
A RAND NOTE

Extracting Tactical Data from Operation Orders

James R. Kipps, Jed B. Marti

Appowved for Public Release
Dis.ribution Unlimited

BEST AVAILABt. COPY

RAND 20041208 235

The research described in this report was sponsored by the United States Army under
Contract No. MDA903-91-C-0006.

RAND is a nonprofit institution that seeks to improve public policy through

research and analysis. Publications of RAND do not necessarily reflect the
opinions or policies of the sponsors of RAND research.

Published 1992 by RAND
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138

A RAND NOTE N-3300-A

Extracting Tactical Data from Operation Orders

James R. Kipps, Jed B. Marti

Prepared for the
United States Army

RAND Approved for public release; distribution unlimited

PREFACE

This Note describes interim results of the User-Assisted Translation of

Operational Plans (UATOP) project. It is of interest to those wishing a technical

overview of a new machine-translation approach to automating the extraction of

important data from operation orders (OPORDs). It is also of interest to those

wishing to use, understand, and maintain a translation system, called OPORG,

which translates OPORDs on UNIX and MS-DOS computers. This work is part of

a larger effort to develop a tool for anticipating combat ammunition consumption

through advanced simulation techniques. The OPORG system described herein is

a precursor to another translation system, called OPSCRIPT, for extracting "Task

to Maneuver Unit" data from given OPORDs.

Our approach to OPORD translation is of general interest because it takes

advantage of the highly organized structure of OPORDs. The same technology

being developed as part of the UATOP effort is also applicable for extracting data

from a wide range of other highly structured but "not machine-readable"

documents.

This Note is written for a technical audience. Familiarity with concepts in

compiler construction and formal language theory is assumed on the part of the

reader. A useful textbook is Principles of Compiler Design (Aho and Ullman,

1977). Familiarity with the RAND Compiler Kit (RACK) is also assumed. A

general discussion of RACK appears in "RACK: A Parser Generator for AI

Languages" (Kipps, 1990). The RAND Note, The RAND Compiler Kit (RACK):

Reference Manual and User's Guide (Kipps, 1991), provides details of the system's

operation.

This work has been sponsored by the Combined Arms Support Command,

Ft. Lee, Virginia, under the direction of LTG Leon Salomon. This work has been

conducted as part of the Force Employment Program of the Arroyo Center.

Questions involving technical issues should be addressed to Dr. Jed Marti, Project

Leader.

- iv -

THE ARROYO CENTER

The Arroyo Center is the U.S. Army's federally funded research and

development center (FFRDC) for studies and analysis operated by RAND. The

Arroyo Center provides the Army with objective, independent analytic research on

major policy and organizational concerns, emphasizing mid- and long-term

problems. Its research is carried out in four programs: Strategy and Doctrine;

Force Development and Technology; Military Logistics; and Manpower and

Training.

Army Regulation 5-21 contains basic policy for the conduct of the Arroyo

Center. The Army provides continuing guidance and oversight through the Arroyo

Center Policy Committee (ACPC), which is co-chaired by the Vice Chief of Staff

and by the Assistant Secretary for Research, Development, and Acquisition.

Arroyo Center work is performed under contract MDA903-91-C-0006.

The Arroyo Center is housed in RAND's Army Research Division. RAND is

a private, nonprofit institution that conducts analytic research on a wide range of

public policy matters affecting the nation's security and welfare.

Lynn E. Davis is Vice President for the Army Research Division and

Director of the Arroyo Center. Those interested in further information about the

Arroyo Center should contact her office directly:

Lynn E. Davis
RAND
1700 Main Street
P.O. Box 2138
Santa Monica, CA 90407-2138

-v-

SUMMARY

The User-Assisted Translation of Operational Plans (UATOP) project and

Anticipating Combat Ammunition Consumption (ACAC) project are building

tools to assist Division Ammunition Officers (DAOs) to anticipate ammunition

consumption before battle. This capability is a vital component of logistics

operations in the Army's emerging AirLand Operations doctrine. Operating with

future Army information systems, the program will examine operation orders

(OPOORDs) and simulate the battle and potential courses of action to estimate

consumption quantity and location of high-cost, high-weight munitions.

Significantly improving the DAO's capability will increase combat unit

effectiveness by minimizing the amount of extra ammunition that must be carried

by a unit if oversupplied, thus freeing up vehicles and enabling more rapid

deployment. Likewise, the system will pinpoint potential undersupply problems

before the battle.

A key to the ACAC simulation technology is the ability for the simulation

to "understand" the contents of OPORDs. This includes establishing task force

organization and locating and translating the tasks to perform. Because OPORDs

contain English directives written for people and not machines, current

machine-translation techniques are not directly suitable for extracting OPORD

data. We have developed a new machine-translation approach that takes

advantage of the prescribed five-paragraph format of OPORDs to identify and

isolate pertinent pieces of information. This approach uses concise and clear rules

to automatically generate programs that take as input textual OPORDs such as

those transmitted through the Maneuver Control System (MCS), extracts the

desired data, and outputs this data as input to other computer systems.

In this Note, we describe our approach to automating the extraction of

OPORD data. We describe an application of our approach to the task of

generating the OPORG translation system, which extracts task organization data

from input OPORDs. OPORG itself is not a significant system; rather, it is an

interim product used to demonstrate our technique for OPORD data extraction.

A larger system, OPSCRIPT, has also been implemented using this approach.

OPSCRIPT extracts tactical data from division-level OPORDs and outputs

simulation scenarios for use by the ACAC model. The OPSCRIPT system is not

- vi -

described here but will be described in a future document. While the focus of the

UATOP project is on extracting data from OPORDs, the techniques described in

this Note are generally applicable to extracting and checking data from a wide

range of highly structured but not "machine-readable" documents.

- vii-

ACKNOWLEDGMENTS

The authors would like to thank LTC James Price for many helpful

discussions of the problems addressed in this Note and Brian Leverich for

improving its presentation.

- ix -

CONTENTS

PR EFA CE ...

SUM M A RY .. v

ACKNOW LEDGMENTS ... vii

FIGURES .. xi

Section
1. INTRODUCTION ... 1

B ackground .. 1
O bjective ... 1
A pproach .. 2
Organization of This Note 2

2. DEFINING THE OPORG EXTRACTION PROBLEM 3
OPORD Format .. 3
W hat OPORG Extracts 4
W hat OPORG Outputs 5

3. OVERVIEW OF THE OPORG SYSTEM ARCHITECTURE 8
Major System Components 8
Using A "Generator" Approach with OPORG 9

4. MAPPING DOCUMENT STRUCTURE WITH DMG 11
DMG Grammar Files 12
Structure Rules ... 12
The OPORD Structure Grammar 14

5. PARSING DATE-TIME GROUPS WITH RACK 23
The RAND Compiler Kit: RACK 23
RACK Grammar Files 24
The DTG Syntactic Grammar 26

6. THE OPORG TRANSLATOR SYSTEM 36

7. CONCLUSIONS .. 39

REFERENCES ... 41

-xi-

FIGURES

1. Segment of Text from Operation Order 6

2. Sample OPORG Output 7

3. OPORG System Architecture 9

4. Generic Translator Generator 10

5. Example OPORD Structure Grammar 15

6. Text M ap C Structure ... 19

7. RACK System Architecture 24

8. Example DTG Syntactic Grammar 27

9. Makefile for Constructing OPORG 38

-1-

1. INTRODUCTION

BACKGROUND

Combat orders set forth the details of tactical operations and field

administration. In particular, an operation order (OPORD) is a directive issued by

a commander to subordinate commanders for the purpose of effecting the

coordinated execution of an operation (AFSC, 1984). OPORDs deal with

operation specifics and dictate the conduct of tactical operations and movements.

Military software systems for battle management, logistics, war-gaming, and

combat training, such as JANUS (U.S. Army, unpublished documentation) and

SCALP (U.S. Army, 1989), as well as other DoD automation projects currently

under development, require the tactical data contained in OPORDs.

Although OPORDs are transmitted through the Maneuver Control System

(MCS), they cannot be directly input to military software systems. This data

must be extracted by slow, costly, and error-prone manual effort. The problem

stems from the fact that OPORDs are not written for machines but for people.

Conventional machine-translation technology expects input text to conform to a

formal syntax, such as that of a computer programming language; grammar and

typing errors must be repaired before text, such as computer programs, can be

translated properly. While OPORDS are highly structured documents, they are

not computer programs. OPORDs largely consist of unconstrained and

(occasionally) ungrammatical English directives. They often contain spelling and

typing errors, many of which do not need to be corrected for an OPORD to be

utilized by human readers. As a result, OPORDs cannot be automatically

translated with conventional technology.

OBJECTIVE

The User-Assisted Translation of Operational Plans (UATOP) project has

sought to overcome the problems associated with the automatic extraction of

tactical data from OPORDs. The overall objective has been to develop a partially

automated approach to the translation of division-level OPORDs into simulation

scenarios for use by the Anticipating Combat Ammunition Consumption (ACAC)

model. This objective has been reached and a prototype translation system

(OPSCRIPT) has been implemented. A smaller system, called OPORG, which

-2-

runs in a personal computer (PC) environment, has also been implemented using

this approach. OPORG extracts task organization data from an input OPORD

and outputs this data in a format that makes it readily accessible by other

software systems.

APPROACH

Our approach to OPORD translation uses a hybrid of conventional

machine-translation technology. It takes advantage of the highly organized

structure of OPORDs in order to identify individual pieces of interest, to which

other technologies, such as natural language parsing, can be applied. It should

also be noted that our approach is not necessarily restricted to OPORDs. The

same technology being developed as part of the UATOP effort is generally

applicable for extracting data from a wide range of highly structured but "not

machine-readable" documents and might also be useful for detecting errors in such

documents. While this work is being conducted in support of ammunitions

logistics, management of other classes of supply, such as spare parts, major end

items, and fuel, requires a similar ability to extract data from OPORDs.

ORGANIZATION OF THIS NOTE

In this Note, we describe our approach to OPORD translation as it applies

to the OPORG system. Although the OPORG system is not significant in itself, it

does provide an illustrative example for explaining our approach and for

understanding the substantially larger, and more significant, OPSCRIPT system.

We will describe the OPSCRIPT system in a subsequent document. In Section 2,

we define the extraction problem for the OPORG system. In Section 3, we outline

our approach to the extraction problem and overview the system architecture

implementing this approach. The next three sections are intended for a technical

audience with exposure to concepts from machine translation and parsing theory;

introductions are provided to allow nontechnical readers to understand the flavor,

if not the details, of the material. In Sections 4 and 5, we describe the two major

components of the system architecture, namely, the document mapper generator

(DMG) and the RAND Compiler Kit (RACK); we describe how the DMG and

RACK are used to create the OPORG translator system in Section 6. We make

our closing remarks in Section 7.

-3-

2. DEFINING THE OPORG EXTRACTION PROBLEM

The OPORG translation system addresses the problem of extracting task

organization data from an input OPORD and making that data accessible to

other software systems. As we explained in Section 1, the difficulty in automating

the extraction of OPORD data is the lack of a formal syntax for OPORDs and the

fact that OPORDs consist primarily of English text. The OPORG system must

be able to recognize where pertinent pieces of data begin and end in the text,

which requires matching complex character patterns and keeping track of which

patterns have been seen and which come next. Manually writing and debugging a

program to do this task could take up to six man-months of effort. Maintaining

such a program, or modifying it to extract additional data, would be considerably

and, most likely, prohibitively expensive.

There are, however, several positive aspects to OPORDs with regard to

automatic machine translation. OPORDs are highly structured documents that

follow a prescribed format. While this is not the same as a formal syntax, it is

similar. In addition, the major and minor elements of OPORDs are introduced by

distinctive character patterns, and conventional machine-translation technology

does provide techniques for automatically generating programs for matching

character patterns. With regard to the "natural language" aspect of the problem,

OPORDs are expected to reflect a commander's intention. Essential

characteristics of an OPORD include clarity, brevity, simplicity, completeness, and

authoritative expression. Indecisive, vague, and ambiguous language leads to

uncertainty and, thus, does not characterize well-written OPORDs. Consequently,

the English directives within OPORDs are constrained in a way that should aid

machine translation. This characteristic of OPORDs is taken advantage of in the

OPSCRIPT translation system but is not pertinent to the OPORG system.

OPORD FORMAT

We assume that the input OPORD is accessible as an on-line ASCII text file

and that it is written in standard, five-paragraph format, as prescribed in Field

-4-

Manual (FM) 100-5 and AFSC (1984). The general organization of five-paragraph

format is outlined below.,

1. Heading

(a) Issuing Unit

(b) DTG Effective

(c) Operation Order Number

(d) References

(e) Task Organization

2. Body

(a). Situation

(b) Mission

(c) Execution

(d) Service Support

(e) Command and Signal

3. Ending

(a) Authentication

(b) Annexes

(c) Distribution

Sections, paragraphs, subparagraphs, and items within an OPORD are

enumerated, labeled, or otherwise introduced by identifiable lexical cues. These

lexical cues aid human readers in recognizing and extracting pertinent information

from an OPORD and are key to our automated extraction of OPORD information.

WHAT OPORG EXTRACTS

The OPORG translation system extracts task organization data from a

given OPORD and outputs this data in a form that is generally accessible by

other software systems. In particular, OPORG is responsible for extracting the

following data.

1. Operation order number, issuing unit, and date-time group (DTG) the

OPORD is effective.

2. Task organization data for each subordinate unit in the task

organization section. This includes the unit designation, unit location,

unit attachment, and DTG the attachment is effective.

3. DTG the operation is to begin.

-5-

WHAT OPORG OUTPUTS

To make the task organization data extracted by OPORG generally

accessible to other software systems, we selected an output format that groups

related data on distinct lines of output. Data fields within each line are separated

by easily recognizable delimiter characters.

Four record types are created by OPORG. The first character of each line of

output identifies its record type. The following record types are created:

Olopord no/issuing unit/DTG order effective/I

This record contains the operation order number, the issuing unit

designation, and the DTG the OPORD is effective. This record will

appear only once in the output file.

1/unit des/unit loc/attached tolDTG effective/I

This record contains data from the task organization section of the

OPORD, namely, a unit designation, unit location, the unit to which

it is being attached, and the DTG effective (if given). The record will

appear once for each unit or task force in the OPORD.

2/comment//

This record contains a comment that should be ignored when reading

the OPORG-generated file; comments are used to highlight portions

of OPORD text from which data is extracted for the purpose of

manual verification.

3/DTG operation to begin//

This record contains the DTG for the beginning of the operation.

Data fields are separated by a slash (/) and data lines are terminated

by a double slash (//).

As an example, consider the OPORD segment appearing in Fig. 1. The

pertinent lines from which OPORG extracts its data are underlined. The output

generated by OPORG for this example appears in Fig. 2.

The first output record gives the OPORD number (49003), the issuing unit

(699TH Mechanized Infantry Division), and the DTG the OPORD is effective

(261200U0590). This record is followed by three task force records. Each task

force record is followed by a comment record, which highlights the text from which

-6-

UNCLASS
EXER/ROTATION 90-10/BLUE//
MSGID/ORDER/699TH INF DIV (M)I49003/JUN//
REF/A/OPLAN 90-10/699TH INF DIV (M)/251200 MAY 90//

AMPN/REF/A IS 699TH INF DIV (M) BASIC ORDER//

ORDTYP/FRAGORD/699TH INF DIV (M) 90-10-1//

MAP/ V795/ FORT GOLGIFRANCHIA/MIM NORTH/2-DMA//
MAP/1501/NI 11-1,11-2,11-3,11-5,11-6//
TIME ZONE/U//
ORDREF/OPLAN 90-10/699TH INF DIV (M)//

HEADING/TASK ORGANIZATION//
SUNIT
/UNITDES /UNITLOC /CMNTS

/TF 2-13 MECH /NL1702 /OPCON TO 699TH AB AS DIV TCF EFFECTIVE

021200 JUN 90.
/TF 1-61 AR /NL6392 /OPCON TO 3D BDE (LIVE FIRE) EFFECTIVE

ON CLOSURE IN 3D BDE M.
/TF 3-4 AVN /AREA B /OPCON TO IST BDE EFFECTIVE 291300 MAY 90//

GENTEXT/SITUATION/
A. ENEMY: SEE CURRENT INTSUM TO ANNEX B (INTELLIGENCE).
B. FRIENDLY:

(1) (A) IOTH (US) CORPS: DEFEND IN SECTOR ALONG PL OLYMPIA

NLT 020001 JUN 90 TO DEFEAT ATTACKS OF THE 16TH (KRAS) CAA TO
PROTECT THE USJTF LOGISTICAL BUILD-UP AND THE DEPLOYMENT OF THE

20TH (US) CORPS FOR THE ASSUMPTION OF OFFENSIVE OPERATIONS TO
RESTORE THE GOLGIFRANCHIA-LILLIPUTIA INTERNATIONAL BORDER.

(B) CORPS CONCEPT: THE INTENT OF THIS OPERATION IS TO

RETAIN TERRAIN KEY TO FUTURE OFFENSIVE OPERATIONS AND TO GAIN
TIME FOR THE DEPLOYMENT OF THE 20TH (US) CORPS INTO GOLGIFRANCHIA.

(2) 698TH INFANTRY DIVISION (H): DEFEND IN SECTOR NLT 020001

JUN 90 TO CONTAIN ENEMY FORCES WEST OF THE CADY MOUNTAINS.
(3) 697TH ARMORED DIVISION: CORPS RESERVE: BE PREPARED TO

COUNTERATTACK TO DESTROY REGIMENTAL SIZED PENETRATIONS OR LARGER

OF FORWARD DIVISION REAR BOUNDARIES (PL PALOUSE).
(4) 696TH ACR: CONDUCT DEFENSIVE COVER NLT 020001 JUN 90 TO

PREVENT BYPASS OR ENVELOPMENT OF THE CORPS RIGHT (NORTH) FLANK.
MAINTAIN CONTACT WITH 21 ST (US) ABN CORPS.

(5) 69STH AB: ATTACK, ON ORDER, TO ATTRIT AND DELAY THE

2D ECHELON REGIMENTS OF ATTACKING MRD FORWARD OF 698TH ID (M).
(6) ELEMENTS OF THE 69STH TAF SUPPORT THE 10TH (US) CORPS//

GENTEXT/MISSION.699TH INF DIV (W): DEFENDS 020001 JUN 90 ALONG PL
OLYMPIA TO CONTAIN ENEMY FORCES WEST OF THE BANDOLIER (NL6071), CRACKER
(NL6993) AND DACHANEE (NL4316) MOUNTAIN PASSES TO PROTECT THE USJTF
LOGISTICAL BUILD-UP AND THE DEPLOYMENT OF THE 20TH (US) CORPS//

Fig. I-Segment of Text from Operation Order

-7-

0/49003/699TH INF DIV (M)/251200UO590//
1/TF 2-13 MECH/NL1702/699TH AB AS DIV TCF/021200U0690//
2/OPCON TO 699TH AB AS DIV TCF EFFECTIVE 021200 JUN 90//
1/TF 1-61 AR/NL6392/3D BDE (LIVE FIRE)!/!
2/OPCON TO 3D BDE (LIVE FIRE) EFFECTIVE ON CLOSURE IN 3D BDE M//
1/TF 3-4 AVN/AREA B/1ST BDE/291300U0590//
2/OPCON TO 1ST BDE EFFECTIVE 291300 MAY 90//
3/020001U0690//

Fig. 2-Sample OPORG Output

the unit's attachment data was extracted. Because TF 1-61 AR is attached to 3D

BDE (LIVE FIRE) effective on closure in 3D BDE AA, instead of at a particular

DTG, the DTG attachment effective field for this entry is empty.

-8-

3. OVERVIEW OF THE OPORG SYSTEM ARCHITECTURE

In our approach to extracting OPORD data, we factor the translation task

into two phases. In the first phase, lexical cues (character patterns matching such

things as section headings and item numbers) are used to recognize the major and

minor elements of an OPORD, such as sections, subsections, and items; the text

contained in the body of these elements is ignored during this phase.

In the second phase, pertinent elements of the OPORD are identified, and

their associated text is passed to special-purpose translators (or parsers). Each

parser identifies the syntactic structure of the input text according to a given

grammar. By identifying its syntactic structure, a parser can map the

corresponding text into useful data structures.

Finally, the parsed results are then collated, and the extracted data output.

For the OPORG extraction task (as defined in Section 2), the special-purpose

parser recognizes DTGs; for the OPSCRIPT system, there is an ad hoc natural

language parser that outputs scripts for the ACAC simulation module. Although

this approach does not yet address all issues in OPORD translation, such as error

handling, it does provide a mechanism for focusing on the elements of interest

within an OPORD and for dealing with those elements individually.

MAJOR SYSTEM COMPONENTS

The OPORG system takes as input an OPORD text file, extracts task

organization plus other data, and outputs this data in a task organization file, the

format of which is described in Section 2. This system architecture and data flow

are shown in Fig. 3. There are three major components.

"* OPORD Mapper. The OPORD Mapper (or mapper) takes as input

the OPORD text file and outputs a hierarchical data structure called a

file map. The file map identifies the major and minor elements of the

OPORD text fie.

"* Data Extractor. The Data Extractor (or extractor) traverses the file

map generated by the mapper from the bottom up, looking for elements

with associated extractor actions. The extractor executes these actions

and passes the results up the file map as arguments to higher-level

extractor actions. The lowest-level extractor actions typically apply

-9-

0Structural

Syniadch
Grammar

GrammP

Document RAND
Mapper ICompiler

Generator Kit

O RD OPORDDaaT
Mapper Extractor Parser

kjI

Fig. 3-OPORG System Architecture

special-purpose parsers to the text of their associated element, while the

highest-level actions typically output the extracted data.

0 DTG Parser. The DTG Parser (or parser) is the primary parser whose

purpose is to recognize and extract a DTG from a segment of text. The

data structure representing the DTG is then returned to the Data

Extractor.

As we explain next, the mapper, extractor, and parser components of

OPORG are generated automatically from grammars. This is depicted in Fig. 3

with the use of solid arrows. Data flow through the OPORG system is depicted

with dashed arrows.

USING A "GENERATOR" APPROACH WITH OPORG

Experience with computer programming languages has taught language

developers that translation systems, even for simple languages, are nontrivial to

construct by hand. For instance, the first Fortran compiler required 10 man-years

of effort. Since then, a number of software tools, variously called

compiler-compilers, parser-generators, and translator-writing systems, have been

developed specifically to help construct compilers, parsers, and other forms of

translators. YACC (Johnson, 1975) is an example of a commonly used parser

- 10-

File

Translator
Generator

Source Translator Ual
Input Program Fr

Fig. 4-Generic Translator Generator

generator for languages developed under UNIX. 1 As depicted in Fig. 4, a

translator generator is a computing system that outputs a program for translating

source input in some target language into a usable form. The input to the

translator generator is a grammar file describing the syntax of the target language.

Again, generation is depicted with solid arrows, and data flow through the

translator is depicted with dashed arrows.

We apply a similar "generator" approach to constructing the mapper,

extractor, and parser components of an OPORD translation system such as

OPORG. The OPORD Mapper and the Data Extractor are generated by a system

called the Document Mapper Generator (DMG), while the special-purpose parser

is generated by the RAND Compiler Kit (RACK). The input to the DMG is a

grammar file that describes the hierarchical structure of a document, such as an

OPORD, and the lexical cues that identify particular elements of the document.

The grammar file also specifies extractor actions to be executed when particular

structure elements are recognized. The input to RACK is a grammar file that

describes the syntactic structure of particular text elements. RACK was developed

at RAND for generating parsers for advanced programming languages (Kipps,

1990). The DMG was developed as part of the UATOP project specifically for

extracting OPORD data. The DMG can be applied to other types of highly

structured, but not machine-readable, documents.

1 UNIX is a trademark of Bell Laboratories.

- 11 -

4. MAPPING DOCUMENT STRUCTURE WITH DMG

The Document Mapper Generator (DMG) constructs mapper and extractor

programs for highly structured documents. The mapper program is responsible for

identifying the major and minor structural elements of an input document, and

the extractor is responsible for calling the parser, for collating the data returned

by the parser, and for writing the output.

The input to the DMG is a grammar file that describes the hierarchical

structure of target input documents, such as OPORDs. The output is a mapper

file called y .map. c, which contains the source code for both the mapper and the

extractor. The mapper and extractor routines are implemented in the C

programming language. The extractor routines automatically interface with the

C-based parsers generated by RACK.

The grammar file primarily consists of a set of structure rules that identify

the pertinent structural elements of the input documents and their

subcomponents. Structure rules have the general appearance of rules from a

context-free grammar. There are two major differences. First, structure rules can

be defined iteratively but not recursively. This is done in recognition of the fact

that documents such as OPORDs have a structure consisting largely of ordered

sections and subsections, the purpose, levels, and structure of which are known a

priori. Second, structure rules typically contain one or more regular expressions

(character patterns) that recognize lexical cues. The DMG depends on the

existence of lexical cues to introduce and delimit elements of interest in the

document. Lexical cues consist of such things as section and subsection headings

and item numbers; they indicate the introduction or ending of a structural

element.

In this section, we provide a technical discussion on the operation of the

DMG as it applies to the OPORG translation system. The reader is assumed to

be familiar with the RACK translator-generator system (Kipps, 1991) and its

syntax. The reader is also assumed to be familiar with concepts in compiler

construction, LR grammars, and regular expressions, a discussion of which can be

found in Aho and Ullman (1972; 1977).

- 12-

DMG GRAMMAR FILES

A DMG grammar file has the following basic format:

Declarations

Structure Rules

Code.

The declarations section is used to insert user code into the extractor program, to

define lexical macros, and to specify the root of the grammar. The following

declarations are recognized.

{ code}

For specifying code segments. All characters enclosed in curly braces

are placed at the front of the mapper file.

%start name

Defines a symbol name as the root structure element of the grammar.

%def macro (re) [;]

Assigns the regular expression re to the lexical macro macro, a symbol

or nonalphabet character prefixed by a percent sign (%). When macro

is encountered in the body of a structure rule, it is replaced by re.

%noextractor

Tells the DMG to disable the extractor code in the mapper file. This

is needed when interfacing to LISP, which is done with the

OPSCRIPT system; OPSCRIPT is not described in this Note.

The structure rules section consists of one or more structure rules, which

describe the hierarchical structure of input documents. The code section is used to

define additional subroutines, such as maino), to be added to the extractor

program. Each section is separated by double percent signs (%%).

STRUCTURE RULES

Structure rules have the general form

ihs : rhs [action]

where the lhs is a symbol naming a structure element of the document, the rhs

describes the structure of that element, and the optional action specifies C code to

be executed by the extractor program when the lhs element is recognized in an

input document. Each element in. a structure's rhs can be separated by an

- 13-

arbitrary number of white space characters: blanks, tabs, and newlines. The rhs of

a rule can consist of an arbitrary sequence of the following items.

Regular expressions

Regular expressions are character patterns used to describe lexical

cues. Regular expressions are delimited by parentheses; their syntax

is identical to that used by RACK, as defined in Kipps (1991).

Regular expressions and their use in OPORG are described in detail

later in this section.

Random text elements

Random text elements are denoted by empty angle brackets (<>) and

are used to describe portions of the document to be ignored by the

mapper and extractor programs.

Nonterminal elements

Nonterminal elements are denoted by a symbol delimited by angle

brackets (<nonterminal>). These are passed to the extractor program

as they identify portions of text that must be parsed.

Structure elements

Structure elements are symbols identifying other structure rules.

They are used to describe hierarchical document structure.

Optional elements

Optional structure elements are delimited by brackets ([element]).

Alternate elements

Two or more symbols delimited by square brackets and separated by

bars ([structurei,... Istructuren]) denote disjunction over the named

elements.

Repeated elements

A structure element immediately followed by a star (*) can appear

zero or more times in a document, and if followed by a plus (+), it can

appear one or more times.

Regular expressions, random text, and nonterminals denote basic "leaf" elements

of a document; structure elements denote compound elements. Structure elements

may not be defined recursively.

- 14-

THE OPORD STRUCTURE GRAMMAR

In the remainder of this section, we will describe the meaning and use of

various pieces of the OPORD structure grammar used in the OPORG system,

which appears in Fig. 5. We will describe constructs of importance as they appear

in the grammar. The first panel of Fig. 5 contains the declarations and structure

rules.

The Declarations Section

The declarations section of the grammar contains three items. The first

declaration
{

#include <stdlib.h>
#include "ytab.h"
struct dtgroup *opdtg;
}

is a segment of user code; the characters between the curly braces are inserted

directly at the top of the mapper file. The file stdlib.h is a standard C library

file; ytab.h is generated by RACK and contains declarations that enable the

extractor to interface with the parser. The effective DTG (date-time group) of the

operation will be assigned to variable opdtg by an extractor action; the structure

dtgroup is defined in the grammar file for the DTG parser, which is described in

Section 5.

The next declaration

%def V (E \t]*)

defines %- as a lexical macro (see Section 5); all instances of %- occurring in

regular expressions will be replaced by the expression E \t] *, which matches zero

or more blanks or tabs. The last declaration

%start opord

specifies that opord is the root structure element.

The Structure Rules

The grammar also contains 14 structure rules, one for each of 14 structure

elements. The first structure rule

opord: heading body ending

defines the root element opord as consisting of three parts: a heading, followed by

a body, followed by an ending.

#include <stdlib h>
#include "ytab.h"
struct dtgroup *opdtg;
I
%def %- U \t]*)

%start opord

Us/

opord: heading body ending

heading: <> msgjid <> msg-.ref-no <> zone-used <> task-org

body: <> mission <>

ending: <

{ printi ("0/"1); prtmap($4); printf ("I"/); prtmap($2);}

msg..ref-no: "-REF%-/% { EA-Z] }%'/<>/<date-.time-.group>//"
{ opdtg = $4->vaJlue.dtg;

zone-used: "~TIME ZONE<time-.zone>//"
{ print ("I"/1); prdtg(opdtg); print-f("1//\n"1); I

task-org: 11EEADING%-/%-TASK ORGANIZATION//"f

"'YUNITDES /%tJNITLOC /%-CMNTS"
task..entry+

task-.entry: unitdes unitloc cmnts

unitdes: C\n? 1/1?) (%.P+ (I I yP+)*) UE \t)+)
{printf("i/"); prtmap($2); I

unitloc: (,/'?) (%P+ (I , %p+)*) CE \t3+)
f printf("/"); prtmap($2);

cmnts: (,/,?) cmnttxt(I/.'
f print! ("2/")-, prtmap($2); priiitf(V//n"); I

cmnttxt: '{f(OPC1IATT) EA-Z] *} TO <> EF<date-.time..group>"
f printf("'/); prtmap($2);

print!Q'/"); prdtgC$4->vaaue.dtg);
print! C"//\n"); I

mission: "-GENTEXT/.-/`/`HISSION .<>: <date-.time-.group>//"

f print! ("3"); prdtgC$4->value .dtg); printi("//\n");

Fig. 5-Example OPOR.D Structure Grammar (Rules)

-16 -

prtmap (tmap)
ZZTMAP *tmap;
{char *ptr;
zzfilltmap Ctmap);
for(ptr = tmap->nxptr; ptr < tmap->ndptr; ++ptr)

ifCisspace(*ptr))

putcC' ', stdout);
while(isspace(*++ptr) k& ptr < tmap->ndptr)
-- ptr;

else
putc(*ptr, stdout);

znain(argc, argv)
int argc;
char *argv[];

{ZZTMAP *fmap;
fmap = zzmap(argc, argv);
/* DEBUG: zzvrttmap() outputs entire tmap hierarchy in human

readable form.
iiCfriap)

zzwrttmap(friap, stderr);
else

fprintf (stderr, "f ailure\n'9;

if (fiap)
zzextract~imap);

Fig. 5 (cont.)-Example OPORD Structure Grammar (Code)

- 17-

The second rule

heading: <> msg.id <> msg-ref-no <> zone-used <> task-org

defines the structure of heading in terms of the pertinent pieces of an OPORD's

heading; the other portions of the heading are treated as random text (<).

Likewise, the third rule

body: <> mission <>

defines the structure of body in terms of a single element, mission, ignoring

everything before and after. Because we are not interested in anything else,

ending is defined as consisting entirely of random text.

The rule
msg_-id: "'-MSGID%-/`/`ORDER`/'/<>/<>/<>//"1

{ printIC"O/"); prtmap($4); printf("/"); prtmap($2); }

defines the structure of an OPORD's message identifier, from which OPORG

extracts the operation order number and the designation of the issuing unit. This

structure is introduced with characters MSGID/ORDER/. Slashes separate its data

fields and double slashes terminate the structure.

This rule provides the first example of lexical cues, which are specified with

regular expressions. The DMG recognizes a special syntax for regular expressions

that is not described in Kipps (1991). In particular, a sequence of characters

delimited by double quotes (I... -") is expanded into a regular expression, delimited

by parentheses, according to the rules outlined below.

1. Sequences of alphabet characters, digits, and underscores (Q are

surrounded by parentheses.

2. Carets (-) and question marks (?) are left as read, as are a backslash (\)

and the character immediately following it.

3. Blanks are expanded into a regular expression that matches a sequence

of one or more blanks or tabs ([\tE +).

4. Curly braces (.... }) become parentheses. The characters between the

curly braces are read as regular expressions.

5. Angle brackets (<...>) and the characters they delimit are left as read.

6. Single quotes ('.--') and the characters they delimit are left as read.

7. All other characters (c) are expanded into single-character strings ('c').

- 18-

Given these rules, the form

""MSGIDY."-/%"ORDER%."/<>/<>/<>//"

expands into the regular expressions

(- (MSGID) %- '/' %- (ORDER) %- '/') <> ('/') <> ('/') <> ('//')

The caret (-) matches the concept "start of line." When random text and

nonterminal elements are contained in the string, the string is actually converted

into a sequence of regular expressions separated by the random text and

nonterminal elements, as seen here. This special Syntax was added to improve the

readability of regular expressions for matching lexical cues.

The msg.id rule also provides the first example of an extractor action. The

action

{ printf("O/"); prtmap($4); printf("/")9; prtmap($2); }

outputs a 0/, followed by the text associated with the structure's fourth element

(corresponding to the dollar-sign variable $4), followed by another slash, and the

text of the second element ($2). When the OPORD text includes

MSGID/ORDER/699TH INF DIV (M)/49003/JUN//

the extractor action outputs

0/49003/699TH INF DIV (M).

The structure element unitloc is similarly defined. The function prtmap() is

defined in the code section of the grammar file.

As seen above, dollar-sign variables, such as $2 and $4, are used in extractor

actions to access the text map associated with particular elements of a recognized

structure rule. In particular, the variable $i provides access to the text map of the

ith element of an n element structure rule (1 < i < n). A double dollar sign ($$)

is a variable that provides access to the text map of the rule itself. Dollar-sign

variables are pointers to C structures of type zztmap, the definition and significant

fields of which are described in Fig. 6.

- 19-

typedef struct zztextmap ZZTMAP;

struct zztextmap
{

int lineno; /* line no where text begins */

int colmno; /* no of chars from last newline to text */
int nlpos; /* char position of last newline */
int stpos; /* position of first char of text */
int ndpos; /* position of last char of text */
char *lnptr; /* ptr to start of first line of text */
char *nxptr; /* ptr to first char of text */
char *ndptr; /* ptr to first char following text */
ZZTMAP *subt; /* ptr to subordinate tmaps */
YYSTYPE value; /* result of yyparse() */}

Fig. 6-Text Map C Structure

The structure rule

msg.ref-no: "'REF%-/%'{ [A-Z] %-/<>/<date.t ime.group>//"

{ opdtg = $4->value.dtg; }

defines the message reference number of an OPORD, from which OPORG extracts

the DTG on which the order is effective. This rule illustrates a slightly more

complex action that uses a nonterminal element. The form

"-REF'/%"/`,'{ [A-Z) }%."/<>/<date_time.group>//"

expands into a sequence of five elements

(REF) %- (/) %- [A-Z] %- 1/1) <> ('/,)
<date-time.group> ('//')

consisting of a regular expression, followed by a random text element, followed by

another regular expression, followed by a nonterminal element, and terminated

with another regular expression. This rule matches text such as

REF/A/OPLAN 90-10/699TH INF DIV (M)/25i200 MAY 90//

where the text associated with the nonterminal element is

251200 MAY 90.

When the extractor encounters the text map for this element, it calls the

parser function yyparse() requesting that it parse the element's text as an

instance of the nonterminal date-time.group, which is defined in the grammar file

for the parser and is discussed in Section 5. The result of the parse will be

assigned to the value field of the text map. The type of this field is YYSTYPE,

- 20-

which is also defined in the parser grammar file. For OPORG, YYSTYPE is

defined as the Union

typedef union
{

struct dtgroup *dtg;
int val;

} YYSTYPE;

where dtgroup is a structure representing a DTG. When the extractor action

{ opdtg = $4->value.dtg; I

is executed, it assigns the dtgroup structure created by parsing

251200 MAY 90

to the global variable opdtg, to be used later.

The structure rule

zone-used: "'TIME ZONE<time.zone>//"
(printf("/'); prdtg(opdtg); print!("//\n"); I

extracts the time zone used throughout the OPORD, again using a nonterminal

element. As defined in the grammar file for the parser, the action of the parser on

recognizing the nonterminal time-zone is to assign an integer code for the

identified zone to the global variable deftimezone. This code is assigned to DTGs

for which no time zone is otherwise specified. The extractor action completes the

first line of formatted output by printing the effective DTG, which now reflects the

appropriate time zone. The function prdtgo is defined in the parser grammar file.

The task organization portion of the heading is defined with the rule

task.org: "-HEADING%.'/%TASK ORGANIZATION//"

"-/UNITDES /Y.-UNITLOC /%-CMNTS"
task-entry+.

It is introduced by a heading, possibly separated by some random text from a

secondary heading. Note that the headings can also be written

"1HEADING%-/%-TASK ORGANIZATION//<>-/UNITDES /%-UNITLOC /%-CMNTS"

but, to improve readability, they are not written this way. The body of the task

organization section consists of one or more task-entry elements, defined by the

rule

task-entry: umitdes unitloc cmnts

as consisting of the sequence of structure elements unitdes, unitloc, and cmnts.

- 21-

The structure rules for unitdes, unitloc, and cmnts provide additional

examples of extraction actions. The rule

unitdes: (\n? '/'?) (Y.P+ (' ' %P+)*) ([\t]+)
{ printf("i/"); prtmap($2); }

defines unitdes as a sequence of printing characters (signified by the built-in

lexical macro %P) with single blanks interspersed, beginning on a new line and

optionally prefixed by a slash, e.g.,

/TF 2-74 INF, 3D BDE, 21ST ID(L).

Question marks (?) denote optionality. The three regular expressions of the rule

are kept distinct so that the characters actually making up the unit designation

can be accessed independently of the characters delimiting it. In particular, when

the extractor action is executed, it outputs a 1/, followed by the text associated

with the second regular expression, as in

1/TF 2-74 INF, 3D BDE, 21ST ID(L).

The structure element unitloc is similarly defined.

The structure rules for cmnts

cmnts: ('I'?) cmnitxt ('//'I'.')
{ printi("2/"); prtmap($2); printf("//\n"); }

and for cmnttxt

cmnttxt: "{(OPCIATT) [A-Z)*} TO <> EF<datetimegroup>"
{printf("1/"1); prtmap($2) ;
printf(1"1"); prdtg($4->value.dtg);

printf ("//\n"); I

illustrate the order of action execution. These rules will match text such as

/OPCON TO 1ST BDE EFFECTIVE 291300 MAY 90.

where the text associated with the nonterminal element <date.time-group> is

FECTIVE 291300 MAY 90.

When the extractor encounters the text map for cmnts, it finds an extractor

action. Before it executes this action, the extractor first traverses the subordinate

text maps, where it encounters the text map for cmnttxt, which also has an

extractor action, as well as more subordinate text maps. Of these, the extractor

encounters the nonterminal element <date.time.group> and calls the parser on

this element's text. As the extractor cannot descend further down the text map

hierarchy, it returns to the cmnttKt text map and executes its extractor action,

which outputs the remaining data of the task organization entry. Only then does

the extractor return to the cmnts text map and execute its extractor action, which

- 22-

outputs the next line of data, which is a comment containing the entire text of

cmnttxt.

The Extractor Code

The second panel of Fig. 5 contains the code section of the example

grammar file and defines two functions, prtmap() and mainO. The function

prtmap() outputs the text associated with a given text map. The predefined

function zzfilltmap 0 is called to fill the character pointer fields of the text map,

lnptr, nxptr, and ndptr, from a global character array that contains all the

characters from the input document.

The function main() is the top-level function for the resulting translation

system. It first calls the predefined mapper function zzmap 0, which, if successful,

will return the text map for the root element, i.e., opord. The extractor function

zzextract (), also predefined, is called on the root text map and does a top-down

traversal of the map, looking for nonterminal elements and structure elements

with associated extractor actions as outlined above. When zzextract 0

encounters a nonterminal element, it calls the parser function yyparse() to parse

the text of the element as an instance of that nonterminal, which must be defined

as one of the start symbols of the parser. The result of the parser is assigned to the

value field of the element's text map. When zzextract () encounters the text

map of a structure element, it calls itself recursively on the subordinate text maps

before executing any associated extractor action.

The function main() also contains a call to zzwrttmap() in a comment. If

necessary, this call can be uncommented to examine the complete text map

hierarchy of an input OPORD. Each text map in the hierarchy will be output

using the general form

ddd: name(action) 1(c) from-to

where ddd is the text map number, name is the name of the element, (action) is

the action number (see the function zztmapact 0) in y .map. c), I is the line

number on which the text of the element begins, c is the column on that line on

which the text begins, from is the character position in the file on which the text

begins, and to is the character position on which the text ends, exclusive.

- 23-

5. PARSING DATE-TIME GROUPS WITH RACK

The RAND Compiler Kit (RACK) constructs the parser program accessed

by the extractor. RACK was built as part of an in-house effort to make parsing

technology developed under the DARPA-sponsored ROSIE Language project

(Kipps, 1988) readily available to others at RAND and elsewhere. An overview of

the RACK system can be found in Kipps (1990); complete documentation can be

found in Kipps (1991). In this section, we briefly overview RACK and describe its

application to the task of parsing DTGs.

THE RAND COMPILER KIT: RACK

RACK is a parser generator for advanced applications. RACK parsers are

unique in their ability to recognize non-LR(k) languages. This means that they

can look ahead an arbitrary number of symbols to determine correct grammatical

structure. Conventional parser generators, such as YACC (Johnson, 1975),
produce parsers that have at most one symbol of look-ahead.

RACK generates practical parsers using Tomita's algorithm (Tomita, 1985)

for fast general context-free parsing. The execution speed and memory

requirements of RACK parsers compare favorably with parsers generated by

YACC. RACK is fully upward compatible with YACC; programmers familiar with

YACC should have little difficulty learning to use RACK's additional features.

RACK is implemented in portable C and can generate both C and Lisp

translators.

The input to RACK is a grammar file that describes the lexical elements and

the syntax of a target language, such as the language of DTGs. The output is a

parser program file (or parser) and a scanner program file (or scanner) for parsing

input text of the target language. The user specifies the programming language in

which the parser and scanner are to be coded, called the implementation language.

Presently, RACK supports three implementation languages: C, Common Lisp,

and Standard Lisp. The OPORG system uses a C-based parser.

The relationship of RACK to the parser and scanner is depicted in Fig. 7.

The parser and scanner are intended to operate as a front-end to a user program,

such as the extractor. The user program invokes the parser with the function

yyparse() when it needs to translate textual input into a representation that it

- 24-

Grammar
File

input
Fig. 7-RACK System Architecture

can easily access and use. The parser repeatedly requests tokens from the scanner,

which it invokes with the function yylex(), until it recognizes a sentence in the

target language or encounters a syntax error.

RACK GRAMMAR FILES

A RACK grammar file has the basic format:

Parser Declarations
%lex
Scanner Declarations

Lexical Rules

Grammar Rules

Code.

Parser declarations are used to define the tokens and start symbols of the target

language. Start symbols are distinguished nonterminals denoting root syntactic

constructs. Declarations are also used to specify additional code segments, such as

#include statements, that should appear at the front of the parser program file.

Scanner declarations are used to specify which characters denote escape and

end-of-sentence and which begin and end comments. They are also used to define

the class of printing and white space characters, to specify case dependencies, and

to enumerate the keywords of a language. The lexical rules section consists of one

or more leaical rules, which describe character patterns for recognizing the tokens

of the target language. The grammar rules section consists of one or more

cosrcs Delrain ar als use toseif additIioa cod semns suc Ias

- 25-

grammar rules, which describe the syntax of nonterminals in the target language.

The code section can be used to define additional subroutines to be added to the

parser program. Each section is separated by double percent signs (7Y.). The

scanner declarations are separated from the parser declarations by the keyword

%lex.

Lexical rules have the general form

[token :] pattern [action]);

where square brackets ([.-.]) denote optional constructs. When present, token may

be a token name, such as IDENT, a token number, such as 257, or a character

literal, such as '='. On recognizing pattern, the scanner executes action and

returns the token number associated with token. If token is missing and action is

present, action is expected to return a token number, which is returned by the

scanner. If action executes the internal function YYRESET, then the matched

characters are returned to the input stream and the scanner restarts. If action

executes the internal function YYRESTART, then the matched characters are

discarded and the scanner restarts from the current state of the input stream. If

both token and action are missing, the default action is to execute YYRESTART.

The characters matched by the rule are assigned to the global variable yytext, a

string of length yyleng. These characters can be accessed by action.

The pattern portion of a lexical rule is a sequence of three regular expressions

(character patterns) separated by a slash (/); for a discussion of regular

expressions and their use in recognizing character strings, see Aho and Ullman

(1977) for a discussion of regular expressions and their use in RACK, and Kipps

(1991). When all three regular expressions axe included, pattern has the form

[1c] / re / [rc].

The regular expressions Ic and rc are respectively called the left and right context

of the pattern; le and rc are both optional. The regular expression re is called the

primary of the pattern and must be present. When both lc and rc are excluded,

the slashes (/) can be discarded.

The scanner matches input characters against the patterns of the lexical

rules and selects the rule whose pattern completely matches the longest sequence

of characters. In a tie, the rule appearing earliest in the grammar file is selected.

Once selected, the input characters that match the left context Ic are discarded;

those matching the primary re are saved in the global variable yytext; those

matching the right context rc are returned to the input buffer.

- 26 -

Grammar rules have the general form

name : [name literall action]* [%p-ec [namelliteral]] [action]

where square brackets (...]) again denote optional constructs, bars (j) denote

disjunction, and stars (*) denote repetition. The left-hand side of a rule, name, is

the name of a nonterminal. The right-hand side consists of an arbitrary sequence

of token and nonterminal names, character literals, and actions. When the parser

recognizes an instance of a grammar rule in the input text, it executes the rule's

terminating action. Actions may also appear anywhere in the right-hand side of

the rule. If the parser is not following multiple derivations, then these actions are

executed during the recognition of the rule; otherwise, action execution is delayed,

including execution of terminating actions. Further discussion on multitrack

parsing and delayed actions can be found in Kipps (1991).

As with extractor actions, communication between grammar rule actions is

supported with the use of dollar-sign variables. To return a value, a grammar rule

action assigns that value to the variable $$. To read a value returned by an earlier

action, a rule action examines the variables $1, $2, $3, etc. These variables refer

to values associated with (or returned by) the components of the right-hand side

of the rule, as read from left to right. The value associated with a token must be

assigned to the variable yylvaJ. by the action of a lexical rule. The type of

dollar-sign variables is YYSTYPE, which defaults to int. This can be changed with

the %union parser declaration.

THE DTG SYNTACTIC GRAMMAR

The syntactic grammar for parsing time zones and DTGs used in the

OPORG system is shown in Fig. 8 as three panels. In the remainder of this

section, we will describe the meaning and use of various pieces of this grammar.

The Declarations Section

The first panel of Fig. 8 contains the parser and scanner declarations. The

first parser declaration

%coding C Language

specifies that the implementation language for the parser and scanner is intended

to be C.

-27 -

%coding C Lan~guage

#include <stdio .h>
#include <ctype .h>
#include <stdlib.h>

typedef struct dtgroup

int day;
int timefm;
int timeto;
int zone;
jilt month;
int year;

}DTG;

%union

struct dtgroup *dtg;
aint val;

%token <val> DAY MONTH TIME ZONE YEAR
%type <val> time~zone
%type <dtg> date-tiine..group dtg
%start date-.time...group time-.zone

%lex

#include <stdlib .hI>

jint taint(s)
char *s;
{ mt v 0;
do f v =1O*v + (*s - '0');}

while(*(++s) != 1\01);
return v;

%readtmaps
%input %upcase

%def %.DAY ([0-9J<2>)
%def %.TIME ([0-9)<4>)
%def %ZONE ([A-ZI)
%def %MONTE ((JANIFEBIMARIAPRIMAYIJUNIJULIAUGISEPIOCTINOVIDEC) [A-Z]*)
%def %YEAR ((19)? [0-91<2>)

Fig. 8-Example DTG Syntactic Grammar (Declarations)

-28 -

%dtg

MAY %TIME -'%TIME %W* %ZONE %W* %MONTH Y.W* %YEAR)
f %dtg-; %day+; %timefm+; %timeto+; %zone+; %month+; YYRESET;}

MAY %TIME '-1 %TIME %W* %MONTE %W* %YEAR)
{%dtg-; %day+; %timefm+; %timeto+; %month+; YYRESET; I

(%DAY %TIME %W* %ZONE %W* %MONTH %W* %YEAR)
{%dtg-; %day+; %tixnefm+; %zone+; %~month+; YYRESET; I

WXAY %TIME %W* %MONTH %W* %YEAR)
{%dtg-; %day+; %timefm+; %month+; YYRESET; I

{YYRESTART;}

%day

DAY: I%DAY /[0-9] 1 %day-; yylval.val = toint(yytext); I

%timefm

TIME: / %TIME [^0o-91 { %~timefm-; yylval.val =toint~yytext);}

%t imeto

TIME: ''/%TIME f { Ytimeto-; yylval-val = toint~yytext);}
%zone

ZONE: %ZONE / %W* VNONTH (Yzon~e-; yylval.val = *yytext; I

ZONE: '/1 / %ZONE (%zone-; yylval.val = *yytext; I

%~month

MONTH: JAN EA-ZJ * f Yimorth-; %year+; yyl'val val = 1;}
FEB [A-Z)* f Xmonth-; %~year+; yylval.val. = 2;}I
MAR [A-Z]* f Y~month-; %year+; yylval.val = 3;}I
APR [A-Z)* {Y~month-; %year+; yylval.val = 4;}I
MAY [A-ZJ* f Ymonth-; %year+; yylval.val =5;}I
JUN [A-Z]* f Xmonth-; %year+; yylval.val = 6;}I
JUL [A-Z)* (Xmonth-; %year+; yylval.val = 7;}I
AUG [A-Z)* f Y~month-; %year+; yylval.val =8;}
SEP [A-Z)* f %month-; %year+; yylval.val = 9;}I
OCT [A-Z]* f %month-; %year+; yylvaJ..vaJ. = 10;}I
NOV [A-Z)* { /month-; %year+; yylval.val = 11;}I
DEC [A-Zl* { /month-; %year+; yylval.val = 12;}

%year

YEAR: (19)? / [0-91<2> /{%year-; yylval.vaJ. = toint~yytext); I

Fig. 8 (cont.)-Example DTG Syntactic Grammar (Lexical Rules)

-29 -

time-zone: %zone+ ZONE {de:!timezone $2; };

date..time...group: %dtg+.dtg {$$ = $2; };

dtg: /* empty */ $$ =NULL;}
DAY TINE MONTH YEAR {$$ = mkdtgC$l,$2,O,$3,$4,'\01);}
DAY TIME ZONE MONTH YEAR {$$ = mkdtgC$1,$2,O,$4,$S,$3); I
DAY TIME TIME MONTH YEAR {$$ = mkdtg($1,$2,$3,$4,$S,'\O');}
DAY TIME TIME ZONE MONTH YEAR

{ $$ = mkdtgC$l,$2,$3,$S,$6,$4); };

yyerror~s)
char *s;
f printf('%s: line no = %d\n*', s, yylineno);}

int deftimezone

DTG *mkdtg(day, timefm, timeto, month, year, zone)
int day, timefm, timeto, month, year, zone;
{DTG *dtg;
dtg = (DTG*)calloc(i, sizeof(DTG));
dtg->day = day;
dtg->timefm = tirnefm;
dtg->timeto = timeto;
dtg->zone = zone;
dtg->month = month;
dtg->year = year;
return Cdtg);

prdtg (dtg)
DTG *dtg;

if(!dtg) return;
if~dtg->zone == '\O1) dtg->zone =deftimezone;

printf('XO2d%04d%c%02d%0O2d', dtg->day, dtg->timefm,
dtg->zone, dtg->month, dtg->year);

Fig. 8 (cont.)-Exaxnple DTG Syntactic Grammar (Grammar Rules and Code)

- 30-

Appearing next is a segment of user code.
{

#include <stdio.h>
#include <ctype .h>
#include <stdlib.h>

typedef struct dtgroup
{

int day;
int timefm;
int timeto;
int zone;
int month;
int year;

} DTG;
}

This code segment includes three standard C library files and defines a data

structure for representing a DTG. Characters between the delimiting curly braces

will be inserted at the beginning of the parser program file.

The next declaration

%union
{

struct dtgroup *dtg;
int val;

}

defines the type of elements on the parser's value stack as either a pointer to a

dtgroup (called dtg) or int (called val). In the parser and scanner program files,

the type YYSTYPE will be defined as this union.

The declarations

%token <val> DAY MONTH TIME ZONE YEAR
%type <val> time-zone
%type <dtg> date-time.group dtg

name the tokens of the grammar and assign types to the values associated with its

tokens and nonterminals. In particular, all tokens and the nonterminal time-zone

have associated values of type jnt, while the nonterminals date.timejgroup and

dtg have associated values of type struct dtgroup.

The final parser declaration

%start date.time.group time-zone

distinguishes the nonterminals date.timejgroup and time-zone as start symbols

of the grammar.

- 31-

The scanner declarations begin with a segment of user code to build integers

from RACK strings
{

#include <stdlib.h>

int toint(s)
char *s;
{ int v = 0;

do { v = 10*v + (*s - '0'); }
while(*(++s) != 1\01);

return v;
}

}

This function will be inserted at the beginning of the scanner program file. This

code includes a standard C library file and defines a function toint() that

converts a string of digits to an integer.

The declaration

%readtmaps

tells the scanner to expect to read input from text maps supplied by the extractor,

while the declaration

%input %upcase

specifies that all input alphabet characters should be converted to uppercase when

read.

The declarations

%def VDAY ([0-9) <2>)
%def %TIME ([0-9) <4>)
%def %ZONE ([A-Z])
%def %HONTH ((JANIFEBIMARIAPRI ... INOVIDEC) [A-Z]*)
%def %YEAR ((19)? [0-9)<2>)

define a set of lexical macros, which have the general form

%def macro (re)

This form assigns the regular expression re to the lexical macro macro, a symbol

or nonalphabet character prefixed by a percent sign. When macro is encountered

in the body of a lexical rule, it is replaced by re. The regular expression assigned

to %DAY matches two consecutive digits, while that assigned to %TIME matches four

digits, and that of %/.ZONE matches a single letter. The regular expression assigned

to %MONTH matches any of the first three letters in the name of a month, as well as

any alphabet characters immediately following those letters. Finally, the regular

expression assigned to YYEAR matches the four digits in a year or, optionally, the

last two digits of a year.

- 32-

The Lexical Rules

The second panel of Fig. 8 defines the lexical rules of the grammar in seven

lexical states. A lexical state encapsulates a set of lexical rules, which can be

enabled and disabled from lexical or grammar rule actions. A lexical state is

defined with a symbol (prefixed by a percent sign) appearing before a set of lexical

rules. All rules up to the next lexical state definition (or the end of the lexical rule

section) belong to the named state. A lexical state's rules are enabled by suffixing

it with a plus (+) and disabled with a minus (-).

The first lexical state, %dtg, discards input characters until a DTG is at the

beginning of the input buffer. In general, a DTG is defined as a six-digit number

expressing date and time. The first two digits indicate the day of the month and

the last four digits indicate the time. The time zone, month, and year are added

to avoid confusion. In addition, the time can be followed by a dash (-) and four

more digits, indicating a time range. A complete DTG would appear as

241000-1300Z 3ANUARY 1990.

The grammar seen in Fig. 8 recognizes four different DTG forms: with and

without a time-to part, and with and without a zone. The grammar actually used

by the OPORG system recognizes two additional cases: without a time-from and

time-to part, and without a time-to, zone, month, and year. These two cases are

straightforward additions to the grammar. They were excluded from Fig. 8 to

simplify the description of the grammar.

The first four rules of the lexical state %dtg

(%DAY %TIME '-' %TIME %W* %ZONE .11* %ONTH Vw* %YEAR)
{%dtg-; %day+; %timefm+; ,%timeto+; Yzone+;

Ymonth+; YYRESET; }

(XDAY %TIME '-' %TIME %W* %MONTH 7%W* %YEAR)
{ %dtg-; %day+; %timefm+; ,%timeto+; /month+; YYRESET; }

(*.DAY %.TIME 7.W* %ZONE %W* %MONTH %.W* %YEAR)
{ %dtg-; %day+; %timefm+; %zone+; %month+; YYRESET; }

(MDAY %,TIME V11* Y.MONTH 7,W* %YEAR)
I %dtg-; %day+; %timefm+; Ymonth+; YYRESET; I

specify regular expressions that match the four different DTG forms. When one of

these forms is recognized, the rule's action disables the state %dtg and enables the

lexical state used to match the individual parts appearing in the DTG. The call to

YYRESET returns the matched characters to the input buffer and restarts the

scanner with the new lexical states enabled. This ensures that a DTG is at the

front of the input buffer.

- 33-

The fifth rule of %dtg

{ YYRESTART; }

successively removes characters from the input buffer when a DTG is not present.

The dot (.) is a regular expression that matches any character except newline and

end-of-sentence. The call to YYRESTART restarts the scanner from the current

position of the input buffer. Because newline is a white space character, it will

automatically be discarded by the scanner. Because the scanner prefers matches

that account for the longest input sequence, there is no ambiguity in these rules.

The next three lexical states contain one rule each. The lexical rule

DAY: / %DAY / [0-9)
{ %day-; yylval.val = toint(yytext); }

in state %day recognizes two digits as the day portion of a DTG if they are followed

by another digit. The action of this rule disables the state and assigns the integer

value of the two digits to yylval .val. The variable yytext is a null-terminated

string containing the characters matched by the primary regular expression of a

lexical rule's pattern. The variable yylval is of type YYSTYPE and is used to pass

values from the scanner to the grammar rule actions of the parser. The function

toint() is defined in the scanner declarations. The scanner returns the token

number associated with DAY to the parser, indicating which token was recognized.

The lexical rule

TIME: / %TIME / E-0-9]
{ %timefm-; yylval.val = toint(yytext); }

recognizes the time portion of the DTG. The regular expression [-0-9] matches

any nondigit and keeps the scanner from mistaking the first four digits of a DTG

as the time. The lexical rule

TIME: '-' / Y.TIME I
{ %timeto-; yylval.val = toint(yytext); }

recognizes the time-to portion of a DTG, if present.

The next lexical state, %zone, contains the two rules

ZONE: %ZONE / %W* YJMONTE
{ %zone-; yylval.val = *yytext; }

ZONE: '/' / %ZONE /
{ %zone-; yylval.val = *yytext; }

matching a time zone designation. The first rule matches a time zone appearing in

a DTG; the second rule matches a time zone from the time zone designation

portion of an OPORD's heading. The time zone is expected to be a single

alphabet character, and its integer character code is assigned to yylval .val.

- 34 -

The lexical state %month contains 12 alternatives of the same token. The

rule

MONTH: JAN [A-Z]* { •month-; %year+; yylval.val = ; }1;
FEB [A-Z]* { Vmonth-; %year+; yylval.val = 2; }
MAR [A-Z]* f %rmonth-; %year+; yylval.val = 3; }
APR [A-Z]* { %month-; %year+; yylval.val = 4; }
MAY [A-Z]* { Ymonth-; %year+; yylval.val = S; }
JUN [A-Z]* { %month-; %year+; yylval.val = 6; }
JUL [A-Z]* f %month-; %year+; yylval.val = 7; }
AUG [A-Z]* { %month-; %year+; yylval.val = 8; }
SEP [A-Z)* { %month-; %year+; yylval.val = 9; }
OCT [A-Z]* { Ymonth-; %year+; yylval.val = 10; }
NOV [A-Z]* fYjnonth-; %year+; yylval.val = 11; }
DEC [A-Z]* { Ymonth-; %year+; yylval.val = 12; }

assigns the integer code for the recognized month to yylval .val and causes the

scanner to return the token number associated with the token MONTH. This rule

also enables the lexical state %.year, which was not previously enabled because it

would conflict with the rule in state %day. The rule in state %year

YEAR: (19)? / [0-9]<2> /
f %year-; yylval.val = toint(yytext); }

assigns the integer value of the last two digits of the year to yylval .val.

The Grammar Rules

The third panel of Fig. 8 defines three grammar rules and additional user

code. The first rule

time-zone: %zone+ ZONE
{ deftimezone = $2; };

defines the syntax of the start symbol time.zone. The form Yzone+ is a rule

action that enables the lexical state Yzone, which allows the scanner to recognize

the token ZONE in the input text. The character code of the zone, which is

assigned to yylval .val, is accessed in the grammar rule action

{ deftimezone = $2; }

with the dollar-sign variable $2 and assigned to the global variable deftimezone.

The next rule

date.time.group: %dtg+ dtg { $$ = $2; 1;

defines the syntax of the other start symbol date-time-group. It enables the %dtg

lexical state with rule action %dtg+ and defines the start symbol as an instance of

the nonterminal dtg. By assigning the value of $2 to $$, the rule action associates

the value of dtg with date-t.ime-group, which will be passed out of the parser to

the extractor.

- 35-

Finally, the rule

dtg: /* empty */ { $$ = NULL; }
DAY TIME MONTH YEAR

{ $$ = mkdtg($1,$2,0,$3,$4,'\O'); } I

DAY TIME ZONE MONTH YEAR
{ $$ = mkdtg($1,$2,0,$4,$5,$3); } I

DAY TIME TIME MONTH YEAR
{ $$ = mkdtg($1,$2,$3,$4,$5,'\O'); }

DAY TIME TIME ZONE MONTH YEAR
{ $$ = mkdtg($I,$2,$3,$5,$6,$4); };

defines four alternatives of the nonterminal dtg, corresponding to the four DTG

patterns defined in the lexical state %dtg. This rule also defines a fifth alternative,

that there is no DTG mentioned in the input text.

The code section of the grammar defines three functions and a global

variable. The function yyerroro is required by the parser and is called whenever

the parser encounters a syntax error; more sophisticated error handling can be

implemented (Kipps, 1991). The global variable deftimezone will be assigned the

character code of the time zone used throughout the order. By default, it is

assigned a blank space. The function mkdtg() allocates and initializes a dtgroup

data structure, while the function prdtg() outputs the data in a dtgroup

structure, assigning the default zone if the time zone is not already defined; the

timeto portion of a DTG is ignored.

- 36-

6. THE OPORG TRANSLATOR SYSTEM

In this section, we describe how to install the OPORG system on an IBM

PC under MS-DOS.' The individual source files of the OPORG translator system

must first be generated under UNIX and then transferred to the target PC

environment. We assume that the OPORD structural grammar (see Fig. 5) is

contained in a text file called tskorg.y and that the DTG syntactic grammar (see

Fig. 8) is contained in text file dtg.y. We also assume that the target PC

environment has a C compiler, such as Turbo C (TurboC, 1988).2 We use a

percent sign (%) to indicate the UNIX prompt and a right angle bracket (>) to

indicate the MS-DOS prompt.

Under UNIX, the mapper and extractor programs are generated by calling

the DMG on the structural grammar with the dng command, i.e.,

% ding tskorg.y.

DMG creates the file y.map. c, which contains the source code for the mapper and

extractor.

The parser and scanner programs are generated by calling RACK on the

syntactic grammar with the yacc command, i.e.,

% yacc -d dtg.y.

RACK subsumes the UNIX command yacc in order to take advantage of

YACC-specific features already existing in UNIX tools, such as make. This call

creates three fies: y . lex. c, which contains the source code for the scanner;

y. tab.c, which contains the source code for the parser; and y.tab.h, which

contains parser declarations that are required by the extractor.

The unusual looking names of the mapper, parser, and scanner files conform

to YACC's naming convention, but they may not transfer correctly to a PC

environment. For this reason, these files are expected to be renamed to eliminate

the first dot (.). This can be done with the UNIX mv command, i.e.,

% my y.map.c ymap.c
% mv y.tab.c ytab.c
% mv y.tab.h ytab.h
% mv y.lex.c ylex.c.

Then transfer these files to the PC file system. There are several readily available

file transfer mechanisms, such as the public domain Kermit program and UUCP.
1 MS-DOS is a registered trademark of Microsoft Corporation.
2Turbo C is a registered trademark of Borland International.

- 37-

Once on the PC, the OPORG system source files must be compiled and

linked. Assuming the C compiler is called cc, this can be done with the call

> cc -o oporg ylex.c ytab.c ymap.c.

This call creates the executable file oporg, which constitutes the OPORG

translator system command. Figure 9 shows the contents of a file for constructing

the system using the Turbo make command.

The oporg command has the form

oporg file

where file is the name of the OPORD text file. OPORG extracts the relevant task

organization data and writes this data to standard output, which can be

redirected to a text file. OPORG writes the extracted data according to the

format outlined below.

Olopord no/issuing unitI/DTG order effective/I
1/unit des/unit loclattached tolDTG effective/I
2/comment//
3/DTG operation to begin/I

The first character of each line of output identifies the fields of data on the line. A

zero (0) indicates that the line contains the operation order number, the issuing

unit designation, and DTG the OPORD is effective. A one (1) indicates that the

line contains data from the task organization section of the OPORD, namely, a

unit designation and location, the unit to which it is being attached or OPCONed,

and DTG effective (if given). A two (2) indicates a comment, which a computer

system should ignore; comments are used to highlight portions of OPORD text

from which data is extracted for manual verification. A three (3) indicates that

the line contains the DTG for the beginning of the operation. Data fields are

separated by a slash (/); data lines are terminated by a double slash (//).

For example, if the portion of text seen earlier in Fig. 1 is contained in the

text file opordl, then the call

% oporg opordl

writes

0/49003/699TH INF DIV (M)/261200U0S90//

I/TF 2-13 MECH/NLI702/699TH AB AS DIV TCF/021200U0690//
2/OPCON TO 699TH AB AS DIV TCF EFFECTIVE 021200 JUN 90//
I/TF 1-61 AR/NL6392/3D BDE (LIVE FIRE)///
2/OPCON TO 3D BDE (LIVE FIRE) EFFECTIVE ON CLOSURE IN 3D BDE M//
I/TF 3-4 AVN/AREA B/IST BDE/291300U0590//
2/OPCON TO 1ST BDE EFFECTIVE 291300 MAY 90//
3/020000U0690//

to standard output.

-38 -

Makefile

for compiling OPDRG source files on IBM PC compatible computer.

all: ytab.obj ylex.obj ymap.obj
tcc -nih -DZZCBUFSIZE=30000 -w-pia -W -eopmap\
ylex.obj ytab.obj ymap.obj

ytab.obj: ytab.h ytab.c
tcc -nih -DZZCBUFSIZE=30000 -w-pia -N -c ytab.c

ylex.obj: Ylex.c
tcc -nih -DZZCBUFSIZE=3OOOO -w-pia -N -c ylex.c

ymap.obj: ytab.h ymap.c
tcc -nih -DZZCBUFSIZE=30000 -w-pia -N -c ymap.c

Fig. 9-Makefile for Constructing OPOILG

- 39-

7. CONCLUSIONS

The UATOP project has investigated the problems associated with

extracting tactical data from combat operation orders (OP ORDs). Although

OPORDs contain a level of tactical information appropriate for many military

software systems, such as those for battle management, logistics, war-gaming, and

combat training, this information is currently inaccessible as computer data,

except by manual extraction and entry. Using tools developed by the UATOP

project, we have demonstrated that concise and clear rules can be used to

automate the extraction of OPORD data.

We have demonstrated an application of our approach by describing the

structure and operation of the OPORG translation system. OPORG extracts task

organization data from input OPORDs and outputs this data using a structured

format that can readily be accessed by other software systems. The OPORG

system illustrates that our approach to OPORD translation is flexible, reliable,

and portable. The OPORG system is generated automatically from grammar files

by two translator-generator tools: DMG and RACK. Modifications can be added

to the system easily by editing the grammar files. Although the OPORG system

files must be generated under the UNIX operating system, once generated,

OPORG can be run on an IBM PC-compatible computer. The OPORG system

source files are written entirely in portable C.

We have also applied this approach to the larger task of translating

OPORDs into simulation scenarios for use by the ACAC simulation system. In

this task, the data being extracted are the directives to maneuver units, which are

output as scripts that drive the simulation model. A preliminary translation

system, called OPSCRIPT, has been implemented and is demonstrable. The

OPSCRIPT translation system will be described in a later document.

Given its generic nature, we feel that our approach to extracting data from

OPORDs can be applied to other highly structured but "not machine-readable"

documents. Our results demonstrate that regularity and structure can transform

otherwise untranslatable pieces of text into machine-readable data files. These

results recommend that the DoD should strive to standardize the format and

language of its documents as much as possible to make them available as input to

automated military systems.

- 41-

REFERENCES

AFSC, Joint Staff Officer's Guide, No. AFSC Pub 1, Armed Forces Staff College,
1984.

Aho, A. V., and J. D. Uliman, The Theory of Parsing, Translation and
Compiling, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1972.

Aho, A. V., and J. D. Ullman, Principles of Compiler Design, Addison-Wesley
Publishing Co., Reading, Mass., 1977.

Johnson, S. C., YACC-Yet Another Compiler Compiler, CSTR 32, Bell
Laboratories, Murray Hill, N.J., 1975.

Kipps, J. R., A Table-Driven Approach to Fast Context-Free Parsing, RAND,
N-2841-DARPA, December 1988.

Kipps, J. R., "RACK: A Parser Generator for Al Languages," in Proceedings of
IEEE International Conference on Tools for AI, November 1990, pp. 430-435.

Kipps, J. R., The RAND Compiler Kit (RACK): Reference Manual and User's
Guide, RAND, N-3100-RC, 1991.

Tomita, M., "An Efficient Context-Free Parsing Algorithm for Natural Languages
and Its Applications," Ph.D. dissertation, Computer Science Department,
Carnegie Mellon University, Pittsburg, Pa., 1985.

TurboC, Turbo C: Reference Guide Version 2.0, Borland International, Scotts
Valley, Cal., 1988.

U.S. Army, JANUS-T Simulation System, unpublished documentation.

U.S. Army, Operations, FM 100-5, U.S. Army.

U.S. Army, SCALP Scenario-determined, Computer Assisted Logistics Planning,
technical report, U.S. Army Logistics Center, September 1989.

