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Abstract

This paper proposes a simple analytical model called M time-scale Markov Decision Process

(MMDP) for hierarchically structured sequential decision making processes, where decisions in

each level in the M -level hierarchy are made in M different time-scales. In this model, the state

space and the control space of each level in the hierarchy are non-overlapping with those of

the other levels, respectively, and the hierarchy is structured in a “pyramid” sense such that a

decision made at level m (slower time-scale) state and/or the state will affect the evolutionary

decision making process of the lower level m + 1 (faster time-scale) until a new decision is

made at the higher level but the lower level decisions themselves do not affect the higher level’s

transition dynamics. The performance produced by the lower level’s decisions will affect the

higher level’s decisions. A hierarchical objective function is defined such that the finite-horizon

value of following a (nonstationary) policy at the level m+ 1 over a decision epoch of the level

m plus an immediate reward at the level m is the single step reward for the level m decision

making process. From this we define “multi-level optimal value function” and derive “multi-level

optimality equation”. We discuss how to solve MMDPs exactly or approximately and also study

heuristic on-line methods to solve MMDPs. Finally, we give some example control problems that

can be modeled as MMDPs.
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1 Introduction

Hierarchically structured control problems have been studied extensively in many contexts in vari-

ous areas over the past years with certain types of models and assumptions. This is because many

large-scale control problems that arise in real applications show multi-dimensionally interdependent

organized behavior among subsystems that constitute the whole system as decision blocks. Two

distinguished hierarchical structures studied in the literature are “multi-level structure”, where

decision making algorithms in different levels operate in different time scales (see, e.g., [22]) and

“multi-layer structure”, where algorithms are divided “spatially” and operate at the same time

scale (see, e.g., [13]).

This paper focuses on the control problems with a particular multi-level structure — hierarchi-

cally structured sequential decision making processes, where decisions in each level in the hierarchy

are made in different time-scales and the hierarchy is structured in a pyramid (bottom-up organi-

zation) sense. That is, decisions made in the higher level affect the decision making process of the

lower level but the lower level decisions do not affect the higher level (state transition) dynamics

even though the performance produced by the lower level decisions will affect the decisions that

will be made by the higher level.

An usual approach to the multi-level structured problems is that a slow time-scale subsystem

lays aside the details of a fast time-scale dynamics by “average” behavior and then solves its

own optimization problem (see, e.g., [14] [6] or chapter 11 in [33]). This approach makes sense

especially when the hierarchy in the system is structured in the pyramid sense. This pyramid-

like structure was used in the perspective of “performability” and “dependability” in Trivedi et

al.’s models [23] [15] [25] even though controls are not involved in the models. They proposed

a hierarchical performability and dependability model, where the performance models (fast time-

scale model) are solved to obtain performance measures, termed as quasi-steady state performance.

These measures are used as reward rates which are assigned to states of the dependability model

(slow time-scale model). The dependability model is then solved to obtain performability measures.

The lower level is modeled by a continuous-time Markov chain and the upper level is modeled by

a Markov reward process.

In this paper, we propose a simple analytical model that generalizes Trivedi et al.’s hierarchical

model by incorporating controls into the model, which we refer to as Multi-time scale Markov

Decision Process (MMDP). The model describes interactions between levels in a hierarchy in the

pyramid sense. Each level is associated with distinct state and action spaces. That is, we assume

that no two level share any state or control action. The upper level state and/or control induces

the lower level MDP dynamics over a finite horizon of length corresponding to the decision epoch

of the upper level. In other words, a particular pair of the upper level state and/or control will

determine the lower level’s state transition function and reward function. Hierarchical objective
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functions are defined such that the (quasi-steady state) performance measure, the finite horizon

value of following a given lower level policy, obtained from the lower level over the decision epoch

of the upper level will affect the upper level decision making. From this we define “multi-level

value function” and then drive “multi-level optimality equation” for infinite horizon discounted

reward and average reward case, respectively. We study how to compute the optimal multi-level

value function exactly and approximately. We present an approximation method suited for solving

MMDPs and analyze its performance and discuss how to apply some previously published on-line

solution schemes in the context of MMDPs.

In addition to inherently existing hierarchical and multi-time scale control structure in problems

themselves that arise in many different contexts, our model is motivated by in particular the

observation made in the networking literature recently. The network traffic shows fluctuations

on multiple time-scales — scale invariant burstiness (see, e.g., [41]), and this characteristic in

the network traffic has been well-studied by “long-range dependent” or “self-similar” model (see,

e.g., [42]). However, there are several recent works that investigated the effects of such multi-

time scaled behavior by certain relevant Markovian models that approximate the fluctuations in

the traffic (see, e.g., [34] [37] [24] and references therein). The usual interests are in calculations of

buffer overflow probability distribution but are not concerned with development of analytical multi-

time scaled controls that incorporate given traffic models for such behaviors of the network traffic

even though some non-Markovian model based approaches are available (see, e.g., [38] and [16]). For

example, the slow time-scale (“call-level”) relates to the arrival and departure process of video/voice

calls and the fast time-scale (“packet-level”) relates to the packet arrival process of calls during

their “lifetimes”. This different time-scaled dynamics causes fluctuations in the traffic at different

time-scales and gives rise to a multi-time scaled queueing control problem1 and we believe that we

need to develop an analytical model to approach this kind of control problems.

This paper is organized as follows. We present a formal description of MMDPs and characterize

optimal solutions for MMDPs in Section 2 and discuss solution methodologies in Section 3. We then

discuss relevant related works of hierarchical models with our model in Section 4. We give some

representative example problems for MMDPs in Section 5 and conclude our paper in Section 6.

2 Multi-time Scale MDP

We first present the two time-scale MDP model for simplicity. The M time-scale model with M > 2

can be extended from the two time-scale model without difficulty and we will discuss this issue later.
1We will discuss this example in more detail in the example problem section.
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2.1 Model description

The upper level (slow time-scale) MDP has finite state space I and finite action space Λ. At each

(discrete) decision time n ∈ {0, 1, 2, ..., } and at state in ∈ I, an action λn ∈ Λ is taken and in makes

transition to state in+1 ∈ I according to probability P u(in+1|in, λn). Depending on which action

has been taken at which state in the upper level MDP, the lower level (fast time-scale) MDP over

one-step slow time-scale period is determined accordingly (what we mean by this will be clearer

below). Every MDP in the lower level shares the same state and action space. We denote the finite

state space and the finite action space by X and A, respectively. We assume that I ∩X = ∅ and

A∩Λ = ∅, which means that the state and control spaces of the upper level and the lower level are

distinct or non-overlapping. We also assume that every control action is admissible at each state

in each level for simplicity.

We denote time in the fast time-scale as t ∈ {t0, t1, t2, ...} and tnT = n, n = 0, 1, ... and T is

a fixed finite scale factor between slow and fast time-scales. We implicitly assume that tnT = n+.

That is, there is an infinitesimal gap between tnT and n such that a fast time-scale decision at time

tnT is made slightly after a slow time-scale decision at time n has been made.

Let the initial state in the lower level MDP x ∈ X and the initial state in the upper level MDP

i ∈ I (xt0 = x and i0 = i at n = 0). An action λ0 ∈ Λ will be taken at i0 and the next upper

level state i1 will be determined stochastically by P u. Over the time steps of t0, t1, ..., tT−1, the

system follows the lower level MDP evolution. That is, at the state x at t0, an action a ∈ A is

taken and x makes transition to the next state y ∈ X, which is the state at time t1, according to

probability P l(y|x, a, i, λ) and the nonnegative and bounded reward of Rl(x, a, i, λ) is incurred and

this process is repeated at the state y at t1, and so forth until the time tT−1. That is, the state

transition function and the reward function in the lower level MDP (over T -epoch) are induced

by the upper level state and decision. At time n = 1, an upper level action λ1 will be taken

at i1 (this will trigger a new MDP determination) and starting with a state z at tT (determined

stochastically from P l(z|xtT−1
, atT−1

, i0, λ0) for now — we will consider a distribution over X called

δ-initialization function later as a method of determining the states of xnT for all n), the newly

determined lower level MDP evolves (over the next T -epoch). See Figure 1 for graphical illustration

of time evolution in this process.

Throughout this paper, we will use the term “decision rule” related with infinite horizon and the

term “policy” related with finite horizon. Define a lower level decision rule dl = {πl
n}, n = 0, 1, ..., as

a sequence of T -horizon nonstationary policies defined such that for all n, πl
n = {φtnT

, ..., φt(n+1)T−1
}

is a sequence of functions where for all k ≥ 0, φtk : X × I × Λ→ A. We will say that a lower level

decision rule is stationary with respect to the slow time-scale n if πl
n = πl

n′ for all n, n′ and we will

restrict ourselves to only this class of decision rules here. We will denote the set of all possible such

stationary decision rules with respect to the slow time-scale as Dl, and omit the subscript n in πl
n
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Figure 1: Graphical illustration of time evolution in the two time-scale MDPs

in this case and use the time t0, ..., tT−1 to refer the sequence of functions of πl if necessary, and

denote Πl as the set of all possible such T -horizon nonstationary policies πl. We will also omit the

subscript on φ if πl is stationary (with respect to the fast time-scale).

Given a lower level decision rule dl ∈ Dl and a nonnegative and bounded immediate reward

function Iu defined over I ×Λ for the upper level, we define a function Ru such that for all n ≥ 0,

for x ∈ X, in ∈ I and λn ∈ Λ,

Ru(x, in, λn, π
l) = Ex

in,λn




t(n+1)T−1∑
t=tnT

ασ(t)Rl(xt, φt(xt, in, λn), in, λn)


+ Iu(in, λn), 0 < α ≤ 1, (1)

where σ(tnT+r) = r for all n with r = 0, 1, ..., T − 1, and the superscript x on E signifies the initial

state, xtnT
= x, and the subscript in, λn on E signifies that in and λn for the expectation are fixed.

We will use this notational method throughout the paper. The function Ru is simply the T -horizon

total expected (discounted) reward of following the T -horizon nonstationary policy πl given in ∈ I
and λn ∈ Λ starting with state x ∈ X with the zero terminal reward function2 plus an immediate

reward of taking an action λn at the state in at the upper level, and is a bounded function.

The total expected (discounted) reward achieved by the lower level T -horizon nonstationary

policy πl with an immediate reward at the upper level will act as a single-step reward for the upper

level MDP. Define the upper level stationary decision rule du as a function du : X × I → Λ and

we denote Du as the set of all possible such stationary decision rules. Given the initial x ∈ X and

i ∈ I, our goal is to obtain a decision rule pair of dl ∈ Dl and du ∈ Du that achieves the following

functional value defined over X × I:

V ∗(x, i) := max
du∈Du

max
dl∈Dl

Ex,i

{ ∞∑
n=0

γnRu(xtnT
, in, d

u(xtnT
, in), πl)

}
, 0 < γ < 1.

2It is our assumption that the initial state for the next epoch in the slow time-scale does not contribute the reward

for the previous epoch. However, a terminal reward can be defined by a function over X, in which case we need to

add the terminal reward term in Ru.
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= max
du∈Du

max
dl∈Dl

Ex,i

{ ∞∑
n=0

γnE
xtnT
in,λn


t(n+1)T−1∑

t=tnT

ασ(t)Rl (xt, φt(xt, in, d
u(xtnT

, in)), in, du(xtnT
, in))




+Iu(in, λn)

}
(2)

where we will refer to V ∗ as the two-level optimal infinite horizon discounted value function.

The second functional value defined as our objective function is

J∗(x, i) := max
du∈Du

max
dl∈Dl

lim
H→∞

1
H
Ex,i

{
H−1∑
n=0

Ru(xtnT
, in, d

u(xtnT
, in), πl)

}
,

where we refer to J∗ as the two-level optimal infinite horizon average value function.

We can see that from the definition of the upper level decision rule, the decisions to be made

at the upper level must depend on the lower level state, which is the initial state for the lower

level MDP evolution over T -horizon in the fast time-scale. The initial state xtnT
, n = 1, 2, ...

is determined stochastically by following the policy πl. We will consider more general case of

determining the initial state in the later subsection to expand the flexibility of our model. We also

remark that even though we added the immediate reward function Iu in the definition of Ru to

make our model description more natural, the function Rl can “absorb” the function Iu by newly

defining the function Rl itself as

Rl(x, i, λ, πl) ← Rl(x, i, λ, πl) +
1
T
Iu(i, λ) for α = 1 and

Rl(x, i, λ, πl) ← Rl(x, i, λ, πl) +
(

1− α
1− αT

)
Iu(i, λ) for 0 < α < 1.

2.2 Optimality equations

Because the upper level sequential dynamics is essentially just an MDP with a reward function

defined via the lower level MDP dynamics (by fixing a lower level decision rule), with a simple

adaptation of the standard MDP theory (see, e.g, [1] [3] [18] or [30]), the following results hold for

MMDPs. Therefore, we omit detailed proofs.

The first theorem yields an optimality equation satisfied by V ∗. We first define a set of all

possible T -horizon (lower level) nonstationary policies under a fixed pair of an upper level state

and an upper level action. For a given pair of i ∈ I and λ ∈ Λ,

Πl[i, λ] :=
{
πl[i, λ]

∣∣∣∣ πl[i, λ] := {φi,λ
t0 , ..., φ

i,λ
tT−1
}, φi,λ

tk
: X × {i} × {λ} → A and k = 0, ..., T − 1

}

and let PT
xy(πl[i, λ]) the probability that state y ∈ X is reached by T -steps starting with x by

following the T -horizon nonstationary policy πl[i, λ]. Note that this probability can be obtained

from P l.
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Theorem 2.1 For all x ∈ X and i ∈ I,

V ∗(x, i) = max
λ∈Λ


 max

πl[i,λ]∈Πl[i,λ]


Ru(x, i, λ, πl[i, λ]) + γ

∑
y∈X

∑
j∈I

PT
xy(π

l[i, λ])P u(j|i, λ)V ∗(y, j)






and V ∗ is the unique solution to the above equation. Furthermore, for each pair of x and i, let the

arguments that achieve the r.h.s of this equation as λ∗ and π∗[i, λ] = {φ∗tk}, and set du(x, i) = λ∗

for du and set πl such that φtk(x, i, λ∗) = φ∗tk(x, i, λ∗) for dl. The pair of du and dl achieves V ∗.

Proof: We will define an MDP that operates in the slow time-scale n as follows. The state at time

n is a pair of the lower level state and the upper level state, (xtnT
, in). An action at state (xtnT

, in)

is a composite control of λn ∈ Λ and πl[in, λn] ∈ Πl[in, λn] (from our assumption that tnT = n+,

πl[in, λn] will be taken slightly after λn is taken). Observe that we can view πl as one-step action

at the slow time-scale. More precisely, the admissible action set for state (xtnT
, in) is defined as the

set given by

{(λ, τ)|λ ∈ Λ, τ ∈ Πl[in, λ]}

The transition probability from (xtnT
, in) to (xt(n+1)T

, in+1) is determined directly from PT and P u.

Then, from the standard MDP theory, for this MDP, we can write Bellman’s optimality equation

and an optimal decision rule that achieves the unique optimal value at each state is derived, from

which we can conclude our result.

Even though we assumed finite state spaces with finite action spaces, the issue of infinite/finite

state/action space and bounded/unbounded reward function can be discussed from the well-known

MDP theory. We refer [1] for a substantial discussion in this matter. We now state a similar

result to the well-known fact for the average reward case in the MDP theory for the function J∗

we defined.

Theorem 2.2 If there exists a bounded function ζ defined over X × I and a constant g such that

for all x ∈ X and i ∈ I,

g + ζ(x, i) = max
λ∈Λ


 max

πl[i,λ]∈Πl[i,λ]


Ru(x, i, λ, πl[i, λ]) +

∑
y∈X

∑
j∈I

PT
xy(π

l[i, λ])P u(j|i, λ)ζ(y, j)




 ,

(3)

then there exists a decision rule pair of du ∈ Du and dl ∈ Dl that achieves J∗(x, i) and g = J∗(x, i)

for all x and i.

For conditions that make the “if” part of the above theorem hold, refer [1] or [18] for a substantial

discussion in the MDP context. An optimal decision rule pair can be obtained by similar way to

the method stated in Theorem 2.1.
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2.3 Initialization function

So far we considered the case where xtnT
, n = 1, 2, ... is determined by the T -horizon nonstationary

policy. In the model we described before, xtnT
, n = 1, 2, ... is (stochastically) determined by follow-

ing the policy πl with given xt0 . Considering more general model, we first define an initialization

function δ. We then determine xtnT
, n = 1, 2, ... by the function δ. That is, the lower level MDP

initial state for each new T -period (in the fast time-scale) is initialized by the function δ. This is

motivated by problem specific nature — organizing behavior in a hierarchy.

Here are some examples of δ. As in the previous description of the model, δ can be a function

defined over X×I×Λ such that for given x, i, λ, δ(x, i, λ) is a probability distribution over X. Given

x ∈ X, i ∈ I and λ ∈ Λ, we will use the notation of δ(x, i, λ)[y] to denote the probability defined

on y ∈ X by δ(x, i, λ). In the previous model description, δ(x, i, λ)[y] corresponds to PT
xy(π

l[i, λ]).

From now on, we will use the notation δπl
to explicitly express the dependence on the lower level

policy πl if that is the case. Or it can be defined such that the determination of xtnT
depends on

the state xtnT−1
. For example, for some x, y ∈ X, i ∈ I, λ ∈ Λ,

δπl
(x, i, λ)[y] =

∑
z∈X

PT−1
xz (πl[i, λ])ρ(y|z),

where ρ(y|z) denotes a probability of choosing y given z.

For some cases, the slow time-scale decisions (e.g., “reset” control, etc.) only will affect the new

initial lower level state. In this case, δ is defined over X × Λ such that δ(x, λ) gives a probability

distribution over X. The very idea of this δ is parallel to the transition structure in Markovian

slowscale model given in [20]. Finally, the determination of xtnT
can be independent of xtnT−1 or

xt(n−1)T
. For example, we can consider the state in the lower level is initialized depending on the

upper level current state i and the next state j. δ is defined over I × I such that δ(i, j) for some

i, j ∈ I gives a probability distribution over X.

The δ-initialization function gives much more flexibility in our multi-time scale model. Depend-

ing on the problem structure, δ can be defined accordingly. With the introduction of δ, we simply

need to rewrite V ∗ equation (similarly to the J∗ case) as

V ∗(x, i) = max
λ∈Λ


max

πl[i,λ]


Ru(x, i, λ, πl[i, λ]) + γ

∑
y∈X

∑
j∈I

δπl
(x, i, λ)[y]P u(j|i, λ)V ∗(y, j)




 , x ∈ X, i ∈ I,

where we used the first δ example function that depends on πl. In particular, if the δ-function is

independent of πl[i, λ] (or we will say that the δ-function is independent of the lower level policies),

then we can write the above equation as

V ∗(x, i) = max
λ∈Λ


max

πl[i,λ]
(Ru(x, i, λ, πl)) + γ

∑
y∈X

∑
j∈I

δ(x, i, λ)[y]P u(j|i, λ)V ∗(y, j)


 , x ∈ X, i ∈ I.
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This special case is very interesting because the optimal finite T -horizon value at the lower level

will act as a single step reward for the upper level (along with immediate reward). The upper

level decision maker in this case directs/determines a problem at each time that the lower level

decision maker needs to solve and the lower level decision maker seeks a “local” optimal solution

for T -horizon and follows one of the optimal nonstationary policies that achieve the solution. The

decision process of how to direct a problem at each time for the upper decision maker will depend

on the local optimal performance made by the lower decision maker. In this sense, this has a flavor

of the underlying philosophy of the Stackelberg (leader-follower) game (see, e.g, [2]). This is not

true in general because δ-initialization function may depend on the lower level policy πl[i, λ], where

in this case the lower level decision maker needs to choose a policy not only concerned with the

local performance of the policy but also effects of the policy in the future performance.

2.4 Extension to more than two time-scales

In this subsection, we briefly discuss how to extend the two time-scale model to more than two time-

scale model by illustrating the three time-scale model. So we introduce the higher level (referred

to as the highest level) decision making process that evolves with time s and affects the dynamics

of MDP in the n time-scale (denoted as n ∈ {n0, n1, ..., }) and nsH = s+, s = 0, 1, 2, ... and H is

the finite scale factor. We denote the state and the action space of the highest level as M and

Ψ, respectively. The notation used in this subsection coincides with the previous sections to avoid

confusement.

The transition structures are now defined to be given x, y ∈ X, i, j ∈ I, m,m′ ∈ M and

a ∈ A, λ ∈ Λ, ψ ∈ Ψ, P u(j|i, λ,m,ψ) for the upper level, and P l(y|x, a, i, λ,m,ψ) for the lower

level, and P h(m′|m,ψ) for the highest level. The decision rule for the highest level dh is defined

to be stationary decision rule dh : X × I × M → Ψ, and the the decision rule for the upper

level du is defined such that du = {πu
s }, s = 0, 1, ..., as a sequence of H-horizon nonstationary

policies where for all s, πu
s = {χnsH

, ..., χn(s+1)H−1
} is a sequence of functions where for all k ≥ 0,

χnk
: X × I ×M × Ψ → Λ. The decision rule du is stationary with respect to the time-scale s.

Similarly, we define the lower level decision rule dl = {πl
n} where πl

n = {φtnT
, ..., φt(n+1)T−1

} and

φtk : X × I × Λ×M ×Ψ→ A for all k ≥ 0. The decision rule dl is stationary with respect to the

time-scale n.

The lower level reward function Rl is now a function of x, a, i, λ,m,ψ and the upper level single

step reward function Ru is now a function of x, i, λ,m,ψ, πl and defined from Rl with an immediate

reward function at the upper level. That is, the highest level state and decision will affect the upper

and lower MDP reward functions. The single step reward function Rh for the highest level is a

function of x, i,m, πu, πl and defined from Ru over H-horizon in the time-scale n and an immediate

reward function at the highest level. From this reward functions, we can define the three level
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optimal value function and determine the three level optimality equation.

3 Solving MMDPs

The methods of obtaining the optimal decision rule for each level in MMDPs are well-established

via the well-known MDP theory. We will pay attention to δ-initialization function that depends on

the lower level policies and is defined over X × I × Λ such that δπl
(x, i, λ) for x ∈ X, i ∈ I, and

λ ∈ Λ gives a probability distribution over X. The discussion here can be easily extended to other

δ-functions.

3.1 Exact methods

We first discuss discounted case and then average case. Define an operator Θ such that for a

(bounded and measurable) function V defined over X × I,

Θ(V )(x, i) = max
λ∈Λ


 max

πl[i,λ]∈Πl[i,λ]


Ru(x, i, λ, πl[i, λ]) + γ

∑
y∈X

∑
j∈I

δπl
(x, i, λ)[y]P u(j|i, λ)V (y, j)





(4)

for all x and i. Then, Θ is a γ-contraction-mapping in sup-norm. For any function V defined over

X × I, let ‖V ‖ = supx,i |V (x, i)|. For any bounded and measurable two function U and V defined

over X × I, it is true that

‖Θ(U)−Θ(V )‖ ≤ γ‖U − V ‖.

This implies that V ∗(x, i) is unique from the well-known fixed point theorem. Furthermore, for any

such V ,

Θn(V )→ V ∗ as n→∞,

where this method is known as value iteration.

For the average reward case, we assume that (appropriately modified) one of the ergodicity

conditions in page 56 [18] holds. Then, average reward value iteration can be also applied [18]. Let

Φ be an operator that maps a function V defined over X×I to another function defined over X×I
given by

Φ(V )(x, i) = max
λ∈Λ


 max

πl[i,λ]∈Πl[i,λ]


Ru(x, i, λ, πl[i, λ]) +

∑
y∈X

∑
j∈I

δπl
(x, i, λ)[y]P u(j|i, λ)V (y, j)





(5)

for all x and i. Then, with an arbitrary (bounded and measurable) function V defined over X × I,
for all x ∈ X, i ∈ I,

Φn(V )(x, i) − Φn−1(V )(x, i)→ g as n→∞
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and for any fixed state pair y ∈ X and j ∈ I,

Φn(V )(x, i)− Φn(V )(y, j)→ ζ(x, i) as n→∞, x ∈ X, i ∈ I.

We can also use “policy iteration” once Ru is determined. See, e.g., [26] for average reward case

and [30] for discounted case.

3.2 Approximation methods

There are numerous approximation algorithms to solve MDPs. We resort to the books by Puter-

man [30] or by Bertsekas and Tsitsiklis [5], etc. for a substantial discussion. In this section, we

analyze the performance of an approximation-based scheme for solving MMDPs.

Our first approximation is on the δ-initialization function. One of the main difficulties to obtain

an optimal decision rule pair would be the given initialization function’s possible dependence on

the lower level nonstationary policies. Suppose that is true and consider a δ′-initialization function

that is independent of the lower level policies and approximates the given δπl
-initialization function

with respect to a given metric. Then there exists a unique function V̂ ∗ defined over X × I such

that for all x and i,

V̂ ∗(x, i) = max
λ∈Λ


 max

πl[i,λ]∈Πl[i,λ]

(
Ru(x, i, λ, πl[i, λ])

)
+ γ

∑
y∈X

∑
j∈I

δ′(x, i, λ)[y]P u(j|i, λ)V̂ ∗(y, j)


 .

We can bound then |V̂ ∗(x, i) − V ∗(x, i)| for all x and i by Theorem 4.2 in the Müller’s work [27]

with a metric called “integral probability metric” on the difference between δ′ and δπl
. Of course,

if the MMDP problem to solve is associated with the lower level policy independent δ-function, we

wouldn’t need this approximation step.

The second approximation is on the value of R∗ defined as

R∗(x, i, λ) = max
πl[i,λ]∈Πl[i,λ]

(
Ru(x, i, λ, πl[i, λ])

)

and on V̂ ∗(x, i). It will be often impossible to get the true R∗ due to the huge state space size of

the lower level and even more computationally cumbersome if T is relatively large even if |X| is a

moderate sized number even though theoretically we can use “backward induction”. Obtaining the

true value of the function V̂ ∗ is also almost infeasible in many cases with similar reasons. Suppose

we approximate R∗ by R̂ such that

sup
x,i,λ
|R∗(x, i, λ) − R̂(x, i, λ)| ≤ κ

and V̂ ∗ by some bounded and measurable function U defined over X × I such that

sup
x,i
|V̂ ∗(x, i)− U(x, i)| ≤ ε.
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We will discuss an example of such R̂ and of the function U later in this subsection. Now define a

stationary (upper level) decision rule du such that for all x ∈ X and i ∈ I,

du(x, i) = argmax
λ∈Λ


R̂(x, i, λ) + γ

∑
y∈X

∑
j∈I

δ′(x, i, λ)[y]P u(j|i, λ)U(y, j)


 .

Our goal is to bound the performance of the decision rule du from V̂ ∗. We define the value of

following the decision rule du given an initialization function δ′ as follows:

V̂ (x, i) = Ex,i
δ′

{ ∞∑
n=0

γnR̂(xtnT
, in, d

u(xtnT
, in))

}
,

where we used (by abusing the notation) Eδ′ to indicate that xtnT
, n = 1, 2, ... is a random variable

denoting (lower level) state at time tnT determined stochastically by δ′. We now state a performance

bound as a theorem below.

Theorem 3.1 If supx,i,λ |R∗(x, i, λ) − R̂(x, i, λ)| ≤ κ and supx,i |V̂ ∗(x, i) − U(x, i)| ≤ ε,

|V̂ ∗(x, i)− V̂ (x, i)| ≤ 2γε+ κ

1− γ for all x ∈ X and i ∈ I.

Proof: Let the argument that achieves the r.h.s of Equation (4) with replacing δπl
by δ′ be λU

for a function U . We will use the notation Θ′ for this replacement. From the contraction mapping

property of the Θ′ operator, for all x ∈ X and i ∈ I,

|Θ′(V̂ ∗)(x, i) −Θ′(U)(x, i)| ≤ γ · sup
x,i
|V̂ ∗(x, i) − U(x, i)| ≤ γε.

We show that |Θ′(U)(x, i)− V̂ (x, i)| ≤ γε(1+γ)+κ
1−γ for all x ∈ X and i ∈ I. It then follows that from

Θ′(V̂ ∗) = V̂ ∗,

|V̂ ∗(x, i) − V̂ (x, i)| ≤ |Θ′(V̂ ∗)(x, i) −Θ′(U)(x, i)| + |Θ′(U)(x, i) − V̂ (x, i)|
≤ γε+

γε(1 + γ) + κ

1− γ =
2γε+ κ

1− γ ,

which gives the desired result.

Now, for all x ∈ X and i ∈ I,

Θ′(U)(x, i) = R∗(x, i, λU ) + γ
∑
y∈X

∑
j∈I

δ′(x, i, λU )[y]P u(j|i, λU )U(y, j) by the definition of Θ′

≤ R̂(x, i, λU ) + κ+ γ
∑
y∈X

∑
j∈I

δ′(x, i, λU )[y]P u(j|i, λU )U(y, j) by the given assumption

≤ R̂(x, i, du(x, i)) + κ+ γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))U(y, j)

by the definition of du
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≤ R̂(x, i, du(x, i)) + κ+ γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))[V̂ ∗(y, j) + ε]

= R̂(x, i, du(x, i)) + γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))V̂ ∗(y, j) + γε+ κ

≤ R̂(x, i, du(x, i)) + γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))[Θ′(U)(y, j) + γε] + γε+ κ

= R̂(x, i, du(x, i)) + γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))Θ′(U)(y, j) + γε(1 + γ) + κ

≤ R̂(x, i, du(x, i)) + γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))
[
R̂(y, j, du(y, j)) + κ

+γ
∑
z∈X

∑
k∈I

δ′(y, j, du(y, j))[z]P u(k|j, du(y, j))U(z, k)
]

+ γε(1 + γ) + κ

= R̂(x, i, du(x, i)) + γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))R̂(y, j, du(y, j))

+γ2
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))

×
[∑
z∈X

∑
k∈I

δ′(y, j, du(y, j))[z]P u(k|j, du(y, j))U(z, k)
]

+ γε(1 + γ) + κ(1 + γ)

≤ R̂(x, i, du(x, i)) + γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))R̂(y, j, du(y, j))

+γ2
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))

×
[∑
z∈X

∑
k∈I

δ′(y, j, du(y, j))[z]P u(k|j, du(y, j))Θ′(U)(z, k)
]

+γ2ε(1 + γ) + γε(1 + γ) + κ(1 + γ)

Keep iterating (under the sum sign) this way, we have that for all l = 0, 1, ..., and x ∈ X, i ∈ I,

Θ′(U)(x, i) ≤ Ex,i
δ′

[
l∑

n=0

γnR̂(xtnT
, in, d

u(xtnT
, in))

]
+ γl+1Eδ′ [Θ′(U)(xt(l+1)T

, il+1)]

+γε(1 + γ) + · · ·+ γl+1ε(1 + γ) + κ(1 + γ + · · ·+ γl). (6)

Since Θ′(U) is bounded, the second term on the r.h.s. of Equation (6) converges to zero as l→∞
and the first term becomes V̂ (x, i). Therefore it follows that Θ′(U)(x, i)− V̂ (x, i) ≤ γε(1+γ)+κ

1−γ . This

proves the upper bound case.

For the lower bound case, observe that for all x ∈ X and i ∈ I,

Θ′(U)(x, i) = R∗(x, i, λU ) + γ
∑
y∈X

∑
j∈I

δ′(x, i, λU )[y]P u(j|i, λU )U(y, j)

≥ R∗(x, i, du(x, i)) + γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))U(y, j)

by definition of λU
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≥ R̂(x, i, du(x, i)) − κ+ γ
∑
y∈X

∑
j∈I

δ′(x, i, du(x, i))[y]P u(j|i, du(x, i))[V̂ ∗(y, j) − ε].

By the similar arguments for the upper bound case, we can then show that Θ′(U)(x, i)− V̂ (x, i) ≥
−γε(1+γ)+κ

1−γ . This concludes our proof.

We remark that a related work for this theorem can be found in Corollary 1 in [35] with the

assumption of the finite state space and the result of the work only gives an upper bound. Our

analysis takes a totally different approach and can be applied to Borel state space even though

our proof shows for the countable case. Furthermore, the result gives not only a lower bound but

also a tighter bound. Now we give an example of R̂. From now on, we assume that the lower level

reward function Rl is defined such that it absorbs the upper level immediate reward function Iu

as we discussed in subsection 2.1. Our approximation uses a heuristic lower level policy πl that

guarantees the T -horizon total expected discounted reward of following the policy πl is within an

error bound from the optimal finite-horizon value.

The methodology of the example is the rolling horizon approach [19] where we choose a horizon

h � T and solve for the optimal h-horizon total expected discounted reward and we define a

(greedy) stationary policy with respect to the value function. We begin by defining h-horizon total

expected discounted reward with h = 1, ..., T for every given i ∈ I and λ ∈ Λ:

R∗h(x, i, λ) = max
πl[i,λ]

Ex
i,λ

{
h−1∑
t=0

αtRl(xt, φ
i,λ
t (xt, i, λ), i, λ)

}
, 0 < α < 1, i ∈ I, λ ∈ Λ, (7)

where R∗0(x, i, λ) = 0 for all x ∈ X. We also let Rπl
(x, i, λ) = Ru(x, i, λ, πl[i, λ]) defined in

Equation (1) for every i and λ with 0 < α < 1 and Rmax = maxx,a,i,λR
l(x, a, i, λ).

Proposition 3.1 For every given i ∈ I and λ ∈ Λ and a selected h in {1, ..., T}, define a lower

level stationary policy πl[i, λ] as

φi,λ(x, i, λ) = argmax
a∈A


Rl(x, a, i, λ) + α

∑
y∈X

P l(y|x, a, i, λ)R∗h−1(y, i, λ)


 for all x ∈ X.

Then, for all x, i, λ,

0 ≤ R∗(x, i, λ) −Rπl
(x, i, λ) ≤ Rmaxα

h(1− αT )
1− α .

Proof: The lower bound is from the definition of R∗. Fix arbitrary i ∈ I and λ ∈ Λ. Define an

operator Ω that maps a (bounded) function V defined over X to another function defined over X

given by

Ω(V )(x) = max
a∈A


Rl(x, a, i, λ) + α

∑
y∈X

P l(y|x, a, i, λ)V (y)


 (8)
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It is well-known that R∗h = Ωh(R∗0) (see, e.g., [3] [18], etc.). By the contraction mapping property

of Ω, (with ‖f‖ = supx,i,λ |f(x, i, λ)|),

‖R∗T −R∗h‖ ≤ α‖R∗T−1 −R∗h−1‖ ≤ · · · ≤ αh‖R∗T−h −R∗0‖

≤ αh(1 + α+ · · ·+ αT−h−1)Rmax ≤ Rmax(αh − αT )
1− α . (9)

Now by the definition of πl[i, λ] (the following proof idea is from [19]),

R∗h(x, i, λ) = Rl(x, φi,λ(x, i, λ), i, λ) + α
∑

y

P l(y|x, φi,λ(x, i, λ), i, λ)R∗h−1(y, i, λ)

≤ Rl(x, φi,λ(x, i, λ), i, λ) + α
∑

y

P l(y|x, φi,λ(x, i, λ), i, λ)R∗h(y, i, λ)

Keep iterating under the sum sign, we have that for all w = 0, 1, ..., T − 1 and for all x ∈ X,

R∗h(x, i, λ) ≤ Ex
i,λ

[
w∑

t=0

αtRl(xt, φ
i,λ(xt, i, λ), i, λ)

]
+ αw+1Ei,λ[R∗h(xw+1, i, λ)]. (10)

We let w = T − 1. It follows then that from the previous inequality (10),

R∗h(x, i, λ) ≤ Rπl
(x, i, λ) +

Rmaxα
T (1− αh)

1− α .

Therefore, we have

R∗(x, i, λ) −Rπl
(x, i, λ) ≤ R∗(x, i, λ) −R∗h(x, i, λ) +

Rmaxα
T (1− αh)

1− α .

Combining the result in Equation (9) with the previous inequality, we finally have that

R∗(x, i, λ) −Rπl
(x, i, λ) ≤ Rmaxα

h(1− αT )
1− α .

For every given κ > 0, letting κ ≥ Rmaxαh(1−αT )
1−α gives the rolling horizon size for a desired error

bound for R∗. We remark that by letting T → ∞, the above result precisely gives the result of

Theorem 3.1 in [19]. The similar approach can be taken for the upper level MDP. We can choose

a fixed horizon and use the horizon as the rolling horizon. The value function defined by the

horizon approximates V̂ ∗, i.e., an example of U . If both levels use the rolling horizon approach, we

have two-level approximation. We can easily draw an error bound of this two-level rolling horizon

approach from the results obtained in this subsection. In practice, getting the true value of R∗h
will be also difficult even though h is small due to the curse of dimensionality. A way of getting

away with a large state space is to use a sampling method to approximate R∗h probabilistically. See,

e.g., [21] in this direction and an analysis for discounted case.
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For the average reward case, we consider the case where one of the ergodicity conditions in page

56 [18] holds. Furthermore, we assume that the similar approximation to the first approximation

for the discounted case is done by a δ′-initialization function that is independent of the lower level

policies and approximates the given δπl
-initialization function. That is, there exists a constant ĝ

and a function ζ̂ such that for all x and i,

ĝ + ζ̂(x, i) = max
λ∈Λ


 max

πl[i,λ]∈Πl[i,λ]

(
Ru(x, i, λ, πl[i, λ])

)
+
∑
y∈X

∑
j∈I

δ′(x, i, λ)[y]P u(j|i, λ)ζ̂(y, j)




and that |ĝ − g| is bounded with respect to the degree of the approximation by δ′ for δπl
.

We focus on the second approximation for the average case. We will denote R∗h defined in

Equation (7) with α = 1 as R̄∗h and R̄πl
= Ru(x, i, λ, πl[i, λ]) defined in Equation (1) with α = 1,

and the operator Ω in Equation (8) with α = 1 as Ω̄. Suppose that we approximate R̄∗(= R̄∗T ) by

R̂ as before such that

sup
x,i,λ
|R̄∗(x, i, λ) − R̂(x, i, λ)| ≤ κ

and that ζ̂ is approximated by some bounded and measurable function U defined over X × I such

that

sup
x,i
|ζ̂(x, i)− U(x, i)| ≤ ε.

Define a stationary (upper level) decision rule du such that for all x ∈ X and i ∈ I,

du(x, i) = arg max
λ∈Λ


R̂(x, i, λ) +

∑
y∈X

∑
j∈I

δ′(x, i, λ)[y]P u(j|i, λ)U(y, j)


 .

The value of following the decision rule du given an initialization function δ′ is defined as follows:

Ĵ(x, i) = lim
H→∞

1
H
Ex,i

δ′

{
H−1∑
n=0

R̂(xtnT
, in, d

u(xtnT
, in))

}
.

We now state a performance bound as a theorem below.

Theorem 3.2 Assume that one of the ergodicity conditions in page 56 in [18] holds. If

supx,i,λ |R̄∗(x, i, λ) − R̂(x, i, λ)| ≤ κ and supx,i |ζ̂(x, i) − U(x, i)| ≤ ε,

|ĝ − Ĵ(x, i)| ≤ 2ε+ κ for all x ∈ Xand i ∈ I.

The proof of this theorem can be done via adaptation of the proof of Theorem 3.2 in [10] (using

the invariant probability distribution) so we omit the proof. We now provide a counterpart result

to Proposition 3.1 for the undiscounted case (α = 1) under an ergodicity assumption.

Define C := {(x, a)|x ∈ X,a ∈ A}. For every given i ∈ I and λ ∈ Λ, we define Rl(c, i, λ) :=

Rl(x, a, i, λ) and P l(y|c, i, λ) := P l(y|x, a, i, λ) for all c ∈ C.
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Assumption 3.1 There exists a positive number ν < 1 such that for every given i and λ,

sup
c,c′∈C

∑
y∈X

|P l(y|c, i, λ) − P l(y|c′, i, λ)| ≤ 2ν,

We give a performance bound of the rolling horizon policy in terms of span semi-norm; for a

bounded function V defined over X×I×Λ and fixed i ∈ I and λ ∈ Λ (with abusement of notation),

sp(V ) = supx V (x, i, λ) − infx V (x, i, λ).

Proposition 3.2 Assume that the ergodicity condition 3.1 holds. For every given i ∈ I and λ ∈ Λ

and a selected h in {1, ..., T}, define a lower level stationary policy πl as

φi,λ(x, i, λ) = arg max
a∈A


Rl(x, a, i, λ) +

∑
y∈X

P l(y|x, a, i, λ)R̄∗h−1(y, i, λ)


 for all x ∈ X.

Then, for all i and λ,

sp(R̄∗ − R̄πl
) ≤ T · 2ν

h−1Rmax

1− ν +
2(νh − νT )Rmax

(1− ν)2

Proof: We begin with a slightly modified version of Theorem 4.8(a) [18] by Lemma below. See

the proof there.

Lemma 3.1 Assume that the ergodicity condition 3.1 holds. For every given i ∈ I and λ ∈ Λ and

h = 1, ..., T , there exists a constant j∗ such that for all x ∈ X,

(a) R̄∗h(x, i, λ) − R̄∗h−1(x, i, λ) ≥ −νh−1Rmax
1−ν + j∗

(b) R̄∗h(x, i, λ) − R̄∗h−1(x, i, λ) ≤ νh−1Rmax
1−ν + j∗

Fix i and λ. Let ρ1 = −νh−1Rmax
1−ν + j∗ and ρ2 = νh−1Rmax

1−ν + j∗. With a similar reasoning in

the proof of Proposition 3.1 and with the inequality in Lemma 3.1(a), we can deduce that for all

w = 0, 1, ..., T − 1 and for all x ∈ X,

R̄∗h(x, i, λ) ≤ Ex
i,λ

[
w∑

t=0

Rl(xt, φ
i,λ(xt, i, λ), i, λ)

]
+ Ei,λ[R̄∗h(xw+1, i, λ)] − (w + 1)ρ1.

We let w = T − 1. It follows then that from the previous inequality,

R̄∗h(x, i, λ) ≤ R̄πl
(x, i, λ) +Ei,λ[R̄∗h(xT , i, λ)] − Tρ1.

By the same arguments, we have that

R̄∗h(x, i, λ) ≥ R̄πl
(x, i, λ) +Ei,λ[R̄∗h(xT , i, λ)] − Tρ2.

Combining the above two inequalities, it follows that

sp(R̄∗h −Rπl
) ≤ T (ρ2 − ρ1) = T · 2ν

h−1Rmax

1− ν . (11)
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Now, from the span semi-norm contraction property of Ω̄ [18], we have that

sp(R̄∗T − R̄∗h) ≤ ν sp(R̄∗T−1 − R̄∗h−1) ≤ · · · ≤ νh sp(R̄∗T−h). (12)

From Lemma 3.1, we can also deduce that for all x ∈ X,

−Rmax(1− νh)
(1− ν)2 + hj∗ ≤ R̄∗h(x, i, λ) ≤ Rmax(1− νh)

(1− ν)2 + hj∗.

Therefore, sp(R̄∗T−h) ≤ 2Rmax(1−νT−h)
(1−ν)2

. Combining Equation (11) and (12) with the previous in-

equality, we have the desired result:

sp(R̄∗ − R̄πl
) ≤ T · 2ν

h−1Rmax

1− ν +
2(νh − νT )Rmax

(1− ν)2 . (13)

We remark that the above result also gives a bound on finite horizon average reward by dividing

the both hand sides of Equation (13) by the horizon T . In particular, the result by letting T →∞
in this case does not coincide exactly with the result obtained in Theorem 5.1 in [19] — our result is

loose by a factor of 2 in terms of span semi-norm even though the upper bound part in Theorem 5.1

would be the same. This is because the lower bound on the result of Theorem 5.1 is 0 incorporating

the fact that the infinite horizon average reward of any stationary decision rule is no bigger than

the optimal infinite horizon average reward, where we couldn’t take advantage of the fact in our

proof steps.

Suppose we have a lower level policy dependent initialization function and we now know that

the set of local optimal lower level policies that solve the lower level MDP problem for given i ∈ I
and λ ∈ Λ. As we can observe, a lower level decision rule determined from these policies doesn’t

necessarily achieve the optimal multi-level value because it is a locally optimal or greedy choice.

However, solving the optimality equation given in Theorem 2.1, for example, is difficult because

the size of the set Πl[i, λ] is often huge. We should somehow utilize the fact that we know the local

optimal lower level policies. To illustrate this, we study this case for discounted case only here. For

this purpose, let Π∗[i, λ] set of πl[i, λ]’s that solve the lower level MDP problem for given i ∈ I and

λ ∈ Λ, i.e., achieving R∗. We then define a pair of upper and lower level decision rules, d̃u and d̃l,

from the arguments that achieve the following equation:

max
λ∈Λ


 max

πl[i,λ]∈Π∗[i,λ]


Ru(x, i, λ, πl[i, λ]) + γ

∑
y∈X

∑
j∈I

δπl
(x, i, λ)[y]P u(j|i, λ)V ∗(y, j)






such that we set d̃u(x, i) = λ̃ and set dl = {π̃l}, where λ̃ and π̃l[i, λ̃] are the arguments that achieve

the above equation. We let the two-level value of following the pair of d̃u and d̃l be Ṽ (x, i). We

also let the optimal pair of upper and lower level policies that achieve V ∗(x, i) for all x and i as du∗
and dl∗ (associated with πl∗). Our goal is to bound the error between these two value functions.
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Let us first impose an ergodicity assumption that there exists a positive number µ < 1 such

that for any x, x′ and i, i′ and for any λ, λ′ and any π, π′ ∈ Πl,

∑
y∈X

∑
j∈I

∣∣∣∣δπ(x, i, λ)[y]P u(j|i, λ) − δπ′(x′, i′, λ′)[y]P u(j|i′, λ′)
∣∣∣∣≤ 2µ.

Observe that for every x and i,

Ru(x, i, du
∗ (x, i), π

l
∗[i, d

u
∗ (x, i)]) + γ

∑
y∈X

∑
j∈I

δπl∗(x, i, du
∗ (x, i))[y]P

u(j|i, du
∗ (x, i))V

∗(y, j)

≤ Ru(x, i, du
∗ (x, i), π̃

l[i, du
∗ (x, i)]) + γ

∑
y∈X

∑
j∈I

δπl∗(x, i, du
∗ (x, i))[y]P

u(j|i, du
∗ (x, i))V

∗(y, j)

by the definition of π̃l[i, du
∗ (x, i)]

≤ Ru(x, i, du
∗ (x, i), π̃

l[i, du
∗ (x, i)]) + γ

∑
y∈X

∑
j∈I

δπ̃l
(x, i, du

∗ (x, i))[y]P
u(j|i, du

∗ (x, i))V
∗(y, j) + γµ · sp(V ∗)

by incorporating the ergodicity condition (see, e.g., page 60 in [18])

≤ Ru(x, i, d̃u(x, i), π̃l[i, d̃u(x, i)]) + γ
∑
y∈X

∑
j∈I

δπ̃l
(x, i, d̃u(x, i))[y]P u(j|i, d̃u(x, i))V ∗(y, j) + γµ · sp(V ∗)

by the definitions of d̃u(x, i) and π̃l[i, d̃u(x, i)]

Then, it immediately follows that for all x and i,

V ∗(x, i)− Ṽ (x, i) = Ru(x, i, du
∗ (x, i), π

l
∗[i, d

u
∗ (x, i)]) −Ru(x, i, d̃u(x, i), π̃l[i, d̃u(x, i)])

+γ
∑
y∈X

∑
j∈I

δπl∗(x, i, du
∗ (x, i))[y]P

u(j|i, du
∗ (x, i))V

∗(y, j) − δπ̃l
(x, i, d̃u(x, i))[y]P u(j|i, d̃u(x, i))Ṽ (y, j)

≤ γ
∑
y∈X

∑
j∈I

δπ̃l
(x, i, d̃u(x, i))[y]P u(j|i, d̃u(x, i))[V ∗(y, j) − Ṽ (y, j)] + γµ · sp(V ∗)

from the inequality of the previous observation.

Now by majorization,

max
x,i

(V ∗(x, i) − Ṽ (x, i)) ≤ γ ·max
x,i

(V ∗(x, i) − Ṽ (x, i)) + γµ · sp(V ∗)

Therefore, for all x and i with 0 < α < 1,

0 ≤ V ∗(x, i)− Ṽ (x, i) ≤ γµRmax(1− αT )
(1− γ)(1− α)

.

Note that we can define d̃u and d̃l with respect to a bounded value function U that approximates

V ∗ and draw an error bound from V ∗ by using the above result we just have drawn.

3.3 Heuristic on-line methods

The discussion so far dealt with “off-line” methods for solving MMDPs. Even though various

approximation/exact algorithms can be applied for some control problems, it will often require
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analyzing and utilizing structural properties on the problems, which might be very cumbersome

in many interesting problems. In this section, we discuss how to apply previously published some

on-line (sampling-based) heuristic techniques in the context of MMDPs.

The first example approach called “(parallel) rollout” is based on the decision rule/policy im-

provement principle in the “policy iteration” algorithm (see, e.g., [4] [9] [10]). We simulate or

rollout a heuristic decision rule available in on-line manner via Monte-Carlo simulation at each

decision time and use the estimated value of following the heuristic decision rule by simulation to

create an (approximately) improved decision rule with respect to the heuristic decision rule. A

generalization of the single decision rule rollout is to rollout in parallel multiple heuristic decision

rules and use the maximum estimated value among heuristic decision rules to create a new decision

rule. This is particularly useful if system trajectories or sample paths can be divided in a way

that a particular heuristic decision rule is near-optimal for particular system trajectories. The

parallel rollout method yields a decision rule that dynamically combines the multiple decision rules

automatically adapting to different system trajectories and improves the performances of all of the

heuristic decision rules. There are several works that reported this (parallel) rollout approach is

quite successful. See, e.g., [10] and references therein for the works in this direction.

We briefly discuss how to apply rollout. Suppose we have a heuristic decision rule pair of dl

for the lower level and du for the upper level. At each decision time n (in the slow time-scale), we

measure the utility of taking each candidate action λ ∈ Λ as follows. We take a candidate action

(in an imaginary sense) and then from the next step, we simulate dl and du over a finite horizon

via Monte-Carlo simulation over many random simulated traces, giving the approximate value of

following the decision rule pair. The single step reward of taking action λ associated with the lower

level quasi-steady state performance is also estimated by simulation by following the decision rule

dl. The sum of the estimated single step reward (plus the immediate reward of taking λ) plus

the estimated value of following the decision rule pair dl and du gives the utility measure of the

candidate action λ. At each time n, we take the action with the highest utility measure. At the

fast time scale, we just follow the decision rule dl.

The Monte-Carlo simulation method is an example for simulation strategy. Depending on

problem nature, we can use other simulation methods, e.g., single-path simulation, TD(λ) (see,

e.g., [5]), importance sampling, etc. In particular, the single-path simulation for the lower level

MDP will be useful if T is relatively large and the underlying Markov chain induced by a decision

rule pair is ergodic. In fact, we can draw a probabilistic error bound on the estimate of the value

of following a decision rule (or a decision rule pair in our context) from the single path simulation

from the true value of the decision rule with respect to the degree of ergodicity and the simulation

horizon by using Theorem 2 given in [17].

The above (parallel) rollout approach can be referred as a lower bound approach as the value

of following any decision rule pair is a lower bound to the optimal finite-horizon value. The next
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example called “hindsight optimization” [11] is based on the upper bound. Hindsight optimization

can be viewed as a heuristic method of adapting the (deterministic) optimal sample-path based

solutions into an on-line solution. Instead of evaluating a decision rule pair by simulation as in

the rollout, for each simulated random trace of the system, the optimal control action sequence

that maximizes the reward sum is obtained. The average over many random traces will give an

upper bound on the optimal finite-horizon value. We use this upper bound in the action utility

measure. The hindsight optimization approach turns out to be effective in some problems (see,

e.g., [8] [43]) even though the question of when this approach is useful is still open. However, we

note that as long as the ranking of the utility measures of candidate actions reflects well the true

ranking (especially the highest one), these heuristic methods can be expected work well.

4 Related Works

In this section, we compare several key papers that can be related with our work in hierarchical

modeling subject.

We first discuss a key paper by Sutton et al. [36] because this paper cites almost all of the hier-

archical MDP works in (at least) artificial intelligence literature and some in the control literature

and generalizes the previous works by one framework. For many interesting decision problems (e.g.,

queueing problems), the state spaces in different levels, (X and I), are non-overlapping. Sutton

et al.’s work considers a multi-time MDP model in the dimension of the action space only (action

hierarchy) by defining “options” or “temporally extended” actions. That is, the state spaces in

different time-scales are the same in the Sutton’s model. An option O consists of three components:

a stochastic terminating function g, the set of states that O can be taken, and a mapping f from

state to action. Once an option O is taken from a state, the action from f is taken at each decision

time, with possibly terminating via the terminating function. In particular, if g specifies the time

duration of applying the function f , the option O is called semi-Markov option. That is, a sequence

of actions in the action space of the given MDP is a temporally extended action or an option. Note

that this option does not determine or change the underlying reward or state transition structure.

On the other hand, in our model, the upper level action λ ∈ Λ is not temporally extended action

from the action space of the lower level MDPs but is a control at its own right. We can roughly say

that the lower level policies defined over different upper level state and controls are semi-Markov

options that depend on the upper level state and action.

A similar hierarchical structure in the dimension of only action space was studied in the Markov

slowscale model and the delayed slowscale Model by Jacobson et al. [20]. They consider two level

action hierarchy, where the upper level control is not necessarily an option. However, the upper level

control does not change the transition and reward structure of the whole T -horizon evolutionary

process.



Multi-time Scale Markov Decision Processes 22

The recent work by Ren and Krogh on multi-mode MDPs [31] studies a nonstationary MDP,

where a variable called the system operating mode determines evolution of the MDP, which operates

in the one time-scale. We can view our model as a generalization of multi-mode MDPs by viewing

each upper level decision and/or state as a system operating mode.

Even though the situation being considered is totally different, Pan and Basar’s work [29]

considers a class of differential games that exhibit possible multi-time scale separation. Given a

problem defined in terms of a singularly perturbed differential equation, differently time-scaled

games are identified and each game is solved independently and from this a composite solution is

developed, which is an approximate solution for the original problem. In our model, the upper level

MDP solution must depend on the solution for the lower level MDPs.

Finally, as we mentioned before we can view our model as an MDP-based extension or a gen-

eralization of Trivedi’s hierarchical performability and dependability model. In Trivedi’s work,

the performance models (fast time-scale model) are solved to obtain performance measures (corre-

sponding to R∗ roughly under the lower level policy independent δ-function). These measures are

used as reward rates which are assigned to states of the dependability model (slow time-scale). The

dependability model is then solved to obtain performability measures. The lower level is modeled

by a continuous-time Markov chain and the upper level is modeled by a Markov reward process (al-

ternatively, generalized stochastic petri net. can be used). We can see that if we fix the upper level

and the lower level decision rules in our model with the lower level policy independent δ-function,

an MMDP becomes (roughly) the model described by Trivedi’s — in our model, the lower level

model is also a Markov reward/decision process.

5 Example Problems

There are many interesting problems that can be modeled by MMDPs. In this section we illustrate

this by considering several representative examples in different contexts. The description for each

problem is rather abstract but detailed enough to convey the idea of the MMDP modeling. We first

discuss a hierarchical extension of the well-known (controlled) multiarmed bandit problem. The

next two examples are queueing control problems that arise in communication network. We then

consider a hierarchical optimal asset allocation problem that arises in a capital market, a hierarchical

production planning problem in a manufacturing environment, and a hierarchical employee staffing

problem in a service management environment. We then give an extension example of Trivedi’s

composite performance and dependability model by incorporating controls into the model. As

the final example, a stochastic variant of a deterministic combinatorial graph-based optimization

problem is discussed.
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5.1 Multiarmed bandit problem

It is well-known that multiarmed bandit problem models a class of many interesting (stochastic)

optimization problem such as project selection, clinical trials, random search, etc., just to name a

few (see, e.g., [40] and the references therein) and the problem can be modeled by MDP. It would

be natural to consider a hierarchical version of this problem.

There are Q independent machines. At each time n, we need to select exactly one machine to

operate based on both of the upper and lower level states of each machine. An upper level state in
at time n is (i1n, i2n, ..., i

Q
n ) and the lower level state xtnT

at time n is (x1
tnT
, x2

tnT
, ..., xQ

tnT
). Once a

particular machine is selected (upper level control), say q, only the states of the machine q changes

and all of the other machines freeze. That is, iqn+1 is determined from a Markovian transition

function and starting with xq
tnT

, the lower level MDP evolves according to the lower level transition

function. All states of the other machines remain the same. Note that the lower level transition

function will depend on only the upper level state of the activated machine. The T -epoch reward

from the lower level will be incurred to the upper level as one-step reward of operating the machine

q. The problem is to maximize the expected total discounted sequence of (multi-level) rewards

by a decision rule pair of operating machines at each slow time-scale time and of controlling the

fast-time scale machine dynamics.

This problem has been solved by Gittins who gave an index rule: under the assumption that

δ-function is independent of the lower level policies, straightforward adaptation of the index rule

gives an index Gq for machine q such that given the lower level state xq and the upper level state

iq,

Gq(xq, iq) = max
τ>1

Exq ,iq [
∑τ−1

n=1 γ
nR∗q(x

q
n, i

q
n)]

Exq,iq [
∑τ−1

n=1 γ
t]

,

where the maximization is over the set of all stopping times τ > 1 and R∗q is the optimal T -horizon

value associated with the machine q for the lower level MDP. Then the upper decision rule that

operates the machine with the highest index at each time n achieves the two-level optimal infinite

horizon discounted value.

Even though this extension is interesting, as we mentioned above, the upper level decision does

not affect the lower level MDP dynamics, only the upper level state. Varaiya et al. [40] extended

the standard bandit problem with an additional freedom: when a particular machine is selected to

operate, a control action that affects both the reward and the machine state transition must be also

selected and call this extended problem as controlled multiarmed bandit problem or “superprocess”.

The superprocess is naturally modeled by MMDP with the lower level MDP dynamics defined with

P l(y|x, i, λ) and Rl(x, a, i, λ) as usual and the upper level with P u(j|i, λ) and R∗ with the lower

level policy independent δ-function. The optimal upper level decision rule for this problem is

characterized by the notion of “dominating machine” and the Gittins index rule (see [40] for this

matter and applications of the superprocess).
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We believe that this example is particularly worthful because it illustrates that there exists a

class of problems that can be modeled as MMDPs such that characterization of the optimal upper

level decision rule and efficient computation of it are possible.

5.2 Admission control with buffer management

Our description of the following example deals with a continuous-time domain. By the uniformiza-

tion method, the continuous-time model can be casted into a discrete-time model (see, e.g., [39]).

There are two “call-level” traffic classes. For each class, there is a (real number) weight representing

the importance of the class. We can either accept or reject of each call arrival. The accepted calls

are aggregated into a single (finite) FIFO buffer. At most N <∞ calls can be in the system.

An upper level state i ∈ I is (η1, η2), where ηc, c = 1, 2, is the number of the pending (currently

effective) class-c calls and an upper level action λ ∈ Λ is (τ1, τ2), where τc ∈ {0,−1} and τc = 0/(−1)

means accepting/rejecting a newly arrived class-c call. At slow time-scale, class-c calls arrive with an

arrival rate ac according to Poisson process and each (accepted) call’s holding time is exponentially

distributed with a mean mc from which we can determine P u(j|i, λ) for j, i ∈ I and λ ∈ I. We

want to maximize the weighted number of accepted calls at the upper level.

Given an upper level current state i and the current decision λ of rejecting/accepting the new

call(s) at the upper level state, the number of effective calls for the next (slow time-scale) epoch will

be determined so that the nature of the packet arrival dynamics would be different over each (slow

time-scale) epoch. The evolution of the upper level state (after an appropriate uniformization) is

given as:

in+1 := [max{in + (new call arrival(s) at n), N}+ λn]− call departure(s) at (n+ 1)−, i0 = 0,

and [max{in + (new call arrival(s) at n), N}+ λn] will determine the packet arrival dynamics over

[tnT , t(n+1)T ]-period at the fast time-scale. The max operator in the above equation is implicitly

associated with a discard rule — giving a priority to the more important class for chance of being

accepted or rejected when we need to discard calls due to overflow of the buffer. It is assumed that

we have a model for each class that describes packet arrival dynamics at the fast time-scale given

the number of currently pending calls. The model has a finite number of the traffic states and for

each traffic state, there is an associated probability distribution such that it gives the probability

that b ∈ {b0, b1, ..., bk}, k <∞, rate of packets are generated at the traffic state given the number of

effective calls. Then the lower level MDP dynamics over each T -epoch will be determined through

the structure of the model, which includes an appropriate choice of δ-initialization function. We

remark that one might want to use a more complex model that can describe the real traffic more

suitably. However, the above model suffices to illustrate the usefulness of the MMDP model.

The lower level state x ∈ X is (x1, x2, s1, s2), where xc is the number of the class-c packets (of

the same size with the unit time in the fast time-scale) in the buffer, and sc is the traffic state of
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the class-c, which is observable for simplicity (for the unobservable case, sc can be a probability

distribution over the traffic states called information state, in which case the evolution of the lower

level states is still Markovian). A lower level action a ∈ A is (d1, d2), where dc is the number of

the class-c packet to be dropped from the tail. The state evolution can be expressed via Lindley’s

equation involving a particular action for the xc part and the stochastic transition of sc part.

We wish to determine the value of dc’s at each (fast time-scale) decision time such that the

weighted average queue size (roughly corresponding to average waiting time of packets) is minimized

and at the same time the weighted average throughput is maximized, where there is a tradeoff

parameter compromising the competence between throughput and queue size/delay. A related

buffer management work on a single class problem has been reported in [9], in which motivations

for such early packet dropping are given. The lower level reward function is given such that we

want to maximize the weighted number of accepted calls and the sum of the weighted (finite-horizon

average) throughput and the weighted average queue length with a tradeoff parameter ξ:

Rl(x, a, i, λ) =
1
T

(∑
c

wc(sgn(xc − dc) · (1− ξ(xc − dc)) +
∑

c

wc(τc + 1)

)
,

where wc is the weight of class-c call/packet.

5.3 Call routing with buffer management

The next example problem is a simple call-routing problem with buffer management and motivated

from a “load-balancing” control problem that arises in for example, traffic engineering at MPLS

(Multi-Protocol Label Switching) domain [7].

Consider a network with M parallel links (called label switched path in MPLS domain), m =

1, ...,M between two points of source and destination. At the source, single class (voice) calls arrive

with an arrival rate according to Poisson process in a slow time-scale. The call’s holding time is

exponentially distributed with a mean in the slow time-scale. Again, we can use the uniformization

method for continuous-time arrival/departure process. The call-level or upper level decision process

is either to reject a newly arrived call or to decide where to dispatch or route the newly arrived call

to one of the M parallel links if accepted. We assume that for each link, there are (possibly zero)

cross traffic (video) calls. For simplicity, the video calls are initially set up and do not depart (if we

incorporate the dynamics of video call arrival and departure process, we would have a three-level

MMDP and the control process in the highest level is to assign video calls among M parallel links

or reject).

It is assumed that all of the voice calls have the same traffic rate (i.e., bandwidth requirement)

and this is also true of the video calls. In other words, the model describing packet (of the same size

with the unit time in fast time-scale) arrival process of the voice call is the same. For example, if

On/Off model is used, each arriving call has the same On/Off model parameters. This also holds for
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the video calls. We may use, e.g., Markov modulated Poisson process to model video packet arrival

process [12] and it is also assumed that each video call shares the same model parameters. We

then can induce a model like the one we discussed in the previous example section for voice/video

traffic that describes packet arrival dynamics at the fast time-scale given the number of currently

pending voice/video calls with an appropriate choice of the δ-initialization function at each link.

The upper level state consists of the number of currently pending voice and video calls at each

link. The lower level state consists of the traffic states for voice traffic and video traffic and the

number of packets in the (finite FIFO) buffer for voice and video at each link. The control action at

the lower level is to drop voice and video packets from the tail as in the previous example problem

at each link. The lower level reward function is given by the sum of the reward function at the

individual link plus reward of routing/rejecting a voice call.

We remark that as a variant of the above two examples discussed so far, we can consider a

scheduling problem instead of the buffer management problem.

5.4 Asset allocation

It is important that capital market brokers make proper decisions on shifting their investments to

more promising assets depending on market dynamics. As the next example problem for MMDP,

we consider a very simple asset allocation (portfolio management) problem that deals with the

investment of capital to various trading opportunities (e.g., different stocks). The example here is

based on the problem discussed in [28] and appropriately modified into our contexts.

We assume that there is a set of market states (I in the upper level) that triggers the “govern-

ment” to change or stick to its decision rule (Λ in the upper level), which affects the trend of the

exchange rate in the capital market. A transition from a market state to another state would be

a function of the government decision rule and some exogenous random disturbances. A possible

trend of the exchange rate follows an increasing pattern, but with higher values of the exchange

rate, a drop to very low values becomes more and more probable [28].

A lower level state x consists of the current exchange rate e, the capital (the wealth of the

portfolio) c, which is always calculated in the basis currency, and a variable, representing which

currency (e.g., US dollars) is currently used for the investment. The stochastic nature of the

exchange rate will determine the lower level MDP dynamics. The action at the lower level to be

taken by a broker is to choose a proper currency for the investments, to maximize the expected

return for a given finite-horizon, (if a lower level policy independent δ-function is used), where

the return is a function of the exchange rate, the capital, and the transaction costs. The optimal

portfolio composition will depend on a government decision rule and a market state, and the

government needs to select a decision rule based on the effects of the investments of the brokers in

the market to maximize the overall return.
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5.5 Production planning

Hierarchical production planning problems have been studied in operations research literature with

certain models and assumptions over many years (see, e.g., [33] for references). In this subsection,

we give a simple production planning problem in a manufacturing environment as the next example

of the MMDP model. We base our discussion on the problem studied in [6].

The production planning problem we consider here is divided into two levels: “marketing man-

agement” level and “operational” level. At the marketing management level, we need to control

which family to produce over each (slow time-scale) decision epoch, where a family is a set of items

consuming the same amount of resources and sharing the same setup [6]. The upper level state

consists of (stochastically) available resources for each family and (stochastic) setup costs for each

family, and some market-dependent factors. The upper level action is to choose which family to

produce.

At the operational level, we need to determine actual quantities of the items in the family

(the lower level actions) given stochastic (Markovian) demands for the items, production capacity,

holding cost, material cost, etc., which will constitute a state of the lower level.

The return at the operational level will be a function of the unit selling price of the items,

the inventory holding costs, the setup costs of the (current) family, the production quantity of

the items, etc. and the T -epoch expected accumulated return at the operational level will be the

one-step return for the management level.

5.6 Employee staffing

The next example mirrors in some sense the problem in a manufacturing environment we just

discussed in the previous section but gives a good insight again about the usefulness of the MMDP

model and is based on the work in [44].

Employee staffing at a service organization company (e.g., supermarket, telephone call center,

etc.) is a very important management problem because how to approach to this problem is directly

related with the revenue of the company.

At the level-1, we have “employ hiring” problem. Suppose the company categorizes the em-

ployees into certain types depending on different skills and service capacities at different purposes.

The state at the level-1 is the currently hired number of employees for each type. This number will

change at random in a monthly basis due to for example, downsizing, company job-training, em-

ployee’s leaving, etc. and we assume that we have a Markovian model to describe this phenomenon

(see, e.g., [45] for this direction). The control at the level-1 is to hire how many new employees for

a certain type or not to hire.

Given the currently effective working number of employees at the company, depending on de-

sired activity volume (stochastic customer demands), work duration, (stochastic) company budget,
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corporate rules, etc., we need to dispatch the right number of the employees for each type to the

right place in a weekly basis. This will define the level-2 MDP problem often called “workforce

scheduling” problem.

At the lowest level-3 (a fast time-scale), we need to solve a real-time control problem. For

example, at a telephone call center, we need to assign incoming calls, which will be stochastic, to

available customer service representatives.

5.7 Composite (controlled) performance and dependability model

In this subsection, we give an extension of the example discussed by Goševa-Popstojanova and

Trivedi [15] to show how we can use MMDP to extend their hierarchical model of performance and

dependability (or availability) into an interesting model that incorporates controls. We don’t base

our discussion on the exactly same example given in [15]. Our example is appropriately modified

from the example into our contexts.

There are N multiprocessors, where each processor has a different service characteristic and a

different failure rate. The concept of “dependability” is related with failure, reconfiguration, and

repair of these processors with respect to system behavior, and closely related with dependability,

availability measures a potential service capacity that the system can deliver [15]. For our extension,

we naturally introduce a “maintenance” operation in a slow time-scale. We wish to maintain the

system such that a better availability/dependability is achieved. The measure of availability will

depend on the performance made by each processor in a fast time-scale.

Each processor k’s upper level state has two parts. The first part indicates whether the processor

is up or down. The second part is the processor k’s currently effective exponential service rate S

in a finite set of {Sk,1, ..., Sk,m} if the first part is up, where we assume that there is a Markov

process that describes transition of service rates for each processor k in the slow time-scale. If the

first part is down, the second part indicates a current “symptom” or reasons of failure from a finite

set of {Fk,1, ..., Fk,m}. The processor k is subject to failure Fk,n with an exponential rate fk,n. An

upper level action is to select one processor to be repaired among currently failed processors. The

immediate repair cost at the upper level is, for example, a time to repair associated with symptom

F .

At the lower level, jobs or customers of type k (associated with weight wk) arrive at processor

k according to Poisson process with an arrival rate of ak. Each job requires a processing time that

is exponentially distributed with a rate τk and it is assumed that on a job’s arrival the processing

time is known to the processor. The lower level state is the queue size at each processor k in terms

of the total processing time for the jobs in the queue. The lower level action for each processor is

to do admission control to newly arriving jobs based on the current processor’s service rate (and

its future stochastic variation if we use the lower level dependent δ-function) to effectively control



Multi-time Scale Markov Decision Processes 29

the throughput and the waiting time of the processed jobs based on a given tradeoff parameter.

The performance made by each processor k times wk will contribute to the upper level single step

reward.

Our overall goal in this example is to maintain the system (at both levels) to make overall

system’s availability optimal over infinite horizon. In addition to our example here, many interesting

variants of Trivedi et al.’s composite performance and availability model can be considered via the

MMDP modeling.

5.8 Salesman’s travel planning

As the final example, we consider a simple but somewhat artificial stochastic variant of a deter-

ministic graph-based combinatorial optimization problem. Consider a salesman who needs to travel

from a source city to a destination city by a long load trip. We assume that there is a connected

network of possible routes of intermediate cities between the source and the destination.

The upper level problem is just a variant of the shortest path problem. An upper level state

is a city and an upper level action is the choice of the next city to visit. The upper level state

transition will be deterministic in this case and the destination city will be the termination state

in the upper level MDP such that once entered, the salesman stays forever with the zero cost.

The salesman needs to visit small towns along the trip between a pair of cities. Between two

towns, he needs to select a method of transportation (taxi, bus, train, or walk, etc.) depending

on his current budget, stochastic load condition due to the weather for example, and so forth. It

is assumed that the hotel, food, etc. prices are randomly changing too according to a Markovian

model so that he needs to consider this random factor in his decision time-scale when he makes a

decision. The cost will be a function of the money he spends and the travel time by the selected

transportation. This will determine the lower level MDP dynamics. The budget plan will affect the

decision at the upper level to choose the next city to visit and the goal is to minimize the overall

cost of traveling from the source city to the destination city.

We remark that the problem above can be made more interesting if we incorporate “multi-

time scale” budget condition into the upper level MDP dynamics so that a particular city must

be excluded from the travel plan (a random topological change in the graph). There are many

interesting stochastic variants of deterministic graph-based combinatorial optimization problems

modeled as stochastic shortest path problems, which consist of a subclass of the MDP model [3] [5]

(see, e.g., vehicle routing problems in [32] and references therein). Usually, those graph-based

problems are associated with certain weight functions in the arcs in the graphs. We can consider

lower level MDP problems that replace those weight functions giving rise to MMDP problems.
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6 Concluding Remarks

We proposed in this paper an analytical model called multi-time scale MDP for a class of hierarchi-

cally structured sequential decision making processes. The model describes interactions between

levels in the hierarchy in a pyramid sense. The upper level state and/or control induces the lower

level MDP dynamics over a finite horizon of length corresponding to the relevant scale factor. The

performance measure obtained from the lower level will affect the upper level decision making.

A hierarchical objective functions for this model was devised and corresponding optimality

equations were established, from which for each objective function, we could derive the property of

optimal value functions and the existence of optimal policies at all levels. We then presented the

exact and approximate solution methods and also discussed heuristic (on-line) methods to solve

MMDPs.

In the evolutionary process of MDPs, the outcome of taking an action at a state is the next

state. Usually, the matter of when this outcome is known to the system is not critical as long as

the system comes to know the next state before the next decision time. However, this might be

an issue on the MMDP model. In our model, we assumed that the next state at the upper level is

known at the near boundary of the next time step (refer Figure 1), which is quite reasonable we

believe. If the effect of taking an action λ ∈ Λ at a state i ∈ I is immediate, which is the next state

j ∈ I, P l(y|x, i, λ) will be possibly given as P l(y|x, j). This issue is the problem specific matter

and needs to be resolved by the system design.

We made the assumption that action spaces at all levels in the hierarchy are distinct. Even

though we believe that this is a natural assumption, we speculate that for some applications, some

actions might be shared by different levels. Our assumption can be relaxed (with added complexity

to the model) so that some actions are shared by different levels as long as any action taken at a

state in a level does not affect the higher level state transitions. Developing a model for the case

where a lower level action affects the higher level transitions is still open problem.

The extension of our model into partially observable MMDP is straightforward because a par-

tially observable MDP can be transformed into an MDP with information state space (see, e.g., [1]).

Furthermore, it will be interesting to extend our model into the Markov game settings making multi-

time scaled Markov games. The “optimal equilibrium value of game” over a finite horizon at lower

level game will be used as one-step cost/reward for the upper level game. We believe that the

MMDP model we proposed has many applications, in particular in the areas of stochastic queueing

control and production planning.
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