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ABSTRACT

We investigate the possibility of exploiting the properties of a detected Low
Probability of Intercept (LPI) signal waveform to estimate time delay, and by
geometry, angle of arrival. We consider the case where a highly correlated
signal is received at two stationary passive receivers. The signal source is
assumed stationary, and the signal waveform designed so that the ambiguity
function has a sharp peak. We also restrict ourselves to low signal–to–noise
ratios, namely 10 dB and less. We also examine the minimum time–delay
estimate error – the Cramer–Rao bound.
The results indicate that the method works well for highly correlated pulsed
signals, and may prove useful for other types of signals, such as CW signals
and pseudo–random noise.
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Time Delay Estimation

EXECUTIVE SUMMARY

The theory of radar signal (target echo) detection can be formulated with the use of
the ambiguity function. Such functions are designed to have sharp peaks, and a high
correlation on return. Resolution is determined by the width of the peak.

To improve detection and target resolution such signals make use of pulse compression
techniques.

An Electronic Support measures (ESM) system can exploit this information by using two
passive receivers, separated in space. Knowing the received waveform will have a sharply
peaked ambiguity function, we look at the correlation between the output of one receiver,
with the output of the second.

This correlation will give us the time–delay, to the same resolution as was “built into” the
original waveform. From this, using simple geometry, the signals angle of arrival can be
determined.

Waveform design is performed in the frequency domain, making use of complex signals.
As a result, we work primarily within the frequency domain.

The starting point is the analytic signal. We generate such a signal, and form the product
of the signal with its (complex conjugate) time–delayed version. This product, in the
frequency domain, is the cross spectral density. Transforming to the time domain, we find
the peak of the time–domain correlation function, using quadratic interpolation.

This peak gives the estimate of the time–delay.

We have run simulations over various signal–to–noise ratios (SNRs) with continuous wave
and single pulse chirped signals. As we are interested in the ability to estimate time–delay
at low SNR, we run our simulations with SNR at 10 dB and less.

The continuous wave case allows us to observe the effects of frequency wrap around, as
the waveform will resemble a partial sawtooth during the sample time.

The continuous wave simulations show that there is a bias due to the frequency wrap
around, producing a rough measure of the actual time–delay. The single pulse case gives
very good estimates of the time delay, although all estimates degrade as the SNR decreases.

We have also tested the algorithm on pseudo–random noise generated during the Electronic
Warfare and Radar Division (EWRD) Durex trial. Again, although we do not accurately
estimate time–delay, we do get a rough measure of the delay.

The results indicate that the method works well for highly correlated pulsed signals, and
may prove useful for other types of signals, such as CW signals and pseudo–random noise.

iii



DSTO–TR–1705

iv



DSTO–TR–1705

Author

Iain Jameson

Electronic Warfare and Radar Division

Iain Jameson was first employed by the Electronic Warfare Di-
vision, SAP group, in May 1996. He has a Ph.D. in Theoretical
Physics from the University of Adelaide.

v



DSTO–TR–1705

vi



DSTO–TR–1705

Contents

1 Introduction 1

2 Time–Delay Estimation 2

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Cramer–Rao Bound for a Single Pulse . . . . . . . . . . . . . . . . . . . . 4

2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Continuous–Wave Cramer–Rao Bound . . . . . . . . . . . . . . . 8

2.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2.1 Continuous Wave . . . . . . . . . . . . . . . . . . . . . 11

2.3.2.2 Single Pulse . . . . . . . . . . . . . . . . . . . . . . . . 24

3 EWRD Durex Trial Data 33

4 Time–Domain Filtered Cross Spectral Density 37

5 Discussion 38

6 Acknowledgments 40

References 41

Appendices

A Optimum Passive Bearing Estimation 43

A.1 Cramer–Rao Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B Generalised Cross Correlation Method 47

Figures

1 Quadratic Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Geometry of receiver system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Instantaneous frequency of chirp waveform over sample time . . . . . . . . . . 12

4 Cross Spectral Density – CW . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Time–delay estimate. L = 10 m, td = 5.8 n sec, CW . . . . . . . . . . . . . . 15

6 Angle estimate. L = 10 m, θ = 10◦, CW . . . . . . . . . . . . . . . . . . . . . 15

vii



DSTO–TR–1705

7 Time–delay estimate. L = 10 m, td = 16.7 n sec, CW . . . . . . . . . . . . . . 16

8 Angle estimate. L = 10 m, θ = 30◦, CW . . . . . . . . . . . . . . . . . . . . . 16

9 Time–delay estimate. L = 10 m, td = 32.8 n sec, CW . . . . . . . . . . . . . . 17

10 Angle estimate. L = 10 m, θ = 80◦, CW . . . . . . . . . . . . . . . . . . . . . 17

11 Time–delay estimate. L = 30 m, td = 17.4 n sec, CW . . . . . . . . . . . . . . 19

12 Angle estimate. L = 30 m, θ = 10◦, CW . . . . . . . . . . . . . . . . . . . . . 19

13 Time–delay estimate. L = 30 m, td = 70.7 n sec, CW . . . . . . . . . . . . . . 20

14 Angle estimate. L = 30 m, θ = 45◦, CW . . . . . . . . . . . . . . . . . . . . . 20

15 Time–delay estimate. L = 30 m, td = 94 n sec, CW . . . . . . . . . . . . . . . 21

16 Angle estimate. L = 30 m, θ = 70◦, CW . . . . . . . . . . . . . . . . . . . . . 21

17 Variance versus SNR. L = 10 m, θ = 30◦ . . . . . . . . . . . . . . . . . . . . . 22

18 Variance versus SNR. L = 10 m, θ = 10◦, CW . . . . . . . . . . . . . . . . . . 23

19 Instantaneous frequency of chirp waveform over sample time – single pulse . . 24

20 Cross Spectral Density – single pulse . . . . . . . . . . . . . . . . . . . . . . . 25

21 Time–delay estimate, L = 10 m, td = 5.8 ns, single pulse . . . . . . . . . . . . 26

22 Angle estimate, L = 10 m, θ = 10◦, single pulse . . . . . . . . . . . . . . . . . 26

23 Time–delay estimate, L = 10 m, td = 16.7 ns, single pulse . . . . . . . . . . . 27

24 Angle estimate, L = 10 m, θ = 30◦, single pulse . . . . . . . . . . . . . . . . . 27

25 Time–delay estimate, L = 10 m, td = 32.8 ns, single pulse . . . . . . . . . . . 28

26 Angle estimate, L = 10 m, θ = 80◦, single pulse . . . . . . . . . . . . . . . . . 28

27 Time–delay estimate, L = 30 m, td = 17.4 ns, single pulse . . . . . . . . . . . 29

28 Angle estimate, L = 30 m, θ = 10◦, single pulse . . . . . . . . . . . . . . . . . 29

29 Time–delay estimate, L = 30 m, td = 70.7 ns, single pulse . . . . . . . . . . . 30

30 Angle estimate, L = 30 m, θ = 45◦, single pulse . . . . . . . . . . . . . . . . . 30

31 Time–delay estimate, L = 30 m, td = 94 ns, single pulse . . . . . . . . . . . . 31

32 Angle estimate, L = 30 m, θ = 70◦, single pulse . . . . . . . . . . . . . . . . . 31

33 Time–delay as a function of angle . . . . . . . . . . . . . . . . . . . . . . . . . 33

34 Receiver – Transmitter geometry, Durex trial . . . . . . . . . . . . . . . . . . 34

35 Durex trial, time-delay versus angle. . . . . . . . . . . . . . . . . . . . . . . . 36

Tables

3.1 Angle estimates from Durex trial data . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Time–delay estimates from Durex trial data . . . . . . . . . . . . . . . . . . . 35

viii



DSTO–TR–1705

1 Introduction

The ability to find the direction of an emitted signal is of importance in a wide range of
fields, including electronic intelligence (ELINT) and electronic warfare support (ES).

For a digital receiver, direction finding is necessarily preceeded by signal detection, and
parameter estimation, and this leads to the theory of waveform design. In developing the
theory of waveform design and analysis, it is found that a simplification of the analysis can
be achieved by working in the complex domain, and by generalising the phasor description
of signals [2]. As a result, it is sensible to work in the frequency domain, returning to the
time domain as needed.

For ranging, an emitted waveform is correlated with the return from a target. As the
waveform used is designed to be highly correlated – its ambiguity function will have a
sharp peak – there will be a sharp peak in the correlation function. This peak gives the
time–delay, or range of the target.

An electronic support measures (ESM) system can exploit this information, and use it to
determine the direction of the signal source. We do this by correlating the received signal
in a passive receiver, with the time–delayed signal in a second passive receiver, located a
short distance away in space. The output of this correlator receiver is the time–delay, and
by geometry, the angle of arrival.

This is shown in Chapter 2. We start by introducing the ambiguity function, and the
method used for estimating the time–delay. We run simulations over various Signal–to–
Noise ratios (SNR), for both continuous wave (CW), and single–pulse signals. In this
chapter we also derive expressions for the Cramer–Rao bound of the variance of the esti-
mates.

In Chapter 3 we apply the techniques developed in Chapter 2 to pseudo–random noise,
generated at the Electronic Warfare and Radar Division (EWRD) Durex trial [1].

In Chapter 4, we briefly review a technique which uses the phase slope of the cross spectral
density to estimate time delay. In this way, we see that it is not necessary to transform
back to the time–domain in order to estimate the time–delay.

In Appendix A we review an alternative method for deriving the Cramer–Rao bound for
the estimate of angle of arrival, and review the generalisation of this method in Appendix
B.

1
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2 Time–Delay Estimation

2.1 Introduction

Suppose our aim is to distinguish different ranges (time–delays) at a receiver. The trans-
mitted signal waveform must have the property that it is as different from its shifted self
as possible [3].

That is, if ψ(t) represents our complex transmitted waveform, then the mean square
difference [4]

∫

|ψ(t) − ψ(t+ τ)|2 dt (1)

must be as large as possible over the time range containing the delay τ .

This excludes a small range of τ near zero, where ψ(t) must resemble ψ(t+ τ).

Expanding the term inside the integral, for complex waveforms, we find that we need to
minimise (except near τ = 0)

ℜ
∫

ψ(t)ψ∗(t+ τ) dt (2)

with ℜ denoting the real part of the integral, and * denoting complex conjugation.

We see this by considering ψ(t) and ψ(t + τ) as complex vectors, with the same origin.
We keep ψ(t) fixed, and rotate ψ(t + τ) until the vector connecting their end points,
|ψ(t) − ψ(t+ τ)|, is maximised.

If we write

ψ(t) = u(t) eiωt (3)

then we minimise

ℜ e−iωτ
∫

u(t)u∗(t+ τ) dt (4)

an oscillatory function of τ . That is, if this becomes negative for a particular value of τ ,
then there will be a corresponding positive value close to it. Thus we make the modulus
as small as possible.

That is, we minimise the modulus of

c(τ) =

∫

u(t)u∗(t+ τ) dt (5)

which is the complex auto–correlation function.

We choose u(t) such that |c(τ)| ≈ 0 except at τ = 0, where it is a maximum. Note that,
if |c(τ)| = 0 except at τ = 0, we avoid range ambiguities.

Range accuracy for a stationary target depends only upon the energy of the signal and
the bandwidth of the signal energy spectrum, denoted by β [4].

For a single target, the accuracy with which τ can be determined is limited only by the
amount of noise present. If u(t) and u(t+ τ) differ, the difference can be observed if noise
is small enough.

2
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Accuracy of measurement depends only on SNR (assumed large) and the properties of
c(τ) near τ = 0. A Taylor expansion gives the parabola

c(τ) ≈ a− b τ2 (6)

where a and b are constants, and accuracy is found to be [4]

δτ =
1

β
√

SNR
(7)

where, for a pulsed radar, 1/β ∝ pulse length.

The above is for a stationary target.

We now consider a moving target. Theoretically, there is no limitation on the accuracy of
range or velocity (frequency), given a broad spectrum (for range) and a long time duration
waveform (for velocity).

However, there are accuracy limitations on the combined resolution in time and frequency.

For targets at different ranges and velocities, neither of which is known, we require a
correlation function for a combined time and frequency shift. This is

χ(τ, φ) =

∫

u(t)u∗(t+ τ) e−i2πφt dt (8)

with normalisation

χ(0, 0) = 1 (9)

The interpretation is that a target with range and velocity (τ0, φ0) cannot be distinguished
from a target shifted in time and frequency at (τ0 + τ, φ0 + φ) if χ(τ, φ) = 1 (complete
ambiguity).

That is, if the ambiguity function has a sharp peak at the origin, and no other ‘large’
peaks, then the waveform has good simultaneous range and velocity resolution.

Resolving a pair of targets is not as straight forward. We can no longer expand c(τ), or
more generally χ(τ, φ), as a parabola, as the sum of two parabolic functions is another
parabolic function, with a single peak. Thus it will look like we have a single target.

This means the first two terms of the Taylor expansion say nothing about the resolving
power of the waveform.

Including higher order terms, we have [5]

|χ(τ, φ)| = χ(0, 0)[1 − 1

2
(β2τ2 + 2A12τφ+ α2φ2 + · · · )] (10)

with β the effective bandwidth of the signal when the mean frequency is zero, α is the
effective duration of the signal when the mean time is zero, and A12 is a range–doppler
coupling term [6, 7].

3
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2.2 Cramer–Rao Bound for a Single Pulse

Similar to Equation (6), we have now the uncertainty ellipse, and the width of this ellipse
in the range and velocity directions is [7]

δτ =
1

β
√

SNR
(11)

δφ =
1

α
√

SNR
(12)

The aim is to estimate time–delay and doppler. As we want our estimates to be as accurate
as possible, we want the error measurements to be as small as possible – this is the error
variance, and the minimum error variance is the Cramer–Rao bound. That is, our estimate
will be the actual value of the time–delay or doppler, plus/minus an error. We wish to
minimise the variance of this error.

It is found that the minimum error variance is

E[(τ̂ − τ)2] =
1

β2 SNR
(13)

E[(φ̂− φ)2] =
1

α2 SNR
(14)

with τ̂ and φ̂ representing the estimate of the time–delay, and doppler, respectively.

In the above the SNR refers to the input SNR. Defining SNRe = B T × (SNR) to be the
effective output SNR, where B is the noise bandwidth and T the pulse duration, then we
can write [8]

E[(τ̂ − τ)2] =
1

β2 SNRe
(15)

E[(φ̂− φ)2] =
1

α2 SNRe
(16)

For a single pulse, the noise bandwidth is the inverse of the sample rate (half the Nyquist
rate).

In order to distinguish signals at different ranges, we need to make |χ(τ, 0)| as small as
possible everywhere, except at τ = 0.

Measurement accuracy usually assumes that one signal is present, and depends on the
signal–to–noise ratio and the behaviour of |χ(τ, φ)| in a small region about τ = 0 and
φ = 0.

The minimum error variances given above require a knowledge of α and β. For a single
linear FM pulse, frequency ranging over an interval ∆f , with rectangular envelope [7],

α2 =
π2 T 2

3
(17)

β2 =
π2 (∆f)2

3
(18)

A12 =
π2 T ∆f

3
(19)

4
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2.3 Estimation

We now consider the case of a stationary ESM system. A waveform has been emitted,
designed to have a sharply peaked ambiguity function. As a result, the target echo will
be highly correlated to the original signal. The resolution is determined by the width of
the peak.

We can exploit this knowledge, and determine angle of arrival, by using two passive re-
ceivers, separated in space. Knowing the signal is highly correlated, we simply correlate
the output of one of the receivers with the time–delayed output of the other. This will
give us the time–delay, and hence, by geometry, the angle of arrival.

As it is usual, in waveform design, to work in the frequency domain, we do so here. When
it is time to estimate the time–delay, we will perform an inverse Fourier transform, and
move into the time–domain.

The algorithm proceeds as follows.

Step 1: We have real data from two receivers, xA(t) from receiver 1, and xB(t) from
receiver 2 – two time series. The receivers are assumed to be stationary, and separated in
space.

Step 2: We obtain the signal spectrum via a Discrete–time Fourier Transform, denoted
XA(f) and XB(f).

At this point we are faced with the problem of redundancy. The original series was real,
and therefore should only contain positive frequencies. Under a Fourier transform, we
have generated a complex function with positive and negative frequencies. Before we can
continue, we must suppress the negative frequencies [5, 6, 9].

It can be shown that if a complex signal can be written as the sum of a real part, and an
imaginary part, and if these parts are related by a Hilbert transform, then one half of the
spectrum will be suppressed [2].

A signal satisfying the above is called an analytic signal.

Step 3: Create signals with no negative frequencies.

Let ψ(t) denote the analytic signal.

The frequency spectrum of ψ(t) is [2, 5, 6]

Ψ(f) = 2X(f) f > 0

= 0 otherwise

Thus, having obtained the signal spectrum in Step 2, we simply double the amplitude for
positive frequencies, and set all other amplitudes to zero.

Step 4: The zero doppler Ambiguity function reduces to a complex cross correlation, in
the time domain. In the frequency domain, it is the product of the Fourier transforms
ΨA(f) and Ψ∗

B(f).

Thus, we calculate ΨA(f)Ψ∗
B(f) - the Cross Spectral density.

5



DSTO–TR–1705

C
ro

ss
 C

or
re

la
tio

n

Time Delay

tm

tm+1tm−1

)m(twG

Figure 1: Quadratic Interpolation

Step 5: We revert back to the time domain via an inverse Fourier transform of the power
Spectral density, in order to produce the CCF. We zero pad the IFFT in order to inter-
polate the CCF.

Zero padding involves interpolation by increasing sample rate. To increase the sample rate
by the factor k, we need to calculate k − 1 intermediate values within the original time
series [10].

Zero padding not only increases the number of points in our new time series, but it changes
the sample rate. If the original time series has N data points, and if the zero padding
factor is k, then the new time series will have kN data points. If the original time series
was sampled every T seconds, then the new time series will be sampled every T/k seconds.

If we assume the signal is a stationary process, then we would expect a single peak at
the value of the time–delay. As a result, we could expect the correlation function to be
approximated by a parabola near the peak. The peak of this parabola is found by parabolic
interpolation – we use three points, one on either side of the local maxima (as shown in
Figure 1), to find the peak, and estimate the time–delay [11, 12, 13].

Using Newton’s ‘forward interpolation method’, we Taylor expand the cross correlation
function about the local maxima tm

Gw(t) = |Gw(tm)| + (t− tm)
∆G0

h
+

1

2
(t− tm)(t− tm−1)

∆2G0

h2
(20)

where

∆G0 = |Gw(tm)| − |Gw(tm−1)| (21)

6
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and
∆2G0 = |Gw(tm+1)| − 2 |Gw(tm)| + |Gw(tm−1)| (22)

with h = tm − tm−1.

Expanding out the factors in the Taylor expansion gives

Gw(t) = c+ t

(

∆G0

h
− 1

2h2
[tm−1 + tm]∆2G0

)

+
1

2h2
t2∆2G0 (23)

where c is a constant.

We see that if we write −h = tm−1 − tm, then

tm−1 + tm = −(h− 2 tm) (24)

and we can write

Gw(t) = c+ t

(

∆G0

h
+

1

2h2
[h− 2 tm]∆2G0

)

+
1

2h2
t2∆2G0 (25)

If we define

a =
1

2h2
∆2G0 (26)

b =
∆G0

h
+ a [h− 2 tm] (27)

then
Gw(t) = a t2 + b t+ c (28)

with maxima at the zero of the derivative with respect to the time–delay.

That is, the estimate of the time–delay, using quadratic interpolation, is

t̂d = − b

2a

= tm + tm−1 − h
|Gw(tm)| − |Gw(tm−1)|

|Gw(tm+1)| − 2 |Gw(tm)| + |Gw(tm−1)|
(29)

after substituting for a and b.

Substituting this back into the above quadratic, gives the value of Gw at the maxima,

G0 ≡ Gw(t̂d) = − b2

4a
+ c (30)

The constant c can be written in terms of a and b,

c = |Gw(tm)| − b tm − a t2m (31)

by collecting the terms not shown explicitly in Equation (23) and using Equation (24).

A property of the ambiguity function is that its maximum occurs at the origin, and is
given by [5]

|χ(τ, φ)| ≤ χ(0, 0) = 2E (32)

7
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with E the signals energy. Thus, given Equation (30), we can find E.

From the Taylor expansion of the ambiguity function, we see that the effective bandwidth
is

β2 =
−1

|χ(0, 0)|
∂2Gw(t)

∂t2
(33)

evaluated at t̂d. That is,

β2 = −2 a

G0
(34)

and reflects the curvature of the ambiguity function, at the peak.

In terms of the effective bandwidth, or curvature, we have, from Equation (29)

t̂d =
b

β2G0
(35)

and so, for fixed G0, the time–delay estimate depends on the curvature of the ambiguity
function (at its peak). The greater the curvature, the narrower the ambiguity function at
the peak, leading to an improved estimate of the time–delay.

We see from the definition of β2 given by Equation (18), that by increasing the effective
bandwidth, we increase ∆f , and as a result, we increase chirp rate (if nothing else changes).

Thus the curvature of the ambiguity function at its peak depends on the chirp rate – the
greater the chirp rate, the narrower the peak.

2.3.1 Continuous–Wave Cramer–Rao Bound

The Continuous–wave Cramer–Rao bound (CW CR–bound) can be found from the log
likelihood function of the “system” under consideration.

For example, we consider a quadrature signal at one receiver, and its time–delayed form
received at a second receiver. Assuming the same signal amplitude at both receivers, the
signal functions are

s1(tn) = b cos[2πfbtn + π αt2n] + i b sin[2πfbtn + π αt2n] (36)

s2(tn) = b cos[2πfb(tn − td) + π α(tn − td)
2] + i b sin[2πfb(tn − td) + π α(tn − td)

2]

where s1 refers to the signal in receiver 1, and s2 refers to the signal in receiver 2. We also
define fb to be the initial chirp frequency, and chirp

α =
fe − fb

∆t
(37)

with fe the end chirp frequency, and ∆t the time it takes to increase (or decrease) from
fb to fe.

For receiver 1, define

X1(tn) = ℜ[s1(tn)] +W (tn)

Y1(tn) = ℑ[s1(tn)] + W̌ (tn)

Z1(tn) = X1(tn) + i Y1(tn) (38)

8
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with W ∼ N(0, σ2), so

X1(tn) ∼ N(b cos[2πfbtn + παt2n], σ2) ≡ N(µ1(n), σ
2)

Y1(tn) ∼ N(b sin[2πfbtn + παt2n], σ2) ≡ N(ν1(n), σ2) (39)

having defined µ1(n) = b cos[2πfbtn + παt2n] and ν1(n) = b sin[2πfbtn + παt2n].

The pdf of Z1 can be written

p(Z1) =
1

(2πσ2)N
e−

1

2σ2

∑N−1

n=0
( [X1(tn)−µ1(n)]2+[Y1(tn)−ν1(n)]2 ) (40)

Similarly, for receiver 2, define

X2(tn) = ℜ[s2(tn)] +W (tn)

Y2(tn) = ℑ[s2(tn)] + W̌ (tn)

Z2(tn) = X2(tn) + i Y2(tn) (41)

so that

X2(tn) ∼ N(bcos[2πfb(tn − td) + πα(tn − td)
2], σ2) ≡ N(µ2(n), σ2)

Y2(tn) ∼ N(bsin[2πfb(tn − td) + πα(tn − td)
2], σ2) ≡ N(ν2(n), σ2) (42)

defining µ2(n) = b cos[2πfb(tn − td) + πα(tn − td)
2] and

ν2(n) = b sin[2πfb(tn − td) + πα(tn − td)
2].

The pdf of Z2 can be written

p(Z2) =
1

(2πσ2)N
e−

1

2σ2

∑N−1

n=0
( [X2(tn)−µ2(n)]2+[Y2(tn)−ν2(n)]2 ) (43)

Finally, define the vector
Z(tn) = [Z1(tn)Z2(tn)]T (44)

then

f(Z) =
1

(2πσ2)2N
e−

1

2σ2

∑N−1

n=0
([X1(tn)−µ1(n)]2+[Y1(tn)−ν1(n)]2+[X2(tn)−µ2(n)]2+[Y2(tn)−ν2(n)]2)

(45)

The Cramer–Rao bound is obtained from the Fisher information matrix [14]

Jij = E

[

∂lnf(Z)

∂αi

∂lnf(Z)

∂αj

]

(46)

with 1 ≤ i, j ≤ k, for k parameters. In the CW case, the αi are elements of the set
(fb, b, τ, α), so k = 4. The symbol E in the above Equation represents the expectation.

Performing the differentiation, and expanding, we find that

Jij =
1

σ2

N−1
∑

n=0

[

∂µ1(n)

∂χi

∂µ1(n)

∂χj
+
∂µ2(n)

∂χi

∂µ2(n)

∂χj
+
∂ν1(n)

∂χi

∂ν1(n)

∂χj
+
∂ν2(n)

∂χi

∂ν2(n)

∂χj

+rX (
∂µ1(n)

∂χi

∂µ2(n)

∂χj
+
∂µ2(n)

∂χi

∂µ1(n)

∂χj
)

+rY (
∂ν1(n)

∂χi

∂ν2(n)

∂χj
+
∂ν2(n)

∂χi

∂ν1(n)

∂χj
)

]

1 ≤ i, j ≤ 4 (47)
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for the Fisher information matrix, with χ1 = fb, χ2 = b, χ3 = td and χ4 = α.

A consequence of the signal model we have chosen is that there will be cross terms in the
Fisher information matrix. In the above, rX and rY are the correlation coefficients for X
and Y . That is,

rX =
cov(X1,X2)

√

var(X1)var(X2)
(48)

with −1 ≤ rX ≤ 1. Similarly for rY .

In what is to follow, rather than calculate the correlation coefficients, we consider two
special cases: rX = rY = 1 for high SNR, when we can expect some correlation, and
rX = rY = 0 for low SNR, and little correlation. We justify this by considering the
number of data samples receiver 2 lags behind receiver 1. For small time–delays, up to
20 ns, say, receiver 2 will only be a few samples behind receiver 1 (eg, sampling at 5 ns).
For high SNR, we can expect the waveform in receiver 2 to follow that in receiver 1, except
near the peaks and troughs for sinusoids, and the beginning and end of the frequency ramp
for chirped signals. For low SNR, we can not expect this.

A consequence of the non–linear time terms in the signal model is that the calculation of
this matrix, and the inverse, becomes quite complicated. For the case where there is no
chirp (the three dimensional case), we obtain expressions for the variance of f̂ and b̂ which
are similar (up to a factor) to those found by Rife and Boornstyn [14]. The variances are
smaller by a factor of 4, due to the fact we are considering the two receiver case. The
variance of t̂d shows it depends explicitly on f̂ (again we are only considering the two cases
of rX = rY = 1 and rX = rY = 0).

The four dimensional case shows that the variances of the parameters under consideration
are dependent on the estimates of those parameters.

For example, at high SNR (rX = rY = 1),

J33 =

(

2πb

σ

)2 N−1
∑

n=0

[f̂b + α̂(tn − t̂d)
2] (49)

which we see is a function of t̂d, the estimate of the time–delay.

For the case where fb, b and α are known, the Cramer–Rao bound for the variance of the
time–delay would simply be the inverse of J33. For the case where they are all unknown,
the variance will be a function of J33.

We should point out that this dependence is not entirely unexpected. Rife and Boornstyn
derive expressions for the variance of frequency and phase, both of which show amplitude
dependence [14].
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θ L

c td
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Antenna 1 Antenna 2

Cross correlator

Figure 2: Geometry of receiver system

2.3.2 Simulations

2.3.2.1 Continuous Wave

The algorithm described above has been coded in Matlab. A continuous wave (CW) signal
is linearly swept from fb = 5 MHz to fe = 35 MHz, over ∆t = 1 milli second, to produce a
sawtooth waveform over the sample time. This sawtooth waveform will allow us to observe
the effects of frequency wrap around on our estimates.

Figure 2 shows the geometry of the receiver. From this we have the time–delay

td =
L

c
sin θ (50)

where c is the speed of light, and θ is the angle of arrival.

We show the instantaneous frequency in Figure 3, plotted using the Matlab specgram
function [15].

The instantaneous frequency is proportional to the time derivative of the phase of the
signal. Namely,

fI =
1

2π

∂φ

∂t
(51)

with

φ = 2π(ft+ αt2/2) (52)
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Figure 3: Instantaneous frequency of chirp waveform over sample time

An example of the cross spectral density is shown in Figure 4. It shows clearly the effect
of noise and the sawtooth shape of the instantaneous frequency. In this Figure, SNR is
10 dB.
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Figure 4: Cross Spectral Density – CW
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In Figures 5 to 16 we plot histograms of the estimate of the time–delay. The simulation
used to estimate the time–delay ran over 1024 iterations, with 218 data points, and a
sample rate of 5 ns. This number of points is used for simulation purposes only.

Although this report is mainly concerned with time–delay estimation, angle estimation
will be required when we come to the EWRD Durex trial data. As such, we also give
angle estimates in the following figures. Angle estimates are obtained from the time–delay
estimate after each iteration, by inverting Equation (50), and replacing td with t̂d.

In Figures 5 to 10, we fix the antenna separation at L = 10 m, and vary θ and SNR. In
Figures 11 to 16, we fix the antenna separation at L = 30 m, and vary θ and SNR. We use
different true time–delays for both separations in order to consider a wide range of values.

The estimate of the time–delay was taken to be the value with the maximum count number
in the histogram. This value was then used in the estimate of the angle of arrival.
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Figure 5: Time–delay estimate. L = 10 m, td = 5.8 n sec, CW
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Figure 6: Angle estimate. L = 10 m, θ = 10◦, CW
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Figure 7: Time–delay estimate. L = 10 m, td = 16.7 n sec, CW
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Figure 8: Angle estimate. L = 10 m, θ = 30◦, CW
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Figure 9: Time–delay estimate. L = 10 m, td = 32.8 n sec, CW
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Figure 10: Angle estimate. L = 10 m, θ = 80◦, CW
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We see bias in Figures 5 to 10 for antenna separation of 10 m. We also note the large
peaks at SNR below -10 dB. Although we may be tempted to use these values, we must
take into account the large variance.

Again we note that these figures were generated from a simulation of 1024 iterations with
218 data points. As such these estimates will be more accurate, and the variances smaller
than we would expect from real data.
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Figure 11: Time–delay estimate. L = 30 m, td = 17.4 n sec, CW
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Figure 12: Angle estimate. L = 30 m, θ = 10◦, CW
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Figure 13: Time–delay estimate. L = 30 m, td = 70.7 n sec, CW
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Figure 14: Angle estimate. L = 30 m, θ = 45◦, CW
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Figure 15: Time–delay estimate. L = 30 m, td = 94 n sec, CW
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Figure 16: Angle estimate. L = 30 m, θ = 70◦, CW
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Figure 17: Variance versus SNR. L = 10 m, θ = 30◦
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Figure 18: Variance versus SNR. L = 10 m, θ = 10◦, CW

The above simulations suggest a bias in the estimate of time–delay, perhaps as a result
of the frequency wrap around. For a receiver separation of 10 m, we see the difference
between the actual time–delay and the estimated time–delay increasing as the angle of
arrival increases. For an angle of arrival of 80◦, and an SNR of 10 dB, we see the estimated
time–delay differs from the actual time–delay by approximately 5 ns, or 25◦. The actual
time–delay in this case being 32.8 ns.

For a receiver separation of 30 m, the error is small and appears constant. This suggests
small antenna separations may not be appropriate for CW signals.
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2.3.2.2 Single Pulse

In Figures 21 to 32 we plot histograms of the estimate of the time–delay. The simulation
used to estimate the time–delay ran over 1024 iterations, with 218 data points. Sample
rate is 5 ns. As with the CW case, we also give angle estimates. Angle estimates are
obtained from the time–delay estimate after each iteration, by inverting Equation (50),
and replacing td with t̂d.

In Figures 21 to 26, we fix the antenna separation at L = 10 m, and vary θ and SNR. In
Figures 27 to 32, we fix the antenna separation at L = 30 m, and vary θ and SNR.

The estimate of the time–delay was taken to be the value with the maximum count number
in the histogram. This value was then used in the estimate of angle.

Figure 19 was obtained using the Matlab specgram function [15]. There is no wrap–around.
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Figure 19: Instantaneous frequency of chirp waveform over sample time – single pulse
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Figure 20: Cross Spectral Density – single pulse
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Figure 21: Time–delay estimate, L = 10 m, td = 5.8 ns, single pulse
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Figure 22: Angle estimate, L = 10 m, θ = 10◦, single pulse
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Figure 23: Time–delay estimate, L = 10 m, td = 16.7 ns, single pulse
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Figure 24: Angle estimate, L = 10 m, θ = 30◦, single pulse
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Figure 25: Time–delay estimate, L = 10 m, td = 32.8 ns, single pulse
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Figure 26: Angle estimate, L = 10 m, θ = 80◦, single pulse
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Figure 27: Time–delay estimate, L = 30 m, td = 17.4 ns, single pulse
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Figure 28: Angle estimate, L = 30 m, θ = 10◦, single pulse
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Figure 29: Time–delay estimate, L = 30 m, td = 70.7 ns, single pulse

44.9 45 45.1
0

50

100

150

200

250

300

θ (degrees)

C
ou

nt

SNR = 10 db

44.5 45 45.5
0

50

100

150

200

250

300

θ (degrees)

C
ou

nt

SNR = 0 db

40 42 44 46 48 50
0

50

100

150

200

250

300

θ (degrees)

C
ou

nt

SNR = −10 db

−81 −63 −45 −27 −9 9 27 45 63 81
0

200

400

600

800

θ (degrees)

C
ou

nt

SNR = −20 db

Figure 30: Angle estimate, L = 30 m, θ = 45◦, single pulse
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Figure 31: Time–delay estimate, L = 30 m, td = 94 ns, single pulse
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Figure 32: Angle estimate, L = 30 m, θ = 70◦, single pulse

31



DSTO–TR–1705

In contrast to the CW case, the single pulse simulations give estimates which are very close
to the actual time–delay and angle of arrival values down to 0 dB. However the spread
of values increases significantly as SNR decreases. We also assume that the correct signal
has been detected at such a low SNR.

Again we note these estimates are expected to be more accurate, and the variances smaller
than we would expect from real data.
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3 EWRD Durex Trial Data

We now apply the techniques described earlier to data obtained from the EWRD Durex
trial of 17 July, 2002 [1].

In Figure 33, we see the true time–delay as a function of angle. This figure shows that
for large angle, small changes in time–delay represent large changes in angle. For this
reason, good estimates will be found where the curve is not near the regions of maximum
curvature – that is, for −60◦ < θ < 60◦.

The samples were of pseudo–random noise with 20 MHz bandwidth.

The receiver was dual channel, with 8 bit ADC, sampling at 200 MSps at 50 MHz IF.
The two receivers were 29.5 m apart, with the straight line between antennas being 0◦

magnetic North.

The two receivers were not calibrated.

The transmitter was moved parallel to the receivers, with angle being measured using a
compass. The last series of data were taken due south of the receivers.

The geometry of this setup is shown in Figure 34.

We compare the geometry of the Durex trial with that given by Figure 2, and observe that
a mapping between the two conventions is needed. We see that the Durex trial definition
of 90◦, is the theoretical 0◦. Similarly, 135◦ becomes −45◦, 150◦ becomes −60◦, and 22◦

becomes 68◦.

We note that negative angles refer to receiver 1 lagging receiver 2.
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Figure 33: Time–delay as a function of angle
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TransmitterL = 29.5 m

Receiver 2 at 180 degrees

Receiver 1 at 0 degrees

Figure 34: Receiver – Transmitter geometry, Durex trial

34



DSTO–TR–1705

In Table 3.1, we present trial estimates of the angle. The angle given in column 4 is that
found by a compass reading. Table 3.2, gives estimates of the time–delay. The time–delay
given is the expected delay given the angle and receiver separation of 29.5 m.

Figure 35 shows time–delay as a function of angle. We have also plotted estimates of the
time–delay, given in Tables 3.1 and 3.2.

Unfortunately, due to the nature of the data collection, we are unable to comment on the
accuracy of the time–delay estimation method using the Durex trial data.

Table 3.1: Angle estimates from Durex trial data

File name Tx Power Rx attenuation Angle (◦) Estimated Angle (◦)
(dBm) (dB) (averaged)

ADC001 – ADC009 39 25 0 -4.7
ADC010 – ADC019 39 25 -45 -35.2
ADC020 – ADC029 0 0 -45 -31.2
ADC030 – ADC039 0 0 -60 -41.8
ADC040 – ADC049 39 25 -60 -44.8
ADC080 – ADC089 39 25 0 2.2
ADC090 – ADC099 39 25 45 48.8
ADC100 – ADC109 39 25 68 77.3
ADC110 – ADC119 39 25 -90 -62.4

Table 3.2: Time–delay estimates from Durex trial data

File name Tx Power Rx attenuation Delay (ns) Estimated Delay (ns)
(dBm) (dB) (averaged)

ADC001 – ADC009 39 25 0 -8.1
ADC010 – ADC019 39 25 -69.5 -56.7
ADC020 – ADC029 0 0 -69.5 -50.9
ADC030 – ADC039 0 0 -85.2 -65.5
ADC040 – ADC049 39 25 -85.2 -69.3
ADC080 – ADC089 39 25 0 3.8
ADC090 – ADC099 39 25 69.5 74
ADC100 – ADC109 39 25 91.2 95.9
ADC110 – ADC119 39 25 -98.3 -87.1
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Figure 35: Durex trial, time-delay versus angle.
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4 Time–Domain Filtered Cross Spectral Density

In the previous chapter, the algorithm for estimating time–delay was : start in the time
domain with data from two spatially separated receivers. We move into the frequency
domain by performing a Fourier transform on each data set. We suppress negative fre-
quencies by generating an analytic signal via a Hilbert transform, and we multiply their
Fourier transforms to produce the cross spectral density.

We then apply an inverse Fourier transform to this density to move back into the time
domain, to give the cross correlation function. We time filter this function, to remove
unnecessary data – away from the peak – and perform a quadratic interpolation on the
filtered function to give us the time–delay estimate.

In [16], the cross correlation is performed in the time domain, and the cross spectral
density is obtained via Fourier transform. The time–delay is estimated in the frequency
domain from the phase slope of the cross spectral density.

Then a spread–spectrum signal arriving at two spatially separated receivers is cross corre-
lated. The cross–correlation output will be the sum of 1) a time–delayed auto–correlation
of the signal, 2) the cross correlation of the signal with noise, and 3) the cross–correlation
of the noise.

The noise cross–correlation component will be spread uniformly over the entire cross–
correlation function. The auto–correlation component will peak near the center of this
function. The shift from the center represents the time–delay. However, noise will ensure
the peak does not occur at the actual time–delay, so it is not possible to just “read off”
the value from the plot, with reasonable accuracy.

Knowing that the auto–correlation component will be concentrated over a region tens of
nanoseconds wide, we can apply a low pass time–domain filter. An FFT applied to this
filtered function leads to the time–domain filtered cross spectral density. It also leads
to phase wrapping. The phase slope of this density, across the signal bandwidth, is the
estimate of the angle of arrival [16].

If the signal is shifted by an amount td, then the rate of change of phase with frequency is
proportional to td. Once the time–domain filtered cross spectral density has been obtained,
the phase slope can be estimated using linear regression. From this, we estimate time–
delay.

We mentioned that the application of the FFT leads to phase wrapping. Therefore, we
need to unwrap the phase before we make a straight–line fit. This requires any phase
errors at each sample to be small. It has been shown that the phase errors due to noise
are small if SNR > 13 dB [16, 17].

The angle of arrival estimation error is found to be similar in form to Equation (A14). It
was found that high accuracy can be obtained (fractions of a degree), with large errors
found for |θ| > 60◦. The estimate is also shown to be independent of the receiver noise
bandwidth and the “size” of the time–domain filtering, providing it is large enough to
enable detection.
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5 Discussion

The preceding was a technical report on the usefulness of exploiting the waveform design
of highly correlated LPI signals, in order to estimate time–delay, and as a result, angle of
arrival. The model consisted of two stationary receivers spaced several metres apart. The
signal source is also assumed to be stationary.

For the simulations, we considered a chirped signal. The time taken from the lowest to
highest frequency value was 1 ms. The signal was sampled evenly, the sample rate being
5 ns, at various SNRs, and the time–delay estimated, as described in the report. Quadratic
interpolation was used to obtain sub sample rate estimates. For the purpose of simulation,
we used 218 data points, and 1024 iterations. As a result, we can expect our estimates to
be more accurate, and our variances smaller than would be expected from real data.

We considered the case of a continuous wave (CW) signal, and a single pulse. The CW
case allowed us to observe the effects of frequency wrap around on the estimates. For the
CW signal, the sample time is just over 1 ms, allowing for frequency wrap around. For
the pulsed signal, sample time is the pulse duration, which is 1 ms.

We started the simulation with a CW signal, a receiver separation of 10 m, and a true
time–delay of 5.8 ns, representing a true angle of arrival of 10◦. As we found in Section
2.3.2, our time–delay estimates were off by approximately 1 ns, or approximately 2◦. That
is, at an SNR of 10 dB, and a true time–delay of 5.8 ns (10◦), we estimated the time–delay
to be 4.8 ns, with a variance of 0.02 ns. This time–delay estimate represents an angle of
arrival estimate of 8.2◦.

Even at -10 dB SNR, we estimated the time–delay to be 4.9 ns. However, the variance
was 1.5 ns, with the spread of estimates far greater than those found at 10 dB.

We then increased the true time–delay (or angle of arrival) for the same antenna separation
of 10 m. We found the estimates differed from the true values by an increasing amount.
That is, at 10 dB, for a true time–delay of 16.7 ns (30◦), we estimated 13.7 ns (24.1◦). For
a true time–delay of 32.8 ns (80◦), we estimated 27.5 ns (55.7◦).

We then increased antenna separation to 30 m, and repeated the simulations but with
different time–delays. In this case, at 10 dB, we found the difference between the true
time–delay and the estimated time–delay to be approximately 2 to 3 ns.

At 10 dB, for a true time–delay of 17.4 ns (10◦), we estimated 14.3 ns (8.2◦). For a true
time–delay of 70.7 ns (45◦), we estimated 73.8 ns (47.6◦). For a true time–delay of 94 ns
(70◦), we estimated 95.8 ns (73.4◦).

As SNR decreased we found the estimates to be constant, although the spread of estimates
increased.

The above suggests, for CW signals, there may be an optimum antenna separation for
which estimates are reasonably accurate, and errors are small for all angles of arrival.

Repeating the above for a pulsed signal produced results more accurate than the above.

For a receiver separation of 10 m, and a true angle of arrival of 30◦, representing a true
time–delay of 16.7 ns, we estimated the time–delay to be 16.7 ns, with a variance of 0.03
ns. This time–delay estimate represents an angle of arrival estimate of 30◦.
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For a receiver separation of 10 m, and a true angle of arrival of 10◦, representing a true
time–delay of 5.8 ns, we estimated the time–delay to be 5.8 ns, with a variance of 0.03 ns.
This time–delay estimate represents an angle of arrival estimate of 10◦.

This analysis suggests that, even with SNR at -10 dB, this method gives a reasonable
measure of the time–delay, or angle of arrival. However, the spread of estimates may
negate the usefulness of such estimates, as well as the need to actually observe a signal at
such a low SNR.

We have also tested this approach against pseudo–random noise generated during the
EWRD Durex trial. Due to the data obtained, we were unable to comment on the accuracy
of our estimation method.

Possible future research :

When estimating the time–delay, we made use of a quadratic interpolation, in order to
achieve sub sample rate accuracy. This, however, leads to a biased estimate [11].

The pulsed case seems to suggest this bias will be small. This may not be so for the CW
case, although the frequency wrap around effect may well dominated any bias. This could
be investigated further.

It is also possible that this bias can be reduced by ‘windowing’.

The approach described in this report should be tested against Pilot–like signals [22], with
accurate ground truth. This will also suggest the amount of data needed for accurate
estimation in “real world” situations.

Our approach to calculating the Cramer–Rao bounds was a “brute force” approach, with
a number of assumptions.

Is there a model in which the signal functions in the two receivers are orthogonal? This
would remove the cross terms from the log likelihood function.

The obvious case would be to have the signal in the second receiver 90◦ out of phase with
the signal in the first receiver. This, however, is highly unlikely to occur.

Re–writing the problem in terms of analytic functions may be useful [2].

One obvious generalisation to the theory given in this report would be to include a second
signal source, and consider the detection and estimation problem [23, 24].

Another would be to consider moving sources and/or receivers.
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Appendix A Optimum Passive Bearing

Estimation

The paper of MacDonald and Schultheiss [18] considers the problem of ‘optimum passive
bearing estimation by means of a passive sonar array’. They consider M hydrophones
arranged in a linear array. The following uses M = 2.

Four assumptions are made

1. The signal and noise are stationary Gaussian processes.

2. The signal source is at such a distance from the receivers, that the received wavefront
is planar over the dimensions of the receiving system.

3. Noise is statistically independent from each other and the signal.

4. The observation time T is much larger than the signal and noise correlation time
and the travel time of the wavefront across the receiving system.

They start by finding the Cramer–Rao lower bound of the unbiased estimators rms error.
They them compare this to the rms error from a split–beam tracker. The comparison
suggests that the split–beam tracker is close to optimal.

A.1 Cramer–Rao Bound

Over the observation time T , we have (continuous time) data received at antenna A

xA(t) = sA(t) + nA(t) (A1)

and at antenna B
xB(t) = sA(t− td) + nB(t) (A2)

We see explicitly that the data received at antenna B is the time–delayed data received at
antenna A. The aim is to estimate the time–delay td, denoted t̂d, and the variance of this
estimate, denoted σ2

t̂d
, given the data.

The minimum variance of an unbiased estimate is the Cramer–Rao bound, and is

σ2
t̂d

≥ −1

E
[

∂2L(x)
∂t2

d

] (A3)

where E denotes the expectation, and L(x) is the likelihood function, or more commonly,
the log likelihood function. The likelihood function may be found via the Fourier coeffi-
cients of the received data.

We are able to perform Fourier transforms on this data in order to create a new vector.
Let

XA(k) =

∫

xA(t) e−i2πk t
T dt

XB(k) =

∫

xB(t) e−i2πk t
T dt k = 1 . . . N (A4)
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Then a new 2N × 1 vector can be written

X = [XA(1)XA(2) . . . XA(N)XB(1)XB(2) . . . XB(N)]
′

(A5)

where the ′ superscript refers to the transpose operation.

The complex probability density function (pdf) for X can be written

p(X) =
1

πN πN
j=1σ

2
j

1

πN πN
j=1σ

2
j

e
−

∑N

j=1
1

σ2
j

(X∗

′

A
(j)XA(j)+X∗

′

B
(j)XB(j))

=
1

π2N |Σ|e
−X∗

′

Σ−1X (A6)

where the ∗ refers to complex conjugation. Here |Σ| is the determinant of the 2N × 2N
covariance matrix Σ (not 4N × 4N as X(k) = X∗(T − k), so not all the vectors are
independent).

As [18] dealt with bearing estimation, we continue the analysis in terms of the angle of
arrival θ.

The covariance matrix Σ = E[X∗X
′

], and the matrix elements are

E[X∗
p (ωl)X

′

q(ωn)] =

∫ T/2

−T/2

∫ T/2

−T/2
ei(ωlt−ωnu)E[xp(t)xq(u)] dt du (A7)

where x(t) = x(t, θ) is a function of the angle to be estimated. That is, xp(t, θ) =
sA(t − tdp

) + np(t), p = A,B, with tdA
= 0 and tdB

= (d/c) sin θ. Here d is the antenna
separation and c the speed of light.

At this point we substitute for x(t) in the expectation, and write the derived auto-
correlation functions for the signal and noise in terms of the corresponding spectral func-
tions, remembering that the signal and noise are assumed to be stationary processes.

Working through the analysis, it is found that

E[X∗
p (ωl)X

′

q(ωn)] = T [S(ωn) +N(ωn)δpq]e
iωn(dq−dp) l = n

= 0 l 6= n (A8)

where S(ω) and N(ω) are the signal and noise spectral functions, respectively, and δpq is
the Kroneker delta function.

The result of this is to separate out the frequency components in the quadratic X∗
′

Σ−1X,
and reduce the original matrix with 2N × 2N elements to a matrix with 4N non–zero
elements.

As a result of this reduction, we can reduce the complexity of the matrix multiplications

by writing the quadratic X∗
′

Σ−1X, as the sum of N matrix products of the form A∗
′

BA,
where A is 1×N , and B is N ×N . Each matrix product involves a particular frequency.

As a simple example, suppose we have M = 2 receivers and N = 2 frequencies. Then
our data vector would be X

′

= [X1(ω1)X1(ω2)X2(ω1)X2(ω2)]. The general NM × NM
covariance matrix would look like
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Σ =











Σ11(11) Σ11(12) Σ12(11) Σ12(12)
Σ11(21) Σ11(22) Σ12(21) Σ12(22)
Σ21(11) Σ21(12) Σ22(11) Σ22(12)
Σ21(21) Σ21(22) Σ22(21) Σ22(22)











where the subscripts refer to vectors X1 and X2, and the values in the parenthesis refer
to the frequencies ω1 and ω2

From the above result, only those frequencies which are equal have non–zero values, so
this matrix reduces to the form

Σ =











Σ11(11) 0 Σ12(11) 0
0 Σ11(22) 0 Σ12(22)

Σ21(11) 0 Σ22(11) 0
0 Σ21(22) 0 Σ22(22)











The inverse will have a similar form, namely

Σ−1 = 1
|Σ|











σ22(11) 0 −σ12(11) 0
0 σ22(22) 0 −σ12(22)

−σ21(11) 0 σ11(11) 0
0 −σ21(22) 0 σ11(22)











with σij ∝ Σij, i, j = 1, 2, and |Σ| the determinant of the covariance matrix.

If we now write A1 = [X1(ω1)X2(ω1)] and A2 = [X1(ω2)X2(ω2)], then writing

B1 =

[

σ22(11) −σ12(11)
−σ21(11) σ11(11)

]

and

B2 =

[

σ22(22) −σ12(22)
−σ21(22) σ11(22)

]

the product X∗
′

Σ−1X becomes A∗
′

1 B1A1 +A∗
′

2 B2A2.

If we define X(k) =

[

X1(k)
X2(k)

]

then

E[X∗(k)X
′

(k)] = E

[

X∗
1 (k)X1(k) X∗

1 (k)X2(k)
X∗

2 (k)X1(k) X∗
2 (k)X2(k)

]

and the X∗
′

Σ−1X term in the pdf becomes, as a result of the above, the summation
∑N

k=1X
∗
′

(k)E[X∗(k)X
′

(k)]−1X(k).

Note that Σ has no θ dependence, thus the determinant will not either. The sum given
above will be the only term in the log likelihood to have a θ dependence, and will be the
only non–zero term present when derivatives are taken.

It is now possible to find the Cramer–Rao bound on the variance of θ̂. In expanding out
the matrix products in the above quadratic, we find that there are terms that do not
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depend on the time–delay, or angle of arrival. We find that we can write the log likelihood
function as

l(θ) =
T

|Σ|
N

∑

k=1

S(k) [X∗
1 (k)X2(k)e

−ik(d1−d2) +X∗
2 (k)X1(k)e

ik(d1−d2)] (A9)

and therefore

∂l(θ)

∂θ
=

iT

c|Σ| (d1 − d2) cos θ
N

∑

k=1

k S(k) [−X∗
1 (k)X2(k)e

−ik(d1−d2) +X∗
2 (k)X1(k)e

ik(d1−d2)]

(A10)

It is straightforward to show that the expectation of this derivative is zero.

Noticing that terms in the second derivative vanish when we take the expectation, we find
that the only term necessary from the second derivative is

∂2l(θ)

∂θ2
= − T

c2|Σ|(d1−d2)
2 cos2 θ

N
∑

k=1

k2 S(k) [X∗
1 (k)X2(k)e

−ik(d1−d2)+X∗
2 (k)X1(k)e

ik(d1−d2)]

(A11)
and the expectation of this is

E

[

∂2l(θ)

∂θ2

]

= − 2T 2

c2|Σ|(d1 − d2)
2 cos2 θ

N
∑

k=1

k2 S2(k) (A12)

We also find that
T 2 S2(k)

|Σ| =
S2(k)/N2(k)

1 + 2S(k)/N(k)
(A13)

From all of this, we find the Cramer–Rao bound on the variance of the estimate of the
angle of arrival

σ2
θ̂
≥

[

2

c2
(d1 − d2)

2 cos2 θ
N

∑

k=1

k2 S2(k)/N2(k)

1 + 2S(k)/N(k)

]−1

(A14)

The general form is given by Equation (16) in [18].

This is the lower bound of the rms error of an unbiased estimator. If the actual rms error
achieves this bound, we have an optimal estimator. This will not always be the case in the
real world, in which case we must deal with ‘close to optimal’ estimators, or sub–optimal
estimators.
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Appendix B Generalised Cross Correlation

Method

This is a Maximum Likelihood estimator of the time–delay between signals received at
two spatially separated receivers [19, 20, 21].

The estimator is a pair of pre–filters followed by a cross correlator. The maximum of this
correlator in the time domain, is the estimate of the time–delay.

If we have a signal from an unknown source, arriving at two receivers separated in space,
then the received data can be written

x1(t) = s1(t) + n1(t)

x2(t) = α s1(t− td) + n2(t) (B1)

where td is the time–delay, signal s1(t) is uncorrelated with the noise n1(t) and n2(t), and
α is attenuation.

A common method for estimating time–delay is to compute the cross correlation function
(CCF),

Rx1x2
(τ) = E[x1(t) x2(t− τ)] (B2)

where E represents the expectation. The τ which maximises this function is the estimate
of the time–delay.

As we will only have access to a finite duration signal, the LHS of Equation (B2) is also
an estimate.

Via a Fourier Transform, we are able to write the CCF, Rx1x2
(τ), in terms of the cross

power spectral density function (PSD) Gx1x2
(f),

Rx1x2
(τ) =

∫ ∞

−∞
Gx1x2

(f)ei2πfτ df (B3)

At this point we introduce the filters, and remember that we only have an estimate of the
CCF and PSD. In terms of the filtered data y1 and y2, we have

R̂y1y2
(τ) =

∫ ∞

−∞
H1(f)H∗

2 (f) Ĝx1x2
(f)ei2πfτ df (B4)

with ψ(f) = H1(f)H∗
2 (f) being defined as a generalised frequency weighting. The weight-

ing ψ(f) may be selected to optimise certain criteria – for example, to pass signals for
which the signal-to-noise ratio (SNR) is high

We use Equation (B4) to evaluate time–delay estimates.

Given our signal model from Equation (B1), we can write down the CCF (in the time
domain). A Fourier Transform gives us the PSD (in the frequency domain). This is found
to be the sum of the signal PSD, Gs1s1

(f), multiplied by a complex exponential, and the
noise PSD, Gn1n2

(f). For uncorrelated noise, Gn1n2
(f) = 0.

A multiplication in the frequency domain may be written as a convolution in the time
domain, and assuming uncorrelated noise, we have

Rx1x2
(τ) = αRx1x2

(τ) ⋆ δ(t− td) (B5)
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The effect of this convolution is to spread out the peak of the CCF. A problem with this
is when we have multiple time–delays. This spreading effect may cause peaks to overlap.

Therefore, the frequency weighting ψ(f) is chosen to ensure large sharp peaks in the CCF.
Unfortunately this leads to estimates which are sensitive to (finite time) errors, particularly
at low SNR.

Let Xi(ω), i = 1, 2 denote the Fourier Transform of the received data xi(t).

If the duration of the signal, T , is large compared to the absolute value of the time–delay,
|td|, and the correlation time of the signal correlation function, then we are able to make
use of Equation (A8), and uncouple the frequency components.

Following through, defining the vector

X(k) = [X1(k)X2(k)]
′

(B6)

we have the conditional pdf

p(X|Q) = ce−
1
2

∑N

k=1
X∗

′

(k)Q−1(2πk/T )X(k) (B7)

where c is a function of the determinant of the spectral density matrix Q, which is defined
to be

Q(kω∆) = T E

[

X1(k)X
∗
1 (k) X1(k)X

∗
2 (k)

X2(k)X
∗
1 (k) X2(k)X

∗
2 (k)

]

=

[

Gx1x1
(kω∆) Gx1x2

(kω∆)
G∗

x1x2
(kω∆) Gx2x2

(kω∆)

]

defining ω∆ = 2π/T . For large T,Q(kω∆) → Q(f).

The inverse is easily found, with the determinant given by

|Q(f)| = Gx1x1
(f)Gx2x2

(f) − |Gx1x2
(f)|2

= Gx1x1
(f)Gx2x2

(f)

[

1 − |Gx1x2
(f)|2

Gx1x1
(f)Gx2x2

(f)

]

If we define a correlation coefficient

γ12(f) =
Gx1x2

(f)

[Gx1x1
(f)Gx2x2

(f)]
1
2

(B8)

then we have
|Q(f)| = Gx1x1

(f)Gx2x2
(f)(1 − |γ12(f)|2) (B9)

For large observation time T , we are able to replace the Xi(k) with the Fourier transform
X̃i(2πk/T )/T → X̃i(f)/T and the conditional pdf becomes

p(X|Q) = ce−
1
2

∫

X̃∗

′

(f) Q−1(f) X̃(f) (B10)

Taking the log, and considering only those terms dependent on the parameter td, it can be
found that the maximum likelihood estimate of td maximises (using the notation of [19])

−J3 = 2T

∫

Ĝx1x2
(f)

1

|Gx1x2
(f)|

|γ12(f)|2
1 − |γ12(f)|2 e

i2πftd df (B11)
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where

Ĝx1x2
(f) =

1

T
X̃(f)X̃∗(f) (B12)

is the estimate of the cross power spectral density function and γ12(f) is the coherence
[20, 21]. In deriving the above, we make use of the relation

Gx1x2
(f) = |Gx1x2

(f)|e−i2πftd (B13)

It is straight forward to derive the Cramer–Rao bound of the variance of t̂d [19].

The log likelihood function of interest, reduces to

l(td) = −J3

2
(B14)

Taking derivatives, and noting that E[Ĝx1x2
(f)] = Gx1x2

(f), we have the Cramer–Rao
bound

σt̂d
≥

[

4π2T

∫

f2 |γ12(f)|2
1 − |γ12(f)|2df

]−1

(B15)
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