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Abstract

A nonlinear differential game theoretic intercept guidance law for short range missiles is

derived. Differential geometric transformations are used to convert the nonlinear missile and the

target models into a convenient form for the formulation and solution of the guidance problem.

Guidance law is then derived using the necessary conditions for optimality. Due to the inclusion

of all the significant nonlinearities in the formulation, the guidance law is useful in advanced

missiles executing large angle of attack maneuvers. The guidance law performance is illustrated

in air-to-surface and air-to-air intercept missions.

Introduction

Recent aeronautical research has identified high angle of attack maneuverability and direct

force capabilities as the keys to future combat aircraft air superiority [1 - 3]. High angle of attack

maneuvers involve sustained flight at angles of attack far beyond the conventional stall limits,

while direct force capabilities enable aircraft to maneuver at arbitrary fuselage attitudes. The X-

31 program at NASA Dryden Flight Research Center has investigated the development and use

of these enhanced fighter maneuverability (EFM) concepts through an ambitious flight test-based

program [4].

These developments have major implications on missile technologies. Superior

maneuverability of high angle of attack aircraft will demand significantly better agility from

tactical missiles. In the air-to-surface missions, missile launch at arbitrary aircraft attitudes will

require the missile airframe to be able to maneuver effectively through the high angle of attack

regime to ensure successful target intercept. Modern stealth fighters are able to approach targets

at close ranges without being detected. This capability may require unusual missile launch
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geometries to ensure mission success. For instance, in order to ensure a safe egress out of hostile

territory, a missile launch might be required while the aircraft is heading away from the target.

Another launch scenario may involve large magnitude missile maneuvers to avoid known

obstacles in order to achieve target intercept. In all these cases, the missile will encounter the

high angle of attack flight regime.

Designing a satisfactory autopilot and guidance system for such missiles will require the use

of multiple control strategies and techniques. This paper addresses the development of an

intercept guidance law for high angle of attack missiles. The performance of the missile guidance

law is demonstrated using a pitch-plane rigid-body simulation of an air-to-surface and air-to-air

intercept engagements. High angle of attack missile autopilot design issues are addressed in a

companion paper  [5].

A block diagram of a pitch plane missile flight control system is given in Figure 1. The

guidance law generates steering commands to orient the missile velocity vector in the direction

of the target. The autopilot has the responsibility for tracking the normal acceleration command

while stabilizing the missile airframe. The aerodynamic surfaces are used for high speed low

angle of attack flight,  while a combination of reaction jets and aerodynamic surfaces may be

employed in the high angle of attack regime. An actuator sharing logic converts the actuator

commands from the autopilot into the commands for the aerodynamic surface actuator and the

reaction jets based on the flight condition. Reaction jets may be commanded whenever the

aerodynamic surfaces saturate.
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Fig. 1. Missile Flight Control System

The missile velocity vector can be oriented in a desired direction by applying a force normal

to the direction of the instantaneous velocity vector. At low angles of attack, the velocity vector

can be oriented by using the aerodynamic force normal to the missile body as is done in

conventional missile configurations. However, in high angle of attack missiles, a force normal to

the velocity vector may include both the aerodynamic normal force and a component of the main

motor thrust during the initial portion of the flight.

Considering the pitch plane, The net normal acceleration is given by the expression:

an = az cos α - ax sin α

az and ax are the acceleration components along the XB and ZB body axes, and α is the angle of

attack, see Figure 2 for a definition of the conordinate system. Note that at low angles of attack,

the acceleration along the ZB axis adequately approximates the acceleration normal to the

velocity vector.
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Fig.2. Missile Pitch Plane Coordinate System

Missile Model

 The pitch-plane rigid body model of the missile incorporates two translational degrees of

freedom and a rotational degree of freedom. Figure 2 illustrates the missile coordinate systems

and the variables of interest. The missile equations of motion are expressed in terms of two

coordinate systems. The coordinate system X - Z is used to define the position and attitude of the

missile with respect to an earth fixed reference, while the body fixed coordinate system XB - ZB

is used to define the missile velocity components and body rates. Aerodynamic forces and

moments are also expressed in the body frame. The direction Z in the earth-fixed coordinate

system points in the direction of the local gravity vector.

The missile equations of motion in the pitch plane are given by the following six nonlinear

differential equations [6].

u = T - FA /m - g sin θ - q w 
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w = q u + g cos θ - FN + Fr /m

q = M - lrFr
Iyy

  ,  θ = q

zM = VT sin θ - α , xM = VT cos θ - α

These equations assume a flat, non-rotating earth with a quiescent atmosphere. In these

expressions, u is the missile velocity component along the XB body axis, w is the velocity

component along the ZB body axis, T is the missile thrust, FA is the axial force, FN is the

normal force, m is the vehicle mass, g the acceleration due to gravity, θ the pitch attitude, q the

pitch rate, Fr is the force generated by the reaction jets, and lr is the reaction jet lever arm. M is

the aerodynamic pitching moment, Iyy is the pitch moment of inertia,  - zM is the altitude, and xM

is the down range. The variable γ shown in Figure 2 is the flight path angle.

The form of the missile aerodynamic forces and moments, and the definition of other related

variables are given by the following expressions:

FA = CA(Mach, α,  δ) q s

FN = CN(Mach, α,  δ) q s

M = Cm(Mach,α,  δ) q s lref

CA is the axial force coefficient, CN is the normal force coefficient, and Cm is the pitching

moment coefficient, all given as functions of Mach number, angle of attack α and fin deflection

δ. The variable s is the reference area and lref is the reference length. Mach number, dynamic

pressure q , total velocity VM, and angle of attack  α are defined as:

Mach = VM/a, q = 1
2

 ρ VM
2 ,  VM = u2 + w2 , α = tan-1 w/u

A point mass model of the missile can be obtained by assuming that the missile pitch attitude

dynamics is much faster than the translational dynamics. In this case, the missile can be

considered to be in moment equilibrium at each flight condition, permitting the neglection of the

missile pitch attitude dynamics. Next, the forces in the body frame may be resolved along the

inertial frame, leading to the missile point-mass model in the inertial frame as:

xM = T - FA
m  cos θ - FN + FR

m  sinθ
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zM = - T - FA
m  sin θ - FN + FR

m  cos θ + g

Target Model

A passive ground target and an actively maneuvering aircraft target model are used in the

present research. For the air-to-air case, the target is assumed to be a high performance aircraft

capable of maximum 9 g normal acceleration maneuvers.  Point-mass model of the target aircraft

is given by the following dynamic equations:

VT = TT - DT
mT

 - g sin γ T

γ T = 
g

VT

LT
mTg - cos γ T

xT = VT cos γ T

hT = VT sin γ T

VT is the aircraft speed, γT is the flight path angle, TT is the aircraft thrust, DT is the aircraft

drag, LT the lift, mT its mass, and g is the acceleration due to gravity. xT and hT are the target

position components in an earth fixed inertial frame. This model assumes that the aircraft thrust

acts along its path, a flat non-rotating earth, and a quiescent atmosphere. Figure 3 shows the

definition of some of the variables.

VT

γ

TT

L

h

x

Fig. 3. Target Coordinate System

For the present analysis, the target aircraft will be assumed to fly with maximum engine

thrust, while maneuvering using the lift L. Differentiating the down range and altitude equations
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once with respect to time and substituting for the rate of change of airspeed, and flight path

angle, the target equations of motion in the inertial frame can be as:

xT= TT - DT
mT

 cos γ T - LT
mTg  g sin γ T

hT= TT - DT
mT

 sin γ T +  LT
mTg  g cos γ T - g

This model can be made consistent with the missile coordinate system defined in Figure 2 by

defining zT = - hT . Moreover, in order to avoid having to deal with thrust and drag models, it is

often convenient to model the target in terms of acceleration components along and

perpendicular to the velocity vector. With this, the point-mass target model can be written in a

concise form as:

xT= aVT cos γ T - anT sin γ T

zT= - aVT sin γ T -  anT g cos γ T + g

During missile encounters, a high performance aircraft tends to use maximum thrust, while

maneuvering using the acceleration normal to the velocity vector. Thus, it is reasonable to

assume that the acceleration component aVT remains constant during the engagement, while the

pilot maneuvers using the normal acceleration component anT. In most manned high

performance aircraft, the normal acceleration  is constrained to stay within about 9 g’s.

The missile and target models developed in the previous section and in this section will be

used in the following to develop the missile guidance law.

Missile Guidance Law

Missile guidance law development presented in this paper is based on differential game

theory [7]. If the target is capable of employing evasive maneuvers, differential game theory can

generate optimal strategies for both missile and the target.  It will be assumed in the guidance law

derivation that the target is capable of evasive maneuvers. Restricting the results to the case of

stationary or non-maneuvering target is straightforward.

Direct application of differential game theory to the nonlinear missile/target dynamics will

produce an intractable two-point boundary-value problem, which will require powerful numerical

algorithms for solution. An alternate approach is to employ transformations to convert the

differential game into a more tractable form as in References 8 and 9. In References 8 and 9, the
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nonlinear equations of motion for the flight vehicles are first transformed into a linear time-

invariant form using a state feedback transformation. The state feedback transformation

essentially changes the basis of the state space, enabling the equations of motion to be

represented in a linear, time-invariant form. Differential game theory is then applied to the

transformed models. The resulting guidance law is subsequently transformed back to the original

coordinates to yield the nonlinear guidance law. The results in Reference 8 and 9 did not permit

the direct imposition of hard control limits. The present research allows such control constraints,

but requires more complex computations for on-board implementation.

The state transformation can be based on the performance objectives of the guidance law.

Since the objective of the missile is to get as close as possible to the target at the end of the

differential game, define a new variable:

η = 1
2

 a1(xT - xM)2 + a2(zT - zM)2

To reiterate, the variables xM, zM are the missile position components in an inertial frame, and

xT, zT are the target position components in the same inertial frame. The parameters a1 and a2

control the relative weight between the down-range and altitude errors. These weighting factors

can be used to control the target intercept angle. Note that if the weighting factors a1 and a2 were

unity, then η is half the square of the range to the target. This quantity will be positive at missile

launch, and will be zero at the intercept. Starting from a positive value at launch, the objective of

the missile guidance is to drive η to smallest possible value.

The variable η can also be considered to be the square of a miss distance. Differentiating the

expression for η twice with respect to time, one has:

η = a1(xT - xM) (xT - xM) + a2(zT - zM) (zT - zM)

η = a1 (xT - xM)2 + a2 (zT - zM)2+a1(xT - xM) (xT - xM) + a2(zT - zM) (zT - zM)

The second expression can be written in a more succinct form as:

η = W - U

With,
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U = a1(xT - xM) xM + a2(zT - zM) zM

W =  a1 (xT - xM)2 + a2 (zT - zM)2 + a1(xT - xM)  xT + a2(zT - zM) zT

U can be treated as the control variable that the missile uses to drive the miss distance

towards zero, while W can be treated as the control variable that the target uses to increase the

miss distance.

Substituting for the missile and target acceleration components in the inertial frame, one has:

U = a1(xT - xM)  cos θ - a2(zT - zM)  sin θ  T - FA
m

        -  a1(xT - xM)  sinθ + a2(zT - zM) cos θ  FN + FR
m  + a2(zT - zM) g

Similarly, the target model can be used to relate W to the target control variables, viz., the

acceleration along and normal to the target velocity vector.

W =  a1 (xT - xM)2 + a2 (zT - zM)2 +   [a1(xT - xM) cos γ T -  a2(zT - zM) sin γ T ] aVT

 -  [a2(zT - zM) cos γ T +  a1(xT - xM) sin γ T] anT + a2(zT - zM) g

The transformed model can next be used to design the missile guidance law.

Differential Game Based Guidance Law

It will be seen that the application of differential game theory to the guidance problem

generates strategies for both the missile and the target. For this purpose, it is convenient to first

define two new variables ζ1, ζ2 such that

ζ1 = η ,  ζ2 = η

The equations of motion for the engagement can then be written as:

ζ1 = ζ2, ζ2 = W - U

Next consider a differential game in which the missile tries to drive ζ1 to zero in minimum

time. The target attempts to prevent this, failing which, it attempts to maximize the time of
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capture. This differential game can be cast as a two-sided optimal control problem. Towards this

end, formulate the variational Hamiltonian [10] as:

H = 1 + λ1ζ2 + λ2 W - U

The necessary conditions for optimality can be obtained by proceeding formally according to

optimal control theory. The costate equations are:

λ1 = 0,   λ2 = - λ1

The optimal strategy for the target and the missile can be selected based on the the bang-bang

control principle [10]. Since the target is attempting to maximize the final time, and because the

control variable W appears linearly in the Hamiltonian, one has:

 W = Wmax, if λ2 > 0
W = Wmin,  if λ2 < 0

The missile is attempting to minimize the intercept time, which requires the Hamiltonian to be

minimized. Moreover, since U appears linearly in the Hamiltonian with a negative sign, the

missile optimal control is given by

 U = Umax, if λ2 > 0
U = Umin,  if λ2 < 0

Next, the costate equations can be integrated to yield:

λ1 = c1, λ2 = - c1 t + c2

t  is the current time and c1 and c2 are arbitrary constants. Since there are no restrictions on the

relative velocity ζ2 at the final time tf, one has that: λ2(tf) = 0. Using this fact, the costate

equations can be rewritten as:

λ1 = c1, λ2 = c1( tf -  t)
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Since the difference between the final time and the current time is always greater than or

equal to zero, the sign of the arbitrary constant c1 essentially determines the sign of the costate

λ2. The costate equations suggest that the sign of the costate λ2 will not change over the duration

of the game. Consequently, the direction of the control U for the missile and the target control W

remain unchanged throughout the engagement. Thus, if the sign of the arbitrary constant c1 is

known at the initial time, the direction of the controls can be determined.

However, determining the sign of the arbitrary constant c1 is not simple, because the

corresponding value of the state ζ1 at the final time is specified to be zero. Actual determination

will require integrating the state equations forward in time, and enforcing the specified terminal

conditions.

An alternate approach is to use the observation that the target is attempting to increase the

range between itself and the missile right from the very first instant.  Thus, one has that W =

Wmax at the initial time. Since optimal control theory requires the control to remain in the same

direction throughout the game, this implies that  λ2 < 0. As a result, the optimal controls for the

missile and the target are given by:

 WOpt = Wmax,  UOpt = Umax

i. e. both the missile and the target must use the maximum value of controls throughout the

game. It may be observed that from any arbitrary initial conditions, capture will eventually occur

if one can guarantee that UOpt > WOpt throughout the duration of the game.

From the foregoing, one may conclude that the guidance calculations essentially consist of

determining the actual control settings for the target and the missile such that the resulting values

of U and W are the optimal values. Various approximations that facilitate the computation of the

optimal values will be discussed in the next subsection.

Finding the Maximum Values of the Control Variables

The foregoing analysis reduced the guidance problem to that of finding the maximum values

of U and W at each guidance interval. Approximations for both the target and the missile will be

separately discussed in the following.
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Target

The optimal value of target control variable to be used in the differential game can be found

by examining the expression for W.

W =  a1 (xT - xM)2 + a2 (zT - zM)2 +   [a1(xT - xM) cos γ T -  a2(zT - zM) sin γ T ] aVT

 -  [a2(zT - zM) cos γ T +  a1(xT - xM) sin γ T] anT + a2(zT - zM) g

Since the target is assumed to be flying with full throttle, the target’s control variable is its

acceleration component normal to the flight path anT. In most flight vehicles, the normal

acceleration is constrained satisfy a specified limit:  anT  Š amax. Since the normal acceleration

appears linearly in the expression for W, the control strategy for the target can be found to be:

If  [a2(zT - zM) cos γ T +  a1(xT - xM) sin γ T] < 0,   anT =  amax

If [a2(zT - zM) cos γ T +  a1(xT - xM) sin γ T] > 0,  anT =  - amax

This control strategy will result in maximizing the miss distance between the two vehicles. Any

deviation from this strategy will cause the target to be intercepted sooner than the optimal time.

Missile

The expression for U can be used to determine the missile angle of attack corresponding to

the optimum value of the missile control variable. However, the development is not as simple as

that of the target, because a more complex model of the missile is used in the analysis. The

missile pseudo-control variable U is given by:

U = a1(xT - xM)  cos θ - a2(zT - zM)  sin θ  T - FA
m

-  a1(xT - xM)  sinθ + a2(zT - zM) cos θ  FN + FR
m  + a2(zT - zM) g

It is important to note that the missile pitch attitude θ is a combination of the missile angle of

attack and the flight path angle, see Figure 2. for details. The flight path angle depends on the

missile velocity components. Since the aerodynamic forces on the airframe depend on the missile
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angle of attack, it is convenient to eliminate the missile pitch attitude from the expression for U.

In this case, U is given by:

     U = a1(xT - xM)  cos α + γ  - a2(zT - zM)  sin α + γ   T - FA
m

 -  a1(xT - xM)  sin α + γ  + a2(zT - zM) cos α + γ  FN + FR
m  + a2(zT - zM) g

with γ  = tan-1 -zM/xM .

The aerodynamic forces FA and FN depend on the missile angle of attack, fin deflection and

reaction jet thrust. Since the fin deflection and the reaction jets are used primarily for controlling

the missile attitude, one may assume that these variables do not significantly influence U for the

purposes of computing the guidance commands. A more refined approach may first compute the

fin deflection and the reaction jet thrust required to maintain the net pitching moment at zero, and

then use these values in the expression for U. In the interests of simplifying the computations, the

former approach will be followed here. Thus, in the present work, the expression for the pseudo-

control variable U will be optimized by assuming that the normal forces generated by the

reaction jets and fin deflections are small.

Since the missile longitudinal acceleration is largely governed by the engine thrust, one may

assume that it is relatively unaffected by the angle of attack. In this case, assuming that the

missile longitudinal acceleration measurements are available, one may write:

U = a1(xT - xM)  cos α + γ  - a2(zT - zM)  sin α + γ   axM

        -  a1(xT - xM)  sin α + γ  + a2(zT - zM) cos α + γ  
CN(α) q s

m  + a2(zT - zM) g

CN(α) is the normal force coefficient, q  is the dynamic pressure, and s is the reference area. The

problem of finding UOpt can be expressed in a succinct form as:

UOpt = a2(zT - zM) g + max
α  Š αmax{ a1(xT - xM)  cos α + γ  - a2(zT - zM)  sin α + γ   axM    

                                  -  a1(xT - xM)  sin α + γ  + a2(zT - zM) cos α + γ  
CN(α) q s

m }
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The value of α that maximizes this expression will result in target intercept. Since α appears

nonlinearly in this expression, a numerical one-dimensional search has to be employed to

determine the optimum angle of attack. Numerically determined angle of attack can then be used

to compute the normal acceleration command the autopilot. This completes the development of

the guidance law.

It needs to be pointed out here that although game theoretic guidance laws have been

previously discussed [11 - 13], they have all been based on either linearized missile models or on

low-order model approximations. The approach advanced in this paper represents the first

attempt at synthesizing a nonlinear game-theoretic intercept guidance law employing full-order

missile model.

Guidance Law Evaluation

The intercept guidance law performance has been evaluated in a nonlinear rigid body

simulation of a hypothetical missile, together with an autopilot for acceleration command

tracking. Simulation results for two different engagements will be discussed in the following.

Interception of Non-Maneuvering Surface Targets

The first mission scenario considered is that of an aircraft launching the missile while

climbing away from the target at about 45 degrees flight path angle. At the launch instant, the

aircraft is at an altitude of 1500 meters. Such an engagement scenario can arise while

approaching the target using a stealth aircraft and launching the missile as the aircraft is moving

away from the threat area.

Immediately after the launch, the missile turns at the maximum permissible angle of attack,

while accelerating towards the target. Note that no coasting phase was introduced immediately

after release from the launch aircraft. Such an initial coast phase will be necessary in practical

situations to ensure safe separation between the missile and the launch aircraft. Figure 4 shows a

family of missile trajectories, with the launch aircraft flying away from the target at a flight path

angle of 45 degrees. The target conditions represent intercept in front and behind the aircraft

down range position at launch. It can be observed that in every case, the intercept trajectories are

characterized by a tight turn, followed by a relatively straight flight towards the target.

The trajectory marked ’A’ in Figure 4 is interesting, and somewhat unusual. The trajectory

behavior can be explained as follows. As presently configured, the guidance law drives the

missile towards the target while covering the least distance. The relative position of the target
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with respect to the missile at launch determines the direction in which the trajectory will evolve.

Thus, the trajectory ’A’ represents the shortest path to the target. In reality, introduction of a coast

phase right after launch from the aircraft may depress the flight angle at ignition sufficiently to

prevent trajectories such as ’A’ from occurring in real situations.

The instantaneous missile range to the target for each air-to-surface missile trajectory  is shown

in Figure 6.
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Flight path angle histories along the air-to-surface trajectories given in Figure 7 illustrate the

fact that the intercept trajectories consist of an initial turn at the highest possible rate, followed

by near straight-line trajectories.
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Interception of Maneuvering Flying Targets

The interception of an actively maneuvering target next presented to illustrate the

performance of the guidance law. The first engagement scenario consists of the launch aircraft in

level flight at an altitude of 6000 meters, heading towards a target flying level at 5200 meters.

The aircraft is assumed to be flying at 0.55 Mach. The missile is launched when the target is

directly below the aircraft. The target is assumed to be capable of maneuvering with 9 g normal

acceleration. The target airspeed at missile launch is 132 m/s. As soon as the target detects the

missile launch, it maneuvers in an attempt to increase the distance between itself and the missile.

The superior acceleration capabilities of the missile defeat this evasive tactic, and the target is

intercepted at about 4.25 seconds after the launch. Note that the evasive maneuver employed by

the target in the present research is completely dependent on the chosen performance index for

the differential game. For instance, the target may employ a different evasive maneuver if the

performance index is changed from flight time to terminal energy.

Trajectories of the launch aircraft, target, and the missile are shown in Figure 7. As in the air-

to-surface engagements, the missile initially flies at a high angle of attack, and subsequently

maintains moderate angles of attack until intercept.
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Several more intercept trajectories against maneuvering targets are given in Figure 8. In each

case shown in Figure 8, the target is initially flying level with a speed of 200 m/s, and has a 9 g

normal acceleration capability. Target position at missile launch for each case is identified by a

numeral in Figure 8.
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Fig. 8. Air-to-Air Missile Trajectories Against

Maneuvering Targets

(1, 2, 3, 4: Target at Missile Launch)

The behavior of the targets in each scenario given in Figure 8 can be explained by recalling

the optimality criterion employed in the derivation of the target evasion guidance law. Since the

optimality criterion for the target is to maximize the time of capture, at each instant, the target

chooses the sign of its normal acceleration to drive the intercept time as high as possible.

Flight path angle histories for the air-to-air missile engagements are given in Figure 5.22.

Once again, high angle of attack initial maneuvering, followed by relatively gentle trajectories

are clearly observable. Finally, missile pitch attitude histories along the engagement are given in

Figure 5.23.



Copyright 1996 by Optimal Synthesis. All Rights Reserved. 

19

543210
0

1000

2000

3000

Time (sec) 

R
an

ge
 t

o 
T

ar
ge

t,
 m

Fig. 5.21. Range-to-Target as a Function of Time
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Figure 5.18.
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The numerical results presented in this section amply demonstrate the capabilities of the

guidance law in various engagement scenarios. The methods developed in this paper can be

extended to deal with more complex missile models.

Conclusions

This paper presented the development of a novel guidance law using feedback linearization

and differential game theory. The missile model was first transformed into a linear time invariant

form.  In the case of a maneuvering target, the target model was also similarly transformed.

Using a performance index involving the mini-maximization of the intercept time, differential

game theory was applied to synthesize the guidance law. Adjustable weights in the guidance law

can be used to fix the missile flight path angle at target intercept

The guidance law was integrated with an autopilot in a nonlinear missile simulation and

evaluated against various targets. Several air-to-surface engagements involving launch against

targets in front and behind the aircraft were studied. In every case, the missile accomplishes

target intercept, with over 210 degrees flight path angle changes in certain scenarios. Although

the emphasis of the study was on air-to-surface missions, a few air-to-air engagement scenarios

were also examined. For air-to-air engagements, the target was assumed to be capable of 9 g

evasive maneuvers. Successful interceptions under various engagement geometries were

demonstrated.
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