent-to-agent communications. Server-to-Server communications that is
crucial to the operation of the MADGS system however only occurs twice, upon Server startup
and shutdown. The primary function of the server-to-server communication is the location and
interconnection the MADGS system, Carolina servers and the agents they host. Agent migrations
in Carolina are handled as a form of communication though migrations are handled through a
separate port than communication messages. Since agents in the MADGS system are not allowed
to directly communicate with another agent, Carolina must offer a service for local and remote
communications.

The decision to not allow agents to directly communicate departs strikingly from the stan-
dard agent-based system protocols. The reason we take this unique stance is the limitations that
occur when you allow an unlimited number of agents to freely migrate and communicate over a
constantly changing network topology. Under such conditions the network traffic increases signif-
icantly as mobile-agents attempt to maintain the current location of other mobile-agents they are
collaborating with. Given our network environment, bandwidth usage must be kept to a minimum;
therefore management of this cannot be left to the individual agents. It becomes an issue of control
and performance. Let us begin to examine the Carolina architecture (See Figure 3.1).

Carolina receives agents through it AgentServer Port. The AgentManager controls this port.
The AgentManager receives incoming agents, checks their intended destination (IP), if it is local

IDIS LABORATORY TECHNICAL REPORT No. 105 8

4 DEPLOYING MADGS

then the AgentManager registers the agent in the AgentDirectory, deserializes it and passes it to
the ExecutionContainer where the agent is provided with a thread for execution. If however, the
agent’s intended IP is not local, the AgentManager simply reroutes the serialized agent through the
AgentClient Port after registering the transient agent in the AgentDirectory. The AgentDirectory is
one of the key components of the Carolina communication scheme. It maintains data on all agents
that the resident Carolina server has seen. Information stored in the AgentDirectory includes typical
information including the agent’s unique name assigned at creation, the agent’s class, source IP,
current (or last known) IP, and goal. Additionally, AgentDirectory stores a pointer to the messages
stored in the Message Directory for individual agents.

Finally, since the MADGS system has been designed for use in a large-scale dynamic network
architecture with massive numbers of mobile agents carrying out communications, point-to-point
communications were not an option. The protocol we developed extends existing work [28]. Agents
are not responsible for maintaining an address book of any kind. If communication is needed
with a specific agent the agent only needs that agent’s unique identification tag. Location of and
routing of messages to agents in the network is performed as a joint effort between the servers and
a Communications agent. The server logs all agents entering or passing through the server in route
to another node in the network. Carolina logs the agent name, unique identification tag, class,
location or destination and time-stamp. In conjunction with this logging activity Communications
agents use a random algorithm to canvas the network moving from server to server collecting the
server’s agent directory and compare it to their ‘view’ of the world. This agent then modifies (or
cleans) the servers agent directory making additions, deletions and correction as needed.

4 Deploying MADGS

To support MADGS, we created the Multi-agent Systems Engineering (MaSE) methodology and
an agent development environment called agentTool [15, 3, 17]. Using agentTool, developers follow
MaSE, which guides them, step by step, through the analysis and design of complex, distributed,
and dynamic multiagent systems, such as distributed mission planning and execution systems.
agentTool is a graphically based, interactive software engineering tool that fully supports MaSE.
agentTool helps developers in specifying multi-agent organizations and then semi-automatically
generating designs and correct, executable code. MaSE and agentTool are both independent of any
particular agent architecture, programming language, or communication framework. Using agent-
Tool, it is possible to generate implementations targeted at various frameworks without changing
the design. To support the MADGS architecture, we have developed specific code generation
modules to produce systems that work in the Carolina framework.

4.1 Multiagent Systems Engineering

The general flow of MaSE follows the seven steps shown in Figure 4.1. The rounded rectangles on
the left side denote the models used in each step. The goal of MaSE is to guide a system developer
from an initial system specification to a multiagent system implementation. This is accomplished
by directing the developer through this set of inter-related system models. Although the majority
of the MaSE models are graphical, the underlying semantics clearly and unambiguously defines
specific relationships between the various model components.

MaSE is designed to be applied iteratively. Under normal circumstances, we would expect the
developer to move through each step multiple times, moving back and forth between models to
ensure each model is complete and consistent. While this is common practice with most design

IDIS LABORATORY TECHNICAL REPORT No. 105 9

4 DEPLOYING MADGS 4.1 Multiagent Systems Engineering

Initial System
Context
Goal .
Hierarchy Capturing Goals
Sequence
Diagrams
v & v
Concurrent o
(Tasks FEEs] Refining Roles
I
Agent Creating Agent
Classes Classes
X

Conver- Constructing
[SEIENS Conversations
‘ .
Agent Assembling
Architecture Agent Classes
v ¥

Deployment .
Diagrams System Design

Applying Use
Cases

4_
<+— yhfiseaq — P> *¢—— sisAeuy ———>

FiG. 4.1. MaSE Methodology

methodologies, MaSE was specifically designed to support this process by formally capturing the re-
lationships between the models. By automating the MaSE models in agentTool, these relationships
are captured and enforced thus supporting the developer’s ability to freely move between steps.
The result is consistency between the various MaSE models and a system design that satisfies the
original system goals. The two phases of MaSE, Analysis and Design, are discussed in more detail
below.

MaSE Analysis The Analysis phase includes three steps: capturing goals, applying use cases,
and refining roles. In the Design phase, we transform the analysis models into models useful for
actually implementing the multiagent system. Each of these steps are described below.

The first step in the MaSE methodology is Capturing Goals, which takes the initial system
specification and transforms it into a structured set of system goals. There are two steps to
Capturing Goals: identifying the goals and structuring goals. Goals are identified by defining the
main purposes of the system. Once the system goals have been captured and explicitly stated, they
are less likely to change than the detailed steps and activities involved in accomplishing them [24].
After identification, the goals are analyzed and structured into a Goal Hierarchy Diagram, which
is an acyclic directed graph where child nodes are subgoals of the parent goal. There is typically a
single system goal, which is decomposed into a set of subgoals. These subgoals are assigned to roles,
and eventually to agents. Thus agents, based on the role they are playing, become responsible for
achieving specific system goals.

IDIS LABORATORY TECHNICAL REPORT No. 105 10

4 DEPLOYING MADGS 4.1 Multiagent Systems Engineering

The Applying Uses Cases step is crucial in translating goals into roles and associated tasks. Use
cases are drawn from the system requirements and describe sequences of events that define desired
system behavior. Use cases are examples of how the system should behave in a given case. To
help determine the actual communications in a multiagent system, the use cases are converted into
Sequence Diagrams. Sequence Diagrams depict sequences of events between multiple roles and, as
a result, define the communications that must exist between the agents playing those roles in the
final design. The roles identified here form the initial set of roles used in the next step. The events
are also used later to help define tasks and conversations.

The third step in the Analysis phase is to identify all roles, starting with the set defined in
the previous step, and to define role behavior and communication patterns. A role is an abstract
description of an entity’s expected function and is similar to the notion of an actor in a play [24].
Roles are identified from the Sequence Diagrams developed during the Applying Use Cases step
as well as the system goals defined in Capturing Goals. MaSE ensures that all system goals are
accounted for by associating each goal with a specific role, which is eventually played by at least
one agent in the final design. Roles are captured via Role Models as shown in Figure 4.2. The
boxes denote roles, which include a list of goals assigned to that specific role. Each role has at
least one task, which are denoted by attached ovals. Communications between tasks are denoted
by arrows pointing from the initiating task to the responding task.

Role A
goal list

Role C
goal list

Protocol Protocol
name name

F1G. 4.2. Role Model

Once roles have been identified, concurrent tasks are created to define the expected role behavior.
Concurrent tasks are captured via finite state models and specify a single thread of control that
integrates inter-agent as well as intra-agent communications. Task execution is based on its type.
If a task is persistent, it starts when the agent is created and runs until the agent dies or the task
reaches and end state. Persistent tasks are identified by having null transitions from the start state
another state in the concurrent task diagram. If a task is transient, the task is started in reaction
to an incoming event. Transient tasks are recognized by having an incoming event on the transition
from the start state. An example of a MaSE Concurrent Task Diagram is shown in Figure 4.3.

Role behavior is captured by a set of n concurrently executing tasks (where n > 0). Activities are
used to specify actual functions carried out by the agent and are performed inside the task states.
While these tasks execute concurrently and carry out high-level behavior, they can be coordinated
using internal events. Internal events are passed from one task to another and are specified on the
transitions between states. To communicate with other agents, external messages can be sent and
received. These are specified as internal send and receive events. The syntax associated with state
transitions is as follows

trigger(argsl) [guard] / transmission(args2)

This is interpreted to mean that if an event trigger is received with a number of arguments args! and
the condition guard holds, then the message transmission is sent with the set of arguments args2.
Actions may be performed in a state and are written as functions. Besides communicating with
other agents, tasks can interact with the environment via reading percepts or performing operations

IDIS LABORATORY TECHNICAL REPORT No. 105 11

4 DEPLOYING MADGS 4.1 Multiagent Systems Engineering

[NOT known]

receive(try(y), agent) ~ statel
P known = check(y)
X = action(y)

terminate

@/

receive(ack, agent)

FiG. 4.3. Concurrent Task Diagram

that affect the environment. This interaction is typically captured by functions executed while in
specific states.

MaSE Design Once the concurrent tasks of each role are completely defined, the MaSE Analysis
Phase is completed and design begins. The MaSE Design Phase is used to create agent classes (from
which agents are instantiated), the conversations between agent classes, and the internal definition
of the agent classes. This is accomplished in four steps: Creating Agent Classes, Constructing
Conversations, Assembling Agents, and System Deployment.

In the Creating Agent Classes step, agent classes are created based on roles from the analysis
phase. Agent classes and the conversations between them are captured via Agent Class Diagrams,
Figure 4.4, which depicts agent classes as boxes and the conversations between them as lines
connecting the agent classes. Each agent class is assigned to play at least one role while multiple
agent classes may be assigned the same role. Since agents inherit the communication of their roles,
any communications between roles become conversations between their respective classes. Thus,
as roles are assigned to agent classes, the overall organization of the system is defined.

RAI GfAm Class 1 Conversation L | AgentClass3 | Conversation3 | Agent Class 4
ole > ~

Role B Role B Role C

Conversation 2

Agent Class 2 Conversation 4

Role B

F1G. 4.4. Agent Class Diagram

Once the conversations have been identified, the next step, Constructing Conversations, which
define coordination protocols between two agents. Specifically, a conversation consists of two Com-
munication Class Diagrams, one each for the initiator and responder. A Communication Class
Diagram is a pair of finite state machines that define a conversation between two participant agent

IDIS LABORATORY TECHNICAL REPORT No. 105 12

4 DEPLOYING MADGS 4.2 agentTool

classes. Both sides of a conversation is shown in Figure 4.5. The initiator always begins the conver-
sation by sending the first message. The state machines should be consistent with each other; all
messages sent by one side of the conversation should be able to be received by the other with reach-
ing deadlock. The syntax for Communication Class Diagrams is similar to that of Concurrent Task
Diagrams. The main difference between conversations and concurrent tasks is that concurrent tasks
may include multiple conversations between many different roles and tasks whereas conversations
are binary exchanges between individual agents.

?

~send(info)

wait acknowledge >@
Q validation

failed = validate(info) |-
vamj' . send(info) w
faifure=tranSmission » [NOT failed] ~
d(inf
send(info) ackno%ledge

F1G. 4.5. Agent Conversation Diagrams

send(info) [failed]

A failure-transmission

In the Assembling Agents step, the internals of agent classes are created. Robinson [38] de-
scribes the details of assembling agents from a set of standard or user-defined architectures. This
process is simplified by using an architectural modeling language that combines the abstract na-
ture of traditional architectural description languages with the Object Constraint Language, which
allows specification of low-level details. The actions specified in the tasks and conversations must
be mapped to internal functions of the agent architecture, while a link between actions and con-
versations must also be made.

The final step of MaSE is the System Deployment, in which the configuration of the actual
system to be implemented is defined. In MaSE, the overall system architecture is defined using
Deployment Diagrams to show the numbers, types, and locations of agents within a system as shown
in Figure 4.6. The three dimensional boxes denote individual agents while the lines connecting them
represent actual conversations. A dashed-line box encompasses agents that are located on the same
physical platform.

The agents in a Deployment Diagram are actual instances of agent classes from the Agent Class
Diagram. Since the lines between agents indicate communications paths, they are derived from the
conversations defined in the Agent Class Diagram as well. However, just because an agent type
or conversation is defined in the Agent Class Diagram, it does not necessarily have to appear in a
Deployment Diagram.

4.2 agentTool

The agentTool system is our attempt to implement a tool to support and enforce MaSE. Currently
agentTool implements all seven steps of MaSE as well as automated support for transforming
analysis models into design models. The agentTool user interface is shown in Figure 4.7. The
menus across the top allow access to several system functions, including a persistent knowledge
base [37] conversation verification [31] and code generation. The buttons on the left add specific

IDIS LABORATORY TECHNICAL REPORT No. 105 13

4 DEPLOYING MADGS 4.2 agentTool

AgentClass4

! |
|] |
| ! I I

! I I
| | I I

I I

| AL A2 Lo A3: ! A4:
! |
‘ L |
| ! I I
| | I I
| b I
I | !
| I I

|
|

|

I

|

|

I

: : : .
AgentClass1 AgentClass3 AgentClass2 |
|

I

|

I

|

I

|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

AS5:

|

|

|

} A6:
} AgentClass3

|

|

|

|

|
|
|
|
|
|
AgentClass4 }
|
|
|
|
|

Fi1G. 4.6. Deployment Diagram

items to the diagrams while the text window below them displays system messages. The different
MaSE diagrams are accessed via the tabbed panels across the top of the main window. When a
MaSE diagram is selected, the designer can manipulate it graphically in the window. Each panel
has different types of objects and text that can be placed on them. Selecting an object in the
window enables other related diagrams to become accessible.

We approached automated agent synthesis along three major themes in agentTool: (1) auto-
mated transformation of analysis models into design models, (2) verification of analysis and design
models prior to code generation, and (3) code generation for a variety of agent frameworks.

Analysis to Design Transformations This section describes how agentTool transforms the
analysis models into design models. Figure 4.8 shows the analysis-to-design transformation process
in agentTool. The goal of these transformations is to take the analysis specification and transform
it into a consistent design. The process is semi-automatic in that the designer initiates the transfor-
mation process and guides it along when help is required. The initial input to the transformations
is the set of agent classes and the roles assigned to each agent class. The transformation system
then generates the agent conversations as well as the internal agent component-based design based
on the role model and tasks from the analysis phase.

In the semi-automatic transformation system, the architecture shown in Figure 4.9 is used.
The AgentComponent is the overall controller of the agent and is responsible for instantiating
other components, routing external messages, and handling agent mobility. Each concurrent task
is transformed into a sub-component of the AgentComponent. These sub-components have their
own state diagrams and conversations.

The MaSE methodology makes it clear that an agent class’ roles, in conjunction with the proto-
cols between the tasks, determine each agent’s conversations. Therefore, the transformations create
a separate component for every task in each role that an agent is assigned to play. The concurrent
task definition is then copied into the associated component state diagram. Next, the states and
transitions belonging to conversations are extracted and replaced with actions that represent the
execution of the conversation. Using this approach, the component’s state diagram retains the
coordination and internal events necessary to ensure the behavior of the component matches the

IDIS LABORATORY TECHNICAL REPORT No. 105 14

4 DEPLOYING MADGS 4.2 agentTool

[} agent T ool M [=] E3
File Knowledge Base Werify CodeGen Transformation

Curently Selacted | |

Goal Hierarchy | Use Cases | Seq Diagram | Role Diagram | Agent Diagram | Deployment |

Add Goal 1 Content Search
System
1.1 search multiple computer
systems for files
GaaTol vl 2 — P T— T
[Frudy 1.1.1 specify inpul string 1.1.2 Search for 1.1.4 resguest intermediate

xlect Sequence Diagren fom

Gen Ceoes Pl and search parametars

specified string

resultsistop the search

1.1.3 Report
results
) T T T - -
eslect Sequence Disgran fom ‘I ;T \ .] 7
Use Cares Panal 1.1.1.1 Request f | \ RWEL 1 f P !
Input | | \ : Qs / 1131 Rankand] |
."’ \ Interim Results / e e /
/ \ /
11.1.2 Accept| N \ M {
Input f" 1.1.2.3 Compile | 1.1.4.2 Cancel | {
¥ \

results search request {

1.1.3.2 Display
resulis

1.1.21 Find searchable
systems

Y
1.1.2.2 Search system
for string

|

Fic. 4.7. agentTool

4

Agent
Analaysis Classes A
Goals Design
Agents
Use Cases -
Coversations
Role Model c
Tasks omponents

F1G. 4.8. Analysis to Design Transformations

task from which it was derived. Ultimately, the roles assigned to an agent determine the agent’s
components as well as the conversations in which it participates. Besides components derived from
concurrent tasks, the transformations also create a Agent Component for each agent that captures
intra-agent coordination. Figure 4.10 shows the state diagram for an Agent Component. The
AgentComponent controls the instantiation of components and is responsible for handling conver-
sation initiation messages received from other agents. The AgentComponent must determine if the
message belongs to an existing component or if the AgentComponent must create a new component
to handle the message.

The analysis-to-design transform is actually a sequence of transformations that incrementally
change roles and tasks into agent classes, components, and conversations. Before beginning the
analysis-to-design transformation process, the Role Model and its set of concurrent tasks, and
the assignment of roles to agent classes must exist. During the first stage of the transformation
process, agentTool derives agent components from their assigned roles and assigns external events
to specific protocols. In the second stage, agentTool annotates the component state diagrams
to determine where conversations start and end. During the last stage, agentTool extracts the

IDIS LABORATORY TECHNICAL REPORT No. 105 15

4 DEPLOYING MADGS 4.2 agentTool

Task Control
- task instantiation

Agent Component

- message routing
- mobility

Component1 |fe———————— Component 2
intra-agent

communication

Conversation 1 Conversation 2 Conversation 3

inter-agent communication

Conversation 4

F1G. 4.9. Agent Transformation Architecture

annotated states and transitions and uses them to create new conversations, replacing them in the
component state diagram with actions initiating the conversation. Detailed information, including
a formal specification of the transformations, can be found in [46].

A second set of transformations currently implemented in agentTool consists of transformations
to add functionality required for mobility. In the analysis phase, mobility is specified using a
move activity in the state of a concurrent task diagram. This move activity is copied directly into
the associated component state diagram during the initial set of analysis-to-design transformation
described above. During the mobility transformation, the existing design must be modified to
coordinate the mobility requirements between all components in the agent design. According to
the mobility design approach, the AgentComponent is responsible for coordinating the entire move
and working with the external agent platform to save its current state and actually carry out the
move.

Specifically, the AgentComponent takes move requests from components and determines if the
agent is ready to move. If the AgentComponent accepts a mowve request, it informs all other
components, requesting their current state information. Once the other components send their
state information and terminate, the AgentComponent requests a move from the agent platform.
Thus, the AgentComponent is the repository for all component state information. After the agent
has moved, the AgentComponent has the responsibility of restarting its components at the new
location with their saved state information. Figure 4.11 shows the AgentComponent from Figure
4.10 transformed to handle the mobility requirements described above (the original parts of the
state diagram are in the shaded area). This transformation is entirely automatic.

The second part of the mobility transform modifies the rest of the components in mobile agents.
For a component that actually requests a move, the transformation replaces the original move
activity with an internal mowve request event that is sent to the AgentComponent. The transform
also adds the functionality to save the component’s current state after it requests the move. All
components in a mobile agent (not just those that request moves) must be able to respond to a
move required message from the AgentComponent, save its state, and restart itself in the right state
after the move. Because this process can occur in any or all states in the component state table,

IDIS LABORATORY TECHNICAL REPORT No. 105 16

4 DEPLOYING MADGS 4.2 agentTool

Start Persistent Comps State

. < [NOT started] .

started = startComps()

extReceive(terminate, agent) -— [started]
extReceive(message, agent)

Idle State

I==
[c == null/relay(message, ¢) Determine Recipient State

¢ = getComponent(message)

[c == null] / sorry(agent) [c ==null]

Start Comp State

¢ = createComp(message)

[c == null]

Update Component List State

addComplList(c)

Fi1G. 4.10. Basic AgentComponent State Diagram

agentTool asks the designer to choose the states where a move would be allowable. More detailed
explanations of the design-to-design mobile agent transformations are contained in [43].

Automated Verification The second research area in multiagent system synthesis was the au-
tomatic verification of agent protocols. Since it is critical that distributed mission planning systems
such as those envisioned by MADGS operate properly without extensive testing, efforts were fo-
cused on ensuring that the protocols used for agent communications were as reliable as possible
before implementation. agentTool, via the Spin system, currently checks classic conversation cen-
tric errors including deadlocks, non-progress loops, livelock, infinite overtaking, unused messages,
and mislabeled transitions. agentTool also has the capability to verify that Sequence Diagrams
generated during the analysis phase can actually be generated by the system design [31, 30].

agentTool performs these verification tasks by generating Promela code from the system design
and passing that code to Spin. Spin then creates an analyzer to search the conversation state
space, simulating all possible combination of messages in the conversation until either a deadlock
condition occurs or the state space is exhausted. Conversations are considered deadlocked if they
terminate in any state other than the end state. If a deadlock condition is detected, the analyzer
writes a trace file that can be used to create a message sequence trace pinpointing the series of
message events that led to the deadlock.

To detect non-progress loops, agentTool marks all states in the Promela conversation definition
with the keyword progress, which is used by Spin to check that all states are entered during at least
one execution path. If a state is not entered into then a non-progress error is generated. There are
many causes for non-progress errors including livelock, infinite overtaking, deadlock, unused states
and unused transitions.

Finally agentTool tests for valid message sequences by defining the message sequence in a never
claim and checking to see if the sequence exists. If the sequence exists, Spin generates a never claim
violation error. However, this is not really an error since the sequence is supposed to exist. If Spin
does not report a never claim violation, the message sequence could not be found and even though

IDIS LABORATORY TECHNICAL REPORT No. 105 17

4 DEPLOYING MADGS 4.2 agentTool

[NOT compsStarted]

[NOT started] (Start Persistent Comps State W

" info == null] . [stateinfo !== null]

started = startComps() f

Y
extReceive(terminate, agent) [started] (Reestablish State

[compsStarted] Lcompsstaned = restore(statelnof, moved, reason) J

extReceive(message, agent)

[denied] * moveDenied(reason) Idle State

- [o == null] relay(message, c) (Determine Recipient State W

reqMove(dest, comp, statelnfo) ‘

\ 1 ¢ = getComponent(message) J

i
!

Move Decision State \ [c == null] / sorry(agent)

[c == null]
<reason, denied> = decision()
Update Component List State S Start Comp State

INOT deniec] * erminate(came) addCompList(c) | c=createcomp(message) |

Get Component List State [size(list)>0] / broadCast(moveReq, list)

|

Wait State

1
i

list = getComplList()

*{
\
\
\
\
\
\
\ Y

[size(list) <= 0] [size(list) <= 61// Update

Try Move State ot statelnfo = saveState(statelnfo)

[moved] list = remove(list, comp)
statelnfo = saveState(statelnfo)

<moved, reason> = move(dest)

[NOT moved]

F1G. 4.11. Mobile AgentComponent State Diagram

the conversations as defined may be valid, the required message sequence is not contained therein.
The SendInfo conversation does not contain any errors. However, to demonstrate the types of error
messages Spin does generate, a deadlock condition is created by changing the transmitted message
acknowledge from the wvalidation state in Figure 4.5 to a received message. Figure 4.12 shows the
error messages generated after analyzing the flawed conversation.

The first line of the error message tells us the conversation ended in an invalid endstate, meaning
the conversation terminated in one of the states other than the end state. The other messages
provide extraneous information that does not help us actually find the error. However, the second
line of the messages tells us a file, verify.trail was written. This file can be analyzed by Spin and
a message sequence trace created pinpointing the exact location of the deadlock condition. Figure
4.13 shows the messages agentTool provides. All errors detected by agentTool are also displayed
graphically by highlighting the state and/or transition that caused the error.

Code Generation The final focus of agentTool research was on the automated generation of code
from design models. Currently, agentTool generates Java code that captures the structural aspects
of the system as well as the communications protocols necessary to work within the Carolina
framework. The AgentComponent, each component within the agents, and each conversation
are generated as Java objects. To ensure the semantics of concurrent tasks are preserved, each
component becomes a separate thread. The state machines that describe the components and the
conversations are generated as the main function of each thread. The main functions have a single
loop with a switch statement where each case captures a separate state. Figure 4.14 shows code
generated for the main loop of the responder side of the conversation in Figure 4.5. agentTool
generated code has been used in a number of projects [16, 34] and was the basis for comparing the

IDIS LABORATORY TECHNICAL REPORT No. 105 18

5 DGS

pan: invalid endstate (at depth 5)
pan: wrote verify.trail
(Spin Version 3.2.4 -- 10 January 1999)
Warning: Search not completed
+ Partial Order Reduction
Full statespace search for:

never-claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)

invalid endstates +

State-vector 24 byte, depth reached 8, errors: 1
6 states, stored
1 states, matched
7 transitions (= stored+matched)
1 atomic steps

hash conflicts: 0 (resolved)

(max size 2718 states)

1.493 memory usage (Mbyte)

FiGc. 4.12. Error Messages

DEADLOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:
Conversation Name = SendInfo

Participant Name = Responder

Current State = validation

State Transition = null

DEADLOCK CONDITION EXISTS IN THE FOLLOWING CONVERSATION:
Conversation Name = SendInfo

Participant Name = Initiator

Current State = wait

State Transition = failureTransmission

Fi1Gc. 4.13. Deadlock Detection

performance of mobile and static multiagent systems in [35].

5 DGS

To recap, MADGS is an object-oriented system for the deployment of mobile-agents to facilitate
large-scale planning and execution operations in domains such as manufacturing, search and res-
cue, and military operations. The general problem with the development of the MADGS system
revolves around facilitation of real-time operation and plan failure handling. One of the common
threads across the aforementioned domains and the general problem is the need for distributed
goal satisfaction that can work cooperatively with legacy planning systems yet autonomously han-
dle changes in constraints. The ability to autonomously handle changes in the constraints of a plan
can mean the success or failure of any distributed operational mission/goal. The need to re-plan
or backtrack due to constraint changes in any plan can mean a substantial resource loss; be it lost

IDIS LABORATORY TECHNICAL REPORT No. 105 19

5 DGS

Message m = new Message();
int state = 0;
boolean notDone = true;
/* state constant definitions */
final int StartState = 0;
final int State3 = 1;
final int Stated = 2;
final int StartState_out = 3;
final int State4_out = 4;
final int State3_out 5;

while (notDone)
{ switch (state)
{ case StartState :

state = StartState_out;

break;
case StartState_out :

if (m.performative.equals("send"))

{ info = m.content;
state = State4; }

break;

case State3 :

state = State3_out;

break;
case State3_out :

m = readMessage(input) ;

if (m.performative.equals('"send"))

{ info = m.content;
state = State4; }

break;

case State4d :

state = State4_out;

break;
case State4_out :

if (! failed)

{ m = new Message();
m.performative = "acknowledge";
sendMessage (m, output);
notDone = false; }

if (failed)

{ m = new Message();
m.performative = "failure-transmission";
sendMessage(m, output);
state = State3; }

break;

F1G. 4.14. Conversation Code Generation

IDIS LABORATORY TECHNICAL REPORT No. 105

20

5 DGS

capital or life, the expense is real. Our approach seeks to mitigate a significant amount of this
loss by preemptively expecting failure, defining alternative constraint configurations, developing
delivery arrangements and in the event of a failure offering an instant solution to the user.

This distributed goal satisfaction (DGS) process is a primary background activity of the MADGS
system. In the forefront, the system is providing an environment for general operation, sub-plan
and sub-task execution, and user interface. It is this aspect of the MADGS system that facilitates
the DGS process. The MADGS system represents every resource (including personnel) by at least
one agent. However, this representation allows the MADGS system to facilitate the DGS process by
maintaining a more complete view of the current state of the ‘world’. This world-view is constantly
shifting in any operation especially large-scale operations. For this reason alone communications
becomes a crucial aspect of our system.

Even though some agent-based mission planning and execution systems have been developed
[49] they do not fully use the power of agent programming. Our approach is to use the strengths
of legacy systems in conjunction with the strengths of agent programming coupled with our own
approaches to communications (as outlined above) and resource location and allocation. Most
large-scale operations create a plan off-line by formulating a problem or suggested outcome and
then determining an optimal plan for the realization of this global goal. While an agent system
could be used for such an operation there are legacy systems in existence optimized for this purpose.
This is why PRODIGY is used to create a Master Plan for the MADGS system. This plan is then
provided as input to the MADGS system. The MADGS system then uses command agents to
decomposes the plan (if necessary) into sub-plans which are further decomposed into tasks by sub-
command agents (Command agents with a lower rank) that assign the tasks to subordinate task
agents. This process is not dissimilar to those present in existing agent-systems. Our approach is
only unique in how we communicate and plan for alternative courses of action in the event a plan
fails during execution due to changes in the present state of the 'world’.

Resolving to one course of action (or plan) in a real-time system poses great difficulty due to the
volatile nature of the constraints and the conditions a plan is based on. A change in a constraint or
condition of a sub-plan could lead to its total or partial failure that in turn can lead to a rippling
effect, thereby negating the validity of the initial plan. To overcome these points of failure, a robust
and flexible planning system is needed. The DGS agent module seeks to provide a surrounding
technique to improve the robustness and flexibility of the overall planning and execution process.

We accomplish this by acting on the resources required to accomplish a given goal, plan or task.
A resource is any commodity that is necessary to facilitate the completion of a goal. (i.e.: Goal
A requires resource X, quantity 3) The DGS agent module receives the local version of the plan
and a list of the required constraints (primary resources). With this input a tree is constructed of
the alternative resource configurations meeting a stated Tolerance level representing a cost-benefit
function for each required primary resource. This data is then rated based on alternative resource
availability to the local plan (taking into consideration other known pending or current local plans).
This information is then stored and the DGS agent module monitors the primary resource statistics.
In the event that a primary resource fails or is exhausted the DGS agent module suggests alternative
resource configurations to complete the current plan. If accepted the resources are set into action
in place of the primary (failed) resources. During this process DGS collects and records data on
the selections that users make to give weight to certain configurations and more importantly to
learn new resource alternatives and configurations when users manually manipulate the suggested
configurations prior to commitment. This process when successful negates the need to replan or
backtracking furthering the maintenance of a real-time system. In the following subsection, we
present our formal approach to resource matching.

IDIS LABORATORY TECHNICAL REPORT No. 105 21

5 DGS 5.1 Intelligent Resource Allocation

5.1 Intelligent Resource Allocation

The need to re-plan or backtrack due to plan failure can mean a substantial resource loss. Be
it lost capital or life, the expense is real. For MADGS, we determined that we can mitigate
a significant amount of this loss by preemptively expecting failure, defining alternative resource
constraint configurations, developing delivery arrangements.

In the event of a failure, our previous goal was to offer alternative solutions to the human
commander in an effort to assist them in accomplishing their mission. Our approach sought to mimic
and exploit the strengths of our on-site commanders by enhancing their own innate resourcefulness.
In effect, we attempted to provide targeted resource information to assist commanders in resource
substitution decisions and on the spot plan alterations.

At it’s most basic level, resource substitution can be simpliefied to: Can resource A be substi-
tuted by resource B given a set of mission requirements. While this is the minimum that is needed
to assist the commander’s “scrounging” decisions, we realized that many more factors must be cap-
tured. These include cost factors such as transportation costs, scheduled availability, production
costs, etc. Also, another more problematic cost is the possibility of cascading plan failures when a
particular critical resource is diverted towards solving another plan. This is especially unacceptable
if the second plan is not critical to overall theatre operations.

In addition, given the vast number of resources available in any theatre, the number of alter-
native resource suggestions can actually overwhelm the human commander. Our goal is to take
all these issues into consideration and develop a framework for intelligent resource substitution
that can ultimately further provide global guarantees of mission satisfiability in the overall theatre
operations.

Clearly, resource substitution is very much related to logistics management (eg., [45]). We can
state such a problem as consisting of a set of suppliers and consumers. Suppliers provide resources,
while consumers utilize some resources to achieve some goals, such as doing jobs or producing
final products. After more than a decade’s development on logistics management, many kinds of
logistics management models have been proposed and implemented. Some models are stand-alone
and centralized, while others use a client/server approach([23, 4, 36]). In recent years, researchers
have proposed multi-agent based models ([29, 51, 50, 32, 40]). However, most of the models regard
logistics management as an auction, in which each entity tries to maximize its own benefit. Such
an approach is only appropriate for inter-organizational logistics, which consists of competitive
entities. However, this is clearly inappropriate for problem. In our case, suppliers (bases, depots,
etc.) and consumers (commanders) have a common goal to maximize the outcome of the entire
organization (theatre operations). People usually use intra-organizational logistics to describe this
case. The point is that the maximized outcome doesn’t mean the maximal benefit of each entity.
Therefore, an optimal scheduling may be built based on sacrificing of some individuals’ benefits.
Unfortunately, the typical auction approach does not account for necessary self-sacrifice.

To address intra-organizational logistics, some researchers have developed coordinating multi-
agent logistics management models. N.M. Sadeh et al. in [40] proposed MASCOT (Multi-Agent
Supply Chain cOordination Tool), a reconfigurable, multilevel, agent-based architecture for co-
ordinated supply chain planning and scheduling. W. Shen et al. in [44] proposed MetaMorph II
architecture for enterprise integration and supply chain management, which is mediator-centric and
agent-based. M.S. Fox et al. in [22] described the architecture of the integrated supply chain man-
agement system, in which each agent performs one or more supply chain management functions,
and coordinates its decisions with other relevant agents. A KQML-based multi-agent coordination
language was proposed in [1] for distributed and dynamic supply chain management. However,

IDIS LABORATORY TECHNICAL REPORT No. 105 22

5 DGS 5.2 Modeling Intra-Organizational Logistics

their approaches are ad hoc and lacking in precise optimization models.

To overcome their limitations, we believe that it is necessary to formulate the resource allo-
cation problem formally. Luh et al. in [33] utilized Lagrangian Relaxation to remove couplings
between constraints so that the original problem can be separated into subproblems. Ideally, these
subproblems should be separable/independent. The separability property is good for us because
we can allocate a different agent to solve each subproblem. If the solutions for these subproblems
are compatible with each other, we are done. Otherwise, these agents can exchange information
and find an optimal way to satisfy constraints. We believe that the formulations we have devel-
oped before can satisfy separability since our formulations are similar to those found in [33] for
manufacturing scheduling. It was demonstrated that the separability condition does hold for those
problems. In case the separability does not hold in general, we can still significantly benefit from
the problem decomposition and subproblem groupings to improve our computations.

5.2 Modeling Intra-Organizational Logistics

Before we can model intra-organizational logistics, we need to know its specific issues. Since
suppliers (bases and other commanders) can only provide limited resources for any given period, the
needs of the consumers (commanders) may not be fully satisfied. The goal of intra-organizational
logistics is to reasonably allocate resources so that the profit of the whole organization is maximized.
Depending on the following factors, the problem may be relatively easy or very complex:

e Number of resource types: For example, typical resource types are plane, ship, truck,
fuel, ammunition, soldiers, airport, and so on.

e Number of suppliers for each consumer: If each consumer has only one supplier, the
problem becomes easy. This is generally the case when a supplier is in charge of one ge-
ographical area. But with modern transportation means and networking, a supplier is no
longer limited by its location. Therefore, the typical relationship between consumers and
suppliers is a many-to-many relation.

e Task properties: A task can be the mission activities in a given period. Generally, a
deadline is set on each task. The execution of a task needs a certain amount of resources.
Sometimes, a task cannot be started unless all resources have been received. In other cases,
lack of resources only delays the execution time or degrades the quality of a task. Similarly,
extra resources may accelerate the execution of a task or achieve a better goal. A task may
be viewed as a single step operation. Or it can consist of a sequence of stages. It is possible
that some stages are critical. If a critical stage violates the deadline or cannot be continued
for some reason, the whole task may be regarded as having failed. A consumer may only
execute one task over a long time period or many tasks. Several tasks may be related, such
as having a common goal. Related tasks have more constraints. For example, two tasks are
required to begin at the same time or one before the other.

e Resource properties: Different resource types are not fully separated. Two different types
of resources may have overlapping functionalities. For example, two kinds of planes can
achieve the same objectives, only with different costs. We call this property resource ex-
changeability. Based on resource exchangeability, we can allocate alternative resources if
critical resources are in demand. However, if alternative resources lead to higher costs, a
trade-off exists between using these alternative resources and waiting for needed resources.

e Uncertainty: That the situation is changing over time increases the difficulty of managing
intra-organizational logistics. For instance, tasks arrive dynamically because of great variabil-
ity of customer demands and resources may not be provided in time. Due to the insufficient

IDIS LABORATORY TECHNICAL REPORT No. 105 23

5 DGS 5.2 Modeling Intra-Organizational Logistics

resources or other uncertainties, like machine breakdown, tasks may not be finished before the
deadline. There are so many uncertainties, how can we manage intra-organizational logistics
efficiently?

Traditional models only consider subsets of these factors and deal with the problem in a cen-
tralized manner, which means all the information is collected at one place for analysis.

Our approach is different from existing approaches above in that we take into account a precise
optimization model.2 Through the use of Lagrangian Relaxation, we can decompose a resource
allocation problem into subproblems, each of which will be solved by a specific agent. If the
solutions for these subproblems are compatible with each other, we are done. Otherwise, these
agents can exchange information with each other until a global optimal solution is found. Below,
we provide various models for use depending on the complexity of the target planning problem.

Single Resource Type/Single Supplier/Single Job. In this case, we suppose that only one
kind of resource exists in the system, and each consumer requests resources from a corresponding
supplier to do a single job. We also fix the cost of using unit resource. Therefore, there is no need
to consider the cost when we do job scheduling and the goal is to minimize job delay.

Since each consumer is related with only one job, we consider only jobs and suppliers in the
remaining section. Let the number of jobs be N, and the number of suppliers be N;. For each
job i =1,..., N, b; represents the starting time, ¢; represents the completion time, p; represents
the execution time, d; represents the deadline for job i, s; represents the supplier from which job
i will get resources (s; € [1, Ng]), and r; represents the needed resource number. Also, we use T;
to measure the delay of job i(7; € [0,¢; — d;]). Because some jobs may be more important than
others, it is not desirable to delay these jobs. To reflect this factor, we use w; to represent the
importance of each job. The higher the value of w; is, the more important the job is. We can define

the objective function as:
Nc

minimize Z w;T?
i=1
At any given time t, the total granted resources from one supplier must be less than its capacity.
We use N;(j € [1,N;]) to represent the amount of resources that supplier j has. We suppose T is
long enough to complete all the jobs. The resource capacity constraints can be expressed as:

Nc
> 6ije-ri <Njj=1,.,Ny,t=1,..,T
i=1

St — 1 Ifs;=7Ab <t<g
Y87) 0 Otherwise

In addition, the following processing time constraints must be satisfied:
G—b+1=p;,i=1,..,N,
Single Resource Type/Single Supplier/Multiple Jobs. In this case, each consumer can
execute several jobs. We assume that at any time, each consumer can execute at most one job.

Therefore, jobs belonging to one consumer cannot be overlapped. Here, we suppose that s;; repre-
sents minimal switching time for executing job k after finishing job i if these two jobs are executed

*Existing approaches include [22, 53, 40, 52, 32, 22, 50].

IDIS LABORATORY TECHNICAL REPORT No. 105 24

5 DGS 5.2 Modeling Intra-Organizational Logistics

by the same consumer. For each job i, 0; represents the consumer who will do the job. Compared
to the above case, the precedence constraints need to be considered:

Oin(ci + 56 +1 = bg) + (1 — Gi) (cp + s +1 —b;) <0,

where i,k = 1,...,N.,© # k,0; = og;

S — 1 If job k occurs after job i has been finished
%71 0 Otherwise

Single Resource Type/Multiple Suppliers/Multiple Jobs. The drawback of the above mod-
els is that a consumer cannot execute a job until the corresponding supplier has enough resources.
Through allowing a consumer to request resources from multiple suppliers, this model is more flex-
ible. In most cases, this model can get better job scheduling than the above two models. However,
this model is more complex. Though we can limit each consumer to only requesting resources from
a specific set of suppliers, we assume each consumer can request resources from all suppliers. But
the costs of using resources from different suppliers are different. Therefore, we need to consider
the cost factor in the objective function, shown as the following:

Ne N,
minimize Z(’wiTi2 + Z Z Tijtcrj)a
i=1 t j=1

where r;;; represents the number of resources that job i gets from supplier j at time t; ¢,;(j € [1, Ny])
is the cost of using unit resource from supplier j per unit time.
Also we modify the resource capacity constraints:

Nc
Z’l"ijt <Nj,j=1,.,Ns;t=1,..,T

i=1
%S:r-- [dh<t<q
o wt 0 Otherwise

Multiple Resource Types/Multiple Suppliers/Multiple Jobs. If we permit multiple jobs
to be executed by one consumer, we need to consider the precedence constraints at the same time:

Oin(ci + sip +1 = bg) + (1 — Gig)(cp + s +1 —b;) <0,

where i,k = 1,..., N.,i # k,0; = o;

S = 1 If job k occurs after job i has been finished
* 71 0 Otherwise

The objective function and resource capacity constraints are the same as those in the fifth
model.

In summary, we have deployed this approach using the various models above in a testbed
currently separate from MADGS. We have achieved very good efficiency results from our testing
and simulation. Qur technique provides the ability to guarantee that the resource decisions made by
the commander while satisfying the commander’s need will also maximize the overall operational

IDIS LABORATORY TECHNICAL REPORT No. 105 25

6 PRODIGY

success in the theatre without the need for centralized logistics optimization. In effect, we can
naturally decompose and distribute the resource decisions for effective computation. This also
allows us to provide the commander with informed knowledge concerning the expected impacts of
such resource substitution decisions.

Our next step will be to deploy this intelligent resource allocation strategy within MADGS. For
complete details of this model and experimental results, see Santos et al. [41, 42].

6 PRODIGY

For this project, we developed a number of computerized systems (1) to test our theory of dis-
tributed goal satisfaction (goal transformation theory), (2) to provide an interface for mixed-
initiative team planning (distributed planners; some human, some machine), and (3) to wrap
the main autonomous planner, the PRODIGY planning architecture, with a veil that behaves as a
autonomous agent([2, 6, 8, 11, 18, 26, 27, 12, 47]).

6.1 Prodigy/Agent

PRODIGY [5, 48] is a legacy system that employs a state-space nonlinear planner and follows a
means-ends analysis backward-chaining search procedure that reasons about both multiple goals
and multiple alternative operators from its domain theory appropriate for achieving such goals. A
domain theory is composed of a hierarchy of object classes and a suite of operators and inference
rules that change the state of the objects. A planning problem is represented by an initial state
(objects and propositions about the objects) and a set of goal expressions to achieve. Planning
decisions consist of choosing a goal from a set of pending goals, choosing an operator (or inference
rule) to achieve a particular goal, choosing a variable binding for a given operator, and deciding
whether to commit to a possible plan ordering and to get a new planning state or to continue
subgoaling for unachieved goals. Different choices give rise to alternative ways of exploring the
search space. By itself, however, PRODIGY cannot interact with other multiagent systems.
Prodigy/Agent [10, 14, 19, 20], written in Allegro Common Lisp 6.2, is a ”"wrapper” around
PRODIGY that allows the automated planner to behave as an independent agent. As such it uses
KQML (Knowledge and Query Manipulation Language) [21] as the central agent-communication
language and can use agentTool to develop communication protocols. A single copy of Prodigy /Agent
can act as a general plan server that may be queried by any heterogeneous agent in a distributed
system. Multiple copies of PRODIGY/Agent operate concurrently and coordinate their planning
decisions with respect to resource limitations. The most important role for Prodigy/Agent in the
MADGS integration is in providing the underlying planning technology for the GTrans interface.

6.2 GTrans

We developed an independent system called GTrans [7, 9, 54, 55] that interacts with the Prodigy /Agent
planner using mixed-initiative planning techniques. Using this system, a single human planner can
focus on the goals, associated goal priorities, and resource to goal assignments that all three change
over time. Rather than thinking of planning as a search mechanism, we present to the user a
metaphor of planning as a goal manipulation problem. The primary task is therefore decisions
concerning goal change and management. By selecting goal changes, the user can reduce an initial
goal to a slightly less demanding goal that partially achieves the state originally sought. Similar
selections can also change a goal into a set of distributed subgoals, the achievement of which will

IDIS LABORATORY TECHNICAL REPORT No. 105 26

6 PRODIGY 6.2 GTrans

satisfy the super goal. The automated PRODIGY planner provides background support to the user
rather than making decisions regarding goal change itself.

From the commander’s point of view, planning is achieved through a graphical user-interface
that can be manipulated to achieve objectives and project hypothetical situations. As such, it
operationalizes an objectives-based planning model [25] and limits the detail thrust upon the human
user because the focus of planning is change to the goal rather than the details needed to achieve
them.

6.2.1 Goal Transformations

In a dynamically changing environment, aspects that affect a plan and its execution may change at
any point. In particular, changes may force are planning effort asynchronously. Traditionally, this
determines that a change to the plan be formulated that will allow the goal to be achieved when
threatened. However, in many circumstances the goals themselves may need to change rather than
the plan per se [13]. For example, it makes no sense to continue to pursue the goal of securing
an airbase, if the battlespace has shifted to a distant location. At such a point, a robust planner
must be able to alter the goal minimally to compensate. Otherwise, a correct plan to secure the
old location will not be useful at execution time.

A goal transformation represents a goal shift or change. Conceptually it is a change of po-
sition for the goal along a set of dimensions defined by some abstraction hyperspace [13]. The
hyperspace is associated with two hierarchies. First the theory requires a standard conceptual
type-hierarchy within which instances are categorized. Such hierarchies arise in classical planning
formalisms. They are used to organize arguments to goal predicates and to place constraints on
operator variables. Goal transformation theory also requires a unique second hierarchy.

In normal circumstances the domain engineer creates arbitrary predicates when designing oper-
ator definitions. We require that these predicates be explicitly represented in a separate predicate
abstraction hierarchy that allows goals to be designated along a varying level of specificity. For
example consider the military domain. The domain-specific goal predicate is-ineffective takes an
aggregate force unit as an argument (e.g., (is-ineffective enemy-brigadel)). This predicate may have
two children in the goal hierarchy such as is-isolated and is-destroyed. The achievement of either
will then achieve the more general goal [13]. Furthermore if the predicate is-destroyed had been
chosen to achieve in-effective, the discovery of non-combatants in the battle area may necessitate a
change to is-isolated in order to avoid unnecessary casualties. Note also that to defer the decision,
the movement may be to the more general is-ineffective predicate. Then when the opportunity
warrants and further information exists, the goal can be re-expressed. In any case, movement of
goals along a dimension may be upward, downward or laterally to siblings.

Goal movement may also be performed by a change of arguments where the arguments exist
as objects of or members of the standard object type-hierarchy. The goal represented as the type-
generalized predicate (inside-truck Truckl PACKAGE) is more general than the ground literal
(inside-truck Truckl PackageA). The former goal is to have some package inside a specific truck
(thus existentially quantified), whereas the latter is to have a particular package inside the truck.
Furthermore both of these are more specific than (inside-truck TRUCK PACKAGE). Yet movement
is not fully ordered, because (inside-truck Truckl PACKAGE) is neither more general or less general
than (inside-truck TRUCK PackageA).

A further way goals can change is to modify an argument representing a value rather than an
instance. For example the domain of chess may use the predicate outcome that takes an argument
from the ordered set of values checkmate, draw, lose. Chess players often opt for a draw according

IDIS LABORATORY TECHNICAL REPORT No. 105 27

6 PRODIGY 6.2 GTrans

RMI facilitates
multiple versions of-
GTrans

Dynamic goal sub
[goal relationships

PRODIGY

Goal
transformation
process

1 .l il | o ert | seet i 3 1 ; :f:jv =
cscare o o & Human user 2
Current goals 4" % _*‘ \’ Interface
: i
\

Fi1G. 6.1. The GTrans interface.

to the game’s progress. Thus to achieve the outcome of draw rather than checkmate represents a
change of a player’s goal given a deteriorating situation in the game.

6.2.2 GTrans User Interface

To directly support the goal manipulation model, we implemented a mixed-initiative interface to
a planning system through which the user manipulates goals, the arguments to the goals, and
other properties. The interface, written in Java 1.2, hides many of the planning algorithms and
knowledge structures from the user and instead emphasizes the goal-manipulation process with a
menu-driven and direct manipulation mechanism. GTrans presents a direct manipulation interface
to the user that consists of a graphical map with drag and drop capability for objects superimposed
upon the map surface. GTrans helps the user create and maintain a problem file that is internally
represented as follows. A planning problem consists of an initial state (a set of objects and a set of
relations between these objects) and a goal state (set of goals to achieve). The general sequence is
(1) to create a planning problem, (2) invoke the underlying planner to generate a plan, and then
until satisfied given planning feedback either (3a) change the goals or other aspects of the problem
and request a plan or (3b) request a different plan for the same problem. Figure 6.1 shows the
interface presented to the user.

We have taken the GTrans system described above and generalized it to allow multiple human
planners to operate in teams. Each user has an independently executing copy of GTrans and a
supporting component that allows plan manipulation on a common graphical map representation.
The systems work independently of each other, yet they have the capacity to take initial conditions
and goal descriptions from all or any of the other concurrently running systems. GTrans uses sockets
to communicate with Prodigy/Agent and with other executing copies of GTrans. The individual
processes may be distributed on remote machines across a network. As such, we are able to fully
integrate GTrans into the Carolina environment and provide mixed-initiative planning assistance
to the human commander.

IDIS LABORATORY TECHNICAL REPORT No. 105 28

7 PUTTING IT ALL TOGETHER

7 Putting It All Together

We now describe the prototype system we built in order to test our primary concepts. For our
prototype, we focused on demonstrating three capabilities:

o Mized-initiative planning and execution. We achieve this through interactive goal transfor-
mation (GTrans) with the human planner and feedback from intelligent resource re-allocation
during plan failures. We also provided support to the human user by intelligently re-organizing
information that is made available to them.

o Intelligent logistics assistance. This is accomplished by assisting the human planner when
resource requirements are not met for plan execution. Intelligently and efficiently computing
resource re-allocation to provide alternative resources to the human planner while helping
mitigate potential conflicts that can arise from multiple missions and goals in the operational
theatre.

o Mobile and multi-agent infrastructure deployment. We demonstrate that the needs of the
two items above can be satisfied in a systematic fashion through knowledge-based software
engineering with the automatic generation and deployment of agent components. We focused
on communications and mobility in order to efficiently deploy our prototype.

Each of the components we described in Section 2 were integrated and deployed on a mixture
of hardware platforms. Our underlying Carolina agent environment was developed in Java and
globally executed on Windows, Linux, and Solaris platforms with a mix of Pentium and Sparc
CPUs. Our purpose in this mix was to demonstrate the ease of portability and mobility of agents
using our approach for cross platform integration. From our results, moving to smaller mobile
devices such as PDAs will be readily realizable.

To illustrate the utility of the MADGS system to the commander, we have designed a simple
empirical study: Two commanders are operating in the same theatre with indepedent commands.
Each commander is given a mission that potentially conflicts with the other primarily due to
resource availability in the theatre. We compose a number of problems where each commander is
faced with a number of rivers, each spanned by one or more bridges. The goal is to make each river
impassible by destroying the bridges across them. In order to accomplish this task, the commanders
with the help of MADGS will assign F-15 tactical fighters from a pool of available aircraft placed
at different locations. Each F-15 has the ability to destroy one bridge. However, each commander
is only currently aware of the F-15s available near their immediate command. In this military
interdiction scenario, commanders must schedule their strikes and will face shortages of F-15s that
can only be resolved by communicating and negotiating with the other commander to best utilize
all F-15s and achieve their respective missions. An example scenario with rivers and target bridges
can be see in Figure 7.1.

In this section, we first describe our MADGS interface and operations on one such problem
scenario above. We then performed an empirical study to determine the overall efficiency and
effectiveness of our replanning in the face of resource failure.

Figure 6.1 depicts our GTrans interface that is used by the human commander. For our pro-
totype, we provide a GTrans interface to each user with the added capability of observing other
human commanders and their activities to assist in coordination when necessary. This is depicted
in the bottom right window in Figure 6.1. As we can see, the mission goals (current goals) are iden-
tified and the commander interacts with Prodigy to generate their initial plans with input from the
latest information concerning available resources. Once the plan is generated (as seen in window
labeled Prodigy 4.0), execution of the plan begins and resources are located to begin scheduling
of the plan. Figure 7.3 shows the final confirmation of the plan by the commander together with

IDIS LABORATORY TECHNICAL REPORT No. 105 29

7 PUTTING IT ALL TOGETHER 7.1 Evaluation

Fic. 7.1. Military Interdiction Scenario. Rivers have target bridges spanning them.

the resource scheduling and execution process. The plan is then sent for execution with agentTool
generating new agents in Carolina to carry out the plan execution. Figure 7.2 shows the DGS in
action negotiating for resources as needed. Should a plan failure occur at any point, the commander
is notified and either resource substitutions are recommended or replanning commences.

We now describe our empirical evaluations of our MADGS system.

7.1 Evaluation

Here, we consider two experiments to guage the usefulness of MADGS using the scenarios we
generated above. Our first experiment considers the usability of our GTrans interface. The second
experiment studies the effectiveness of our overall approach to mixed-initiative replanning.

7.1.1 GTrans Evaluation

An experiment was performed with human subjects to compare and contrast the models of search
and goal manipulation [9, 54]. The first model is represented by users solving problems in an old
interface used in the original PRODIGY planner [13] and the second model is represented by GTrans
users. The experiment was designed to evaluate the differences of the two models under differing
amount of task complexity using both expert and novices. This experiment uses 18 problems in
the military domain as test problems. In these problems, insufficient resources exists with which
to solve problems completely. Choices can be made, however, so that a solution is produced that
achieves a partial goal satisfaction represented as a ratio of the subject’s partial solution to the
optimal partial solution.

The graph in Figure 7.4 shows the mean of the goal satisfaction ratio under the goal manipu-
lation model and the search model. When presented with the goal manipulation model, subjects
achieve over 95 percent goal satisfaction on average. When presented with the search model, sub-
jects achieve about 80 percent goal satisfaction on average.

IDIS LABORATORY TECHNICAL REPORT No. 105 30

7 PUTTING IT ALL TOGETHER 7.1 Evaluation

REQUEST K MRS |
FASL1/0i0/0]
BRIDGE(2/0/0/0)
| [INFANTRY[1/0/0i0]
POLIGE[10/0/0]
RIVER[2/0/0/0]
AIRPORTL2/0/0/0]

[RESOURCEAGENTI 004320815990-130.108.17.26:2
[RESOURCEBCARD|1004320815880-130.108.17.26:1
[MARIA1004320816040-130108.17.26:3

ACCERT ERAGE HIDE GUI

Fic. 7.2. Resource allocation and negotiation.

=] GTrans User Interface E= Interface -1

HiE BEay Sele oth Do (SEND AIRPORT1 INFANTRY1)

(SECURE AIRPORT1 POLICE1 INFANTRY1)

(DEPLOY F151 INFANTRY1 AIRPORT1)

(BLOW F151 AIRPORT1 AIRPORT2 RIVER2 BRIDGE1)
(REMOVE-ALL-CROSSINGS-OVER RIVER2)

Press Accept to accept the plan or Next to receive a new |

ki 5
Start Accept @ Any Other Next
- - o) Different
it | st) Shorter
__Shorter and Differen
) Strictly Shorter

Conversation Information

Debug Window is go
(Openirg PRODIGY Connsctian on sacket-6510
1 Windaw is go
IGY Connection on socket-6510 |
passable Riverd) ((oect-is F151 F18)(abject-is BRIDGE 1 BRIDGE) (e |

ot (outcoms-impassable River2) (object-is F151 F18)(cbject-is BRIDC,
= Completed Plan |- [J|[=] objects/ [e ¢ e e e i e
'((SEND AIRPORT1 POLICE 1) = send -> (next ‘content (quote (depth-bound 55 :muttiple-sals :shorten))
(SEND AIRPORT INFANTRY 1) receive < (i content *(SEND AIRPORT 1 POLICE) (SEND AIRPORT1 INFANTRY 1)
{(SECURE AIRPORT 1 POLICE 1 INFANTRY 1) Feasa: 1
(DEPLOY F151 INFANTRY1 AIRPORT e 1
{(BLOW F 151 AIRPORT 1 AIRPORT2 RIVER2 BRIDGE 1)
(FENOVE-ALL-CROSSIIGS-OVER FIVERD) NERTAT
POLICE 0
I RIVER 0
i)
AIRPORT 0

= Plan Execution I

REGISTER—— &
Oversion_4.0/1.0gtrans 120. 108. 17.974000

EXECUTE RESOURCE REQUESTGetting Response

Opening Socket——Socket estabished

ot ra object deta -

RESOURCE REQUEST SUCCESSFUL]

Fi1Gg. 7.3. Plan execution commences after initial plan generated.

IDIS LABORATORY TECHNICAL REPORT No. 105 31

7 PUTTING IT ALL TOGETHER 7.1 Evaluation

1.00

0.80 T

0.60 T

0.40

0.20 7

o
o
S

Average Goal Satisfaction Ratio

Goal Model Search Model

Cognitive Model of Planning

Fic. 7.4. Goal satisfaction as a function of cognitie model.

‘ —=— Goal Mode! —e— Search Model ‘
1.00 B =]
2 0.80 O S
3 . —,
.5 0.60
°
&
2 040
©
2]
g 0.20
[C]
0.00 T T
Easy Medium Hard
Problem Com plexity

Fic. 7.5. Goal satisfaction as a function of problem complexity.

Given that the cognitive model itself is an important factor as concluded in previous analysis,
we next examine the possible relationships among three independent variables: planning model,
problem complexity, and subject expertise. Figure 7.5 plots the average goal satisfaction ratio for
each combination of the planning model and the problem complexity. As can be observed from
the graph, when the goal manipulation model is presented to the user, the goal satisfaction ratio
generally remains the same with increasing problem complexity; but when the search model is
presented to the user, the goal satisfaction ratio decreases as the problem complexity increases. It
is very likely that the effect of the planning model on the user performance depends on the problem
complexity.

The next step of our analysis was to examine the possible interaction effects between the plan-
ning model and the user expertise level. Figure 7.6 shows the average goal satisfaction ratio for
each combination of the planning model and the user expertise level. It is apparent that experts
perform better than novices under both planning models. But the two plot lines representing each
planning model are not parallel, indicating the possible interactions between the two factors.

7.1.2 Re-planning Study

When most planning systems have to replan given changing environmental conditions such as re-
source constraints, the system replans completely. That is, if only a single goal fails, the system will

IDIS LABORATORY TECHNICAL REPORT No. 105 32

7 PUTTING IT ALL TOGETHER 7.1 Evaluation

—#— Goal Model —&— Search Model

1.00 ./.
o 0.80 /
5 —
x
§ 060
k1]
8
2 0.40
®
@
3 0.20
o

0.00 T

Novice Expert
User Expertise Level

FiG. 7.6. Goal satisfaction as a function of expertise.

still replan for all goals to generate a new solution. Instead, we have extended the Prodigy/Agent
component of MADGS to identify the source of the failure and to replan for only that part of the
plan that is effected by such failure. We call these two conditions standard replanning and focused
replanning.

Our hypotheses is that MADGS will be more efficient in terms measured by the total number of
search nodes (planning choice points) expanded and by the total planning time. The first dependent
variable measures planning effort directly, because the fewer nodes extanded in the search tree, the
fewer poor planning decisions are made. On the other hand time is an indirect measure, because
facotrs other than that spent in planning may effect performance. For example on networked
systems, network traffic has an effect.

Using our scenario template above, we generate a number of problems for this experiment. Each
problem description contained 2n F-15s, where n is the number of rivers in the problem.

In order to test the replanning efficiency of each system (standard vs. focused), 20 tests were
run. Each test came from one of four series, containing 2, 4, 6, or 8 rivers. For each series, the
number of resource failures was varied from 1 to n. This means that for each test, two plans were
computed by the underlying Prodigy/Agent planner within GTrans. The plans are the completely
recomputed plan and the revised plan which solves the resource failure only. For example, Test
2.1 has two rivers, and one resource failure. This means that the planner assigns an F-15 to each
bridge, and is then notified by Carolina that one of the F-15s assigned is no longer available. This
causes the planner to replan for the missing aircraft. Similarly, Test 2.2 has two rivers, but 2
resource failures. The case in which no resource failures occur was not tested since both systems
use the same strategy and perform identically in this case. Figures 7.7 and 7.8 depicts the time
spent on replanning with and without GTrans and the number of search nodes expanded during
the replanning process, respectively.

For the small problems run with these tests, MADGS under the focused condition does not show
a significant time savings over the standard condition. In many cases, Tests 2.2,4.3,4.4,6.3 — 6.6,
and 8.6 — 8.8, the focus condition requires more time. This can be attributed to two factors: The
first is that for small problems like these, the computational overhead of identifying the removable
goals is greater than the savings of replanning for a smaller problem. Note that with greater
problem complexity, the performance measured by time begins to improve. Future testing should
be run to show if this is true by evaluating the two systems on large, real-world problems where
the replanning time would be significant. The other factor affecting the times is the planning

IDIS LABORATORY TECHNICAL REPORT No. 105 33

7 PUTTING IT ALL TOGETHER

7.1 Evaluation

0.40

Time (s)

0.20

Standard vs Focused Replanning Time

—

/M [+ Standard

e

—=—Focused

/.7/./'

Test

FiG. 7.7. Replanning time for standard (without GTrans) and focused (with GTrans).

180

Standard vs Focused Replanning Expanded Nodes

160

140

7

120

-

100

al
e

—e—Standa
—=- Focus

Expanded Nodes

Test

F1G. 7.8. Replanning nodes explored for standard and focused.

IDIS LABORATORY TECHNICAL REPORT No. 105

34

8 CONCLUSION

environment itself. Each of our tests was run on WSU’s lab server. During testing, the machine
was being used by other people, causing times to fluctuate depending on the current load. Future
testing should be carried out on a seperate machine in single user mode in order to isolate the tests
from these kinds of problems.

Even with the time overhead issues, the focused condition did have significantly better direct
performance over the standard condition when measured by the number of search nodes expanded.
Indeed, at no time does the standard condition surpass the focused condition. At most it equals
the performance. This is to be expected since the replanning done by the focused condition is only
on a subset of the original problems.

8 Conclusion

We presented the MADGS framework for multi-commander dynamic mission planning and execu-
tion. We described the major elements of MADGS and illustrated the fundamental logistical and
planning support that MADGS can provide to the battlefield commander through our case study.
MADGS is currently capable of handling more complicated scenarios which include complex re-
source substitutions and intelligent allocation recommendations to the commander. Furthermore,
in the face of imminent plan failure, MADGS also assists the commander through goal transfor-
mations in order to best achieve their given mission. The generation and deployment of agents via
agentTool provides a dynamic, efficient, and robust environment that captures the changing nature
of battlefield conditions.

One of the elements we intend to pursue next is to address the practical concerns of explain-
ing the choices made (and rejected) by MADGS on recommendations to the commander. Such
explanations are doubly critical during on-the-fly planning with partial execution. Hence, we must
track the rationale for decisions in order to know when a decision has become inappropriate, due
to the changes (either internal or external to the planning system). This will provide the needed
transparency of understanding and context to the human commander with regards to MADGS’
recommendations.

We must also realize that such complex mission planning will involve disparate types of units/entities;
and simply providing a complete global explanation of the entire plan is often counter-productive
and counter-intuitive. Most global information in the overall planning is often irrelevant at the
lower levels. Thus, the appropriate context must be generated in the explanations with respect to
the planning level of the commander(s) we are currently assisting.

The future of assisting the commander on and off the battlefield relies on a foundational under-
standing of the dynamics of the environment and the requirements of achieving various mission ob-
jectives. The MADGS project focuses on addressing the issues of multi-commander, multi-mission
planning and execution. In particular, within a single theatre of operation, multiple missions among
multiple commanders which are potentially in conflict or competition with one another.

Finally, in the MADGS project, we have also kept an eye towards the current technology trends
such as portable mobile computing devices like PDAs, etc. and the potential capabilities that
are needed to achieve a MADGS environment. We have envisioned that in the near future, with
an understanding of the issues through MADGS, our military commanders, logistics officers, and
intelligence analysts can be “armed” with PDAs that provides the critical information they need,
when they need it, and also help them in their decision-making. Issues such as incomplete or
uncertain information (fog of war) are naturally addressed through a MADGS framework. This
paper has detailed the results of our MADGS project and also identified the next steps that should
be pursued in reaching our ultimate vision.

IDIS LABORATORY TECHNICAL REPORT No. 105 35

REFERENCES REFERENCES

References

[1]

2]

e

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Mihai Barbuceanu and Mark S. Fox. Coordinating multiple agents in the supply chain. In
Proceedings of the Fifth Workshops on Enabling Technology for Collaborative Enterprises(WET
ICE’96), pages 134-141. IEEE Computer Society Press, 1996.

S. Brown and M. T. Cox. Planning for information visualization in mixed-initiative systems. In
M.T. Cox, editor, Proceedings of the 1999 AAAI-99 Workshop on Mized-Initiative Intelligence,
pages 2-10, Menlo Park, CA, 1999. AAAI Press.

Joanna Bryson, Keith Decker, Scott A. DeLoach, Michael Huhns, and Michael Wooldridge.
Agent development tools. In Intelligent Agents VII - Proceedings of the 7th International
Workshop on Agent Theories, Architectures, and Languages (ATAL’2000), 2000. Springer
Lecture Notes in AI, Springer Verlag, Berlin, 2001.

B. Caldwell. Managing your inventory. Information WEEK, 554:88—, 1995.

J. G. Carbonell, J. Blythe, O. Etzioni, Y. Gil, R. Joseph, D. Kahn, C. Knoblock, S. Minton,
A. Perez, S. Reilly, M. M. Veloso, and X. Wang. Prodigy4.0: The manuan and tutorial. Tech-
nical Report CMU-CS-92-150, Computer Science Department, Carnegie Mellon University,
1992.

M. T. Cox. A conflict of metaphors: Modeling the planning process. In Proceedings of 2000
Summer Computer Simulation Conference, pages 666—671, San Diego, CA, 2000. The Society
for Computer Simulation.

M. T. Cox. A conflict of metaphors: Modeling the planning process. In Proceedings of the
2000 Summer Computer Simulation Conference, pages 666—671, 2000.

M. T. Cox. Interfaces for mixed-initiative planning. In IUI’2000 Workshop on Using Plans in
Intelligent User Interfaces, Cambridge, MA, 2000. MERL.

M. T. Cox. Planning as mixed-initiative goal manipulation. In Proceedings of the Workshop
on Mized-Initiative Intelligent Systems at the 18th International Joint Conference on Artificial
Intelligence, pages 36—-41, 2003.

M. T. Cox, G. Edwin, K. Balasubramanian, and M. Elahi. Multiagent goal transformation
and mixed-initiative planning using Prodigy/Agent. In Proceedings of the 5th World Multi-
conference on Systemics, Cybernetics and Informatics, Vol. VII, pages 1-6, 2001.

M. T. Cox, B. Kerkez, C. Srinivas, G. Edwin, and W. Archer. Toward agent-based mixed-
initiative interfaces. In H.R. Arabnia, editor, Proceedings of the 2000 International Conference
on Artificial Intelligence, volume 1, pages 309-315. CSREA Press, 2000.

M. T. Cox and G. Rasul. Human interaction with automated planners through the manipu-
lation and visualization of goal change. Technical Report WSU-CS-00-01, Dept. of Computer
Science and Engineering, Wright State University, 2000.

Michael T. Cox and M. M. Veloso. Goal transformations in continuous planning. In Proceedings
of the 1998 AAAI Fall Symposium on Distributed Continual Planning, pages 23-30, 1998.
M.T. Cox, M. Elahi, and K. Cleereman. A distributed planning approach using multiagent
goal transformations. In Proceedings of the 14th Midwest Artificial Intelligence and Cognitive
Science Conference, pages 18-23, 2003.

Scott A. DeLoach. Analysis and design using mase and agenttool. In Proceedings of the
12th Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001), Miami
University, Oxford, Ohio, March 31-April 1 2001.

Scott A. DeLoach, Eric T. Matson, and Yonghua Li. Exploiting agent oriented software
engineering in the design of a cooperative robotics search and rescue system. The International
Journal of Pattern Recognition and Artificial Intelligence, August 2003.

IDIS LABORATORY TECHNICAL REPORT No. 105 36

REFERENCES REFERENCES

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Scott A. DeLoach and Mark Wood. Developing multiagent systems with agenttool. In Intel-
ligent Agents VII - Proceedings of the 7Tth International Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL’2000), 2000. Springer Lecture Notes in Al, Springer Verlag,
Berlin, 2001.

G. Edwin and M. T. Cox. Resource coordination in single agent and multiagent systems, 2001.
Submitted.

M. M. Elahi. A distributed planning approach using multiagent goal transformations. Master’s
thesis, Wright State University, 2003.

M. M. Elahi and M. T. Cox. User’s manual for Prodigy/Agent, Ver 1.0. Technical Report
WSU-CS-03-02, Dept. of Computer Science and Engineering, Wright State University, 2003.
T. Finin, D. McKay, and R. Fritzson. An overview of KQML: A knowledge query and manip-
ulation language. Technical report, Computer Science Department, University of Maryland,
1992.

Mark S. Fox, John F. Chionglo, and Mihai Barbuceanu. The integrated supply chain manage-
ment system. Technical report, University of Toronto, 1993.

Nobuhiro Kataoka, Hisao Koizumi, and Hiedeaki Simizu. Architecture of an autonomous
distributed system and verification of implementation as a logistics information management
system. In Proceedings of the 1997 3rd International Workshop on Object-Oriented Real-Time
Dependable Systems(WORDS’97), 1997.

Elizabeth Kendall. Agent roles and role models: New abstractions for multiagent system analy-
sis and design. Proceedings of the International Workshop on Intelligent Agents in Information
and Process Management, Bremen, Germany, September 1998, September 1988.

G. A. Kent and W. E. Simons. Objective-based planning. In P. K. Davis, editor, New Chal-
lenges for Defense Planning: Rethinking How Much is Enough, pages 59-71. RAND, 1994.
B. Kerkez and M. T. Cox. Planning for the user interface: Window characteristics. In Pro-
ceedings of the 11th Midwest Artificial Intelligence and Cognitive Science Conference, pages
79-84, Menlo Park, MA, 2000. AAAT Press.

B. Kerkez, M. T. Cox, and C. Srinivas. Planning for the user interface: Window content. In
H.R. Arabnia, editor, Proceedings of the 2000 International Conference on Artificial Intelli-
gence, volume 1, pages 345-351. CSREA Press, 2000.

Kwindla Hultman Kramer, Nelson Minar, and Pattie Maes. Tutorial: Mobile software agents
for dynamic routing. http://www.media.mit.edu/ nelson/research/routes/sigmobile.ps, 1999.
E. Kutanoglu and S.D. Wu. An Auction-Theoretic Modeling of Production Scheduling to
Achieve Distributed Decision Making. PhD thesis, Dept. of Industrial and Manufacturing
Systems Engineering, Lehigh University, 1999.

Timothy H. Lacey. A formal methodology and technique for verifying communication protocols
in a multi-agent environment. Afit/eng/00m-12, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson Air Force Base Ohio, USA, 2000.

Timothy H. Lacey and Scott A. DeLoach. Automatic verification of multiagent conversa-
tions. In Proceedings of the 11th Annual Midwest Artificial Intelligence and Cognitive Science
Conference, Fayetteville, Arkansas, April 2000.

Jyi-Shane Liu and Katia P. Sycara. Coordination of multiple agents for production manage-
ment. Annals of Operations Research, 75:235-289, 1997.

Peter B. Luh and Debra J. Hoitomt. Scheduling of manufacturing systems using the lagrangian
relaxation technique. IEEFE Transactions on Automatic Control, 38:1066—-1080, 1993.

IDIS LABORATORY TECHNICAL REPORT No. 105 37

REFERENCES REFERENCES

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

J. Todd McDonald, Michael L. Talbert, and Scott A. DelLoach. Heterogeneous database in-
tegration using agent oriented information systems. In Proceedings of the International Con-
ference on Artificial Intelligence (IC-AI’2000), Monte Carlo Resort, Las Vegas, Nevada, June
26-29 2000.

Scott A. O’Malley, Athie L. Self, and Scott A. DeLoach. Comparing performance of static ver-
sus mobile multiagent systems. In National Aerospace and Electronics Conference (NAECON),
Dayton, OH, October 10-12 2000.

Philippe Quinnec and Grard Padiou. Flight plan management in a distributed air traffic control
system. In First International Symposium on Autonomous Decentralized Systems (ISADS-93),
1993.

Marc J. Raphael and Scott A. DeLoach. A knowledge base for knowledge-based multiagent
system construction. In National Aerospace and Electronics Conference (NAECON), Dayton,
OH, October 10-12 2000.

David J. Robinson. A component-based approach to agent specification. Afit/gcs/eng/00m-
22, School of Engineering and Management, Air Force Institute of Technology (AU), Wright-
Patterson Air Force Base Ohio, USA, March 2000.

G. Mitchell Saba and Eugene Santos, Jr. The multi-agent distributed goal satisfaction system.
In Proceedings of the International ICSC Symposium on Multi-Agents and Mobile Agents in
Virtual Organizations and E-Commerce, pages 389-394, 2000.

Norman M. Sadeh, David W. Hildum, Dag Kjenstad, and Allen Tseng. Mascot: An agent-
based architecture for coordinated mixed-initiative supply chain planning and scheduling. In
Proc. 3rd Int’l. Conf. on Autonomous Agents (Agents’99) Workshop on Agent-Based Decision
Support for Managing the Internet-Enabled Supply Chain, Seattle, WA, 1999.

Eugene Santos, Jr., Feng Zhang, and Peter B. Luh. Multi-agent logistics management. In
Proceedings of the International Conference on Internet Computing (IC ’2001), pages 240
246, 2001.

Eugene Santos, Jr., Feng Zhang, and Peter B. Luh. Intra-organizational logistics management
through multi-agent systems. FElectronic Commerce Research, 3:337-364, 2003.

A. Self. Design and specification of dynamic, mobile, and reconfigurable multiagent systems.
Afit/eng/01m-11, School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson Air Force Base Ohio, USA, March 2001.

Weiming Shen and Douglas H. Norrie. An agent-based approach for manufacturing enterprise
integration and supply chain management. In G. Jacucci, editor, Globalization of Manufac-
turing in the Digital Communications Era of the 21st Century: Innovation, Agility, and the
Virtual Enterprise, pages 579-590. Kluwer Academic Publishers, 1998.

Leyuan Shi, Chun-Hung Chen, and Enver Ycesan. Simultaneous simulation experiments and
nested partition for discrete resource allocation in supply chain management. In The 1999
Winter Simulation Conference(WSC’99), 1999.

C. H. Sparkman. Transforming analysis models into design models for the multiagent systems
engineering methodology. Afit/eng/01m-21, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson Air Force Base Ohio, USA, March 2001.

C. Srinivas, M. T. Cox, and V. Laxminarayanan. Gtrans user manual and reference. Technical
Report WSU-CS-00-02, Dept. of Computer Science and Engineering, Wright State University,
2000.

M. M. Veloso, J. G. Carbonell, A. Perez, D. Borrago, E. Fink, and J. Blythe. Integrating
planning and learning: The PRODIGY architecture. Journal of Ezperimental and Theoretical
Artificial Intelligence, 7(1):81-120, 1995.

IDIS LABORATORY TECHNICAL REPORT No. 105 38

REFERENCES REFERENCES

[49]

[50]

[51]

[52]

[53]

[54]

[55]

T. Wagner, A. Garvey, and V. R. Lesser. Design-to-criteria scheduling: Managing complexity
through goal-directed satisficing. In Proceedings of the AAAI Workshop on Building Resource-
Bounded Reasoning Systems, 1997.

William E. Walsh and Michael P. Wellman. A market protocol for decentralized task allocation.
In Proceedings of the Third International Conference on Multi-Agent Systems, pages 325-332,
Paris, France, 1998.

M.P. Wellman. Market-oriented programming: Some early lessons. In S. Clearwater, editor,
Market-Based Control: A Paradigm for Distributed Resource Allocation, chapter 4. World
Scientific, 1996.

Stanley K. Yung and Christopher C. Yang. A new approach to solve supply chain management
problem by integrating multi-agent technology and constraint network. In Proceedings of the
32nd Hawaii International Conference on System Sciences(HICSS-1999), Maui, Hawaii, 1999.
Daniel Dajun Zeng and Katia Sycara. Dynamic supply chain structuring for electronic com-
merce among agents. In Matthias Klusch, editor, Intelligent Information Agents. Springer,
1999.

C. Zhang. Cognitive models for mixed-initiative planning. Master’s thesis, Wright State
University, 2002.

C. Zhang, M. T. Cox, and T. Immaneni. GTrans version 2.1 user manual and reference.
Technical Report WSU-CS-02-02, Dept. of Computer Science and Engineering, Wright State
University, 2002.

IDIS LABORATORY TECHNICAL REPORT No. 105 39

