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Adaptive Radar Detection of Extended Gaussian Targets

Abstract  We have addressed the derivation and the analysis of an adaptive 
decision scheme to detect possible extended targets modeled as Gaussian vectors 
known to belong to a given subspace; noise returns from the cells under test 
are modeled as independent and identically-distributed Gaussian vectors with 
one and the same covariance matrix; a set of secondary data, free of signal 
components is also available; secondary data are Gaussian-distributed and share 
the same covariance matrix of noise in the cells under test but for a possible 
different power level.

The proposed detector relies on a two-step design procedure: first we derive the 
GLRT assuming that the noise covariance matrix is known up to a scale factor; 
then, we come up with a fully adaptive detector by replacing the structure of the 
covariance matrix of the noise with the sample covariance matrix based upon the 
secondary data. The first step requires the maximum likelihood (ML) estimate of 
the covariance matrix of the useful signal (under the signal-plus-noise hypothesis) 
which, in turn, has a known structure. That ML estimate has been firstly proposed 
by Bresler in [3]; a different derivation is also proposed herein. 

The performance assessment is conducted resorting to the method proposed in 
[4–5] to model extended targets: therein an exponential model for fully-polarized 
returns has been used assuming that each scattering center can be characterized 
by its (relative) range, amplitude, and polarization elipse.
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ABSTRACT

This paper addresses adaptive detection of extended tar-
gets whose dominant scatterers are modeled as a linear
combination of known modes with jointly Gaussian co-
efficients. At the design stage we consider the following
instances of a priori knowledge about target and noise:
the noise is white with unknown power level while the co-
variance matrix of the coefficients is either known up to
its eigenvalues or totally unknown (for the first case we
also assume orthogonal modes); or both the noise and
the coefficients covariance matrices are unknown. We
derive GLRT-based detectors for the first two cases and
propose a fully-adaptive detector for the third one by
resorting to secondary data possessing the same covari-
ance matrix of the data under test up to a multiplicative
factor. Finally, we assess the performance of the last two
detectors by resorting to Monte Carlo simulation.

1. INTRODUCTION

A High-Resolution Radar (HRR) can resolve a target into
a number of scattering centers depending on the range ex-
tent of the target, the range resolution capabilities of the
radar, and its operating frequency. Measurements indicate
that radar properties of several targets can be modeled in
terms of a set of scattering centers each parameterized by
its range, amplitude and, possibly, polarization elipse [1].

Properly designed HRRs allow significant enhancement
of the detection performance as shown in [2, and references
therein] where adaptive radar detection of extended deter-
ministic targets, embedded in possibly non-Gaussian distur-
bance, has been addressed. Therein, possible returns from
target’s scattering centers are modeled as signals known up
to multiplicative factors, possibly different from one scat-
terering center to another, namely supposed to belong to
a one-dimensional subspace of the observables. From this
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viewpoint, a more general framework is considered in [3]
where adaptive detection of point-like deterministic targets,
assumed to belong to a known subspace of the observables,
has been addressed. That model has also been generalized
to deal with point-like stochastic targets in [4]. Herein, fol-
lowing the lead of [2, 4], we address adaptive detection of
extended targets modeled as Gaussian signals known to be-
long to a known subspace of the observables.

To be more definite, assume that an array ofL anten-
nas sensesK range cells and that each antenna collectsT
samples from each of those cells; thus, denoting byxk the
N -dimensional vector, withN = LT , containing returns
from thek-th cell, k = 1, . . . ,K, the problem at hand is
that of detecting the possible presence of the target’s scat-
tering centerssk ∈ CN

, k = 1, . . . ,K, modeled as a lin-
ear combination ofr linearly independent modes, namely
assk = Hθk, where the columns of the matrixH ∈ CN×r

are the vectors of the basis while the entries of the vector
θk ∈ Cr

are the coordinates of the possible target’s scat-
terer in thek-th cell. Moreover, we assume that theθks
are (complex) Gaussian vectors with zero-mean and positive
semi-definite covariance matrixRθθ = E[θkθ†k], whereE
denotes statistical expectation and† Hermitian transpose,
i.e.,

θk ∼ CN r(0,Rθθ),

and that theθk ’s are independent. The noise vectorsnk ∈
CN

, k = 1, . . . ,K, are modeled as additive and indepen-
dent complex Gaussian vectors with zero-mean and covari-
ance matrix given byγRnn ∈ CN×N

, γ > 0, i.e. nk ∼
CNN (0, γRnn).

In this paper we design detectors based upon the Gener-
alized Likelihood Ratio Test (GLRT) assuming the follow-
ing instances for target and noise:

• Case 1: Rnn = IN , whereIN denotes theN × N
identity matrix,γ is unknown, and the covariance ma-
trix Rθθ of the θks is known up to its eigenvalues,
e1, . . . , er say. We also assume that the columns of



H are each other orthogonal.

• Case 2: Rnn = IN whileγ and the covariance matrix
Rθθ are unknown.

• Case 3:bothγRnn andRθθ are unknown, butM >
N zero-mean Gaussian vectors with covariance ma-
trix Rnn are available. These vectors will be referred
to in the following as secondary data.

We also assess the performance of detectors designed to
tackle cases 2 and 3 by resorting to Monte Carlo simula-
tion. The derivation of the GLRT for case 2 (unknownRθθ)
is conducted taking advantage of the results reported in [5].

More precisely, the next section addresses the design of
the GLRT-based detectors while Section 3 contains a pre-
liminary performance assessment conducted by resorting to
Monte Carlo simulation.

2. DETECTOR DESIGNS

We cannot implement the likelihood ratio since total or par-
tial ignorance ofRθθ, γ, and, possibly,Rnn is assumed.
Leaving aside case 3, we can resort, instead, to the GLRT
which is tantamount to replacing, under each hypothesis,
the unknown parameters with the maximum likelihood esti-
mates.

To this end, note that the detection problems to be solved
can be re-cast in terms of the following binary hypothesis
test:{

H0 : xk ∼ CNN (0, γIN ) , k = 1, . . . ,K,
H1 : xk ∼ CNN (0,Rss + γIN ) , k = 1, . . . ,K,

where
Rss = E[sks

†
k] = HRθθH†.

2.1. Case 1:γ and theeis unknown

This subsection is aimed at designing a GLRT to deal with
the case thatγ and the eigenvalues ofRθθ are unknown
(while the eigenvectors ofRθθ are known).

For further developments it is necessary to determine the
probability density function (pdf) of the data matrix, i.e.,

X .= [x1 · · ·xK ],

under each hypothesis. The pdf ofX underH0 is given by

f(X | H0, γ) =
1

πNK

(
1
γ

)NK

e−
1
γ

∑K

k=1
x†

k
xk . (1)

The pdf of the data under theH1 hypothesis, instead,
can be determined following the lead of [4]. To this end,
denote byUEU† an eigendecomposition of the positive
semidefinite matrixRθθ; hence,U ∈ Cr×r

is a unitary

matrix, E ∈ Cr×r
is a diagonal matrix with non-negative

diagonal entries,e1, . . . , er, and† denotes conjugate trans-
pose.

It follows that

Rss = H̃ E H̃†,

where
H̃ = HU .=

[
h̃1 · · · h̃r

]
∈ CN×r

is a slice of a unitary matrix (remember thatH†H = Ir).

Moreover, if we denote bỹH⊥ ∈ CN×(N−r)
a matrix

whose columns are orthonormal vectors spanning the or-
thogonal complement of the space described by the columns
of H̃, the following identity holds true

Rss + γIN =
[
H̃ H̃⊥

] [ E + γIr

γIN−r

][
H̃†

H̃⊥†

]
.

It follows that the pdf ofX, underH1, is given by

f(X | H1, γ,E) =
1

πNK

1
γ(N−r)K

r∏
i=1

1
(γ + ei)K

(2)

× e
− 1

γ

∑K

k=1
x†

k
P⊥

H̃
xk−
∑K

k=1

∑r

i=1

x
†
k
P
h̃i

xk

γ+ei ,

whereP
h̃i

andP⊥
H̃

denote the projectors onto the subspace

spanned bỹhi and the orthogonal complement of the sub-
space spanned by the columns ofH̃, respectively.

For further processing, it is also convenient to denote by
gi(·|·), i = 1, . . . , r, the function

gi(X | γ, ei)
.=

1

(γ + ei)
K

e
−
∑K

k=1

x
†
k
P
h̃i

xk

γ+ei ,

and re-cast the pdf of the data matrix, underH1, as

f(X | H1, γ,E) =
1

πNK

1
γ(N−r)K

e
− 1

γ

∑K

k=1
x†

k
P⊥

H̃
xk

×
r∏

i=1

gi(X| γ, ei).

The derivation of the GLRT requires substituting the un-
known parameters by the corresponding maximum likeli-
hood estimates under each hypothesis. Maximizing the pdf
of the data underH0 with respect toγ is straightforward; it
yields

max
γ>0

f(X | H0, γ) =
1

πNK
e−NK

(
NK∑K

k=1 x†kxk

)NK

.

Now focus on the more difficult task to maximize the
pdf of the data matrix with respect to theeis, i = 1, . . . , r,



andγ, under theH1 hypothesis. We attack this problem by
maximizing the pdf with respect to theeis, givenγ. To this
end, it is easy to check that

max
ei≥0

gi(X | γ, ei) =

{
e−K 1

γK
i

, if γ ≤ γi,

1
γK e−

Kγi
γ , if γ ≥ γi,

where

γi
.=

1
K

K∑
k=1

x†kPh̃i
xk, i = 1, . . . , r.

Moreover, note that

max
ei≥0

gi(X | γ, ei), i = 1, . . . , r,

is constant forγ ≤ γi, while its restriction to[γi,+∞[ is a
monotonically decreasing function.

Now, denote byγ(i) the i-th order statistic obtained by
rankingγ1, . . . , γr in ascending order, i.e.,

γ(1) ≤ · · · ≤ γ(r).

Moreover, let

γ̃
.=

1
(N − r)K

K∑
k=1

x†kP
⊥
H̃
xk.

Then, it is easy to check that the function

max
e1≥0,...,er≥0

f(X | H1, γ,E)

attains its maximum (with respect toγ) at γ̃ if γ̃ < γ(1),
while the maximizer is a point of the interval[γ(1), γ̃] if γ̃ ≥
γ(1). More specifically, it is possible to prove the following
theorem.

Theorem 1.The function

max
e1≥0,...,er≥0

f(X | H1, γ,E), γ > 0,

attains its maximum with respect toγ at

γ̂(1), if γ̂(1) ≤ γ(1),
...

γ̂(j), if γ̂(i) > γ(i), i = 1, . . . , j − 1, γ̂(j) ≤ γ(j),
...

γ̂(r+1), if γ̂(i) > γ(i), i = 1, . . . , r,

where

γ̂(j)
.=

(N − r)γ̃ +
∑j−1

i=1 γ(i)

N − r + (j − 1)
, j = 1, . . . , r + 1. (3)

Proof. Let

hj(X | γ) .=
1

πNK

1
γ(N−r)K

e−
K(N−r)̃γ

γ

×

 ∏
i∈N:j≤i≤r

e−K 1
(γ(i))K


×

 ∏
i∈N:1≤i<j

1
γK

e−
Kγ(i)

γ

 ,

j = 1, . . . , r + 1, with∏
i∈∅

1
γK

e−
Kγ(i)

γ = 1

and ∏
i∈∅

e−K 1
(γ(i))K

= 1.

It is easy to check that

maxe1≥0,...,er≥0 f(X | H1, γ,E)

=



h1(X | γ), if 0 < γ ≤ γ(1),
h2(X | γ), if γ(1) ≤ γ ≤ γ(2),

...
hr(X | γ), if γ(r−1) ≤ γ ≤ γ(r),
hr+1(X | γ), if γ ≥ γ(r).

(4)

Moreover, thehj(X | γ) possess the following properties:

• hj(X | γ) ≥ hj+1(X | γ), γ > 0, with equality if
γ = γ(j), j = 1, . . . , r;

• hj(X | γ), γ > 0, attains its absolute maximum at
γ̂(j), j = 1, . . . , r + 1.

It follows that

• if γ̂(1) ≤ γ(1) then

max
e1≥0,...,er≥0

f(X | H1, γ,E), γ > 0,

attains its maximum at̂γ(1) = γ̃.

• If γ̂(1) > γ(1) andγ̂(2) ≤ γ(2), it is also true that

γ(1) < γ̂(2) ≤ γ(2);

moreover, since

max
γ≤γ(1)

h1(X | γ) = h1(X | γ(1)) = h2(X | γ(1))

≤ max
γ(1)≤γ≤γ(2)

h2(X | γ)

= h2(X | γ̂(2)),



we conclude that

max
e1≥0,...,er≥0

f(X | H1, γ, e1, . . . , er), γ > 0,

attains its maximum at̂γ(2). Moreover, forj = 3, . . . , r,
if γ̂(i) > γ(i), i = 1, . . . , j − 1, andγ̂(j) ≤ γ(j), it is
also true that

γ(j−1) < γ̂(j) ≤ γ(j);

moreover, since

max
γ≤γ(1)

h1(X | γ) = h1(X | γ(1)) = h2(X | γ(1))

≤ max
γ(1)≤γ≤γ(2)

h2(X | γ)

= h2(X | γ(2))
...

≤
...

= hj(X | γ(j−1))
≤ max

γ(j−1)≤γ≤γ(j)

hj(X | γ)

= hj(X | γ̂(j)),

we conclude that

max
e1≥0,...,er≥0

f(X | H1, γ,E), γ > 0,

attains its maximum at̂γ(j).

• Similarly, if γ̂(i) > γ(i), i = 1, . . . , r, we conclude
that

max
e1≥0,...,er≥0

f(X | H1, γ,E), γ > 0,

attains its maximum at̂γ(r+1).

The theorem is thus proved.

It follows that

max
γ>0

max
e1≥0,...,er≥0

f(X | H1, γ,E),

is obtained by evaluating the function (4) at its maximizer;
we get

maxγ>0 max
e1≥0,...,er≥0

f(X|H1, γ,E)

=



f1(X|H1), γ̂(1) ≤ γ(1),

f2(X|H1), γ̂(1) > γ(1), γ̂(2) ≤ γ(2),

...
fj(X|H1), γ̂(i) > γ(i), i = 1, . . . , j − 1, γ̂(j) ≤ γ(j),

...
fr(X|H1), γ̂(i) > γ(i), i = 1, . . . , r − 1, γ̂(r) ≤ γ(r),

fr+1(X|H1), γ̂(i) > γ(i), i = 1, . . . , r,

where

fj(X|H1)
.=

1
πNK

e−NK
r∏

i=j

(
1

γ(i)

)K

×

(
N − r + (j − 1)

(N − r)γ̃ +
∑j−1

i=1 γ(i)

)(N−r+(j−1))K

,

andγ̂(j) is given by eqn. (3).

2.1.1. GLRT-based detector

It is then easy to see that the decision statistic of the GLRT
is given by

Λ[X]

=



Λ1[X], γ̂(1) ≤ γ(1),
Λ2[X], γ̂(1) > γ(1), γ̂(2) ≤ γ(2),

...
Λj [X], γ̂(i) > γ(i), i = 1, . . . , j − 1, γ̂(j) ≤ γ(j),

...
Λr[X], γ̂(i) > γ(i), i = 1, . . . , r − 1, γ̂(r) ≤ γ(r),
1, γ̂(i) > γ(i), i = 1, . . . , r,

where

Λj [X] .=

(
1

NK

∑K
k=1 x†kxk

)NK

(
(N−r)γ̃+

∑j−1

i=1
γ(i)

N−r+(j−1)

)(N−r+(j−1))K∏r
i=j

(
γ(i)

)K
2.2. Case 2:γ and Rθθ unknown

Again the pdf of the data matrixX underH0 is given by
eqn. (1). It follows that implementation of the GLRT for the
case at hand requires determining the pdf ofX underH1

and maximizing it with respect toγ andRθθ. The pdf ofX
underH1 is given by

f(X|H1, γ,Rθθ) =
π−NK

|Rss + γIN |K
e−Ktr[R̂(Rss+γIN )−1]

where tr[·] and| · | denote the trace and the determinant of a
square matrix, respectively, while

R̂ =
1
K

XX†.

The maximization of the above pdf with respect toγ > 0
andRθθ ≥ 0 has been addressed in [5] where it has been
shown that

max
γ>0

max
Rθθ≥0

f(X|H1, γ,Rθθ) = max
γ>0

max
Q≥0

g(X|H1, γ,Q)



whereg(X|H1, γ,Q) is given by

g(X|H1, γ,Q) =
e−

K
γ tr[P⊥HR̂+(Q+Ir)−1P]

[(πγ)N |Q + Ir|]K
,

with

Q .=
1
γ
L†RθθL,

P .= L−1H†R̂HL−†,

andL denoting a nonsingularr × r square root factor of
H†H, namely such thatLL† = H†H. Moreover, maxi-
mization ofg(X|H1, γ,Q) has been performed in two steps:
first it is shown that

maxQ≥0 g(X|H1, γ,Q)

=



gr(X| γ), γ ≤ φr,
gr−1(X| γ), φr < γ ≤ φr−1,

...
g1(X| γ), φ2 < γ ≤ φ1,
g0(X| γ), γ > φ1,

where

gj(X|γ) .=
e−jK

(πγ)NK

j∏
i=1

(
γ

φi

)K

e
−K

γ

{
tr[P⊥HR̂]+

∑r

i=j+1
φi

}
,

andφ1, . . . , φr are the eigenvalues of the matrixP ordered
in non-ascending order, i.e.,

φr ≤ · · · ≤ φ1.

Then, it is shown that the following theorem holds true.

Theorem 2.The function

max
Q≥0

g(X | H1, γ,Q), γ > 0,

attains its maximum with respect toγ at

γ̂r, γ̂r ≤ φr,
γ̂r−1, γ̂r > φr, γ̂r−1 ≤ φr−1,

...
γ̂1, γ̂i > φi, i = 2, . . . , r, γ̂1 ≤ φ1,
γ̂0, γ̂i > φi, i = 1, . . . , r,

where

γ̂j
.=

∑r
i=j+1 φi + tr[P⊥

HR̂]
N − j

, j = 0, . . . , r.

Proof. See [5].

It follows that the statistic of the GLRT is given by

Λ[X] =



Λr[X], γ̂r ≤ φr,
Λr−1[X], γ̂r > φr, γ̂r−1 ≤ φr−1,

...
Λ1[X], γ̂i > φi, i = 2, . . . , r, γ̂1 ≤ φ1,
1, γ̂i > φi, i = 1, . . . , r,

(5)
where

Λj [X] .=

(
1

NK

∑K
k=1 x†kxk

)NK

γ̂
(N−j)K
j

∏j
i=1 φK

i

.

This detector will be referred to as a partially-adaptive one.

2.3. Case 3:γ, Rnn and Rθθ unknown

As a final step observe that the above decision statistic can
be modified to address detection in presence of correlated
noise. To this end, assume thatM > N additional Gaussian
vectorsrk ∼ CNN (0,Rnn), k = K +1, . . . ,K +M , free
of signals components, but possessing the same statistical
characterization of the noise in the cells under test, but for a
possible different power level, are available. These vectors
are usually referred to as secondary data. Now we have to
discriminate between theH0 hypothesis that can be re-cast
as{

rk ∼ CNN (0, γRnn) , k = 1, . . . ,K,
rk ∼ CNN (0,Rnn) , k = K + 1, . . . ,K + M,

and theH1 hypothesis which is given by{
rk ∼ CNN (0,Rss + γRnn) , k = 1, . . . ,K,
rk ∼ CNN (0,Rnn) , k = K + 1, . . . ,K + M,

whereRnn denotes the unknown covariance matrix of the
secondary data and, up to a multiplicative factor, that of the
data under test.

Then, we can come up with a fully-adaptive detector
by resorting to detector (5) fed by the whitened dataxk =
R̂−1/2

nn rk, whereR̂nn is the sample covariance matrix based
upon secondary vectors, i.e.,

R̂nn
.=

1
M

K+M∑
k=K+1

rkr
†
k.

This detector will be referred to as a fully-adaptive detector.

2.4. Performance Assessment

In the following we assess the performance of the partially-
adaptive and the fully-adaptive detectors by resorting to stan-
dard Monte Carlo counting techniques. More precisely, in
order to evaluate the threshold necessary to ensure a pre-
assigned value of Probability of False Alarm (Pfa) and the
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Figure 1:Pd vs SNR (dB) of the partially-adaptive detector
for N = 16, r = 3, Pfa = 10−3, γ = 1, K andρθ as
parameters: curves with a square at each data point refer to
ρθ = 0.5 while those with a star correspond toρθ = 0.9;
solid, dashdot, and dotted refer toK = 24, K = 12, and
K = 6, respectively.

Probability of Detection (Pd) we resort to100/Pfa and 1000
independent trials, respectively. It is important to stress that
both detectors have the Constant False Alarm Rate (CFAR)
property with respect toγ.

Figures 1 and 2 plotPd vs the signal-to-noise ratio (SNR)
defined as

SNR=
tr (Rss)

tr (γRnn)

with Rnn = IN for curves of Figure 1. More precisely, the
curves of Figure 1 refer to the partially-adaptive detector
with N = 16, r = 3, γ = 1, an exponentially-correlated
target with one-lag correlation coefficientρθ, i.e.,

Rθθ(i, j) = σ2
θρ
|i−j|
θ , i, j ∈ {1, . . . , r},

K andρθ as parameters. As toH its columns are the first
r vectors of the canonical basis inRN

. The figure high-
lights that the performance improves asρθ increases: as a
matter of fact, since the noise is white the two hypotheses
become more and more distinguishable as the signal corre-
lation increases. In addition, the performance of the detector
improves asK increases. In Figure 2, instead, we plot the
performance of the fully-adaptive detector implemented by
resorting toM = 32 secondary data and assumingγ = 1
and an exponentially-correlated noise with one-lag correla-
tion coefficientρn, i.e.,

Rnn(i, j) = ρ|i−j|
n , i, j ∈ {1, . . . , N}.

For comparison purposes curves of the partially-adaptive
detector, fed by whitened data, are plotted too. The fig-
ure highlights the loss of the fully-adaptive detector with re-
spect to the partially-adaptive one where an unknown noise
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Figure 2: Pd vs SNR (dB) of the partially-adaptive and
the fully-adaptive detector,N = 16, r = 3, ρθ = 0.5,
ρn = 0.6, γ = 1, Pfa = 10−3, K as parameter: curves with
a square at each data point refer to the partially-adaptive
detector while those with a star correspond to the fully-
adaptive one withM = 32; solid, dashdot, and dotted refer
to K = 24, K = 12, andK = 6, respectively.

covariance must be estimated from secondary data. A thor-
ough performance assessment is the object of outgoing re-
search activity.
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Problem Formulation

This paper addresses adaptive detection of extended Gaussian vectors
known to belong to a known subspace of the observables.

To this end, we assume that:

• an array of L antennas senses K range cells and that

• each antenna collects T samples from each of those cells.

Denote by xk the LT -dimensional vector containing returns from the k-th
cell, k = 1, . . . , K. The problem herein addressed is the detection
of the possible presence of the target’s scattering centers sk ∈ C

N , k =
1, . . . , K, modeled as a linear combination of r linearly independent modes,
namely as

sk = Hθk,

within the K range cells under test.

We assume that:

- the matrix H ∈ CN×r is known.

- The coordinates vectors θk ∼ CN r(0,Rθθ) are each other independent
and Rθθ is a positive semidefinite covariance matrix.

- The noise vectors nk ∼ CNN(0, γRnn) are each other independent.



Problem Formulation (cont.)

We design detectors based upon the Generalized Likelihood Ratio Test
(GLRT) assuming the following instances for target and noise:

• Case 1: we assume that

- γRnn = γIN ;

- the scale factor γ is unknown;

- H is a slice of a unitary matrix and is known;

- the covariance matrix Rθθ of the θks is known up to its eigenvalues,
e1, . . . , er say.

• Case 2: we assume that

- γRnn = γIN ;

- the scale factor γ is unknown;

- the covariance matrix Rθθ is unknown.

• Case 3: we assume that

both γRnn and Rθθ are unknown, but M > N zero-mean Gaussian
vectors with covariance matrix Rnn are available. These vectors will
be referred to in the following as secondary data.



Detector Design: γ and the eis unknown

The detection problems to be solved is

 H0 : xk ∼ CNN (0, γIN) , k = 1, . . . , K,

H1 : xk ∼ CNN

(
0,HRθθH

† + γIN

)
, k = 1, . . . , K,

where γ and the eigenvalues of Rθθ are unknown.

It is necessary to introduce the following quantities:

• UEU† is an eigendecomposition of Rθθ;

• H̃ = HU .=
[
h̃1 · · · h̃r

]
;

• γ(i) is the i-th order statistic obtained by ranking the

γi
.=

1

K

K∑
k=1

x†kPh̃i
xk, i = 1, . . . , r,

in ascending order where Ph̃i
is the projector onto the subspace de-

scribed by h̃i;

• γ̃ and γ̂(j) are given by

γ̃ .=
1

(N − r)K

K∑
k=1

x†kP
⊥
H̃xk

and

γ̂(j)
.=

(N − r)γ̃ +
∑j−1

i=1 γ(i)

N − r + (j − 1)
, j = 1, . . . , r + 1,

respectively. As to P⊥
H̃

it denotes the projector onto the orthogonal

complement of the subspace spannned by the columns of H̃.



Detector Design: γ and the eis unknown (cont.)

It is possible to prove that the GLRT is given by

Λ[x1, . . . ,xk]
H1
>
<
H0

λ

where

Λ[x1, . . . ,xk]
.=



Λ1[x1, . . . ,xk], γ̂(1) ≤ γ(1),

Λ2[x1, . . . ,xk], γ̂(1) > γ(1), γ̂(2) ≤ γ(2),
...

Λj[x1, . . . ,xk], γ̂(i) > γ(i), i = 1, . . . , j − 1, γ̂(j) ≤ γ(j),
...

Λr[x1, . . . ,xk], γ̂(i) > γ(i), i = 1, . . . , r − 1, γ̂(r) ≤ γ(r),

1, γ̂(i) > γ(i), i = 1, . . . , r,

with

Λj[x1, . . . ,xk]
.=

(
1

NK

∑K
k=1 x†kxk

)NK

(
(N−r)γ̃+

∑j−1
i=1 γ(i)

N−(r−j+1)

)(N−(r−j+1))K ∏r
i=j

(
γ(i)

)K .



Detector Design: γ and Rθθ unknown

The detection problems to be solved is

 H0 : xk ∼ CNN (0, γIN) , k = 1, . . . , K,

H1 : xk ∼ CNN

(
0,HRθθH

† + γIN

)
, k = 1, . . . , K,

with γ and Rθθ unknown.

It is necessary to introduce the following quantities:

• R̂ is given by

R̂ .=
1

K

K∑
k=1

xkx
†
k;

• L is a nonsingular r × r square root factor of H†H, namely such that
LL† = H†H;

• the r × r matrix P is defined as

P .= L−1H†R̂HL−†;

• φ1, . . . , φr denote the eigenvalues of P ordered in non-ascending order.



Detector Design: γ and Rθθ unknown (cont.)

It is possible to prove that the GLRT is given by

Λ[x1 · · ·xk]
H1
>
<
H0

λ (1)

where

Λ[x1 · · ·xk] =



Λr[x1 · · ·xk], γ̂r ≤ φr,

Λr−1[x1 · · ·xk], γ̂r > φr, γ̂r−1 ≤ φr−1,
...

Λ1[x1 · · ·xk], γ̂i > φi, i = 2, . . . , r, γ̂1 ≤ φ1,

1, γ̂i > φi, i = 1, . . . , r,

where

Λj[x1 · · ·xk]
.=

(
1

NK

∑K
k=1 x†kxk

)NK

γ̂
(N−j)K
j

∏j
i=1 φK

i

and

γ̂j
.=

∑r
i=j+1 φi + tr[P⊥

HR̂]

N − j
, j = 1, . . . , r.

This detector will be referred to as a partially-adaptive one.



Detector Design: γRnn and Rθθ unknown

Assume that M > N additional Gaussian vectors rk ∼ CNN (0,Rnn),
k = K + 1, . . . , K + M , are available.

The detection problem to be solved is



H0 :

 rk ∼ CNN (0, γRnn) , k = 1, . . . , K,

rk ∼ CNN (0,Rnn) , k = K + 1, . . . , K + M,

H1 :

 rk ∼ CNN (0,Rss + γRnn) , k = 1, . . . , K,

rk ∼ CNN (0,Rnn) , k = K + 1, . . . , K + M,

with γRnn and Rθθ unknown.

We can come up with a fully-adaptive detector by resorting to the partially-
adaptive detector (1) fed by the whitened data xk = R̂−1/2

nn rk, where

R̂nn
.=

1

M

K+M∑
k=K+1

rkr
†
k.

This detector will be referred to as a fully-adaptive detector.



Performance Assessment

Performance assessment is conducted via Monte Carlo Simulation: we re-
sort to 105 and 103 independent trials in order to set the threshold necessary
to ensure Pfa = 10−3 and Pd, respectively.

We assume the following simulation parameters

• the columns of H are the first r vectors of the canonical basis in RN ;

• the target is exponentially-correlated with one-lag correlation coeffi-
cient ρθ, i.e.,

Rθθ(i, j) = σ2
θρ

|i−j|
θ , i, j ∈ {1, . . . , r};

• we choose N = 16, r = 3, γ = 1;

• curves of Figure 1 assume Rnn = IN while those of Figure 2 refer to
exponentially-correlated noise with one-lag correlation coefficient ρn,
i.e.,

Rnn(i, j) = ρ|i−j|
n , i, j ∈ {1, . . . , N};

• the fully-adaptive detector of Figure 2 assumes M = 32 secondary
data.



Performance Assessment (cont.)
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Pd vs SNR (dB) of the partially-adaptive detector for N = 16, r = 3,
Pfa = 10−3, γ = 1, K and ρθ as parameters: curves with a square at
each data point refer to ρθ = 0.5 while those with a star correspond to
ρθ = 0.9; solid, dashdot, and dotted refer to K = 24, K = 12, and K = 6,
respectively.



Performance Assessment (cont.)
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Pd vs SNR (dB) of the partially-adaptive and the fully-adaptive detector,
N = 16, r = 3, ρθ = 0.5, ρn = 0.6, γ = 1, Pfa = 10−3, K as parameter:
curves with a square at each data point refer to the partially-adaptive
detector while those with a star correspond to the fully-adaptive one with
M = 32; solid, dashdot, and dotted refer to K = 24, K = 12, and K = 6,
respectively.



Conclusions

• Note that both the partially- and the fully-adaptive detectors have the
Constant False Alarm Rate (CFAR) property with respect to γ.

• A thorough performance assessment is the object of outgoing research
activity.
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