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Abstract 

 

 This research demonstrated the first closed-loop implementation of adaptive 

automation using operator functional state in an operationally relevant environment. In 

the Uninhabited Combat Air Vehicle (UCAV) environment, operators can become 

cognitively overloaded and their performance may decrease during mission critical 

events. Additionally, pervasive automation could degrade UCAV operator situation 

awareness and capability to react appropriately to unusual events. The critical question, 

therefore, was if automation could be used adaptively to allow the operator to deal 

effectively with high workload situations without excessive disengagement from the task. 

Researchers have attempted to use operator functional state to guide adaptive aiding but 

never accomplished it in an operationally relevant task environment. This research, 

however, demonstrates an unprecedented closed-loop system, one that adaptively aids 

UCAV operators based on their cognitive functional state.  

 The operator functional state was determined by integrating and assessing 

multiple psychophysiological measures using an operator state classification system. That 

system was then used to change the environment and allow the operator to improve 

performance. A series of experiments were conducted to 1) determine the best classifiers 

for estimating operator functional state, 2) determine if physiological measures can be 

used to develop multiple cognitive models based on information processing demands and 

task type, 3) determine the salient psychophysiological measures in operator functional 

state, and 4) demonstrate the benefits of intelligent adaptive aiding using operator 

functional state.  

 Single-task experiments, representing subtasks of the suppression of enemy air 

defenses (SEAD) mission, were conducted for six operators. One subtask required the 

operator to monitor vehicle health status and initiate corrections or repairs periodically. 

The second subtask required the operator to determine and select targets in synthetic 

 v 
 



aperture radar (SAR) images. These experiments were used for classifier comparisons, 

feature saliency analysis, and cognitive model development.  

 Next, three types of classification algorithms were compared, including artificial 

neural networks, discriminant analysis, and support vector machines. In general, 

nonlinear classifiers or linear classifiers implemented after a nonlinear transformation 

performed best. That is, the multilayer perceptron classifier with backpropagation 

training outperformed linear and quadratic discriminant analysis, logistic regression, and 

linear and radial basis function support vector machines. The multilayer perceptron 

outperformed the other classifiers in 58 to 80% of the comparisons. 

 Several models were developed using multilayer perceptron classifiers to 

determine the utility of applying the same psychophysiological measures as inputs and to 

identify multiple cognitive gauges. Gauges identifying levels of cognitive difficulty in 

spatial working memory, verbal working memory, executive function, spatial versus 

verbal working memory, global workload, vehicle health task, and SEAD tasks were 

developed. Classification accuracy for all cognitive gauges ranged from 59 to 91%.  

 To determine the effects of adaptive aiding in a complex operational environment, 

experiments were conducted with operators who performed the SEAD missions and 

vehicle health tasks in a UCAV simulator. Adaptive aiding was implemented using 

operator state estimation as a control input that adapts the system when the operator is 

cognitively loaded. Aiding the operator actually improved performance and increased 

mission effectiveness by 67% in that missed weapons release, which indicates mission 

failure, is reduced by this percentage. It was found that the operators must be aided at 

appropriate times; operators aided at random times had the same performance as unaided 

operators. 
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OPERATOR STATE ESTIMATION FOR ADAPTIVE AIDING IN UNINHABITED 
COMBAT AIR VEHICLES 

 
 

I.  Introduction 
 

1.1 Research Accomplishments  

This dissertation presents the first implementation of closed-loop real-time 

adaptive aiding using operator functional state in an operationally relevant environment: 

the Uninhabited Combat Air Vehicle (UCAV). Improvements in operator performance on 

mission critical measures, such as the number of targets hit, demonstrated the utility of 

adaptive aiding. Meeting the overall objective of this research required a robust operator 

state classification, one used in intelligent adaptive aiding to improve human-machine 

performance in military systems. Additionally, psychophysiological measures, both new 

nonstandard and traditional were developed, identified, extracted, and integrated in the 

classification system.  

The focus of a $70M DARPA Augmented Cognition Program and a major thrust 

of the Air Force Research Laboratory (AFRL) program on future human-machine 

collaborative systems, this research significantly extended previous AFIT research and 

made following significant contributions: 

• It established the first example of adaptive aiding using operator 

functional state in an operationally relevant environment. Adaptive aiding 

was implemented in a real-time closed loop system using operator 

functional state in a UCAV simulator. 

• It demonstrated significant improvement in mission effectiveness using 

adaptive aiding. The implementation of adaptive aiding reduced the 
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occurrence of missed weapons release waypoints from 25% in the trials 

without adaptive aiding to 8% in the trials with adaptive aiding, which was 

a 67% improvement in mission effectiveness.  

• It represented the first exploration of multiple cognitive model 

development defined by information processing demands and task type. 

Models were developed for spatial working memory, verbal working 

memory, executive function, global workload, spatial versus verbal 

working memory, vehicle health task identification, and operator vehicle 

interface task identification. 

• It demonstrated the identification, integration, and extraction of multiple 

psychophysiological measures into a cognitive operator functional state 

model. Features were derived from electroencephalography (EEG), 

electrocardiography (ECG), electro-oculagraphy (EOG), 

electromyography (EMG), and electrodermal signals and integrated into 

an operator functional state model. 

• It made a direct comparison of multiple types of pattern classification 

methods using ‘real-world’ psychophysiological data. Classification 

algorithms based on artificial neural networks, support vector machines, 

and discriminant analysis were compared directly to determine their utility 

in classifying operator functional state. 

This research resulted in several publications and presentations: 

Russell, Chris A. “Statistical and Mathematical Tools: Artificial Neural 
Networks” in Operator Functional State Assessment: Optimizing Systems 
Performance, NATO RTO Technical Report, Kiev, Ukraine, Brussels, 
Belgium, and San Diego, USA, December 2003. 
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Wilson, Glenn F. and Chris A. Russell. “Real-Time Assessment of Mental 
Workload Using Psychophysiological Measures and Artificial Neural 
Networks,” Human Factors, Winter 2003. 

 
Russell, Chris A. Team State Classification Methods, Augmented Cognition PI 

Meeting, Orlando, FL., 5–8 January 2004. 
 
Russell, Chris A. Operator State Estimation Workshop, Invited Speaker, 

Augmented Cognition PI Meeting, Orlando, FL, 5–8 January 2004. 
 
Russell, Chris A. Operator State Estimation, Invited Lecturer, Wright State 

University, EGR 861 PhD Seminar, February 20, 2004. 
 
Wilson, Glenn F. and Chris A. Russell. “Psychophysiologically Determined 

Adaptive Aiding in a Simulated UCAV Task,” Human Performance, 
Situation Awareness and Automation Technology Conference, Daytona 
Beach, FL., 22-25 March 2004. 

 
Wilson, Glenn F. and Chris A. Russell. “Psychophysiologically Determined 

Classification of Cognitive Activity”, Human Factors Conference, 
November 2004. 

 
Russell, Chris A. Lecturer, Human Interfaces Course, AFIT, 28 February 2005. 
 
Russell, Chris A., Glenn F. Wilson, Mateen M. Rizki, Timothy S. Webb, and 

Steven C. Gustafson. “Comparing Classifiers for Real Time Estimation of 
Cognitive Workload,” Human Computer Interface Conference, Las Vegas 
NV, 25-27 July 2005. 

      

1.2 Overview   

The complexity of advanced military systems is increasing and has generated 

interest in the interface between the human operator and complex systems. In some 

situations, system complexity can overwhelm the human operator. The interface is 

usually inflexible, or at the very least, difficult to manipulate in real time. The operator, 

unaware that trouble exists, may shed less demanding tasks to complete the immediate 

task. The operator may become “overloaded” resulting in decreased operator 

performance, decreased situational awareness, or mission failure. 
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1.2.1 The Nature of Adaptive Aiding   

The traditional method of increasing operator performance and reducing operator 

workload has been to make static improvements in the interface between the machine and 

the human operator. Dynamically modifying the interface based on operator need could 

be an alternate approach. By measuring operator functional state or operator ability to 

accomplish current tasks, the system interface could be adapted or modified to aid the 

operator in performing the assigned task. As such, adaptive automation could improve 

operator performance and reduce operator workload by adapting the interface “on 

demand” based on operator needs and functional state. 

The implementation of adaptive aiding using operator functional state required 

developing and integrating several areas of research. The components of operator 

functional state assessment were defined and modeled. Pattern classification algorithms 

were evaluated to determine the appropriate choice for use in the classification of 

operator functional state. Appropriate techniques for adaptive automation were 

determined for improved operator performance and reduced operator cognitive workload. 

Finally, these areas were integrated and evaluated in an operational environment. This 

research addressed all these issues to some degree, and a brief overview is provided in the 

remainder of this section. 

Operator state assessment consists of four major components: psycho-

physiological assessment (cognitive workload), operator performance assessment, 

situation awareness assessment, and momentary mission requirements (Gaillard and 

Kramer, 2000; Wilson, 2003).  Models for each component are necessary for accurate 

operator state assessment and, in turn, intelligent adaptive aiding.  Aiding may not be 
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required if any of these components peak or trough individually. Also, application of 

intelligent adaptive aiding is not required continuously. Rather, appropriate aiding is 

needed when the operator cannot perform the tasks required or when a decrease in task 

load is necessary for completing the mission. The primary motivation of this research, 

however, is to provide robust real-time human cognitive state estimation and apply such 

estimation for adaptive decision aiding in complex task environments. 

 Estimation of operator state has numerous applications in the fields of human 

factors engineering, training, testing, and evaluation.  For instance, Uninhabited Air 

Vehicle (UAV) and UCAV operators may experience performance degradation during 

mission segments with high cognitive load.  An understanding of operator workload 

could aid in the development of human-computer interfaces by providing metrics for 

operator state.  In addition, accurate and reliable assessment of operator state is key to 

successful implementation of adaptive automation, design evaluation, and operational test 

and evaluation. Although, real-time operator functional state estimation has been 

historically limited by the processing capabilities of computers, the advent of increased 

processing power now permits complex inference models to classify operator functional 

state in real time.   

1.2.2 Models for Adaptive Aiding   

 Classical statistical inference is based on three fundamental assumptions (Casella 

and Berger, 2002; Scharf, 1991). First, data can be modeled by a set of linear functions. 

Unfortunately, real-world problems are often high-dimensional, and the underlying 

mapping is usually not very smooth. Under these conditions linear paradigms need a 

large number of terms. Also, high dimensionality of the input space implies a large 
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number of independent variables, which leads to “the curse of dimensionality” 

(Gershenfeld, 1999). Second, the underlying joint probability density is assumed to be 

Gaussian (i.e., normal), which may not be the case for real data; the data may be far from 

normally distributed. Finally, due to the second assumption, the usual induction paradigm 

for parameter estimation is the maximum likelihood method; it reduces to the 

minimization of a sum of squared error cost function in most engineering problems but 

can be inappropriate.  

 An artificial neural network (ANN) can in principle address all these concerns. 

ANNs have advantages that make them potential classifiers of operator cognitive state.  

Because of the inherent nonlinearity and the complex interactions among the features of 

cognitive activity during dynamic multiple task situations, accurate workload 

classification is difficult.  Further, the relationships between physiological variables and 

performance are complex, and highly dynamic tasks are not well understood; therefore, 

the relevant features for cognitive workload classification in these highly dynamic tasks 

are not known.  In particular, the feature probability density functions are mostly 

unknown, and thus distribution free-classification must be performed. Consequently, 

adaptive neural networks are an attractive choice for classifying mental workload in 

complex real-world situations. 

 Techniques such as linear discriminant analysis (LDA) have been used for 

decades (Duda, Hart, and Stork, 2001; Bishop, 1995). However, as discussed previously, 

most real-world human cognitive and performance problems are not Gaussian in nature 

(Anderson, Devulapalli, and Stolz, 1995), and linear techniques may not provide 

adequate results. Other algorithms, such as support vector machines developed in the 
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1970’s (Vapnik, 1999), have emerged as alternatives to the usual multilayer perceptron 

ANNs and discriminant analysis. With ANNs, the model classes are not restricted to 

linear input-output maps and the parameters are data-driven so as to match the model 

capacity to the data complexity. Support vector machines are an attractive alternative to 

the ANN since the data is linearly separable after a kernel transformation.  

1.2.3 Adaptive Automation   

  Adaptive automation is the ability of the system to adapt to changes in operator 

cognitive demand and task performance and operator ability to respond to the situation 

(Freeman, Mikulka, Prinzel, and Scerbo, 1999; Parasuraman, Mouloua, and Molloy, 

1996). Adaptive automation must be reliable to improve operator performance. Effective 

adaptive automation provides information that aids in decision making; it delivers the 

proper feedback at the appropriate time. Adaptive aiding aims to improve performance of 

the overall human-machine system. It must improve the system over existing static 

systems and over systems that are fully automated (Hancock and Verwey, 1997; 

Parasuraman, 1997). Adaptive automation, however, is not necessary if a fully automated 

system provides the same performance improvement without degradation of mission 

success. 

  Integrating key areas of research is necessary for improving operator performance 

with adaptive automation based on operator functional state. Operator functional state 

must be accurately measured and classified using robust pattern classification algorithms. 

In turn, the operator functional state must drive the adaptive automation. The automation 

must be appropriate for the task at hand and delivered at the appropriate time to improve 

operator performance and reduce operator cognitive workload. 
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 1.3 Organization of Dissertation   

 The remainder of this dissertation is organized into sections. Section II provides a 

literature review of the contributions of the various disciplines required for developing an 

adaptive aiding system using operator functional state.  Section 2.2 is an overview of the 

operational system used in this research. The mission and contingency operations of the 

UCAV are reviewed, illustrating the necessity of adaptively aiding the UCAV operator to 

improve performance. Section 2.3 is a brief introduction to operator state estimation, and 

Section 2.4 outlines psychophysiological assessment - a necessary component of operator 

state estimation. The applications using electroencephalography and their impact on this 

research are also explored in Section 2.4. The introduction and background for adaptive 

automation are discussed in Section 2.5. Sections 2.6 through 2.12 review the pattern 

classification algorithms used in this research, including multilayer perceptron artificial 

neural networks, support vector machines, and discriminant analysis classifiers. 

Techniques for determining saliency or importance of input features as well as methods 

for comparing pattern classification algorithms are also included in these sections. 

 Section III describes the experiments, methods, and measures used in this 

research while Section IV contains results and analysis of these experiments. These 

results clearly show the significant improvements in operator performance using operator 

functional state in union with adaptive aiding. Additionally, the results of the classifier 

comparison are explored; they indicate that multilayer perceptrons outperform the other 

candidate algorithms. Section V discusses the results of this research and conclusions 

about the utility of operator functional state as an input to an adaptive aiding system. 
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Finally, Section VI concludes this dissertation with an overview of significant 

contributions and some ideas for future research in the area.  
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II. Literature Review 

 
2.1 Introduction 

This chapter provides a review of the relevant methods and literature and also 

includes a brief overview of uninhabited combat air vehicles (UCAVs), their mission, and 

some areas which may stress the operator. Operator state estimation methods are 

reviewed with special emphasis on operator state estimation using psychophysiological 

measures. Artificial neural networks, particularly multilayer perceptrons using 

backpropagation training, are reviewed and feature saliency methods are discussed. Two 

sections discuss classifiers used or proposed by other investigators; these classifiers are 

based on discriminant analysis and support vector machines. Finally, methods of 

comparing these classifiers are considered. 

2.2 Uninhabited Combat Air Vehicles 

 The Department of Defense has proposed a fleet of uninhabited air vehicles 

(UAVs) capable of strike missions in the most dangerous combat situations (Air Force 

Scientific Advisory Board, 1996). These prototypes can reduce cost in manufacturing and 

aircrew (Barry and Zimet, 2001) and plans exist to have the UCAV fielded by 2010. 

UAVs such as the Predator and Global Hawk allow commanders to obtain up-to-date 

information and images about the battlefield without risking pilots or ground forces. Even 

before the successful deployment of a Hellfire weapon from a Predator in early 2001, the 

idea for a specialized combat-capable UAV was explored (Air Force Scientific Advisory 

Board, 1996). This exploration culminated in the UCAV shown in Figure 1. 
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Figure 1. The Boeing X-45A is a UCAV being developed under a joint effort of the 
Defense Advanced Research Projects Agency (DARPA), the United States Air Force, 
and the Boeing Phantom Works.  
 
   

 The primary objective of the UCAV program is to develop a system to conduct 

suppression of enemy air defenses (SEAD) effectively and other strike missions (Borge, 

2003). The UCAV operator must make decisions about targets based on weapons 

payload, remaining fuel, and target priorities while maintaining minimal radar cross 

section for four UCAVs. Controlling these parameters can be a very demanding task. In a 

statement was made about the planned taxi route (Garner, 2002), one of the first USAF 

UCAV operators stated that it was easy to become task saturated. 

  The primary concept of operations for the UCAV is the SEAD mission - a 

coordinated attack on known defenses, such as surface-to-air missile sites, that are near or 

enroute to other critical targets. These other critical targets would be removed using 
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manned assets such as strike aircraft. The UCAV routes and target assignments are 

preplanned with waypoints designated for capturing synthetic aperture radar (SAR) 

images of the target area and optimum weapon release points. 

 Other targets may ‘pop up.’ They can be avoided by mission replanning enroute or 

be targeted and eliminated by one of the four UCAVs. Decisions of this type depend on 

many variables such as fuel status, weapon status, and time pressures associated with 

completing the assigned mission. 

  Another mission envisioned for the UCAV is reactive suppression. This mission 

is much like attacking the ‘pop up’ targets described previously. These targets can be 

mobile missile launchers or unknown permanent locations. The UCAVs loiter near or 

over suspected enemy target locations and wait for the targets to appear on their sensors. 

The UCAVs capture a SAR image of the target location, assign weapons to the targets, 

and then attack the targets directly. 

2.3 Operator State Estimation   

  Operator state has four major components (Gaillard and Kramer, 2000): psycho-

physiological assessment (cognitive workload), operator performance assessment, 

situation awareness assessment, and momentary mission requirements as shown in Figure 

2. The primary component focus in this research is ‘closing the loop’ of the human-

machine system using cognitive workload alone. However, models for each component 

are necessary for accurate operator state assessment and, in turn, for intelligent adaptive 

aiding.  For example, an operator may be unaware of an imminent threat (i.e., lacks 

situational awareness), but perform assigned tasks and have cognitive activity that  
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Figure 2. The Operator State Assessment Model with adaptive aiding consists of four 
major components for assessment of operator state. The components used in this research 
are highlighted and the system used is outlined by a dashed line. 
 

indicates a normal or unstressed state. In this case, the components of operator functional 

state do not agree, and the operator should be notified of the impending threat. 

2.4 Psychophysiological Assessment 

The predominant and most obvious use of electroencephalography (EEG) is for 

clinical purposes. Less prominent uses include sleep research, brain computer interfaces, 

and research in classifying cognitive workload. Each of these areas of research is 

discussed in the following paragraphs, with emphasis on contributions to the assessment 

of operator cognitive load. 
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2.4.1 Clinical Research 

Many studies have been conducted in the area of seizure detection using EEG. 

Most of these studies used wavelet and short-time Fourier transform techniques (Schiff, 

Aldroubi, Unser, and Sato, 1994) to identify the spikes evident during the onset of 

epileptic seizures, since classic spectral techniques do not contain the temporal 

information required to detect such spikes. Some of these studies used artificial neural 

network algorithms for online classification of epileptic spikes in background EEG 

(Galicki, Witte, Dörschel, Eiselt, and Griessbach, 1997; Szczuka and Wojdyłło, 2001; 

Liu, Zhang, and Yang, 2002). 

Other clinical studies demonstrated the ability to classify abnormal and normal 

continuous EEG. These studies have included recognizing Alzheimer’s disease (Pucci, 

Belardinelli, Cacchiò, Signorino, and Angeleri, 1999; Pritchard, Duke, Coburn, Moore, 

Tucker, Jann, and Hostetler, 1994; Petrosian, Prokhorov, Lajara-Nanson, and Schiffer, 

2001) or Parkinson’s disease (Robertson and Empson, 1999), and detecting 

pharmacological changes (Schaul, 1998; Gevins and Morgan, 1988), alcoholism 

(Winterer, Klöppel, Heinz, Ziller, Schmidt, and Herrmann, 1996), and psychosis (Szava, 

Valdes, Biscay, Galan, Bosch, Clark, and Jeminez, 1994; Kirsch, Bersthorn, Klein, 

Rindfleisch, and Olbrich, 2000; Hazarika, Chen, Tsoi, and Sergejew, 1997; John, 

Prichep, Fridman and Easton, 1988).  

Classification of emotional state has also been demonstrated; for example, 

differences were detected between anger and happiness using psychophysiological 

measures (Waldstein, Kop, Schmidt, Haufler, Krantz, and Fox, 2000). Other researchers 

have suggested that personality can be detected in terms of convergent and divergent 
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thinking using EEG measures (Razoumnikova, 2000). The techniques and algorithms in 

clinical studies have crossed over into the other perspectives of EEG research as 

described in the following sections. 

The methods used in clinical research referenced previously exhibit common 

techniques for classification and feature extraction. Similarities exist in the manner of 

signal processing of the EEG signal in clinical EEG research and other EEG research 

perspectives. The EEG is generally segmented into components based on frequency, and 

power measures are derived from average magnitudes within the frequency segments. 

These EEG segments have been labeled and frequency ranges for each EEG segment or 

band have been established. The bands are delta (~DC – 3 Hz), theta (4 – 7 Hz), alpha (8 

– 12 Hz), beta (13 – 30 Hz), and gamma (31 – 42 Hz). Classification approaches are 

similar as well. Multivariate methods dominate the literature, but techniques using 

artificial neural networks are gaining acceptance. 

2.4.2 Sleep Research 

Early EEG recordings for sleep research (from the 1930s) were visually evaluated 

by clinicians since no automated methods of evaluating sleep signals were available 

(Uchida, Feinberg, March, Atsumi, and Maloney, 1999). With the advent of enabling 

technologies such as pattern recognition algorithms and appropriate computer hardware, 

clinicians are investigating automated techniques for determining sleep stages. For 

example, multivariate methods and power measures of EEG have been used to detect 

differences in Rapid Eye Movement (REM) sleep and other sleep stages (Uchida, 

Feinberg, March, Atsumi, and Maloney, 1999; Guevara, Lorenzo, Arce, Ramos, and 

Cori-Cabrera, 1995). Other researchers have used artificial neural networks and EEG to 
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classify sleep stages (Grözinger, Rösche, and Klöppel, 1995; Roberts and Tarassenko, 

1992). Further studies examined awareness of auditory stimuli during drowsiness and 

sleep (Makeig and Jung, 1996) and used artificial neural networks to distinguish between 

alertness and drowsiness (Vuckovic, Radivojevic, Chen and Popovic, 2002). The 

techniques used are similar to those found in clinical research. Power measures are 

predominant, and the algorithms are consistent with those used in other applications. 

2.4.3 Brain Computer Interface Research 

 A Brain Computer Interface (BCI) uses psychophysiological signals to control 

computer systems. For example, controlling a cursor on the screen using EEG measures 

is considered a BCI. Extensive work in the BCI area has suggested that this approach 

could be used as an alternate form of communication for severely handicapped persons 

(Keirn and Aunon, 1990; Keirn and Aunon, 1990). Algorithm development and classifier 

comparison have been investigated in imagined hand movements for control using 

multiple EEG channels (Pregenzer and Pfurtsceller, 1999; Ramoser, Müller-Gerking, and 

Pfurtscheller, 2000). Also, independent component analysis (ICA) and EEG have been 

investigated for control (Makeig, Enghoff, Jung, and Sejnowski, 2000). 

 Most of the literature in BCI research has been dedicated to measuring and 

detecting simulated hands and feet movements. Most research focuses on the use of EEG 

(Pregenzer and Pfurtsceller, 1999; Ramoser, Müller-Gerking, and Pfurtscheller, 2000; 

Keirn and Aunon, 1990, Müller-Gerking, Pfurtscheller, and Flyvbjerg, 2000; Peters, 

Pfurtscheller, Flyvbjerg, 1998; Polak and Kostov, 1997; Pfurtscheller, Neuper, Schlögl 

and Lugger, 1998; Peters, Pfurtschller, Flyvbjerg, 2001; Costa and Cabral, 2000; Mason 

and Birch, 2000), but some research has investigated the use of muscle activity 
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(Vaughan, Miner, McFarland, and Wolpaw, 1998) and combinations of EEG, muscle 

activity, and eye movement, including eye blinks (Russell and McMillan, 1999). Various 

classification algorithms have been investigated including multilayer perceptrons (Peters, 

Pfurtscheller, and Flyvbjerg, 1998; Peters, Pfurtscheller, and Flyvbjerg, 1998), 

committees of artificial neural networks (Peters, Pfurtscheller, and Flyvbjerg, 2001), tree-

based neural networks (Ivanova, Pfurtscheller, and Andrew, 1995), time-delay neural 

networks (Haselsteiner and Pfurtscheller, 2000), Hidden Markov models (Obermaier, 

Guger, Neuper, and Pfurtscheller, 2001), min max modular neural networks (Lu, Shin, 

and Ichikawa, 2004), and linear discriminant analysis (Müller-Gerking, Pfurtscheller, and 

Flyvbjerg, 2000; Obermaier, Neuper, Guger, and Pfurtscheller, 2001; Millán, Mouriňo, 

Franzé, Cincotti, Varsta, Heikkonen, and Babiloni, 2002). In BCI experiments, closed-

loop real-time classification has been demonstrated using artificial neural networks and 

EEG measures (Guger, Schlögl, Neuper, Walterspacher, Strein, and Pfurtscheller, 2001; 

Guger, Ramoser, and Pfurtscheller, 2000). 

 BCI research represents the collection of requirements most similar to those 

necessary for cognitive load estimation and adaptive automation implementation. That is, 

reliable measures that are relatively simple to collect must be consistent across time and 

person. Also, real-time measurement and pattern classifiers must be developed to ensure 

accurate manipulation of the controlled systems. 

2.4.4 Cognitive Load Estimation Research 

Cognitive load is the mental activity associated with the performance of tasks. It 

has been assessed using central nervous system measures, such as continuous EEG as 

well as other psychophysiological measures, such as heart rate, eye blink, and eye 
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movement activity (Fournier, Wilson and Swain, 1999; Brookings, Wilson, and Swain, 

1996; Wilson, Fullenkamp, and Davis, 1994; Wilson and Fisher, 1991, Wilson and 

Eggemeier, 1991). Cognitive or mental workload is considered high when the demands of 

the task challenge or exceed the capacity of the operator. Operator capacity can be 

affected by environmental factors such as heat, cold, noise, G-forces, etc., as well as 

individual factors such as fatigue, illness, and sleep loss (RTO Human Factors and 

Medicine Panel Task Group, 2004). High cognitive load can decrease operator 

performance and reduce operator awareness of new events or changes in events. As 

examples of physiological assessment of cognitive load research, the robustness of 

measures over time, the effects of learning, time pressure effects, and the effects of 

cognitive impairment are reviewed. 

McEvoy, Smith, and Gevins (2000) examined robustness of measures over an 

hour and multiple day separation in data collection to evaluate the test-retest reliability of 

EEG signals as predictive measures. Task difficulty using EEG measures had high test-

retest reliability in laboratory settings. The tasks examined were a working memory task 

and a psychomotor vigilance task. The data contaminated with muscle and eye movement 

artifacts was removed from analysis - usually impossible for a real-time classifier system 

since an answer is required regardless of contamination. In real-time systems, ‘hand 

picking’ data to determine cognitive state is not possible. Data collection for test and 

retest were separated by both one hour and approximately seven days. Pearson 

correlation coefficients showed significant reliabilities within session and between 

sessions with correlations above 0.9. Results showed that midline measures are better 
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than edge electrodes, since measurements from those electrode sites are less 

contaminated by muscle activity. 

Learning effects cause differences in measurements of cognitive EEG activity. 

These effects are evident in new complex tasks, even if participants have previously 

experienced similar tasks (i.e., tracking targets with a mouse is not a new activity, but 

tracking targets with a mouse in a simulated ballistic missile attack is a novel task). The 

cognitive activity changes as the subject learns strategies for completing the imposed 

task. Changes in frontal theta (4-7 Hz) power and posterior alpha (8-12 Hz) power were 

found as participants developed strategies and learned the task (Smith, McEvoy, and 

Gevins, 1999). Other investigations found significant differences in eye blink rate and 

behavioral measures but could not find differences in EEG signals (Fournier, Wilson, and 

Swain, 1999).  

In addition to learning effects, the effects of time pressure in a complex task 

results in differences in EEG activity (Slobounov, Fukada, Simon, Rearick, and Ray, 

2000). As time pressure to complete a task increases, significant decreases in alpha (peak 

frequency of 10.5 Hz) power and increases in theta (4–7 Hz) and gamma (30-50 Hz) were 

found. This time pressure also caused performance breakdown, as indicated by an 

increased number of failed trials.  

Cognitive impairment can be caused by many factors such as fatigue, sleep loss, 

hydration, circadian rhythms, and illness, and can cause changes in the ‘normal’ 

functioning of brain activity (Beaumont, Burov, Carter, Cheuvront, Sawka, Wilson, Van 

Orden, Hockey, Balkin and Gundel, 2004). For example, impairment due to intoxication 

or hangovers has been investigated using EEG (Gevins and Smith, 1999).  Environmental 
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factors such as noise, vibration, sustained acceleration, and thermal stress also may affect 

cognitive activity (Fraser, Svensson, Grandt, Hockey, Balkin, Beaumont, Kamimori, 

Kautz, Belenky, Wesensten and Schlegel, 2004). 

2.4.5 Pattern Classification Techniques for Cognitive Load Estimation 

Many pattern classification techniques have been used to estimate operator 

functional state. Most prevalent are discriminant analysis (DA) techniques and artificial 

neural networks (ANN) as described in the following paragraphs. Support vector 

machines (SVM) have been used in brain computer interface research (Müller, Anderson, 

and Birch, 2003; Lal, Schröder, Hinterberger, Weston, Bogdan, Birbaumer, and 

Schölkopf, 2004; Garrett, Peterson, Anderson, and Thaut, 2003) but are not currently 

used in operator functional state estimation. Statistical process control with EEG 

measures has been used to classify pilot cognitive workload with limited success (Kudo, 

2001).  

Multivariate analysis techniques have been used in classification of cognitive 

workload research. Early research, enabled by the advent of faster and more readily 

available computers, used multivariate techniques for real-time processing of EEG data 

(Gevins and Morgan, 1986). Multivariate techniques have been used to classify levels of 

difficulty in a memory retention task (Wilson, Swain, and Ullsperger, 1999) and for 

determining levels of vigilance (Schober, Scellenberg, and Dimpfel, 1995). Stepwise 

discriminant analysis (SWDA) and ANNs were compared to classify pilot workload 

(Laine, Bauer, Lanning, Russell, and Wilson, 2002). Multivariate techniques were used to 

examine changes in EEG in simulated air traffic control (Brookings, Wilson, and Swain, 

1996; Wilson, Swain, and Brookings, 1995), in simulated aviation tasks (Sterman, Mann, 
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Kaiser and Suyenobu, 1994), in actual flight tasks (Sterman and Mann, 1995; Wilson and 

Fisher, 1991; Wilson, Fullenkamp, and Davis, 1994), and in complex laboratory tasks 

(Smith, Gevins, Brown, Karnik, and Du, 2001; Wilson and Eggemeier, 1991).  

Findings from these studies suggest that EEG measures can be used to determine 

multiple levels of cognitive load in complex tasks with results similar to those found in 

laboratory single-task experiments. Furthermore, the log power spectra EEG measures 

were sensitive to cognitive differences and reliable enough for consistent use, and 

allowing adequate time resolution for adaptive automation purposes. This finding is 

significant; laboratory tasks tend to be well structured and support consistent 

measurement of desired qualities. Complex tasks, however, tend to be less structured, and 

require operators to divide their mental capacity among several tasks. 

Nontraditional measures have been evaluated for use in classifiers. Comparisons 

using coherence, cross phase, and cross power of multiple EEG channels and linear 

regression methods have been studied (Pleydell-Pearce, Whitecross, and Dickson, 2003; 

Valdés, Bosch, Graves, Hernandez, Riera, Pascual, and Biscay, 1992). Coherence and 

cross power of EEG have also been used with ANNs (Makeig, Jung, and Sejnowski, 

1996). Interesting results of these studies included the use of coherence between EEG 

channels, which produced a dimensionless measure that maintained relational properties 

between channels. The use of independent component analysis for determining the source 

localization of individual EEG channels has been investigated with some success 

(Makeig, Bell, Jung, and Sejnowski, 1996). This method attempted to determine 

electrical signal sources within the brain from measures collected on the scalp.  
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 ANNs have been used in a variety of EEG studies, often to automate continuous 

EEG analysis, thereby eliminating or reducing the need for visual inspection of the EEG 

recordings. This body of work can be categorized according to its purpose (Robert, 

Gaudy, Limoge, 2002): artifact processing, data compression, source localization, sleep 

research, clinical studies, cognitive workload studies, and brain computer interfaces. 

Initial experiments using artificial neural networks to classify cognitive workload 

in complex tasks found that psychophysiological changes occurred before the onset of 

performance degradation in visiomotor memory tasks in fighter pilots (Gevins and 

Morgan, 1988). Differences were detected between alert and mentally fatigued pilots 

with 81 percent classification accuracy during long duration studies. Multilayer 

perceptrons with backpropagation training using eye blink and movement measurements 

were used to infer pilot workload by identifying flight segments (Siegel and Keller, 

1992). 

  ANNs have also been used in the classification of cognitive workload in several 

studies including both simple single-task laboratory and complex multiple-task studies.  

The general use of artificial neural networks to classify differences in EEG has also been 

studied (Klöppel, 1994; Anderson, Devulapalli, and Stolz, 1995; Hazarika, Tsoi, and 

Sergejew, 1997; Gevins, Smith, Leong, McEvoy, Whitfield, Du and Rush (1998). Low, 

moderate, and high working memory load states were manipulated and each load pair in 

the classification process was compared. One group investigated single task workload 

classification using alpha band activity and autoregressive methods (Anderson, 

Devulapalli, and Stolz, 1995; Anderson, Stolz, and Shamsunder, 1998). Differences were 

detected between mental arithmetic and resting baseline using autoregressive models and 
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ANNs (Anderson, Stolz, and Shamsunder, 1995). Initial investigations using temporal 

and spatial information content were conducted using Elman recurrent ANNs (Greene, 

Bauer, Kabrisky, Rogers, and Wilson, 1997) with limited success. Cognitive workload 

estimation was investigated using EEG band activity and neural networks in simulated 

landing task (Russell, Monett and Wilson, 1996; Greene, Bauer, Kabrisky, Rogers, 

Russell and Wilson, 2000), in simulated air traffic control (Russell and Wilson, 1998; 

Wilson and Russell, 2003), in an air-to-ground Scud hunt mission (Russell, Reid and 

Vidulich, 2000), in complex laboratory tasks (Wilson and Russell, 2003), and for 

operators in a boiler plant simulation (Kurooka, Yamashita, and Nishitani, 2000). 

Classification accuracy varied for each of the studies but ranged from 70 to 98 percent. 

The results of these studies indicate that ANNs have been successfully used to accurately 

classify cognitive workload in a variety of environments.  

2.5 Adaptive Automation 

  Most complex systems require the operator to adapt to changes in the 

environment or situation regardless of cognitive ability to accomplish required tasks in 

the changing environment. Adaptive automation is the ability of the system to adapt to 

changes in operator cognitive demand and task performance and operator ability to 

respond to the situation (Freeman, Mikulka, Prinzel, and Scerbo, 1999; Parasuraman, 

Mouloua, and Molloy, 1996). Adaptive automation must be reliable and must be 

provided when necessary to improve operator performance (Wilson, 2003; Parasuraman, 

2003; Parasuraman, 1997). The key to automation is providing information that aids in 

decision making with the proper feedback at the appropriate time. Little research has 

been conducted to evaluate human capabilities in automation (Parasuraman, Sheridan, 
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and Wickens, 2000), but there is even less research that uses psychophysiological signals 

to control adaptive automation systems, especially in complex real world environments. 

  Adaptive aiding aims to improve performance of the overall human-machine 

system. It must improve the system over existing static systems as well as over fully 

automated systems (Hancock and Verwey, 1997; Parasuraman, 1997). If a fully 

automated system provides the same performance improvement without degradation of 

mission success, adaptive automation is unnecessary. Similarly, if upgrading existing 

systems, the adaptive automation must increase operator performance over the legacy 

static system (no automation). The aiding should provide an environment that fosters 

optimal human performance and prevent the operator from becoming overloaded, 

underloaded, or complacent. In both cases, operator performance may not be optimal. In 

some cases it may be disastrous. Consider the fighter pilot who is not aware of an enemy 

aircraft, the air traffic controller who manipulates so many aircraft that another aircraft 

entering assigned airspace is missed, or the truck driver on a long stretch of empty road 

who is not aware of a vehicle turning onto the road. 

  Another issue concerning adaptive automation is that the human operators 

themselves are adaptable and can respond to systems in unpredictable ways (Hancock 

and Verwey, 1997). Integration of system adaptive automation and natural human 

adaptation must be accomplished to eliminate the possibility of human-system instability. 

This integration may be accomplished by adding psychophysiological measures to the 

existing system (Prinzel, Freeman, Scerbo, Mikulka, and Pope, 1999; Byrne and 

Parasuraman, 1996). The operator cognitive state assessed by psychophysiological 

measures can be used as a control input to the system, adapting it only when the operator 
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is in a state of overload (Wilson, Lambert, and Russell, 2000). When the psycho-

physiological measures indicate an increase in operator mental workload, the task or a 

group of subtasks can be automated, reducing mental demand on the operator. 

  Little research has been conducted using psychophysiological measures 

controlling closed-loop systems. However, single-task tracking experiments using EEG 

measures (Prinzel, Freeman, Scerbo, Mikulka, and Pope, 1999; Freeman, Mikulka, 

Prinzel, and Scerbo, 1999) have been conducted, and results showed significant 

improvements in operator performance with aiding. Aiding using human-computer 

communication tasks has also been investigated (Bubb-Lewis and Scerbo, 2002), and 

results indicated that aiding improved human-computer communication. 

  Wilson, Lambert, and Russell (2000) have conducted complex multiple-task 

laboratory experiments. The experiments consisted of multiple levels of workload using 

tracking, resource management, communications, and system monitoring tasks. The 

operators were aided when an increase in cognitive workload was detected using 

psychophysiological measures. The aiding consisted of full automation of 

communications and systems monitoring tasks. Adaptive aiding reduced tracking task 

error by 44% and resource management task error by 33%. 
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Figure 3. A fully connected multilayer perceptron ANN with inputs x1, x2,…, xn, output z, 
and layer weights W = {W(1),W(2)}. 
 

2.6 Multilayer Perceptron Artificial Neural Networks 

 Feedforward multilayer perceptron artificial neural networks (ANN) with 

backpropagation training are among the most common ANNs for pattern classification 

applications (Widrow and Lehr, 1990; Lippmann, 1987).  A mutilayer perceptron ANN 

classifier maps input vectors to output vectors in two phases. First, the network learns the 

input-output relationships from a set of training vectors that consist of input data 

(features) and the respective targets (assigned classes). Then, after training, the network 

acts as a classifier for new vectors. 

 Figure 3 shows the forward pass in addition to the fully connected feedfoward 

architecture of the multilayer perceptron, and Figure 4 shows a typical processing unit 

featuring summation and activation in a fully connected architecture. Each neuron in a  
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Figure 4. Individual neuron showing the weighted sum of inputs , 

followed by the logistic sigmoid activation function f(a) for neuron i, where b is a bias 
input. 
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layer is connected to every neuron in the preceding layer. The backpropagation algorithm 

initializes the network with a random set of weights for each fully connected layer, and 

then the network trains using given input-output pairs of training vectors.  The algorithm 

uses a two-stage process for each pair: forward pass and backward pass. The forward 

pass propagates the input vector through the network until it reaches the output layer.  

First, the input vector propagates to the hidden units, i.e. neurons not directly connected 

to any input or output. Each hidden unit then calculates the weighted sum of the input 

vector and its associated interconnection weights. Next, each hidden unit uses the 

weighted sum to calculate its activation that propagates to the output layer. Finally, each 

node in the output layer calculates its weighted sum and activation.  The output of the 
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network is compared to the true output of the input-output pairs and their difference 

defines the output error.   

  In the second stage of backpropagation training, the output error propagates 

backward to update the network weights. First, the error passes from the output layer to 

the hidden layer, updating output weights. Each hidden unit then calculates an error based 

on the error from each output unit.  Next, the error from the hidden units is used to update 

the input weights.  A single training epoch passes when the network processes all the 

input-output pairs in the training set.  Training stops when the sum-squared error is 

acceptable or when a predefined number of epochs are executed.  The algorithm attempts 

to minimize the error or energy function 

∑
=

−=
m

k
kk tzE

1

2vv ,                (1) 

where m is the size of the training set, kzv is the neural network output vector, and is the 

true output (class) for each training input-output pair k. 

kt
v

 The steps for implementing a feedfoward neural network with backpropagation 

training are as follows (Lippmann, 1987; Haykin, 1999; Widrow and Stearns, 1985; 

Widrow and Lehr, 1990):   

(1) Initialize the weights wl and biases bl, where l is the current iteration. 

(2) Present the input  and the target vector kpv kt
v

. 

(3) Calculate the network output kzv . 

(4) Calculate the error E (see Equation 1). 

(5) Determine the new weights wl+1 where l+1 is the next iteration. 

(6) Determine the new learning rate. 
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(7) Repeat steps 2 through 5 until desired error is achieved or when a predefined 

number of epochs are executed. 

 Each step is discussed individually in the remainder of this section. 

  Weights and biases are usually initialized with random numbers, often limited to 

the range –0.5 to 0.5, which is the nearly linear region of a sigmoidal activation function.  

This choice prevents the weights from starting in the extreme regions of the sigmoidal 

activation function, possibly increaseing training time. The maxima of the sigmoidal 

activation functions define the edges of the multidimensional error surface. 

 The data are usually normalized prior to presentation to the neural network, which 

prevents features with large magnitudes from dominating the learning and allows 

contributions from smaller and possibly more important features. The input data are 

normalized to zero mean and unit standard deviation using 

σ
µ−

=
)()( ipipn ,                                                      (2) 

where pn is the normalized input vector, p is the input vector, µ and σ are the mean and 

standard deviation for each feature, and i represents the ith training example.  

 Each input training vector is associated with a label defining the class to which 

that vector is assigned. The target vectors are assigned based on the labels defined a 

priori.   Typically a vector is generated for each class as opposed to combining the target 

classes into a single output. Doing so would require applying a threshold to the output to 

determine the appropriate class. Thus, a target vector exists for each class that is assigned 

a high value, such as 0.9, if the data belongs to that class and a low value, such as 0.1, if 

it does not. For a two-class problem, the target vectors may be assigned [0.9 0.1]T for 

class 1 and [0.1 0.9]T for class 2. 
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 The output of the network is determined by propagating the normalized input 

through each layer.  As shown in Figure 4, the output of the individual node or neuron j is 

zi = f(ai)                                                             (3) 

with 

(∑
=

+=
q

j
jjiji bpwa

1

),                                                   (4) 

where wij is the weight, pj is the input, bj is the bias and  f(a) is the activation function.   

 Activation functions can be linear or nonlinear.  A common activation function is 

a sigmoidal nonlinearity (Haykin, 1999), usually a logistic sigmoid function with an 

output range in the form 1)(0 ≤≤ af

( )f a
e a=

+ −

1
1

.                                                        (5) 

This activation function is chosen since it can produce the nonlinear hyperplanes required 

to classify data from most real-world applications. 

 The error is the difference between the output of the network and the expected 

target value as described by Equation (1). The weights are adjusted to minimize the error 

Ek through the backward path. Although the activation function is nonlinear, it is 

differentiable and 
ij

k

w
E
∂
∂

 can be computed. The training algorithm is an extension of the 

Widrow-Hoff learning rule (Widrow and Lehr, 1990) - a gradient descent algorithm.  

This rule adjusts the weights using steepest descent, i.e.,  

ij
ijij w

Enwnw
∂
∂

−−= η)1()( ,                                           (6) 

where η  is a learning rule constant that controls the speed of convergence at iteration n. 
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 Adaptive learning and momentum are used to decrease the required training time. 

Typically, gradient descent methods use a fixed learning rate to control the rate of 

convergence (Widrow and Stearns, 1990). However, it is difficult to determine an 

optimum rate. If the fixed learning rate is too large, the gradient descent algorithm 

becomes unstable due to oscillations. If the learning rate is too small, incremental steps 

along the error surface are small and the algorithm is slow to converge to the desired 

error.  Adapting the learning rate to optimize the learning progress maintains both 

stability and an acceptable rate of convergence.  As the slope of the local error surface 

increases, the learning rate decreases to control stability. 

 Momentum helps to prevent the training algorithm from becoming trapped in a 

local minima (Haykin, 1999). Essentially the algorithm “jumps over” or ignores small 

perturbations in the error surface. Modification of the delta-learning rule to include 

momentum results in 

ij
ijij w

Enwnw
∂
∂

−−= ηα )1()( ,                                          (7) 

where α  is the momentum. 

 The process repeats until a desired error is achieved. The desired error is problem 

specific and often determined by a cross-validation method that parses the data into three 

separate data sets: a training set, a validation set, and a test set.  During training, the 

neural network adjusts the weights and biases based on the training set.  After each 

adjustment the weights are tested on the validation set, and once the network reaches a 

minimum error, the test set is used to evaluate the final weights.  The training and the 

validation error initially follow the same path until the neural network begins to learn the 
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idiosyncrasies of the training data set. The error for the training data continues to 

decrease after this point, but the validation error increases due to over-learning.  The ideal 

stopping point for training is at the minimum validation error. Once trained, the weights 

are fixed and the network acts as a pattern classifier that examines input vectors it has 

never seen and predicts their class. 

 The number of nodes in the input layer, the hidden layer, and the output layer 

defines the architecture of the neural network.  The number of input units and the number 

of output units are problem dependent. Typically, the number of neurons in the input 

layer is the number of features that form the full input space (Wilson and Russell, 2003). 

The output layer typically consists of the number of classes (Duda, Hart, and Stork, 2001; 

Wilson and Russell, 2003). The number of hidden units required is usually not known.  

Hidden units are the key to network learning and force the network to develop its own 

internal representation of the input space.  The network that produces the best 

classification with the fewest units is selected as the best topology. A network with too 

few hidden units cannot learn the mapping to the required accuracy since the small 

hidden layer limits input space interaction. Too many hidden units allow the network to 

‘memorize’ the training data so that it does not generalize well to new data. Typically, the 

size of the hidden layer is determined by training multiple multilayer perceptrons with 

different hidden layer sizes and then choosing the architecture with the best classification 

accuracy (Haykin, 1999).   

2.7 Weight-based Partial Derivative Saliency Method  

 An important consideration in classification is selecting the input features.  Some 

input features may be redundant because they are highly correlated or duplicated with 
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only scalar differences. Others may not provide useful information for discrimination. 

Decreasing the number of input features by removing redundant or meaningless inputs 

reduces the computation required for training. The “curse of dimensionality” abounds in 

pattern classification problems (Gershenfeld, 1999), including cognitive load state 

estimation.  Psychophysiological signals collected in cognitive workload studies, such as 

EEG, electo-oculogram (EOG), and electrocardiogram (ECG), produce a gamut of 

derived features. As the number of input features increases, so do the number of training 

examples necessary to estimate the free parameters of the model.  

 Many approaches have been used to reduce the number of inputs by removing 

non-salient features. Among the most interesting are a weight-based partial derivative 

method (Ruck, Rogers, and Kabrisky, 1990) and a weight-based signal-to-noise ratio 

(SNR) method (Bauer, Alsing and Greene, 2000). Other approaches manipulate the 

inputs to reduce their number. Principal component analysis (PCA; Jolliffe, 1986; Flury, 

1988; Dunteman, 1989) transforms correlated variables into uncorrelated variables. PCA 

determines the linear combinations for which the data have the maximum range of 

variability, thus reducing the number of variables. Each method presents different 

advantages and disadvantages as techniques for feature reduction. The PCA method will 

reduce the feature space for the classification algorithm but does not reduce the input 

space or the number of signals that must be collected. The partial derivative technique 

does not reduce the feature space by as much as the other two methods; however, it does 

provide a true input-output relationship for each feature. The signal-to-noise ratio method 

reduces both the input and feature spaces but requires a noise signal to inject into the 

classifier (Russell and Gustafson, 2001). 
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Another approach, the Ruck saliency measure (Ruck, Rogers and Kabrisky, 1990) 

determines which features provide information for classification by calculating the partial 

derivative for each network layer and ranking the features based on the saliency measure.  

This partial derivative method is possible because although the sigmoidal activation 

function or Equation (5) is nonlinear, it is differentiable, i.e.,  

))(1)(()( afafaf −=′ .                                                (8) 

  Feature saliency is based on the concept that a fully trained network contains all 

information for describing the relative importance of each input feature. Calculations are 

performed starting with the output layer whose partial derivative is 
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3 kk af ′=γ                                                         (9) 
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3 kk aa −= ,                                              (10) 

where k3 represents each output neuron and the superscript (3) denotes the third layer 

which is in this case the output layer.  From Equation (4), a represents the weighted sum 

of the inputs to the activation function plus the bias or threshold.  For the second or 

hidden layer 
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where k2 represents the second layer neurons.  For the input  
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Finally, the partial derivative for the entire neural network is 
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Combining Equations (9) through (15) yields 
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 Once the partial derivatives are calculated, the saliency is determined for each 

feature as 

∑∑=Γ
p j q

j
q x

z
∂
∂

,                                                    (17) 

where Γq is the saliency for the qth feature, j ranges over the outputs, and p ranges over 

the exemplar vectors in the training set. 

 The input features are rank ordered with features from largest to smallest saliency 

magnitude Γq. Features with the larger magnitudes contribute more toward separating the 

classes. Feature reduction can be accomplished by an iterative approach whereby a 

network is trained using all features, and the partial derivative saliency is calculated for 

each feature.  The features are then rank ordered based on the computed saliency.  The 

least salient feature is removed from the input matrix, the network is retrained using the 

reduced feature set and this procedure is repeated until all features have been removed 

from the training data set. The minimum data set is the smallest set that has acceptable 

classification accuracy.  Figure 5 shows a typical response for this iterative process. The 

results are for 108 psychophysiological features from an air traffic control workload 

study which manipulated cognitive workload by increasing the number of aircraft 

monitored by the controller (Russell and Wilson, 1998). 
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Figure 5.  The classification accuracy remains nearly constant as non-salient features are 
removed, but accuracy decreases rapidly as salient features are removed.  
 
 
 
2.8 Linear Discriminant Analysis 

  The classical technique of linear discriminant analysis was developed by Fisher in 

1936 for two class problems and extended to multi-class problems by Rao in 1948 

(Ripley, 1996). Fisher discriminant analysis performs dimensionality reduction while 

preserving as much of the class information as possible by maximizing the ratio of 

between-class variance to within-class variance (Duda, Hart, and Stork, 2001). Fisher 

discriminant analysis attempts to overcome the curse of dimensionality by reducing the 

number of dimensions before applying the classification algorithm (Bishop, 1995). The 
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dimensionality reduction to one dimension is accomplished by projecting the samples 

onto a line such that the values on the line are 

xwy T= ,                                 (18) 

where x is the sample vector and w is a vector of weight parameters. The values described 

by Equation (18) maximize the class separation and can be determined by adjusting the 

weight parameters w. An example of two projections of the same data, one optimal and 

one suboptimal, using different weight parameters is shown in Figures 6 and 7.  

 
  In Fisher discriminant analysis, the weight parameters are determined as follows. 

Let µr be the mean of data from class r,  

∑
∈

=
rCxr

r x
N
1µ ,                                                       (19) 

where Nr is the number of samples in class r and Cr is the class to which the sample xr is 

assigned. The mean of the projections for each class is  

∑
∈

=
rYyr

r y
N
1~µ .                                                       (20) 

Initially it may seem desirable to develop a distance measure that separates the means by 

substituting Equations (19) and (20) into Equation (18): 

( )2121
~~ µµµµ −=− Tw .                               (21) 

However, simply using the difference in the means may not produce the desired results. 
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Figure 6. Projection of the samples onto a line using suboptimal weight parameters does 
not separate the two classes and is not optimal. 
 

x1

x2

 
Figure 7. Projection of the samples onto a line that has optimal weight parameters yields 
good separation between the two classes. 
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Figure 8. Two classes with means µ1 and µ2 have maximum separation a in the means for 
projection on the x1 axis. However, greater class separation is achieved for projection on 
the x2 axis, even though the separation b in the means is smaller. 
 

 

For example, in Figure 8 the projection that yields the greatest separation in the means 

does not provide the best class separability (Bishop, 1995) because Equation (21) does 

not account for the variance of the classes. 

  Fisher’s proposed solution maximizes a function that accounts for the separation 

in the means yet is normalized by a measure of the within-class scatter. To account for 

class variance, the class scatter for the projected samples is found (Bishop, 1995; Duda, 

Hart, and Stork, 2001), i.e.,  
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where the total within-class scatter of the projected samples is 2
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Maximizing this criterion determines a projection such that samples from the same class 

are projected close together and the projected class means are far apart. 

  The criterion function is in terms of the projected samples. As an explicit function 

of w, the criterion function must be in terms of the sample data x. The scatter or expected 

unnormalized covariance for each class is  
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where the within-class scatter is  

2
2

2
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2 SSSW += .                                                      (25) 

  The scatter of the projection y can now be expressed as a function of the scatter 

matrix in terms of the feature space x. Substitution using Equations (18), (19), (21), (22) 

and (24) yields 
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and 
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=+ .                                                 (30) 

  Similarly, the difference in the projected class means can be expressed in terms of 

the means in the original feature space and used to determine the between-class scatter: 

( ) ( )221
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where 

( )( )TBS 2121
2 µµµµ −−= .                           (34) 

The Fisher criterion from Equation (23) can now be expressed in terms of the feature 

space using Equations (30) and (33): 
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  Equation (35), the generalized Rayleigh quotient (Duda, Hart, and Stork, 2001), 

can be maximized by taking the derivative with respect to w and setting it equal to zero: 
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Using the chain rule yields 
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and dividing by  yields wSw W
T
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Equation (41) is now a generalized eigenvalue problem in the form 

wwSS BW λ=−1 ,                                                    (42) 

where λ is the eigenvalue. Because only the direction of the data projection is important, 

solving for the eigenvalues is unnecessary (Bishop, 1995; Duda, Hart, and Stork, 2001) 

and the weights can be determined directly. Since  is always in the direction 

of

wSB

21 µµ − , the solution is 

( )21
1 µµ −= −

WSw .                                                   (43) 

  Fisher discriminant analysis must also determine a threshold point along the one-

dimensional subspace that separates the projected points (Ripley, 1996; Duda, Hart and 

Stork, 2001), i.e., the point along the projection where one class ends and the other 

begins. This threshold may be determined by modeling the projected data using normal 

probability densities and choosing the threshold w0 as the point where the posterior 

probabilities of each class are equal (Bishop, 1995). The assignment of new data to each 

of the classes is then 

wTx + w0 > 0  Class 1                                         (44) 
                                                                 < 0   Class 2. 
 

  Generalizing Fisher discriminant analysis to multiple classes (linear discriminant 

analysis; LDA) is straightforward if the dimensionality of the input space is greater than 

or equal to the number of classes C (Bishop, 1995). LDA then produces C-1 projections 
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[y1, y2, …, yC-1] via C-1 projection vectors wi, which can be arranged by columns into a 

projection matrix 

]|||[ 121 −= CwwwW K      (45) 

where 

xWyxwy TT
ii =⇒= .                (46) 

  A generalization of the within-class scatter (Equation (25)) is 
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A generalization of the between-class scatter is obtained using a total mean vector (Duda, 

Hart, and Stork, 2001) 
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where n is the number of samples, and a total scatter matrix 

( )( )T
x
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or 
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  The criterion function from Equation (35) can now be written in terms of the 

multiclass SW and SB and the projection matrix W as 
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A scalar objective function is obtained using the indicated determinant. The projection 

matrix that maximizes the criterion function is found from a generalized eigenvalue 

problem by finding the roots of the characteristic polynomial 

0=− WiB SS λ            (53) 

so that 

( ) 0=− iWiB wSS λ               (54) 

for each eigenvector. The largest eigenvalues indicate the directions of the greatest 

variance or spread of the data, i.e., the projections with the maximum class separability 

are the eigenvectors of  with the largest eigenvalues (Bishop, 1995). Figure 9 

shows relationships between the variables used in linear discriminant analysis. 

BW SS 1−
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Figure 9. Linear discriminant analysis maximizes the ratio of between-class scatter SB 
and within-class scatter SW to define optimal linear hyperplanes for classification. 
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  LDA can be derived as a maximum likelihood method for the case of normal class 

densities with equal covariance matrices (Fukanaga, 1990). LDA is optimal when the 

observations in each class have a multivariate normal density and each class has equal 

covariance matrices and equal prior probabilities. Two examples are explored here; both 

cases are three-class problems with class means [ ] [ ] [ TTT 53,47,23 321 === µµµ ] . 

In the first case the covariance matrix for each class is .  Figure 

10 shows the probability density functions (assuming multivariate normal densities) for   

each class. Figure 11 is the probability density function plot rotated to project the 

densities to the x
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Figure 10. Probability density functions for three classes of data in two input variables, x1 
and x2, with equal covariance. 
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Figure 11. Projecting the probability densities onto the x1-x2 plane reveals optimal 
separating hyperplanes between the classes. Here each of the hyperplanes are lines for 
which the probability density functions of each class are equal. 
 
 

each input is equal, the inputs are independent and the density contours are circular. The 

lighter shaded lines between the classes indicate where the probability of belonging to 

adjacent classes is equal.  

  Three sets of data are generated using the mean and variance parameters for the 

probability density functions described in Figure 10. Five hundred data points for each  

class are generated and presented to the linear discriminant analysis algorithm, and the 

results are shown in Figure 12. The separating hyperplanes are linear and map to the 

optimal lines displayed in Figure 11. For equal covariance matrices across classes, the 

linear discriminant analysis provides good separation between classes. 

 

 46 
 



-2 0 2 4 6 8 10 12
-2

0

2

4

6

8

10

12

x1

x2

Class 1
Class 2
Class 3
Decision Boundary

 

Figure 12. Randomly generated data in three classes are separated by linear decision 
boundaries. The class means are [ ] [ ] [ ]TTT 53,47,23 321 === µµµ  and have equal 

across class covariance matrices, . ⎥
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  The second example uses unequal covariance matrices across the three classes. 

The means for the classes are as in the first example, but the covariance matrices across 
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Figure 13. Probability density functions for three classes of data are displayed for two 
input variables, x1 and x2, with different covariance matrices. 
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Figure 14. Projecting the probability densities onto the x1-x2 plane reveals the optimal 
separating boundaries between the classes. Each boundary indicates where the probability 
density functions of each class are equal. 
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probability density functions produced for this example, and Figure 14 shows the 

probability density function plot rotated to project the densities to the x1-x2 plane. The 

lighter shaded lines between the classes indicate where the probability of belonging to 

adjacent classes is equal.  

  Three sets of data are generated using the mean and variance parameters that 

define the probability density functions described in Figure 13. Five hundred data points 

for each class are generated and presented to the linear discriminant analysis algorithm,  
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Figure 15. Randomly generated data consisting of three classes are separated by linear 
decision boundaries. The class means are [ ] [ ] [ TTT 53,47,23 321 === µµµ ]  and the 

classes have unequal across class covariance matrices, , , 
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and the results are shown in Figure 15. The separating boundaries are linear and do not 

map to the optimal boundaries displayed in Figure 14. In the case of unequal covariance 

matrices across classes, linear discriminant analysis does not provide good separation 

between classes. The two examples illustrate that the important requirement for the LDA 

algorithm is equality of the covariance matrices.  

  The LDA algorithm does not perform well if the covariance matrices are not 

equal across classes and are only optimal for those cases (Fukanaga, 1990). Since the 

separating surfaces are not linear, unequal covariances will always require higher order 

input features to produce optimal separating hyperplanes. Quadratic discriminant 

analysis, as discussed in the next section, produces the required hyperplanes. 

2.9 Quadratic Discriminant Analysis 

  Quadratic discriminant analysis (QDA) extends linear discriminant analysis 

(Fukunaga, 1990; Ripley, 1996) by including squared and cross products as well as linear 

functions of the predictor variables or features. The decision boundary in LDA is a linear 

function of the inputs; however, QDA produces a more flexible decision surface that is 

quadratic in the original measurement space but linear in the feature space (Hand, 1997). 

One approach that extends LDA to QDA transforms the inputs and does not assume an 

equal pooled covariance matrix, i.e., not k∑=∑ . A different approach used here 

transforms the inputs into a higher dimensional feature space. For two inputs, the 

transformation is  2
2

2
1212121 ,,,,, xxxxxxxx →

  The three sets of data generated for linear discriminant analysis using the mean 

and variance parameters that define the probability density functions of Figure 10 are 

presented to the QDA algorithm with results in Figure 16. The separating boundaries are 
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nearly linear and map to the optimal lines displayed in Figure 11. Increasing the number 

of samples for each class improves the model produced by quadratic discriminant 

analysis and ultimately leads to optimal lines. 

  The three sets of data generated for linear discriminant analysis using the mean 

and variance parameters that define the probability density functions described in Figure 

13 are presented to the QDA algorithm with results in Figure 17. The separating  
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Figure 16. Randomly generated data consisting of three classes are separated by a linear 
decision boundary produced by quadratic discriminant analysis. The class means are 

[ ] [ ] [ ]TTT 53,47,23 321 === µµµ  and have equal across class covariance matrices, 
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boundaries are curvilinear or characterized by curved lines and map to the optimal curves 

displayed in Figure 14. As shown, QDA is superior to LDA for unequal covariance 

matrices across classes. 
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Figure 17. Randomly generated data consisting of three classes are separated by 
curvilinear decision boundaries produced by quadratic discriminant analysis. The class 
means are [ ] [ ] [ ]TTT 53,47,23 321 === µµµ  and have unequal across class 

covariance matrices, , , . ⎥
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2.10 Logistic Discriminant Analysis 

  Logistic discriminant analysis or logistic regression analysis, a well known 

technique for classification, uses linear classification after a transformation (Ripley, 

1996; Bishop, 1995). Unlike linear discriminant analysis, logistic discrimination does not 

assume class-wise Gaussian distributions. The only distributional assumption with this 

method is that the log likelihood ratio of the class distributions is linear in the 

observations. Further, this assumption is satisfied for a large range of exponential density 

families, e.g., Gaussian, beta, gamma, etc.  

  Logistic discriminant analysis uses estimates of the conditional posterior 

probabilities Pr(C = k | X = x) directly. C is the class and X is the input sample data since 

the class-wise distributions f(C = k | X = x) for class k given observation x and the prior 

probabilities (Pr{C = k}) are known and model the class posteriors in terms of K-1 log 

ratios (Ripley, 1996; Neter, Kutner, Nachtsheim, and Wasserman, 1996; Casella and 

Berger, 2002):  

{ }
{ } 1,...,1,

|Pr
|Prlog 0 −=+=

==
== Kkx

xXKC
xXkC T

kk ββ ,                        (55) 

where β is a weighting parameter on x and K is the number of classes. Thus the 

boundaries between classes are defined by 

{ }
{ } x

xXKC
xXC T

110|Pr
|1Prlog ββ +=

==
==                                 (56) 

{ }
{ } x

xXKC
xXC T

220|Pr
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An advantage of using such a model is that the posterior probabilities can be found as a 

simple closed form solution 

{ } 1,...,1,
)exp(1

)exp(
|Pr 1

0
0

0 −=
++

+
===

∑
−

=

Kk
x

x
xXkC K

l

T
ll

T
kk

ββ

ββ
.      (59) 

 A well-known way to determine the free parameters β and fit the model is to use the 

maximum likelihood method (Fukinaga, 1990); it determines the probability density 

function as the one that makes the observed values X most likely. This criterion is 

obtained by determining the value of the parameter vector θ that maximizes the 

likelihood function L(θ) (Scharf, 1985, Shanmugan and Breipohl, 1988). The logistic 

discriminant model reasonably assumes that the observations X are independent and that 

the objective function for this model is the likelihood function 

1,...,1,);|Pr(log)(
)(

−==== ∏
=∈

KkxXkCL
kCx

ββ .               (60) 

The estimate of β that maximizes the likelihood function L(β) is the maximum likelihood 

estimator (Shanmugan and Breipohl, 1988). It is often easier to work with the log 

likelihood function 

1,...,1,);|Pr()(log)(
)(

−===== ∑
=∈

KkxXkCLl
kCx

βββ .         (61) 

The same maximum likelihood estimate is obtained by maximizing either the likelihood 

or log likelihood functions since they are monotonically related. 

  Parameter estimation, however, is not as simple as the cases of linear discriminant 

analysis and quadratic discriminant analysis. Estimation must be accomplished using an 

iterative learning process such as a gradient-based method (Ripley, 1996; Duda, Hart, and 

Stork, 2001).  
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  As an example of logistic discriminant analysis, consider two classes and binary 

classification (i.e., the output y is either 0 or 1). The boundary between the two classes is  

x
CxXP
CxXP Tββ +=

⎭
⎬
⎫

⎩
⎨
⎧

==
==

0)2|(
)1|(log .         (62) 

Solving for the posterior probabilities yields 
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The likelihood and the log likelihood functions are 
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Maximizing the log likelihood function requires an iterative learning process such as the 

Newton-Raphson algorithm, which uses partial derivatives with respect to the parameter 

vector β. The first and second derivatives are 

( ) ( )( )∑
∀

+′−=
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and 
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The estimates of β are updated using 
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until the difference between βnew and βold is sufficiently small. 

 An alternate view considers logistic discriminant analysis as a nonlinear 

transformation of a linear combination of inputs (i.e., a transformation on the output of a 

linear summation) or 

( )xgy Tββ += 0      (72) 

where is the logistic transformation (Bishop, 1995). This view of logistic 

discriminant analysis is also the foundation of a single perceptron described in the 

artificial neural network and support vector machine sections, and is shown in Figure 18. 
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Figure 18. Logistic discriminant analysis may be considered a nonlinear transformation 
on a weighted summation of input variables similar to the perceptron. 
 

2.11 Support Vector Machines 

  Kernel based learning algorithms, such as support vector machines, are basically 

comprised of two parts: a general learning machine and a problem specific kernel 

function (Vapnik, 1995; Burges, 1998). The support vector machine first transforms or 

maps the input data into a linear space using a kernel function and then applies a general 

learning machine to find the separating hyperplane. Support vector machines allow for 

model complexity as well as simplicity in model analysis. Multilayer perceptrons, radial 

basis function networks, and polynomial classifiers may be considered special cases of 

support vector machines (Müller, Mika, Rätsch, Tsuda, and Schölkopf, 2001). All have 

feedforward architectures as shown in Figure 19.  
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Figure 19. The support vector machine has the same feedforward architecture as most 
artificial neural networks. The important distinction is the learning algorithm. 
 

  Support vector machines map a nonlinear input space to a linear feature space 

using a kernel function and apply a linear algorithm to determine the hyperplane 

separating the classes. No computations are necessary in the high-dimensional input 

space. Kernel functions allow all computations to be performed in the linear feature space 

and permit quadratic optimization to produce an optimal separating hyperplane. Support 

vector machines provide good generalization by maximizing machine performance and 

minimizing model complexity simultaneously. These steps produce a support vector 

machine for classification: 

1) Transform the input vectors into the feature space using an inner product 

kernel. 

2) Determine the support vectors. 
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3) Compute the optimal separating hyperplane using quadratic optimization. 

  The perceptron, developed in the late 1950’s, is one of the earliest artificial neural 

networks (Haykin, 1999, Duda, Hart and Stork, 2001, Bishop, 1995) and illustrates the 

support vector machine concept. This single-layer network has hard-limiting threshold 

activation functions that produce a 0 or 1 output providing linear separation of the input 

space as shown in Figure 20.  

  The hyperplane for the perceptron is defined by bxwxf += ,)(  which is an 

inner product of the weight and input vectors. The inner product between vectors is   

∑=
i

ii yxyx vv, .                                                  (73) 

The activation function is the hard limiter or φ(x) = sign(f(x)). Points lying in the 

decision area in the direction of the weight vector are assigned a 1; those on the other side  

b

W

margins

 

Figure 20. The perceptron defines a linear hyperplane which is the inner product of the 
weight and input space defined by 0, =+ bxW . 
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of the decision area are assigned a 0. The margins are the error bounds for particular data 

sets and are defined by the support vectors. 

  One advantage of using support vector machines over artificial neural networks is 

in the design of the architecture. Both have the same feedforward architecture, but 

training data determines the number of neurons in the hidden layer of the artificial neural 

network. This determination is significant. Selecting too few neurons results in poor 

classification (since the separating hyperplane is not well defined). Selecting too many 

neurons results in the risk of the classifier over learning the training data causing poor 

generalization. 

  2.11.1 Optimal Hyperplane Algorithm   

  Defining decision boundaries is a major difference between linear support vector 

machines and other linear methods for pattern classification. Linear discriminant analysis, 

for example, models the discriminant functions for each class as linear. Support vector 

machines model the boundaries between classes as linear. 

  Linear discriminant analysis and other classification methods define a hyperplane 

that separates the data (Figure 21). The hyperplane defined by these methods may not 

optimize the separation between the data and hence not optimize classification, 

particularly when the data are sparse. In linear discriminant analysis, the decision 

boundary is linear and defined by 

xWy T= .                                                          (74) 

Assuming the sample data set is sufficient (nonsingular), the pseudoinverse required to 
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Figure 21. Many hyperplanes can be defined that completely separate the data, but only 
one optimally separates the data and evenly separates the data. 
 

 

 

determine the parameters exists. A solution is provided if the data are Gaussian and 

parameter estimation is reduced to the minimization of the sum of errors squared. 

Another solution is to find an optimal hyperplane that maximizes the margin between the 

classes. The optimal hyperplane algorithm guarantees maximum separation with a 

maximum margin between the classes (Figure 22). The support vectors define the 

margins of the hyperplane, and the optimal hyperplane equally bisects the margins. 
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Figure 22. The optimal hyperplane maximizes the distance between all classes. The 
support vectors are those points on the margins. 
 
 

  2.11.2 High Dimensional Mapping and Inner Product Kernels 

  Kernel methods exploit the information contained in the inner products between 

data inputs as defined by Equation (73). Duality is the first condition required of inner 

product kernels for use in support vector machines. As previously shown in Section 2.11, 

the hyperplane for the perceptron is bxwxf += ,)( , which is an inner product of the 

weight and input spaces. The solution is a linear combination of the training data,  

∑=
i

ii xyw ,                                                       (75) 

where y is the output vector and x is the input vector. The solution for the hyperplane has 

dual representation since it can be rewritten as  

∑=+=
i

ii xxybxwxf ,,)( .                                        (76) 
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Note that in dual representation the data only appears inside the inner products. 

  Kernel methods map the nonlinear input space into a linear feature space. Data 

transformed nonlinearly into a high-dimension feature space is more likely to be linearly 

separable than in a lower dimension space (Cover, 1965).  Support vector machines use 

kernel methods to map the lower dimension nonlinear input space into a linear high-

dimension feature space (Figure 23). In accordance with Cover’s theorem (Cover, 1965), 

the linear decision functions of the support vector machines should perform well in the 

high-dimension feature space. 

 

 

Φ(x)

 

Figure 23. The kernel function maps a nonlinear input space (left) to a linear feature 
space (right). 
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  A basic requirement for determining if a given kernel function is equivalent to an 

inner product in some space is based on Mercer’s condition (Haykin, 1999; Vapnik, 

1995). This condition must exist for a kernel function to map data to some other Hilbert 

space - a normed linear space with an inner product defined that is a generalization of 

Euclidean space (Scharf, 1985; Simmons, 1963). Mercer’s condition states that there 

exists a mapping Φ and inner product expansion 

∑ ΦΦ=
i

ii yxyxK )()(),(                                              (77) 

if, and only if, for any h(x) such that 

∫ dxxh 2)(  is finite,                                                   (78) 

∫ ≥ 0)()(),( dxdyyhxhyxK .                                            (79) 

Mercer’s condition is sufficient to determine if a kernel is actually an inner product 

kernel in some space and can be used in a support vector machine. It says nothing on the 

techniques used to construct an inner product kernel. 

  Fortunately, several inner product kernels have been developed (Haykin, 1999; 

Vapnik, 1995). Two common ones for classification meet the criterion of Mercer’s 

theorem: the polynomial learning machine, ( )p
i

T xx 1+  and the radial-basis function 

network, ⎟
⎠
⎞

⎜
⎝
⎛ −− 2

22
1exp ixx
σ

, where σ  and p are specified parameters (Haykin, 1999). 

Additionally, the σ and p are a priori, problem-specific parameters that can be 

determined by experimentation using the data itself by varying the parameters and testing 

the classification results. For both support vector machine types, the number of support 

vectors extracted from the training data determines the dimensionality of the feature 
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space. The number of support vectors and their values determine the number of radial 

basis functions and their centers, respectively, in the case of the radial basis function 

support vector machines (Haykin, 1999).  

2.12 Comparing Classifiers 

  Error rate is commonly used to compare classifiers. The error rate is  

∑
∑

∀

∀=

X

X
fiedmissclassi

X

X
err ,                                                (80) 

where Xmisclassified is an example mistakenly assigned to a wrong class and X is an 

example. 

  Confusion matrices are also used to evaluate classifier performance (Alsing, 

2000). The confusion matrix and the truth table determine the within-class accuracy 

based on hits and misses. The truth table is simpler to compute and basically counts test 

samples from each class and the assigned class of those samples. Table 1 illustrates a 

sample truth table and shows that the classifier correctly assigned 450 class 1 test samples 

as class 1 but misclassified 50 class 1 test samples as class 2. Of the 500 samples from 

class 2, 450 were correctly assigned as class 2 and 50 samples were misclassified, with 

25 samples assigned to class 1 and 25 samples assigned to class 3. All 500 samples from 

class 3 were correctly assigned to class 3. 

  The confusion matrix gives the class-conditional error rate (Ripley, 1996), i.e., it 

contains the posterior probabilities of a test sample assignment to each of the classes, 

eij = Pr{decision j | class i}.                                           (81) 
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Table 1. A truth table compares test classification counts with the truth. Rows indicate 
truth and the columns indicate the test result. 
 

Class 1 Class 2 Class 3
Class 1 450 50 0
Class 2 25 450 25
Class 3 0 0 500  

 
 
Table 2. A confusion matrix shows the probability that new data from class 1 is classified 
as class j = 1, 2, 3.  
 

Class 1 Class 2 Class 3
Class 1 0.90 0.10 0.00
Class 2 0.05 0.90 0.05
Class 3 0.00 0.00 1.00  

 

 

 The confusion matrix in Table 2 shows the class-conditional probabilities for the 

example in Table 1. Class 1 was correctly predicted in 90% of the instances of the test 

data; class 1 was misclassified 10% of the time as class 2 but never misclassified as class 

3. Likewise, class 2 was correctly predicted in 90% of the instances of the test data; 

however, 5% of the test samples were misclassified as class 1 and another 5% were 

misclassified as class 3. All test samples from class 3 were correctly classified and the 

classification prediction for class 3 was 100%. 

  Besides directly comparing classification accuracy, classifiers can be compared 

using error rates. Each sample to be tested is a discrete event with two possible outcomes: 

correct or incorrect. These independent, identical trials are Bernoulli trials with two 

possible outcomes (Casella and Berger, 2002). A series of these random Bernoulli trials 

has a binomial distribution. By comparing the number of successful trials, comparisons of 

competing classification algorithms can be made. A multinomial selection procedure uses 
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these comparisons to determine the best classification algorithm for a given test set 

(Alsing, 2000; Alsing, Bauer, and Miller, 2002). The multinomial selection procedure is 

as follows (Alsing, Bauer, and Miller, 2002): 

  1) Compare class posterior probabilities for each classifier. 

  2) Find the largest class posterior probability for each data point. 

  3) Determine which classifier has the largest posterior probability. 

  4) Compute the number or wins for each classifier. 

  5) Rank the wins. 

  6) Declare the classifier with the most wins to be the best classifier. 

  Another method of comparing classification algorithms is McNemar’s test 

(Ripley, 1994). This method is similar to the multinomial selection procedure but 

compares classifiers pairwise. It uses the errors of each classifier, which also have a 

binomial distribution. McNemer’s test is 

BA

BA

nn
nn

M
+

−−
=

1
,                                                  (82) 

where nA is the number of errors made by classifier A but not classifier B and nB is the 

number of errors made by classifier B but not A.  

  The measure M can be compared to a chi-squared distribution with one degree of 

freedom as a test for the improvement in correct classification in classifier A versus 

classifier B (Schealler and McClave, 1986). The chi-squared probability of observing a 

value of nA or less, given the null hypothesis of a binomial distribution, B(nA + nB,1/2), 

serves as a test for the improvement of the estimation in classifier A over classifier B. 

  The multinomial selection procedure and McNemar’s test require that the 

classifiers use the same test data, but these tests are not intended as single measures for 
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determining classifier performance. For example, classifier A may show significant 

improvement over classifier B using the McNemar’s test even though their classification 

accuracies differ only slightly. Algorithm complexity, ease of use, selectivity (classifier 

accuracy), and specificity (class posterior probabilities) must be considered when 

determining the best classifier to use in applications. 

  Each method has advantages and disadvantages. The most apparent disadvantage 

to each is that no single method completely describes the results of the classifier 

comparison. For example, the error rate does not provide information on the 

misclassifications; it only provides overall classification accuracy. The addition of 

confusion matrices provides model specificity in the class-conditional error.  McNemar’s 

test and the multinomial selection procedure provide tests for improvement in 

classification between classifiers. The multinomial selection procedure can determine the 

best classifier from many (two or more) while McNemar’s test can only perform pairwise 

comparisons. Both tests provide no information on classifier specificity or selectivity and 

only determine which classifier provides the best results. For those reasons, combining 

results from multiple classifier comparison methods provides a more informative picture 

of the strength of classifier algorithms. 

2.13 Section Summary 

  Section II introduced the foundational literature for this research. As such, 

classifier algorithms were explored. Background and supporting information on the 

measurement of psychophysiological data and its applications were reviewed, with 

emphasis placed on the methods used in this study.  Adaptive automation for integration 

into human-machine systems was also explored. Finally, the military platform used in 
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this research was introduced. The next section describes the use of this background 

information in a complex military platform and describes the experimental methods and 

motivation for the methods. 
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III. Methodology 
 

3.1 Methodology Overview 

 This section describes the experimental methods used in this research. The tasks 

performed by a UCAV operator and the psychophysiological measures gleaned from the 

literature review are discussed in considerable detail. Methods of data collection signal 

processing, and integration are outlined; new measures are presented, and methods for 

integrating these measures are described. The operator performance and subjective 

measures used in the experiments are also defined in this section.  

 To meet dissertation objectives, this research is based on two experiments. The 

first is a single-task experiment for developing multiple cognitive models derived from 

information processing demands and task type. The data from this experiment is also 

used to compare the classifier algorithms considered in this research. The second is a 

dual-task experiment for determining the mission effectiveness of adaptive aiding using 

operator functional state in an operationally relevant environment.  

3.2 UCAV Research Platform  

 The UCAV simulator discussed in this research was developed by AFRL/HECI, 

System Control Interfaces Branch, to explore interface design and was modified by 

AFRL/HECP, Collaborative Interfaces Branch, to investigate real-time adaptive aiding 

techniques. It simulates the forward area of operations, i.e., the ingress and weapons 

delivery portion of the UCAV mission. Tasks include synthetic aperture radar (SAR) 

downloading and processing, setting designated mean points of impact (DMPIs), and 

authorizing, arming, and clearing weapons for release.  
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 A single operator monitors four UCAVs during the simulation of a Suppression of 

Enemy Air Defense (SEAD) mission. The operator monitors the ingress of the four 

vehicles until they reach the SAR capture waypoint. Once the SAR is captured, the 

operator downloads the SAR image from the UCAV to the operator station, visually 

processes the SAR images, and selects DMPIs. After selecting the targets, the operator 

updates the shoot list, arms the weapons, and authorizes the release of weapons. The 

operator completes this process for all four UCAVs.   

 Figures 24 and 25 show the interface for the UCAV operator workstation. Figure 

24 is during vehicle ingress to the targets, and Figure 25 shows the target selection 

process. The operator conducts all these tasks (selecting weapons, placing the DMPIs on 

the target, and authorizing the release of weapons) on the right side of the screen, and 

hereafter those tasks are collectively referred to as the operator vehicle interface (OVI) 

task. 

Processing SAR images is a difficult task. The operator must locate targets 

regardless of target orientation and background clutter such as trees. Some targets may 

even be occluded by the background clutter. This study used three target types embedded 

in forest: Type A (communication and command and control trailers), Type B (SA-10 

surface-to-air missiles), and Type C (SA-12 surface-to-air missiles). Type A and Types B 

and C targets were considered easy and hard to locate, respectively. Figure 26 shows 

examples of all three target types. 
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Figure 26. Examples of SAR types: A: Simulated Communication and Command and 
Control Trailers, B: Simulated SA-10s, and C: Simulated SA-12s. 
 

 

  The OVI task consisted of low and high levels of cognitive workload. The 

operator had access to twelve weapons per vehicle, and two weapons were allocated to 

one DMPI in a SAR. Each SAR contained six valid targets as well as distracter targets 

such as trucks and trees. At the low workload level, the operators were presented with 

SAR images that contained only six Type C targets; thus, operators could place DMPIs 

on the targets as soon as they found them in the image.  

  The high workload level consisted of all target types. The operators were required 

to search the entire image visually, keeping the location of the targets in spatial working 

memory before placing the DMPIs. The targets were prioritized according to type: Type 

C targets were the highest priority, followed by Type B, and finally Type A. The high 
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workload condition SAR images may contain more than six targets, requiring the 

operator to remember the priority and track the target type location during an initial 

visual scan and place the DMPIs on a subsequent scan. For example, a high SAR image 

may contain three Type C targets, three Type B targets, two Type A targets, and eight 

distracter targets. The proper response is to place the DMPIs on the three Type C and 

three Type B targets. 

  In addition to placing weapons on target, the operators monitored the progress of 

each vehicle as it flew from waypoint to waypoint. Critical waypoints included a SAR 

capture waypoint at a predetermined orientation and distance from the target for optimal 

SAR imaging and a weapons release waypoint, a predetermined point to release the 

weapons on target for optimal effectiveness. These waypoints were designated during 

mission planning, and in the case of these experiments, all mission planning was 

accomplished during the design of the experimental trials to ensure consistency across 

operators. 

  After the SAR image was captured at the SAR capture waypoint, the operator 

downloaded the SAR image to the workstation in approximately sixteen seconds. The 

operator had to start the SAR image download and place DMPIs on targets in the SAR 

image, power on weapons, arm the weapons, and clear the weapons for release before the 

vehicle reached the weapons release waypoint. Omitting any of these steps resulted in 

partial mission success or complete mission failure. Since each vehicle reached its 

weapons release points at different times, the operator had to plan the attack to achieve 

mission completion.  

 75 
 



  A second task was added to the study to manipulate cognitive workload and to 

provide information processing based on verbal working memory. A vehicle health task 

(VHT) was included to enable additional levels of difficulty through a verbal working 

memory task. The VHT simulated occurrences of system failure. The vehicle systems 

were categorized by systems type: electrical, mechanical, engine, sensor suite, 

communication, and system. Each system had two possible types of failure. For example, 

the electrical system could experience a generator fault or loss of battery power. In that 

case, the operator must select the correct vehicle from the vehicle drop-down menu (see 

Figure 27) and then select the appropriate response from the correct system drop-down 

menu.  

 During the VHT, two distracter responses were presented in each system drop-down 

menu. The operator received a text message on the left side of the display directly above 

the vehicle health task response module (Figure 27) that described the failure and the 

associated vehicle. For example, if the error text displayed was “Tiger 21 Generator Fault 

Detected”; the correct response was to select Tiger 21 from the vehicle drop-down menu 

then to select “Recycle Generators” from the electrical system drop-down menu. A list of 

possible errors and the correct response pairings is in Appendix A, and a list of all 

possible responses (including distracter responses) and commands is in Appendix B. 

 Both the low and high difficulty vehicle tasks were n-back memory tasks, which 

required the operator to retain n items in verbal working memory and recall them at a 

later time (Wickens, 1984). Other call signs were used as distracters for the operator; call 

signs other than Tiger were to be ignored. The low difficulty level, a 1-back task with one 

distracter, required the operator to retain one failure-vehicle combination in memory and 
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ignore a single distracter call sign. The high difficulty workload level was a 4-back 

memory task with one distracter that required the operator to recall a particular failure for 

each of the four vehicles. The errors were displayed approximately ten seconds apart. Ten 

seconds afterwards, the message, “Tiger 21, Execute Solution,” appeared telling the 

operator which vehicle required fault repair. Next, the operator had to recall the error for 

“Tiger 21” and select the correct repair response. This procedure was repeated several 

times for the duration of each trial, and the number of cycles depended on the length of 

the trial. 

 

  

 
Figure 27. Sample vehicle health task response module, which provides an additional task 
to drive cognitive load. 
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3.3 Physiological Measures  

 The five EEG channels, recorded at sites positioned according to the International 

10-20 electrode system (Jasper, 1958), were from electrode sites F7, FZ, T5, PZ, and O2 

(see Figure 28).  Mastoids were used as reference and ground and all electrode 

impedances were below 5K ohms. Each EEG channel was corrected for eye movement 

and blinks using an adaptive filter (He, Wilson, and Russell, 2004) and stored at 200 

samples per second. These five sites were selected since previous research (Russell and 

Gustafson, 2001) showed that they provide the most salient features. Signals from the 

horizontal and vertical eye and the heart were also collected using a BioRadio 110 

manufactured by Cleveland Medical Inc. The signals were transmitted at radio 

frequencies, eliminating the need to tether operator to amplifiers and to a computer for 

data collection.  

  

T5 PZ

O2

F7 FZ

 

Figure 28. The electrode locations used for operator functional state estimation were 
determined a priori based on previous studies. 
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 Additional measures were collected and evaluated as features for the classifier. 

Measures collected from an “arousal meter” developed by Clemson University 

(Schmorrow, 2003) were evaluated as well as electrodermal activity (EDA), 

electromyographic (EMG) activity, and pupil diameter. Electrodermal activity is the 

change in electrical activity in the eccrine sweat glands and is influenced by the 

sympathetic nervous system. Electromyographic activity has been shown to predict 

arousal accurately (Veldhuizen, Gaillard, and de Vries, 2003) as well as workload (Von 

Boxtel, Waterink, and Veldhuizen, 1997). Also, changes in pupil diameter can provide 

estimates of cognitive load (Marshall, 2004).  

 One-second fast Fourier transforms (FFTs) of the EEG were computed. The 

power spectra were parsed into frequency bins representing the traditional EEG bands. 

The frequency ranges of the five traditional bands are delta (~DC-3 Hz), theta (4-7 Hz), 

alpha (8-12 Hz), beta (13-30 Hz), and gamma (31-42 Hz).  Time series representations of 

these bands are shown in Figure 29. 

 To capture vertical eye movements and eye blinks, electrodes were placed above 

and below the left eye. Additional electrodes were placed on the right and left side of the 

head juxtaposed to the right and left eye to collect horizontal eye movements. The 

vertical and horizontal eye signals were processed the same as the EEG measures, 

extracting the traditional EEG bands. A blink detection algorithm (Wilson and Russell, 

2002) was implemented to compute the time between blinks or interblink interval (IBLI). 

The algorithm determined blinks by finding the characteristic signal peak caused by 

eyelid closure followed by the valley caused by the eyelid opening.   
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Figure 29. Features were derived from traditional EEG bands, which are bandpass filtered 
representations of the raw EEG signal. 
 

 Additionally, Electrodes were placed at the top of the sternum and the bottom of 

the rib cage to collect electrocardiographic signals. As stated earlier, these signals were 

collected with a radiofrequency transmission system and sampled at 200 Hz. A beat 

detection algorithm (Wilson and Russell, 2002) was implemented to compute the time 

between the R waves of the heart signal (interbeat interval, IBI), characteristic peaks 

generated by the closure of the ventricles of the heart. 

 Pupil area was measured using a head-worn camera-based eye tracking system 

developed by ISCAN, Inc. This system computed the pupil area and recorded this 

measure at 60 Hz. Artifacts are caused by eye blinks and are essentially a loss of signal 

since the camera cannot see the pupil to make a measurement. Blinks were detected using 

an algorithm that employed a threshold to determine the occurrence and duration of eye 
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blinks. The signal was then corrected using linear interpolation to recreate the pupil 

diameter signal. 

 Electromyograph activity was measured from the corrugator supercilii and 

frontalis muscles located just above the eyebrow. Developed by TEMEC Instruments, the 

Vitaport II system recorded signals using bipolar Ag/AgCl electrodes. The signals were 

lowpass filtered with a cutoff frequency of 32 Hz to eliminate movement artifacts. After 

filtering, the signals were full-wave linearly rectified and lowpass filtered with a cutoff 

frequency of 38.4 Hz to smooth the data. The resulting signal was integrated over a 1-

second period to produce the final EMG feature.   

 Additionally, electrodes were placed on the arch of the foot to measure skin 

conductance or electrodermal activity and were recorded using the Vitaport system. The 

electrodermal activity was characterized by the tonic or baseline level of the 

electrodermal signal and recorded at 60 Hz.  The arousal meter (Ameter) measures level 

of arousal based on respiratory sinus arrhythmia - the high frequency component (0.15 – 

0.5 Hz) of the heart signal and a known indicator of parasympathetic activity (RTO 

Human Factors and Medicine Panel Task Group, 2004). The data were collected at 256 

Hz and one-second averages of arousal level were computed. 

 The data were segmented into five-second windows with a four-second overlap as 

shown in Figure 30. The window and overlap used in this research was determined 

empirically. Multilayer perceptrons were trained using features processed using a range 

of window sizes (1 to 20 seconds) and overlap (0 to 19 seconds). The empirical 

investigation determined that the longer window sizes (5 seconds or more) produced 

better classification results. However, windows of this length with no overlap could not  
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Figure 30. Description of moving window. 

 

provide the update rate required for classifying operator functional state, i.e., classifier 

outputs would occur every ten or twenty seconds. A one-second update rate was desirable 

(Wilson, 2003) to enable the adaptive aiding system following a change in operator 

functional state. The tradeoff between classification accuracy and update rate was 

considered by varying the window and overlap. A window size of five seconds and an 

overlap of fours seconds met the one-second update rate and would produce acceptable 

classification accuracy. 

 Log power of delta, theta, alpha, beta, and gamma from the five EEG channels 

and both horizontal and vertical eye channels were used, resulting in 35 EEG features as 

inputs to the neural network.  Three physiologically based features, the interval between 

eye blinks, heart interbeat intervals, and the Arousal Meter output, were also used as 

input features, resulting in 38 inputs. These measures were used for all experiments. 

Additional measures - pupil diameter, integrated muscle activity, and tonic level of 
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electrodermal activity - were collected off-line and evaluated along with these 38 inputs 

in a separate study to determine the saliency of these additional measures.  

3.4 Performance Measures  

  The performance data collection consisted of recorded mouse movements, mouse 

clicks, button presses, VHT prompts and responses, DMPI placements points, vehicle 

waypoints, heading changes, along with the times these events occurred. The target 

priorities and the target locations were known for each SAR, so measures such as radial 

miss distance and time to locate target and place DMPIs were derived. The responses for 

each of the vehicle health task prompts were recorded as well as the time required to 

complete the responses. 

  Coordinates for each DMPI placed within a SAR image were compared to the 

known locations of each target and distracters within each SAR image. DMPIs were 

assigned to the nearest target or distracter using a Euclidean distance measure (radial 

miss distance). Next, signal detection theory was applied to these assignments and hits, 

misses, false alarms, and correct rejections were computed for each SAR image. Each 

SAR image had six valid targets and at least six distracter targets. The radial miss 

distance determined the assignment of operator DMPI placement as either a distracter or 

a valid target. The number of hits, misses, correct rejections, and false alarms were 

summed and recorded. For example, consider a SAR containing three type C targets, 

three type B targets, one type A target and eight distracter vehicles. The operator selected 

the three C targets, two of the type B targets, and the type A target. The correct targets 

were the three type C targets and the three type B targets based on the target prioritization 
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scheme. Thus the signal detection for this SAR was Hits – 5, Misses – 1, Correct 

Rejections – 8, False Alarms – 1. 

  Then, mission success was determined for each vehicle. Weapons were not 

released unless the operator completed a series of tasks - placing DMPIs on targets, 

powering on the weapons, arming the weapons, and authorizing the release of the 

weapons - before the UCAV reached the weapons release waypoint. If the weapons were 

not released by the weapons release waypoint for a particular SAR image, the mission 

was considered a failure and was scored as a missed weapons release. The number of 

DMPIs placed on the SAR was also recorded. 

  The missed weapons release waypoint measures were Bernoulli trials, i.e., a 

mission was successful or it failed, and a series of Bernoulli trials have a binomial 

distribution. Additionally, the signal detection measures of hit, miss, correct rejection, 

and false alarm do not have a normal underlying distribution. Therefore, the Kruskal-

Wallis nonparametric test (Rosner, 1995) was used to determine the significance of the 

differences in the means between the types of aiding and levels of workload. This test 

was used since the underlying distribution is not normal and the data are ordinal. Pairwise 

comparisons between the aiding types for each workload level were conducted using the 

Dunn Procedure (Rosner, 1995). These tests are explained in detail in Appendix C. The 

results of these tests are reported in Chapter IV and all tests are reported in the form of (N 

= xxx, z or χ2 = xxx, p = xxx), where N is the number of data points used for the test, z or 

χ2 is the test statistic (z for the Dunn Procedure and χ2 for the Kruskal-Wallis test), and p 

is the level of significance of the statistical test. 
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3.5 Subjective Measures 

  Subjective data were collected. The NASA Task Load Index (NASA-TLX; Hart 

and Staveland, 1988) measured the subjective experience of mental workload and scored 

as a composite of six subscale ratings: mental demand, physical demand, temporal 

demand, performance, effort, and frustration. Each subscale was scored from low to high 

and had a numerical range of 0 to 100. The composite score, a weighted combination of 

these subscales, ranged from 0 to 100, where larger numbers corresponded to greater 

subjective workload.  The operator considered all pairwise comparisons of the subscales 

and selected one subscale from each comparison as the major contributor to workload 

from each pair. The weights were the number of times each subscale was considered as 

the greatest source of workload. 

  The subjective data have a nearly normal distribution and standard Analysis of 

Variance (ANOVA) tests can be conducted using these data. Pairwise comparisons 

between the aiding types for each level of workload were conducted using standard F 

tests. These test results are reported in Chapter IV and all tests are reported in the form of 

(n1 = xxx, n2 = xxx, F = xxx, p = xxx), where n1 and n2 are the number of data points for 

computing the means for the two groups used in the pairwise comparisons, F is the test 

statistic, and p is the level of significance of the statistical test. 

3.6 Single-Task Experiment  

  The study was divided into two experiments for data collection. The single-task 

experiment consisted of trials for four conditions: low Vehicle Health Task (VHT), high 

VHT, low Operator Vehicle Interface (OVI), and high OVI as defined in Section 3.2. A 
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trial consisted of one condition. Three randomly presented trials of each condition were 

conducted to evaluate repeatability. 

 Several class conditions or gauges were investigated. Spatial working memory, 

verbal working memory, executive function, global workload, spatial versus verbal 

working memory, OVI task, and VHT classifiers were developed to determine flexibility 

of the measures and to provide information on different types of mental demand and task 

type. The following paragraphs define each gauge and the method of determining the 

class levels for each gauge. 

  Working memory is the passive storage of information in memory and is subject 

to decay (Vidulich, 2004). The items stored in working memory can be maintained 

through rehearsal but do not stay there unless they receive constant attention. For 

example, recalling a telephone number after a short period of time requires working 

memory.  

 Spatial working memory is maintaining the spatial characteristics of the items in 

memory. The OVI task contains the spatial working memory component in the single-

task study. Because the entire SAR image is not visible at one time, the operator must 

remember locations of targets in the SAR image and must use both spatial working 

memory and information from long-term memory to complete the task. The locations of 

the targets are stored in spatial working memory, and the operator must recall the 

physical characteristics of the target types to identify them in the SAR image. The 

operator must also recall the target prioritization schedule from long-term memory.  

  Classification of spatial working memory levels was represented by the spatial 

working memory gauge. The spatial working memory gauge consisted of three classes: 
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no spatial working memory component, low spatial working memory, and high spatial 

working memory. The no spatial working memory component consisted of data from the 

low and high VHT trials. The low spatial working memory class consisted of the low 

OVI trials, and the high spatial working memory class consisted of the high OVI trials. 

   The VHT drives the verbal working memory in the single-task experiments. 

After a short time, the operator must recall the vehicle problem as well as which vehicle 

had the problem. This task requires long-term memory in association with verbal working 

memory. The operator must also know the appropriate response to a particular problem 

learned prior to the experiment in the training sessions.  

  Classification of verbal working memory levels was represented by the verbal 

working memory gauge. The verbal working memory gauge consisted of no verbal 

working memory, low verbal working memory, and high verbal working memory. The 

no verbal working memory class consisted of data from both the low and high OVI tasks. 

The low verbal working memory class consisted of the low VHT trials, and the high 

verbal working memory class consisted of the high VHT trials. 

  A gauge consisting of two classes, verbal working memory and spatial working 

memory, was examined. This gauge consisted of two classes, verbal working memory 

and spatial working memory. The verbal working memory class consisted of the low and 

high VHT trials. The spatial working memory class consisted of the low and high OVI 

trials. 

  Another gauge, the executive function, is the high-level processing and planning 

that accomplishes tasks (Wilson, 2003). This process includes planning and decision 

making for completing tasks on time and in the correct sequence. This study used a 
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subscale of the NASA-TLX to determine the levels of executive function among the 

tasks. The mental demand subscale determined the executive function levels (Vidulich, 

2004) using the Tukey-Kramer Honestly Significant Difference test. The number and 

grouping of the levels were accomplished after all subjects completed all the trials. The 

mental demand distinguished three levels or classes of executive function: low, medium, 

and high. The results leading to these classes are discussed in the Results and Analysis 

section. The low executive function class consisted of the low VHT and low OVI trials, 

the medium executive function class consisted of the high OVI trials, and the high VHT 

trials provided the data for the high executive function class. 

  This study also used global workload to measure the overall workload state. The 

NASA-TLX composite score determined the levels of global workload among the tasks 

using a difficulty (Low, High) by working memory (verbal, spatial) analysis of variance 

(ANOVA). The composite TLX distinguished low and high global workload levels that 

were determined a posteriori after all operators completed the experiment. The results of 

the analysis leading to this gauge are discussed in the Results and Analysis section. The 

low global workload class consisted of the low VHT and low OVI trials, and the high 

global workload class consisted of the high VHT and high OVI trials. 

  The OVI and VHT gauges were based solely on the respective trials and task 

conditions. The low VHT class consisted of the low VHT trials, and the high VHT class 

consisted of the high VHT trials. The OVI trials were separated into the cruise 

component and the SAR image processing component. The cruise component is the 

portion of the trial when the operator is not processing a SAR image and mainly 
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consisted of the ingress to the target portion of the trial. The OVI class condition 

consisted of three classes: cruise, low SAR, and high SAR. 

  All combinations of the three trials were used as training and as test sets to train 

and evaluate the artificial neural networks for each of the gauges (Table 3). Two trials 

were used as training and one trial was used for testing. A feedforward backpropagation 

artificial neural network was trained for each gauge. The architecture of the neural 

network consisted of three layers of fully connected neurons with logistic sigmoid 

activation functions. The hidden layer consisted of 43 neurons. This training resulted in 

three artificial neural networks for each subject and each gauge using different trials as 

training data. For example, group 1 and 2 were used for training the artificial neural 

network and group 3 was used for testing. A distinct artificial neural network was trained 

for each of the seven gauges.  

 

 

   Table 3. Trial grouping for the single-task experiment 

 Trial Type 
1 Low VHT # 1 High VHT # 1 Low OVI # 1 High OVI # 1 
2 Low VHT # 2 High VHT # 2 Low OVI # 2 High OVI # 2 Group 
3 Low VHT # 3 High VHT # 3 Low OVI # 3 High OVI # 3 
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3.7 Dual-Task Experiment  

  The second experiment measured the real-time classification accuracy and the 

effects of adaptive aiding on operator performance by using the following trials: training, 

classifier performance, adaptive aided, and randomly aided. The latter three trials were 

presented randomly. 

  The dual-task experiments consisted of simultaneously combining the OVI task 

and VHT to form a complex operational task environment. Both low and high OVI trials 

were conducted for each of the adaptive aiding trials. Only the high VHT condition was 

presented with the low and high OVI tasks. Eliminating the low VHT for the dual-task 

experiments made the analysis less complex and removed confounded conditions. 

  The first trials for each subject were ANN training trials. Five training trials were 

conducted - three high conditions and two low conditions for each subject. Two low non-

aided dual-task trials and two high non-aided dual-task trials were conducted to evaluate 

classifier performance. One each of low and high dual -ask trials were conducted for 

adaptive aided trials, and one each of low and high OVI trials were run for the randomly 

aided trials. 

  Furthermore, the ANN training trials were segmented into low and high cognitive 

load. The cruise segments and processing of the low SAR segments were combined to 

represent the low cognitive load state. The high cognitive load state consisted of the high 

SAR segments. 

  The classifier performance trials were used to evaluate the classifier performance 

and as baseline trials for comparison to the aided and randomly aided trial types. The 

 90 
 



classifier performance trials were also compared to the ANN trials used to train the 

artificial neural network to ensure consistency across trials.  

  The aided trials consisted of adaptive aiding triggered by the operator functional 

state as determined by the artificial neural network classifier. The adaptive aiding 

consisted of reducing the speed of a vehicle when the ANN detected a high operator 

functional state. The vehicle the operator was attending decreased speed by 25 percent to 

allow the operator more time to accomplish the current task. When the ANN detected the 

operator state had reverted to a nominal workload level, the UCAV continued at its 

previous speed. 

  Adaptive aiding was applied randomly during the randomly aided trials. The 

purpose of the randomly aided trials was to determine the necessity for adaptive aiding; 

they answer the ‘So what?’ question. If the randomly aided trials improve operator 

performance in the same manner as aiding the operator based on cognitive state, either 

the experimental design is flawed or the aiding should be applied during the entire trial. 

The total time that the operators were in the high cognitive load state during the OVI 

trials was partitioned into random starting points throughout the randomly aided trial. For 

example, during the operator’s high aided trial, the ANN detected the high state in six 

intervals during the trial. The six intervals have different interval lengths. Twice the 

interval was 15 seconds, once the interval was 30 seconds, and three times the interval 

was 10 seconds. The randomly aided trial would also have six aided intervals with the 

same duration as during the aided trial: however, the intervals would occur randomly 

throughout the randomly aided trial. 
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3.8 Subjects 

  Seven subjects, four males and three females, were paid for their voluntary 

participation in this study. All were right-handed and had normal or normal corrected 

vision. All subjects signed informed consent documentation approved by the AFRL 

Human Use Committee. 

  All subjects were also trained to stabilize performance and eliminate learning 

effects. Such training usually required several trials over two or three days, depending on 

subject ability. Stable performance consisted of repeated, reliable performance over 

several trials until the subject developed a consistent strategy for completing the required 

task. One subject could not perform the dual task and was removed from the study. 

  The collection of data in human-subject experiments is difficult and time 

consuming. Subjects require training in order to perform the experiments with consistent 

results based on the manipulations in the study design. This is required to preclude effects 

of learning. Large quantities of performance data are not feasible in studies consisting of 

human-subject experiments. For example, in the case of the dual task experiment, to 

collect the 32 samples of the missed weapons release measure for a single subject 

required approximately 24 hours of training and 4 hours of data collection.  

3.9 Classifier Evaluation 

  The voluminous data collected from human studies requires methods suited for 

high-capacity data. Human studies usually generate megabytes or even gigabytes of data 

from each subject, necessitating classifiers that can operate on very large data sets and 

still learn appropriate models quickly for real-time applications. Classifiers in this study 

are of three classes: DA, ANNs, and SVMs. The discriminant analysis techniques used 
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three discriminant functions: linear, quadratic, and logistic. The ANN used is a 

feedforward multilayer perceptron with backpropagation training. The architecture of the 

neural network consisted of three layers of fully connected neurons with logistic sigmoid 

activation functions. The input layer consisted of 43 neurons that corresponded to the 

number of input features. The hidden layer consisted of 43 neurons, and the output layer 

consisted of 2, 3, or 4 neurons, depending on the cognitive model being developed.  The 

support vector machines examined three specific inner product kernels: linear, 

polynomial, and radial basis functions. 

  The data from the single-task experiment were used to compare the performance 

of the classification algorithms. The data were processed by the same procedures used in 

the single-task experiment. The same training and test data were presented to each of the 

classifiers to allow for direct comparison for each of the cognitive gauges: spatial 

working memory, verbal working memory, executive function, global workload, spatial 

versus verbal working memory, OVI task, and VHT. 

3.10 Section Summary 

This section described the methods of this research. Methods for collecting 

psychophysiological signals, performance measures, and subjective ratings were 

discussed. Processing raw signals into useable features for classification was described, 

cognitive gauges were defined, and classifier comparison methods used in this research 

were discussed. Finally, the study design for two experiments was described and the 

rationale for conducting these experiments was presented.  
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IV. Results and Analysis 

  4.1 Single Task-Analysis  

  4.1.1 Subjective Workload Analysis 

  The subjective workload data were analyzed with a difficulty (low, high) by 

working memory (verbal, spatial) analysis of variance (ANOVA). As shown in Figure 

31, difficulty (low and high workload) manipulation had a significant effect on the 

NASA-TLX workload scores (n1 = 36, n2 = 36, F = 56.3, p = 0.0007), but no significant 

effects of working memory (verbal and spatial) were detected (n1 = 36, n2 = 36, F = 

0.443, p = 0.508). These results indicate that the tasks have different levels of workload 

based on subjective measures, as desired. 
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Figure 31. Group means of composite NASA-TLX rating with standard error of the mean 
for single-task analysis show good separation between low and high cognitive load. 
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  As described in the methodology section, the NASA-TLX mental demand 

subscale was analyzed to determine the levels of executive function in training the neural 

network for the executive function gauge. The Tukey-Kramer Honestly Significant 

Difference (HSD) (Sall, Lehman, and Creighton, 2001) was used to determine differences 

between the conditions. This test was selected since it is more conservative: the least 

significant difference intervals of the Tukey-Kramer HSD are larger than the Student’s t 

intervals. These tests also adjust the probability or level of significance for multiple 

comparisons. The low executive function consisted of the low verbal and low spatial 

working memory, the medium executive function difficulty consisted of the high spatial 

working memory task, and the high executive function consisted of the high verbal 

working memory task. A visual representation is shown in Figure 32. Table 4 shows the 

results of the Tukey-Kramer HSD analysis, where positive values show pairs of means 

that are significantly different. For example, the low verbal trials were significantly 

different than both the high verbal and high spatial trials but not the low spatial trials. 

Higher values indicate a higher level of significance. 

  In summary, the low and high conditions for each of the working memory tasks 

show significant differences, indicating the levels of workload are distinct to the operator 

and reinforcing the study design. Also, the NASA-TLX mental demand subscale 

distinguishes three levels of executive function in the trials.  
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Figure 32. Group means of mental demand TLX subscale with standard error of the mean 
for single-task analysis were used to determine the class groups for the executive 
function. 
 
 
 

Table 4. Tukey-Kramer HSD comparisons of NASA-TLX mental demand 
 

 High Verbal High Spatial Low Spatial Low Verbal 
High Verbal -18.08 3.05* 8.86* 15.65* 
High Spatial 3.05* -18.08 6.17* 0.62* 
Low Spatial 8.86* 6.17* -18.08 -11.29 
Low Verbal 15.65* 0.62* -11.29 -18.08 

* Significant effect at p < 0.05 

 

  4.1.2 Operator Performance Analysis 

  4.1.2.1 OVI Task Performance 

  The operator performance data for the OVI task data were analyzed for the effect 

of difficulty using a (low, hHigh) Kruskal-Wallis nonparametric test (see Appendix C for  
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Figure 33. Group means of signal detection for OVI Task performance for single-task 
analysis. 
 
 
a complete discussion of the Kruskal-Wallis test). Each performance measure was 

compared separately and is displayed in Figure 33 for comparison. All measures showed 

a significant difference between the low and high spatial working memory for OVI task 

performance. Using signal detection theory, the performance measures developed were 

Hit (N = 144, χ2 = 32.9, p < 0.0001), Miss (N = 144, χ2 = 32.9, p < 0.0001), False Alarm 

(N = 144, χ2 = 18.9, p < 0.0001), and Correct Rejection (N = 144, χ2 = 18.9, p < 0.0001). 

The mission success measures were Missed Weapons Release (N = 144, χ2 = 13.9, p = 

0.0002) and Number of DMPIs Placed (N = 144, χ2 = 19.7, p < 0.0001). These results 

show that the two levels of workload result in significant differences in operator 

performance, as desired. 
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  In summary, the data show significant differences in operator performance in both 

the measures derived from signal detection theory and those related to mission success. 

The operators missed more targets and selected more wrong targets in the high workload 

condition than in the low workload condition. In the high condition, the operators missed  

30% of their weapons release points, resulting in partial mission failure. These analyses 

are the expected results for the single-task experiment. 

  4.1.2.2 VHT Performance 

  The operator performance data for the VHT data were analyzed with a difficulty 

(low, high) ANOVA. Correct and incorrect responses show a significant effect of verbal 

demand (n1 = 18, n2 = 18, F = 7.56, p = 0.0105) in difference in the means: 84% for the 

high VHT and 49% for the low VHT.  

  The high verbal condition had a 35% decrease in correct responses, indicating 

operator difficulty in recalling the problems associated with a particular vehicle. The 

results indicate that the levels of difficulty are significantly different, as expected. 

  4.1.3 Cognitive State Classification 

  Multilayer perceptrons using backpropagation training were trained and tested for 

each cognitive gauge as described in Section 3.5. Four ANNs were trained for each 

subject and each cognitive gauge, resulting in a total of 168 trained ANNs. Overall 

classification results for each gauge are shown in Figure 34. All test results are above 

chance in randomly selecting a class. Confusion matrices were compiled to determine 

selectivity and specificity and are attached as Appendix F.  
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Figure 34. Classification accuracy for the various cognitive gauges. 
 

  Overall classification accuracy ranged from 59.0% to 91.2% depending on the 

cognitive gauge tested. The best results occurred when classifying spatial and verbal 

working memory, with an overall 91.2% accuracy. The spatial versus verbal working 

memory classifier showed good specificity between the classes. The verbal working 

memory was correctly classified in 89.5% of the test data while the spatial working 

memory data was correctly classified 92.9% across all subjects as shown in Appendix F. 

These percentages indicate that the psychophysiological measures used in this study can 

distinguish two information processing cognitive tasks accurately. These results can be 

used to enhance adaptive aiding by tailoring mitigations based on information context. 

  The classifiers for the VHT and the verbal working memory gauges did not 

perform as well as expected. In both cases, the specificity was poor. Futhermore, the low 

 99 
 



VHT and the low verbal working memory as well as the high VHT and the high verbal 

working memory performed similarly. The only difference in the data presented to the 

gauges was an additional class of verbal working memory. The verbal working memory 

also contained a class of no verbal working memory. This lack of specificity in the 

classifiers may indicate that the psychophysiological measures used in this study do not 

allow differentiation between levels of verbal working memory. 

  The classifier for the executive function gauge also has poor specificity in the 

medium and high executive function classes, possibly meaning the NASA-TLX mental 

demand subscale is not a good indicator of executive function. Other possible 

explanations for the poor classifier performance are the location of the EEG electrodes or 

these tasks are not representative of executive cognitive function. The former is not 

likely; executive function is associated with the frontal lobe of the brain and two of the 

EEG electrodes measured frontal lobe activity. The latter is a possible source of the 

problem. Executive function is associated with high level planning, and both the spatial 

OVI task and the verbal VHT have little planning involved in their execution. 

4.2 Dual-Task Analysis 

  4.2.1 Subjective Workload Analysis 

  The subjective workload data were analyzed with a difficulty (low, high) by 

aiding type (no-aiding – training, no-aiding, aiding, and random aiding) ANOVA. As 

shown in Figure 35, the difficulty manipulation had a significant effect on the NASA-

TLX workload scores (n1 = 42, n2 = 42, F = 22.1, p = 0.0053). 

  Contrast comparisons for all groups were made for the low and high workload 

conditions pairwise by aiding type. Table 5 contains the contrast comparisons for the low  
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Figure 35. Group means composite NASA-TLX rating with standard error of the mean 
for dual-task analysis. 
 
 

workload trials and Table 6 displays the contrast comparisons for the high workload 

trials. No significant effects of aiding type were found in the low workload condition. 

These results indicate the operators perceived no reduction in cognitive workload when 

adaptive aiding was presented. 

 
Table 5: Contrast Comparisons for Low Workload by Aiding Type 

 Training No-aiding Aiding Random Aiding
Training  F = 0.0335 

p = 0.856 
  

No-aiding F = 0.0335 
p = 0.856 

 F = 2.670 
p = 0.123 

F = 0.399 
p = 0.537 

Aiding  F = 2.670 
p = 0.123 

 F = 0.754 
p = 0.399 

Random Aiding  F = 0.399 
p = 0.537 

F = 0.754 
p = 0.399 

 

 * Significant effect at p < 0.05 
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Table 6: Contrast Comparisons for High Workload by Aiding Type 

 Training No-aiding Aiding Random Aiding
Training  F = 0.0295 

p = 0.865 
  

No-aiding F = 0.0295 
p = 0.865 

 F = 8.22 * 
p = 0.0117 

F = 2.91 
p = 0.109 

Aiding  F = 8.22 * 
p = 0.0117 

 F = 6.401 * 
p = 0.0156 

Random Aiding  F = 2.91 
p = 0.109 

F = 6.401 * 
p = 0.0156 

 

 * Significant effect at p < 0.05 

 

  Contrast comparisons were made for the low and high workload conditions 

between aiding type training and no-aiding to verify that these conditions were the same 

since the trials were similar. No significant effect existed for both the low and high 

workload conditions between no-aiding and training aiding types. Since these trials were 

similar and the operators perceived no differences in cognitive workload in both the low 

and high workload trials, this result indicates that these conditions were the same, as 

should be the case since no adaptive aiding was presented in any of the training and no-

aiding trials. 

  A significant effect of aiding type occurred for the contrast comparison of no-

aiding and aiding for the high condition. A significant effect was noted for the 

comparison between aiding and random aiding but not between no-aiding and random 

aiding. These results indicate that applying adaptive aiding to the OVI task yields a 

significant decrease in subjective operator workload. The operator does not perceive a 

significant decrease in workload when adaptive aiding is presented randomly. In fact, the 

operator does not perceive any difference between random aiding and no aiding. These 

results indicate that applying adaptive aiding to the OVI task must be presented at the 
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appropriate times based on operator functional state. Randomly aiding the operator does 

not decrease the operator’s perceived workload. The adaptive aiding provided during the 

OVI tasks reduces the perceived workload of the operators.   

  4.2.2 Operator Performance Analysis 

  4.2.2.1 OVI Task Performance 

  The operator OVI task performance data were compared using a 1-variable 

difficulty (low, high) ANOVA with the data collapsed across aiding type. Results show a 

significant effect of workload across all performance measures. The performance 

measures were Hit (N = 192, χ2 = 25.7, p < 0.0001), Miss (N = 192, χ2 = 25.7, p < 

0.0001), False Alarm (N = 192, χ2 = 8.17, p = 0.0043), and Correct Rejection (N = 192, 

χ2 = 8.25, p = 0.0041). The mission success measures were Missed Weapons Release (N 

= 192, χ2 = 16.5, p < 0.0001) and Number of DMPIs Placed (N = 192, χ2 = 24.1, p < 

0.0001).  Operator performance is poorer for the high workload trials regardless of aiding 

type - an expected result since the study was designed to include two distinct levels of 

workload. 

  OVI performance measures include the signal detection theory measures, hit, 

miss, false alarm, and correct rejection, and mission performance measures of missed 

weapons release and number of DMPIs placed per SAR image. The frequencies of these 

measures are tabulated for each aiding type and workload level in Table 7. These 

measures were analyzed using a Kruskal-Wallis test. Results are displayed in Figure 36. 

Contrast comparisons for all groups were made for the low and high workload conditions 

pairwise by aiding type and by performance measure based on the z score of the rank 
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Table 7: Frequency of Hit, Miss, False Alarms, and Correct Rejection by Aiding Type 
and Workload Level Using the Raw Data in Appendix G. 

 Hit Miss False Alarm Correct Rejection 
Low Workload 
No Aiding 274 14 0 288 

Low Workload 
Aiding 144 0 0 144 

Low Workload 
Random Aiding 143 1 1 143 

High Workload 
No Aiding 197 91 6 285 

High Workload 
Aiding 127 17 7 141 

High Workload 
Random Aiding 97 47 11 140 
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Figure 36. Group means signal detection for dual-task OVI performance analysis. 
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sums derived during the Kruskal-Wallis analysis using the Dunn Procedure (Rosner, 

1995). A complete discussion of the Dunn Procedure appears in Appendix C. Each 

performance measure is discussed in turn. 

   Contrast comparisons for all groups were made for the low and high workload 

conditions pairwise by aiding type for the signal detection performance measure of hits. 

Table 8 contains the contrast comparisons for the low workload trials and Table 9 

displays the comparisons for the high workload trials. No significant effects of aiding 

type were found in the low workload condition for the hits performance measure. The 

high workload has significant effects of aiding type between the no-aiding type and the 

aiding type and a significant effect of aiding type between the aiding and the random 

aiding conditions. There was no significant effect of aiding type between the no-aiding 

trials and random aiding type for the high workload condition, demonstrating that 

randomly aiding the operator does not improve performance. The aiding must be 

presented at the appropriate time based on operator functional state. 

 

 

Table 8: Contrast Comparison for Hits During Low Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 0.481 

p = 0.631 
z = 0.481 
p = 0.631 

Aiding z = 0.481 
p = 0.631 

 z = 0.721 
p = 0.470 

Random Aiding z = 0.481 
p = 0.631 

z = 0.721 
p = 0.470 

 

* Significant effect at p < 0.05 
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Table 9: Contrast Comparison for Hits During High Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 3.32 * 

p =0.0009 
z = 1.58 
p = 0.114 

Aiding z = 3.32 * 
p =0.0009 

 z = 3.68 * 
p = 0.0002 

Random Aiding z = 1.58 
p = 0.114 

z = 3.68 * 
p = 0.0002 

 

* Significant effect at p < 0.05 

 

 

  Table 10 contains contrast comparisons for the low workload trials and Table 11 

displays the contrast comparisons for the high workload trials for the miss performance 

measure. No significant effects of aiding types were found in the low workload condition. 

The high workload has significant effects of aiding type between the no-aiding and the 

aiding and no significant effect of aiding between the no-aiding trials and random aiding 

for the high workload condition. In addition, a significant effect of aiding type was found 

between the random aiding and the aiding conditions. 

 

 

Table 10: Contrast Comparison for Misses During Low Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 0.481 

p = 0.631 
z = 0.481 
p = 0.631 

Aiding z = 0.481 
p = 0.631 

 z = 0.721 
p = 0.471 

Random Aiding z = 0.481 
p = 0.631 

z = 0.721 
p = 0.471 

 

* Significant effect at p < 0.05 
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Table 11: Contrast Comparison for Misses During High Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 3.32 * 

p =0.0009 
z = 1.58 
p = 0.114 

Aiding z = 3.32 * 
p =0.0009 

 z = 3.68 * 
p = 0.0002 

Random Aiding z = 1.58 
p = 0.114 

z = 3.68 * 
p = 0.0002 

 

* Significant effect at p < 0.05 

 

  The false alarm performance measure contrast comparisons are displayed in the 

following tables. Table 12 contains the comparisons for the low workload trials and Table 

13 displays the comparisons for the high workload trials for the false alarm performance 

measure. No significant effects of aiding type were found in the low workload condition 

for this measure. The high workload has significant effects of aiding type between the no- 

 

Table 12: Contrast Comparison for False Alarms During Low Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 0 

p = 1 
z = 1.087 
p = 0.277 

Aiding z = 0 
p = 1 

 z = 1.087 
p = 0.277 

Random Aiding z = 1.087 
p = 0.277 

z = 1.087 
p = 0.277 

 

* Significant effect at p < 0.05 

Table 13: Contrast Comparison for False Alarms During High Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 1.73 

p = 0.0837 
z = 2.92 * 
p = 0.0035 

Aiding z = 1.73 
p = 0.0837 

 z = 0.890 
p = 0.374 

Random Aiding z = 2.92 * 
p = 0.0035 

z = 0.890 
p = 0.374 

 

* Significant effect at p < 0.05 
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aiding trials and the random aiding trials. No significant effect of aiding type existed 

between the no-aiding trials and aiding trials or between the aiding and random aiding 

trials for the high workload condition. 

  These results do not agree with the hypotheses established in the study. One 

would expect the false alarms to be reduced when the operator is being aided at the 

appropriate times. The cause of this disparity with the study hypothesis could be the 

power of the tests conducted due to the infrequent occurrence of false alarms.  

  Contrast comparisons for correct rejection for the dual-task experiment showed 

the same results as the false alarm condition. Table 14 contains the comparisons for the 

low workload trials, and Table 15 displays the comparisons for the high workload trials  

 

Table 14: Contrast Comparison for Correct Rejection During Low Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 0 

p = 1 
z = 1.060 
p = 0.289 

Aiding z = 0 
p = 1 

 z = 0.795 
p = 0.427 

Random Aiding z = 1.060 
p = 0.289 

z = 0.795 
p = 0.427 

 

* Significant effect at p < 0.05 

Table 15: Contrast Comparison for Correct Rejection During High Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 1.66 

p = 0.0964 
z = 2.85 * 
p = 0.0044 

Aiding z = 1.66 
p = 0.0964 

 z = 0.890 
p = 0.374 

Random Aiding z = 2.85 * 
p = 0.0044 

z = 0.890 
p = 0.374 

 

* Significant effect at p < 0.05 
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for the correct rejection performance measure. The correct rejection values were 

normalized to a value of six to compare results. Unlike the target data, which is fixed at 

six targets possible, the numbers of distracter targets vary by SAR image. No significant 

effects of aiding type were found in the low workload condition for the correct rejection 

performance measure. The high workload has significant effects of aiding between the 

no-aiding and the random aiding. No significant effect of aiding type existed between the 

no-aiding trials and aiding trials or between the aiding and random aiding trials for the 

high workload condition. The results show the targets correctly rejected were not 

significantly decreased when the operator was adaptively aided. 

  Mission performance measures include a vehicle missing the weapons release 

waypoint and the number of DMPIs assigned to each SAR image (Tables 16 and 17). The 

missed weapons release point is a mission failure. This performance measure is computed 

as a ratio of the missed weapons release waypoint and the total number of weapons 

release waypoints in a trial and are presented in Figures 37 and 38. 

Table 16: Frequency of Mission Success by Aiding Type and Workload Level Computed 
Using the Raw Data in Appendix H. 

 
 Success Failure N (Total Count) 
Low Workload 
No Aiding 46 2 48 

Low Workload 
Aiding 24 0 24 

Low Workload 
Random Aiding 24 0 24 

High Workload 
No Aiding 36 12 48 

High Workload 
Aiding 22 2 24 

High Workload 
Random Aiding 18 6 24 

Total 170 22 192 
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Figure 37. Occurrences of successful and unsuccessful completion mission requirements 
for the weapons release waypoints. 
 
 
 

Table 17: Frequency of Placed DMPIs by Aiding Type and Workload Level Computed 
Using the Raw Data in Appendix H. 

 0 1 2 3 4 5 6 
Low Workload 
No Aiding 0 0 0 1 1 0 48 

Low Workload 
Aiding 0 0 0 0 0 0 24 

Low Workload 
Random Aiding 0 0 0 0 0 0 24 

High Workload 
No Aiding 3 0 5 3 1 4 32 

High Workload 
Aiding 0 0 0 1 1 1 21 

High Workload 
Random Aiding 2 2 2 0 0 1 17 
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Figure 38. Average count of numbers of placed DMPIs for each aiding condition and 
workload level. 
 
 
 
  Table 18 contains comparisons for the low workload trials and Table 19 displays 

the comparisons for the high workload trials for the missed weapons release performance 

measure. No significant effects of aiding type were found in the low workload condition. 

The high workload has significant effects of aiding type between the no-aiding trials and 

the aiding trials. There was a significant effect of aiding type between the aiding trials 

and random aiding for the high workload condition but none for the comparison of no-

aiding and random aiding under the high cognitive workload condition. The mission 

effectiveness was improved with the implementation of adaptive aiding. However, if the 

aiding was not presented appropriately as was presented during the random aided trial, 

aiding did not improve mission effectiveness. These results suggest the aiding must be 

presented at the appropriate time to improve mission effectiveness. 
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Table 18: Contrast Comparison for Missed Weapons Release During Low Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 1.15 

p = 0.249 
z = 1.15 
p = 0.249 

Aiding z = 1.15 
p = 0.249 

 z = 0 
p = 1 

Random Aiding z = 1.15 
p = 0.249 

z = 0 
p = 1 

 

* Significant effect at p < 0.05 

Table 19: Contrast Comparison for Missed Weapons Release During High Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 4.61 * 

p < 0.0001 
z = 0 
p = 1 

Aiding z = 4.61 * 
p < 0.0001 

 z = 3.46 * 
p = 0.0006 

Random Aiding z = 0 
p = 1 

z = 3.46 * 
p = 0.0006 

 

* Significant effect at p < 0.05 

 

  The operators missed the weapons release points on average 25% of the time for 

both the no-aiding condition and the random aiding condition (see figure 37). However, 

aiding the operator at the appropriate time reduced the missed weapons release to 8% of 

the missions on average, which is a 67% ± 3% improvement in mission effectiveness. 

The 3% error was computed based on the loose assumption that the population standard 

deviation for the failures both the aided and no-aided high workload trials (see Table 16) 

is one trial. Then, the corresponding standard deviations in the mean numbers of no-aided 

and aided trials are 
48
1

=s and 
24
1

=t , respectively. Assuming the failures are 

independent then the variance in the improvement (67%) in missed weapons release 

waypoints is 22
2

2
2

03.0
12

2*2
12
2

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛= tsv . Thus, for the specified population 
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variance and independence assumptions, the improvement in missed weapons release 

waypoints is 67% ± 3%. Similar computations can be made for all of the performance 

measures. 

  Table 20 contains comparisons for the low workload trials and Table 21 displays 

the comparisons for the high workload trials for the number of DMPIs placed mission 

performance measure. No significant effects of aiding type were found in the low 

workload condition for the mission performance measure. The high workload has 

significant effects of aiding type between the random aiding and the aiding trials. There 

was also a significant effect of aiding type between the no-aiding trials and aiding trials 

for the high workload condition. 

 

Table 20: Contrast Comparison for Number of DMPIs Placed During Low Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 1.098 

p = 0.272 
z = 1.098 
p = 0.272 

Aiding z = 1.098 
p = 0.272 

 z = 0 
p = 1 

Random Aiding z = 1.098 
p = 0.272 

z = 0 
p = 1 

 

* Significant effect at p < 0.05 

 

Table 21: Contrast Comparison for Number of DMPIs Placed During High Workload 

 No-aiding Aiding Random Aiding 
No-aiding  z = 5.96 * 

p < 0.0001 
z = 0.696 
p = 0.487 

Aiding z = 5.96 * 
p < 0.0001 

 z = 3.95 * 
p < 0.0001 

Random Aiding z = 0.696 
p = 0.487 

z = 3.95 * 
p < 0.0001 

 

* Significant effect at p < 0.05 
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  The number of DMPIs placed for the aided task increased from 4.9 to 5.8 over the 

number of DMPIs places for the no-aiding task - an increase of almost an additional 

target per SAR image, resulting in an additional four targets destroyed per vehicle for an 

entire mission. The number of DMPIs placed in the randomly aided trials decreased 

relative to the number of DMPIs placed in the aided trials. 

  4.2.2.2 VHT Performance 

  The performance of the vehicle health task degraded considerably from the 

performance in the single-task experiment. In the single-task experiment, the operators 

responded correctly to about half of the prompts. In the dual-task experiment, the 

operators had a 7 to 18% reduction in correct responses in the low trials and an 11 to 18% 

reduction in correct response in the high trials. Results are shown in Figure 39. 
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Figure 39. Percent correct responses for dual-task VHT performance analysis. 
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  The effect of workload was as expected for the no-aiding trials. During the high 

workload trials, the operators had a 9% reduction in performance relative to the low 

workload trials. The effect reversed for the aided trials and the randomly aided trials. 

  The operators were briefed and trained that both the OVI task and VHT were 

equally important during the dual-task experiment. The VHT performance results could 

be caused by several conditions. The operators could have shed the VHT as the workload 

increased, resulting in the decreased performance. If the operators shed the task, the 

number of no responses should be high. Figure 40 shows the breakdown of incorrect  
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Figure 40. Breakdown of incorrect responses shows the majority of the missed responses 
are wrong responses. 
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operator responses. The majority of the incorrect responses are wrong responses. The 

results indicate that the operator did not shed the task but could not perform the VHT 

while maintaining proficient performance in the OVI task. Additionally, the aiding did 

not improve performance on the VHT, indicating that aiding must be specific to the task. 

 4.2.3 Online Classification 

  The online real time classification accuracy was 69.5% for both the low and high 

workload conditions. This accuracy is above chance but still not as high as expected. 

Even with low accuracy, the classifier triggered enough of the time to result in an 

increase in operator performance as discussed in Section 4.2.2.1. The training trials were 

randomly separated into training data, validation data, and test data. The test data was 

classified correctly in about 96% of the samples. The ANN did not overlearn the training 

data because the algorithm used the validation data to determine the optimum weights for 

generalization to the test data set. 

The classification of the high workload condition was not as accurate (more 

misclassification) as the low workload condition. Since the classification accuracy for 

both the low and high workload conditions were not as high as expected, further 

investigation into the classifier outputs and the psychophysiological measures was 

conducted. Screen captures (Figures 41 and 42) were made of the state classifier at the 

end of a classification performance trial. The classifier switched from low to high to low 

during the high workload portions of the trials.  
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Figure 41. Screen capture of classifier results of a sample high workload trial. The test 
traces are the inputs to the system to determine aiding. 
 

 
 
Figure 42. Screen capture of classifier results of a sample low workload trial. The test 
traces are the inputs to the system to determine aiding. 
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The classifier has two outputs, one each for the low and high workload 

conditions. The red trace represents high workload and the blue trace represents low 

workload. Three plots describe the figures. The top plot in each of the figures is the truth. 

The red trace is high for four periods. These periods are the times the SAR image is open 

and the operator is placing DMPIs on targets and represents high workload. The blue 

trace is high during the cruise or ingress to target and time between SAR images, which 

represents the low workload condition. 

The center plot is the input to the system that determined the time when the 

system is aiding the operator. When the red trace is high, the system determines which 

vehicle the operator is currently attending and slows that vehicle down to allow the 

operator to complete the current task. When the blue trace is high, the system reverts to 

its previous state and increases the airspeed of the vehicle to the mission profile set 

during mission planning. The bottom plot is the actual output of the classifier output 

layer. 

Figure 41 (high condition) shows that the classifier is switching back and forth 

during the high SAR conditions, not the baseline cruise condition. This oscillation may 

be due to the stability of input measures derived from the psychophysiological signals. 

Figure 42 is a screen capture of the results of a low workload run (cruise and low 

SAR image). There are a few false alarms, but accuracy is still high. These results are 

from a typical subject. Several techniques could be used to improve the classification.  

A 5-second window and a 4-second overlap were used to smooth the data before 

application of the ANN, which leads to the question of whether to pre- or post-smooth the 

data. That is, to increase the window size and smooth the data before training the 
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classifier, or use shorter windows and smooth the output of the classifier, or both. Both 

methods introduce delay in the overall response of the system. 

Another consideration is that the workload is consistently high during the high 

SAR image processing intervals. Figure 43 is a plot of the T5 gamma magnitude and the 

truth for a high trial. Feature T5 gamma is a highly salient feature - one that is weighted 

higher in the operator function state model as determined by the weight based partial 

derivative saliency technique described in Section 2.7 (saliency is discussed in Section 

4.6). The magnitude of the EEG gamma signal increases as the operator progresses 

further into the mission. In fact, the significant increase occurs about half way through 

processing the second SAR image, possibly due to the operator delaying processing  
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Figure 43. Output of T5 gamma during a high trial shows the magnitude increases well 
into the second SAR processing interval. The dashed line is high during the period the 
SAR image is open. 
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earlier SAR images and having to catch up upon realizing the remaining SAR images 

cannot be completed in time.  

  Additionally, operators have different skills and some can perform the high 

workload task with the same ease as in the low workload trials. In fact, one of the 

operators did not miss any targets regardless of aiding. The performance of the classifier 

for this operator was not as high as for the other subjects during the high workload 

periods of the trial. In fact, only 13% of the high workload period was classified as high 

workload. Operator physiology is not expected to change without cognitive loading. 

However, this concern is not a training issue as all operators were trained to the same 

performance level in the single-task experiment. 

 4.4 Classifier Comparisons 

  Several classifiers were compared using the data from the single-task experiment. 

Classification accuracy for each classifier was compared to classification accuracy of the 

ANN - the baseline algorithm for this study. Discriminant analysis and support vector 

machines were compared to the ANN using the same training and test data. Data sets 

were prepared as described in Section 3.5. 

  Classification accuracy using linear discriminant analysis, quadratic discriminant 

analysis, and logistic discriminant analysis techniques were compared to the results found 

using a multilayer perceptron with backpropagation training (Figure 44). Classification 

accuracies across all algorithms were similar, but the ANN tended to outperform the 

others.  
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 Figure 44. Classification accuracy for the artificial neural network was better as 
compared to discriminant techniques for most cognitive gauges. 
 
 

  Comparisons between the discriminant analysis techniques and the artificial 

neural networks were conducted pairwise since the artificial neural network was used as 

the baseline for this research. The wins for the ANN were summed and divided by the 

total number of trials. The wins were collapsed across cognitive gauge classification. The 

ANN performed better in each case. Figure 45 shows the ANN win percentages against 

each of the discriminant analysis classifiers. The worst performer was linear discriminant 

analysis (LDA), which lost to the ANN in 80% of the models. Quadratic discriminant 

analysis (QDA) did better with the neural networks winning 68% of the trials. The best 

performer against the ANN was logistic discriminant analysis (LogDA), which only lost 

58% of the time. 
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Figure 45. Win percentage of the artificial neural network classification over discriminant 
analysis techniques across all trials and cognitive gauges. 
 
 

  Comparisons between the discriminant analysis techniques and the artificial 

neural networks were conducted pairwise using McNemar’s test as described in Section 

2.12. McNemar’s test can be compared to a chi-squared distribution with one degree of 

freedom as a test for the improvement in correct classification in classifier A versus 

classifier B. The ANN win pooled probabilities of these tests are shown in Figure 46. The 

win probability varied by cognitive gauge, but in each case the results have the same 

trend. The worst performer is LDA, followed by QDA discriminant analysis, then finally 

LogDA. Note the ANN wins by a lower margin as the discriminant analysis models 

become more nonlinear. 
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Figure 46. Artificial neural network pooled win probability for each of the cognitive 
gauges and discriminant classifier comparisons. 
 
 

  Comparisons between support vector machines (SVM) and artificial neural 

networks were also accomplished. Three support vector machines were evaluated - linear 

support vectors, polynomial support vectors, and radial basis function support vector 

machines. The linear support vector machine is a special case of the polynomial support 

vector machine. The kernel function for the polynomial learning machine is , 

where p is specified by the user a priori. Figure 47 summarizes the classification 

accuracy for all cognitive gauges using polynomial support vector machines with orders 

of 1, 2, 3, 4, 5, and 6.  
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Figure 47. Polynomial order must be determined for the kernel in the polynomial support 
vector machine. 
 

  The best classification is with a polynomial of order one; however, the linear 

support vector machine was already in consideration. The next best order for the 

polynomial kernel is 3rd order. The kernel for the radial-basis function network is 

⎟
⎠
⎞

⎜
⎝
⎛ −− 2

22
1exp ixx
σ

, where σ is specified by the user a priori. The spread of the radial 

basis function was determined in the same manner as the order was determined for the 

polynomial kernel. Figure 48 is a plot of classification accuracy using σ of 0.01, 0.05, 

0.1, 0.25, 0.5 and 1.0. The best spread for the radial basis function was 0.05, and this 

value was used for the evaluation of the radial basis function SVM. 
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Figure 48. Radial basis function width must be determined for the kernel in the radial 
basis function support vector machine. 
 

  The results using SVMs were compared to the results obtained using the ANN. 

The classification accuracy for each algorithm is shown in Figure 49 for each cognitive 

gauge. As with the results using the discriminant functions, support vector machines have 

comparable classification accuracy to the artificial neural networks. However, support 

vector machines, particularly those using linear and radial basis function kernels, perform 

almost as well as the ANN. The 3rd order polynomial support vector machine did not 

perform as well as the other support vector machines. This result was expected since a 1st 

order polynomial was considered a better choice as a polynomial model based on the 

analysis to determine the order of the polynomial support vector machine. 
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Figure 49. Classification accuracy for comparing results using support vector machines 
and artificial neural networks for each of the cognitive gauges. 
 

  Comparisons between the support vector machines and the artificial neural 

networks were conducted pairwise. The wins for the ANN were summed and divided by 

the total number of trials. The wins were collapsed across cognitive gauge classification. 

The ANN performed better in each case. Figure 50 shows the ANN win percentages 

against each of the support vector machine classifiers. The worst performer was 3rd order 

polynomial SVM, which lost to the ANN in approximately 76% of the trials. The linear 

SVM and the radial basis function SVM performed about the same, with the artificial 

neural networks outperforming these algorithms in about 59% of the trials. These results 

show that the ANN is the better algorithm for classifying operator functional state using 

psychophysiological measures. 
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Figure 50. Win percentage of the artificial neural network classification over support 
vector machines across all trials and cognitive gauges. 
 

  Comparisons between the support vector machines and the artificial neural 

networks were conducted pairwise using McNemar’s test described in Section 2.12. The 

ANN win pooled probabilities of these tests are shown in Figure 51. The win probability 

varied by cognitive gauge but did not follow the same trend as was the case for 

evaluation with discriminant functions. The worst performer was the 3rd order polynomial 

support vector machine. In fact, the artificial neural network outperformed the algorithm 

in every trial during the spatial working memory, global workload, and OVI task 

cognitive gauge trials. The ANN won by a lower margin with the linear learning 

machines and the radial basis function support vector machines. 
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Figure 51. Artificial neural network pooled win probability for each of the cognitive 
gauges and support vector machine classifier comparisons. 

 

  Support vector machines have been demonstrated in many ‘toy’ data set problems 

that are Gaussian with large margin class boundaries. The support vector machines 

perform well and even better than the multilayer perceptron due to the underlying 

statistics of the data. However, the multilayer perceptron outperforms the SVM in most 

real-world problems. In fact, one researcher (Raudys, 2000) showed an increase in 

algorithm overlearning of the training sets and increases in margin width for determining 

the optimal hyperplane in many real world data sets, and also claimed that a specifically 

trained perceptron that is optimally stopped using validation data is a better alternative to 

a linear support vector machine. 

 

 128 
 



  4.5 Inclusion of New Measures-Classification Results 

  Neural networks were trained using the input features from the study (EEG, A-

meter, heart, and eyeblink measures) as well as new measures collected offline during the 

trials. Electrodermal activity (EDA), electromyography (EMG), and pupil diameter were 

collected as described in Section 3.2. The EDA, EMG, and pupil data collected during the 

single-task experiment were used in addition to the features used to train the ANNs to 

determine improvements in classification, if any, by using the new measures collected 

offline. The data were trained using a multilayer perceptron with backpropagation with 

the same training and test data sets used in the single-task experiment. Figure 52 shows 

the results for this experiment for each of the cognitive gauges. The results are compared 

to the results obtained using the original features of the single trial experiment. 

  The additional measures improve overall classification accuracy. However, the 

increase is small, ranging from 0 to 6% with an average of about 2%. The additional cost 

of the equipment and the burden on the operators of adding the new equipment, 

electrodes, and more weight may outweigh the improvement in classification accuracy. 

Saliency analysis, discussed in the next subsection, can determine how important the 

measures are to accurate classification. 
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Figure 52. Classification accuracy improves with additional features, indicating that the 
features are salient. 
 
 
 

4.6 Saliency Analysis 

  Saliency analysis was conducted using the partial derivative saliency measure and 

the trained neural networks from the experiment described in Section 4.5, which included 

the measures collected offline as well as those used in the real-time classification. The 

partial derivative technique computes an input-output relationship for each of the features 

using partial derivatives of the layer outputs in a fully trained network.  

 130 
 



  The saliency values for each of the trained networks was normalized so the most 

salient feature had a saliency of one and all other features had values less than one but 

maintained their relationships with all other features. The saliency was summed for each 

of the features for all trials for a particular cognitive gauge. The values were normalized 

in the same manner as the individual trials, which was accomplished for each of the 

cognitive gauges, and results can be found in Appendix D. The normalization procedure 

was accomplished to ensure that the features for each operator were in the same range of 

values to allow the saliency to be collapsed across trial and operator. 

  The saliency values are ranked in descending order by cognitive gauge, and the 

feature labels themselves are displayed in rank order with the most salient feature at the 

top of the table (see Appendix E). The top ten salient features for each of the cognitive 

gauges are displayed in Table 22. Many of the features are salient for each of the 

cognitive gauges, indicating that different measures are not necessary for different 

cognitive gauge classifiers.  

  The additional measures described in Section 4.5 appear as salient features in all 

of the cognitive gauges. In particular, the pupil diameter ranks in the top four for all 

seven cognitive gauges, indicating it is important to classification. The majority of the 

EEG features are the higher frequency measures of beta and gamma. They are also 

associated with electrodes around the edge of the scalp and so may be measures of tonic 

muscle activity.  
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Table 22: Top ten salient features for each of the cognitive gauges for all operators. 

Spatial 
Working 
Memory

Verbal 
Working 
Memory

Executive 
Function

Global 
Workload

Spatial vs 
Verbal VHT Task OVI Task

Pupil Diam EDA Tonic  EMG        HEOG gamma Interblink EDA Tonic  Pupil Diam 
Interblink EMG        EDA Tonic  Pupil Diam EMG        EMG        EMG        
T5   gamma Pupil Diam Pupil Diam T5   gamma O2   alpha Pupil Diam EDA Tonic  
O2   alpha O2   gamma T5   gamma EDA Tonic  Pupil Diam O2   gamma Interblink 
F7   gamma F7   gamma O2   gamma O2   gamma O2   gamma F7   gamma HEOG gamma 
EMG        T5   gamma HEOG gamma EMG        T5   gamma T5   gamma Interbeat  
EDA Tonic  T5   beta  F7   gamma F7   gamma EDA Tonic  VEOG gamma T5   beta  
O2   gamma FZ   gamma T5   beta  Interbeat  VEOG gamma F7   beta  F7   gamma 
VEOG gamma Interblink Interblink Interblink HEOG gamma T5   beta  O2   gamma 
HEOG gamma VEOG gamma VEOG gamma VEOG gamma O2   theta Ameter     T5   gamma  
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V. Discussion and Conclusions 

 5.1  Overview   

 This chapter discusses the results of each experiment and considers conclusions 

that follow from them. The single-task experiments were conducted to evaluate and 

compare classification algorithms for operator functional state. These experiments were 

also used to evaluate the ability to develop cognitive models derived from information 

processing demands and task type. Additionally, these experiments were used to evaluate 

new, nontraditional psychophysiological measures and their utility in improving 

classification accuracy. The dual-task experiments were conducted to determine the 

utility of adaptive aiding using operator functional state in a UCAV simulation.  

 5.2  Single-Task Experiment Discussion and Conclusions 

 Single-task experiments were conducted to explore three questions concerning 

operator functional state estimation: 1) Can multiple cognitive gauges be developed 

based on information processing demands and task type? 2) Which pattern classification 

algorithm works best for classifying operator functional state using psychophysiological 

measures? 3) Which psychophysiological measures are salient in classifying operator 

functional state? Each question is considered in the next three subsections. 

 5.2.1  Multiple Cognitive Gauge Development 

 Multiple cognitive models or gauges were developed based on information 

processing demands and task type. Some models were more accurate than others using 

the psychophysiological measures investigated in these experiments. Models developed 

based on information processing demand were for global workload, executive function, 
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spatial working memory, verbal working memory, and spatial versus verbal working 

memory. Additional models were developed for the OVI and VHT tasks. 

 A single-task experiment was conducted to explore implementation of different 

cognitive gauges using the same psychophysiological measures. Seven cognitive gauges: 

verbal working memory, spatial working memory, global workload, executive function, 

spatial versus verbal working memory, and an OVI task and a VHT gauge were 

evaluated. Artificial neural networks, specifically multilayer perceptrons, were used to 

train each gauge. Results showed that different gauges could be determined using the 

same features and that classifications for some gauges have much better performance. 

The gauge to determine spatial or verbal working memory performed best with a 

classification accuracy of about 91%. The accurate classification of this gauge indicates 

that features derived from physiological signals can be used to differentiate classes of 

cognitive processing accurately, as in the case of working memory. 

 The verbal working memory and VHT gauges, however, did not perform well. 

The separation between the low VHT (low verbal working memory) and the high VHT 

(high verbal working memory) classes was not sufficient to distinguish between the two 

classes. Operator subjective measures calculated using the NASA-TLX showed 

significant differences between these two classes. Operator performance also showed 

significant differences between the classes. The classifiers were expected to find 

differences in the physiology, since differences were found in both subjective measures 

and operator performance measures. The poor separation could be a result of the current 

location of the EEG electrodes, which may not record signals from regions of the brain 
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responsible for verbal working memory. Future studies should consider these regions 

when determining sensor placement.  

 The executive function gauge also had low classification accuracy (70%), 

although the accuracy was well above chance (33%). The trial segments defining the 

levels of executive function were derived from the mental demand subscale of the 

NASA-TLX. The low classification accuracy could result from an inadequacy of mental 

demand subscale as a good measure of executive function and the location of the EEG 

sensors. However, the latter is unlikely since executive function occurs in the frontal lobe 

of the brain, and two sensors in this study were located in the frontal region (F7 and Fz). 

 The spatial working memory and OVI tasks were based on the SAR image 

processing and ingress portions of the study. The classifiers performed fairly well (81% 

for spatial working memory and 70% for the OVI task) for each of these gauges. The 

operator subjective ratings and operator performance measures also showed significant 

differences in the low and high conditions. The gauge for the global workload for real-

time classification in the dual task experiment was derived from these two single-task 

cognitive gauges. 

 5.2.2  Pattern Classification Algorithm Comparison 

 The data from these experiments were also used to explore the utility of various 

pattern classification algorithms. An evaluation of classifier algorithms was conducted to 

determine which classifiers performed better using psychophysiological signals in a 

complex operational environment. Comparisons were made between artificial neural 

networks, discriminant functions, and support vector machines. The artificial neural 

networks performed better; however, other algorithms could be considered adequate 
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substitutes. Support vector machines performed well with psychophysiological signals, 

particularly in the case of linear and radial basis function support vector machines.  

 Other issues should be considered when selecting the classifier. The artificial 

neural network always trained to the data with near perfect results, but it could overlearn 

the data and not generalize to new data samples. If the developer does not realize this 

effect and does not implement techniques such as early stopping using validation data, 

the artificial neural network may not perform as well as other algorithms that are properly 

trained. Similar issues apply to any algorithm. 

 Algorithm complexity should be a consideration; Occam’s razor selects the 

simplest solution as the best solution. More complex algorithms have more parameters 

that must be determined. Also, an increase in the number of parameters means that more 

training data must be collected to build a good model of cognitive workload. 

 5.2.3  Psychophysiological Feature Saliency 

 Feature saliency was explored using this data set. The partial derivative saliency 

method was used to determine the relative importance of features in model accuracy. 

New measures, such as integrated muscle activity, arousal level, pupil diameter, and 

electrodermal tonic level, were evaluated in addition to traditional psychophysiological 

features. Feature saliency analysis indicated that the same features can be used to detect 

levels in multiple cognitive gauges. The single-task experiment showed that the same 

features appeared in each of the cognitive gauge top ten list. Feature saliency can help 

prune the input features used for classification. Reducing the number of features 

decreases algorithm training time and reduces the complexity of the classifier. Reducing 

the number of signals collected increases operator acceptance of this new technology. 
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 5.3  Dual-Task Experiment Discussion and Conclusions 

 Adaptive automation using operator functional state was demonstrated to improve 

mission effectiveness by decreasing the number of missed weapons release waypoints 

and increasing the number of targets hit. These experiments represent the first 

implementation of this technology in an operationally relevant environment. 

 5.3.1  Utility of Operator Functional State 

 A dual-task experiment was conducted to determine the utility of operator 

functional state derived from psychophysiological signals in adaptive aiding to improve 

operator performance. Operator performance was evaluated based on signal detection 

measures derived from SAR processing and mission effectiveness measures. Several 

trials were conducted to evaluate the ability of artificial neural networks to detect a high 

workload condition in the operator. The classifier did not perform as well as expected; 

the operator state was classified correctly with 70% accuracy. The low classification 

accuracy may have several causes, the most obvious of which are the input features. The 

input measures may not be robust enough to classify operator state, but the lack of 

robustness is probably not the cause since studies conducted by numerous researchers 

have shown promise for classifying operator functional state as described in Sections 

2.4.4 and 2.4.5.   

Another consideration is consistently high workload during the high workload 

intervals and low workload during the low workload intervals. The results in Section 

4.2.3 (describing the dual-task experiment) showed that the magnitudes of one of the 

most salient features were not consistent during the labeled high workload condition. The 

magnitudes of the EEG gamma signal increased as the operator progressed further into 
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the mission, which could indicate that the operator workload was not consistent during 

the high workload task segments. Operator performance during the high workload trials 

seems to provide further evidence that the workload levels were not consistent during the 

processing of the SAR images. All operators were able to complete the task of processing 

the first two SAR images before the weapons release points. However, each operator did 

not complete at least one of the third and fourth SAR images, resulting in a missed 

weapons release and a mission failure for the associated UCAV.  

  Additionally, operators had different skill levels, and some can perform the high 

workload tasks with the same ease as the low workload trials. In fact, one of the operators 

did not miss any targets regardless of aiding. Operator physiology is not expected to 

change without cognitive loading. In fact, the classifier for this operator estimated only 

13% of the high workload condition in the trial as high workload. This result is not a 

training issue, as all operators were trained to the same performance level in the single 

task experiment. 

  Since operators perform at different levels and their cognitive load increases as a 

result of increased task demands, future studies should include experiments that define 

the operator workload based on performance. These studies could include trials of 

increasing task demand. The high workload trials could consist of simulation parameters 

for each operator based on the point of individual performance breakdown. The trials in 

the experiment could be tailored for each operator. 

 5.3.2  Manipulations of Operator Vehicle Interface 

 The dual-task experiment also investigated effects on operator performance using 

operator functional state for adaptive aiding by manipulating the operator vehicle 
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interface task. The adaptive aiding consisted of slowing down the vehicle that the 

operator was focused on when the classifier detected the operator was in high cognitive 

workload. The aided trials showed a significant increase in target hits and consequently 

fewer missed targets. The mission effectiveness parameters also showed significant 

improvement in the adaptively aided trials. The number of vehicles that missed the 

weapons release waypoint was reduced by 67% by aiding the operator adaptively. This 

result occurred in spite of the classifier being correct only 70% of the time. Improved 

classification accuracy could further improve mission effectiveness. These results are 

critical data in operational settings since missed weapons release points are wasted 

missions. 

 5.3.3  Time-appropriate and Task-appropriate Aiding 

 Some trials were implemented using a randomly aided scheme in which the 

operator was aided regardless of functional state. The results indicated that the aiding 

must be presented at the appropriate time. The operator performance for mission critical 

measures (number of target hits and number of missed weapons release waypoints) 

during the randomly aided trials was not significantly different from the trials with no 

aiding. In addition to presenting adaptive aiding at the appropriate time, the results 

suggest that the aiding must be appropriate for the task. No significant differences in 

vehicle health task performance were found in no-aiding trials, aided trials, or in the 

randomly aided trials.  
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VI. Summary and Recommendations 

 6.1  Overview 

 This dissertation makes contributions toward increasing operator performance 

using adaptive automation and operator functional state. This chapter re-emphasizes the 

significant contributions of the research. Recommendations for continuing research are 

also presented.  

 6.2  Significant Contributions 

Several firsts were presented in this dissertation. This research was the first 

example of adaptive aiding using operator functional state in an operationally relevant 

environment. Measures derived from psychophysiological signals were identified, 

extracted, and integrated using the multilayer perceptron. The output of the multilayer 

perceptron defined the operator functional state and was used as a control input to the 

UCAV simulator. In turn, the simulator enabled mitigation strategies during high 

cognitive workload periods, allowing the operator to focus on mission critical events. 

Once the operator functional state was determined by the pattern classifier to be at a 

nominal level, the system was returned its previous state.  

Implementation of adaptive aiding using operator functional state resulted in 

improved operator performance. Improvements in mission critical performance measures 

were significant. For example, implementation of operator-functional-state-driven 

adaptive aiding reduced the occurrence of missed weapons release waypoints, a measure 

of mission failure, from 25% in the trials without adaptive aiding to 8% in trials with 

adaptive aiding. This result represented a performance improvement of 67% ± 3%. 
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Another first presented in this research was the development of multiple cognitive 

models using the same psychophysiological measures. The multiple cognitive models 

were defined by information processing demands and task type. Previous experiments 

focused on one information processing demand, i.e, working memory or global workload. 

This research developed seven cognitive models, five defined by information processing 

demand and two derived from the simulation task. 

Finally, multiple pattern classification algorithms were compared to determine 

their utility for classifying operator functional state using psychophysiological measures. 

Three types of pattern classification algorithms: support vector machines, discriminant 

analysis, and artificial neural networks were explored. The multilayer perceptron neural 

network classifier was found to be marginally superior. 

 This research has resulted in several publications and presentations. Four papers 

were published in journals and conference proceedings. Portions of this research 

appeared in a NATO technical report.  

 6.3  Recommendations for Future Research 

 Future research should focus on improving the classification of operator 

functional state. Improvements in the classifier should improve operator performance 

since the assessment of operator state will be more accurate. The classifier algorithms 

used in this study all performed well, but classification accuracy was a limiting factor in 

operator performance improvement. Developing new input features or applying different 

transformations to existing measures could improve classification accuracy. Some 

transformations to explore are coherence between the features and using relative power 

instead of log power. 
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 Future research should also investigate techniques and measures to predict 

cognitive load, not merely to identify current state. Cognitively overloaded operators 

perform adequately for short periods by focusing more on a task, but they may miss 

important time critical information because of this focus and may not be completely 

aware of other events in a mission. Determining that an operator is approaching an 

overload condition could prevent the onset of performance and situation awareness 

degradation. Implementing adaptive aiding before errors occur should improve mission 

effectiveness. 

 The multilayer perceptron with backpropagation training is a memoryless 

classifier, whereby the previous state or states are unknown to the classifier. The use of 

recurrent neural networks may enable the use of temporal information as well as spatial 

information. Temporal and spatial information may be used to predict operator state. 

Examples of recurrent neural networks are Elman neural networks, Jordan networks, and 

time delay neural networks (Haykin, 1999). Future studies should investigate the use of 

these artificial neural networks using psychophysiological data for predicting operator 

functional state. 
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Appendix A. Vehicle Health Task Failure/Correct Response Pairings 

CATEGORY PROMPT APPROPRIATE RESPONSE 
      

Electrical    

 
Battery Power Low Switch to Back-up Batteries 

 
Generator Fault 

Detected Recycle Generator 

      
Mechanical    

 
Bomb Bay Door Fault Recycle Bomb Bay Door 

 
Weapon Release 

Actuator Fault 
Recycle Weapons Release 

Actuator 
      

Engine    

 
Engine Temperature 

High Open Air Cooling Intake 

 
Engine Fault Detected Check Fault Code 

      
Sensors    

 
SAR System Fault Re-intialize SAR System 

 
GPS Signal Failure Re-intialize GPS System 

      
Communications    

 
Loss of 

Communications 
Switch to Alternate Comm 

Frequency 

 
Loss of Last 

Transmission Re-send Last Transmission 

      
Fuel    

 
Fuel Load Unbalanced Rebalance Fuel Tanks 

 
Fuel Pump Fault Switch To Reserve Fuel Pump 
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Appendix B. Vehicle Health Task Command and Response Matrix 
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Appendix C. Kruskal-Wallis Nonparametric Test 
 

  The nature of the operator performance data dictated the application of 

nonparametric statistics. In some of the present data, normality could not be assumed. For 

example, the key measure for mission effectiveness (missed weapons release waypoints) 

is a series of Bernoulli trials which has a binominal distribution. An underlying 

assumption of the familiar Analysis of Variance (ANOVA) test is that the data have a 

normal distribution. Absence of normality in the operator performance data implies the 

need for the application of a nonparametric test.  A common nonparametric test in human 

research is the Kruskal-Wallis test (Rosner, 1995; Siegel, 1956). 

  The Kruskal-Wallis tests the null hypothesis that k groups come from the same 

population with respect to the means. This test is used in place of the traditional ANOVA 

when the distribution of the sample data is not normal or the data are ordinal. The 

procedures for comparing the means using nonparametric methods are fairly 

straightforward and are outlined in the following steps. 

1) Pool the observations from all groups, constructing a data set with a combined 

sample size of where n is the sample size of the i∑= inN th group. 

2) Replace the each of the N observations with ranks. The smallest observation is 

replaced by rank 1, the next smallest by rank 2, and the largest value by rank N. In 

case of ties, use the average rank of the tied observations. 

3) Compute the rank sums for each of the groups. 

4) Compute the test statistic. If there are no ties in the rank sums, the test statistic is 

( )∑
=

+−
+

=
k

i i

i N
n
R

NN
H

1

2

13
)1(

12 ,            (83) 
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where Ri is the rank sum of the ith group. If there are tied rank sums, the test 

statistic is 

( )
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13
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12

,           (84) 

where tm is the number of observations with the same value in the mth cluster of 

tied observations and k  is the number of tied groups. ′

5) The H statistic used in the Kruskal-Wallis test is distributed approximately as chi 

square with . Test the null hypothesis H1−= kdf 0 that the group means are the 

same using 

2
1, αχ −> dfH   Reject Ho                       (85) 

2
1, αχ −≤ dfH   Accept Ho. 

6) Determine statistical significance by computing the p value 

)Pr( 2 Hp df >= χ .                      (86) 

  The Kruskal-Wallis test computes if groups are significantly different. Further 

testing must be accomplished to determine which groups are significant. Pairwise group 

comparisons can be made under the Kruskal-Wallis test to determine which group means 

are different using the Dunn Procedure (Rosner, 1995). To compare two groups, i1 and i2 

use the following procedure: 

1) Compute the z score, which is the test statistic for the Dunn Procedure, as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+

−
=

21

21

11*
12

)1(

ii

ii

nn
NN
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z ,             (87) 
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where iR is the average rank sum for group . The Dunn Procedure adjusts the level of 

significance for the test for multiple comparisons. The level of significance or α is 

adjusted by 

in

)1(
*

−
=

mm
αα  ,           (88) 

where m is the number of pairwise test being conducted and α is usually 0.05. 

2) Use the z score and test the null hypothesis H0 as 

zH >   Reject Ho                                 (89) 

zH ≤   Accept Ho

 
3) Determine statistical significance by computing the p value 

)Pr( Hzp >= .                    (90) 
 
  This procedure is illustrated with an example using an operator performance 

measure from the research discussed in this document. The Missed Weapons Release 

Waypoint metric is a measure of mission effectiveness - a critical finding in this research. 

The Missed Weapons Release Waypoint measure is a success/failure metric and is scored 

as a 0 (mission success) or a 1 (mission failure). The complete raw data set for this 

measure can be found in Appendix G.  

  The first step of the Kruskal-Wallis test is to pool the raw data from all workload 

and aiding groups. The observations are sorted in ascending order and replaced with 

ranks. The observed values are 0 or 1 and the number of observations is 192. Obviously 

there are tied observed values in the data. The rank for observed values of 0 is 

5.85
170

1 170

1
=∑

=i
i  and for observed values of 1 the rank is 5.181

22
1 192

171
=∑

=i
i . The ordered 

observed values and ranks are shown in Table 23. 
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Table 23: Table of Observed Value and Ranks for Missed Weapons Release Waypoint 
Measure. 
 

Group Observed Value Rank 
Low Workload No Aiding 0 85.5 
Low Workload No Aiding 0 85.5 
Low Workload No Aiding 0 85.5 

. 

. 

. 

. 

. 

. 

. 

. 

. 
High Workload Random Aiding 1 181.5 
High Workload Random Aiding 1 181.5 
High Workload Random Aiding 1 181.5 

 

 

  The next step in the procedures for the Kruskal-Wallis test is to compute the rank 

sums for each group. To improve the readability of the equations, the groups were 

assigned numbers. The low workload no-aiding group was assigned a 1, low workload 

aiding group 2, low workload random aiding group 3, high workload no-aiding group 4, 

high workload aiding group 5, and high workload random aiding was assigned to group 

6. The rank sums for the groups are computed as 

   42965.855.1815.855.851 =++++= LR .                             (91) 

Similarly, the ranks sums for the remaining groups are 

    ,         (92) 20522 =R

   ,         (93) 20523 =R

   ,         (94) 52564 =R

   ,         (95) 22445 =R

and 

   .              (96) 26286 =R
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Now the H statistic can be computed. Since there are ties, Equation (84) must be 

used to compute the H statistic as 

 

( ) ( )
192192

22221701701

193*3
24

2628
24

2244
48

5256
24

2052
24

2052
48

4296*
193*192

12

3

33

222222

−
−+−

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++

=H    (97) 

8578.21=H .        (98) 

 
From a table of χ2 values found in many statistics texts and using an α of 0.05 with df = 5, 

the critical χ2 value is 11.070. The null hypothesis H0 can be now be tested as 

070.11858.21 >   Reject Ho                  (99) 

indicating the group means are significantly different with a probability of p < 0.05. 

Computing the p value directly from Equation (86) yields p = 0.0006. 

 To determine which groups are significantly different, pairwise comparisons of 

the groups using the Dunn Procedure for the Kruskal-Wallis test must be accomplished. 

First, compute the average rank sums. The average rank sum for group 1 (No-aiding 

under low workload condition) is 

5.89
48

)5.855.1815.855.85(

1

1
1 =

++++
==

L

n
RR .  (100) 

Similarly, the average rank sums for the other groups are computed and the results are 

presented in Table 24. 

 Next, the test statistic z must be computed using Equation (87) for each pair of 

groups of interest. The first comparison is between no-aiding and aiding for the low 

workload conditions. The z score for this comparison is 
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Table 24: Table of Average Rank Sums for Missed Weapons Release Waypoint Measure. 
 

Class Average Rank Sum 
Low Workload No Aiding       5.891 =R  
Low Workload Aiding       5.852 =R  
Low Workload Random Aiding       5.853 =R  
High Workload No Aiding       5.1094 =R  
High Workload Aiding       5.935 =R  
High Workload Random Aiding       5.1096 =R  

 

 

1517.1

24
1

48
1*

12
)1192(*192

5.855.89
12 =

⎟
⎠
⎞

⎜
⎝
⎛ +

+

−
=z       (101) 

Similarly, the other comparisons of interest are 1517.113 =z , 0.023 =z , , 

, and . The null hypothesis is tested using an α of 0.05 which is 

adjusted for multiple tests using (Equation 88) results in

6068.445 =z

0.046 =z 6068.456 −=z

0017.0
)5(6

05.0* ==α . Finally, 

using α* and a table of z scores yields  

14.3>H   Reject Ho               (102) 
14.3≤H   Accept Ho.

Comparing the z scores for each of the pairwise comparisons indicates that only z45 and 

z56 are significantly different with a probability of p < 0.05. These groups are aiding 

versus no-aiding under the high workload condition and aiding versus random aiding 

under the high workload condition. Finally, the actual p values are computed using 

Equation (90) and those p values in addition to the z score are the values reported in 

Tables 18 and 19 in Section 4.2.2.1. 
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Appendix D. Saliency Values of Features for Each Cognitive Load Grouping 

 

Feature

Spatial 
Working 
Memory

Verbal 
Working 
Memory

Executive 
Function

Global 
Workload

Spatial vs 
Verbal VHT Task OVI Task

HEOG delta 0.647 0.374 0.464 0.625 0.607 0.288 0.586
HEOG theta 0.569 0.330 0.464 0.587 0.412 0.266 0.577
HEOG alpha 0.523 0.330 0.388 0.606 0.412 0.298 0.580
HEOG beta  0.566 0.378 0.490 0.639 0.439 0.384 0.622
HEOG gamma 0.650 0.519 0.703 1.000 0.699 0.467 0.797
VEOG delta 0.580 0.416 0.500 0.520 0.603 0.514 0.421
VEOG theta 0.547 0.437 0.434 0.611 0.591 0.326 0.482
VEOG alpha 0.554 0.386 0.361 0.535 0.567 0.358 0.406
VEOG beta  0.502 0.353 0.392 0.448 0.510 0.348 0.420
VEOG gamma 0.679 0.521 0.616 0.712 0.727 0.604 0.561
FZ   delta 0.445 0.307 0.372 0.440 0.432 0.268 0.489
FZ   theta 0.463 0.349 0.433 0.535 0.439 0.326 0.473
FZ   alpha 0.454 0.339 0.353 0.440 0.490 0.325 0.474
FZ   beta  0.591 0.395 0.442 0.597 0.584 0.375 0.514
FZ   gamma 0.649 0.524 0.531 0.652 0.657 0.450 0.652
F7   delta 0.459 0.431 0.452 0.520 0.548 0.310 0.464
F7   theta 0.447 0.309 0.422 0.490 0.397 0.284 0.510
F7   alpha 0.522 0.395 0.389 0.386 0.506 0.345 0.485
F7   beta  0.533 0.518 0.523 0.562 0.390 0.572 0.528
F7   gamma 0.758 0.664 0.646 0.789 0.685 0.643 0.699
PZ   delta 0.580 0.356 0.368 0.457 0.399 0.373 0.597
PZ   theta 0.497 0.356 0.372 0.391 0.449 0.333 0.510
PZ   alpha 0.611 0.394 0.326 0.391 0.618 0.287 0.438
PZ   beta  0.476 0.419 0.388 0.506 0.523 0.391 0.472
PZ   gamma 0.568 0.486 0.491 0.487 0.684 0.461 0.508
T5   delta 0.513 0.401 0.423 0.416 0.566 0.301 0.461
T5   theta 0.498 0.324 0.384 0.413 0.499 0.319 0.430
T5   alpha 0.460 0.338 0.341 0.469 0.478 0.300 0.524
T5   beta  0.623 0.549 0.644 0.632 0.664 0.523 0.719
T5   gamma 0.781 0.663 0.748 0.908 0.801 0.637 0.676
O2   delta 0.523 0.340 0.398 0.425 0.499 0.260 0.432
O2   theta 0.636 0.388 0.388 0.468 0.686 0.317 0.535
O2   alpha 0.774 0.447 0.459 0.591 0.884 0.314 0.613
O2   beta  0.650 0.416 0.513 0.611 0.651 0.409 0.561
O2   gamma 0.711 0.683 0.708 0.886 0.866 0.747 0.685
Ameter     0.442 0.391 0.540 0.447 0.405 0.515 0.522
Interbeat  0.591 0.465 0.528 0.785 0.536 0.453 0.762
Interblink 0.943 0.523 0.625 0.775 1.000 0.346 0.830
EDA Tonic  0.750 1.000 0.931 0.895 0.776 1.000 0.838
EMG        0.753 0.998 1.000 0.833 1.000 0.951 0.918
Pupil Diam 1.000 0.789 0.887 0.940 0.867 0.759 1.000
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Appendix E. Sorted Features for Each Cognitive Load Grouping 

Spatial 
Working 
Memory

Verbal 
Working 
Memory

Executive 
Function

Global 
Workload

Spatial vs 
Verbal VHT Task OVI Task

Pupil Diam EDA Tonic  EMG        HEOG gamma Interblink EDA Tonic  Pupil Diam 
Interblink EMG        EDA Tonic  Pupil Diam EMG        EMG        EMG        
T5   gamma Pupil Diam Pupil Diam T5   gamma O2   alpha Pupil Diam EDA Tonic  
O2   alpha O2   gamma T5   gamma EDA Tonic  Pupil Diam O2   gamma Interblink 
F7   gamma F7   gamma O2   gamma O2   gamma O2   gamma F7   gamma HEOG gamma 
EMG        T5   gamma HEOG gamma EMG        T5   gamma T5   gamma Interbeat  
EDA Tonic  T5   beta  F7   gamma F7   gamma EDA Tonic  VEOG gamma T5   beta  
O2   gamma FZ   gamma T5   beta  Interbeat  VEOG gamma F7   beta  F7   gamma 
VEOG gamma Interblink Interblink Interblink HEOG gamma T5   beta  O2   gamma 
HEOG gamma VEOG gamma VEOG gamma VEOG gamma O2   theta Ameter     T5   gamma 
O2   beta  HEOG gamma Ameter     FZ   gamma F7   gamma VEOG delta FZ   gamma 
FZ   gamma F7   beta  FZ   gamma HEOG beta  PZ   gamma HEOG gamma HEOG beta  
HEOG delta PZ   gamma Interbeat  T5   beta  T5   beta  PZ   gamma O2   alpha 
O2   theta Interbeat  F7   beta  HEOG delta FZ   gamma Interbeat  PZ   delta 
T5   beta  O2   alpha O2   beta  O2   beta  O2   beta  FZ   gamma HEOG delta 
PZ   alpha VEOG theta VEOG delta VEOG theta PZ   alpha O2   beta  HEOG alpha 
FZ   beta  F7   delta PZ   gamma HEOG alpha HEOG delta PZ   beta  HEOG theta 
Interbeat  PZ   beta  HEOG beta  FZ   beta  VEOG delta HEOG beta  VEOG gamma 
VEOG delta VEOG delta HEOG delta O2   alpha VEOG theta FZ   beta  O2   beta  
PZ   delta O2   beta  HEOG theta HEOG theta FZ   beta  PZ   delta O2   theta 
HEOG theta T5   delta O2   alpha F7   beta  VEOG alpha VEOG alpha F7   beta  
PZ   gamma FZ   beta  F7   delta VEOG alpha T5   delta VEOG beta  T5   alpha 
HEOG beta  F7   alpha FZ   beta  FZ   theta F7   delta Interblink Ameter     
VEOG alpha PZ   alpha VEOG theta VEOG delta Interbeat  F7   alpha FZ   beta  
VEOG theta Ameter     FZ   theta F7   delta PZ   beta  PZ   theta PZ   theta 
F7   beta  O2   theta T5   delta PZ   beta  VEOG beta  VEOG theta F7   theta 
HEOG alpha VEOG alpha F7   theta F7   theta F7   alpha FZ   theta PZ   gamma 
O2   delta HEOG beta  O2   delta PZ   gamma O2   delta FZ   alpha FZ   delta 
F7   alpha HEOG delta VEOG beta  T5   alpha T5   theta T5   theta F7   alpha 
T5   delta PZ   theta F7   alpha O2   theta FZ   alpha O2   theta VEOG theta 
VEOG beta  PZ   delta PZ   beta  PZ   delta T5   alpha O2   alpha FZ   alpha 
T5   theta VEOG beta  O2   theta VEOG beta  PZ   theta F7   delta FZ   theta 
PZ   theta FZ   theta HEOG alpha Ameter     HEOG beta  T5   delta PZ   beta  
PZ   beta  O2   delta T5   theta FZ   alpha FZ   theta T5   alpha F7   delta 
FZ   theta FZ   alpha FZ   delta FZ   delta FZ   delta HEOG alpha T5   delta 
T5   alpha T5   alpha PZ   theta O2   delta HEOG theta HEOG delta PZ   alpha 
F7   delta HEOG alpha PZ   delta T5   delta HEOG alpha PZ   alpha O2   delta 
FZ   alpha HEOG theta VEOG alpha T5   theta Ameter     F7   theta T5   theta 
F7   theta T5   theta FZ   alpha PZ   alpha PZ   delta FZ   delta VEOG delta 
FZ   delta F7   theta T5   alpha PZ   theta F7   theta HEOG theta VEOG beta  
Ameter     FZ   delta PZ   alpha F7   alpha F7   beta  O2   delta VEOG alpha 
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Appendix F. Confusion Matrices for Cognitive Gauges during the Single Task 
Experiments 

 

Spatial Working Memory 

Testing Probability Matrix * 
 No Spatial Low Spatial High Spatial Total 

No Spatial 90.36 8.67 0.97 48.61 
Low Spatial 13.26 72.53 14.20 24.12 
High Spatial 2.39 25.35 72.26 27.27 
Total 47.77 28.62 23.61 100.00 

  
 

Verbal Working Memory 

Testing Probability Matrix * 
  No Verbal Low Verbal High Verbal Total 
No Verbal 93.29 3.32 3.39 49.28 
Low Verbal 10.97 59.08 29.95 25.40 
High Verbal 15.20 43.81 40.99 25.32 
Total 52.60 27.74 19.66 100.00 

 
 

Executive Function 

Testing Probability Matrix * 
  Low Executive Med Executive High Executive Total 
Low Executive 84.32 13.36 2.32 58.10 
Med Executive 46.02 51.40 2.58 26.46 
High Executive 45.78 4.42 49.80 15.44 
Total 68.23 22.05 9.72 100.00 

 
  

Global Workload 

Testing Probability Matrix * 
  Low Global High Global Total 
Low Global 79.83 20.17 58.07 
High Global 46.35 53.65 41.93 
Total 65.79 34.21 100.00 

 
 

* Rows indicate the actual class and columns represent predicted class. All numbers 
are percent assigned to group
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Spatial versus Verbal Working Memory 

Testing Probability Matrix * 
  Verbal Spatial Total 
Verbal 89.49 10.51 48.61 
Spatial 7.14 92.86 51.39 
Total 47.16 52.84 100.00 

 

VHT  

Testing Probability Matrix * 
  Low VHT High VHT Total 
Low VHT 62.70 37.30 50.12 
High VHT 44.64 55.36 49.88 
Total 53.69 46.31 100.00 

 
  

OVI Task 

Testing Probability Matrix * 
  Cruise Low SAR High SAR Total 
Cruise 82.53 11.82 5.66 46.93 
Low SAR 26.63 61.59 11.78 23.04 
High SAR 26.42 15.52 58.06 30.03 
Total 52.80 24.40 22.80 100.00 

 
 

* Rows indicate the actual class and columns represent predicted class. All numbers 
are percent assigned to group 
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Appendix G. Raw Data for Hit, Miss, False Alarm, and Correct Rejection for Each 
SAR Image Grouped by Aiding Type and Workload Level 

 

Class     Hit Miss False Alarm Correct Rejection 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  5 1 1  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  4 2 2  5 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  4 2 2  5 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  6 0 0  6 
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Class     Hit Miss False Alarm Correct Rejection 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  6 0 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - No Aiding  0 6 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   0 6 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   0 6 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 1  5 
High Spatial - Aiding   6 0 1  5 
High Spatial - Aiding   5 1 1  5 
High Spatial - Aiding   5 1 1  5 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   6 0 0  6 
High Spatial - Aiding   5 1 1  5 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 0 6 0  6 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 0 6 0  6 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 5 1 2  4 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 0 6 0  6 
High Spatial - Random Aiding 0 6 0  6 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 6 0 0  6 
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Class     Hit Miss False Alarm Correct Rejection 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 5 1 2  4 
High Spatial - Random Aiding 4 2 2  4 
High Spatial - Random Aiding 5 1 1  5 
High Spatial - Random Aiding 0 6 0  6 
High Spatial - Random Aiding 0 6 0  6 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 6 0 0  6 
High Spatial - Random Aiding 0 6 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  5 1 1  5 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
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Class     Hit Miss False Alarm Correct Rejection 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  0 6 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  6 0 0  6 
Low Spatial - No Aiding  0 6 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Aiding   6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
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Class     Hit Miss False Alarm Correct Rejection 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 5 1 1  5 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
Low Spatial - Random Aiding 6 0 0  6 
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 Appendix H. Raw Data for Missed Weapons Release Waypoint and Number of 
DMPIs Placed for Each SAR Image Grouped by Aiding Type and Workload Level 

 
Class     Missed Weapons Release  DMPIs Placed 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  1    5 
High Spatial - No Aiding  0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 1    0 
High Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
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Class     Missed Weapons Release  DMPIs Placed 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  1    2 
High Spatial - No Aiding  1    4 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
High Spatial - Aiding   1    4 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    5 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 1    2 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    2 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    5 
High Spatial - No Aiding  1    3 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
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Class     Missed Weapons Release  DMPIs Placed 
High Spatial - Aiding   1    3 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 1    1 
High Spatial - Random Aiding 1    2 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  1    2 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  1    5 
High Spatial - No Aiding  0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
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Class     Missed Weapons Release  DMPIs Placed 
High Spatial - No Aiding  0    3 
High Spatial - No Aiding  1    2 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  1    3 
High Spatial - No Aiding  1    2 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 1    0 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  1    0 
High Spatial - No Aiding  1    0 
Low Spatial - No Aiding  1    4 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  0    6 
Low Spatial - No Aiding  1    3 
High Spatial - No Aiding  0    5 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  0    6 
High Spatial - No Aiding  1    0 
Low Spatial - Aiding   0    6 
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Class     Missed Weapons Release  DMPIs Placed 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
Low Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Aiding   0    6 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 0    5 
High Spatial - Random Aiding 0    6 
High Spatial - Random Aiding 1    1 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
Low Spatial - Random Aiding 0    6 
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