Neural Network Design

and the Complexity of Learning

J. Stephen Judd

Computer Science Department
California Institute of Technology

Caltech-CS-TR-88-20

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
SEP 1988 2. REPORT TYPE 00-09-1988 to 00-09-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Neural network Design and the Complexity of L earning £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Office of Scientific Research,875 North Randolph Street Suite | REPORT NUMBER
325,Arlington,VA,22203-1768

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 133
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

NEURAL NETWORK DESIGN
AND THE COMPLEXITY OF LEARNING

A Dissertation Presented by

J. STEPHEN JUDD

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1988

Computer and Information Science Department

Copyright © 1988 by J. STEPHEN JUDD

All rights reserved

ACKNOWLEDGEMENTS

My schooling in connectionist research proceeded under and was inspired by A. G.
Barto. His years of patience with my determined excursions into blind alleys were
remarkably supportive. The complexity-theoretic content was encouraged, guided,
corrected, extended, and made presentable by D. A. Mix Barrington. Many useful
comments and refinements were _made by R. L. Rivest.

I thank all past and present members of the Adaptive Networks research group,
and especially Richard Sutton, for constant intellectual challenges, encouragement
and resistance:; S. Porat for proofreading my first (tedious) proof; Richard Yee for
a conversation about bandwidth and for loaning me a paper on the topic; and Ian
Parberry for pointing out the work by Muroga and for determined discussions to
ferret out the difference between it and Hong’s work.

This research was supported by the Air Force Office of Scientific Research
through contract AFOSR F33615-83-C-1078 and grant AFOSR-87-0030. The au-

thor was also supported by an NSERC Canada Post-Graduate Scholarship.

ABSTRACT

NEURAL NETWORK DESIGN
AND THE
COMPLEXITY OF LEARNING

SEPTEMBER 1988

J. STEPHEN JUDD, B.SC., UNIVERSITY OF MANITOBA
M.SC., UNIVERSITY OF MANITOBA
PH.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Andrew G. Barto

We formalize a notion of learning that characterizes the training of feed-forward
networks. In the field of learning theory, it stands as a new model specialized for
the type of learning problems that arise in connectionist networks. The formulation
is similar to Valiant’s [Val84] in that we ask what can be feasibly learned from
examples and stored in a particular data structure.

One can view the data structure resulting from Valiant-type learning as a ‘sen-
tence’ in a language described by grammatical syntax rules. Neither the words nor

their interrelationships are known a priori. Our learned data structure is more par-

vi

ticular than Valiant’s in that it must be a particular ‘sentence’. The position and
relationships of each ‘word’ are fully specified in advance, and the learning system
need only discover what the missing words are. This corresponds to the problem of
finding retrieval functions for each node in a given network.

We prove this problem NP-complete and thus demonstrate that learning in net-
works has no efficient general solution. Corollaries to the main theorem demonstrate
the NP-completeness of several sub-cases. While the intractability of the problem
precludes its solution in all these cases, we sketch some alternative definitions of
the problem in a search for tractable sub-cases.

One broad class of subcases is formed by placing constraints en the network
architecture; we study one type in particular. The focus of these constraints is on
families of ‘shallow’ architectures which are defined to have bounded depth and 7
unbounded width., We introduce a perspective on shallow networks, called the
Support Cone Interaction (SCI} graph, which is helpful in distinguishing tractable
from intractable subcases: When the SCI graph has tree-width O(logn), learning
can be accomplished in polynomial time; when its tree-width is nM1) we find the

problem NP-complete even if the SCI graph is a simple 2-dimensional planar grid.

vil

TABLE OF CONTENTS

ACKNOWLEDGEMENTS oo e e e e v
ABSTRACT . . . o e e e e e e e e e e e e e e e e vi
LIST OF FIGURES e e xi
CHAPTER
1 INTRODUCTION it e e e e e s i
1.1 Learming . . « v v v v v v e e e e e e e 2
1.2 Approach e 6
1.3 SUDBCASES « « « « v v v e e e e e e e e e e e e e 7
1.3.1 DatatobeLearned 8
1.3.2 Network Design« oo v oo 8
1.3.3 Node Functionality oo 9
1.4 Philosophical Base 10
1.5 Outlime . . v v v o e e e e e e e e e 10
2 OUR MODEL OF NETWORK LEARNING 12
2.1 The Learning Protocol« v oo oo 12
29 Network Architecture oo 14
23 Node Functions v« o v v v v oo v oo e 15
2.4 The Computational Problem 16

viil

2.5 Classical Connectionist Learning 17

2.6 Discussion Lo Lo 20
REVIEW OF RELATED WQRK 24
3.1 Gold e e e e e 25
3.2 Valiant L 26
3.3 OurModel 27
3.4 Comparison SUmMMATY« v 0 0 v v e e e 29
3.4.1 Requirements o 29
3.4.2 Motivation L e e 29
3.4.3 Quantitative comparison 30
3.4.4 ‘Grammatical Focus’ 0L 31
345 Environmento 32
3.5 Studies in Connectionist Learning 32
3.5.1 Simple Networks 33
3.5.2 Complex Networks 36
THE INTRACTABILITY OF LOADING 38
4.1 Proof of General Case using AOFns 40
4.2 Other Node Function Sets 45
SUBCASES o i it et e e e e 49
5.1 Architectural Constraints, 50
5.2 Task Constraints e 51
5.3 Relaxed Criteria« . e 54
5.4 SUIMIMALY .+ .« « v v 4 v v v v v e e e e e e e e e 55
SHALLOW ARCHITECTURES 56
6.1 Definitions e 57

ix

6.2 Grids and Planar Cases N 59

6.3 Definitions Againo 65

6.4 Tree-Width Corstraints« . . . 68

6.5 Additional Comments e 75

T MEMORIZATION AND GENERALIZATION 77

8 CONCLUSIONS . . . e e e e e e e 82

8.1 Lessons Drawn from Current Results 82

].2 Contributions of this Thesis &5

8.3 Future Work o o v o i e e e e e e 87

8.3.1 Task Constraints o o oo R7

8.3.2 Relaxed Criteria« o v v v 88

8.3.3 Mutating the Network 89

8.3.4 Returning to Classical Form 89

8.3.5 Recurrent Networks« oo 90

8.3.6 Other Learning Paradigms 90

8.4 Philosophical Summary 90
APPENDICES

A ALTERNATE PROOF OF GENERAL THEOREM 93

B PROOF FOR LOGISTIC LINEAR NODE FUNCTIONS 100

C PROOF FOR CASE WITHOUT DON'T CARES 107

D PROOF FOR PLANAR CASE WITHLSFNS 113

REFERENCES ottt e e e e e 116

11
2.1
3.1
3.2
3.3
4.1
4.2
6.1
6.2
6.3
6.4
6.5
6.6

6.7

71

Al
C.1
Cz2
D.1

LIST OF FIGURES

A Simple Model of Learning 3
A Model of Supervised Learning 13
Gold’s definition of learnable (identifiable) 25
Valiant’s definition of learnable 26
Our definition of learnable (loadable) 28
The construction for each variable¢ € 2. 42
The composed construction for Theorem 1. 43
Plan view notation e 60
Plan view of the composed construction. 61
The construction for crossovers. 63
Example task designs for propagating variables. 66
An example graph with bandwidth4. 67
An example graph with tree-width 4. 69
Columnar line architectures and their SCI graphs. 71
A definition of generalization innetworks 80
Example construction for proof of theorem using SAFns. 96
The construction for each variable¢e Z. 109
The composed construction for Theorem 24. 111
Construction from Lichtenstein for Planar SAT.. 114

xi

Chapter 1

INTRODUCTION

Drawing inspiration from neuroanatomy and spurred on by successes in modelling
cognitive phenomena, the connectionist model of computation has recently drawn
much attention (see for example the landmark volumes [RM86,MR86,AR88]). Con-
nectionist networks are also called neural networks. This model is used in the study
of how knowledge might be captured, represented, and processed by circuits that
are similar in an abstract sense to biological computers. A neural network is char-
acterized by its emphasis on using many richly interconnected processors that per-
form relatively slow and simple calculations in parallel. The connectionist approach
shows promise of eventually providing a new language for designing and building
computational devices, and possibly may yield clues to the centuries-old puzzle of
brain function. Many aspects of connectionist networks, including structural de-
sign, I/O protocol, and behavioural phenomena have been compared to biological
brains.

The model is loosely defined around three aspects: computing units, commu-
nication links, and message types. The computing units are small, homogeneous,
plentiful, simple and can accept many input connections. These units are connected
into networks by dedicated low-bandwidth links. These communication links are
also considered to be cheap and plentiful—an attitude that is a response to neu-

roanatomical observations that individual neurons may have extremely high fan-in.

&g wot, there seem to be few principles or methodologies for designing the spe-

¢.3c coroecsivity patterns in these networks. To the best of our knowledge, all
~elwork designs in the literature have been rather ad hoc constructions for spe-
cific experiments. In our view, this is a major inadequacy of the discipline. The
discovery of well-grounded and universal design principles would not only assist
the development of artificial neural networks but would also strengthen links to
neuroanatomy: hopefully neuroanatomists could confirm or repudiate the ideas by

examining biological brain structure.

Some sources of design constraints arise from consideration of

o learning speed
e signal integrity (error correction)
e processing integrity {fault tolerance)
e retrieval speed
e memory capacity
o signalling capacity (bandwidth)
o 3-dimensional geometry
e power supplies and heat dissipation
A thorough theoretical understanding of these areas would advance the field of

artificial neural networks.

We propose to focus on the first item in this list.

1.1 Learning

12

We think of learning as the capacity of a network to absorb information from its envi-

ronment without requiring some external intelligent agent to ‘program’ it. Learning

data to be N load
learned

questions answers

retrieve

Figure 1.1: A Simple Model of Learning. Note the conceptual separation of
the system into two processes (shown in rectangles). This separation does
not correspond to any physical separation in a network. Typically, each

node serves as a repository for a piece of the memory and participates in

both processes that interact with memory.

is a quintessential ability of brains, and it is a major focus of much connectionist
research. Unfortunately, the learning algorithms reported in the literature so far
are all unacceptably slow in large networks. Although it is clear that we need to
be able to scale up our applications to much bigger networks, it is not at all clear
how to achieve this. Many researchers view this as the most pressing challenge for
current connectionist research.

The networks have two modes—the so-called ‘learning’ or loading mode wherein
data are loaded into the permanent memory base, and the ‘retrieval’ mode wherein
those associative data are recalled from memory. Figure 1.1 depicts the general
paradigm. During retrieval, each computing unit calculates an output value

by some simple rule such as a threshold function on the linear weighted sum of

its current inputz. The cosaptation is performed repetitively at approximately
the same cycle rate as ali ~ther units. Hence the typical signal transmitted via a
connection is a single logica: value or perhaps a scalar value. However, the network
as a whole is expected to do such things as associate pairs of bit patterns or find
completions of partial patterns.

These comments apply to all types of connectionist models and they also seem
to describe standard circuit models of computation. However, connectionist devices
are often elaborated with various features like bi-directional connections, learning
capability, stochasticity, linear sum functions, or cyclic dynamics. For simplicity,
this thesis discusses only those networks that retrieve data in the manner of a strictly
unidirectional feed-forward deterministic circuit. We assume that the networks
have some means of changing their behaviour but that this change does not invoiver
altering their connectivity structure.

The implicit goal of connectionist learning research has been to find a single
‘learning rule’ that each network unit can follow in order to adjust the weights
used in its linear threshold functions in such a way that the retrieval behaviour of
the whole network is eventually correct. It was hoped that a learning rule would
work for any network design. Many researchers have developed candidates for such
a learning algorithm; some notable approaches are the Perceptron {Ros61MP72l,
back-propagation [RHW86,Par85,1C85], Boltzmann [AHS85,HS86], and associative
reward-penalty (Ar-p) [BA85,Bar85] schemes.

There is a theorem proving the effectiveness of the Perceptron Learning Rule
for linearly separable tasks in a single layer of trainable nodes. In their book, Min-
sky and Papert studied this learning rule and also investigated several computing
properties of 1- and 2-layer networks. But one of the tantalizing gaps that Minsky
and Papert left regards the learning problem in multi-layered networks. They con-

sidered it an important research problem to extend results on learning algorithms

for single-layer nets to the case of multi-layer nets:

“Perhaps some powerful convergence theorem will be discovered, or some
profound reason for the failure to produce an interesting learning theo-

rem for the multi-layered machine will be found.”

Descriptions of the back-propagation, Boltzmann, and Ar_p methods have each
been published along with demonstrations of their ability on selected associative
learning problems and their required learning time has been studied empirically
(see Chapter 3). However, no proof of their effectiveness has been offered and no
analytical treatment of their scale-up properties has appeared. The published suc-
cesses in connectionist learning have been empirical results for very small networks,
typically much less than 100 nodes. To fully exploit the expressive power of networks
they need to be scaled up to much bigger sizes, but it is widely acknowledged that
as the networks get larger and deeper the amount of time required for them to load
the training data grows prohibitively [HV86,TJ88,Bar82,0mo87|. It is important
to find out how to avoid this phenomenon.

The connectionist learning problem is treated here first of all as simple mem-
orization of some given data by a given feed-forward network. This problem is
described and discussed in Chapter 2. We ask if there exists an efficient algorithm
for solving this learning problem. ‘Efficient’ is taken to mean that the worst-case
learning time for a network of size n should be bounded above by a polynomial
in n, something which can easily be proved by exhibiting an algorithm for it. An
excellent theoretical t_est is available which indicates intractability in a problem,
and that is to prove the problem to be NP-complete. We will explain and use this
tool in Chapter 4.

Are there efficient algorithms for learning in large connectionist networks? Or is
there some deep reason why there cannot be? Does network design affect learning

ability? How does learning time scale up with network size? Can scale-up properties

be manipulated through design techniques? This thesis addresses such guestions.

1.2 Approach

We seek design principles by appealing to constraints of learnability. As is often the
case in theoretical pursuits, it is easiest to investigate extreme cases first, in order
to find the boundary conditions where the problem is certifiably easy or certifiably
infeasible, and later to refine the middle ground.

This thesis begins by identifying and formalizing a model of the computational
problem invelved in getting a network to memorize data. The particular formu-
lation we use is closely related to the types of experiments being reported in the

connectionist literature. It then uses the model to make two important points:

1. The learning problem in its general form is too difficult to solve. By proving
it to be NP-complete, we can claim that large instances of the problem would
be wildly impractical to solve. {See Chapter 4). There is no reliable method
to configure a given arbitrary network to remember a given arbitrary body of

data in a reasonable amount of time.

This result shows that the simple problem of remembering a list of data items
(something that is trivial in a classical random-access machine) is extremely difficult
to perform in some fixed networks.

Of course, Connectionists would not be satisfied if all they got out of their
systems was rote memory. Much of the fascination of Neural Networks comes from
the possibility of their having generalization properties which could be employed to
extend data, smooth over the domain, and induce the structure of the underlying
data. Only so would they achieve compact representations, fast calculations, strong
prediction, and intelligent learning. We will argue that success in generalizing

presupposes the ability to memorize simple associative data faithfully and efficiently.

The inttactability of memorization suggests that the connectionist model, even
though it has demonstrated many attractive qualities, may have a crucial flaw. This
might well be a disturbing theorem were it not for other insights that accompany

it:

9. There are many ways to circumvent this negative result, and each one cor-
responds to a particular constraint on the learning problem. There are fast
learning algorithms for cases where the network is of a very restricted design,

or where the data to be loaded are very simple.

These two observations (the full problem is too hard; some sub-cases are easy), pro-
vide a foundation for theoretical inquiries into the design of connectionist networks.
There are various ways to constrain the loading problem to find subcases that are-
solvable in polynomial time: by restricting the task to be learned, by restricting the
architecture of the net, by relaxing the criterion of success, etc., or by combinations
of these. The very general hard cases and the very restricted easy cases establish
extrema within which a more complete theory can be constructed. This thesis pro-
motes the usefulness of elaborating such a theory, and will consider a few special

cases within the great variety of imaginable subcases.

1.3 Subcases

In Chapter 5 we discuss various ways of formulating sub-cases or simply different
cases that might be feasibly solvable. Even in several of these restricted sub-cases
the intractability remains, thus revealing a labyrinth of open and closed avenues for
discovering what it is that large connectionist networks can or cannot learn. What
follows here is a description of the major theaters in which constraining conditions

can be posed.

1.3.1 Data to be Learned

By putting strong constraints on what the network is required to learn, some trivial
(and uninteresting) learning problems arise. It is our desire to know if there are
some interesting classes of learnable tasks. We prove it intractable for networks to
learn even very small numbers of associated pairs, or to learn sets of pairs that are

drawn from a monotonic function.

1.3.2 Network Design

By putting strong constraints on the type of network used for learning, some trivial
learning problems arise. These networks may all be next to useless, but our main
theoremn shows that if we allow the network to be of arbitrary design then the
learning problem is too hard. The challenge is to see if there are any intermediate
network designs that are useful and can learn easily. Unknown cases include very
deep nets and highly connected nets. For various reasons, we pursue studying the
loading problem in one particular broad architectural family which we call shallow
architectures. This family has a technical definition that effectively limits the depth
of each network but does not limit the width. This family is interesting because it
allows us to study the load-time scale-up issue without having to deal! with issues
that arise in deep networks. The connectionist literature uniformly reports great
difficulties in loading deep nets so we have taken the strategic decision to avoid the
issue altogether and concentrate on shallow nets. NP-completeness appears even in
networks of depth 2 so.there is still a considerable domain of issues to explore even
in the shallow case. Furthermore, the shallow architectures are interesting because
they might be a useful model of some brain structures.

For the discussion of shallow architectures, we introduce the notion of a sup-
port cone, which is the set of all nodes that can affect the behaviour of an output

node. Then we define a Support Cone Interaction (SCI} graph, which céptures

how the support cones overlap with each other. When this SCI graph is a planar.
2-dimensional grid the loading problem is still NP-complete, but if the SCI graph
has limited tree-widin then the architecture can be loaded in polynomial time.
Tree-width is a metric on graphs that is a generalization of the more widely known

graph-theoretic notion of bandwidth.

1.3.3 Node Functionality

A third way of constraining the learning model is to imbue the network nodes with
different amounts of functionality. The standard node type used in connectionist
research is the linear sum type—capable of performing any linearly separable binary
function. The NP-completeness found in our main theorem applies to this case, but
we go further to prove that even when the nodes are capable of performing much
more complex functions (e.g. arbitrary Boolean functions), or when the nodes are
capable of performing only extremely simple functions, the computational problem
is much the same. We had hoped that the theory might guide us in selecting appro-
priate types of nodes (e.g. by somehow demonstrating that the linearly separable
functions are a logical or optimal choice). But the results are quite equivocal on this
matter. Subsequent work by Blum and Rivest [BR88] suggests that the linear sum
functions actually introduce special computational problems that could be avoided
with simpler functions or with more complex functions.

Our complexity results are almost entirely independent of the type of node
functions used in the networks. This is a strength in itself. But it offers a further
conclusion: that the whole issue of node functionality is of secondary importance
to learning complexity, even though significant research effort is now being spent

on analyzing the particularities of one or two particular favourite types.

¢

.7 Philosophical Base

' in w:udy is based on the belief that the s:ale-up aspect of the learning issue is a
rich scurce of imperatives for network design and that the development of a theory
ol learning is therefore well warranted. We posit that a thorough delineation of the
polynomial-time solvable cases from the NP-complete cases will illuminate design
constraints that all networks must adhere to in order to be capable of learning.
Specifically, we posit that an understanding of the roots of NP-completeness in
connectionist learning will yield techniques for building architectures that are easy
to load.

We think that the general computational question framed here is a basis that
could ultimately lead to a collection of definitions of tasks, architectural designs,
and loading criteria, and to a theory of how these various aspects interact to create

feasible or infeasible learning. This thesis is a beginning toward such a goal.

1.5 Outline

The next chapter formulates the general learning problem and sets up the formal
question regarding its complexity.

Chapter 3 reviews some of the current theory on learning in general, and relates
our model of léarning to other models outside of the connectionist paradigm that
also deal with learning from examples. It also examines what is currently known
about scale-up issues in connectionist learning.

Chapter 4 proves our main theorem, which deals with the intractability of the
general case. Section 4.2 reports that the complexity is invariant for almost any kind
of node functionality. The following chapter (5) elaborates some of the implications

of the main theorem and points out several corollaries applying to various special

subcases.

10

Chapter 6 proves the iractaii.; and intractability of various families of shallow
networks.

Chapter 7 responds to scme concerns about how well neural networks would be
able to generalize from what they have learned to other parts of their domains that
they have not had access to. Many people have high hopes for the abilities of neural
networks to perform such generalization. Using Valiant’s technical definition of
induction, we show how the intractability of memorization implies the intractability
of generalization as well.

Finally, Chapter 8 summarizes our results and discusses some implications and

extensions to the work.

11

Chapter 2

OUR MODEL OF NETWORK
LEARNING

2.1 The Learning Protocol

The type of learning investigated here is known as supervised learning. In this
paradigm input patterns (called stimulf) are presented to a machine paired with
their desired output patterns (called responses). The object of the learning machine
is to remember all the associations presented during a training phase so that in
future tests the machine will be able to emit the associated response for any given
stimulus. This interaction is diagrammed in Figure 2.1.

The exact form of presentation of these data is not of concern here. Many
connectionist experiments involve a long series of training samples wherein a single
associative pair is presented to the network at a time, and where any particular pair
may have to be presented many times over. But none of these details are relevant
here, and our results are strengthened by abstracting away from them. We require
only that the associative data are available in some reasonable encoding.

In what follows, every stimulus o is a fixed-length string of s bits, and every
response p is a string of r bits with “don’t cares”, that is, ¢ € {0,1}° and p €
{0,1,+}". The output from a net is an element of {0,1}". The purpose of a response

string is to specify constraints on what a particular output can be: We say that

12

SR items
Ttask] load

memory

response

stimulus retrieve -

Figure 2.1: A Model of Supervised Learning. The loading process examines
the SR items and alters memory to store that data. Later, the retrieval
process accepts a stimulus and examines memory to find and emit the as-

sociated response.

13

an output string, #, agrees with a response string, p, if eaci bio, 7, of che output
equals the corresponding bit, p;, of the response whenever g, - Si.n: Tha notation
for such agreement is § = p. Each stimulus/response pair, (¢, 7}, s called an SR
item. A task is a set of SR items that the machine is required to learn. To be
reasonable, each distinct stimulus in a task should be associated with no more than
one distinct response. Equivalently, a task T should be extendible to some function

£:{0,1}* — {0,1}". We view functions as sets of ordered pairs and use the notation

T < f tomean T C {(o,p) : f(0) = p}-

2.2 Network Architecture

The particular style of connectionist machines considered here is that of non-
recurrent, or feed-forward, networks of computing elements. This is a generalized
combinational circuit: the connections between nodes form a directed acyclic graph,
and the nodes perform some function of their inputs as calculated by previous nodes
in the graph.

We define an architecture as a 5-tuple A = (P,V, 5, R, E) where
P is a set of posts,
V is a set of n nodes: V = {vy,vz,...,vn} € P,
S is a set of s tnput posts: S =P -V,
R is a set of r output posts: R C P, and
E is a set of directed edges: E C {(vi,v;) : i€ P, v;EV, 1 < 7}
The constraints on the edges ensure that no cycles occur in the graph. Denote the
set of input posts to node v, as pre(ve) = {v, : (v;,ve) € E}. The size of this set
(denoted |pre(v,)!) is called the fan-in.

An architecture specifies everything about a circuit except what kind of functions

the nodes perform (i.e. what kind of gates they are).

14

2.3 Node Functions

Each node in a network contributes to the overali retrieval computation by taking
signals from its input edges and computing an output signal. Although some of
our results apply to real-valued outputs, this paper considers only binary-valued

functions:
fi: {0’ 1}1!9"8(‘“']‘ — {O,]_}

The function f; is a member of a given set, 7, of functions, called a node function set.
Typically, connectionists have used the set of linearly separable functions {LSFns)
for 7. These functions are characterized by a real-valued threshold and a real-valued
weight associated with each input to a node. An activation level is calculated from
the weighted sum of the a inputs, and the output is one of two values depending-

on whether the activation is above or below the threshoid.

LSFns = (£ {0,1)° = {0,1} | W,0 € ® WX, > 0 & f(X) = 1)

i=1

We consider LSFns as well as a variety of other node function sets. Two variants
that are considered are called AOFns and LUFns. AOFns is the 2-element set
{AND,OR} {AOFns is from And-Or Functions). LUFns is the set of all Boolean
functions (LU is from Look-Up table). Note the inclusion hierarchy LUFns 2 LSFns
> AOFns for any given fan-in.

We also consider two sets of node functions that have real values. Quasi-linear
functions (QLFns) are functions composed of any bounded, monotonic function, E,
applied to a linear combination of the inputs. (This definition is essentially the same
as that used in [RHM86] and [Wil86a].) A special case of QLFns is the logistic-linear
functions (LLFns), for which E(z) = 1/(1 + ¢7%). The back-propagation algorithm
of [RHWS6| is designed to work with LLFns.

A configuration of a network is a set of n functions F' = {fi,f2s--o) fu} cor-

15

responding to the set of nodes, V, meaning that f; is the function that node 1

computes.

2.4 The Computational Problem

In a configured network, every node performs a particular function and therefore
the network as a whole performs a particular function which is a composition of
the node functions. An architecture, 4, and a configuration, F, together define a

mapping from the space of stimuli to the space of responses:
Mg {0,1}" - {0,1}".

The A and F fully define a circuit and thus fully define how the network will behave
during retrieval.

A task, as defined above, can be viewed as a collection of constraints on the
mapping that a network is allowed to perform. Recall that an SR item in a task is
a pair of strings (o,p). When the posts in S are assigned the values of respective
" elements of o, the network mapping defines values for each post in R. It is required
that these values agree with respective elements of p. For stimuli not in the task, any
output is acceptable—that is, M#£ may be any consistent extension (generalization)

of the task.

The process of loading can now be defined. In the learning problem we are con-
sidering, an architecture and a task are given, and loading is the process of assigning
an appropriate response function to every node in the architecture, load(A,T) — F,
so that the derived mapping includes the task. It is a procedure that accepts a pair
(A.T) and returns a solution, which is a configuration F such that T C M. If no
such configuration exists, the procedure announces that fact.

The loading problem is a search problem, but it is usual to frame complexity

questions in terms of decision problems. In the space of all possible (A,T) pairs,

16

some pairs will have solution configurations and some will not; that is, for some pairs
the architecture can perform the task, and for some it cannot. The performability
decision problem is simply: “Can the architecture perform the task?” In the style

of [GJ79], this is phrased as follows:
Instance: An architecture A and a task T.

Question: Is there a configuration F for 4

such that T C {(o,p) : Mf(o) agrees with p}?

For purposes of our ensuing complexity questions, the decision problem embodies
the crux of the loading problem.

Note that the above statements are technically incomplete because they hold no
direct reference to the node function set being used. Our next (and last) re—phrasing-
of the loading problem redresses this oversight, and uses classical terminology for
expressing decision problems: The performability problem is the problem of recog-

nizing the following (parameterized) language:
Perf; = {(A,T): 3F € F* > T C M3}

The subscripted parameter indicates the node function set. We will be asking
questions about a variety of such sets, and each time we change the subscript we

are referring to a slightly different decision problem.

2.5 Classical Connectionist Learning

The dominant paradigm in current connectionist supervised learning research fol-
lows a style established by the Perceptron many years ago. The following algorithm
illustrates the style using one version of the Perceptron Learning Rule. Let W be
a set of weights and X be an input vector. Let a be one greater than the fan-in to

a node. Then using a simple trick of notation, the threshold is treated as one of

17

the weights so it does not explicitly appear in the expression of the linear threshold
functicn.
start:

choose any arbitrary set of weights W & R®

test:
accept an itnput X £ R¢

and a classification ¢ € {0, 1}

fW.X>0ande=1

or W.X < 0and ¢ =0 go to fest,
adjust:

fW.X>0ande=0 set W W - X

fW.-X<Oande=1 set W W4+ X

go to test

Whenever the weights are adjusted, the retrieval function can change. The
process of adjusting the weights is therefore concepiually the same as choosing a
node function f € LSFns, as we phrase it.

As exemplified above, the learning process in the classical paradigm is a cyclic

repetition of the following steps:
1. A stimulus is received from the environment.
2. An output is calculated by the retrieval process.
3. Some form of information about the correctness of the output is given.

4. A determination is made about how a change in each weight would individually

affect the overall performance of the network.

5. All the weights are changed according to what step (4) would determine to

be an improvement.

The determination in step (5) is made based on information available locally at the
node in question, which in the case of the Perceptron was only the value of the

input relevant to the weight in question and whether or not the most recent output

18

was correct. Note that as a consequence, each determination regarding a wa: b
is independent of every other determination, and the amount of information they
mutually have access to is minimal.

In step {3) above, some form of information about the correctness of the output
is given. This can come in various forms, but the most direct form is simply to be
given the correct answer. When such is the case, the protocol is called supervised
learning. Variants on this protocol include reinforcement learning in which the only
information given is a scalar evaluation of how ‘good’ the output from step (2)
was. Both these schemes can be complicated by introducing noise into the data.
In such a case, the information supplied in step (3) has only a certain probability
of being correct, so the system is faced with a problem in stochastic optimization.
The literature on Learning Automata has studied this problem [NT74,NL77,TR81]-
but we will avoid it.

Most connectionist research has attempted to comply with some present-day
notions of neurological plausibility. This tradition is very much attached to linear
sum node functions (primarily LSFns and LLFns) but the major characteristic of the
style has to do with the way in which the algorithm interacts with the environment
and with its internal state variables. A so-called ‘neural’ algorithm has a style
substantially akin to the Perceptron’s in the following senses: the loading component
operates with minimal information beyond what the retrieval component uses; each
node acts independently and somewhat simultaneously in adjusting its weights; and
every node relies on information locally available only, where locality is defined as
per connectivity in the net. As is true for the Perceptron, a connectionist system
often has no state variables except its weights, and the meaning of these weights is
fully defined by the tretrieva,l algorithm. There is no significance to these variables
beyond what the retrieval algorithm gives them.

At this point in time it is difficult to formulate exactly what would be acceptable

19

as ‘neural’, but a loose formal mods! of this idea would at least specify a constant
number of bits of memory asscciated with each edge of the architecture and a
constant number of bits associated with each node (independent of network size).
Any scheme adhering to the general 5-point procedure outline above can be
treated as an ‘on-line’ algorithm. An on-line system is one that guesses a response
to each given stimulus before it is told the required response and is held to account
for these guesses. One could view this as a model of an adaptive system having to
make tactical decisions in an ongoing environment. Of course, any such system will
sometimes make mistakes in its guesses; it is interesting to find upper and lower

bounds on the number of mistakes an on-line system will make.

2.6 Discussion

There are three ways in which this formulation seems to stray from the connectionist
paradigm. First, there is nothing in our model of learning that reflects any of the
neural desiderata. However, this means that any intractability result will therefore
be conservative. We have chosen not to adhere to these neural constraints in order
to strengthen our results.

Second, connectionists are apt to find the performability problem a strange
formulation because from their point of view the architecture is not an input to the
problem but rather a specification of the machine that is to solve the problem. The
reason for this formal rearrangement lies in the research strategy of the connectionist
community. The prevailing goal has been to find a ‘learning rule’ that can be
employed in each node of a network to pass information back and forth, to witness
the various task inputs and errors made during early operation, and to eventually
settle on a node function (i.e. a set of weights) that will eliminate output errors.
The point to note is that this search for learning rules has historically been a search

for a universal rule—one that could afford to be oblivious to the type of architecture

20

into which the rule will be deposited to do its work. It has been implicitly hoped
that the architecture has little to do with the difficulty of loading. Of course it
was recognized that the architecture has a great influence over what mappings van
be performed, but after assuming that the network was adequate to perform a
given task, it was hoped that a general purpose (i.e. a non-architecture-specific)
learning rule would be able to configure the weights correctly. Therefore we can
freely vary the architecture when formulating the computational problem faced by
such a learning rule; i.e. we can make it an input parameter.

Third, Connectionists might again object to this formulation because of the lack
of any mention of the architecture in the model of computation that will be used
to actually find the configuration. By omitting any reference to the machine, the
phraseoldgy above implicitly poses the problem in terms of a Turing machine, or '
at least in terms of some standard sertal model of computation. The connectionist
approach is to run the learning rule in all nodes of the network simultaneously, so
one wonders if this parallel model might not be more powerful. Perhaps so, but
note that the number of nodes is at most linear in the problem size (since the input
includes a specification of the architecture), so the speed-up due to parallelism can
bé no more than linear. In the face of the NP-completeness result to follow in
Chapter 4, this is inconsequential.

A word about our use of the word “loading”. The connectionist literature rather
uniformly uses the word “learning”; why should we use another word? Firstly, the
word “learning” is used in AI and other fields to refer to a great variety of different
things aﬁd it is useful to distinguish some of these uses from others. Secondly,
although the connectionist literature is fairly consistent about what their learning
problem is, our loading problem is not exactly the same as theirs either, so it
behooves us to be pr;ecise by using a different name for a different problem.

Specifically, the loading problem involves:

21

1. a given, {previously unknown) network,

2. total, easy, ongoing access to the network structure,
3. a given, (previously unknown) task, and

4. total, easy, ongoing access to all items; in the task,

where by ‘total’ we mean freedom from locality constraints; by ‘easy’ we mean
O(]A]) cost to read the whole data; and by ‘ongoing’ we mean there is no limit to
the number of accesses allowed.

Of the four aspects listed here, (3) is certainly true for the classical connectionist
learning, and (1) is often true although implicit. Both (2) and (4) are usually
not part of classical connectionist learning. Strangely, although (3) is seemingly
paramount, it may be the least important aspect of the model in the sense that
knowing the task in advance might not make any difference to the computational
complexity of the problem.

Note that (4) implies noise-free supervised learning—the input data are always
dependable in that items are always consistent. It also implies knowledge of the
exact number of items, something that classical models do not have access to.
Aspect (2) indirectly implies that the architecture is fixed and cannot be altered
during loading. Both (2) and (4) more or less imply that a Turing machine will be
employed to perform the loading function; the algorithm is not required to run on
a distributed machine.

The loading problem, then, is our formalization of a particular computational
problem which is closely akin to classical connectionist learning but is altered

slightly to be on the easy side of three major issues:

i

e the type of machine used to solve it,

e the style of processing required, and

22

e the type of information available.

It should be noted that when NP-completeness is found with this model, it is espe-
cially germane because we have focussed on the easiest and least restrictive condi-
tions for all three of these issues. By applying automatically to many of the more
difficult cases, the theory is particularly relevant.

When we find loading to be difficult, we will know that the classical connectionist
learning problem must be at least as difficult; When we find loading to be easy, we

will only have suggestive evidence that the classical connectionist learning problem

is easy.

23

Chapter 3

REVIEW OF RELATED WORK

Some background in other formal learning theories will help put our work in per-
spective. It will also help explain why our theory will help connectionist design
problems, whereas the others will not.

There is a long tradition of research on the problem of inferring a general rule
to describe a set of specific examples. Philosophers [Bac42,Car50j, then cyberneti-
cists, cognitive psychologists [HMS66|, engineers, and more recently Al researchers
Mit77,DM81] have all considered the problem. In a distilled form, the quest is to
find a procedure that can take objects representing po;sitive and negative examples
of a concept and find an expression (in some form to be discussed) that expresses
whether a given object is a positive or negative example of the underlying concept.
This type of process is a major component of what is colloquially called ‘learning’.
Such inference procedures could be used for classifying unseen examples, for pre-
dicting future events, for storing data in a compressed format, or just for storing
data in a convenient format. The last two purposes might be valid even when all
instances of the concept have already been witnessed. Our primary motivation is
similar to the last one—to store data in a particular format.

Some mathematical models of learning from examples have recently been de-
veloped. We will review the relevant aspects of the learning formalisms defined by

Gold and by Valiant, and then contrast our formalism with theirs.

24

©

is a learning procedure.

t is a text. A text is an enumeration of an r.e. set, which is

equivalent to strings in a language. Every r.e. set is equal to
the domain of some function ;.

IV, is the domain of ;.

t;
L
L

e S SN R &

is the first ; elements of t.

is a language.

is a class of languages.

(a) ¢ is defined on ¢.

(b) 3n 2 p(t;) = w(ta)¥] = 7.
(a) @ converges on t to some 1.

(b} rng(t) = W,.

identifies L «<=> ¢ identifies all texts for L.

identifies [<= ¢ identifies every L € L.

is identifiable <= some ¢ identifies [.

converges on t to 1 <> {

identifies t — {

Figure 3.1: Gold’s definition of learnable (identifiable)

the theory.

3.1 Gold

Gold [Gol67| established a field of learning theory in 1967 which he labelled ‘identi-
fication in the limit’. He asked whether there is a procedure which could read in an
endless sequence of example strings in a language and eventually find a grammar

for the language. See Figure 3.1 for a formal definition,

Many other researchers [BB75,Cho80,0SW86,WC80,A583,5ha81] have built up

The questions concern infinite languages, and therefore they involve
infinite ‘texts’, meaning that the system must see unbounded amounts of data. In
the main, the questions asked place no bounds on time or space required for learning.

The flavour is very much like computability theory as opposed to complexity theory.

25

F is a class of programs (concepts).

p is a polynomial.

A is an algorithm.

€, 6 are probabilities.

n is a positive integer.

f and ¢ are programs.

D7 is a probability distribution of positive examples.
D~ is a probability distribution of negative examples.

{p, A) such that

(vn)(Vf € Fo)(vD*,D7)(Ve, 6 > 0)
A halts in time p(n, size(f),1/€,1/9)
“F is learnable” <= { with output ¢ € F,, that

with probability > 1 — 4

has property ¥ z)=0 D7(Z) <€

and property Y yz=1 D7 (Z) < €

Figure 3.2: Valiant’s definition of learnable

3.2 Valiant

Valiant [Val84| established a lower-level field of learning which has subsequently
heen elaborated by himself and others [Val85,PV86 KLPV87]. His paradigm is
concerned not just with what is learnable but with what is feasibly learnable {see
Figure 3.2). The definition of feasibility relies on the well-honoured distinction
between ‘polynomial’ problems and ‘super-polynomial’ {or NP-hard) problems.
Valiant’s definition concerns data represented by a fixed (finite) number of vari-
ables which typically are all binary-valued. The learning system must discover the
underlying rule that describes whether such a given bit string is or is not an exam-

le of a ‘concept’. The learner views example after example and tries to deduce a
p P

description of the concept, so it is similar to Gold’s paradigm in this regard, but it

26

is different from Gold’s in at least three other regards:
1. fixed-length bit strings, ergo finite bodies of data to purview;

2. bounded time to accomplish the learning, specifically time bounded by a poly-

nomial in various parameters of the problem;
3. specific guidelines as to the form of the concept description.

The third difference is the most fundamental to the formulation and is the most
germane to our discussion. Basically, Valiant’s theory is intended to determine
whether concepts of a certain class are easy to learn. For instance, if a concept can
be expressed in conjunctive normal form with at most 4 variables per disjunct, is
it possible to deduce that expression from seeing examples alone? If a concept can
be expres.sed as a disjunct of two conjuncts, is it possible to deduce that expression
from seeing examples alone?

His definition of learnability has some important other sﬁbtleties which capture
probabilistic aspects of generalization. These are discussed in Section 7, but are

not relevant to the present purposes.

3.3 Qur Model

The present work describes a third field of learning theory which might be viewed
as the lowest level of the three. It is inspired by the computational problem under-
lying the connectionist approach to learning. Whereas Valiant differed from Gold
primarily on the issue of time, Valiant and this work differ primarily on the concern
for the circuit involved in representing the data. Our paradigm is concerned not
just with what is feasibly learnable, but with what is feasibly learnable in a machine

with a certain fized structure. It shares the same similarities and differences with

Gold as Valiant, but its “specific guidelines as to the form” of the representation

27

A is a design class of architectures (networks).

A is an architecture {network).

p is a polynomial.

B is an algorithm.

F,G are configurations for A (i.e. settings for all the adjustable
variables in all nodes of A).

M# is the behaviour of A when configured with F.

T C {{0,p)IM2{0) = p} is a task.

{3p, B) such that

(VA € A)(VF for AY(YT C Mp)

B halts in time p({A| + |T'|) with

output G such that T C M3

“4 is loadable” <=

Figure 3.3: Our definition of learnable (loadable)

(item 3 above) are even more strict than are Valiant’s. See Figure 3.3. It requires
that a representation for the learned data be found that can be embodied in a spe-
cific network structure. To achieve it, details of the function at each point in the
net are alterable, but no alterations to the connectivity of the network are allowed.

For example, if the given network were this:

and the data to be learned were values for f,x,y, and z such that f were some
function of z,y, and z, then the objective of the learning system would be not

only to discover the function f(z,y,z) but also to find 3 more functions a,b. and ¢

28

such it flz,v,2) = e(z,a(z,y),b(y,2)). This is more constrictive than Valiant’s
formul: ion because Valiant places only general grammatical guidelines on the form
of f whk=re we have an exact expression, minus only the specifications of a,b, and c.
This prior knowledge of the form does not make the general learning paradigm any
easier or harder, but merely different. It asks a question about whether a particular
network can be made to represent some data, not whether it is possible to to find

some network to represent those data.

3.4 Comparison Summary

This section summarizes the similarities and differences between the three learning

paradigms being considered.

3.4.1 Requirements

In broad terms, each formulation is phrased as “For each member of problem class
X, and for each of many different ways of presenting the learning data, the class is
said to be learnable if there is a dependable way to remember the data.” The first

two clauses in this sentence correspond to different formalisms in each paradigm:

 paradigm | For each member For each preséntation
i of the class | of the data
Gold (VL e L) | (V texts for L)
Valiant | (Vf € F) "(vD*,D")
| (VA € 4) |
' this work | (¥ configurations I for A) I (¥ permutations of T)
(‘

| YT C M)

3.4.2 Motivation

Gold’s study of Comparative Grammars is an attempt to characterize the class

of natural languages through formal specification of their grammars. His original

29

motivation for setting up a formal learning theory was nct Lo v« ooy carming for
its own sake but to develop a tool to understand natural langiar - v oinssing to
define what a natural language is, he looked for constraine i o for . provided by
the observable fact that 2-year-olds can learn it. Furthermove, they !earn it mostly
by lisﬁening to others speak it. Thus formal learning theory was origially conceived
to assist the comparative study of grammars but it ultimately might contribute to
theories of psychology or neural architecture.

Valiant's motivation can be viewed as an attempt to develop a foundation for
learning in AL He wants to discover good models relevant to building devices that
can learn, and to find the limits to what can be feasibly learned. True to traditions
of Al, he uses an abstract Turing machine as the model of computation. Hence
his paradigm is not concerned with any structural or functional constraints on the
algorithms; it merely asks that an algorithm complete its task within a certain
amount of time. Valiant’s formulation is exactly relevant to Al which shares these
same freedoms and constraints.

Our motivation arises from the search to understand a very particular compu-
tational model. Like Gold, we use it not directly for its own sake but as a tool to
constrain an ulterior theory. In seeking to understand connectionist computation,

we seeks constraints on network design provided by the computational feasibility of

learning.

3.4.3 Quantitative comparison

The various quantities involved in the three formulations are compared in this table:

variables input size output size time data structure
Gold infinite infinite finite finite any
Valiant fixed- bounded bounded bounded constrained
this work | fixed bounded fixed bounded fixed

30

3.4.4 ‘Grammatical Focus’

Gold studies the relation between finite evidence and infinite languages. This neces-
sarily involves a grammar, but the form of the grammar is not explicitly mentioned.
For example, he asks whether it is possible to find a description (i.e. a grammar)
for any given recursively enumerable set.

We can cast the other 2 models in terms of grammars and languages as well. The
data structure resulting from Valiant-type learning can be seen as a ‘sentence’ in a
language described by grammatical syntax rules, where neither the words ner their
interrelationships are known a priori but where the grammar serves as a validity
test for the sentence. Valiant studies the relation between such a grammar for
representation and the complexity of finding an appropriate sentence complying
with that grammar. For example, he asks how hard it is to find a 3-CNF expression
for a given body of data. The grammar involved is ‘3-CNF-ness’, and the sentence
sought would have to be a 3-CNF expression.

We study the relation between a grammar and the complexity of finding words
to All a specific sentence structure from that grammar. Our learned data structure
is more particular than Valiant’s in that it is not any sentence from some grammar,
but is a particular sentence from it. For example, we ask how hard it is to load a
network drawn from the family of two-layered networks. Two-layered-ness would
be the ‘grammar’. The specific ‘sentence’ involved could be the example network
used on page 28, and using that example the ‘words’ sought would be specifications
of the functions a, b, and ¢. The position and relationships of each ‘word’ are fully

specified in advance, and the learning system need only discover what the missing

words are.

31

3.4.5 Environment

One of Gold’s original definitions is of an informant, which is a particular kind of
‘environment’, or protocol for interaction between a learning system and a source
of data. An informant is an environment in which strings are presented serially to a
machine paired with an indication of whether that string is in the target language
or not.

Like Gold, Valiant explores a variety of environments, but one environment
is quite similar to an informant. His terminology for it is ‘positive and negative
examples’ of a concept.

Our protocol for gathering information is also quite similar to Gold’s informant.
The learner is presented with pairs of strings called stimulus and response. The
object is to remember what response is appropriate for each stimulus. If the response-
string were only one bit long, it would be equivalent to saying IN/OUT (2 la Gold)
or POS/NEG (A la Valiant). The response string is a useful generalization of the
one-bit notion but is not a conceptual deviation from the basic idea.

Hence we consider the three paradigms as having nearly equivalent learning
environments. In fact, it is this commonality of supervised learning that makes the

comparisons meaningful.

3.5 Studies in Connectionist Learning

Many researchers have developed algorithms for supervised learning in connectionist
networks. A good review is given by Hinton [Hin87]. Some of the approaches
most relevant to our study are the Perceptron [Ros61,MP72|, linear associators
{And72,Koh77,Koh84] back-propagation [RHW86,Par85,1C85], and the associative
reward-penalty (Ag’p) scheme [BA85,Bar85]. All of these are ‘neural’ algorithms

for feed-forward networks.

32

A neural algorithm hasbe a given for Boltzmann machines [AHS85,HS86/|, but
the Boltzmann machire is a rc current network. Hopfield (Hop82] gives a non-neural
method, also for training recurrent {and thus dynamic) networks. Our work does
not address this style of retrieval mechanism. For unsupervised learning paradigms,
research has been done including [RZ85, and references therein|. The present work
does not speak directly to this paradigm either so none of it will be reviewed here.

Analyses of the feed-forward models have been mostly for a single linear thresh-
old unit or for a 2-layered machine where only one layer is trainable (Perceptron).
A layered machine is one where the nodes are divided into disjoint sets called layers,
network inputs are connected only to the first layer, and subsequent layers get their
input signals only from a previous layer. There have also been some investigations of

more general structures, which we will review after considering the work on simple

networks.

3.5.1 Simple Networks

In the ‘one-layer’ case, learnability results span a great range. Some problems are
impossible to solve; some can be solved ‘in the limit’, i.e. by using infinite time; some
have time bounds that are known only to be finite; some have exponential time;
some polynomial; and some logarithmic. The scaling arguments are with respect to

s, the number of bits in the input vector/string. They are considered here in this

same order.

Impossible: There are not nearly as many linearly-separable functions as there
are general Boolean functions on {0,1}’, so most Boolean functions on a large
number of variables can not be performed (or perforce, learned) by a single-node

linear threshold unit. In their book Perceptrons: An Introduction to Computational

Geometry [MPT72], Minsky and Papert answered questions regarding the functional

33

powers of the 2-layer model and characterized classes of functions that could not
e performed when both layers have bounded fan-in. Of course, any function can

be performed with an exponential fan-in, but this is clearly impractical.

Infinite: Several asymptotic results have been given for stochastic approximation
methods [SW81,DH73], for stochastic Learning Automata [NT74], and for a combi-
nation of these [BA85]. For instance, when placed in a stochastic setting, and mod-
ified by gradually reducing the adjustment constant, the classic Widrow-Hoff rule
[WH60! has been shown to converge asymptotically to the solution of least squared
error with probability 1. Another convergence theorem was given by Barto and
Anandan {BAS85] for a difficult reinforcement training protocol that involves noisy
data and an impoverished form of feedback. They prove in a restricted case that
the stochastic Ap_p procedure in one node will almost surely converge to correct
responses. But these convergence theorems are only for asymptotic performance,

which means the time upper bound is infinite.

Finite: Rosenblatt [Ros61| and others proved a theorem stating that the various
Perceptron learning rules will eventually converge to correct weights if such weights
do exist. See Nilsson [Nil65] for notes on the history of its various proofs. This
development demonstrated that the Perceptron would learn in finite time, even

though it was a very simple and ‘neural’ device.

Exponential: Muroga [Mur65| showed that there are linearly separable functions
whose weights are approximately as large as 2°. Thus even when the function is
performable, it will take the various Perceptron learning rules (2°) adjustments
before getting accegtable weights. Hampson and Volper [HV86| extended the ar-

gument to the average case (as opposed to the worst case) and derive a bound of

n(L.4).

34

Tesauro [Tes87) meacurad ' rning t e as a function of the size of the task. He
used 3 networks of a parvicilas siyiz, or, particular algorithm (back-propagation),
and one particular function from which .2 draws ¢ random items to make up a task.
He then plotted learning time as a fum:tioﬁ of ¢, and found it to be the sum of a

polynomial and an exponential. The polynomial dominated in the low ranges but

alter a certain point, the exponential dominated.

Polynomial: Hampson and Volper [HV86,VH86,HV8T7| explore several algorithms
and learning situations for the single Perceptron to see how they behave as the num-
ber of input dimensions, s, is scaled up. They report exponential times for all but
a few simple cases. When the additional dimensions are irrelevant or redundant, or

when the task being learned is an OR or AND, then low polynomials in s are found.

Logarithmic: Littlestone [Lit87] found polynomial on-line mistake-bounds for a
variety of classes of functions. He considers a node function set with the same form
as linear threshold functions but he demands a minimum amount of separability
between the different classes. (This restriction is a very appealing refinement to
the model of a ‘neural’ node function set, since it allows the separating plane to
be placed anywhere within a range and thereby relaxes the unrealistic requirement
for arbitrary precision in the weights.) For the case where the target function is
a simple disjunction of some subset of the input bits, he gives an algorithm that
makes O(k log s) mistakes, k being the size of the relevant subset. When learning k-
DNF expressions (for-some fixed k), his algorithm has an upper bound of O(k! log s)
mistakes. (I is the length of the expression learned, and s essentially measures the
number of irrelevant input bits.) This is remarkable both for being linear in k and
for being logarithmic in s.

Peled and Simeone [PS85] proved that it is NP-complete to decide if a function

given in disjunctive normal form is linearly separable. This problem is more difficult

35

than ours in that it has a very short input and must capture the whole function
in a set of weights. Our problers has s muvch longer (extensional) representation of
the desired function {which by ihe "definitions of complexity affords an algorithm
more time to run), and only requires the net to remember those items that are
explicitly given. So with less to do and more time to do it, our loading problem is
computationally easier; therefore their result is not tight enough for our purposes.

All these learning results are for single nodes {possibly preceded or followed by
a layer of other non-learning nodes). They shed little light on our question about

large, arbitrarily-shaped networks.

3.5.2 Complex Networks

Some attempts have been made to analyze the behaviour of learning algorithms'
in the context of composite networks. Rumethart, Hinton, and Williams [RHW36|

have shown that when the generalized delta rule is used in an arbitrary feed-forward

network for making weight updates, the net has a gradient-descent behaviour. This

is a pleasing result but there are at least two deficiencies: 1) No time bounds are

available yet, and 2) Because the surface in weight-space is multimodal, the algo-

rithm may descend into a local minimum and thereby never discover fully correct

responses.

Tesauro and Janssens [TJ88| report empirical results studying the relationship
between learning time and the predicate order, ¢, of a task. They measure a series
of (network, task) pairs parameterized only by ¢. The net has g inputs, 2¢ nodes
in the first layer (fully connected to each input) and a single output node (fully
connected to each node in the first layer). The task is a complete listing of the
t = 27 items for the parity function on ¢ bits. When trained using back-propaga-
tion. they observe learning times of approximately 4?. Since the task has size 27,

this means the training time is 47/27 = 27 times the amount of data to be learned.

36

This result might also be re-interpreied as ¢ iden. . tnat the learning time scaled
exponentially in the size of the network.

In summary, there is geod evidence that in g 1eral training neural networks
is extremely time-consuming for large applicatione Overall these results give one
the impression that some very simple learning problems are easy, but when the
problems are only slightly more difficult they become intractable. However, none
of the results are really conclusive for networks of arbitrary shape. Networks of
certain designs might find it easy to learn functions that are difficult to learn in the
particular one-node or two-layer designs explored in the literature; or perhaps they
will find easy ones hard.

Even beyond the explicit studies reviewed here, it is widely acknowledged that
as networks get larger and deeper, their learning time grows prohibitively, The
scale-up issue is therefore an important research problem for current connectionist

research.

37

Chapter 4

THE INTRACTABILITY OF
LOADING

Our major question is about the intrinsic nature of the learning problem we have
posed: How difficult is it to load a given task into a given architecture? As discussed
in the previous chapter, this amounts to asking how much time is required for a

Turing machine to recognize the following language:
Perf; = {{A,T):3F € " > T C M#}.

(Terminology used here and the related complexity-theoretical concepts of NP-
completeness are explained thoroughly in Garey and Johnson [GJ79].)

The measure of how difficult a decision problem is must be relative to the size of
a particular instance of the problem. The size of an instance of the performability
problem is taken to be the number of bits that it takes to represent the instance,
i.e. the architecture and the task. This number is roughly proportional to |A| +|T|.
As the architecture gets bigger or as the task gets bigger, one would expect any
algorithm to take longer to solve it, but the question we would like to answer is
“How much longer?” What is the asymptotically minimum function g(z) for the
worst-case amount of time required to solve an instance of size z7

We prove below that Perfyopps is NP-complete. This means that it belongs to

a class of computational problems for which no polynomial time algorithms have

38

1

ever been found. All NP-complete problems can be transforme! into any other NP-
complete problem in polynomial time, so the development of = soly-time algorithm
would automatically give a poly-time sélution to all of them. In fact it would
imply that a deterministic machine could solve all the same problems that could
be solved by a non-deterministic machine (i.e. a machine with a psychic ability
to guess solutions) with no niore than a polynomial degradation in running time.
Technically, this development would be expressed as “P = NP”, but it is believed to
be exceedingly unlikely. Indeed, decades of experience have shown that the scale-up
function for any NP-complete problem is an exponential expression that becomes
unmanageably large even for small instances of the problem [GJ79, Chapter 1].

The fact that Perf4orps is NP-complete is not a statemnent about the running
time for one particular learning algorithm—it is a result about the intrinsic difﬁculty.
of the problem. Hence it is not practical to try to decide large instances of the
performability question. (The instance of a loading problem is large when the
network itself is large, even though there might only be a small amount of data to
be loaded.) No learning rule can always solve this problem in polynomial time.

Furthermore, because this decision problem is no harder than the search problem
from which it is distilled, the loading problem per se is also intractable. Assuming
P+#NP, no general-purpose algorithm can be developed for use in arbitrary archi-
tectures that is guaranteed to load any given performable task in polynomial time.
(This is true whether the algorithm is conceived as a nodal entity working in a
distributed fashion with other nodes, or as a global entity working in a centralized
fashion on the network as a whole.)

The parallelism inherent in most neural network systems does not avoid this
intractability. An exponential expression (¢®) cannot be contained by dividing it
by a linear expression (¢n). In many connectionist approaches to learning, there is

a strong reason why large numbers of computing elements will not accomplish the

39

loading problem in feasible time: By doubling the number of nodes available, you are
doubling the computational resources but you may also be doubling {or squaring!)
the amount of computing that has to be done. Naive attempts to exploit parallelism
can actually be counterproductive.

Hence it might appear that we cannot hope to build large connectionist networks
that will reliably learn simple supervised learning tasks.

The following sec_tion states and proves the fundamental theorem for one node
function set and Section 4.2 shows how the result also applies to most other node

function sets.

4.1 Proof of General Case using AOFns

To prove a problem, Py, to be NP-complete, one must take another problem, P,
that is known to be NP-complete and transform it into P;. That is, one must give
a polynomial time algorithm that can translate any arbitrary instance of P; into an
instance of P; that is true if and only if the instance of P, is true. This algorithm
is then called a ‘reduction from P, to P,’. See [GJ79] for an explanation of this
technique. Of course if there is a poly-time solution to P, there will automatically
be a poly-time solution to P; by first applying the reduction algorithm and then
the solution algorithm, but such a composed procedure is presumed not to exist, so
the solution algorithm is presumed not to exist either.

The particular NP-complete problem that we will use in the role of P, is called
3SAT. An instance of 3SAT is a expression in Boolean variables given in conjunctive
normal form {i.e. a conjunction of disjunctions) in which all the disjunctions have
exactly 3 literals. A literal is a logical variable or its negation. The instance is said to
be true (or satisfiable) if the variables can all be given values such that the whole log-
ical expression is true. For example the expression (xry, T3, £4)(2, T3, T4} (F1, T2, r3)

is satisfied by the assignments z; =0, 2, =1, T3 = 1, z4=0.

40

Theorem 1 Perfpppns 15 NP-complete.

Proof: by reduction from 3SAT. Let the 3SAT problen be {Z,{) wherz Z ic a
set of variables {¢1,¢,¢s,...} and C is a set of disjunctive clauses over them. Each
clause has 3 literals. For {Z,C) to be satisflable, there must be an assignment
II: Z — {0,1} such that at least one literal in each clause has value 1.

A formal construction is given here for the architecture and task, followed by
an exposé. Let w = |Z| be the number of variables and m = |C{ the number of
clauses. The 3SAT instance (Z,C) is reduced to (A,T), an instance of the lcading

problem, where

= (P,V,S,R,E)

= {a,b}

{wi, T,y 1 G € ZYU{e; : C, €C}
= Suv |

= {{a,w:),(a,z), (b, w;), (b,),

=i
1

B v S w e
il

(wiyvz:), (we, 4), (20, 33), (20, 9) 1 € Z}
U {(wi,¢;) i s € Ci3 U {{zi,¢5) : & € C3}
T = {I,1;, I3}
I, = (00, (0000)*0™)
L = (11, (1111)*+™)

Iy = (01, (+01#)*1™)

This arcane piece of notation is explained in a 2-stage reader-friendly example.
Stage 1: For every variable ¢; € Z construct the partial architecture and partial
task shown in Figure 4.1. From item 1 we know that f,(0,0) = f.(0,0) = 0; hence

£.(0,0) = 0 and f,(0,0) = 0. From item 2 we know that fo(1,1) = f.(1,1) = 1;

41

fw fZ
a b, w=zy z
P w z item1: {00, ©0 00 0)
tem2: (11, 1 11 1)
R item3: (01, % 01 %)
fz fu
L

Figure 4.1: The construction for each variable ¢ € Z.

hence f;(1,1) =1 and f,(1,1) = 1. By comparing item 2 and item 3 we know
f:(fw(lal)afz(lsl)) =1 7& 0= fz(fw(os 1),fz(0,1))

fu(1,1) # f,(0,1) or fo(1,1) # £:(0,1)
1 # f,(0,1) or 1 # £.(0,1). (4.1)

By comparing item 1 and item 3 we know
fol £(0,0), £.(0,0)) =0 # 1 = f,(fu(0,1), £:(0,1))

f0(0,0) # f,(0,1) or f:(0,0) # (0, 1)
0# fu(0,1) or 0 # f.{0,1). (4.2)

And from (4.1) and (4.2) we conclude f,(0, 1) # f.{0,1). We will associate some
SAT variable ¢; with the group of nodes in this construction. For mnemonic value
and brevity, let (¢;} stand for “the value computed by the w-node in the block

of nodes associated with ¢; when given the input 0 17. And let (¢;) stand for its

negation—i.e. the output from the z-node for input O 1.

42

1I1 ly1 Y Il‘z Iy2

a b, Wy Ty Y 2y Wy I3 Y2 22 W3 I3 Y3 23 ¢

item1: (0 O, 0O 0 0 0 ¢ 0 0 O 0 0 0 0 0
11, 1 1 1 1 1 1 1 1 1 1 1 1 1)

1, x 0 1 = x 0 1 = x 0 1 % 1)

Figure 4.2: The composed construction for Theorem 1. This example is for

the single clause (¢, ¢z, G)-

Stage 2: For each clause in the SAT system construct a single node in the second
layer of the architecture with inputs from all nodes associated with its participating
iiterals. Putting variables’ nodes and the clause node together, we get what is shown
in Figure 4.2. It shows the construction for an example SAT system consisting of
only one clause (¢1,,83). Observe that each item consists of the stimulus from
an item from Figure 4.1, three replications of its response (one per variable), and

another response bit for the clause node (node ¢).

Claim: The constructed architecture can perform the task iff the SAT instance

is satisfiable.

Proof: Remember that f,(0,0) = f,(0,0} = 0 in each variable construct. By

43

inspecting item 1 and itew 5.
fel0,0,0; =0 b — felios (), {¢a)).

Hence
(1) #0or (&) # 0or (&) #0,
which is exactly the semantics of a disjunctive clause. If IT exists then let (¢;) =

T{¢;). that is

fiZ{OR FIG) =1 ana g1 =

AND i Ti{g) =1
AND if T{¢)

1
0 OR if H{gj) =0

For all variables ¢; let fi = AND and fj = OR, and for the clause node let f. = OR.
The reader is welcome to check that this configuration performs the task.
Conversely, if a configuration exists let TI(g;) = {¢;}, and observe ¢y = 1lor¢ =1

or & = 1 as required. This proves the claim. d

The extension to multi-clause systems should be clear.

Thus we have SAT « Perfaofqs and it is easy to see that the algorithm for the
transformation runs in polynomial time (in fact linear time and log space).

Finally, it must be demonstrated that there is a non-deterministic machine that
can decide Perfyopps in time polynomial in the length of (A,T). Writing down
a complete configuration of AOFns takes one bit for each node in A. That the
configuration is correct can be checked by evaluating each node function once for
cach item in T. This takes time O(|V] x |T|) under the assumption that it takes
constant time to evaluate any single f;.

This, and SAT o« PerfqoFys implies Perfsopns is NP-complete. d

This proof is intended to be applicable to Perfr for ¥ being more than just

AOFns. Hence it begins by forcing f,(0,0) = 0 and fu{1,1) = 1 (amongst other

44

things). Such could have been assumed from the outset since OR(0,0) = 0 and
AND(1,1} = 1 but we chose not to exploit these peculiarities of AOFns in the
proof. Regardless of the value for f£,(0,1), one of {AND,OR} will satisfy all the
requirements, so the proof is strong enough to apply to AOFns while not being
specific to it.

This proof uses the “don’t-care” symbol, but such is not always a part of the
learning protocol used in connectionist studies, In appendix C there is another
version of the proof that avoids the “don’t-care” by using some extra signals and

nodes. Hence this detail does not strongly alter the nature of the problem.

4.2 Other Node Function Sets

The intent of this section is to demonstrate that the intractability of the performa-
bility problem does not depend much on the particular node function set being
used—its difficulty remains for essentially all non-trivial cases.

Theorem 1 deals only with AOFns, but connectionist studies typically use LSFns,
the linearly separable functions. LSFns includes all of AOFns and, when the num-
ber of inputs to a node is large, it is considerably more powerful. It might seem,
therefore, that this extra power would make loading easier. Unfortunately, this case

(and even LUFns) is just as hard.

Corollary 2 For any node function set ¥ such that all members of F are hinary-

valued functions, and ¥ 2 {AND, OR}, Perfs is NP-hard.

Proof: Both directions of the proof of the claim in Theorem 1 require nodes able, at
least, to perform functions from AOFns. The reduction thus follows for any node

function set that includes them. 0O

45

Corollary 3 Perfgp,s ts NP-complete.

Proof: NP-hardness follows from Corollary 2, ro we need only to show il:at Ferfygm.
is in NP. For this to be true, there must exist some poly-time way of guessing a func-
tion from LSFns and being sure that indeed it s from LSFns. If fan-in were bounded
in our model, then this would be easy since we could get the non-deterministic se-
lection to be from a fixed table of all LSFns up to that input size. Without bounds
on fan-in, this technique will not work. One might attempt to achieve a selection
from LSFns by simply writing down the weights that are used in the linear sum,
but since the weights are assumed to be real {i.e. of a potentially infinite number
of decimal places), this technique is also inadequate. However, Hong [Hon87} has
recently proved that approximations to the weights are sufficient to encode any and -
all members of LSFns. Specifically, only a polynomial number of digits are required

{polynomial in the fan-in), and hence Perfrgpys is NP-completé. O

Muroga [Mur71, thm 9.3.2.1] implicitly proves the same result about polynomial

bounds on the weights in LSFns. It is tighter but less direct.

Corollary 4 Perfy s ts NP-complete.

Proof: Again, NP-hardness follows from Corollary 2, but to prove PerffjF,s to be
in NP, we must give some format for guessing members of LUFns. It must have
some poly-time way of writing down an arbitrary function and checking that it is
in LUFns.

To fully specify an arbitrary member of LUFns requires 2lere(vi}l bits and hence
it takes exponential time to write it down. {The statement of the theorem implies
no bound on the fan-in to a node.) However, each node function will be invoked
exactly t = |T| times in the performance of the task; hence we can specify a function

F £ LUFns by asserting a default value (1, say) to cover most inputs, and then

46

listing the exceptional inputs, a, for which F{a) = 0 (of which there are at most t).
Since T has a unary encoding of ¢, there is a representation of F that is polynomial
in the length of (A4, T), and this means that a function can always be written down
in poly time.

Making sure that such a function is a member of LUFns is trivial since all
binary-valued functions are members. Hence Perfy € NP even when 7 = LUFns,

and Perff (rppe 15 NP-complete. O

LSFns is a special case of the quasi-linear functions (QLFns). Theorem 3 per-
tains only to discrete, binary-valued signals and does not apply to real-valued quasi-
linear functions. However, another theorem pertains specifically to the popular

logistic-linear functions (LLFns) used in back-propagation:

Theorem 5 Perfyipps ts NP-complete. d

Proof in appendix B. As a corollary, performability with the more general class of
quasi-linear functions, Perfg ppys is also NP-hard.

These theorems indicate that the difficulty in the loading problem has very little
to do with the choice of node function sets. This observation is strengthened below
in Theorem 12 below which states that some tasks which are performable using very
restricted node function sets, are difficult to load even when that node function set
is greatly expanded. This argues that the difficulties of loading will not be overcome
by searching for ever more powerful node types.

We end this chapter with a more convenient statement of our main result:
Corollary 6 Loading is NP-complete.

Proof: The decision problem is NP-complete, and since being able to solve the

search problem would allow one to answer the decision problem, the search prob-

47

lem must be at least as hard. M

Note that no node function set is explicitly mentioned in this corollary. There
are two ways in which this makes the corollary technically loose. First is that for
an absurdly simple node function set {e.g. where the set has only one member},
~ the problem is not NP-hard. Second is that deciding membership in an absurdly
complicated node function set (e.g. where the truth-table representation of each
function must name a halting program), might not be NP-easy. However, in the
common cases, and in other reasonable cases we explored the result is robustly true.
Because it holds for any node function set of interest, we will hereafter omit the
specification of the node function set in order to imply generality.

We note that a different proof of the NP-completeness of Perfy gpys has recentlyr
been found by Blum and Rivest {BR88]. Their proof differs from ours in that
different parameters are scaled up. Our proof scales up the size of the architecture
and the number of bits in the response strings while keeping the number of items
and the number of bits in the stimulus strings constant. Their proof keeps the size
of the architecture and the number of bits in the response strings constant while
scaling up the number of items and the number of bits in each stimulus string.

It might also be noted that there are node function sets for which performability
can be proved NP-complete without scaling up the size of the task or the length of
the strings at all—using such a node function set, machines of arbitrary size would

be unable to load even a fized amount of data!

48

Chapter 5

SUBCASES

Our results preclude only the broadest, most ambitious interpretation of the goal
of connectionist learning. Essentially, the goal we have formulated is to find an
algorithm that is guaranteed to load any performable task in any conceivable net.
One can imagine several ways to constrain the problem in such a way that the new
loading problem would have some special regularity might facilitate its solution.

Such constraints would involve
o restrictions on architectural design,
e restrictions on tasks restrictions, and/or
» different criteria of success.

For most such sub-cases, our theorem says nothing.

This section discusses several ways to define sub-problems and/or different prob-
lems that may be easier to solve than the general loading problem formulated above.
Intersperséd amongst these comments are several corollaries to the above proof that

state further negative results.

I

49

5.1 Architectural Constraints

First. Theorem 1 is a statement about networks and tasks in general, but there
may be large useful classes of networks (defined by some design restrictions) where
loading a task would always be achievable in polynomial time. It has been an
empirical observation that although some algorithms (notably back-propagation}
work well in nets that have only a few levels intervening between input posts and
output posts, they work much slower in deep nets. One might be tempted to
infer that shallow nets would be intrinsically easier to load. By examining the
construction in the above proof we see this is not so. The construction uses only 2

layers and vet an algorithm for loading it was shown to be equivalent to an algorithm

for solving 3SAT. Hence:

Corollary 7 Loading is NP-complete even when the architectures are restricted to

be of depth < 2 and of fan-in < 3. 0

Rather than liﬁnit the mazimum depth or fan-in, what is more likely to help is
a restriction that sets a minimum depth (say as a function of the width of the
net), or a minimum fan-in, because this forces a minimum number of degrees of
freedom everywhere. Since experimental evidence seems to contradict both these
suggestions, it would be important to resolve the issue.

Other architectural design constraints have been explored. As a first piece of
analysis, we have some examined issues in shallow networks that have gross struc-
ture extending through their width. The results are interesting and substantial
enough to warrant a separate chapter. See Chapter 6.

One avenue of freedom usually not exploited by connectionist learning schemes
is to alter the architecture as learning proceeds. When carried to extremes, this

would amount to an exercise in arbitrary circuit design, rather than in connectionist

50

learning, but adhering rigidly to the starting architecture may be just too constric-
tive; somewhere between these two extremes there may be a balance that combines
the best of both worlds. Valiant and others [Val84, KLPV87| have initiated th>
study of what can be feasibly learned using total freedom of connectivity within
a certain class of architectures. For example, their p-expressions are the same as
tree-shaped architectures that use AOFns.

It is conceivable that the difficulties in loading stem specifically from the non-
recurrence of the nets and the fact that all their ‘knowledge’ about a stimulus must
be elicited in one single evaluation of each node function. If so, then a more reason-
able model of network memory might involve storing data as cycles in state-space
where the power of attractor dynamics could be exploited to make loading easier
(albeit at the cost of more expensive retrieval). Such would be a large departure
from our model but there are plenty of pitfalls there too; Porat [Por87| proves that
in such a system the problem of deciding just if a configured network stabilizes or

cyeles is NP-hard. See also [God87,Lip87].

5.2 Task Constraints

Next, our formulation of the learning problem may be inappropriate in that it re-
quires a network to be able to load too large a class of tasks. By using performability
as the decision problem, we are in effect defining the task class in terms of the archi-
tecture itself and asking that any architecture A be able to load any task in the set
PA = {T:3F > M# 2 T}. But it is not necessary to expect an architecture to be
able to load all of these tasks. From a practical point of view, all that is necessary
is that it be able to perform and load some useful class, T, of tasks. Obviously, it
ts necessafy that T C P4, and the results herein show that it is too ambitious to
have T = P* for arbitrary A. However, there are many ways to define T so as to

exclude some tasks in P4, thus possibly leading to a loadable class. It would be

51

useful to be able to characterize just what class of tasks a network could learn, or
conversely, to be able to deccrinine whus tvpes of architectures could learn a given

class of tasks.

Our main theorem has implications for the restricted classes of monotonic tasks,
small tasks, and tasks that are performable using very small and simple node func-
tion sets.

Define ¢ > & to mean that every element of the binary vector o is a 1 if its
corresponding element in binary vector § isa 1. A monotonic function iz a function
g such that

o> 8= g(o) = g{é).
A monotonie task, T, is a set of items such that for some monotonic function g, T-
agrees with g:

(0,p) € T = p agrees with g{p).

Corollary 8 Loading is NP-complete even when tasks are restricted to be mono-

tonte. O

Corollary 9 Loading is NP-complete even when there are there are only two bits

in the stimulus strings (s = |S| = 2). C

Corollary 10 Loading is NP-complete even when tasks are restricted to be of no

more than 8 items. 0

A more promising avenue is to define the task restrictions in terms of what is
performable by a network that is in some way less powerful than the network being

loaded. One technique for doing this uses the notions of ‘teacher’ and ‘learner’. A

52

teacher is a network that is used to define the set of tasks that a [earner network
will be required to load. The word ‘teacher’ is to connote what has to be learned;
it is not to be confused with some mechanism for facilitating the loading process.
For example, suppose we have a network, A, that can perform a task, T', using only
those node functions in the set §. And suppose that another network of the same
architecture but capable of using a (larger) node function set ¥ is charged with
loading T. Call the first network the teacher and the second the learner. If gc’¥
then the tasks performable by the teacher will be a subset of the tasks performabie
by the learner. Is it easier to decide performability of this smaller set of tasks?

To denote this new question, the parameters for describing the teacher are writ-
ten to the left of Perf and those for the learner are written to the right; the current
example is denoted by gPerf;—. Formally, it requires for all architectures, A, and forr

all tasks, T, to be able to compute an output, d, such that
d=1 = IFcF":TC M;i

d=0 = AGe G :T C M§

Note that in some cases either answer would be correct, and hence we call this a

relazed dectston problem.

The teacher/learner device parallels the technique used by Pitt and Valiant in
[PV86, definition 1.2].

The question ;Perf; is exactly the original type of question Perfr.

The following theorem shows that no advantage can be made of extra node

function power to load tasks:

Corollary 11 gPerf? is NP-complete for ¥ and § betng any reasonable superset

of AOFns.

Proof: This follows by the same argument used for Corollary 2. Both directions of

the proof of the claim on page 43 in Theorem 1 only require nodes able, at least,

a3

Lo peclorm functions from AOFns. As long as 7 includes AQOFns, one direction of
ihe proof holds, and as long as § includes AOFns, the other direction of the proof

heolds. a

Just to emphasize how a large difference in node functionality makes no differ-

ence in loading complexity, witness an extreme case of the above corollary:

Corollary 12 Loading an architecture A using LUFns is NP-complete even when

the tasks are restricted to be performable by A using AOFns. 0

This corollary deals with a type of task restriction, but it also provides further
evidence that the NP-completeness of the loading problem does not derive from
difficulties inherent in the node function set. Devising ever more powerful node

functionality will not overcome the intractability here.

5.3 Relaxed Criteria

Finally, our mathematical question has a very exacting criterion of success in train-
ing: either the machine performs perfectly or it doesn’t. If the criterion was more
lenient then the problem might be much easier. Some probabilistic or approximate

criterion of learning might be more appropriate. Here is one that won’t help:

Corollary 13 Loading is NP-complete even when only 67% of the items are re-

quired to be retrieved correctly.

Proof: Loading slightly more than g of 3 items is the same requirement as loading

all 3 items.) O

54

5.4 Summary
Note that all the restrictions mentioned in this section actually hold simultaneously.
Corollary 14 Loading is NP-complete even when

e the architectures are restricted to be of depth < 2 and of fan-in < 3,
o tasks are restricted to be monotonic,

e there are there are only two bits in the stimulus strings (s = |S| = 2),
e tasks are restricted to be of no more than § items,

e only 67% of the items are required to be retrieved correctly, and

e tasks are restricted to be performable by AOFns, although e configuration may

draw node functions from LUFns.

35

Chapter 6

SHALLOW ARCHITECTURES

The loading problem is NP-complete even for networks of depth 2, so rather than
attempting to deal with deep nets, we shall limit our attention to shallow nets and
try to identify additional constraints that yield tractable loading problems. For

further justification of this strategy, we quote Baldi and Venkatesh (BV87]:

It is not unusual to hear discussions about the tradeoffs between the
depth and width of a circuit. We believe that one of the main contri-
butions of complexity analysis is to show that this tradeoff is in some
sense minimal and that in fact there exists a very strong bias in favour
of shallow (i.e. constant depth) circuits. There are multiple reasons
for this. In general, for a fixed size, the number of different functions
computable by a circuit of small depth exceeds the number of those
computable by a deeper circuit. That is, if one had no prior knowledge
regarding the function to be computed and was given m hidden units
then the optimal strategy would be to choose a circuit of depth two with
the m units in a single layer. In addition, if we view computations as
propagating in a feedforward mode from the inputs to the output unit,
then shallow circuits compute faster. And the deeper a circuit, the more
difficult become the issues of time delays, synchronization, and precision
on the computations. Finally, it should be noticed that given overall re-
sponses of a few hundred milliseconds and given the known time scales
for synaptic integration, biological circuitry must be shallow, at least
within a “modl}le” and this is corroborated by anatomical data.

We introduce the notion of a support cone, which is the set of nodes that can

affect the behaviour of an output node. On this is built the notion of the Support

56

Cone Interaction (SCI) graph of an architecture, which isolates computationally
salient features of an architecture by explicitly denoting only the overlaps between
support cones. Finally, by applying a limit to the size of the support cones, we create
a type of formal constraint that is powerful enough to mask off the difficult issues
involved in loading deep nets without interfering with our theoretical investigation
‘nto issues of width, We have used the term ‘shallow networks’ to mean a family
of networks whose maximum support cone size is limited by some parameter but
where there is no limit on the number of nodes. This has the effect of defining a
family of bounded depth and unbounded width.

We show that limiting the size of the support cones is not enough in itself to make
loading tractable. Indeed, even when attention is further restricted to architectures
whose SCI graphs are regular planar grids the problem is NP-complete. Only when
additional constraints are added that serve to prohibit the existence of large grids
within the SCI graph are feasible problems identified: polynomial-time loadable

architectures are found for the case where the SCI graph is of limited tree-width.

6.1 Definitions

Definition In an architecture A = (P,V, S, R, F), each output node £ € R has a
support cone, sc(z), which is the set of all nodes in V that can potentially affect the

output of that node; that is, it is the set of predecessor nodes:
sc(z) = {z} U {sc(y) s y € pre(z) NV}

The network retrieval behaviour at any particular output node is determined by

(and only by) the functions assigned to each node in its support cone.

i

Definition A support cone interaction graph (SCI graph) for an architecture, is

an accounting of the interactions between support cones. It is a graph with nodes

&7

{21, 22,...,2} corresponding one-to-one with the output nodes, “/ w = Lo dges

{(2.2;) : sc(R:) Nse(R;) # 0.

Definition A partial configuration for node z is an assignment of functions to

each node in its support cone:
F,:sc(z) — 7.

A partial configuration for a group of nodes, X, is an assignment of functions to all
nodes in all of its support cones:
Fx : | sc(z) — 7.
X
Definition The support cone configuration space (sccs) for output node z is the
set of all partial configurations for the support cone of z.

Since we are considering only binary functions of binary values for each node in

a finite graph, the size of a sccs is always finite.

Definition A family of architectures is shallow if the size of the largest sces in
each architecture is bounded. (At first, assume it is bounded by a constant; this
will he loosened later.)

Note that this limitation has the effect of bounding the depth of a network, the
maximum fan-in to any node, and the number of different functions in the node
function set, although it does not dictate how these things are traded off against
each other.

The complete sces for any node in any architecture in a shallow family can be

exhaustively searched in constant time.

58

6.2 Grids and Planar Cases

This section starts from our previous NP-completeness result on shallow architec-
tures and tightens it to apply to two progressively more constrained families of
shallow architectures.

The proofs are extensions of the one used for Theorem 1 so the first thing we
do in this section is import the construction used there and make a minor change.
Note the construction in Figure 6.1a is almost identical to the one given earlier in
Figure 4.1 (page 42) except that S = {a,b,d, e} instead of just {a,b}. The tasks
remain functionally the same, however, because input o is identical to input d, and
b is identical to input e.

To make the next proofs easy to read, a pictorial notation for architectures and
tasks is used which eliminates excessive formality. In Figure 6.1a the network has
been depicted on the page so that information flowed across the plane of the page,
as is customary in the connectionist literature. Figure 6.1b shows an alternate view
of this same architecture, the plan view, which is a view “from above”. If a network
is drawn in such a way that during retrieval the Stimulus originates above the page,
information flows into the page, and the Response arrives below the page then the
network is drawn in plan view. The items shown in Figures 6.1a and 6.1b are also

different representations of the same task.

As in the proof for Theorem 1, each clause in the 35AT system corresponds to
a single node in the second layer of the constructed architecture with inputs from
all nodes associated with its participating literals. Putting all the variables’ nodes
together with the clause node yields something like what is shown in Figure 6.2. It
is a plan-view re-representation of Figure 4.2.

As before, the largest support cone in this construction has only 4 nodes in it

and the largest fan-in is only 3, so the largest sces is of limited size. Hence this

59

fu fz abde, w=zTy z
item1: (0000, 0000
w » item2: (1111, 1 111)
item3: (0101, % 01 %)
' R
fa Ty
e by

(a) The construction for each variable in the SAT system. The architecture
shown on the left is drawn in the classic side view. The 3 items in the task
as shown on the right. Zeroes and ones are desired responses; the asterisks
are ‘don’t cares’. This construction is nearly identical to the one used in
Figure 4.1, except that s = [S| = 4 rather than 2.

architecture itemn 1 item 2 item 3
1 z b o H : 0
v o To, 1 H 1 @
(b) The plan view of the construction for each variable in the SAT system.
This is a different representation of what is shown in part (a) above. On the

left is the plan view of the architecture. Round nodes are first-layer nodes
and each has 2 external input connections (which are not shown). Square

nodes are second-layer nodes and have input connections from the round
nodes. All nodes have external output connections (which are not shown).
The 3 diagrams on the right are pictorial representations for the same 3
items as appear in (a) above. The letter L stands for the 2-bit input 0 0;
H stands for 1 1; and Q stands for 0 1. The zeroes and ones are desired
responses; the asterisks are ‘don’t cares’. Each character is positioned to
correspond to a node as drawn in the left diagram. First layer nodes have

stimulus bits and required responses as well.

i

Figure 6.1: Plan view notation

60

architecture

Y 0 0 M1 ® * ® *
0 1o 0 1o 1 M * @& x ®
© 0 0 3 * @ * 1
o9 1 *x @

item 1 item 2 item 3

Figure 6.2: Plan view of the composed construction. It uses notation estab-
lished in Figure 6.1. This example is for the single clause {u,,d7,73). At
top left is the plan view of the architecture. Node ¢ is a second-layer node
that is used to enforce the disjunctive semantics of the clause. Below are

the 3 items.

61

family of constructions fits the definition of shallow networks, and this construction

is herefore sufficient to prove what is actually a looser version of Corollary 7:

Corollary 15 Loading shallow architectures is NP-complete. |

Our first intuition after realizing this was that the problem was difficult because
the architecture lacked any regular structure—constraints in one part of the network
could imriediately impact options in any other part of the network. Connections
in the architecture could reach and thereby propagate constraints from anywhere
to anywhere. To prevent this, we sought reasonable restrictions to place on the
SCI graph so that constraints generated in one part of the architecture would stay
somewhat local to the area in which they originated. One such device was to require

the SCI graph to be planar. Unfortunately,
Theorem 18 Loading shallow planar-SCI architectures ts NP-complete.

Proof!: Note one incidental fact about the reduction used in the proof for Theorem
15-—that the SCI graph for an architecture in that family of constructions is identical
to the plan view of the architecture {minus directions on the edges). We will use a
similar construction in this theorem; the architecture used will have a planar plan
view and a planar SCI graph simultaneously.

The proof of Corollary 15 can be re-employed for the present theorem here so
long as we can arrange for no arcs to cross in the drawing of the SCI graph. This
is done in the usual way (see [Lic82])—we show how to eliminate all crossing arcs

without altering the relevant aspects of the graph. See the ‘crossover construct’ in

Figure 6.3.

!This proof employs a node function set which is not linearly separable, and therefore is not

directly applicable to tHe conventional connectionist devices. However, there is a more elaborate

construction based on an invention by Lichtenstein [Lic82| that holds for the standard linear thresh-

old functions. See appendix D.

62

item 1

item 2

item 3

!

g

1O
@1 @
1y

Lo
0 19
19

@
o 1 10
@

architecture

H
® 0 @
H

H
M 1 H
H

@
M O H
@

item 4

item 5

item 6

Figure 6.3: The construction for crossovers. The architecture is shown in
plan view at left. The 6 items shown at right force f,{0,1) = ~f,(0,1) and

fq(ov 1) = ﬂfq'(ov 1)'

63

Let the label in a node in this diagram aisc denote the value emitted by that
node for input 0 1 (input O 1 is abbreviated as a Q in the item diagram). By
comparing item 1 with item 2 deduce that p # 0 or p' # 0. By comparing item
4 with item 5 deduce that p # 1 or p' % 1. From these it follows that p # p'.
Similarly, by comparing item 2 with item 3, and item 5 with item 6, it follows that
g # ¢. Thus p' is a copy (albeit a negative copy) of p, and ¢' is a (negative) copy
of g. The copies can be re-inverted using the construction in Figure 6.1b. Thus the
information about p and ¢ ‘pass through each other’ in the plane and the techniques
for proving Theorem 15 can be used for the present theorem as well.

Since there are only a polynomial number of crossing points in a graph, each
one can be replaced by the (fixed) amount of extra construction given here and we

still have a polynomial reduction from 3SAT. |

SCI planarity is not a tight enough constraint to escape NP-completeness. In
fact, no kind of local topology constraint on the SCI graph that is still open to 2-
dimensional expansion seems to hold much promise. Define a grid as a checkerboard

graph on nodes z;; and edges are either (2, Tis1,;) or (Zi, Tij+1). Witness:
Theorem 17 Loading shallow grid-SCI architectures is NP-complete.

Proof: All the individual constructs in Figure 6.1b and Figure 6.3 can fit easily into
a grid topology. It remains to show how they can all be connected. For this we
need only show how to transform one of the arbitrary-shaped and arbitrary-lengthed
arcs of Figure 6.2 into an equivalent implication while following grid lines; i.e. how
a variable can be propagated from one point on the grid to most any other point.
Using the construction from Figure 6.1b we can make a negated copy of a variable
in a diagonally adjacent node. Using the construction from Figure 6.3 we can make
a negated copy of a variable in a node 2 places away horizontally or vertically. Us-

ing combinations of these, we can copy a variable either positively or negatively to

64

any other node in the grid. See Figure 6.4 for examples. Thus any construction

for Theorem 16 can be padded with extra nodes until it becomes a grid structure. O

These grid SCI graphs hayve node degree 4. Loading is also NP-complete when
the SCI graph is a hexagonal array (node degree 3). Proof omitted. When node
degree is limited further to just 2, the SCI graph becomes a chain and the problem

is easy. Proof in the next section.

6.3 Definitions Again

Definition Let DOM(X) denote the domain of the function X. Two configurations

F and G are said to be compatible, written F = G, if they have a common extension: -
F = G <= Yv € DOM(F) n poM(G) F{v) = G(v)

Note that a partial configuration for node a is trivially compatible with a partial

configuration for node b if sc{a) N sc(b) = 0.

The union of two configurations F and G is defined when G = H:
F = GUH <= poM(F) = DoM(G) UDOM(H},F =G, F = H
The usual notion of restrictions on functions is also useful:
F =G|, < DOM(F) = A, F=G, DOM(G) 2 A
Definition A correct partial configuration, F. for node z is a partial configura-
tion with the property that for any extension of £ to a complete configuration
F, M# at node r agrees with the corresponding response bit over all items in the

task. A correct partial configuration for a group of nodes contains a correct partial

configuration for each node in the group.

65

Figure 6.4: Example task designs for propagating variables. Each diagram
shows the plan view of a 2-layer architecture. The horizontal and vertical
arrows indicate the effect of the task construct in Figure 6.3; the diagonal
arrows indicate the effect of the task construct in Figure 6.1b. These four di-
agrams illustrate that a variable or its negation can be propagated through-
out a grid architecture from one first-layer node to any other first-layer

node.

66

Figure 6.5: An example graph with bandwidth 4. Note that the gross

structure is lineal, which could be extended indefinitively without increasing
the bandwidth. The layout for the graph is given by the subscripts to the
L node labels.

Definition The bandwidth of a graph measures the greatest distance that any two
adjacent vertices in a graph must be separated when the nodes are strung out in a
straight line. Let G be a graph with nodes V(G) and edges E(G). Let a one-to-one
function £: V — {1,2,...,]V(G)|} be called a layout of G. Then G has bandwidth
b if there exists some layout, ¢, such that for all (z,y) € E,|¢(z) — £(y)] < b. An

example graph and its layout are given in Figure 6.5.

i

67

Definition The tree-width® of a graph is defined by [RS86] in the following way:
Let & be a graph. A tree-decomposition of G is a family {X;: 1 € I} of subsets of

V (G), together with a tree T with V(T') = I, which have the following properties:
e U{X,:1€ 1} =V(G)
e Every edge of G has both its ends in X; for some 1e 1.
e Tori,j,k € I, if j lies on the path in T from 1 to k then X; N X, C X;.

The width of a tree-decomposition is max{|X;| — 1 : i € I'}. The tree-width of G is
the minimum width over all possible tree-decompositions.

As examples of this concept, trees and forests have tree-width < 1, and series-
parallel graphs have tree-width < 2. For n > 1, the complete graph K, has tree-’
width n — 1, and the n x n rectangular grid (as in Theorem 17) has tree-width n.
The bandwidth of a graph is never smaller than its tree-width, but it is known that
trees (tree-width 1) have unbounded bandwidth even when their fan-in is limited

to 3 [GGJK78|. Figure 6.6 shows an example graph that has tree-width 4.

6.4 Tree-Width Constraints

The theorems above deal with constrained families of architectures and assert that
the loading problem is intractable for those families. This section examines a differ-

ent type of constraint and reports polynomial-time algorithms for them, which we

“The armwid{h ;)_f_a graph is a generalization of bandwidth which we developed and de-
fined in terms of a pebbling game or a vertex-elimination procedure. During preparation
of this document we discovered that the notion has been independently developed by others
[AC'P87,AP88, WHL85 CK87]. The treatment given by Robertson and Seymour [RS86] is more
appealing than our definition for the purposes of the proof below so we use their notation and

name for it. Our definition can be found in a technical report [Jud88a| proving its equivalence to

“embeddings in partial k-trees” and “tree-width” .

68

<

Figure 6.6: An example graph with tree-width 4. Its bandwidth is =~ 16.
Note that the gross structure is a tree, but each arm in this tree is not a
simple path graph as a true tree would have, but is a ‘fatter’ structure. Each
of these fat arms, taken independently, is a graph with bandwidth 4.

69

intefp.ret. as tractable. We begin with an example family of networks called colum-
nar lines. These architectures are described graphically in Figure 6.7a. They are of
some fixed depth (4 in the example shown)} and of unbounded width, so they qualify
as a shallow family. Their fish-net pattern of connectivity gives rise to the family
of SCI graphs depicted in Figure 6.7b. Regardless of the width of the architecture,
its SCI graph has a bandwidth (and tree-width) of 3 (one less than the depth of the
net).

Ohservation: Columnar line architectures can be loaded in polynomial time.

Proof sketch: Create a graph with a collection hy, hy, ks, ... of sets of nodes,
where a node A} stands for the i*R correct partial configuration for the support
cone of the kM output node. Then add edges (h},h},,) whenever A} = hl,, A
solution to the loading problem corresponds to a connected path from some member
of h, to some member of h; to some member of ks and so on to the end. Finding

such a path requires only polynomial time. 0

The next theorem generalizes the previous observation.

Theorem 18 Loading shallow architectures whose SCI graphs are of limited free-
width can be accomplished in polynomial time, provided that a tree-decomposition 1s

given that erhibits the required width.

Proof: Let T and {X; : i € V(T)} be the tree-decomposition of the SCI graph.
Let 7.7y, 7s,... stand for subtrees of T. Let region(r) = U{X: : 7 € V(r)}. Let
the set of all correct partial configurations for the group of architectural output
nodes corresponding to a group, X, of nodes in the SCI graph be denoted scpc!X].
Any member of scpe[region{T)] is a solution configuration. Let the root node of a
subtree 7 be denoted root(7).

The following recursive dynamic programming subroutine has access to an ar-

70

(a) The family of columnar line architectures (of depth 4) shown in classic
side view. At right is a single ‘column’ and on the left is a sample of 5
columns joined together. An architecture in this family is composed of any

number of such columns joined in the manner shown.

T

{b) The SCI graph for the columnar line architecture of {a) above. Each node
corresponds to an output node of the architecture. Arcs occur wherever their

associated support cones overlap. Regardless of the length of this graph, it
has bandwidth 3.

/

Figure 6.7: Columnar line architectures and their SCI graphs.

chitecture, its SCI graph, and the #1:0 20 sosition for the graph, and it takes
some subtree of T as an arguinent:
SOLVE(r):

for every immediate subtree 7; of
calculate S; « SOLVE(7;)

calculate § — scpe| Xroot(r))
calculate § « {ﬁ Fe S’,VJ'EFj € S; F= F;}
return S

We claim for any given subtree, 7, that every member of the returned set
S « SOLVE(r) has an extension that is correct for all of 7; and that all correct

configurations for 7 must be extensions of some member of §.

Claim: 3F € SOLVE(r) <= 3F € scpc[region(r)] F=F

X

rootir)”

Proof, by induction on the height of 7. For the basis case where 7 is a single leal
node, €, SOLVE returns § = S = scpe|X,] so the claim is true. For the inductive step,
assume the claim true for any subtrees 7,72,73,... and consider a deeper subtree,
7+, consisting of a root node, h, and subtrees 7y, 72,73, ... immediately below it. Say
3F € sovE(rt). Then F € scpefh], and Vj3H; € SOLVE(r;) such that F=H,, by

the calculation of §. So 3F; € scpc(region(;)] and H; = F; by the inductive

Xrnane
assumption.

Now by definition of the tree-decomposition, DOM(H;) 2 DOM(F;) N DOM(£).
So 3F;" = F; U F € scpe|region(r;) U X,|. It remains to show that all the F}* are
mutually compatible; this must be so because a path from one subtree to any other
must pass through the root h. Hence poM(FY) n DOM(F) C poM(f) for any 1,7,
and 3F* = F UU;{F;} € scpc[region(r™)]. This proves the = direction.

Conversely, if 3F* € scpc|region(r*)] then the (exhaustive) algorithm must find
F= F*|x,. This cofmpletes the < direction and proves the claim.

To determine if a solution configuration exsits for the whole network, run this

72

algorithm:

Pick any node in T to be the root
Calculate § «— SOLVE(T)
If § = 0 then reject else accept

Any member of § indicates the presence of a solution configuration so this
algorithm accepts if and only if the task is performable.

Finally, we must show that g(n), the running time of this algorithm, is poly-
nomial. Consider first the running time, g,(n), of the non-recursive parts of the
subroutine SOLVE. This is O(|sepc|X]]), which is exponential in the size of X, but
since the size of X is limited, execution time is also limited. So g1 = O{1). There
are a polynomial number of nodes in T, bounded by (n Choose k) = O{n*), if not
by something linear. The algorithm invokes SOLVE once per node in T, so total

time is g(n} = O(n*} x O(1).]

Note that this theorem holds even if we loosen the definition of shallow archi-
tectures so that the largest sccs size is polynomial in n {(as opposed to being a
constant). In such a case, g1(n) and g{n) = O(n x gi{n)) are still polynomial.

Theorem 18 refers to ‘limited’ tree-width and was worded to imply “limited by a
constant”, but this is over-strong. Consider a family of architectures characterized
only by a growth function G(n) for the tree-width of its SCI graph. The theorem
s worded for the case G(n) = O(1), but it holds true for the case G(n) = O(log n}
because g, is only exponential in logn, which means that it is polynomial. So g is
still polynomial as well.

Now remember that when G(r) = O(n) the loading problem is NP-complete
{since this is a non—gonstraint—the tree-width of any graph of n nodes is at most
n). These bounds leave a gap between O(logn) and O(n) which can be narrowed

somewhat:

73

Theorem 19 For shallow architecture families with a growih ;Lo 7 2

width of their SCI graph G(n) = n™Y = n¢ loading is NP-ccia, .

Proof: Take an arbitrary instance of 3SAT and perform the reduction zs in The-
orem 15. Consider the graph defined on the 3SAT instance which has a node for
every variable, a node for every clause, and edges connecting variable nodes to all
the clause nodes they participate in. If this graph is of size n and tree-width w (and
w < n always), then the constructed instance of loading will have size O(n} and
tree-width w. Now pad the construction with enough isolated nodes to bring it up to
size n' = G~1(n). This will not change the tree-width of the loading instance but it
will ensure that w < G(n'), thus satisfying the criterion for membership in the fam-
ily. Since G is polynomial, G~! is also polynomial. No matter how small ¢ is, as long

as it is greater than O there is a polynomial-sized reduction from SAT to loading. OO

This narrowed window of bounds hangs on the tree-width constraint alone and
is therefore common to many combinatorial search problems, not just the loading
problem.

Theorem 18 stipulates that the tree-decomposition of the SCI graph must be
given as input to the problem because in general determining minimum tree-width
is an NP-complete problem in itself [ACP87|. This is probably not a problem for
connectionists because the network design methodologies we hope to find would
presumably be amenable to easy a priori structural analysis. {Assume the network
does not change its connectivity during use.) However, if this theorem were to be
exploited in a direct implementation it does imply that the nodal learning rules
would have to be aware of the structure of the SCI graph, i.e. knowledge of the

tree-decomposition would have to be ‘wired in’ to the network somehow,

74

6.5 Additional Comments

The algorithms given above are tor purposes of demonstrating the polyno:aial-time
complexity of the problems. They are not intended to have any neural plausibility.
The running time constants could be markedly improved in the algorithm given,
but note that the running time is linear in the size of the architecture and in task
size. This problem can therefore be added to the list [MS81,CES81] of NP-complete
problems that become easier with diminishing bandwidth. That characterization
may now obsolete, though, because it seems all of those results can be re-cast in
terms of the weaker notion of tree-width.

By limiting the size of the sces in all theorems above, we have finessed the
whole issue of how the loading problem gets more difficult with depth. This trick
has aliowea us to focus on the issues arising from expansion of the width of an
architecture. But putting individual limits on the sccs size and on the tree-width
is unnecessarily strong. The real constraint required by the proof of Theorem 18 is
only that the scpc for any tree-decomposition set, X;, be calculablein a polynomial
amount of time.

We have ignored the possibility of an efficient search for correct partial configu-
rations and have chosen here to enumerate all possibilities. We have dismissed this
particular inquiry as being a “depth issue”.

We have studied fixed-depth architectures partly because they are easy enough
to analyze, but they are of interest because of a possible correspondence with cor-
tical structures. Certain parts of the brain (e.g. visual cortex [HWT9]) are quite
shallow compared to their great width, and the direction of information flow is
predominantly unidirectional along the shallow axis. Connections are more or less
tocalized in 3D spac’e surrounding a neuron. Of course real cortical structures are

complicated by many connections and other specifics not modelled here, but we feel

75

that the process of developing a theory of how such structures work could benefit
by analyzing a few judicious constraints at a time. The constraints chosen here

are an approximation to what seem to be the major computatior al aspects of some

cortical structures.

76

Chapter 7

MEMORIZATION AND
GENERALIZATION

One would hesitate to use neural networks just to memorize and store data because

it is probably not economical at all—there are many other engineering techniques’
that are strong competitors for that honour. But one common motivation for study-

ing neural networks is that they can generalize, and thus perform something of great

value beyond mere storage.

The issue of generalization does not seem to be the primary concern of this
thesis. However, we state in this chapter that before the issue of generalization
can be addressed, the memorization problem must first be solved; hence our results
about memorization have a direct bearing on the other issue.

Following, we give several statements of the same idea; the reader who accepts

any one of the arguments might skip the others.

Statement 1 We have shown that a network cannot always remember all the
items that is has seen. One should therefore not expect it to always be able to

extend its knowledge to things it has not seen.

!

Statement 2 When specifying what is meant by ‘generalization’, one could re-

quire that the chosen function agree in all places with the given data, or one might

77

a_'flc-.w Jutae degree of deviation from the given data. In the case where the allowed
generalizations must all be consistent with the given task, our results are directly
applicable, showing that consistency is, in general, too hard to reliably achieve. The
business of finding regularities in data and generalizing from them depends totally

on the embedded problem of simply remembering data.

Statement 3 In the case where the application could tolerate ‘generalizations’
that need not be completely consistent with the given data, our resulis are some-
times less directly relevant. But Corollary 13 is strong enough to apply to some such
situatioﬁs: Even if you allow a loading system to alter the responses on anything
less than 1/3 of the items (allowing the system to select which items and what to

change them to), it is still NP-complete to achieve consistency with the rest.

Statement 4 When one is given a small sampling of items and asked to find a
configuration that is consistent with those items, there are typically a vast number
of candidate configurations. The notion of “good” generalization corresponds to
making an “appropriate” selection from amongst this field of options. The definition
of “appropriate” is of course going begging here. But our NP-completeness theorems
indicate that it is too difficult to identify even a single configuration from this field of
candidates. Hence the definition of “appropriate” is of little concern. Regardless of

how one might prefer to define generalization, consistency is the nub of the problem.

Statement 5 A system that learns and generalizes from what it learns is often
treated in a two-phase experimental paradigm. The first phase is called the training
phase, and in it some subset of items is selected (by the experimenter) from a task
and presented to the system. The second phase is called the testing phase. In it
some subset of items (presumably disjoint from the training set) is selected from

the task and the system is asked to induce what the responses should be. Of course

78

the performance of the system will be sensitive to how representative the training
set is of the overall task and how complete it is. Also, it will be sensitive to how
representative the testing set is of the overall task. Amongst the community using
this paradigm there is a widely-held meta-theorem which says that the better a
system does on the training set, the better it will do on the test set. And this
observation would have us concentrate on solving the memorization problem; poor

performance in memorization bodes for poor performance in generalization.

Statement 6 The representativeness of the training set and tﬁe representative-
ness of the testing set are very subjective quantities. Hence the two-phase exper-
imental paradigm can give erratic and non-rigorous results. Valiant’s definition
of learnability has an ingenious mechanism for handling all of these quantities in a_
standard mathematical way that utilizes a probabilistic criterion of success in l.earn-
ing and generalization. See Figure 3.2, page 26. Rather than arbitrarily choosing
a training set in advance {which is open to many vagaries and biases), he selects
a training set by randomly choosing items according to some unknown a priori
distribution over them. Hence the make-up of the training set is objective, albeit
probabilistic, and it is biased only by the distribution. He also selects a testing
set in the same way, for the same reason. And since the same distribution is used
in both cases, the training set is an unbiased sampling of the testing set {and vice
versa). Furthermore, the size of the training set is not determined by the experi-
menter either—it becomes a decision of the algorithm how many items to sample.
The testing set is in effect the whole task, but each item is weighted by its relative
probability.

The definition then requires that the system usually be correct for most items
in the test set. ‘Usdally’ is defined by a confidence prooability parameter, §, and

‘most’ is defined by an accuracy probability parameter, €. The criterion of success

79

A is a design class of architectures,

A is an architecture.

p is a polynomial.

B is an algorithm.

€, are probabilities.

F,G are configurations for A.

M# is the behaviour of A when configured with F.

T C {{0,p)IMp{0) = p} is 2 task.

D is a probability distribution over task items.
(3p, B) such that (YA € A)(VF for A)

“4 can (YT € M2)(VD over T)(Ve, 6 > 0)

., <= { B halts in time p(lAl,|T],1/€e,1/6) with

generalize output G that with probability > 1 —§

has property (s, p)er.MA(a) %6} D{o) < ¢

Figure 7.1: A definition of generalization in networks

requires that the learning algorithm terminate in time that is polynomial in 1/6 and
1/€ for any given 6,€ > 0. Obviously if the algorithm terminates in polynomial time,
then it can afford to sample only a polynomial number of items, but the system
is granted a bigger budget of time whenever more confidence or more accuracy is
desired.

This definition has been examined by Blumer et al [BEHW8T7| and they prove
that the probability that all consistent hypotheses have error at most ¢ is larger than
1 — (1 —¢)™r, where m is the number of samples and r is the number of hypotheses
in the space of all hypotheses. This again is an endorsement of consistency—if you

can be true to the training set, you will be true to the testing set.

80

Statement 7 We have utilized Valiant’s €, § ploy in our definition of generalization
for networks as given in Figure 7.1, Using this definition, we ask if the class, A, of

all networks can ‘generalize’:
Corollary 20 Networks cannot generalize.

Proof: Use the same construction as in Theorem 1. Set ¢ < 1/3, and let [} be
uniform over the three items. Then with probability > 1 - §é the algorithm, B,
must find a configuration that is consistent with all three of the items. This implies
that B will be a probabilistic polynomial-time algorithm for 3SAT, which implies

3SAT & RP.! Assuming RP#NP.? this is impossible. 0]

Statement 8 We are not claiming that useful generalization can never be per-
formed by connectionist networks. But what we do claim is that the consistency
problem is a prior consideration. If simple consistency cannot be achieved when re-
quired (at least for the target family of tasks), then it is premature to worry about

making predictions for unseen stimuli.

IThe complexity class RP is defined as the set of decision problems that have algorithms that

run in time polynomial fn n and 1/§ and which will always return O if the answer is NO, and if the
answer is YES will return 1 with probability > 1 — 6.

2 Assuming RP#NP is good for your theorebellum.

81

Chapter 8

CONCLUSIONS

8.1 Lessons Drawn from Current Results

Loading is hard: The job of simply remembering associated pairs of strings
requires only linear time in a von Neumann machine, but we have shown that a
large-scale version of this trivial problem can become very difficult if it must be
achieved in a given non-recurrent network. Hence there is reason for connectionist
research to find out why this phenomenon occurs and how to avoir it. The scale-up
problem will not be solved without a deeper understanding of the issues involved
in learning, and without a narrower definition of what kinds of learning we want to
achieve.

Neural networks have been touted as having more natural and more powerful
learning abilities than traditional Al learning systems. Certainly, there is some
appeal and basis for the argument. It is more comfortable to believe that a small
adjustment to a few weights in a net will (a) create a new behaviour that is sub-
stantially like the old behaviour, and (b) quite possibly improve the behaviour. In
contrast, a small adjustment to a few bits in the program of a Turing Machine will
(a) usually produce, radically different behaviour, and (b) often produce a totally
useless behaviour. Whether this argument is fair or not fair, this thesis has demon-

strated that before we can harness this quality of gentle adaptations, we still need

82

“to know a lot more about the network model, how to design it, how to program it,

- and what applications to put it to.

Issues of Node Function Sets: A significant set of side questions arose during
our research regarding the justification and appropriateness of the type of node

functions typically used in the connectionist literature:

e Is there any support for the choice of node function sets that use linear sum-

ming techniques? i.e. Why use LSFns? LLFns?
e Can learning theory speak to the issue?

e Are some node function sets easier to learn with than others?

We have good evidence that the difficulty of the loading problem is independent of -
the choice of type of functions that each node can perform. For all reasonable sets,
our results are completely independent of the choice of node function set; hence
we conclude that nothing in our work either supports or detracts from the use of
LLSFns or LLFns.

As mentioned near the end of Chapter 4, Blum and Rivest (BR88| have found
a different proof of the NP-completeness of Perfysrys and their argument depends
directly on having to linearly separate many points in s-space. If the three nodes
in their construction were using AQFns, LUFns, some other functions instead of
LSFns, the proof would not hoid. Hence the only evidence from learning complexity
uncovered so far speaks somewhat against linear summing! However this is quite a
weak argument as it stands—there is no need to seriously question linear sums yet.

Basically, what we can conclude from our results being independent of the node

function set is that the complexity of loading does not derive from the node function

’

set.

' We thank I Aleksander [Ale84] for resolutely avoiding the dominant viewpoint on what consti-

tutes 2 good node function set, thus prompting our questions on the topic.

83

What it does derive from is the connectivity patterns of the network. This much
is clear. Notwithstanding this, there is a great deal of research effort being put into
understanding linear threshold functions and also into studies of linear threshold
networks. For instance Minsky and Papert [MP72| treat linear threshold devices
as a primary issue. This is reasonable strategy for investigating the power of small
networks: indeed in the case of tiny networks (i.e. one node or one layer), the role
of the node function set is ascendant because it has an overwhelming effect on what
can be performed by the net. In large or deep networks, the role of the node function
set in determining computational power fades quickly and is replaced by issues like
the size, depth, and connectivity of the net. We suggest, therefore, that studies of
linear threshold devices, if not totally irrelevant to learnability, are at least guilty
of placing undue importance on an issue that will only help settle minor issues. See

also [MP72, footnote page 165|.

Generalization: Although generalization properties are exciting possibilities for
neural networks, we have argued in several ways that the simple issue of consistency

is a central and prior consideration. Good generalization requires good memoriza-

tion.

Design Constraints: We have shown that loading can be hard, that it can be
easy, and that one of the things this depends on is the family of architectures being
loaded. The theorems serve as warnings and as guideposts to better designs. When
the SCI of a shallow architecture has limited tree-width, loading is tractable, but
this constraint may not yield useful families of networks. Less constrained families
that we looked at (e.g. grid SCI graphs) have NP-complete loading problems.
These results are some evidence that architectural constraints alone will not serve
as a useful exit from NP-completeness. Other aspects of the problem will need to

be changed, possibly in conjunction with architectural constraints.

84

Methodology: We have outlined a wide range of questions regarding narrowed
or altered models ‘of the connectionist learning goal. The particular subcases con-
sidered here are merely a few of the myriad avenues open for research. The tool of
NP-completeness can direct the search for good learning rules and/or easily-loaded
architectures and/or easily-loaded tasks without requiring extensive simulations.
By carefully refining definitions and searching for a more complete description of
the boundary between solvable and infeasible problems a more useful theory will

develop that will have applications to the design of many kinds of network machines.

8.2 Contributions of this Thesis

We have focussed on the scale-up problem in supervised learning as an area requiring
major effort and applied standard tools of complexity theory to try to understand
it.

The first major contribution made in this research program is to have identi-
fied and formalized the basic computational problem underlying the connectionist
learning problem. There are four little parts that went into its construction. (1)
The 5-step cycle of classical connectionist learning (see Section 2.5) which took a
stimulus and response and produced a weight change, was condensed into taking
a task into a configuration of weights. (2) The notion of a node function set was
generalized so that we stopped referring to a configuration of weights and simply
referred to a configuration. (3) The distributed nature of the classical algorithms
was removed and supplanted by serial computation. (4) The architecture was made
into an explicit input. Altogether, this gave us the form of the loading problem as
a function from (architecture, task) pairs to configurations.

The computational question has been demonstrated here to be of broad general
value in finding design consfraints for neural networks. There is a very large class

of related questions that follow the basic formulation but particularize it by stating

85

restrictive cefinitions on the various aspects of the problem. Thus we feel that the
developrnent of the formulation itself represents a major component of this thesis.

We have recognized the relationship between our model of loading and other
models of learning given by Valiant and Gold.

In their book Perceptrons [MP72|, Minsky and Papert lament the lack of an
effective procedure for loading networks and express a hope that “some profound
reason for the failure to produce an interesting learning theorem for the multilayered
machine will be found.” Our results supply such a reason, and the proofs of our
theorems stand as opening insights into the reasons why the loading problem is so
difficuit. The fact that network learning is NP-complete may not be surprising in
itself, but its proof is still a valuable contribution on its own,

In penetrating the issues surrounding expansion of network width, we have devel-
oped the notions of shallowness and SCI graphs and demonstrated their usefulness
by identifying some polynomial time problems and some closely related problems
that are NP-complete.

We have also raised the question of how we might justify linear sum functions
in networks or find another node function set that might be more appropriate for
learning.

In attempting to answer that question, we have found good evidence that the
difficulty of the loading problem does not derive from features of the node function
set. In fact our theorems find no evidence in support of any node function set over
any other and we argue that good research strategy ignores the particularities of
any one node function set and concentrates instead on higher-level issues.

We have illustrated why the development of a theory of learning in networks
would directly contribute to the otherwise black art of network design. We have
found numerous avenues to follow in order to study the effect of scale-up on the

learning issue, and to thereby derive principles that contribute to a methodology of

86

network dezign,

Lasily, we have Jsvalcned the notion of armwidth (aka tree-width and partial
k-trees) to characterize an important constraint on graphs that yields polynomial
subcases for otherwise WP-complete problems. This idea is tangential to the present
document but deserves wide exposure to graph theorists and algorithm designers.
Indeed its importance is underscored by the fact that other researchers have inde-
pendently discovered the same notion and papers on the topic are now appearing

in the literature.

8.3 Future Work

The obvious extensions to this work include refining the classes of architectures
considered and the classes of tasks considered, so as to more closely understand the
relationship between networks and what they can learn. Some specific directions

are outlined in the following subsections.

8.3.1 Task Constraints

Although this study has focussed on what it expressed as architectural design issues,
these results could just as easily have been expressed as task design issues, and in
fact they are both. Whenever we found poly-time loadable architectures we were
also implicitly identifying poly-time loadable tasks, since the class of tasks that such
architectures were capable of loading was given as the set of all tasks performable
by that architecture. Hence the investigation has had dual purpose throughout.
However, it is a limita'tion of this work that we have generally inquired only about
the ability of a network to load allof its performable tasks instead of asking about its
ability to load some useful subset of its performable tasks. This should be explored

further.

To pursue such questions, one needs to identify interesting classes of tasks and

87

find useful formal definitions foo % iwn I Jerlwon 5.2 we used a teacher/learner
formalism to constrain the class of » “ks & ..ziwork might be asked to load. This
technique was used only in coujunciivs: wiis. differing node function sets but it is
also useful in other contexts. For exarple, it might be useful to be able to describe
exactly what tasks an architecture is capable of learning by referring to a teacher
network whose tasks it can easily load. As before, we denote this by writing the
parameters for describing the teacher to the left of Perf and those for the learner
to the right. For example the question as to whether network A' could learn all of
what network A could perform would be AperfA’. We ask if there is a reasonable
¢ function from architectures to architectures such that for all A, A perf*(4) s
tractable.

This question can be answered positively. When given a network, A, and any
task of ¢ items, one can construct a network approximately ¢ times as big as A that
can easily load that task. Although this is too loose a ¢ function to be termed a
‘result’, it does gives us an upper bound on the size of learner network required.
Because the factor is ¢t rather that some power of ¢ or some exponential in ¢, we
believe that tighter answers to the ¢ question might indeed be interesting.

The purpose of the teacher/learner formalism is to unbundie the architecture

class from the task class and to deal with them explicitly and independently.

8.3.2 Relaxed Criteria

The basic loading problem asked for a guarantee that the algorithm would complete
its job of finding a configuration. It might be that some probabilistic criterion of
success would be easier to comply with. Perhaps for some class of architectures we
will be able to find @ randomized procedure that will run in polynomial time and
report a solution configuration with a certain minimum probability. Repeated invo-

cations of the procedure would give asymptotic certainty regarding performébility.

88

Such an algorithm could be w57 10 applications where it was possible to judge how

much loading time each situati . varrated.

8.3.3 Mutating the Network

Another avenue of freedom usually not exploited by connectionist learning schemes
is to alter the architecture as learning proceeds. When carried to extremes, this
would amount to an exercise in circuit design, for which Valiant’s formulation of
the learning problem is the most relevant. This is a far cry from current approaches
to connectionist learning, but adhering rigidly to the starting architecture may be

too constrictive; somewhere between these two extremes we may find a scheme that

combines the best of both approaches.

8.3.4 Returning to Classical Form

As discussed in Section 2.6, the loading problem is on the easy side of three is-
sues, and therefore whenever a tractable loading problem is identified we do not
have complete evidence that the problem will be easy in the classical connectionist

setting. For such a case we would still have three aspects to adapt:

e The type of machine used: The serial algorithm would have to be broken up

and distributed throughout the network.

o The style of processing required: The process would have to be re-implemented

in a ‘neural’ style.

e The type of information available: The system would have to be altered to

accept information in an on-line fashion.

s

All of these transformations would require a special research effort since none of

them are well understood.

89

8.3.5 Recurrent Networks

We have specifically focussed on feed-forward networks. Recu.reui newworis have
a fundamentally different retrieval process in that they start at some point in state
space and under the influence of the input they travel through state space, possibly
reaching a stable point or a limit cycle. The definition of what constitutes its
‘output’ may therefore be problematical, but this sort of machine is very interesting
and the problem of loading them should be studied.

We have suggested that our shallow feed-forward models might be relevant to
(long-term) storage of information in the brain. Hypotheses about short-term mem-

ory in the brain are often based on cyclic electrical mechanisms which require re-

current networks.

8.3.6 Other Learning Paradigms

We have limited our inquiries to the supervised learning paradigm. Many other
types of protocols {e.g. unsupervised learning, or the use of queries) are useful
models of learning environments but have not been formally explored in the context

of learning in networks.

8.4 Philosophical Summary

A theory is developed by progressing from one hard, clear definition of a problem
to another. Clearly, at this point in time, it is still ill-defined what connectionists
require of a learning system. There are many formulations of it other than ours
that might be appropriate for different situations. It may be reasonable just to ask
for the ‘best’ configuration for a network, rather than the ‘correct’ configuration. It

may be reasonable just to ask for the configuration that yields performance better

than a simple regression procedure would. It may be reasonable just to ask for a

90

configuration that makes maximal ase of the hardware (i.e. supports the greatest
number of items in the given network). The contribution of such research may be
to help define connectionist learning by showing which formulations are achievable.
We have formulated a basic question. Other formulations based on more refined
definitions could lead to succesrsivrelj.\,r more useful models of practical connectionist
concerns. Because no exact definitions of connectionist learning are yet widely
accepted, we think that an analysis of varibus definitions leading to tractable loading
problems would help establish and focus the fesearch in this area.

The successful development of a theory of an intensely complicated system like
the brain depends on a judicious sequence of selections of constraints. To begin, one
must select one or two appropriate constraints; then study them to understand how
they interact; choose another constraint; then add it to the others and elaborate
further. At each choice point, one must be carefully conscious of what leve! of
detail the system is being modelled at and choose constraints that act at that same
level. We think there has been too much emphasis placed on modelling brains at
the level of neurons using constraints like spike train frequencies, linear threshold
functions or the sodium pump. This is like trying to discover the principles of flight
by studying the microbiology of birds. The useful level of study is much coarser
than that. Similarly here, just by taking a view from the next larger scale of detail,
our investigations have discovered a universe of issues that are almost oblivious to
the functionality of individual nodes. We suggest therefore that these coarser levels
of detail would be more productive levels of modelling for computer scientists to
pursue. Our hunch is that after a theory of learnability is fleshed out, tuning it for
a specific node function set will change things only slightly. In general the coarser
levels are the more important levels.

What we have attempted here is to look at the level of mid-size neuroanatomical

structures {e.g. cortical slabs), and we hope that our choice of simple constraints

91

will prove propitious. We have pursued the study of feed-forward networks and
especially the architectural family of shallow networks because of their potential
for modelling structures in natural brain cortex. Our model will be relevant if we
have been lucky in choosing constraints and if the neural structures they model
happen also to be engaged in the kind of information loading and retrieval that we
are exploring. We might have the wrong model of the salient aspects of these slabs
of cortical columns; we might have the wrong model of how these slabs actually
retrieve their stored information; or we might just be asking the wrong analytical
question. (The performability question used here requires total, exact, dependable
recognition of the set of performable tasks. This seems unduly demanding and of
the three suspicions listed here, the last one seems to deserve the first examination.}

Whatever the case, our underlying assumption is that complexity analysis (and
specifically the P vs NP distinction) provides a means to narrow down the things
that biological machines do and how they do it. Our strategy is to take the general
NP-complete problem and add architectural constraints, task constraints, or other
types of constraints, and search for polynomial-time loading problems. We feel very
safe in assuming that the brain cannot be solving any NP-hard problem, and we
feel secure in assuming further that evolution would have found efficient ways to
utilize the available hardware. Ergo brain mechanisms are likely to be described
by decision problems found ‘just below’ the level of NP-completeness. Hence the
general outline and thrust of our research program.

By providing guidelines for ensuring that a network can learn efficiently, we
hope to contribute to an urgently needed general methodology of how connectionist
networks should be constructed. And by distinguishing between those forms of
learning that are achievable and those forms that are not, we will be helping to
identify the applications to which neural networks can be profitably applied. This

thests has provided only the first steps toward such a theory.

92

Appendix A

ALTERNATE PROOF
OF GENERAL THEOREM

This appendix proves a slightly weaker version of Theorem 1 in that it uses a node
function set called SAFns, which is larger than AOFns. SAFns is the set of node
functions that can be constructed with a single AND gate augmented with optional
inverters at the inputs and output. The construction in the following proof is
somewhat different from those used in earlier chapters. The next appendix extends
this theorem to real-valued node function sets using the same construction used
here.

First, we introduce some general purpose notation for manipulating strings. If
o and 3 are strings then a - 3 is the concatenation of o and 3, and a™ is the
concatenation of n copies of . We use Qi a; to denote a; - az-az - ... an.

If o is a string, A and B are sets (with distinct elements), B C A, and the
length of « is |A], then the notation af] denotes the string of length |B| that is
formed by associating successive elements of o with successive members of A (which

has an implicit ordering), and then selecting from « only those elements that are

93

assoc ~ted with members of B. For example,

if a= 2-7-4-1-9-8
and A={dy0,d14,d15,d15.d17.d10}
m@nd Bz{dlo,fﬁ?-) dlg}
then alff|= 2 -9 - 8

Another notational device is used to select single elements from a string; (k)

represents the k™ element of a. Formally, a(k) = a[ﬁ‘}z’s"“’“}] where a is the length

of a.
For precision, we define the semantics of computation in a network as the unique

string that satisfies the inductive expression

Comph(a) = o () F:(Comp(0))

i=1

Such a string is unique because A is acyclic and the output of each node is dependent

only on the output of previous nodes. The network mapping can now be stated as

Mg (o) = Compp(o)[k]

Theorem 21 Perfgsp,s ts NP-complete.

Proof: We reduce the classic satisfiability problem (SAT) to Perfsgpns- (See [GJT9]
for an explanation of this process.) Let (U,T') be an arbitrary instance of SAT,
where 7 is a set of variables and T is a set of clauses; U = {ui,ug,.. . Uy, [=
{(7i,Gi) 11 €1 < m}. We use a novel representation of T', the set of clauses: for
each 1 < m, v € {0,1}*, and G; C U. A string IT is said to satisfy the instance
(U.T) iff ME | # yple,| forally < m. (This representation of a clause can be

obtained from the traditional disjunctive form by applying de Morgan’s Law once

and padding for variables that are not in the clause.)

94

We must construct an architecture A and a tzsk 7 suzl o T s performable
by A iff ({/,T) is satisfiable. The set of nodes ¥ wiil be an e’ of a set Vy of

“first-layer nodes” and a set V3 of “second-layer nodes”.
S ={vp;:0 g.i < wj
Vi={v,;:1<)<w}
Vy={v;:1<i<m}
P=SuV,ul,
R=V=V,uVW,

E = {(Uo,m U1,j),(vo,j,U1,j) 1<y < w} U {(Ul,jaUZ,i) Tu; € Gi}
A= (P,V,S,R,E)

The task is composed of 3 kinds of items. The first kind is called the “truth-value

items” and associates a binary value with ‘true’ and ‘false’
T, = {(0-0%,0¥. +™),(0-1",1% - «™)}
The second kind of item is called the “disjunct semantics items”:
Ty = {(0-~;,*” -+1-0- ™ 1 (v, Gy) €T}
The third kind of item is called the “conjunct semantics item”:
Ty = {(1-0%,+* 1)}

T=T1UT2UT3

Figure A.1 gives a construction for an example instance of SAT.
Claim: A solution configuration, F, for (A4, T) exists iff a satisfying assignment
I1, exists for (U,T).

proof (3F <« 3M): Assume (U,I') € SAT by virtue of the satisfying assignment

95

Take as an example the foliowing SAT probiem expressed in traditional CNF

form: (@7 V ug Vug)(uy Vv i3 v @), In the required form, this is equivalent to

The task for this problem is

y1=10-0-0
Yy =0:0-1-1

G, = {Url, Ug, us}

GZ = {uIZs Us, u’4}

Ty= (0:0-0-0-0, 0.0 *-*)

(O-1-1-1-1, 1-1-1-1.%.%)

T2- (0.10003 Kook ok - K O*)

(0.0.0.].]_, K ook - ok e ok *0)

T3 = (1-0-0-0-0, *-*-'k-*-l-l)

The architecture is as follows:

LUH'O o Vo1 o Vo2 TUO‘S Un 4

fia fi2 fi2 Ji4
V1.4

Figure A.1: Example construction for proof of theorem using SAFns.

i

96

string IT. Associate the node function f,; with each node v,; & V, and ther let

F={fitJrzs s frw> f215 f22,- -5 fam} Where

b ifa=0

0 ifa= Ff‘[gi
1 otherwise

frile) = {

We must show that M# D T, which we do by showing M# D T, M# D Ty, and
M# D Ty individually. First, note that since f,;(0-8) = b for all j < w, we have

for any «o,
Compg(0 - a)[f] = @fl @),) = éfl,j(o ca(N)=Qeali) = (A1)

Equation A.l proves Compg(o)[f | = pl[f] for both items (0,p) € T. Since re-

sponses for V; are undefined, ME DT,
For each vy; € V; there is only one item in T, which is defined, and to agree

with that response, we must show that M#(0- %)%](5) = 0.

M?(O"Yi)[%]@.) = fz,,-(Comp?(O ’Yt){p(m,}])
= f24(Compr(0- ’Yr)[vlﬂ (a0) since p(vy;) C Vi
= fz.i(’n[:,f(l,,m)]) by (A.1) above
= fai(7 [2]) by definition of E
=0 by definition of f;g,,-7 as required.

Since this argument holds for every node in V3, and responses for V, are not defined,
M# DT,

The only stimulds in T3 is 1-0%.
Compa(1-0Y)]-@f“ (10},) @fljl 0) =Ny =1

97

vy

Comp?(l ’ 0w)[5:] — @ f2: Comp?(]. . Ow)) 51][K(IU':.)]) since U _D(’U) g I/Pl
= © f2-='(H[:{iU2,,'}]) by the previous equation

= @fz,;(H[E,i,.]) by definition of E
= 1" by definition of fy; and II[Z] # (&]

So MA(1-0%) =1I1-1™ = #¥ - 1™ which is to say M# D Ts. This completes the first
half of the claim.
proof (JF = III): Assume F = {fit, frase oy frws foas fa2, - , fam} 18 a config-

uration such that Mg D T. What do we know about F? By inspecting T, we

know

CO?’RPF(O Ow Vl. Qflj 0 0 [P(Ul.j)]) = @fl’j(o 0) =Qv
i=1

by the first item. Hence f1;{0-0) = 0. By the second item, we can similarly show
f1;(0 - 1) = 1, which leads us to conclude what was shown in equation (A.1).

By inspecting T; and T3, we have for every 7, 1 < t<m

foo(Compp(0 - %)[Eu, o)) = 0 # 1 = fea(Compp(1-0%) [y,)

Compp(0-%)[5y,] # Compp(L-0¥)[F,]

Applying equation (A.1) and the definition of E on the Lh.s.,

Lhis. = Compp(0 - %)i5 I, = Wilptoan] = %€
Simplifying the r.h.s. by letting Il = Comp‘}(l - 0%) 51],
rhs. = Compf(1-0°)F |, o) = Mt | = THE,

98

Reassembling, we have (5 | # II[Z | for all 4,1 < ¢ < m which is to say that i
satisfies (U,T') and the claim is proved.

Thus we have SAT « Perfsapps and it is easy to see that the algorithm for the
transformation runs in polynomial time (in fact linear time and log space).

Finally, it must be demonstrated that there is a non-deterministic machine that
can decide Perfgsg,s in time polynomial in the length of (A,T). That is, there
must be a poly-time method of writing down a valid SAFns configuration and
checking that it is correct. Writing down a function from SAFns requires one bit
for every nodal input (to specify whether it should be inverted before entering the
AND gate), and one bit for the output (to specify whether the whole function should
be inverted). For the complete configuration, this takes one bit for each edge in A
and one bit for each node in A. That the configuration is correct can be checked by
evaluating each node function once for each item in T'. This takes time O(|V{x |T)
under the assumption that it takes constant time to evaluate any single f;.

This, and SAT & PerfssFps implies Perfggp,s is NP-complete. O

99

Appendix B

PROOF FOR LOGISTIC
LINEAR
NODE FUNCTIONS

The next theorem extends the previous one to the case of certain real-valued node
functions. We consider a function set used in [RHW86] wherein every member of
the set is a function composed of two parts. The first part is the logistic function

and the second is a linear weighted sum of its inputs.

where e(a) = wo + Y _ w; x a{i),

and E(z) = 1:16_1.

We call these functions LLFns (for Logistic Linear Functions). The E function is
fixed for all nodes, so to specify a member of LLFns it is enough to specify the
weights wy, wy, ... used in e,

Following [RHW86] again, we say that a value agrees with 1 if it is no smaller
than 0.9, and it agrees with O if it is no larger than 0.1. Note that E(r) asymptoti-
cally approaches | as z approaches +oo, and that E(zr) asymptotically approaches

0 as z approaches —oo. Let d be some scalar value. We say that « agrees for high

100

d with 3 (written a lé A3) if there is some value for d beyond which « always agrees

with 8. This implies that the value of o or 8 is a function of 4.
a{d) £ B(d) <= 3d, such that a(d) = F(a) for all d > do

Such agreement is easy to prove if « is monotonic in d and B is constant.
Note that if two such agreement statements hold for the same high parameter

then they hold simultaneously for that parameter.
(afandé i &) <= a 53 ¢

A new notational device is used to select single elements from a string in the case
where the element’s position in a string is not known except through its relative

position in one of the clause sets, G;, in T. For that situation, we use i to’

mean the index in U of the k* element of clause ¢. Formally, ; = (¥)8)k

Consequently, this identity holds: a(}) = alg [(k).
Theorem 22 Perfrppps 15 NP-complete.

Proof: We construct a performability problem (A,T) where the architecture, A, is
the same as it was in the proof of Theorem 21 except that B = V; insteadof R =V,
and the task, T, is as follows:
T = TI U Tg vl T3
T,= {{(0-%, *71-0-+#™7):1<7<m}
T, = {{(0-~+%, « 1 1.+ 1<k<|Gl}: 1<i<m}

T = {(1-, 711 ™) 1< i< m)
where fy(k) is v, with the k'P relevant bit inverted:

{

L = L—w() 7=
: ~i{7) otherwise

101

{!i: ... tarre exists a solution configuration F to (A, T) iff there exists a solution
assignisons i1 to {U.T). For both directions of the proof we shall use the following
definitions {they each stand for the computation performed by the first layer of

nodes when the net is given some stimulus in the task):
G = Compp(0-%)iy,] (from T1)

89 = Compi(0- ~INhE | (from T3)
ni = Compp(l - %) 51] (from T3)

proof {IF « 3M): Specify the node functions as follows:

b) = E(—d+2da +2db) ifTI{j) =1
fui(@b) =\ E(—d-2da+2db) ifTI(j) =0

fZl() (62,((1)]

where
|G| _
eg',-(cx) = —d + Zd Z Wi,k x (§,<i> — a(k))
k=1
Wik = { -1 nf'y,(‘;) O

The above expression for e;; is not in standard form but it is straightforward to

rearrange it so that it is.
We shall check that each subtask is performed correctly by this configuration.

Observe

f1;(0-0) = E(—~d+0+0) £ 0
£1;(0-1) = B(—d +0 +2d) |5 1

Hence Compp(0- a)[f] K o. Consequently 2 ~,. Also

Failelpto,)) = E(= d+2dZW,,, (1) — a(D) B o

102

The agreement holds because the total value of the summation is 0. This argument

applies to each value of 1, and hence for high d, M# 2 T.
Consider a typical item in T;. Note that 65") 2 '7,-”‘), and that ,ka)(;';-) therefore
differs from 7{(%) as d increases. The absolute difference converges monotonically

to 1, so we have

fae (BP0, 1) = B(—d + 2d 3 Wikl f) — B9 (0) B 1

Here we know the agreement for high d holds because the total value of the sum-

mation tends to 1 as d increases. Since the equation is valid for all 1 < k < |G} for
each v, M4 O T; for high d.

Next we consider a typical item in T3. For all nodes in layer 1, observe
() =1, fi;{1-z) = E(—d+ 2d + 2dz) 21 for z € {0,1}

) =0, fi;(l-z)=E(-d—2d+2dz) £ 0 for z € {0,1}

Hence f; ;{1 z) £ 1{j) and consequently ; 2 I for all i. Examining the second

layer, we know
Frilmiltn, o) = E(=d +2d 3 Wis(s() - 7)) B 1

because as d increases the summation converges to some integer representing the
number of places where [| is not equal to ni¢,], that is, the number of places
where ~;[Z.] is not equal to H[g’_ . By the initial assumption about II, this integer
is at least 1, so the agreement holds (for high d). This demonstrates that MEDTs

for high d.
By selecting some value for d which satisfies all the above agreements, MADT

and this completes the proof of one direction of the claim.

103

proof (3F = 3M): Let y,; and 2 be Jhiz weights employed in the node functions

as follows: forall 4,7, 1 < < ¥ 1 7 7w st

|G
frile) = E(zip + Z z pe(k))

k=1

Define the satisfying assignment:

N 1 if Yialje = 0
) = { 0 otherwise

We must show [T satisfies (U, T').
By assumption, the configuration F performs T and T3, so we know for each i,

1 <i<mandfor any k, 1 <k < |G,
fz,f(s‘i[:,/(l%_,-)]) =0

Fa(BE,) =1
SO

fZ,i (5’1 [::(lu.zl)]) < f2,i (ﬁ‘(k) [:J[(IUQ‘.-)])

E(zip+ Y 20 6(5) < Blaio + 3 2,0 87(2))

but () = ﬁ'.(k) (7) forall j # ;4, or more specifically g}(g) #* ﬁ,-(k)(‘c;) only when ¢ = k.
Therefore

Zasll) < zx 8L

]

Let 7 = ¢ and expand both sides in terms of fy ;.

zi b B0 + 92 %)) < 2pB(yj0 +y;2(1 — %))
Zik Yj,2 ’Ya‘(i) < Zig Yz (1 - ’Yi<ltc;>)

104

if %{(j) =0 then 0< 2z,Y,2 (B.1)
if ’)‘,‘(j) =1 then zy;2<0 (BZ)

Again, by assumption that F configures the net for T} and T3,
v
fz-f(g"{p(‘uf_,.,-)] ':'_' 0

fz,:‘(m' [;f(luz‘,‘)] |= 1

Elzio+ > zeal})) < E(zio+ S zpml(})

Sz (i) <2 zemily)

k k
For this to be true for a given i, there must be at least one & such that

Zik s‘i(i) < 2k m(,%)
Letting 7 = ;: and expanding both sides as f, ;,
zix Elyso + vz %w(5) < zie E(yso + Y51 + vr2 %))
0 < 2k Yin
From this and (B.1), we find that
W) =0=>0< zik 2zip Y1 Yj2 = 0 <yjayj2 = 1{7) =1

Similarly, v{j) = 1 = II{j) = 0. Summarizing, for all ~; there exists a k such that
vt} # TI{}), or rather (%] #]G . That is, I satisfies (U,T) and the claim is
proved.

The claim establishes that the reduction from SAT is valid. Since the transfor-
mation can be performed in polynomial time, Perfy s is NP-hard.

Perfr [ppe is in NP if there is a polynomial-time procedure to write down values

for all the weights. For the case where the weights are truly real-valued (meaning

105

that a weight would have a potentially infinite number of digits}, it has not yet
been proven that there is a finite approximation that is effectively equivalent to
the real numbers (as Hong has cone for LSFns). However, for the more realistic
case of fixed resolution in each ‘real’ weight, specifying the configuration is easily
performed in polynomial time. With that minor caveat, we have proved Perf [Fps

is NP-complete. 1

Three aspects of LLFns are crucial to the preceding proof: E is monotonic, ¥
is bounded, and e is linear. Other aspects were convenient but not necessary; for
example, every node had a fixed E function, every node had the same E function,
and that £ was onto the unit interval {0,1]. We proved the theorem for LLFns only
in order to avoid excessive abstraction, but the theorem is extendible to other node
function sets.

If we define the quasi-linear functions (QLFns) as all those functions of the
form E(e(a)) where e is linear and E is a bounded and monotonic, then for some

appropriate definition of agreement we have
Corollary 23 Perfgprps ts NP-complete.

The theorem is probably extendible to different manifestations of non-linearity,
but we note that something about E should be non-linear, for if E (as well as e}
is linear, then the net as a whole can implement only linear mappings. From the

point of view of connectionists, this is uninteresting.

106

Appendix C

PROOF FOR CASE
WITHOUT DON’T CARES

The proof of Theorem 1 uses the * symbol to denote ‘don’t cares’ in the response
strings. This is often not a feature of connectionist experiments so the following
proof avoids the * in order to demonstrate that it is not an important change to

the model.

¥

Theorem 24 Perfyopns is NP-complete even when responses have no ™s.

Proof: by reduction from 3SAT. The proof is modelled on the one for Theorem 1.
Let the 3SAT problem be (Z,C) where Z is a set of variables {¢1,¢2:¢3,...yand C
is a set of disjunctive clauses over them. Let w = |Z| be the number of variables
and m = |C| the number of clauses. For (Z,C) to be satisfiable, there must be an
assignment I : Z — {0,1} such that at least one literal in each clause has value 1.

Formally, the 3SAT instance (Z,C) is reduced to (4,T), where

A = (P,V,S R,E)

S = {a,b,d,e}

V = {u,-,v,-,w,-,zf,y,-,zé:g‘;EZ}U{cj:CjEC}
R = {unziyivi: G €Z2YU{c;:C;€C}

P = SuUV

107

E = {(a,w),(a,z), (b wi), (b, 2),
(we, wi), (wi, 22), (wis v (20, 20) s (20, 0)5 (20 0),
(d,u;),(d,v;),: ¢ € Z}
U{(wi,¢) ta€Citu{(zne) G Cu{lec): ¢, eC}

T = {IhI?: I3}

I, = (0011, {0000)*0™)
L = (1110, (1111)*0™)
I, = (0101, (0010)*1™)

This construction is explained in a 2-stage example. Stage 1: For every variable
¢; € Z construct the partial architecture and partial task shown in Figure C.1. This
is very similar to Figure 4.1 on page 42. The differences are that w and z are no
longer network outputs; instead they go to new nodes u and v which are network
outputs. Also there is a new input, d, which goes only to these new nodes. In the
task, note that all response bits for u and v are the same as they were for w and
z except that the *’s have been replaced by 0’s (arbitrarity). In the items where w
and z had been defined, d is a 1; in the items where w and z had been ‘don’t cares’,
dis a 0.

From items 1 and 2 we know

Ful7u(0,0),1) =0 # 1 = £u(ful1,1),1). (c1)
Hence
£u(0,0) # Fu(L,1). | (©2)
Similarly
, £.00,0) # £:(1.1) (C3)

By comparing item 2 and item 3 we know

fz(fw(l’l)sfz(ls 1)) =1 # 0= fz(fw(ofl)’fz(os 1))

108

(a b od }S
fu f
P T W Tz
= ;
f. 2 fi 1. Y
lu lm ly lv }R

a b d, ury v
item1: (001, 0000
item2: (111, 1111)
item3: (010, O0O010)

Figure C.1: The construction for each variable ¢ € Z.

fu(1,1) # fu(0,1) or fo(1,1) # f:(0,1),

and by using (C.2) and (C.3)
f4(0,0) = f,{0,1) or £.(0,0) = £,(0,1).
By comparing item 1 and item 3 we know
fu(f(0,0), £:(0,0)) = 0 # 1 = f,(fu(0,1), f:(0,1))

fu{0,0) # f,(0,1} or f.(0,0) # f.(0,1)

(C.4)

(C.5)

We will associate some SAT variable ¢; with the group of nodes in this con-

struction. For mnemonic value and brevity, let (¢} stand for the truth of the

inequality f,(0,0) # f,(0,1). And let () stand for the truth of the inequality

109

o, Caout). Translating (C.4) and (C.5) we have
(not(s) or not{s}) and ({5} er (s})

which implies {(¢) = not(s).

Stege 2: For each clause in the SAT system construct a single node in the second
layer of the architecture with inputs from all nodes associated with its participating
literals and an input from post e. Putting variables’ nodes and the clause node
together, we get what is shown in Figure C.2. It shows the construction for an
example SAT system consisting of only one clause (¢1,¢2,¢2). Observe that each
item consists of the stimulus from an item from Figure C.1, a new stimulus bit
for e, three replications of the associated response (one per variable}, and another
response bit for the clause node.

Claim: The constructed architecture can perform the task iff the SAT instance
is satisfiable.

Proof: By inspecting item 1 and item 3,
£:(£2(0,0), £1(0,0), £/(0,0),1) =0
f:(f5(0,1),£2(0,1), ££(0,1), 1) = 1
Since not all of the arguments can be the same, conclude
(1) or {Gz) or (3G)-

Now if TI exists then let {5;) = I(¢;), that is, let £3(0,0) = 0 and £3,(0,1) = TI(g;)

and fi(1,1) = 1 for all j, or more definitively, let

1

and fI =

5 = { orR if T(¢;)

AND if IT(¢;) =1
AND if TI(g;)

OR if IT(¢;) =0 °

For all variables ¢, let fi = fI = f} = AND and fi = OR, and for the clause node

let f. = OR. The items are all performed correctly.

110

a Y d #€
ft!_'] le fwg fZ‘_’ fwg fz:;

Wi = 2 . 3 ¥
ft.n f-.:l fy; fu; fug fzg fyz fv'_v fu:; fz; fya fuz fc
Tud Tzy Ty lny Tus lxzs lys\ lve Tus Txzq lya\ Tvs c

a bde u Ty VI U2 Tz Y2 Yz U3 Ty Yz Uz C
ttem 1:; {0 0 1 1, 0O 000 0 O0OO0O0C OCO0OO0O0 0
tem2: (1 110, 1 1 1 1 1 1 1 1 1 1 1 1 1)
tem 3: (01 0 1, 0 01 0 0010 0010 1)

Figure C.2: The composed construction for Theorem 24. This example is

for the single clause {¢;, 3z, 5)-

111

Conversely, if a conliguraiivn exis’s fet TH{y) = (g) = f1(0,1) & f1(0,0), and
observe {¢;) or (&) or (T implies ¢ = Lor G = 1 or &3 = 1 as required. This proves

the claim. 0

The extension to multi-clause systems should be clear.

Thus we have SAT « Perf g and it is easy to see that the algorithm for the
transformation runs in polynomial time.

Finally, as argued for Theorem 1, Perfgapns € NP. Hence Perfgsp,s s NP-

complete. 0

Recall that items 1 and 2 produced equation C.1 which forced a relationship

between f,(0,0) and f,(1,1) given by equation C.2. From items 2 and 3 we know

fu(fw(ls 1)a1) =1 # 0= fu(fw(os 1)30)7

but this does not force any particular relationship between f,(1,1) and f,(0,1)
(nor do items 1 and 3 force any relationship between f,(0,0) and f,(0, 1)). Hence
f.(0,1) might just as well have been specified as a ‘don’t-care’ as it was in the proof
for Theorem 1. Thus input d and node u have been employed here as a switch to
simulate the do-care/don’t-care distinction for the output from node w. Similarly,
d and v have been used for z. A roughly similar technique using input e simulated
the do-care/don’t-care distinction for the output from node c.

We believe these techniques could be applied generally. They make this theorem
stronger at the expense of extra complications in the proof. We prefer to make use

of the * in our other theorems in order to simplify their proofs.

112

Appendix D

PROOF FOR PLANAR CASE

WITH LSFNS

The proof for Theorem 16 used LUFns as its node function set, and hence does

not cover the specific (and conventional) case of node function sets that are linearly

separable. This appendix gives a proof that is strong enough to cover LSFns. In

particular, we give a construction for a crossover using SAFns, which is a node func-

tion set described in Appendix A. Because SAFns C LSFns C LUFns, this theorem

s sufficient to cover the linearly separable case whereas the proof for Theorem 16

was not.

Figure D.1 is the construction used in [Lic82, Fig.4] as a crossover box in his proof

of NP-completeness for planar SAT. For that purpose the circles were interpreted

as variables and the squares as clauses. The diagram is a demonstration that the

following SAT system has a planar layout:

clauses 1-3:
clauses 4-6:
clauses 7-9:

clauses 10—12:

clause 13:

clauses 14-17:
clauses 18-19:
clauses 20-21:

< < < <
SERSE)

e’

le. azby & a;
Le. ayh; & 3;
l.e. @by & 7;
i.e. aiby & 96,

ie. a < ay;
le. b o by

We will use this construction in the proof of the following theorem:

113

Figure D.1: Construction from Lichtenstein for Planar SAT. The prototyp-
ical crossover of two lines shown in the upper right is replaced by the much

larger construction, which provides the same constraints as the smaller one

would have. ‘

114

Theorem 25 For any node function set including SAFns, loading is NP-complete

even for 2-layered architectures with planar SCI graphs.

Froof: We give only a construction for a ‘crossover box’ which can be used to
eliminate one crossing of connections as they might occur in the proof of Theorem
15.

For our purpose Figure D.1 i.s re-interpreted as the plan view of an architecture—
the circles being first-layer nodes and the squares being second-layer nodes. To
accompany this architecture, a task is constructed to mimic the effect of each clause.
For this we use the techniques of constructing items that are used in the proof of
Theorem 21. First, two itexﬁs ens-urer -t}"lat fi(0,0) = 0 and f;(1,1) = 1 for all
variables i € {a,ay,a3,b,b1,b2,00,8,7,6}:

a a; a; b b by o G 4 b aaya bbb bpafybeicaecs...cn

00 00 00 00 00 00 00 00 00 00 — 00 00000000 * % x *
11 11 11 11 11 i1 11 11 11 i1 ~— 11 111 113111+ * * *

Each of Lichtenstein’s clauses produces 2 items as in the following example:

a ay; Gao b bl b2 (22 ﬂ B & aalagbblbgaﬂ’flschgCg...Cu
¥k k% 11 #% % 11 00 %% #% %% +=> % % £ % % % * k % x 0 % # *
st k% 01 %% % 01 01 #% #% %% +— % % % % % % * % k&] * * %

This corresponds to clause 1, which was (@2 V b2 v a). These two items insure that
folfar(1,1), £, (1,1), £o(0,0)) = 0 # 1 = f2,(fa,(0, 1), f3,(0,1), £ {0, 1))

fo(1,1,0) =0 # 1 = £, (f2,(0,1), £5,(0,1), fo(0, 1))
faz(O! 1) # 1 or fbg(og 1) T/: 1 or fa(o,l) :/_'O

The direct correspondence to (@ V b, V a) should be clear. 0

115

'ACPS87]

'AHSSS)
[Ale84]
[And 72|

[AP8S]

[ARSS)
[AS83]

'BASS)

Bac42]
[Bar82]
'Bar85

'BB75]

REFERENCES

Arnborg, S., D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Algebraic and Discrete Methods, 8(2),
April 1987.

Ackley, D. H., G. E. Hinton, and T. J. Sejnowski. A learning algorithm
for Boltzmann machines. Cognitive Science, 9:147-169, 1985.

Aleksander, Igor. Artificial Vision for Robots. Chapman & Hall, New
York, 1984.

Anderson, James A. A simple neural network generating an interactive
memory. Mathematical Biosciences, 14:197-220, 1972,

Arnborg, Stefan and Andrzej Proskurowski. Linear time algorithms
for NP-hard problems restricted to partial k-trees. Discrete Applied
Mathematics, 1988. To appear.

Anderson, James A. and Edward Rosenfeld, editors. Neurocomputing—
Foundations of Research. MIT Press, Cambridge, Massachusetts, 1988.

Angluin, D. and C. Smith. Inductive inference: theory and methods.
Computing Surveys, 15(3):237-269, September 1983.

Barto, A. G. and P. Anandan. Patiern recognizing stochastic learn-
ing automata. IFEE Transactions on Systems, Man, and Cybernetics,
15:360-375, 1985.

Bacon, R. Opus maius. Pressus Gutenbergus, 1442, Manuscript re-
ceived 1274.

Barahona, Fransisco. On the computational complexity of Ising spin
glass models. Journal of Physies A: Math. Gen., 15:3241-3253, 1982.

Barto, Andrew G. Learning by statistical cooperation of self-interested
neuron-like computing elements. Human Neurobiology, 4:229-256, 1985.

i,

Blum, L. and M. Blum. Toward a mathematical thedry of inductive
inference. Information and Control, 28:125-155, 1975.

116

[BEHWS87| Blumer, Anselm, Andrzej Ehrenfeucht, David Haussler, and Manfred K.

[BRSS)]

(BV87]

[Car50]

[CES81]

[Cho80]

'CK87]

[DH73]

[DMB81]|

[GGJIKT8]

(GIT9)

[God87]

Warmuth. Occam’s razor. [nformq:t,ior; Processing Letters, 24:377-330,
1987. '

Blum, A. and R. Rivest. Training a 3-neuron neural net is NP-complete.
Typescript, M.LLT. Lab for Comp. Sci., 1988. Submitted to the 2nd
Conference on Neural Information Processing Systems.

Baldi, Pierre and Santosh 5. Venkatesh. On properties of networks of
neuron-like elements. Moore School of Electrical Engineering, U. Penn.,
December 1987. Typescript.

Carnap, R. Logical Foundations of Probability. University of Chicago
Press, Chicago, [llinois, 1950.

Chung, M. J., W. M. Evangelist, and [. H. Sudborough. Some addi-
tional examples of bandwidth constrained NP-complete problems. In
Proceedings of 1981 Conference on Information Sctence and Systems,
Dept. of E.E., Johns Hopkins University, 1981.

Chomsky, N. Initial states and steady states. In M. Piatelli-Palmarini,
editor, Language and Learning, pages 107-130, Harvard University
Press, Cambridge, Mass., U.5.A., 1980.

Corneil, D. G. and J. M. Keil. A dynamic programming approach to
the dominating set problem on k-trees. SIAM J. Algebraic and Discrete
Methods, 8(4), October 1987.

R Duda, Richard O. and Peter E. Hart. Pattern Classification and
Scene Analysis. Wiley, New York, 1973.

Dietterich, T.G. and R.S. Michalski. Inductive learning of structural
descriptions: Evaluation criteria and comparative review of selected
methods., Artifictal Intelligence, 16:601-617, 1981,

Garey, M. R., R. L. Graham, D. 8. Johnson, and D. E. Knuth. Com-
plexity results for bandwidth minimization. SIAM Journal of Applied
Mathematics, 34(3):477-495, 1978.

Garey, M. R. and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, San Francisco,
1979,

Godbeer, Gail H. The Computational Complexity of the Stable Con-
figuration Problem for Connectionist Models. Master’s thesis, Dept.
Computer Science, University of Toronto, Toronto, Ontario, Canada,
September 1987.

117

[HMS66)|

(Hon87]

{Hop82]

(HS86]

[HVS86]
[HVS87]

[HWT9]

{Jud8&7a)

[Jud87b]

[Judssal

[Judssb)

(oid, E. Language identification in the limit. Information and Control.
10:447-474, 1967.

rinton, Geoffrey E. Connectionist Learning Procedures. Technical Re-
port CMU-CS-87-115, Computer Science Department, Carnegie-Melion
University, Pittsburgh, PA 15213, 1987.

Hunt, E. B., J. Marin, and P.J. Stone. Ezperiments in [nduction. Aca-
demic Press, New York, 1966.

Hong, Jai-wei. On Connectionist Models. Technical Report, Dept,.
Computer Science, University of Chicago, Chicago, Ill., U.S.A., May
1987.

Hopfield, J. J. Neural networks and physical systems with emergent
collective computational capabilities. In Proceedings of the National
Academy of Sciences, pages 2554-2558, 1932,

Hinton, Geoffrey E. and Terrence J. Sejnowski. Learning and relearning
in Boltzmann machines. In David E. Rumelhart and Jay L. McClelland,
editors, Parallel Distributed Processing: Ezplorations in the Microstrue-
ture of Cogrution, vol.1: Foundations, chapter 7, Bradford Books/MIT
Press, Cambridge, MA., 1986.

Hampson, S. E. and D. J. Volper. Linear function neurons: Structure
and training. Biological Cybernetics, 53:203-217, 1986.

Hampson, S. E. and D. J. Volper. Disjunctive models of boolean cate-
gory representation. Biological Cybernetics, 56:121-137, 1987.

Hubel, David H. and Torsten N. Weisel. Brain mechanisms of vision.
In The Brain, chapter VII, Freeman, 1979. Also appeared in September
1979 issue of Scientific American.

Judd, J. S. Complezity of Connectionist Learning with Various Node
Functions. Technical Report 87-60, University of Massachusetts,
Ambherst, MA, 1987.

Judd, J. S. Learning in networks is hard. In Proceedings of the First
International Conference on Neural Networks, pages 685-692, .E.E.E.,
San Diego, California, June 1987.

Judd, J. S. A Generalization of Bandwidth. Technical Report, Univer-
sity of Massachusetts, Amherst, MA 01003, 1988. In preparation.

Judd, J. S. The intractability of learning in connectionist networks.
1988. Submitted for publication.

118

[Jud88c|

[Jud88d]

(KLPV87]

'Koh77]
[Koh84]
1css]
[Lic82

(Lip87]

[Lit87]

[Mit77!
MP72]

[MR86]

'Ms81]

Judd, J. 8. Neural Network Design ar i4c Jomplazity of Learming.
PhD thesis, Computer and Informaticin Scic o dapt., University of
Massachusetts, Amherst, Mass. U.S.A., 1928, In nand.

Judd, J. 5. On the complexity of loading shallow neural networks.
Journal of Complexity, September 1988. Special issue on Neural Com-
putation, in press.

Kearns, M., Ming Li, Leonard Pitt, and Leslie Valiant. On the learn-
ability of boolean formulae. In Proc. 19th Symposium on Theory of
Computing, pages 285-295, ACM, New York, 1987.

Kohonen, T. Associative Memory—A System Theoretic Approach.
Springer-Verlag, Berlin, 1977.

Kohonen, T. Seif Organization and Associative Memory, Springer-
Verlag, Berlin, 1984.

le Cun, Yann. Une procedure d’apprentissage pour reseau a sequil as-
symetrique. Proceedings of Cognitiva, 85:599-604, 1985.

Lichtenstein, David. Planar formulae and their uses. SIAM Journal of
Computing, 11(2):329-343, 1982,

Lipscomb, John. On the Computational Complezity of Finding a Con-
nectionist Model's Stable State Vector. Master’s thesis, Dept. Com-
puter Science, University of Toronto, Toronto, Ontario, Canada, Octo-
ber 1987.

Littlestone, Nick. Learning quickly when irrelevant attributes abound:
A new linear-threshold algorithm. In 28th Symposium on Foundations
of Computer Science, pages 68-77, LE.E.E., 1987.

Mitchell, T. M. Version spaces: a candidate elimination approach to
rule learning. In Proceedings of IJCAI 5, pages 305-310, 1977.

Minsky, Marvin and Seymour Papert. Perceptrons: An Introduction to
Computational Geometry. MIT Press, Cambridge, Mass., 1972.

McClelland, Jay L. and David E. Rumelhart, editors. Parallel Dis-
tributed Processing: Ezplorations in the Microstructure of Cognition,
vol.2: Psychological and Biological Models. Bradford Books/MIT Press,
Cambridge, MA., 1986.

Monien, Burkhard and Ivan Hal Sudborough. Bandwidth constrained
NP-complete problems. In 13th Symposium on Theory of Computing,
pages 207-217, 1981,

119

{Mur65]

Mur71]
[Nil65]
[NL77|

'NT74)

[Omo87]

[OSW86|
[Par85]

[Por87]

(PS85]

(PV8e]

[RHMS6)

Muroga, 8. Lower beunds of the number of threshold functions and a
maximum weight. Transactions on Electronic Computers, 14:136—14%,
1965.

Muroga, S. Thresheld Logic and its Applications. Wiley-Interscience,
1971.

Nilsson, Nils J. Learning Machines: Foundations of Trainable Pattern-
Classification Machines. McGraw-Hill, 1965,

Narendra, Kumpati S. and S. Lakshmivarahan. Learning automata—a
critique. Journal of Cybernetics and Information Science, 1, fall 1977.

Narendra, Kumpati S. and M. A. L. Thathatchar. Learning automata—
a survey. [E.E.E. Trans on Systems, Man, and Cybernetics, SMC-
4(4):323~-334, July 1974.

Omohundro, Stephen M. Efficient Algorithms with Neural Network Be-
haviour. Technical Report UIUCDCS-R-87-1331, Dept. Computer Sci-
ence, University of [llinois at Urbana-Champaign, 1304 W. Springfield
Ave., Urbana, Il 61801, U.S.A., April 1987.

Osherson, Daniel N, Michael Stob, and Scott Weinstein. Systems that
Learn. MIT Press, Cambridge, Massachusetts, 1986.

Parker, D. B. Learning Logic. Technical Report TR-47, Massachusetts
Institute of Technology, Cambridge, MA, USA 02195, 1985,

Porat, Sara. Stability and Looping in Connectionist Models with Asym-
metric Weights. Technical Report TR 210, Computer Science Dept.,
University of Rochester, Rochester, N.Y. 14627, March 1987,

Peled, Uri N. and Bruno Simeone. Poynomial-time algorithms for regu-
lar set-covering and threshold synthesis. Discrete Applied Mathematics,
12:37-69, 1985,

Pitt, L. and L. G. Valiant. Computational Limitations on Learning
From FEramples. Technical Report TR-05-86, Aiken Computing Lab,
Harvard University, 1986. To appear in JACM.

Rumelhart, D. E., G. E. Hinton, and J. L. McClelland. A general
framework for parallel distributed processing. In David E. Rumelhart
and Jay L. McClelland, editors, Parallel Distributed Processing: Ezplo-
rations in the Microstructure of Cognition, vol.1: Foundations, chap-

ter 2, Bradford Books/MIT Press, Cambridge, MA., 1986.

120

'RHWS6|

[RMS6]

{Ros61]

[RS86]
'RZ85]

[Sha81]

[SW81]

[TDC86]

[Tes87]

[TJs8]

ITRS1]

[Valg4]

[Val85]

Rumelhart, David E., Geoffrey E. Hinton, and Ronala J. Wiilams.
Learning internal representations by error propagaticn. In Davic E.
Rumelhart and Jay L. McClelland, editors, Parailei Disiriiuied Pro-
cessing: Ezrplorations in the Microstructure of Coynition, vei.l: Foui-
dations, Bradford Books/MIT Press, Cambridge, MA., 1086,

Rumelhart, David E. and Jay L. McClelland, editors. Parallel Dis-
tributed Processing: Ezplorations in the Microstructure of Cognition,
vol.1: Foundations. Bradford Books/MIT Press, Cambridge, MA.,
1986.

Rosenblatt, Frank. Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms. Spartan Books, 6411 Chillum Place
N.W., Washington, D.C., 1961.

Robertson, Neil and P. D. Seymour. Graph minors. II. Algorithmic
aspects of tree-width. Journal of Algorithms, 7:309-322, 1986.

Rumelhart, D. E. and D. Zipser. Feature discovery by competitive
learning. Cognitive Science, 9:75-112, 1985.

Shapiro, Ehud Y. Inductive Inference of Theories From Facts. Techni-
cal Report Research Report 192, Yale University, department of Com-
puter Science, New Haven, Connecticut, USA, February 1981.

Sklansky, Jack and Gustav N. Wassel. Pattern Classification and Train-
able Machines. Springer-Verlag, 1981.

Toulouse, Gérard, Stanislas Dehaene, and Jean-Pierre Changeux. Spin
glass model of learning by selection. Proe. National Academy of Science
USA, 1695-1698, March 1986. Biophysics.

Tesauro, Gerald. Scaling relationships in back-propogation learning:
Dependence on training set size. Complex Systems, 1:367-372, 1987.

Tesauro, Gerald and Robert Janssens. Scaling relationships in back-
propogation learning: Dependence on predicate order. Complex Sys-
tems, 2:39-44, 1088.

Thathachar, M. A. L. and K. R. Ramakrishnan. An automaton model of
a hierarchical learning system. In Proceedings of 8th Biannual Congress,
Kyoto Japan, pages 1065-1070, Control Science and Technology, 1981.

Valiant, L. G. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

Valiant, L. G. Learning disjunctions of conjunctions. In Proceedings of
the 9th IJCAI pages 560-566, Los Angeles, California, August 1985.

121

[VHS6|

[WC80|

[WH60]

(WHLSS]

(Wil86a)]

Volper, D. J. and S. E. Hampson. Connectionist models of boolsan
category representation. Biological Cybernetics, 54:393-406, 19886,

Wexler, Kenneth and Peter W. Culicover. Formual Principles of Lan-
guage Acquisition. MIT Press, Cambridge, Massachusetts, 1980.

Widrow, Bernard and Marcian E. Hoff. Adaptive switching circuits.
In 1960 IRE WESCON Convention Record, pages 96-104, IRE, New
York, 1960.

Wimer, T. V., S. T. Hedetniemi, and R. Laskar. A methodology for
constructing linear graph algorithms. In Congressium Numerantium,
pages 43-60, 1985.

Williams, Ronald J. The logic of activation functions. In David E.
Rumelhart and Jay L. McClelland, editors, Paraliel Distributed Pro-
cessing: Ezplorations in the Microstructure of Cognition, vol.1: Foun-
dations, Bradford Books/MIT Press, Cambridge, MA., 1986.

122

