
ESC-TR-2005-054

Project Report
IA-1

An Annotated Review of Past
Papers on Attack Graphs

R.P. Lippmann
K.W. Ingols

31 March 2005

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LfiA7vr;TO\. .Wi.s,S/ic//(SKVT'.s

Prepared for the Department of the Air Force
under Contract F19628-00-C-0002.

Approved for piibHc release: distribution is unlimited.

20050405 006

This report is based on studies performed at Lincoln Laboratory, a center for research operated
by Massachusetts Institute of Technology. Tliis work was sponsored by the Department of tiie Air
Force. Lighthouse Cyber Security Progi-am, under Contract F19628-00-C-0002.

Tliis report may be reproduced to satisfy needs of U.S. Government agencies.

The ESC Public .Affairs Office has reviewed tliis report, and it is
releasable to the National Technical Information Service, where it
will be available to the general public, including foreign nationals.

Tliis technical report has been reviewed and is approved for publication.

FOR THE COM\UNDER

^
GaryTlutungian
Administrative Contrartin/Offirer
PlanSand Programs Directorate
Contracted Su])])ort Management

Non-Lincoln Recipients

PLEASE DO NOT RETURN
Permission is given to destroy tliis document
when it is no longer needed.

Massachusetts Institute of Technology

Lincoln Laboratory

An Annotated Review of Past Papers on Attack Graphs

R.P. Lippmann
K.W. Ingols

Group 62

Project Report IA-1

31 March 2005

Approved for public release; distribution is unlimited.

Lexington Massachusetts

ABSTRACT

This report reviews past research papers that describe how to construct attack graphs, how to use
them to improve security of computer networks, and how to use them to analyze alerts from intrusion
detection systems. Two commercial systems are described [1, 2], and a summary table compares
important characteristics of past research studies. For each study, information is provided on the number
of attacker goals, how graphs are constructed, sizes of networks analyzed, how well the approach scales
to larger networks, and the general approach. Although research has made significant progress in the past
few years, no system has analyzed networks with more than 20 hosts, and computation for most
approaches scales poorly and would be impractical for networks with more than even a few hundred
hosts. Current approaches also are limited because many require extensive and difficult-to-obtain details
on attacks, many assume that host-to-host reachability information between all hosts is already available,
and many produce an attack graph but do not automatically generate recommendations from that graph.
Researchers have suggested promising approaches to alleviate some of these limitations, including
grouping hosts to improve scaling, using worst-case default values for unknown attack details, and
symbolically analyzing attack graphs to generate recommendations that improve security for critical
hosts. Future research should explore these and other approaches to develop attack graph construction and
analysis algorithms that can be applied to large enterprise networks.

ni

ACKNOWLEDGMENTS

We would like to thank Robert LeBlanc for his support and encouragement under the Air Force
Lighthouse Cyber Security program and Robert Cunningham for discussions concerning past papers.

TABLE OF CONTENTS

Abstract iii

Acknowledgments v

List of Tables ix

1. INTRODUCTION AND SUMMARY TABLE I

2. PROBLEMS AND POTENTIAL FUTURE DIRECTIONS 5

2.1 Scaling to Large Networks 5

2.2 Obtaining Attack Details 6

2.3 Computing Reachability 7

2.4 Generating Recommendations from Attack Graphs 7

3. DETAILED REVIEWS 9

4. REFERENCES 23

vn

LIST OF TABLES

Table Page
No. No.

Research Papers That Describe Approaches
to Generate Attack Graphs

IX

1. INTRODUCTION AND SUMMARY TABLE

Attack graphs are used to determine if designated goal states can be reached by attackers attempting
to penetrate computer networks from initial starting states. For this use, they are graphs in which the
starting node represents an attacker at a specified network location. Nodes and arcs represent actions the
attacker takes and changes in the network state caused by these actions. Actions typically involve exploits
or exploit steps that take advantage of vulnerabilities in software or protocols. The goal of these actions is
for the attacker to obtain normally restricted privileges on one or more target hosts, where the target could
be a user's computer, a router, a firewall, or some other network component. Many actions that
compromise separate hosts and use them as stepping stones may be required in large attack graphs to
reach the target host. A ftill attack graph will show all possible sequences of attacker actions that
eventually lead to the desired level of privilege on the target. Some researchers use nodes to represent
network states and arcs to represent attack actions, and some use other representations, including those in
which both actions and network states are nodes and in which actions are nodes and network states are
arcs. In addition, some attack graphs have one attacker starting location and one target host, some have
multiple targets, and some have multiple attacker starting locations.

The papers included in this report focus on 3 goals related to attack graphs. First, many papers
construct attack graphs to analyze network security (e.g., [3, 4]). In these papers, networks and their
vulnerabilities are modeled, and these models are used to construct attack graphs. Attack graphs usually
determine whether attackers starting from a specific location can gain normally restricted privilege levels
on one or more important targets. A second goal of some papers is to present formal languages that can be
used to describe actions and states in attack graphs (e.g., [5, 6]). These languages typically define the
preconditions necessary for an attacker action or step to succeed and the post-conditions or changes in
network state and attacker privilege levels that occur as a result of the attacker step. Since preconditions
depend on characteristics of network hosts, these languages also describe network components (e.g.,
hosts, routers, switches, firewalls) and their vulnerabilities. Some languages rely on complex grammars
and require many details (e.g., [4, 5, 16]), and others are simpler and more practical (e.g. [3, 7]). A third
goal of some papers is to describe how attack graphs can be used to group the large numbers of alerts that
are produced by intrusion detection systems (IDS) (e.g., [7, 8]). This is accomplished by first building
attack graphs for a computer network that is being protected by the IDS. If IDS alerts can be associated
with actions in the attack graph, then alerts that arrive in a sequence that is predicted when proceeding
along a single attack graph path may indicate that an attacker is successfully performing the steps in that
path. Grouping alerts generally requires the construction of attack graphs and a mechanism to match
incoming IDS alerts to paths in the attack graph. When such matches are found, then a high-level alert is
created for a security analyst. For papers that focus on grouping IDS alerts, this report focuses on the
language used to represent actions and network characteristics and the approach used to construct attack
graphs.

Table 1 presents a summary of the papers reviewed in this report. The first column provides the
author, the date of the paper, and a cross-reference to the bibliography at the end of this report. The
second column indicates if each attack graph has only one network host or network device as a target or if
the attack graph simultaneously contains many targets. Constructing one attack graph for all hosts and
network devices in a network as in [3] may result in a simpler representation that scales better for large
networks than constructing an independent attack graph for each target. The third column in Table 1
describes the approach used to generate attack graphs. If examples of attack-graph generation are
presented, this column also includes the maximum number of hosts and number of distinct vulnerabilities
in the example. The fourth column in Table 1 describes how the approach used to generate attack graphs
scales as the number of hosts in a network (N) increases. A scaling analysis is sometimes provided, but
often scaling properties are inferred based on the approach or on timing measurements provided by the
authors. The last column in Table 1 provides some summary comments on unique aspects of the paper.

Table 1
Research Papers That Describe Approaches to Generate Attack Graphs

'. Paper Goals Graph Construction
HostsA^uInerabilities

Scaling Comments

Ammann, 2002 [9] One final
goal

Hand generated
artificial network, hand
analysis

3 Hosts/6 Vulns.

Best research
algorithm to
date, base
computation
grows as N*

Describes algorithms to find attack
paths to specific goals. Finds the
shortest path, all exploits that can be
used to reach the goal, and paths of any
length. Scales to only hundreds of
nodes.

Artz, 2002 [3] Multiple
goals

Depth-first search in
C++ program for a
realistic network

17 Hosts/21 Vulns.

Poor, similar
to full graph,
reasonable run
times (90
seconds) for
17-host
network

Finds all paths to all possible goals and
performs reachability computations.
Search depth can be limited, determines
visibility of attack paths to intrusion
detection systems, imports hand-
modified informafion from Nessus [10]
scanner and the ICAT vulnerability

database [11].

Bilar,2003[12] One final
goal

Hand generated graph
as in [13]

1 Host

Determines software to patch or update
on a single host. Analyzed 6 different
operating systems containing a total of
129 vulnerabilities. Found that all
vulnerabilities need to be patched to
reduce risk substantially.

Table 1 continued

Paper Goals Graph Construction
HostsA^uInerabilities

Scaling Comments

Cheung, 2003 [14] One final Proof-of-concept code Poor Describes the CAML attack language

goal for one known scenario that can be used to correlate IDS alerts

into scenarios.

Cuppens, 2001-2[6, Multiple Description only — Describes the LAMBDA attack

7] goals language and shows how it can be used
to correlate intrusion detection system
(IDS) alerts into scenarios using pair-
wise rules.

Dawkins,2004[15] One final Proof-of-concept with Poor, builds Builds a full attack graph, extracts paths

goal hand data entry, small
artificial network

4 Hosts/ 4 Vulns.

full graph first to desired final goal, and simplifies
these into "a minimum cut set" where
the goal cannot be reached if any single
vulnerability is removed.

Gorodetski, 2003 One final Program generates — Uses a formal grammar to specify

[16] goal individual random
attack paths

allowable paths and generates
individual paths from the grammar.

Jajodia, 2003 [4, 17- One final Automatic graph Best to date, Reads in vulnerability and reachability

19] goal generation using base information fi^om the Nessus [10]

algorithm from [9] computation scanner, computes attack graphs using

3-17 Hosts/4-? Vulns. grows as N* the approach described in [9], makes
recommendations to prevent access to
critical hosts, and simplifies the graph
for visualization.

McDeimott, 2001 Goal and By hand Poor Formalization of the approach described

[20] subgoals in [13].

Moore, 2001 [21] One final

goal

By hand Poor Suggests using attack graphs described
by [13] to describe attacks.

Ning, 2003 [8] Multiple Automatic scenario Poor, NP Presents a language that describes

goals generation from IDS
alerts. Tested with a
few small known
scenarios.

complete vulnerabilities and IDS alerts plus an
approach to group alerts into graphs that
display scenarios. Graphs have fewer
than 10 nodes.

Table 1 continued
Goals Graph Construction

HostsA^uInerabilities
Scaling Comments

Ortalo, 1999 [22] One final
goal

Automatic graph
generation from UNIX
host-based
vulnerability checker
over 21 months.

1 Host/13 Vulns.

Poor
(sometimes
couldn't build
breadth-first
graph)

Builds privilege graphs showing how
an insider on a single UNIX host can
increase privilege to admin or root
using 13 vulnerabilities. Computes the
number of steps in the shortest path and
expected mean effort to failure but
requires exploit success probability
estimates.

Ritchey, 2000 [23] One final

goal

Hand-generated
artificial network input

to model checker

4 Hosts

Poor Uses model checking to determine if a
final goal is reachable. Other papers

(e.g., [4]) note that this approach does

not scale well.

Sheyner, 2002 [24] One final
goal

Hand-generated
artificial network input
to model checker

3 Hosts/4 Vulns. to

5 Hosts/7 Vulns.

Poor Uses model checking to determine if a
final goal is reachable. It took 5
seconds for 4 hosts/4 vulns. but 2 hours
for 5 hosts/8 vulnerabilities. Also
analyzes the visibility of different
attack paths to intrusion detection
systems.

Schneier, 1999[13] One final
goal

By hand Poor Early discussion that presents a widely-
used representation for attack graphs.

Swiler,2001 [25] One final
goal

Proof-of-concept hand
vulnerability entry and
small artificial network
2 Hosts/5 Vulns.

Poor (builds
almost full
graph first)

Builds a semi-collapsed full attack
graph that still scales combinatorically.
Uses this large graph to compute
shortest paths to specified goals with
costs on links. A database holds
information on the network,
vulnerabilities, and attacker models.

Templeton, 2002 [5] One final
goal

Proof-of-concept code One of the first papers to suggest
modeling attack components using pre-
and post-conditions and using forward
chaining to build attack graphs.
Recommends highly detailed attack
component models.

Tidwell, 2001 [26] One final
goal

Description only,
example uses 6 hosts. "

Suggests using BNF grammars to
describe network components and also
attack pre- and post-conditions.

2. PROBLEMS AND POTENTIAL FUTURE DIRECTIONS

The detailed reviews in the following section and Table 1 demonstrate several problems or
limitations of past attack-graph research. They also suggest future directions that might overcome many
of these limitations.

2.1 SCALING TO LARGE NETWORKS

The first major limitation of prior studies is that most past algorithms have only been able to
generate attack graphs on small networks with fewer than 20 hosts. The most capable systems have been
developed at George Mason University [4, 9, 17-19] and MIT Lincoln Laboratory [3]. Both systems
have been used to construct attack graphs for small 17-host networks that were simulations of actual
networks, and scaling for both systems is poor. Computation required for the approach used at George
Mason University described in [9] grows as N^, where A'^ represents the number of hosts in a network.
Although this is not combinatorial and is the best upper bound reported to date, as stated in [9], this
approach will only scale to networks with at most "tens or hundreds of hosts."

Timing measurements and an algorithmic analysis demonstrate that scaling for the approach used at
MIT Lincoln Laboratory [3] is also poor. This approach is more complete than that described in [9]
because instead of assuming that reachability between all hosts is provided, it computes the reachability
between all hosts before generating attack graphs. Reachability computations model the effect of
gateways and firewalls to determine which other hosts in a network can be reached from any host.
Reachability infomiation is required to construct attack graphs because an attack can only proceed to new
victims that can be reached from compromised hosts. Computing reachability using the simplest approach
requires an additional A'^ host-to-host reachability analysis prior to the attack-graph construction
computation. The approach described in [3] also simultaneously builds an attack graph that shows how all
targets in a network can be compromised by an attacker from a given starting location. A small 17-host
network was analyzed in less than 90 seconds (including reachability computations), but scaling to larger
networks is poor because this approach constructs a fiill attack graph that includes all possible paths to
reach victims. In even a simple subnet with no filtering, the size of such a full graph grows
combinatorically as the number of hosts increases.

Other approaches that construct fiill attack graphs [15, 22, 25, 26] will also exhibit poor scaling.
For example, full attack graphs often could not be computed in [22] even when analyzing the effect of
only 13 vulnerabilities on one file system. Approaches that use model checking to explore the entire space
of allowable attack paths, as described in [24], also exhibit poor scaling. In these experiments the run
time was only 5 seconds for a 4-host network with 5 vulnerabilities. This increased to 3 hours when the
number of hosts was increased by one to 5 and the number of vulnerabilities was increased to 8.

In practice it is desirable to compute attack graphs for enterprise networks with 10,000 to 100,000
hosts. Many of the graph-building algorithms used in past research papers create a full attack graph and
thus scale combinatorically withiV, where TV represents the number of hosts in a network. The best
research algorithm [9] scales as N^, and an approach described in a patent [2] claims to scale as N .
None of these algorithms are acceptable for large enterprise networks. Only algorithms that scale linearly
or quadratically in the number of hosts will be practical for large networks. Two approaches that may
improve scaling are suggested by past studies. The first is to produce a restricted graph that is designed
solely to answer questions required to analyze network security. One restricted set of questions is (1) what
hosts can be compromised by an attacker starting at a given network location? and (2) what is the minimum
set of exploits that enable successfiil attacks against the specified goals? It may be possible to develop a
graph-building algorithm that answers only these questions but has complexity that is less than N .

A second approach that can be used to reduce the complexity of graph building is to group or
aggregate similar hosts together. This reduces N by replacing many individual hosts with representative
hosts. Aggregation was suggested in [25] for this purpose and in [18] to simplify the visual presentation
of attack graphs. The simplest type of aggregation is to collapse hosts that are fully connected into
protection domains. For example, all hosts on a single local area network (LAN) or subnet could be
aggregated if they have the same reachability from outside the network and if they share the same
vulnerabilities. It would also be possible to aggregate hosts across connected subnets when the gateway
that connects subnets performs no filtering. A second type of aggregation is to group multiple exploits
between two hosts when they have the same pre- and post-conditions.

2.2 OBTAINING ATTACK DETAILS

A second major weakness of many past approaches is that information used to describe pre- and
post-conditions for exploits or attack components must be entered by hand. This is labor intensive and
difficult, especially to model attacks using the amount of detail required by many studies (e.g., [4, 5]).
For example, in [12] it is noted that it can take from 10 minutes to hours for an analyst to determine the
pre- and post-conditions for a single attack component. Although some vulnerability databases exist (e.g.,
[11]), they do not contain the machine-readable details required to accurately produce many of the attack
graphs shown in past papers. Such graphs require extensive human analysis of vulnerabilities and attack
components or development of automated approaches to extract this information from text in attack
descriptions. An alternative approach is to only require limited information concerning attack components
and vulnerabilities as in [3] and to fill in unknown attack and vulnerability details with reasonable default
values as suggested in [25]. If a worst-case assumption is made to fill in unknown details, in many cases
the attack graph analysis will identify on a few hosts a small set of critical vulnerabilities that enable an
outside attacker to progress to internal targets. This small set of vulnerabilities can be hand analyzed and
details confimied to verify the attack-graph analysis. This is much simpler than hand verifying the

analysis of all vulnerabilifies.

2.3 COMPUTING REACHABILITY

As noted above, reachability computations determine which other hosts in a network can be reached
from a given host by modeling the effect of gateways and firewalls. A weakness of many past approaches
is the assumption that reachability information is available prior to computing attack graphs (e.g., [24]) or
that it can be obtained using a vulnerability scanner from each subnet in the analysis (e.g., [4]).
Detennining reachability between all hosts in large networks with many firewalls is a computationally
complex task. It is almost impossible to determine reachability using vulnerability scanners, and this
approach can severely underestimate reachability. Firewalls can contain hundreds to thousands of access
control rules, network address translation (NAT) rules, and network objects that represent groups of IP
addresses (e.g., [27]). A single scan from one Internet protocol (IP) address will only exercise a few of
these rules. Such scans will miss rules that apply to other source IP addresses or to destination IP
addresses not included in the scan. It is difficult, in general, to know which source and destination
addresses will be treated differently by a firewall due to NAT rules and the complexity of other rules. In
addition, a single scan will not discover the effect of time-dependent firewall rules. Accurately
determining the reachability between hosts in separate subnets requires downloading and analyzing
configuration files for firewalls, routers, switches, virtual private networks, personal firewalls, and other
network infrastructure devices that perform filtering. Future tools that use attack graphs to analyze
network security on large enterprise networks must perform this type of analysis.

2.4 GENERATING RECOMMENDATIONS FROM ATTACK GRAPHS

Past studies have demonstrated that attack graphs can become large and complex even for networks
with fewer than 20 hosts (e.g., [3, 4]). Such large graphs, once generated, can be difficult to analyze and
understand. An alternative approach is to not only generate attack graphs, but to also automatically
analyze attack graphs to address security issues and make recommendations to improve security.
Recommendations could, for example, suggest changes in the network architecture or patches for
installed software that protect important hosts but result in few changes. One past study [17] developed
approaches to make such recommendations. Future work should extend this work and explore approaches
that can scale to large networks.

3. DETAILED REVIEWS

Amenaza (2004), [1] Secur/Graph Attack Graph Modeling, Amenaza Technologies Limited:
http://www.amenaza.com/company.html.

This commercial company provides a software program that helps automate the attack-graph construction
and analysis techniques presented in [13]. It makes it possible to construct AND/OR attack graphs using
a graphical user interface and allows various types of costs or possibilities to be attached to attacker
actions. It can also then compute the cost or probability of success of different attack paths and identify
shortest or most-likely-to-succeed paths. Attack graphs must be constructed by hand, and then paths can
be automatically analyzed. Examples illustrate attack graphs with lO's of nodes.

Ammann, P., D. Wijesekera, and S. Kaushik (2002), [9] "Scalable, Graph-Based Network Vulner-
ability Analysis," Proceedings of the 9th ACM Conference on Computer and Communications Security
2002, New York: ACM Press, pp. 217-224.

This paper describes an algorithm that can be used to create attack graphs. The complexity of this
algorithm is polynomial and not combinatoric, and we are aware of no other research algorithm that had a
better upper bound on complexity at the time this paper was published. In a network with N hosts, it
requires reachability information between all hosts on all TCP/IP ports and protocols of interest,
information concerning vulnerabilities on hosts, attacker privilege levels on all hosts, and information on
exploits including pre- and post-conditions. Computation in the initial marking phase of the algorithm
grows as N^E, where N is the number of hosts and E is the number of exploits. This computation scales
poorly to large networks and motivates the comment in the paper that this approach is useful for networks
with at most hundreds of hosts. Algorithms are presented that use information obtained in the marking
phase to compute paths to a final goal, to determine all exploits that can be used to reach a goal, and to
find the path with the fewest attack steps to a goal. The marking phase could also be used to determine the
hosts that can be compromised for a given attacker starting location. A simple example is presented using
an artificial network with 3 hosts and 6 vulnerabilities. This network was analyzed by hand to
demonstrate the algorithm. The algorithm that determines exploits that can be used to reach the final goal
would include all exploits on a fiill graph pruned to contain only paths ending at the final goal.

The approach is restricted to monotonic attacks in which a component attack never changes the
network state in a way that eliminates a precondition for another attack. This means that some attacks
such as Denial of Service (DoS) attacks against hosts or services cannot be modeled and that other attacks
that include DoS components against services need to be modeled by ignoring the DoS components. It
also means that information along attack paths concerning change of network state (e.g., installing new
passwords, a DoS attack against services, patching existing vulnerabilities) may not be preserved and will

not be available for forensic analysis that depends on detecting changes of state to network components.
Finally, the need to precompute reachability before attack-graph generation means that this approach
cannot model attacks in which firewalls or other network infrastructure components are compromised and
firewall or filtering rules are changed, thus changing the underlying reachability between hosts.

Artz, M. (2002), [3] NETspa, A Network Security Planning Architecture, M.S. Thesis, Cambridge:
Massachusetts Institute of Technology, May 2002.

This thesis describes the first version of the NetSPA (Network Security Planning Architecture) system
that generates worst-case attack graphs. This is a C++ tool that inputs information from a custom database
on host and software types and versions, intrusion detection system placement, gateways between
subnets, firewall rules, and exploits. Other information, including critical network resources and the
attacker starting locations, is provided at run time. Although information on network vulnerabilities is
collected using the Nessus [10] vulnerability scanner, this information must be entered into the database
by hand. Information on firewall rules and the network topology also must be entered into the database by
hand. Exploits are described using a simple language that specifies the requirements for the exploit
(usually connectivity to a vulnerable victim), the effect of the exploit (usually the privilege level on the
victim and any side effects such as a DoS of the service used for a buffer overflow attack), and whether
this exploit is visible to a network intrusion detection system. Some trust relationships are also provided
to model sniffer attacks. Analysis first involves computing connectivity between all hosts using network
topology information and firewall rules. Attack graphs are then built, using a depth-limited forward-
chaining depth-first search. This tool produced attack graphs that were identical to those produced by the
model checker described in [24] for the same small test network. It was also evaluated using a realistic
network with 17 representative hosts from an actual network, 21 unique vulnerability types, internal and
DMZ networks, and a firewall with 12 rules. Attack graphs were generated to determine hosts that can be
compromised by novice and expert external attackers; the effect of combining DNS, SMTP, and web
servers; the best placement for an IDS to detect external attacks; and the effect of new "zero-day"
vulnerabilities on DMZ servers. Although the largest graphs for the 17-host network took less than 90
seconds to produce when the graph depth was limited to three, scaling is poor because the graph produced
is similar to a full graph.

Bilar, D. (2003), [12] Quantitative Risk Analysis of Computer Networks, Ph.D. Thesis, Thayer School of
Engineering, Hanover, New Hampshire: Dartmouth College, June 2003.

This thesis describes an optimization approach to determine what software running on an individual
computer when patched provides the greatest reduction in risk where risk is defined as the probability of
loss times the amount of loss. Data required for this approach include extensive details concerning
versions of software and their vulnerabilities for each host modeled. The following details need to be

10

provided: (1) the consequences of exploits, (2) the loss associated with each consequence, (3) the
probability of success for each exploit as a function of time, and (4) the cost of changing from one
software version to another. This information was generated manually for 6 workstations running
different operating systems containing a total of 129 unique vulnerabilities. Simple AND/OR attack
graphs were built for each host by hand and used to combine attack success probabilities. These graphs
were found to be unnecessary because the final conclusion after analyzing all the data was that "almost all
if not all of the faults have to be eliminated to have an appreciable effect on the consequence risk
probabilities." This means that a host needs to be completely patched to ensure that it cannot be
compromised. A second conclusion is that it is better to first patch the software that can be compromised
by a remote user and thus has the highest risk. An interesting comment is that analyzing any single
vulnerability to determine the pre- and post-conditions can take from 10 minutes to 2 hours.

Cheung, S., U. Lindqvist, et al. (2003), [14] "Modeling Multistep Cyber Attacks for Scenario
Recognition," Proceedings of the Third DARPA Information Survivability Conference and Exposition
(DISCEXIII), IEEE, 1, 284-292.

This paper describes a language called CAML (Correlated Attack Modeling Language) that can be used
to model attack scenarios and recognize scenarios from intrusion-detection alerts. It is similar to
LAMBDA [6] and JIGSAW [5] in that it defines preconditions and post-conditions for attack actions
(called modules) and also describes the state of network components. Preconditions include information
on hosts, services, file names and privileges, users, and information known by users such as the password
of another user. The CAML language was tested by creating a model of an attack scenario that included
13 modules by hand and that shows that a manually created system could correctly chain attack modules
and recognize simulated alerts generated using the known scenario. The weakness of this approach is that
modules are labor intensive to create and there is no efficient tool to automatically create scenarios.

Cuppens, F. and R. Ortalo (2001), [6] "LAMBDA: A Language to Model a Database for Detecdon of
Attacks," Recent Advances in Intrusion Detection (RAID) 2000, Lecture Notes in Computer Science, vol.
1907, H. Debar, L. Me and F. Wu, Eds., Berlin: Springer Verlag.

This paper describes a language, LAMBDA, that can be used to describe attack scenarios as a
combination of actions. As in the JIGSAW model [5], each action has conditions or requirements that
must be satisfied for the action to succeed, and successful actions affect the network and may satisfy
conditions for other actions. Actions can be combined using operators that specify sequencing, parallel
unconstrained execution, absence of a condition, nondeterministic choice between multiple equivalent
actions, and synchronized execution. As with JIGSAW, this language is labor intensive to use, only a few
examples are provided, and an automated tool to create scenarios is not presented.

11

Cuppens, F. (2002), [7] "Alert Correlation in a Cooperative Intrusion Detection Framework," Proceedings
of the 2002 IEEE Symposium on Security and Privacy, Washington, DC, IEEE Computer Society.

This paper describes how the LAMBDA language described in [6] can be used to link alerts from
intrusion detection systems into scenarios. It includes a comprehensive description of the language and
illustrates how it can be used to model a variety of attacks. Preconditions for actions are made explicit in
this paper. One precondition specifies access levels of the intruder on the target system, including remote,
local, user, root, and physical. Another specifies effects of attacks on the target system, including denial
of service, alter, and (illegal) use. A final precondition specifies that a service is active on a target or
source system. Post-conditions or attack effects include attacker knowledge about the target system that
might be gained, for example, by a port scan. Intrusion-detection alerts are correlated by automatically
generating rules from the LAMBDA action descriptions that link pairs of attacks together where success
of the first attack may enable the second. These rules are generated offline and used to correlate intrusion
detection alerts. The paper describes an approach that is not yet implemented. More actions need to be
described in LAMBDA, and an approach needs to be developed to specify a global intrusion objective
and determine if alerts represent actions that lead to that objective. This approach to correlating intrusion-
detection alerts and developing attack scenarios is limited by the human labor required to describe actions
and by the need to develop an efficient automated approach to create scenarios with global objectives.

Dawkins, J. and J. Hale (2004), [15] "A Systematic Approach to Multi-Stage Network Attack
Analysis," Proceedings of the Second IEEE International Information Assurance Workshop (IWIA '04),
2004. IEEE Computer Society:
http://csdl.computer.Org/comp/proceedings/iwia/2004/2117/00/21170048abs.htm.

This paper describes a framework that can be used to create and analyze attack graphs in computer
networks. Models are built of the network (hosts and boundaries), of the privileges of the attacker on
hosts and the reachability of hosts fi-om the attacker, and of vulnerabilities. Vulnerabilities are modeled by
describing pre- and post-conditions as in JIGSAW and LAMBDA. Analysis involves first producing a
full breadth-first attack graph that includes all possible paths with no pruning for specific attack goals.
The attack graph is limited by depth to stop after a given number of vulnerabilities have been exercised in
sequence in each path. The full attack graph is then analyzed to identify attack paths that end in specific
top-level goals. These paths are then analyzed to find the "minimum cut set" which is the smallest
collection of paths such that if any one vulnerability is removed, they still correctly predict whether the
final goal is reached. After a minimum-cut-set attack graph is generated, it can be used to determine the
probability of achieving a top-level goal, but this requires knowledge of the probability of each
component attack and the unlikely assumption that these probabilities are independent. A proof-of-
concept tool is described that reads in network, vulnerability, and attacker models that are expressed in
XML. It builds full attack graphs to a specified depth, allows a user to select a top-level goal, extracts
paths that reach these goals, and simplifies these paths to produce a minimum-cut-set graph. Inputs to this
tool are hand generated and the tool has only been applied to a small artificial network with 4 hosts and 4

12

vulnerabilities. Scaling results are not presented, but because a full graph is generated, scaling will be
poor because the number of nodes in full graphs can grow combinatorically as the number of hosts in a
network grows. The algorithm used to generate a minimum-cut-set graph from the full graph is also not
specified.

One useful idea presented in this paper is to store network state changes differentially along attack paths.
Any component attack may change the state of the network. An inefficient approach to storing these state
changes would be to replicate the complete network state at each node in the attack graph and then use
this state for the remainder of the graph. Instead, the paper suggests storing only the differences between
the network state at each node in the attack graph. This makes it possible to use non-monotonic attacks
that disable other attacks and to model DoS attacks.

Gorodetski, V. and I. Kotenko (2002), [16] "Attacks against Computer Network: Formal Grammar-
based Framework and Simulation Tool," Lecture Notes in Computer Science, vol. 2516: Recent Advances
in Intrusion Detection (RAID) 2002, A. Wespi, G. Vigna, and L. Deri, Eds., Berlin: Springer Verlag:
http://space.iias.spb.su/ai/doc/RAID-2002.pdf

Instead of modeling attack graphs graphically, this paper proposes a model based on a formal stochastic
context-free grammar where an attack hierarchy is created and the substitution operation is used to create
specific attack paths. A proof-of-concept tool is developed for a small set of attacks and a test network
where detailed information on the network and attacks is available. The tool allows component attacks to
succeed or fail with given probabilities and generates individual random attack paths for each run. All
information is entered manually, and the tool implements a finite state machine that generates attack paths
from the formal grammar definition of component attacks and the network.

Jajodia, S., S. Noel, and B. O'Berry (2003), [4] "Topological Analysis of Network Attack
Vulnerability," Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava,
and A. Lazarevic, Eds., Dordrecht, Netherlands: Kluwer Academic Publisher:

http://www.isse.gmu.edu/~snoel/Kluwer%20TVA%20chapter.pdf

This paper describes the Topological Vulnerability Analysis (TVA) tool. It is one of the most
comprehensive tools developed to date for the purpose of building and analyzing attack graphs and has
served as a framework at George Mason University for attack-graph research. This tool requires
reachability and vulnerability information obtained by Nessus [10] scans, pre- and post-conditions for
exploits entered by hand, and information on attacker goals and the network provided by hand. The
polynomial time algorithm described in [9] is used to construct and analyze attack graphs. After the
marking phase of this algorithm is complete, it is possible to construct attack paths to attack goals and
also use a symbolic analysis technique to identify sets of actions (e.g., patch vulnerabilities, remove

13

network services, remove programs on hosts) that, if followed, prevent the attacker from reaching goal
states. No information is presented about how this symbolic analysis scales for large networks. An
example is presented for a small artificial network with 3 hosts, 4 exploits, and a firewall with a total of 6
rules and network objects. A simple attack graph shows how an outside attacker can obtain root-level
privileges on an internal machine that cannot be directly compromised from the outside. The attacker uses
a vulnerability in the IIS web server to compromise this host and then uses this web server as a stepping
stone. This is accomplished by first using the Remote Copy (RCP) program to download a root kit to the
web server. A port forward tool is then installed, and the attacker compromises the victim machine
through the web server using an attack on the FTP server running on the victim machine. In this graph,
the attacker uses the non-target internal host as a stepping stone. Attack steps include low-level attacker
actions such as downloading programs from external hosts. The symbolic analysis demonstrates that
many different changes to the network, including patching the IIS web server, removing the RCP program
on the IIS server, and patching the FTP server on the victim, prevent the attacker from achieving root on
the target machine. Firewall rules are not analyzed but determined implicitly by using Nessus to scan
between subnets through firewalls to determine reachability through between subnets.

This is one of the most capable tools developed to date for the generation and analysis of attack graphs.
Some information on vulnerabilities is automatically imported, the algorithm can scale to hundreds of
nodes, and the goal is to make recommendations to improve security and not simply create attack graphs.
The TVA tool, and others, are still limited. Major limitations with the TVA approach include the
following:

• Exploit information must be entered by hand
Information required to describe pre- and post-conditions for exploits must be entered by hand,
and the exploits must be analyzed by hand because detailed information is required. This is
labor intensive and difficult, especially to model attacks using the amount of detail shown in
this paper. Although some vulnerability databases exist (e.g., [11]), they do not contain the
amount of detail required to accurately produce the types of attack graphs shown in this paper.

• Firewall and router rules are not imported and analyzed
A major limitation of the TVA tool is that firewall and routing rules are not imported directly
and analyzed. Instead, the Nessus vulnerability scanner is used to determine whether it is
possible to connect from one specific IP address in one subnet to IP addresses in another
through the firewall. This approach can severely underestimate reachability between subnets.
Firewalls can contain hundreds to thousands of access control rules, network address translation
(NAT) rules, and network objects that represent groups of IP addresses (e.g., [27]). A single
Nessus scan from one IP address will only exercise a few of these rules. Such scans will not
exercise rules that apply to other source IP addresses or to destination IP addresses not included
in the scan. It is difficult, in general, to know which source and destination addresses will be
treated differently by a firewall due to NAT rules and the complexity of other rules. In addition,
a single scan will not discover the effects of time-dependent firewall rules. Accurately

14

determining the reachability between hosts in separate subnets requires downloading and
analyzing firewall and router rales. Depending on Nessus scans will lead to attack graphs that
often ignore many avenues of attack. It also requires scanning the entire network from every
subnet. This is impractical except for small enterprise networks.

Poor scaling to large networks
The underlying algorithms used by TVA scale as A'^*, where A'^ is the number of hosts in the
network as described in [9]. As noted in [9], the approach will probably not scale to more than
hundreds of hosts. In addition, the approach is limited to monotonic attacks in which no
component attack action makes a different attack impossible. It thus precludes inclusion of DoS
attacks.

Requires low-level attack details
This approach assumes that it is possible to obtain host, network, and attacker information
necessary to support the detailed low-level attack modeling used and to model these details
correctly. This is usually not possible because detailed host monitoring is frequently not
allowed and is not practical on enterprise networks and because attacker modeling is extremely
difficult. The problems faced when modeling detailed attack steps are demonstrated by the
simple attack graph presented. A critical step was downloading a root kit program using the
RCP program, and one of the network changes that the TVA analysis claimed could prevent
compromising the victim is to remove the RCP program. In most Windows NT hosts, there are
many alternative approaches to downloading files and RCP is not essential. Other approaches to
downloading files to a compromised IIS server include sending the file along with the
compromise, sending the file as an HTTP request after the compromise successfully responds
to the attacker, sending HTTP cookies, using SSH, tunneling the file through HTTP, ICMP, or
DNS, and other approaches that have been used in automated exploits and worms. The attack
graph shown is incomplete because these other approaches are not modeled. It is thus incorrect
to assume that removing the RCP program on the web server will protect the victim machine
and block this attack. Since the attacker can ran arbitrary code on the web server, the initial
attack can include new programs that can automatically compromise the target machine and
others, as seen in recent worms and "hot" networks [28]. Such low-level attack details are
difficult to model correctly. An altemative worst-case approach is to assume that the attacker can
download tools and proceed to launch another attack from any compromised host instead of trying
to model the many approaches to download and run attack tools. This approach is used in [3].

15

McDermott, J. P. (2001), [20] "Attack Net Penetration Testing," Proceedings of the 2000 Workshop on
New Security Paradigms, New York: ACM Press, pp. 15-21.

This paper proposes a more formal definition of attack nets using a disjunctive Petri net. This exphcitly
differentiates intennediate states from actions that change state, and it models attack progress and
concurrency using Petri net tokens. This approach has all the limitations of [13] but is a more formal
approach that eliminates the lack of definitions in [13]. Some examples demonstrate how it can model
low-level concurrency and provide detailed attack models.

Moore, A., R. Ellison, et al. (2001), [21] "Attack Modeling for Information Security and Survivability,"
Software Engineering Institute: http://www.cert.org/archive/pdf/01tn001.pdf

This paper suggests using attack graphs as described by [13] as an approach to document computer
attacks in a structured and reusable form. Attack graphs are hand generated, and no standards for storing
or sharing attack graphs are proposed other than the text format used by [13].

Ning, P. and D. Xu (2003), J8] "Learning attack strategies from intrusion alerts," Proceedings of the
10th ACM Conference on Computer and Communications Security, New York: ACM Press, pp. 200-209.

This paper describes an attack description language similar to LAMBDA [6] and JIGSAW [5] that
includes preconditions and post-conditions for intrusions (called hyperalerts) and is designed to correlate
alerts from intrusion detection systems. The language was used to describe alert components from 5
different small attack scenarios that were run on isolated test bed networks. Alerts from intrusion
detection systems on these networks were analyzed and used to produce scenario graphs that were similar
to the original underlying attack scenarios except for missing steps caused by intrusion detection systems
that couldn't observe all attack steps. This approach uses generic graph matching approaches to simplify
the generated graphs. The paper states that this analysis is NP complete but that the graphs generated
typically have fewer than 10 nodes and can be generated with reasonable response times. This approach
would not scale to large scenario graphs. In addition, all models again need to be generated by hand and
future work is proposed to deal with false alarms and attack steps missed by intrusion detection systems.

16

Noel, S., S. Jajodia, et al. (2003), [17] "Efficient Minimum-Cost Network Hardening Via Exploit
Dependency Graphs," Proceedings of the 19th Annual Computer Security Applications Conference, Las
Vegas, Nevada: http://www.isse.gmu.edu/~snoel/2003%20ACSAC.pdf.

This paper provides further details that explain how network hardening recommendations are made in the
TVA system described in [4]. Exploit dependency graphs are first constructed, and a symbolic description
of exploits that lead to a given goal is created. This is then simplified into a symbolic equation that
specifies the network preconditions necessary for the goal to be reached. Analysis of this equation, given
the cost of making each network change, makes it possible to recommend a least-cost change that
prevents the goal from being reached. No information is provided on how this symbolic analysis is
performed or how it scales other than a comment that the number of terms in the equation can grow
exponentially in the number of network preconditions. In a large enterprise network there can be many
preconditions because these include vulnerabilities on each host, reachability between all host pairs, and
trust relationships between hosts.

Noel, S. and S. Jajodia (2004), [18] "Managing Attack Graph Complexity Through Visual Hierarchical
Aggregation," Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Computer
Security, New York: ACM Press: http://www.isse.gmu.edu/~csis/faculty/jajodia-vizsec-2004.pdf

This paper describes various approaches to collapse parts of attack graphs generated by the TVA system
[4] to make visual understanding easier. The display uses exploit-dependency graphs. In these graphs,
exploits between different hosts are treated as separate and unique and appear only once as nodes. There
are thus at most N^V nodes where A'^ is the number of hosts and V is the number of unique
vulnerabilities in the network. This representation often requires fewer nodes than graphs that include a
node for each host privilege level and arcs for exploits used to raise privilege levels on hosts. The paper
states that "perhaps the greatest challenge in making network attack graphs practical ... is managing their
visual complexity in user interaction." Three basic approaches to grouping exploit dependency graphs are
presented. First, multiple exploits between the same two hosts can be aggregated. Second, hosts that are
fully connected in protection domains (e.g., on a single LAN with no filtering devices) can be aggregated.
Finally, precondition and post-condition nodes can be collapsed if they are for the same exploit. A user
interface is presented that makes it easy to apply these different types of aggregation and "drill down" to
examine attack graph details. Examples use networks with at most 16 hosts.

This is new and interesting work, but future analyses should extend this research to determine the role
visualization plays in improving network security using attack graphs. Different types of security-related
information can be presented using visualization, and this information can be displayed in many ways.
Visualization can have many goals, including displaying and justifying automatically generated
recommendations, allowing manual correction of vulnerability scanner analyses, verifying network
topology data, mapping specific attack graphs onto a network diagram, and changing firewall rules or
patching hosts to examine the effect on attack graphs. These different goals may require alternative

17

approaches to displaying attack graphs and the network under analysis. Future work should explore
alternate visualization approaches and determine if any one is easier to interpret by system administrators.
Exploit-dependency graphs are one approach, but many others have been suggested.

Ortalo, R., Y. Deswarte, et al. (1999), [22] "Experimenting with Quantitative Evaluation Tools for
Monitoring Operational Security," IEEE Transactions on Software Engineering. 25(5): 633-650.

This paper describes a thorough study that illustrates how to use privilege graphs to describe the security
of a single UNIX host. Nodes on these graphs represent a set of privileges for a user or group of users,
and arcs represent vulnerabilities that can transition between nodes. For example, a vulnerability could
represent an easily guessed root password that a user can use to obtain root privileges. Each vulnerability
is assigned a measure of effort required. In the described experiment, 4 values were used (0.1, 0.01,
0.001, 0.0001). Procedures to compute the mean effort to failure (METF) were also presented that
average over paths in the privilege graph. A software tool was developed that automatically probes the
UNIX file system to determine which of 13 known vulnerabilities are present. This software is similar to
many existing host-based vulnerability scanners. Other software attempted to build privilege graphs that
start with user privilege and attempt to reach either root privilege or the privilege of the administration
group using the vulnerabilities found. Different graph-building approaches were explored, including a
breadth-first approach (denoted TM), a depth-first approach (denoted ML), and a shortest-path approach
(denoted SP). Results from one UNIX system monitored daily over 21 months are presented. It was found
that breadth-first attack graphs could sometimes not be computed because they were too large, even with
only 13 vulnerabilities. This graph is similar to a "full" attack graph that finds all possible paths to a goal.
Of the 3 measures, the SP graph changed the least over time. It represents a worst-case analysis in which
the attacker takes the shortest path that is most likely to succeed. The METF measures on breadth-first
and depth-first graphs varied over time even when the SP graph remained constant. The authors state that
these analyses "provide useful feedback to the security administrators." It is recommended that all the
different measures should be computed and used because they represent different attacker models. This
approach uses automated tools to find a small set of vulnerabilities but only analyzes a single host and
uses graph-building tools and measures that may not scale to large networks.

Ritchey, R. and P. Amman (2000), [23] "Using Model Checking to Analyze Network Vulnerabilities,"
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp. 156-165:
http://portal.acm.org/citation.cfm?id=884423&dl=ACM&coll=GUIDE.

This paper provides a thorough and explicit example that shows how model checking can be used to
determine if a final goal state is reachable for an attacker starting with limited privileges on a network. If
the goal state is reachable, the model checker produces one example attack path that shows how the state
is reached. The model checker is provided information on network hosts and their vulnerabilities.

reachability between all hosts, the current state of the attacker, and exploits that can be used by the
attacker. Exploits are defined by preconditions (source machine access level, target access level,
connectivity, and vulnerability required) and post-conditions (effect on target machine). An example is
provided for a 4-node network. It demonstrates how modeling information is encoded for the model
checker by hand and how it produces an example attack path.

Ritchey, R., B. O'Berry, et al. (2002), [19] "Representing TCP/IP Connectivity for Topological
Analysis of Network Security," Proceedings of the 18th Annual Computer Security Applications
Conference, Las Vegas, Nevada: http://www.isse.gmu.edu/~csis/publications/acsac02.pdf.

This paper provides details on how connectivity is modeled in the TVA system described in [4]. The
model includes details on different layers of the OSI stack. At the lowest level the model identifies hosts
that are on each LAN segment and whether they are connected by switches or hubs to determine the
information that an attacker can gather by sniffing all traffic impinging on a compromised host and to
determine if ARP spoofing is possible. For a higher network/transport level, the authors suggest modeling
each connection to a remote service separately using the program name and version to identify connection
endpoints. This approach assumes that port numbers can be ignored after scanning with Nessus [10] to
obtain reachability. In practice, port numbers are important because they make it possible to interpret how
firewall and routers affect reachability in ways that are not discovered by a Nessus scan. Connections are
also modeled to applications. These model, for example, the need to provide a password for user
authentication to a particular application. The paper doesn't describe how all the required details can be
obtained accurately. For example, we and others have found that it is difficult to match software versions
to vulnerabilities because this information is often inaccurate and missing in vulnerability databases and
because software version numbers are often too coarse and not updated after patches are applied that
eliminate vulnerabilities.

Sheyner, O., S. Jha, J. M. Wing, R. P. Lippmann, and J. Haines (2002), [24] "Automated Generation
and Analysis of Attack Graphs," 2002 IEEE Symposium on Security and Privacy, Oakland, California:
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/calder/www/sp02.html.

This paper provides a thorough and detailed example of using a model checker to analyze the security of a
small artificial network. A small artificial network with a few vulnerabilities is used to hand-create a
finite-state machine that can be analyzed by a model checker. The model checker can determine if a goal
state (e.g., administrator on a machine or administrator using stealthy attacks not visible to an IDS) can be
reached and it can provide the paths used to reach the goal state. This was demonstrated using an artificial
3-host network with 5 vulnerabilities. The run time was 5 seconds for this network, but it increased
dramatically to 3 hours when the number of hosts was increased to only 5 and the number of
vulnerabilities was increased to 8. This approach scales poorly, and it is difficult to create inputs for the

19

model checker and interpret the outputs. It is not clear whether model checkers are practical for networks
with thousands of hosts and hundreds of unique vulnerabilities where the state space is orders of
magnitude larger than in the artificial example.

Schneier, B. (1999), [13] "Attack Trees," Dr. Dobbs Journal, December, 1999.

This often-cited paper contains one of the first public descriptions of a manual approach to generating
attack graphs. Each graph has one goal node, and nodes below this represent actions that can reach this
goal. Actions combine using either OR (disjunctive) or AND (conjunctive) logic. Values can be assigned
to action nodes that indicate if they are possible, if they require special equipment, the cost of the action,
the likelihood of the action, and the probability of success. These values can be propagated to the goal
state using the OR and AND nodes to compute the characteristics of paths from different starting actions
to the goal state. Graphs can be applied in many fields, and experts in each field must generate them by
hand.

Skybox (2004), [2] Skybox Security: http://www.skyboxsecurity.com.

Skybox Security has developed a software tool called Skybox View that generates attack graphs. Attack
graphs are used to identify critical vulnerabilities that should be patched first to reduce risk. Input
information required includes the attacker source location and target and the loss associated with
compromising the target. Risk is calculated as the probability of success of an attack path times the loss
associated with the compromised target. This requires information on the probability of success-of-attack
components. Skybox creates its own database of vulnerabilities, and users must install special monitoring
and aggregation hosts at their sites to collect information required to generate attack graphs. Although no
technical details are provided concerning attack graph construction, a related patent [29] suggests that the
computation to compute the attack graph between a single source and destination grows roughly as N ,
where N is the number of hosts in the network. Examining paths from the attacker to all hosts in the
network would thus grow as N''. This approach may thus have difficulty scaling to large networks.

Swiler, L. P., C. Phillips, D. EUis, and S. Chakerian (2001), [25] "Computer-Attack Graph Generation
Tool," Proceedings of the Second DARPA Information Survivability Conference and Exposition (DISCEXII)
2001, Los Alamitos, California, pp. 307-321, IEEE Computer Society:
http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=932182.

This paper describes a proof-of-concept tool that was the most capable attack graph generation tool when
it was first published. It builds attack graphs to determine the shortest path(s) to a specified goal. Inputs
required include hand-generated vulnerability information (pre- and post-conditions), network

20

information, and attacker capabilities. Vulnerabilities are assigned costs that are used to find the shortest
path and also paths that are epsilon longer than the shortest path. Attack paths are built forward from a
start node. A trimmed full graph is built that stops adding extra nodes from any nodes that reach the goal
state. Further analyses, including the shortest path analysis, are performed on the attack graph with a
specified start and end node or goal state. The final result is a graph that can be presented to a system
administrator. Data is entered by hand into files read by the tool and stored in an intermediate database.
Missing values in network configuration information can be set to default values or to "unknown." If an
"unknown" value appears on a critical path (it was set to a default value to create the graph), this can be
indicated, and the user can gather more information on this value. The graph is collapsed to eliminate
paths that represent the same sequence of vulnerabilities but exploited in different orders. This helps
reduce the number of nodes, but the number of nodes can still grow combinatorically as the number of
vulnerabilities and hosts. A simple example generated by the tool includes only 5 vulnerabilities and 2
hosts. This paper has many limitations, including poor scaling and the need to manually enter information
required to generate attack graphs. It also introduces a few new ideas. The following are two of these new
ideas that can simplify attack-graph generation:

• Group similar hosts
It is suggested that hosts on the same LAN that have the same configuration and vulnerabilities
should be grouped into single representative aggregate hosts. This reduces the number of hosts
that need to be analyzed in an attack graph. This grouping, however, would be incorrect unless
the hosts also have the same reachability to and from other hosts in the network.

• Default values
It is also suggested that default values should be provided for unknovra details about the
network. It is difficult to obtain all network and host information, and default values enable an
analysis when complete information is not available. It is also suggested that a default value can
be used but tagged as being originally "unknown." If this value enables an attack of a critical
network resource, then this can be flagged so the user can gather more information and verify
the missing value.

Templeton, S. and K. Levitt (2001), [5] "A Requires/Provides Model for Computer Attacks,"
Proceedings of the 2000 Workshop on New Security Paradigms, New York: ACM Press.

This is one of the first papers to outline how attack scenarios can be generated automatically by linking
multiple attacker actions and subgoals. Subgoals in this approach are called concepts. Concepts have
requirements, and when these are satisfied, the concept provides capabilities that other concepts can use.
The linkage between requirements and provided capabilities can form multistage attack scenarios from
multiple concepts. For example, requirements for a telnet connection, might include (1) network access is
available to a specific host and port, (2) the host is active, (3) the telnet service is running on the host and
(4) a valid usemame and password are available for that host. Requirements also include details of

21

software and hardware versions required to support attack steps. An example of a concept description for
remote shell connection spoofing is presented written in a language called JIGSAW. It is labor intensive
to describe concepts in JIGSAW because detailed low-level information is required to describe both
requirements and capabilities. A proof-of-concept program was tried on a subset of the JIGSAW model
that requires as input a final goal, but no complex scenarios produced by this program are presented. It is
suggested that this approach could be used to discover new attack scenarios and correlate alerts from
intrusion detection systems. The main weakness of this work is that excessive hand labor is required to
generate detailed requirement and capability models, and the problems of scalable automation were not
addressed.

Tidwell, T., R. Larson, K. Fitch, and J. Hale (2001), [26] "Modeling Internet Attacks," Proceedings of
the Second Annual IEEE SMC Information Assurance Workshop, United States Military Academy, West
Point, New York, June 2001: IEEE Press, pp. 54-59.

This paper describes a system that could generate attack graphs to assess network security but does not
state whether such a system has been constructed. Attack graphs are of the type described by [13] with
one attacker goal. Most of the paper focuses on outlining how Backus-Naur Form (BNF) grammars can
be used to specify pre- and post-conditions for attack components and also how BNF grammars can be
used to describe characteristics of network components. A simple artificial example with 6 hosts is
presented to illustrate how BNF grammars can describe network components and attack steps and be used
by hand to produce an attack graph. The paper states that "the attack graph is constructed in a top-down
fashion by chaining attack templates that match vulnerabilities found within the active network
specification." Although no timing or scaling results are presented and the authors do not state that any
system to construct attack graphs was actually developed, this simple approach will not scale well with
large networks because it will create a full attack graph that shows all possible paths to reach a final goal.

22

4. REFERENCES

[1] Amenaza, "Secur/Tree Attack Tree Modeling," Amenaza Technologies Limited, 2004.

[2] Skybox, "Skybox Security," 2004.

[3] M. Artz, NETspa, A Network Security Planning Architecture, M.S. Thesis, Cambridge:
Massachusetts Institute of Technology, May 2002.

[4] S. Jajodia, S. Noel, and B. O'Berry, "Topological Analysis of Network Attack Vulnerability,"
Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava, and A.
Lazarevic, Eds., Dordrecht, Netherlands: Kluwer Academic Publisher, 2003.

[5] S. Templeton and K. Levitt, "A Requires/Provides Model for Computer Attacks," Proceedings of
the 2000 Workshop on New Security Paradigms, New York: ACM Press, 2001.

[6] F. Cuppens and R. Ortalo, "LAMBDA: A Language to Model a Database for Detection of
Attacks," Recent Advances in Intrusion Detection (RAID) 2000, Lecture Notes in Computer
Science 1907, H. Debar, L. Me, and F. Wu, Eds., Berlin: Springer Verlag, 2001.

[7] F. Cuppens "Alert Correlation in a Cooperative Intrusion Detection Framework," Proceedings of
the 2002 IEEE Symposium on Security and Privacy, Washington, DC, IEEE Computer Society,
2002.

[8] P. Ning and D. Xu, "Learning attack strategies from intrusion alerts," Proceedings of the lO"'
ACM Conference on Computer and Communications Security, New York: ACM Press, 2003,
200-209.

[9] P. Ammann, D. Wijesekera, and S. Kaushik, "Scalable, Graph-Based Network Vulnerability
Analysis," Proceedings of the P"' ACM Conference on Computer and Communications Security,
New York: ACM Press, 2002, 217-224.

[10] Nessus, "Nessus Security Scanner," 2004.

[11] P. Mell and T. Grance, "ICAT Metabase CVE Vulnerability Search Engine," National Institute of
Standards and Technology, 2002.

[12] D. Bilar, "Quantitative Risk Analysis of Computer Networks," Thayer School of Engineering,
Hanover, New Hampshire: Dartmouth College, 2003.

[13] B. Schneier, "Attack Trees," Dr. Dobbs Journal, December, 1999.

23

[14] S. Cheung, U. Lindqvist, and M. Fong, "Modeling Multistep Cyber Attacks for Scenario
Recognition," Proceedings of the Third DARPA Information Survivability Conference and
Exposition (DISCEXIII), vol. 1, IEEE, 2003, 284-292.

[15] J. Dawkins and J. Hale, "A Systematic Approach to Multi-Stage Network Attack Analysis,"
Proceedings of the Second IEEE International Information Assurance Workshop (IWIA '04),
IEEE Computer Society, 2004.

[16] V. Gorodetski and I. Kotenko, "Attacks against Computer Network: Formal Grammar-based
Framework and Simulation Tool," Lecture Notes in Computer Science, vol. 2516..-Recent
Advances in Intrusion Detection (RAID) 2002, A. Wespi, G. Vigna, and L. Deri, Eds., Berlin:
Springer Verlag, 2002.

[17] S. Noel, S. Jajodia, B. O'Berry, and M. Jacobs, "Efficient Minimum-Cost Network Hardening
Via Exploit Dependency Graphs," Proceedings of the 79"' Annual Computer Security
Applications Conference, Las Vegas, Nevada, 2003.

[18] S. Noel and S. Jajodia, "Managing Attack Graph Complexity Through Visual Hierarchical
Aggregation," Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for
Computer Security, New York: ACM Press, 2004.

[19] R. Ritchey, B. O'Berry, and S. Noel, "Representing TCP/IP Connectivity for Topological
Analysis of Network Security," Proceedings of the 18"' Annual Computer Security Applications
Conference, Las Vegas, Nevada, 2002.

[20] J. P. McDermott, "Attack Net Penetration Testing," Proceedings of the 2000 Workshop on New
Security Paradigms. New York: ACM Press, 2001, pp. 15-21.

[21] A. Moore, R. Ellison, and R. Linger, "Attack Modeling for Information Security and
Survivability," Software Engineering Institute, Technical Note CMU/SEI-2001-TN-Ol, March
2001.

[22] R. Ortalo, Y. Deswarte, and M. Kaaniche, "Experimenting with Quantitative Evaluation Tools for
Monitoring Operational Security," IEEE Transactions on Software Engineering, vol. 25, pp. 633-
650,1999.

[23] R. Ritchey and P. Amman, "Using Model Checking to Analyze Network Vulnerabilities,"
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp. 156-165, 2000.

[24] O. Sheyner, S. Jha, J. M. Wing, R. P. Lippmann, and J. Haines, "Automated Generation and
Analysis of Attack Graphs," in 2002 IEEE Symposium on Security and Privacy. Oakland,
California, 2002.

24

[25] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, "Computer-Attack Graph Generation Tool,"
Proceedings of the Second DARPA Information Survivability Conference & Exposition (DISCEX
II), Los Alamitos, California, vol. II, pp. 307-321, IEEE Computer Society, 2001.

[26] T. Tidwell, R. Larson, K. Fitch, and J. Hale, "Modeling Internet Attacks," Proceedings of the
Second Annual IEEE SMC Information Assurance Workshop, United States Military Academy,
West Point, New York, June 2001: IEEE Press, 2001, pp. 54-59.

[27] A. Wool, "A Quantitative Study of Firewall Configuration Errors," IEEE Computer, vol. 37, pp.
62-67, 2004.

[28] D. Turner, S. Entwisle, O. Friedrichs, D. Hanson, M. Fossi, D. Ahmad, S. Gordon, P. Szor, E.
Chien, F. Perriot, and P. Ferrie, "Symantec Internet Security Threat Report, Trends for January 1,
2004-June 30, 2004," vol. VI, September 2004.

[29] G. Cohen, M. Meiseles, and E. Reshef, "System and Method for Risk Detection and Analysis in a
Computer Network," USA: Skybox Security Ltd., 2004.

25

REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of Information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Sen/ices, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for falling to comply with a collection of Information If It does not display a currently
valid 0MB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
31 March 2005

2. REPORT TYPE
Project Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
An Annotated Review of Past Papers on Attack Graphs

5a. CONTRACT NUMBER
F19628-00-C-0002
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
R.P. Lippmann

K.W. Ingols

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108

8. PERFORMING ORGANIZATION REPORT
NUMBER

PR-IA-1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Department of the Air Force,
Robert LeBlanc, Lighthouse Cyber Security Program

US Air Force HQ CPSG/NIS
230 Hall Blvd., Suite 218
Lackland AFB, TX 78243-7056

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report reviews past research papers that describe how to construct attack graphs, how to use them to improve security of computer

networks, and how to use them to analyze alerts from intrusion detection systems. Two commercial systems are described [1, 2], and a
summary table compares important characteristics of past research studies. For each study, information is provided on the number of
attacker goals, how graphs are constructed, sizes of networks analyzed, how well the approach scales to larger networks, and the general
approach. Although research has made significant progress in the past few years, no system has analyzed networks with more than 20 hosts,
and computation for most approaches scales poorly and would be impractical for networks with more than even a few hundred hosts.
Current approaches also are limited because many require extensive and difficult-to-obtain details on attacks, many assume that host-to-
host reachability information between all hosts is already available, and many produce an attack graph but do not automatically generate
recommendations from that graph. Researchers have suggested promising approaches to alleviate some of these limitations, including
grouping hosts to improve scaling, using worst-case default values for unknown attack details, and symbolically analyzing attack graphs to
generate recommendations that improve security for critical hosts. Future research should explore these and other approaches to develop
attack graph construction and analysis algorithms that can be applied to large enterprise networks.
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT

Same as report

18. NUMBER
OF PAGES

35

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

