
U.S.N.A.---Trident Scholar project report; no. 332 (2005)

TRAJECTORY AND INVARIANT MANIFOLD COMPUTATION FOR FLOWS IN
THE CHESAPEAKE BAY

by

Midshipman 1/c Nathan F. Brasher, Class of 2005
United States Naval Academy

Annapolis, MD

(signature)

Certification of Advisers Approval

Professor Reza Malek-Madani

Mathematics Department

(signature)

(date)

Assoc. Professor Gary O. Fowler
Mathematics Department

(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Deputy Director of Research and Scholarship

(signature)

(date)
USNA-1531-2

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
9 May 2005

3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE
 Trajectory and invariant manifold computation for
flows in the Chesapeake Bay

6. AUTHOR(S)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

US Naval Academy
Annapolis, MD 21402

Trident Scholar project report no.
332 (2005)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT:

.
.

15. NUMBER OF PAGES
121

14. SUBJECT TERMS:

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298
 (Rev.2-89) Prescribed by ANSI Std. Z39-18

298-102

1

Abstract

The field of mathematics known as dynamical systems theory has seen great progress in
recent years. A number of techniques have been developed for computation of dynamical
systems structures based on a data set of a given flow, specifically Distinguished Hyperbolic
Ttrajectories (DHTs) and their invariant manifolds.

 In this project, algorithms in MATLAB® have been successfully implemented and
applied to a number of test problems, as well as to the Chesapeake Bay flow data generated by
the QUODDY shallow-water finite-element model. A number of interesting discoveries have
been made including instabilities of convergence of the DHT algorithm and evidence of lobe
dynamics in the Chesapeake.

 Additionally, MATLAB® code has been developed to compute Synoptic Lagrangian
Maps (SLMs). When applied to an oceanographic flow, SLMs produce plots of the time that it
takes particles in various regions to encounter the coast or escape to the open ocean. Such maps
are of interest to the oceanography community. A new algorithm for SLM computation has been
developed resulting in orders of magnitude increase in efficiency. Previously SLM computation
for a week of flow data was a problem limited to massively parallel supercomputers. With the
new algorithm, similar data is computed in a few days on a single processor machine.

 The development of platform-independent MATLAB® implementation of the algorithms
for computation of DHTs, invariant manifolds and SLMs should prove valuable tools for
studying the dynamics of complex oceanographic flows.

Keywords: Chesapeake Bay, dynamical systems theory, hyperbolic trajectory, invariant manifold, synoptic
Lagrangian map

2

Acknowledgements

Most importantly I must thank my advisers, Prof. Malek-Madani and Assoc. Prof. Fowler. They
set me on course with a fantastic project and have kept me honest ever since.

Thanks also to Prof. Nakos for his QUODDY implementation.

Thanks to NOAA and Dr. Gross for his work modeling the Chesapeake Bay.

Thanks to Mr. Spinks and Mr. Disque from the CADIG labs for their support and instruction as I
struggled to administer my own Linux domain along with the project.

Thanks to Prof. Shade and the entire Trident Scholar Committee for their hard work and
dedication.

Thanks to Prof. Pierce, Prof. Baker, Asst. Prof. Popovici and Asst. Prof. Liakos for many
interesting conversations and ideas and thanks to the entire Chesapeake Bay Seminar for
listening to my talks.

3

INTRODUCTION... 4

BACKGROUND INFORMATION .. 7

TRAJECTORY COMPUTATION ... 10
PART I: METHODOLOGY .. 10
PART II:RESULTS ... 16

SYNOPTIC LAGRANGIAN MAPS... 22
PART I: METHODOLOGY .. 22
PART II: RESULTS... 31

DHT COMPUTATION.. 40
PART I: METHODOLOGY .. 40
PART II: RESULTS... 45

INVARIANT MANIFOLD COMPUTATION .. 51
PART I: METHODOLOGY .. 51
PART II: RESULTS... 55

CONCLUSIONS ... 63

REFERENCES.. 65

APPENDIX: MATLAB CODE ... 67

4

Introduction

10,000 years ago, at the dawn of the Holocene epoch, the first waters from melting

glaciers reached the mouth of what is today the Chesapeake Bay. For the next several thousand

years, as the glaciers retreated, the Susquehanna River carved out a valley. Slowly, as the sea

levels rose, river beds and streams were submerged. By three thousand years ago what we know

as the Chesapeake Bay had assumed its present form.

 Today, a myriad of physical processes continue to shape and reshape the Bay. Erosion

and sedimentation constantly adjust the coastline. Freshwater from the rivers mixes with

saltwater from the Atlantic Ocean, creating a salinity gradient which allows literally thousands of

species to interact. Nutrients, dissolved gases, phytoplankton and other drifters circulate with the

tides and currents supporting the diverse ecology present. Each aspect and organism in this

ecology is intricately linked with the others. Any change to the environment of the Bay impacts

all of them.

 Of all the species that inhabit the Chesapeake Bay and its surrounding environment, it is

humans that have the greatest impact. Industrial waste, toxic chemicals and other pollutants

directly threaten water quality. Excess nitrogen and other nutrients may create algae blooms,

blocking sunlight and negatively affecting underwater vegetation that many species use for

shelter and as spawning grounds. To best understand how to preserve this resource, it is

important to understand how our actions impact and propagate through the Chesapeake Bay

system.

 This project comes as the result of a year-long study of the Chesapeake as a dynamical

system. Some of the basic questions investigated include: If material follows the currents, where

will it go and over what time frame? How long will that material remain in the Bay given the

5

coordinates of its origin? How can we better characterize the mechanics of the flow using the

tools of applied mathematics? To answer these questions, three areas of results were produced:

trajectory computation, computation of Synoptic Lagrangian Maps (SLMs) and the computation

of Distinguished Hyperbolic Trajectories (DHT) and their respective invariant manifolds.

 Trajectory computation answers the first question of where and over what time frame

material travels. Based on fluid flow data generated by the QUODDY computer model,

MATLAB code was written that used a 4th order Runge-Kutta method to track the path of a

particle adrift with the currents. Other aspects of this work required that the project be a strictly

two-dimensional problem. Because of this requirement, the computation analyzed only the

surface currents. These trajectories, then, track the motion of material which remains on the

surface and does not penetrate to deeper layers.

 To answer questions of how long material remains in the Bay, the ideas of Lipphardt and

Kirwan [10] on synoptic Lagrangian maps were applied to the Chesapeake. The computation of

SLMs produces plots of total residence time vs. starting time and location. SLMs are primarily

useful as a visualization tool. By summarizing data from hundreds of thousands of trajectories, it

is possible to glean more useful information from these plots than it is from observing current

fields or drifter trajectories. I was able to contribute to this field by developing an algorithm for

the computation of SLMs up to 60 times faster than was previously possible.

 Finally, in order to facilitate a deeper understanding of the mechanics of the flow, the

work of Wiggins [1] on computation of hyperbolic trajectories and their associated invariant

manifolds was applied to the Chesapeake Bay. Computing these structures for the Chesapeake

system makes it possible to apply years of research in dynamical systems theory to this work. In

the process of this investigation, it was discovered that flow interaction with complex boundaries

6

can develop these structures. Previously it was thought that large scale gyres and hyperbolic

separation points were necessary for such manifolds to exist. Neither of these are present in the

Chesapeake Bay. This result shows that the class of problems for which invariant manifold

analysis is applicable is larger that previously thought. In the future this may lead to new

methods of analyzing complex flow, particularly in littoral environments similar to the

Chesapeake Bay.

 The next sections of this report address the relevant background information as well as

the methodology and results produced for each of the aforementioned aspects of the project.

Additionally, new avenues of research are suggested that have arisen as a direct result of this

work.

7

Background Information

In 1992, at the request of the Office of Naval Research, several mathematicians began

meeting with oceanographers at Woods Hole Oceanographic Institute. The objective was to

investigate the similarities between an oceanographer’s approach to studying particle transport in

the ocean and the mathematical field known as dynamical systems. In the coming years this

collaboration would produce algorithms for applying a mathematical dynamical systems

understanding to the ocean. The work of this group on DHTs [4] and invariant manifolds [2]

formed the backbone of this project.

 The first application of this group’s research was a study of transport in the Monterrey

Bay, located on the Pacific coast, 100 miles south of San Francisco. Using surface velocity data

captured by CODAR (Coastal Ocean Dynamics Application Radar), and extrapolated using the

technique of normal mode analysis [11], Wiggins, Lipphardt and Kirwan analyzed the flow for

invariant manifolds and associated structures in the flow. The analysis technique known as lobe

dynamics (refer to [7]) showed promise detecting filaments, jets and other methods of material

transport. Later, Kirwan and Lipphardt would develop the idea of synoptic Lagrangian Maps as

summaries of particle transport behavior. The full history of this collaboration is described in

[15].

 The aim of this project was to take the work of Wiggins, Kirwan, Lipphardt and others,

and apply these algorithms to the Chesapeake Bay. The Chesapeake presented a number of

unique challenges, mostly because of its complex geometry. The domains that had been analyzed

in the past by typically had simple, concave boundaries as in the case of the Monterey Bay.

8

Figure 1: Boundary geometry comparison, Monterey Bay chart on the left, Chesapeake on the right, images

courtesy of NOAA.

 The Chesapeake Bay has a long, complex, non-convex coastline that makes issues of

particle tracking more difficult. Additionally, the real-time surface velocity data used on the

Monterey Bay is not available for the Chesapeake.

In lieu of experimental data, the shallow-water finite-element QUODDY model was used

to generate velocity data. QUODDY is a robust ocean model developed by Lynch et al. [9] and

tested on many different coastal domains. The model has consistently shown good agreement

9

with experimental data and is widely used in the ocean modeling community. In collaboration

with NOAA, a 9700 node, 17000 element mesh was generated allowing QUODDY to track

velocity, salinity, temperature and pressure in 3D. Since this work was strictly 2D, the the top

layer of the data set, corresponding to surface currents, was analyzed.

QUODDY solves the shallow water wave equation on its mesh of linearly interpolated

triangular elements.

()() .02

2

=−+−−×+∇+⋅∇⋅∇−
∂
∂

+
∂
∂ RΓΨvvfvv HHHHHgHH

t
H

t
H

oxyxyxyo τςτ
(1)

In this equation an over-bar indicates vertical averaging and the symbol xy∇ is the Laplacian

differentiated with respect to x and y only, the vertical dimension is suppressed. The symbol ζ

denotes free surface height, a function that varies with x, y and t while H denotes the total water

column height, that is, the depth plus the surface height ζ. The term vf H× comes from the

Coriolis force. HΨ and HΓ represent the surface wind stress and bottom frictional stress

respectively. The wind stress Ψ is derived from wind measurements taken at stations along the

coast of the Bay. Source terms generated by experimental flow measurements are included for all

of the major tributaries, including the Susquehanna, Patuxent, Potomac, Rappahannock, James

and York rivers. Finally, tidal forcing at the Atlantic interface is included in the model; this

forcing is what drives much of the flow throughout the domain.

10

TRAJECTORY COMPUTATION

PART I: Methodology

The first step to analyzing surface flow in the Chesapeake Bay is to compute trajectories,

that is, the position as a function of time of a drifter buoyant enough to remain on the surface.

This amounts to solving the differential equation ()t,xux =& , where x indicates position and u

indicates velocity, in this case the velocity field output by QUODDY.

To solve this differential equation numerically, 4th order Runge-Kutta, a standard solution

technique was used. Early on in the project, when computing trajectories of systems for which

the analytical solution was already known, this method was chosen in order to compare the

results with MATLAB’s ode45. The ode45 function is one of the most well-known and accurate

differential equation solvers available. It uses a mix of 4th and 5th order Runge-Kutta combined

with an adaptive time step method. This capability made it a good tool with which to evaluate the

accuracy of interpolation and trajectory results of the non-adaptive 4th order Runge-Kutta.

Unfortunately, in the case of the Chesapeake, the velocity data is available only at discrete time

steps, so the adaptive time step method is not useful. A fixed time step, 4th order method was

therefore used in the place of ode45.

The real challenge, however, to trajectory computation was that the velocity field is

specified only on discrete points. The trajectories that need to be calculated are not generally, if

ever, located exactly on these points. Thus, a spatial interpolation method was needed. The

simplest method of interpolation would be to use the linear-interpolation of the QUODDY finite-

element mesh itself. Each point in the triangular element is linearly interpolated based on the

three surrounding nodes. In this case the resulting solution is C0, that is, continuous everywhere

11

but not generally differentiable. Unfortunately, both the distinguished hyperbolic trajectory and

invariant manifold algorithms due to Wiggins et al. [4] require the calculation of spatial partial

derivatives of the velocity field. A linear method would not suffice as the partial derivatives

would be discontinuous at each node and nodal line on the QUODDY mesh. Therefore, in order

to obtain a smoother interpolation, the method of Radial Basis Functions was chosen. This

method works as follows. Given a set of N data points {xi,yi} ∈ R2 and a set of values iz at each

point, a smooth surface denoted by z = f(x,y) is fit to the points as a sum of radially-symmetric

basis functions centered at each point.

() ().,,
1
∑
=

−−=
N

i
iii yyxxcyxf φ

(2)

 Functions that are typically used forφ include the Hardy Multivariate function

() kyxyx ++= 22,φ , where k is some constant, and the well-known Gaussian

() ()22

, yxkeyx +−=φ . It is easy to see that because these basis functions are each C∞, the resulting

interpolation surface will also be C∞. All that remains is to solve for the coefficients ci. This is

done by evaluating (2) at each of the data points resulting in

() ().,,
1
∑
=

−−==
N

i
ijijijjj yyxxczyxf φ

(3)

Equation (3) can then be cast into matrix form

().,
,

ijijij yyxx −−=
=
φG
zGc

(4)

 When applied to the QUODDY output using either of the C∞ functions mentioned above,

the resulting matrix G is dense and has 9700x9700 elements. Even with fast MATLAB

12

algorithms, solving equation (4) would take a tremendous amount of time and computing

resources. Given that this interpolation would need to be repeated for each time step in the

QUODDY output, this was unacceptable. However, by easing the requirement that the basis

functions be C∞, and cutting off the functions beyond a given radius (the so-called radius of

support) the matrix G could be made sparse, a much more tractable problem. The compactly-

supported radial basis functions of Wendland [12] do exactly that.

()
() ()
() () .318351

,141

,1

4264
2

242
2

020
2

CrrrW

CrrW

CrW

∈++−=

∈+−=

∈−=

+

+

+

(5)

The superscript on the W indicates the degree of continuity and the subscript indicates the

dimension. Incidentally, the Wendland functions for 3D have the same form as those for 2D. It

can be shown that equation (4) is non-singular when using these functions given that the data

points {xi,yi} are distinct. For a proof of this, refer to [12]. Below is an illustration of the first

three Wendland functions described above. The surface plotted is ()yxWz n ,2= where is n=0,2,4.

Figure 2: C0 Wendland function.

13

Figure 3: C2 Wendland function.

Figure 4: C4 Wendland function.

The dark ring in each figure shows the radius of support. The functions vanish beyond

this radius. 2
2W was used throughout this project as this was the simplest function to evaluate that

14

still allows computation of first partial derivatives. Partial derivates of the interpolation can be

computed in the following manner.

()

()
.

,

,
,

1

1

∑

∑

=

=

∂
−−∂

=
∂
∂

∂
−−∂

=
∂
∂

N

i

ii
i

N

i

ii
i

y
yyxx

c
y
f

x
yyxx

c
x
f

φ

φ

(6)

In the case of 2
2W these partial derivates become:

() ()

() () .12020606020

20606020,

2
3

2
234

22

234

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛−+−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−+−=

∂
∂

∂
∂

=
∂

∂

++

+

αα

α

φφ

xr
r

xrrr

yx
xrrr

x
r

rx
yx

(7)

The calculation proceeds similarly for the y direction:

() .120 2
3 ⎟

⎠
⎞

⎜
⎝
⎛−=

∂
∂

+ α
φ yr
y

(8)

 For this project α was chosen equal to 5000m. This value gave the best balance between

accuracy and computational time. It is worth noting that doubling the radius of support results in

approximately 16 times more computational time. This is because doubling the radius effectively

increases the area (and number of data points) of concern around each data point by a factor of 4.

Additionally, G is constructed as a matrix with NxN elements and because of this there are 16

times the previous number of matrix entries, hence the increase in computation time.

 An additional challenge that arose in the interpolation of the model data was the use of

different coordinate systems. The coordinates of each node were given in latitude and longitude,

while the current velocity was given in meters per second. To resolve this, the node coordinates

were projected onto the plane using a Universal Transverse Mercator projection. UTM has the

15

advantage that its coordinates, called Easting and Northing respectively, are given in meters.

With the flow velocity specified in m/s, this eliminates the need for any further unit conversions.

The figures in this paper all use the UTM coordinate system.

 The coordinate transform and interpolation coefficients ci were computed beforehand by

a pre-processing MATLAB algorithm. Once the pre-processing algorithm is complete, 90-day

trajectories could be computed in less than two minutes on the Linux workstations that were

used. This trajectory computation method served as the basis for invariant manifold computation

as well as the computation of synoptic Lagrangian maps.

16

PART II: Results

 Trajectories were computed as a first step towards visualizing and understanding flow

patterns. The plot below represents trajectory paths tracked for 12 hrs; the black dots are the

particle initial positions. The gray mesh in the background represents the finite elements used in

the QUODDY model; coordinates are given in Easting (x-axis) and Northing (y-axis).

Figure 5: 12-hr particle trajectories at the Chesapeake headwaters.

17

The graph lines are 5 km apart in all cases. It was immediately evident that the 12-hr

cycle of the tides was the predominant factor in material transport. It was necessary, therefore, to

ensure that the time step in the Runge-Kutta scheme was small enough to resolve the tidal

period. Therefore, the trajectory computation algorithm uses a 1 hour time step. For the

trajectories in Figure 5 at the mouth of the Susquehanna, the tidal forcing is quite evident in the

sinusoidal nature of the trajectories. The tidal influence this far up the Bay is, however, relatively

weak compared to locations further south. Additionally, it is important to note that the

trajectories generally move south of their initial positions. Over time, surface material in all parts

of the Chesapeake follow a general motion from the northern end, to the Atlantic interface near

the Norfolk / Newport News area. This is due in part to the large inflow from rivers like the

Susquehanna in the northern end. The timescale of this north to south migration is on the order of

several months. However, as is shown in the following section on synoptic Lagrangian maps, it

is extremely rare for a particle to migrate from the extreme northern end to the Atlantic Ocean.

Typically it will encounter the coast before it completes the journey.

The area depicted in Figure 6 is the narrowest stretch of the Chesapeake. Here the Bay is

only 7 km across. This is also the stretch near Annapolis traversed by the Chesapeake Bay

Bridge. This region proved to be of great importance in later studies on the computation of DHTs

and their invariant manifolds.

18

Figure 6: 12-hr particle trajectories near Kent Island.

Again in Figure 6 as in Figure 5 the tidal forcing is evident. Current velocity in this

region is unusually high. This is due probably to a Bernoulli Effect caused by the narrowing of

the channel as well as inflow from the Chester River to the east.

19

Figure 7: 12-hr particle trajectories at the mouth of the Potomac.

 Figure 7 shows the behavior of material trajectories at the mouth of the Potomac River.

As one would expect, the volume of flow from the Potomac tends to push the trajectories to the

east. There are a few trajectories near the northern border of the Potomac mouth, near the

4210000m Northing line, that flow westward. This is evidence of a small scale vortex. This type

of eddy is precisely what would be expected from the inflow of a large volume of water.

20

Figure 8: 12-hr particle trajectories at the mouth of the Chesapeake.

 At the mouth of the Chesapeake Bay, tidal forcing and ocean currents dominate the flow.

The huge tidal factor is evident in the westward motion of the trajectories along the eastern side

of the grid. Note also that all the trajectories are swept to the south along the coast. This is due to

the Gulf Stream. The Gulf Stream is a powerful current that carries warm water from the Gulf of

Mexico along the east coast of the United States and across the Atlantic to Europe. This current

detached from the east coast in the vicinity of Cape Hatteras, NC, just south of the mouth of the

21

Chesapeake. A large scale eddy forms north of this branch point causing the strong southern

current visible in Figure 8. For a more in depth study of the dynamics of the Gulf Stream refer to

[16] and [17]. From these preliminary trajectory investigations it is apparent that the QUODDY

model is, at least qualitatively, accurate. Most of the effects that one would expect to see, forcing

of the tides, river inflow etc. are present. Assessing quantitatively how accurate the model is,

and/or assimilating real data to improve its accuracy is a possible future direction for research.

 This is just a survey of the interesting regions of the Chesapeake Bay. It is not practical to

plot and discuss the nuances of flow in every region of the Chesapeake in this manner. Better

methods of flow visualization and summarization of flow behavior are needed. To this end, the

methods of Wiggins, Lipphardt, Kirwan, et al. are applied in the following sections in order to

better understand and identify important features in the flow.

22

SYNOPTIC LAGRANGIAN MAPS

PART I: Methodology

 Synoptic Lagrangian maps provide a summary of particle behavior for a given flow. The

idea was pioneered by Lipphardt et al. [10] in their work on analysis of flow in the Monterey

Bay. For this work on the Chesapeake type I SLMs were computed, that is, plots of the forward

residence time. Forward residence time is defined as the time it takes a particle, starting at a

given location, to either escape to the open ocean or to come within a certain distance of the

coast. In their study of the Monterrey Bay, Lipphardt et al. defined this distance to be 500m. The

zone 500m from the coast was labeled the “coastal buffer zone”. In this region waves and other

shallow water effects make transport dynamics somewhat different than they are further from the

coast. Hence we cut off trajectories when they come into this “buffer zone” and consider them to

have encountered the coast. Because of the large size of the Chesapeake Bay compared to the

Monterrey Bay, and because of its relatively shallow coastal regions, this buffer zone was

defined to be within 1 km of the coastline.

 The basic idea to computing a type I SLM is to first define a grid covering the entire Bay,

and to integrate the trajectory of a particle starting at that grid point. The particle’s total time is

tracked along its trajectory until it encounters the coastal zone or escapes to the ocean. Once the

time has been computed for each grid point, the resulting plot gives information about particle

transport and mixing. Regions with high turnover show as patches of low residence time, while

regions which are relatively stagnant show higher residence time. By summarizing massive

amounts of trajectory data in this manner it is possible to better understand dynamics of the flow

23

than it is with either velocity field or particle trajectory plots. Figure 9 shows the grid used for

SLM computation. Grid points are spaced at 1km intervals.

Figure 9: Grid covering the Chesapeake Bay, the coastal buffer zone is not covered.

 Also valuable are animations of the synoptic Lagrangian maps at successive time steps.

Observing the movement of patches of certain residence time can be even more enlightening that

the static pictures. Unfortunately with the grid method described in the previous paragraph, the

24

computation of several successive SLMs requires tremendous computing power. Even on a

several-hundred processor supercomputing cluster, the computation of a week’s worth of SLM

data computed every hour is a task that requires several days. This computation is not a task

possible for single-processor machines. I have developed a new, efficient algorithm for

computing several successive SLMs which makes use of previously computed data to speed up

the computation.

 The critical idea behind my algorithm is that once the path and total residence time for a

particle have been computed, the residence time at each position on the particles path for the

entire time that it remains in the Bay is also known. For example, if the residence time of a

particle is computed to be 20 days, and that particle moves 1km in the next hour, the residence

time at its new position 1km away is 20 days minus one hour. The particle will still encounter the

coast at the same time and follow the same path.

 Instead of re-computing trajectories for each grid point at each time step, compute

trajectories for the entire grid only once and store the residence time as well as the entire path for

each particle starting at each grid point. This “particle-tracking” method is more efficient

because it makes use of previously computed information. The initial grid that was chosen to

initiate the particle-tracking method was not laid out in a square grid fashion as in Figure 9, but

rather on a hexagonal grid with 1km spacing as in Figure 10. The hex layout results in more

initial grid points, 12000 as opposed to approximately 10000, but because the points have more

neighbors to begin with, fewer and smaller gaps open as the mesh is advanced in time. This

results in fewer new points inserted at each time step and lower total computational time.

25

Figure 10: Hexagonal grid used to initiate the particle-tracking method.

 To begin the particle-tracking method, compute a trajectory for each point on the hex grid

as with the original algorithm and store the data. The first SLM is the only time-intensive

computation in that it is the only time step for which trajectories must be computed for each data

point.

26

Figure 11: A section of the initial grid.

For the next time step, the grid becomes deformed as each point is advanced forward in time.

Figure 12: Velocity vectors showing advection of initial grid.

27

Figure 13: Grid after advection, note the gaps that occur.

In the gaps that emerge, insert new grid points such that the spacing is kept roughly constant.

Figure 14: An illustration of point insertion, newly inserted points in red, original points in black.

28

Compute the particle paths and residence time for the new grid points only. The residence

time for the grid points advanced from a previous time are already known.

Once it was discovered that data from previous calculations could be effectively used to

compute SLMs at later times, development of the algorithm was relatively simple. The only

difficult part came in developing an effective point insertion technique. A technique was needed

that would (a) fill in the necessary gaps in coverage that arise and (b) be simple enough that the

time taken for point insertion would not be significantly greater than the time taken to compute

the resultant trajectories. If (a) is not satisfied the SLMs would have large gaps in residence time

data, resulting in inaccurate plots. If (b) is not satisfied it would compromise the speed-up and

advantage over the original method.

My point insertion technique works as follows.

1. Define a test grid on a finer scale than the hex grid used to initiate the algorithm.

2. Assign a potential function, see equation (9), to each point in the grid that has

been deformed, as in Figure 13.

3. Search the test grid for a location with a low value of the potential function,

indicating that it is not covered well by the deformed grid.

4. If the function value is below a certain threshold, insert a new point at this

location. Continue searching the test grid until every point is above the threshold

indicating that the entire domain is well covered.

The test grid was used for the point insertion was of the same hex layout as the original

grid, except with 200m spacing. This results in a grid of approximately 300,000 points that need

to be searched each time during the point insertion phase. The choice of 200m spacing was

29

driven more by the interests of time than any other factor. Increasing the test grid resolution

beyond this does not appear to contribute to the accuracy of the point insertion algorithm.

The potential function was a simple hat-shaped function set to 0 beyond the distance of

the initial spacing. It is similar in concept to the radial basis functions of the interpolation

section.

.
1

,)1(),(
22

km
yx

r

ryxP

+
=

−= + (9)

 The total potential function that is tested at each test grid point is the sum of a potential

function P centered at each point on the deformed mesh. If a test grid point had a potential value

of 0, it would indicate that it is at least 1km from the nearest point of the deformed grid.

 The potential function approach was chosen to solve the “gap” problem inherent to a

finite grid. When testing on a discrete grid, it is possible to have gaps in the deformed mesh that

are missed when the test grid does not have a test point in the missed region.

Figure 15: Illustration of the "gap" problem.

By using the potential function method and testing for a threshold we select a point near the gap

even though the test grid skips over.

30

Figure 16: Illustration of the potential function method.

After insertion the total potential function is above the threshold along the entire test grid

indicating good coverage.

Figure 17: Coverage after point insertion.

Using this algorithm it becomes necessary to only compute trajectory and residence time

for roughly 300 points at each time step. This is as compared to the approximately 12,000 points

on the initial grid. The time savings is even more than the apparent 40x speed up produced by

computing such a small fraction of the total number of points. Many of the inserted points are

replacing those that have just disappeared from entering the coastal buffer zone. These points

also have short residence time and are quickly computed. Thus, the final speed-up is 50-60 times.

31

PART II: Results

 Tracking particles in the Lagrangian manner of the particle-tracking method creates a

large efficiency increase. Computing SLMs every hour for a week’s worth of data using the

original method would take three and a half months of continuous computation on a single

machine (2535 hours). Using the particle-tracking method the same is accomplished in

approximately 50 hours of continuous computation. Additionally, a “crowding” effect was noted.

In some regions of the Bay, trajectories crowded together opening up gaps in the SLM coverage.

New points were inserted in the gaps, increasing the total number of data points. Figure 18 shows

the total number of points in the computed SLM at each time increment in red. The total number

included the number of points carried over from the previous increment plus the newly inserted

points for which residence time had to be calculated. Due to this crowding effect, the total

number of points gradually increased from its initial value of 12,414 until it reached a roughly

steady state at around 18,000 trajectories. It would appear that 18,000 is a critical data point

density. At this point, roughly the same number of trajectories are encountering the coast or

escaping to the ocean as are inserted in the resultant gaps.

Figure 18: SLM total points (red) and calculated points (blue).

32

 Also evident in Figure 18 is just how small a fraction the number of points that need to be

calculated (blue line) is of the overall total. Figure 19 shows the number of points requiring

calculation in greater detail.

Figure 19: Number of calculated points.

 The number of new points at any given time varied somewhat, but stayed relatively close

to its mean value of 293 (σ=54.6). These values are calculated excluding the computation

requirement of 12,414 for the initial time step.

 It should be noted, however, that the efficiency of this algorithm relies of the computation

of many SLMs at small time intervals. In this project, SLMs were computed for each 1 hr time

increment resulting in the low number of inserted points seen above. If this interval is

lengthened, the resultant gaps, and number of inserted points grow larger, decreasing efficiency.

Indeed, because of the initial requirement to calculate every point, the particle-tracking is no

faster than the original method for isolated time synoptic Lagrangian maps.

 The ultimate test of the particle-tracking method was to compute SLMs for one month at

one-hour intervals. The plots below are the results at midnight of each successive day.

33

34

35

36

37

38

 These plots show a wealth of interesting information. In contrast to the trajectory plots of

Figure 5, 6, 7 and 8, trajectory behavior and time scale is immediately visible for the entire

domain. The ultimate fate of the particle trajectories is also calculated by the algorithm. The

large yellow patch visible on Days 1 and 2 eventually meanders down the Bay and out to the

ocean while surrounding water encounters the coast. This explains the sharp transition in

residence time from 20 days for the yellow patch and only a week for the surrounding material.

Also of interest is the period from Day 12 through Day 24 when the entire Bay shows relatively

low residence time. Upon inspection of the data set, it was observed that the average and

maximum current magnitude was elevated during this period to an average of approximately 1

m/s and a max of 2.4 m/s. This is as compared to roughly a .7 m/s average current and 1.5 m/s

maximum for the other periods. It is not clear what cause these elevated current values, possibly

intensified winds or storm activity, but it is clear that these currents forced material close to the

shore faster than would have otherwise happened.

The data set that was used to compute these SLMs was a 91-day output generated by an

in-house QUODDY run. The necessary winds, inflow and tidal data were supplied by NOAA

from a data base starting on February 2, 1999 and ending on May 8, 1999. The selection of the

year 1999 was more or less inconsequential. Data from more recent years could have just as

easily been used; 1999 was what was immediately available at the time. The choice of the early

spring, however, was important. It is well known that during the spring stratification in the

Chesapeake is the strongest. Later on in the fall a higher degree of vertical mixing is observed.

Since this project was restricted to two dimensions, data was chosen from the time of year when

flow in the third, vertical, dimension was the weakest. Thus, these plots can be viewed as

39

summaries of buoyant particle motion as well as neutrally-buoyant particles near the surface.

Because of the stratification of the flow, particles near the surface currents should remain near

the surface and follow similar flow patterns.

40

DHT COMPUTATION

PART I: Methodology

 The main focus of this project was the computation of distinguished hyperbolic

trajectories for the Chesapeake Bay. The following section will describe an implementation of

the algorithm described by Wiggins. For a more thorough treatment, refer to [1].

 We seek to solve for a trajectory of the general non-autonomous system ()t,xux =& , such

that the solution is hyperbolic and stays within a small subdomain for the length of time

associated with the given data set. The requirement that the trajectory be hyperbolic is satisfied if

the velocity field local to the trajectory exhibits exponential dichotomy. Consider the linearized

system ()xAx t=& , where A(t) is a linear first approximation if u.

() .

2

2

1

2

2

1

1

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

x
u

x
u

x
u

x
u

tA

(10)

The fundamental solution matrix to the linearized system, denoted by X(t), is defined

such that X(t)x(t0) = x(t+t0). The linearized system exhibits exponential dichotomy if there exists

constants K1, K2, λ1, λ2 and a projection operator P such that:

() () ()

()() () () .,

,,
2

1

2
1

1
1

ττ

ττ
τλ

τλ

≤≤−

≥≤
−−

−−−

teKt

teKt
t

t

XPIX

PXX

(11)

 The requirement that the DHT is confined to relatively small subdomain is more general.

This is of value when trying to compute the invariant manifolds of the DHT. Invariant manifolds

require long data sets in order to generate on accurate computation, to analyze a certain region of

41

a dynamical system it is necessary that the DHT remains in that region for a time long enough

(usually a few weeks) in order to get a well-developed picture of the manifold structure.

 The algorithm developed by Wiggins works iteratively, improving the accuracy of the

DHT calculation with each cycle. Denote the calculation at the end of the nth cycle as x(n). If the

initial equation that the DHT solves is), t(xux =& define a new variable y = x - x(n). Also,

linearize the velocity field u about the guess x(n) defining A(t) as in equation (10)

() () .),(),)()()()()(nnnnn tttt(xyAxyuyAxxyuxxy &&&&& −−++=−+=−= (12)

() () ,),(,)()(nn ttt xyAxyuyf &−−+= (13)

() ()., tt yfyAy +=& (14)

Now, as the vector fields have effectively changed, it may appear that we have to re-

interpolate for the function f. However, with a little clever pre-computation we can avoid this

and do operations purely on the components. Define the following sets of components

()
()
().,ˆ

,,ˆ

,,ˆ1

22112

22111

2211

nn
n

n

nn
n

n

nn
n

n

xxxxyx

xxxxxx

xxxxk

−−=

−−=

−−=

∑

∑

∑

φ

φ

φ

(15)

Now denote the coefficients representing the x1-component of the velocity field u as 1ˆnu .

Using the above formula for f we can find its corresponding coefficients as follows:

() () ()()
() () ()() .ˆˆˆˆˆ

,ˆˆˆˆˆ

22
22

1
212221

22

12
12

1
112111

11

n
nnn

nnnn

n
nnn

nnnn

kyxuf

kyxuf

xxAxAAA

xxAxAAA

&

&

+++−−=

+++−−= (16)

42

Thus we are able to compute the interpolation of f indirectly. The advantage of staying in

the “coefficient space” is that equation (16) is a formula; it avoids the need for the expensive

interpolation calculation of equation (3). This is my own contribution independent of the work of

Wiggins.

Now that we have the equation in linearized form, the next step is diagonalize A(t).

Construct a time-dependant transformation T(n)(t) such that under the coordinate transformation

w= T(n)(t)y the matrix A(t) is diagonalized. Denote the diagonalized matrix as D. Finding T(n)(t)

involves the singular value decomposition of the fundamental solution matrix X. To first

compute the fundamental solution matrix a matrix version of simple 4th – order Runge-Kutta was

used. Given that X(0)=I, we find X(ti+1) based on X(ti) by the following formula:

() ()

() ()[] ()

() ()[] ()

() ()[]

() () [].22
6

,

,
22

1

,
22

1
,

43211

314

213

112

1

KKKKXX

KXAK

KXAAK

KXAAK

XAK

++++=

+=

⎥⎦
⎤

⎢⎣
⎡ ++=

⎥⎦
⎤

⎢⎣
⎡ ++=

=

+

+

+

+

htt

htt

httt

httt

tt

ii

ii

iii

iii

ii

(17)

 Once we have X in hand we compute its singular value decomposition at each instant in

time, X=BSRT. Both R and B are orthogonal matrices, e.g. BT = B-1, and S is a diagonal matrix.

Note that the singular value decomposition is not unique because R and B are not generally the

same matrix, as is the case in simple diagonalization. Because of this fact we can guarantee that

the matrix S is positive definite (MALTABs built-in function svd does this). We can write S as

eΣ, using the usual matrix exponential. Thus X(t) = B(t) eΣ(t)R(t)T. According to [4], the

transformation T that diagonalizes A(t) can be constructed from B R and Σ as follows: T(t) =

43

etDRT(tL)R(t) eΣ(t)B(t)T . D = Σ(tL)/ tL Let us assume, without loss of generality, that D11 > 0 and

D22 < 0. The next iteration of the distinguished hyperbolic trajectory can be computed using the

following formula:

()()

()()
()

()).,(),(
,

,,

,,

)(2)1(,2

)(1)1(,1

2222

1111

txttx
ytw

dsssgeew

dsssgeew

t
nsDtDn

t

nsDtDn

fTg
T

x

x

=
=

=

−=

∫

∫

∞

−+

∞
−+

(18)

 The integral of equation (18) is computed numerically using the trapezoid rule. This gives

us the next iteration of the DHT calculation in w-coordinates. To move back to the original x-

coordinates multiply by T-1(t) and add x(n) to obtain x(n+1). The algorithm continues iteratively

until || x(n+1)- x(n)|| < tolerance.

 Wiggins notes in [4], that because of the exponential nature of the

equation ()XAX t=& , it is possible that solving for X in this manner risks overrunning machine

arithmetic. The matrix Runge-Kutta method of (17) will therefore work only for a limited time. It

is possible to solve for the matrix X in terms of the components of its singular value

decomposition, as Wiggins suggests in appendix B of [4]. This leads to equation (19)

()

()
.

,

TTT

TTTT

ABBRRΣBB
RRABBRRBRΣBRBB

RABRBRΣBRB
XAX

ΣΣ

ΣΣΣΣΣΣ

ΣΣΣΣ

=++

=++

=++

=

−

−−

ee
eeeeee

eeee
t

&&&

&&&

&&&

& (19)

 Now parameterize B, R and Σ in the following manner

44

.
0

0

,
cossin
sincos

,
cossin
sincos

2

1
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
−

=

⎥
⎦

⎤
⎢
⎣

⎡
−

=

σ
σ

φφ
φφ

θθ
θθ

Σ

R

B
(20)

 This leads to a set of four differential equations in four unknowns. Let H=BTAB.

() () ()

() ()

.
,

,csch
2
1

,coth
2
1

2
1

222

111

122112

1221122112

H
H

HH

HHHH

=
=

−+=

−++−=

σ
σ

σσφ

σσθ

&

&

&

& (21)

 The components of these equations generally increase linearly in time, as opposed to

exponentially with equation (18). This allows for the solution of X and T over longer-length data

sets. This improvement proved to be invaluable when seeking to analyze data sets weeks, even

months in duration.

45

PART II: Results

 The application of Wiggins’ DHT algorithm to the Chesapeake Bay was remarkably

difficult. The chief difficulty arises because the instantaneous stagnation points (ISPs) that

Wiggins uses as the first guess x(0) in his algorithm simply do not exist in the Bay. The ISP

curve, denoted xISP(t), is not a solution of the system ()t,xux =& , but rather a curve of points of

zero velocity, that is u(xISP(t),t) = 0. Continuous curve of this type exist in the toy problems

presented in [3], such as the rotating Duffing oscillator. Examining this problem, success was

achieved computing the ISPs and the DHT after successive iterations of the scheme described in

Part I. However, when similar techniques were tried in order to analyze the Chesapeake, they

were unsuccessful. The problem is that the constant periodic forcing of the tides keeps

everything moving. The regions of zero velocity that do appear are short-lived. These regions

have a timescale of only a few hours and are therefore useless for computation of hyperbolic

trajectories.

 In the absence of an ISP curve, trajectories were computed in the manner described in

section I and used for the initial x(0) guess. Trajectories in many different locations throughout

the Chesapeake were tested. The only region in which any initial guess ever resulted in

convergence of equation (17) was the narrow neck depicted in Figure 20. This is also the

location of the Chesapeake Bay bridge connecting mainland Maryland to Kent Island and the

Eastern Shore.

 Most of the trajectories that were tried resulted in divergence of equation (18). The

distance between successive iterations || x(n+1)- x(n)||∞, defined as the maximum distance between

the curves at any given time, grew without bound until the resulting curve was far outside the

46

boundaries of the Bay. After searching for the hyperbolic stretching which is characteristic of the

existence of an unstable manifold, and hence a hyperbolic trajectory, it became evident that the

Kent Island region was again the only region that exhibited this stretching. It was here that initial

guess trajectories were computed in the search for a DHT. Ultimately one of the “guess”

trajectories resulted in convergence. This trajectory is depicted in Figure 20. The black square

just above the 4330000 Northing line is the origin of the trajectory, it ends near the bottom of the

figure. This trajectory is 21 days long.

Figure 20: Hyperbolic trajectory of the Chesapeake Bay.

47

Iterative refinement of the guess trajectory resulted in little change. Where as with

divergent guesses differences || x(n+1)- x(n)||∞ measured in tens of kilometers or more were

observed, the maximum distance between the guess trajectory, and the result of the DHT

algorithm was 290 meters. After 10 iterations the distance between successive x(n) was on the

order of tens of centimeters. This is particularly small when compared to the roughly 50

kilometer span of the resulting DHT.

Figure 21: Initial guess trajectory and solution after 10 iterations.

 Figure 21 shows the Easting coordinate vs. time of the initial trajectory in blue, and the

same for the final result in red. The red line is difficult to see because of the degree of overlap.

Between Day 14 and 16 the small difference between initial guess and final solution is somewhat

visible. A fixed point of equation (18) to had effectively been guessed to within 300 meters.

 Also of note is the instability inherent in the DHT solution for the Chesapeake Bay.

While for simpler systems convergence of equation (18) is robust, that is nearby first guesses

result in convergence to the same final result, the same is not true of the Chesapeake. When the

initial guess is shifted to the west by 50 meters, the DHT algorithm does not converge. The

48

initial distance || x(1)- x(0)|| was 1.2 km and the distances grow with each successive iteration.

Figure 22 shows a similar plot with the Easting coordinate of the westward shifted trajectory, and

the Easting coordinate of the curve after 3 iterations. Note the large divergence near Day 12 as

well as the sharp direction reversals near Day 15 and 17. These kinks are characteristic of

solutions that quickly diverge to nonsense. At this point, after only three solutions, the result was

already outside the bounds of the Chesapeake Bay.

Figure 22: Perturbed initial trajectory and divergence after 3 iterations.

 In light of these difficulties one might infer that there were problems with Wiggins’

algorithm or, at the very least, errors in the implementation. However, the same algorithm, when

applied to systems where the DHT solution was well known, such as the rotating Duffing

oscillator, worked flawlessly. The resultant solutions were within the analytical solution to the

order of 10-6. Additionally, the success of computation of the stable and unstable manifolds of

the hyperbolic trajectory from Figure 20 confirms the correctness of the algorithm. The resulting

solution is indeed a DHT. Unfortunately, because of the instabilities shown by Figure 22, the

DHT algorithm becomes something of a mere confirmation. The algorithm indicates when a

DHT has been accurately guessed, but is not an effective method for finding that trajectory. This

49

suggests that additional work needs to be done on defining criteria of convergence for equation

(18) as well as good criteria for an initial guess in the absence of a well-defined curve of

instantaneous stagnation points.

 There is also some question as to why the region about Kent Island is the only region for

which hyperbolic trajectory computation succeeds. One idea is that of the connection to the

normal modes of Lipphardt et al. [11]. Normal modes define flow patterns for a region analogous

to the frequencies of a vibrating string. A string, like that of a violin, has distinct frequencies at

which it vibrates. Any tone produced by this string can be expressed as a linear combination of

these frequencies. Similarly, “frequencies”, or normal modes, for a littoral region can be

computed defining flow patterns. Any flow pattern can be defined as a linear combination of the

normal modes. These normal modes are typically large scale circulations. A narrow point such as

the Kent Island channel would tend to separate these circulations, creating a clockwise rotation

to the north and an opposite counter-clockwise circulation to the south. Such counter-rotating

vortices create the hyperbolic separation necessary for hyperbolic trajectories and their

respective stable and unstable manifolds to exist. These counter-rotating vortices are exactly the

kind of hyperbolic behavior that Wiggins investigates in his work with the wind-driven double

gyre model [1]. Viewed in this way, it makes sense that the narrowest region in the Chesapeake

would also produce the greatest hyperbolic separation and the only region where DHT

computation was successful.

Figure 23 illustrates the idea of hyperbolic separation generated by the normal modes.

This normal mode was computed by MIDN 1/C Grant Gillary as part of [14]. Note that the two

gyres split at the northern point of Kent Island creating a hyperbolic point denoted by the “H”.

The hyperbolic trajectory of Figure 20 remains in precisely this region for over a week.

50

Figure 23: Hyperbolic point created by normal modes.

 Much research needs to done still in the area of hyperbolic trajectory computation for

dynamical systems as complex as the Chesapeake Bay. At the time of this writing only a single

solution of equation (18) has been found. This is due to the instability difficulties that were

described. Rigorous mathematical study needs to be conducted to describe why the Kent Island

region is the only hyperbolic region in the Bay. If the hypothesized connection to Normal Modes

is accurate, it would make sense that a similar narrow neck in other regions would similarly be

regions of high hyperbolic separation. This is a direction for future research

51

INVARIANT MANIFOLD COMPUTATION

PART I: Methodology

 Once the DHT has been computed in the manner of the previous section, it is possible to

compute the stable and unstable manifolds. The stable manifold of a hyperbolic trajectory xH(t) is

stable in the sense that every point along the manifold, denoted by ()()ttW H
s

loc ,x , will collapse

back to some arbitrarily small neighborhood of xH(t) in forward time. Similarly, every point

along the length of the unstable manifold ()()ttW H
u

loc ,x will collapse back to the hyperbolic

trajectory in backward time. The manifolds are invariant in the sense that every point starting

along either manifold will remain on it for all time. This gives them the special property of being

a barrier to transport. When plotted the invariant manifolds mark off regions, or lobes, and

dictate the mass transport dynamics between these lobes. Below is a plot of the stable and

unstable manifolds of the system defined by equation (22).

., 2 yxyxx −== && (22)

Figure 24: Stable and unstable manifolds of the system defined by equation (22).

52

 To numerically compute the invariant manifolds, one first computes the eigenvalues and

eigenvectors of the matrix A as defined in equation (10). As A represents the linear behavior of

the vector field around the hyperbolic trajectory, the matrix A will have one positive and one

negative eigenvalue. The eigenvector corresponding to the positive eigenvalue represents the

direction of maximum stretching, and defines the initial direction of the unstable manifold.

Likewise, the eigenvector corresponding to the negative eigenvalue represents the direction of

maximum compression and the initial direction of the stable manifold.

 For the unstable manifold, once the direction of the initial segment has been calculated, 5

discrete points, or manifold nodes, are placed along this vector. In the case of the Chesapeake

Bay these initial nodes are places at intervals of 500m. These nodes are advected with the

velocity field forward in time. As they stretch apart, new nodes are inserted to capture all the

folds and structure of the unstable manifold.

 Computation of the stable manifold is analogous. However, the procedure is done in

reverse. The nodes are placed along the initial segment which is calculated at the end of the data

set. The nodes are then evolved backwards in time. The procedure for inserting new points is the

same as with the unstable manifold.

 All that is needed, then, is an accurate method of deciding when and where to insert the

new nodes to maintain integrity of the numerical procedure. The method cited in [2] as being the

most effective when applied to oceanographic flows is an interpolation and insertion scheme

originally developed by Dritschel [5] for use in computing vorticity filaments.

 The basic idea behind this insertion scheme is that regions in which the manifold is

tightly folded, i.e. regions of high curvature, need a higher density of nodes to properly capture

53

the dynamics in this region. Regions of lower curvature can tolerate a lower density, reducing the

total number of nodes and the total computation time.

Given that the unstable manifold is approximated by a series of N nodes, calculate the

local curvature for each node based on the position of its two neighbors. Local curvature is

defined as the reciprocal of the radius of the circumcircle described by these three points.

()() { }
() ()
() ()

.

,,,~,

1
2

11
2

1

11

321

−++−

+−

−−+−−

−×−
=

iiiiiiii

iiii
i

NiH
u

loc

xxxxxxxx

xxxx
xxxxxttxW

κ

KK (23)

 A weighted averaged of curvature is defined along the manifold.

().
2
1

,,

1

22
1

1

1

11

+

+

+

−

−−

+=

+−

−
=

+
+

=

iii

ii

ii
i

ii

iiii
i

xx

xx
w

ww
ww

κκκ

δ

κκ
κ

((

((24)

 Now a point density function is defined as a function of the curvature iκ and the distance

between successive nodes,

() .1 iiiii xx −+= +κκµσ (25)

 In this equation the constant µ is an arbitrary constant that is changed to increase or

decrease the resolution of the manifold. Once the density σ is defined, we seek to distribute

nodes such that σ is relatively constant and less than 1 along the entire length of the manifold. To

do this an interpolation method is needed.

For this project cubic splines were used as the method of interpolation. MATLAB has a

built-in function for computing cubic splines which made this option attractive in terms of ease

of coding and computational speed. In [2] Wiggins suggests the interpolation method of

54

Dritschel and Ambaum [6] that matches an approximation of curvature at each node, where

cubic splines match first and second derivatives. The aim of the Dritschel-Ambaum interpolation

was to produce a smooth value of the curvature along the manifold to work with the density

function of equation (24). However, remembering that the curvature of a continuous curve is

defined in terms only of its first and second derivatives, cubic splines give a continuous value for

curvature along the manifold if not as smooth as the method due to Dritschel and Ambaum.

Having decided that the computational advantages of the MATLAB spline package outweighed

the smoothness advantage of Dritschel-Ambaum interpolation, the former was chosen.

 Once the manifold has been advected forward in time, gaps in the approximation and new

folds develop that need to be addressed. First the density σ is calculated for the entire length of

the manifold and a cubic spline interpolation is calculated. Then new nodes are distributed along

the manifold in the following manner. Define Nnew as the number of new nodes to be distributed

in order to ensure that σ is less than 1

2
1

+⎥
⎦

⎥
⎢
⎣

⎢
= ∑

=

oldN

i
inewN σ .

(26)

Now place new node xi between old nodes xj and xj+1 such that

().1
1

1

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+∑

−

=

i
N
N

p
new

old
j

j

k
k σσ

(27)

Here p is a parameter for the interpolation. If we parameterize the old curve as x(s) where x(j) =

xj, the new node xi is placed at x(j+p). Once the new nodes have been placed according to the

interpolation and insertion scheme described above, the new nodes are advected forward in time

and the process is repeated.

55

PART II: Results

 Below is a plot of the stable manifold at Day 3 computed using the method of Section I.

Because the stable manifold starts at the end of the data set and is computed backwards, it is well

developed early in the data set.

Figure 25: Stable manifold on Day 3.

 Note the interaction of the stable manifold with the coast. It has not yet been determined

why this happens or what the significance of this interaction is. Research needs to be done,

starting with simpler dynamical systems, to determine the significance of this coastal interaction.

56

The following figures show the unstable manifold of the same hyperbolic trajectory and

enlargements of the regions surrounding the trajectory on Day 21.

Figure 26: Unstable manifold on Day 21.

57

Figure 27: Enlargement of region around the hyperbolic trajectory.

Figure 28: Successive enlargement.

58

 As described in the previous section these curves mark off lobes. When the stable and

unstable manifolds intersect, the resultant lobes typically stretch into long filaments. This is an

example of what Wiggins describes as “irreversible” mass transport [7]. As the stable manifold

contracts back to the neighborhood of the hyperbolic trajectory, one edge of the lobe is

shortened. Simultaneously the unstable manifold is lengthening, stretching the other edge. The

figures below show a time sequence of this dynamic. Successive figures are shown at 4 hour

intervals beginning on Day 11. Note that the area within each lobe does not remain constant as it

should in an incompressible fluid. This is because the surface layer is not incompressible in the

sense that ux+vy≠0. The three-dimensional divergence ux+vy+wz is equal to 0. Waves on the

surface create a non-zero wz term which allows for apparent non-zero divergence when viewing

only the surface currents.

59

60

61

 Here the time evolution and stretching of the lobes is clearly evident. The easternmost

lobe shows a fluid jet, rather than simply stretching, the material in this region is flung away

from the hyperbolic trajectory. This jet took 48 hrs to form. Material advection in this time scale

is not easily visible when examining frozen-time velocity fields. Only after computing the

invariant manifolds is this behavior evident.

Certainly, upon examining other regions of the manifolds similar examples of lobe

dynamics would be observed. The computation of manifolds for a 21-day period only scratches

the surface of the analysis of which this method is capable. The rich dynamics that have been

made visible by examining these manifolds makes it clear that there are structures and dynamics

hidden within a data set as complex as this. Future research is necessary to examine the

manifolds properly and the structures that they form. The difficulties of the hyperbolic trajectory

62

algorithm currently impede considerably the progress of this research. However, since it is

known that the Kent Island neck produces the greatest hyperbolicity, trying trajectories at later

times in the data set are likely to also converge to solutions of equation (18).

Additionally, the numbers of nodes in both the stable and unstable manifold grow

exponentially as the computation progresses. Because of this fact, it is impractical to compute

manifolds with adequate resolution for time lengths longer than three weeks. A parallel

computing implementation of Wiggins’ algorithm could improve this. The investigation of

invariant manifold behavior has merit and demands further research.

63

Conclusions

 My initial goal was to simply implement the algorithms of Wiggins in MATLAB, freeing

them of the platform issues and difficulties associated with conventional computer code. Along

the way I successfully reproduced hyperbolic trajectory and invariant manifold results for the

rotating Duffing system and a host of smaller systems. Ultimately, I was also able to produce

results for the QUODDY simulation of the Chesapeake Bay. In the early spring I had my doubts

as to whether the algorithms would be applied successfully to the Chesapeake. Wiggins, in an e-

mail to my adviser, expressed similar doubts and abandoned this approach to analyzing the Bay

while mentioning SLMs as a possible alternative approach. As I took time out to learn about the

computation of synoptic Lagrangian maps I noticed large inefficiencies in the current methods of

computation. Eliminating these led to my improved algorithm. This new algorithm also allowed

me to compute SLMs on single-processor workstations, freeing them from the need for the

computational power of a large supercomputer. This, combined with a MATLAB

implementation, makes SLM computation accessible to many more researchers than was

previously possible. Eventually the invariant manifold analysis was similarly successful and it

produced the results that are presented here. I certainly met my original goals and far exceeded

them. In the process I was able to learn much and devise many useful results.

 The work I have done opens the door for many future research avenues. Most important

is to create a data assimilation scheme, similar to that used by Lipphardt et al. for the Monterey

Bay, and apply it to the Chesapeake. This would allow the algorithms I developed to be applied

to more realistic data. I have little doubt that the QUODDY model is accurate, and that the

results would be similar. However, the resulting validation of my findings would be quite

valuable. Also there are a few open questions as a result of my research that bear investigation,

64

most notably the difficulties inherent in DHT computation for the Chesapeake Bay and the

interaction of the stable manifold with the Chesapeake coastline.

I am ultimately very grateful to my advisers and numerous others for the advice and

guidance that they provided. I am similarly grateful to Prof. Shade for the program that she has

helped to develop which gave me the opportunity to grow and learn as much as I have. My

understanding of transport in the Chesapeake Bay, and dynamical systems in general, grew in

leaps and bounds as this project progressed. Yet, at the end, there are as many unanswered

questions and exciting new research directions as there were when I started.

65

REFERENCES

[1] Mancho A., Small D., and Wiggins S. : Computation of hyperbolic trajectories and their
stable and unstable manifolds for oceanographic flows represented as data sets,
Nonlinear Processes in Geophysics (2004) 11: 17–33

[2] Mancho, A., Small, D., Wiggins, S., and Ide, K.: Computation of stable and unstable

manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent
vector fields, Physica D, 182, 188–222, 2003.

[3] Wiggins, S. et al.: Existence and Computation of Hyperbolic Trajectories of

Aperiodically Time Dependent Vector Fields and Their Approximations, International
Jounal of Bifurcation and Chaos ,Vol. 13, 6, 1449-1457, 2003.

[4] Wiggins, S. et al.: Distinguished Hyperbolic Trajectories in Time Dependent Fluid

Flows: Analytical and Computational Approach for Velocity Fields Defined as Data Sets,
Nonlinear Processes in Geophysics, 9, 237-263, 2002.

[5] Dritschel, D.: Contour dynamics and contour surgery: Numerical algorithms for

extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid,
incompressible flows, Comp. Phys. Rep., 10, 77–146, 1989.

[6] Dritschel, D. and Ambaum M.: A contour-advective semi-Lagrangian numerical

algorithm for simulating fine-scale conservative dynamic fields, Quart. J. Roy. Meteor.
Soc., 123, 1097-1123, 1997.

[7] Coulliette, C., Wiggins, S. Intergyre Transport in a Wind-Driven, Quasigeostrophic

Double Gyre: An Application of Lobe Dynamics. Nonlinear Processes in Geophysics, 7,
59-85, 2002.

[8] Lynch. D. and Werner F. Three-Dimensional Hydrodynamics on Finite Elements. Part I:

Linearized Harmonic Model. Inter. Jour. Numer. Meth Fluids, 7, 871-909, 1987.

[9] Lynch. D. and Werner F. Three-Dimensional Hydrodynamics on Finite Elements. Part II:

Non-Linear Time-Stepping Model. Inter. Jour. Numer. Meth Fluids, 12, 507-533, 1991.

[10] Lipphart B. and Kirwan D., Synoptic Lagrangian Maps: Surface Particle Transport in

the Coastal Ocean <http://newark.cms.udel.edu/~brucel/slmaps>

[11] Kirwan D. et al., Blending HF radar and model velocities in Monterey Bay through

Normal Mode Analysis, Journal of Geophysical Research, 105, 3425-3450, 2000.

[12] Wendland H., On the smoothness of positive definite and radial functions, Advances in

Computational and Applied Mathematics, 101, 177-188, 1998.

66

[13] Wendland H., Piecewise polynomial, positive definite and compactly supported radial
basis functions of minimal degree, Advances in Computational Mathematics 4, 389-396,
1995.

[14] Gillary G., Normal Mode Analysis of the Chesapeake Bay, Trident Scholar Report, 2005.

[15] Jones C., A Dynamics Group Looks at the Ocean, SIAM News, 33, 2, 2002.

[16] Auer, S.J., Five-year climatological survey of the Gulf Stream System and its associated

rings, Journal of Geophysical Research, 92, 11709-11726, 1987.

[17] Frankignoul, C., de Coetlogon G., Joyce T. M., and Dong S. F., Gulf Stream variability

and ocean-atmosphere interactions, Journal of Physical Oceanography, 31, 3516-3529,
2001.

67

Appendix: MATLAB Code

 Given below is the computer code to calculated the φ functions and their partial

derivatives:

function z=phi(x,y,a)
%Wedlands C2 compactly supported radial basis function
R=sqrt(x.^2+y.^2)/a;
z=(R<1).*(4*R+1).*(1-R).^4;

function z=phix(x,y,a)
%Wedlands C2 compactly supported radial basis function
%Partial x-derivative
R=sqrt(x.^2+y.^2)/a;
z=(R<1).*(20*R.^3-60*R.^2+60*R-20).*(x./(a^2));

function z=phiy(x,y,a)
%Wedlands C2 compactly supported radial basis function
%Partial x-derivative
R=sqrt(x.^2+y.^2)/a;
z=(R<1).*(20*R.^3-60*R.^2+60*R-20).*(y./(a^2));

 Next is a script for computing simple trajectories.

%load 1999
%ti=1;

traj=zeros(2,n);
traj(:,1)=[x0;y0];

for i=1:n-1
 k1=dot(squeeze(cf(:,i,1)),phi(traj(1,i)-x,traj(2,i)-y,a));
 j1=dot(squeeze(cf(:,i,2)),phi(traj(1,i)-x,traj(2,i)-y,a));
 k2=.5*(dot(squeeze(cf(:,i,1)),phi(traj(1,i)+.5*dt*k1-x,traj(2,i)+.5*dt*j1-
y,a))+dot(squeeze(cf(:,i+1,1)),phi(traj(1,i)+.5*dt*k1-x,traj(2,i)+.5*dt*j1-y,a)));

 j2=.5*(dot(squeeze(cf(:,i,2)),phi(traj(1,i)+.5*dt*k1-x,traj(2,i)+.5*dt*j1-
y,a))+dot(squeeze(cf(:,i+1,2)),phi(traj(1,i)+.5*dt*k1-x,traj(2,i)+.5*dt*j1-y,a)));

 k3=.5*(dot(squeeze(cf(:,i,1)),phi(traj(1,i)+.5*dt*k2-x,traj(2,i)+.5*dt*j2-
y,a))+dot(squeeze(cf(:,i+1,1)),phi(traj(1,i)+.5*dt*k2-x,traj(2,i)+.5*dt*j2-y,a)));

 j3=.5*(dot(squeeze(cf(:,i,2)),phi(traj(1,i)+.5*dt*k2-x,traj(2,i)+.5*dt*j2-
y,a))+dot(squeeze(cf(:,i+1,2)),phi(traj(1,i)+.5*dt*k2-x,traj(2,i)+.5*dt*j2-y,a)));

 k4=dot(squeeze(cf(:,i+1,1)),phi(traj(1,i)+dt*k3-x,traj(2,i)+dt*j3-y,a));

 j4=dot(squeeze(cf(:,i+1,2)),phi(traj(1,i)+dt*k3-x,traj(2,i)+dt*j3-y,a));

 traj(1,i+1) = traj(1,i) + dt*(k1+2*k2+2*k3+k4)/6;
 traj(2,i+1) = traj(2,i) + dt*(j1+2*j2+2*j3+j4)/6;
end
clear j1 j2 j3 j4 k1 k2 k3 k4

 Below is a script for computing trajectories in reverse time. Useful for finding

where material came from.

68

%load 1999

traj=zeros(2,t);
traj(:,t)=[x0;y0];

%Timestep is 1hr, or 3600s increments
dt=-3600;

for i=t:-1:2
 k1=dot(squeeze(cf(:,i,1)),phi(traj(1,i)-x,traj(2,i)-y,a));
 j1=dot(squeeze(cf(:,i,2)),phi(traj(1,i)-x,traj(2,i)-y,a));
 k2=.5*(dot(squeeze(cf(:,i,1)),phi(traj(1,i)+.5*dt*k1-x,traj(2,i)+.5*dt*j1-
y,a))+dot(squeeze(cf(:,i-1,1)),phi(traj(1,i)+.5*dt*k1-x,traj(2,i)+.5*dt*j1-y,a)));

 j2=.5*(dot(squeeze(cf(:,i,2)),phi(traj(1,i)+.5*dt*k1-x,traj(2,i)+.5*dt*j1-
y,a))+dot(squeeze(cf(:,i-1,2)),phi(traj(1,i)+.5*dt*k1-x,traj(2,i)+.5*dt*j1-y,a)));

 k3=.5*(dot(squeeze(cf(:,i,1)),phi(traj(1,i)+.5*dt*k2-x,traj(2,i)+.5*dt*j2-
y,a))+dot(squeeze(cf(:,i-1,1)),phi(traj(1,i)+.5*dt*k2-x,traj(2,i)+.5*dt*j2-y,a)));

 j3=.5*(dot(squeeze(cf(:,i,2)),phi(traj(1,i)+.5*dt*k2-x,traj(2,i)+.5*dt*j2-
y,a))+dot(squeeze(cf(:,i-1,2)),phi(traj(1,i)+.5*dt*k2-x,traj(2,i)+.5*dt*j2-y,a)));

 k4=dot(squeeze(cf(:,i-1,1)),phi(traj(1,i)+dt*k3-x,traj(2,i)+dt*j3-y,a));

 j4=dot(squeeze(cf(:,i-1,2)),phi(traj(1,i)+dt*k3-x,traj(2,i)+dt*j3-y,a));
 traj(1,i-1) = traj(1,i) + dt*(k1+2*k2+2*k3+k4)/6;
 traj(2,i-1) = traj(2,i) + dt*(j1+2*j2+2*j3+j4)/6;
end
%plot(traj(1,:),traj(2,:),'k')

 Below is the m-file brasher.m containing the code for my SLM algorithm, this is

the work that I am most proud of.

%Improved Algorithm for SLM Computation
%Nathan Brasher, US NAVAL ACADEMY

a=5000;
n=2185;
dt=3600;
for k=170:721
 %Update the traces matrix and SLM for this time-slice
 ['Day ',num2str(ceil(k/24)),' ',num2str(mod((k-1),24)),'00 HRS']
 traces=traces(:,2:(2187-k));
 npath=size(traces); npath=npath(1)/2;

 list=[];
 for l=1:npath
 if traces((2*l-1),1) ~=0
 slm(l,1:2,k) = traces((2*l-1):2*l,1);
 slm(l,3,k) = slm(l,3,k-1)-(1/24);
 slm(l,4,k) = slm(l,4,k-1);
 list=[list,l];
 end
 end
 numl=length(list);
 slm(1:numl,:,k)=slm(list,:,k);
 slm((numl+1):20000,:,k)=zeros(20000-numl,4,1);

69

 list=[2*list-1;2*list];
 list=reshape(list,1,2*numl);
 traces=traces(list,:);

 %MeshBuilder routine
 %Determine Insertion of New Points
 xmesh=slm(1:numl,1,k);
 ymesh=slm(1:numl,2,k);

 numnew=0;
 for m=1:310296
 R=sqrt((xx(m)-xmesh).^2+(yy(m)-ymesh).^2)/1e3;
 if sum((R<1).*(1-R)) < .1
 xmesh=[xmesh;xx(m)];
 ymesh=[ymesh;yy(m)];
 numnew=numnew+1;
 end
 end

 [num2str(numl),' pts held over']
 [num2str(numnew),' new points']
 [num2str(numl+numnew),' total pts']
 start=numl+1;
 stop=numl+numnew;
 traces=[traces;zeros(2*numnew,2186-k)];

for j=start:stop
rtime=91;
fate=0;

path=zeros(2,n);
path(:,k)=[xmesh(j),ymesh(j)];

for i=k:n-1
 k1=dot(squeeze(cf(:,i,1)),phi(path(1,i)-x,path(2,i)-y,a));
 j1=dot(squeeze(cf(:,i,2)),phi(path(1,i)-x,path(2,i)-y,a));
 k2=.5*(dot(squeeze(cf(:,i,1)),phi(path(1,i)+.5*dt*k1-x,path(2,i)+.5*dt*j1-
y,a))+dot(squeeze(cf(:,i+1,1)),phi(path(1,i)+.5*dt*k1-x,path(2,i)+.5*dt*j1-y,a)));
 j2=.5*(dot(squeeze(cf(:,i,2)),phi(path(1,i)+.5*dt*k1-x,path(2,i)+.5*dt*j1-
y,a))+dot(squeeze(cf(:,i+1,2)),phi(path(1,i)+.5*dt*k1-x,path(2,i)+.5*dt*j1-y,a)));
 k3=.5*(dot(squeeze(cf(:,i,1)),phi(path(1,i)+.5*dt*k2-x,path(2,i)+.5*dt*j2-
y,a))+dot(squeeze(cf(:,i+1,1)),phi(path(1,i)+.5*dt*k2-x,path(2,i)+.5*dt*j2-y,a)));
 j3=.5*(dot(squeeze(cf(:,i,2)),phi(path(1,i)+.5*dt*k2-x,path(2,i)+.5*dt*j2-
y,a))+dot(squeeze(cf(:,i+1,2)),phi(path(1,i)+.5*dt*k2-x,path(2,i)+.5*dt*j2-y,a)));
 k4=dot(squeeze(cf(:,i+1,1)),phi(path(1,i)+dt*k3-x,path(2,i)+dt*j3-y,a));
 j4=dot(squeeze(cf(:,i+1,2)),phi(path(1,i)+dt*k3-x,path(2,i)+dt*j3-y,a));
 path(1,i+1) = path(1,i) + dt*(k1+2*k2+2*k3+k4)/6;
 path(2,i+1) = path(2,i) + dt*(j1+2*j2+2*j3+j4)/6;

 if sum(bnd(path(1,i+1)-coast(:,1),path(2,i+1)-coast(:,2),1e3)) > 0
 fate = 1;
 rtime=(i+1-k)/24;
 break
 elseif sum(bnd(path(1,i+1)-ocean(:,1),path(2,i+1)-ocean(:,2),5e3)) > 0
 fate = 2;
 rtime= (i+1-k)/24;
 break
 end

70

end
if mod(j+1-start,100) == 0, [num2str(j+1-start),' of ',num2str(stop+1-start),' computed'],end
slm(j,1,k)=xmesh(j);
slm(j,2,k)=ymesh(j);
slm(j,3,k)=rtime;
slm(j,4,k)=fate;
traces((2*j-1):2*j,:)=path(:,k:n);
path=zeros(2,n);
end
end
clear i j k path k1 k2 k3 k4 j1 j2 j3 j4 list numl numnew start stop npath rtime fate
save 'SLM.mat' slm traces

 Next comes slmplot.m, the script I used to generate plots of the SLM data.

%load plotterdata
%tL=size(slm); tL=tL(3);
hold on
for k=1:721
 cla
 npts=nnz(slm(:,1,k));
 k
 caxis([0 32])
 xmesh=[slm(1:npts,1,k);coast(:,1);ocean(:,1);2.9e5;2.89e5;4.55e5;4.55e5];
 ymesh=[slm(1:npts,2,k);coast(:,2);ocean(:,2);3.92e6;4.42e6;3.9e6;4.41e6];
 z=[slm(1:npts,3,k);zeros(1836,1)];
 zi=griddata(xmesh,ymesh,z,xi,yi);

 pcolor(xi-150,yi-150,zi)
 alpha(alfa);

 shading flat

 axis image
 axis([2.97e5 4.53e5 4.054e6 4.386e6])
 trisurf(ele,x,y,zeros(9700,1)); shading flat
 xlabel('Easting')
 ylabel('Northing')

 title('Synoptic Lagrangian Map')
 if mod(k-1,24) < 10
 text(3e5, 4.38e6,['DAY ',num2str(ceil(k/24)),' 0',num2str(mod(k-1,24)),'00 HRS'])
 else
 text(3e5, 4.38e6,['DAY ',num2str(ceil(k/24)),' ',num2str(mod(k-1,24)),'00 HRS'])
 end
 m(k,:)=getframe();

end
clear k npts tL

 Next is an algorithm for ISP computation, this was never successful outside of test

problems.

function isp=find_isp(g)

load test

g0=g;
isp=zeros(2,n);
F=zeros(2,1);
Fold = zeros(2,1);

71

J=zeros(2);

for t=1:n
 F(1)=dot(squeeze(cf(:,t,1)),phi(g(1)-x,g(2)-y,a));
 F(2)=dot(squeeze(cf(:,t,2)),phi(g(1)-x,g(2)-y,a));
 J(1,1)=dot(squeeze(cf(:,t,1)),phix(g(1)-x,g(2)-y,a));
 J(1,2)=dot(squeeze(cf(:,t,1)),phiy(g(1)-x,g(2)-y,a));
 J(2,1)=dot(squeeze(cf(:,t,2)),phix(g(1)-x,g(2)-y,a));
 J(2,2)=dot(squeeze(cf(:,t,2)),phiy(g(1)-x,g(2)-y,a));

 while dot(F,F) > 1e-6
 dx = -(J\F);
 g=g+dx;
 Fold = F;
 F(1)=dot(squeeze(cf(:,t,1)),phi(g(1)-x,g(2)-y,a));
 F(2)=dot(squeeze(cf(:,t,2)),phi(g(1)-x,g(2)-y,a));
 J(1,1)=dot(squeeze(cf(:,t,1)),phix(g(1)-x,g(2)-y,a));
 J(1,2)=dot(squeeze(cf(:,t,1)),phiy(g(1)-x,g(2)-y,a));
 J(2,1)=dot(squeeze(cf(:,t,2)),phix(g(1)-x,g(2)-y,a));
 J(2,2)=dot(squeeze(cf(:,t,2)),phiy(g(1)-x,g(2)-y,a));
 if g(1) < 3.6e5 | g(1) > 4.2e5 | g(2) < 4.24e6 | g(2) > 4.38
 break
 end
 end
 isp(:,t) = g;
end

 Below is the code for my DHT implementation:

function dht = find_dht(isp)
%MATLAB Implementation of the Wiggins DHT Algorithm
%Nathan Brasher last updated 25 JAN 2005
cla, hold on
load 1999smooth
tL=(n-1)*dt;
iter = 1;
xn = 100*ones(2,n);
x0 = zeros(2,n);
F=zeros(N,n,2);

A=zeros(2,2,n);

while iter <=2
 iter

 if iter == 1
 x0 = isp;
 else
 x0 = xn;
 end

 x0t=tdiv(x0,dt);
 %Compute A(t)
 for t=1:n
 A(1,1,t)=dot(squeeze(cf(:,t,1)),phix(x0(1,t)-x,x0(2,t)-y,a));
 A(1,2,t)=dot(squeeze(cf(:,t,1)),phiy(x0(1,t)-x,x0(2,t)-y,a));
 A(2,1,t)=dot(squeeze(cf(:,t,2)),phix(x0(1,t)-x,x0(2,t)-y,a));
 A(2,2,t)=dot(squeeze(cf(:,t,2)),phiy(x0(1,t)-x,x0(2,t)-y,a));
 end

 %Compute f(x,t)

72

 for t=1:n
 F(:,t,1)=cf(:,t,1)-A(1,1,t).*cfx-A(1,2,t).*cfy+(A(1,1,t)*x0(1,t)+A(1,2,t)*x0(2,t)-
x0t(1,t)).*cfk;
 F(:,t,2)=cf(:,t,2)-A(2,1,t).*cfx-A(2,2,t).*cfy+(A(2,1,t)*x0(1,t)+A(2,2,t)*x0(2,t)-
x0t(2,t)).*cfk;
 end

 %Compute Transformation T to diagonalize A, and diagonal matrix D with eigenvalues d1 and d2
 [T,d1,d2]=find_FSM(A,dt,tL);

 %Check that the trajectory is hyperbolic
 %if d1*d2 > 0
 % disp('Trajectory not hyperbolic')
 % break
 %end

 %compute g(w,t)
 for t=1:n
 f(:,t) = T(:,:,t) *[dot(squeeze(F(:,t,1)),phi(x0(1,t)-x,x0(2,t)-
y,a));dot(squeeze(F(:,t,2)),phi(x0(1,t)-x,x0(2,t)-y,a))];
 end

 %Calculate integral to get DHT in w-coordinates, apply T(t) to change to y-coordinates
 if d1 > 0
 for t=1:n
 xn(1,t) = -exp(d1*(t-1)*dt)*integrate(exp(-d1*(0:dt:tL)).*f(1,:),t,n,dt);
 xn(2,t) = exp(d2*(t-1)*dt)*integrate(exp(-d2*(0:dt:tL)).*f(2,:),1,t,dt);
 xn(:,t) = inv(T(:,:,t))*xn(:,t);
 end
 else
 for t=1:n
 xn(1,t) = exp(d1*(t-1)*dt)*integrate(exp(-d1*(0:dt:tL)).*f(1,:),1,t,dt);
 xn(2,t) = -exp(d2*(t-1)*dt)*integrate(exp(-d2*(0:dt:tL)).*f(2,:),t,n,dt);
 xn(:,t) = inv(T(:,:,t))*xn(:,t);
 end
 end
 max(max(abs(xn)))
 %Finally change back to original x-coordinates
 xn = xn+x0;
 plot(xn(1,:),xn(2,:));
 %Update iteration no.
 iter = iter + 1;
end

dht = xn;

%Simple First-Order Discrete Differentiation
function out=tdiv(in,dt)
n=length(in);
d=diff(in,1,2);
out=(1/dt)*[in(:,2)-in(:,1),(d(:,1:n-2)+d(:,2:n-1))/2,in(:,n)-in(:,n-1)];

%Solve d/dt X = AX, compute svd, get transformation T all in one fell swoop
function [T,d1,d2]=find_FSM(A,dt,tL)
n=max(size(A));

k=0;
s=eye(2);
X=zeros(2,2,n);
T=zeros(2,2,n);
X(:,:,1) = eye(2);
B(:,:,1) = eye(2);
R(:,:,1) = eye(2);
E(:,:,1) = zeros(2);

%Use 'naive' ,method initially
while log(s(1,1))-log(s(2,2)) < .1

73

 k=k+1;
 k1 = A(:,:,k)*X(:,:,k);
 k2 = .5*(A(:,:,k)+A(:,:,k+1))*(X(:,:,k)+(dt/2)*k1);
 k3 = .5*(A(:,:,k)+A(:,:,k+1))*(X(:,:,k)+(dt/2)*k2);
 k4 = A(:,:,k+1)*(X(:,:,k)+dt*k3);
 X(:,:,k+1) = X(:,:,k) + (dt/6)*(k1+2*k2+2*k3+k4);
 [b,s,r]=svd(X(:,:,k+1));
 B(:,:,k+1) = b;
 R(:,:,k+1) = r;
 E(:,:,k+1) = [log(s(1,1)),0;0,log(s(2,2))];
end

[theta,Bt] = findparam(B(:,:,k+1));
[phi,Rt] = findparam(R(:,:,k+1));
s1 = E(1,1,k+1);
s2 = E(2,2,k+1);

%Use alternative dynamical system to avoid exponential blow-up
for i=k+1:n-1
 Hi = H(A,theta,Bt,i);
 j1 = Hi(1,1);
 k1 = Hi(2,2);
 l1 = .5*(Hi(1,2)-Hi(2,1))+.5*(Hi(1,2)+Hi(2,1))*coth(s2-s1);
 m1 = .5*(Hi(1,2)+Hi(2,1))*csch(s2-s1);
 Hi = H(A,theta+(dt/2)*l1,Bt,i+.5);
 j2 = Hi(1,1);
 k2 = Hi(2,2);
 l2 = .5*(Hi(1,2)-Hi(2,1))+.5*(Hi(1,2)+Hi(2,1))*coth(s2+(dt/2)*k1-s1-(dt/2)*j1);
 m2 = .5*(Hi(1,2)+Hi(2,1))*csch(s2+(dt/2)*k1-s1-(dt/2)*j1);
 Hi = H(A,theta+(dt/2)*l2,Bt,i+.5);
 j3 = Hi(1,1);
 k3 = Hi(2,2);
 l3 = .5*(Hi(1,2)-Hi(2,1))+.5*(Hi(1,2)+Hi(2,1))*coth(s2+(dt/2)*k2-s1-(dt/2)*j2);
 m3 = .5*(Hi(1,2)+Hi(2,1))*csch(s2+(dt/2)*k1-s1-(dt/2)*j2);
 Hi = H(A,theta+dt*l3,Bt,i+1);
 j4 = Hi(1,1);
 k4 = Hi(2,2);
 l4 = .5*(Hi(1,2)-Hi(2,1))+.5*(Hi(1,2)+Hi(2,1))*coth(s2+dt*k3-s1-dt*j3);
 m4 = .5*(Hi(1,2)+Hi(2,1))*csch(s2+dt*k3-s1-dt*j3);
 s1 = s1 + (dt/6)*(j1+2*j2+2*j3+j4);
 s2 = s2 + (dt/6)*(k1+2*k2+2*k3+k4);
 theta = theta + (dt/6)*(l1+2*l2+2*l3+l4);
 phi = phi + (dt/6)*(m1+2*m2+2*m3+m4);
 B(:,:,i+1) = ortho(theta,Bt);
 R(:,:,i+1) = ortho(phi,Rt);
 E(:,:,i+1) = [s1,0;0,s2];
end

d1=s1/tL;
d2=s2/tL;

%Compute final Transformation
for i=1:n
 T(:,:,i) = [exp((i-1)*dt*d1-E(1,1,i)),0;0,exp((i-1)*dt*d2-
E(2,2,i))]*R(:,:,n)'*R(:,:,i)*B(:,:,i)';
end

%Integration using the trapezoid rule
function I = integrate(v,a,b,dt)
I=0;
if b > a
 I=I+.5*dt*(v(a)+v(b));
end
if b>a+1
 I=I+dt*sum(v(a+1:b-1));
end

74

function K = H(A,theta,type,t)
if mod(t,1) == 0
 K=ortho(theta,type)'*A(:,:,t)*ortho(theta,type);
else
 K=ortho(theta,type)'*.5*[A(:,:,t-.5)+A(:,:,t+.5)]*ortho(theta,type);
end

function [t,type] = findparam(b)
if b(1,1)*b(2,2) < 0
 type = 2;
else
 type=1;
end
 t=acos(b(1,1));
if b(1,2) < 0
 t=-t;
end

function A = ortho(ang,type)
if type == 1
 A = [cos(ang),sin(ang);-sin(ang),cos(ang)];
else
 A = [cos(ang),sin(ang);sin(ang),-cos(ang)];
end

 Next is an algorithm for computation of the unstable manifold of the DHT.

function usm=find_usm(dht,t)
%Computation of the Unstable Manifold of a
%general dynamical system (aperiodic non-autonomous)
%defined as a data set in 'test.mat'
%Uses Dritschel-Ambaum criteria for point insertion, Dritschel node
%redistribution and cubic spline interpolation
%Nathan Brasher last updated 29 NOV 2004

%cla
%hold on
load 1999

dt=3600;

ti=1;
delta=1e3;

usm=zeros(2,5,505);

if t < ti
 disp(['Manifold Cannot be Output before t=',num2str(dt*(ti-1))])
 return
end

A=zeros(2);

A(1,1)=dot(squeeze(cf(:,ti,1)),phix(dht(1,ti)-x,dht(2,ti)-y,a));
A(1,2)=dot(squeeze(cf(:,ti,1)),phiy(dht(1,ti)-x,dht(2,ti)-y,a));
A(2,1)=dot(squeeze(cf(:,ti,2)),phix(dht(1,ti)-x,dht(2,ti)-y,a));
A(2,2)=dot(squeeze(cf(:,ti,2)),phiy(dht(1,ti)-x,dht(2,ti)-y,a));

[v,e] = eig(A);
e=diag(e)
if e(1) > 0
 eu = v(:,1);

75

else
 eu = v(:,2);
end
manifold = eu*[-1000 -500 0 500 1000];
manifold(1,:) = manifold(1,:) + dht(1,ti);
manifold(2,:) = manifold(2,:) + dht(2,ti);

n=5;
manifold

for i=ti:t-1

 n=length(manifold);
 manifoldn = advance(manifold,n,cf,x,y,dt,i,a);

 d=diff(manifoldn,1,2);

 %Determination of manifold curvature and point density
 K=2*(d(1,1:n-2).*d(2,2:n-1)-d(2,1:n-2).*d(1,2:n-1))./nm([d(1,2:n-1).*nm(d(:,1:n-
2)).^2+d(1,1:n-2).*nm(d(:,2:n-1)).^2;d(2,2:n-1).*nm(d(:,1:n-2)).^2+d(2,1:n-2).*nm(d(:,2:n-
1)).^2]);
 K=abs([K(1),K,K(n-2)]);
 w=nm(d)./(nm(d).^2+4*delta.^2);
 w=[w,0];
 k1 = (w(1:n-1).*K(1:n-1)+w(2:n).*K(2:n))./(w(1:n-1)+w(2:n));
 k2 = .5*(k1(1:n-2)+k1(2:n-1));
 sig = .025*(20*sqrt(k2)+k2).*nm(d(:,2:n-1));
 sig = [sig(1),sig];

 %Dritschel-Ambaum Node Redistribtuion2
 q=sum(sig);
 N=round(q)+2;
 if N > 4
 pp=zeros(N-1,1);
 manifold =zeros(2,N);
 j=1;
 for k=2:N
 p=(1/sig(j))*((q/N).*(k-1)-sum(sig(1:j-1)));
 while p > 1
 j=j+1;
 p=(1/sig(j))*((q/N).*(k-1)-sum(sig(1:j-1)));
 end
 if p > 0
 pp(k-1)=j+p;
 end
 end
 manifold =
[manifoldn(:,1),[spline(1:n,manifoldn(1,1:n),pp),spline(1:n,manifoldn(2,1:n),pp)]',manifoldn(:,n)
];
 else
 manifold = manifoldn;
 end

 if i
 N=length(manifold);
 usm(:,1:N,i+1) = manifold;

 end
 disp([num2str(i),' ',num2str(N),' nodes'])

% cla
% plot(manifold(1,:),manifold(2,:),'b-o')
% plot(dht(1,i+1),dht(2,i+1),'ko')
% plot(x,y,'.','MarkerSize',1)
% legend(['Time-',num2str(i+1),' No of Nodes-',num2str(max(N+1,n))])
% axis([4e5 4.3e5 4.18e6 4.25e6])
% m(:,i-ti+1)=getframe;
end

76

%save m.mat m
%movie2avi(m,'unstable.avi','FPS',8)

function manifold = advance(manifold,n,cf,x,y,dt,i,alpha)
for j=1:n
 k1=dot(squeeze(cf(:,i,1)),phi(manifold(1,j)-x,manifold(2,j)-y,alpha));
 j1=dot(squeeze(cf(:,i,2)),phi(manifold(1,j)-x,manifold(2,j)-y,alpha));
 k2=.5*(dot(squeeze(cf(:,i,1)),phi(manifold(1,j)+.5*dt*k1-x,manifold(2,j)+.5*dt*j1-
y,alpha))+dot(squeeze(cf(:,i+1,1)),phi(manifold(1,j)+.5*dt*k1-x,manifold(2,j)+.5*dt*j1-
y,alpha)));
 j2=.5*(dot(squeeze(cf(:,i,2)),phi(manifold(1,j)+.5*dt*k1-x,manifold(2,j)+.5*dt*j1-
y,alpha))+dot(squeeze(cf(:,i+1,2)),phi(manifold(1,j)+.5*dt*k1-x,manifold(2,j)+.5*dt*j1-
y,alpha)));
 k3=.5*(dot(squeeze(cf(:,i,1)),phi(manifold(1,j)+.5*dt*k2-x,manifold(2,j)+.5*dt*j2-
y,alpha))+dot(squeeze(cf(:,i+1,1)),phi(manifold(1,j)+.5*dt*k2-x,manifold(2,j)+.5*dt*j2-
y,alpha)));
 j3=.5*(dot(squeeze(cf(:,i,2)),phi(manifold(1,j)+.5*dt*k2-x,manifold(2,j)+.5*dt*j2-
y,alpha))+dot(squeeze(cf(:,i+1,2)),phi(manifold(1,j)+.5*dt*k2-x,manifold(2,j)+.5*dt*j2-
y,alpha)));
 k4=dot(squeeze(cf(:,i+1,1)),phi(manifold(1,j)+dt*k3-x,manifold(2,j)+dt*j3-y,alpha));
 j4=dot(squeeze(cf(:,i+1,2)),phi(manifold(1,j)+dt*k3-x,manifold(2,j)+dt*j3-y,alpha));
 manifold(:,j) = manifold(:,j) + (dt/6)*[k1+2*k2+2*k3+k4;j1+2*j2+2*j3+j4];
end

function k =nm(a)
k=sqrt(a(1,:).^2+a(2,:).^2);

 Finally, the code necessary for computation of the stable manifold is below.

function stm=find_stm(dht,t)
%Computation of the Stable Manifold of a
%general dynamical system (aperiodic non-autonomous)
%defined as a data set in 'test.mat'
%Uses Dritschel-Ambaum criteria for point insertion, Dritschel node
%redistribution and cubic spline interpolation
%Nathan Brasher last updated 29 NOV 2004

%cla
%hold on
load 1999

stm=zeros(2,5,505);

ti=1;
delta=1e3;
tL=505;

if t < ti
 disp(['Manifold Cannot be Output before t=',num2str(dt*(ti-1))])
 return
end

A=zeros(2);

A(1,1)=dot(squeeze(cf(:,tL,1)),phix(dht(1,tL)-x,dht(2,tL)-y,a));
A(1,2)=dot(squeeze(cf(:,tL,1)),phiy(dht(1,tL)-x,dht(2,tL)-y,a));
A(2,1)=dot(squeeze(cf(:,tL,2)),phix(dht(1,tL)-x,dht(2,tL)-y,a));
A(2,2)=dot(squeeze(cf(:,tL,2)),phiy(dht(1,tL)-x,dht(2,tL)-y,a));

[v,e] = eig(A);
e=diag(e)
if e(1) > 0
 eu = v(:,2);

77

else
 eu = v(:,1);
end
manifold = eu*[-1000 -500 0 500 1000];
manifold(1,:) = manifold(1,:) + dht(1,tL);
manifold(2,:) = manifold(2,:) + dht(2,tL);

n=5;

for i=tL:-1:t+1

 n=length(manifold);
 manifoldn = regress(manifold,n,cf,x,y,dt,i,a);

 d=diff(manifoldn,1,2);

 %Determination of manifold curvature and point density
 K=2*(d(1,1:n-2).*d(2,2:n-1)-d(2,1:n-2).*d(1,2:n-1))./nm([d(1,2:n-1).*nm(d(:,1:n-
2)).^2+d(1,1:n-2).*nm(d(:,2:n-1)).^2;d(2,2:n-1).*nm(d(:,1:n-2)).^2+d(2,1:n-2).*nm(d(:,2:n-
1)).^2]);
 K=abs([K(1),K,K(n-2)]);
 w=nm(d)./(nm(d).^2+4*delta.^2);
 w=[w,0];
 k1 = (w(1:n-1).*K(1:n-1)+w(2:n).*K(2:n))./(w(1:n-1)+w(2:n));
 k2 = .5*(k1(1:n-2)+k1(2:n-1));
 sig = .025*(20*sqrt(k2)+k2).*nm(d(:,2:n-1));
 sig = [sig(1),sig];

 %Dritschel-Ambaum Node Redistribtuion
 q=sum(sig);
 N=round(q)+2;
 if N > 4
 pp=zeros(N-1,1);
 manifold =zeros(2,N);
 j=1;
 for k=2:N
 p=(1/sig(j))*((q/N).*(k-1)-sum(sig(1:j-1)));
 while p > 1
 j=j+1;
 p=(1/sig(j))*((q/N).*(k-1)-sum(sig(1:j-1)));
 end
 if p > 0
 pp(k-1)=j+p;
 end
 end
 manifold =
[manifoldn(:,1),[spline(1:n,manifoldn(1,1:n),pp),spline(1:n,manifoldn(2,1:n),pp)]',manifoldn(:,n)
];
 else
 manifold = manifoldn;
 end

 if i
 N=length(manifold);
 usm(:,1:N,i+1) = manifold;

 end
 disp([num2str(i),' ',num2str(N),' nodes'])

% if mod(i,6) == 0
% cla
% plot(manifold(1,:),manifold(2,:),'b-o')
% plot(dht(1,i+1),dht(2,i+1),'ko')
% plot(x,y,'r.','MarkerSize',1)
% legend(['Time-',num2str(i+1),' No of Nodes-',num2str(max(N+1,n))])
% axis([3.6e5 4.1e5 4.26e6 4.36e6])

78

% m(:,i-ti+1)=getframe;
% end
end
%save m.mat m
%movie2avi(m,'dritschel.avi','FPS',8)

function manifold = regress(manifold,n,cf,x,y,dt,i,alpha)
dt=-dt;
for j=1:n
 k1=dot(squeeze(cf(:,i,1)),phi(manifold(1,j)-x,manifold(2,j)-y,alpha));
 j1=dot(squeeze(cf(:,i,2)),phi(manifold(1,j)-x,manifold(2,j)-y,alpha));
 k2=.5*(dot(squeeze(cf(:,i,1)),phi(manifold(1,j)+.5*dt*k1-x,manifold(2,j)+.5*dt*j1-
y,alpha))+dot(squeeze(cf(:,i-1,1)),phi(manifold(1,j)+.5*dt*k1-x,manifold(2,j)+.5*dt*j1-
y,alpha)));
 j2=.5*(dot(squeeze(cf(:,i,2)),phi(manifold(1,j)+.5*dt*k1-x,manifold(2,j)+.5*dt*j1-
y,alpha))+dot(squeeze(cf(:,i-1,2)),phi(manifold(1,j)+.5*dt*k1-x,manifold(2,j)+.5*dt*j1-
y,alpha)));
 k3=.5*(dot(squeeze(cf(:,i,1)),phi(manifold(1,j)+.5*dt*k2-x,manifold(2,j)+.5*dt*j2-
y,alpha))+dot(squeeze(cf(:,i-1,1)),phi(manifold(1,j)+.5*dt*k2-x,manifold(2,j)+.5*dt*j2-
y,alpha)));
 j3=.5*(dot(squeeze(cf(:,i,2)),phi(manifold(1,j)+.5*dt*k2-x,manifold(2,j)+.5*dt*j2-
y,alpha))+dot(squeeze(cf(:,i-1,2)),phi(manifold(1,j)+.5*dt*k2-x,manifold(2,j)+.5*dt*j2-
y,alpha)));
 k4=dot(squeeze(cf(:,i-1,1)),phi(manifold(1,j)+dt*k3-x,manifold(2,j)+dt*j3-y,alpha));
 j4=dot(squeeze(cf(:,i-1,2)),phi(manifold(1,j)+dt*k3-x,manifold(2,j)+dt*j3-y,alpha));
 manifold(:,j) = manifold(:,j) + (dt/6)*[k1+2*k2+2*k3+k4;j1+2*j2+2*j3+j4];
end

function k =nm(a)
k=sqrt(a(1,:).^2+a(2,:).^2);

