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A Simple Simulator for Multicomputer
Routing Networks

Michael J. Pertel
March 5, 1992

Abstract

This report describes a concise program for simulating multicom-
puter routing networks [1]. The simulator is written in less than 200
lines of C code, and a complete listing is provided. Despite being
terse, the simulator is exact, fast, and requires little memory.

1 Introduction

This author has had considerable experience designing, writing, and
using simulators for experiments in routing network design. The sim-
ulator is an integral part of such experiments, but it is common to
report only the simulation results. It is desirable to present a listing
of the simulator along with simulation results for at least two reasons:

1. Unless the program is derived from a formal specification, it is
nearly impossible to completely describe the model implicit in a
simulator without reference to the actual code.

2. Given a complete program listing, someone interested in the sim-
ulation results is able to scrutinize the model and coding for
errors, as well as to reproduce the results.

If a program is to be presented, it should be clear and concise.
The design of many simulators makes it impractical to present their
code along with their results. Some simulators are written quickly,
with little thought given to their clarity. Some include a large amount
of code that is irrelevant to the simulation model, such as code for



parameter setting, convergence detection, and result reporting. It is
also common for exact (as opposed to approximate) simulators to be
overly detailed.

The Simple Network Simulator (SNS) program was written to be
short and easy to understand. It was originally intended only to re-
produce the results of a much larger and more sophisticated hierar-
chical discrete-event simulator. However, owing to its simplicity, SNS
is faster and requires less memory than its larger predecessor.

SNS is a time-driven simulator. Time-driven simulators devote less
code to supporting simulation mechanics than discrete-event simula-
tors. Although the simulation-support code is a negligible fraction of
a large discrete-event simulator, it would bloat this short program.
Moreover, this simulator is easier to understand in a time-driven for-
mulation.

The program is intended to be minimal, so it may seem crude in
some respects. Although SNS may be interesting in itself, the primary
motivation for this report is merely to make the simulator public.
The program should be judged for its clarity and brevity, not for its
cleverness or completeness.

Part of the simplicity of SNS stems from the simple router archi-
tecture it simulates. This report will describe a simple router design
that is nevertheless very general. The generality of the model facili-
tates comparison of different routing algorithms. The architecture can
support a wide range of routing schemes, and it is minimally complex.

The basic simulator uses unbounded buffers for the FIFOs in the
router architecture. A trivial extension of the basic program allows
simulation of networks with finite buffering. The program modifica-
tion for finite buffers will be explained, and the FNS (Finite-buffering
Network Simulator) code will be presented.

The routing architecture simulated by SNS is sufficiently general
that it can support adaptive routing as well as dimension-order rout-
ing. Deadlock does not occur with infinite buffering. A modified
program with a more liberal definition of an “allowed” routing deci-
sion will be presented; it will be referred to as ANS (Adaptive-routing
Network Simulator).

The simulators presented in this report were not derived from for-
mal specifications, so no formal proofs of their correctness are given.
However, their theory of operation is explained to convince the reader
that the simulators implement a realistic model. It is hoped that the



simplicity of the programs will obviate formalities.

The routing-network research that inspired SNS is part of a large
multicomputer design effort called the Mosaic project [2]. The Mosaic
is a 128 x 128 mesh of single-chip nodes, each containing a 14 MIPS
processor, 64 KB memory, and an asynchronous network router. Al-
though SNS can simulate any mesh (arbitrary radix and dimension),
the Mosaic topology is most interesting to this project. Some sample
simulation results will be presented, but not a large suite. Simulation
results will be presented in future reports.

2 Generic Routing Architecture

In order to study the performance of various routing algorithms, the
author devised a generic router architecture [3]. The architecture con-
sists of FIFOs on every input channel, a cross-bar between the input
FIFOs and output channels, and central control logic (for channel
assignment). There are some subtleties in the design of the channel-
assignment logic, but the architecture is straightforward. This sec-
tion will explain briefly why the simple FIFO-and-crossbar design is
both necessary and sufficient for a wide class of routing algorithms
to be deadlock-free. First, the channel-assignment problem will be
explained and a solution described.

2.1 Channel Assignment

For a packet at the front of an input FIFO, some subset of the output
channels will move it closer to its destination; these are called the
packet’s profitable channels. There will also be some subset of the
output channels along which the packet is allowed to be forwarded by
the routing algorithm. When a packet is allowed to be forwarded to
an output that is not profitable, this is called misrouting.

The assignment logic must determine the allowed outputs for the
head packet of each input FIFO, and it must assign an allowed output
to each input when possible.

Note 2.1 (Channel Assignment) The control logic must make ex-
clusive assignments of outpuls to waiting inputs. A packet atl the head
of an input FIFO should be forwarded along one of its allowed outputs.
An oulput assignment lasts long enough to spool the entire packet to



the selected output; no other input may be assigned to an output while
it 1s spooling a packet. The channel assignment can be regarded as an
injective mapping from a subset of the waiting input channels to the
set of output channels such that every image is an allowed output for
its preimage. Several desiderata complicate channel assignment:

1. Fairness: Fach waiting input must eventually be assigned an
output.

2. Practicality: As many inputs should be assigned as possible at
all times.

3. Symmetry: All inpuls should be lreated identically, as should
all outputs.

The assignment logic should not only assure progress but fairness.
Progress means forwarding arriving packets to their allowed outputs.
Fairness requires progress for each input: any waiting input eventu-
ally gets assigned an allowed output. Lacking a reason for bias, the
assignment logic might as well be symmetric. Symmetry means that
all inputs are treated identically and all outputs are treated identically.
Symmetry is different from fairness: an assignment can be symmetric
but not fair, or fair but not symmetric.

A channel-assignment algorithm that is both fair and practical is
non-trivial, and other authors have proposed incorrect solutions to
the problem. For example, it has been suggested that ezamining the
inputs round-robin would give a fair assignment [5], but this is not
true. Several inputs may vie for the same output. If the inputs are
examined round-robin, then a waiting input is guaranteed a chance to
be assigned an output, but it is not guaranteed that an allowed output
will ever be available while the input is being examined. An input may
wait indefinitely because its allowed output has always been assigned
to another input before the waiting input is examined. Round-robin
service is fair but not practical. If an input has exclusive access to
the outputs, then it will be serviced within one packet spooling time,
since a busy allowed output will become free as soon as it completes
forwarding a packet. Therefore, any input is guaranteed service within
Nip X Typool I cycles. However, round-robin service is not practical
because it significantly and unnecessarily delays making assignments.

!'Without blocking, spooling time is equal to packet length: 7,00 = L.



An input must wait its turn before being serviced, even if it has an
allowed output that is not needed by any other input.

The author devised and proved ? a practical fair assignment al-
gorithm based upon circulating a “priority” token round-robin. If an
input has a packet waiting for service, it will not relinquish the token
until that packet is serviced. The priority input will get serviced as
soon as an allowed output becomes free; no other input can be assigned
an output unless that output is not allowed for the priority input. The
priority packet gets serviced within one packet-spooling time, since a
busy output becomes free as soon as it completes spooling a packet.
When the priority input is serviced, the token gets forwarded to the
next input. If an input is not waiting, it forwards the token. Thus a
waiting input eventually gets the token (within N, X Tspe0 cycles),
and the input with the token always gets serviced (within Ts,e0 cy-
cles). This algorithm is also practical, because assignments are not
unnecessarily delayed — a waiting input gets assigned as soon as one
of its allowed outputs is available and not used by another input.

2.2 Deadlock Avoidance

Deadlock is not an issue when the FIFOs are of infinite length, but
it is of critical importance to any real router design. Detecting then
breaking deadlock is not practical for multicomputer routing networks;
the routing algorithm must be intrinsically deadlock-free. One way to
avoid deadlock is to eliminate any cyclic dependencies in the packet
routing, for example, by restricting the allowed output assignments
to a subset of the profitable output assignments. If the packets are
required to traverse the dimensions in a fixed order, then the con-
sumption assumption is sufficient for deadlock freedom.

Note 2.2 If a node always consumes a packet that arrives for it, then
no packet can be blocked at its destination. In a unidirectional linear
array of routers, a packet at the end of the array must be destined for
that node, and hence it is consumed. A packetl at distance 1 from the
end of the array is destined either for that node or for the end of the
array; in either case it is not blocked. By induction, the consumption
assumption precludes deadlock in a unidirectional linear array. If the
directions are independent, the result holds for bidirectional arrays. If

2The formal statement and proof are omitted since the idea is simple.



the dimensions are traversed in a specific order, then deadlock-freedom
follows by induction from the last dimension to the first.

There is a more general deadlock-avoidance technique that does
not limit the allowed output assignments. If there is no blocking, then
there is no deadlock. Blocking can be avoided by allowing the head
packet of a FIFO to be misrouted when that FIFO becomes full; that
is, all outputs become allowed when the packet’s FIFO becomes full.
If the number of inputs is equal to the number of outputs, then some
output will always be available to absorb a packet from a full FIFO.
This technique of avoiding deadlock by allowing misrouting in lieu of
blocking requires that any input be routable to any output. Thus, a
crossbar is not only sufficient, but necessary for a general router.

If misrouting is allowed, then buffering is needed to assure progress.
Buffering allows a packet to wait for a profitable output to become
available. Buffering increases performance by decreasing misrouting
in a non-blocking network and by decreasing blocking in a blocking
network. The buffers need not be FIFOs, nor do the FIFOs have to
be on the inputs. For example, there could be a central buffer pool.
However, having FIFOs on the inputs is a simple, practical design.
The filling of a FIFO can be used to trigger misrouting of that input.

If the FIFO and crossbar architecture were actually implemented,
the load applied to the network would have to be controlled. For ex-
ample, congestion control could be implemented by requiring packet
sources to await acknowledgement from their destinations before send-
ing again; this would also preserve packet order between source and
destination despite the presence of multiple paths between them. As
long as misrouting is less likely than a profitable assignment, pack-
ets will make progress on average. By throttling the network load,
congestion and misrouting are reduced.

The simulators described in this report do not need misrouting
or congestion-control; since ANS uses unbounded buffers, deadlock
is not an issue. ANS could easily be modified to use finite buffers
and misrouting. The finite-buffer modification is shown in FNS, and
allowed(in,out) could return true for any out when the in FIFO
is full. The deject function would also have to re-inject packets
dejected by misrouting.



3 Theory of Operation

SNS is a time-driven simulator. Although event-driven simulators
may be more efficient for low-activity networks, SNS performs well for
high-activity networks. To keep SNS concise, the parameter setting,
convergence detection, and other code extraneous to the simulation
model are kept minimal. A complete listing of the simulator in C will
follow some explanation of how the simulator works. The explana-
tion should convince the reader that the program simulates a routing
network. The explanation should be read together with the code.

A d-dimensional mesh of radix R (RY nodes) is simulated. All
channels are bidirectional. Each internal node of the mesh is connected
to two neighbors (predecessor and successor) in each dimension. There
is also a “local” or “internal” channel for the injection and dejection
of packets at each node. Thus, every node in the mesh has 2d+1
bidirectional channels.

For each cycle of simulated time, every node in the mesh is simu-
lated. Packets of fixed length L are modeled by the packet structure.
A node contains 2d+1 input FIFOs fed by the two neighbors in each
dimension and the local injector. All FIFOs have unbounded capacity.

Note 3.1 Packets can be blocked only at the head. Since there is in-
finite buffering, if the head of a packet is enqueuved at time T, then the
tail will be enqueuved at time T+ L — 1. If the head of a packet is trans-
ferred at time T, then the whole packet structure may be transferred
at time T, but no other packet may be transferred on that channel
before time T + L.

As a packet traverses the network, it may be delayed by having to wait
behind other packets in input FIFOs. A packet is also delayed by one
cycle when it advances through a crossbar to the next node enroute
to its destination. When a packet is enqueued in an input FIFO, the
tin field records the time at which the packet arrives in the queue. If
the tin of the head of a queue exceeds the current simulation time,
then the queue is considered empty.

Note 3.2 i is safe lo enqueue a packet that arrives at time T’ during
the stmulation of time T'—1, since the tin field will prevent any action
on that packet until time T .

Note 3.3 The packet structures corresponding to all packels arriving
at an npul FIFO at or before lime T have been enqueued prior lo



stmulating the node for time T. A packet arriving at time T must
have been sent at time T — 1, and all nodes are simulated through time
T — 1 before any are simulated for time T.

During each cycle of simulated time, each node will inject a packet

with probability %. Since the destinations are chosen at random,

1
this gives an applied load of w = A. The tls (time-last-

send) field of the nodestate structure prevents injection overlap.

Note 3.4 Injecting at time t1ls,., = max (curtime,tls,q + L) pre-
vents injection overlap. The head of a new packetl is not transmitted
until after the tail of the previous packet has been transmitted. The tin
field allows a new packet to be placed in the local injection input FIFO
immediately, though tls = tin = tsent may exceed curtime.

Before a packet can be forwarded from one node to the next, it
must reach the head of the input FIFO and an allowed output must
be free. Qutput overlap is avoided by recording tfree for each output.
If a packet is forwarded along an output at time 7', then T’ > tfree,yqy
and tfree,e, = T + L. Input overlap is avoided by recording tnh
(time-next-head) for each input. If a packet is removed from the head
of a queue at time T, then the next packet cannot reach the head of
the queue before tnh =1 + L.

Note 3.5 Forwarding packet p from input i lo output o is allowed at
curtime only if max(p->tin,tnh[i],tfreelo])<=curtime. If the
packet is forwarded at curtime, then p->tin=curtime+1 corresponds
to the packet head arriving at the next node one cycle later, and as-
stgning tnhl[il=tfreel[o]=curtime+L represents the time required to
spool the packel from the input FIFO through the oulput channel.

With dimension-order routing (DOR), a packet can use an output
channel only if that output reduces its offset in some dimension and
its offsets in all previous (lower) dimensions are zero. The timing re-
quirements above together with the DOR protocol determine whether
forwarding the head of an input queue to a given output at the current
simulation time is allowed.



/* SHS.c --- Simple Network Simulator (168 lines)
*/
#include <stdio.h>
#include <malloc.h>
double drand48();
#define CHECK(c,m) {if(!(c)){printf("ERROR: %s\n",m); exit(7);}}
#define PBY(p) (drand48()<(p))
#define MAX(a,b) (((a)>(b))7(a): (b))
#define ABS(x) (((x)<0)7-(x):(x))
#define CHANGE(old,new) ABS(((new)-(o0ld))/(old))
int pwr(x,y) int x,y; {int r=1; for(;y>0;y--) r*=x; return r;}

/* Parameters

*/
#define N 16384 /* number of nodes */
#define R 128 /* radix */
#define d 2 /* dimension */
#define A .5 /* applied load */
#define L 32 /* packet length in flits */
#define TOL .03 /* convergence tolerance */
#define INTERVAL 1000 /* initial simulation interval */
#define B (N/R) /* bisection BW in flits/cycle */
#define NIN (2*%d+1) /* number of router inputs */
#define NOUT (2*%d+1) /* number of router outputs */

/* Measurements

*/
double numrecd=0. ; /* number of packets received */
double totlat=0.; /* sum of received-packet latencies */
double tothops=0.; /* sum of received-packet distances */
#define T (totlat/numrecd) /* average TOTAL latency */
#define TP ((numrecd*L)/curtime)/* throughput in flits/cycle */
#define U (.25%TP/B) /* bisection utilization */
#define D (tothops/numrecd) /* average distance */

/* Data Structures
*/
typedef struct packet packet;
struct packet{int dest,tsent,tin,nhops; packet *next;};
typedef struct nodestate nodestate;
struct nodestate
{packet *head[NIN],*tail[NIN]; int tnh[NIN],tfree[NOUT],tls,pin,pout;};

/* Numbering Conventions:
* Dimensions numbered from 0: x=0, y=1, z=3, etc...
* Channels numbered: local=0, xpred=1, xsucc=2, ypred=3,
* Node (x,y,z,...) numbered: ... + zR"2 + yR + x
*/
#define DIMOF(in) (((in)-1)/2)
#define PRED(dim) (2*(dim)+1)
#define SUCC(dim) (2*(dim)+2)



#define END(out) (((out)%2)7((out)+1):((out)-1))
#define COORD(n,dim) (((n)/pwr(R,dim))%R)
#define NGHBR(n,o0) (((0)%2)?(n)-pwr(R,DIMOF(0)):(n)+pwr(R,DIMOF(0)))

/* Simulator

*/
int curtime=0; /* current simulation time */
nodestate node[N]; /* simulator state */
initnode(n) nodestate *n;
{
int i; n->pin=n->pout=n->t1s=0;
for(i=0;i<NIN;i++)
{n->head[i]=n->taill[i]=(packet*)0; n->tnh[i]l=n->tfree[i]=0;}
¥
init(){ int n; for(n=0; n<N; n++) initnode(&(node[n])); }
main()
{
int n,etime=INTERVAL; double 0l1dT,curT=1.;
init(); printf("\n\n");
do{ 0ldT=curT;
for( ; curtime<etime; curtime++)
for(n=0; n<N; n++)
simulate(n);
printf("N=Y%d, R=%d, d=%d, L=%d, A=%g, curtime=%d\n",
N,R,d,L,A,curtime);
printf("numrecd=%g\n" ,numrecd) ;
printf("D=Y%g, d*(R-1/R)/3.=%g\n",D,d*(R-1./R)/3.);
printf("T(%g)=%g\n",U,T);
printf("CHANGE(0ldT,T)=%g, TOL=Y%g\n",CHANGE(0ldT,T),TOL);
printf("'\n");
fflush(stdout);
curT=T; etime*=2;
} while(CHANGE (01dT,curT)>TOL); return O;
¥
/* Hode Behavior
*/
#define PIN node[n] .pin

#define POUT node[n] .pout
simulate(n) int n;
{
int in,out;
if(PBY(4.*A/(R*L))) inject(n); findpin(n);
for(in=0; in<NIN; in++) for(out=0; out<NOUT; out++)
if(allowed(n, (PIN+in)%NIN, (POUT+out)%NOUT))
{
forward(n, (PIN+in)%NIN, (POUT+out)%NOUT);
if(1in) {PIN=(PIN+1)%NIN; findpin(n);}
if(lout) POUT=(POUT+1)%NOUT;

}

findpin(n) int n;

{

10



int i; packet *p; nodestate *nd = &(nodel[n]);
for(i=0; i<NIN; i++)

if ((p=nd->head[PIN])&&(MAX (p->tin,nd->tnh[PIN])<=curtime))

return;
else PIN=(PIN+1)%NIN;
¥
inject(n) int n;
{
packet *p=(packet*)malloc((unsigned)sizeof(packet));
node[n] .tls = p->tin = p->tsent = MAX(curtime,node[n].tls+L);
p->dest = drand48()*N; p->nhops=0; p->next=0;
enqueue(p,n,0);
¥
int allowed(n,in,out) int n,in,out;
{
int dim,nc,pc; packet *p=nodel[n].head[in];
if('p || p->tin>curtime) return O; /* p arrived */
if(node[n].tnh[in]>curtime) return O; /* p at head */
if(node[n].tfree[out]>curtime) return 0;/* out free */
for(dim=0; dim<d; dim++)
{
nc=CO00RD(n,dim); pc=COORD(p->dest,dim) ;
if(nc<pc) return out==SUCC(dim) ;
else if(nc>pc) return out==PRED(dim);
}
CHECK (p->dest==n,"profitable()"); return out==0;
¥
forward(n,in,out) int n,in,out;
{
packet *dequeue(); packet *p=dequeue(n,in); p->tin=curtime+1;
node[n] .tnh[in]=node[n].tfree[out]=curtime+L;
if(out==0) deject(p);
else p->nhops++, enqueue(p,NGHBR(n,out),END(out));
¥
deject(p) packet *p;
{
numrecd++; totlat+=p->tin-p->tsent; tothops+=p->nhops;
free((char*)p);
¥
/* Misc Functions
*/
packet *dequeue(n,in) int n,in;
{
packet *p=node[n] .head[in]; node[n] .head[in]=p->next;
if(p==node[n].tail[in]) node[n].tail[in]=(packet*)0;
p->next=(packet*)0; return p;
¥

enqueue(p,n,in) packet *p; int n,in;

{

11



nodestate *nd=&(nodel[n]);
if(nd->head[in]) nd->tail[in]->next=p; else nd->head[in]=p;
nd->tail[in]=p; p->next=0;

12



4 Finite Buffers

The effect of having finite buffers is to block the forwarding of a packet
when the receiving FIFO is full. There are at least three possible
models for finite buffers, differing in how the forwarding of a packet

to a full FIFO is handled:

1. An output is “free” even if it is blocked by a full FIFO. If an
input is assigned to a blocked output, the input merely waits for
the output to become ready before forwarding the packet.

2. An output is “busy” whenever it is not ready to receive a packet.
An input is never assigned to a blocked output, so an input
remains unassigned if all its allowed outputs are blocked.

3. A blocked output may be assigned to an input, but the assign-
ment is aborted once the blocking is detected.

In the first case, a packet might wait longer than necessary if it is as-
signed to a blocked output when another allowed output is not blocked.
The second case is optimal in that a packet will not wait if it can be
forwarded along one of its allowed outputs. The third case seems
functionally equivalent to the second, but it may interfere with the
algorithm used to ensure fairness. If the token is advanced when an
assignment is made, but the assignment is later aborted, then holding
the token no longer guarantees service.

SNS can be extended to handle finite buffers by keeping track
of the number of packets in each FIFO and making an assignment
that would overfill a FIFO not allowed. Every FIFO is made the
same size, except the injection FIFOs remain unbounded. When the
network throughput cannot support the applied load, the injection
queues grow without bound. The nodestate structure is expanded
to record FIFO occupancy. The enqueue and dequeue functions are
modified to keep track of FIFO occupancy. The allowed function is
modified to require that the destination FIFO have room for another
packet. A listing of the modified program (FNS) is provided below.

If the head packet of a full FIFO is forwarded at time T, should
another packet be allowed to enter the FIFO at time T'7 The impact
of this choice on performance should be negligible. FNS handles the
situation inconsistently, but this should have no effect. During the
simulation of time T, FNS simulates each router in turn. If the desti-
nation router is simulated before the source router, then the full FIFO

13



might be dequeued, thereby allowing the source to forward on that cy-
cle. If the source is simulated first, the FIFO will still be full and the
packet will not be forwarded until the next cycle. There seems little
justification for complicating the program to eliminate this negligible
inconsistency. Over-specified models lead to overly-complicated sim-
ulators. Note that no such inconsistency exists in SNS. The test for
full FIFO in FNS is the only case where a state change made at time
T can effect a decision made at time 7.

It should be noted that the simulator makes no approximation in
manipulating whole packets rather than individual flits. With infinite
buffering this is clear: FIFOs never fill and hence never block, and
crossbars block packets only at the head. Even with finite buffering,
as long as FIFO lengths are integer multiples of the packet length,
packets will only be blocked at the head.

Note 4.1 Packet-Blocking Property: If all packets are length L
and all FIFO lengths are an integer multiple of L, then packels are
blocked only at their heads. If the head of a packet is transferred at
time T, then the tail will be transferred at time T + L. Packet sources,
sinks, and swilches all treal packets as unils. If the FIFOs do not
divide packets, then packets will be indivisible throughout the network.

This property simplifies the simulator by eliminating the need to
decompose packets into flits. The simulator also runs faster by an
amount proportional to the packet length. By accepting a small re-
striction on the FIFO sizes that can be simulated, the simulator can
be made significantly simpler and faster while still being exact.

14



/* FHS.c --- Finite-buffering Network Simulator (177 lines)
*/

#include <stdio.h>

#include <malloc.h>

double drand48();

#define CHECK(c,m) {if(!(c)){printf("ERROR: %s\n",m); exit(7);}}

#define PBY(p) (drand48()<(p))

#define MAX(a,b) (((a)>(b))7(a): (b))

#define ABS(x) (((x)<0)7-(x):(x))

#define CHANGE(old,new) ABS(((new)-(o0ld))/(old))

int pwr(x,y) int x,y; {int r=1; for(;y>0;y--) r*=x; return r;}

/* Parameters

*/
#define N 16384 /* number of nodes */
#define R 128 /* radix */
#define d 2 /* dimension */
#define 1 /* length of non-injection input FIFOs */
#ifndef A
#define A .5 /* applied load */
#endif
#define L 32 /* packet length in flits */
#define TOL .03 /* convergence tolerance */
#define INTERVAL 1000 /* initial simulation interval */
#define B (N/R) /* bisection bandwidth in flits/cycle */
#define NIN (2%d+1) /* num. node inputs including local */
#define NOUT (2%d+1) /% num. node outputs including local */
/* Measurements
*/
double numrecd=0. ; /* number of packets received */
double totlat=0.; /* sum of rcvd-pckt latencies */
double tothops=0.; /* sum of rcvd-pckt distances */
#define T (totlat/numrecd) /* average latency */
#define TP ((numrecd*L)/curtime)/#* throughput in flits/cycle */
#define U (.25%TP/B) /* bisection utilization */
#define D (tothops/numrecd) /* average distance */

/* Data Structures
*/
typedef struct packet packet;
struct packet{int dest,tsent,tin,nhops; packet *next;};
typedef struct nodestate nodestate;
struct nodestate
{packet *head[NIN],*tail[NIN]; int len[NIN],tnh[NIN],tfree[NOUT],tls,pin,pout;};

/* Numbering Conventions:
* Dimensions numbered from 0: x=0, y=1, z=3, etc...
* Channels numbered: local=0, xpred=1, xsucc=2, ypred=3,
* Node (x,y,z,...) numbered: ... + zR"2 + yR + x

*/
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#define DIMOF(in) (((in)-1)/2)

#define PRED(dim) (2*(dim)+1)

#define SUCC(dim) (2*(dim)+2)

#define END(out) (((out)%2)7((out)+1):((out)-1))

#define COORD(n,dim) (((n)/pwr(R,dim))%R)

#define NGHBR(n,o0) (((0)%2)7(n)-pwr(R,DIMOF(0)):(n)+pwr(R,DIMOF(0)))

/* Simulator

*/
int curtime=0; /* current simulation time */
nodestate node[N]; /* simulator state */
initnode(n) nodestate *n;
{
int i; n->pin=n->pout=n->t1s=0;
for(i=0;i<NIN;i++)
{n->head[il=n->tail[i]=(packet*)0; n->len[i]=n->tnh[i]l=n->tfree[i]=0;}
¥
init(){ int n; for(n=0; n<N; n++) initnode(&(node[n])); }
main()
{
int n,etime=INTERVAL; double 0ldT,curT=1.;
init(); printf£("\n\n");
do{ 0ldT=curT;
for( ; curtime<etime; curtime++)
for(n=0; n<N; n++)
simulate(n);
printf("N=%d, R=%d, d=%d, Q=%d, L=%d, A=%g, curtime=%d\n",
N,R,d,Q,L,A,curtime);
printf("'numrecd=%g\n" ,numrecd) ;
printf("D=Y%g, d*(R-1/R)/3.=%g\n",D,d*(R-1./R)/3.);
printf("T(%g)=%g\n",U,T);
printf("CHANGE(0ldT,T)=%g, TOL=Y%g\n",CHANGE(0ldT,T),TOL);
printf("'\n");
fflush(stdout);
curT=T; etime*=2;
} while(CHANGE (01dT,curT)>TOL); return O;
¥
/* Hode Behavior
*/
#define PIN node[n] .pin

#define POUT node[n] .pout
simulate(n) int n;
{
int in,out;
if(PBY(4.*A/(R*L))) inject(n); findpin(n);
for(in=0; in<NIN; in++) for(out=0; out<NOUT; out++)
if(allowed(n, (PIN+in)%NIN, (POUT+out)%NOUT))
{
forward(n, (PIN+in)%NIN, (POUT+out)%NOUT);
if(1in) {PIN=(PIN+1)Y%NIN; findpin(n);}
if(lout) POUT=(POUT+1)%NOUT;
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findpin(n) int n;

{
int i; packet *p; nodestate *nd = &(nodel[n]);
for(i=0; i<NIN; i++)
if ((p=nd->head[PIN])&&(MAX(p->tin,nd->tnh[PIN])<=curtime))
return;
else PIN=(PIN+1)%NIN;
}
inject(n) int n;
{
packet *p=(packet*)malloc((unsigned)sizeof(packet));
node[n] .tls = p->tin = p->tsent = MAX(curtime,node[n].tls+L);
p->dest = drand48()*N; p->nhops=0; p->next=0;
enqueue(p,n,0);
}

#define RDY(o) (node[NGHBR(n,o0)].len[END(0)]<Q) /* FIFO not full */
int allowed(n,in,out) int n,in,out;

{
int dim,nc,pc; packet *p=node[n] .head[in];
if('p || p->tin>curtime) return O; /* p arrived? */
if(node[n].tnh[in]>curtime) return O; /* p at head? */
if(node[n].tfree[out]>curtime) return 0;/* out free? */
for(dim=0; dim<d; dim++)
{
nc=CO00RD(n,dim); pc=COORD(p->dest,dim);
if(nc<pc) return (out==SUCC(dim) && RDY(out));
else if(nc>pc) return (out==PRED(dim) && RDY(out));
}
CHECK (p->dest==n,"profitable()"); return out==0;
¥
forward(n,in,out) int n,in,out;
{
packet *dequeue(), *p;
int dest=NGHBR(n,out), dchan=END(out);
p=dequeue(n,in); p->tin=curtime+i;
node[n] .tnh[in]=node[n] .tfree[out]=curtime+L;
if(out==0) deject(p);
else p->nhops++, enqueue(p,dest,dchan);
¥
deject(p) packet *p;
{
numrecd++; totlat+=p->tin-p->tsent; tothops+=p->nhops;
free((char*)p);
¥
/* Misc Functions
*/
packet *dequeue(n,in) int n,in;
{

nodestate *nd=%(node[n]); packet *p=nd->head[in];
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nd->len[in]--; nd->head[in]=p->next;
if(p==nd->taillin]) nd->taill[in]=(packet*)0;
p->next=(packet*)0; return p;

¥
enqueue(p,n,in) packet *p; int n,in;
{
nodestate *nd=&(node[n]); nd->len[in]++;
if(nd->head[in]) nd->taill[in]->next=p; else nd->head[in]=p;
nd->tail[in]=p; p->next=0;
if(in && nd->len[in]>Q){printf("'Q OVERFLOW'\n"); exit(66);}
¥
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5 Adaptive Routing

Multicomputer routing networks typically use single-path routing. In
particular, dimension-order routing is the standard algorithm for mesh
topologies, since it is intrinsically deadlock-free and easy to implement
in VLSI [4]. It is interesting to explore the possibility of multipath
routing to improve network performance or reliability. One type of
multipath routing is adaptive routing [5]. In adaptive routing, the
path followed by a packet through the network is effected by the local
traflic conditions it encounters enroute. Most attention has been fo-
cused on minimal routing, in which the packet follows a shortest path
from source to destination.

Note 5.1 In a d-dimensional mesh, the number of shortest {Jaths be-

tween two nodes separated by (Azy,...,Axy) is %.

This author’s study of adaptive routing has shown it to fulfill lit-
tle of its promise. Farlier results showing that adaptive routing im-
proved network throughput over dimension-order routing [5] were an
artifact of the adaptive routers being given more buffering than the
dimension-order routers. Given equal buffering, the performance gap
disappears. The simplest architecture required to support adaptive
routing [3] would require significantly more chip area (and run signifi-
cantly slower) than a VLSI implementation of dimension-order routing
[4]. A dimension-order router (DOR) is much smaller, and requires
only a few percent of the area of a single-chip multicomputer node [2].
The simpler, asynchronous circuitry of a DOR is faster and leads to
higher performance.

It is trivial to modify SNS to simulate adaptive routing instead of
dimension-order routing. Minimal adaptive routing is obtained simply
by making all profitable channels allowed in the channel assignment.
Farlier studies that used various routing metrics to bias the choice be-
tween multiple profitable assignments showed that it makes little dif-
ference how the assignment is chosen [5]. The ANS (Adaptive-routing
Network Simulator) chooses the first available profitable output. ANS
differs from SNS only in its allowed function:

int allowed(n,in,out) int n,in,out;

{
packet *p=node[n].head[in]; int pc,nc,dim=DIMOF (out) ;
if('p || p->tin>curtime) return O; /* p arrived? */
if(node[n].tnh[in]>curtime) return O; /* p at head? */
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if(node[n] .tfree[out]>curtime) return 0; /* out free? */
if(p->dest == n) return out==0; /* p at dest? */
pc=COORD(p->dest,dim), nc=COORD(n,dim);

if(nc<pc) return out==SUCC(dim);

if(nc>pc) return out==PRED(dim);

return O; /* not profitable */

6 Convergence

This section will present some facts for consideration when using the
simulator and estimating the accuracy of results. It will be assumed
that the measurement of interest is the average network latency for
a specified applied load, but most of the considerations presented are
equally applicable to other measurements. For example, the simula-
tors might be modified to measure injection and cut-through latency
separately, instead of total latency 3 from generation to reception.
This section will discuss the termination criterion used in SNS, its
limitations, and recommendations for obtaining accurate results.

6.1 Ancillary Measurements

SNS contains a simple test for the convergence of the average latency
measurement, and it terminates when convergence is detected. Other
measurements, besides the measurement of interest, should be moni-
tored. The simulator prints these measurements for user inspection,
but they are not considered in the termination decision.

e The throughput should be monitored to verify that it converges
to the applied load. If the throughput cannot support the applied
load, then the latency will grow without bound as the injection-
queue lengths increase.

o The average distance should converge to % (R - %)

Note 6.1 In a bidirectional linear array of R nodes, there are R
paths of length 0 and 2(R —1) paths of length 1 <1< R—1. The
total number of paths is R + Eﬁ;ll 2(R — 1) = R*. The average

3The measured head-to-head latency does not include the L-cycle spooling time.
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The latency is proportional to the distance, and the latency can-
not converge if the distance does not.

e The difference between the number of packets sent and the num-
ber received should also be monitored; it represents the number
of packets in the network FIFOs, and it should be a small frac-
tion of the total number of packets. SNS does not wait for the
network to reach equilibrium (steady-state queue lengths) before
taking measurements; this may slow convergence.

Note that throughput matches applied load if and only if the total
number of packets in the network buffers is stable. Throughput is less
than applied load if and only if the average queue lengths are increas-
ing. Thus, it suflices to monitor the convergence of the throughput
to the applied load. Ideally, the throughput should converge before
recording latency measurements. The average distance of the set of
packets whose latencies are recorded should be close to the true aver-
age distance (otherwise more packets should be simulated).

6.2 Effect of TOL

SNS contains only a simple check for convergence, but it serves at
least three functions with very little code:

1. It provides sequential snapshots of parameter measurements so
that the user can monitor convergence.

2. It provides a more flexible criterion for simulator termination
than merely specifying a simulated-time interval.

3. It provides a framework for a more elaborate termination deci-
sion.

The user specifies an initial simulation INTERVAL and a convergence
tolerance TOL. The simulator is run until the end of a time interval,
then the interval is doubled. If the average-latency measurement T
changed by less than TOL when the interval was doubled, the simulator
halts. This method does not guarantee that the latency measurement

42

R =1

R—-1
=

— —_ 2 —_
(R_l)R:R—landL R—-1 2_ 2 (M{.%):%R{- -1

2 2
R Rr2 =1 R2

o=
=

21



is within TOL of the true asymptotic value. For example, if the mea-
sured latency is consistently less than the asymptotic latency, but gets
closer as the simulation interval is increased, then the simulator may
stop prematurely if the convergence is slow.

Note 6.2 If the error in the measured latency is proportional to the
inverse square of the simulated interval, then the simulator stops when
the error is approximately ﬁ -TOL ~ 2.4 - TOL.

6.3 Effect of INTERVAL

The simulator is used to estimate the asymptotic average network
latency T = lim,_.o0 %E?:l T;. The simulator does this by comput-
ing the average of the latencies of n packets (T), = L 3% T;. It is
assumed that the latencies of the individual packets T; are indepen-
dent, identically distributed, random variables. As n increases, ('),
converges to T by definition, provided T exists (which we assume).
We wish to know how close we can expect (T), to be to T for a
given n as an aid to both using the simulator (choosing the simula-
tion interval) and interpreting the results (estimating the accuracy of

measurements).

Note 6.3 The number of packels sent is a random function of the
simulated time interval whose average is curtime*(4%UxB)/L.% The
bisection bandwidth is N/R flits per cycle in each direction, and the
bisection utilization U converges lo the normalized applied load A. SNS
will not terminate until curtime >= 2*xINTERVAL, so the number of
packets sent will be at least MINPKT = INTERVAL*8*A*N/(R*L). The
number of packets received converges to the number sent, provided the
throughput matches the applied load. To assure that at least MINPKT
packets are injected, choose INTERVAL = MINPKT*L/(8*A*N/R).

The latency measurement (1), is a random variable with the same
average (1') as the individual 73, but a smaller variance. It is well
known that the RMS error (standard deviation) of the average of n

g TN i o

(TOO—TE/1 /1/2) - (T(,O—Te/1 /1/2) Too
®One quarter of all packets cross the bisection in a given direction (for random traffic)
and throughput=utilization xbandwidth. Flit throughput is L times packet throughput.
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measurements decreases as 1/y/n. © The uncertainty in the measured

.4 \(T-T) . .
latency is N We can estimate the accuracy as a function
of n if we can estimate the variance of the latency.

Accurately estimating the variance of the latency is outside the
scope of this report. However, a crude approximation provides some
insight. A packet’s latency is the product of the distance it travels
and the average delay per hop. If we neglect the latency variation
due to the variation in queue lengths, we can restrict attention to
the variance of the packet distance. For the latency measurement
to have converged to within TOL of T, it is necessary (though not
sufficient) that the average distance of the packet exchanges simulated
has converged to within TOL of the true mean distance. By computing
the number of packets that must be simulated to achieve a desired
convergence of the distance measurement, we can choose INTERVAL
large enough to guarantee this convergence. This technique gives an
INTERVAL size that is large enough to give good statistics and avoid
spurious termination while being small enough to minimize execution
time.

6.3.1 Mesh Path Statistics

It was previously shown that the average distance in a radix-R d-
dimensional mesh is d(R — 1/ R)/3, which gives the following identity:

LEE -

—1/R

The mean-square distance in a one-dimensional mesh is:
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ZZIz—le = = i+ 2ij + i
1 R-1 R-1 \ ?
= 2322‘2—2( z)
=0 1=0
_ R*-1
6




These two results can be used to calculate the mean-square distance
in a two-dimensional mesh:

R—1R-1R—1R—1 R—1R—-1 R—1R—-1 2
1 ) 5 2 g 1 ]
=D IPID NSNS~ DD DL §-D D) DL

i=0 j=0 k=0 1=0 i=0 j=0 i=0 j=0
1 2
~(srR? —74 —
9 R2

The variance of the distance in a two-dimensional mesh is:

D?-D’ é(wﬁ-ni)_(M)Q

R? 3
1 2
Z(R2Px1- =
5 (71 7)
For large R, the standard deviation is ~ % and the average distance

is & %; thus the uncertainty (standard deviation over mean) of the
average of n measurements is approximately ﬁ for a two-dimensional

mesh. For a one-dimensional mesh, the variance is:

R*—1 [(R-1/R\* 1 2
_ - — [R?24+1- =
6 ( 3 ) 18( + RQ)

For large R, the standard deviation is ~ % and the average is ~ %

so the uncertainty of the average of n measurements is approximately
1

Van®

A conservative estimate of the fractional uncertainty in the mea-
sured average distance for n packets is ﬁ 8

6.4 Recommendations

To generate results of a desired accuracy, TOL should be chosen to
be one third that value. Recall that for monotone convergence, the
difference between two successive intervals is about .414 times the dif-
ference of the later value from the asymptote. It is not enough to
choose a small TOL, since the simulator will halt if two successive mea-
surements are coincidentally close. The initial simulation INTERVAL
should be chosen large enough to ensure good statistics. A reasonable

(p-D)°
== ﬁ + 2\/2_% + O (#1) for any mesh [6].
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choice of INTERVAL is one that guarantees simulation of enough pack-
ets to make the error in the measured average distance less than TOL.
These suggestions can be coded as follows.

#define ACCURACY .03

double TOL = ACCURACY/3.;
#define MINPKT (1./(TOL*TOL))
int INTERVAL = (int) (MINPKT*L/(8*A*N/R));

6.4.1 Caveat

The above technique does not guarantee the specified ACCURACY upon
termination. Simulator convergence is not merely the convergence of
a sample average to a distribution mean. The simulator may converge
more slowly than 1/y/n or may not converge at all. This is because
the network conditions (e.g., the average queue lengths) may change
over time, so the measurement distribution may evolve over time. All
of the considerations in this section have been premised upon random
sampling of a static latency distribution, but the latency distribution
is not static. As the applied load increases, the time required for
the queues to reach their equilibrium length distribution increases.
Beyond a maximum applied load (which depends upon the network
parameters) the mesh cannot support the necessary throughput, queue
lengths keep increasing, and there is no convergence. This section has
considered how long the simulator must be run for measurements to
converge after the network has reached steady state, but it has not
considered how long the simulator must be run before the network
reaches steady state. For small applied loads the network equilibrates
quickly, but for heavy traffic the equilibration time may dominate the
convergence.

The simulator should wait for the network to reach equilibrium be-
fore recording measurements. This can be done by monitoring the dif-
ference between the number of packets sent and the number received.
The network can be regarded as having reached equilibrium once this
difference has converged to within a specified tolerance. Equivalently,
the simulator could wait until the measured throughput is within tol-
erance of the applied load. Latency measurements could be discarded
until the network has equilibrated, and then SNS-style measurement
and convergence detection could be applied to the equilibrated net-
work. If the number of packets stored in the network FIFOs does not
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converge (if it grows at a non-diminishing rate) then the simulator
should terminate. Monitoring the difference between the number of
packets sent and received also provides a measure of the average queue
length — divide the number of packets in queues by the number of
queues.

SNS was designed to be simple, and code extraneous to the model
(e.g., sophisticated convergence detection) was specifically avoided.
Simplicity of the program requires sophistication of the user.

7 128 %128 Mesh Results

Since the topic of this report is the simulator itself, rather than the
results of the simulator, this section will contain only a few sample
simulation results.

The results presented below were computed using R=128, d=2,
L=32, TOL=.03, and INTERVAL=1000. For A=.5, the chosen INTERVAL
should guarantee that at least 16000 packets are simulated; this should
ensure that the distance measurement has converged to within 1%. For
monotone convergence, this TOL value should ensure that the results
are accurate to within 10%. The FNS results are for Q=1.

When SNS was run on a Sun SPARCstation 2, the execution times
in hours were approximately (1.3, 1.3, 1.3, 1.3, 1.5, 2.8, 5.5, 11, 45)
for applied loads of (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8). The
longer execution times for larger applied loads were due to simulating
over greater intervals (e.g., 64000 for A=.8) to achieve TOL=.03 con-
vergence. The execution time is proportional to the product of the
number of nodes in the network and the simulation interval. For the
same number of nodes and the same simulation interval, the execu-
tion time increases slightly with applied load, since the simulation of
a node takes longer proportional to the number of packets forwarded
during a cycle.

The data is intended only as a sample of simulator output; this
report is not concerned with simulator results, their accuracy, or their
interpretation. If the reader wishes to use the programs presented in
this report, the sample data may be used check for errors in copying
the programs.
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A | Tsns | Tens | Taws

01] 85 85 85
10 90 90 88
20 97 97 97

30| 107 | 107 108
40 | 117 | 117 121
b0 | 138 | 138 151
.60 | 166 | 166 191
70 | 218 | 218 2901
80 327 | 331 | > 1194
90| 675 — —

The FNS results match the SNS results unless the applied load is very
high. With dimension-order routing, the probability of blocking due
to competition for an output is O(%)7 so large-radix meshes require
little buffering. The A=.8 ANS entry is listed as > 1194 because the
simulator had not converged after 5days of execution. After simu-
lating an interval of 128000 time units, 1.6 million packets had been
received, but the average throughput was only 78.8% of the bisection
bandwidth. Only SNS was run for A=.9; at this high applied-load,
the simulator took eight days to converge. Both the effect of buffering
and the performance of adaptive routing [7] will be the topics of future
reports.
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