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ABSTRACT 

This report reviews past research papers that describe how to construct attack graphs, how to use 
them to improve security of computer networks, and how to use them to analyze alerts from intrusion 
detection systems. Two commercial systems are described [1, 2], and a summary table compares 
important characteristics of past research studies. For each study, information is provided on the number 
of attacker goals, how graphs are constructed, sizes of networks analyzed, how well the approach scales 
to larger networks, and the general approach. Although research has made significant progress in the past 
few years, no system has analyzed networks with more than 20 hosts, and computation for most 
approaches scales poorly and would be impractical for networks with more than even a few hundred 
hosts. Current approaches also are limited because many require extensive and difficult-to-obtain details 
on attacks, many assume that host-to-host reachability information between all hosts is already available, 
and many produce an attack graph but do not automatically generate recommendations from that graph. 
Researchers have suggested promising approaches to alleviate some of these limitations, including 
grouping hosts to improve scaling, using worst-case default values for unknown attack details, and 
symbolically analyzing attack graphs to generate recommendations that improve security for critical 
hosts. Future research should explore these and other approaches to develop attack graph construction and 
analysis algorithms that can be applied to large enterprise networks. 
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1.  INTRODUCTION AND SUMMARY TABLE 

Attack graphs are used to determine if designated goal states can be reached by attackers attempting 
to penetrate computer networks from initial starting states. For this use, they are graphs in which the 
starting node represents an attacker at a specified network location. Nodes and arcs represent actions the 
attacker takes and changes in the network state caused by these actions. Actions typically involve exploits 
or exploit steps that take advantage of vulnerabilities in software or protocols. The goal of these actions is 
for the attacker to obtain normally restricted privileges on one or more target hosts, where the target could 
be a user's computer, a router, a firewall, or some other network component. Many actions that 
compromise separate hosts and use them as stepping stones may be required in large attack graphs to 
reach the target host. A ftill attack graph will show all possible sequences of attacker actions that 
eventually lead to the desired level of privilege on the target. Some researchers use nodes to represent 
network states and arcs to represent attack actions, and some use other representations, including those in 
which both actions and network states are nodes and in which actions are nodes and network states are 
arcs. In addition, some attack graphs have one attacker starting location and one target host, some have 
multiple targets, and some have multiple attacker starting locations. 

The papers included in this report focus on 3 goals related to attack graphs. First, many papers 
construct attack graphs to analyze network security (e.g., [3, 4]). In these papers, networks and their 
vulnerabilities are modeled, and these models are used to construct attack graphs. Attack graphs usually 
determine whether attackers starting from a specific location can gain normally restricted privilege levels 
on one or more important targets. A second goal of some papers is to present formal languages that can be 
used to describe actions and states in attack graphs (e.g., [5, 6]). These languages typically define the 
preconditions necessary for an attacker action or step to succeed and the post-conditions or changes in 
network state and attacker privilege levels that occur as a result of the attacker step. Since preconditions 
depend on characteristics of network hosts, these languages also describe network components (e.g., 
hosts, routers, switches, firewalls) and their vulnerabilities. Some languages rely on complex grammars 
and require many details (e.g., [4, 5, 16]), and others are simpler and more practical (e.g. [3, 7]). A third 
goal of some papers is to describe how attack graphs can be used to group the large numbers of alerts that 
are produced by intrusion detection systems (IDS) (e.g., [7, 8]). This is accomplished by first building 
attack graphs for a computer network that is being protected by the IDS. If IDS alerts can be associated 
with actions in the attack graph, then alerts that arrive in a sequence that is predicted when proceeding 
along a single attack graph path may indicate that an attacker is successfully performing the steps in that 
path. Grouping alerts generally requires the construction of attack graphs and a mechanism to match 
incoming IDS alerts to paths in the attack graph. When such matches are found, then a high-level alert is 
created for a security analyst. For papers that focus on grouping IDS alerts, this report focuses on the 
language used to represent actions and network characteristics and the approach used to construct attack 
graphs. 



Table 1 presents a summary of the papers reviewed in this report. The first column provides the 
author, the date of the paper, and a cross-reference to the bibliography at the end of this report. The 
second column indicates if each attack graph has only one network host or network device as a target or if 
the attack graph simultaneously contains many targets. Constructing one attack graph for all hosts and 
network devices in a network as in [3] may result in a simpler representation that scales better for large 
networks than constructing an independent attack graph for each target. The third column in Table 1 
describes the approach used to generate attack graphs. If examples of attack-graph generation are 
presented, this column also includes the maximum number of hosts and number of distinct vulnerabilities 
in the example. The fourth column in Table 1 describes how the approach used to generate attack graphs 
scales as the number of hosts in a network (N) increases. A scaling analysis is sometimes provided, but 
often scaling properties are inferred based on the approach or on timing measurements provided by the 
authors. The last column in Table 1 provides some summary comments on unique aspects of the paper. 

Table 1 
Research Papers That Describe Approaches to Generate Attack Graphs 

'. Paper Goals Graph Construction 
HostsA^uInerabilities 

Scaling Comments 

Ammann, 2002 [9] One final 
goal 

Hand generated 
artificial network, hand 
analysis 

3 Hosts/6 Vulns. 

Best research 
algorithm to 
date, base 
computation 
grows as N* 

Describes algorithms to find attack 
paths to specific goals. Finds the 
shortest path, all exploits that can be 
used to reach the goal, and paths of any 
length. Scales to only hundreds of 
nodes. 

Artz, 2002 [3] Multiple 
goals 

Depth-first search in 
C++ program for a 
realistic network 

17 Hosts/21 Vulns. 

Poor, similar 
to full graph, 
reasonable run 
times (90 
seconds) for 
17-host 
network 

Finds all paths to all possible goals and 
performs reachability computations. 
Search depth can be limited, determines 
visibility of attack paths to intrusion 
detection systems, imports hand- 
modified informafion from Nessus [10] 
scanner and the ICAT vulnerability 

database [11]. 

Bilar,2003[12] One final 
goal 

Hand generated graph 
as in [13] 

1 Host 

Determines software to patch or update 
on a single host. Analyzed 6 different 
operating systems containing a total of 
129 vulnerabilities. Found that all 
vulnerabilities need to be patched to 
reduce risk substantially. 



Table 1 continued 

Paper Goals Graph Construction 
HostsA^uInerabilities 

Scaling Comments 

Cheung, 2003 [14] One final Proof-of-concept code Poor Describes the CAML attack language 

goal for one known scenario that can be used to correlate IDS alerts 

into scenarios. 

Cuppens, 2001-2[6, Multiple Description only — Describes the LAMBDA attack 

7] goals language and shows how it can be used 
to correlate intrusion detection system 
(IDS) alerts into scenarios using pair- 
wise rules. 

Dawkins,2004[15] One final Proof-of-concept with Poor, builds Builds a full attack graph, extracts paths 

goal hand data entry, small 
artificial network 

4 Hosts/ 4 Vulns. 

full graph first to desired final goal, and simplifies 
these into "a minimum cut set" where 
the goal cannot be reached if any single 
vulnerability is removed. 

Gorodetski, 2003 One final Program generates — Uses a formal grammar to specify 

[16] goal individual random 
attack paths 

allowable paths and generates 
individual paths from the grammar. 

Jajodia, 2003 [4, 17- One final Automatic graph Best to date, Reads in vulnerability and reachability 

19] goal generation using base information fi^om the Nessus [10] 

algorithm from [9] computation scanner, computes attack graphs using 

3-17 Hosts/4-? Vulns. grows as N* the approach described in [9], makes 
recommendations to prevent access to 
critical hosts, and simplifies the graph 
for visualization. 

McDeimott, 2001 Goal and By hand Poor Formalization of the approach described 

[20] subgoals in [13]. 

Moore, 2001 [21] One final 

goal 

By hand Poor Suggests using attack graphs described 
by [13] to describe attacks. 

Ning, 2003 [8] Multiple Automatic scenario Poor, NP Presents a language that describes 

goals generation from IDS 
alerts. Tested with a 
few small known 
scenarios. 

complete vulnerabilities and IDS alerts plus an 
approach to group alerts into graphs that 
display scenarios. Graphs have fewer 
than 10 nodes. 



Table 1 continued 
Goals Graph Construction 

HostsA^uInerabilities 
Scaling Comments 

Ortalo, 1999 [22] One final 
goal 

Automatic graph 
generation from UNIX 
host-based 
vulnerability checker 
over 21 months. 

1 Host/13 Vulns. 

Poor 
(sometimes 
couldn't build 
breadth-first 
graph) 

Builds privilege graphs showing how 
an insider on a single UNIX host can 
increase privilege to admin or root 
using 13 vulnerabilities. Computes the 
number of steps in the shortest path and 
expected mean effort to failure but 
requires exploit success probability 
estimates. 

Ritchey, 2000 [23] One final 

goal 

Hand-generated 
artificial network input 

to model checker 

4 Hosts 

Poor Uses model checking to determine if a 
final goal is reachable. Other papers 

(e.g., [4]) note that this approach does 

not scale well. 

Sheyner, 2002 [24] One final 
goal 

Hand-generated 
artificial network input 
to model checker 

3 Hosts/4 Vulns. to 

5 Hosts/7 Vulns. 

Poor Uses model checking to determine if a 
final goal is reachable. It took 5 
seconds for 4 hosts/4 vulns. but 2 hours 
for 5 hosts/8 vulnerabilities. Also 
analyzes the visibility of different 
attack paths to intrusion detection 
systems. 

Schneier, 1999[13] One final 
goal 

By hand Poor Early discussion that presents a widely- 
used representation for attack graphs. 

Swiler,2001 [25] One final 
goal 

Proof-of-concept hand 
vulnerability entry and 
small artificial network 
2 Hosts/5 Vulns. 

Poor (builds 
almost full 
graph first) 

Builds a semi-collapsed full attack 
graph that still scales combinatorically. 
Uses this large graph to compute 
shortest paths to specified goals with 
costs on links. A database holds 
information on the network, 
vulnerabilities, and attacker models. 

Templeton, 2002 [5] One final 
goal 

Proof-of-concept code One of the first papers to suggest 
modeling attack components using pre- 
and post-conditions and using forward 
chaining to build attack graphs. 
Recommends highly detailed attack 
component models. 

Tidwell, 2001 [26] One final 
goal 

Description only, 
example uses 6 hosts. " 

Suggests using BNF grammars to 
describe network components and also 
attack pre- and post-conditions. 



2. PROBLEMS AND POTENTIAL FUTURE DIRECTIONS 

The detailed reviews in the following section and Table 1 demonstrate several problems or 
limitations of past attack-graph research. They also suggest future directions that might overcome many 
of these limitations. 

2.1     SCALING TO LARGE NETWORKS 

The first major limitation of prior studies is that most past algorithms have only been able to 
generate attack graphs on small networks with fewer than 20 hosts. The most capable systems have been 
developed at George Mason University [4, 9, 17-19] and MIT Lincoln Laboratory [3]. Both systems 
have been used to construct attack graphs for small 17-host networks that were simulations of actual 
networks, and scaling for both systems is poor. Computation required for the approach used at George 
Mason University described in [9] grows as N^, where A'^ represents the number of hosts in a network. 
Although this is not combinatorial and is the best upper bound reported to date, as stated in [9], this 
approach will only scale to networks with at most "tens or hundreds of hosts." 

Timing measurements and an algorithmic analysis demonstrate that scaling for the approach used at 
MIT Lincoln Laboratory [3] is also poor. This approach is more complete than that described in [9] 
because instead of assuming that reachability between all hosts is provided, it computes the reachability 
between all hosts before generating attack graphs. Reachability computations model the effect of 
gateways and firewalls to determine which other hosts in a network can be reached from any host. 
Reachability infomiation is required to construct attack graphs because an attack can only proceed to new 
victims that can be reached from compromised hosts. Computing reachability using the simplest approach 
requires an additional A'^ host-to-host reachability analysis prior to the attack-graph construction 
computation. The approach described in [3] also simultaneously builds an attack graph that shows how all 
targets in a network can be compromised by an attacker from a given starting location. A small 17-host 
network was analyzed in less than 90 seconds (including reachability computations), but scaling to larger 
networks is poor because this approach constructs a fiill attack graph that includes all possible paths to 
reach victims. In even a simple subnet with no filtering, the size of such a full graph grows 
combinatorically as the number of hosts increases. 

Other approaches that construct fiill attack graphs [15, 22, 25, 26] will also exhibit poor scaling. 
For example, full attack graphs often could not be computed in [22] even when analyzing the effect of 
only 13 vulnerabilities on one file system. Approaches that use model checking to explore the entire space 
of allowable attack paths, as described in [24], also exhibit poor scaling. In these experiments the run 
time was only 5 seconds for a 4-host network with 5 vulnerabilities. This increased to 3 hours when the 
number of hosts was increased by one to 5 and the number of vulnerabilities was increased to 8. 



In practice it is desirable to compute attack graphs for enterprise networks with 10,000 to 100,000 
hosts. Many of the graph-building algorithms used in past research papers create a full attack graph and 
thus scale combinatorically withiV, where TV represents the number of hosts in a network. The best 
research algorithm [9] scales as N^, and an approach described in a patent [2] claims to scale as N . 
None of these algorithms are acceptable for large enterprise networks. Only algorithms that scale linearly 
or quadratically in the number of hosts will be practical for large networks. Two approaches that may 
improve scaling are suggested by past studies. The first is to produce a restricted graph that is designed 
solely to answer questions required to analyze network security. One restricted set of questions is (1) what 
hosts can be compromised by an attacker starting at a given network location? and (2) what is the minimum 
set of exploits that enable successfiil attacks against the specified goals? It may be possible to develop a 
graph-building algorithm that answers only these questions but has complexity that is less than N . 

A second approach that can be used to reduce the complexity of graph building is to group or 
aggregate similar hosts together. This reduces N by replacing many individual hosts with representative 
hosts. Aggregation was suggested in [25] for this purpose and in [18] to simplify the visual presentation 
of attack graphs. The simplest type of aggregation is to collapse hosts that are fully connected into 
protection domains. For example, all hosts on a single local area network (LAN) or subnet could be 
aggregated if they have the same reachability from outside the network and if they share the same 
vulnerabilities. It would also be possible to aggregate hosts across connected subnets when the gateway 
that connects subnets performs no filtering. A second type of aggregation is to group multiple exploits 
between two hosts when they have the same pre- and post-conditions. 

2.2     OBTAINING ATTACK DETAILS 

A second major weakness of many past approaches is that information used to describe pre- and 
post-conditions for exploits or attack components must be entered by hand. This is labor intensive and 
difficult, especially to model attacks using the amount of detail required by many studies (e.g., [4, 5]). 
For example, in [12] it is noted that it can take from 10 minutes to hours for an analyst to determine the 
pre- and post-conditions for a single attack component. Although some vulnerability databases exist (e.g., 
[11]), they do not contain the machine-readable details required to accurately produce many of the attack 
graphs shown in past papers. Such graphs require extensive human analysis of vulnerabilities and attack 
components or development of automated approaches to extract this information from text in attack 
descriptions. An alternative approach is to only require limited information concerning attack components 
and vulnerabilities as in [3] and to fill in unknown attack and vulnerability details with reasonable default 
values as suggested in [25]. If a worst-case assumption is made to fill in unknown details, in many cases 
the attack graph analysis will identify on a few hosts a small set of critical vulnerabilities that enable an 
outside attacker to progress to internal targets. This small set of vulnerabilities can be hand analyzed and 
details confimied to verify the attack-graph analysis. This is much simpler than hand verifying the 

analysis of all vulnerabilifies. 



2.3 COMPUTING REACHABILITY 

As noted above, reachability computations determine which other hosts in a network can be reached 
from a given host by modeling the effect of gateways and firewalls. A weakness of many past approaches 
is the assumption that reachability information is available prior to computing attack graphs (e.g., [24]) or 
that it can be obtained using a vulnerability scanner from each subnet in the analysis (e.g., [4]). 
Detennining reachability between all hosts in large networks with many firewalls is a computationally 
complex task. It is almost impossible to determine reachability using vulnerability scanners, and this 
approach can severely underestimate reachability. Firewalls can contain hundreds to thousands of access 
control rules, network address translation (NAT) rules, and network objects that represent groups of IP 
addresses (e.g., [27]). A single scan from one Internet protocol (IP) address will only exercise a few of 
these rules. Such scans will miss rules that apply to other source IP addresses or to destination IP 
addresses not included in the scan. It is difficult, in general, to know which source and destination 
addresses will be treated differently by a firewall due to NAT rules and the complexity of other rules. In 
addition, a single scan will not discover the effect of time-dependent firewall rules. Accurately 
determining the reachability between hosts in separate subnets requires downloading and analyzing 
configuration files for firewalls, routers, switches, virtual private networks, personal firewalls, and other 
network infrastructure devices that perform filtering. Future tools that use attack graphs to analyze 
network security on large enterprise networks must perform this type of analysis. 

2.4 GENERATING RECOMMENDATIONS FROM ATTACK GRAPHS 

Past studies have demonstrated that attack graphs can become large and complex even for networks 
with fewer than 20 hosts (e.g., [3, 4]). Such large graphs, once generated, can be difficult to analyze and 
understand. An alternative approach is to not only generate attack graphs, but to also automatically 
analyze attack graphs to address security issues and make recommendations to improve security. 
Recommendations could, for example, suggest changes in the network architecture or patches for 
installed software that protect important hosts but result in few changes. One past study [17] developed 
approaches to make such recommendations. Future work should extend this work and explore approaches 
that can scale to large networks. 



3.  DETAILED REVIEWS 

Amenaza (2004), [1] Secur/Graph Attack Graph Modeling, Amenaza Technologies Limited: 
http://www.amenaza.com/company.html. 

This commercial company provides a software program that helps automate the attack-graph construction 
and analysis techniques presented in [13]. It makes it possible to construct AND/OR attack graphs using 
a graphical user interface and allows various types of costs or possibilities to be attached to attacker 
actions. It can also then compute the cost or probability of success of different attack paths and identify 
shortest or most-likely-to-succeed paths. Attack graphs must be constructed by hand, and then paths can 
be automatically analyzed. Examples illustrate attack graphs with lO's of nodes. 

Ammann, P., D. Wijesekera, and S. Kaushik (2002), [9] "Scalable, Graph-Based Network Vulner- 
ability Analysis," Proceedings of the 9th ACM Conference on Computer and Communications Security 
2002, New York: ACM Press, pp. 217-224. 

This paper describes an algorithm that can be used to create attack graphs. The complexity of this 
algorithm is polynomial and not combinatoric, and we are aware of no other research algorithm that had a 
better upper bound on complexity at the time this paper was published. In a network with N hosts, it 
requires reachability information between all hosts on all TCP/IP ports and protocols of interest, 
information concerning vulnerabilities on hosts, attacker privilege levels on all hosts, and information on 
exploits including pre- and post-conditions. Computation in the initial marking phase of the algorithm 
grows as N^E, where N is the number of hosts and E is the number of exploits. This computation scales 
poorly to large networks and motivates the comment in the paper that this approach is useful for networks 
with at most hundreds of hosts. Algorithms are presented that use information obtained in the marking 
phase to compute paths to a final goal, to determine all exploits that can be used to reach a goal, and to 
find the path with the fewest attack steps to a goal. The marking phase could also be used to determine the 
hosts that can be compromised for a given attacker starting location. A simple example is presented using 
an artificial network with 3 hosts and 6 vulnerabilities. This network was analyzed by hand to 
demonstrate the algorithm. The algorithm that determines exploits that can be used to reach the final goal 
would include all exploits on a fiill graph pruned to contain only paths ending at the final goal. 

The approach is restricted to monotonic attacks in which a component attack never changes the 
network state in a way that eliminates a precondition for another attack. This means that some attacks 
such as Denial of Service (DoS) attacks against hosts or services cannot be modeled and that other attacks 
that include DoS components against services need to be modeled by ignoring the DoS components. It 
also means that information along attack paths concerning change of network state (e.g., installing new 
passwords, a DoS attack against services, patching existing vulnerabilities) may not be preserved and will 



not be available for forensic analysis that depends on detecting changes of state to network components. 
Finally, the need to precompute reachability before attack-graph generation means that this approach 
cannot model attacks in which firewalls or other network infrastructure components are compromised and 
firewall or filtering rules are changed, thus changing the underlying reachability between hosts. 

Artz, M. (2002), [3] NETspa, A Network Security Planning Architecture, M.S. Thesis, Cambridge: 
Massachusetts Institute of Technology, May 2002. 

This thesis describes the first version of the NetSPA (Network Security Planning Architecture) system 
that generates worst-case attack graphs. This is a C++ tool that inputs information from a custom database 
on host and software types and versions, intrusion detection system placement, gateways between 
subnets, firewall rules, and exploits. Other information, including critical network resources and the 
attacker starting locations, is provided at run time. Although information on network vulnerabilities is 
collected using the Nessus [10] vulnerability scanner, this information must be entered into the database 
by hand. Information on firewall rules and the network topology also must be entered into the database by 
hand. Exploits are described using a simple language that specifies the requirements for the exploit 
(usually connectivity to a vulnerable victim), the effect of the exploit (usually the privilege level on the 
victim and any side effects such as a DoS of the service used for a buffer overflow attack), and whether 
this exploit is visible to a network intrusion detection system. Some trust relationships are also provided 
to model sniffer attacks. Analysis first involves computing connectivity between all hosts using network 
topology information and firewall rules. Attack graphs are then built, using a depth-limited forward- 
chaining depth-first search. This tool produced attack graphs that were identical to those produced by the 
model checker described in [24] for the same small test network. It was also evaluated using a realistic 
network with 17 representative hosts from an actual network, 21 unique vulnerability types, internal and 
DMZ networks, and a firewall with 12 rules. Attack graphs were generated to determine hosts that can be 
compromised by novice and expert external attackers; the effect of combining DNS, SMTP, and web 
servers; the best placement for an IDS to detect external attacks; and the effect of new "zero-day" 
vulnerabilities on DMZ servers. Although the largest graphs for the 17-host network took less than 90 
seconds to produce when the graph depth was limited to three, scaling is poor because the graph produced 
is similar to a full graph. 

Bilar, D. (2003), [12] Quantitative Risk Analysis of Computer Networks, Ph.D. Thesis, Thayer School of 
Engineering, Hanover, New Hampshire: Dartmouth College, June 2003. 

This thesis describes an optimization approach to determine what software running on an individual 
computer when patched provides the greatest reduction in risk where risk is defined as the probability of 
loss times the amount of loss. Data required for this approach include extensive details concerning 
versions of software and their vulnerabilities for each host modeled. The following details need to be 
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provided: (1) the consequences of exploits, (2) the loss associated with each consequence, (3) the 
probability of success for each exploit as a function of time, and (4) the cost of changing from one 
software version to another. This information was generated manually for 6 workstations running 
different operating systems containing a total of 129 unique vulnerabilities. Simple AND/OR attack 
graphs were built for each host by hand and used to combine attack success probabilities. These graphs 
were found to be unnecessary because the final conclusion after analyzing all the data was that "almost all 
if not all of the faults have to be eliminated to have an appreciable effect on the consequence risk 
probabilities." This means that a host needs to be completely patched to ensure that it cannot be 
compromised. A second conclusion is that it is better to first patch the software that can be compromised 
by a remote user and thus has the highest risk. An interesting comment is that analyzing any single 
vulnerability to determine the pre- and post-conditions can take from 10 minutes to 2 hours. 

Cheung, S., U. Lindqvist, et al. (2003), [14] "Modeling Multistep Cyber Attacks for Scenario 
Recognition," Proceedings of the Third DARPA Information Survivability Conference and Exposition 
(DISCEXIII), IEEE, 1, 284-292. 

This paper describes a language called CAML (Correlated Attack Modeling Language) that can be used 
to model attack scenarios and recognize scenarios from intrusion-detection alerts. It is similar to 
LAMBDA [6] and JIGSAW [5] in that it defines preconditions and post-conditions for attack actions 
(called modules) and also describes the state of network components. Preconditions include information 
on hosts, services, file names and privileges, users, and information known by users such as the password 
of another user. The CAML language was tested by creating a model of an attack scenario that included 
13 modules by hand and that shows that a manually created system could correctly chain attack modules 
and recognize simulated alerts generated using the known scenario. The weakness of this approach is that 
modules are labor intensive to create and there is no efficient tool to automatically create scenarios. 

Cuppens, F. and R. Ortalo (2001), [6] "LAMBDA: A Language to Model a Database for Detecdon of 
Attacks," Recent Advances in Intrusion Detection (RAID) 2000, Lecture Notes in Computer Science, vol. 
1907, H. Debar, L. Me and F. Wu, Eds., Berlin: Springer Verlag. 

This paper describes a language, LAMBDA, that can be used to describe attack scenarios as a 
combination of actions. As in the JIGSAW model [5], each action has conditions or requirements that 
must be satisfied for the action to succeed, and successful actions affect the network and may satisfy 
conditions for other actions. Actions can be combined using operators that specify sequencing, parallel 
unconstrained execution, absence of a condition, nondeterministic choice between multiple equivalent 
actions, and synchronized execution. As with JIGSAW, this language is labor intensive to use, only a few 
examples are provided, and an automated tool to create scenarios is not presented. 

11 



Cuppens, F. (2002), [7] "Alert Correlation in a Cooperative Intrusion Detection Framework," Proceedings 
of the 2002 IEEE Symposium on Security and Privacy, Washington, DC, IEEE Computer Society. 

This paper describes how the LAMBDA language described in [6] can be used to link alerts from 
intrusion detection systems into scenarios. It includes a comprehensive description of the language and 
illustrates how it can be used to model a variety of attacks. Preconditions for actions are made explicit in 
this paper. One precondition specifies access levels of the intruder on the target system, including remote, 
local, user, root, and physical. Another specifies effects of attacks on the target system, including denial 
of service, alter, and (illegal) use. A final precondition specifies that a service is active on a target or 
source system. Post-conditions or attack effects include attacker knowledge about the target system that 
might be gained, for example, by a port scan. Intrusion-detection alerts are correlated by automatically 
generating rules from the LAMBDA action descriptions that link pairs of attacks together where success 
of the first attack may enable the second. These rules are generated offline and used to correlate intrusion 
detection alerts. The paper describes an approach that is not yet implemented. More actions need to be 
described in LAMBDA, and an approach needs to be developed to specify a global intrusion objective 
and determine if alerts represent actions that lead to that objective. This approach to correlating intrusion- 
detection alerts and developing attack scenarios is limited by the human labor required to describe actions 
and by the need to develop an efficient automated approach to create scenarios with global objectives. 

Dawkins, J. and J. Hale (2004),  [15]  "A Systematic Approach to Multi-Stage Network Attack 
Analysis," Proceedings of the Second IEEE International Information Assurance Workshop (IWIA '04), 
2004. IEEE Computer Society: 
http://csdl.computer.Org/comp/proceedings/iwia/2004/2117/00/21170048abs.htm. 

This paper describes a framework that can be used to create and analyze attack graphs in computer 
networks. Models are built of the network (hosts and boundaries), of the privileges of the attacker on 
hosts and the reachability of hosts fi-om the attacker, and of vulnerabilities. Vulnerabilities are modeled by 
describing pre- and post-conditions as in JIGSAW and LAMBDA. Analysis involves first producing a 
full breadth-first attack graph that includes all possible paths with no pruning for specific attack goals. 
The attack graph is limited by depth to stop after a given number of vulnerabilities have been exercised in 
sequence in each path. The full attack graph is then analyzed to identify attack paths that end in specific 
top-level goals. These paths are then analyzed to find the "minimum cut set" which is the smallest 
collection of paths such that if any one vulnerability is removed, they still correctly predict whether the 
final goal is reached. After a minimum-cut-set attack graph is generated, it can be used to determine the 
probability of achieving a top-level goal, but this requires knowledge of the probability of each 
component attack and the unlikely assumption that these probabilities are independent. A proof-of- 
concept tool is described that reads in network, vulnerability, and attacker models that are expressed in 
XML. It builds full attack graphs to a specified depth, allows a user to select a top-level goal, extracts 
paths that reach these goals, and simplifies these paths to produce a minimum-cut-set graph. Inputs to this 
tool are hand generated and the tool has only been applied to a small artificial network with 4 hosts and 4 
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vulnerabilities. Scaling results are not presented, but because a full graph is generated, scaling will be 
poor because the number of nodes in full graphs can grow combinatorically as the number of hosts in a 
network grows. The algorithm used to generate a minimum-cut-set graph from the full graph is also not 
specified. 

One useful idea presented in this paper is to store network state changes differentially along attack paths. 
Any component attack may change the state of the network. An inefficient approach to storing these state 
changes would be to replicate the complete network state at each node in the attack graph and then use 
this state for the remainder of the graph. Instead, the paper suggests storing only the differences between 
the network state at each node in the attack graph. This makes it possible to use non-monotonic attacks 
that disable other attacks and to model DoS attacks. 

Gorodetski, V. and I. Kotenko (2002), [16] "Attacks against Computer Network: Formal Grammar- 
based Framework and Simulation Tool," Lecture Notes in Computer Science, vol. 2516: Recent Advances 
in Intrusion Detection (RAID) 2002, A. Wespi, G. Vigna, and L. Deri, Eds., Berlin: Springer Verlag: 
http://space.iias.spb.su/ai/doc/RAID-2002.pdf 

Instead of modeling attack graphs graphically, this paper proposes a model based on a formal stochastic 
context-free grammar where an attack hierarchy is created and the substitution operation is used to create 
specific attack paths. A proof-of-concept tool is developed for a small set of attacks and a test network 
where detailed information on the network and attacks is available. The tool allows component attacks to 
succeed or fail with given probabilities and generates individual random attack paths for each run. All 
information is entered manually, and the tool implements a finite state machine that generates attack paths 
from the formal grammar definition of component attacks and the network. 

Jajodia,   S.,   S.   Noel,   and  B.   O'Berry  (2003),   [4]   "Topological  Analysis  of Network  Attack 
Vulnerability," Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava, 
and A. Lazarevic, Eds., Dordrecht, Netherlands: Kluwer Academic Publisher: 

http://www.isse.gmu.edu/~snoel/Kluwer%20TVA%20chapter.pdf 

This paper describes the Topological Vulnerability Analysis (TVA) tool. It is one of the most 
comprehensive tools developed to date for the purpose of building and analyzing attack graphs and has 
served as a framework at George Mason University for attack-graph research. This tool requires 
reachability and vulnerability information obtained by Nessus [10] scans, pre- and post-conditions for 
exploits entered by hand, and information on attacker goals and the network provided by hand. The 
polynomial time algorithm described in [9] is used to construct and analyze attack graphs. After the 
marking phase of this algorithm is complete, it is possible to construct attack paths to attack goals and 
also use a symbolic analysis technique to identify sets of actions (e.g., patch vulnerabilities, remove 
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network services, remove programs on hosts) that, if followed, prevent the attacker from reaching goal 
states. No information is presented about how this symbolic analysis scales for large networks. An 
example is presented for a small artificial network with 3 hosts, 4 exploits, and a firewall with a total of 6 
rules and network objects. A simple attack graph shows how an outside attacker can obtain root-level 
privileges on an internal machine that cannot be directly compromised from the outside. The attacker uses 
a vulnerability in the IIS web server to compromise this host and then uses this web server as a stepping 
stone. This is accomplished by first using the Remote Copy (RCP) program to download a root kit to the 
web server. A port forward tool is then installed, and the attacker compromises the victim machine 
through the web server using an attack on the FTP server running on the victim machine. In this graph, 
the attacker uses the non-target internal host as a stepping stone. Attack steps include low-level attacker 
actions such as downloading programs from external hosts. The symbolic analysis demonstrates that 
many different changes to the network, including patching the IIS web server, removing the RCP program 
on the IIS server, and patching the FTP server on the victim, prevent the attacker from achieving root on 
the target machine. Firewall rules are not analyzed but determined implicitly by using Nessus to scan 
between subnets through firewalls to determine reachability through between subnets. 

This is one of the most capable tools developed to date for the generation and analysis of attack graphs. 
Some information on vulnerabilities is automatically imported, the algorithm can scale to hundreds of 
nodes, and the goal is to make recommendations to improve security and not simply create attack graphs. 
The TVA tool, and others, are still limited. Major limitations with the TVA approach include the 
following: 

• Exploit information must be entered by hand 
Information required to describe pre- and post-conditions for exploits must be entered by hand, 
and the exploits must be analyzed by hand because detailed information is required. This is 
labor intensive and difficult, especially to model attacks using the amount of detail shown in 
this paper. Although some vulnerability databases exist (e.g., [11]), they do not contain the 
amount of detail required to accurately produce the types of attack graphs shown in this paper. 

• Firewall and router rules are not imported and analyzed 
A major limitation of the TVA tool is that firewall and routing rules are not imported directly 
and analyzed. Instead, the Nessus vulnerability scanner is used to determine whether it is 
possible to connect from one specific IP address in one subnet to IP addresses in another 
through the firewall. This approach can severely underestimate reachability between subnets. 
Firewalls can contain hundreds to thousands of access control rules, network address translation 
(NAT) rules, and network objects that represent groups of IP addresses (e.g., [27]). A single 
Nessus scan from one IP address will only exercise a few of these rules. Such scans will not 
exercise rules that apply to other source IP addresses or to destination IP addresses not included 
in the scan. It is difficult, in general, to know which source and destination addresses will be 
treated differently by a firewall due to NAT rules and the complexity of other rules. In addition, 
a single scan will not discover the effects of time-dependent firewall rules. Accurately 
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determining the reachability between hosts in separate subnets requires downloading and 
analyzing firewall and router rales. Depending on Nessus scans will lead to attack graphs that 
often ignore many avenues of attack. It also requires scanning the entire network from every 
subnet. This is impractical except for small enterprise networks. 

Poor scaling to large networks 
The underlying algorithms used by TVA scale as A'^*, where A'^ is the number of hosts in the 
network as described in [9]. As noted in [9], the approach will probably not scale to more than 
hundreds of hosts. In addition, the approach is limited to monotonic attacks in which no 
component attack action makes a different attack impossible. It thus precludes inclusion of DoS 
attacks. 

Requires low-level attack details 
This approach assumes that it is possible to obtain host, network, and attacker information 
necessary to support the detailed low-level attack modeling used and to model these details 
correctly. This is usually not possible because detailed host monitoring is frequently not 
allowed and is not practical on enterprise networks and because attacker modeling is extremely 
difficult. The problems faced when modeling detailed attack steps are demonstrated by the 
simple attack graph presented. A critical step was downloading a root kit program using the 
RCP program, and one of the network changes that the TVA analysis claimed could prevent 
compromising the victim is to remove the RCP program. In most Windows NT hosts, there are 
many alternative approaches to downloading files and RCP is not essential. Other approaches to 
downloading files to a compromised IIS server include sending the file along with the 
compromise, sending the file as an HTTP request after the compromise successfully responds 
to the attacker, sending HTTP cookies, using SSH, tunneling the file through HTTP, ICMP, or 
DNS, and other approaches that have been used in automated exploits and worms. The attack 
graph shown is incomplete because these other approaches are not modeled. It is thus incorrect 
to assume that removing the RCP program on the web server will protect the victim machine 
and block this attack. Since the attacker can ran arbitrary code on the web server, the initial 
attack can include new programs that can automatically compromise the target machine and 
others, as seen in recent worms and "hot" networks [28]. Such low-level attack details are 
difficult to model correctly. An altemative worst-case approach is to assume that the attacker can 
download tools and proceed to launch another attack from any compromised host instead of trying 
to model the many approaches to download and run attack tools. This approach is used in [3]. 
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McDermott, J. P. (2001), [20] "Attack Net Penetration Testing," Proceedings of the 2000 Workshop on 
New Security Paradigms, New York: ACM Press, pp. 15-21. 

This paper proposes a more formal definition of attack nets using a disjunctive Petri net. This exphcitly 
differentiates intennediate states from actions that change state, and it models attack progress and 
concurrency using Petri net tokens. This approach has all the limitations of [13] but is a more formal 
approach that eliminates the lack of definitions in [13]. Some examples demonstrate how it can model 
low-level concurrency and provide detailed attack models. 

Moore, A., R. Ellison, et al. (2001), [21] "Attack Modeling for Information Security and Survivability," 
Software Engineering Institute: http://www.cert.org/archive/pdf/01tn001.pdf 

This paper suggests using attack graphs as described by [13] as an approach to document computer 
attacks in a structured and reusable form. Attack graphs are hand generated, and no standards for storing 
or sharing attack graphs are proposed other than the text format used by [13]. 

Ning, P. and D. Xu (2003), J8] "Learning attack strategies from intrusion alerts," Proceedings of the 
10th ACM Conference on Computer and Communications Security, New York: ACM Press, pp. 200-209. 

This paper describes an attack description language similar to LAMBDA [6] and JIGSAW [5] that 
includes preconditions and post-conditions for intrusions (called hyperalerts) and is designed to correlate 
alerts from intrusion detection systems. The language was used to describe alert components from 5 
different small attack scenarios that were run on isolated test bed networks. Alerts from intrusion 
detection systems on these networks were analyzed and used to produce scenario graphs that were similar 
to the original underlying attack scenarios except for missing steps caused by intrusion detection systems 
that couldn't observe all attack steps. This approach uses generic graph matching approaches to simplify 
the generated graphs. The paper states that this analysis is NP complete but that the graphs generated 
typically have fewer than 10 nodes and can be generated with reasonable response times. This approach 
would not scale to large scenario graphs. In addition, all models again need to be generated by hand and 
future work is proposed to deal with false alarms and attack steps missed by intrusion detection systems. 
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Noel, S., S. Jajodia, et al. (2003), [17] "Efficient Minimum-Cost Network Hardening Via Exploit 
Dependency Graphs," Proceedings of the 19th Annual Computer Security Applications Conference, Las 
Vegas, Nevada: http://www.isse.gmu.edu/~snoel/2003%20ACSAC.pdf. 

This paper provides further details that explain how network hardening recommendations are made in the 
TVA system described in [4]. Exploit dependency graphs are first constructed, and a symbolic description 
of exploits that lead to a given goal is created. This is then simplified into a symbolic equation that 
specifies the network preconditions necessary for the goal to be reached. Analysis of this equation, given 
the cost of making each network change, makes it possible to recommend a least-cost change that 
prevents the goal from being reached. No information is provided on how this symbolic analysis is 
performed or how it scales other than a comment that the number of terms in the equation can grow 
exponentially in the number of network preconditions. In a large enterprise network there can be many 
preconditions because these include vulnerabilities on each host, reachability between all host pairs, and 
trust relationships between hosts. 

Noel, S. and S. Jajodia (2004), [18] "Managing Attack Graph Complexity Through Visual Hierarchical 
Aggregation," Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Computer 
Security, New York: ACM Press: http://www.isse.gmu.edu/~csis/faculty/jajodia-vizsec-2004.pdf 

This paper describes various approaches to collapse parts of attack graphs generated by the TVA system 
[4] to make visual understanding easier. The display uses exploit-dependency graphs. In these graphs, 
exploits between different hosts are treated as separate and unique and appear only once as nodes. There 
are thus at most N^V nodes where A'^ is the number of hosts and V is the number of unique 
vulnerabilities in the network. This representation often requires fewer nodes than graphs that include a 
node for each host privilege level and arcs for exploits used to raise privilege levels on hosts. The paper 
states that "perhaps the greatest challenge in making network attack graphs practical ... is managing their 
visual complexity in user interaction." Three basic approaches to grouping exploit dependency graphs are 
presented. First, multiple exploits between the same two hosts can be aggregated. Second, hosts that are 
fully connected in protection domains (e.g., on a single LAN with no filtering devices) can be aggregated. 
Finally, precondition and post-condition nodes can be collapsed if they are for the same exploit. A user 
interface is presented that makes it easy to apply these different types of aggregation and "drill down" to 
examine attack graph details. Examples use networks with at most 16 hosts. 

This is new and interesting work, but future analyses should extend this research to determine the role 
visualization plays in improving network security using attack graphs. Different types of security-related 
information can be presented using visualization, and this information can be displayed in many ways. 
Visualization can have many goals, including displaying and justifying automatically generated 
recommendations, allowing manual correction of vulnerability scanner analyses, verifying network 
topology data, mapping specific attack graphs onto a network diagram, and changing firewall rules or 
patching hosts to examine the effect on attack graphs. These different goals may require alternative 

17 



approaches to displaying attack graphs and the network under analysis. Future work should explore 
alternate visualization approaches and determine if any one is easier to interpret by system administrators. 
Exploit-dependency graphs are one approach, but many others have been suggested. 

Ortalo, R., Y. Deswarte, et al. (1999), [22] "Experimenting with Quantitative Evaluation Tools for 
Monitoring Operational Security," IEEE Transactions on Software Engineering. 25(5): 633-650. 

This paper describes a thorough study that illustrates how to use privilege graphs to describe the security 
of a single UNIX host. Nodes on these graphs represent a set of privileges for a user or group of users, 
and arcs represent vulnerabilities that can transition between nodes. For example, a vulnerability could 
represent an easily guessed root password that a user can use to obtain root privileges. Each vulnerability 
is assigned a measure of effort required. In the described experiment, 4 values were used (0.1, 0.01, 
0.001, 0.0001). Procedures to compute the mean effort to failure (METF) were also presented that 
average over paths in the privilege graph. A software tool was developed that automatically probes the 
UNIX file system to determine which of 13 known vulnerabilities are present. This software is similar to 
many existing host-based vulnerability scanners. Other software attempted to build privilege graphs that 
start with user privilege and attempt to reach either root privilege or the privilege of the administration 
group using the vulnerabilities found. Different graph-building approaches were explored, including a 
breadth-first approach (denoted TM), a depth-first approach (denoted ML), and a shortest-path approach 
(denoted SP). Results from one UNIX system monitored daily over 21 months are presented. It was found 
that breadth-first attack graphs could sometimes not be computed because they were too large, even with 
only 13 vulnerabilities. This graph is similar to a "full" attack graph that finds all possible paths to a goal. 
Of the 3 measures, the SP graph changed the least over time. It represents a worst-case analysis in which 
the attacker takes the shortest path that is most likely to succeed. The METF measures on breadth-first 
and depth-first graphs varied over time even when the SP graph remained constant. The authors state that 
these analyses "provide useful feedback to the security administrators." It is recommended that all the 
different measures should be computed and used because they represent different attacker models. This 
approach uses automated tools to find a small set of vulnerabilities but only analyzes a single host and 
uses graph-building tools and measures that may not scale to large networks. 

Ritchey, R. and P. Amman (2000), [23] "Using Model Checking to Analyze Network Vulnerabilities," 
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp. 156-165: 
http://portal.acm.org/citation.cfm?id=884423&dl=ACM&coll=GUIDE. 

This paper provides a thorough and explicit example that shows how model checking can be used to 
determine if a final goal state is reachable for an attacker starting with limited privileges on a network. If 
the goal state is reachable, the model checker produces one example attack path that shows how the state 
is reached. The model checker is provided information on network hosts and their vulnerabilities. 



reachability between all hosts, the current state of the attacker, and exploits that can be used by the 
attacker. Exploits are defined by preconditions (source machine access level, target access level, 
connectivity, and vulnerability required) and post-conditions (effect on target machine). An example is 
provided for a 4-node network. It demonstrates how modeling information is encoded for the model 
checker by hand and how it produces an example attack path. 

Ritchey, R., B. O'Berry, et al. (2002), [19] "Representing TCP/IP Connectivity for Topological 
Analysis of Network Security," Proceedings of the 18th Annual Computer Security Applications 
Conference, Las Vegas, Nevada: http://www.isse.gmu.edu/~csis/publications/acsac02.pdf. 

This paper provides details on how connectivity is modeled in the TVA system described in [4]. The 
model includes details on different layers of the OSI stack. At the lowest level the model identifies hosts 
that are on each LAN segment and whether they are connected by switches or hubs to determine the 
information that an attacker can gather by sniffing all traffic impinging on a compromised host and to 
determine if ARP spoofing is possible. For a higher network/transport level, the authors suggest modeling 
each connection to a remote service separately using the program name and version to identify connection 
endpoints. This approach assumes that port numbers can be ignored after scanning with Nessus [10] to 
obtain reachability. In practice, port numbers are important because they make it possible to interpret how 
firewall and routers affect reachability in ways that are not discovered by a Nessus scan. Connections are 
also modeled to applications. These model, for example, the need to provide a password for user 
authentication to a particular application. The paper doesn't describe how all the required details can be 
obtained accurately. For example, we and others have found that it is difficult to match software versions 
to vulnerabilities because this information is often inaccurate and missing in vulnerability databases and 
because software version numbers are often too coarse and not updated after patches are applied that 
eliminate vulnerabilities. 

Sheyner, O., S. Jha, J. M. Wing, R. P. Lippmann, and J. Haines (2002), [24] "Automated Generation 
and Analysis of Attack Graphs," 2002 IEEE Symposium on Security and Privacy, Oakland, California: 
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/calder/www/sp02.html. 

This paper provides a thorough and detailed example of using a model checker to analyze the security of a 
small artificial network. A small artificial network with a few vulnerabilities is used to hand-create a 
finite-state machine that can be analyzed by a model checker. The model checker can determine if a goal 
state (e.g., administrator on a machine or administrator using stealthy attacks not visible to an IDS) can be 
reached and it can provide the paths used to reach the goal state. This was demonstrated using an artificial 
3-host network with 5 vulnerabilities. The run time was 5 seconds for this network, but it increased 
dramatically to 3 hours when the number of hosts was increased to only 5 and the number of 
vulnerabilities was increased to 8. This approach scales poorly, and it is difficult to create inputs for the 

19 



model checker and interpret the outputs. It is not clear whether model checkers are practical for networks 
with thousands of hosts and hundreds of unique vulnerabilities where the state space is orders of 
magnitude larger than in the artificial example. 

Schneier, B. (1999), [13] "Attack Trees," Dr. Dobbs Journal, December, 1999. 

This often-cited paper contains one of the first public descriptions of a manual approach to generating 
attack graphs. Each graph has one goal node, and nodes below this represent actions that can reach this 
goal. Actions combine using either OR (disjunctive) or AND (conjunctive) logic. Values can be assigned 
to action nodes that indicate if they are possible, if they require special equipment, the cost of the action, 
the likelihood of the action, and the probability of success. These values can be propagated to the goal 
state using the OR and AND nodes to compute the characteristics of paths from different starting actions 
to the goal state. Graphs can be applied in many fields, and experts in each field must generate them by 
hand. 

Skybox (2004), [2] Skybox Security: http://www.skyboxsecurity.com. 

Skybox Security has developed a software tool called Skybox View that generates attack graphs. Attack 
graphs are used to identify critical vulnerabilities that should be patched first to reduce risk. Input 
information required includes the attacker source location and target and the loss associated with 
compromising the target. Risk is calculated as the probability of success of an attack path times the loss 
associated with the compromised target. This requires information on the probability of success-of-attack 
components. Skybox creates its own database of vulnerabilities, and users must install special monitoring 
and aggregation hosts at their sites to collect information required to generate attack graphs. Although no 
technical details are provided concerning attack graph construction, a related patent [29] suggests that the 
computation to compute the attack graph between a single source and destination grows roughly as N , 
where N is the number of hosts in the network. Examining paths from the attacker to all hosts in the 
network would thus grow as N''. This approach may thus have difficulty scaling to large networks. 

Swiler, L. P., C. Phillips, D. EUis, and S. Chakerian (2001), [25] "Computer-Attack Graph Generation 
Tool," Proceedings of the Second DARPA Information Survivability Conference and Exposition (DISCEXII) 
2001, Los Alamitos, California, pp. 307-321, IEEE Computer Society: 
http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=932182. 

This paper describes a proof-of-concept tool that was the most capable attack graph generation tool when 
it was first published. It builds attack graphs to determine the shortest path(s) to a specified goal. Inputs 
required   include   hand-generated   vulnerability   information   (pre-   and   post-conditions),   network 
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information, and attacker capabilities. Vulnerabilities are assigned costs that are used to find the shortest 
path and also paths that are epsilon longer than the shortest path. Attack paths are built forward from a 
start node. A trimmed full graph is built that stops adding extra nodes from any nodes that reach the goal 
state. Further analyses, including the shortest path analysis, are performed on the attack graph with a 
specified start and end node or goal state. The final result is a graph that can be presented to a system 
administrator. Data is entered by hand into files read by the tool and stored in an intermediate database. 
Missing values in network configuration information can be set to default values or to "unknown." If an 
"unknown" value appears on a critical path (it was set to a default value to create the graph), this can be 
indicated, and the user can gather more information on this value. The graph is collapsed to eliminate 
paths that represent the same sequence of vulnerabilities but exploited in different orders. This helps 
reduce the number of nodes, but the number of nodes can still grow combinatorically as the number of 
vulnerabilities and hosts. A simple example generated by the tool includes only 5 vulnerabilities and 2 
hosts. This paper has many limitations, including poor scaling and the need to manually enter information 
required to generate attack graphs. It also introduces a few new ideas. The following are two of these new 
ideas that can simplify attack-graph generation: 

• Group similar hosts 
It is suggested that hosts on the same LAN that have the same configuration and vulnerabilities 
should be grouped into single representative aggregate hosts. This reduces the number of hosts 
that need to be analyzed in an attack graph. This grouping, however, would be incorrect unless 
the hosts also have the same reachability to and from other hosts in the network. 

• Default values 
It is also suggested that default values should be provided for unknovra details about the 
network. It is difficult to obtain all network and host information, and default values enable an 
analysis when complete information is not available. It is also suggested that a default value can 
be used but tagged as being originally "unknown." If this value enables an attack of a critical 
network resource, then this can be flagged so the user can gather more information and verify 
the missing value. 

Templeton, S. and K. Levitt (2001), [5] "A Requires/Provides Model for Computer Attacks," 
Proceedings of the 2000 Workshop on New Security Paradigms, New York: ACM Press. 

This is one of the first papers to outline how attack scenarios can be generated automatically by linking 
multiple attacker actions and subgoals. Subgoals in this approach are called concepts. Concepts have 
requirements, and when these are satisfied, the concept provides capabilities that other concepts can use. 
The linkage between requirements and provided capabilities can form multistage attack scenarios from 
multiple concepts. For example, requirements for a telnet connection, might include (1) network access is 
available to a specific host and port, (2) the host is active, (3) the telnet service is running on the host and 
(4) a valid usemame and password are available for that host. Requirements also include details of 
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software and hardware versions required to support attack steps. An example of a concept description for 
remote shell connection spoofing is presented written in a language called JIGSAW. It is labor intensive 
to describe concepts in JIGSAW because detailed low-level information is required to describe both 
requirements and capabilities. A proof-of-concept program was tried on a subset of the JIGSAW model 
that requires as input a final goal, but no complex scenarios produced by this program are presented. It is 
suggested that this approach could be used to discover new attack scenarios and correlate alerts from 
intrusion detection systems. The main weakness of this work is that excessive hand labor is required to 
generate detailed requirement and capability models, and the problems of scalable automation were not 
addressed. 

Tidwell, T., R. Larson, K. Fitch, and J. Hale (2001), [26] "Modeling Internet Attacks," Proceedings of 
the Second Annual IEEE SMC Information Assurance Workshop, United States Military Academy, West 
Point, New York, June 2001: IEEE Press, pp. 54-59. 

This paper describes a system that could generate attack graphs to assess network security but does not 
state whether such a system has been constructed. Attack graphs are of the type described by [13] with 
one attacker goal. Most of the paper focuses on outlining how Backus-Naur Form (BNF) grammars can 
be used to specify pre- and post-conditions for attack components and also how BNF grammars can be 
used to describe characteristics of network components. A simple artificial example with 6 hosts is 
presented to illustrate how BNF grammars can describe network components and attack steps and be used 
by hand to produce an attack graph. The paper states that "the attack graph is constructed in a top-down 
fashion by chaining attack templates that match vulnerabilities found within the active network 
specification." Although no timing or scaling results are presented and the authors do not state that any 
system to construct attack graphs was actually developed, this simple approach will not scale well with 
large networks because it will create a full attack graph that shows all possible paths to reach a final goal. 
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