A Framework for Structured Distributed Object Computing

K. Mani Chandy, Joseph Kiniry, Adam Rifkin, Daniel Zimmerman,
Wesley Tanaka, and Luke Weisman*
infospheres@cs.caltech.edu

Computer Science 256-80
California Institute of Technology
Pasadena, California 91125

http://www.infospheres. caltech.edu/

February 7, 1997

Abstract

This paper presents a four-faceted framework for distributed applications that use world-
wide networks connecting large numbers of people, software tools, monitoring instruments, and
control devices. We describe a class of applications, identify requirements for a framework that
supports these applications, and propose a design fulfilling those requirements. We discuss some
initial experiences using the framework, and compare our design with other approaches.

1 Personal Command and Control Applications

The global information infrastructure will soon connect large numbers of processes that manage
devices and human interfaces. Interprocess communication will allow processes to respond to events
on such devices as medical monitoring equipment, scientific instruments, home appliances, and
security systems, and on such software as scheduling programs, document management systems,
Web browsers, and complex computation engines.

The contribution of this paper is a simple, generic framework for developing distributed systems
for personal applications. By employing our framework, developers can quickly build interactive
command and control processes that run over the Internet. Our framework is composed of four
facets: (i) processes are persistent communicating objects; (ii) personal networks provide wiring
diagrams and behaviors for these connected processes; (iii) sessions are transactions performed by

*The Caltech Infospheres Project is sponsored by the Air Force Office of Scientific Research under grant AFOSR
F49620-94-1-0244, by the CISE directorate of the National Science Foundation under Problem Solving Environments
grant CCR-9527130, by the Center for Research in Parallel Computing under grant NSF CCR-9120008, by the
Advanced Research Projects Agency, and by Novell, Inc.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
07 FEB 1997 2. REPORT TYPE 07-02-1997 to 07-02-1997
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Framework for Structured Distributed Object Computing £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Office of Scientific Research,875 North Randolph Street Suite | REPORT NUMBER
325,Arlington,VA,22203-1768

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 13
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

the processes participating in a personal network; and (iv) infospheres are custom collections of
processes for use in personal networks.

Infospheres and Personal Networks. Warfighter’s infosphere is a term coined by the military
to represent the electronic interface between a military unit and its environment. This human-
computer interface is provided by the military C4I (command, control, communications, computers,
and intelligence) infrastructure.

Our goal is to provide a framework for transitioning the concepts of infospheres and C4I to
individuals and small organizations to create analogous lightweight command and control systems.
Personal networks are roadmaps for such systems, specifying processes arranged in a topology,
with a specified cooperative behavior. For example, a person in Nevada may have a emergency
notification personal network that incorporates processes for medical monitoring devices in her
parents’ home in Florida, security and utility systems in her home and car in Reno, a global
position sensing device on her teenage son’s car in Montréal, a Nikkei Market stock ticker tape,
and software programs that monitor urgent pages and e-mails.

Task Forces for Organizations. Personal networks can also be used by institutions and busi-
nesses to create task forces to handle short-term situations. The structure of personal networks
comprises the organizational, informational, and workflow structures of the corresponding task
force. Workflow describes the manner in which jobs are processed in stages by different pro-
cesses [22].

One example of a task force is a panel that reviews proposals submitted to the National Sci-
ence Foundation (NSF). Panel members come from a variety of institutions, and the panel has an
organizational structure with a general chair, subcommittees, primary reviewers, and secondary
reviewers. The panel’s informational structure includes the hierarchy of proposals and reviews, and
the panel’s workflow is the flow of proposal and review copies. The panel has its own organiza-
tional, informational, and workflow structures that coexist with those of NSF. In this sense, NSF’s
organizational and informational structures adapt in a dynamic, but systematic, way to include
new people and resources as needed.

2 Requirements Analysis

A framework to support personal networks (and their components) should satisfy four main re-
quirements: scalability, simplicity, security, and adaptability.

Scalability. Personal networks should scale to include devices, tools, and people connected to the
Internet. The critical scaling issue is not the number of processes connected in a personal network,
but rather the size of the pool from which the processes in personal networks are drawn. The only
limit to the number of processes connected in a personal network is the number of activities that
can be managed effectively. However, issues of scaling in naming, connections, and services depend
on the size of the global set of processes and resources.

Personal networks should be tolerant of wide ranges of quality of service because the processes in
a personal network can exist on a single system or span several continents. The framework should
both support large numbers of concurrent personal networks and provide a core set of services for
creating and using personal networks.

Simplicity. The usage and programming model for personal networks should be simple enough to
be usable by anyone. The simplicity of dialing a telephone led to the widespread use of telephones
despite the complexity of the worldwide telecommunications network. If personal networks are to
become effective tools, their use should be similarly intuitive. So, the model’s API should be easy
for programmers to learn quickly, and the accompanying visual tools should allow non-programmers
to use palettes of existing constructs to customize their personal networks.

Security. A research instrument shared by several people may have one interface for setting
control parameters and a different interface, accessible by a small set of authorized personnel, for
accessing the data recorded by the instrument. Also, instruction messages sent to the “modify-
parameter” interface may be of a different type than instructions to the “read-data” interface.
Therefore, the framework should allow processes to have multiple typed interfaces and provide the
ability to set security restrictions on at least a per-interface basis.

Adaptability. It should be possible to create and modify personal networks rapidly and flexibly,
because task forces often need to be set up quickly and in an ad hoc manner. Network topologies
should be emergent rather than static, so processes should be able to create and delete connections
during a session. Additionally, personal network processes should be able to communicate with
applications and devices that were unknown or nonexistent prior to the creation of the personal
network. So, the framework should be extensible enough to support interoperability with other
distributed technologies.

3 Design of an Extensible Framework

Our framework employs three structuring mechanisms: personal networks, to facilitate long-term
collaborations between people or groups; sessions, to provide a mechanism for carrying out the
short-term tasks necessary within these personal networks; and infospheres, to allow customization
of processes and personal networks.

To illustrate these structuring mechanisms, consider a consortium of institutions carrying out
research on a common problem. It has a personal network composed of processes that belong to
the infospheres of the consortium members. This personal network is a structured way to manage
the collection of resources, processes, and communication channels used in distributed tasks such
as simulating financial scenarios, determining meeting times, and querying distributed databases.
Each session of this personal network handles the acquisition, use, and release of resources, pro-
cesses, and channels for the life of a specific task.

Infospheres are discussed in our framework user’s guide [12]. This paper focuses on the conceptual
models for processes, personal networks, and sessions.

3.1 Conceptual Model: Processes

Processes are the persistent communicating objects that manage devices and interfaces. In our
framework, we call these processes djinns.

Process States. A given process can be in one of three states. An active process is a process
that has at least one executing thread; it can change its state and perform any tasks it has pending,
including communications. A waiting process has no executing threads; its state remains unchanged
while it is waiting, and it remains in the waiting state until one of a specified set of input ports
becomes nonempty, at which point it becomes active and resumes execution. Active and waiting
processes are collectively referred to as a ready process.

Ready processes occupy process slots and can make use of other resources provided by the
operating system. By contrast, processes in the third state, frozen, do not occupy process slots. In
fact, frozen processes do not use any operating system resources except for the persistent storage,
such as a file or a database, that is used to maintain process state information.

Freezing, Summoning, and Thawing Processes. Associated with each process is a freeze
method, that saves the state of the process to a persistent store, and a thaw method, that restores
the process state from the store. Typical processes remain in the frozen state nearly all the time,
and therefore require minimal resources. In our framework, only a waiting process can be frozen,
and it can only be frozen at process-specified points. When its freeze method is invoked, a process
yields all the system resources it holds.

A ready process can summon a frozen process. The act of summoning instantiates the frozen
process, causes its thaw method to be invoked, and initiates a transition to the ready state. If
a process is ready when it is summoned, it remains ready. In either case, a summoned process
remains ready until it receives at least one message from its summoner or a specified timeout
interval elapses.

Mobile Processes. Frozen processes can move from one machine to another, but ready processes
cannot. This restriction allows ready processes to communicate using our framework’s underlying
fast transport layer, that requires unchanging addresses for communication resources. All processes
have a permanent “home address” from which summons can be forwarded. Once a process becomes
ready at a given location, it remains at that location until the process is next frozen. The persistent
state of a process is always stored at the home address of that process.

3.2 Conceptual Model: Personal Networks

Conceptually, a personal network is a wiring diagram, analogous to a home entertainment system,
with directed wires connecting device outputs to the inputs of other devices. We chose this model
for its simplicity [3]. A personal network consists of an arrangement of processes and a set of
directed, typed, secure communication channels connecting process output ports to the input ports
of other processes; its topology can be represented by a labeled directed graph. Note that, unlike

home entertainment system components, processes can freely create input ports, create output
ports, and change wire connections.

Communication Structures. Processes communicate with each other by passing messages.
Associated with each process is a set of inbozes and a set of outbores. Inboxes and outboxes are
collectively called mailbozes. Every mailbox has a type and an access control list, both of which
are used to enforce personal network structure and security. These mailboxes correspond to the
device inputs and outputs used in the wiring diagram conceptual model.

Process interconnections are asymmetric; a process can connect any of its outboxes to any set of
inboxes for which it has references. A connection is a first-in-first-out, directed, secure, error-free
broadcast channel from the outbox to each connected inbox. Our framework contains support for
message prioritization, available through standard multithreading techniques.

Message Delivery. Our framework communication layer works by removing the message at the
head of a nonempty outbox and appending a copy to each connected inbox. If the communica-
tion layer cannot deliver a message, an exception is raised in the sender containing the message,
destination inbox, and specific error condition. Our system uses a sliding window protocol [17] to
manage the messages in transit.

Every message at the head of an outbox will eventually be handled by the communication
layer. The conceptual model uses asynchronous messages rather than remote procedure calls, to
be tolerant of the range of message delays experienced along different links of the Internet. As a
result, we can think about message delivery from an outbox to inboxes as a simple synchronous
operation even though the actual implementation is asynchronous and complex.

Dynamic Structures. A process can create, delete, and change mailboxes. The operation of
creating a mailbox returns a global reference to that mailbox. This reference can then be passed,
in messages, to other processes. Since a process can change its connections and mailboxes, the
topology of a personal network can evolve over time as required to perform new tasks.

As long as a process remains ready, references to its mailboxes are valid; when a process is
frozen, all references to its mailboxes become invalid. Since all references to the mailboxes of frozen
processes are invalid, frozen processes can move and then be thawed, at which point the references
to their mailboxes need be refreshed via a summons. Because no valid references to their mailboxes
exist, frozen processes cannot participate in sessions.

3.3 Conceptual Model: Sessions

Operationally, a session is a task carried out by (the processes in) a personal network [4]. It is initi-
ated by a process in the personal network, and is completed when the task has been accomplished.
A later session may use the same processes to carry out another task. Thus, a personal network
consists of a group of processes in a specified topology, interacting in sessions to perform tasks.

The Session Constraint. We adopt the convention that sessions must satisfy the two part
session constraint:

1. As long as any process within the session holds a reference to a mailbox belonging to another
process within the session, that reference must remain valid.

2. A mailbox’s access control list cannot be constricted as long as any other process in the
session holds a reference to that mailbox.

The session constraint ensures that, during a session, information flows correctly between processes.

A session is usually started by the process initially charged with accomplishing a task. This
initiator process creates a session by summoning the processes that will initially participate. It
then obtains references to their mailboxes, passes these references to the other processes, and
makes the appropriate connections of its outboxes to the inboxes of the participating processes.
We discuss session implementation and reasoning issues in Section 4.

There are many ways of satisfying the session constraint. One simple way is to ensure that once
a process participates in a session it remains ready until the session terminates, and that once a
process sends its mailbox references to other processes it leaves these mailboxes unchanged for the
duration of the session. Another approach is to have the initiating process detect the completion
of the task through a diffusing computation, after which it can inform the other session members
that the session can be disbanded.

An Example Session. An example of a session is the task of determining an acceptable meeting
time and place for a quorum of committee members. Each committee member has an infosphere
containing a calendar process that manages his or her appointments. A personal network describes
the topology of these calendar processes. A session initiator sets up the network connections of this
personal network. The processes negotiate to find an acceptable meeting time or to determine that
no suitable time exists. The task completes, the session ends, and the processes freeze. Note that
the framework does not require that processes freeze when the session terminates.

During a session, the processes must receive the quality of service they need to accomplish their
task. Therefore, communication is routed directly from process to process, rather than through
object request brokers or intermediate processes as in client-server systems. Once a session is
constructed, our framework’s only communication role is to choose the appropriate protocols and
channels. A session can negotiate with the underlying communication layer to use the most ap-
propriate process-to-process mechanism. The current framework supports only UDP, but we plan
in future releases to support a range of protocols such as TCP and communication layers such as
Globus [6].

4 Structuring Mechanisms

Personal networks and sessions can be used not only as structuring mechanisms, but also for
reasoning about the services provided to distributed systems.

4.1 Reasoning About Sessions

Consider a consortium of institutions working together on a research project. From time to time,
people and resources of the consortium carry out a collaborative task by initiating a session, setting
up connections using the personal network, performing the necessary machinations for the task,
disbanding the connections, and terminating the session. Furthermore, several sessions initiated
by the same consortium may be executing at the same time. For instance, a session to determine
a meeting time for the executive committee and a session that reads measurements from devices
in order to carry out a distributed computation could execute simultaneously. Moreover, the same
process may participate concurrently in sessions initiated by different consortia or task forces.
For example, a calendar manager may participate concurrently in sessions determining meeting
times for a scout troop and a conference program committee. Our framework allows processes to
participate in concurrent sessions [4].

A resource may be requested by a session in either ezclusive mode or nonexclusive mode. For
example, a visualization engine may need to be in exclusive mode for a task: while the task is
executing, no other task can access it. However, a process managing a calendar can be useful in
nonexclusive mode: several sessions can not only read the calendar concurrently, but also modify
different parts of the calendar concurrently.

Because we cannot predict a priori the applications and sessions that will run concurrently, we
restrict access to modify the states of the processes participating in a given session, to reason about
that session’s behavior. Such restrictions are currently provided in thread libraries by mutexes and
monitors; our challenge is to provide similar constructs with our framework for use in distributed
systems in a generic, extensible, and scalable manner.

4.2 Services for Sessions

New capabilities are added to our framework either by subclassing existing processes or by extending
the framework. A service is a framework extension that is applicable to an assortment of distributed
algorithms. Examples include mechanisms for locking, deadlock avoidance, termination detection,
and resource reservation.

Locking Mechanisms. Even if a process participates concurrently in several sessions, there are
points in a computation when one session needs exclusive access to certain objects. For example,
at some point, the session determining the meeting time for a program committee needs to obtain
exclusive access to the relevant portions of the calendars of all the committee members. Therefore,
one service our framework should provide is the acquisition of locks on distributed objects accessed
during a session. A great deal of work exists relating to locking in distributed databases and
distributed transaction systems [9, 15]. Presently, our framework provides only an exclusive lock
on an object, but the framework can be extended to include other types of locks, such as read and
write locks.

Deadlock Avoidance. If sessions lock objects in an incremental fashion, deadlock can occur.
For instance, if one session locks object A and then object B, and another session locks B and then

A, the sessions may deadlock because each session holds one object while waiting for the other.
Therefore, our framework deals only with the case where a session requests locks on a set of objects
only when it holds no locks; a session must release all locks that it holds before requesting locks
on a different set of processes. An alternative solution would be to allow incremental locking in
some total ordering, but we are not exploring this solution because it does not scale to distributed
systems drawn from a worldwide pool of objects.

Termination Detection and Resource Reservation. Other services that can be extended
into our framework include session termination detection and resource reservation. Termination
detection can be used by an initiating process of a session to, for instance, determine when the
states of the processes involved in the session need to be “rolled back” in the event of a failure.
Resource reservation is a generic service through which the resources required by a session can be
reserved for some time in the future. For instance, one might reserve the visualization engine at
location X and the monitoring instrument at location Y for the earliest time after 5:00 PM today.

5 Experience With Our Framework

Two examples illustrate the ease with which programmers have used our framework to develop
distributed systems. Using our model and middleware packages, a programmer was able to specify,
design, reason about, and implement a distributed calendar application in under a week. Since our
infrastructure handled the communication layer, the programmer could concentrate his skills on
the high-level design and implementation.

Also, using our framework, given a specification of the processes and communication protocols,
the students in an undergraduate class at Caltech were able to write processes that participated
in a five-card draw poker tournament session. The students were given a week to design, reason
about, and implement their poker-playing processes; we spent approximately the same amount of
time specifying those processes and their interactions.

In both these cases, patterns helped the programmers develop their code quickly. Patterns en-
capsulate software solutions to common problems [8], and our framework has incorporated some
applications of concurrency patterns in Java [14]. Initial experience with our framework has sug-
gested several other patterns, both for collaborations between processes and for state-transition
systems.

Collaboration Patterns. Several patterns of collaboration network topologies have emerged
from our exploration of personal networks. A personal network consisting of a “master” process
maintaining all modifications to an object shared by the other objects of the personal network
fits the Personal Network Star pattern. For example, a concurrent document editing system with
a single process responsible for maintaining changes during a personal network would match this
pattern. This pattern roughly corresponds to a system with a single server with a set of clients,
though more sophisticated systems (such as a hierarchy with multiple servers and multiple clients)
could also be developed. The Personal Network Star pattern was employed in both the calendar
and poker applications mentioned above.

A personal network in which each of the processes collaborate without a master, with all mod-
ifications announced to the entire group, fits the Personal Network Full Connection pattern. For
example, a concurrent document editing system in which every process sends every modification
to every other process, and every process is responsible for updating the local view of the shared
object, would match this pattern. This pattern roughly corresponds to a peer-to-peer distributed
system, though more sophisticated systems (such as different priorities for different peers) could
also be developed.

A personal network in which messages are propagated in a ring during collaboration fits the
Personal Network Ring pattern. For example, a document editing system in which the session-
initiator process has a document and makes changes to it, then sends the modified document to the
next process for it to make changes, and so on until the document is returned to the session-initiator
process, would match this pattern. This pattern roughly corresponds to a workflow distributed
system, though more elaborate workflow templates could also be developed. The Personal Network
Full Connection and Personal Network Ring patterns were used in the poker applications mentioned
above.

We are investigating other middleware patterns as well, such as hierarchical broadcast using
publishing and subscribing processes, and dataflow using waiting and notification processes.

State-Transition System Patterns. In addition to collaboration patterns among the processes
in a personal network, our experiences with user interfaces for describing network topologies has
given rise to a pair of state-transition system patterns. Using these patterns, developers can design
and reason about the changes of state in the processes participating in a session.

One pattern is the Transition on Modes pattern, in which the processes change their states based
on a combination of their respective modes and the messages they receive on their inboxes. For
example, in a distributed accounting system, a money receipt message would cause different ledgers
to be modified, based on whether the controlling process was in “accounts receivable” or “accounts
payable” mode.

Another pattern is the Transition on Functions pattern, in which the processes change their
states based on a function of the information contained within the messages they receive on their
inboxes. For example, in a distributed accounting system, an income transfer may require different
actions based on how much money is being transferred, for tax shelter purposes.

6 Framework Implementation

Version 1.0 of our tools and models, released in February 1997, is classified in the “white box
framework” level of the taxonomy given by the framework pattern language [18]. With the addition
of more applications, services, visual builders, and language tools, we are developing a “black box
framework.” To guarantee widespread, unrestricted use, our framework has been developed using
Sun’s Java Developer’s Kit (JDK) 1.0.2.

We are optimizing the framework for JDK 1.1 by taking advantage of the following newly stan-
dardized packages:

e Remote Method Invocation (RMI) for a proxy-based distributed object model.

e Object Serialization facilities for packing and unpacking objects and messages (both for com-
munication and for persistent storage).

e Java Database Connectivity support for persistent storage of, and queries on, process, state,
and interface data.

e Interface Definition Language (IDL) packages for interoperability with CORBA distributed
objects.

e Security packages for communication encryption and process authentication.

o Reflection packages for innovative structuring of emergent personal networks and process
behavior.

7 Related Work

Frameworks are reusable designs for software system processes, described by the combination of
a set of objects and the way those objects can be used [18]. Our framework consists of some
middleware APIs, a model for using them, and services and patterns that are helpful not only in
inheriting from objects, but extending them as well. These features allow the reuse of both design
and code, reducing the effort required to develop an application. In this sense, our framework is
comparable to other metacomputing, component, and concurrency frameworks.

Metacomputing Frameworks. Our framework efforts are similar to recent metacomputing en-
deavors in that we use the Internet as a resource for concurrent computations. Globus provides the
infrastructure to create networked virtual supercomputers for running applications [6]. Similarly,
NPAC at Syracuse seeks to perform High Performance Computing and Communications (HPCC)
activities using a Web-enabled concurrent virtual machine [7]. Javelin is a Java-based architecture
for writing parallel programs, implemented over Internet hosts, clients, and brokers [2]. Legion
is a C++-based architecture and object model for providing the illusion of a single virtual ma-
chine to users for wide-area parallel processing [10]. Although our framework could be used for
metacomputing applications, we provide neither seamless parallelism, nor facilities for developing
high-performance appplications. Rather, we provide mechanisms for programmers to develop dis-
tributed system components and personal networks quickly, and we plan to provide mechanisms
for non-programmers to customize their components and their personal networks easily.

Component Frameworks. Many other framework systems also have the goal of creating dis-
tributed system components. The ADAPTIVE Communication Environment (ACE) provides an
integrated framework of reusable C++ wrappers and components that perform common commu-
nications software tasks [19]; this framework is amenable to a design pattern group useful to many
object-oriented communication systems [20]. Hector is a Python-based distributed object frame-
work that provides a communications transparency layer enabling negotiation of communication

10

protocol qualities, comprehensive support services for application objects, and a four-tiered archi-
tecture for interaction [1]. Aglets provide a Java-based framework for secure Internet agents that
are mobile, moving state along with the program components themselves [13]. We differ from these
efforts because our emphasis is on reasoning about global compositional distributed systems.

Concurrency Frameworks. We have considered several previous approaches to concurrent
communicating processes in developing our framework. The Communicating Sequential Processes
(CSP) model assumes each process is active for the entire duration of the computation [11]. Like
Fortran M [5], we implement this model, adding such implementation artifacts as dealing with
process setup and removal, and permitting prioritized waits to resolve resource contention. Unlike
Fortran M, sessions provide a hybrid technique for running communicating distributed processes
that are frozen when they are not performing any work, yet have persistent state that can be
revived whenever a new session is initiated.

This persistence model is similar to mechanisms provided as recent ORB services [21]. However,
the CORBA process model, implemented using the Basic Object Adaptor (BOA) of a given Object
Request Broker (ORB), maintains that only the broker stay active for the entire duration of the
computation [16]. Like Client-Server, Remote Procedure Call, and Remote Method Invocation sys-
tems, CORBA only spawns remote processes to perform isolated remote tasks. In our framework,
the model supports interaction not just through a broker or server, but also directly between the
ports of distributed processes in a peer-to-peer fashion.

8 Summary

In this paper, we have presented a framework for developing personal networks and their component
processes, for using those processes in sessions to perform distributed tasks, and for reasoning about
those processes and sessions. Qur approach is novel in its simplicity, scalability, and flexibility;
new system processes can be developed by inheriting from framework processes or by extending
framework services.

In further research, we plan on using the framework to develop more substantial personal net-
works, including several task forces: research consortia that use instruments, computation engines,
and visualization devices at different sites; oversight committees for conferences or journal pub-
lications; and working groups whose members hail from different organizations. In addition, we
plan to investigate an array of services for use with the framework, including tools for active pro-
cess mobility, distributed collaboration, termination detection, resource management, and session
coordination.

References

[1] D. Arnold, A. Bond, M. Chilvers, and R. Taylor, ‘Hector: Distributed Objects in Python’,
Proceedings of the Fourth International Python Conference, Livermore, California, June 1996.

11

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

P. Cappello, B. Christiansen, M. F. Ionescu, M. O. Neary, K. E. Schauser, and D. Wu, ‘Javelin:
Internet-Based Parallel Computing Using Java’, submitted to Sizth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, 1997.

K. M. Chandy, A. Rifkin, P. A. G. Sivilotti, J. Mandelson, M. Richardson, W. Tanaka, and L.
Weisman, ‘A World-Wide Distributed Sytem Using Java and the Internet’, Proceedings of the
Fifth IEEE International Symposium on High Performance Distributed Computing, Syracuse,
New York, August 1996.

K. M. Chandy and A. Rifkin, ‘Systematic Composition of Objects in Distributed Internet
Applications: Processes and Sessions’, Proceedings of the Thirtieth Hawaii International Con-
ference on System Sciences, Maui, Hawaii, January 1997.

I. T. Foster and K. M. Chandy”, ‘Fortran M: A Language for Modular Parallel Programming’.
Journal of Parallel and Distributed Computing, Volume 26, Number 1, Pages 24-35, April
1995.

I. Foster and C. Kesselman, ‘Globus: A Metacomputing Infrastructure Toolkit’, Proceedings
of the Workshop on Environments and Tools for Parallel Scientific Computing, STAM, Lyon,
France, August 1996.

G. Fox and W. Furmanski, ‘Towards Web/Java based High Performance Distributed Comput-
ing — An Evolving Virtual Machine’, Proceedings of the Fifth IEEFE International Symposium
on High Performance Distributed Computing, Syracuse, New York, August 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object- Oriented Software, Addison-Wesley, 1995.

J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann,
1993.

A. S. Grimshaw, W. A. Wulf, and the Legion team, ‘The Legion Vision of a Worldwide Virtual
Computer’, Communications of the ACM, Volume 40, Number 1, Pages 39-45, January 1997.

C. A. R. Hoare, ‘Communicating Sequential Processes’, Communications of the ACM, Volume
21, Number 8, Pages 666—677, August 1978.

The Infospheres Research Group, ‘The Infospheres Infrastructure User’s Guide’, Technical
Report, California Institute of Technology, 1997.

D. B. Lange and M. Oshima, Programming Mobile Agents in Java — With the Java Aglet
API, IBM Research, 1997.

D. Lea, Concurrent Programming in Java: Design Principles and Patterns, Addison-Wesley,
1996.

N. A. Lynch, M. Merritt, W. E. Weihl, and A. Fekete, Atomic Transactions, Morgan Kauf-
mann, 1994.

12

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Object Management Group, The Common Object Request Broker: Architecture and Specifica-
tion (CORBA), revision 2.0, 1995.

L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach, Morgan Kaufmann,
1996.

D. Roberts and R. Johnson, ‘Evolving Frameworks: A Pattern Language for Developing
Object-Oriented Frameworks’, Proceedings of Pattern Languages of Programs, Allerton Park,
Illinois, September 1996.

D. C. Schmidt, ‘ACE: an Object-Oriented Framework for Developing Distributed Appli-
cations’, Proceedings of the Sizth USENIX C++ Technical Conference, Cambridge, Mas-
sachusetts, April 1994.

D. C. Schmidt, ‘A Family of Design Patterns for Application Level Gateways’, Theory and
Practice of Object Systems, Wiley and Sons, Volume 2, Number 1, 1996.

R. Sessions, Object Persistence Beyond Object-Oriented Databases, Prentice Hall, 1996.

Workflow Management Coalition, International Organization for the Development and Promo-
tion of Workflow Standards, Workflow Glossary, Workflow Management Coalition, Belgium,
1995.

13

