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1    Summary of accomplishmients 

Our efforts in these twelve quarters resulted in four patents (two pending, two provisional appli- 
cations), seven journal papers, seven conference papers and numerous professional and scholarly 
contributions, details of which are presented below. 

• Patents Pending 

- Y. Altunbasak, B. Gunturk, and R. M. Mersereau, "Resolution enhancement and artifact 
reduction for MPEG video," filed with the Patent Office on April 26, 2002. 

- Y. Altunbasak and A. Patti, "A fast and robust model-based motion estimation strat- 
egy" filed with the Patent Office, Sept. 2002. 

• Provisional Patent Applications 

- Y. Altunbasak and Y. C. Lee, "Multi-frame error concealment methods for transform- 
coded video," (GTRC ID 2509) filed with the USPTO on June 27, 2001 

- B. Gunturk, A. U. Batur, Y. Altunbasak, M. H. Hayes III, and R. M. Mersereau, Super- 
resolution for face recognition, (GTRC ID 2653) filed with the USPTO on May 3, 2002. 

• JournEil Papers 

- B. Gunturk, Y. Altunbasak, and R. M. Mersereau, "A DCT-domain bayesian resolution 
enhancement framework for MPEG video," IEEE Transactions on Image Processing, 
vol. 13, no. 1, pp. 33- 43, January 2004. 

- B. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, "De- 
mosaicking: Color filter array interpolation in single chip digital cameras," IEEE Signal 
Processing Magazine (Special Issue on Color Image Processing), September 2004. 

- B. Gunturk, Y. Altunbasak, and R. M. Mersereau, "Multiframe resolution-enhancement 
methods for compressed video," IEEE Signal Processing Letters, vol. 9, no. 6, pp. 
170-174, June 2002. 



— B. Gunturk, Y. Altunbasak, and R. M. Mersereau, "A multi-frame blocking artifact re- 
duction method for transform coded video," IEEE Transactions on Circuits and Systems 
for Video Technology, vol. 12, no. 4, pp. 269-276, April 2002. 

- B. K. Gunturk, A. U. Batur, Y. Altunbasak, M. H. Hayes III, and R. M. Mersereau, 
"Eigenface-domain super-resolution for face recognition," IEEE Transactions on Image 
Processing, May 2003. 

— Y. Altunbasak, A. J. Patti, and R. M. Mersereau, Super-resolution still and video re- 
construction from MPEG coded video, IEEE Transactions on Circuits and Systems for 
Video Technology, vol. 12, no. 4, pp. 217-227, April 2002. 

— B. Gunturk, Y. Altunbasak, and R. M. Mersereau, Color plane interpolation using al- 
ternating projections, IEEE Transactions on Image Processing, vol. 11, no. 9, pp. 
997-1013, September 2002. 

• Conference Papers 

— B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, "Multi-frame information fusion 
for gray-scale and spatial enhancement of images," in Proc. IEEE Int. Conf. Image 
Processing, Barcelona, Spain, Sep. 2003. 

- B. Gunturk, A. Batur, Y. Altunbasak, M. H. Hayes III, and R. M. Mersereau, "Eigenface- 
based super-resolution for face recognition," IEEE Int. Conf. on Image Processing, vol. 
2, pp. 845-848, Rochester, NY, September 2002. 

— B. Gunturk, Y. Altunbasak, and R. M. Mersereau, "A multi-frame blocking artifact 
reduction method for transform coded video," IEEE Int. Conf. Acoust. Speech Sign. 
Proc, vol. 3, pp. 1789-1792, Salt Lake City, UT, May 2001. 

— B. Gunturk, Y. Altunbasak, and R. M. Mersereau, "A bayesian resolution enhancement 
framework for transform coded video," Proc. IEEE Int. Conf. Image Proc, vol. 2, pp. 
41-44, Thessaloniki, Greece, Oct. 2001. 

— B. Gunturk, Y. Altunbasak, and R. M. Mersereau, "Gray-scale resolution enhancement," 
IEEE Workshop on Multimedia Signal Processing, pp. 155-160, Cannes, Prance, Oct. 
2001. 

- B. Gunturk, Y. Altunbasak, and R. M. Mersereau, Color plane interpolation using al- 
ternating projections, IEEE Int. Conf. on Acoustics Speech and Signal Processing, vol. 
4, pp. 3333-3336, Orlando, FL, May 2002. 

- Toygar Akgun, Yucel Altunbasak and R. M. Mersereau, "Superresolution reconstruction 
of hyperspectral images," in Proc. IEEE Int. Conf. on Acoustics Speech and Signal 
Processing (ICASSP), Montreal, Canada, May 2004 

• Main Accomplishments 

- Multi-frame Blocking Artifact Reduction Method for Transform Coded Video and its 
Relation to Superresolution (Section 4.1 ) 

- DCT-Domain Bayesian Superresolution Reconstruction for MPEG Video (Section 4.2 ) 

- Fast Motion Estimation Using Low-bit-resolution Images (Section 4.3 ) 

— Multi-Frame Gray-Scale Resolution Enhancement (Section 4.4 ) 

- Face Recognition from Video (Section 4.5 ) 



— Effects of Camera Response Function and Illumination Changes in Multi-Frame Image 
Reconstruction (Section 4.6 ) 

— Multi-Frame Information Fusion for Gray-Scale and Spatial Enhancement of Images 
(Section 4.7 ) 

— Super-Resolution Reconstruction of Hyper-Spectral Images (Section 4.8 ) 

2    Professional and Scholcirly Contributions 

• Leadership Activities 

- Technical program chair, IEEE Int. Conf. on Image Processing (ICIP'06), Atlanta, GA, 
2006. 

- Advanced Signal Processing for Communications" Symposia co-chair, IEEE Interna- 
tional Conference on Communications (ICC'03), May 11-15, 2003 

- Multimedia Networking Technical Track Chair, IEEE International Conference on Mul- 
timedia and Expo (ICME'04), June 27-30, 2004 

- Multimedia Networking Technical Track Chair, IEEE International Conference on Mul- 
timedia and Expo (ICME'03), July 6-9, 2003 

- Panel sessions chair. International Conference on Information Technology: Research and 
Education (ITRE'03), August 10-13, 2003 

- Session chair, Video Transcoding, IEEE Int.   Conf.   on Image Processing (ICIP'03), 
September 15, 2003 

- Session chair. Wireless Multimedia I, IEEE Int. Conf. Multimedia and Expo (ICME), 
Baltimore, MD, July 7, 2003 

- Session chair. Multimedia I, IEEE Int.   Conf.  on Communications (ICC'03), May 12, 
2003 

- Session chair. Wireless networking, IEEE Int. Conf. on Communications (ICC'03), May 
14, 2003 

- Session chair. Error Concealment, IEEE Int.   Conf.   on Image Processing (ICIP'02), 
Sept. 22-25, 2002 

- Session chair, Image/Video Coding, IEEE Int.   Conf.   Acoust.   Speech Sign.   Proc. 
(ICASSP'02), May 10-14, 2002 

- Session chair. Digital Video Processing, 32nd Asilomar Conference on Signals, Systems, 
and Computers, Nov. 1-4, 1998 

• Editorial Activities 

- Associate Editor, IEEE Transactions on Image Processing, 5/26/2002-6/1/2005 

- Associate Editor, IEEE Transactions on Signal Processing, 7/31/2003-7/31/2005 

- Area Editor, Signal Processing: Image Communications, 1/1/2001-1/1/2004 

- Associate Editor, Circuits, Systems, and Signal Processing, 6/21/2000-12/31/2002 



- Guest Editor, EURASIP Image Communications Special Issue on "Recent Advances in 
Wireless Video" 

- Panelist and proposal reviewer for NSF, June 2001, Feb. 2003, and May 2003 

- Panelist and proposal reviewer for ARO, March 2001 

• Membership Activities 

- Advisory Board, Department of Electrical Engineering, Bilkent University, Ankara, 
Turkey 

- Vice-president - North America, IEEE Communications Society Multimedia Communi- 
cations Technical Society, 1/2004-1/2006 

- Elected member, IEEE Signal Processing Society Image and Multi-dimensional Signal 
Processing (IMDSP) Technical Committee, 5/2002-5/2008 

- Senior Member, IEEE, 2002 

- Technical program committee member, ICME'04, June 2004, Taipei, Taiwan 

- Technical program committee member, ITRE'04, June 2004, London, England 

- Technical program committee member, ICASSP'04, Montreal, Canada, May 2004 

- Technical program committee member, ICC'04, Paris, Prance, June 2004 

- Technical program committee member, ICIP'03, Barcelona, Spain, September 2003 

- Technical program committee member, ICME'03, July 2003, Baltimore, MD 

- Technical program committee member, ICASSP'03, Hong Kong, China, April 2003 

- Technical program committee member. Wireless Personal Multimedia Communications 
(WPMC'02) 

- Technical program committee member, IEEE Int. Conf. on Image Processing (ICIP'02), 
Rochester, NY, September, 2002 

- Technical program committee member, ICIP'Ol, Thessaloniki, Greece, October 2001 

- Technical program committee member, IEEE International Symposium on Circuits and 
Systems (ISCAS'02), Scottsdale, Arizona, May 2002 

- Technical program committee member, ICASSP'Ol, Salt Lake City, Utah, May 2001 

3    Honors and Awards 

• Received NSF CAREER award (2002) 

• Received "Outstanding Junior Faculty Award" at the School of Electrical and Computer 
Engineering, Georgia Tech (2003) 

• Co-author for a conference paper that received the "best student paper award" at ICIP 2003 



4    Main Accomplishments and Results 

4.1    Multi-frame Blocking Artifact Reduction Method for Transform Coded 
Video 

Transform coding is a popular and effective compression method for both still images and video 
sequences, as is evident from its widespread use in international media coding standards such 
as MPEG, H.263 and JPEG. The motion-compensated image (or the image itself) is divided into 
blocks and each block is independently transformed by a 2-D orthogonal transform to achieve energy 
compaction. The most commonly used transform is the discrete cosine transform (DCT). After 
the block transform, the transform coefficients undergo a quantization step. At low bit-rates, the 
DCT coefficients are coarsely quantized. This coarse quantization with independent quantization 
of neighboring blocks gives rise to blocking artifacts—visible block boundaries. 

Several blocking artifact reduction methods have been proposed in the literature. Spatial filtering, 
iterative reconstruction techniques, and stochastic reconstruction techniques are among the blocking 
artifact reduction methods that have been proposed for still images. Although temporal information 
adds another dimension for video sequences, none of the prior art used this information effectively 
in blocking artifact reduction in video. 

In this work, we develop a multi-frame restoration-based method that makes use of the spatial cor- 
relations between successive frames effectively. The proposed method constructs convex constraint 
sets at each frame within a neighborhood of the frame of interest, using the motion between the 
frames and the quantization information extracted from the bit stream. The method is based on the 
fact that, although the exact value of the quantization noise added to each DCT coefficient is not 
known, the range within which it lies can be determined from the bit stream. Incorporating the 
motion between the frames, we can define constraint sets not only at the current frame, but also 
at each frame within a small neighborhood of the current frame. By projecting the initial "blocky" 
frame onto these constraint sets successively, we can reconstruct a better estimate of the "original" 
frame—the one before the quantization step. 

In order to derive the constraint sets, we first need to estabUsh the relation between neighboring 
frames. The key is to use the intensity conservation assumption along the motion trajectories. 
Let /(x,i) denote the intensity of the continuous spatio-temporal video signal at spatial coordinate 
X = [xi, X2] at time t. Pixel intensities of any two video frames can be related to each other through 
the motion vectors. Denoting M = [Mi(x, tk] tj), M2(x, tk] tj)] as the motion mapping between the 
frames at times tk and tj, we can write: 

/(x,tfc) = /(x-M,t,). (1) 

We now proceed by relating the spatially continuous video frame at time tj to the corresponding 
discrete frame. Letting /(n, j) denote the intensity of the f^ discrete frame at the integer coordinate 



n = [ni, 722] > we can write the spatially-continuous reconstruction as: 

f{^,tj)   = * /lr.(x) 5]/(n,Mx-n) 
n 

•'      n 

=   J]]/ir(x-n)/(n,j), (2) 

where /ir(x) is the reconstruction filter. Substituting Equation (2) into Equation (1), and discretiz- 
ing fc*'' frame, we get: 

/(m, k) = ^ hr{m - M - n)/(n, j). (3) 

Now we model the operations that take place in the process of MPEG compression {i.e., motion 
compensation, block-DCT calculation, and quantization). Motion compensation is simply the 
subtraction of an offset value /(m, A;) (predicted image) from /(m, fc). The residual image is 
then passed through a series of 8 x 8 block-DCTs to result in DOT coefficients. This is followed by 
a quantization step which can be modeled as an addition of quantization error. Using Equation 3, 
the overall relation can be written as: 

dg(ni, k)^^ hKivcv, k; n,j)f{n,j) - F{m, k) + Q(m, k), (4) 

where dg(m, k) is the quantized DOT coefficients, hKim, k; n, j) is the block-DCT ofhrim-M — n), 
F(m, k) is the block-DCT of /(m, k), and Q{m, k) is the quantization error. 

Although the exact value of Q(m, k) is not known, the range within which the DCT coefficient 
lies can be extracted from the MPEG bit stream. Based on this fact we define constraint sets 
C(m,k) on frame f{m,j). Defining bi{m,k) and 6„(m, fe) as the lower and upper bounds of the 
DCT coefficient at spatio-temporal location (m. A;), C{m,k) can be written as: 

C(m,A;) = ^/(m,j): {■ Y^ hK{m, k; n,j)f{n,j) - F(m, k) 6 [bi{m,k),bu{m,k)] (5) 

This equation shows how to define constraint sets on any frame j using the quantization information 
from another frame k. By projecting the "blocky" frame onto these constraint sets, the blocking 
artifacts can be reduced significantly. 

This constraint set is defined simply by using the quantization bounds [bi{in),bu{m)] of one of the 
DCT coefficients as explained in the previous section. Projection of an image onto this constraint 
set amounts to simply finding the closest point on C(in, k). 

Although this projection is likely to reduce the blocking artifacts, it does not guarantee a significant 
improvement since the "original" blocking-artifact-free image could be anywhere in the shaded 
region. Defining another constraint set could improve the quaUty significantly. As depicted in 
Figure 43, the second constraint set defined with help of the neighboring frame (fc + 1) reduces 
the region where the "original" image lies. Projecting the initial frame onto these convex sets 
successively produces a better result. By using additional frames we can impose more constraint 
sets onto the reconstructed frame and reduce the blocking artifacts further. 
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4.2    DCT-Domain Bayesian Superresolution Reconstruction for MPEG Video 

With a Bayesian estimator, not only the source statistics, but also various regularizing constraints 
can be incorporated into the solution. Bayesian estimators have been frequently used for super- 
resolution. However, in these approaches either the video source is assumed to be available in 
uncompressed form, or it is simply decompressed without considering the quantization process. 
Additive noise is considered as the only source of error. On the other hand, the projection onto 
convex sets (POCS) techniques treat the quantization error as the only source of error without 
considering the additive noise. Clearly, neither of these approaches provides a complete framework 
for superresolution. The model that we have developed combines the quantization process and the 
additive noise under a Bayesian framework. 

We begin by analyzing the block diagram in Figure 1 depicting the video acquisition process. 
According to this model, a spatially and temporally continuous high-resolution input signal /(x, t) 
is affected by sensor and optical blurs. Sensor blur is caused by integrating over the finite nonzero 
sensor cell area, while optical blur is caused by the lens system. The blurred video signal is also 
integrated over time to capture nonzero time-aperture effects. After sampling on a low-resolution 
grid, discrete low-resolution frames gd{l, k) are obtained. 

We now add the MPEG compression stages to this model. As shown in Figure 2, the LR frame 
Qdi^k) is motion compensated (i.e., the prediction frame is computed and subtracted from the 
original to get the residual image), and the residual is transformed using a series of 8 x 8 block- 
DCTs to produce the DOT coefficients d(m,A;). The DCT coefficients d{m,k) are then quantized 
to produce the quantized DCT coefficients (i(m, k). 

In the maximum a posteriori probability (MAP) formulation, the quantized DCT coefficients, 
d{in,k), the original high-resolution frame, f{n,tr), and the block DCT of the additive noise 
are all assumed to be random processes. Denoting Pf^n^tr)\d(m,ki),-A"^k )(') ^ ^^^ conditional 
probability density function (PDF) with A;i,--- ,kp being the frames used in the reconstruction, 
the MAP estimate /(n, ij.) is given by: 

/>,t,) = argmax{p^(„_,^)l,-(^,^)...,- (.)},       V n. (6) 

We used the underHne notation (in n and m) to emphasize that this PDF is the joint PDF, not 
the PDF at a specific location. 

Using Bayes' rule. Equation 6 can be rewritten as: 

f{n,tr) = arginax{p,-(^,^)... j(^_,^)l^(„^^^)(.)p^(„,,,)(-)} ,       V n, (7) 

where we used the fact that Pd{m,ki),-,d{m,k )(') ^^ "°* ^ function of f{n,tr). Clearly we need 

to model the conditional PDF PairnM),-,d{l,k,mn,tr)(-) ^^^ the prior PDF P/(„,i,)(-) in order 

to find the MAP estimate f{n,tr). If the additive noise v{ni,k) is assumed to be an indepen- 
dent, identically distributed (IID) Gaussian process, it is possible to derive the conditional PDF 
Pd{m,ki},- ,dim,k )|/(n,t)(')! analytically, which can be used with any prior image model. The resulting 
estimation problem can be implemented using an iterated conditional modes (ICM) scheme. (The 
details of the derivation and the implementation are presented in the attached paper.) 



To demonstrate the efficacy of the proposed method we performed a set of experiments. In these 
experiments, the test images AERIAL (Figure 3) and WATCH (Figure 7) were jittered, blurred, 
downsampled, and corrupted by additive noise to produce multiple low-resolution frames. For 
blurring, the images were convolved with a 5 x 5 Gaussian kernel with a standard deviation of 
1.5 pixels. The additive noise had a Gaussian distribution with a standard deviation 1.4. The 
aperture time was taken to be zero, and the lens point-spread function was assumed to be space 
invariant. The low-resolution frames were then compressed using an MPEG encoder operating at 
1.5Mbits/sec to produce the low resolution video sequence. Figure 4 and Figure 8 show one of 
those low resolution frames from each of the sequences. 

The first decoded frame for each video sequence was bilinearly interpolated. These images are 
depicted in Figures 5 and 9. We then applied our compressed-domain resolution enhancement 
method to upsample the first frames for both sequences. Figures 6 and 10 illustrate the results 
obtained by the proposed algorithm. 

/(x,0- -► 
Motion 

warping —► 
Sensor & 

Optical blur —► 
Nonzero 

aperture time -* 
Sampling 

Noise 
v(l,A:) 

-► gAhk) 

/(n,0- 
Video 

acquisition 

Video acquisition process 

Figure 1: Video acquisition model. 

gAlk) 

MPEG Motion 
Compensation 

8x8 BIocl< 
DCT 

d(m, k) 

Quantization 
->d(m,k) 

Figure 2: MPEG compression is appended to the video acquisition. 

4.3    Fast Motion Estimation Using Low-bit-resolution Images 

Reducing the temporal redundancy in image sequences, motion estimation is widely used in the 
video processing algorithms. Among different motion estimation techniques, block-matching al- 
gorithm (BMA) is the most popular one due to its high performance and low hardware cost. 
Block-matching algorithms find the displacement (motion vector) minimizing the matching dif- 
ference between the reference block and the candidate blocks. When the search range is large, 
BMAs become computationally costly, which is a significant problem for real-time video processing 
applications. There are various fast motion estimation approaches proposed to reduce that compu- 
tational cost. Unimodal error surface assumption techniques, multiresolution techniques, integral 
projection techniques, variable search range techniques, lower bit-resolution techniques are among 
them. 

The focus of this report will be the low bit-resolution BMAs. In an early work, Gharavi and Mills 
[1] proposed a fast BMA based on one-bit quantization of the pixels. Natarajan et al. [2] made that 
algorithm even faster by using exclusive-OR (XOR) operation for the block-matching criterion. 

8 
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Figure 4: A frame from the synthetically generated video sequence. 

Although the XOR based block-matching criteria reduce the computational load significantly for 
one-bit resolution algorithms, the accuracy of the motion estimation is a big concern. Baek et al. 
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Figure 5: Bilinear interpolation. 

[3] compared the performances of different bit-resolution images using reduced-bit mean absolute 
difference as the matching criterion. Lee et al. [4] presented a two-bit adaptive quantization scheme 
to increase the accuracy of the motion estimation. They also introduced a new block-matching 
criterion, Different Pixel Count (DPC), providing less hardware cost than the other reduced-bit 
matching criteria such as Pel Difference Classification [1] and Bit Truncation [3]. But all these 
block-matching criteria do not still come close to the efficiency of the simple XOR based methods. 

In this work, we propose a new two-bit BMA that uses XOR operation as the correlation engine. 
Three-level quantization scheme is the key in this algorithm, enabling the use of XOR operation. 
The proposed algorithm is more accurate than the one-bit methods. 

4.3.1    Three-level quantization of images 

The block diagram of the proposed algorithm is given in Figure 11. The input images are first 
band-pass filtered and then quantized to three levels (Q3). The band-pass filter (BPF) is designed 
to remove the DC so that the overall method is less susceptible to the errors due to brightness 
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Figure 6: Proposed algorithm (8 frames used). 

changes, and also remove the high-frequency noise. By quantizing the images to three levels, the 
accuracy of the motion estimation is increased in comparison to the two-level quantization methods 
while providing a fast implementation scheme based on XOR operation at the same time. 

For the three-level quantization, the levels are represented by the two bit pairs: 10, 00 or 01, corre- 
sponding to the pixel values less than Tl, between Tl and T2, and greater than T2, respectively, 
where Tl and T2 are the thresholds. Upon applying the XOR we have the following combinations 
and results: 

00 XOR 00 = 00, 10 XOR 10 = 00, 01 XOR 01 = 00 
00 XOR 01 = 01, 00 XOR 10 = 10, 10 XOR 01 = 11 

Prom these sets of possible comparisons, we see that the number of 1 bits in the result can be a 
measure of correlation. It gives zero 1 bits if the pixels are highly correlated (00 XOR 00, 10 XOR 
10, etc.), two 1 bits if the correlation is the lowest (10 XOR 01), and one 1 bit in between (00 XOR 
01, 00 XOR 10). Therefore, the algorithm will count the number of 1 bits in the results of the XOR 
operation between two blocks, and choose the block with the least nxmiber of 1 bits as the matched 
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Figure 8: A frame from the synthetically generated video sequence. 

block. 
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Figure 9: Bilinear interpolation. 

4.3.2    Band-pass filter implementation 

The band-pass filter operation is designed to achieve a fast and effective implementation. As 
depicted in Figure 12, the image is filtered by a 3 x 3 window of ones, and a 7 x 7 window of ones. 
The difference of these two filtered images gives the band-pass filtered image. With this kind of 
scheme, the filtering operation becomes extremely efficient: Without any multiplication, the pixels 
under the 3x3 and 7x7 windows are summed up, and then scaled once at the end. This scaling 
can also be simplified if the the window sizes are chosen to be factors of two, in which case the 
pixel values are scaled by bitwise shifting to the right. 

4.3.3    Threshold selection 

Since the overall method is aimed to be fast, the threshold selection technique is chosen to have low 
computational complexity. The simplest way of choosing a threshold is to choose a fixed threshold, 
that can be implemented by bit truncation. However, it is obvious that with this kind of threshold 
selection, the motion vectors cannot be computed accurately. Another simple method is to find the 
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Figure 10: Proposed algorithm (8 frames used). 

mean of the image, and then use a fixed offset value from the mean to determine Tl and T2. In 
other words, a fixed number is subtracted from the mean of the image to determine Tl, and added 
to the mean to determine T2. We have performed experiments for different video sequences to 
determine an optimum threshold value. Figure 13 is a graph showing the average PSNR values for 
different quantization levels and band-pass filters, as a function of threshold values. In that figure. 
Filter 3-5 indicates that windows of 3 X 3 and 5x5 are used in the band-pass filter implementation. 
Similarly, Filter 3-7 indicates that windows of 3 x 3 and 7x7 are used. An important observation 
in the figure is that three-level quantization has better performance than two-level quantization at 
small threshold values. However, as the threshold value increases, the performance of the three-level 
quantization becomes worse than two-level quantization. Although this is the plot for a particular 
sequence ("Foreman" sequence), the same behaviour has been been observed for all video sequences 
tested. In our experiments, we have found that an offset value of one works sufliciently for the 
bandpass filter Filter 5-7, mentioned above. 
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4.3.4    Correlation surface search 

The most important element in this scheme is the Packed Correlation Surface Search. As explained 
before, the correlation operation of an image region taken against another image region at some 
shift can be computed utilizing the XOR operation on packed words. For example, if a given 
processor has 32-bit data words, 16 pixels from one image line can be correlated against 16 pixels 
from another image line utilizing only a simple XOR operation. The correlation measure is simply 
the sum of the number of 1 bits in the resultant 32-bit word. By segmenting each Une of the selected 
block into 16 pixel chunks, the correlation over the entire block, at a given shift, can be computed 
with a minimum number of operations. If two bits are used to represent each pixel, then two 32-bit 
data words can be used to compute the correlation for 16 pixels. 

4.3.5    Generalization to higher-level quantization 

It should be noted that in two-bit per pixel representation there are actually four possible quanti- 
zation levels. However, the only way to use the sum of the number of 1 bits in the XORed registers 
as a distance metric is to use three different quantization levels. This can be generalized to higher 
levels as well. For instance, when the pixels are represented by three bits, there are four quanti- 
zation levels possible if we want to use the sum of the number of 1 bits as the distance metric. 
These levels can be represented with 000, 001, Oil, and 111. In this case, the distance between two 
intensities can be 0, 1, 2, or 3. 

4.3.6    Experimental results 

We have tested the proposed algorithm for various video sequences, including the standard "Susie", 
"Foreman", "Coast Guard", "Tennis", and "Flower Garden" sequences. The results are tabulated 
in Table 1. The size of each frame for the "Foreman" sequence is 288 x 352, for the others it is 
240 X 352. We have used two-level and three-level quantization schemes, and compared it with 
the conventional 8-bit algorithm. The motion vectors are computed for every 8 x 8 or 16 x 16 
blocks, and the numbers in parenthesis show this periodicity. As seen on the table, two- and 
three-level quantization algorithms have significantly lower search time than the standard 8-bit 
algorithm at the cost of 0.5 dB loss in PSNR. Three-level quantization is 0.2 dB better than the 
two-level quantization on the average. This 0.2 dB is a critical amount considering the fact that 
8-bit algorithm is 0.5 dB better than reduced-bit algorithms on the average. 

The search time results were obtained on a Pentium III 900MHz processor. We can also have an 
approximate picture of the computational complexities in terms of the number of operations per 
pixel. For the filtering operation, there are 59 flops (addition or multiplication) required for each 
pixel. (9 for the 3 x 3 window filter, 49 for the 7 x 7 filter, and 1 for the final subtraction.) For 
the three-level quantization operation, less than 1 flop (addition or multiplication) is required per 
pixel. And for the correlation search, only 65 flops per pixel is necessary for a search range of [-8, 7] 
pixels (full search). The total number of flops per pixel is only 125. This is a significant reduction 
when compared to the conventional 8-bit full search method, which requires more than 2700 fiops 
per pixel. 
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4.4    Multi-Frame Gray-Scale Resolution Enhancement 

When images are digitized, a certain number of bits is assigned to each pixel to represent its 
intensity. The number of bits, the hit depth, determines the number of gray levels between the 
minimum and maximum values that the imaging device can capture. There will be a loss of gray- 
scale resolution if the bit depth is not sufficient. When a set of low bit-depth images is available 
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Table 1: Average PSNR and Search Time Comparison. 

Method 

Video Sequence                            | 

Susie 

(240x352) 

Foreman 

(288x352) 

Coast Guard 

(240x352) 

Tennis 

(240x352) 

Flower 

(240x352) 
PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time 
(dB) (sec) (dB) (sec) (dB) (sec) (dB) (sec) (dB) (sec) 

2 Level (8) 36.0247 0.469 32.8750 0.562 27.5283 0.469 30.6896 0.469 25.1050 0.469 
3 Level (8) 36.0165 0.719 32.9885 0.875 27.6164 0.719 31.0983 0.719 25.2322 0.719 
2 Level (16) 35.8953 0.250 31.5188 0.312 27.4410 0.250 29.6036 0.250 24.3092 0.250 
3 Level (16) 35.7577 0.313 31.7258 0.375 27.5311 0.313 30.1381 0.313 24.6414 0.313 
8-bit (16) 36.1092 47.1 32.8216 47.1 27.9828 47.1 31.4615 47.1 25.9193 47.1 

that are slightly different from each other because of motion or illumination, their non-redundant 
information can be combined to enhance the gray-scale resolution. We refer to this process of 
multi-frame gray-scale resolution enhancement as superprecision. 

Superprecision can be applied in several application areas. One of the most important of these is in 
medical imaging. With these images low-contrast details are often extremely critical for diagnosis, 
but when the bit depth is insufficient, these details may be lost. Superprecision reconstruction has 
the potential to regain these details by combining the non-redundant information that is present in 
a set of images. Mihtary automatic target detection, aerial and satellite remote sensing, and high- 
quality scanning applications can also use make effective use of superprecision reconstruction to 
enhance gray-scale resolution. The conversion of images from a low bit-depth format to a higher one 
(e.g., conversion from 8-bit GIF to 24-bit JPEG) is also a potential appHcation of this technology. 

The superprecision problem is very similar to the superresolution problem in which higher spatial 
resolution is sought from a set of low spatial resolution images [63]. Although the superresolution 
problem has received a considerable amount of attention, the superprecision has not been as actively 
researched. In an early paper, Cheeseman et al. [16] proposed increasing both the spatial and gray- 
scale resolution at the same time by using a maximum a posteriori probability estimator. They 
assumed a Gaussian model for all of the probability distributions and used Jacobi's method to solve 
the problem iteratively. In this paper, we propose a deterministic method based on a projections 
onto convex sets (FOGS) technique that does not make any assumptions about the underlying 
probability densities. Using this method, an initial high-resolution image estimate is projected 
onto constraint sets that are derived from the low resolution gray-scale image observations. The 
method can work either in the spatial domain or in the transform domain, where it is possible to 
include details of the compression process. In some cases superprecision and superresolution can 
be achieved at the same time. 

Section 2 presents the imaging model to be used in the reconstruction. The FOCS-based super- 
precision approach is presented in Section 3, and Section 4 gives the final algorithm. Section 5 
presents some experimental results, and Section 6 concludes the paper. 
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Figure 14: A model for the production of a low-resolution image from a high-precision, high- 
resolution image by the image recording process. 

4.4.1    The Imaging Model 

This section presents a model that establishes the connection between a high-resolution source 
image and multiple low bit-depth image observations. This connection will be used in the next 
section to enhance the gray-scale resolution of the images. 

As seenin Figure 39, the model has two components. The first models the image capture process. A 
high-resolution image, /^'^^^(ni, n2), is captured by an imaging device to produce the low resolution 
images, g^^^'{mi,m2, k). Here the superscript A^i represents the number of bits used to represent 
each pixel and (ni, 712) and (mi, 1712, k) are the spatial pixel coordinates of the high-resolution image 
and the k*^ low-resolution image, respectively. The image capture process is a linear, shift-varying 
(LSV) operation that includes motion (of the camera or the objects in the scene), blur (because of 
the nonzero sensor aperture time, the nonzero physical dimensions of the individual sensor elements, 
the degree of focus, etc.), and sampUng with a low-resolution grid [42]. In this paper, we model all 
of these effects except for the sensor aperture time, which is taken to be zero. According to this 
model, the mapping from a high-resolution image to a low spatial-resolution image is expressed as 
a weighted sum of the high-resolution image pixels, where the weights are the values of a space- 
invariant point-spread function (PSF) at the corresponding pixel locations. The center of the PSF 
depends upon the motion between the high-resolution image and the low-resolution images. This is 
depicted in Figure 15. Motion vectors from each low spatial-resolution image to the high-resolution 
image determine how each pixel is mapped. The normahzed PSF that characterizes the camera 
is centered at that location, and from it the weights on the high-resolution image grid are found. 
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Defining h{mi,m2,k]ni,n2) as this mapping, we can model the image capture process by: 

g^^^\mi,m2,k)^ ^ h{mi,m2,k;ni,n2)f^'^^\ni,n2). (8) 
ni,n2 

Equation 8 provides the relation between a single high-resolution image and the set of low spatial- 
resolution images. Further details concerning this modeling can be found in [46]. 

\ \ \^r'^7<S^,    \ 

f'\n„n,) 

g'"'\m„m„k + \) 

Figure 15: A mapping of the high resolution point-spread function to the lower resolution sampling 
lattices. 

The second sub-block models the gray-scale resolution reduction, which is nothing but a reduction 
in the number of bits used to represent each pixel. Bit depth reduction from Ni bits to N2 bits is 
equivalent to the operation: 

g''^^\mi,m2,k) = ronnd^2^^-^'g^^'\mi,m2,k)\, (9) 

where g^^^^(jni,m2, k) corresponds to the low-resolution (both in gray-scale and in the spatial vari- 
ables) image observations. The factor 2^^~^'^ scales the image to the new range, and the rounding 
operation round{-}, which rounds the argument to the nearest integer, effects the quantization. 

Letting 5(mi,m2, k) denote the error introduced by rounding, we can rewrite Equation 9 as 

g(^2)(mi,m2,A;) = 2^^-^^g^^^){mi,m2,k) + 5{mi,m2,k), (10) 

where 
|(5(mi,m2,fc)| <0.5. (11) 

If the images are transform coded (using JPEG or MPEG for instance), a similar relation can be 
formulated in the transform domain. The most common transform is the discrete cosine transform 
(DOT) applied on 8 x 8 blocks. Taking an 8 x 8 block-DCT of Equation 10, we get: 

G(^^)(ii,i2,fc) = 2^^-^iG(^i)(Zi,Z2,A;) + A(Zi,i2,fc), (12) 
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where G(^2)(^^^ ^2, A;), G(^i)(Zi, ^2, fc), and A(Zi, Z2, it) are the DCTs of 5(^2)(^^^^2, A;), 5^^i)(mi,m2, Jfc), 
and S{li,l2,k), respectively. A{li,l2,k) is also bounded in magnitude since 5{li,l2,k) is bounded, 
but its bounds depend on the position {h,l2)-   They are derived in the Appendix.   (It should 
be noted that the bounds of A{li,l2,k) are not equal to the DCT of the bounds of S{li,l2,k).) 
Applying the block-DCT to Equation 8, we can write G^^^\li, h, k) as: 

G^'''\hM.k) = Y. hDCT{h,l2,k;ni,n2)f^'''Hni,n2), (13) 
ni,n2 

where hDCTih,l2,k;ni,n2) is the block-DCT oi h{mi,m2,k;ni,n2)- Mathematically, the relation 
can be written as: 

L{h)+7    L{h)+7 
hDCT{h,l2,k;ni,n2) =     ^        ^    ^^'(^1,^2; (mi)8 , (m2)8)/i(mi,m2,fc;ni,n2), (14) 

■mi=L{li) m2=L{l2) 

where (•)8 is the modulo 8 operator, L{x) = [x/8\, and K{li,l2','>TT'i,m2) is the DCT kernel given 
by: 

K{h,I2;mi, 1712) = ki^ki^ cos \ ^ 1 cos ( — 1 . (15) 

ki. is the normalization factor 

[472    '   ^^^0 
kh = \ , i = l,2. (16) 

To summarize we have two equations that relate the HR image to LR images and DCT coefficients: 

g^^^\mi,m2,k) = 2^'-^' J^ h{mi,m2,k;ni,n2)f^'''\ni,n2)+ 5{mt,m2,k), (17) 
ni,n2 

and 
G(^^)(Zi,«2,A)) = 2^^-^i J] hDCT{lul2,k;ni,n2)f^'''\nx,n2) + A{h,l2,k). (18) 

ni,n2 

These two equations will be used in the POCS-based superprecision estimation algorithms. Equa- 
tion 18 will also be extended to include the compression process where the DCT coefficients are 
quantized according to quantization tables. 

4.4.2    Superprecision Methods 

This section formulates POCS-based superprecision in the spatial and transform domains. The 
transform-domain formulation also includes the quantization process that is common in image and 
video compression standards such as JPEG, MPEG, and H.263. 

Spatial-Domain POCS Solution 

Prom Equation 17, it is seen that the value of 2^^~^^g^^\mi,m2, k) falls within the 0.5 proximity 
of the observed pixel intensity g^^^\mi,m2,k). This information can be used to define a convex 
constraint set for each observed pixel. The method follows. 
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The image capture process shown in Figure 39 is appUed on an initial high-resolution image estimate 
a;(-^i)(ni,n2), and then scaled by the factor 2^2-JVi r^-^^ result is compared to the observations 
g(^^)(rni,m2,k). It is known that the residual, the difference between the computed and the 
observed images, must be less than 0.5 in magnitude if the estimate is correct. If the residual is 
greater than 0.5, then the error is back-projected onto the initial estimate so that the next time the 
image capture model and scaling are applied, it will fall within the 0.5 proximity of the observations. 

Defining the residual as: 

2^2-Afi Y, /i(mi,m2,A;;ni,n2)x(^i)(ni,n2), 
ni,n2 

we can write the convex constraint set for an arbitrary image x^^'^\n\,n2) as follows: 

C(mi,m2,fc) = |a;^^'Hni,n2) : \rx{mi,m2,k)\ < 0.5j . 

(19) 

(20) 

The projection operation onto these convex sets is given by: 

P{mi,m2,k) [x^^'Hni,n2)] = 

711,712 

x^^^\ni,n2),    — 0.5 < rx{mi,m2,k) < 0.5 

3;(^i)(ni,n2) + 2^^-^^('-^(!:^l;"^2,fc)+0.5)fe(mi m2,fc;ni,n2)      ^^(^^^    fe) < _0.5 

(21) 

Compressed-Domain POCS Solution 

Equation 18 provides the relation between the DCT coefficients G^^^\li,l2,k) and the HR image 
/(•^i)(711,712). The DCT coefficients G^^^\li,l2,k) are quantized in the process of compression. 
Defining &^'^\li,l2, k) as the quantized DCT coefficients, and Q{h, hjk) as the quantization error, 
we can write: 

G^'^'Hluh, k) = G^'^'Hluh, k) + Q{h, h, k), (22) 

where Q{h, I2, k) is bounded by half of the quantization step size at location (^1,^2)- Using Equation 
18, we get 

G(^^^(Zi,Z2,fc) = 2^^-^i J2 hDCT{h,l2,k;m,n2)f^'''\n^,n2) + A{h,l2,k) + Q{h,l2,k).    (23) 
ni,n2 

The sum of of A{li,l2,k) and Q{li,l2,k) is bounded by B{li,l2,k), which is equal to the sum of 
the bounds of A(Zi, ^2) k) and Q{li,l2, k). That is. 

|A(/i,/2, k) + Qih,I2, k)\ < B{h, I2, k), (24) 
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where 

r,/,   ,    ,\     „_     v^ v~^     IT^ ci   I   /     \     /     N M     Quantization step size at location (li,l2)        , x BUi,i2,fc)=0.5    2^ 2^     |X(Zi,Z2;(mi)g, (7712)8)1 + ^^ ^^-^ ^—^—i-.      (25) 
mi=Z.(!i) m2=i('2) 

The first term on the right-hand side of Equation 25 is derived in the Appendix. Equation 23 along 
with the bound B{li,l2,k) allow us to write a POCS reconstruction algorithm in the compressed 
domain that is analogous to the spatial-domain algorithm derived in the previous section. 

Now we can follow the same procedure as in the previous section to create the projection operator. 
Defining the compressed-domain residual as 

R,{h,h,k) = &^^Hh,l2,k)- 
2N2-N, ^ /iBCT(ii,/2,A;;ni,n2)x(^i)(ni,n2), (26) 

ni,n2 

we can write the convex constraint set for an arbitrary image x^^^\n\,n2) as follows: 

C{h,h,k) = {^^"^'Hm.ns) : \RMiMM < B{h,l2,k)] . (27) 

The projection operation onto these convex sets is given by: 

{ xi^^Kn^,n2) + ^'""^^^-^'^'twllS^^^^^^^^^^ R.{h,l2,k)>B{h,l2,k) 
ni,n2 

x^^'\ni,n2),    -B{h,l2,k) < R^{hM,k) < B{h,l2,k) 

x(^^Km,n2) + ^"^""^^^-^'^'"Si^tt'^^^^^^^^^ R.{h,l2,k)<-Bih,l2,k) 
ni,n2 

(28) 

4.4.3    Implementation 

Implementations of both the spatial- and transform-domain algorithms are very similar. In the 
spatial-domain implementation the error back-projected is the error in the pixel intensities. In the 
transform-domain implementation it is the error in the DCT coefficients that is back-projected. An 
illustration of using multiple constraint sets to restrict the solution set is illustrated in Figure 16. 
The final algorithm for spatial-domain (and compressed-domain) reconstruction is the follows. 

1. Choose a reference frame and bilinearly interpolate it to get an initial fine-grid image. 

2. Extend the bit depth of this image to the required bit depth by multiplying each pixel intensity 
by 2^i"~-^2 and filling in the last iVi - Ar2 bits randomly. The resulting image, x'^^^\ni,n2), 
is an initial estimate for the high resolution image f^^^\n\,n2)- 

3. Compute the motion between the reference frame and one of the low-bit-depth images, 
g^^'^\mi,m2,k). 
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4. Using the motion estimates, compute the mapping h{mi,m2,k;ni,n2) for each pixel in the 
current image g^^^\mi,m2,k). (Compute hDCT{h,h,k;711,112) for each DCT coefficient in 
the case of transform-domain implementation) 

5. For each pixel (DCT coefficient) in the current image, 

(a) Compute the pixel intensity (DCT coefficient value) from the estimate x^^'^\ni,n2) by 
applying the image capture processing model and scaling, 

(b) Compute the residual rx{mi,m2,k) {Rx{liJ2,k)) and back-project the error to the es- 
timate x^^^\ni,n2) using Equation 21 (Equation 26). 

6. Stop, if a stopping criterion is reached; otherwise, choose another low-bit-depth image, and 
go to step 2. 

It should be noted that, by construction, this algorithm has the potential to achieve both spatial 
and gray-scale resolution enhancement at the same time. If the high-resolution image estimate has 
a finer grid than the observations, both spatial and gray-scale resolution enhancement are achieved. 
If they have the same sampling grid, only gray-scale resolution enhancement is achieved. 

4.4.4    Experimental Results 

The high-resolution image MONEY, shown in Figure 17 is jittered, blurred by a Gaussian kernel 
(with a support of 5 x 5 and variance of 2.5), and downsampled to produce eight spatially low- 
resolution images. Their gray-scale resolution is then reduced from eight bits to a lower number of 
bits. The lower-precision images are then processed by the proposed algorithm to produce high- 
quality images with twice the spatial resolution and eight bit gray-scale resolution. Figures 18 
and 20 show four- and three-bit MONEY images. The reconstructed images are shown in Figures 
19 and 21. The MONEY images are also MPEG-1 encoded (using eight frames) to illustrate the 
transform-domain implementation. Figures 22 and 23 depict the reconstructed images. 

The reconstructions algorithm is also applied to images that have a bit depth of only one and two 
bits. Figures 24 through 27 show these cases. 

The reconstructions made from four- and three-bit images show significant improvement in both 
gray-scale and spatial resolution. Although the image quahty for the reconstructed images from a 
bit-depth of two and one bits are not satisfactory, characters that are not readable on the originals 
become readable after the reconstruction. 

In the experiments, motion is computed using the Hierarchical Block Matching (HBM) method 
of Bierfing [141]. Three hierarchical levels are used with the Mean Absolute Difference (MAD) as 
the matching criterion. In the final level, motion estimates are obtained with one-quarter pixel 
accuracy. 
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4.4.5    Conclusion 

In this paper, we presented a superprecision method that increases the gray-scale resolution by 
combining the non-redundant information from a set of low bit-depth, low resolution images. It is 
based on the projections onto convex sets (POCS) technique where the convex sets are defined using 
the bit-depth reduction information. With the transform-domain implementation, the quantization 
error that results from compression can also be included in the reconstruction. The method can also 
increase the spatial resolution if a finer samphng grid is used for the initial high-resolution image 
estimate. Therefore, the proposed method can be considered as a generalization to superresolution 
reconstruction. 

Appendix: 

The error 5{mi,m2,k) is bounded by 0.5. When the image is transformed to the DCT domain, 
there will be a new error A(Zi,Z2,fc)- This appendix determines the bounds that are appropriate 
for A(Zi,Z2,fe). 

Following from Equations 10 and 12, the bound max |A(Zi,Z2, k)\ can be found by: 

maxlAaiZ, fell    -   max   ^CT{2^-^15(^1)(mi,ms,fc)+5(mi,m2,fe)} 

-=   max|L>Cr{5(mi,m2,A;)}| (29) 

Using the definition of DCT{-}, we get: 

max|A(Zi,/2,fc)|    —   max 
L{h)+7    L{l2)+7 

Y2        Yl    Kih,l2;irni)Q,{m2)8)6{mi,m2,k) 
mi=L{li) m2=L(l2) 

L{h)+7    L{l2)+7 

=   0.5    £        £    \K{h,l2;imi),,{m2U. 
mi=L{h) m2=L(l2) 

(30) 
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Figure 16:  Illustration of how the POCS algorithm uses multiple coarse quantization values to 
produce a finer estimate of a sample value. 
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Figure 17: Original MONEY image. 

4.5    Face Recognition from Video 

The performance of existing face recognition systems decreases significantly if the resolution of the 
face image falls below a certain level. This is especially critical in surveillance imagery where often 
only a low-resolution video sequence of the face is available. If these low-resolution images are passed 
to a face recognition system, the performance is usually unacceptable. Therefore, super-resolution 
techniques have been proposed for face recognition that attempt to obtain a high-resolution face 
image by combining the information from multiple low-resolution images [15, 6, 39, 14]. In general, 
super-resolution algorithms try to regularize the ill-posedness of the problem using prior knowledge 
about the solution, such as smoothness or positivity [21]. Recently, researchers have proposed 
algorithms that attempt to use model-based constraints in regularization. While [15] demonstrates 
how super-resolution (without model-based priors) can improve the face recognition rate, [6], [39], 
and [14] provide super-resolution algorithms that use face-specific constraints for regularization. 

All these systems propose super-resolution as a separate preprocessing block in front of a face recog- 
nition system. In other words, their main goal is to construct a high-resolution, visually improved 
face image that can later be passed to a face recognition system for improved performance. This 
is perfectly valid as long as computational complexity is not an issue. However, in a real-time 
surveillance scenario where the super-resolution algorithm is expected to work on continuous video 
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Figure 18: Low resolution four-bit MONEY image (one of eight). 

streams, computational complexity is usually a very critical issue. In this paper, we propose an effi- 
cient super-resolution method for face recognition that embeds the super-resolution reconstruction 
into the face recognition system. This is based on the observation that nearly all state-of-the-art 
face recognition systems use some kind of front end dimensionahty reduction, and that a lot of 
detailed information generated by a preprocessing type super-resolution algorithm is not used by 
the face recognition block. Hence, we propose to embed the super-resolution reconstruction into the 
low-dimensional framework of the face recognition system so that only the necessary information is 
reconstructed without any unnecessary overhead. In addition to the computational complexity re- 
duction, we also derive face-specific constraints for the low-dimensional framework and demonstrate 
how they improve the performance. 

Currently, by far the most popular dimensionality reduction technique in face recognition is to use 
subspace projections based on the Karhunen-Loeve Transform (KLT). This type of dimensionality 
reduction has been central to the development of face recognition algorithms for the last ten years. 
We propose to use a similar KLT-based dimensionality reduction technique to decrease the com- 
putational cost of the super-resolution algorithm by transforming it from a problem in the pixel 
domain to a problem in the lower-dimensional face subspace. 

There are two important sources of noise in this problem. One is the observation noise that results 
from the imaging system. The other is the subspace representation error, which is a result of the 
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Figure 19: Reconstruction from the four-bit images shown in Figure 18. 

dimensionaUty reduction. We derive the statistics of these noise processes jor the low-dimensional 
subspace by using the examples from the human face image class. Substitution of this model-based 
information into the algorithm provides a higher robustness to noise. We test our system on both 
real and synthetic video sequences. 

In Section 2, we briefly review the KLT-based dimensionality reduction method for face recognition. 
Then, in Section 3, we formulate the super-resolution problem in the low-dimensional framework. 
Section 4 details the reconstruction algorithm, and Section 5 provides experimental results. Con- 
clusions are given in Section 6. 

4.5.1    Dimensionality reduction for face recognition 

Mathematically, the eigenface method tries to represent a face image as a Unear combination of 
orthonormal vectors, called eigenfaces. These eigenfaces are obtained by finding the eigenvectors 
of the covariance matrix of the training face image set [68]. The eigenvectors corresponding to the 
largest L eigenvalues span a linear subspace that can reconstruct the face images with minimum 
reconstruction error in the least squares sense. This L-dimensional subspace is called the face 
space. Assuming x is the lexicographically ordered face image and * is the matrix that contains 
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Figure 20: Low resolution three-bit MONEY image (one of eight). 

the eigenfaces as its columns, we can write: 

X = ^a + ex (31) 

where a is the L x 1 feature vector that represents the face, and e^ is the subspace representation 
error for the face image. 

4.5.2    Super-resolution in the face subspace 

In this section, we formulate the super-resolution problem in the low-dimensional face subspace. 
In such a formulation, the observations are inaccurate feature vectors of a subject, and the re- 
construction algorithm estimates the true feature vector. We start with the observation model 
for pixel-domain super-resolution, and then derive the observation model for face-space super- 
resolution using the eigenface representation. In pixel-domain super-resolution, the observations 
are low-resolution images that are related to a high-resolution image with a linear mapping. By- 
ordering images lexicographically, such a relation can be written in matrix-vector notation as fol- 
lows: 

y(i) = H(*)X + n(*),        for « = 1,..., M (32) 

where x is the unknown high-resolution image, y^*^ is the i*^ low-resolution image observation, H^*) 
is a linear operator that incorporates the motion, blurring, and downsampling processes, n^*) is the 
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Figure 21: Reconstruction from the three-bit images shown in Figure 20. 

noise vector, and M is the number of observations. Assuming that s is the downsampUng factor 
(0 < s < 1), and that the high-resolution image is of dimension N x N; y('\ H^*), x, and n^*) have 
dimensions s^N"^ x 1, s'^N'^ x N^, N^ x 1, and N^ x 1, respectively. Details of such modehng can 
be found in [21, 42], and we will not elaborate on it in this paper. The images x and y^'^ have two 
components that are in and orthogonal to the face space. Only the components that lie in the face 
space are necessary in recognition. We will now derive the observation model for the reconstruction 
of the components that lie in the face space. The formulation and reconstruction algorithm will 
not neglect the spatial-domain observation noise and the subspace representation error, which is 
initially orthogonal to the face space but then becomes effective during the imaging process. We 
start with writing the face space representation: 

X = #a -I- ex, 

y(^) =. *a« +e^\        for  z = 1,..., M 

(33) 

(34) 

where * and * are N"^ xL and s^N"^ x L matrices that contain eigenfaces in their columns, a^^^ is 
the L x 1 feature vector that is associated with the i^^ observation, and ex and Cy are the iV^ x 1 
and S^N'^ X 1 representation error vectors. Note that we have two different eigenvector bases, $ 
and *, corresponding to high and low resolution face images, respectively. (If we had included an 
upsampling matrix in H^*), then we could use the same basis matrix.) 
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Figure 22: Reconstruction from eight compressed four-bit images. 

We substitute Equations 33 and 34 into Equation 32 to obtain 

*a« + e^^ = HW*a + H«ex + n«. (35) 

Now, we will project Equation 35 into the lower-dimensional face space using the fact that the 
(i) representations errors ey   are orthogonal to the face space ^. Since 

*^ej.'^ =0,        for z = 1,..., M, 

and 
'^^^ = I, 

by multiplying both sides of Equation 35 by ^^ on the left, we obtain: 

5W *^HW*a + ^^H^ex + *V^) 

(36) 

(37) 

(38) 

This is the observation equation that is analogous to Equation 32. It gives the relation between 
the unknown "true" feature vector a and the observed "inaccurate" feature vectors a^*). In the 
traditional way of applying super-resolution, the unknown high-resolution image x in Equation 32 
is reconstructed from the low-resolution observations y(*). Then, the reconstructed x is fed into a 
face recognition system. (See Figure 28.) For eigenface-based face recognition systems, a better 
way is to directly reconstruct the low-dimensional feature vector. Using the relation provided in 
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Figure 23: Reconstruction from eight compressed three-bit images. 

Equation 38, accurate feature vectors of a face image can be obtained from its inaccurate feature 
vector observations. This is illustrated in Figure 29. The face observations y^*) are first projected 
to the face space, and the computationally intensive super-resolution reconstruction is performed 
in the low-dimensional face subspace instead of the spatial domain. While we are reconstructing 
the feature vectors in the low-dimensional subspace, we will substitute face specific information 
in the form of statistics of the prior distributions of the feature vectors and distributions of the 
noise processes. Since all of these information is transformed to the low-dimensional face space, 
the computational complexity is kept low with little or no sacrifice of the performance. Also, using 
model-based information in regularization helps to obtain more robust results when compared to 
the traditional super-resolution algorithms. 

4.5.3    Reconstruction algorithm 

In this section we present a reconstruction algorithm to solve Equation 38 based on Bayesian 
estimation. The algorithm handles the observation noise and subspace representation error in the 
low-dimensional face subspace. The maximum a posteriori probability (MAP) estimator a is the 
argument that maximizes the product of the conditional probability p{aS^\--- ,a(-'^)|a) and the 
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Figure 24: Low resolution two-bit MONEY image (one of eight). 

prior probability p{a): 

= arg max I p{sS^'>, • • ■ , a^^^ |a)p(a) \ (39) 

We now need to model the statistics p{aS^\ ■ • • ,a(^)|a) and p(a). The prior probability p(a) can 
simply be assumed as jointly Gaussian: 

P(a) = i exp (^- (a - fj,^f A ^ (a - fj,^) 

= A/'(/Xa,A), 
(40) 

where A is the L x L covariance matrix, /Xa is the L x 1 mean of a, and Z is a normalization 
constant. We also introduced the notation jV(-, •) for normal distribution to simplify the notation 
for the rest of the paper. 

In order to find p{aS^>,--- ,a(^)|a), we first model the noise process in the spatial domain, and 
then derive the statistics in face space. We define a total noise term v^*) that consists of the noises 
resulting from the subspace representation error ex and the observation noise n^*) in the spatial 
domain: 

vW=H«ex + n«. (41) 
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Figure 25: Reconstruction from the two-bit images shown in Figure 24. 

Using this definition, we rewrite Equation 38 for convenience: 

(42) 

The reason we defined H^^^ex + n^*) as the total noise term instead of its projection onto the face 
subspace is because of the modeUng convenience in the spatial domain. It has been demonstrated 
that modeling the noise (resulting from the imaging system and the estimation of H^'^) in the 
spatial domain as independent identically distributed (IID) Gaussian random vectors is a good 
assumption [21]. We further assume that the covariance matrix of these random vectors is diagonal 
so that the statistical parameters can be estimated easily even with the hmited training data. Using 
these assumptions, it is easy to find the distribution of *^v(*) in the face space, as will be shown 
shortly. 

Defining K as the s'^N^ x s'^N'^ positive definite diagonal covariance matrix and /Xv^ as the s'^N^xl 
mean of v^^^, we can write the probability distribution of v^*) as: 

P(V«)=A^(^«,K). (43) 

Now, we need to derive the distribution of the projected noise, p('J'^v(*)), in order to get the con- 
ditional PDF p{sS^\ ■■ ■ , a(^)|a). From the analysis of functions of multi-variate random variables. 
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Figure 26: Low resolution one-bit MONEY image (one of eight). 

it follows that p(*-^v(*)) is also jointly Gaussian since *-^* is nonsingular (by construction). As 
a result, we have: 

^(V>V^))=A/-(*^;,»,Q), (44) 

where *^/Xv is the new mean, and Q is the new covariance matrix computed by Q = *-^K*. 
The covariance matrix Q has dimension oi L x L while K is of dimension s'^N^ x s^N"^. Using 
Equations 42 and 44, we find the conditional PDF p(a(*)|a): 

p(a«|a) = AT (*^H«*a + ^^ii^\ Q) (45) 

Since we assumed that v(*)'s are IID, it follows that the probability density functionp(a(^), • • • , a^^^ |a) 

is the product of p(a(^)|a) for i = 1, • • • ,M. Defining ^(^) = &(*) - *^HW*a - *^Atv\ we write: 

P{&^'\ ,aW|a) = lexp(^-|;e«V¥^)y (46) 

where Z is a normalization constant. 

Substituting the conditional and prior PDFs given in Equations 40 and 46 into Equation 39 , we 
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Figure 27: Reconstruction from the one-bit images shown in Figure 26. 
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Figure 28: Super-resolution appUed as a preprocessing block to face recognition. 
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Figure 29: Super-resolution embedded into eigenface-based face recognition. 
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obtain the MAP estimate a as follows: 
{M ^ 

E [e^'^'^Q"'^^'^] + (a - /xa)^ A-i (a - /xa) [ . (47) 

This solution can be obtained easily using the iterative steepest descent algorithm. 

In the reconstruction, everything but a, a^'), and H^*) is known and can be computed in advance. 
For a specific observation sequence y(*), the feature vectors a^*) and the blur mappings H^*) are 
computed, and the true feature vector a is estimated iteratively. Each iteration in such algorithm 
requires a number of operations that is directly proportional to the size of the vector to be recon- 
structed. If super-resolution is applied as a preprocessing block, then the number of operations 
will be 0{N^), N'^ being the number of pixels in the face image. For the face-space reconstruction 
algorithm, the number of operations reduces to 0{L). Therefore, face-space super-resolution pro- 
vides an efficiency gain proportional to N^/L in computation over pixel-domain super-resolution. 
(Typically face images are of size 60 x 60 and a face dimension of L = 50 is satisfactory, in which 
case the face-space super-resolution is approximately 72 times faster than the pixel-domain super- 
resolution.) 

4.5.4    Experimental results 

We performed a set of experiments to demonstrate the efficacy of the proposed method. We 
investigated the effect of the face space dimension, and sensitivity to noise and motion estimation 
errors. 

In these experiments, we used face images from the Yale face databases A and B [24], Harvard 
Robotics Laboratory database [31], and AR database [44]. The images are downsampled to have a 
size of 40 X 40, and aligned according to the manually located eye and mouth locations. We selected 
134 images as training data and 50 images as test data. We applied KLT to those 134 images and 
chose the first 60 eigenvectors having the largest eigenvalues to form the face subspace. (These 
60 eigenvectors form the columns of the matrix *.) We also downsampled the training images by 
four to obtain 10 x 10 images, applied the KLT to those images, and chose the first 60 of them to 
construct the eigenface space *. 

The test images were jittered by a random amount to simulate motion, blurred, and downsampled 
by a factor of four to produce multiple low-resolution images for each subject. The motion vectors 
were saved for use in synthetic video experiments. For blurring, the images were convolved with a 
point spread function (PSF), which was set to a 5 x 5 normalized Gaussian kernel with zero mean 
and a standard deviation of one pixel. 

Prom the training image set, {K = 134), we estimate the statistics of a and v^*). The unbiased 
estimates for the mean and covariance matrix of a are simply obtained from the sample mean and 
variances. 

One of the frames for each video sequence is chosen as the reference frame, bilinearly interpolated by 
four, and projected onto the face space * to obtain the initial estimate for the true feature vector. 
It is then updated using the steepest descent technique. The mapping H^^) is computed from the 
known motion vectors and PSF, and 16 low-resolution images are used in the reconstruction. 
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We also wanted to compare the results of this eigenface-domain super-resolution algorithm with 
those of traditional pixel-domain super-resolution. We applied the pixel-domain super-resolution al- 
gorithm given in [42] to the low-resolution video sequences again using the same 16 low-resolution 
images and setting the number iterations to seven. After the high-resolution images are recon- 
structed, they are projected onto the face space ^ to obtain the feature vectors. 

The feature vectors obtained from these algorithms are compared with the true feature vectors 
(which are computed using the 40 x 40 original high-resolution images). Figure 30 shows the 
results for the normalized distance between the true feature vector a and the estimated feature 
vector a. Figure 31 provides an example from the face database. It is seen that eigenface-domain 
super-resolution performs as well as the pixel-domain super-resolution at a lower computational 
complexity. 

4.5.5     Conclusions 

In this paper, we propose to apply super-resolution after dimensionality reduction in a face recogni- 
tion system. In this way, only the necessary information for recognition is reconstructed. We have 
also shown how to incorporate the model-based information into the face-space reconstruction algo- 
rithm. This helps to obtain more robust results when compared to the traditional super-resolution 
algorithms. We investigate the effects the effects of the feature vector length {i.e., dimension of the 
face space), noise, and motion estimation error on the performance. The detailed results will be 
pr( ' ■     ' 
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Figure 30: Error in feature vector computation. 
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(a) (b) (c) 

Figure 31: (a) Original 40 x 40 image, (b) 10 x 10 low-resolution observation is interpolated using 
nearest neighbor interpolation, (c) 10 x 10 low-resolution observation is interpolated using bilinear 
interpolation, (d) Pixel-domain super-resolution applied, (e) The result of pixel-domain super- 
resolution reconstruction is projected into the face subspace. (f) Representation of the feature 
vector reconstructed using the eigenface-domain super-resolution in the face subspace. 

4.6    Effects of Camera Response Function and Illumination Changes in Multi- 
Frame Image Reconstruction 

An image is a two-dimensional projection of a real-valued scene f{t;X;x,y,z) that is a function 
of time t, spectral wavelength A, and space {x,y,z). During an imaging process, the quantity 
f{t; A; X, y, z) is degraded in several ways. The degradation may be on the domain {t; A; x, y, z) as 
well as on the range /. By combining multiple measurements, image fusion algorithms produce a 
composite (or a set of composites) that has more information than any of the individual measure- 
ments does. (Image fusion is sometimes referred to as displaying images on top of each other to 
help decision making. For instance, in surveillance systems, visible and infra-red (IR) data are used 
to create a composite where people only visible in the IR imagery are combined with the context of 
the terrain from visible image. Here, we refer to image fusion as reconstruction of original scene.) 
With image fusion, we can achieve four types of improvement: temporal, spectral, space, and range. 

A. Temporal Improvement: Frames of a video sequence are captured at a certain frame rate, and 
events that occur faster than the frame rate are not visible or else observed incorrectly. This is 
known as motion aliasing. Also, due to the nonzero exposure, fast motion causes the so-called 
motion blur, integration of light on the sensor array over time. It is possible to catch events that 
are faster than the frame rate when the motion can be modeled [51] and/or when there are multiple 
cameras capturing the scene with a time offset or at a different frame rate [56]. 

B. Spectral Improvement: Spectral filters are used to sample a certain portion of the spectrum. 
When the purpose is to produce a color picture, three different spectral filters provide sufficient 
visual quality for most of the time. However, in multi-spectral and hyper-spectral imagery, high 
spatial and spectral resolution is desirable, and various algorithms fusing images of different spectral 
and spatial resolutions have been proposed [25, 26]. 

C. Space Improvement: The result of an imaging process is a two-dimensional data that is limited 
in spatial extent and resolution.   By combining multiple observations, it is possible to achieve 
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improvement in space. The improvement can be three-dimensional (3D) reconstruction when the 
observations and the scene model provide sufficient information about the 3D structure. In some 
applications, two-dimensional improvement is sought. For instance, super-resolution reconstruction 
improves spatial resolution by sub-pixel registration of images [42, 34, 16, 53, 21]. In mosaic 
construction, an image of larger spatial extent is constructed [61]. Color filter array interpolation 
is another example image fusion where spatial resolution of the color channels are improved using 
the correlation between red, green, and blue spectral data [27]. 

D. Range Improvement: Although a real scene has in general a wide dynamic range, imaging devices 
are limited in dynamic range. During an imaging process, the dynamic range of a scene is degraded 
by noise, dynamic range compression, and quantization. Multi-frame filtering algorithms have been 
widely used to get rid of the noise. Recent works by Mann, Robertson et al, and Candocia improve 
the dynamic range (range extent) of the images [43, 48, 10, 11]. 

In this project, we are proposing an image fusion algorithm that improves resolution and extent in 
both range and spatial domain. Although there is a large amount of work done aiming to improve 
spatial resolution, none of these super-resolution algorithms consider improving range. However, 
the observations may have information diversity in range due to changes of illumination in the 
scene or imaging device adjustments such as exposure time, gain, white balance; and this can be 
used to produce composite images of higher dynamic range (range extent) and tonal fidelity (range 
resolution) in addition to the higher spatial resolution and extent. 

Next section presents an observation model that establishes the connection between a scene and 
multiple observations of that scene that are limited in spatial and range resolution/extent. Based on 
this model, an image fusion algorithm that achieves improvement in both range and spatial domain 
is proposed in Section 3. Section 4 addresses some of the implementation issues, and provides 
preliminary results. 

4.6.1    Imaging model 

In this section, we will extend a typical imaging model used in super-resolution algorithms to include 
dynamic range compression and quantization operations. Super-resolution algorithms model the 
imaging process as a linear mapping between a high-resolution input signal f{ni,n2) and low- 
resolution observations Zi{mi,m2). This mapping includes motion (of the camera or the objects in 
the scene), blur (because of the nonzero sensor aperture time, the nonzero physical dimensions of 
the individual sensor elements, the degree of focus, etc.), and sampUng with a low-resolution grid 
[42]. According to this model, the mapping from a high-resolution image to a low spatial-resolution 
image is expressed as a weighted sum of the high-resolution image pixels, where the weights are 
the values of a space-invariant point-spread function (PSF) at the corresponding pixel locations. 
The center of the PSF depends upon the motion between the high-resolution image and the low- 
resolution images. Motion vectors from each low spatial-resolution image to the high-resolution 
image determine how each pixel is mapped. The normalized PSF that characterizes the camera 
is centered at that location, and from it the weights on the high-resolution image grid are found. 
Defining /ii(mi,m2;ni,n2) as this mapping, we can model the image capture process by: 

Zi{mi,m2)= ^/ii(mi,m2;ni,n2)/(ni,n2), (48) 
ni,n2 
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Figure 32: Imaging model. 

where (ni,n2) and (mi, 7712) are discrete coordinates of high- and low- resolution images, respec- 
tively, and i is the observation number. This model assumes that the observations are captured 
under the same illumination condition and camera settings. However, this assumption is not always 
valid. It is likely that measurements of the same scene are obtained with different camera settings 
(such as exposure time, gamma factor, offset, etc.) in addition to potential illumination changes in 
the scene itself. 

We now extend the model formulated in (58) to include processes affecting the range of the observa- 
tion. The extended model is given in Figure 39. In addition to the previous model, this model also 
includes the effects of exposure timer, dynamic range compressor, and quantizer. Exposure timer 
determines the amount of light falling on the sensor array. In order to see dark regions in a scene, 
exposure time should be set long. With a long exposure time, light regions in a scene get saturated. 
(When we have multiple images of the same scene captured with different exposure times, we can 
register those images and obtain a composite image of larger dynamic range [43, 48, 10, 11].) After 
dynamic range is compressed, pixel intensities are digitized. Usually, eight bits are used for each 
pixel. 

Including the effects acting on range, we can extend the equation given in (58) as follows: 

Zi{mi,m2) = Q\F Vi I X^ hi{mi,m2;ni,n2)fini,n2) J + fii 
\ni,n2 / 

(49) 

where F[-] is the dynamic range compression function, Q{-} is the quantizer, rji and m are the illu- 
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mination gain and offset, respectively. In this model, the illumination gain and offset are considered 
space-invariant. This is a valid assumption unless there is non-uniform illumination change within 
the scene. A typical dynamic range compression function is depicted in Figure 40. It is linear (or 
log-linear) at midtones, and becomes flat at low and high intensities. The quantizer is assumed 
to have uniform step sizes; therefore, the joint effect of dynamic range compression function and 
quantizer is a quantizer of non-uniform step sizes. The quantization noise is larger at low and high 
pixel intensities compared to the midtones. 

Observed 
intensity 

W^)    Uh)   ^(A)    ^-(^0 

Input 
intensity 

Figure 33: Bounds of the input pixel intensity can be determined from the observed pixel intensity. 
The bounds are looser towards the extremes because of larger quantization step sizes. 

4.6.2    Joint Spatial and Range Improvement 

In this section, we present a new image fusion algorithm for joint spatial and range improvement. 
We will define constraint sets using the quantization bounds of the pixel intensities, and employ a 
POCS (projections onto convex sets) based algorithm to produce an image of higher spatial and 
range information. 

As formulated in Equation (59), dynamic range compression and quantization introduces quanti- 
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zation error in the pixel intensities of the observations. The quantization error is error small at the 
midtones, but large towards the ends of the dynamic range. Let Si{mi,m2) be the quantization 
error at pixel (mi, 7712) of i*'* observation, then we can rewrite Equation (59) as: 

Zi{mi,m2) ^Vii^ hi{mi,m2;ni,n2)f{ni,n2) j +/Xi+ 5i(mi,m2). (50) 
\ni,n2 

Although the exact value of the quantization error cannot be determined from the measurements, 
the bounds within which it lies can be determined when the dynamic range compression response 
of the camera is known. This is illustrated in Figure 40. The lower and upper bounds of the 
quantization error are closer to each other for midtone pixel intensities. The measurements towards 
the ends of the dynamic range has wider bounds. 

We now define constraint sets using the bounds of range data, and employ a projections onto convex 
sets (POCS) algorithm. Let T; (q) and Ty, (q) be the lower and upper bounds of quantization for a 
measured pixel intensity q, then we can write the constraint set on any measurement Zj(mi, 77x2) as 
follows: 

C[zi(mi,m2)] = {/(ni,n2) : T; (zj(mi,m2)) < |ri(mi,m2)| < T„ (zj(mi,m2))} , (51) 

where a;(ni,n2) is the initial estimate of the original scene /(ni,n2), and ri(mi,m2) is the residual 
between the observed pixel intensity and the intensity computed from the initial estimate: 

rj(mi,m2) =2i(mi,m2) Vi I X] hi{mi,m2;ni,n2)x{ni,n2) 1 +/ii 
\ni,n2 

(52) 

Set-theoretic reconstruction techniques produce solutions that are consistent with the information 
arising from observed data or prior knowledge about the solution. Each piece of information is 
associated with a constraint set in the solution space, and the intersection of these sets represents 
the space of acceptable solutions [19]. When there are multiple observations, the intersection of 
the constraint sets may result in finer range resolution and dynamic range. This is illustrated in 
Figure 41. 

For each pixel in the observations, we can define a constraint set, and project an initial estimate 
onto these constraint set to improve its resolution and extent in range and spatial domain. After 
some simple algebra, the projection operator onto a constraint set C [2:i(mi,m2)] can be found as: 

Pcizi(mi,m2)] [xini,n2)] = x{ni,n2)+ 

Vi 

1_ 
Vi 

(>-.(m.,m.)-T4z.(..„m.)))fe.(.^,m.;nx.n.) _ .(^^  ^2) > j; (^,(^1,^2)) 
2^    \hi(mi,m2;ni,n2)\ I 

711,712 y 

0,Ti{zi{mi,m2)) < \ri{mi,m2)\<Ty,{zi{mi,m2)) 

(>-.(n^i.m2)-T,(.Urn.,m.)))/..H, n.2;ni,n2) _        | , r,(mi, m2) < T^ (^,(mi, m2)) 
^    \hi(mi,7n2;ni,712)1 

ni,n2 

(53) 

In [42], a projections onto convex sets (POCS) algorithm is presented. In that algorithm, bounds 
of the constraint sets are set to a fixed number, which is chosen heuristically.  In this paper, we 
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show that those bounds should actually be a function of observed pixel intensity, and should be 
chosen using the camera response function. 

In the next section, we give the details of estimating registration parameters, obtaining initial 
estimate, and the complete algorithm. 
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Figure 34: Multiple observations lead to higher resolution and wider dynamic range. 

4.6.3    Estimating camera response function, motion and illumination peirameters 

There are various ways of estimating camera response function, and motion and illumination pa- 
rameters [43, 48, 10, 11]. Although all parameters can be estimated jointly, it is more reUable 
to estimate camera response function as a preprocessing step, and then use it in determination 
of motion and illumination parameters. Our initial approach is to linearize the camera response 
function and determine its parameters [10]. For the motion and illumination estimation, we use a 
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parametric motion model, and determine its parameters jointly with the illumination parameters. 
We now outline this approach for afSne motion model; it can be extended to other models easily. 
Given the affine model parameters [ai 02 as 04 ae ae], the motion vectors are: 

u{x, y) = aix + a2y + 03 ,^^. 
v{x,y) ^a4X + a5y + ae ' ' 

Incorporating these equations into the optic flow equation with illumination model, we get: 

r?/i(x, y) + n^l2{x + aix + a2y + 03, y + a^x + a5y + ae), (55) 

where Ii{x, y) is the image intensity at pixel (x, y) in the first frame, I2{x + a\x + a2y + as,y + a^x + 
O'^y + o.Q) is the corresponding pixel intensity in the second frame, and r] and jx are the illumination 
terms. 

Applying Taylor series expansion to Equation (55) yields: 

Ix{x, y){aix + a2y + 03) + Iy{x, y){a4X + a^y + a&) + hix, y) - r]h{x, y)- fi = 0.        (56) 

We now define the cost function 

^_\^( h{x,y){aix + a2y + a3) + Iy{x,y){a4X + a5y + ae)+ \ ,   , 
^\l2{x,y)-r,h{x,y)-t, /' ^^^^ 

and by taking the partial derivatives of ^ with respect to affine and illumination parameters, and 
setting them to zero, we end up with a linear set of equations, which can be solved easily. 

4.6.4    Experimental results 

We provide the results of an experiment to demonstrate the usefulness of the proposed method. 
We captured a video sequence using a Sony DCR-TRV20 digital camcorder. While capturing 
the sequence, we increased the exposure time manually. The images from the video sequence are 
given in Figures 35 to 37. The image in 35 is captured with a short exposure time; the buildings 
outside the window can be seen clearly. On the other hand, the image in 37 is captured with a 
longer exposure time; the inside can be seen clearly, but outside the window cannot be seen due to 
saturation. We appHed the proposed algorithm to these images. The reconstructed image is given 
in Figure 38. It has higher dynamic range than any of the observations does alone. Its dynamic 
range is from —22 to 227, which is scaled with respect to the first observation. (The pixel intensity 
range is given as a side bar.) 
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Figure 35: First observation. 

Figure 36: Second observation. 

Figure 37: Third observation. 
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Figure 38: Reconstructed image with higher spatial and range information. 
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4.7    Multi-Frame Information Fusion for Gray-Scale and Spatial Enhancement 
of Images 

An image is a two-dimensional projection of a real-valued scene q{t; A; x, y, z) that is a function 
of time t, spectral wavelength A, and space {x,y,z). During the imaging process, the quantity 
q{t; A; x, y, z) is degraded in several ways. The degradation may occur on the domain {t; A; x, y, z) 
and/or on the range q. By combining multiple measurements, image fusion algorithms produce a 
composite (or a set of composites) that has more information than any of the individual measure- 
ments. With image fusion, we can improve resolution and/or extent in the four domains: temporal, 
spectral, spatial, and gray-scale. 

A. Temporal Improvement: Frames of a video sequence are captured at a certain frame rate, and 
events that occur faster than the frame rate are not visible or else are observed incorrectly. It is 
possible to catch events that are faster than the frame rate when the motion can be modeled [51] 
and/or when there are multiple cameras that capture the scene with different time offsets or frame 
rates [56]. 

B. Spectral Improvement: Spectral filters are used to sample a certain portion of the spectrum. 
When the purpose is to produce a color picture, three different spectral filters usually provide 
sufficient visual quality for human viewing. However, in multi-spectral and hyper-spectral imagery, 
high spatial and spectral resolution is desirable [26]. 

C. Spatial Improvement: The result of an imaging process is two-dimensional data that is limited 
in its spatial extent and resolution. By combining multiple observations, it is possible to improve 
the spatial information content. The reconstruction algorithm can seek three-dimensional or two- 
dimensional improvement. For instance, super-resolution reconstruction improves (2D) spatial 
resolution by sub-pixel registration of images [42, 53]. 

D. Gray-Scale Improvement: Image sensors produce continuously varying voltages that are propor- 
tional to the amount of light falling on them. Because of the limited dynamic range of the sensors, 
only a portion of the real dynamic range is captured. This is not the only source of information 
loss in the gray-scale domain, however. In order to process this data in the digital domain, the 
continuum of gray-scale values are quantized into a set of discrete values. The number of distinct 
gray levels is kept small for data storage and processing efficiency. As a result, a digital image is 
limited in both its gray-scale extent and its gray-scale resolution. 

Recent work by Mann [43], Robertson et al. [48], and Candocia [10] demonstrate how to improve 
the dynamic range (gray-scale extent) of the image by combining images captured with different 
exposure times. Mann registered the images in range as a weighted sum of the pixel intensities. 
The weights were determined as a measure of reliability of the observed data. In Robertson [48] 
and Candocia [10] works, maximum likelihood and least squares estimation are used, respectively. 

In this project, we propose a set-theoretic image fusion algorithm that improves resolution and 
extent in both the gray-scale (range) and spatial domains. Although considerable work has been 
done to improve the spatial resolution, none of these super-resolution algorithms consider improv- 
ing the range (gray-scale extent and resolution). However, the observations may provide diverse 
information about range due to changes of illumination in the scene or imaging device adjustments 
such as exposure time, gain, or white balance, which can be used to produce composite images of 
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higher dynamic range (gray-scale extent) and tonal fidelity (gray-scale resolution) in addition to 
higher spatial resolution and extent. The proposed algorithm can be considered as a generalization 
of super-resolution algorithms. 
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Figure 39: Imaging model includes effects acting on the gray-scale domain as well as on the spatial 
domain. 

4.7.1    Imaging Model 

In this section, we use a more general image acquisition model (than the ones used in current 
super-resolution algorithms) that includes the factors that act in the gray-scale domain (such as 
the exposure time, white balance adjustment, saturation) in addition to the factors that act in 
the spatial domain (such as the point spread function of the sensors and sampling). The overall 
model is illustrated in Figure 39. Light coming from the spectrally and spatially varying scene 
q{t; A; x, y, z) is passed through an optical system to form a two-dimensional real-valued function 
f{x, y) on a sensor array. It is assumed that the scene is static (time-invariant) during the exposure 
time. A spectral filter captures a certain portion of the light spectrum. The sensors may have a 
nonlinear response to the amount of light falling on the sensor surface. This nonlinearity is usually 
by an exponential function, which is known as the gamma factor. Most commercial cameras have 
a built-in gamma correction circuit that linearizes the relationship between the impinging light 
intensity and the image output level. The rest of the imaging system converts the signal f{x,y), 
which is continuous in the spatial and gray-scale domains, into a digital image. The process can 
be separated into two parts. The first part is a sensor array that converts the continuous signal 
into a discrete array using its discrete sensor elements. Each sensor element is an analog device 
with nonzero physical dimensions and produces a real-valued pixel intensity. The second part of 
the process acts on these pixel intensities. The camera may adjust the exposure time and white 
balance (automatically or manually by the user), which affect the pixel intensities as gain and offset 
terms, respectively. The pixel intensities are Hmited to a certain dynamic range and are quantized 

49 



to a certain number of bits. The result is a digital image z{mi,m2)- 

Current super-resolution algorithms try to reconstruct the signal f{x,y) without modeling the 
processes acting on the gray-scale domain of the images. In practice, the signal is reconstructed on 
a discrete grid (ni, 712) instead of the continuous coordinates (x, y), that has a finer resolution than 
the (mi,m2) grid. Incorporating the motion between observations, the super-resolution algorithms 
model the imaging process as a linear mapping between a high-resolution input signal /(ni,n2) 
and low-resolution observations Zi{mi,m2)- This mapping includes motion (of the camera or the 
objects in the scene) and blur (caused by the point spread function of the sensor elements and the 
optical system); it can be formulated as 

Zi{mi,m2)= ^ hi{mi,m2;ni,n2)f{ni,n'2), (58) 
ni,n2 

where (ni,n2) and (mi, 7712) are the discrete coordinates of the high- and low-resolution images, 
respectively, i is the observation number, and /ii(mi,m2;711,712) is the linear mapping that incor- 
porates motion, point spread function (PSF), and downsampling. Details of such modeling can be 
found in [42, 53]. 

The model formulated in (58) assumes that the observations are captured under the same illumi- 
nation conditions and camera settings. However, this assumption is not always valid. Including 
the effects acting on range (such as exposure time, gain, offset, etc.), we can extend the equation 
given in (58) as follows: 

Zi{mi,m2) ^Q{F ml   E hi{mi,m2\ni,n2)f{ni,n2)]-\-iJii 
I'^1)'^2 

(59) 

where F[-] is the dynamic range saturation function, Q{-} is the gray-scale quantizer, and rji and /Xj 
are the illumination gain and offset, respectively. In this model, the illumination gain and offset are 
assumed to be spatially uniform. This is a valid assumption unless there is non-uniform illumination 
change within the scene. For the case of non-uniform illumination effects, the parameters rn and 
/ij can be modeled as functions of the spatial coordinates. A typical dynamic range saturation 
function F[] is depicted in Figure 40. Because of the nonlinearity of the saturation function, the 
quantization noise is larger at low and high pixel intensities than at the midrange. 

4.7.2    Joint Gray-Scale and Spatial Domain Enhancement 

In this section we present a new image fusion algorithm for joint gray-scale and spatial enhancement. 
We define constraint sets using the quantization bounds of the pixel intensities, and employ a 
projections onto convex sets (POCS)-based algorithm to produce an image of higher spatial and 
gray-scale information content. 

Constraint Sets from Amplitude Quantization 

As formulated in (59), dynamic range compression and quantization introduces quantization error 
in the pixel intensities of the observations. Let ^1(7711,7712) be the gray-scale quantization error at 
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Figure 40: Pixel intensities are compressed and digitized observations of real-valued quantities. For 
each intensity level, there is a lower bound Ti{-) and an upper bound T„(-) within which the input 
intensity lies. 

pixel (mi, 7722) of the i*^ observation. Then we can rewrite (59) as 

2:i(mi,m2) =r?i I   E ^i("^i,m2;ni,n2)/(ni,n2) )+/Xi-|-5i(mi,m2). ,    . 

Although the exact value of the quantization error cannot be determined from the measurements, 
the bounds within which it lies can be determined when the saturation curve of the camera is 
known. As illustrated in Figure 40, the input intensities are mapped by the nonlinear saturation 
function and then quantized to a certain number of bits, typically eight. For each intensity level, 
there is a lower bound T/(-) and an upper bound T„(-) within which the input intensity lies; and 
these bounds can be determined from the saturation curve. 

We now define constraint sets using the bounds of the gray-scale data, and employ a POCS-based 
algorithm. In the POCS technique, each piece of information (arising from the observed data or 
prior knowledge) is associated with a constraint set in the solution space; the intersection of these 
sets represents the space of acceptable solutions [19]. By projecting an initial estimate onto these 
constraint sets iteratively, a solution closer to the original signal is obtained. In this problem, the 
constraint sets arise from the quantization bounds of pixel intensities. Let Ti {I) and T^ (7) be 
the lower and upper quantization bounds for a measured pixel intensity 7, and let x{ni,n2) be an 
estimate of the high-quality image /(ni, 712). Then we can write the constraint set on any observed 
pixel Zi{mi,m2) as follows: 

C [zi{mi,m2)] = { /(ni,n2) : Ti {zi{mi,m2)) < \zi{mi,m2)\ < T„ (zi(mi,m2)) } , (61) 

where -$i(mi,m2) is the calculated pixel intensity derived from x(ni,n2): 

Zi{mi,m2) ='ni\^ hi{mi,m2;ni,n2)fini,n2) I +/ii. (62) 
\ni,n2 
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When there are multiple observations, the intersection of the constraint sets may result in finer 
range resolution and dynamic range. This is illustrated in Figure 41. 

In [42], a projections onto convex sets (POCS) algorithm for spatial-domain enhancement is pre- 
sented. In that algorithm, bounds on the constraint sets are set to a fixed value, which is chosen 
heuristically, and the gray-scale effects are ignored. Here, we show that those bounds should actu- 
ally be a function of observed pixel intensity, that they should be chosen using the camera response 
function. Moreover, the illumination changes and the camera settings should also be considered in 
the reconstruction. 
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Figure 41: It is possible to increase the gray-scale extent and resolution when there are multiple 
observations of different range spans. 

Projection Operations 

For each pixel in the observations, we can define a constraint set; and we project an initial estimate 
onto these constraint sets iteratively to update the initial estimate. The result is a solution of 
higher resolution in both the gray-scale and spatial domains. 

The projection operator should update x{ni,n2) in such a way that the constraint given in (61) 
is satisfied. We design the projection operator so that it projects the estimate x{n\,n2) onto 
the bounds of the constraint sets. For instance, if ij(mi,7712) is larger than the upper bound 
Ty,{zi{mi,m2))., then the projection operator updates the estimate x[ni,n'i) such that the new 
Zi{mi,m2) (obtained from the updated x{ni,n2)) is equal to T^ (zj(mi,m2)). After some simple 
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Pc[ziimum2)] [x{ni,n2)] = x{ni,n2) +   < 

algebra, the projection operator onto a constraint set C[zi{mi,m2)] can be found as 

'  (^-(-^("")M^('")-M.)fo,(m;n), i,(m) > T„ (.,(m)) ^ 

0,        Ti (ziim)) < \zi{m)\ < r„ (zi(m)) i , 

j^MMinlh^^b/^) -h,(m; n), i,(m) < T, (z,(m)) 

(63) 
where m = (mi,7712), n = (ni,n2), a;(ni,n2) is an estimate of the original scene /(ni,n2), 
Zi{mi,m2) is the calculated intensity from the estimate x{ni,n2) as given in Equation (62), and 
hi (m; n) is the normalized blurring function: 

T /        s_       /ii(mi,m2;ni,n2) ,^^, 
/ii(m; n) = ^ '-—-. (64) 

X)  \hi{mi,m2;ni,n2)\ 
ni,n2 

4.7.3    Implementation 

In this section we summarize our implementation of the algorithm. Given a set of images, we 
estimate the motion and illumination parameters, register the images in spatial position range and 
range to obtain an initial estimate, and then project the initial estimate onto the constraint sets 
(defined for each pixel in the observations) iteratively. 

In our implementation we used the six-parameter affine motion model. To determine the afiine 
parameters, we use the Harris corner detector [32] to select a set of points in the reference image. 
We then find the correspondence points in the second image using normalized cross correlation with 
quarter-pixel accuracy. A least-mean-square estimate of the afRne parameters can be determined 
from the motion vectors determined at these points. Once the affine parameters are determined, 
the images are spatially registered and the illumination parameters r]i and /Xj are estimated, again 
using minimum least-mean-square estimation. 

The initial estimate is obtained by biUnearly interpolating one of the observations, and then extend- 
ing the dynamic range by registering the other images in range. To perform range registrations, the 
images are first spatially registered (by warping on to the reference image using the aflSne param- 
eters), and then registered in range by taking a weighted sum of the pixels. The weight function 
is chosen to be a Gaussian-Hke function; its mean is set to the middle point of the dynamic range, 
which is a result of the relative reliability of the midrange intensities [48]. 

4.7.4    Experimental Results 

We provide the results of an experiment to demonstrate the proposed method. We captured a video 
sequence using a Sony DCR-TRV20 digital camcorder. While capturing the sequence, we increased 
the exposure time manually. We used three images from the sequence in the reconstruction. These 
images are given in figures 42(a), 42(b), and 42(c). The image in Figure 42(a) was captured with 
a relatively short exposure time. In Figure 42(a) the low-contrast details in the lighter regions can 
be seen better, while in Figure 42(c) the tonal fidelity is higher for the darker regions. 
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We applied the proposed algorithm to these images. The corners detected for the reference images 
are depicted in Figure 42(d). The correspondence points are found using normaUzed cross correla- 
tion with quarter-pixel accuracy, a block size of 8 pixels, and a search range of 10 pixels. The PSF 
is taken as a 7 x 7 Gaussian window with a standard deviation of one. Once the initial estimates 
are obtained, they are projected onto the constraint sets iteratively. The number of iterations is set 
to seven. The reconstructed image is given in Figure 43. It have higher dynamic ranges than any of 
the observations does by itself. (The pixel intensity range is given as a side bar.) The low-contrast 
regions also become more clear in the reconstructed images. After getting the high-dynamic-range 
image, certain portion of its range can be chosen for display purposes. In Figure 44, we show 
zoomed regions from these images. They are also scaled in intensity to range [0 — 255]. Close 
examination of these figures shows that the spatial resolution has also been improved during the 
reconstruction. 

4.7.5    Conclusions 

In this project, we presented an image fusion algorithm that improves resolution and extent in 
both the gray-scale and spatial domains. (In the experiments we did not demonstrate increasing 
spatial extent, which is a relatively straightforward application.) We included the gray-scale effects 
of the image acquisition process and proposed a projections onto convex sets based reconstruction 
algorithm. The constraint sets are obtained from the gray-scale quantization information. Including 
the range effects, the algorithm can be considered as a generalization of spatial super-resolution 
algorithms. 
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Figure 42: Images from the second sequence, (a) First image, (b) Second image, (c) Third image, 
(d) Corners detected in the third image. 
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Figure 43: Reconstructed image from the second sequence. 

(c) (d) 

Figure 44: Zoomed regions from the second, (a) First image, (b) Second image, (c) Third image, 
(d) Reconstructed image scaled to intensity range [0-255]. 

4.8    Super-Resolution Reconstruction of Hyper-Spectral Images 

During the late 1950s, the digital computers began to emerge as a vital tool for dealing with huge 
amounts of data. Essentially at the same time, significant developments in space technology made 
the artificial satellites possible. The rapidly growing data processing techniques enabled the use 
of space imagery for obtaining information and making decisions. After decades of research, space 
imagery is now a mature field with military and civilian applications, such as target detection, 
tracking, mineral exploration, and agriculture. 

One of the important parameters in a space imagery system is the spatial resolution. There are 
various effects (atmospheric scattering, secondary illumination changing viewing angle, sensor noise 
just to name a few) that degrade the acquired image quality. It is obvious that any improvement 
in spatial resolution will pay off greatly. To improve spatial resolution we make use of the super- 
resolution techniques together with the information in different wavelengths of the captured spectra, 
which is made available with the development of the hyper-spectral sensors. 

An integral part of our work is to model the hyper-spectral image acquisition process. To get 
the best results we require our imaging model to be complex enough to incorporate all the effects 
mentioned above. On the other hand, the model should be kept as simple as possible to avoid 
computational complexity problems. Currently, we have a candidate model which is being tested 
under various conditions. The simulation results obtained using this model will also be presented. 
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4.8.1    Image Acquisition Model 

This section starts with some background information about the physical phenomena we are trying 
to model. In the following section hyper-spectral image acquisition process will be briefly discussed 
from a physical point of view, together with the atmospheric, environmental and device-dependent 
effects that influence the overall process. We will describe our hyper-spectral image acquisition 
model, whereby source image samples are interpreted as aliased and optically blurred linear com- 
binations of the target image's spectral basis. Then a rigorous mathematical formulation of the 
proposed model will be provided. 

• Background 

To be able explain a hyper-spectral image we require some background information. Any physical 
object in a scene reflects, absorbs and emits electromagnetic radiation in ways characteristic of its 
molecular composition and shape. Electro-optical remote sensing is the process of using this fact 
to obtain information about an object or scene without coming into physical contact with it. If 
the radiation arriving at the sensor array is measured at a sufficiently high number of wavelengths 
for every pixel, the resulting spectrum can be used to extract information that cannot be found in 
images captured by conventional devices (that give no or very little information about the spectral 
dimension). Spectroscopy is the field concerned with the measurement, analysis and interpretation 
of such spectra. Another related field, which is actually a branch of spectroscopy, is imaging 
spectroscopy. It can be explained as combining spectroscopy with methods to acquire spectral 
information. Hyper-spectral sensors are a class of imaging spectroscopy sensors, for which the 
waveband of interest is divided into hundreds of essentially continuous narrow bands. As the name 
suggests, the hyper-spectral sensors differ from their predecessors, the multi-spectral sensors; in 
that the number of bands which can be sensed separately is much higher. (For example AVIRIS 
Airborne Visible/Infrared Imaging Spectrometer from NASA/JPL has 224 bands.) Hyper-spectral 
images are the name given to multi-channel images captured by hyper-spectral sensor arrays. They 
are generally the data type obtained for space imagery application like mining, civil engineering, 
and military applications such as mine detection and information gathering. 

For a given ground pixel, whose dimensions can be in the range of tens of centimeters to tens of 
meters depending on the spatial resolution of the imaging device, the radiance observed at any 
particular wavelength is determined by the refiectance of the matter and the solar illumination at 
that wavelength. However, there exist many important additional effects, which include but are not 
limited to: imperfect optics of the imaging device, the upwelhng solar radiance from atmospheric 
scattering; the secondary illumination of the object by light reflected from adjacent objects; the 
scattering and absorption of the reflected radiance by the atmosphere; spatial and spectral aberra- 
tions in the sensors, finite sensor dimensions and viewing angle of the sensor array. Characterizing 
and compensating for these effects is a key step in the exploitation of hyper-spectral imagery. Al- 
though the model we propose is very general in the sense that it makes no specific assumptions 
about the imaging device used and incorporates all effects that have influence on the spatial and 
spectral resolution of the observed scene, it excludes some physical effects, which are directly re- 
lated to the sensor characteristics and secondary illumination effects. In the starting phase of this 
project, we assume that the atmospheric compensation and sensor calibration methods have already 
been applied and we focus on the image processing side the process. 

• Mathematical Model 
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Figure 45: The hyper-spectral image acquisition model. 

The block diagram shown in Fig. 45 depicts the system model. The ideal continuous-time, 
continuous-space and continuous-spectrum video signal, denoted by /(a;i,a;2,i. A), represents the 
actual input to the imaging device. Ideally, we would like to reconstruct f{x\,X2it,\) from the 
available observations captured by some hyper-spectral imaging device. However, it is not feasi- 
ble to reconstruct the continuous signal /(a;i,X2,t, A). We will overcome this by dimensionality 
reduction and discretization of the spectral and spatial dimensions. 

It is a well-known fact that the spectral reflectance of natural images can be accurately modeled 
in terms of linear combinations of a relatively small number (generally no more than seven) of 
reflectance basis functions. These illuminant-independent orthonormal basis functions can be ob- 
tained by computing the first P principal components for a large set of natural image reflectances. 
As a first step in our model, we assume that f{xi,X2,t,\) is represented as linear combination of 
these basis functions. That is, at every pixel location, f{xi,X2,t,\) is given by a P dimensional 
vector where the elements of this vector are the coefficients of corresponding orthonormal basis 
functions. Once this idea is established, we can proceed with the spatial domain. To deal with the 
spatial domain, we hypothesize that for each of the P image planes, there exists a corresponding 
discrete, high-resolution video scene fj{ni,n2,t) {j = 1,2,...,P) and we seek to reconstruct an 
image from that signal sampled at a specific time instant, namely /j(ni,n2,fr)- The main assump- 
tion here is that the continuous signal fj{xi,X2,t) can be reconstructed from the spatially discrete 
high-resolution image fj{ni,n2,t) through an ideal reconstruction filter hr- 

In the sections to follow we will model the combination of the image acquisition, spatial and spectral 
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filtering and sampling. Although the ideas we are trying to convey are rigid, and the path we take 
to do so is mathematically rigorous, one can easily get confused with the notation used. To leave 
no room for possible misunderstandings, we end this section with a description of the mathematical 
notation that is used through out the report. The hyper-spectral image data is best represented in 
the form of a P-dimensional vector for each pixel where P is the number of spectral bands. Following 
this convention we write fjn] = [fi[n] /2[n] ... /p[ri]]^ to denote the P-dimensional pixel at the 
location n = [ni 712]"^- We use fj{xi,X2) for the spatially continuous target image planes and 
fj[ni,n2] for the spatially discrete target image planes. Similarly, gi{xi,X2) denotes continuous 
observation image planes and gi{ni,n2) denotes discrete observation image planes. Hence, any 
pixel denoted by /—no matter what the subscript or the indices may be—is a target image pixel, 
and the same applies to g with observation image pixels. Furthermore, at some point it will be 
necessary to differentiate between high- and low-resolution grid pixels. For this purpose, the high- 
resolution grid pixels are indexed with n = [ni n2]-^ and low-resolution grid pixels are indexed with 
m = [mi m2]^- 

• Conversion from the Discrete 2D Sequence into a 2D Impulse Train 

The first step in the ideal reconstruction process is the conversion of the discrete signals into 2D 
impulse trains. Since the following operations are performed on each of the P target image planes, 
we will drop the subscript j and denote the resulting signal as fs{xi,X2,t): 

N      N 

fs{xi,X2,t) = y] V f[ni,n2,t]S{xi -^,X2- ^). (65) 

Note that the spatial sampling frequency is normalized for the low-resolution grid so that Ai and 
A2 show the increase in the spatial sampling density when we move from the low-resolution image 
(observation or source) to the high-resolution image (target). In other words, if we assume that the 
samphng distance in the low-resolution image is 1 unit, then in the same unit, the high-resolution 
image has Ai and A2 samples in the horizontal and vertical directions respectively. 

• Ideal Reconstruction Filter 

We imphcitly assume that the high-resolution target image (hence its reconstructed version) exists 
at all times t. Therefore, in the following equations, time index t is suppressed. Keeping this in 
mind, convolution with the reconstruction filter can be written as 

f{xi,X2) =   // fs{xi -Ui,X2 -U2)hr{ui,U2)duidU2. (66) 

Substituting fsixi,X2) from (65) we get 

N      N 
(67) f{xi,X2) = // XI Xl /["'i''^2]<^(a;i -ui- Y^X2-U2- Y)hr{ui,U2) duidu2. 

ni =0^2=0 

Assuming convergence we can exchange the order of summations and integrals to write 

N      N 

f{xi,X2) = y2 ^ /["-!>"2] / / S{xi -Ui- -^,X2-U2- -^)hr{ui,U2) duidu2. (68) 
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Using the sifting property of impulse functional, we get 

N      N 
f{xi,X2) == y] y] f[ni,n'2]hrixi -^,X2- -^), (69) 

or if we include the suppressed time variable t: 

N      N 

fixi,X2,t)=Y] y2 f[ni,n2,t]hr{xi--^,X2-^). (70) 

• Spectral Representation with Predetermined Basis Functions 

We assume that the basis functions are predetermined by applying the principal component analysis 
(PCA) on training data and selecting the first P principle components. If we denote the continuous 
signal as fc{xi,X2,t, A), then we have 

p 

fc{xi,X2,t,X) = '^bj{X)fj{xi,X2,t). (71) 

Noting that (70) applies to each of the P target image planes, we can write 

N      N P 

fcixi,X2,t,X) =^bj{X) Y^ yZ fj['n'i,n2,t]hr{xi,t - -r",2;2,i - T^) (72) 

• Spatial Filtering (Optical Lens & Sensor Integration Blur Model) 

We use h\{xi,X2) to denote the spatially invariant blur filter at every wavelength A. This models 
the imperfect imaging optics (e.g. lens blur) and the unavoidable sensor integration blur due to the 
finite sensor area. The blur operation can be written as the convolution of the target image planes 
with the blur filter: 

fc,b{^i,X2,t,X) ^        hx{xi-i'i,X2-U2)fc{i^i,U2,t,X)duidu2, (73) 

where subscript c, b means continuous and blurred. We use the motion mapping M for relating the 
frames occurred at different times. M = (Mi,M2) is defined as 

Xl,tr = Mi{xi,X2,t,tr), 

X2,tr = M2{xi,X2,t,tr)  {tr > t). (74) 

For the case at hand, we can write fc{xi^tr, X2,tr, U, A) = /c(z^i, ^'2, *, A). Then by using the inverse 
of the mapping mentioned above, we get 

fc,b{xi,X2,t,X)^ hx{xi - M{^{xi,t^,X2,tr,t,tr),X2 - M^'^{xi,tr,X2,tr,t,trW\ 

X fc{xl,tr,X2,tr,tr,X)dXl,trdX2,tr, (75) 
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where |J| is the Jacobian of the motion mapping. If we make the definition 

hv,x{xi,X2;Xi,tr,X2,tr;t;tr) ^ \3\hx{xi - M{''^{xi,tr,X2,tr,'t,tr),X2 - M^^{xi,tr,X2,tr,i,tr)),     (76) 

we can write fc,b{xi,X2,t, A) as follows: 

fc,b{xi,X2,t,X)=  // K,x{xi,X2;xi,t^,X2,tr;t;tr)fc{xi,tr,X2,tr,tr,X)dxi^trdx2,tr- (77) 

Substituting the previously derived fcixi,trfX2,tr^tr,^) into this, we get 

fc,b{xi,X2,t,X) 

=   // K^x{xi,X2;Xi^tr,X2,tr'^t;tr) 

n-i nr, 

dxi^trdx2,t. 

N       N 

^bj{X) Y^ Y^ fj[ni,n2,tr]hr{xi,t, - ^^,0^2,*. - ^) 
Ai' A2' 

(78) 
.j=l ni =0^2=0 

Again assuming convergence, we can exchange the integrals and summations to obtain 

fc,b{xi,X2,t,X) 
P N      N 

j=l ni=0n2=0 

//   K,\{Xl,X2;Xl^tr,X2,tr;t;tr)hr{Xl^tr  - Y'^^'^r  ~ Y)dXl,trdX2,tr- (79) 

To get a simpler form, we make the following definition: 

hb{xi,X2;ni,n2;t;tr) 

-   / / K,x{xi,X2;Xi,tr,X2,tr;t;tr)hrixi^tr - Y'^^'^r - Y'^dxi^trdX2,tr,     (80) 

which allows us to write 

P N      N 

fc,b{xi,X2,t,X) = Y^jW Y XI •^■?t'^i'"'2,ir]/i6(2;i,a;2;ni,n2;t;ir-)- (81) 
j=l ni=0n2=0 

• Spectral Filtering 

The spectral response functions, ri (A), ri(A) ... rg (A) model the hyper-spectral sensors'efficiency 
at different wavelengths as well as the atmospheric and illuminator-based effects on the spectrum. 

/■oo 

9i{xi,X2,t) =^ /    fc,bixi,X2,t,X)ri(X) dX. 
Jo 

(82) 

Spatial Domain Sampling 
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Next, we must discretize the observations for practical implementation. This is done by sampling 
the Pi's on a low-resolution grid. 

gi{mi,m2,k) 

Jo 

p 

= E 

P N      N 

^^jW XI "^ f3i'^i^'^^'^r]hb{mi,m2;ni,n2;tk;tr) ri{X)dX 
j=l ni=0n2=0 

N      N 
dX   'Y^ ^ fj[ni,n2,tr]h(rni,m2;ni,n2;tk;tr), (83) 

ni=0n2=0 

/•oo 

/   bj{x)n{x) 
Jo 

where the second equality follows from the assumption that the integrals and summations converge, 
and hence we can exchange their order. If we call the integral in brackets as Wij, then we can write 

p N     N 
gi{mi,m2,k) = '^Wij ^ ^ fj[ni,n2,tr]hb(mi,m2;ni,n2;tk;tr), (84) 

j=l ni=0n2=0 

or in matrix form, with Q — 31 and P = 6, 

51 
92 

W^l,l       • ■ •       Wifi 

W2,l      ■ ■ ■       W2fi 

/i[n] ■hb{m]n]tk;tr) 
f2[n] ■ hb{m:,mtk;tr) 

531 J       [■"^31,1    •••    wzifi \  \_ feM ■ hb{rn:,n:,tk\'tT) 

where we made the following substitution to get a simpler looking equality: 

N      N 
fj[n]-h{rn;n;tk;tr) - ^ "^ fj[ni,n2,tr]hb{mi,m2;ni,n2;tk;tr). 

ni=0 712=0 

(85) 

• Additive Noise 

v{mi,m2,k) models the total effect of all possible noise sources that exist through out the whole 
acquisition process. 

4.8.2    Solving the Inverse Problem 

Given the model presented in the previous section, the inverse problem can be stated as finding 
the target image that is in as much agreement as possible with the observations. Here being in 
agreement deserves some explanation. When we say the candidate target image is in agreement 
with the observations we mean that if we apply the hnear, time and space-varying (LTSV) filter hb 
in (84) to the candidate target image, the resulting synthetic observation image is close to the real 
observations captured by the imaging device under consideration. There exist many ways to solve 
this problem, each with its advantages and disadvantages. For example, we can try to minimize 
the squared error between the observed images and the synthetically produced observation images 
by using the well-studied least squares methods. The drawback of this approach is that it requires 
the computation of inverses of large matrices, which is in most cases difficult to compute. A widely 
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preferred alternative is the iterative set-theoretic methods. In this paper, we will use POCS method 
to solve the inverse problem addressed above. 

Regardless of the method used to solve for the target image, a good share of the total effort is put 
into calculating the LTSV blur filter hi,. Prom (80), we can see that hb has a complex structure. 
It depends on the reconstruction and spatial blur filter as well as the motion in the scene. Due to 
these dependencies, the computation of hj, can easily get involved. Furthermore, hb is only valid 
where the motion is accurately modelled, making the precision of the motion vectors used in the 
computations extremely important. 

In many cases, computational load or real-time implementation specifications renders a direct 
calculation impossible and we are required to approximate hb. A good understanding of the LTSV 
filtering operation given in (84) is helpful in precisely approximating hb. Por this reason, we will 
study two special cases, namely single frame and multiple frames with translational motion. It will 
turn out that, in these cases hb is fairly easy to compute and has a nice interpretation which sheds 
light on how we can approximate it. 

• Single Frame Case 

In the single frame case, we have only one hyper-spectral observation, which is a set of monochro- 
matic images of the same scene captured at different wavelengths. Our aim is to reconstruct the 
high-resolution target image planes fj{xi,X2, A) for j = 1,2,...,P, from which we can obtain the 
spatially and spectrally continuous target image by using the spectral basis functions. Note that 
the time dependency is dropped since we are working with only one observation. Pollowing the 
same steps as in the previous sections one can show that for single observation case, fc,b{xi,X2,X) 
is given by 

P N      N „„ 

fc,b{^i,X2,X) ^ 5^&j(A) ^ Y2 /i["'i''^2] / / hx{xi - ei,X2 - e2)/Jr-(ei - ^"'^2 - ^) deidea. 
j=l ni=0 712=0 

(86) 

If we make the definition 
7(a;i,X2) = h),{xi,X2) *hr{xi,X2), (87) 

where * denotes convolution, we can see that 

P N      N 
fc,b{xi,X2,X) = J^6j(A) Y^ Y^ fj[ni,n2Mxi - ^,a;2 - ^). (88) 

j = l „i=0 712=0 ^ ^ 

Continuing with spectral filtering and sampling on a low-resolution grid gives 

p N     N 

9i{mi,m2) = Y'^id Zl Yl /JK'"2]7("^l - ^^,^2 - y). (89) 
j=l ni=0n2=0 ^ ^ 

• Multi-Frame Translational Motion Case 

In the translational motion case, we have many observations but the motion in the observed scene 
is constrained to be global translational motion. This type of motion can be incorporated into the 

62 



model by letting 

Mi{xi,X2,t,tr) =Xi + 6i{tr - t), 

M2{xi,X2,t,tr)=X2 + S2{tr-t). (90) 

Using these motion mappings and proceeding as in the single frame case, we obtain 

p N     N 

fc,b{^l,X2,t,\) ^X^^J'^-^) X^   XI fj['>^l^^2,trh{xi - Y + Slitr - t),X2 - Y + ^^{tr - t)). 
j=l ni=0n2=0 ^ 2 

(91) 

Continuing with spectral filtering and sampling on a low-resolution grid gives 

p N     N 

9i{mi, 1712) = XI^^'i X^ X] fj[ni,n2Mmi - ^ + hiU - t),m2 - ^ + 52itr -1)).       (92) 
j=l ni=0n2=0 

Prom Eq. (92) we can see that the same interpretation given in the previous section appUes to the 
translational motion case with a slight change. In this case, the effective blur window is moving at 
the same speed and in same direction as the global translational motion. 

4.8.3    Experimental Results 

We designed and conducted several experiments to test the proposed method. In these experiments, 
we used two hyper-spectral data sets. The first set is from the University of Pennsylvania database 
located at http://color.psych.upenn.edu/hyperspectral.. These images are captured under controlled 
illumination lab environment and have 31 spectral bands {Q—^\). The second data set used in the 
experiments is a 224 band (Q=224) image of an urban scene captured by AVIRIS. (The exact name 
of the picture is Moffett Field. For detailed information on the data set see [165]. Since the AVIRIS 
data includes frequencies far beyond the visible range it is meaningless to try to render RGB images 
for visual evaluation. Therefore, to present visual results we select some specific spectral band (for 
all the visual results presented in this report the hundredth band is used) and demonstrate the 
images corresponding to this band. To simulate the hyper-spectral imaging process, these high- 
quaUty images are blurred and downsampled in both spatial and spectral domains. The resulting 
observations have 15 and 112 spectral bands, respectively, and are half the size of the originals 
spatially. The proposed reconstruction technique was tested under translational and affine motion 
scenarios. Before giving the detailed simulation results we briefly discuss these motion models and 
their relevance to the aerial and space imagery. As a notational convenience, we will denote the 
two dimensional displacement as dr,t{x) = X{T) - x{t) where x{t) — {x{t), y(t))^ is the 2D position 
at time t. 

• Translational Motion: The translational motion model is limited to simple shifts in the image 
and the displacement vector can be written as follows: 

d{x) = [ M (93) 

63 



• Affine Motion: The six parameter afRne motion model can handle shifts, rotations and zooming. 
The displacement vector depends on the specific pixel location and can be written as: 

d{x)^ 
^4  h 

x + (94) 

Considering the conditions under which the hyperspectral image data is acquired, one can be 
convinced that these are relevant and realistic motion models. For each motion scenario we have 
three different blur/downsample configurations: 

Case 1 

• 5 X 5 Gaussian spatial blur filter with a variance of two. 

• Gaussian spectral blur filter with unit variance. 

• Downsampling ratio is four in both vertical and horizontal directions. 

• For the multi-frame case eight observation images are used. 

Case 2 

• 5 X 5 Gaussian spatial blur filter with a variance of two. 

• Gaussian spectral blur filter with unit variance. 

• Downsampling ratio is two in both vertical and horizontal directions. 

• For the multi-frame case four observation images are used. 

Case 3 

• 3 X 3 Gaussian spatial blur filter with unit variance 

• Gaussian spectral blur filter with unit variance. 

• Downsampling ratio is two in both vertical and horizontal directions. 

• For the multi-frame case two observation images are used. 

The motion vectors are calculated by applying the block matching algorithm [162] on the properly 
upsampled images. Visual results are presented in Figures 52, 53 and 54 and numerical results are 
presented in the following section. All the images are RGB rendered from the hyperspectral outputs 
for qualitative comparison. Close examination of these figures shows that the spatial resolution has 
been improved during the reconstruction. 

We provide the following simulation results to demonstrate the proposed method under the three 
scenarios mentioned above together with the results of bihnearly interpolating the separate spectral 
bands. All the results given in the tables below are PSNR values in dB. 
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Prom the tables we can see that the proposed method with multiple observations performs much 
better than bilinear interpolation. 

Numerical results in terms of two different fidelity measures are presented below. These measures 
are PNSR and band-averaged PNSR. In this paper PSNR is defined as 

PSNR=mo,,J^)iB (95) 

where Speak stands for the peak signal power, and band-averaged PNSR is defined as 

APSNu^moJi%§^' dB (96) 

where Speak,i stands for the peak signal power in the i^^ spectral band. Since the data we work on is 
not quantized, the maximum signal value is not fixed. The band-averaged PNSR (APSNR), for 
which the numerator is calculated as the average of the peak signal powers of all bands, is selected 
to compensate for this fact. 

AVIRIS Reflectance Data - 1 
Bihnear 

interpolation 
Single-cube POCS 

(no motion) 
Multi-cube POCS 

(translational) 
Multi-cube POCS 

(affine) 
— Case ] — 

PSNR 23.9348 24.3563 25.2773 24.9631 
APSNR 21.1726 21.5942 22.5152 22.1395 

— Case 2 — 
PSNR 22.9235 23.0498 24.5638 24.2294 

APSNR 20.1614 20.2877 21.8017 21.6035 
— Cases ! — 

PSNR 22.8220 23.1218 24.1632 23.9102 
APSNR 20.0599 20.3597 21.4011 21.0567 

AVIRIS Reflectance Data - 2 
Bilinear 

interpolation 
Single-cube POCS 

(no motion) 
Multi-cube POCS 

(translational) 
Multi-cube POCS 

(affine) 
— Case ] — 

PSNR 24.2661 24.5539 25.3473 25.1096 
APSNR 18.4326 18.7204 19.5138 19.2319 

— Case 2 — 
PSNR 23.5391 23.6077 24.7463 24.5771 

APSNR 17.6878 17.7564 18.8950 18.6409 
— Case c ) — 

PSNR 23.4939 23.6598 24.4973 24.2079 
APSNR 17.6426 17.8085 18.5560 18.3508 
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AVIRIS Radiance Data - 1 
Bilinear 

interpolation 
Single-cube POCS 

(no motion) 
Multi-cube POCS 

(translational) 
Multi-cube POCS 

(afEne) 
— Case 1 — 

PSNR 36.1382 38.3745 42.8398 42.5970 
APSNR 28.9405 31.1768 35.6421 35.3455 

— Case 2 — 
PSNR 31.9181 32.2407 39.3321 39.0261 

APSNR 24.7204 25.0430 32.1344 31.8971 
— Cases (- 

PSNR 31.7053 32.5597 37.1517 36.9012 
APSNR 24.5076 25.3620 29.9540 29.6941 

AVIRIS Radiance Data - 2 
Bilinear 

interpolation 
Single-cube POCS 

(no motion) 
Multi-cube POCS 

(translational) 
Multi-cube POCS 

(afRne) 
— Case] — 

PSNR 35.9959 37.6029 40.5035 40.3064 
APSNR 29.1380 30.7451 33.6456 33.3822 

— Case 2 — 
PSNR 32.4086 32.7777 37.8406 37.5928 

APSNR 25.5500 25.9190 30.9820 30.7559 
— Case c \ — 

PSNR 32.1307 33.1518 36.0935 35.8842 
APSNR 25.2721 26.2932 29.2349 28.9151 

Prom the tables above we can see that the proposed method even with a single source cube performs 
better than bihnear interpolation. Using multiple cubes further improves the results, thus pointing 
out the advantage of fusing the information present across overlapping sources. Visual results 
presented in Figures (52), (53), (54)and (55) also confirm the improvement seen in PSNR and 
APSNR values. A careful inspection of the tables also reveals that the PSNR and APSNR 
values for the Moffett Field reflectance images are 10 to 15 deciBels lower than the values for the 
radiance images. This offset is caused by the high frequency components present in the reflectance 
images. Figure (46) shows the 2D FFT of some specific spectral bands of the test images. For the 
Moffett Field images the hundredth spectral band is used and for the BearPruitGray images it is 
the tenth spectral band. Note that the values of the color-map bars are in (natural) logarithmic 
scale. Prom these plots we can clearly see that the reflectance images have larger high frequency 
components compared to the radiance images. When filtered with a low-pass filter such as the blur 
filters we use to obtain our observation images, these components are heavily degraded if not totally 
lost. This lost information is the main reason for the offset between the radiance and reflectance 
images. 
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(a) Radiance 1 (b) Reflectance 1 

Figure 46: Frequency contents of some specific bands of the test images.   For the Moffett Field 
images the hundredth spectral band is used. 
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4.8.4    Figures 

Figure 47: Experimental results, (a) Original image, (b) One of the observations, (c) Single-frame 
reconstruction result, (d) Multi-frame reconstruction result. (Four observations used.) 
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Figure 48: Experimental results, (a) Original image, (b) One of the observations, (c) Single-frame 
reconstruction result, (d) Multi-frame reconstruction result. (Four observations used.) 
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(a) Original 

(b) Bilinear (c) Multi frame 

(d) Bilinear (e) Multi frame 

(g) Multi frame 

Figure 49: Results for test image chosen from block 31. 
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(a) Original 

(c) Multi frame 

(e) Multi frame 

(f) Bilinear (g) Multi frame 

Figure 50: Results for test image chosen from block 34. 

71 



(a) Original 

(b) Bilinear (c) Multi frame 

(d) Bilinear (e) Multi frame 

(f) Bilinear (g) Multi frame 

Figure 51: Results for test image chosen from block 44. 
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(a) Original 

(b) Bilinear (c) Single cube (d) Multi cube 

(e) Bilinear (f) Single cube (g) Multi cube 

(h) Bilinear (i) Single cube (j) Multi cube 

Figure 52: Results for the first reflectance test image extracted from 224-band Moffett Field. 
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(a) Original 

(b) Bilinear (c) Single cube (d) Multi cube 

(e) Bilinear (f) Single cube (g) Multi cube 

(h) Bilinear (i) Single cube (j) Multi cube 

Figure 53: Results for the second reflectance test image extracted from 224-band Moffett Field. 
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(a) Original 

(b) Bilinear (c) Single cube (d) Multi cube 

(e) Bilinear (f) Single cube (g) Multi cube 

(h) Bilinear (i) Single cube (j) Multi cube 

Figure 54: Results for the first radiance test image extracted from 224-band Moffett Field. 
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(a) Original 

(b) Bilinear (c) Single cube (d) Multi cube 

(e) Bilinear (f) Single cube (g) Multi cube 

(h) Bilinear (i) Single cube (j) Multi cube 

Figure 55: Results for the second radiance test image extracted from 224-band Moffett Field. 
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