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ABSTRACT

Title of Dissertation: Control of Smart Actuators

Xiaobo Tan, Doctor of Philosophy, 2002

Dissertation directed by: Professor John S. Baras
Professor P. S. Krishnaprasad
Department of Electrical and Computer Engineering

Hysteresis in smart materials hinders wider applicability of such materials in

actuators and sensors. In this dissertation we study modeling, identification and

control of hysteresis in smart actuators. While the approaches are applicable to

control of a wide class of smart actuators, we illustrate the ideas through the

example of controlling a magnetostrictive actuator.

Hysteresis exhibited by magnetostrictive actuators is rate-independent when

the input frequency is low and we can model it by a Preisach operator. It becomes

rate-dependent when the input frequency gets high due to the eddy current effect

and the magnetoelastic dynamics. In this case, we propose a new dynamic hys-

teresis model, consisting of a Preisach operator coupled to an ordinary differential

equation in an unusual way. We establish its well-posedness and study its various

systen-theoretic properties. Existence of periodic solutions under periodic forcing



is proved. Algorithms for simulation of the model are also studied. Parameter

identification methods for both the Preisach operator and the dynamic model are

investigated.

We pursue the problem of hysteresis control along three (lifferent but connected

paths: inverse control, robust control and optimal control.

The idea of inverse control is to construct an inverse operator to cancel out

the hysteretic nonlinearity. Efficient inversion schemes are proposed for both the

Preisach model and the dynamic hysteresis model. We also formulate and study

a novel inversion problem, called the value inversion problem, and apply it to

micro-positioning control.

Inverse compensation is open-loop in nature and therefore susceptible to model

uncertainties and to errors introduced in the inverse schemes. e propose a robust

control framework for smart actuators by combining inverse compensation with

robust control techniques. e present systematic controller design methods which

guarantee robust stability and robust trajectory tracking while taking actuator

saturation into account.

Finally we study optimal control of hysteresis in smart actuators based on a low

dimensional hysteresis model. We characterize the value function as the (unique)

viscosity solution to a Hamilton-Jacobi-Bellman equation of a hybrid form, and

provide a numerical scheme to approximate the solution.
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Chapter 1

Introduction

Smart materials, such as magnetostrictives, I)iezoelectrics, electroactive polymers

(EAPs), shape memory alloys (SAas), electrorheological (ER) fluids and magne-

torheological (MR) fluids, all display certain coupling phenomena between applied

electromagnetic/thermal fields and their mechanical/rheological properties. Actu-

ators and sensors made of these materials can be built into structures, often called

smart structures, with the ability to sense and respond to environmental changes

to achieve desired goals. Smart materials and smart structures have been receiving

tremendous interest in the past decade, due to their broad applications in areas

of aerospace, manufacturing, defense, and civil infrastructure systems, to name a

few. Hysteresis widely existing in smart materials, however, makes the effective

use of smart actuators and sensors quite challenging.

A fundamental idea in coping with hysteresis is to formulate the mathematical

model of hysteresis and use inverse compensation to cancel out the hysteretic

effect. This idea can be found in [45, 80, 71, 35, 79, 62]. There have been a few

monographs devoted to modeling of hysteresis and study of dynamical systems

with hysteresis [55, 58, 86, 20, 81].



Hysteresis models canl be roughly classified into phiysics-based models anid Ipie-

nomienological models. An examp~le of a Jpiysics-base(I model is the Jiles-Atherton

model of ferromagnetic hysteresis [511, where hysteresis is considered to arise from

pinning of dlomailn walls on dlefect sites. The most popular phienlomenlological hys-

teresis model used in control of smart actuators has been the Preisach model

[1, 45, 46, 36, 38, 79, 621. A similar type of operator, called Krasnosel'skii-

Pokrovskii (KP) operator has also been used [7, 35]. Although in general the

Preisach model (does not p~rovide phiysical insight, inito tile p~roblem, it p~rovides a

meanls of dIevelop~ing phlenlomlenological moThdels tilat are cap~able of producing be-

hlaviors similar to tilose of phlysical systems (see Mlayergoyz [581 for an excellenlt

exp~ositionl).

Ill tilis (dissert atio01 we study conltrol metihodologies for smart actuators ex-

hlibitinlg hlysteresis. NW'-e illustrate tile ideas tihrougih tile examplIle of conltrollinlg a

commercially available maglletostrlctive actuator. Mlaglletostrictioll is tile phie-

nlomenlon of stronlg couplinlg betweenl magnlet ic p~rop~erties anld mecialical prop-

erties of some ferromagnletic materials (e.g., Terfellol-D): strainls are genleratedI ill

resp~onse to all appIlied magnletic field, wihile conlversely, mecihanical stresses ill tile

materials produce measurable chlanges ill magnlet izat ion. Tilis phienlomenlon can be

used for actuationl anld senlsinlg. Mlaglletostrictive actuators hlave appIlicationls to

micro-Jpositiollilg, robot ics, ultrasonics, vibrationl conltrol, etc. Figure 1.1 sihows

a sect ionlal view of a Terfellol-D actuator manlufactulredI by Etremia Products, Inlc.

By varying tile current, ill tile coil, we vary tile magnletic field ill tile Terfellol-D

rodI and( thuls conltrol tile mlotionl of tile rodI headI. Figure 1.2 disp)lays tile hlysteresis

observed ill tile maglletostrictive actuator.

NY'-e study tile p~roblem of conltrol of ihysteresis from two p~ersp~ectives. lile first

2



Stainless Steel Push Rod

Threaded Preload Cap Flux Path
with Bronze Bushing

Tefniod

Preloaded Springs Aluminum Housing

Figure 1.1: Sectional view of a Terfenol-D actuator [82](Original source: Etrema

Products, Inc.).

one is based on the Preisach iodel and the theme is to develo) accurate and fast

inverse control algorithms. The second perspective is optimal control based on the

low dimensional bulk ferromagnetic hysteresis iodel [82, 84], a iodification of the

Jiles-Atherton model. We now outline the contributions of this dissertation.

1.1 Contributions of the Dissertation

XWe note that although the dissertation is based on controlling a. magnetostrictive

actuator, our work is applicable to control of a. wide class of smart actuators for

two reasons: 1) the Preisach operator is able to nmodel hysteresis in various smart

actuators 2) a low dimensional ferroelectric hysteresis nodel has been proposed

[72] and therefore the viscosity solutions approach in Chapter 5 applies well to

optimal control of actuators made of ferroelectric materials, e.g., piezoelectrics

and electrostrictives.

3
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Figure 1.2: Hysteresis in the magnetostrictive actuator.

1.1.1 Modeling and control of hysteresis based on the Preisach

operator

W\hen the input frequency is very low (typically below 5 Hz), the magnetostrictive

hysteresis is rate-independent and can be modeled by a Preisach operator alone.

We propose a constrained least squares algorithm to obtain a. discrete approxima-

tion to the Preisach measure, and present several algorithms to invert the Preisach

operator efficiently.

By inverse compensation, one usually refers to the trajctory inversion. In many

applications, such as micro-positioning, we are more interested in the following

problem: given a desired output valuE, find an input trajectory such that the

final value of the output matches the desired value. To distinguish this problem

from the trajectory inversion problem, we call it the valuE inmrrsion problem. The

discretized Preisach operator is a finite state machine (FSI). We formulate the

value inversion problem as a state reachability problem for the FSI. We show

4



that the FSM is reachable and propose a state space reduction scheme, which

significantly saves storage space and computation time.

Wvhen the input frequency gets high, the magnetostrictive hysteresis is rate-

dependent due to the eddy current effect and the magnetoelastic dynamics of

the actuator rod. We propose a novel dynamic hysteresis model, consisting of a

Preisach operator coupled to an ordinary differential equation (ODE) in an un-

usual way. We establish the well-posedness of the model and study its various

system-theoretic properties. Existence of periodic solutions under periodic forc-

ing is proved. Algorithms for simulation of the model are also studied. Methods

for parameter identification and inverse compensation for this dynamic model are

proposed.

Inverse compensation is open-loop in nature and therefore susceptible to model

uncertainties and to errors introduced in the inverse schemes. We propose a robust

control framework for smart actuators by combining inverse compensation with

robust control techniques. We present systematic controller design methods which

guarantee robust stability and robust trajectory tracking while taking actuator

saturation into account.

Ideas and theories are backed by extensive simulation and experimental results.

1.1.2 Optimal control of hysteresis based on the low di-

mensional model

Optimal control of the magnetostrictive actuator is investigated based on the low

dimensional ferromagnetic hysteresis model proposed by Venkataraman and Kr-

ishnaprasad [84, 82]. We study an infinte time horizon optimal control problem in

details. The value function is characterized as the (unique) viscosity solution to



a Hamilton-Jacobi-Bellman equation (HJB) of a hybrid form. NY'-e also p~rovide a

numerical scheme to applroximate the solution1.

The viscosity solutionls applroaclh is also extended to other control p~roblems of

practical interest, e.g., the finite time horizon problem, the time-optimial control

problem, the exit problem, and the nonlinear 'H,, control p~roblem.

1.2 Organization of the Dissertation

Inl Cihapter 2 we p~rovide all introductionl to tile Preisacil operator, anld presenlt idell-

t ificat iol anld inlversionl schlemes for tile Preisacil operator. Tlle dIynamic hlysteresis

model is proposed anld studied ill Cilapter 3. Inl Cilapter 4 we dliscuss tile robust

conltrol framework for smart actuators. Inl Cilapter 5, we presenlt tile viscosity

solut ions appIroachl for optimal conltrol of ihysteresis based 011 tile low dlimenlsionlal

model. Conlclusionls and( furture work are p~rovidled ill Cihapter 6.

6



Chapter 2

Identification and Approximate

Inversion of the Preisach

Operator

W\ hen the input frequency is low (typically below 5 Hz), the magnetostrictive

hysteresis is rate-independent and can be modeled by a Preisach operator alone. In

this chapter we first give an introduction to the Preisach operator. Then we discuss
how to identify: tie Preisach measure. Finally we study two types of inversion

problems for the Preisach operator: the trajectory inversion problem and the value

inversion problem.

2.1 Introduction to the Preisach Operator

In this section we introduce the Preisach operator and some of its properties.

7



2.1.1 The Preisach operator in (),.a) coordinates

For a pair of thresholds (3, a) with 13 < a,, consider a simp~le hysteretic element

-1[, as illulstratedI in Figure 2.1t. For u G C([0, T]) and an initial configuration

t, t - 1, the function

is dlefined as follows [861:

V'(0) if 1 Z3;<Cu(i < a
if u(0) > a

andI for t G (0, T], setting Xt- -T G (0, t] : u(T) .3or a}.

,1( 7 (0) if Xt 0
it) -1 if Xt - 0 and u (max Xt) =

1 if Xt - 0 and u (max Xt) =a

This operator is sometimes referred to as an elementary Preisach hysteron (we

will call it a hysteron in this dissertation), since it is a building block for the

Preisach op~erator.

Figure 2.1: The elenentary Preisach hysteron.

8



The Preisach operator is a weighted sup~erp~osition of all p~ossible hsterons.

Define P0  f {(), a) G R : 13 < a} . Po is called the Preisach plane, and each

(3, a) G Po is identified with the hysteron ' n-, For u G C ([0,]7j) and a Borel

measurable initial configuration (o of all hysterons:

(0 : PO f {- 1,1.

the output of the Preisach operator F is dIefinedI as [861:

yq) FL 01t)- (2.1)

where v is a finite, signed Borel measure on PO, called the Preisach measure.

Appendix B provides an introduction to the measure theory.

In this dissertation, we call the Preisach measure v nonsing~ular if Iv is ab-

solutely continuous with respect to the two-dIimensional Lebesgue measure, and

sOlnfular otherwise. By the Radon-Nikodymi theorem, if v is nonsingular, there

exists a Borel measurable funiction p, such that

F [u (o](t) JJ (+)$u (3 lqdd.(2.2)

The weighting function p is often referred to as the Preisach function [581 or the

density function [201.

To sinmplify the dliscussion, throughout the dlissert at ion we assume that p has

a comp~act support, i.e., pi(), a) = 0 if 1.3 < )o or a > a0 for some )o a,0. In this

case it suffices to consider the finite triangular area

P R'(~a > 3, > )o~ < a, (2.3)

as shown in Figure 2.2(a). W ,ithiout loss of generality, we fuirther assume that

a 0O=-) 0 -- : r > 0.

9



The memory effect of the Preisach operator canl be cap~tured by curves in P.

At each time instant, t, dlefine

P(t) a) G P outp~ut of at t is -I

P+ (t) a) G P outp~ut of $n~at t is + I~

so tilat P - P~ (t) U P+ (t) , Vt. Eq. (2.2) call be rewritten as:

_ M f= t j p 1) , ~a - JJl 11(), a) dda'. (2.4)

Now assume tilat at some inlitial time to, tile inpIut u(to) =uo < )o. Then

tile outp~ut of every ilysteroll is -1. Tiherefore P~ (to) =P, P+ (to) 0 anld it

corresponds to tile "nlegative saturatioll (Figure 2.2(b)). Next wve assume tilat tile

inpIut is molnotolnically inlcreasedI to some maximum value at 1<1 witil u(tt) =U 1 .

Tile output of , , is switcihed to + 1 as tile ilIut u (t) inlcreases past a. Thus at

time tt, tile bounldary betweeln P~ (tL) anld P+ (tL) is tile ihorizonltal lilne a, = uL

(Figure 2.2(c)). Next wve assume tilat tile inpIut starts to dlecrease molnotolnically

until it stops5 at t2 Witih U(t 2 ) =U2. Wts easy to see tilat tile outp~ut of $n-, becomes

-1 as u(t) sweeps past (3, anld correspondinlgly, a vertical lilne segmenlt (3 = U2 is

genleratedI as part of tile bounldary (Figure 2.2(d)). Furtiher ilIut reversals gelnerate

addit ionlal ihorizonltal or vertical bounldary segmenlts.

From tile above illustratioln, wve call see tilat eaci of P~ anld P_ is a connlectedI

set, anld tile outp~ut of tile Preisacil operator is dIeterminled by tile bounldary betweeln

P~ anld P+. Tile bounldary is calledI tile mem ory curve. Tile memory curve ihas a

staircase structure and( its inltersectionl witil tile lilne a = .3 gives tile currenlt inpIut

value. Tile memory curve 'I) at t = 0 is calledI tile initial memory curve and( it

represenlts tile ilnitial conlditioln of tile Preisacil operator.

If tile Preisacil measure is nlonsinlgular, wve call iIelltify a conlfigurat ion of ilys-
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P~t PJt0 )

(c) (b)

Figure 2.2: Mlemory curves in the Preisach p~lane.

terons Q, ith a memory curve i/ in the following way: (,) (3, a) t 1 t-, resp.) if

(,a) is below (above, resi).) the graph of 1"). Note that it dloes not matter whether

Qtakes 1 or -1t on the graph of '.

In the sequel wve wvill put the initial memory curve t/ )o as the second argument

of F, where

2.1.2 The Preisach operator in (r, s) coordinates

Sometimes it is more convenient to dlescribe the Preisach operator using the (r, s)

coordinates wvith r = ! and s = . If the Preisach measure is nonsingular,2 2

the output of the Preisach operator can be exp~ressedI in terms of (r, s) as:

yqt) =F~u, li'o(t) Ju J,) wV ~(s - r, s + r)1](t) ds dr, (2.5)
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where L,(. .) is the density finction expressed in the (r, s) coordinates. In the new

coordinates, a memory curve t,[t] at time t is the graph of a fumction of r, and

'[t](0) gives the current input value u(t) (Figure 2.3). Eq. (2.5) can be rewritten

as:

y(t) = F[u,, 1,o] (t) = vo - 2 J j (r, s)dsdr, (2.6)
, It](r,)

where vo0 is the output corresponding to the positive saturation.

S

Figure 2.3: The Preisach plane in (r, s) coordinates.

Although practically a memory curve is only comI)osed of segments of slope ±1

in (r, s) coordinates, we make the following definition:

Definition 2.1.1 [20, 37J ThE sEt of mEmory curms TI' is dEfin Ed to bE the sEt of

continuous functions ' : [0, ro] R such that

1. I c(r) - <(I) _ rt,- 1 , Vrt 1 [0, 1 o]

2. '(ro) 0.

wh ErE ro is the constant dEfin Ed in SubsEction 2.1.1.

The graph of any C' G T is confined in the triangular region P,, as shown iii

Figure 2.4.
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-r

Figure 2.4: The set TF of nieuory curves.

Remark 2.1.2 Including in T all functions with Lipschitz constant 1 leads to a

complete metric space [37, which will facilitate analysis in the sequel. In addition

this will allow one to include certain initial hysteron configurations carrying phys-

ical interpretations e.g.. ,(r) 0, Vr G [0 ol can represent the demagnetized

virqyin state in ferromagnetics [58, 8-J.

We will switch between the (3, a) coordinates and the (r, s) coordinates in this

dissertation.

2.1.3 Properties of the Preisach operator

The Preisach operator has a number of important I)roperties [58, 86, 20]. The

following theorems summarize some I)roperties which will be useful for development

of results in this dissertation.

Theorem 2.1.3 [86J Let v be a Preisach measure. Let u, , tu 2 G C([O, T]) and

'o GIJ. Then the following hold:

1. (Rate-independence) If 0 : [0, T] [0, T] is an increasing continuous

13



fuinction satisfying G)'(0) =0 and C)(I) = T thcn

F[ui 0Q o =t ~,' ot) Vt G [0, I

whcrE ."o "dnotcs comnposition of fuinctions.

2. (Strong continuity) If v is nonsingular thcn F [-,1/o C([0, I]) ,C([0, IF])

is strongly continuious (in the Supl normn).

2(Piecewise monotonicity) AssumE v > 0. If ui is Ei*thcr nondcrasing or

nonincrcasing on somn intcrral in [0, T],. thcn so is F[ui,,()

4. (Order preservation) AssumE v > 0. If U1 t <U 2 on [0,I T] thcn

F [ui wo] < F[U2 0/)0

on [0, IF.

Theorem 2.1.4 (Lipschitz continuity) [20J t AssumE that thE Prdisach mna-

suir v ?'s nonsilngular. Lct &c bE thE Prdisach dAnsity fuinction in (r, s) coordinatcs.

Th~cn for any ('o G k F [- ',"o] is Lipschitz continuious on C([0, IF]) with Lipschitz

constant 2Ct if

JO, "CsER

2.2 Identification of the Preisach Measure

2.2.1 Review of measure identification methods

For the Preisach operator, the only J)aramieter is the Pieisach nmeastire A classical

nmethod for identifying the Preisach dlensity funiction is iusing the so called first

t See also [86] for a slightly different version.
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ordcr r( vrsal curvms, detailedI in IAlayergoyz [58] A first order reversal curve canl

be generated by first bringing the ilult to )0, followed by a monotonic increase

to a, then a monotonic dlecrease to (3. The term "first order reversal" conies from

that each of these curves is formied after the first reversal of the iput. Denote the

oultpult value as f (), a) when the input reaches (3. Then the dIensity pi(), a) canl

be obtained as

1 &2f(3 t , )(28
2 01(2.8)

Since it inlvolves twice differenltiatioln, a smootih appIroximatinlg surface is fit to

tile (data p~oinlts ill practice [45, 46, 38]. Hughes anld NX,'-el [45, 46] appIroximatedI

tile surface by polynlomials using a least squares mletihod. Gorbet, NX,'-alg anld

Morris emp~loyed fullctiolls wviti specific forms, anld tile p~arameters wvere obtained

via a weigihted least squares algoritihm [38]. A fuizzy approximator wvas adopted

to appIroximate tile surface ill [62]. As p~ointedI out ill [38], dIerivinlg tile dIensity

by differenltiatinlg a fitted surface is inhierenltly imprecise, since (different, types of

appIroximat ing fuinct iols lead to quite (differenlt dIensity (distribultiolns.

Hoffmnann anld Sprekels [53] p~rop~osed a scihemle to idelltify tile Preisacil measure

dIirectly. By dIevisinlg tile ilult sequence carefully, tiley set upl inldep~endenlt blocks

of linlear equlatiolns involvinlg tile oultpult measuiremenlts anld tile weighltinlg masses

ill tile (iscretized Preisacil plalne, wviti tile number of measuiremenlts equal to tilat

of unlknownls. Eacil block of equatiolns call be solvedI successively to obtainl tile

weighltinlg masses. Tilis sciheme is very senlsitive to exp~erimenltal errors as one call

easily see. Usinlg tile idIentifiedI weighltinlg masses [53], Hoffmnal and(I Meyer [52]

appIroximatedI tile (density fullctioll ill termis of a set of basis fullctiolls. A least

squares mlethodI was appIliedI to compu~lte tile coefficienlts.

Alnotiler methodI for measure idenltificatioln is dIrivinlg tile system wvitil a "rea-
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sonably" rich input signal, measuring the output and then estimating the density

by a least squares method. This idea appeared in the work of Banks and his

colleagues [7, 8], where they investigated the identification problem of the KP op-

erator. Galinaitis and Rogers [35] used the same idea to identify the weights for a

discretized KP operator. We also adopt the least squares method for identification

of the Preisach measure [79].

2.2.2 An identification scheme

Smart actuators, due to the capacity of the windings or other practical reasons,

have to be operated with their inputs within specific ranges. As a consequence, we

will not be able to visit the whole Preisach plane and identify: the density function

everywhere during the identification process. We assume that the input range is

[U ,nUm]. In Figure 2.5, the bigger triangle represents the set P (recall the

definition (2.3)), while the smaller triangle is the region Qt that we can visit. The

region outside Qt but inside the set P is denoted by Q0. Since the input u(t) never

goes beyond the limits, the states of the hysterons in Q0 remain unchanged. Thus

the bulk contribution to the output from Q0 is a constant and we denote it by V0 .

The input is discretized into L + 1 levels uniformly (we will call this discretiza-

tion of level L) and we label the cells in the grid as illustrated in Figure 2.5

for L = 9. The Preisach measure within each cell is assumed to concentrate as

a discrete mass at the cell center. The quantities we want to identify: include

weighting masses v.j, i = 1, , L, j = 1,.. , i and vo0. o simiplify: the discussion,

with a slight abuse of notation, we write {vIj} as a column vector f V , where

L(-f+:) .e note that discretization of the Preisach plane leads to a discretized
2 "

Preisach operator, which is a weighted sum of K hysterons (see Figure 2.6).
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(9,1) (9,2) (9,3) (9,4) (9(5) (9.9) (9.7): (9,8)

(9,1) (8,2): (8,3) (8,4) (8,5) (8,9) (8,7)

,1) J,2): 9,3) (9.) (9 (,9) :

6, .3< 2)-:33-)~)- 6,- 3

(4,1) (4,2):(4,3):

(3,1) (3,2)

Figure 2.A Discretization of the Preisach p~lane (L 9) [79].

To initialize the states of hysterons, we decrease the iput to uI3... Ihis sets

the state of each hysteron in Qt to -1. NY'-e then apply some Jpiecewvise mionotone,

continuous input u (t), and measure the output y(t). The iput u (t) should be

chosen in such a way that the contribution of each weighting miass can be singled

out, and one candidate for such u (t) is the concatenation of the first order reversal

inp~uts. Signals u(t), y(t) are then sampled into sequences {uflL yH}>IL.

The iput sequence f{u [n] I (after discretization) is fed into the (liscretized Preisach

op~erator and the state of each hysteron, f$ [n]1}, k =t -1 , K, is computed. The

outp~ut of the Preisach miodel at time istant n can be exp~ressedI as:

K

-j [Z]=v h ,[I (2.9)
k-1

where { VAI }/0 is yet to be found.

NY'-e use the least squares methodI to estimate the parameters, i.e., the Jparame-
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P, 2

Figure 2.6: The discretized Preisach operator.

ters are determined in such a way that
N

Z y[,,] - I1 (2.10)
n-

is minimized. Since we require Vk, > 0, k = 1, . it is a constrained least

squares problen.

Remark 2.2.1 Thorctically the wEighting Tnasses can bE computEd directly from

the first ordEr rEvErsal curvEs. This works if the signals arc noisE-frE, which is

usually not the casE. Thrqforc wE usE the lEast squarcs mEthod.

2.2.3 Experimental results

In general the magnetostriction depends on both the mechanical pre-stress u and

the magnetic field H [30]. Pre-stress is applied to the magnetostrictive actuator

through preloaded springs (see Figure 1.1) and that improves magnetostriction.

The pre-stress is not adjustable once the actuator is manufactured, and it does

not change much during operation considering the magnitude of magnetostriction

(less than 1500 parts per million for Terfenol-D). Therefore we assume that the

magnetostriction is only dependent on the magnetic field H.

18



For the p~urp~ose of control, we define the imagnetostrict ion A to be

A - A/ (2.11)

where Irod is the length of the miagnetostrictive rod inl the (lemagiletized state, and

A/ is the change of the rod length froml Irod. The saturation nmagnetostriction A., is

dIefinedI inl an obvious way. Note our dlefinition of A, is slightly (different, fromi that

inl [231.

WhTlen the input frequency is low, the nmagnetostrictive hysteresis is rate inde-

p~endenlt: roughly speaking, the shape of the hysteresis 1001) (does not dIepend onl

the iput frequency. Inl this case, we can relate A to the bulk miagnetization I

along the rod (directionl by a square law [821

A = at MJ2 (2.12)

anld relate the iput current I to the nmagiletic field H (assumed uniform) along

the rod (directionl by

H = co I + Hbi(S (2.13)

whlere co is tile so calledI coil factor, anld Hbim, is tile bias field produced by p)er-

nmanent nagilets or a (de currenlt. Hb4m, is nlecessary for genleratinlg bidirectionlal

strainls. Henlce we call cap~ture tile hlysteretic relationslhip betweenl A anld I by

tile ferromiaglletic I - H hlysteresis. Vellkataramal emlploye(I a low (Iimellsiollal

ferromiaglletic hlysteresis nlo(Iel ill [821. W '-e will use a Preisacil operator to nlo(Iel

I - H hlysteresis.

Remark 2.2.2 Due to the thin rod geomectry, we appr-oxim1ate the con tinuiu mnay-

netization in the mnagnetostrictive rod by the buk mnagnetization. The square law
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(2.12) follows fromn the continuum thcory of mlicromnagnctics. whcrE the mnagnE-

toclastic Encrqy is of the formn lncor in thE strain ond quodrotic in thE dirccton

cosIncs of thE mnagnctization vcctor [22J.

Remark 2.2.3 M~a yEToyz has shown that, thE ncssary and sufficicnt conditions

for a hystcrctic nonlincarity to bE rcprcscntcd by thE Prdisach mnodcd arc thE wipnfg-

out propcrty and thE congrucncy propcrty [58J. WhiUl thE wiping-out propcrty for

thE frrromnagnctic hystcrci can bE dircctly vcrificd, wE 0ill indircctly vcrify thE

congrucncy propcrty by a traj'cctory tracking Expcrim*Tnnt bascd on invmrsion of thE

Prdisach opcrator.

The following Jparamieters are available fromi the mianufacturer: the saturationl

miagnetization A-, =7.87 x 105 A/m, 1rod =5.13 x 10-2111, cO 1.54 x i0 4 /im.

N--ecneasily identify A, =1.313 x1 0- by appIlyinlg anlinput of relatively larg

miagnitude, and then get the coefficient, at-~ The bias field Hb4u,, is identified

to be 1.23 x 104A/im.

Given a mleasurement, of A, we comipute AIf and the sign of AI is

(Ieterille(I with further informiation on the inpIut. The Preisach weighting miasses

canl be idenltified witih tile conlstrainled least squares algorithmn as dIescribed inl tile

previous subsectionl.

Our exIperillleltal setup is as shown in Figure 2.7 . DSpace ControlDesk is

a tool for real-time simuilatioll anld conltrol. The (IisIplacemielt, of tile actuator is

mleasured witih a LVDT sensor, which ihas a precisionl of about 1 pml.

T1e lllaglwtic field iput H is limlited to [ 1. 57 x 103 A/m, 3.25 x 104A/imi and we

(liscretize tile Preisaci Iplanle inlto 25 levels. Figure 2.8 sho0ws tile distributionl of tile

idenltified weighltinlg masses. Tile conlstanlt conltributionl v0 fromi Q0 (see Figure 2.5)

is estimiated to be 4.99 x 10 5 A/m.
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Figure 2.7: Experimental setup.
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Figure 2.8: Distribution of the Preisach weighting masses.
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Remark 2.2.4 DuE to the bias fiEld Hb4,, and the constraint on the input currEnt,

wE can not tracE the major loop of the I - H hystcrcsis: instEad wE can only visit

a cErtain rEgion insidE the major loop. As a rEsult, the magnEtostrictivE hystcrcsis

loop (thE buttErfly curvE) is asymmEtric (FigurE 1.2).

2.3 Inversion of the Preisach Operator

Tihe general structure of models for smart actuators that capture both hysteresis

and dynamnic behaviour is shown in Figure 2.9 [85] . In the figure, G(s) represents

the transfer function of the linear part in the actuator, while W denotes a rate-

independent hysteretic nonlinearity. Venkataraman [82] has shown that a key

component of a low dimensional model for magnetostriction in Terfenol-D has a

structure resembling Figure 2.9

u[W v [G(s) Y

Rate-independent Linear system
hysteresis operator

Figure 2.9: Structure of models for smart actuators [85].

A basic idea for controller synthesis for such systems is to design a right inverse

operator I for I as shown in Figure 2.10. Then T (.) = u(.) and the controller

design problem is reduced to designing a linear controller K(s) for the linear system

GC(s).

In the context of this dissertation, we consider W to be a Preisach opera-

tor. The Preisach operator is highly nonlinear, and in general, we cannot find

a closed-form formula for the inverse operator, unless the density function is of

some special form, as in the work of Galinaitis and Rogers [34]. Hughes and Wen
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Controller

Figure 2.10: Controller design schematic [85].

[45, 46] utilized tile first order reversal curves in computing the numerical inverse

of the Preisach operator. This method relies on measurement of all first order

reversal curves and involves solving nonlinear equations. Natale and his colleagues

proposed using another Preisach operator as a "pseudo-compensator" to approx-

imate the inverse of a Preisach operator [62], where the Preisach density of the

compensator is identified with the same set of experimental data used in identi-

fication of the original Preisach operator, but with the roles of input and output

swapped. The compensator is "pseudo" because it is well known that in general,

the inverse of a Preisach operator is not a Preisach operator. Venkataraman and

Krislnaprasad [85] utilized piecewise monotonicity and Lipschitz continuity of the

Preisach operator, and proposed an inversion algorithm based on tile contraction

mapping principle.

Tile Preisach operator is rate-independent, and at any time t, tile memory curve

(and thus tile output) depends only on tile dominant maximum al( minimulm

values in tile past input. Therefore we are mainly interested in tile inversion

J)roblem in tile discrete-time setting.
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2.3.1 Inversion of the discretized Preisach operator

First we study inversion of a discretized Preisach operator obtained as a result of

input discretization.

Let U be the discrete control set, i.e., U A {u, 1 < < L + 1} with

U -= Um4n + ( -- 1),,, where 6,, L Uax - Um
L

Let Sn be the set of input strings of length n taking values in U, i.e., if s e ,

then s[i] G U, 1 < i < n. Let kIfd be the set of memory curves for the discretized

Preisach operator.

Trajectory Inversion Problem of Length N: Given an initial memory

curve '0 G 4d and a desired output sequence yi of length N, find s* G SN. such

that

max lF[s* o t0][i] - <j[i]] = rin max F[s, ',][)i] - jj[1 . (2.14):/<4<N SES ts£jr :<4<N

W-e call this the trajectory inversion problem, to distinguish it from the value

inversion problem we will discuss in the next section.

Remark 2.3.1 We put a sequence instead of a continuous time function as the

first aryu nent of F in (2.14). To avoid anbiguity, it is tacitly understood that the

input is changed monotonically from s[i] to s[i + 1]. Throughout the dissertation

we nay use a sequence or a continuous time function as the first aryument of F

depending on the context.

Remark 2.3.2 A discretized Preisach operator is not .onto since its output takes

vaLues in a finite set. Therefore we don't seek an exact inverse in the problem

formTilation.
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Before we present the solution to the problem above, we first look at the case

when N = 1:

Trajectory Inversion Problem of Length 1: Given an initial mnemrory

cUrve 'o C G kd and a desired output jjo, find u* G U, such that

oF[u*,l('0] - yol mrin F[u,, 1'o] - o. (2.15)

There is a simlple algorithm for solving the problem of length 1, which is based

on the piecewise monotonicity of the Preisach operator [79]. We name it the closest

match algorithm because it always generates an input whose output matches the

desired output most closely among all possible inputs.

The idea of the closest match algorithm is as follows. One can obtain the initial

input u(0) and output y(0) from the initial memory curve c'0. Consider the case

Y(0) < yo (the case y(0) > Qo is treated in exactly the same way with some obvious

modification). We keel) increasing the input by one level in each iteration until,

say at iteration n, the input u(') reaches u,,,, or the output y(f) corresponding to
u(') exceeds yio. For the first case, the optimal input is clearly Umax, for the second

case, two candidates for the optimal input u* are u( ") and u(  We then take

u* to be the one with the smaller output error. Note that we need back up the

memory curve whenever we increase the input, so that we can always retrieve the

consistent memory curve with u.

The above algorithm yields the optimal input u* in at most L iterations. And

in each iteration, the evaluation of y(f) is very fast since the input has changed by

one level and thus we need only update states of hysterons corresponding to that

level. These factors combine to make this algorithm simlple and efficient.

The trajectory inversion problem of length N is solved by combining the closest

niatch algorithn and the dynamic programming principle [13].
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Let Ed " kFd X U - kFd be the evolution mal) for the memory curve, i.e., if

'I,' G \fd is the initial memory curve, then 7d(u, i) is the new memory curve when

the input u G U is applied.

Given N and the sequence y, for 1 < k < N, we define

Jk(6) s) IF[s, = max I F s e (2.16)k<4<N

V, m(,) rin A('s), (2.17)
SE SN- k-l I I

where we call Jh, the cost function and V, the value function.

Proposition 2.3.3 The value functions V, 1 < k < N, can be solved successivly

via:

Vy (')= min I F[u,i [N] (2.18)

V,(,) = minmax{ F[u, i ] - VA+, (-(I(u, L))}. (2.19)

Define maps 7r7, • kfd , U. 1 < k < N, so that 7r*(L,) is the argmin in (2.18) and

(2.19). Then for the trajectory inversion problem of length N, 7*r, 1 < k < N,

gves the optimal control policy at time k.

Proof Straightforward from Bellman's optimality principle.

The closest match algoritlm can be used in solving (2.18) and (2.19). Propo-

sition 2.3.3 entails pre-conputing and storage of the optimal maps, which is un-

desirable when N or the cardinality of k1 d is large. A sub-optimal approach is to

decompose the inversion i)roblem of length N into N successive inversion J)roblems

of length 1 and solve them using the closest match algorithm. The experimental

result of trajectory tracking based on this approach can be found in [79].
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2.3.2 Inversion of the Preisach operator with nonsingular

measure

n~ ow discuss the inversion J)robleni for a Preisach operator with nonsmngular

Preisach measure. In this case, the Preisach operator canl be inverted with arbitrary

accuracy, and it suffices to study anl inversion J)robleni of length 1: given LI) G TI

and I G [ 'm2 n Imal,0 1 finld H G [H2m~,, H2nax1, such that

where [H2 n Hmax1 and [2\Imn AI\n0x1 are the ranges of the iput and the outp~ut of

the Preisachi operator, resp~ectively. The notationl usedI in this subsection is slightly

dlifferenlt from that in Subsection 2.3.1, but it will be conlsistenlt with the notation

in Chapter 3.

Proposition 2.3.4 Let the Preisach measure be nonnegative and nonsingular with

a density function /1. Let

vi nlaxfsu Jil '0'/1 a) d), sup)13C J 1 (13, a) da} < c.(2.20)

Let the current memory curve beL'1o. and let the input and the output of the Preisach

operator corrsponding to '"o be H0 and MTO. respectively. Given Af [M2I~n~ Imax]

c onsider the followi*ng algori*thmn:

(2.21)

jj\fn--t) -[ n n

where 1/)( 0) H() = Ho. IM0  UoM0  and ? is the memory curve after

{H~) t is applied. Then 'I I as n C

Pro of The J)roIposit iol follows dIirectly from tile Jliecewvise niollotollicity J)roIperty

and( tile continuity J)roIperty of tile Preisacil operator.
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Remark 2.3.5 Thc algorithm (2.21) also appeared in [85j where approximatE

inversion of the Prdisach opErator was studiEd for the class of continuous, piEcEwisE

nonotonE functions.

What we have identified in Subsection 2.2.2 is a set of Preisach weighting

masses, which forms a singular Preisach measure. W-e can obtain a nonsingular

Preisach measure vp by assuming that each identified mass is distributed uniformly

over the corresponding cell in the discretization grid. Note that the diagonal cells

are triangular, while other cells are square (refer to Figure 2.13(a)). The density

function /j corresponding to vp, is piecewise uniform, which enables us to solve the

inversion problem exactly, as described next.

W-e consider the case Jf > JU0 and the other case can be treated analogously.

It's obvious that H > H0 and we will increase the input in every iteration. At

iteration n, let d(') > 0 be such that H (,) + d+ ) equals the next input level, and

let d n) > 0 be the minimum amount such that applying H (n) + d1() will eliminate

the next corner of the memory curve (see Figure 2.11 for illustration). Since lip is

piecewise constant, for d < min{lljn, d(n1, we have

F[H(n) + d, ,,,(n)]- F[H(n), i'/] = a ( (2 + a ()d,

(n) (n)where a a2  > 0 can be computed from pnp., and the square term is due to the

contribution from the triangular region inside the diagonal cell. Let d1(n) be such

that

,W - F[H(') ,1, 1 2 0 + .0

The inversion algorithm now works as follows:((n = 11inllf 0 ;0 , (n) (n

H (I + )  H() d() (2.22)

j (n + ') =F[H (
+ t),i/ i) 2

28



Figure 2.11: Illustration of (1(n) and (1n) .

If at iteration W*, &n' ) = dI *) , then the iteration stops and H H (n' + t) . Let

nc (V')o) be the number of corners of 1')0, and L the discretization level of the Preisach

plane. It's easy to see the algorithm (2.22) yields the (exact) solution in no more

than n = nc(')o) + L iterations.

Figure 2.12 shows the result of an open-loop tracking experiment using the

algorithm (2.22). The desired trajectory was obtained from the output of a Van

der Pol oscillator to make the tracking task more challenging. In Figure 2.12, the

displacement trajectories (both the desired and the measured), the tracking error

and the input current are displayed. The overall performance is satisfactory since

the error magnitude is less than 4 pim most of the time with a tracking range

of 60 pin. We can see that the tracking error slightly exceeds 4 plm when the

desired output (and thus the input) undergoes abrupt changes, in which case the

rate-independence assumption no longer holds.
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Figure 2.12: Trajectory tracking based on inversion of the Preisach operator.
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2.4 The Value Inversion Problem and Its Appli-

cation to Micro-Positioning Control

By inverse compensation, one usually refers to the trajectory inversion problem:

given a desired output trajectory, compute an input trajectory whose correspond-

ing output trajectory matches the desired one. In many applications, such as

nicro-positioning, we are more interested in the following problem: given a de-

sired output value, find an input trajectory such that the final value of the output

matches the desired value. To distinguish this problem from the trajectory inver-

sion problem, we call it the value in vrsion problem. This problem has been well

studied for linear systems, but to our best knowledge, very little has been done in

the context of hysteretic systems.

The Preisach operator becomes a finite state machine (FSM) after discretiza-

tion, and the value inversion problem can be transformed into a state reachability

problem for the FSM,. We show that the FSM, is reachable and indicate how to

construct the input sequence for the state transition. After observing that, for

practical reasons, there may exist a large number of equivalent states in the FSM,

we propose a state space reduction scheme, which can significantly save storage

space and computation time. An algorithm for generating the optimal (the sense of

optimality" will be clear) representative state in each equivalent class is presented.

2.4.1 The value inversion problem

In any practical identification scheme for the Preisach measure, a discretization

step is involved in one form or another. Figure 2.13(a) shows our discretization

scheme used earlier in measure identification, where the Preisach measure inside
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each cell is assumnel to concentrate at the cell center (represented by (lark (lots inl

Figure 2.13(a)). As noted inl Suibsection 2.2.2, this resuilts inl a (liscretizedl Preisach

op~erator. Yenote that althouigh uiniformi liscretizat ion is considleredl here, the

resuilts of this section appIly directly to the case of non-uiniform (liscretizatlon.

A A

I1 14  114

P "2i 7~- 3 4 >1 12 3 4

(a))

Figure 2.13: (a) Discretization of the Preisach plane (L 3) (b) Mlemory ciuve

"O0t1, (bolded lines).

Let S be the set of input strings taking values inl U, where U is as dlefinedl inl

Suibsection 2.3.1. Let S 4 be the set of alternating iput strings [201 inl U, in the

sense that, if s, G S,4 , then (s, [11* + 21 - s, [11* + I]) (s, [11* + 1] - sc,,[1 < 0, Vil > 0. The

valuie inversion Jproblemi is formnulated as:

Value Inversion Problem: Given a desired oup~ut v~ahue yo and an initial

memory cuirve 1'o G k~fd, find s* G S,4 , sqich that

Ff4 [, ol, yo mmn Ff4 L,'o1'0 - jPO (2.23)
a, Sa E SA

where Ff 1s, ,'ol denotes the final v~ahie of the outp~ut of the Preisach operator Iinder

inpuit sequecnce s. If there is mnore than one s~tch string achieving (2.23), find the

one with the Tnini~n length.
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Remark 2.4.1 Any s eS can bE rcduccd to sornc s-, G S 4 using the following

rulcs. storting fromn 1 1: if (s[i + 1] - s[i])(s[i + 2] - s[i + 1]) > 0. dclctE

s[ll + 1] ond rE-?indcx. For ExamnplE. s =(u U3 U3 U5 U4  U2 ) G S can bE rcduccd to

Sa = (U1 t~ U 2 ) G S 4. ThE final valucs of thE output undcr s and s, arc ?idcntical

(Easy to vcrify), hcncE wE only nEcd scarch thE optimTal input sEquEnCE in SA.

Remark 2.4.2 ThE lcngth of an altcrnating input string is dircctly linkcd to thE

numnbcr of input rcmrsals and thus thE comnplcxity of im*Tplc~mnting that input.

Th~crcforE wE sEck s* with thE mninimnum lcngth.

The discretized Preisach operator canl be treated as a finite state mlachinle

(FSA\J). Since there are L(L--t) hysterons for a discretized Preisach miodel with
2

(liscretizatioll level L and the output of each hysteron takes values in t -, t1}, the

numiber of states appIears to be 2 L(L+t)/2 .This is not the case in general, recalling

that the true state is the miemory curve.

Proposition 2.4.3 For a discrctizEd Prcisach opcrator with discrctization lEUc/lL,

thE numnbcr of statcs is 2L

Proof Ill tile (), a~) coordinates, eacil menmory curve coinsists of L hlorizonltal or

vertical segmients of length ,, so tile total numiber of miemory curves is 2k

The p~roof miotivates an inldexinlg scielee for tile miemory curve. Starting fromi

tile upper left cornler, we illimber eacil memiory curve witih L bits corresp~ondinlg to

tile L segmielts: 0 represenlts vertical, anld 1 represenlts hlorizonltal. For inlstanlce,

tile miemory cu rve rep~resenlted by tile bolded linles ill Figure 2.13(b) reads "001".

Xecall now give a comIplete dIescrip~tionl for tile ESM. It hlas state space

\f d L' L- t,~U K. a), 0, t tJ~ L~
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and input space U. It is a state output automaton [15] since the output y of

the Preisach operator depends only on the memory curve '. Therefore the valuE

inversion problem is solvEd if any statE of the FSV is rcachablc, because then all

we have to do is to find the state whose corresponding output is closest to the

desired yo.

The state transition function Bd : kIfd X U " kIfd can be best described in terms

of two state operations, INC: kfd " kfd and DEC: \fd " kd. For any state

C'11 ) fd, we can immediately determine the current input i('C'): 7(,6') = u + if '

contains n "'s. For i' GPd, we define

INC , A ,if l ') UL+

the state after the input is increased by one level if i7(,)) 4 UL+t

an(d

! i i ('t) u tu

DEC(,/,)i
the state after the input is decreased by one level if ('(i)) ut

As one can easily verify:, INC changes the first "0" bit counting from the right to

'1" and leave other bits untouched. A symmetric remark applies to the operation

DEC. Therefore bit L (bit 1, resp.) is the most (least, resp.) important bit, in

the sense that, if you want to switch bit j from 0 (1, resp.) to 1 (0, resp.), you

must first switch all the lower bits to 1 (0, resp.). Figure 2.14 illustrates the INC

and DEC operations for the case of L = 3.

Now given u C U, the state transition function is expressed as:

t,, if u - ('') 0

( INC o INC(1'ti), if u - i('1i,) = n6,,
n [NCs

DEC o .. DEC(61)), if u -~( ) -e
n DLCs

34



1C 00 -

001 010 110 101

0 ' -/

011~ INC'~

Figure 2.14: Operations INC and DEC for L 3.

where "o" denotes conmposition of functions.

Proposition 2.4.4 Any statE is rEachablE. Lct 6)4 D i = 1, 2, bc two statE s. Lct

bit no bE the lEftmosT t bit at which (', and '2 differ, and Ict n,, bE the nuTmbEr of

altErnating bit pairs in k'2 from bit no through bit 1. ThEn 1'2 i5 rEachablE from ,

by applyinq an input string s* e S 4 of iength n,, + 1. and the iength of any othcr

s, e S 4 achieving the statE transition from C':, to '2 is no h-ss than uc, + 1.

The proposition is a straightforward consequence of the state transition map -d.

The following example illustrates the proposition as well as how to actually con-

struct the input string.

Example 2.4.5 Assume L = 5, .'i, = 00100 , '2 = 01011. Then n0 = 4, a, = 2,

and the alternating input string s* for achieving the state transition has length 3.

Now let's detail the )rocedure of state transition:

" Step 0. 6'1) contains one "t- , so the current input value is u2;

" Step 1. Apply u5 (3 consecutive INCs) to make bit 4 "t- and the state

becomes 01111

" Step 2. Apply u2 (3 consecutive DL'Cs) to make bit 3 "0" and the state

becomes 01000
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* Step 3. Apply u4 (2 consecutive INCs) to get L'2.

Remark 2.4.6 A state-space representation of a general Preisach operator can be

fo ind in [37j and it is shown there that the state space is approximately reachable,

see Proposition 3.4.10. This "approxinmate reachability" result was also stated in

[58, 86] (in a more casual way).

Corollary 2.4.7 Any state is reachable from any other state with some ,* e S 4

of length no more than L.

2.4.2 A state space reduction scheme

Reduction of the state space

In general we need store outpiut values of 2 L states for the value inversion )roblem.

For a reasonable discretization level L, this may take lots of memory. In addition,

comIputation cost for sorting and searching these states will be very high. There-

fore reducing the number of states without compromising control accuracy is of

)ractical interest.

Two states 'I t02 G \fId are eqivalent, denoted as ' t- '2, if

F [ F [s ,621, VS G S.

W-e say a hysteron in the discretized Preisach operator is non-trivial if its associated

weight is not zero, and is trivial otherwise. Existence of trivial hysterons leads to

equivalent states. Let's look at an example. In Figure 2.15(a), the hysterons

marked with "o"(and labeled by >, ...,5) are assumed to be non-trivial and

those marked with "o" are assimed to be trivial. It's easy to verify- that the

following states in Figure 2.15(a) are equivalent: 0101, 0110, 1001 and 1010.
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Figure 2.15: (a) Existence of equivalent states (L 4); (b) Illustration of the

shaded set.

For 'i, G kfd, define S('",) to be the set of non-trivial hysterons underneath

the memory curve corresponding to '). From the example above, we can see that

S1'2 if a 1nd only if S('' t) = S(''2). From the ex)erimental result of measure

identification (see Figure 2.8), we see that indeed many hysterons carry weights of

zero or close to zero, and this provides room for the state space reduction.

The original state space \fd is thus a disjoint union of equivalent classes of

states. A reduced state space F is obtained such that each element in F is an

equivalent class in kId, i.e., \f = kId/ =. Denote the set of non-trivial hysterons

as A/, i.e., A/ f , : vj3 , > 0}, where v,3,, is the weight of , Then a subset

of A can be identified with a member of TI if and only if , e d, such that

S(,)). To better capture the latter property, we introduce the notion of a

Lowvr-L<tS adcd Set . The Lower-Left-Shaded Set (abbreviated as the shaded

set hereafter) A(,,) of a hysteron ,, A " is defined to be

A( i<) ={f~3%1 G P1 : i3,, i3 < 3, a, <

The geometric interpretation of the shaded set of ,3, is clear: imagining two rays

from ,, in the Preisach plane, one pointing downwards and the other to the

left, the shaded set consists of non-trivial hysterons lying between the two rays.
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For example, in Figure 2.15(b), A(5) = f_, t2, >3}. If 5,3, lies underneath some

memory curve '6,), all elements of A(),,( ) must do so too. Therefore we conclude

that 'i") C A is identified with a member of TF if and only if the following hol(s:

A( ,) c t/ ) V t/ (2.24)

To ease presentation, from now on we will simply write '1/ ) if (2.24) is satisfied.

Now we can list all members in 4-f using a tree-structured algorithm:

" Step 1. List the equivalent class having no non-trivial hysterons (negative

saturation)"

" Step 2. List equivalent classes with one constituent non-trivial hysteron,

i.e., the shaded set of every such hysteron is empty;

" Step 3. Starting from each equivalent class (parEnt class) Nwith n non-

trivial hysterons, we list equivalent classes (ch ildrxn class(s) with n + 1 non-

trivial hysterons by finding another hysteron A/ such that:

is not included in 'I),

C'(1) C ), i.e., '1/ U is an eligible member of 'f, and

- ) U does not coincide with any other equivalent class 'i,' with n + 1

constituent hysterons that has been listed so far

" Step 4. Continue Step 3 until " A/ (positive saturation) is listed.

The equivalent classes are sorted according to their output values during the

above enumeration I)rocess, and we save computation time by using the fact that

the output of a child class is always greater than that of its parent.
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Generating best representative states

For the I)urpose of realizing state transition, we need find a representative state

e'11 )G d for every I/ e ) I. From Proposition 2.4.4, the number of alternating bit

pairs of a state t'i is closely related to the number of input reversals required for the

state transition. Therefore the best representative state 'i,)* e kpd for V e xF should

have the least number of alternating bit pairs among all states in the equivalent

class 'IL,.

W-e generate a rel)resentative 'i,)* for ); G \I by first drawing two memory curves

a'iand L' and then picking ',,* to be the one whose number of alternating bit pairs

is less. When we draw a memory curve, at most two directions are )ossible for

each segment: going downwards (denoted by ji) or going to the right (denoted

by - 1"). , is obtained as follows: start from the left upper corner with jj"

and contime that direction as long as it is feasible to do so (i.e., no constituent

hysteron of 't") is left out); when it is infeasible to contime " , we switch to "--"

and keel) going with that direction until it is infeasible for 6) (i.e., non-constituent

hysterons will be included). \.\e contime until all L segments are drawn. Similarly

we obtain 'I")% by starting with "--" . Note it's easy to see that "--" is feasible

whenever jj" is not, and vice versa.

Proposition 2.4.8 The representative 'i")* obtained in the above scheme has the

least number of alternating bit pairs among all states in the equivalent class '.

Proof For any state 'I" starting with jj", we can show its number of alternating

bit pairs is no less than that of (),* by exploiting the strategy in generating i,.

Instead of giving a general proof, we will illustrate the essential idea by looking

at a concrete example with discretization level L = 8 (Figure 2.16). In the figure,
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AF -G/
B C

Figure 2.16: Illustration of the proof of Prop~osition 2.4.8.

we assumie that tihe miemory curve represented by tihe bolded lines A-B-C-D-E

(::0011100") is (),*. Let 'i") be any other state in tihe saime equivalent class i

starting with :2.Now imiagine we are growing tihe two curves ti and 61, segmient

by segmient, starting froni tihe left up~per corner. Tihe curve ' has to switch to -- "

no later than it reaches tihe p~oint B (since otherwise it will be infeasible). This

iniplies that when we encounter the first alternating bit pair in 'I"), we inust have

encountered at least one alternating bit pair in ;'. For tihe samne reason, ' has to

switch to :"before (),* does so at point C. This argumient goes on until we hit

tihe line a, = 3 and stop. Therefore whenever one alternating bit p~air occurs in

C',at least one alternating p~air occurs in c.Hence tihe nuniber of alternating bit

pairs in 'i ;, is no less than that in 'I")*. The curve rep~resented by tihe dashed lines

A-F-G-H-I-E in Figure 2.16 gives an examiple of such '.

Analogously for any state ' starting with :",we can show its nuniber of

alternating bit pairs is no less than that of 'I"). Tihe proof is now coniplete.

Example 2.4.9 For tihe equivalent class {' t, ' 2 ' 3 in Figure 2.15(a), 'i,1 ----0110
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with 2 alternating bit pairs and 'I) = 1001 with the same number of alternating

bit pairs. So ', -- (or ')%).

2.4.3 Experimental results

We now apply the value inversion scheme and the state space reduction scheme

to micro-positioning control of a magnetostrictive actuator. The Preisach plane is

discretized with L = 25, which results in 300 hysterons. By treating 201 hysterons

whose weights are zero or very small as trivial, we are left with 99 non-trivial hys-

terons. The final number of states in the reduced state space is 99,217, compared

with 33,554,432, the number of states in the original state space.

Given a sequence of 8 desired displacement values (10 pm, 30 pm, 15 pi,

40 pm, 20 pim, 40 pi, 60 pim and 50 /1), we want to drive the actuator head to

these positions consecutively. Three control schemes are implemented to achieve

the positioning goals. The first one is based on the value inversion scheme, the

second one is based on the closest match algorithm, and the third scheme is based

on a non-hysteretic model where the input-output relationship is approximated by

a single-valued function y = -7.44W3 - 2.6312 + 40.8 11 + 30.34. The current input

and the measured disi)lacement are shown in Figure 2.17 through Figure 2.19.

We intentionally hold the input current constant for about 1 second after each

positioning is completed. Figure 2.20 compares the errors of the three schemes for

the eight positioning tasks. We see that Scheme 1 yields the minimum positioning

error. As a trajectory inversion algorithm, Scheme 2 does not allow input reversals

for each desired output value and thus has less control freedom than Scheme 1

does. This can explain why scheme 1 is better than scheme 2. Scheme 3 delivers

the worst )erformance because hysteresis is not taken into account.
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Figure 2. 17: A\licro-Jpositlolling control based oni the value inversion schenie.
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Figure 2.18: Mlico Jpositiollilg conltrol based o1n tile closest mlatclh algoritiil.
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Figure 2.19: A\ icro-Jpositlolling control based on a non-livsteret ic miodel.
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Figure 2.20: Comparison of tlhree scleies. Schleme 1: tile value inversion algo-

ritil Schleme 2: tile closest iatell algoritil Schleme 3: tile inversionl algoritilill

based 011 a 1101-hysteretic nmodel.
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Chapter 3

A Dynamic Model for

Magnetostrictive Hysteresis

When the input frequency gets high, the magnetostrictive hysteresis is rate de-

pendent ' (Figure 3.1) due to the eddy current effect and the magnetoelastic dy-

namics of the actuator rod [82, 83]. The rate-dependent hysteresis can no longer

be modeled by a Preisach operator alone. In this chapter, we propose a novel

dynamic model for the magnetostrictive hysteresis, consisting of a Preisach oper-

ator coupled to an ordinary differential equation (ODE) in an unusual way. Due

to its special structure, the model presents interesting problems in analysis and

computation. We establish the well-posedness of the model and study its various

systen-theoretic properties. Existence of periodic solutions is proved. Numeri-

cal integration schemes, parameter identification methods and an inverse control

scheme are presented.

'In some literature, e.g., [86, 20], the word hysteresis is referred to rate-independent memory

effects only. NWe use "hysteresis" in the more general sense in this dissertation.
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Figure 3.1: The rate-(IeIpeldelt, nmagnetostrictive hysteresis.
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3.1 A Dynamic Hysteresis Model

Venkataraman and Krishnaprasad proposed a bulk magnetostrictive hysteresis

model based on energy balancing principles [82, 83]. The model has a cascaded

structure as shown in Figure 3.2. The block W takes care of the I - H hysteresis

and the eddy current losses. G(s) is a lumped second order linear system modeling

the magnetoelastic dynamics of the rod.

Figure 3.2: Model structure of a magnetostrictive actuator.

We now have a closer look at the block W. Due to the finite resistivity of the

magnetostrictive material, there are eddy currents circulating inside the rod. One

way to represent the eddy current losses is to place a resistor R,dd in parallel with

a hysteretic inductor [23, 82], as shown in Figure 3.3. We note that this is a phe-

nomenological approach and the underlying details of the eddy current dynamics

are ignored here. Considering the thin structure of the rod, we assume that the

magnetic flux density B is uniform over the cross section of the magnetostrictive

rod. Then the voltage V across the nonlinear inductor is X .- B, where N, isdt hr ~i

the number of turns of the coil, and A.. is the cross sectional area. Let I be the

input current applied, and It be the current flowing in the inductor branch. Since

V = (I - I)Rddy, we have

dB R_ dd (1- (3.1)
di- N ..A...

In SI units, B = 10 (H + I), where /lo = 47r x 10 7Henry/m is the permeability

of vacuum. H is related to It via H = CoIL, where co is the coil factor. The
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Figure 3.3: Representation of eddy current losses in a magnetostrictive actuator

[82].

constitutive relationship between I and H was modeled by a low dimensional bulk

ferromagnetic hysteresis model in [82] and that led to an overall model described by

switching ordinary differential equations. N\,e use a Preisach operator F to model

I - H hysteresis and obtain the following new model for the block IV:

{O M [(3.2)

AI = F [H, It,0o

where t/o represents the initial memory curve and

A Reddy

G(s) has a state space representation [82, 83] (after some manipulations):

2

where y is the displacement, wo = 2rfo, fo is the first resonant frequency of

the actuator, is the damping coefficient, Irod is the length of the rod, A, is the

saturation magnetostriction and AI, is the saturation magnetization.
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Note if we set derivatives in (3.2) and (3.3) to zero, the dynamic model degen-

erates to the static hysteresis model we have discussed in Chapter 2:

H (t) = co-0 (t)

A I() = F[H(),1"o](t) (3.4)
(t) = LLLLj f (t)

3.2 Well-posedness of the Model

Eq. (3.3) is just an ODE, therefore we will focus on the well-posedness of (3.2).

3.2.1 Existence and uniqueness

Eq. (3.2) involves time derivatives of both H and I. It is well known that, in

general, a Preisach operator does not map C' into C' . Indeed, when corners in

the memory curve are eliminated, discontinuities occur in the output derivative if

the Preisach measure does not vanish in a neighbourhood of the corner [86]. Hence

we will interpret (3.2) in the sense of Carath6odory [87]. Some partial differential

equations with hysteretic operators appearing in the principal parts have been

studied, see [86, 20] and references therein. Existence and uniqueness proof of

solutions to equations of the form

1) = f(t qF(y)), (3.5)

where F is some hysteresis operator, can be found in [20]. To our best knowledge,

no such result has been published for equations like (3.2).

The following lemma will be used in the proof of uniqueness of the solution to

(3.2).
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Lemma 3.2.1 (The Gronwall inequality) [24J Let A(t) be a real continuous

function and v(t) a nonnegative eontiniow fu nction on the interval [a,b. If a

continuous fuinction y() has the property that

y(t) < A (t) + V(S)y(,S)ds

for a < t < b, then on the same interval

y(t) < A(t) + ' A(s)v(s) cE'!)dds.

In particular, if A(t) - Ao, where Ao is a constant, then

yMt < Aocf:' v~s)ds

Theorem 3.2.2 If the Preisach measure v is nonnegative and nonsingular, and

I(.) is piecewise continuous, then for any 'Lo e xIs for any T > 0, there exists a

uiniu pair I{H(.), II(.)} I C([0, T]) x C([0, T]) satisfying (3.2) almost everywhere.

Proof 1. W'\;e first show the existence. From ''o, one can evaluate initial values

H(0) and W(0). Eq. (3.2) is equivalent to the following: Vt e [0, T],I H(t) + W(t) = H(0) + W\I(0) + t (, (s(s)- c .ds10" 0(3.6)
,W(t) =F[H(.) ,1L'oI(t)

As in the proof of the existence of solutions to the heat e(luation with hysteresis

in [20], we use all Euler polygon method to approxinlate (3.2): for N > 0 and

- -, solve consecutively

-N N cit N
ho h N(3 .7 )

,,,,In+t ) = F ( 0 D ' 1 ,-4
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for 0 < m < N - 1, with H (°) = H(0), TI(  )) -f( = ' 
<

+ f 7 )hA I(s)ds,-- - N N N TIT --h T- n hN

and ', the memory curve resulting from application of the sequence {H } . As

discussed in Chapter 2, we tacitly understand that the input of F is changed mono-

tonically from H(m ) to H (,+ 1
). From the continuity and the piecewise monotonicity

properties of F[., 'i,] (Theorem 2.1.3), (3.7) admits a unique solution for H (
,'n+ 

t

and thus for ,In+t) . Furthermore, by the piecewise monotonicity, H.ntn -- H.(m)

and ,,,n1) - 1\'1,m have the same sign, from which we have
(H(tn )

HNK H N (m) H I NT

hN -N C0

< t(ITn) + _______ 1(I C+) (3.8)

Since I(.) is piecewise continuous, we have Vm, jIj(') < C1, with C > 0 indepen-

dent of N. From (3.8), we can get

H I - (1 + 1)" (IH(O)l + Co CO) - COC

'IT

< c 1o (IH(O)l + C-OCO) - COC =: C, (3.9)

for all in, and C is independent of N. Boundedness of -1,'I, is a natural conse-

quence of (3.9).

We obtain Hx,(.), Nf,(.) G C([0, I]) by linearly interpolating {H(\, } and

{ A'("., i.e., H ,(t) =rH~\ + (1 - )HN, t), fort (m + T) h N, 0 < 1,

and analogously for AJ', (.). Combining (3.8) and (3.9) we see that H, y(.) is Lip-

schitz continuous with Lipschitz constant L = c (Cl + . i) and the same is true

for Jix,('). Therefore {H ,(')} , is an equicontinuous and equibounde(t family

of functions, and by Ascoli-Arzeli Theorem, by extracting a subsequence if neces-

sary, H (.) - H(.) e CO([0, T]) uniformly as N - .C. It's easy to see that H(.)

is also Lipschitz continuous and thus differentiable alnmost everywhere. Similarly

JIV,(.) 0 AI.) CO([0, T] ) uniformly.
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Now (lefine (A,(t) HA t+A f- 1 ((t) HA t) at t where HA,V(t) andA MA, (t)

exist. By the definitions of H,,(.) and MA,,(.), we know CA,(t) is well defined a.e.

and ' t ( (") - (t)) - c~ I H HN (t)) , for,
and,(_ ) CO , for (Mh (m +1)h,). Integrating

HA, (t) + AO(t) = c((t) HA, (f)) + (A,(t)
Co

from 0 to t, and letting N DC, one can show H(.) and M(.) satisf the first part

of (3.6) and we are left to show T-(t) = F[H(.), ')o] (t), Vt C [0, T]

Let A , = F[H, (.), /,o]. By the strong continuity of F, A, F[H(.), yo] since

H, (.) - H(.). Furthermore we have AI,(mh,,)= A1A,(mhA, ), 0 < i < N. This

together with the piecewise monotonicity of F enables us to conclude

Sui) A, (t) - A, (t)I < Lh,,.
tE[OxI

Therefore as N fC, {MAl, } and {I, } have the same limit, i.e.,

AI(t) = F[ ), H ,o (t), Vt G [0, T.

2. N\e' now prove the uniqueness. By contradiction we assume that there exist

two solutions {H, (.), M, (.)} and {H 2 (.), M 2 (.)} and H, (t') 7 H2 (t) for some t' > 0

(we know Ht (0) = H 2(0)). Define cH = H 2 - Ht and cj[ = A,2- AIf. Using (3.2),

we get

H C14(s)ds. (3.10)

Define t to be

t = sup{f , c 14(T) -0,v VT [0, t] .
t<tl

By the continuity of c1H, there exists 6 > 0 such that c1H(t) has a constant sign,

say, > 0 (without loss of generality), on (t, t + 6]. Using the order preservation

property of F (Theorem 2.1.3), (c (t) > 0, Vt G [t, t + 6]. This together with (3.10)
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leads to

c1  t
CH4M) < - I ((S) dS~vt G [Ott 'T (3.1t1)

C0 1o

which imiplies Ic 1 (t) I 0 by the Gronwvall inequality, Vt G [0, t + 6], and this

contradicts IC 1q() I> 0, Vt G (tt+ C6]. 0

Remark 3.2.3 With mninor mnodificatilon. the above proof can be used to show

existence ond unliqumenss of solutions to mnore general systemns where the right hand

side of the first equation in (3.2) is replaced by somec function f(H, I) contnuou

in I and Lipschi'tz continuous in H.

3.2.2 Continuous dependence on parameters

Continuous dIependence of the solution to (3.2) on the parameters and the initial

condition can be p~roved using the properties of the Preisach operator and analysis

techniques for ODEs [241.

Before we go to the mnain result of this subsection, we first look at some lemmnas

about the Preisach operator. In this subsection we dleal with nonsingular Preisach

mleasures exclusively. Since we will dliscuss a sequence of Preisach operators, a

Preisachi operator with a dIensity fuinction p1 will be dIenotedI as Fp.

Lemma 3.2.4 If f{p,,} and p satilsfy

ff jIp (3-a) - ji(+a) d~da 0,

then VIL'0 G TF Vu G C([O, T]). Fpt, [u, I)ol F1 u,,Liol uniformnly on [0, T].

Proof For any t G [0, T], for any n, F,,, and F,, have the samne miemory curve.

Therefore

F,, [uL1iol (t) - F,,, 1  Lol (t) I J J . 0i (3 a) - /1 0(+ a) Id~da,
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and the conclusion1 follows.

Recall the dlefinlitionl of (,, (Subsection 2.1.1).

Lemma 3.2.5 Let p1 be a density function. Let {'",oG T xI} be a sequence of mem~-

ory curves such that f f, li(3) Q, a) -Q(, a) d(da, 0 for some '"o \F

Let the sequence u,, G C([, T]) u G C([0, TI) uniformnly. Then

Fp[n'nOl Fli u, L)oI uniformnly on [0, TI.

Proof This follows fromi Iheoreni IV.3.4 in [861, page 114.

Lemma 3.2.6 Let {pIn} be a sequence of density functions such that f f, /In(3, a)-

/1(3, a) d3da 0 for somec Borel mcasurable function /p. Let {l')no G kf} be a se-

quence of memory curves such that

JJI/10+ a) 1,, (")0 a) - ()(03 a) Id~da, 0,

for somec '"o G TI. Let the sequence Un G C([0,I) u CQO C( T]) uniformnly.

Thecn Fp [Un, L,'nOI , F1 [u,,1'oI uniformnly on [0, TI.

Proof Weget this by comibining Lemmna 3.2.4 and Lemmna 3.2.5.

Remark 3.2.7 Theoremn IV.2.5 in [86J shows continuous dependence of Fj,[u, I'ol

o n p1, u, i/ o, and there conver~qence of the Preisach measure in the weaV, sense i

asswumed which enables one to conclude only pointwise converqence for the output.

We use a stronger asswumption /in /1p in the LtI normn in Lemma 3.2.6 and the

payoff is that we get the uniformn conver~qence for the output.
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Theorem 3.2.8 Lt {H(.), I(.)} bE the solution to (3.2) with the initial condition

'o e TI. Assume that the Prdisach measure v for F in (3.2) is nonngativc and

nonsingular, and lt p1 bE thE corresponding dnsity function. ConsidEr a scEuEnc

of Equations:

C,,o (3.12)

whcrE f{/in} is a scquncc of nonnuciativc dnsity functions. {In G PC([0, T] ) Is

a scqucncc of pic cwisE continuous functions. FrwOmi /)o and )nO wE g]t H(O) and

Hn (0) , rspcctivdy. If the following assumptions arc satisficd:

C'n - C4,i 0, t, (3. t3)

n I uniforly on [0, T] (3.14)

JJ (0 3) - (~ d ~0 (3.16 )

J Jp /I(0, a) 1 (")I, 0 ) - (")I, 0 ) d~da, 0, (3.1t7)

thEn {H (.), AI\ (.)} {H(.), i(. )} uniformly on [0, T].

Proof From Theorem 3.2.2, (3.12) has a unique solution

f{ n (.),, 1,- n(.)} I C ([0, I') X C ([0, I').

Let E C R2 be a comIpact set containing in its interior the graph of H H(t) for

0 < t < 1'. Let Q > 0 be such that

Ic(I(s) - H)I < Q, V(s, fH) G E.
Co

From (3.13) and (3.14), there exists fit, such that when n > n (by increasing 2 if

necessary)

CIt(sIn (8) ) < , V(s, H) e E.
CnO
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Choose 6 > 0 such that the rectangle

R- {(s,) 0 0 < s < 6, IH - H(o)l < 2Q6} c E.

By (3.15), there exists fi2 , such that when n > T12 , IH,(o) - H(o)l < Q6 and hence

(0, H,,(0)) G R. Now from the piecewise monotonicity of F,,,, i LJ, > 0, which

implies If, < Q. Therefore (t, H (t)) G R for 0 < t < 6.

{H (.)} is a sequence of equicontinuous (with same Lipschitz constant Q) and

equibounded functions on [0, 6]. From the Ascoli-Arzehi Theorem, by extracting a

subsequence if necessary, H, H e C([0, 6]) uniformly. Using Lemma 3.2.6,

'vn If[ - F, [H, i,)0] uniformly on [0, ].

It's easy to show that {H(.), A(.)} solves (3.2) on [0, 6]. By the uniqueness of the

solution to (3.2), we have {HI(.), /(.)} = {H(.), M(.)} on [0,6]. Hence we have

shown any subsequence of (and thus the whole sequence) { H (.) MA,, (.) } converges

to { H (.), M(.) } uniformly on [0, 6]. Following a standard argument for ODEs (see,

e.g., [24]), the region of uniform convergence can be extended to [0, T].

3.3 A New Perspective to Study the Model

In this section, we look at (3.2) from a (lifferent perspective. This will lead to an al-

ternative )roof for the well-posedness as well as provide insight into understanding

of various properties of the model.

NY'-e dlefine an operator SB C([0, T]) x T , C([0, I), such that

B[H, i'o](t) = H(t) + F[H, io]I(t), VH G C([0, T]), Vl'"o G kIf, (3.18)

where F is the Preisach operator. Let B B[H,'Io]. Recall B = po(H + I)
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(Section 3.1), hence the )hysical interpretation of B is the scaled magnetic flux

density.

If for any B e C([0, T]) and any 6'o G F, there exists a unique H G C([0, T]),

satisfying B = [H, lc'], then in terms of B, (3.2) can be written as:

- ' [B,,)Ol
B = -(I - (3.19)

where B- t denotes the inverse operator of B. Eq. (3.19) is of a more amenable

form and people have studied such systems, see [201 and the references therein.

For an interval J, we define

Cj([0, ) - {u G C([0, ]) : u(t) G J, t G [0, }.

Let JH = [H4,n Hax] C R be the range of H. Then the Preisach operator

F : Cj,([0 T]) x , C Q([0, T]), where JI [MWmn Wmax] and AITn~ Ola,,

resp.) is the negative (positive, resp.) saturation corresponding to Hn n (Hmax,

resp.)

Proposition 3.3.1 Let the Preisach measure of F be nonsingular and nonnega-

tive. Then for any 'o G T, the mapping

B[', L0I : C,,([0,]T]) ,JB([0, T])

is piecewse monotone, continuous and injecteiv, where

JB = [Hn~n + iwm;n , H2ma. + ll 0-Imax

Proof It's obvious that the range of B c CjB ([0, T]) and B is piecewise monotone.

Continuity of B[.,(,0o] follows from that of F[.,lO]. o show B[.,lO] is injective,
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consider Ht1 H2 Cj, ([0, TI) and Ht (T) 7 H2 (T) for somle T G (0, 1'). Wecan

find t', 0 K < t, and 6 > 0, such that Ht (t) = H 2 (t) , V t G [0, t]I and (without

loss of generality) Ht (t) - H2 (t) > 0, V t G (t', t' + 6]. Fromi the order preservationl

prop~erty of F, we have B [Ht ,'ol (t) > B [H2 Li('oI (t) Vt (t', t' + 6] which proves

the (laimi.

Yecanl also sihow B is suijective. Wefirst p~resenlt a lemmna whlicih will be used

inl tile sequel.

Lemma 3.3.2 [86J Let X, Y be mectric spaces. f :X Y be continuous and

Y c f (X) be dense in Y. Also assumec that for any relatively comtpact set K c Y

the set f -t(K) A f{x e X :f (x) K I} is relatively comtpact. Then f (X) =Y. If

mnoreover f is injective. then f- t Y ,X is continuous.

Proof For any y G Y, we call find a sequence f{y, G Y}- conlvergenlt to y. Tlhen

for ally cihoice of x,, e f - (y,,), tile sequence f% x} is relatively comIpact, lieice

Xl"X for somle subsequenlce { Y } anld some x G X. Sice f is continuous, wve

iave f (x) = y anld tiherefore f is surjective.

Let now f be illjective. By tile samne argumelt, as above, if Yn y YC Y, we

get f- t (Yn) - X fL(Y) sice x is unliqule anld inldep~endenlt of tile cihoice of tile

subsequenlce.

For u e C([O, T]), we (defilne

A
osc u =illax it - Mill1 U, V [t tv t2] C [0, T].

Lemma 3.3.3 Let the assumption in Proposition 3.3. 1 hold. Then VIL'o G Tk

osc H < oscBS[H,,iL' oI, V H G C([0jT])), V [t tj 21 C [0, 1] (3.20)

57



Proof Let

-* arg max H, tK = arg min H.

It 's easy to verify that F [H, 1'ol (t) > F [H, ,')oI (t*). Hence

08 f3[H,1/] >o [H, L'oI](t*) - B[H, ,'oI (t*) > osc H.

Proposition 3.3.4 Let the assumrptoni Propositi*on 3.3. 1 hold. Then for any

,i o e k\F, S[ , 'oI :C([O, I) C B([O I]) is surjcctive. and its ines

s- H'o CJB ( [0 TI) " Qf([0, 1I)

ts continuous.

Proof The results wvill follow from Lemma 3.3.2, by letting X =Cj-, ([0,]TI),

Y = OJBQ, I), f = - t[.,O], and

Y - J Q 1 ([01T) G u CfB ([0, I]) :u is piecewvise monotone}

Wenow verify that the assumptions in Lemma 3.3.2 are satisfied.

From Proposition 3.3.1L f is continuous and injective. Y7 is obviously dlense in Y.

To show Y7 C f (X), wve adop~t a technique usedI in [851. Given 'o G T, wve evaluate

H(0) and i\I(0). W ,ithiout loss of generality, wve assume BC Cp.,JB([0,]TI) has

only one nmonotonicity p~artition wvith B(0) < B(T) (The argument extends to the

case of multiple p~artition regions easily). Yeassume the conmpatibility condition

is satisfied12 , i.e., B(0) = H(0) + i\I(0). We ant, to find H G Cpinf Q~(0, T]), such

2 1f thiS condition fails, we will have to "blow up" the point of input discontinuity into an

interval with nonzero lenoth and make the input continuous by linear interpolation, see [55],

page 55, or [20], page 51.
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that B[H,,(O = B. Let H(t) =H(O) + t. By the (strict) piecewvise nmonotonicity

of S, there exists TF, such that B[H, o] (IF) =B(TF). Let Ht (t) =H(O) + I-t,

and bt =B[HtI )O. Then Bt is strictly nmonotone increasing, B1 (0) =B(O) and

Bt (TF) =B(T). Now we introduce a time transformiation q2: [0, T]F [0, IF so that

C)!(t) B1 t 0 h(t). Wts easy to see H =Ht 0 C)will yield B.

Weare left to show f-t(K) is relatively conmpact for any relatively comIpact

set K C Y'. Using Lemmna 3.3.3, the set B- [K, '"o] is equicontinuous if K C

0 p,.,B ([0, IF]) is. Then we conclude with the Ascoli-Arzehi Iheoremi.

Remark 3.3.5 Propcrtls of B and B- wE havE shown so far and the Lipschi'tz

contlinuity of B- (to bE shown ncxt) parallc thosE of F and F- whcn thE Prdlsach

TnEQ5urE v satilsfics an Extra assumption:

v(AL(A t A2 )) ~>0, V[A t A2 1 c J1H AI t A2, (3.21t)

whcrE LA(At, A2 ) A :(,~ At < (3 < a, < A1 /21 86. 20J. This i's not

surprising since thE opcrator B can bE rcgardcd as a Pruisach opcrator F' with

mnasur v' v + v0. whcrE v0 i's a strictly positi'vE slingular mnasurc conccntratcd

on thE IlinEa (= 3.

Proposition 3.3.6 Lct thE assumption in Proposition 3.3.1 hold. Thcn thE opEr-

ator S[-~ i]1s causal, ratE-ilndcpcndcnt and ordcr prcscrving.

Proof Straightforward.

Theorem 3.3.7 Lct thE assumption in Proposition 3.3.1 hold. Thcn V 'o G kIf.

B- [- ,')o] is Lipschi'tz continuous wi'th Lipschi'tz constant 2. 1-E..

Sill) IHt (t) - H2 () < 2 sup IBS[Ht ,('O (t) - SB[H 2 ,('o ( (3.22)
tE[OxI tE[OxI

for Ht, H2 G QCj ([0 I).
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Proof Essential ideas of the proof are borrowed from [21], where the inverse

of the Preisach operator F is shown to be Lipschitz continuous if (3.21) and the

following condition are satisfied:

X(X) > Ct, V, > 0, (3.23)

for some constant C > 0, where

X(x) Aminfv (,(A, A +x)) : H .. , <A< H2ma - X}

It suffices to show that, V t G [0, TI,

Ht (t) - H 2(t) < 2 sup IB[Ht,'o](T) - B[H 2,(')o](T) (3.24)
TE[Ot]

If Ht(t) = H 2(t), the claim is trivial. Assume Ht(t) < H2 (t) (the case HL(t) >

H2(t) is similar). Let the corresponding memory curves at t be LI,) [t] and ')2[t]

in (r, s) coordinates. If I t [t](r) < 12 [t] (r), Vr > 0, (3.24) is obviously true. So

we consider only the case that II,[t](r) > 'I,2[t](r), for some r > 0, as shown in

Figure 3.4 (same as Figure 5.1 in [21] with different notation).

Define

r. inf{r > 0 • t: [t] (r) > ')2 [t](r),

r* = inffr > r. 'I" t,, [t] (r) = '1"1)2[t] (r) .

Since Li)t[t](0) < L'62[t](0) and we consider a compact support for the Preisach

measure, 0 < r. < r* < .Co. As illustrated in Figure 3.4, r. indicates the first

(counting from the left) bifurcation point of 1LIt [t] and LI'2 [t] after they first intersect,

and r* indicates the next intersection point of the two curves. Define regions:

D {(r, s) 0 < r t r ], Lt(r) < 8 < '11)2 [t](r)},

D 2  {(s) r. < r < r, 1",2[t](r) < 8 < 'I)t [t](r)}.
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S

H, (t2 \ f2[r

Figure 3.4 Illustration of the p~roof of Theorem 3.3.7.

Now

F[t ('o]t)- F[H2 (')o](t) =- 2J ~'rs)dsdr + 2J wc~rs)dsdr + v,

(3.25)

where v, relpresents the contribution from the region where r > r*. Since Lc > 0,

we get from (3.25)

H2(t) - Ht (t) < B[H2 ,( '01(t) - B[Ht ,( '01(t) + 21 'F s)dsdr + v,. (3.26)

Our next goal is to show that we can find T G [0, t], such that

21 'F s)dsdr + v, < B[H1 , ' 01(T) - B[H2, 0/)0IQT) (3.27)

then (3.26) and (3.27) would imply (3.24).

NY'-e observe that both graphis of 1L)I [t] and '2 [t] when restricted to [r~, r*], consist

of at least two segments of dlifferent, slopes and we let mn4 be the second segment

of '") [t]I [r~, r*] counting from the left, where dlenotes restriction. Let t4 be the

time when mn4 is formed on '") [t]. Let T = MaXft ti t2 }I. Clearly T > 0. NW'-e claim T
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satisfies (3.27). To see this, let's assume, without loss of generality, T tt. Then

,I'i)HT I a f6 1 t .I"

'2[T] < MaX{f'11 2[t] '4 inl [0, 21

,1/2 T = 1"2 t]inl [r2~x

where '1 and ') are the straight, lines with slop~e -1t through Q21 and Q_. Therefore

F[Ht1 'o](7) > F[H 2 ('o](7) and H1 (T) > H 2 ('r), which implies (3.27).

Corollary 3.3.8 Lct the assumption in Proposition 3.3.1 hold. Thcn

B L[-] : GjB([0,T) x\FT Q1U([0,T])

is Lipschitz continuous: V' 1 '0/2 e T V Ht H2 Q Qj(0,T]).

Sill lH1 (t) - H2 t)l < 2 supl B[Ht, I't(t) - B[H2 ,1'2 (t)j +2 I' - '2 (3.28)
tE[Ox] tE[Ox]

whcrE

and (,, is as dcfincd in Subscction 2.1.1.

Proof The proof is almost identical to that of Theorem 3.3.7, except that when

'I ,1 )2, T maxf t t t2 }I miay be 0. But if that 's the case, we immedIiately have

2J ~r s) dsdr +v, < 2 t - '1) (3.29)

which completes the proof.

Now we can p~rovide another proof for Theorem 3.2.2 (see also Theorem 3.1.1

inl [20] p~age 124):

Proof Define B as inl (3.18) and rewrite (3.2) as (3.19). The latter is equivalent

to

Bqt) =B(0) + 1,ctI qS) - B CBO0 )ds : TB(+ (3.30)

62



where B(0) = H(0) + i\I(0). From Theorem 3.3.7, when T is small enough, the

op~erator 7 is a contraction mlapp~ing on a closedI subset of C([0, T]). Therefore

(3.30) has a unique solution B dIefinedI on [0, T] by the contraction mapp~ing theorem

(Appendix A). Furthermore, the solution can be extended to the interval [0, 1'].

One can then obtain H = -[h , [ I ]and I= F [H, L )ol.

From Corollary 3.3.8, we can obtain an exp~licit formula for the continuous

dIependence of the solution to (3.2) on the initial condition:

Proposition 3.3.9 Let the Preisach measure v be nonsingular and nonnegatiVe.

Let Lw'p be the modulus of continuity for F. For i = 1, 2. denote by {H4{() ,A (.L)I

the solution to (3.2) corresponding to the initial memory curve,/) T' C. Then for

any T > 0., any I(.) G PC([0, TI)., we have

2,1T

1Ht - H2 lc([0T,]) 2 (aoc -o + 11') - D2) (3.31t)

1 -t- AI'2 lc([o,,]) w'pT(l Ht - H2 jc(ojT])Y (3.32)

where
A 2ct l'i t '

ao Ht H(0) + A-It (0) - H 2 (0) - I12 (0)l +

and 1 l([o,,T]) denotes the supl norm on C([0, TI).

Proof Let h4 () = H4 () + i\I4(t), i = 1, 2. Then for i t, 12,

B4()= 4()+ 1,ct (I(S) - B CL B L())ds,

which gives rise to

Bt (t) - B 2 (t) = Bt (0) - B 2 (0) - Lj(8~ B,<s ~'[ 2  '1s)s (3.33)

From Corollary 3.3.8 and the Gronwall inequality, we obtain

2ciT

1Bt - B 2 l([0T,]) ac .o (3.34)
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Then (3.31) follows from Corollary 3.3.8 and (3.32) follows from the continuity of

F.

3.4 System-Theoretic Properties of the Model

In this section we study system-theoretic properties associated with the model

(3.2). In particular, we look at stability of equilibria, input-output stability, reach-

ability and observability.

3.4.1 Stability of equilibria

The state for (3.2) is the (infinite-dimensional) memory curve ' G T since both

H and I can be derived from L'. We set the input I - 0 in (3.2) and investigate

stability of the equilibria of the following equation:

CO (3.35)
AI = F [H, 11"01

To get the set of equilibria, we let H I = 0 in (3.35) and obtain H = 0.

Therefore the equilibria set

To = ' f 1 I) : the graph of ' intersects the line a 3 at (0,0)}.

In (r, s) coordinates, F0 = {' G F : ''(0) = 0}. Note F0 forms a continuum and

any G; e TI' whose graph is embraced by those of ,1'), and 'I in Figure 3.5(a) belongs

to Tlo.

Stability of an equilibrium point is usually discussed in the sense of Lyapunov

[54]. An equilibrium point is stable if all solutions starting at its nearby points

stay nearby. It is asymptotically stable if it is stable and all solutions starting

64



0V

Figure 3.5: Stability of the equilibria: (a) the set klfcj (b) evolution of 'twhen

H(O) > ft (c) evolution of 't when H(O) < 0.

at nearby points tend to it as time appIroaches infinity. Different metrics can be

dlefined to measure the dlistance between two memory curves 'I" t C '1)2G . Recall

the (definition for (,,, (Subsection 2.1.). NW,-e can (define

-'12 11 A 1( )- 2 +~ ~~ (3.36)

and

t'61)2 L 1 AJJ ( ? )-Q) )j(,&dd. (3.37)

NX,,-e use the notation L1 and since the metrics (3.36) and (3.37) are

(defined in terms of the Lt norm where the underlying measures are the Lebesgue

measure in R 2 and the Preisach measure wvith (density /1, resp~ectively.

A third metric uses the Hausdorff (distance

A

1" = d ' 1 d (graph of ' graph of') (.8

and wve recall for a metric space X wvith metric d(., ) the Hausdorff (list ance

d11 (St1 S2) between two sets St, S2 C X is dlefinedl

(11 (St1 S2 ) Anax{ Sill) inlf d(S t,8) S1ll) inlf d(S t 82)}
8 1Es, 82ES2 82ES2 SI ESi
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A~ t m (H,H)

AH

o o
AMi (

A H

(a) (b)

dH ,'±) (a) dlefinition of--i,

Figure 3.6: Illustration of the definition (a) dde (intin). (b)

definition of [ (fq, -).

We now define two quantities, f (', +)a , -), where 2-(' +) ('

resp.) carries the interpretation of the derivative of AI with respect to H when H

is being increased (decreased, resp). For ti, k \If, Let (H, H) be the point where i

intersects with the line a - 3. Define (see Figure 3.6 for illustration)

1A3 inf{3 H (,H) G graph of '},

and

hi>, sup{ • (H, a) e graph of 'I}.

Note usually either 113 or HL, is equal to H.

YWe let

dM AAI +

dH =AH- AH (3.39)

dAl. AAI-
d- (L' ' -) = lim H (3.40)

dH A1H-0+ AH

if the limits in (3.39) and (3.40) exist, where AM + and AI- represent contribu-
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tions from the shaded areas in Figure 3.6(a) and (b), respectively:

LAI+ - 2Ja ~a

L-1 2J a)dad).

If /I is continuous, + ~ i) and ' ((') -) are wvell dlefined and given by
d H dH

dH-(I' )±) -2] /1(3, H)d), (3.41)
d\

dH ( -2] H p t(H, a) da (3.42)

It turns out that our stability result is independent of the metric wve use.

Proposition 3.4.1 Assume that the Preisach measure is nonnegati've and non-

sin qular. and that the density function is piecewinse continuous. Then eachI) G TO

is a stable but not asymptotilcally stable equilbrilum of (3.35).

Proof Consider ') TO'F. Denote Ltthe memory curve at time t > 0 when the

system starts from 'o T ' at t -0. NY'_e claim

Lt-L Lo-L< Vt > 0' (3.43)

where is any of the three metrics wve dIefinedI above.

NW'_e first show if H(O) corresponding to '"o is not zero, then H(t) ,0 mnono-

tonically. By the assumptions of the J)roIposition and the imp~licit assumption that

It has a comp~act supp~ort, ("{[( it sgn (H)) is wvell dIefinedI a.e., and

0 dH< L sgn(H)) < C, (.4

ft - H, (3.45)
co (I + gM)
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where g (t) = ' , sg n(ft)), and 0 < g () < C. Fromi (3.45), we canl see H () ,0

nionotoiiically. Tiiis imlplies that for,(')C GIT with H(O) - 0, 't ,'), as illustrated

in Figure 3.5 (b) and (c). If H(0) 0, i.e., 'o G TO0, thenl'/) 'o . Therefore

(3.43) holds and any 61 G TO is stable. Any 61 G To is not asynlIptotically stable

dule to that To0 forms a continuumi.

Remark 3.4.2 Althou h any individual Equilibrium 'I" G T is not asymnptotically

stabU., TOJ is ""globally asymnptotically stablC* in the scnsc that, starting fromn any

'o C XI' lillt. ,~ inf, EI'o 0-

3.4.2 Input-output stability

For eachl 1"1) C kI, (3.2) dlefinles a nlap)Iillg fromi tile inpu~lt I(.) to tile oultpult H(.)

anld A\I(.). Here we discuss tile qulestionl of finitE gain stability for tilis nlap)Iillg.

Definition 3.4.3 A mnapping Mv is finitE gain C stabhc if thcrE Exist > 0 and

bo. such that for all u in the input spa CE.

1Mu 11<_ 1 u 1P +o (3.46)

whcrE 11 dcnotcs thE signal spacc normn. Wc say MA has an 'C gain hcss than or

Equal to -,and call bo thE bias tcrmn.

Y '_e study tile finite gail L, stability anld tile finite gail L 2 stability of (3.2).

Accordingly, we (definle two ilult sp~aces

U { fI(.) :I(.) is Jpiecewvise conltinuouls andl su SI I(t) I<
t>o

U2 A{() I(.) is Jpiecewvise conltinu~ouls andI 10(, d
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and we write

111 I()1,,= sill II(O)1 VI(. G U,
t>O

II 2 J12 ()dt, I(.) 1 U2.

Finite gain L, stability

Since the Preisach measure is assumed to be finite, w\(t)j < _, Vt > 0 for

any input I(.), where Af4, stands for the saturation magnetization. Therefore the

mapping from I(.) to AI(.) is finite gain L, stable with -, = 0 and b0 = A.

For the mapping from I(.) to H(.), we have the following:

Proposition 3.4.4 Let the Preisach measure be nonnegative and nonsingular.

Then VIo G Tp, VI(.) G Us, we have

11 H(.) 11.< max{ H(0), c0 II 4(.)I11.. (3.47)

Proof The proposition follows from the observation that, due to the J)iecewise

monotonicity of the Preisach operator, (3.2) gives

HI > 0 if I(t) > H(t)
Co

H < 0 ifI(t)_ H(t)
Co

Finite gain L 2 stability

The mapping from I(.) to AI(.) is not L 2 stable in general. To see this, consider

an example: Let the initial memory curve t,)o G T be such that the corresponding
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H(O) = 0 (i.e. 'o G TIo) and i\I(0) - 0, and let I --0. Then I -- I(0) and hience

not square integrable althongh 11(') 12= 0.

The mlappIing from I(.) to H(-) is finite gain L 2 stable:

Proposition 3.4.5 Let the Preisach measure be nonnegative and nonsing~ular with

a pIecewIse continuous density p. Then VIL'o G TF VI(.) CU 2. we have

1H(-) 12< - 11(') 12 A(3.48)

where

Sill)

Jw+co~1-C)

60 -o (1 + C) H(0)1

and C > 0 is the constant in (3.44).

Proof For each 'o C lf, we can rewrite (3.2) as

Ht - - GIL H(-) + GI I(t) (3.49)
co (I1+ gM) 1+q9M

where g(t) is as dIefinedI in the p)roof of Proposition 3.4.1. Eq. (3.49) is a linear

time-varying ODE and its solution is given by [611]: H(t) =Ho (t) + Ht (t), where

Ho (t) - f , 0 J(1 +g(,)) dH(0 ) (3.50)

H1 (t f,'(-v() d, 1 t ± ( )dr (3.51t)

From (3.44), one obtains 11Ho(.) 12< bo. Again from (3.44),

H1 (t)j < H2(i-) =' c,0(1vC)t & ctjI(t)j (3.52)

where "0" denotes the convolution. Note H 2 is just the output of a linear time

invariant system

G o (s) - S + C Cl

1--tC)
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when the input is I(.) . Denote Fourier transforms of H 2, I and I by H 2(j-1'),

I(jL,) and FI(jw'), respectively. Then

H2) < 11 H2 (.)II (3.53)

- +1 Go(jC')IP(j')12dL' (3.54)

2 1 C(3.5)
2 .)- IT( -L,)12 d,  (3.56)

_,2 11(.)112,

2 2 (3.57)

where we have used the Parseval's identity [39] in (3.54), (3.56) and (3.57). Eq. (3.48)

now follows by using the triangular inequality.

Remark 3.4.6 The bound 3 is Just the 7-H norm [3,9j of the system Go (s)

3.4.3 Reachability

In this subsection and next subsection, we will adapt the notions of reachability

and observability [74] to the Preisach operator F and the system (3.2).

Let H e C([O, T]) be the input to the Preisach operator and let 'I,[t] be the

memory curve at time t. It's easy to check that 'I,[.] is continuous on [0,T] under

any of the three metrics on TIf defined in Subsection 3.4.1, and we write

1/,[.] G C([O,' Ik).

Let E: C([O, T])x ,x - C([O, T] 'kf) be the evolution map of the memory curve

(c.f. Section 2.3 for the definition of Ed in the discrete-time case), i.e., for the input

H e C([O, T]) and the initial memory curve i'o t 'F,
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Definition 3.4.7 (Reachability for the Preisach operator) Lct ') t~ 0/)2

WE say ')2 is rcachablE from 'i if thcrE Exists a finitE TF > 0. and H C C([, I] )

such thatl" '2 B[,'1T.ThE statE spac TE\I is callcd rcachablE if any statE i

rcachablE fromn any othcr statE.

Definition 3.4.8 (Approximate reachability for the Preisach operator)

Lct d(.~. bE onc of thE thrcc mntrics in TI dcfincd in Subscction 34.1. WE say

~'12 T 'is approximnatcly rcachablE fromn 6) G T if for any c > 0. thcrE Exists

'I" T ' such that '), is rcachablE from ('t and < ~ 2 c. ThE statE spac TE4

is callcd approximnatcly rcachablE if any statE is approximnatcly rcachablE fromn any

othcr statE.

Remark 3.4.9 ThE dcfinition of approximnatE rcachability abovE is adaptcd fromn

that in [3~7j.

Proposition 3.4.10 [?7j For thE Prcisach opcrator F, thE statE space TI is not

rcachablE. but approximnatcly rcachablE.

Proof Denote klf, C kl the set of nmemory curves comIposed of segmients wvith

slop~e ±1t in (r, s) coordinates. It 's easy to chieck that kv, is a dlense subset of T',

and any ') C T, is reachable fromi any ' C T'.

Now for the systemi (3.2), for any inpult I C PC[O, IF]) (the space of J)iecewise

continuous fuinctions), the corresponding trajectory 'I"[] C C([0, T] 4'k) by Theo-

remi 3.2.2. Denote EB:D :PC([0, IF]) X T4' C([0, IF 4'k) the state evolution miap for

(3.2).

Definition 3.4.11 (Reachability and approximate reachability for (3.2))

SamEc as Dcfinition 3.4.7 and Dcfinition Jj4.8. Exccpt wE rcplacE H C C(Q0, I] ) and

EE by I C PC([0, IF]) and '-::D. rCsp~ctivl*ly.
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Proposition 3.4.12 LEt the Prdisach mcasurc bE nonnEgativE and nonsingular.

ThE statE spacE I' for (3.2) is not reachable, but approximaty y rEachablE.

Proof TI is not reachable since the state space for the Preisach operator is not

reachable. We now show TIf is approximately reachable, i.e., given 'i '2 ' ,

c > 0, there exists I G PC([O, I] ), suchi that

S T (3.58)

with d((',, ')2) < C. Indeed, from the rate-independence I)roperty of the Preisach

operator and Proposition 3.4.10, we can find H G C: ([0, T]) (the space of continu-
ously differentiable functions), such that B[H, i,](I) C \i. with d(6) 6), t'2) < C.

By the hypothesis, JI - F[H,I/,:] G C([0, T]) and it is a.e. differentiable. Then by

the uniqueness of the solution to (3.2), the input

H+MH
I--- --

C t CO

satisfies (3.58).

3.4.4 Observability

Definition 3.4.13 (Observability for the Preisach operator) WE saj 'I,

If is distinguishablE jrom '2 G TI. if there Exists a finitE T > 0 and H C C([0, T]),

such that AI:(t') € I 2 (t) for somE t' C [0, IF whErE AI =F[H,, i 1,2. ThE

PrEisach opErator is obsErvablE if any statE T' C 'I is distinguishablE from any othEr

statE.

Proposition 3.4.14 REcall the dEfinition of Q, (SubsEction 2.1.1). LEt the PrEisach

mcasurc bE nonnEgativE, and nonsingular with dEnsity /. ThE PrEisach opErator is
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observable if and only if Vk',) t '/2 G T and'I) Li L'2,

j P 10 ) VI0 -a (1,2(3 a) ld~da > 0. (3.59)

Proof If (3.59) holds, straightforward analysis on the Preisach J)lane shows any

state can be (list ingu ished from any other state. Conversely, if (3.59) is violated

for some p~air 1/)t, '2, then one can find 1L)j - L both intersecting the line a (3

at the same p)oint, and

110 ( a,) - (") 0 a') dda -0. (3.60)

It's obvious that '(1) is not (list ingu ish able from .

As in Subsection 3.4.2, we take I(.) as the iput and f{H(-), II(.)}I as the o)utpult

of the system (3.2).

Definition 3.4.15 (Observability for (3.2)) Let L,)tL'2 G kIi. We say 6)t is

distinyguishable from '2 if there exists a finite T > 0 and I G PC([0, I]), such

that Ht (P) 7 H 2 (P) or I-It () 7 IM2(t') for some t' G [0, T]. The system (3.2) i

observable if any state,1 G~ 11f is distinyguishable from any other state.

Proposition 3.4.16 Let the Preisach measure be nonnegative, and nonsing~ular

with density p. The system (3.2) is observable if and onlyj if V,' 1 t2 T and

i 4 1 2(3. 5 ,9 ) holds.

Proof NW,-e first show if (3.59) holds, (3.2) is observable. Let's consider 61) t 62 G TF

such that Ht (0) ="2 (0) and I (0) =1-2 (0) (otherwvise61 tI is already (list ingu ishe(I

from1 '/2 by taking t' = 0). From (3.59),

1-I (0) - U 2 (0) = 2 J w' (r, s)dsdr - 2f J;II Lc(r,.s)dsdr + v, = 0, (3.61)
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Iij(O)=NJO) ___

(a)O =Hb D

Figure 3.7: Illustration of the p~roof of Proposition 3.4.6

where Dt and D 2 are regions as illustratedI in Figure 3.7(a) and V" represents

the contribution from the r.egion r > r*. Applying a monotonically increasing (or

decreasing, resi).) input I with 1(0) > H'(0) (O) < H'(0) resp.). Then

{Ht (t), AI (t) =} -{H 2 (t) I2 (t)}

until at some time t, the segment Mn2 (Mnt, resi).) is touched and the area D t starts

to change (Figure 3.7 (b)). This breaks the balance in (3.61) and wve will observe

A-It (P') 7 I 2 (Pi) for somle t' > t.

Conversely, if (3.59) is violated for somle 1"I '2 G T. Then as in the proof of

Prop~osition 3.4.14U we can find Li ) L and they satisfy (3.60) and the correspond-

ing H't(0) = H2'(0). Then we can show (using, e.g., the Euler polygon method),

for any I(.) e PC([0, I), f{Ht ANFtj}- {H2', Nf}.
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3.5 Existence of Periodic Solutions under Peri-

odic Forcing

YWe observe a periodic motion of the actuator head when a periodic input is applied

(Figure 3.1). We want to investigate whether the model (3.2), (3.3) has this same

property. Eq. (3.3) is a linear system when we treat j_
2(t) as its input, and it's

easy to show it has an asymptotically orbitally stable periodic solution [54] when

V 2 is periodic. Therefore we need only study whether (3.2) has periodic solutions

when the input I is periodic.

Brokate and Pokrovskii studied asymptotic stability of oscillations in nonlinear

ODE systems with small hysteretic perturbations [19], where the hysteresis non-

linearity is required to satisfy- certain contraction property. Studies on oscillations

in systems with hysteresis can also be found in [56, 14, 66]. Techniques frlom these

papers can not be directly applied to (3.2), but the key idea of finding a fixed point

of some operator in these papers proves to be usefil in our following result:

Theorem 3.5.1 Let the Preisach measure be nonnegative and nonsingular. Define

, [H,, H.* Let I e Qj1 ([0, oo)) be T-periodic. i.e..
S Co I Co °•

I(t + I') = I(t), vt > 0.

Let BE:D : C([0, DC,)) x kIJ C([0, D,), \IJ) be the state evolution mnap for (3. 2). Then

the exists,6 G kAO , C such that BED[I, ,,,,0](t + ') =EBD[I, '1,,0(t), vt > 0.

Proof W1e will use the Schauder fixed point theorem (Appendix A). Recall

Definition 2.1.1 and Figure 2.4. It's obvious that kf is a convex set. Denote

Lt ([0, r0]) the Banach space of integrable functions on [0, ro]. First we show If is a

76



closed subset of L t ([0, ro]), where we borrow some ideas from the proof of Theorel

3.3 in [37].

In (r, s) coordinates, any 'I" e Tx is a continuous function of r on [0, ro], and

thus U' e L t([0, ro]). Let {f' T } be a sequence that converges to '' G Lt ([0, ro])

(in the Lt norn). By definition of kIf, {'I, } is equicontinuous and equibounded.

Therefore by the Ascoli-Arzeli Theorem, a subsequence 1,)nk - '" G T unifornly

on [0, ro], which implies {'in,, } converges to t) in the L, norm. Therefore Li, = i/

and T is closed.

Given ()o e kIf and a. T-periodic I G C 1 ([0, c)), we have

sD[J, ' 1() Ge , t > 0,

from Proposition 3.4.4. We then define the map E . I T by

(D ( -D[J, ,l0](iY V'0 G T. (3.62)

The metric of L t([0, ro]) on xf is equivalent to the metric (3.36), which is further

equivalent to the metric (3.37) under the assumptions on the Preisach measure.

Hence E7 is continuous by Theoren 3.2.8. Also E' is a conpact mapping since

'I itself is comIpact. Therefore E' has a fixed point by Schauder's fixed point

theorem, and this completes the proof.

Remark 3.5.2 Theorem 8.5.1 implies that the corresponding soL ution {H(.), I(.)}

is also periodic.
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3.5.1 Existence of recurrent solutions

Pokrovskii and his colleagues studied existence of so called rec urrent oscillations

in the differential-operator equation of the form [64, 65]:

{ f(t) f ) (3.63)

where Vt, x(t) e Rd, z(t) typically represents the internal state of some hysteresis

operator and belongs to an infinite dlimensional metric space Z with the metric

dz, and A[., .] is the evolution map for the state z. For instance, for the case of

the Preisach operator F, Z = TI and A = E.

Roughly speaking, a function u(t) with - c < t < oc is recurrent if, given

c > 0, T > 0, there exists A > 0, such that VT e (-c, Dc), any interval longer

than A contains uT such that the function t - u(t + 7) is "c-close" to the function

t u (t + (T), t e [-T, T]. The class of recurrent functions includes periodic, quasi-

periodic, almost-periodic functions and many more [65]. It was shown in [64, 65]

that (3.63) has at least a recurrent solution, if f(t, x, z) is recurrent in t and (3.63)

has a uniformly bounded solution. One can adapt the proof of this result to get

the following: when I is recurrent, (3.19) (and thus (3.2)) has at least a recurrent

solution.

Remark 3.5.3 One should not say the result of existence of recurrent solutions

is stronger or weaker than that of existence of periodic solutions (Theorem 3.5.1).

In some sense, the result of existence of recurrent solutions is more general but it

does not imply Theorem 3.5.1.
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3.6 Numerical Simulation of the Model

Numerically solving (3.2) helps predict behaviors of the model, verify theoretical

analysis, and validate the model by comparing the simulation result to the exper-

imental measurement. It will also prove usefuil in parameter identification for the

niodel.

3.6.1 Explicit Euler algorithm

The Euler polygon method was used in establishing the well-posedness of (3.2) in

the proof of Theorem 3.2.2. Here we use the Euler method to obtain an approx-

imate solution to (3.2). Given the memory curve i'L[to] at time to and the input

I(.), approximate values of H and MI at to + h are computed via

h(to01h)-H(to) + M1to+ 1h)-!1(to) - c1 (rto - Hqo))
- .Co , (3.64)

i\I(to + h) =F[H(to + hYL,')[tol

where h is the time step size (see the comments in the proof of Theorem 3.2.2 for

proper understanding of the notation in (3.64)). We call (3.64) the explicit Euler

scheme since H(to + h) is not involved in the right-hand side of the first equation

in (3.64), following the terminology in the ODE literature [40].

As noted in the proof of Theorem 3.2.2, (3.64) has a unique solution if the

Preisach measure is nonnegative and nonsingular. Eq. (3.64) can be solved by

adapting the inversion algorithms for F discussed in Subsection 2.3.2. Denote the

right-hand side of the first equation in (3.64) as go. We consider the case go > 0

and the other case can be dealt with similarly.

If the Preisach measure satisfies the assumptions of Proposition 2.3.4, the fol-
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lowing algorithml can be used to solve (3.64):

H(<n+t) U(-) + 1+;)I7fj(n+-t) F[H (n+t) (3.65)

/(n-v) = /n) - (H (n+ t) - H (n)) - -&+t

with v as defined in (2.20), H ( ) = H(to), f (o) f(to), 5(0) = hgo.

If tile density / is J)iecewise uniform, obtained from tile collection of identified

weighting masses as discussed in Subsection 2.3.2, tile algoritlm (2.22) can be

modified to solve (3.64). At iteration n, evaluate dl d aL and a as in

Subsection 2.3.2. Then solve

a2+ (1 + a,)d 0 ~

for dln ), where / (0) = hgo, and

/(w-+t) = / (n) - (H (n+ t) - H(n)) - ( n\f+nt) - it(n)), Vn > 0.

Then iteration of (2.22) will yield tile solution to (3.64).

3.6.2 Accuracy of the Euler algorithm

XWe have tile following result about accuracy of tile algorithm (3.64):

Proposition 3.6.1 Ass~ume that the Preisach measure is nonnegative, and non-

singular with a piecewise continuous density. Assume that the input I(.) is contin-

uous and bounded. Consider the algorithm (3.-4). Let the true solution to (3.2)

be {H(.) i\(.)}. Assum e'(,I[to1 ±) and the derivativs of Ht) and w\t) at to

exist. Then

IH(to + h) - H(to + h) I O(h 2 ), (3.66)

Ijj(to + h) - jj (to + h) 0 (h 2 ). (3.67)
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Proof Denote go the right-hand side of the first equation in (3.64). Taylor series

exp~ansion of H and I at to gives us

H (to + h) H (to) + H (to) h + 0 (0), (3.68)

MI-(to + h) M(to) + AM(to)h + O(h2 ), (3.69)

where

goH(to) t +'( [to]1 Sg n (go))

and

i\I(to) -dHf 0")[to] sgn (go))HI(to).

From (3.64) and the piecewvise nmonotonicity p~rop~erty of F,

IH (to + h) - H (to) I h Igo < h C, (3.70)

for some constant C > 0. From this wve have

2I-I(to + - I(to)

(i,[t]sqn(go))(H(to + h) - H(to)) + 0(I(t +q h) - Hqo)l2)
dH

__ dM( ,[tl ,sqn(go))(H(to + h) - Hqo)) + O(h). (3.71)
dH

Combining (3.64) and (3.71), wve have

Ht ++)=Hto 0(h 2 ). (3.72)
H + [to] gn f(go))

Then (3.68) and (3.72) lead to the estimate (3.66), while (3.69), (3.71) and (3.72)

lead to (3.67).

Yehave seen the local error (the error in one stel)) for the algorithm (3.64)

is 0( 2 ) and thus the global error is 0(h). This is consistent wvith the accuracy

order of the Euler method in numerical integration of usual ODEs.
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A natural question to ask is whether we canl obtain algorithms of high order

accuracy for solving (3.2) by properly adap~tinlg high order initegrationl methods

for ODEs, e.g. ,the mid-point rule and other Runge-Kutta methods. From our

p~reliminlary inivestigation,. the answver appIears to be "no" . One of the dlifficulties is

dlue to the dIep~endenlce of {"on the sign of H

3.6.3 Implicit Euler algorithm

Implicit methods perform better tihaln exp~licit onles for many p~roblems, esp~ecially

for stiff Jproblems [411. Existence of fast transient dIynamics iln a system is a typ~ical

cause of stiffiless. Eq. (3.2) is stiff, whlicih one call see easily after it is rewrittenl as

(3.49). Therefore we p~rop~ose all implIlicit Euler algorithmn to solve (3.2):

i4(+ I,-)-H (to) !11t 0 -- h)-!1Mq 0 ) =_ CI (I(to + h) HI14 ))t(+73)

i\I(to + h) =F[Hq0o + h) ')[tofl

Solving (3.73) (does nlot require miore effort tihaln solvinlg (3.64) since (3.73) can

be rewrittenl as

+ LL £(H (to + h) - H (to)) + 3ItO+1L)-1tO3 ) __t (I (to + h) - Ht)

h (3.74)

i\I(to + h) =F[H(to + h) ')[tofl

whlichl carries tile same structure of (3.64). Figure 3.8 compares tile p~erformanlce of

tile exp~licit sciheme (3.64) and( tile imlplicit sciheme (3.73). Same inpIut I is appIliedI.

The step size h = 8 X 10 5 seconld. NY'-e can see tilat tile imlplicit algoritim is mucih

miore stable anld it call provide mleallilgfuil solutiolls even if h is nlot very smiall.
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Figure 3.9: Displacement amplitude vs. input frequency.

3.7 Parameter Identification

In this section we discuss how to identify parameters involved in the model (3.2)

and (3.3). The Preisach measure is identified as described in Section 2.2. The

following parameters are provided by the manufacturer (some of them presented

already in Section 2.2): N,, 1300, A... = 2.83 x 10 5m2 , 1,,od = 5.13 x 10 2mi,

i-, = 7.87 x 105A/m, co = 1.54 x 104 /n. The saturation magnetostriction A,

is identified to be 0.001313. To estimate the first resonant frequency, we apply

sinusoidal inputs of the same amplitude but different frequencies and measure the

amplitudes of the displacement. Figure 3.9 displays the displacement amplitudes

at different frequencies and we determine the first resonant frequency to be 392

Hz.

We are now left with identification of R~ddy and . Generally it's impossible

to write down the explicit solution of (3.2) in terms of Rddy, therefore we can

not identify: Rddy directly. A theoretical value of Rddy can be computed with the
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formiula Redd 8= 1-d b
2 (,2) [82], where p is the resistivity of the magnetostrictive

material, b and a are the outer and inner radii of the magnetostrictive rod. We use

this foirmula to obtain an upper bound R of Reddy by letting a 0 0. Plugging in

p = 5.8 x 10 7-Q/m for Terfenol-D, we get R 480.2Q. We then discretize [0, R]

and denote the mesh )oints by R( 4 1,. N. The discretization need not

be uniforn and we make it finer in the region where the dynamics of (3.2) is more

sensitive to Reddy.

We observe a periodic motion of the actuator head when a periodic input

is applied. We have also shown (3.2) and (3.3) have periodic solutions if I(.)

is )eriodic (Section 3.5) . These observations motivate the following scheme to

identify: Reddy and :

" Step 1. We apply a sinusoidal current (with some dc shift if necessary) I(.)

with frequency f to the actuator and measure the J)hase lag O, between the

fundamental frequency component of the displacement and the current:

Step 2. For each R) :e numerically integrate (3.2) with I(.) as the

input, and calculate the phase lag 0,1[2,/ between the fundamental frequency

comIponent of 2(.) (in its steady state) and I(.).

" Step 3. The difference O,, - O,1[2,/ is considered to be the phase lag between

the fundamental frequency conponent of yQ() and that of AP(.) in (3.3),

fron which we can conpute (4).

Remark 3.7.1 Th, idea of rlating the phasE shift bEtween the output and the

input to hystErEsis can also bE found in [28J. We notE that in gEnEral, the phasE

lag dEpEnds highly nonlinEarly on the initial condition, and the amplitudE and the
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frxqucncy of I(.), so wc should Tnakc surc that thE initial condition in simulation

?is consilstcnt with the condition in the Expcrim*Tnnt.

N ,-e rep~eat the above exp~eriment (Step 1 to Step 3) K times wvith dlifferent input

frequencies and denote the damping coefficients as {<(OJ t/ for R(4 If R(4 is
k - ddyJ * 'ddy

close to the true p~arameter Reddy, d4) shold not vary much wvith k. Therefore wve

p~ick I*, t {, N} such that {<W)I}K has the mninimumi variance, and estimate

Reddy via Reddy R(4)~ and let be the mlean of {j)}

Figure 3.10 shows the variation of wvith respect to frequency for dlifferent

R()'s. The parameters are dIeterminedI to be Reddy = M , 0. 7783. Figure 3. 11eddy '

compares the rate-(IeIendent hysteresis loop)s measured in experiments to those

obtained through simulation based on the identified p~arameters. NX,,-e see that the

simuilation resuilts~ agree Nvith the experimental resuilts~ reasonably wvell up to 200

Hz. Sice the depth of eddy current, penetration dIepends on the frequency, so

does Reddy. This explains whly the comp~arison in Figure 3.11 goes wvorse when the

frequency is beyond 200 Hz. In practice, one can identify Reddy according to the

operating frequency range of the specific appIlication.

3.8 An Inverse Control Scheme

In this section wve pr~opose an inverse control scheme for the (dynanmic hysteresis

miodel (3.2) and (3.3). W ,-e first formially (describe the scheme to highlight the idea,

then wve discuss how to imp~lement it.

Given a dIesiredI disp~lacement trajectory jj(.) GC 0([0, T] ), wve conmpute for every

t, u () ("j(t) + 2 u'04i(t) + jt) and then let i\I(t) = uq). Next wve

obtain H(-) from A\I(-) by inverting the Preisach operator F. W ,-e then (formially)
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let

1 H~tI (t) : (H(t) + W tr) + H,).(3.75 )

Due to the uniqueness of the solution to (3.2) and (3.3), we expect the output y()

under I(.) to agree with yj(.).

All we have just said is the ideal case. Several issues need to be taken care of

in implementing the scheme.

First of all, the desired trajectory jj(.) may not be twice differentiable. For (3.3),

let D([0, T]) be the space of attainable y() under some control u(.) G C([0, T])

and 0 < u(t) < 7\f V G [0, T] (u plays the role of JIf 2 in (3.3)). In general,

we need first find yf(.) G D([0, T]) which is closest to jj(.) in the sup norm (i.e.,

the projection of yj(.) on D([0, T])) and then work with y* (.). In our experiments

below, however, y is picked from D([0, T]) since our main objective is to validate

the model.

Since (3.3) is a linear system, sometimes u(.) (and therefore i[(.)) is available

as the output of some linear controller. In such cases, the inverse problem becomes

how to get I from JI and the solution to it is just (3.75).
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Figure 3. 11: AN Jodel validation. Solid line: exp~eriment al measurement Dashed line:

numerical p~rediction.

Another question is that A\I(.) or HI(.) may not be differentiable. In general

this should not bother uts because wve wvork in the (liscrete-time setting (for dligital

compulter control) and the (derivatives are appIroximated by the finite (difference

method.

Three inverse control schemes have been implemented to track a dIesiredI (is-

p~lacement trajectory. The first one is based on the dIynamic hysteresis model,

the second one is based on the Preisach model alone (c.f. Section 2.3), and the

third one is based on the non-hysteretic model dIescribedI in Subsection 2.4.3. The
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sampling period used is 0.05 ins. Experimental results are shown in Figure 3.12 -

3.14. In each figure, the displacement trajectories (both the desired and the inea-

sure(I), the tracking error and the input current, are displayed. e can see that the

performance of the first scheme is very satisfactory. This shows that the dynamic

hysteresis model can capture high frequency effects in the actuator, and that our

identification and inverse control schemes are effective.

Measured trajectory

4 
-

200

Time (see.) 0

- 5 0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4
Time (sec.)

15 -

0

0 0.05 01 0.15 012 0.25 013 U5 0.4
Time (see.)

Figure 3.12: Trajectory tracking based on the dynamical hysteresis model.
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Figure 3.13: Trajectory tracking based on the Preisach model alone.
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Figure 3.14: Trajectory tracking based on the non-hysteretic model.
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Chapter 4

A Robust Control Framework for

Smart Actuators

Due to the open loop nature of inverse compensation, its performance is susceptible

to model uncertainties and to errors introduced by the inverse schemes. In this

chapter we address this problem by combining inverse control with robust control

techniques. Appendix C I)rovides the background (and notation) on robust control

necessary for development of results in this chapter.

Figure 4.1 illustrates the idea underlying the robust controller design method

for smart actuators. We consider the discrete-time setting in the interest of digital

control. W and (,(A) represent the nonlinear part and the linear part of the

actuator model, respectively. W could be a Preisach operator (rate-independent

hysteresis), or a rate-dependent hysteretic operator, like (3.2), together with other

nonlinearities, e.g., the square operator in Figure 3.2. We recall (see Appendix C)

that A-transform G(A) of a LTI system G is essentially the usual z-transform of

G with A = z-'. Go(A) denotes the plant we want to control. An approximate

(right) inverse W :' is connected in series to W, to approximately cancel out the

91



Yret
I+

w G" 0(X)-
IA

m1rax-
IA

I W KO.)

Figure 4.1: A robust control framework for smart actuators.

nonlinearity WV. Then a linear controller K(A) is designed for the comIposite plant

GOG(,. In addition, actuator saturation is also considered in Figure 4.1.

As an example, we study the robust trajectory tracking problem. The require-

ments for the controller can be roughly stated as: in the presence of the inversion

error e,, i - u and the moodel uncertainties in Cc(- and 0 0 , for all (esire(d trajec-

tories in a certain class,

" the closed-loop system is stable,

" the tracking error is minimized, and

" the output of K does not exceed the saturation limits.

A more precise formulation of the robust control problem will be presented in

Section 4.2.

Remark 4.0.1 We take the saturation limits into account in the design of k

to ensure that the overall system operates in the linear region and thus predictions

based on the linear design are credible. We will see, however, that strictly enforcing

the saturation constraint at the stage of controller design compromises the tracking
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Figure 4.2: Two ways to represent the inversion error.

performance. Further discussions on how to incorporate the saturation nonlinearity

into controller design will be provided in Section? 4.4.

A first step toward the robust controller design is to quantify. the inversion error

4.1 Quantification of the Inversion Error

In general W- IL is not an exact inverse of WV (Figure 4.1) and two factors may

contribute to the inversion error: parameter uncertainties and non-existence of

exact inverse schemes.

There are two possible ways to model ,. The first one is to model it as the

output of some uncertainty block A (Figure 4.2(a)) and the other one is to simI)ly

model it as an exogenous disturbance r (Figure 4.2(b)). As we will see shortly, C.,

is independent of u and it is possible that c,, 4 0 for u = 0. Therefore there exists

no stable A such that c,, - Au, and we will treat c,, =-, as an external noise.

We need specify the signal spaces for quantification of the inversion error. The

inversion error for the Preisach operator is bounded in magnitude instead of in

energy. Hence a natural choice for the signal spaces is l, and not /2. Also it is more

appropriate to use l for the desired trajectory and the tracking error. Another
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Figure 4.3: The error in inversion of the Preisach operator.

advantage of using /., for signals is that the actuator saturation constraint can be

easily handled in the corresp(o(ing /t robust control theory, while it's very hard

to be formulated in H,1, control theory.

We first qiuantify the error in inversion of the Preisach operator, and then con-

sider a. new inversion scheme for the dynamic hysteresis model (3.2) and q(uantify

the error introduced by this scheme. In both cases we are concerned with quan-

tification of cj[ = MI - I, where I and I denote the trajectories of achieved

magnetization and (desired magnetization, respectively. Finally we indicate how to

obtain c,, from cj[ when a square nonlinearity is included in W.

4.1.1 Error in inversion of the Preisach operator

Consider Figure 4.3, where F is a Preisach operator with nonsingular Preisach

Imeasure v.

Error due to an inversion scheme

Assune we are given the Preisach measure. Consider the inversion algorithm

(2.21) with the stopping criterion iP (
n

) - ifj < c. Then it's straightforward that

1,< c for anly I .
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Error due to the parameter uncertainty

If the Preisach measure is not given, we can discretize the Preisach lane and

identify a collection of weighting masses, as discussed in Subsection 2.2.2. We can

then obtain a nonsingular Preisach measure vp, with a piecewise uniform idensity

ip by distributing each weighting mass uniformly over the corresponding cell in

the discretization grid. We have I)resented an exact inversion scheme (2.22) for the

Preisach operator F with measure vp, (Subsection 2.3.2). For the inverse algorithm

(2.22), c[ can be attributed to the measure uncertainty I, - vj. We now q(uantify

cN[ in terms of the identification error and the discretization level.

Proposition 4.1.1 Let the triue Preisach measure v be nonnegative, and nonsin-

g.dar with density p. Assiune Ip(), a) < p, for any (), a) in the Preisach plane,

where p > 0 is a constant. Let H. = ao - )o, where [30, ao] is the input range of

the Preisach operator. Given a discretization of level L, denote the integral of I

over a cell i (either square or triangudar) as v4o 1 < i < N, where N, is the total

nunber of cells. Consider the measure identification scheme in Sibsection 2.2.2

and denote by v. the identified mass for cell i, 1 < i < N, Assiune that the relative

error in identification is 5 i, i.e..

,5+1 <1i <

Assiune that the initial memory curve 'o G T is given. Then for any A I K. any

2 p H;
CIN[ 11< '114 + L (4.1t)

where A-4, is the positive safuration corresponding to v.

Proof Define lip as discussed earlier. We obtain another Preisach measure

with a J)iecewise constant density p° by distributing V uniformly over the cell i,
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Figure 4.4: Illustration of the proof of Proposition 4.1.1 (L = 8).

1 < i < N. To distinguish the Preisach operators, we will put the corresponding

density as the subscript of F, e.g., Fp, means the Preisach operator with the density

p1.

Given W e L and '0, we denote the output of F in Figure 4.3 as H. Then,

Vk> 0,

cj[ = IF,,[H,L')o][k] - F,,[H,,[ o][k]I

< IF,, [H, L'o] [k] - F,o [H, L'o] [k] I+ F,o [H, L'o] [k] - [,,,,[H,'oo] [k]. (4.2)

All three Preisach operators involved in (4.2) share the same memory curve '6, [k],

Vk > 0. It's obvious that the second term of (4.2) is bounded by 5 T . To bound

the first term, we note that for any k > 0, the memory curve '" [k] spans L - 1

square cells and one triangular cell (Figure 4.4). Any cell not touched by ui,[k] will

contribute the same amount to Fj, [H,,'o] [k] and Fo [H,,Co] [k]. Hence the first term

of (4.2) is bounded by twice the interal of p over cells spanned by 'I,[k], which is

fuirther bounded by
2/IHf(L -) 2p H,

L2  L

This completes the proof.

Remark 4.1.2 From Proposition 4.1.1, the bound on the inversion error consists
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of two parts: the first part is proportional to the rclotivE idcntificotion Error. ond

thE sccond port is invmrscly proportional to thE lcvcl L of disctization.

Remark 4.1.3 ThE assumption that 'o is known is not vcry rcstrictivE since in

mnany casE5 wE have thE choicE to intaiEthE systc~m. On thE othcr hand, if()

is not known Exactly. wE can Easily includE a tcrmn in 11cj[1, which tak~cs carc of

thE unccrtainty in 'i'o

4.1.2 Error in inversion of the dynamic hysteresis model

Given a dlesired trajectory of miagnetization, we proposed an inverse control schemle

(3.75) for the miodel (3.2) in Section 3.8. But if there is uncertainty in the miodel

parameters, it is very hard (if not inlIpossible) to dlerive a bo0und1 for the inversion

error. Here we will p~resent another inversion algorithmn. This algorithmn leads to

anl inversion error even if the exact Iparallleters are known, but it will allow us to

quantify the inversion error when miodel ulncertailnty is considered.

One way to rewrite (3.2) is:

Hqt) KVl (1(t) - -~){ iI(t) F[H, '"o](t)

whlere g () t sqn (H (t))) and 0 < gq() < C (c.f. (3.45)). Xecaln treat tile

first equlatioln ill (4.3) as a linlear tinle-varyillg ODE of H, anld regard (4.3) as

p~ertulrbed1 frolli tile followinlg (IecoulIle(1 systemi:

H(t) j' 9 (I(t)- _

H+_t)) (4.4)

wilereg e [0, C] is somle colnstalnt. Based 011 (4.4), all aI)Iroximiate inlversionl sciele
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for (4.3) is given fornmally by

(t) + H ()
1 (t) r [a,/0(t

When implenlenting (4.5) in the discrete time, we have two ways of writing

I[.], which correspond to the explicit Euler schenle and the imlplicit Euler schenle

in discretizing the first equation in (4.4), respectively: for k > 0,

I[k]- 1 + g (H[k] - H[k - 1]) + H[k - , (4.6)
C1 h CO

I[k]- + q (H[k]]- H[k - 1]) + H[k, (4.7)
C1 h CO

where h is the time step size, H[-1] = H[0].

Remark 4.1.4 Direct discretization of the first equation in (4.4) by the explicit

Euler scheme (a similar remark applies to the implicit Euler scheme) gives:

I[k] - + 'q (H [k, + 1] - H [k]) + H -[k
C h CO

but this is not a causal system and thus not realizable. An intrinsic delay is intro-

duced in the inversion due to the dynamics in the rate-dependent hysteresis model.

W/e now want to study the errors caused exclusively by the inversion algorithms,

i.e., we assume that we have exact values of parameters. For the inversion algorithn

(4.6), the discrete time version of the first equation in (4.3) is obtained by the

explicit Euler schenle:

H[k + 1]- 1] _ , (I[- 1,_] (4.8)
h t + .g[k] CO

where q[k] A q(kh). Similarly, if the inversion algorithn (4.7) is used, we will

use the corresponding discrete-t ime nmodel obtained by the implicit Euler schele.

Figure 4.5(a) shows the problen setup for the explicit Euler case.
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For the purpose of deriving the bound on the inversion error, we will not need

the exact values of g[k].

Due to the delay caused by the inversion, the error e [ is now defined as (Fig-

ure 4.5(d)):

ew[k] - M[k] - Mi[k - t].

Proposition 4.1.5 Let the Preisach measure be nonnegative, and nonsingular
with a piecewise continuous density /1. Let the Preisach operator F be Lipschitz

continuous with Lipschitz constant Lp . Let H.. A {ax 10 ; ao I} whc [3 I is]

the input range of F. Consider the inversion algorithm obtained from the explicit

Euler method (Figure 4.5(a)). Let H[-I] = H[0] = H[0]. Pick g G [0, C] where

C is the constant as defined in (3.4). Then for any A I 1. for any 1/'o e Tx,

cm[ ll c 2L~iQ Hm (4.9)

where
nlaxfg, ( -

max{L"i - 1 1 Co
CO CO~tc

The optimal g to minimize '> is cC+ 2'

Proof We first derive a bound for c, defined by cH [k] H![k] - H[k - 1], k > 0.

Substituting (4.6) into (4.8), we have

c14[k + 1] a[klu [kI + b[kI (H[kI - H[k - 11), (4.10)

where

a[k] c I b[k] g - [k]
co (I + g [k])' I + g[:]'

From (4. 10), we compute

k k k

c4[k + 1] (r[ [d)eH [0] + Z( 17 a[j])b[](H[I] - H[Il - 1]). (4.11)
4-0 4-0 j-4+]/
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Since cH14[01 0

k

icH[k+t11 < 2(ZU2)b jHj,

2b 11 H (4.12)
t - a

where

a= max 1- =A mla~x
XE[0,C] CO(l + X) xEOC + X

Wts easy to verify that

a-=max{ -1 1 - htIJ6=mxq 1C
CO eO(1 + C) t + C a{

Therefore 11c1 H,, 2 11 H 11 The error c1 canl be thought of as the output

of some iuncertainlty block An with the induced gain less than or equal to 2 Q

(Figure 4.5(b)). But since F, F I sit outside tile dasihed box in Figure 4.5(b),

we canl not, carry AH alonlg fuirtiler. Instead we rel)reselt, c14 as an exogenlous

disturbanlce witih magnlitude bounlded by 2Q H.. (Figure 4.5(c)). Eq. (4.9) now

follows usinlg tile Lipscihitz conltinluity anld tile time inlvarianlce I)roIperties of F. It's

easy to see tilat tile optimal q mniiing~ll tile error bounld is C >

Similarly we call (derive tile error bound for tile implIlicit Euler algorithlm (4.7):

Proposition 4.1.6 Let the assuimptions in Proposition 4.1.5 hold. Consider the

implicilt Euler algorithm (4. 7). Then for any AIfC. for any 61o G TIJ

where

,j=max{ ~ 1 }o1~<~~
co eCh

(Oc -I h)c
Thec optimal q to mnimi?,Tne -'j is TC+10CC
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Remark 4.1.7 For the explicit algorithm, the stEp sizE h has to bE chosen small

Enough to ensure stability of (4.8) and (4.10). ThE implicit algorithm, howEvEr, is

stablE Vh > 0. ThErcforE the implicit algorithm is prcfcrrEd in gEnEral.

Propositions 4.1.5 and 4.1.6 quantify the errors solely due to inversion algo-

rithms (4.6) and (4.7). It's straightforward to extend the error estimates to the

case that there are parametric uncertainties in co and c , e.g., when Rddy in (3.2)

is not exactly known. The error due to inversion of the Preisach operator and

the uncertainty in the Preisach measure can also be included as done in Subsec-

tion 4.1.1.

WThen the square operator is i)resent, like in the case of a magnetostrictive

actuator, the estimate of c, can be derived from that of c,,. Let u G [u1 nUma,]

(recall Figure 4.1). One can easily verify- that

c, 11. < 11 cjj[ 11 . + 2 11 cj[ 11. U.

4.2 Formulation of the Robust Control Problem

We formulate the robust control problem precisely in this section. For simiplicity of

presentation, we consider Go(A) to be the identity operator, i.e., we are interested ill

trajectory tracking of the actuator head itself. We aim to convey the essential ideas

for robust control of general smart actuators through the examlple of controlling

the magnetostrictive actuator.

Figure 4.6 shows the closed-loop system after the inverse compensation is done,

where the exogenous noise v, represents the inversion error. From Section 4.1,

11 17 I11,< v where the bound v is quantifiable in terms of inverse schemes and

parametric uncertainties. Cca(A) stands for the discretized version of the second
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II

Figure 4.6: Robust control of a magnetostrictive actuator.

order system (3.3). The comp~ositionl A o fl-o(A) represents the dleviation of the

actual p)lant, from the nominal p)lant, 0c '((A). Weassume that A canl be any nonlinear

op)erator wvith 11A u<l-4nd< 1. fl-o(A) is a weighting funiction and it reflects that

at a higher frequency the model unicertajinty is larger.

Let I I y,, , where y,,, is the reference traj ectory. The error C" Ye - y

is fed inlto tile conltroller k(A). The dlelay A followinlg k(A) is (due to inlversionl of

tile dlynamic hlysteresis model.

Let tile saturationl limits of tile actuator be -u7 anld fl resp~ectively. Tihen

tile saturationl conistraint, tranlates inlto1 uo j,, 1, whlere uO is as dIefinled ill

Figure 4.6. Tile case Um~ 7 wUaxill be (discussed ill Sectionl 4.4.

Tilere are two (delays ill tile 1001) sinlce Cca(A) conltainls a pure (delay. Tihis

motivates us to (defilne tile tracking error co as

ok1_y,,f [k - 21 - y~l(414

whlere a> 0 is tile desired (disturbanlce attenuation level. To ease tile formulation,

wve nlormalize siginals v' and( y,,f, and( regard lvj and( ro as inpIuts to tile system wvitil
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Figure 4.7: Formulation of the robust control p~roblem.

11o 11. 1,.1 ro 11. 1 (Figure 4.6).

The transfer function 6G(A) of the open-loop system is

TI 0 1 f-o (A) 0 AXI-o (A) ~ I

I I I . (4.1t5)
U0  0 0 0 To

cy-t - i (A) r~ -AG(A)

In terms of C.the closed-loop system in Figure 4.6 can be simlplifiedI as in Fig-

ire 4.7(a).

The control objective is: find the smallest - and a stabilizing controller k(A),

such that

1. the closed-loop system is stable for any A wvith 11A ll-ind< 1,

2. 11 o j, 1 if A = 0, for all v0, ro Nvith 11 o j,, 1 and 11ro j,, 1, and

3. 11uo j, 1 if A = 0, for all v0, ro wvith 11 0 vo 1,< and 11ro j 1<
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If we define the exogenous input i' and the regulated output z as

items 2 and 3 above are equivalent to the following:

II ,,, I1t,_<  1, (4.16)

where )z, is the mapping from i, to z.

By the small gain theorem (Appendix C), (4.16) is equivalent to requiring

robust stability of the system when we wrap a nonlinear uncertainty block Ap from

z to i' with IIAp Ill- -4 < 1, as shown in Figure 4.7 (b). Therefore the control

problem can be reformulated as: find the smallest - and a stabilizing controller

K(A), such that the closed-loop system in Figure 4.7 (b) is robustly stable for all

A G A, where A {A = diaq(A, Ap) : A is nonlinear and of dimension 1 x 1,

Ap is nonlinear and of dimension 2 x 2, A A Ill--4nd< 1}

4.3 Solving the Robust Control Problem

To solve the robust control problem, we need determine, for a fixed ") > 0, whether

we can find a stabilizing k'(A), such that the closed-loop system is stable, VA G 2i.

This will be called the robust control problem with disturbance attewuation level ' .

From Theorems C.3.2 and C.3.4, the robust control problem with attenuation level

'j is solvable if and only if

inf inf 11 D-tT,(G,KR)D It< 1, (4.17)
stabilizing j DED
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where

D A D d2 :dtd>0

d2/

and FT(., -) denotes the lower Linear Fractional Transformation (c.f. Section C.2).

We will restrict ourselves to finite dimensional LTI (FDLTI) controllers. Eq. (4.17)

is a I/t model matching problem and it can be solved as discussed in Section C.4.

First one can use the D - K iteration method to decompose the joint optimization

problem (4.17) into a sequence of decoupled optimization problems.

In Step 1 of the D - K iteration (Section C.4), for a fixed D G D, we want to

solve

inf D- 'P,(G,AK)D 1. (4.18)
stabilizing k

Partition 6 into a 2 x 2 block matrix as shown in (4.15) and denote it as

(C1 1 Gt 2

GC2  G22

Since G 22 is stable, the set of stabilizing FDLTI controllers K is parametrized by

(see Corollary C.2.5):

K()Q CC< (4.1t9)
1 - G22Q

and the scaled achievable closed-loop maps is parametrized by

D -i<(CI, )D = E - UQV, Q e 7,(I/I (4.20)

where E - D- 'GD, U D 'G, 2 and V G2 ,D. Therefore (4.17) is trans-

formed into

inf 11 E- UQV 11 t (4.21)
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Problemi (4.2 1) is a muilti-block /I m nodel miatduing Iproblemi (Appendix Q). Wecan

aI)Iroximiate it by a one-block /t1 model miat ching Iproblemi through dIelay augmen-

tatioll (DA) (c.f. Subsection C.4.3). The latter Jproblemi is then solved using linear

programiling (c.f. Subsection C.4.2). Re-ordering input and outp~ut variables of

Cif necessary, the lowver bound 7I7 and the upper bound fI; both converge to the

minimum 'I norm V' (see Theoremi C.4. 1 for nlotation) as the numiber of aug-

miented dlelays N ~c ealso obtain a sub-optimal controller for (4.20) froml

the DA miethod.

Remark 4.3.1 For the systemn we consider. the only zeros that the delay aug-

mecnted mnatrices U , and Vv (c.f. &ubsection C.4.38) have inside the unit disk are

W~S. This has two pleasant consequences:

1. In conputation of null chains (c.f. &ubsection C.4.2) and evaluation of the

zero ?interpolation conditions. relevant coefficients can be obtained directly

fromn the inpulse responses and we thus avoid expensive symnbolic calculation

of high order derivatives.

2. Fromn the zero interpolation conditions (C.17) in Theoremn C.4.10, the upper

bound on the (finite) length of the inpulse response 4) is expliciltly known.

Sice tilere are only two blocks ill tile structured unlcertainlty class 2A, an alla-

lytical expresssioll for tile optimial D* exists ill Step 2 of tile D - K iterationl.

noe p1WJresenlt, solll collIput atloll results 011 ihow tile optimal attenuiat ion level

is affected by tile followinlg factors: tile miaglitu(Ie of unlcertainlty, tile miaglitu(Ie

1, of tile inlversionl error and( tile saturationl limit a7.

Tile salliplillg frequenlcy we use is 2000 Hz. Tile corresp~ondinlg 0c,,(A) is

2.23 x 10-t A 2 + 4.28 x 1-tiLA

G, (A) .147A2 - 0549A +- 1
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Figure 4.8: Effect of the model uncertainty on ?*.

We choose the continuous time weighting function to be ,lJo(s) C c,.+) whereS+300

>L, > 0 determines the magnitude of the uncertainty in the plant. Discretizing

1"!o (s) gives

1To(A) l.l759cL(A - 1.0005)
A - 1.1765

We let r = 30.

Figure 4.8 shows the effect of the uncertainty magnitude on *. Other param-

eters used are v' 0.1i\I1 u = 7.5M1. where 114, is the saturation magnetization.

Since the range of u for the magnetostrictive actuator is [0, JIM], expressing v, and

u in terms of 1I1 allows one to make more concrete sense out of these numbers.

From Figure 4.8, we see that the higher the uncertainty, the bigger ?*.

Figure 4.9 displays how ?* varies with the magnitude v of the inversion error,

where we have fixed C ,, 6.53 x 10 13 and u 1.25 2 . As one expects, the

optimal attenuation level h* increases as v increases.

Figure 4.10 shows how h* is affected by the saturation constraint. We have

used c,,, = 6.53 x 10 13 and v = O.1 . droI)s when u increases, but h* becomes

a constant when u hits 4.5M$2 , beyond which the saturation constraint no longer
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Figure 4.9: Effect of the inversion error on

plays a role.

4.4 Simulation and Experimental Results

In this section we conduct simulation and experiments to examine the effectiveness

of the robust controller design method.

The saturation constraint considered so far is of the form Jul < u. But for

real actuators, the saturation limits may be asymmetric, i.e., u T4 -Umax. For

example, for the magnetostrictive actuators, u e [0, M ]. To handle the general

constraint u G [Umj umax], we let u - ..... '" and Ub = ... " . The quantity2 2

u is the saturation limit to be used in the controller design, while Ub is a bias input

to be injected into the system. Then the actual control will be u = U, + Ub with

u0 < u.

Since the gain of IV'o is close to 0 for a. dc signal, we can ignore the contribution

of ub to the actuator output y through the A o fi,'o branch. Its contribution through
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Figure 4.10: Effect of the saturation limit on

the G,, branch can be calculated as

A G,,(A)
Yb -Ub.

The previous robust control framework applies if we add Yb to the reference tra-

jectory YJrf (or alternatively, taking Yb off from y). Figure 4.11 shows the flow

diagram for simulation of trajectory tracking.

As we have seen from Figure 4.10, the tracking I)erformance deteriorates as the

saturation constraint u is tightened. For the magnetostrictive actuator, u = 0.51, 

and strictly enforcing this constraint will lead to large tracking errors. This reveals

the limitation of pure linear design for an intrinsically nonlinear plant. Hence a

practical approach would be to properly relax the constraint.

Figures 4.12 and 4.13 show the simulation results of tracking two desired tra-

jectories: a sinusoidal signal and an irregular signal generated via a Van del Pol

oscillator. In the figures, the desired signals are intentionally delayed by two time

steps (recall our definition of tracking error (4.14)). The current I applied is also

displayed. The controller K(A) is designed based on c,,,, = 3.3 x 10 -3, ,= 0.1A, ,2
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Figure 4.11: The flow diagram of the closed-loop system.

and u7 = 3.25 M ,.

Figure 4.14 shows the inversion error AI[k + 1] - AI[k] during simulation of

tracking the sinusoidal signal. Figure 4.15 shows the control output u, of K(A),

and we see that although we set 7 - 3.25M,$ in the controller design, the output u,

stays in the (true) unsaturated region [-0.5,1I , 0.5,2J] except during the transient

period at the beginning.

Our composite controller (the linear robust controller plus the inverse algo-

rithm) is compuation efficient and we can implement it in real-time. Figures 4.16

and 4.17 show the experimental results of trajectory tracking based on the same

controller as used in the simulation. We can see that the experimental results

match well with the simulation ones and the overall performance is satisfactory.

The saturation limit u7 can not be "over-relaxed". For example, we design

another controller based on r = 25, c,, = 3.3 x 1 0 -13, v = 0.05 ,,2, a~nd u = 5 ,I,.

The simulation result (Figures 4.18) based on this new controller is better than

that in Figure 4.12. But in the experiment the tracking performance suffers from

the persistant saturation (Figure 4.19).
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Chapter 5

Optimal Control of Hysteresis: A

Viscosity Solutions Approach

In this chapter we study optimal control of hysteresis in smart actuators. Optimal

control of dynamical systems with various hysteretic nonlinearities has been studied

in [18, 2, 3, 4, 11, 12]. Dynamic programming is one of the most important tools

in the optimal control theory. All the work mentioned earlier except [18] took

the dynamic programming approach, while in [18] the author aimed to seek the

necessary conditions (the Pontryagin Maximum Principle) for opt imality.

When the value function of the control problem is smooth, we can derive the

Hamilton-Jacobi-Bellman (HJB) equation from the Dynamic Programming Prin-

ciple (DPP), and in many cases, solving the HJB equation amounts to solving the

optimal control problem. The value function however, in general, is not smooth

even for smooth systems, not to mention for a hysteretic system. Crandall and Li-

ons [26] introduced the notion of viscosity solutions to Hamilton-Jacobi equations.

This turned out to be a very useful concept for optimal control since value flnc-

tions of many optimal control problems do satisfy: the HJB equation in the viscosity
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sense and( undl~er mild assump~tionls, unliquieness results for viscosity solutions 1h01d.

For references on applicat ion of the viscosity solutions theory to optimal control

problems, p~lease see [32, 91, where [321 mainily (deals with stochastic op~timal control

p~roblems while [9] is dIevoted1 to (determilnist ic Jproblemls.

The viscosity solutions ap~proachl was taken in [2, 3, 4, 121. Yewill exp~lore this

appIroachl for control of hysteresis in smart actuators. Wewill first (discuss control

p~roblems based on a low dlimenlsionlal hysteresis modlel [781. The model is a hybrid

system witih botih conltrolled1 swit chinlg and( ailtollomous switcing. It belonlgs to

tile class of Duhiem hysteresis modIels and( caln be rewrittenl as a system involving

botih conltinluous conltrol and( switcing conltrol. Tiheln we will conlsider all optimlal

conltrol problem based 011 tile dIynamic hlysteresis modIel proposed ill Cilapter 3.

Lots of work hlas beenl (done ill conltrol of lhybrid1 systems. NVvitsellausell for-

mulated a class of llybrid-state colltilluous-timle dIynamical systems and( studied

all optimal conltrol p~robleml back ill 1966 [891. Yonlg studIied tile optimal conltrol

p~roblem for a system witih conltinluous, switcing and( implIulse conltrols ill [911. Tile

Polltryagill Maximum Prinlciple or its variant, was used1 ill optimal conltrol for hy-

brid1 systems ill [63, 681. By solvinlg tile Beilmall inlequality, a lower bound( 011 tile

value fullctioll and( all appIroximationl to tile op~timal conltrol law were obtainled ill

[42, 671. NVviti a unified model for hlybrid1 conltrol, Branicky, Borkar and(1 Mitter

p~rop~osed1 genleralized1 quasi-variational inlequlalities (GQVIs) satisfied by tile value

fllctioll [171.

lilis chlapter will be organlized1 as follows. First we inltrodIuce tile low (ilell-

siollal hlysteresis model ill Sectioll 5.1. Based 011 tilis modIel we tihen formulate

and( solve all inlfinite time hlorizonl conltrol p~roblem usinlg tile viscosity solutionls

appIroachl ill Sect ion 5.2. lile appIroachl is ext end(ed to othler conltrol p~roblems of
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practical interest in Section 5.3. Finally we discuss an optinmal control )roblem

based on the dtynamic hysteresis model (3.2) in Section 5.4.

5.1 The Low Dimensional Ferromagnetic Hys-

teresis Model

As we introduced in Chapter 2, when the input frequency is low, the magnetostric-

tive hysteresis is rate-independent. Furthermore, we can relate the magnetostric-

tion to the magnetization JI by a square law and relate the input current I to the

magnetic field H by a proportional law. Hence in this case the magnetostrictive

hysteresis is fullly captured by the ferromagnetic hysteresis between If and H.

Jiles and Atherton proposed a low (imensional nmodel for ferromagnetic hystere-

sis, based upon the quantification of energy losses due to domain wall intersections

with inclusions or pinning sites within the material [51]. A modification to the

Jiles-Atherton model was made by Venkataraman and Krislnaprasad with rigor-

ous use of the energy balancing principle [84]. The resulting model, named the

bulk ferromagnetic hysteresis model, has a slightly different form from the Jiles-

Atherton model. Also based on the energy balancing principle, they derived a bulk

magnetostrictive hysteresis model [83], where high frequency effects are considered.

Here we will restrict ourselves to the low frequency case to highlight the method-

ology of hysteresis control. Extension to the high frequency case is straightforward.

We now briefly outline the bulk ferromagnetic hysteresis model.

For an external magnetic field H and a bulk magnetization If, we define

H, = H+aM

to be the effective field, where a is a mean field parameter representing inter-
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(lonlaill coupling. Through thiermiodynvamlic considerationls, the an hysteretic rn 09-

netization iicanl be expressed as

AI (H,) = AI 8,(coth( H,) -11 P h(z), (5.1)

where C(.) is the Langevin funiction, C(z) coth(z) - Iv ith zA!, is thez a

saturationl mlagnletizationl of tile material anld a is a p~aramleter chlaracterizinlg tile

shlape of tile AIcurve.

Define

f t(H, A) = c O

__ a - a, 1, I> zt

f 2 (H, AI) =_ Oz~> -/1a2h(H)-7

k(a - w~+ /oaa(A\Lj,(H 0.) - I)

fcIJ kAf) () + / io a(A I ) H, I)
k (a - a, c\j, )()) - p o aa(AI,, (H,) - I)

whlere c is tile reversibility conlstanlt, /1 is tile p~ermeability of vacuum, k is a

measure for tile average energy required to break a p~innling site. Note eacih f4 is

smlootih ill H anld I.

Tile bulk ferromlagnetic hysteresis model is as follows [841:

1, dH < 0 I < AIh,,(H,,) or

dAIf dH > 0, AIf> VAn ,(H,)

dH =f4 H, I), whlere -* ,d ,AI>A ,(,

3, dH > 0, I < AI,, (H,)
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If we dlefine a control u - ,the miodel is rewritten as

1, u < 0, AI < AIh,(H,,) or

H u >0, AI > An(H,)
I Iu, where i-(, u >J 0, AI <f2(2(H,

Remark 5. 1. 1 Note thot the control u defined obove is different fromn the physical

current I we apply to the actuator. The current I is related to the state comnponent

H by a constant co (the coil factor): H = coI. Therefore fromn the control u, the

current we will apply is I(t) = 1(0) + -- t~ u(S)dS.

Remark 5.1.2 The switching in (5.3) depends on both (the sign of) the con tin-

uous control u and the state (H, I)., therefore the mnodel (5.3) is a hybrid systemn

?wi*th both controlled switching and autononous swi~tching /16. 17J.

NY1'-e can rep~resent (5.3) in a miore conmpact way. Letting

Q 1 {t f(H, I) :I < AIh,1,(H,)} Q2 {(H, I) I > AIfan(H,)}

andAI x = (H, I), we dlefine

ifi XeQ 2  ifx G QL

f+x W and f ()-
1 1

ifx G QL ifXG e 22

Since f4, 1 I 3, coincide on F ~ (H, I) :f AI AIh,(H,,)}, f+ and f~ are

cont inuous. NX'-e (define two cont inuous control sets

U+{u :u, >u >0 U f{u :-u, <u <0},
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where u, > 0 represents the operating bandwidth constraint of the actuator (recall

u = cof). To ease the presentation, we make the dependence of switching on u

explicit by introducing a discrete control set D = {1, 2}.

Now the model (5.3) can be represented as a system with both a continuous

control u and a discrete mode (switching) control d:

Sf(Xu, d) A f+(X)u, u U+, if d= 1
-~ fx~i~) <~(5.4)

f(x)u, u U if d=2

The (st ate-dependent) autonomous switching has now been incorporated into

the definitions of f+, f, thanks to the nice structure of the physical model. Note

the model (5.4) belongs to the category of DTuhen hysteresis model [86].

5.1.1 Properties of the model

We first present a lemma which will be useful in the proof of Proposition 5.1.4.

Lemma 5.1.3 [77J C(z) satisfies:

0 < A (z) < 1o K -- -- , - (5.5)

IC(Z) < 1. (5.6)

Proof

Ac (Z) 1~ h Z
1 12~

z
2  (2)2

1 1
(5.7)

Therefore

A__z_ > 0, VZ 4 0. (5.8)
01
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Further manipulation on (5.7) yields

AC(z) (2+ z + z +...)(t + z+2 )
Oz + ~2 + 4 +...)

from which we obtain

01C() . (5.10)
0z 3

Combining (5.8) and (5.10) we have

A2 >0.

Since in addition,

ll t(z) = 1, lir I(z)- 1,

we have (5.6).

To prove 07 < 1, it suffices to show
Oz- 3'

-21J( > 0 Vz <0,
3Z2

-21-( <0 Vz > 0.
3Z2

But

O 2C(Z) _ 8( + c ) 2

-2 4- s)

-2 2! 4!3! 5 (5.1t3)

so we need only to show that the numerator of (5.13) is always less than 0, Vz 7 0.

We first note that the coefficient of z21 , k > 1 in the second term is

1 11
3(( t2 + + ( t i) 3 + '" > 3(2 . 1) 3

(2k + 1)! (2k - t)!3! (2k -t)3

1 3(2k)

> (2k)!' 3!
1

(2k)!
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while 1 is the coefficient of Z2 k in the first term. For k = 0, 1, the coefficients of

both terms cancel out. The )roof is now complete.

Proposition 5.1.4 (Boundedness of f) If the parameters satisfy:

A , > 0, (5.14)
3

T2nk(a - cM )
S - )- 2poaAIM, > 0, (5.15)

then 0 < f4 < Cf, i = 1, 2, 3, for some constant Cf > 0.

Proof By (5.5) and (5.14)

0 < It = a - < a- a, - < a.3 - O

We rewrite f t as
1 a

fa - + )

and note that it is a nondecreasing fumction of 2 . Since

f 0 whe _ 0,
O~z

tCM -. : C when _) IL
-3a - aTO

we get

0 < f: t< ct.

The functioi f2 canl be written as

1 +ka

o o k (a - a, A4, Ac()) + / i oaa(AI(, - I)

From the model (5.3), when f2 is selected, AIc-,n - 0f < 0. Since magnitudes of

both i and I must be less than if,, if61, - I > -21., These facts together

with (5.5) yield

0 < T2 < T < ka.
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Thierefore

ka - T

0 <f2 <- 2 C 2.

Simlilarly we canl shiow 0 < fj < C2. Picking Cf - maxf Ct C2}1, we lhave 0 < f4 <

Cf for i = 1, 2,3.

Remark 5.1.5 Conditions (5.14) and (5.15) are satisfied for typical paramecters.

For examnple. taking the paramecters ?identified in [82j, a 1., 0 4 a = 190.

k = 48 Gaws c = 0.3. A-4, = 9.89 X 103 Gwss and po = 1. we calc~ilate It1 = 189.8.

TF2 = 8.40 x 103.

Proposition 5.1.6 (Lipschitz continuity) Fuinctions f+(x) and f-(x) are Lip-

schitz contin~iowus with somec Lipschitz constant L, and f (x, a, d) is Lipschitz con-

tin~iowus with respect to x with Lipschitz constant LO = Lac.

Proof Wefirst p)rove f~ is Lipschitz coiltillious withi some Lipschitz constant

L-. Yd(iscUiss thiree cases:

" Case 1: Bothi X t i 2 G Q1.t In this case, miode 1 is active, and thuls(f WfH[ 0 f 0\[ (5.16)

ItU ca-esiw ta t aCt for somle Ct > 0.

Illerefore < L t for soml adte followinliolds:

f (X t) - f- X 2 )1 < Lt Ixt - Xl21

" Case 11: Boti X1 t X 2 .2 Ill tilis case, nmode 2 is active. Following similar

steps as ill Case 1, we call sliow 1f w 1 C2 for somle L 2 > 0 anld tierefore

fixi Xt - (X2 )1 K L 2 1 - Xl21
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* Case III: x e Q1 x2 t X 2. Then there exists x0 G F, such that the line

segment connecting xt and X2 intersects F at X.e express xo = Oxt + (1 -

O)X2 with 0 < 0 < 1. Thus

If (X) - f (X2)1 = If (X) - f (Xo) + f (Xo) - f (X2)1

< Lt Ix - 0o1 + L 2 1Xo - X21

SL, (1 - 0)it: - X21 + L 20I: - X21

< L -Ix - X21,

with L = max{L tL 2}.

Following exactly the same arguments, we can show, there exists L+ > 0. such

that

lf+(X,) - f+(X2)1 < L+Ix: - X21, VX:,,X2.

We conclude the first part by taking L = max{L-, L+}. The rest of the proposition

follows trivially. 0

5.2 The Infinite Time Horizon Optimal Control

Problem

We first formulate ain infinite time horizon optimal control i)roblem for the system

(5.4). Define the cost functional with an initial condition x and a control pair

&{ d() u(} as

~J (, a,(.)) J 0 ' l(X(fl, u(fl) Atdt" (5.1t7)

where the discount factor A > 0. Note the runming cost l(.,.) is defined to be

independent of the switching control d, since this makes sense in the context of
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smart actuator control. \erequire u(-) to be measurable. This together with

Proposition 5.1.6 guarantees that (5.4) has a unique solution x(-) (the dIependence

of x (-) on x and a,(.) is suppressed when no confulsion arises).

The optimal control J)roblem is to find the value function

V(x) = iif J(X, a+)),

and if V(x) is achievable, find the optimal control a*(.).

Wemake the following assump~tions about l (- .,

" (At): l(x, u) continuous with respect to x and u, l(x, u) > 0, Vx, u

" (A2): / (0, 0) =0, '(Xn tU) (X2~ U) I< C1 (I + ItI + IX2 1) 1 - X1Vu, for

some C, > 0.

Note (A 2 ) includes the case of quadratic cost.

5.2.1 Properties of the value function

Yecan show the value funiction is locally bounded and locally Lipschitz contilnuous.

Proposition 5.2.1 (Local boundedness) C nder assumrptions (At) and (A 2 ),

VA > 0. V (x) is locally bounded, . .. , VR > 0, 1 CR > 0, such that

A

V(x) I CR, Vx e B(0, R) - f x: ~Ix < R}.

Proof First note that since /(-, -) is nonnegative, V(x) > 0, Vx. Take u(t) -- 0,

then xq() --x. Letting a () d {(t) u(t) I where d () 1- w Ie have

V~x) J~x &Q,) - l(X, 0)C-Atdt

l(X, 0)
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By (A 2 ), l(X, 0) < C, (t + R) R, and the proof is eomIplete with CR C _________A

To prove the local Lipschitz continuity of the value funiction, we will nleedI the

following lemmna:

Lemma 5.2.2 Let xt (.), X2() be solutions to (54) under somec admissible control

o(. -{d(),u(.} ith initiol condit?,ion X t 2 respectively. Then

IXt- X2 (t) I e LotIX, - X21 (5.1t8)

x1(t)I - XI Lot + C (CLot -1,(5.1t9)

wvhere C-= naXd If (0, ud) Iand Lo is as defined in Proposito 5.1.6.

Proof 1. Wefirst show (5.18). Denote the sequence of miode switching times as

{t4 - 0, 1,.. with to = 0, and the miode (luring [t4 , t4+ t) as d4. Then Vt G [0, tL)

- ~IX (t) X2 ~(t) 12 = 2 (x (t) - X2 (t)) -(f (X t(t) I t), do() - f (X 2 (t), I t), do()
(it

< 2L o I x t(t) - X2 (t) 12

where the inequality comies fromi Proposition 5... Integrating both sides fromi 0

to t and appIlying the Gronwvall inequality, we get

~iL(t) - X2 (t) 12 <It- Xl2 12C2L~t

fromi which (5.1t8) follows. Now Vt G [t tv t2), taking X (t t) X2 (t t) as initial condi-

tions, we follow the above p~rocedlures and get

K ~ ~ Lot-ti) Lo~ti -0) __,. Lot

Using the samne argument, successively, we can show that (5.18) holds Vt > 0.
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2. Now we show (5.1t9). Vx t (t) - 0, we can write

d l d 2_

= Xt)M (f (01 UMt)d(t)) + f (xit Mwu(t) d(fl) - f (0, a(t) d(l)

< Cx tlL(t) I+ Lo I t(t) 2'

from which we obtain

- Ix(t)l < C +Lolxt (t)l
dt

Integrating it from 0 to t and then uiiig tile Gronwvall inequiality, we have (5.19).

0

Proposition 5.2.3 (Local Lipschitz continuity) C nder asstimptions (At) and

(A 2 ). VA > 2Lo wvith Lo as defined in Proposition 5.1.6, V(x) is locally Lipschitz,

.. , VR > 0, 1LR >-0. stich that V )-V(t 2 )1 < LRItX ~ I V~t142 G B(0,R).

In addition, LR can be chosen to be C(1 + R) for somec C > 0.

Proof For c > 0, let W =. f {d'(.), UeW(.)I be c-optimial for X2 , i.e.,

V(X2) > J(X2, a"(')) - C.

Since V~xti) < J(x tL a(-)), we have

Vt- V(X2) - J(XL ae(.)) - J(X2, ae(.))

* 10 ' -At Il/(Xt(t) ea,(tl)- l(X2 (t) U'(fl)) dt + C

K J J-AtC(l +j ttq) + X2 ()j)jXtq) - X2 ()jdt +C,

where tile last ille(Iiuality is from (A 2 ). Using Lemma 5.2.2, wve get

V(Xt) - V(X2) < Lpxt1 - X21 + C,
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where LR, = (CO + 2LR, )C and CO is a constant independent of R. Since c is

arbitrary, we have

V(X,) - V(X 2 ) < Lp x, - X21.

The J)roof is comIplete by noting that xII and X2 are symmetric. U

Remark 5.2.4 One can get a sharper estimate for Ixt (t)I (linear growth) by ex-

ploiting Proposition 5.1.4. This can be ttsed to wveaken the condition A > 2L 0 to

A > Lo in Proposition 5.2.3 and anywhere else it appears.

5.2.2 The Dynamic Programming Principle and the Hamilton-

Jacobi-Bellman equation

The value function satisfies the Dynamic Programming Principle (DPP):

Proposition 5.2.5 (DPP) Asstane (At) and (A 2), A > 0. We have

= infj A,/(X( 8 ), t(s))ds + C-AtV (t)}, Vt > 0, VX. (5.20)

The proof is omitted since the argument is standard, see, e.g., [9].

Based on the DPP, we can show that the vahe function V(.) satisfies a Hamilton-

Jacobi-Bellman equation (HJB) of a hybrid type in the viscosity sense. Viscosity

solutions to Hamilton-Jacobi equations were first introduced by Crandall and Lions

[26]. Here we use one of the three equivalent definitions [25]:

Definition 5.2.6 (Viscosity solutions) [9j Let W be a contintiotts function from

an open set 0 C R' into R and let DW de note the gradient of W (whenc W is
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differentiable). We call WV a viscosity solution to a nonlinear first order partial

differential equation

F(,, V(x) , D V(x)) = 0, xi G 0, (5.21)

where F : 0 x R x R' - R is continuous, if W is both a viscosity subsolution

and viscosity supersolution; and by viscosity subsolution (supersolution, resp.), we

mean: VO G C'(0) if V-O attains a local maximun (ninimun, resp.) at xo e O.

then F(xo, i (xo),DO(xo)) < 0 (>0 , r esp.).

Viscosity solutions have a couI)le of nice properties [25, 26]. mention one

elementary property here, consistency with the notion of classical solution, that is:

1) any classical solution to (5.21) is a viscosity solution 2) the viscosity solution

satisfies (5.21) in the classical sense at any point where it is differentiable.

Theorem 5.2.7 (HJB) Asswune (At) and (A 2), A > 2Lo. V(x) is a viscosity

soL ution of:

AIV(x) +}- niax{ niax{-uf+(x) DIV(x) - l(x, u)}?t EU+

niax{-uf-(j) DIV(x) - l(x, u)}} 0, xi G R2. (5.22)

Proof 1. We first show V(.) is a viscosity subsolution. For any u G U , take

a(.) - {d(.), u(.)} with d(t) - 2, u(t) = u. From (5.20), for any t > 0,

V(X) < l((8), u)eCAsdS + 6AtV(X(t),

which we rewrite as

V(/(f) - V(x) + l(X(s), u)-CAdS + V(X(tl)(6At _ 1) > 0. (5.23)
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Now suppose that V - 0 with 0 e CL(R 2) has a local maximum at x, then

V(xM)) - o(xq)) < V(x) - 0(),

for t sufficiently small. This together with (5.23) implies

()) - () + l(8(s), u) cAdS + V(X( -)(At - 1) > 0. (5.24)

Divide (5.24) by t and let t , 0, we obtain

uf (x). DO(x) + l(x, u) - AV(x) > 0, Vu G U

i.e.,

,NV(x) + max{-uf (x) DO(x) - /(x, u)} < 0.

Similarly, we have

,NV(x) +--max{-uf+(x) Dq2(x) -I (x, u)} I< 0.
?1EU+

Therefore

,NV(x) +- naxfmax{-uf-(x) -Dq2(x) -I (x, u)},

max{-ufk(x) -Dq2(x) -I (x, u)} I I 0. (5.25)

2. The proof of supersolution is much more technically involved and therefore

omitted here. It can be found in [77].

5.2.3 Uniqueness of the solution to the HJB equation

We would like to characterize the value function V as a unique solution to the

HJB equation. The uniqueness result basically follows from Theorem 1.5 in [47].
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In [4] the author gave only a sketch of J)roof. For comIpleteness, wve wvill J)rovide

the fuill J)roof here.

Before stating the theorem, wve first identify structural I)roIperties of the HJB

equation. Werewrite (5.22) as:

XIV(x) + Hqx, DW~x)) = 0, xe (5.26)

where

IJ(x, p) - niax niax{-uf+(x) -p - l(x, u)}1, niax{ -uf-(x) -p - l(x, u)}}

is called the Hamniltonian of (5.26).

Proposition 5.2.8 Asswume (A 2 ) . H(x, p) satisfies the followi*ng:

H~ p- H(X2 ,P)j < CR(1 + pI) Ii -X1 V CX B (0 R) Vp (5.2 7)

H(xpt) - H~xp 2 ) <- COjP -P21 VX, VMVP 2  (5.28)

for somec CR > 0, Co > 0. with CR dependent on R.

Proof We ill only p~rove (5.27), since J)roof of (5.28) is analogous.

NVvithiout loss of generality, suppose uL t G U attains the nmaximumn in H(x t p).

Since H(X2 ,P) > -Utf--(X 2 ) -P -I l(X2  QI),

H~ p- H(X2 ,P) <- -Utf--(Xt) p- ltit) +Uf (X2 ) *P+(X2 Ut)

< IpLot -X 2 1 + C1 (1 + I I+ X2<1)t-X21

where CR is a constant dIependent on R. By symmnetry, wve conclude.

Remark 5.2.9 As we have seen above, despite the hybrid struc ure of our physical

mnodel. H(x, p) enjoys nice structural properties. which enables us to prove the

~uniquen ess result.

133



From Proposition 5.2.3, we know that the value finction V(.) belongs to the

class

P(R{)  fW(.) •IW(X) - W(X 2 )l < C(1 + R)Ix: - X21,Vt, 2 G 0(O, R),

V R > 0, for some C > 0}.

The following theorem is adapted from Theorem 1.5 in [47].

Theorem 5.2.10 If (5.26) has a viscosity solution inp(R2), it is unique.

Proof Without loss of generality, we take A = 1. Let W(.), V(.) eP(R2 ) be

viscosity solutions to (5.26). For c > 0, a > 0, m > 2, define

4(X, y) - w(X) - V(y) -(< x >' + <, >Th)

A 2(1with < x > 1 + x .* Since V(.), V(.) eP(R2 ) lim <+ -, (x~y) -- c. By

continuity of 4(, .), there exists (xo, yo) where 4 attains the global. maximum.

First we want to obtain bounds for jxo lYol and Ixo - yol.

Fromi 4(0, 0) < N(xo yo), and W (.), V(.) e P(R2), we can get

< Xo >, + < yo> C,(+ < Xo > 2 + < yo > 2),

where C, is a constant independent of c (but dependent on a). Since in > 2, there

exists R, > 0 (independent of c), such that Ix01 < R, IYo0 < R,.

From 4(xo, xo) + N(yo, yo) < 2 4(xo, yo), we can derive

x0 - Y01 < cC ', (5.29)

with C(, depending on a only.

Define

(:) V(yo) + - X- Y012 + a(< X >, + < >O

=() -- w(XO) - -_2 - a,(< X0 >,n + < y >Tn).
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Since W - 02 achieves maximum at xO, and V -6), achieves minimum at Yo,

W(xo) + H(xo, D5(xo)) < 0, (5.30)

V(yo) + H(yo, D l',(yo)) > 0. (5.31)

Subtracting (5.31) from (5.30) and using Proposition 5.2.8, we have

W(Xo) - V(yo) < CR (1 + -2 Xo - Yo) Io - yol

+aCom(< X0 >i"- - + < YO > rn).

Now fix a,, construct a sequence {CA.} with limA, , Ck= 0. W"e denote the

corresponding maximizers of 4 as (XOk ,,yok). Since Vk, (XOk , yok) B B(0,R,), by

extracting a subsequence if necessary, we get

IiIm (Xok YOk) ,(x,, y,) G B (0, R,). (5.32)

From (5.29), wNe have x,, = y,. For each Ck, from ( (, x) < D(NXok yok), we can get

WI(x) - V(x) - 2a < X >, "< CR (1 + 21 XO - yol) XO - yokI
Ck

+ cCom(< Xo >,- t + < YOk >mfl) - a ,(< X > + < YOk >,)

and letting k DC,

IV(x) - V(x) < 2a(Cotn < x~, >,- < X, >,n) + 2a < X>,

Since Corn < < > - x, >m < C" for some C" > 0,

W(x) - V(x) < 2ai(C"+ < X >m).

Letting a 0, we get W(x) - V(x) < 0, Vx. We conclude by noting W and V

are symmetric. 0

From Theorem 5.2.10, if we can solve for a solution to (5.26) in P(R2), it must

be the value function. One way to solve it is by the discrete-time approximation.
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5.2.4 The discrete approximation scheme

The approximation will be accompllished inl two step~s. First we appIroximate the

continuous timie optimal control p~roblem by a dliscrete time p~roblem, dlerive the

hybrid (discrete Bellmian equlation (DBE), and show the value funiction of the (is-

crete time p)roblemi converges to that of the continuous time J)robleml locally uni-

formly. Following [9], we call this step "semi-(Iiscrete" appIroximation. Then we

indicate how to further (liscretize (DBE) inl the spatial variable, which is called

"fulfly-discrete" appIroximat ion. The appIroaches we take here follow closely those

inl [91 (Chapter VI and Appendix A).

Consider a (discrete time J)roblemi obtainedI by discretizing the original contin-

ilous time one with time step h G (0, *). The dynamics is given by

XHn =-~ - 1] + hf (x[n - 11, u[n - 11, d[n - 11), X[01 X (5.33)

and the cost is given by

a )~j~hl(xH,] uHn) (I - Ah)', (5.34)
n-0

where a [.1 = fd[.]1, u [.]I} is the control. The value funiction is (defined to be

Vh,(X) = inif 'JI1 (x, a) (5.35)

Its not hard to show:

Proposition 5.2.11 Assume At and A2 , A > 2Lo. Then Vh,(*) G P(R 2), and the

coefficiecnt C in defining P(R 2) can be mnade ?independent of h.

Following standard arguments, one can show:
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Proposition 5.2.12 (DBE) Vh,(*) satisfies:

Vh,(x) - ninif n{ (t - Ah)V7,(x + 1uif+(x)) + hl(t, u)},

min f(t - Ah) V1,(x + huf (x)) + h/l(x, u)}} x G 1R'. (5.36)

It's of interest to know whether (5.36) chlaracterizes the value funiction Vh (x).

Unlike in [91 (Chapter VI), where a bounded value function was considered, we

have V1, unbounded. But it turns out that with a little bit additional assump~tion,

(5.36) has a unique solution.

Proposition 5.2.13 There exists a uniqiie solution in P(R2) to (5.386), if

(1- Ah) (,IC2+ 4+ o) <(5.37)

where CO = hu, and Cf is as defined ?in Proposition 5.1.4
Cf

Proof Let V1, (x) = V, (x) < x >-, n > 2, where < x >- 1- + xPK Sice

V1, Ge p(R2), f17 is bounded. In terms of Vj,, (5.36) is rewritten as

V1h(x) = (g(V/h))(x) 1 min{f (5.38)

muin{f(t - Ah))1(x + h uf+ (x)) < x +- hu f+(X) >,, + 1h(X, u1) < X >,l
< X >,,n

It suffices to show (5.38) has a unique solution. Its clear that the operator g.

maps any V G BC(R 2 ) into BC(R 2 ), where BC(R 2 ) (denotes the set of boundedI

continuous funlctions. NWhlen (5.37) is satisfiedI, one can show that 9(.) is a con-

tr act ion mlapp~ing. Hence we conclude using the contract ion mlapp~ing theorem.
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The following theorem asserts that V1,(.) converges to V(.) as h 0. The proof

can be found in [9](Chapter VI)(with minor modification).

Theorem 5.2.14 Assume AL and A2 , A > 2L 0 , and (5.37). Then

S 1ll) 1V1,(x) - V () 0 as 0, (5.39)
XEk

for every compact IC C R

It was also shown in [9] that one can obtain a sub-optimal control for the

continuous time problem when solving the DBE. Theoretically the solution to

(5.36) can be obtained by successive approximation. A practical approximation

scheme for solving the DBE is described in [9] (Appendix A, by Falcone). It

was shown there that when space discretization gets finer and finer, the solution

obtained via solving a finite system of equations converges to V,(.).

5.3 Other Control Problems

In this section, we briefly discuss how to extend the viscosity solutions approach

to otier control problems of practical interest. Since key ideas have been studied

in details in Section 5.2, we will just state the results without proof.

In some optimal control problems or dynamical games, the value functions

may be discontinuous. Toi handle this problem, we introduce the notion of non-

continuous viscosity solutions.

We recall that a function f : E C R' , R is upper (lower, resp.) semicontin-

uous if for any x e E and c > 0, there exists 6 > 0, such that f(y) < f(x) + c

(f(y) > f(x) - c, resp.) for all y G E and Iy - x < 6. An upper (lower, resp.)

selicontinuous function achieves its Iaximumii (miniminumin, resp.) value on any

comI)act subset of E.
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Definition 5.3.1 (Semicontinuous semisolutions) [9j Let WV be an uipper (lower.

resp.) semicontimiois function from an open set 0 C R' into R. WV is called a vis-

costy s~usohdt*on (s~ipersolhut*on, resp.) to (5.21). provie Vo 2 C'(0). if WV - 2

attains a local Tnaximwum (Tninimwum. resp.) at xo 0 () then

TF(xoiV W(xo). Do(xo)) 0 (> 0, r csp.).

Definition 5.3.2 (Semicontinuous envelopes) [9j For a locally bomunded func-

tion V: E C R' R. its uipper semicontimiois envelope V* is defined by

V* (x) =lini supj V(y) A lim suip{V(y) :y G E, ly- x < r

and its lower semicontimiois envelope V. is defined by

V x) = lim ifV(y) - im if{IV(y) :ye GB, ly - xj < r}1.

Wts easy to check that V* is iiipier semicontinuous and V. is lower semicontin-

il01ls.

Definition 5.3.3 (Non-continuous viscosity solutions) A locally bommdedfunc-

tion V is a non-contimiois viscosity sobition of (5.21) if V* is a s~ibsohution of

(5.21) and V., is a s~ipersolhdion of (5.21) according to Definition 5.3. 1.

NY'_e note that Definition 5.3.3 coincides with Definition 5.2.6 if the fuinction is

continuous. Hence from now on, whenever we say a viscosity soluition, it shouild

be understood in the sense of Definition 5.3.3.
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5.3.1 The finite time horizon optimal control problem

dY (efine the cost funictional for the finite time horizon J)roblemi: starting fromi x

at time t,

J X ,a() f l(x('r), uQ7-), 7 )eA"T + g(x(T,)), (5.40)

where TF > 0, 0 < t < TF, x R ~2, A > 0, and g is the termnal cost. The value

funiction V(x, t) is dlefined as

V (X, ) -inifJ (X, ta,.

\Y1'-e assunwe:

" (A43): l. .)is continuou)Is, / 0

" (144): jl(t U,t) - l(X2, U, t)l - C0(1 + I~ + X21)j - X21 VV 1 ,X2Vt

[0, T], for somle C, > 0

" (145): lg(Xt) - (X2)1 <- C,,(l + Xtj + X21) jli - X1V~tX2

Example 5.3.4 A traje. ctory tracking problemn on a finite interval can be form a-

lated as above with A = 0. g -- 0. and

l(XU(t) i ) = q (t) (X2 - Xt2(t))2 + 2(t)

where q(t) > 0, Vt .X 2 denotes the I comnponent of x and T2(') i's a bounded.

desi1red trajecctory of AI.

Xecan show the value funiction has some nice I)roIperties.

Proposition 5.3.5 C nder asswumptions (143) - (A5) . V (X, ) is locally bounded.
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Proposition 5.3.6 C nder assumptions (A3) - (A 5 ). V(X, t) is locally L *pshi*tz con-

V(Xtt) - V(X2 , S) I LR(I~ _-X2 1 +It - SI)OVtl1 2 CB(0, R), Vt, s [O01,]

(5.41)

and LR can be written as LR = C(1 + R) for some C > 0.

Therefore V belongs to the following class of funictions onl R2X (0, 1)

P(R2X (0, 1)) {IVQ'. IW(Xt t) - IV(X2 S)j < C(1 + R)( Ixt - X2 1 + It - 81)

V Xt 2 G B(O, R) XVR > 0, V ts G (0 T) , for some C > 0}.

X 1'_e canl J)rov~e:

Proposition 5.3.7 The value function V is a viscosity solution of the followi*ng

evotutive HJB equation:

-V(,t) + ANI(x, t) + H(x, DIV(x, t) , t) = 0, xi G 1R2, t C(0, IS), (5.42)

W~q, TS) =gq) x. R (5.43)

where the Hamiltonian

A
H(x, p ) - maxf max{ -uf+(x) *p- l(x, ut)}I ,max{ -uf (x) p - Ix ,t

?1EU+ ~l

11Vt denotes the partial derivative with respect to t, and DIV denotes the partial

derivative wi1th respect to x.

The Hamiltonian i (5.42) enjoys ifice regularity p~roperties, simiflar to those iln

Proposition 5.2.8. Based 01n this, we caln J)rov~e:

Proposition 5.3.8 If the HJB equation (5.42) with the termi?,nal condition 4,j)

has a viscosity solution in Pt (R2 X (0, 1,)). it is unique.

The J)roof can be found in [47, 601.
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5.3.2 The time-optimal control problem

limie-oIptimal control is imlportant, in applications, like flicro-lpositioning. Since

only the I conmponent, of x is related to the (IisIplacemient, outp~ut, we consider the

target set 7 to be

7 A f{(H, AIf) G 2 H.. < H < H~,, if AI = }T (5.44)

where Alo G [-Aft A4l] is the miagnetization corresponding to, say, the dIesiredI

(IisIplacemient.

Remark 5.3.9 The constraint H G [H2n~n , Hmax1 i (5.44) reflcts the limitation

on the input current of the actuator. Also with out this constraint, the timeTn-optim*Tal

control problemn would be uninteresting: since f4 > 0, 1 = 1, 2, 3, in the mnodel (5.3),

the optimnal control wouild be u - u, if I < M0 .o u =- u if I > Mo and u = 0 if

For any control pair a(.), x R d2 (efine

t 1a f~ if t : x(t) = 7 0 (5.45)

Sinift : x(t) e 7} otherwvise

Then the inimumn-time funiction, the value funict ion for the t ime-oIpt imal problenEl

is dIefinedI as

7T(X) = inif t1 (a). (5.46)

Let O7 denote the boundary of 7, and 7c dlenote the comiplemient of 7 in R2

In the case of (5.44), O7 = 7. The continuity of 7T(x) is closely related to the

smnall-timen controllability on 7 [9]. Due to lack of controllability in (5.4), we are

unable to establish the smiall-time controllability of (5.4) at 7, and therefore we

have to take 7'(x) to be a non-cont lnuous (not necessarily cont inuous) funlct ion.
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Wts often more convenient to study the Krnbkov transform of T(x) [91:

V X t l( if](x)1 { (5.47)

Xenote that V(x) is the value funiction for the optimal control p~roblem wvith cost

funictional

~J(X a(-)) = ilfj <-dt, (5.48)

and the optimal control for (5.48) coincides wvith the time-oIptinlal control.

One can show that V(x) is a n101-continuous viscosity solution of

IV(x) + H(x, DWVx)) = 0, xi G Tc, (5.49)

W (X) = 0, x G OT, (5.50)

where the Hamiltonian

A
H (x, p) - inaxf max{f- uf+ (x) p}I ,max{f- uf (x) -p}} -1

It is very ihard to ciharacterize the value fullctioll as tile unique solutionl of tile

Diricillet problem (5.49),(5.50) iln tile class of ilon-coiluous funictions. To p~roceedI

toward tilat dlirectionl, wve inltroduce a generalized solutionl, tile envelope soluion,

of tile D iicillet p~robleml.

Consider tile Diricillet boundary value problem:I ~,I(x) , DI(x)) 0, (5.51)

IV(X) = g(x), x G 00

whlere 0 c R' is open, F : 0 x Rx R', conltinuous, g : 00 , . Let 0) dlenote

tile closure of 0. Yesay tilat a bounlded upper (lowver, resi).) semicolltlluolls

fullctioll W : 0) R is a subsohition (supersotuhion, resp.) of (5.51) if it is
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a viscosity siubsolution (suipersolution, resi).) of TF(x, V(x) , D1V(x)) 0 on 0

(Definition 5.3.1) and is < g (> g, resp.) on 00.

Now dlenote

A A
S - f{subsolutions of (5.51t)} Z - f{suitersolutions of (5.51t)}

Definition 5.3.10 (Envelope solutions) [9j Let W : 0 , be locally bomunded.

1. WV is an envelope viscosity smbsobition of (5.51), briefly. e-s~usohition. if

there exists S(WV) C S. S - 0. s~ich that

V(X) = SUi) it (ji), X
w ES~I1 )

2. WV is an e-s~ipersolhdion of (5.51). if there exists 2(WV) C Z. Z 7 0. s~ich

that

IV(X) - inf 1w,(x), X G 0%

W. IVs an e-sohdtion of (5.51) if it is an e-s~usohdt*on and e-s~ipersohiton

Xecan show:

Proposition 5.3.11 V , x) (recall Definito 5.3. 2) is the iniqi e-sohdtion of the

Dirich let problem (54,9), (5.50).

The J)roof can be found in [9].

5.3.3 The exit problem

Wts natural to consider p~roblems with the restricted state space for control of a

nmagnetostrictive actuiator. Let

Q A f{(H, AIf) e C : Hrn ..4 H < H,,,~ i/ -A4 <'L AI<A4
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and let Q, Q' be its closure and complement in R2, respectively. The constraint

on H has been explained in Subsection 5.3.2, while the constraint on I is from

the physics.

For a control problem with state space constraint, in which any admissible

control has to keel) the state within certain dlomain throughout the time period of

interest, the value function, if it's continuous, is a constrained viscosity solution of

the corresponding HJB equation [73]. As in the case of time-optimal control, the

continuity of the value function depends on the controllability of tie system at tie

dlomain boundary.

In this subsection we study an exit problem for the model (5.4). For any x G R' ,

any measurable control pair a (.), we denote by t,, (a) the first exit time of x(t) from

the open set Q. Clearly, if x e Q, t,,(a) = 0 for any a(.). The cost functional is

defined as

fJ(,(.)) _ f. 0 l(x(t), u(t))c-t dt + C-t,,q(agX(t,(a,))) if t,,(a) < ooIfJC/ I(x(t),u(t))c t dt if t,,(a) -ox

(5.52)

where for simplicity, we have let the discount factor A = 1. The running cost

/ is assumed to be bounded, continuous with respect to x and u, and Lipschitz

continuous with respect to x. The terminal cost g is assumed to be bounded,

continuous, and satisfies a global principle of sub-optimality:

q(X) < inf l(() u(s))<ds + <q(t)) V G Vt > 0. (5.53)

Eq. (5.53) plays a role of a compatibility condition.

Remark 5.3.12 If we let Q = Tc , g - O / - 1, we recover the time-optimal

control problem. Hence the result of this subsection applies to the time-optimal

problem as wel.
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\ecan t prove the continuity of the value fuinction V (x) = if (,) Jx a,(-)

again dule to lack of controllability. V(xi) is a (non-continuous) viscosity solution of

the HJB equation. As dIisculssedI in Subsection 5.3.2, we needI some additional tools

to single out the value fuinction from all viscosity solutions of the HJB equation.

In Subsection 5.3.2, we ulsedl the notion of e-solutions, here we will make use of

another concelpt, the bidotE ra s up(rs olatio ns of D irichiet p~roblems.

The HJB equation associated with the exit p~roblem is

W~x) + H~x, DIWx)) 0, xi e Q (.4

where the Hamiltonian

H (x, p) -maxf max{f- uf+ (x) -p - /l(x, u)} max{f- uf- (xi) -p - /l(x, u)}}

Consider the first equation in (5.54):

W (xi) + H (x, D W (x)) 0, xi e . (5.55)

Definition 5.3.13 (Bilateral supersolutions of (5.55)) [9j A lowcr scricon-

tin uous function WI : Q , IR is a bilatcral (non-continuous viscosity) supcrsolution

of (5.55) if it is both a supcrsolution of (5.55) and

-x)- H(xi, D1V(x)) =0, xi G Q.

Definition 5.3.14 (Bilateral supersolutions of (5.54)) [9j Givmn a lowcr scmi-

continuous function g : R Ra lowcr scmicontinuous function WI : R

is a bilatcral supcrsolution of (5.54) if it is a bilatcral supcrsolution of (5.55),

WI(<l) = ), Vxi G QC and it is a supcrsolution of

- x)- H(xi, D1V(x)) =0, x Ge
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The following result is adalpted from [91:

Proposition 5.3.15 V,(x) is the uniqzie botinded bilateral stpersoltition of (5.54).

5.3.4 The nonlinear 7H-K control problem

In this subsection, we consider the nonlinear 'H,, control J)roblem. For that wve

introduce an exogenous disturbance it' into the miodel (5.4) and dlefine a regulated

out put Z { (t) f (X (fl (t) d(t)) g q(X(t))w(t) (5.56)

where g is a continuous fuinction taking values in R"Pj, p > 0, it' takes values in

1,17 C RP takes values in R" q > 0, and h is continuous. NY-e will assume that

L'. , L 0 (R, 117o), i.e.,

1 T, w;(t)j Ut < DC,, VT < -, and w~t) e 11"o, Vt.

Definition 5.3.16 The (state feedback) sub-optimal N, control problem with dis-

turbance attewuation level - > 0 is solvable if there is a state feedback controller

K(.), such that:

1. (Dissipativity) the closed-loop system is dIissip~ative with level - , i.e., there

exists some finite fuinction U(x) > 0 and U(0) = 0, such that starting from x G R2

J (t) 12 2 1,; wt) 12t < U (X), Vx, VT > 0, V() ir L 2 ,(R+, 11o). (5.57)

2. (Stability) the closed-loop system is stable when w~t) 0.

A general theory of dissip~ative systems has been studied by W ,illems [881, where

(IissiIpativity is dIefinedI in terms of an inequality involving the storage function and

the supply rate. (Asymptotic) stability of a dIissip~ative system can be obtained
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with a firther assumption on detectability of the system [44]. James [48] has

shown that a system is dissipative if and only if a partial differential inequality

(PDI) admits a lower semicontinuous solution in the viscosity sense. Van der

Schaft made use of the dissipativity theory in the 7H, control setting and derived

the Hamilton-Jacobi-Isaacs (HJI) equation for nonlinear affine systems with state

feedback [70].

The connection between 'H,, control and differential games has been well-known

[6, 10, 49]. The value function of a differential game (when it exists) is the viscosity

solution of the HJI equation under very general assumptions [31]. The relationship

between 7H, control and viscosity solutions of the appropriate HJI equations has

been pursued by [59, 5, 75, 92, 90, 76], to name a few. Here we mention that

in particular, Soravia has shown that the 71, control problem is solvable if and

only if the corresponding HJI equation admits a nonnegative lower semicontinuous

supersolution, which is null and continuous at the origin [76]. This result is the

parallel of that in [48] for dissipative systems.

The differential game corresponding to the problem (5.57) is

V> X) = inlf SU1 J S11 ZtJ 2 1 1 !2 wt) 12 t, (5.58)

where V,, is called the lower value function since the controller has advantage over

the (listurbance. If we let the disturbance have advantage over the controller, the

corresponding V, will be called the upper value function. In our problem, since the

control pair a {d, u} and the disturbance i, are seperate in the dynamics and

the cost, the Isaacs condition is satisfied and V, = V,.

One can show V, satisfies the following HJI equation in the viscosity sense:

H(-,DV,(x)) = 0, (5.59)
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where the Hamiltonian

H(x~p) - infj {-g(x)tv p + - 2}j' + maxf max -ufk(x) -p - h(x, u)j 2

m1ax -uf (X) -p - h(x, t1)1 2}.

From the previous discussion, if we canl obtain a supersolution of (5.59) which

satisfies certain conditions, then the sub-optimal 'H,, problem is solvable. NW'_e

note that in general, (5.59) has many supersolutions and one dloes not seek the

uniqueness of the solution. Some compuitatijonal teciniques for solving a PDI

in the viscosity sense canl be found in James and Yuliar [50]. Controller synthesis

based on a (super)solution of the HJI equation has been investigated under various

assump~tionls in, e.g., [5, 75, 92, 90], but it remains an open p~roblem for general

cases.

5.4 Optimal Control Based on the Dynamic Hys-

teresis Model

Inl tis sectionl we briefly discuss ho0w to extenld tile viscosity solutionls appIroacih to

op~timal conltrol p~roblemls based 011 tile dIynamic hlysteresis mio(el (3.2).

Consider tile system (3.2). Given tile inlitial miemory curve 't" G TF witil cor-

responldinlg H, tile cost funictional associated witih a conltrol inpIut I(.) is defined

as

whlere f{H(.), iAI(.)}I is tile solutionl of (3.2) unlder I(.) witih tile inlitial conlditionl ',

and( A > 0. lile value function is dIefinled as

149



Remark 5.4.1 We know the truE statE spacE for (3.2) is TIf. In the dfinitions

above, wE "augmEnt" the statE spacE by including the H comnponEnt, which will bE

uscful in applying the viscosity solutions approach. NotE the H comnponEnt must bE

consistEnt with i.

From our analysis in Chapter 3, {H(.), AI(.)} is bounded if I(.) is so. Hence it's

natural to make the following assumIptions about the running cost 1: / is continuous,

0 < l(H, ,I) < CoVH AI, VG [-Ioo and

l/(Ht AIt ) -(H 2  M-2  I) I< 01( IHt - H 2 1 +I AI -MA 2 ) VHt H 2  M1 2 I 2,

VI e [-Io, o], where Co > 0, C, > 0 are constants, and 1o is the limit on the input

current of the actuator.

From Proposition 3.3.9 and the assumptions on 1, one can easily show that V

is bounded and uniformly continuous.

In [4], the author considered an optimal control problem for a controlled system

with the form: I ~() f(jqy q), q))(5.60)

zqt) F[y ,I(t)

where F is the Preisach operator. The value function was shown to be the unique

bounded, uniformly continuous solution of a. discontinuous, infinite dimensional

HJB equation in an adapted viscosity sense. In [12], the authors studied optimal

control of the following system:

1) M f (t Y uM M)(5.61t)

zqt) F[u, (t)

and proposed a new type of HJB equations, where one of the arguments is the

active set (P+(t) in Figure 2.2).
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The approach in [4] can be extended to our problem after we rewrite (3.2) as

H (t)- + Sn (I t H(H() ), (5.62)
1 H (I ( - -C

w here ") is as defined in Subsection 3.4.1. Although L't appears in (5.62), it

does not cause extra difficulty since 'I") is an argument in the HJB equation.
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Chapter 6

Conclusions

This dissertation has been centered around modeling and control of hysteresis in

smart actuators. Extensive simulation and experimental work based on a com-

mercial magnetostrictive actuator have been conducted to validate the modeling

approach and the control schemes.

The contribution of this dissertation in the modeling aspect is the proposal

of a novel dynamic hysteresis model, consisting of a Preisach operator coupled to

an ODE. We have established the well-posedness of the model from two different

perspectives. Apart from being useffl for the control purpose, the model presents

many interesting system-theoretic problems due to its special structure. We have

studied the following properties of the model: stability of the equilibria, input-

output stability, reachability and observability. We have also looked at algorithms

to numerically integrate the system. In addition, the existence of periodic solutions

under periodic forcing has been proved. This helps validate the model and provides

a theoretical basis for an identification scheme.

\e have pursued the problem of hysteresis control along three different but

connected paths: inverse control, robust control and optimal control.
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The idea of inverse compensation is to construct an inverse operator to cancel

out the hysteretic nonlinearity in smart actuators. This is done for the Preisach

operator based models. We have presented parameter identification methods and

proposed several efficient inversion schemes, all of which can be implemented in

real-time. A special type of inversion problem, the value inversion problem, has

also been formulated and solved.

Inverse control is open-loop in nature and its performance is susceptible to

model uncertainties and to errors introduced in the inversion process. To combat

this problem, we have come il) with a robust control framework for smart actua-

tors. The inversion error is modeled as an exogenous disturbance whose magnitude

is quantifible, and then robust control techniques are employed to attenuate its

impact. We have also been able to incorporate the saturation constraint into the

controller design.

We have studied optimal control problems mainly based on a low (imensional

hysteresis model. We have adopted the dynamic programming approach and stuld-

ied the Hamilton-Jacobi-Bellman equation satisfied by the value function in the

viscosity sense.

There are several possible directions to extend the work reported in this dis-

sertation.

We observe that the hysteretic behavior of the actuators varies slowly, possi-

bly due to fluctuation of the temperature. An interesting research direction is to

include this variability in hysteresis modeling, for example, proposal of a general-

ized Preisach operator having extra parameters to account for the variability. We

note that a time-dependent Preisach model has been proposed in [27], where the

thresholds (), a) of hysterons are allowed to be time-varying.
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An alternative approach to tackle the above problem would be adaptive pa-

rameter identification and adaptive inverse control. Although this idea has been

pursued for several other (relatively simple) hysteretic operators [80, 57], adaptive

inverse control remains an open problem for the Preisach operator.

With fast development of the micro-electro-mechanical systems (MEMS) tech-

nology, many applications will involve thousands of smart sensors, actuators, and

processors, where information processing and decision making should be done in

a distributed but coordinated way. In such a setting, control with communication

and compuation constraints is currently an active research area, and how to take

into account the hysteresis in sensors and actuators becomes an important and

challenging problem.
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Appendix A

Elements of Functional Analysis

In this appendix, we review some basic notions and results of functional analysis

which have been used in the developmlent of this dissertation. In particular, we

introduce metric spaces, Banach spaces and fixed J)oint theorems. The material in

this appendix can be found in, e.g., [69, 93].

A.1 Metric Spaces

Definition A.1.1 (Metric spaces) A netric space < Xp > is a nonempty set

X of elements together with a rcal-valued function p defined on X x X such that

for all x, y and z in X:

I. p(X, Y) 0 ,

2. p(x, y) -0 if and only if x = ,

3. p (x, y) = p(y,x), and

4. p (x, y) < p (x, z) + p(z, y).

The function p is called a netric.
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For a metric space < X, p >, 0 C X is called open if, Vx G 0, 16 > 0 such

that {y e X : p(t, y) < 6} C 0. A point x e X is called a point of closure of the

set E c X if, V6 > 0, ly G E, such that p(x, y) < 6. The set of points of closure

of E is denoted as E. A set E is called closed if E = E. If E = X, E is said to be

dense in X. A metric space < X, p > is called seperable if it has a subset D which

has a countable number of points and is dense in X.

A function f on a metric space < X, px > into a metric space <K py > is

said to be continuous at x if, Vc > 0, 16 > 0 such that if px(x, z) < 6, then

py(f(x), f(z)) < c. It is called continuous if it is continuous at every x G X.

f is called injecive if it is one-to-one, and is called surjective if it is onto, i.e.,

f(X) - fz e Y z f(x) for some x e X} Y.

A sequence {x,,} from a metric space < X, p > con verges to x G X if given

c > 0, there is an N such that p(x, x ) < c for all n > N. The point x is called

the limit of {x, }, and we write x,, x. We call x a cluster point of {x, } if a

subsequence of {x,,} converges to x.

A sequence {x,} from a metric space < X, p > is called a Cauchy sequmece, if

given c > 0, there is an N, such that p(Xn, XTn) < c for all n, m > N. A convergent

sequence is a Cauchy sequence, but the converse is not generally true. If the metric

space has the property that every Cauchy sequence converges, we say that space

is complete.

A collection L of open sets in a metric space is an open covering of a set E if

E is contained in the union of the sets in U. A set E is said to be compact if every

open covering I of E has a finite subcovering, i.e., if there is a finite collection

{Oh2 (2,... , ON} c L such that E C U4-t 04.
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We sa y that a set E in a, metric space < X, p > is rElativEly scquEntially

compact if any sequence {x ,} in E has a convergent subsequence X'k - x e X.

E is squ Entially compact if any sequence f x,,} in E has a convergent subsequence

For a, metric space, the notions of compactness and sequential compactness are

equivalent.

A family ? of functions from a. metric space < X, px > to a. metric space

* Y, py > is called Ecquicontin uous at x e X if, Vc > 0, 1 an open set 0 containing

* such that py (f(), f(z)) < c for all z e 0 and f e ?. The family is said to be

equicontinuous on X if it is equicontinuous at each point xi e X.

Theorem A.1.2 (The Ascoli-Arzeli theorem) LtF bE an Equcontinuousfam,-

ily of functions from na scpcrab/ space < X, px > to a mtrc space < Y, py >.

LEt {ff} bc a scquEcEc in F such that for Each xl e X, the closurE of the sEt

{f,(x) n > 0} is comnpact. ThEn thErE is a subsEquncE ff that convETyEs

pointwisE to a continuous function f, and the con vcrlqncc is uniform on Each

compact subsEt of X.

Corollary A.1.3 LEt ? bE an Equicontinuous family of rEal-valuEd functions on a

sEpErablE space X. ThEn Each scquE c EE {f,} in ? which is boundEd at Each point

has a subsEqu E cE {ff } that con vErgEs pon tnisE to a continuous function and the

con Tvqxncc is uniform on Each compact subsEt of X.

A.2 Banach Spaces

In the following K = R or K = C, where R denotes the set of real numbers and C

denotes the set of complex nuibers.
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Definition A.2.1 (Vector spaces) A set X of elenents is called a vector space

(or linear space) over K if we have a function + on X x X to X and a function

on K x X to X that satisfy the following conditions: for any x, y e X. a, .3 e

1. x + y = y + X:,

2. (x + y) + z = x + (y + z),

3A0 X, such thatx+O -= V X,

4. a,. (x + y) = a x + a, y9

5. (a, + 1) • x = a, x + 3 ,

6. a, (. ) (aXa) • X,

7. 0 • x = 0, 1 • x = x.

For a vector space X over K, the elements U"t U2 " UN of X are called linearly

independent if and only if

attt+(a 2 U2 + "+a ,UN = 0, a4 G K, t < i < N,

imlies a4 = 0, 1 < i < N. The maximal number N of linearly independent

elements in X is called the dimension of X. We say X is finite dinensional if

N < oo, and X is infinite dinensional otherwise.

Definition A.2.2 (Norms) A nonnegative real-valed function 11 I defined on

a vector space is called a normh if for x, y G X. a, e K,

1. 11 x 1-0 0 if and only if x- 0,

2. x + y 11< x 11 + 11 y II;

3. ax 11 - a 1 x 11
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A normed vector space becomes a metric space if we define a metric p by

p (x, y) =I I x - y If a normed vector space is comIplete in this metric, it is called

a Banach space.

A J)oint x is called a fixed J)oint of a napping f if f(x) = x.

Theorem A.2.3 (The Banach fixed point theorem) Let E be a closed nonTempty

subset of a Banach space X. Let the mapping f : E , E be k -contra ctive, i.e., for

all x, y G E,

11 f(x)- f(y) II< k 11 x- y

where 0 < k < 1. Then there exists a iniq ie x* G E satisfying f(x*) = x* , and

starting fron any xo GE E we have x,, , where

-" = f (X,,- :), V n > 1.

The Banach fixed point theorem is also known as the contraction map)ing

theorem.

A subset E of a vector space X is called convex if axi + (1 - a,)y G E for all

x, y e E, 0 < a < 1.

Theorem A.2.4 (The Brouwer fixed point theorem) Let E be a compact,

convex, nonempty s ibset of a finite dimenTsional normed vector space X. Let the

mapping f : E E be contin io~is. Then f has a fixed point in E.

Let X and Y be normed spaces over IK. The nmapping f : E C X , Y is called
compact if f is contilnous and it maps bounded sets into relatively coipact sets.

The Brouwer fixed point theorem has been generalized to the setting of a Ba-

nach space:
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Theorem A.2.5 (The Schauder fixed point theorem) Let E be a bounded,

closed. convex. nonemnpty subset of a Banach space X. Let the mnapping f : E B

be compact. Then f has a fixed point in E.
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Appendix B

Measure and Integration

The material in this a)I)endix can be found in, e.g., [69].

B.1 Measure

A uT-algebra s is a family of subsets of a given set X which contains 0 and is

closed with respect to complements and with resi)ect to countable unions. A set

fumction v is a function which assigns an extended real number to certain sets.

Definition B.1.1 (Measurable space) A meas~irable space is a coiple (X, s)

consisting of a set X and a u-algebra s of sbsets of X. A s~ibset A of X is called

meas~irable (with respect to s) if A G C .

Definition B.1.2 (Measure) A measuire v on a meas~irable space (X,sl) is a

nonnegative set fumction defined for all members of S and satisfying V(0) = 0 and

v/(JLE) = YZ7(E,),

for any scquence {L'E} of disjoint measirable sets. By a measuire space (XS/, V),

we mean a measurable space (X, sl) to(ether with a measure v defined on sl.
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A measure v is called finite if v(X) < cx. It is called uT-finite if there is a

sequence {X, } of sets in sl such that

n-t

and V(Xn) < c.

A measure space (X, sl, v) is complete if sl contains all subsets of sets of

measure zero.

Proposition B.1.3 If (X, s, v) is a measure space, then we can find a complete

measure space (X, SjVo) such that

1. A cs,

2. E e A =>- v(E) = vo(E), and

3. E£ AoLE =AUB whereBesandAcC,CeY ,Lv(C)=O.

The measure space (X, sl0, vo) given in Proposition B.1.3 is called the completion

of (X, /, V).

For a metric space < X, p >, the Borel algebra W is the smallest u-algebra

containing all the closed subsets of X, and any member of W is called a Bore set.

A Borel measure v is a measure defined on the Borel algebra W or the completion

of such a measure. We assume that a Borel measure has finite values on compact

sets.

For the space R' , the unique Borel measure that assigns the standard volume
fN

Ft (4 - a4) to every rectangular cube

[at bt] x ..x [aN, by
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is called the Lebesgue measuire .

Let (X, s) be a fixed measurable space. Two measures VIL and V2 are called

mzTnufally sing~uar if there are disjoint sets A and B in sl such that X = A U B and

vt (A) = v2 (B) = 0. A measure vt is said to be absoLbtely continuows with respect

to the measure V2 if v1 (A) = 0 for each set A satisfYing V2(A) = 0.

Definition B.1.4 (Signed measure) A signed measure on the measurable space

(X, s) is an extended real-valed set function v defined for the members of S and

satisfying the following conditions:

1. v assunes at most one of the vaLies cc,-c,

2. v(0) = 0, and

. for any sequence {L'4} of disjoint measurable sets

v (UJE) -Z(E,),

i-IL i-IL

where the equality is taken to mean that the series on the right converges

absoLutely if v(U E4) is finite and that it properly diverges otherwise.

Proposition B.1.5 (Jordan decomposition) A signed measure v on the mea-

s~rable space (X, s) can be uniquiely decomposed as v = v+ - v- , where v+ and

v- are mTnufually sing~uar measures on (X, s).

The mleasure v defined by v -+ + v- is called the absoLute vaLue of V.

B.2 Integration

For a mleasurable space (X, sl), a funiction f :X [-~,Dlis called mecasuirable

if

f-t(U) A x G X: f(X) G U} G S/,
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for any open subset U of [-c Cand f is called Borcl mnasurablE if the sl is the

Borel algebra -,. A function C) is calledI simnpE if it is a finite linear comibination

n

() W j Y, c.4 x (vi) (B. 1)

of characteristic funictions of mleasurable sets 4.

For a mleasure space (X, sl, v), if E is a mleasurable set and C) is a nonnegative

sinlIple function of the formi (B.A), wve dlefine

IL )dvAZ (.4v(L' n E).

For a nonnegative mleasurable function f and a mleasurable set E, wve define

/ fIV Sill) j CdV.
J L A sinllple o<6<f

A mleasurable function f :X [-C Cis intcgrablE onl X wvith respect to v,

if f> If Idv is finite. For anl integrable funiction f. for a mleasurable set E, wve dlefine

Jf dV A k (V - f dV,

where f+ m naxf fO}0 and f- max{ -f, O}0.

Theorem B.2.1 (The Radon-Nikodym theorem) Lct (X, sl, vt) bE a T-finitE

mnasurc spa CE. and l~t V2 bE a mnasurc dcfincd on sl~ which is absolutcly continuous

wit rspcct to vt. Thcn thcrE is a nonncga*t ct*vE mnasurablE functi*on /1 such that

v2 (E) J/dvt, VIZ G l
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Appendix C

Basics of Robust Control

In this appendix we collect some fundamental results of robust control from [29].

Following [29], we carry out the discussions in the discrete-time setting. For other

references on linear robust control, in particular, 7-H, control, please see [33, 39, 94].

A dynamic gamne approach for 7-, control can be found in [10]. For a treatment

on nonlinear 7-I control, please refer to [43].

C.1 Signals and Systems

Denote Z+ the set of nonnegative integers. Denote /'(Z+) the space of all vector-

valued real sequences on Z+, of dimension n, i.e., Vx - {= x[k]} 0  o ( ), x[ke

Rn, k - 0, 1,.. For an integer 1 < p < DC, we define the space

where
ccn

x~~ jx ~4[k1P)T

k-O i-
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and x4, [k] deno)tes the i-th comiponlent of x [k]. For istance, N~ is the space of finite

energy signals. For p Dwe dlefine /' to be the space of bounded magnituide

signals:

A,/ C i /(Zw) : sill) max lx4 [k] I < }

k

A system 7 is an operator b)etween two signal spaces X and Y. Denote by

Pk k G Z+, the truncation operator on /n (Zn), i.e.,

Pk([0 ~t ..) = (1] ~t . x**k],U 0,*0,

Denote by S the unit shift operator, i.e.,

Definition C.1.1 (Linearity, causality, and time-invariance) An opcrator 7:

X -, Y is lincar if

T(a~ + ay T(xi) + ) T (y) , Va&, I R, Vx, y G X.

An opcrator 7 is causal if for all k, 2 h T = kT ~hk,, and is strictlyj causal if

PkT =Ph T Pk- tfor all k. 7 is timE-invariant if ST = S.

Definition C.1.2 (Stability) Lct X, Y bE two normcd lincar spaccs. An opcra-

tor 7 : X ,Y is stablE if

'T Sill) 11 x C,
X o 11 x

whcrE 1 Ix and 11- l dcnotE thE norms on X and Y, rcspcctivcly. Wc call 7

thE induiccd norm of 7.

NW'-e now characterize classes of linear time-invariant (LTI) systems on, /n and

/n.2 Cauisality is implicitly assumied for a LTI system.
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Let RZ be a LTI systemi fromi /' (Z) to /" (Z+). Then for any x G C Z)

y = TZx G /"(Z+) can be expressed as

k

y[k ] - j R[k - i =[i] k - 0, .,
4=0

where R = {R[k]}' 0 e /""(Z+) is called the imlpulse response of R. Write the

(i, j)-th conmponent of R[k] as R [k], then R G /I '(Z+), 1 < i < m 1 j < n.

From now on we will denote R by its impulse response R.

Theorem C.1.3 A LTI systen R is stable from /', to /" if and only if

nAIR I1,- ax R II RuI< ,(C. 1)
t<4<,rn

j I

and 11 R 11 is the induced normn of the system.

Remark C.1.4 Recall that a matrix A = (A~j) e R n n is a mapping from Rn

to R. When we equip the vector spaces R and R with the norms, the

induced norm of A is the so called lt norm IA IL t n1aXt<4<Kn j t Nowwrt

R = (Rnj) with R~j -II Rj 11 t. Then 11 R 11, defined in (C.1) is Just composition

of the It norm of R with the It norms of R j s. This is the reason we use notation

11 I1L for R.

We will denote by Lt the space of LTI systems with finite ,-induced norm.

For R G l,× (Z+), we define the A-transform of R:

R(A) - Z R[k]:A .
k-0

Note the A-transform is connected to the z-transform by z = A remark on

notation: for a LTI system, say G, we will also use G to denote its imlpulse response

and will use 0 to denote its A-transform.
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2  a

Figure C.A: Feedback connection.

Denote by 7-H"" the space of comlplex functions that are analytic on the open

unit disc and bounded on the unit circle, and denote by R]-"" the space of real

rational functions inside 7-H"". For any R e , the 7-, norm is defined as

II -, I1H- - Sill) (Cj°)]
0

where O-rnax denotes the largest singular value of the matrix.

Theorem C.1.5 A LT[ system R is stable from lN to /,n if and only if

We write 1 R I

The following result is at the heart of the robust control theory and it applies

to general nonlinear time-varying systems. Consider the feedback connection of

two systems GL and C2 as shown in Figure C.1. The closed-loop system is said to

be well posed if for any u I, U2, there exists a unique solution YIL Y2.

Theorem C.1.6 (Small gain theorem) Let GCL " j -+1 and G 2 " -- be

two 1l,-stable systems and assume that the closed-loop system is well posed. Then

the closed-loop system is lp-stable (taking UL , U2 as the input, YtI Y2 as the output)

if 11 Gt I1  G2 j 1.
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Figure C.2: General setup.

C.2 Parametrization of Stabilizing Controllers and

Achievable Closed-Loop Maps

Figure C.2(a) shows a general setup for formulating performance objectives (tra-

jectory tracking, disturbance attenuation, etc.), where u is the controlled input, y

is the measured output, i, is the exogenous input and z is the regulated output.

The operator G is a 2 x 2 block matrix mapping ir and u to z and y:

Z Gt[c G 2  i'

Yq Gzt G22

K is the feedback controller. As we will see shortly, to solve the robust control

problem (either robust stability problem, or robust performance problem, or both),

one always ends up with the problem of finding a stabilizing K to minimize the

induced norm of the closed-loop map from i to z.

Consider Figure C.2(b). Let H(G, K) denote the following mal):

XWe assume the map H(G, K) is well posed.
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Definition C.2.1 The closed-loop system is l -stabUc if the /p,-inducEd norm of

H(G, K) is finite. In such a casE, K is said to bE stabilizing in the lp snse.

W-e will be interested in the map 1 between i, and z:

4 =C 1 + Gt 2 K(I - G22K) tG2t. (C.2)

In literature, ( is called the lowEr Linar Fractional Transformation (LFT) of G

and K and it can be written as ( = i (G, I[).

XWe now restrict ourselves to the case that G is a LTI system. We make the

assunmption that all the unstable poles of G are reachable fron u and observable

from y. With this assunlption, K stabilizes G if and only if it stabilizes G 22 and

it suffices to paranletrize all stabilizing controllers for G 22.

Definition C.2.2 (Doubly-coprime factorization) A doubly-coprimE factor-

ization of G 22 is a sEt of maps N, I, N, M, with G 22 = NM \ = I t N satisfying

-N X (C 3)

for sowe stable X, Y, Xk and Y, where I is the identitynap. I and N arc called

the right coprimE factors of G 22 whilE -I and N arE callEd the lEft coprimE factors

of G 22.

Theorem C.2.3 Lct a doubly-coprimE factorization of G 22 bE givEn as in (C.3).

All stabilizing controllErs arc given by

K= (Y - MQ)(X - NQ) I ( - 2N) -'(Y - (2TI), Q is stabl. (C.4)
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Remark C.2.4 Theoremn C.2.38 gives a comnplete paramectrization of stabili7 ing1

controllers in the following two senses:

1. If Q is K-stoble. K is stabilizing in the K, sense:- if Q is* 12-stable. K i

stabili-Ing in the /2 sense.

2. The paramectrization covers cases of LT[ controllers, linear timec-varying (LTV)

controllers and nonlinear controllers. For instance, all LT[ stabilizing con-

trollers in the K, sense are paramectr*ed by Q G / t , all finite-dimecnsional

LT[ (FDLI) stabilizing controllers in the K, sense are paramectr,*ed by

Q G 7ZNHC. all LTV stabilizing controllers in the K, sense are paramectr,*ed

by Q in the set of all LTV K,,-stable operators. and all nonlinear timec-varying

stabilizing controllers in the K, sense are paramectr,*ed by Q in the set of all

nonlin ear timec-varying K -stable operators.

Corollary C.2.5 If G 22 is stable. then the paramectrization of stabilizing con-

trollers is given by

K = -Q(I - G2 2 Q<VL. (C.5)

Proof NWhlen G 22 is stable, we obtain a (Ioubly-co1)rinle factorization by letting

I= -k = I, I = X = I, N = JA = G 2 2 and Y =- = 0, where the (linlensions

of the identity miatrices I and the zero miatrix 0 should be conlipatible with the

op~erators. 0

Substituting (C.4) into (C.2), we get a Jparanletrization of achievable closed-

1001) nia)s from it' to z

-) = - UQV, Q is stable, (c. 6)
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I G

Figure C.3: Robust stability analysis.

where E - GC1 + GC12YMG21 , U = Gt 2A, and V = IG2t. NAe note that the

closed-loop map ( is affine in the free parameter Q, and as we will see, this plays

a fundamental role in developing synthesis techniques for robust control.

C.3 Stability and Performance Robustness

In this section, we give the sufficient and necessary condition for a closed-loop

system to be stable in the presence of uncertainties. W-e also indicate how to ad-

dress the perfornance robustness problem by converting it to a stability robustness

problem. Here by "perfornance" we mean the induced norn of the mapping frol

the exogenous input i, to the regulated output z.

Consider Figure C.3, where A represents the uncertainty block. Let A denote

the class of uncertainties. A can have certain strcture, e.g., a block diagonal

structure, as a result of our knowledge about uncertainty locations. The structural

infornation of A is exploited to reduce the conservativeness in robust controller

synthesis.

Let If = T1(G, K).

Definition C.3.1 (Structured norm) Given the class A of in certainties and
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p, the strichcfrd normn (SN) of Jf is defined as

SNAP(M) ~ ~ ~ ( i-j~ A 11Th: J A)-4 is not lp-stable}l

where 1 lip-4, denotes the /p-in d~iced normn. If for any A G A (I - V )'~

lu-stable. then SNAp(MW) is defined to be 0.

Define BA~p = {A G A :1A lip-4nd< 1}. Fromi Definition (1.3.1, we hiave the

following thieoremi:

Theorem C.3.2 (Structured small gain theorem) The feedback connection of

Jf and A (Fig~re C.3) is stable. for all A G BA~p if and only if SNAp(M) < 1.

Remark C.3.3 Fromn the smnall gain theorem., SNAp(AI) <1W ip-nd

To mnake iuse of Tieoremi C.3.2, one nleedI know hiow to comlpuite SJVA~p(Al)

or its uipper bounid. Define the set D = f{D :D, D- are /p-stable, eA

A, and 11D-LAD lip-d1 A llp-4nd for all A G A}. Fromi Definition C.3.1,

SNAp(Al) = SNA. (D-'AID). Thien by the smiall gain thieoreml, wve hiave

SNA~p(AI) K if 11D-'AD liP-4nd ((1. 7)
DED

It turns ourt that equiality hiolds in (C.7) for miany imlportant, cases.

Theorem C.3.4 Let A = {dliag(AtA 2 , ... An) : each A4 is a nonlinear or

linear timec-varying in certainty block of dimeTnnsi1on 14 xl. 14 t < i n. Define

D = {d,1ag(djj,,d 2Il2,... All,~) :(14 eR d >0, 1 < nj i4

where I, denotes the ?identity mnatrix of dimeTnnsi1on 14. Then

SNA,(,W) = inf 11D-'AIID 11 SNA,2 (A1I) = inlf 11D-'AD 11 (C. 8)
DED DED
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Corollary C.3.5 11 1 1 if and only if the closed-loop systemn in Fig Ire C.38

is 1K-stable for arbitrary nonlinear or LTV A with 11A Ill-Thd< 1. Simnilarly.

11 W 1,< if and only if the closed-loop systemn is* /2 -stable for arbitrary nonlinear

or LTV A with 11A 11l2 -4nd< 1.

For the case of FDLTI uincertainties, the concep~t of stmrcrd sin y~uar rabie

is uisefil. Let ALT/ {diag(A t A2  .. An) :A4 G RZJl x l, 1 <- I

Definition C. 3.6 (Structured singular value pi) Consider the feedback connec-

tion in Fig ure C.3. For each 0 G [0, 27]1, the strichcfrd sin y~uar rabie

/I A [AI(Cj I) I - nfAEALTI f (Tnax [A (Cj0 )] dCt(I- (0i0) = 0 }

and if dct( I a) (0J0 ) - 0 for all A G ALT/ . then lA [M(cj0 )1 is defined to be 0.

Theorem C.3.7 Let / - ax4 14. Then

SNVALT, 2 (Al) =Sill /1A [MR(ei 0j)1, (C. 9)
OE [O,27]

Sill) /JALM(CW)] - SNVALTI(AI) K S1ll) /JA[AXI(Cj 0 )1. (C.10)
/OE [0,27] OE[O,27]

For sin yle-inpWu sin yle-o~utpW (5150) blocks, equality holds in (C.10).

Consider Figure C .4. Fromi Corollary C .3.5, the robuist Jperformiance Jproblemi

(Systemi 1) can be converted to a robuist stability Jproblemi by adding a fictitiouis

uincertainty block nmap)ping zto it' (Systemi 11).

Theorem C.3.8 Let A G A. Let Ap be the class of arbitrary nonlinear or LTV

uIn certainties. Define the new set of uIn certaintie*s

A { A =dliag(A, A p) A p ,A CA}

Denote the mnapping from it' to zas Then for p =C or p =2. Systemn I i

stable and 11T, 11 4d 1 for all A G BA~p if and only if <N~(I t .
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Figur e CA4 Peirfoirnance r obustness vs. stability r obustness.

C.4 The 11 Model Matching Problem

Wehave seen from the p~reviouls section that solving a robust control J)robleni

involves conmputation of inlfDED 11D-IAID ll,-4nd. Recall I = F1(G, K), therefore

the controller synthesis p~roblemi is often J)osed as:

stabiliZinlg K DED

Opiiig(.1) shutnosyNh respect to K and D is hard. One

method to appIroximately solve (C.11) is the so called D-K iteration Tnethod. The

iteration goes as follows:

" Step 1. For a fixed D G D, solve

stabilizinlg KA

and dlenote the optimal controller as Jx*.

" Step 2. Fix K*, and search for the optimal D* to mninimize 11D- 7\D Illu-4nd

" Step 3. Go back to Step 1 wvith D = D*.
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Figure C.5: The model matching )roblem.

By redefining G, the minimization problem in Step 1 above is equivalent to a

model matching problem (recall Eq. (C.6) and Remark C.2.4)

inf 11 E- UQV Ij4n, d, (C.13)

Q stable

as illustrated in Figure C.5.

Forp = 2, the problem (C.13) becomes the H,, model matching i)roblem when

we consider (2 e 7H,, and it can be elegantly solved through the theory of Hankel

operators. Since we are mainly interested in the case p = oc in robust control of

smart actuators, here we focus on how to solve the 1 model matching problem:

inf 11 E- UQV 11 t.(C.14)

C.4.1 Interpolation conditions

The approach to solve (C.14) is to first characterize the subspace

S {R Ge 11 : R = UQV for some (2 G /t}

and then solve the minimum distance problem

inf 11 E- R 1,. (C.15)

An element R e S should preserve the zero structurEs of U and V: intuitively

speaking, non-minimum phase zeros (zeros inside the open unit disk D) of U and
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V canl not be cancelled by p~oles of Q since Q is stable. In addition, some rank

conditions m~ay need to be satisfied. Wefirst review the concep~ts of zeros and poles

for a rational miatrix G,(A).

Definition C.4.1 A square polynomnial mnatrix P(A) is called unimnodular if its

determi?,nant is a nonzero constant.

By definition, lllinlo(Iular miatrices hiave Jpolyllonlial inverses.

Theorem C.4.2 Let 0G(A) be an in x n rational mnatrix of normnal rank r (i.e.. of

rank r for almost all A). Then G(A) can always be factored as:

G(A) = LcjA)McjA)RcjA), (C. 16)

where Lcj,,A) and R(-,(A) are unimnodular mnatrices of the appropriate dimecnsions.

and
eij A)0 

. . 0
( A)

(A) 0 .

iI(A) P(A

0 .. o 0 ... 0

0 ... 0 0 ... 0

is n x n. where the mnonic polynomnials Z4 (A) .L'j A)}I are coprimeTn for all -

r,,. and have the following divisibility property: ,4(A) divides ,4+ t(A) and

4+ (A) di*vides L' (A) for 1, 2, r - 1.

Definition C.4.3 RcI(-,A) is called the Smnith-McMillan formn of 6G(A). The roots

of fH'Z(A) are called the zeros of (,(A) and the roots of fl" -tJ4(A) are called the

poles of G(A).
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Definition C.4.4 Let A0 be a zero of G,(A). Let cT(,,,(Ao) denote the mnutiplicity of

A0 os a root of Z4(A). (T(,,,(Ao) is known as the algebraic mnutiplicity of A0. The total

num ber of indices i for which oTc,, (Ao) is strictly positive is known as the geomectric

mnultiplicyity of A0.

Recall Figure C.2. NY'-e dlenote the (limensions of wr , u, y as n,,', nz, n,, and

T1.1 resp~ectively. NVvithiout loss of generality, wve assumle that U(A) has fuill colun

normial rank n,~, and V (A) has fuill row normial rank n.

Characterization of the subspace S is given by a set of interp~olation condIitions:

Theorem C.4.5 Let the Smi?,th-McAil*lan decomnpositions of U and V be c

LuI.uI.RI. and V -Livv.respectively. Let A,-, denote the set of zeros of U

or V in the closed unit disk D Dfine the polynomnial row and cohumn vectors:

a()- (Lt A
)j (A) = (Rj-' )I(A) 1, -12,

where (AI)4 denotes the I*-th row of mnatrix I and (i\I)J denotes the ji-th cohumn of

I. Asswume that A,,, c D. Given R n, x n,< there exists a Q n, x~ n, qch that

R = UQV if and onlyj if for all A0 G A,-,- the following conditions are satisfied:

1. Zero interpolation conditions:

( 'Jj)(k)(Ao) =O for TjO~~uA )c( o-

2. Rank interpolation conditions:{ (4 R) (A) 0 for i =-, + 1,...

(R3))(A) 0 forj d' = n + n,, uu
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Corollary C.4.6 The res~at in Theorem C4.5 holds for ALt-, c f if R G l-K.

From Theorem C.4.5, if n,,I =-. and nU = n., the rank interp~olation conditions

dIisappIear and we call sutch p~roblems one-block problems. A problem is called Tmiuti-

block if it is not one-block.

C.4.2 The one-block problem

The zero interp~olat ion conditions in Theorem C.4. 5 can be reformulated in terms of

mill chains of U and V, whichi avoids exp~licit comilitation of the Smiith-Mc~lillan

dleconmposit ion. NY,'_e assume that locations of zeros are known.

Definition C.4.7 (Null chains) Given a in x n real rational mnatrix 19(A) ana-

lytic at A0 and a positive integer (T, define the Toeplitz mnatrix:

EO 0 0 ... 0

Et 1i' 0 . . 0

E, t E,-2 E,-3 ..

where E4 = -Lk(Ao), i > 0. A right mill chain of order uT of £k(A) at A0 is an

ordered set of cohamn vctors in R' X X~12 x.4. s~ich that x t 7 0 and

I'Ao, (E) -0.

x-

A left nill chain of order uT of £k(A) at A0 is. by definition, a right mill chain of

orderu( of 199(A) at Ao.
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Definition C.4.8 A canonical sct of right null chains of 1k(A) at A0 is an ordcrcd

sct of right null choains. i.E. x4 = x,. x for i =~ t, such thot

1.~x I< a.~ rE lincarly ?indcpcndcnt.

2. spaf{j, ... xI} thE null spOcE of 15(Ao). ond

3. (T t 0-2 > .. > 0-7.

A cononicol sct of lcft null choins is djfincd simnilorly.

Definition C.4.9 An Extcndcd sct of right null chains of a full rank n x n rational

mnatrix L'(A) at Ao. is a canonical sct of right null chayins augmncntcd with n -/

vcctors in R', {fx' ... x<} such that span{<xlj =.~ ]R . Each t~< iS

trcatcd as a chain with ordcr 0. / + 1 < k < n. An Extcndcd sct of Ucft null chains

is djincd simnilarly.

An algorithmn to comIpllte the extended set of will chains is p~rovided in [29]

p~age 134.

Given an elemient, of an extended set of right, will chains at A0, x3 of order oTj,

dlefine

-(A x t + (A - Ao)xi2 + + (A - Ao)(j' 7

if oTj > 0 and l)A( (A) A j if oTj =0. Simlilarly, dlefine P/A( (A) for an elemient of an

extended set of left null chains, y4, of order (T4. N~ithi this notation, wve have

Theorem C.4.10 Givcn a onE-block problc~m. thE zEro intcrpolation conditions in

Th~corc~m C.4.5 arc Equivalcnt to thE following: for all A0 G Ajl1 -

(iAOTp.ok)A)=0 for t, n** (C.1t7)
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where y4 and xi arc ElmEnts of the ExtEndEd sEts of lEft and right null chains of

U and V, rEspEctivcly, and oj, T,.o, arE the corresponding ordErs.

The problem (C.15) can now be solved by a linear programming approach.

Recall a closed-loop map ) = E - R. Therefore (C.17) leads to a set of linear

equality constraints on 1:

where Az,,o is some linear operator on 1> xn'',, b e IRn and n, is the total number

of constraints imposed by (C.17).

For 1 e 1 n,,,, we define (1)+, ( . /nIn,' as follows:

(1)+[k] max{O0 (14j[k]} and (1 k max{Q0,-()4j[k]}

for all k > 0, 1 < i < nz, 1 < j <n,. Thus 4 = 4 - 4 . II 1 t caln be expressed

as A, (() + ( ) where A, is a linear functional.

The one-block 1 model match problem is transformed into the following linear

program:

V0 = ilf V, such that (C.18)

Az,,o(4J+ - -) = b,

A, (4+++ )<v,

) +, > 0.

WTien AL, C D, one can show that the optimal ( has a finite impulse response

(FIR) through analysis on the dual linear program of (C.18).

From the optimal 1, one obtains the optimal controller by plugging the corre-

sponding Q into (C.4).
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C.4.3 The multi-block problem

The rank interpolation conditions in Theorem C.4.5 also imposes linear constraints

on 1, but the number of constraints is infinite. Therefore in general the resulting

linear programming problem has infinite number of variables and infinite number

of constraints. Three approximation methods are available to solve the infinite

dimensional linear programming problem:

1. Finitely Many Variables (FMV) approximation: approximate ( by a finite

imlpulse response of length N which results in finite number of variables.

2. Finitely Many Equations (FME) approximation: approximate the dual vari-

ables by a finite vector of dimension N which is equivalent to retaining finite

number of constraints in the primal problem.

3. Delay Augmentation (DA) approximation: Embedding the )roblem into a

one-block )roblem by augmenting U and V with N pure delays.

The DA approximation carries richer information about the structure of the

optimal solution than FMV and FME. It is also the method we use in our compu-

tation. \¥e now give a brief introduction to the DA method.

We first partition the original system (C.6) as:

)21 t422 E2 tE22) yU2(1
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where U e 1 '< and Vt e l><xn, . Denote by SN the N-th order delay operator,

i.e., S A N AN. Augment U, V and Q accordingly:

42,N 422,N E 2 t E 22

U NQN

Theorem C.4.11 For N > 0, let

v inf 11 E- UQV It, and

'IN= N = inf It
QNE1,, ×, ...

If 40 is achicvablc, lct Q0 be the corrcsponding Tn,iir*n,?izcr. LcfN =11 E -

UQ 1 1. Thenc

IN < o0 < fI. (C.19)

Proof We have

vo inif II N t -T, I N' -
Q1 I Ell" "YQi 2 -Q 2i Q2 2 -0

Sine Q0i C , its clear that v0 < .

Theorem C.4. 11 tells us that we can obtain a sub-optimal controller by plugging

Qo into (C.4).

Convergence results for the DA method can be found in [29].
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