
Proceedings of the 2004 Fall Simulation Interoperability Workshop, Orlando, FL, September 2004

Language Support for Identifying Flexible Points in Coercible Simulations

Joseph C. Carnahan
Paul F. Reynolds, Jr.

David C. Brogan

Modeling and Simulation Technology Research Initiative
University of Virginia
151 Engineer's Way

Charlottesville, VA 22903-22904
434-982-2291, 434-924-1039, 434-982-2211

carnahan@virginia.edu, reynolds@virginia.edu, brogan@virginia.edu

Keywords:

COERCE, coercible simulations, flexible points, language constructs, simulation reuse

ABSTRACT: Simulation developers are forced to make assumptions about how their simulations will be used and
possibly revised to support reuse. Even when developers are aware of potential future adaptations for reuse, current
programming languages do not support expression of design alternatives reflecting those adaptations. One can use
program documentation to describe them, but documentation does not support automatic simulation transformation.
Previously we have described COERCE, a semi-automated simulation transformation technology that supports the
capture of design alternatives and the subsequent search and exploitation of these alternatives in order to accomplish
desired changes in simulation behavior. In this paper, we propose capturing these design alternatives in programming
language extensions called flexible points. With metadata about flexible points embedded in simulation code,
COERCE-based software tools can preprocess the code, present information about flexible points to the user, and
support semi-automatic evaluation of the fitness of different design alternatives for the new requirements. The
programming language extensions we describe in this paper would advance our goal of automating simulation
coercion to the extent possible. Semi-automated coercion of simulations, in turn, would greatly enhance user
experience with simulation reuse.

1. Introduction

Composing simulations to build new systems is just
one example of how reuse is becoming increasingly
important to the simulation community. Considering
the high cost of building software, users would prefer
to adapt and combine existing simulations to solve new
problems rather than to develop new simulations from
scratch. In many cases, requirements and
circumstances change so quickly that developing new
simulations for new situations is not realistic. Instead,
libraries of reusable simulation components are needed
to handle changing phenomena and new streams of
information.

1.1 Building Reusable Simulations

Unfortunately, reusable simulations have proven
difficult to develop in practice. Parameterizing a
simulation for every way that it could be reused is

often impractical, both because the number of
possibilities is infinite and because adding too many
parameters increases complexity and interferes with
performance. As a result, developers must make
assumptions about how simulations will be used,
deciding on an appropriate level of resolution, setting
default values for simulation constants, and selecting
algorithms to model specific phenomena.

When a simulation is reused, these decisions often
must be examined and changed to meet new
requirements. For example, a first-principles physics
model of a bicyclist may be replaced by an
approximation to satisfy a performance requirement
[4], or entities in a military simulation may need to be
simulated at a different level of resolution in order to
interoperate with another simulation [3]. Key
decisions and assumptions in these simulations have to
change in order for reuse to succeed.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Language Support for Identifying Flexible Points in Coercible
Simulations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SPEC
IFIC

 APPLIC
ATIO

N
S

D
ES

IG
N

 P
O

SS
IB

IL
TI

ES

Conceptual Design → Implementation → Deployment → Reuse

TIME

Figure 1: Refinement of a simulation design, with subsequent expansion for reuse

This view of the simulation development process is
depicted in Figure 1. As a simulation is designed and
implemented, decisions must be made that specify how
it can be used and what it can represent. Later, as a
simulation evolves and is reused, possible uses that
were eliminated during the development of the
simulation have to be reopened and explored to meet
new requirements.

1.2 Simulation Reuse with Language Support

Automating this kind of exploration should
significantly improve the speed and convenience of
simulation reuse. This paper discusses a programming
language construct designed to support this kind of
automation. Our construct makes it possible to capture
important assumptions and decisions as they are
written into a simulation, as well as alternative choices
that could have been made and their effects. These
choices can later be automatically extracted and
analyzed, making it easier to change them and thus
adapt the simulation to meet new requirements.

Consider the following scenario: A company is
building a simulation of the game of hockey for a video
game to be played on handheld devices. In the
process, someone must decide how to model the
movement of the hockey puck. The easiest way to
implement this is to ignore friction and simply assume
the hockey puck slides over the ice with no friction.
Of course, a more realistic model would include

friction against the ice and air resistance. Based on the
marginal benefits of increased simulation fidelity and
performance limitations of the device on which the
game will be played, the original developer opts for the
simple model. However, without input from users, the
developer does not know if this compromise will
interfere with the experience of playing the game. The
developer recognizes that this decision is one that is
liable to change in the future, and the developer makes
a note of this.

Later, the game is sent to the playtesters. The play-
testers complain that the hockey puck behaves
strangely: Once the hockey puck is set in motion, it
continues to bounce around the rink endlessly, even
when no players are touching it. Because this game
was developed by a company with a large team of
developers, the developer responsible for addressing
the playtesters' concerns (called the QA developer) is
not the same person who made the decision regarding
how to model the hockey puck. So, the QA developer
opens up the simulation code in a specialized tool that
provides a list of significant decisions that other
designers and developers thought might be
questionable. The QA developer sees that “hockey
puck model” is one of the decisions listed in this
display, and that two alternatives are listed: “Friction”
and “No Friction.” The "No Friction" alternative has
been implemented and is the one that is currently in
use. The QA developer looks into the problem further
and decides that there are actually two other ways that

the hockey puck could have been simulated, either
adding a single frictional term to the model or adding a
more complex combination of friction against the ice
and drag against the air. Because the playtesters’
specific complaint was that the hockey puck was
displaying perpetual motion, the QA developer decides
that just friction alone will be sufficient to solve the
problem. The QA developer adds a note to the model
indicating that either friction or both friction and drag
could be used, and s/he adds an implementation to the
“Friction” alternative and sets that to be the default.
The simulation is recompiled with the friction model
and returned to the playtesters for more examination.

How could the original developer describe alternatives
for the hockey puck model? Similarly, how could the
QA developer automatically extract points of interest
and add alternatives to each decision? The right
language construct could allow both developers to
write about these decision points, describe alternatives,
and indicate the significance of each alternative. This
language construct, called a flexible point table, is part
of a technology called COERCE, which is outlined in
section 2. Section 3 establishes the requirements for
this language construct and examines it in the context
of other language constructs for flexible software
development. In section 4, we describe the details of
the flexible point table, and section 5 explores how it
benefits semi-automated simulation adaptation and
reuse. Finally, we discuss ways to provide additional
support for building coercible simulations in section 6
and we summarize our contributions in section 7.

2. Enabling Reuse with COERCE

As just observed, simulation reuse often involves
exploring and changing the assumptions and decisions
that went into the original development of a simulation.
COERCE is a technology that supports reuse by
identifying these assumptions and decisions as flexible
points and manipulating these flexible points to direct
the behavior of the simulation. COERCE has two
aspects, coercion and coercibility. Coercion is the
study of how to efficiently adapt simulations to new
requirements, which is accomplished by selecting
flexible points and using a combination of optimization
and manual modification on these points to change the
behavior of the simulation. Coercibility is the study of
how to design and build simulations that can be easily
coerced, which is accomplished by identifying flexible
points and performing analyses to determine the
significance of each flexible point.

2.1 Flexible Points

A flexible point is an element of a simulation that can
be manipulated to direct the behavior of a simulation in

meaningful and effective ways. Flexible points
correspond to design decisions in a simulation,
decisions that eventually change in order to meet either
anticipated or unanticipated new requirements. It is
possible to identify flexible points without detailed
knowledge about what future requirements will be,
although anticipating the general nature of future
changes helps determine which flexible points will be
most useful.

At a glance, it might appear that every line of a
simulation meets this definition of a flexible point.
After all, every reachable non-comment line of a
program affects its behavior. However, the emphasis is
on directing the behavior of the simulation, as well as
being able to direct it in meaningful and effective ways.
Picking a random line of code and replacing it with
another random line of code is not a meaningful
change, nor will it often be effective in meeting new
requirements. Instead, flexible points are elements that
can be changed either by a user or an optimization
program to yield specific effects.

Examples of flexible points include constants that can
vary, stochastic elements that can be added or
removed, loop convergence criteria that can be tuned,
and subroutines that can be replaced. Due to the
variety of flexible points, we have begun to establish a
taxonomy for classifying them. We expect that these
categories can be refined further to provide a complete
set of axes on which any flexible point can be plotted.
Using these, COERCE-related tools (such as language
constructs) can be described in terms of how they
apply to different regions of the space of flexible
points.

1. Model versus model-implementation.
There is a distinction between flexible points at the
level of the model versus flexible points at the level of
the simulation code. The decision to allow agents in an
artificial society simulation fight with each other
provides a conceptual flexible point, while the decision
to represent the aggressiveness of an agent with a small
range of integers versus a large range of floating-point
numbers is an implementation-specific flexible point.
Both decisions could be changed to adapt the behavior
of the simulation, but switching between different
implementations of the same conceptual model
generally has different effects than making changes to
the conceptual model itself.

2. Narrow versus broad.
Many flexible points, such as the decision to use one
random number generator instead of another, can be
manipulated by changing a single piece of code (in this
case, the call to the random number generator). Other
flexible points affect a single object in multiple places

in the code, such as changing the type of a variable and
then changing the type of different operations
performed on it. Both of these kinds of flexible points
could be managed by automatic tools, which either
replace contiguous sections of code or select and
modify all references to an object. Broader flexible
points, which are not as easy to manage automatically,
may still be useful to identify. However, because
narrow flexible points are easier to manipulate with
automatic tools, focusing on narrow flexible points can
lead to faster and less labor-intensive coercion of
simulations.

3. Ordered versus unordered alternatives.
Another significant distinction in types of flexible
points is between those with ordered and unordered
alternatives. It is usually not possible to say that one
implementation of a function is "greater" than another
implementation in the same way that one value for a
numerical constant is greater than another. Changing
the values of numeric constants often has a more
predictable, ordered, effect on a simulation than
replacing one function with another.

When working with an ordered flexible point, the user
can apply numerical optimization techniques to find the
best value to use at that point. Certainly, some
simulations exhibit chaotic behavior and phase
transitions that make it difficult to predict the results of
changes to ordered flexible points. However, with
unordered flexible points, it is almost never possible to
use numerical methods to select a better alternative. In
other words, with unordered flexible points, it is still
possible to evaluate each alternative automatically, but
it is not possible to look at the results of evaluating a
series of alternatives and automatically determine
which alternative should be tested next. Also, with
ordered flexible points, it is possible to specify
alternatives in terms of a range (e.g. "Any value
between X and Y could be used here"), whereas
unordered flexible points' alternatives must be
specified more explicitly. This has a significant effect
on how the different types of flexible points can be
described with a language construct, as discussed in
section 3.1.

4. Independent versus entangled.
One characteristic that raises some of the most difficult
issues in simulation coercion is how flexible points
affect one another. Adding or removing code at one
flexible point may cause code in other flexible points
to never be used, or it may break assumptions made in
code corresponding to other flexible points. For
example, in the hockey puck example from section 1.2,
the value of the coefficient of friction is a flexible
point, but it is only a meaningful flexible point if the

physics model flexible point is given a value that uses
friction.

Some dependencies between flexible points can easily
be detected, such as when one flexible point changes
the value of a variable that is used in another.
However, other dependencies are more subtle, such as
effects that propagate through one or more
intermediate variables. Indirect effects make outcomes
harder to predict.

The ability to predict the effects of changing a flexible
point is very desirable, because users are primarily
interested in flexible points as a means to meet new
requirements: It may be intellectually interesting to
know what the effects of adding friction to a physical
model may be, but the more common question is, "Will
adding friction to this model cause the simulation to
meet its new requirements?" As a result, it is helpful to
distinguish flexible points whose effects on the
simulation's behavior can be described without
reference to the current values of other flexible points.

2.2 Simulation Coercion

Ordinarily, when a simulation needs to meet a new
requirement, its code must be manually edited to
exhibit new behavior. With coercion, a combination of
automatic transformation and manual modification is
used: An expert identifies relevant components as
flexible points, and optimization is used to find new
values for these flexible points that help the simulation
meet its new requirement [12] [14]. When necessary,
the simulation code may still be changed to introduce
new flexible points or to meet requirements that cannot
be met through any changes to existing flexible points.
However, even partially automating the process can
yield considerable savings in effort, and this approach
has been successfully applied in experiments on
environmental models of carbon dioxide uptake in
forests [7] and physical models of bicyclist movement
for animation [5].

2.3 Coercible Simulations

Coercible simulations are the response to the following
question: Given the success of simulation coercion,
how much easier would it be to coerce simulations if
they were designed with flexibility in mind? [14]
Coercing a simulation requires selecting flexible
points, but many flexible points in simulations could be
identified in advance. As discussed in Section 1,
developers are aware of making decisions that narrow
the range of what their simulations can represent, and
many of these decisions become useful flexible points

New simulation
 insertion

Extract for
definition Viewing,

Editing,
Constructing

Coercible
Simulation
Library

I. Making
coercible Replace

Extract for use

Viewing,
Editing,
Instantiating

Extract for
modification II. Coercing

Insert coerced
simulation Simulation

Instance
Library

Run on data
sets Viewing,

Logging III. Evaluating

Figure 2: The COERCE Life Cycle

in the future. Therefore, a significant portion of a
simulation coercion effort can be saved by capturing
information about flexible points as the simulation is
constructed. The resulting software with flexible
points already identified is a coercible simulation.

Figure 2 displays the coercible simulation life cycle. In
Phase I, a coercible simulation is created by identifying
significant flexible points. In Phase II, a coercible
simulation is taken from the library and applied to
solve a specific problem. Depending on the
application, different flexible points are selected and
manipulated to coerce the simulation to fit into its new
setting. Visualization tools help the user with selecting
flexible points and monitoring the progress of the
coercion [6]. Then, in Phase III, the coerced
simulation is deployed and evaluated, being coerced
again as needed to correct problems and to keep up
with changing requirements.

3. Language Support for COERCE

In effect, flexible points are the language of COERCE,
the means by which simulation developers
communicate information about how their simulations
can be reused and how users communicate to one

simulations. Simulation developers could describe the
flexible points in coercible simulations in the
documentation, but formal descriptions would make it
possible to automatically extract and change flexible
points. Because automation is an important goal of
COERCE, we are proposing programming language
constructs for embedding information about flexible
points in the code itself.

another the ways that they have adapted existing

.1 Language Construct Requirements

 order to design a language construct for describing

1. Which part(s) of the code must be changed to

2. ilable for a flexible

3. the original intent and implementation of

4. ible point, including
d

3

In
flexible points, we must identify critical types of
information that must be captured. This information
includes

manipulate a flexible point
Which alternatives are ava
point
What
a given flexible point is
Effects of changing a flex
a. Which simulation variables are affected an

in what ways, using sensitivity analyses to
determine the magnitude of each effect

b. What the behavioral effects (performance
and accuracy) of each alternative are

c. How the effects of different flexible points
interact with each other

Of these requirements, certain ones are easier to
capture with a language construct than others.

1. Flexible point location.
First, we need to know what code must be changed in
order to manipulate each flexible point. It is trivial to
indicate the location of a narrow flexible point that
affects only one region of code, because the language
construct can be inserted into the code at the same
point where the change must be made. However, using
a single language construct to capture multiple changes
to the same source program is more difficult.

2. How a flexible point can be changed.
The form of this information depends on the type of
flexible point (see section 2.1). For a numerical
flexible point, there may be a range of values that
could be used in place of the current one, or an
equation might be used to describe what values are
valid. For a flexible point that consists of replacing
one section of code with another, there may be a list of
alternate implementations that could be used.

Intuitively, it may not be possible to represent both
kinds of flexible point alternatives with a single
language construct. In this paper, we focus on
representing flexible points with unordered
alternatives. This approach was chosen because
previous experiments in simulation coercion have
emphasized numerical (ordered) flexible points [7] [5],
which can be automatically manipulated without any
specialized language constructs. By proposing this
construct, we expand the study of automation in
simulation coercion to include unordered flexible
points.

3. The original intent and value of a flexible point.
This information is ordinarily only available if the user
has access to the original implementation of a
simulation. However, it is very easy to record this
information, and it can prove useful to future coercion
efforts if the justification is known for why a flexible
point originally had a specific value.

4. Flexible point effects.
This is possibly the most important information to
know about a flexible point, although it is also the most
difficult to describe quantitatively. This information
can be used to work backwards from a new
requirement to make a change to a simulation: For
instance, given a requirement to make variable X
increase, the simulationist needs only to find an

appropriate flexible point with an alternative that has
the effect of increasing X. There are several aspects of
how flexible points can affect a simulation, either by
changing important simulation variables, changing
behavioral properties such as performance, or by
changing the ways that other flexible points affect the
simulation.

4a. List of affected variables.
It is important to identify not only the variables that are
directly affected by a flexible point, but to also identify
which variables depend on the affected variables. In
other words, the difficulty comes in identifying the
indirect effects of each alternative. In some
simulations, changing one flexible point may affect
every variable in the simulation, in which case
knowing what variables are affected is not nearly as
useful as knowing what the amounts of those effects
are.

4b. Behavioral characteristics of alternatives.
Many simulation changes are motivated by
performance and accuracy concerns, rather than
changes in what phenomenon the software is
simulating. As such, it is important to identify which
alternatives will lead to faster or more accurate
simulations. However, as with capturing the effects of
flexible points on simulation variables, this information
is often hard to determine in advance: Different
flexible points may interact with each other, and the
behavioral characteristics of a particular alternative
often depend on the simulation’s current input.

4c. Relationships between flexible points.
As noted above, selecting a specific option at flexible
point X may have a completely different effect on
simulation outputs or performance characteristics
depending on which alternative is selected at flexible
point Y. Ideally, we would like to compute these
relationships automatically, but the combinatorial
number of ways flexible point alternatives could
interact makes this computationally infeasible.
However, if the developer knows that certain flexible
points do not affect one another and indicates this in
the program, then the number of combinations that
would have to be evaluated drops considerably.

As described here, capturing all of this information
about a flexible point with a single language construct
is extremely difficult. However, in the following
section, we explore one language construct that meets a
number of these requirements to provide useful
information about a large number of the flexible points
that are actually encountered in practice.

Specifically, we are focusing on unordered flexible
points that are limited to a single point in the code.

This decision was motivated by our model of
simulation development in Section 1: We are
interested in capturing design decisions in a simulation
that are likely to change in the future. From the
programmer’s perspective, this often amounts to the
decision to write one block of code instead of another.
We would like to record this information in a way that
does not impose additional cost on running the
simulation with its default configuration. However, we
would like this information to be encoded in a way that
a support tool could apply one or more of the
suggested changes to a flexible point and run the
simulation automatically.

3.2 Related Language Constructs

Other programming language constructs have been
used to capture information about software design
decisions that are liable to change. First, many
languages contain conditional compilation features,
such as the #ifdef statement in C and C++ [10] [13].
This enables a developer to include code that may or
may not be compiled into the final program depending
on the value of a preprocessor variable. Conditional
compilation is commonly used for including machine-
specific code in a portable program or including a
debugging option with a more streamlined version of
an application. Because the decision to include a
section of code is made at compile time, it imposes no
cost on the run time performance of the system. In
effect, the flexible point construct that we propose here
is an extension of existing conditional compilation
mechanisms, with added features to describe the
significance of each alternative and to facilitate the
presentation of this decision point to the user in terms
of how it affects the behavior of the simulation.

Another language structure used to capture information
about potentially changing design decisions is software
modules. Using the information-hiding principle, each
module should be built around one design decision that
is liable to change [11]. In practice, this means that
modules are built around data structures, because even
small changes in how data are represented have the
potential to affect arbitrarily large sections of code.
However, for coercible simulations, we expect to
capture more than just information about data
structures, because flexible points can include smaller
details such as values for constants and conditional
expressions. As a result, the language construct
proposed in this paper is complementary to an object-
oriented information-hiding design: The
decomposition of software into modules protects
design decisions based on how they affect data
representation, while the inclusion of COERCE
flexible points highlights design decisions based on
how they impact simulation behavior and reuse.

4. Flexible Point Representation

We propose a language construct called a flexible point
table. Our flexible point language construct can be
viewed two ways: Visually, a flexible point can be
represented with a table of options, with information
about each alternative given in each row of the table.
In an implementation, a flexible point table can be
encoded as an XML document with elements
corresponding to fields of the table. This makes it
easier to integrate the flexible point description into a
larger document and to automatically extract this
information when needed.

4.1 Tabular Representation

As shown in Figure 3, a flexible point can be
represented as a table of different decisions that could
be made at a specific point in a program. Each row of
the table corresponds to another alternative, with
columns for

• An identifying label
• A summary, describing its implementation and how

this alternative affects simulation behavior relative
to other alternatives

• An optional implementation, which could be
substituted for any of the other alternatives'
implementations at this point

Information that is common to all of the alternatives is
included at the top of the table, including a label for
this flexible point and a list of simulation outputs that
are affected by all alternative implementations of this
flexible point (note that this list may change as
different alternatives are added). In our hockey
example, a simulation can use one of several different
physics models, from a simple kinematic
approximation to a detailed calculation that includes
considerations for friction and air resistance. Selecting
a different physics model affects simulation outputs
about the position and velocity of this particular object
in the simulation, which is noted at the top of the table.
Depending on the accuracy and performance
requirements for the simulation, a user might prefer the
simpler and faster model or the more detailed and
accurate one.

It is important to note that the Implementation field of
the table is optional. As a simulation is constructed, a
developer is often aware of selecting one design over
another but does not normally take the time to
implement unused alternatives. This way, a developer
is free to acknowledge other options without specifying
how they would be implemented, which still provides a

Flexible Point: Physics Model
Affected Outputs: xPos, yPos, xVel, yVel

Description Alternative Implementation

xPos += xVel / TIME_STEP; No friction Simple model, very fast but not very
accurate. Object moves v/t units per
time step.

yPos += yVel / TIME_STEP;

xPos += xVel / TIME_STEP; Friction More complicated model, slowing the
object by a frictional force at each
time step.

yPos += yVel / TIME_STEP;
friction = g * F_COEFFICIENT;
xFric = friction * cos(angle);
yFric = friction * sin(angle);
xVel += xFric / TIME_STEP;
yVel += yFric / TIME_STEP;

(not implemented) Most realistic model, but not yet
implemented. Needs information on
cross-sectional area of object and air
pressure, which is not available.

Friction plus
air resistance

Figure 3: A Flexible Point Table

benefit to future users without imposing an
unreasonable cost on the original simulation developer.
Later, as a coercible simulation is coerced and reused,
implementations may be filled in and new rows may be
added as each flexible point is expanded and new
directions are tried.

5

In
w

1. of

2. Through COERCE, the construct provides
op the
process of simulation reuse.

. The construct is easy to implement and use with

. Utility of the Flexible Point Table

 order to show that this language construct is useful,
e must demonstrate that

4.2 XML Representation
 The construct is applicable to a sig

flexible points.
nificant set

Including the flexible point table in the source code of
a simulation is not practical for several reasons, such as
the width of the table and the issues of how to parse
table elements separately from the rest of the
simulation code. However, the same flexible point can
be described using XML to define elements
corresponding to each field of the table [15]. A
Document Type Definition for an XML
flexiblePoint is given in Figure 4.

portunities for automation that will accelerate

3
existing languages and tools.

le point that is presented in
is paper is deliberately broad, designed to include

ny element of a simulation that could be targeted as

the

o phisticated language
t of several constructs that together

ange of flexible points.

<!ELEMENT flexiblePoint (name,
 effects*,
 alternative+)>
<!ELEMENT name (#PCDATA)*>
<!ELEMENT alternative (name,
 summary,
 implementation?)>
<!ELEMENT description (#PCDATA)*>
<!ELEMENT implementation (#PCDATA)*>
<!ELEMENT effect (#PCDATA)*>

Figure 4: XML DTD for a flexiblePoint

5.1 Applicability

he definition of a flexibT
th
a
part of a semi-automated coercion process. However, a
language construct for building coercible simulations
does not need to describe every possible kind of
flexible point in order to be beneficial. In particular,

 flexible point table can be applied to describe
several common kinds of simulation changes. This
makes it a useful tool in itself, as well as a stepping-

ne towards either a more sost
construct or a toolki
apture the whole rc

First, a flexible point table can be used to replace a
named constant with a variable, so that alternate values
can be tried. Using the criteria outlined in section 2.1,
we see that changing the value of a simulation constant
is a particularly useful kind of flexible point:

1. Constants include values in the high-level equations

that underlie the model, as well as tuning factors in
the model implementation.

2. Constants are narrow in their effect on the code,
because changing the value of a named constant
does not change how it is referenced elsewhere in
the program.

3. Constants are an example of a flexible point with

endent of
other changes in the program.

An
by nstant with a call to a

Th
unc
table can indicate that a function which samples a

rep
red ational cost of assigning a value to

In
rep ion with any other

nction. The physics-model example used in sections

iven this representation for flexible points in a

ulation, the user would
ke to know exactly what the effect of each alternative

 do nothing more
an browse through the flexible points and select the

ations with the flexible point browser
terface.

he flexible point table’s greatest advantage over other

m [15].
hen an alternative is selected, the contents of the

element can be
xtracted and reinserted into the original source file.

ordered alternatives, making them amenable to
optimization.

4. Changing the value of a constant is a relatively
simple change to a program, making it easier to
understand the effects of the change indep

other kind of flexible point that can be represented
this table is replacing a co

function that samples from a stochastic distribution.
is allows the user to represent a new element of
ertainty in the model. Likewise, the flexible point

stochastic distribution could be replaced by a
resentative constant, removing uncertainty but
ucing the comput

the variable.

general, the flexible point table can be used to
lace the body of any funct

fu
1.2 and 4.1 is an instance of replacing one subroutine
with another. Other examples could include replacing
the arrival- or service-time functions in a queuing
simulation, changing the constructors that initialize
agents’ attributes in an agent-based simulation, or
altering the model of interactions between units in a
strategic military simulation.

5.2 Opportunities for Automation

G
simulation, it is now possible to automate several
elements of the COERCE process. First, the tabular
representation of the flexible point can be presented to
the user via a “flexible point browser” interface. This
could be added as an extension to an integrated
development environment so that a user could change
or add new implementations using existing source code
editing tools.

Ideally, when coercing a sim
li

is. This way, the user would need to
th
set of alternatives that are already known to yield the
desired result. In practice, the complex relationships
between flexible points make it difficult to statically
document the effects of each alternative. However,
another component of the COERCE toolkit is a set of
visualization tools [6]. This means that it would be
possible to generate visualizations to plot the
relationships between sets of flexible points and to link
these visualiz
in

Most importantly, once multiple implementations have
been specified for a given flexible point, it is possible
to automatically test each implementation and evaluate
the simulation's output relative to a specified
requirement. In other words, each flexible point
becomes another possible decision variable to use in
the optimization step of simulation coercion [14]. This
increases the number of design decisions that can be
automatically explored and reduces the amount of
manual effort required to coerce a simulation.

5.3 Implementation Technologies

T
possible flexible point representations is its ease of
implementation. Numerous libraries for XML
processing already exist (libxml for C, SAX for Java,
numerous modules for Perl, etc.). So, only a simple
preprocessing step is required to extract all of the
flexiblePoint XML documents from a larger
source file and pass them along to an XML processor
for parsing and display. The XML processor then can
use an XSLT style sheet to generate an HTML
presentation of the flexible point in tabular for
W
corresponding implementation
e
Then, this modified source file can be compiled
without making any changes to the original language’s
compiler.

6. Future Directions for Coercible
Simulations

As noted in Sections 2.1 and 3.1, there is a
considerable variety of interesting flexible points in
simulations. In addition, the potential amount of
information to capture about each flexible point is
sizeable. The flexible point table proposed in this
paper meets our objective of describing narrow flexible
points with ordered and unordered alternatives, but
some flexible points unavoidably affect multiple
locations in the code. Therefore, we are exploring

additional ways to document flexible points in a

e Flexible Point Table

iles of a simulation.

ects

es of these
AspectJ
sult, we

 a
tement could be

eclared at the top of a program and apply to the entire

parable to the behavior of
rogram exceptions with resumption semantics [16].

owerful
without
f where

ditions arise in the program. To build a

s to be efficient
nd effective simulation reuse, whether in the context

owledge support from the Defense
odeling and Simulation Office, particularly from Sue

y. Last visited June 8, 2004.
] Avdicaušević, E., M. Mernic, M. Lenic, and V.

ental Aspect-Oriented
Language: AspectCOOL.” In Proceedings of the

lti-Level Training.” Proceedings of the
2002 Fall Simulation Interoperability Workshop,

coercible simulation.

.1 Extending th6

First, it would be possible to extend our construct to
link multiple code changes together, so that a single
flexible point could be represented by multiple tables.
Each table corresponding to a single flexible point
would have the same set of rows, and one table would
be placed at each point in the code where any of the
options requires a change to the code. This approach is
the most straightforward to implement, but it raises
certain challenges for developers, such as keeping
track of all of the different tables spread across the

ultiple source code fm

.2 Flexible Points as Cross-cutting Asp6

For a different approach, we have observed that a
single flexible point that requires code changes in more
than one module of a program is a cross-cutting
concern, which is exactly what aspect-oriented
programming (AOP) is designed to capture [8]. AOP
is a programming paradigm that extends object-
oriented programming by enabling developers to
separate concerns that apply to multiple objects in a
system (such as security, synchronization, or input-
output) from one another. Several different approaches
o AOP have been developed, and examplt

approaches can be found in languages such as
1], AspectCOOL [2], and Hyper/J [9]. As a re[

are exploring aspect-oriented language constructs to
determine if we could leverage AOP to succinctly
describe and manipulate flexible points that affect code
in multiple modules.

6.3 Using WHEN Statements to Describe Flexible
Points without Lexical Information

An alternative for capturing flexible points that
transcend multiple points in the simulation code is the
WHEN-DO construct. The structure of a WHEN-DO
statement would be similar to a conventional IF
(conditional) statement:

 WHEN (Boolean condition is true)
 DO
 (block of code to be executed)
 DONE

However, unlike an IF statement, which is bound to
single point in the code, a WHEN-DO sta
d
scope of the program. If the WHEN clause ever becomes
true, then normal execution is interrupted and the code
contained in the DO block is executed.

This behavior is com
p
As such, this construct provides an extremely p
way to specify interesting program conditions

e or dependence on the location oknowledg
hose cont

coercible simulation with WHEN-DO constructs, the
original developer could specify conditions that are
associated with important flexible points in WHEN
blocks. When the simulation is coerced, future users
could fill in the corresponding DO blocks to change the
behavior at flexible points of interest.

We recognize that without considerable attention to
implementation issues, the WHEN-DO could have
excessive run-time costs. However, the fact that we
are only interested in capturing simulation flexible
points means that we may be able to place certain
limitations on the permissible WHEN conditions,
reducing the cost of testing the conditions and limiting
the scope in which tests could ever become true.

7. Conclusion

The driving goal for COERCE continue
a
of simulation interoperability, multi-resolution
modeling, or data-driven applications. To that end, we
will continue to propose new language constructs to
facilitate coercible simulation development and
develop new tools for automating the manipulation of
these flexible points.

7. Acknowledgements

We wish to ackn
M
Numerich and Phil Zimmerman. Additional support
was provided by the National Science Foundation (ITR
0426971).

8. References

[1] AspectJ Web Site. http://www.aspectj.org.

Eclipse Technolog
[2

Zumer: “Experim

2002 ACM Symposium on Applied Computing,
Madrid, Spain.

[3] Bowers, A, D. Prochnow and J. Roberts: “JTLS-
JCATS: Design of a Multi-Resolution Federation
for Mu

Orlando, FL.

[4] Brogan, D. and J. Hodgins: “Simulation Level of

[5]

Interservice/Industry Training,

[6]

 Winter Simulation Conference,

[7]

erence, San Diego, CA, pp. 467-

[8]

r 2001.

[10] D. Ritchie: The C Programming

[11]

unications of the ACM, v.15 n.12, pp.1053-

[12]

ulation Interoperability

[13]
, MA,

[14]
ulations.” Proceedings

[15] Web Site. http://www.xml.org.

[16]

mming Languages and

Au

JOS
Com e and a member of MaSTRI at the

niversity of Virginia. Joseph earned his B.S. in
ollege of William and Mary,

nd has held the position of Scientist at the Naval

, and has
ublished on a variety of M&S topics including

died
mulation, control, and computer graphics for the

Detail for Multiagent Control.” Proceedings of the
International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), p.
199-206, 2002.
Carnahan, J., P. Reynolds, and D. Brogan: “An
Experiment in Simulation Coercion.” Proceedings
of the 2003
Simulation, and Education Conference (I/ITSEC),
Orlando, FL.
Carnahan, J., P. Reynolds, and D. Brogan:
“Visualizing Coercible Simulations.” Proceedings
of the 2004
Washington, DC.
Drewry, D., P. Reynolds, and W. Emanuel: “An
Optimization-Based Multi-Resolution Simulation
Methodology.” Proceedings of the 2002 Winter
Simulation Conf
475.
Elrad, T., M. Aksits, G. Kiczales, K. Lieberherr,
H. Ossher: “Discussing Aspects of AOP.”
Communications of the ACM, Vol. 44 No. 10, pp.
33-38, Octobe

[9] Hyper/J Web Site. http://www.research.
ibm.com/hyperspace/HyperJ/HyperJ.htm.
IBM Research. Last visited June 8, 2004.
 Kernighan, B. and
Language, pp. 88-91 Prentice Hall, Upper Saddle
River, NJ 1989.
 Parnas, D.: “On the Criteria To Be Used in
Decomposing Systems Into Modules.”
Comm
1058, Dec. 1972.
 Reynolds, P.: “Using Spacetime Constraints to
Guide Model Interoperability.” Proceedings of the
2002 Spring Sim
Workshop, Orlando, FL.
 Stroustrup, B.: The Design and Evolution of C++,
pp. 423-426., Addison-Wesley, Reading
1994.

 Waziruddin, S., D. Brogan and P. Reynolds: “The
Process for Coercing Sim
of the 2003 Fall Simulation Interoperability
Workshop, Orlando, FL.
 XML
O’Reilly Media. Last visited June 8, 2004.
 Yemeni, S. and D. Berry: “A Modular Verifiable
Exception-Handling Mechanism.” ACM
Transactions on Progra
Systems (TOPLAS), Vol. 7, Issue 2, pp. 214-243,
April 1985.

thor Biographies

EPH C. CARNAHAN is a Ph.D. Candidate in
puter Scienc

U
Computer Science at the C
a
Surface Warfare Center, Dahlgren Division.

PAUL F. REYNOLDS, Jr. is a Professor of
Computer Science and a member of MaSTRI at the
University of Virginia. He has conducted research in
modeling and simulation for over 25 years
p
parallel and distributed simulation, multiresolution
models and coercible simulations. He has advised
numerous industrial and government agencies on
matters relating to modeling and simulation. He is a
plank holder in the DoD High Level Architecture.

DAVID BROGAN earned his PhD from Georgia Tech
and is currently an Assistant Professor of Computer
Science and a member of MaSTRI at the University of
Virginia. For more than a decade, he has stu
si
purpose of creating immersive environments, training
simulators, and engineering tools. His research
interests extend to artificial intelligence, optimization,
and physical simulation.

