

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

USE OF WEBDAV TO SUPPORT A VIRTUAL FILE
SYSTEM IN A COALITION ENVIRONMENT

by

Jeremiah A. Bradney

June 2006

 Thesis Advisor: Cynthia E. Irvine
 Co-Advisor: Thuy D. Nguyen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
 Use of WebDAV to Support a Virtual File System in a Coalition Environment
6. AUTHOR(S) Jeremiah A. Bradney

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The Monterey Security Architecture (MYSEA) combines untrusted commercial-off-the-shelf components

with specialized high-assurance trusted components to provide a trusted multilevel secure environment. However,
MYSEA currently lacks a means of providing remote access to data on the MYSEA server, a vital service for
users in any client-server environment. Access and interaction with both public and private server-resident data
that is constrained by the underlying discretionary and mandatory access control policy enforcement mechanisms
of the MYSEA server is required.

By enabling the use of WebDAV in MYSEA, this thesis provides a means for fulfilling the above
requirement for secure remote access by creating a virtual web-based file system accessible from the MYSEA
MLS network. This is accomplished by incorporating the mod_dav module into the Apache web server already
installed on the MYSEA server. The use of a module required minimal changes to add the desired functionality.
Integration of mod_dav is performed in three stages to aid in tracing the source of any errors. Functional and
security testing is also performed, ensuring that the functional and security requirements are fulfilled. This
research is relevant to the DoD Global Information Grid’s vision of assured information sharing.

15. NUMBER OF
PAGES

78

14. SUBJECT TERMS Monterey Security Architecture, WebDAV, Multilevel File Sharing

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

USE OF WEBDAV TO SUPPORT A VIRTUAL FILE SYSTEM
IN A COALITION ENVIRONMENT

Jeremiah A. Bradney

Civilian, Naval Postgraduate School
B.A., Point Loma Nazarene University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: Jeremiah A. Bradney

Approved by: Cynthia E. Irvine, Ph.D.
Thesis Advisor

Thuy D. Nguyen
Co-Advisor

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Monterey Security Architecture (MYSEA) combines untrusted commercial-

off-the-shelf components with specialized high-assurance trusted components to provide

a trusted multilevel secure environment. However, MYSEA currently lacks a means of

providing remote access to data on the MYSEA server, a vital service for users in any

client-server environment. Access and interaction with both public and private server-

resident data that is constrained by the underlying discretionary and mandatory access

control policy enforcement mechanisms of the MYSEA server is required.

By enabling the use of WebDAV in MYSEA, this thesis provides a means for

fulfilling the above requirement for secure remote access by creating a virtual web-based

file system accessible from the MYSEA MLS network. This is accomplished by

incorporating the mod_dav module into the Apache web server already installed on the

MYSEA server. The use of a module required minimal changes to add the desired

functionality. Integration of mod_dav is performed in three stages to aid in tracing the

source of any errors. Functional and security testing is also performed, ensuring that the

functional and security requirements are fulfilled. This research is relevant to the DoD

Global Information Grid’s vision of assured information sharing.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PURPOSE...1
C. ORGANIZATION OF PAPER ..1

II. BACKGROUND ..3
A. WEBDAV..3

1. WebDAV File System ..4
2. mod_dav Apache Module..5

B. MYSEA ...5
C. SUMMARY ..7

III. PROJECT DESCRIPTION ..9
A. GOALS..9
B. CONCEPT OF OPERATION ..9
C. DESIGN ..12
D. METHODOLOGY ..15

1. Linux ...16
2. Single Level XTS..16
3. Multilevel XTS ...16

E. SUMMARY ..18

IV. TESTING AND RESULTS...19
A. FUNCTIONAL TEST PLAN..20
B. LINUX TESTING..21

1. Test Results...21
C. SINGLE LEVEL XTS TESTING ..22

1. Security Test Plan ..22
2. Test Results...23

D. MULTILEVEL XTS TESTING...24
1. Security Test Plan ..24
2. Test Results...26

E. PROBLEMS ENCOUNTERED...27
F. SUMMARY ..28

V. CONCLUSION AND FUTURE WORK ...29
A. CONCLUSION ..29
B. RELATED WORK ..29
C. FUTURE WORK...30

1. Account Setup...30
2. Directory Listing ..30
3. Expanded WebDAV Access ..30

APPENDIX A: INSTALLATION PROCEDURES ..31
A. INSTALLATION AND TEST TOPOLOGY..31

 viii

B. LINUX INSTALLATION...31
C. XTS SINGLE LEVEL INSTALLATION ...33
D. XTS MULTILEVEL INSTALLATION..35
E. CADAVER INSTALLATION..39
F. INSTALLATION TESTING ..39
G. WEBDAV CLIENT INSTRUCTIONS..40

1. Windows XP ...40
2. Fedora Core 4 Linux..40
3. Macintosh OS 10.3 ...41
4. Cadaver...41

APPENDIX B: TEST PROCEDURES...43
A. FUNCTIONAL TEST PROCEDURES...43
B. SINGLE LEVEL SECURITY TEST PROCEDURES47
C. MULTILEVEL SECURITY TEST PROCEDURES.................................49

LIST OF REFERENCES..55

INITIAL DISTRIBUTION LIST ...57

 ix

LIST OF FIGURES

Figure 1. WebDAV Client-Server Architecture..4
Figure 2. Testbed Topology [From Ref. 4] ...6
Figure 3. MYSEA Network Topology ..11
Figure 4. File System Before and After ..14
Figure 5. Test Network Topology ...19

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. WebDAV Methods ..3
Table 2. Stage Platform Information..15
Table 3. Functional Test Descriptions ...21
Table 4. Linux Server Functional Test Results..22
Table 5. Single Level Security Tests ...23
Table 6. Single Level XTS Server Functional Test Results ..23
Table 7. Single Level XTS Server Security Test Results ..24
Table 8. Multilevel Security Tests ...25
Table 9. Multilevel XTS Server Functional Test Results ..26
Table 10. Multilevel XTS Server Security Test Results..27

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Cynthia Irvine and Prof. Thuy Nguyen, for

the time, effort, and guidance they have provided throughout this project. I would also

like to thank Jean Khosalim and David Shifflett for their technical expertise and

assistance.

This material is based upon work supported by the National Science Foundation

under Grant No. DUE0414102. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACRONYMS AND ABBREVIATIONS

CGI Common Gateway Interface

COTS Commercial Off The Shelf

DAC Discretionary Access Control

DAV Distributed Authoring and Versioning

FTP File Transfer Protocol

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IMAP Internet Message Access Protocol

MAC Mandatory Access Control

MILS Multiple Independent Levels of Security

MLS Multilevel Secure

MYSEA Monterey Security Architecture

OS Operating System

RFC Request For Comments

SAK Secure Attention Key

SMTP Simple Mail Transfer Protocol

STOP Secure Trusted Operating Program

TCBE Trusted Computing Base Extension

TPE Trusted Path Extension

TSE Trusted Services Engine

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. MOTIVATION
The balance between providing access to data for those who need it, and

protecting that same data from unauthorized access is a difficult problem as well as a

major concern for project managers who must deal with classified information.

Multilevel Secure (MLS) systems provide a great deal of access restriction and,

hopefully, assurance that only those who have authorization to access the data can do so.

However, with this security often comes the sacrifice of usability, much to the chagrin of

users and administrators alike. Unfortunately, it has thus far proved too difficult to

provide both an adequate assurance of security as well as a user-friendly environment in

one operating system.

By using a more user-friendly operating system to remotely access data located on

the machine controlled by the more secure MLS operating system, it is possible to

provide users with access to the functions that are restricted by the MLS server but are

helpful for productivity. Security can also be maintained in this situation if measures are

taken to ensure that unauthorized downgrading of information is prevented. These

features are planned for the MYSEA client machines.

The motivation for this study is to use WebDAV to facilitate more flexible access

to sensitive data in the MYSEA environment while maintaining the security of the MLS

constraints.

B. PURPOSE
The objective of this project is to utilize the mod_dav Apache module in the

existing installation of Apache on the MYSEA server to provide remote users on the

MLS network a virtual file system with access to both private and public data stored on

the MYSEA server.

C. ORGANIZATION OF PAPER
This thesis is organized as follows:

• Chapter I provides an introduction to the motivation and purpose of this
thesis.

2

• Chapter II provides background information on WebDAV, the mod_dav
Apache module and the MYSEA project.

• Chapter III describes the goals of the thesis, the concept of operation and
the steps taken to complete the goal.

• Chapter IV describes the test plans used to validate each implementation
phase of this thesis.

• Chapter V concludes with a project summary, a discussion or related work
and suggestions for future work.

3

II. BACKGROUND

This chapter provides background information on various subjects related to the

integration of WebDAV into the MYSEA MLS environment. The first section covers the

WebDAV protocol extensions and uses as well as a specific implementation of the

protocol while the second section introduces the MYSEA project.

A. WEBDAV
 Web-based Distributed Authoring and Versioning (WebDAV) is a set of

extensions to the Hypertext Transfer Protocol (HTTP). It is described in RFC 2518 [1]

and developed by an Internet Engineering Task Force (IETF) working group that is

aimed at allowing users to collaboratively edit and manage files on a remote web server.

The goals of the WebDAV working group, as stated in their charter, are to "define the

HTTP extensions necessary to enable distributed web authoring tools to be broadly

interoperable, while supporting user needs." [2] In essence, WebDAV provides the

capability to not only read static objects over a network, but to perform more interactive

operations as well. The operations, or methods, included in WebDAV and a description

of their functions can be referenced in Table 1.

Table 1. WebDAV Methods

Method Description

PROPFIND This method is used to retrieve the properties of a resource from the server.

PROPPATCH This method is used to set the properties of a resource and propagate them to the server.

MKCOL This method is used to create a new directory, known here as a collection.

GET Essentially the same as the HTTP GET method, but extended for use with collections.

HEAD Essentially the same as the HTTP HEAD method, but extended for use with collections.

POST Same as the HTTP POST method. Includes all resources except for collections.

DELETE This method deletes a resource, including collections.

PUT Creates a new (non-collection) resource, or replaces and existing one, with data sent to the server.

COPY Creates a duplicate of the target resource, including collections.

MOVE Moves the target resource from its original location to a new location, including collections.

LOCK Makes the specified property of a resource unable to be changed, including collections.

UNLOCK Allows the specified property of a resource to be changed, including collections.

4

Figure 1. WebDAV Client-Server Architecture

Resources, collections and properties are the three major components of a

WebDAV file system. Resources are any type of file, including collections. Collections

are simply another word for directories. Properties are, to quote the RFC, “Properties are

pieces of data that describe the state of a resource. Properties are data about data.” [1] For

example, properties can contain basic information, such as subject and author, about a

given resource. Properties are embodied through the use of specialized XML tags and can

be controlled by both the server and the client.

1. WebDAV File System
An obvious use of these methods is to support a file system accessible from

remote clients, as is shown in Figure 1. WebDAV enabled access to this file system

would allow users to create, modify and share resources, within the specified WebDAV

directory, remotely over a network. This would allow for both private file storage and

5

collaborative file repositories. The root directory of a WebDAV directory tree can

coincide with an existing directory subtree, or can be isolated to its own section of the

existing file system.

2. mod_dav Apache Module
The WebDAV module for the Apache webserver (named mod_dav) is one of the

most common server-side implementations of the WebDAV protocol and is the

implementation used in this thesis. Apache uses mod_dav to extend its capabilities to

include those specified by the WebDAV protocol. The mod_dav module allows access to

individual subtrees to be controlled on a per user basis with an access control list (ACL)

determined in advance by the administrator via the standard configuration file. [3]

B. MYSEA
The Monterey Security Architecture (MYSEA) project is aimed at developing a

secure architecture that will allow services and data from various networks of differing

classification levels to be aggregated into a single, multilevel network. This is

accomplished using commercial-off-the-shelf (COTS) components for performing most

applications along with secure high assurance components that enforce the security

policies. The use of COTS resources is desirable since COTS products are usually less

expensive, more easily obtained and already in more widespread use than custom

proprietary hardware and software. Unfortunately, COTS products rarely have adequate

assurance that the policy they are designed to enforce will be done so sufficiently. This

problem is solved in MYSEA through the incorporation of high assurance components.

Thus in MYSEA, security is still enforceable across various sensitivity levels without

needing to have physically separate hardware for each level of security. MYSEA relies

on a high assurance platform that provides an adequate degree of certainty that the MLS

policies will be enforced. MYSEA is aimed at achieving a higher adoption rate than

previous MLS systems in organizations that already own a large number of COTS

resources and do not wish to incur the cost of replacing the hardware and training (or

retraining) their users on the new systems. [4][5]

Figure 2 is an illustration of the MYSEA network architecture. Communication

between an untrusted client on the MLS LAN and various application services on either

6

the server or any of the connected networks is handled by an XTS-400 high assurance

MLS server. This MLS server allows communication only at or below the currently

negotiated session level. The security level of each session is negotiated with the MLS

server via a Trusted Path Extension (TPE) that resides inline between the client and the

server and establishes a trusted path, which may be encrypted, to the MLS server.

Currently, the MYSEA server supports HTTP, SMTP and IMAP. Tarantella (a

web-portal for remotely running graphical applications, similar to X or Citrix), which

executes on servers located on attached single level networks, is also available. These

services allow for a wide variety of common applications to be used, but there is one

major component lacking: the ability to remotely access and modify files in an MLS

context. The goal of this thesis is to fill the gap by providing such a service through the

use of WebDAV via a module extension to the existing Apache web server within the

trusted, high assurance MYSEA server.

Figure 2. Testbed Topology [From Ref. 4]

7

C. SUMMARY
This chapter provided an introduction to WebDAV, gave brief background

information on the MYSEA project and its related components and discussed why this

thesis is needed. The next chapter will discuss the strategies used to get WebDAV

running in different modes of operation on both Linux and the MYSEA server.

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

III. PROJECT DESCRIPTION

This chapter will state the project goals, explain the concept of operation, describe

the details of the hierarchical file system design and describe the porting methodology.

The problems encountered during installation, as well as the steps taken to solve them,

will be discussed along with the methodology.

A. GOALS
The goal of this thesis is to utilize WebDAV in the MYSEA multilevel

environment to provide users on the MLS network with remote access to data whose

security classification is dominated by the security level of the currently authorized

session. Access to files is mediated by both the MAC and DAC policies of the server.

WebDAV provides facilities for reading, writing and locking files, which can be useful

for implementing a virtual network file system consisting of both a public file repository

and private data stores. Ultimately, the use of WebDAV allows users with a WebDAV

client to access data on the MYSEA server remotely, possibly in a similar manner to

mounting and accessing data with a standard network drive. (Detailed instructions for

using various clients to access a WebDAV directory can be found in Appendix A.) This

provides a facility for data to be conveniently and securely accessed remotely in the

MYSEA environment. Currently access to data on a MYSEA server is restricted to either

browsing static web pages or through various CGI scripts that allow limited operations

[6]. This project is intended to fill the need for more flexible access to data. A further

requirement is that the client be able to “read down” to data at a lower security level to

take advantage of the MLS capabilities offered by the server as well as to facilitate

effective use by the MYSEA clients planned for the future [4][5].

B. CONCEPT OF OPERATION
In the MYSEA MLS network environment it is necessary for a client to

authenticate to the MYSEA server before connecting to any service. Authentication can

be achieved using either a TPE (Trusted Path Extension) device or the cross platform

10

TCBE (Trusted Computing Base Extension) Java client. With either of these methods a

user can authenticate himself to the server and negotiate a session at a security level for

which the user is authorized. The level of the negotiated session determines what level of

access the user will have with any of the services on the MYSEA server, including

WebDAV. This, along with the binding between a user’s ID and subjects executing on

his behalf, allows the underlying STOP 6.1 operating system to be used to enforce both

MAC and DAC security policies.

Once the user is logged in and the session level is selected, a WebDAV client may

be used to access files and perform operations (such as read, write, lock and unlock)

available via the WebDAV server. Instructions for using various WebDAV clients can be

found in Appendix A.

Once connected to the MYSEA WebDAV server, a user can access both private

and public data at a level equal to or below the current session level. Whereas the private

directories are available only to the user that owns them, the public directories are

accessible by any user able to establish a session at the appropriate security level. The

only other restriction is that files that are locked by a user cannot be overwritten or

modified in any way until the lock is released.

The following two example scenarios illustrate possible collaboration between

two users via WebDAV in a multilevel environment.

Scenario 1: Alice and Bob are logged in at the same security level. They can both

simultaneously edit multiple files in the WebDAV directory, both in the public area and

their own private directories. Alice decides she wants to edit the file “readme.txt” in the

public directory, so she first locks the file to make sure that Bob cannot modify the same

file while she is working on it. When Bob tries to edit “readme.txt”, he will be able to

open the file, but will be unable to save any changes because of the lock. However, Bob

can save his edited copy of “readme.txt” to his private directory so that he can come back

later to save his changes.

Scenario 2: Alice and Bob are logged in at different security levels; with Bob’s

level dominating Alice’s. Alice still edits the “readme.txt” file, which is at the same level

as Alice’s established session level, but this time she forgets to lock it first. Bob can still

11

open up, read and edit “readme.txt”, but he cannot save the changes since he is not

allowed to write information down to a lower level, as per the MAC policy. However,

when Bob saves his edited version of “readme.txt”, this time it will be saved at Bob’s

session level.

Although the process of connecting to and using WebDAV resources from a

remote client is fairly simple, the exact steps differ from one client to another. Most

major operating systems include support for connecting to and working with WebDAV

servers by default. In most cases, the process of connecting to a WebDAV server is very

similar, if not identical, to connecting to and mounting a network drive. There is also a

third party application called Cadaver [7] that runs on any UNIX based operating system.

Cadaver acts like most command line FTP clients and allows for the use of a wider range

of WebDAV functions (such as file locking) as compared to the graphical clients (i.e. the

clients accessible through a GUI). Instructions for using built-in WebDAV clients (for

Windows, Fedora Core 4 and Macintosh) as well as for using Cadaver are provided in

Appendix A.

Figure 3. MYSEA Network Topology

12

The Apache server that is currently installed and configured on the MYSEA

server is only accessible from the MLS network and not from any of the single level

networks connected to the MYSEA server. It would be possible to set up an Apache

server with WebDAV for each of the single level networks to allow access to the same

set of data as is available to the MLS network. Since users accessing from a single level

network cannot change their session level via a TPE or TCBE, access would be less

flexible than from the MLS network since users on a single level network are restricted to

the security level that network is bound to. A user on a single level network would still be

able to read down to data at a lower security level, but would be unable to read anything

higher or write anything other than at the level he or she is bound to, even though the user

may be cleared for access to more sensitive information. See Figure 3 for an illustration

of the network topology.

C. DESIGN
Currently, the file system on the XTS-400 is set up to keep most of the MYSEA-

related applications (including the Apache httpd binary), configuration files and data in

one directory, specifically “/usr/local/mysea/”1. However, Apache has been configured in

MYSEA to use “/home/http/”, the home directory of the http user, to store its various

configuration files and data, while “/usr/local/mysea/apache/” contains the executable

binary and related source code. The main configuration file is named and located at

“/home/http/conf/httpd.conf” and the Document Root is located at “/home/http/htdocs/”.

The Document Root, by definition, contains all of the files that can be served by (i.e.

accessed remotely through) the Apache server.

To add WebDAV support to the existing Apache server, a new directory,

“/home/http/htdocs/dav/”, was added to the Document Root. For the central public

WebDAV directory, a new directory, “/home/http/htdocs/dav/public/”, was created. To

allow individual users to have a private data store available via WebDAV, a new

directory, “/home/http/htdocs/dav/private/”, was added to contain a symbolic link to each

1 This and all directory paths given in this chapter are absolute (with respect to the root of the file

system) rather than relative. All directories referenced are at secrecy level 0 and integrity level 3 unless
otherwise noted.

13

user’s home directory. The Apache configuration was then altered (as per the instructions

in Appendix A) to allow WebDAV to be used in the “/home/http/htdocs/dav/” directory.

This also allows all subdirectories of this directory, the root DAV directory, to be

accessed with WebDAV. See Figure 4 for an illustration of the changes made to the file

system.

For each directory in the XTS-400 file system that is set up for WebDAV use,

both in the public and private sections, various subdirectories need to be created for each

combination of secrecy and integrity levels that need to be accessed. These different

single level directories need to be created administratively and cannot be added by the

user via WebDAV. An alternative, simpler way to implement a similar scheme would be

to use a deflection directory. However, associated with the deflection directory method

are the undesirable consequences described below.

14

Figure 4. File System Before and After

A deflection directory is, in essence, a directory that exists independently at all

security levels simultaneously. In the deflection model, when a directory is accessed an

instance of the directory corresponding to the current security level is automatically

chosen by the OS. There is no possibility of accessing a deflection directory at a level

other than the level of the current session, and no data is shared between different

instances. This ensures that no data can be read from a higher security level or written to

a lower security level. However, the use of deflection directories also prevents data from

being read from a security level lower than that of the current session. Since it is a

MYSEA requirement that users can read data at a lower security level, this arrangement

15

was deemed unacceptable. This requirement led to the conclusion that using separate

directories for each security level was a more desirable design than that of using a single

deflection directory.

To keep the personal WebDAV directories private, their DAC properties were set

to allow only the owner to have read and write access to these directories. Each user also

needs to have an individual directory for each security level accessed. Since the user

cannot create these directories at the required security levels over the WebDAV

connection, it is necessary for the administrator to create, at the minimum, a select few

directories at commonly used security levels at the time the user account is created.

D. METHODOLOGY
While it would have been possible to begin by implementing WebDAV in the

multilevel MYSEA environment, as was ultimately the goal, it would have been much

more difficult to trace any errors to Apache, mod_dav, the MYSEA services or the

underlying STOP 6.1 operating system. Instead, the implementation was performed in

stages, with testing conducted at each stage to ensure that the required functionality was

preserved. Table 2 contains information about the platforms used in each stage.

The minimal testing performed at each stage consisted of connecting to the server

and attempting to read and modify an existing file. This testing was done merely to

ensure that the installation had been successful and was performed with the client on the

machine running Linux. More thorough testing will be discussed in Chapter IV.

Hardware OS Security Context Apache Version mod_dav Version

Stage 1 Dell Inspiron Fedora Core 4 N/A 1.3.34 1.0.3

Stage 2 XTS-400 STOP 6.1 Single Level 1.3.34 1.0.3

Stage 3 XTS-400 STOP 6.1 Multilevel 1.3.34 1.0.3

Table 2. Stage Platform Information

16

1. Linux
For the first stage, Apache 1.3.34 [8] and mod_dav 1.0.3 [9] were downloaded

and installed on a Dell laptop running Linux, specifically Fedora Core 4 [10]. Here the

purpose was familiarization with the installation and use of WebDAV and Apache.

Apache was chosen for use not only because it is among the most widely used web

servers but because it is already installed and operating in the MYSEA testbed. Adding

mod_dav, an Apache module to enable the use of WebDAV, to the existing Apache

server seemed to be the most straightforward route to implementing WebDAV in the

MYSEA environment. Using the documentation that accompanied the downloaded files,

both Apache and mod_dav were compiled and installed without incident. After the

successful completion of a few basic tests that demonstrated the operation of WebDAV

in a standard environment it was decided to move on to the next step.

2. Single Level XTS
After familiarization with the XTS-400, the same versions of Apache and

mod_dav as are discussed in the previous section were downloaded, installed and

configured on the XTS-400 running the STOP 6.1 [11] operating system. For this phase,

Apache was configured to run as a standalone server at a single classification level. The

security level of this server needed to be secrecy level 1 and integrity level 3 since the

network interface chosen for use is configured to be accessible only as this level. The

only hurdles to this goal were those related to familiarization with the new operating

system, specifically problems associated with properly starting the networking services.

Since the installation and configuration were identical to those of the Linux system, it

took very little time to set up Apache with mod_dav at a single level on the XTS-400.

Some basic functionality tests were successfully performed; these ensured that the

installation had been performed properly. After these encouraging results the next step

was to install and configure mod_dav in the multilevel environment.

3. Multilevel XTS
For a single Apache server to be available at multiple levels, it must be set up as

an inetd service, bound to a specific port and registered with the MYSEA daemon. The

MYSEA services behave similarly to the classic inetd service in that they listen for new

incoming connections and spawns new processes as appropriate to handle incoming

17

requests. The difference is that the MYSEA services will spawn the new process at the

same security and integrity level as the negotiated level of the incoming request.

However, for a service to work like this in MYSEA, application code must be modified

to use a form of virtual sockets implemented in the MYSEA system rather than the

standard socket implementation.

Since Apache 1.3.12 [12] had already been modified to use the virtual sockets,

and since mod_dav is advertised in the documentation as being compatible with versions

of Apache as old as 1.3.6 [3], an attempt was made to install mod_dav with the existing

Apache installation. Unfortunately, mod_dav did not work with this setup. Apache still

worked after installing mod_dav, but any attempt to use the new protocol methods

specific to WebDAV was met with a 405 “Method Not Allowed” error.

To ensure that this error was not simply caused by the code modifications

interfering with mod_dav, an unmodified version of Apache 1.3.12 was tested at a single

level, as was successfully done with Apache 1.3.34 previously. However, the same error

occurred. It was then decided to test an unmodified version of Apache 1.3.12 on Fedora

Core 4. This was to ensure that the problem wasn’t associated with the XTS-400.

Surprisingly, this attempt was met with the same error as before, even though mod_dav

documentation claims that it works with Apache 1.3.12. Rather than spend more time

attempting to determine the cause of the error, it was decided that the best course of

action would be to make the appropriate modifications to Apache 1.3.34 in order to get it

to function with the MYSEA services.

Once the MYSEA installation of Apache had been upgraded to version 1.3.34,

another attempt was made to install and utilize mod_dav in the MYSEA environment.

With only a slight modification to the installation procedure and configuration from the

previous stages, mod_dav was successfully installed and run. Basic testing confirmed that

mod_dav was indeed functioning correctly. Comprehensive testing was subsequently

performed, the procedures and results of which are described in Chapter IV.

18

E. SUMMARY
This chapter explained the goals of this thesis, described the design of the file

system structure, provided a concept of operation and detailed the steps taken to

incorporate WebDAV in various environments. The next chapter will outline a test plan

to ensure that both functional and security requirements are met as well as describe the

details of the test results.

19

IV. TESTING AND RESULTS

This chapter will detail the functional and security tests for the use of WebDAV

in various settings and capacities. Functional testing is required in order to compare the

actual WebDAV functionality to the expected functionality. The functional tests confirm

whether the functionality expected of the system is operable and provide a quantifiable

measurement of the ability of the system to successfully perform the desired tasks. The

tests performed fall into three categories: Linux, Single Level XTS and Multilevel XTS.

Each of these categories corresponds to a stage as described in Table 2 in the previous

chapter.

Figure 5. Test Network Topology

20

Security testing is required to ensure that the MAC and DAC policies are

correctly enforced. Since the DAC policies on the Linux may be implemented differently

than those on the XTS-400, only the two XTS stages were tested for security. The

security tests performed fall into two categories: Single Level XTS and Multilevel XTS.

In the multilevel category, the testing scope was expanded to encompass the added

security parameter possibilities.

All testing was performed on a small network with five computers connected via

a switch, as illustrated in Figure 5. The operating systems used on the five systems will

be: Fedora Core 4, Windows XP, Mac OS X 10.3 and STOP 6.1 (as part of the XTS-

400). The Windows, Mac and Linux systems were used as the clients, whereas a Linux

system and the XTS-400 acted as the server in different implementation phases illustrated

in Table 2 of Chapter III. In all three cases, the Windows computer, the Macintosh and at

least one of the Linux computers were used as clients to test the WebDAV server. On the

Windows and Macintosh machines, the built in WebDAV client was used. On the Linux

clients, both the built in WebDAV client and an open source client, called Cadaver, were

used. Simultaneous connections from multiple clients were tested with no issues.

A. FUNCTIONAL TEST PLAN
Tests were performed on both files and directories. The functions tested in each

implementation were as follows: read, write, create, lock, unlock, delete, make directory,

change directory and delete directory. These functions were tested with all four types of

WebDAV clients.

The success or failure of a particular test is indicated with a simple pass/fail

notation. The requirement for a “pass” mark is only that the desired outcome is achieved.

All of these tests are expected to pass where the related function has been implemented in

the client.

21

Test # Test Type Test Description
A1 Read Test A1 ensures that files can be read via the

WebDAV client.
A2 Write Test A2 ensures that files can be written via the

WebDAV client.
A3 Create Test A3 ensures that files can be created via the

WebDAV client.
A4 Lock Test A4 ensures that files can be locked via the

WebDAV client.
A5 Unlock Test A5 ensures that files can be unlocked via the

WebDAV client.
A6 Delete Test A6 ensures that files can be deleted via the

WebDAV client.
A7 Make Directory Test A7 ensures that directories can be created via

the WebDAV client.
A8 Change Directory Test A8 ensures that directories can be traversed via

the WebDAV client.
A9 Delete Directory Test A9 ensures that directories can be deleted via

the WebDAV client.
A10 Read Nonexistent File Test A10 ensures that no unrecoverable errors occur

when attempting to read a file that does not exist.
A11 Delete Nonexistent File Test A11 ensures that no unrecoverable errors occur

when attempting to delete a file that does not exist.
A12 Lock Nonexistent File Test A12 ensures that no unrecoverable errors occur

when attempting to lock a file that does not exist.
A13 Unlock Nonexistent File Test A13 ensures that no unrecoverable errors occur

when attempting to unlock a file that does not exist.
A14 Delete Nonexistent Directory Test A14 ensures that no unrecoverable errors occur

when attempting to delete a directory that does not
exist.

Table 3. Functional Test Descriptions

B. LINUX TESTING
The functional tests performed using Linux as the server define a baseline of

functionality desired for a WebDAV server. In other words, if a particular function did

not work on the Linux implementation of the WebDAV server, then it is not expected to

work on the XTS-400 implementation either.

1. Test Results
All of the clients tested performed perfectly, with one exception. The exception is

that all of the graphical clients, the ones that were built into the various operating

systems, had no facilities for locking or unlocking files or directories, or interacting with

nonexistent files or directories. Cadaver, however, was able to lock and unlock both files

and directories with ease. Files that were locked with Cadaver were unable to be

22

overwritten by any client, but they could still be read (as should be the case). Test results

marked “N/A” were those that cannot be performed with graphical clients, as noted

above.

Test # Test Type Windows

Explorer
Macintosh

Finder
Linux

Gnome
Cadaver

A1 Read Pass Pass Pass Pass
A2 Write Pass Pass Pass Pass
A3 Create Pass Pass Pass Pass
A3 Lock N/A N/A N/A Pass
A4 Unlock N/A N/A N/A Pass
A5 Delete Pass Pass Pass Pass
A6 Make Directory Pass Pass Pass Pass
A7 Change Directory Pass Pass Pass Pass
A8 Delete Directory Pass Pass Pass Pass
A9 Read Nonexistent File N/A N/A N/A Pass
A10 Delete Nonexistent File N/A N/A N/A Pass
A11 Lock Nonexistent File N/A N/A N/A Pass
A12 Unlock Nonexistent File N/A N/A N/A Pass
A13 Delete Nonexistent Directory N/A N/A N/A Pass

Table 4. Linux Server Functional Test Results

C. SINGLE LEVEL XTS TESTING
The tests described in this section were performed on the XTS-400 and were

designed to test that the relevant MAC security constraints are met by the implementation

and that no functionality was lost in the transition from the Linux server to the XTS-400

single level implementation.

1. Security Test Plan
The set of tests described in Table 5 were designed to determine whether or not

the MAC secrecy constraints are adequately enforced over a WebDAV connection. Since

this implementation of the server is bound to a single security level, only variance in the

security levels of the objects being accessed can be tested.

23

Test # Test Type Session Level Object Level Operation Expected Result

Secrecy Read Up sl1:il3 sl2:il3 Read Fail
B1 Test B1 ensures that a user is not able to read data from a secrecy level higher than the level of the

currently established session.
Secrecy Read Down sl1:il3 sl0:il3 Read Pass

B2 Test B2 ensures that a user is able to read data from a secrecy level lower than the level of the
currently established session.
Secrecy Read Equal sl1:il3 sl1:il3 Read Pass

B3 Test B3 ensures that a user is able to read data from a secrecy level equal to the level of the
currently established session.
Secrecy Write Up sl1:il3 sl2:il3 Write Fail

B4 Test B4 ensures that a user is not able to write data to a secrecy level higher than the level of the
currently established session.
Secrecy Write Down sl1:il3 sl0:il3 Write Fail

B5 Test B5 ensures that a user is not able to write data to a secrecy level lower than the level of the
currently established session.
Secrecy Write Equal sl1:il3 sl1:il3 Write Pass

B6 Test B6 ensures that a user is able to write data to a secrecy level equal to the level of the
currently established session.

Table 5. Single Level Security Tests

2. Test Results
As Table 6 shows, the results of the functional tests were the same as those

performed with the Linux server. This indicates that no functionality was changed during

the transition to the XTS-400.

Test # Test Type Windows

Explorer
Macintosh

Finder
Linux

Gnome
Cadaver

A1 Read Pass Pass Pass Pass
A2 Write Pass Pass Pass Pass
A3 Create Pass Pass Pass Pass
A3 Lock N/A N/A N/A Pass
A4 Unlock N/A N/A N/A Pass
A5 Delete Pass Pass Pass Pass
A6 Make Directory Pass Pass Pass Pass
A7 Change Directory Pass Pass Pass Pass
A8 Delete Directory Pass Pass Pass Pass
A9 Read Nonexistent File N/A N/A N/A Pass
A10 Delete Nonexistent File N/A N/A N/A Pass
A11 Lock Nonexistent File N/A N/A N/A Pass
A12 Unlock Nonexistent File N/A N/A N/A Pass
A13 Delete Nonexistent Directory N/A N/A N/A Pass

Table 6. Single Level XTS Server Functional Test Results

24

The results in Table 7 show that all of the tested clients interacted with the server

as expected when faced with MAC secrecy constraints of the types shown. These results

are encouraging and show that, at least for basic secrecy interactions, the MAC policies

are properly enforced over WebDAV.

Test # Test Type Windows Macintosh Linux Cadaver
B1 Secrecy Read Up Fail Fail Fail Fail
B2 Secrecy Read Down Pass Pass Pass Pass
B3 Secrecy Read Equal Pass Pass Pass Pass
B4 Secrecy Write Up Fail Fail Fail Fail
B5 Secrecy Write Down Fail Fail Fail Fail
B6 Secrecy Write Equal Pass Pass Pass Pass

Table 7. Single Level XTS Server Security Test Results

D. MULTILEVEL XTS TESTING
The tests described in this section were performed on the XTS-400 and were

designed to test that the relevant MAC security constraints are met by the implementation

and that no functionality was lost in the transition from the single level to the multilevel

implementation on the XTS-400.

1. Security Test Plan
The set of tests described in Table 8 were designed to determine whether or not

the MAC and DAC security constraints are adequately enforced over a WebDAV

connection. This implementation of the server is able to operate with sessions established

at different secrecy and integrity levels, so appropriate tests that varied the secrecy and

integrity levels of both the session and the objects were performed.

Since many different users can establish a session with the server, tests were also

included to ensure that the DAC policies were also adhered to. These tests were

performed with the owner of the session and the owner of the object differing from each

other. The secrecy levels of the objects were also varied to make sure a “high” user can

not access the files of a different “low” user, and vice versa, in an unauthorized manner.

25

Test # Test Type Session Level Object Level Operation Expected Result
C1 sl1:il3 sl2:il3 Read Fail
C2 sl2:il3 sl3:il3 Read Fail
C3

Secrecy Read Up
sl3:il3 sl4:il3 Read Fail

 Tests C1 through C3 ensure that a user is not able to read data from a secrecy level
higher than the level of the currently established session.

C4 sl1:il3 sl0:il3 Read Pass
C5 sl2:il3 sl1:il3 Read Pass
C6

Secrecy Read Down
sl3:il3 sl2:il3 Read Pass

 Tests C4 through C6 ensure that a user is able to read data from a secrecy level lower
than the level of the currently established session.

C7 sl1:il3 sl1:il3 Read Pass
C8 sl2:il3 sl2:il3 Read Pass
C9

Secrecy Read Equal
sl3:il3 sl3:il3 Read Pass

 Tests C7 through C9 ensure that a user is able to read data from a secrecy level equal
to the level of the currently established session.

C10 sl1:il3 sl2:il3 Write Fail
C11 sl2:il3 sl3:il3 Write Fail
C12

Secrecy Write Up
sl3:il3 sl4:il3 Write Fail

 Tests C10 through C12 ensure that a user is not able to write data to a secrecy level
higher than the level of the currently established session.

C13 sl1:il3 sl0:il3 Write Fail
C14 sl2:il3 sl1:il3 Write Fail
C15

Secrecy Write Down
sl3:il3 sl2:il3 Write Fail

 Tests C13 through C15 ensure that a user is not able to write data to a secrecy level
lower than the level of the currently established session.

C16 sl1:il3 sl1:il3 Write Pass
C17 sl2:il3 sl2:il3 Write Pass
C18

Secrecy Write Equal
sl3:il3 sl3:il3 Write Pass

 Tests C16 through C18 ensure that a user is able to write data to a secrecy level equal
to the level of the currently established session.
DAC Read Down sl1:il3 sl0:il3 Read Fail C19
Test C19 ensures that a user is not able to read data from a file that is owned by
another user, has permissions set to allow only the owner to read and has a secrecy
level lower than the level of the currently established session.
DAC Read Equal sl1:il3 sl1:il3 Read Fail C20
Test C20 ensures that a user is not able to read data from a file that is owned by
another user, has permissions set to allow only the owner to read and has a secrecy
level equal to the level of the currently established session.
DAC Write Equal sl1:il3 sl1:il3 Write Fail C21
Test C21 ensures that a user is not able to write data to a file that is owned by another
user, has permissions set to allow only the owner to write and has a secrecy level equal
to the level of the currently established session.
Multiple Lock sl1:il3 sl1:il3 Lock Fail C22
Test C22 ensures that multiple users are not able to lock the same file simultaneously.
Multiple Lock/Write sl1:il3 sl1:il3 Lock/Write Fail C23
Test C23 ensures that a user is not able to write to a file that has been locked by
another user.

Table 8. Multilevel Security Tests

26

2. Test Results
As Table 9 shows, the results of the functional tests were the same as the results

of the tests performed with the Linux server and the server running on the XTS-400 at a

single level. This indicates that no functionality was changed during the transition to the

multilevel XTS-400 environment.

Test # Test Type Windows

Explorer
Macintosh

Finder
Linux

Gnome
Cadaver

A1 Read Pass Pass Pass Pass
A2 Write Pass Pass Pass Pass
A3 Create Pass Pass Pass Pass
A3 Lock N/A N/A N/A Pass
A4 Unlock N/A N/A N/A Pass
A5 Delete Pass Pass Pass Pass
A6 Make Directory Pass Pass Pass Pass
A7 Change Directory Pass Pass Pass Pass
A8 Delete Directory Pass Pass Pass Pass
A9 Read Nonexistent File N/A N/A N/A Pass
A10 Delete Nonexistent File N/A N/A N/A Pass
A11 Lock Nonexistent File N/A N/A N/A Pass
A12 Unlock Nonexistent File N/A N/A N/A Pass
A13 Delete Nonexistent Directory N/A N/A N/A Pass

Table 9. Multilevel XTS Server Functional Test Results

The results in Table 10 show that all of the tested clients interacted with the server

as expected when faced with MAC and DAC constraints of the types shown. These

results are encouraging and show that even for complex security interactions, the MAC

and DAC policies are properly enforced over WebDAV.

27

Test # Test Type Windows Macintosh Linux Cadaver
C1 Fail Fail Fail Fail
C2 Fail Fail Fail Fail
C3

Secrecy Read Up
Fail Fail Fail Fail

C4 Pass Pass Pass Pass
C5 Pass Pass Pass Pass
C6

Secrecy Read Down
Pass Pass Pass Pass

C7 Pass Pass Pass Pass
C8 Pass Pass Pass Pass
C9

Secrecy Read Equal
Pass Pass Pass Pass

C10 Fail Fail Fail Fail
C11 Fail Fail Fail Fail
C12

Secrecy Write Up
Fail Fail Fail Fail

C13 Fail Fail Fail Fail
C14 Fail Fail Fail Fail
C15

Secrecy Write Down
Fail Fail Fail Fail

C16 Pass Pass Pass Pass
C17 Pass Pass Pass Pass
C18

Secrecy Write Equal
Pass Pass Pass Pass

C19 DAC Read Down Fail Fail Fail Fail
C20 DAC Read Equal Fail Fail Fail Fail
C21 DAC Write Equal Fail Fail Fail Fail
C22 Multiple Lock N/A N/A N/A Fail
C23 Multiple Lock/Write N/A N/A N/A Fail

Table 10. Multilevel XTS Server Security Test Results

E. PROBLEMS ENCOUNTERED
There was only one major problem encountered during the testing of the

WebDAV servers, and it occurred only with the instance installed in the multilevel

environment. When accessing one of the directories that contained subdirectories with

varying security levels, the “/home/http/htdocs/dav/public/” directory for example, any

attempt to list the contents of the directory via WebDAV failed unless the current session

was at the same level as the highest level subdirectory present. For example, say a

directory has three subdirectories at the levels sl0:il3, sl1:il3 and sl2:il3. If a user with a

session established at sl1:il3 attempts to list the contents of this directory with WebDAV,

the operation will fail. If another user with a session established at s12:il3 attempts to list

the contents of this directory with WebDAV, the operation will succeed.

In order to fix this problem, the source code for mod_dav will likely need to be

edited. It is suspected that the failure stems from the use of a stat() function to determine

the properties of the contents of the directories. The stat() function is likely to fail when

28

attempted on a directory with a level higher than that of the current session. Since

mod_dav is not multilevel aware and does not expect the stat() function to fail, mod_dav

returns an error rather than a partial directory listing.

This error should be possible to fix with minimum effort, pinpointing the exact

cause, however, could prove difficult. It has been decided that rectifying this error is

beyond the scope of this thesis.

F. SUMMARY
This chapter explained both the functional and security tests performed on three

instances of the WebDAV server: on Linux, on the XTS-400 at a single level and on the

XTS-400 at multiple levels. In addition the results of the tests were explained. The next

chapter will discuss the results and conclusions of the work performed and will suggest

possible future work in related areas.

29

V. CONCLUSION AND FUTURE WORK

This chapter will state the project conclusions, discuss a related project and

suggest possible work for the future.

A. CONCLUSION
The goal of this thesis is to utilize WebDAV in the MYSEA multilevel

environment to provide users on the MYSEA MLS network with remote access to data

whose security classification is dominated by the security level of the currently

authorized session. This goal has been successfully achieved through the use of Apache

and the mod_dav module on the MYSEA server. The tests described in Chapter IV

confirmed that the WebDAV server is fully functional (with the only limitations being in

the functions implemented in some of the clients) and that it adequately enforces the

MAC and DAC policies of the MYSEA server.

B. RELATED WORK
Galois Connections, Inc. has a cross-domain solutions project called the Trusted

Services Engine (TSE) that utilizes WebDAV to implement a MILS file system that is

remotely accessible over a network. [13] The major difference between the TSE and the

way WebDAV is used in the MYSEA environment is that the TSE is built on a MILS

kernel that requires a separate hard disk and an independent instance of each server at

each security level in order to provide multilevel services. This approach does not scale

well to arbitrary numbers of security levels since each additional level would require its

own hard disk and another instance of each required software component. The MYSEA

server is trusted to provide multilevel protection while using only one shared file system.

It also automatically spawns new instances of each server process at the appropriate

security level as new connections are established.

30

C. FUTURE WORK
There were two major issues that arose through the work on this thesis that

warrant further work.

1. Account Setup
The first issue is the amount of effort required by an administrator to set up

individual user accounts for use with WebDAV. As it stands, an administrator must

manually create various directories at the proper security levels for each user that requires

access to private data via WebDAV. Creating and setting these directories to various

security levels is a time consuming process. However, this process can be automated.

2. Directory Listing
The second issue is the inability to list the contents of directories that contain

items at different security levels. Although this problem is mostly an inconvenience, it is

most likely possible to modify the source code for the mod_dav module in such a way as

to overcome this error.

3. Expanded WebDAV Access
As discussed in Section B of Chapter III, the third future work item is to set up

separate instances of Apache with mod_dav on the MYSEA server, one for each of the

connected single level networks. Each of these instances would share the same document

root, which could also coincide with the document root used by the server in this thesis,

thus allowing more authorized users access to the same shared data at multiple levels

while still allowing for “read down” capabilities.

31

APPENDIX A: INSTALLATION PROCEDURES

This appendix describes the installation procedures for the Apache 1.3.34 web

server, the mod_dav 1.0.3 Apache module and the Cadaver 0.22.2 WebDAV client.

Instructions for testing the installation and using various WebDAV clients are also

provided. Each section is independent and does not depend of the steps performed in any

other section. The only exception is that the testing procedures cannot be performed until

at least one of the mod_dav installations had occurred. Each set of instructions will

explicitly state which operating system the steps are to be performed on.

The following instructions also make reference to the Secure Attention Key

(SAK). On the XTS-400, the SAK is invoked by simultaneously pressing both the “Alt”

and “SysRq” (a.k.a. “Print Screen”) keys. This allows special trusted commands to be

performed. Of special note are two trusted commands: the sl command and the fsm

command. The sl command is used to set the security level of a session while the fsm

command is used to view and edit various properties (i.e. the MAC and DAC

permissions) of files and directories.

A. INSTALLATION AND TEST TOPOLOGY
The network topology used for this installation and testing activity consists of

four computers connected via a switch as shown in Figure 5 of Chapter IV.. Of these four

computers, two run Fedora Core 4, one Windows XP and the last is an XTS-400 running

the STOP 6.1 operating system.

B. LINUX INSTALLATION
All of the procedures in this section are to be performed as the root user on a

machine running Fedora Core 4. These procedures download, install and configure the

Apache 1.3.34 web server along with the mod_dav 1.0.3 Apache module.

Step 1. Download and unpack the Apache server and the mod_dav module from

the installation CD:

cd /root
cp /media/cdrom/apache_1.3.34.tar.gz ./
cp /media/cdrom/mod_dav-1.0.3-1.3.6.tar.gz ./
gunzip apache_1.3.34.tar.gz

32

tar -xvf apache_1.3.34.tar
gunzip mod_dav-1.0.3-1.3.6.tar.gz
tar -xvf mod_dav-1.0.3-1.3.6.tar

Step 2. Build and install mod_dav into the Apache source directory. While this is

done before Apache is built and installed, the Apache configuration script must be run

first to ensure that certain files required for mod_dav configuration are present.

cd /root/apache_1.3.34
./configure --prefix=/usr/local/apache13
cd /root/mod_dav-1.0.3-1.3.6
./configure --with-apache=/root/apache_1.3.34
make
make install

Step 3. Build and install Apache:

cd /root/apache_1.3.34
./configure --prefix=/usr/local/apache13 --activate-

module=src/modules/dav/libdav.a
make
make install

Step 4. Save and edit the default Apache configuration:

cd /usr/local/apache13/conf/
cp httpd.conf httpd.conf.bak
vi httpd.conf

Step 5. Append the following text to the end of the “httpd.conf” file:

DAVLockDB /usr/local/apache13/var/DAVLock
<Location /dav>
 DAV On
</Location>

Step 6. Create the two directories referenced in the configuration lines above:

mkdir /usr/local/apache13/var
mkdir /usr/local/apache13/htdocs/dav
/usr/local/apache13/bin/apachectl start

33

Once all of these steps have been completed, the installation and configuration of

Apache and mod_dav on Fedora Core 4 is finished. The test outlined in Section F of this

appendix should be performed to ensure that the installation was performed correctly.

C. XTS SINGLE LEVEL INSTALLATION
All of the procedures in this section are to be performed as the “admin” user on

the XTS-400. These procedures download, install and configure the Apache 1.3.34 web

server along with the mod_dav 1.0.3 Apache module. For this section, a base install of

the MYSEA package on an XTS-400 running the STOP 6.1 operating system is assumed.

Step 1. Download the Apache server and the mod_dav module from the

installation CD. A special tool, named cdtool, is used on the XTS-400 to transfer files

from a CD. Unless otherwise noted, the steps in this section must be performed at the

security level sl1:il3 since that is the configured level of the network interface used by the

server.

(set security and integrity levels – min:oss)
cd /home/admin
cdtool cp /apache_1.3.34.tar.gz ./apache_1.3.34.tar.gz
cdtool cp /mod_dav-1.0.3-1.3.6.tar.gz ./mod_dav-1.0.3-

1.3.6.tar.gz

Step 2. Change the security level of the downloaded files to sl1:il3:

SAK
Enter command? fsm
Enter request? change
Enter pathname? /home/http/htdocs/dav/public/sl1il3
Modify access level? yes
Enter new security level? sl1
Enter new integrity level? il3
Is the level correct? yes
Enter new owner name? admin
Enter new group name? stop
Modify discretionary access? no
Display the object? no
Okay to change? yes

Step 3. Unpack the Apache server and the mod_dav module:

34

(set security and integrity levels – sl1:il3)
gunzip apache_1.3.34.tar.gz
tar xvf apache_1.3.34.tar
gunzip mod_dav-1.0.3-1.3.6.tar.gz
tar xvf mod_dav-1.0.3-1.3.6.tar

Step 4. Build and install mod_dav into the Apache source directory. While this is

done before Apache is built and installed, the Apache configuration script must be run

first to ensure that certain files required for mod_dav configuration are present.

cd /home/admin/apache_1.3.34
./configure --prefix=/home/sldav/apache
cd /home/admin/mod_dav-1.0.3-1.3.6
./configure --with-apache=/home/admin/apache_1.3.34
make
make install

Step 5. Build and install Apache:

cd /home/admin/apache_1.3.34
./configure --prefix=/home/admin/apache --activate-

module=src/modules/dav/libdav.a
make
make install

Step 6. Save and edit the default Apache configuration:

cd /home/sldav/apache/conf/
cp httpd.conf httpd.conf.bak
vi httpd.conf

Step 7. Append the following text to the end of the “httpd.conf” file:

DAVLockDB /home/admin/apache/var/DAVLock
<Location /dav>
 DAV On
</Location>

Step 8. Create the two directories referenced in the configuration lines above:

mkdir /home/admin/apache/var
mkdir /home/admin/apache/htdocs/dav

35

Step 9. Before performing this step, make sure that the network interfaces and

daemons have been started using the trusted startup command.

/home/admin/apache/bin/apachectl start

Once all of these steps have been completed, the installation and configuration of

Apache and mod_dav at a single level on the XTS-400 is finished. The test outlined in

Section F of this appendix should be performed to ensure that the installation was

performed correctly.

D. XTS MULTILEVEL INSTALLATION
All of the procedures in this section are to be performed as the “admin” user on

the XTS-400, except where otherwise noted. These procedures download, install and

configure the mod_dav 1.0.3 Apache module with the existing Apache 1.3.34 installation.

For this section, a base install of the MYSEA package on an XTS-400 running the STOP

6.1 operating system is assumed.

Step 1. Download and unpack the Apache server and the mod_dav module from

the installation CD. A special tool, named cdtool, is used on the XTS-400 to transfer files

from a CD.

(set security and integrity levels – min:oss)
cd /home/admin
cdtool cp /dev/cdrom /mod_dav-1.0.3-1.3.6.tar.gz ./mod_dav-1.0.3-

1.3.6.tar.gz
gunzip mod_dav-1.0.3-1.3.6.tar.gz
exit

(set security and integrity levels – sl0:il3)
cd /usr/local/mysea/apache
tar xvf /home/admin/mod_dav-1.0.3-1.3.6.tar
mv mod_dav-1.0.3-1.3.6 mod_dav

Step 2. Edit the Apache install configuration:

cd /usr/local/mysea/apache/src
vi Configuration

36

Step 3. Append the following text to the end of the “Configuration” file:

AddModule modules/dav/libdav.a

Step 4. Configure mod_dav. While this is done before Apache is built, the Apache

configuration script needs to be run first to ensure that certain files required for mod_dav

configuration are present.

./Configure
cd /usr/local/mysea/apache/mod_dav
./configure --with-apache=/usr/local/mysea/apache

Step 5. Edit the mod_dav makefile. This is necessary to tell mod_dav where to

look for special MYSEA source code headers.

vi Makefile

Step 6. Find the line that starts with “ALL_CFLAGS = $(CPPFLAGS)” and add

the following text immediately afterwards on the same line:

-I/usr/local/mysea/include

Step 7. Build and install mod_dav:

make
make install

Step 8. Build Apache:

cd /usr/local/mysea/apache/src
./Configure
make

Step 9. Save and edit the default Apache configuration:

cd /home/http/conf/
cp httpd.conf httpd.conf.bak
vi httpd.conf

37

Step 10. Append the following text to the end of the “httpd.conf” file:

DAVLockDB /tmp/DAVLock
<Location /dav>
 DAV On
</Location>

Step 11. Create the following default WebDAV directories for both the public and

private data stores:

mkdir /home/http/htdocs/dav
mkdir /home/http/htdocs/dav/public
mkdir /home/http/htdocs/dav/public/sl0il3
mkdir /home/http/htdocs/dav/public/sl1il3
mkdir /home/http/htdocs/dav/public/sl2il3
mkdir /home/http/htdocs/dav/public/sl3il3
mkdir /home/http/htdocs/dav/public/sl4il3
mkdir /home/http/htdocs/dav/public/sl5il3
mkdir /home/http/htdocs/dav/public/sl6il3
mkdir /home/http/htdocs/dav/public/sl7il3
mkdir /home/http/htdocs/dav/private

Step 12. Set all of the directories created in the previous step to the proper

security levels. This is done in the trusted environment with the trusted fsm command.

Repeat this process to set each directory in “/home/http/htdocs/dav/public/” to the

security level described by its name:

(set security and integrity levels – sl0:il3)
SAK
Enter command? fsm
Enter request? change
Enter pathname? /home/http/htdocs/dav/public/sl1il3
Modify access level? yes
Enter new security level? sl1
Enter new integrity level? il3
Is the level correct? yes
Enter new owner name? admin
Enter new group name? stop
Modify discretionary access? no
Display the object? no
Okay to change? yes

38

Step 13. For each user who needs to have access to a private area via WebDAV,

perform the following steps. The username “demo” is used as an example here and can be

replaced with any valid username.

ln -s /home/demo /home/http/htdocs/dav/private/demo

(log in as “demo” and set security and integrity levels – sl0:il3)
mkdir /home/demo/sl0il3
mkdir /home/demo/sl1il3
mkdir /home/demo/sl2il3
mkdir /home/demo/sl3il3
mkdir /home/demo/sl4il3
mkdir /home/demo/sl5il3
mkdir /home/demo/sl6il3
mkdir /home/demo/sl7il3

Step 14. Set all of the directories created in step 10 to the proper security levels.

This is done in the trusted environment with the trusted fsm command. Again, the user

“demo” is used as an example. Repeat the following process to set each directory in

“/home/demo” to the security level described by its name:

(set security and integrity levels – sl0:il3)
SAK
Enter command? fsm
Enter request? change
Enter pathname? /home/demo/sl1il3
Modify access level? yes
Enter new security level? sl1
Enter new integrity level? il3
Is the level correct? yes
Enter new owner name? demo
Enter new group name? other
Modify discretionary access? yes
Enter object modes for owner? rwx
Enter user name? <CR>
Enter object modes for group? none
Enter group name? <CR>
Enter object modes for others? none
Display the object? no
Okay to change? yes

Once all of these steps have been completed, the installation and configuration of

mod_dav in the multilevel environment on the XTS-400 is finished. The test outlined in

39

Section F of this appendix should be performed to ensure that the installation was

performed correctly.

E. CADAVER INSTALLATION
All of the procedures in this section are to be performed on a client machine

running Fedora Core 4. These procedures download and install the Cadaver 0.22.2

WebDAV client from the installation CD.

cp /media/cdrom/cadaver-0.22.2.tar ./
tar -xvf cadaver-0.22.2.tar
cd cadaver-0.22.2
./configure
make
make install

F. INSTALLATION TESTING

The following procedures are designed to test whether or not the installation of

mod_dav into Apache was successful. Each step is to be performed on the operating

system specified.

Step 1. Create a file on the machine hosting the WebDAV server in the root DAV

directory and add some arbitrary text:

vi readme.txt

Step 2. Access the file created in Step 1 with a WebDAV client on one or more

operating systems. Section G of this appendix contains instructions for using different

WebDAV clients to connect to a WebDAV server. If testing the MLS WebDAV server,

log in and establish a session with either the TPE or TCBE client. Using one of the

graphical WebDAV clients, simply double-click on “readme.txt” in the WebDAV

directory to ensure that it is accessible. To perform the same check with Cadaver, enter

the following command into the Cadaver command line:

edit readme.txt

Step 3. Attempt to upload a new file to the root DAV directory. Once again,

connect to the WebDAV server using the instructions in Section G of this appendix.

Using one of the graphical WebDAV clients, create a new text file named “upload.txt”

40

and add some arbitrary text to it. Next drag the new “upload.txt” file to the connected

WebDAV directory. To perform the same check with Cadaver, enter the following

command into the Cadaver command line and add some arbitrary text:

edit upload.txt

Step 4. Ensure that “upload.txt” exists on the machine hosting the WebDAV

server and that it contains the proper text. The command to check the contents of the file

is:

vi upload.txt

If all of the above procedures were successfully performed, then the installation of

mod_dav has been successful.

G. WEBDAV CLIENT INSTRUCTIONS
This section provides instructions for using four different WebDAV clients to

connect to a WebDAV server. For each of these sets of instructions, assume the IP

address of the WebDAV server is 192.168.0.130, since this is the default address of the

port interfacing with the MLS network on the MYSEA server.

1. Windows XP
From any Window Explorer window, type the following into the address bar:

\\192.168.0.130\dav

The connection is now established and the WebDAV directory can be accessed in

the same manner as a normal directory.

2. Fedora Core 4 Linux
Select the “Connect to Server…” option from the “Places” menu and enter the

following options:

Service: WebDAV (HTTP)
Server: 192.168.0.130
Port: 80
Folder: dav

41

The connection is now established and the WebDAV directory can be accessed in

the same manner as a normal mounted network drive.

3. Macintosh OS 10.3
From the Finder, select the “Connect to Server…” option from the “Go” menu

and type the following in the address bar:

http://192.168.0.130/dav

The connection is now established and the WebDAV directory can be accessed in

the same manner as a normal mounted network drive.

4. Cadaver
From terminal, type the following command:

cadaver 192.168.0.130/dav

The connection is now established and the WebDAV directory can be accessed in

a similar manner as a normal FTP session.

42

THIS PAGE INTENTIONALLY LEFT BLANK

43

APPENDIX B: TEST PROCEDURES

These procedures describe the steps to perform the tests outlined in Chapter IV.

Each test falls into two categories: graphical clients and Cadaver. The graphical clients

are those clients that are built in to Fedora Core 4, Windows XP and Mac OS X. These

graphical clients are accessed through the graphical user interface (GUI) of their host

operating systems. Cadaver is a command line WebDAV client that can be installed on

any UNIX based operating system using the instructions in Appendix A. Instructions for

using all of these clients are found in Appendix A.

A. FUNCTIONAL TEST PROCEDURES
These tests are to be performed on all three of the installation types described in

Appendix A. All of these tests assume that the file "readme.txt" exists on the WebDAV

server in the root DAV directory, and that "readme.txt' and "upload.txt" exists on the

desktop of the client system used for testing. Each of these files should contain some

uniquely identifying text to ensure that operations were indeed successful. Each of these

tests should be able to be successfully performed, unless stated otherwise.

Test A1 intended to ensure that files can be read via the WebDAV client.

Graphical Clients:

Double click on "readme.txt" in the DAV directory.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

edit readme.txt

Test A2 intended to ensure that files can be written via the WebDAV client.

Graphical Clients:

Drag the file "readme.txt" from the desktop to the DAV directory.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

44

edit readme.txt

Add some arbitrary text to the file and save it.

Test A3 ensures that files can be created via the WebDAV client.

Graphical Clients:

Drag the file "upload.txt" from the desktop to the DAV directory.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

edit upload2.txt

Add some arbitrary text to the file and save it.

Test A4 ensures that files can be locked via the WebDAV client.

Graphical Clients:

Files cannot be locked using any of the graphical clients.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

lock upload2.txt

Test A5 ensures that files can be unlocked via the WebDAV client.

Graphical Clients:

Files cannot be unlocked using any of the graphical clients.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

unlock upload2.txt

Test A6 ensures that files can be deleted via the WebDAV client.

45

Graphical Clients:

Select the file "upload.txt" in the DAV directory and press the "delete"

key.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

rm upload2.txt

Test A7 ensures that directories can be created via the WebDAV client.

Graphical Clients:

Create a new directory named "test" in the DAV directory.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

mkdir test2

Test A8 ensures that directories can be traversed via the WebDAV client.

Graphical Clients:

Double click on the directory "test" in the DAV directory.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

cd test2

Test A9 ensures that directories can be deleted via the WebDAV client.

Graphical Clients:

Select the directory "test" in the DAV directory and press the "delete" key.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

46

rmcol test2

Test A10 ensures that no unrecoverable errors occur when attempting to read a

file that does not exist.

Graphical Clients:

This test is not applicable for a graphical client.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

cat ifile

Test A11 ensures that no unrecoverable errors occur when attempting to delete a

file that does not exist.

Graphical Clients:

This test is not applicable for a graphical client.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

rm ifile

Test A12 ensures that no unrecoverable errors occur when attempting to lock a

file that does not exist.

Graphical Clients:

This test is not applicable for a graphical client.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

lock ifile

47

Test A13 ensures that no unrecoverable errors occur when attempting to unlock a

file that does not exist.

Graphical Clients:

This test is not applicable for a graphical client.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

unlock ifile

Test A14 ensures that no unrecoverable errors occur when attempting to delete a

directory that does not exist.

Graphical Clients:

This test is not applicable for a graphical client.

Cadaver:

Issue the following command in the DAV directory with Cadaver:

rmcol idir

B. SINGLE LEVEL SECURITY TEST PROCEDURES

These tests are to be performed on the single level XTS installation type described

in Appendix A. All of these tests assume that the file "readme.txt" exists on the

WebDAV server in the root DAV directory as well as in all of the subdirectories (i.e. the

directories named for their security levels), and that "readme.txt' and "upload.txt" exists

on the desktop of the client system used for testing. Each of these files should contain

some uniquely identifying text to ensure that operations were indeed successful. The

expected results of each of these tests are given inline with the test procedure. All of

these tests are performed at the level sl1:il3.

Test B1 ensures that a user is not able to read data from a secrecy level higher

than the level of the currently established session. This operation should fail.

Graphical Clients:

48

Navigate to the directory named “sl2il3”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd sl2il3

Test B2 ensures that a user is able to read data from a secrecy level lower than the

level of the currently established session. This operation should succeed.

Graphical Clients:

Navigate to the directory named “sl0il3”.

Open the file named “readme.txt”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd sl0il3
cat readme.txt

Test B3 ensures that a user is able to read data from a secrecy level equal to the

level of the currently established session. This operation should succeed.

Graphical Clients:

Navigate to the directory named “sl1il3”.

Open the file named “readme.txt”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd sl1il3
cat readme.txt

Test B4 ensures that a user is not able to write data to a secrecy level higher than

the level of the currently established session. This operation should fail.

49

Graphical Clients:

Drag the file “upload.txt” from the desktop to the directory “sl2il3”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd sl2il3

Test B5 ensures that a user is able to write data to a secrecy level lower than the

level of the currently established session. This operation should succeed.

Graphical Clients:

Drag the file “upload.txt” from the desktop to the directory “sl0il3”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd sl0il3

Test B6 ensures that a user is not able to write data to a secrecy level equal to the

level of the currently established session. This operation should fail.

Graphical Clients:

Drag the file “upload.txt” from the desktop to the directory “sl1il3”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd sl1il3
edit upload2.txt

Add some arbitrary text to the file and save it.

C. MULTILEVEL SECURITY TEST PROCEDURES
These tests are to be performed on all the multilevel XTS installation type

described in Appendix A. All of these tests assume that the file "readme.txt" exists on the

WebDAV server in the root DAV directory as well as in all of the subdirectories of the

50

“public” directory (i.e. the directories named for their security levels), that the files

“adminread.txt” (with the owner set to the “admin” user and the permissions set so that

only the “admin” user can read the file) and “adminwrite.txt” (with the owner set to the

“admin” user and the permissions set so that only the “admin” user can write but all users

can read the file) exist in the subdirectories of the “public” directory and that "readme.txt'

and "upload.txt" exists on the desktop of the client system used for testing. Each of these

files should contain some uniquely identifying text to ensure that operations were indeed

successful. The expected results of each of these tests are given inline with the test

procedure. All of these test procedures are written with the assumed session level of

sl1:il3 and should be modified appropriately for other session levels. The session must be

established as the demo user.

Due to an unresolved error, the contents of the “public” directory cannot be listed.

In order to navigate to the subdirectories of the “public” directory via one of the graphical

clients, it is necessary to go straight to that directory by name, “dav/public/sl1il3” for

example. Instructions for accessing DAV directories by name are found in Section G of

Appendix A.

Tests C1 through C3 ensure that a user is not able to read data from a secrecy

level higher than the level of the currently established session. This operation should fail

as the higher level directory is inaccessible.

Graphical Clients:

Go to the directory named “dav/public/sl2il3”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd public/sl2il3

Tests C4 through C6 ensure that a user is able to read data from a secrecy level

lower than the level of the currently established session. This operation should succeed.

Graphical Clients:

Go to the directory named “dav/public/sl0il3”.

51

Open the file “readme.txt”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd public/sl0il3
cat readme.txt

Tests C7 through C9 ensure that a user is able to read data from a secrecy level

equal to the level of the currently established session. This operation should succeed.

Graphical Clients:

Go to the directory named “dav/public/sl1il3”.

Open the file “readme.txt”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd public/sl1il3
cat readme.txt

Tests C10 through C12 ensure that a user is not able to write data to a secrecy

level higher than the level of the currently established session. This operation should fail

as the higher level directory is inaccessible.

Graphical Clients:

Go to the directory named “dav/public/sl2il3”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd public/sl2il3

Tests C13 through C15 ensure that a user is not able to write data to a secrecy

level lower than the level of the currently established session. This operation should fail.

Graphical Clients:

52

Go to the directory named “dav/public/sl0il3”.

Drag the file “upload.txt” from the desktop to the directory “sl0il3”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd public/sl0il3
edit upload2.txt

Add some arbitrary text to the file and save it.

Tests C16 through C18 ensure that a user is able to write data to a secrecy level

equal to the level of the currently established session. This operation should succeed.

Graphical Clients:

Go to the directory named “dav/public/sl1il3”.

Drag the file “upload.txt” from the desktop to the directory “sl1il3”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd public/sl1il3
edit upload2.txt

Add some arbitrary text to the file and save it.

Test C19 ensures that a user is not able to read data from a file that is owned by

another user, has permissions set to allow only the owner to read and has a secrecy level

lower than the level of the currently established session. This operation should fail.

Graphical Clients:

Go to the directory named “dav/public/sl0il3”.

Open the file named “adminread.txt”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

53

cd public/sl0il3
cat adminread.txt

Test C20 ensures that a user is not able to read data from a file that is owned by

another user, has permissions set to allow only the owner to read and has a secrecy level

equal to the level of the currently established session. This operation should fail.

Graphical Clients:

Go to the directory named “dav/public/sl1il3”.

Open the file named “adminread.txt”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd public/sl1il3
cat adminread.txt

Test C21 ensures that a user is not able to write data to a file that is owned by

another user, has permissions set to allow only the owner to write and has a secrecy level

equal to the level of the currently established session. This operation should fail.

Graphical Clients:

Go to the directory named “dav/public/sl1il3”.

Edit the file named “adminwrite.txt”.

Cadaver:

Issue the following commands in the DAV directory with Cadaver:

cd public/sl1il3
edit adminwrite.txt

Add some arbitrary text to the file and save it.

Test C22 ensures that multiple users are not able to lock the same file

simultaneously. This operation should fail.

Graphical Clients:

54

This test is not applicable for a graphical client.

Cadaver:

Issue the following command with the first client in the DAV directory

with Cadaver:

cd public/sl1il3
lock readme.txt

Issue the following command with the second client in the DAV directory

with Cadaver:

cd public/sl1il3
lock readme.txt

Test C23 ensures that a user is not able to write to a file that has been locked by

another user. This operation should fail.

Graphical Clients:

This test is not applicable for a graphical client.

Cadaver:

Issue the following command with the first client in the DAV directory

with Cadaver:

cd public/sl1il3
lock readme.txt

Issue the following command with the second client in the DAV directory

with Cadaver:

cd public/sl1il3
edit readme.txt

55

LIST OF REFERENCES

1. Goland, Y., Whitehead, E., Faizi, A., Carter, S., Jensen, D., “HTTP Extensions
for Distributed Authoring -- WEBDAV,” Request for Comments: 2518, February
1999. Available: http://www.ietf.org/rfc/rfc2518.txt, Accessed: January 2006

2. Jennings, C., Hardie, T., Hollenbeck, S., “WWW Distributed Authoring and

Versioning (webdav),” IETF Charter, June 2005. Available:
http://www.ietf.org/html.charters/webdav-charter.html Accessed: January 2006

3. Stein, G., “mod_dav: a DAV module for Apache,” WebDAV Official Website,

November 2001. Available: http://webdav.org/mod_dav/ Accessed: February
2006

4. Irvine, C. E., Levin, T. E., Nguyen, T. D., Shifflett, D. J., Khosalim, J., Clark, P.

C., Wong, A., Afinidad, F., Bibighaus, D., and Sears, J., "Overview of a High
Assurance Architecture for Distributed Multilevel Security", Proceedings of the
2004 IEEE Systems, Man and Cybernetics Information Assurance Workshop,
West Point, NY, June 2004.

5. Nguyen, T.D., Levin, T. E., Irvine, C. E., “MYSEA Testbed,” Proc. 6th IEEE

Systems, Man and Cybernetics Information Assurance Workshop, West Point,
NY, June 2005, pp. 438-439.

6. Egan, M., "An Implementation Of Remote Application Support In A Multilevel

Environment", Master’s Thesis, Naval Postgraduate School, Monterey, CA,
March 2006

7. Cadaver 0.22.3 – Available: http://webdav.org/cadaver/cadaver-0.22.3.tar.gz

Accessed: April 2006

8. Apache 1.3.34 – Available:

http://archive.apache.org/dist/httpd/apache_1.3.34.tar.gz Accessed: April 2006

9. mod_dav 1.0.3 – Available: http://webdav.org/mod_dav/mod_dav-1.0.3-

1.3.6.tar.gz Accessed: April 2006

10. Fedora Core 4 – Available: http://www.redhat.com/fedora/ Accessed: April 2006

11. National Information Assurance Partnership (NIAP). “XTS-400™ / STOP™

6.1.E,” March 2005. Available: http://niap.nist.gov/cc-
scheme/st/ST_VID3012a.html. Accessed: 6/8/2006.

12. Apache 1.3.12 – Available:

http://archive.apache.org/dist/httpd/apache_1.3.12.tar.gz Accessed: April 2006

56

13. McNamee, D., Heller, S., Huff, D., “Building Multilevel Secure Web Services-
Based Components for the Global Information Grid”, STSC CrossTalk, May
2006.

57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Hugo A. Badillo
NSA
Fort Meade, MD

4. George Bieber
OSD
Washington, DC

5. RADM Joseph Burns

Fort George Meade, MD

6. John Campbell

National Security Agency
Fort Meade, MD

7. Deborah Cooper
DC Associates, LLC
Roslyn, VA

8. CDR Daniel L. Currie

PMW 161
San Diego, CA

9. Louise Davidson
National Geospatial Agency
Bethesda, MD

10. Steve Davis
NRO
Chantilly, VA

11. Vincent J. DiMaria
National Security Agency
Fort Meade, MD

58

12. CDR James Downey
NAVSEA
Washington, DC

13. Dr. Diana Gant
National Science Foundation

14. Jennifer Guild
SPAWAR
Charleston, SC

15. Richard Hale
DISA
Falls Church, VA

16. CDR Scott D. Heller

SPAWAR
San Diego, CA

17. Wiley Jones
OSD
Washington, DC

18. Russell Jones
 N641

Arlington, VA

19. David Ladd

Microsoft Corporation
Redmond, WA

20. Dr. Carl Landwehr
DTO
Fort George T. Meade, MD

21. Steve LaFountain
 NSA

Fort Meade, MD

22. Dr. Greg Larson
IDA
Alexandria, VA

23. Dr. Karl Levitt
NSF
Arlington, VA

59

24. Dr. Vic Maconachy
NSA
Fort Meade, MD

25. Doug Maughan

Department of Homeland Security
Washington, DC

26. Dr. John Monastra
Aerospace Corporation
Chantilly, VA

27. John Mildner
SPAWAR
Charleston, SC

28. Mark T. Powell

Federal Aviation Administration
Washington, DC

29. Jim Roberts

Central Intelligence Agency
Reston, VA

30. Jon Rolf

NSA
Fort Meade, MD

31. Keith Schwalm
Good Harbor Consulting, LLC
Washington, DC

32. Charles Sherupski
Sherassoc
Round Hill, VA

33. Ken Shotting
NSA
Fort Meade, MD

34. CDR Wayne Slocum
SPAWAR
San Diego, CA

60

35. Dr. Ralph Wachter
ONR
Arlington, VA

36. David Wirth
N641
Arlington, VA

37. CAPT Robert Zellmann

CNO Staff N614
Arlington, VA

38. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

39. Thuy D. Nguyen
Naval Postgraduate School
Monterey, CA

40. Jeremiah A. Bradney
Civilian, Naval Postgraduate School
Monterey, CA

