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1    Accomplishments/New Findings 

The first three research tasks explicitly stated in our proposal focused on stabilizing a nonlin- 

ear system using only functions of the system output. Our research accomplishments on this 

set of tasks also considered practical stabilization of a system, whereby it is meant that a sys- 

tem can be stabilized to within an arbitrarily small neighborhood of the desired equilibrium. 

It is well known in the prior Uterature that semiglobal practical stability of a relative degree 

r, minimum-phase, nonlinear system can be achieved by feeding back (through sufficiently 

high gains) the output of the system and its derivatives up to order r — 1. If, moreover, 

standard gain adaptation schemes are used, then global practical stability can be obtained. 



If, however, only the output is available for measurement, then an (partial state) observer 

is needed, for the purpose of estimating the derivatives of the output. In the presence of 

modelling uncertainties, coarse estimates are provided by the so-called Khalil's observer. It is 

well-known, though, that if this observer is used, the subset of the state space (of the closed- 

loop system) in which the estimation error is zero is not an invariant subset, as opposed 

to the classical situation occurring when a true observer is used. Nevertheless, semiglobal 

practical stabilization can still be achieved and this implies, in particular, that the estimation 

error induced by the coarse observer converges to an arbitrarily small neighborhood of the 

origin. 

In our investigation [21] we have analyzed and classified (in a number of simple cases), 

the structure of the limit set, contained in a fixed arbitrarily small neighborhood of the 

origin, to which the trajectories of the closed-loop system are steered by means of this type 

of dynamic feedback. 

This investigation has also demonstrated that the use of a coarse estimator for the output 

and its derivatives up to order r — 1 does not alter the structure of the limit set (contained in 

the small neighborhood of the origin) to which trajectories would be forced by means of high- 

gain partial state feedback. The "conservation" of the structure of the limit set is surprising 

to a certain extent, since the output feedback law is based on an approximate observer that 

does not guarantee the invariance of the subspace on which the observation error is zero. 

Nevertheless, we have determined that the use of the coarse estimator does not induce any 

additional "dimension" in the limit set. This provides a new insight into these high-gain 

output stabilization schemes and reveals an interesting property of Khalil's observer. In 

particular, if partial-state feedback is able to asymptotically stabilize (exponentially or even 

critically) the origin, then the output feedback which uses only a course estimation of the 

partial state yields the same result. 

The next five research tasks in our proposal focused on output regulation of nonlinear 

systems, which is classically defined as the design of feedback laws that stabilize a system 

and enable it to asymptotically track and reject disturbances generated by an exogenous 

signal generator. 

To this end, we have studied the design of an internal model-based semiglobal output 

feedback regulator for nonminimum phase nonlinear systems. By taking advantage of the 

design tool proposed in [23], we have shown how the problem of designing an internal model- 



based regulator can be approached by seeking an output feedback stabilizer of a suitably- 

defined extended "auxiliary" subsystem. The approach in question is not restrictive, when 

specialized to linear systems, because in this case stabilizability by output feedback of the 

extended auxiliary subsystem is a necessary condition for the output regulation problem to 

be solved. For nonlinear systems, the problem of designing an output feedback stabilizer 

for the extended auxiliary system has been approached by seeking a high-gain observer- 

based controller, as described above. The existence of this high-gain observer has been 

characterized in terms of necessary conditions which have been shown, when specialized for 

linear systems, to coincide with the standard non-resonance conditions between the modes 

of the exosystem and the zero dynamics of the controlled plant. Sufficient conditions for 

globally transforming the extended auxiliary subsystem into the observability normal form 

have also been given. 

In the paper [19], we have laid the foundations for a non-equilibrium theory of nonlinear 

output regulation, giving a more general (non-equilibrium) definition of the problem, deriv- 

ing necessary conditions, and, using these necessary conditions, we have presented a set of 

sufficient conditions and a design methodology for the solution of the problem in question. 

Our analysis leads to a non-equilibrium enhancement of the internal model principle, which 

can be expressed as a relationships between two uniformly stable attractors. The first is 

an attractor for the combined dynamics of the exogenous signal generator and the so-called 

zero-dynamics of the plant to be controlled, intrinsic to the formulation of the problem. The 

second is the uniformly stable attractor for the dynamics of the closed-loop system deter- 

mined by the controller which solves the problem of output regulation, under hypotheses 

which are non-equilibrium enhancements of those familiar from the equilibrium case. This 

enhancement of the internal model principle asserts, roughly speaking, that any controller 

solving the problem of output regulation has to contain a copy of an attractor which may 

combine the dynamics of the exogenous system with certain nontrivial steady-state motions 

occurring in the plant to be controlled. In the simple case steady-state motions consist of 

just one equilibrium, and the analysis is only local, the theory we develop reduces to the one 

presented in [24]. On the other hand, the more general approach discussed here makes it 

possible to solve problems to which none of the existing design methods for output regulation 

are applicable. 

As a first step in the development of systematic methods for regulation in the presence 



of uncertainties, we have extended the non-equihbrium approach of [19] to the case in which 

the exosystem is modelled by nonlinear differential equations. This is the case, in fact, when 

uncertain parameters affect the exosystem and the controlled plant. The results of this work 

are summarized in [20]. Generally speaking, the problem of output regulation is to have 

the regulated variables of a given controlled plant to asymptotically track (or reject) all 

desired trajectories (or disturbances) generated by some fixed autonomous system, known 

as the exosystem. The hypotheses assumed in [19] for the design of output regulators no 

longer include the assumption, common to all earUer literature, that the zero-dynamics of the 

controlled plant have a globally asymptotically stable equilibrium. Rather, this assumption 

is replaced with the (substantially weaker) hypothesis that the zero dynamics of the plant 

"augmented by the exsosystem," have a compact attractor. In [19], though, we have retained 

the (rather strong) assumption, typical of all earlier literature, that the set of all "feedforward 

inputs capable of securing perfect tracking" is a subset of the set of solutions of a suitable 

Zmear differential equation. In the work [20], we have shown how, within the new framework, 

the assumption of linearity can also be dropped. 

A major theoretical issue in the design of feedback laws for robust nonlinear output 

regulation is the ability to robustly stabilize systems which can be interpreted as nonlinear 

systems whose zero dynamics possesses a nontrivial compact attractor. In this case, in fact, 

it is possible in most instances to reduce (asymptotically) the problem of output regulation in 

the presence of an exogenous input to the case where these signals are generated by a Poisson 

stable exosystem. In our work, we have developed the necessary theoretical background 

needed to prove that high-gain output feedback can be used to drive the trajectories of the 

closed loop to a compact attractor and, at the same time, the regulated variable to zero. 

This theory reposes on the enhancement of the small-gain theorem to the case in which one 

of the component systems does not possess a globally asymptotically stable equilibrium, but 

rather a Lyapunov stable compact attractor. Our result [22] reposes on the construction 

of suitable (not necessarily smooth) Lyapunov functions for compact attractors and shows 

that if the attractor of the zero dynamics is globally asymptotically and locally exponentially 

stable, then high-gain output feedback yields semiglobal asymptotic stability. Otherwise (i.e. 

if the attractor in question is just asymptotically stable) semiglobal practical stability can 

be obtained. 

In the classical design of linear observers, asymptotic proxies for state variables are de- 



veloped as outputs of a dynamical system operating in real time. In the stochastic case, this 

is also the principle feature of the Kalman filter. As part of our design of internal models, 

we also discovered that the development of real-time asymptotic proxies for state variables 

played a crucial role. In order to better understand this phenomenon, about a decade ago 

we analyzed the dynamical behavior of a fast form of Kalman filtering. This analysis led 

to a serendipitous discovery, viz. the solution of the classical rational covariance extension 

problem (see, e.g., the survey article [26]). This also solves a longstanding problem in speech 

processing that has led to the issuance of two patents, both cited in Section 7 of this report. 

As it turns out, the rational covariance extension problem is a special case of the Nevanlinna- 

Pick interpolation problem, which can be approached using similar methods. Since this has 

applications to circuits, signals and robust control, this important problem was the focus of 

the next six proposed research tasks. 

In [29, 30] (also see [26]) we reformulated the Nevanlinna-Pick interpolation problem in 

terms of generalized moment problems, a setting that naturally accommodates the case with 

multiple interpolation points. In fact, interpolation conditions involving derivatives can be 

reformulated as generalized moment conditions where the corresponding basis function has 

been replaced with its derivative of appropriate order. 

More precisely, in [29, 30] we derived a universal solution to the generalized moment 

problem, with a nonclassical complexity constraint, obtained by minimizing a strictly convex 

nonlinear functional. This optimization problem has been derived in two different ways. We 

have answered the question of why, intrinsically, there should always be an equivalent convex 

optimization problem. We have settled this question in a geometric way by path integration 

of a one-form which defines the generalized moment problem. We have shown that this one- 

form is closed and defined on a convex set, and thus is exact. Since its integral is therefore 

path-independent, it is intrinsic and turned out to be a strictly convex functional. We have 

also given a new derivation of this convex functional as the dual problem of a problem 

to maximize a cross entropy functional. In particular, these approaches give a constructive 

parameterization of all solutions to the Nevanlinna-Pick interpolation problem, with possible 

higher-order interpolation at certain points in the complex plane, with a degree constraint. 

In this regard, also see [5]. 

In [31] we study the generalized moment problem with complexity constraints in the case 

where the actual values of the moments are uncertain.  In particular, we give an intrinsic 



geometric derivation of the Legendre transform and use it to describe convexity properties 

of the solution to the generahzed moment problems as the moments vary over an arbitrary 

compact convex set of possible values. 

In a well-known paper, Sarason generalized some classical interpolation problems for 

H"" functions on the unit disc to problems concerning operators on a coinvariant subspace 

K = H'^ Q 4>H'^ where (j) is an inner function. These operators have norm not greater than 

one, and, among his results, he studied the structure of generalized interpolants for operators 

having norm one. In a variety of interesting cases, there is a unique such interpolant, which 

is given by the quotient of functions in K. In [32] we study the case where the operator is 

a strict contraction. There turns out to be an infinite number of interpolants that are such 

quotients, and we give a complete parameterization of these. 

Our methodology is inspired by the engineering applications of classical interpolation 

problems in circuits, systems and signal processing, cases which all deal with the situation 

where ^ is a finite Blaschke product and in which the quotient representation is physically 

natural. These are the problems we study in [25, 26]. We generalized this to the case of 

arbitrary inner functions by first constructing on a certain set a differential form which is 

exact (in an appropriate sense) and which gives rise intrincically to a convex optimization 

problem. Indeed, our method of proof reposes on a rigorous treatment of nonhnear opti- 

mization on certain (nonreflexive) Banach spaces. An example is given in [32] that suggests 

how this can be generalized to accommodate delay-differential systems. 

An important problem in robust control is to develop systematic rules for selecting the 

parameters in the sensitivity function design so as to obtain low sensitivity in a designated 

part of the spectrum. A first step to address this problem was taken in [40]. In [37] a 

method for shaping the frequency response of a closed-loop system, based on the theory 

of Nevanlinna-Pick interpolation with a degree bound, is presented. It turns out that the 

spectral zeros of a certain function related to the closed-loop transfer function serve as design 

parameters. If necessary, some additional interpolation constraints can also be employed to 

increase the design flexibility. The main difference between this method and the existing H°° 

controller design methods is that we do not use the weighting functions to shape the frequency 

response of the sensitivity function. Instead, we tuned the spectral zeros of a positive real 

function related to the sensitivity function to obtain a desirable frequency response. 

In [37] and [5] a robust algoritm is developed for solving the convex optimization prob- 



lem in our theory of Nevanlinna-Pick interpolation with degree constraint. This algorithm, 

which is based on homotopy continuation with predictor-corrector steps, turns out to be 

quite efficient and numerically robust and avoids spectral factorization. The ill-conditoning 

intrinsic in the previous solvers is therefore avoided. 

In particular, the problem of sensitivity optimization requiring rational Nevanlinna-Pick 

interpolation for multiple interpolation points which was studied in [5] and more generally 

in [4]. To solve the corresponding convex optimization problem, a homotopy continuation 

technique was used. These results were applied to benchmark problems in robust control. 

By constructing a controller satisfying all design specifications but having only half the 

McMillan degree of conventional H°° controllers, the advantage of the proposed method was 

also demonstrated. In [42] a certain shaping limitation of sensitivity functions was considered. 

The focus was on a frequency-wise infimum of gains of rational sensitivity functions with a 

degree constraint. An explicit infimum was derived for a special case. The result is useful for 

determining the inability of sensitivity functions of low degrees to achieve a specification in 

the frequency domain, and thus for motivating the use of higher degree sensitivity functions 

to fulfill the specification. 

In [4] we took the first step in generalizing the theory of analytic interpolation theory 

with complexity constraint to the multivariable case. We parameterized a class of inter- 

polants consisting of "most interpolants" of no higher degree than the central solution in 

terms of spectral zeros, and for each such interpolant we provided a convex optimization 

problem for determining it. We devised a numerically stable algorithm based on homotopy 

continuation to compute the interpolants. The potential advantage of the theory and the 

algorithm was illustrated by a benchmark multivariable control example: we constructed a 

controller satisfying all design specifications but having less than half the McMillan degree 

of conventional H°° controllers. 

Finally, we considered a problem in spectral estimation and signal processing. Given the 

generalized covariance data E of a stationary stochastic process and an initial estimate ^ 

for its spectral density, which may be inconsistent with the data, in [34] we formulated and 

solved the approximation problem of determining a closest approximant to ^ in the sense of 

Kullback-Leibler which is also consistent with the data. In particular, we have shown that 

the minimizing function is unique. 

This problem is relevant when statistics is specified in the form of a state covariance of 



a linear system driven by the unknown process. This is a rather general situation which, in 

particular, encompasses spectral analysis in linear arrays with ordinary partial autocorrela- 

tion function, as well as spectral analysis using filter banks. The basic techniques that we 

have developed in [34] should carry over to the case of a vector valued stochastic processes, 

where the distance measure is replaced by the matricial Kullback-Leibler-von Neumann gen- 

eralization. 

Our next seven tasks focused on the formulation of a rigorous theory of output regulation 

via state feedback for linear distributed parameter systems. The last three of these tasks 

deal with the special case of delay differential systems and our research progress on these 

have been published in [13], [15] and [11]. In the general case, we proposed a version of 

regulator theory similar to that previously developed by us in a more restricted case in [9] 

and to investigate solvability of the corresponding regulator equations. 

There are numerous technical obstacles that had to be overcome en route to carrying out 

these tasks. For example, for unbounded B, even if A generates an analytic semigroup it 

may happen that {A + B) is not such a generator. Further, for unbounded B and C (and 

even possibly K) expressions such as CB or BKC may make no sense. On the other hand 

there is considerable interest in the case of unbounded inputs and outputs that arise, for 

example, in the study of boundary control systems governed by partial differential equations. 

Typical applications include actuators and sensors supported at isolated points or on lower 

dimensional hypersurfaces in, or on the boundary of, a spatial domain. 

Matters being so, after a considerable effort our work focused on extending our geometric 

approach to the class of regular linear systems ([45], [46], [47]) and our efforts have resulted 

in a work still in preprint form [16] which is under revision. Because this work has not yet 

appeared, we will summarize some of the key technical details. 

The practical application of such a program relies on the existence of effective ways of 

knowing that a systems is indeed a regular linear system. The problem of deciding whether 

or not a system is a regular system, as it turns out, was not well understood in the literature. 

Our earhest successes in determining large classes of regular linear systems is reported in the 

works [18], [10]. 

A system is called regular provided the system is Well Posed and satisfies the Regularity 

Condition. In more detail, we consider regular linear systems 

z = Az + Bu /- >, 
y = CAZ + Du' ^^ 

8 



where CA is the A-extension of the observation operator C (see [?])) defined for z e I>(CA) 

by 
CKZ =   Urn  C\{\I - Ay^z exists. 

A—♦+00 

1. Well Posedness: A system (1) is well posed provided that B and C are Admissible, and 

there exists a Transfer Function G{s) = CA{SI - A^^B for some (hence, for every) 

5 G p{A) (this means that 

(5/ - A^BU C V{CA). 

(For the definition and use of admissibility, we refer to the literature [45, 46].) 

2. Regularity: A well posed system is called regular provided there exists a feed-through 

term D G C{U,V), such that 

lim G{s)ip = D<p,   y ipeU 
seM. 

Let us define the space 

Zi=V{A)cZ with  \\z\\i = \\{PI - A)z\\ ,   /3ep{A), 

and the space 

Z_i  the completion of Z with respect to    ||z||_i = \\{pi - Ay^zW. 

Then there are the dense embeddings 

Z^^ Z ^ Z_i. 

Assumption 1.      1.  We assume that B G C{U,Z_i), C G C{Zi,Y) are admissible 

2. G{s) = CA{SI - A^B exists for s G p{A). 

3. {A, B) stabilizable: There exists K G £(Zi, U) so that {A + K^B) is a stable generator. 

Within this setting we have extended the solvability results for both the state and error 

feedback regulator problems. For example, we consider the case when full state measurements 

are available. 



Problem 1. State Feedback Regulator Problem for Regular Systems: 

Find a feedback control law in the form 

u{t) = KAz{t) + Lw{t) 

such that K e C{Z, U), L e C{W, U) and 

(l.a) the system z{t) = {A+BKA)z{t) is stable, i.e. (A+BKA) is the infinitesimal generator 

of an exponentially stable Co semigroup, and 

(l.b) for the closed loop system 

z{t) = {A + BKA)z{t) + {BL + P)w{t), (2) 

w{t) = Sw{t), 

the error 

e{t) = CAz{t)-Qw{t)eLl{0,oo) 

where for some a < 0 

Ll{0,oc) = U   j^°°m)\'e-'''dt<oo^ 

For this problem, in [16] we prove the following result. 

Theorem 1. Under the above assumptions, the state feedback regulator problem is solvable if 

and only if there exist mappings U € C{W, Z C Z) andV e L{W, U) satisfying the "Regulator 

Equations" 
T[S = AIi + BT + P 
CAH - Q = 0 

Here the space Z is given by 

Z = V{A) + {XI-A)-^PW+{XI-A)-''BU,    for   Xep{A). 

IfU and r satisfy the regulator equations then a feedback law solving the problem of output 

regulation is given by u = KAZ + (F — iCi,n)w. 

A natural question that arises for boundary control systems in higher spatial dimensions, 

where the boundary control can also be infinite dimensional - Can the geometric theory of 

10 



output regulation accommodate infinite dimensional input and output spaces. Indeed, what 

effect on the development results from an infinite dimensional exosystem generating signals 

to be tracked or disturbances to be rejected. 

Examples are readily obtained. For example, the cancellation of acoustic signals would 

clearly require rejecting a disturbance produced by an infinite dimensional exosystem, such 

as a wave equation which would generate a signal with an infinite number of harmonics 

having known (natural) frequencies but unknown amplitudes or phases. As another exam- 

ple, repetitive control typically requires asymptotic tracking of an infinite saw-tooth wave. 

Similar remarks apply to general periodic signals. Finally, in several examples already pre- 

sented here, the system to-be-controlled has as its output the restriction to the boundary 

of the solution to a distributed parameter system. For set-point control, in one dimension 

this allows for the specification of a function at one or two points, which can be accommo- 

date by a one or two dimensional exosystem. For higher spatial dimensions, this allows for 

the specification of a desired function or wave-form on a continuum, which will most often 

require an infinite-dimensional exogenous signal generator. 

Our preliminary research in this direction was carried out in a masters thesis [36] and, 

subsequently in a joint paper [14], in which was considered a problem of output regulation 

for a boundary controlled heat equation on a two dimensional domain for which the signal 

to be tracked was generated by the one dimensional wave equation. 

In particular, we considered the temperature in a two-dimensional unit square, Q, = 

[0,1] X [0,1], with coordinates x = (a:i,a;2) and boundary of Q, denoted by dQ. The tem- 

perature distribution across the region is governed by the Heat Equation. In order to avoid 

technical difficulties which do not add any useful information concerning the main point, we 

considered case in which open loop heat plant is stable. This is accomplished by assuming 

that some intervals of dQ will have homogeneous Dirichlet boundary conditions, i.e., the 

temperature will be held at 0 on those intervals. This part of the boundary will be de- 

noted by §D, and it will be important that, by our assumption. So will consist of a finite 

union of intervals of positive length. It was further assumed that on the remainder of the 

boundary, we have Neumann boundary conditions, so that SAT = dQ\§D- We designate p 

non-overlapping input intervals §j, for j = 1,... ,p, and p non-overlapping output intervals, 

tj, for j = 1,... ,p, with each §j and being Sj a subset of §jv- We point out that the 

intersections §, n Sj are not necessarily empty. Indeed, in the case of co-located actuators 

11 



and sensors the Sj and Sj will coincide. Finally, we define the set, §o = §iv\ U Sj. A general 

depiction of the layout of these sections (in the case Sj n Sj = 0, i, j = 1,... ,p) is portrayed 

in the following figure. 

X2i 

§2 So 

§3 .V-' 

1" §3 

§1 

§2 Si 
XI 

Layout of the Various Intervals of the Boundary on Q 

In the specific examples treated in [36, ?] the controlled heat plant is given by the following 

initial-boundary value problem: 

g-^z{x,t) = Az{x,t), X G f^, i > 0, A = ^ + ^, 

z{x,0) = zo{x), 

(3) 

z{x,t) = 0, 
xeSo 

dz. 

xeS- 

= Uj{t),  j = l,...,p,     Q^{x,t) = 0. 

(4) 

(5) 
xeSo 

Here Uj{t) are the inputs and the state space of the plant is 2. = L'^{Ct). 

It was assumed that the p outputs are given by the average temperature over the small 

regions Sj of the boundary, i.e., 

yj{t) = -:^ / z{x,t)da^,   y=[y = [yi{t),---,yp{t)r = Cz (6) 

where |Sj| denotes the length of the interval Sj and where dax is "surface measure" on the 

boundary of Q. From this, we may note that the output C operator is defined in the following 

12 



way 

Cz{t) 

■^^f^^z{x,t)da^ 

(7) 

Introducing a standard formulation, we write the plant (68)-(5) in abstract form as 

d 
dt 

z = Az + Bu,    y{t) = Cz, (8) 

where A : V{A) C Z -> Z, and C : V{C) C Z ^ ^ = M^ are unbounded densely defined 

linear operators and S : U = R^ ^ H-\Q.) where H-°'{Q.) denotes the dual of jy"(Q), 

a > 0 (see, e.g., [44]). H~°{Q,) can be identified with a subspace of the space of distributions 

F-°(R") = [F'^CE")]* C D(R")*: 

F-«(Q) = {/ G iJ-«(R") : supp(/) C n} . 

(See definition of B in (10)-(13) below.) 

The operator ^4 = A with domain 

V{A) = LGZ:^ =0,   vl 
XESN 

XESSD 
0 

is an unbounded self-adjoint operator in the Hilbert space Z = L'^{Cl) whose spectrum 

consists of real eigenvalues {Cfe}fcli satisfying 

Cfc+i < Cfe,    Cfc -^^^ -oo> (9) 

and with associated orthonormal eigenfunctions (pk{x) satisfying 

A^k = Ck^k,        {'Pn, Vm) = Km- 

(Here and below we denote by (•, •) the inner product in L'^{0,)). 

The input operator is then defined by 

Bu{r]) = y2ui{t)j^      r]{x)da,„ (10) 

where Bu G H~^{Q) is a distribution and r? G I'(R") is a test function. Therefore, 

p 

Bu = 2_^'^i^iy (11) 

13 



where bi is the distribution which acts on a test function r] G V(W^) by the rule 

fci(??) = Tg-| / V{x)da^, 

and 

(12) 

(13) u=[ui  ■■■   UpfeU = W. 

We note that bi e ^-^/^-^(Q) for e > 0. 

The exosystem is given by the one-dimensional wave equation on the interval [0,1] (with 

spatial coordinate ^) and with homogeneous Dirichlet boundary conditions. 

w{0,t) = w{l,t) = 0 

(14) 

(15) 

For this exosystem we are interested in reference outputs yf^it) given as the displacements 

at a set of p points ^p in the interval (0,1) 

ref/^M^ yf{t) = w{^j,t), 0<^j< 1,   Vref = Qw^ [yf{t), ■■■, yf{t)]   , (16) 

where Qw would be defined as 

Qw = 

w{^ut) 

The exosystem can be formulated as an abstract dynamical system in an infinite dimen- 

sional state space in the usual way by first introducing new dependent variables 

W = 
w 

W2 
,   W{0) = Wo,   S 

r 0 1 "I 
r?2 

(1 
l(^C' 

(17) 

and then writing the exosystem as: 

with reference outputs 

where 

-W = SW,   W{0) = Wo 
at 

y^ef = QW, 

(18) 

(19) 

Q = Q     0 
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The state space for (18) is 

which is a Hilbert space with inner product defined by 

= (¥'l.'0i>L2(O,l) + (</'2,'02)L2(O,1)> 
'pi 

V?2 1p2 W 

The spectrum of. the operator S consists of eigenvalues 

A„ = mri, n = ±1, ±2,... 

and associated normalized eigenfunctions (i.e., ||$i||w = 1) 

(20) 

(21) 

$« A. sin(£7rO, ^ = ±1,±2,, 

Thus the exosystem is infinite dimensional with simple eigenvalues along the imaginary axis, 

and from (9) and (21) we note that the respective spectra of A and S are disjoint. 

The error, defined as an output of the composite system, is given by the difference between 

the measured output and the reference output, i.e., 

e(i) =y{t)-yref{t), 

where y and y^ei are defined in (6) and (19). Written another way, 

y = Cz 

and ' 

yref = QW, 

so that the error can be written in terms of (6) and (19) as 

e{t) = y{t)-yref{t) = [C,-Q] 
z 
W 

it). (22) 

With this development, the problem of output regulation considered in [36, ?] can be stated 

as 

Problem 2 (The Main Problem). Find a feedback control u = TW so that for every 

initial condition of the plant and exosystem, the error satisfies 

e{t) —y 0 ast —> oo. (23) 
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The plant for this example is a regular linear as follows from our work [10] and, for a 

finite dimensional exosystem, the main theorem of [16] would apply to provide a method 

for constructing a feedback law by solving the regulator equations. Unfortunately, this 

result cannot be applied directly to a problem of output regulation with infinite dimensional 

exosystem. However, mimicking the proof given in [16] in the present setting we can obtain 

formulas which allow us to solve the problem once we introduce an appropriate modification 

of the reference signals to be tracked. 

The difficulties presented by an infinite dimensional exosystem present many new and 

interesting challenges but our research shows that the development of a fairly complete theory 

in this case is at least feasible. 

The final six proposed research tasks involve extending the regulator theory for linear 

distributed parameter systems to nonlinear systems. As is widely appreciated, the study 

of Nonlinear Distributed Parameter systems exacerbates the difficulties encountered in the 

study of each of lumped nonlinear systems and linear distributed parameter systems, both 

analytically and computationally. Moreover, since nonlinear operations can produce either 

very large or very small quantities, the numerical difficulties stemming from the use of finite 

state, finite precision computers further exacerbates these difficulties. 

Our preliminary calculations indicated that tracking problems can be solved for the 

special case of set-point control of nonlinear reaction diffusion systems with control inputs 

and outputs acting through the boundary of the spatial domain. Indeed, in [12] such results 

are rigorously established for a system whose zero dynamics consists of the now famous class 

of reaction-diffusion equations studied by Chaffee and Infante. In this case the structure 

of the attractor has been well-studied and is well-known, leading to a compact, Lyapunov 

stable attractor for the zero dynamics. We use the zero dynamics to design, following the 

non-equilibrium internal model principle, an infinite dimensional compensator and show 

how, using invariant manifold theory, the input-output behavior of the compensator can be 

realized by solving the distributed parameter version of the "regulator equations." 

As an indication of the more general results we have obtained, yet unpublished, consider 

a nonlinear plant 

Zt = Az- F{z) + Bu + d,   z{0) = ZQ, (24) 

where z{t) is the state in Hilbert space Z at time t. A is the generator of an exponentially 

stable Co semigroup in Z, u EU is a control input and d{t) € 2" is a disturbance. 
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In order to simplify the discussion, we assume also that we have a an exosystem 

w = Sw,   w{0) = Wo (25) 

acting in the space W with dim(W) = A'' and S is neutrally stable. We assume that S has 

the spectral representation 

N N 

(26) 

where 

{x,}l, c m,   {x,}l, = {x,}l^. 

Associated with the plant we have an output to be regulated y{t) and a from the exosys- 

tem we have a reference output yr{t) to be tracked. We also assume that the disturbance is 

generated as an output of the exosystem: 

y{t)^Cz{t),    yr{t)=Qw{t),   d{t) = Pwit). (27) 

The regulator equations for the systems (24), (51) for (a state feedback) control 

u = T{w) 

are given, via a pair of mapping, U : W -^ Z and F : W -^ U ,hy 

^^^Sw = AI[(w) - F{U{w)) + Br{w) + Pw 
ow 

CU{w) -Qw = 0. 

(28) 

(29) 

Under our assumptions the composite system consisting of (24) and (51) can be written 

as 

dt 

A = 

where we have written 

= A 

A   (BGL + P) 

0 S 

+ 3^{z,w), 

3'{z,w) 

(30) 

F{Z) + GN{W) 

0 

T{W) = GLW + GN{W),   GLeC{W,U), 
dG N 

dw 
= 0. (31) 

u)=0 
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The system (30) has an N dimensional center manifold given in terms of a mapping 11 

as 

For this reason, we know that the regulator equations indeed have a solution. 

Before turning to an example, we note, however, that there remains an open problem of 

paramount importance in any practical application, viz. the existence of a computationally 

accurate and effective method for approximating solutions to the regulator equations. 

To this end, we introduce the notation 

U{w) = ^LW + «Piv(w),   VL e C{W, Z) 

so that 

dw dw 

With this we can write the regulator equations as 

hi + ^) Sw =A {^LW + ^N{W)) (32) 

+ B{GLW + GNH)-F{^LW + ^N)iw) + Pw. 

0 =CU{w) -Qw = C {^LW + ^N{W)) - Qw. 

The first order approximation to the regulator equations in (32) can be written as 

^LSW = A^LW + BGL + Pw,    C^LW -QW = 0. (33) 

We can readily obtain a representation for ^L and GL using the spectral representation 

for S. Namely, from the first of these equations applied to $^ we have 

This gives 

^L^i = {Xel - A)-^ {BGL^I + P^i). 

If we now apply the second result in (33) we have 

Q$^ = C{\il - AY^BG^t + C{\il - A)-^P^e. 

We define the transfer function, for A G p{A) = C\a{A) {p{A) the resolvent set and a{A) 

the spectrum of A) by 

G{X) = C{XtI - A)-^B. (34) 
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Then, under the standing assumption from Hnear theory, that no eigenvalue of 5 is a trans- 

mission zero of the hnear plant, i.e., G{Xe) 7^ 0 for alH = 1,2, • • • , A^ we have 

Ge^i = G{Xe)-'' Q^i - C{\el - A)-'P^i (35) 

Recalling that the eigenvectors $^ form a basis for W we have, from (26) and (35) that 

for any w EW that 

N 

i=i 

Q^e-C{XeI-A)-'P^e (36) 

From this we can also obtain simple formulas for the first order (linear) approximation to 

^L- Namely, we have 

^iLW = J2i'^^^*i) [{XeI-A)-'{BGL + P)^e] • (37) 
e=i 

The next step is to define an iterative scheme for obtaining successively better approxi- 

mations to n and r satisfying (53) and (54). 

Returning to equation (32), we can remove the first order terms and solve for ^N to 

obtain 

<P^(u;) = A -1 Fi^LW + ^N{W)) + ^HSw - BGNiw) (38) 

This expression can then be used this to define a sequence of iterations for ^N and GAT 

as follows: 

First define 

^'i\w) = 0. (39) 

Then define 

^^i''\w) = A -1 >(j) d^^^ U), Fi^LW + ^%\w)) + -^MSw - BG'^'iw) (40) 

Due to our assumptions that Q and C are linear operators, our earlier calculations for 

linear terms gave, 

C^LW -QW = 0 

which implies that 

C^iNiw) = 0 
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for all w. This, fact together with (38) gives 

CA-^ 
d^. N , 0. F^iLW + "^NH) + -^{w)Sw - BGN{W) 

Solving this equation for GN{W) we obtain 

Gj,{w) = [CA-'B]-' [CA-'{F{^LW + ^N{W)))] . 

This formula gives the final ingredient, a means to obtain the iterations for Gjv-  Namely, 

we first define 

GffH = [CA-'B]-' [CA-' (^Fi^LW + Vi\w))] (41) 

(here we note that ^^^\w) — 0). Thus we define a sequence of approximations to Il{w) and 

T{w) given by 

lij{w) = ^LW + %{w),   and T-i{w) = GLW + &^{w),   i = l,2,--- (42) 

where GL is given in (36), «PL is given in (37), ^P^ = 0, GJ^^ is given in (41) and 

^j^+'^(«;) = A-' lO), 

and 

F{Uj{w)) + ^^{w)Sw - BG'^\w) 
dw 

CA-MF(n,(^)) + %-(^)5^. 

(43) 

dw 
(44) G%-''\w)=[CA-'By' 

Thus we obtain a sequence of approximate controls given by 

which presumably converge to a solution of the regulator equations. 

We now illustrate this approach in an explicit example from the Masters Thesis [39] at 

Texas Tech University. 

Example 1 (Set-Point Burgers' Equation). Consider set-point control for a viscous 

Burgers' equation with homogeneous Dirichlet boundary conditions. In this case the regula- 

tor equations are nonlinear and we use a fixed point iterative scheme for obtaining approxi- 

mate solutions. 

Consider the nonlinear plant governed by Burgers' equation 

Zt{x, t)   = Zxxix, t) - Zx{x, t)z{x, t) 

z{0,t)   =uo{t)  z{l,t) = uiit) 

z{x,0)   =^{x) 

y{t)   = C{z){t) = z{xut)    0<a;i<l 

(45) 
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where z{t) is the state in Hilbert space Z = ^^(0,1) at time t. 

Our control problem is to build a control u so that, for every initial condition and arbitrary 

constant reference signal yr{t) = M ER (for all t) we have 

\ime{t) = y{t)-yr{t) = 0. (46) 
t—»oo 

The following theorem, which can be proved using the Hopf-Cole transformation [?], gives 

the exact feedback control for our problem of output regulation for Burgers' equation with 

Dirichlet boundary conditions. 

Theorem 2. For M > 0, find fio > 0 so that 

2/xo tanh (/io(l - Xi)) = M (47) 

Then controls UQ and Ui for (45) solving y{t) -> M are given by 

uo = 2//0 tanh (/xo),   wi = 0. (48) 

It can be shown that when M > 0 only one control is needed. To simplify the presen- 

tation we will consider this single input, single output (SISO) problem with a homogeneous 

boundary condition at x = 1. For this case, we define the state operator A = dP/dx^ in 

2:,.= L2(0, 1) with domain V{A) = Hl{Q, 1). The term u{t) is the control input. The control 

operator can be found by considering the weak formulation of the problem. 

In our SISO problem, we further restrict to the case in which the control is input at 

a; = 0. So we set «o(i) = u{t) and u\{t) = 0. 

zt{x,t)   = z^x{x,t) - Zx{x,t)z{x,t) 

z(0,t)   =u{t)  z{l,t) = 0, (49) 

z{x,0)   =ip{x). 

This problem can be reformulated with the control u{t) in the differential equation with 

homogeneous boundary conditions as 

zt{x, t)   = z^^{x, t) - z^{x, t)z{x, t) + Bu(t) 

2(0, t)   =0 z(l,t) = 0, (50) 

z(a;,0)   =^{x). 

where B = —5'Q. 
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Since we are solving a set point control problem, the exosystem is 

w = 0,   w{0)^M,   M>0 (51) 

acting in the space W = E. 

So we have 

y{t) = Cz{t) = z{x,,t),    yrit) = Qw{t) = M. (52) 

The regulator equations for the systems (50) and (51) for the control 

u = r{w) 

are given, via a pair of mappings, U : W -^ Z and T : W —* U ,hy 

^^l^Sw = AIl{w) - F{U{w)) + BT{w) = 0 (53) 
ow 

CU{w) -Qw = 0. (54) 

The first regulator equations can be written in terms of U{x,w), T{w) as 

U"{x, M) - n'(a;, M)n(a;, M) + BT{M) = 0,    n(a;i ,M) = M.. (55) 

In order to solve this problem, we need to find the transfer function G{s) = C{sI—A~^)B. 

In the case of set-point control the only eigenvalue of the exosystem is, s = 0 so we will need 

to compute G(0). Thus we need to determine A~^ip for cp G L^(0,1) Recall that A = (f/dx"^. 

Thus A~^4> = V' or equivalently Atp = 0. Applying the operator, we need to solve 

r=<f>, V'(o)=o, ^(i)=o. 

We find ^ by constructing the Green's function. First, we need to find two functions {yi,y2} 

that solve the homogeneous equation and satisfy the boundary conditions. So let j/i = x and 

2/2 = 1 — X. The Green's function is 

Thus our solution is 

i^ = A-'4> = ^hl-x)J\md^ + ^li^-0md^], (56) 
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where W is the Wronksian. 

W = det 
X    1 -X 
1       -1 =   -1 

So, for a test function TJ, we have 

{-A-'BM =A-\5'o){v) (57) 

=6'o{A-'r]) = So{-d/dxA-'T]) (58) 

=60 (- f\v{Od(+ f\l-0v{0d^^ 
\     Jo                             Jx                                   / 

(59) 

.In 
(60) 

=T(i_,)(7?) . (61) 

Therefore, 

and 

{-A-^B) = l-x 

C{-A-^B) = 1-Xi. 

Next we briefly explain a numerical scheme for obtaining u = Tw iov M > 0. Our 

approach here is based on an iterative algorithm using a fixed point method to solve nonlinear 

iterations. The main numerical method used cubic splines for a Galerkin finite element 

method to solve the second order ordinary differential equation at each step. 

In the Galerkin approach we seek an approximate solution U.^{x, M) in the form 

n^(^) = Ecf(i)</',(a:). (62) 

where for each A'' we ask that the weak formulation holds for (^1, (/72, • • • I^N- Substituting 

this expression into (50), taking inner products in L2(0, 1) with the basis functions ^pm for 

m = I,--- ,N we get 

TN2' 

0={n''",ipm) + {BT,cp^)-/\ 
W 

iV'r, 

Integrating by parts on the first and third inner product and using the boundary conditions, 

gave 

0 = - (n^', V>'m) + V^'mm + / (^) , VP; 
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This system of equations can then be expressed as 

(63) 

where 

s = -[(¥p;,(/.;.)], ^ 
^2(0) 

MO) 

,   ^(C) = 
n JV2^ 

,^v 

Next we define F{e) as 

F(e) = §e + ^(e) + r(M)$g (64) 

and look for a zero of F with the property that the resulting H^ also has Il^{xi) = M (by 

the second regulator equation). Notice that by our construction of the basis functions each 

satisfy the Dirichlet boundary conditions so that, 11^ in (62), automatically satisfies these 

boundary conditions. 

Initial values for the iterative scheme obtained from the linearized regulator equations 

for e and r(M), i.e.. 

which implies 

Applying C gives 

Prom this we obtain 

O^AIl{x,M) + Br{M),    U{xuM) = M, 

U{x,M) = {-A-^B)r{M). 

M = Cn = C{-A-^B)T{M) = G(0)r(M). 

(65) 

ri(M) = G(0)-^M = - 
M 

Xi 
(66) 

Then using this value for an approximate r(M) and the spline approximation in the 

linearized version of equation (65) we arrive an the initial value for 6. 

0 = n^ +Br 
=< n^", (pk> + <B,ipk >r 

= n^V.;-<n^',v'^> M(o)r 
= se + $gr. 
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Thus 
£1 = _ Jll_§-i$P. (67) 

1 — 2;i 

Next we define fixed point iterations to update the coefficients. 

For the fixed point method one approach would be to rewrite the equation F(e) - 0, 

defined in (64), by first isolating SQ on one side and then applying S~^ to obtain 

e = F(e) 

where 

F(e) = s'-'(-^(e)-r(M)$g). 

Then we want to solve this fixed point problem using the iterates 

gn+l ^ p(^Qny 

Updating 11^ produced 

n^+^(x) = f]q+V.(^) 

which was then used to update F. 

At each step the value of F(M), denoted F^+\ was updated by using the regulator 

equations (53). In particular, 

niv+i ^ ^-1 n 5!^ j _ BF(M) j 

and then apply the second regulator equation and the definition of the transfer function 

implied 

M = CU^+' = CA-'   —2— 1 + G(0)F(M). 

Solving for F(M) will be the updated value 

N+i _ n((\\-i- F(M)^+^ = G(0) M-CA -1 

The Matlab code starts with the initial F from (66) and G from (67). A while loop 

controls iterations until we are at the desired error which we set at 10~*. Inside the loop 

we build F{G) which we use to calculate a new value for the coefficients. Once we have 

the updated coefficients, we can find a new 11 and with that a new F. The error we track 
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comes from the difference in successive iterates of 6 and from equation (63). Once we are 

within the desired tolerance, the approximate T is compared with the actual T found using 

a Hopf-Cole transformation. To illustrate the result, consider n - 100,99(0;, 0) = 5a;(l - a;). 

The program is included in Appendix D. The following plots are of the solution surface and 

outputs y and yr in the following Figures. 

1.5-, 

0.5- 

An important aspect of output regulation for nonlinear systems is the existence and 

characterization of the steady state response. For many reasons, the computational aspects 

of numerically obtaining the steady-state behavior of nonlinear distributed parameter sys- 

tems are extremely challenging. We conclude by illustrating the computational challenges 

associated with identifying numerically the steady state behavior of Burgers' equation with 

Neumann boundary conditions. 

For this problem it is clear that constants are stationary solutions but other than constant 

solutions the general long time behavior of trajectories was not clear. Indeed, numerical 

observations seemed to suggest a more complicated steady state behavior. We now briefly 

describe the phenomenon first observed in [2, 43] and investigated and explained, for Burgers' 

equation, in [1]. Consider the one-dimensional viscous Burgers' equation on the interval [0,1] 

subject to Neumann boundary conditions: 

Wt - ewxx + wwx = 0, X e (0,1),    t > 0, (e > 0 is the viscosity), 

Wx{Q,t) = Wi(l,t) = 0,   (Neumann Boundary Conditions) 

w(a;,0) = 4>{x),   (Initial Condition). 

(68) 

(10 

(1") 
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(Here we use a subscript notation for partial derivatives.) It is easy to show that the only- 

stationary solutions (i.e., Wt = 0) of the problem (68), (1') are constants: w{x) — c,ceR. It 

is also known [8, 38] that for any initial function 0 e L^(0,1) the problem (68), (1'), (1") has a 

unique strong solution defined for alU > 0 which is instantly classical (for i > 0). Moreover, 

applying results from [48] it can be shown that that for any 4> E L°°{0,1) the corresponding 

solution w{x,t) tends to a stationary solution as i -*• oo, i.e., for every (j) e L°°{0,1) there 

exists ac^eR such that w{x,t) ^^^ c^ in the I/°°(0, l)-norm. 

In [1, 2] it is shown that Burgers' equation with Neumann boundary conditions leaves 

invariant the set of so-called "antisymmetric" functions, (C^-functions that are odd about 

X = 1/2 in the interval (0,1)) which we denote by ^<S(0,1). That is, a solution of (68), 

(l'),(l") for initial data (j) e ^5(0,1) satisfies 'w{x,t) = -w{l - x,t) for all x e [0,1] and 

for all t > 0. Thus the only stationary solution in AS{0,1) is w = 0, i.e, for (j) G ^45(0,1), 

the corresponding solution w{x, t) ^^^^ 0. However, if the value (?!>(0) (for (j) e AS{0,1)) is 

"large enough" and positive, then any sufficiently accurate numerical solution w^{x,t) will 

converge (for increasing t) to a nonconstant "steady state solution." This phenomenon, which 

has been rigorously verified, occurs independently of the particular numerical method used 

(e.g., finite difference, finite element, etc) or level of discretization (order of the approximate 

solution). But that it does depend of the particular floating point arithmetic on a given 

machine. This anomaly is explained in detail in [1]. It turns out that the equation (68) 

has a 1-parameter family of stationary solutions h{-,c) e AS{0,1) parameterized by c G R, 

which satisfy the nonhomogeneous Neumann boundary conditions: hx{0,c) = /ii(l,c) = ac- 

Moreover, the L°°(0, l)-norm ||/ix(-,c)||oo ^^^^ oo while ttc -^=^ 0 (exponentially fast). 

We now demonstrate how this fact affects the numerical results. Consider the problem 

(68) with viscosity e = 1/10, first with initial condition (j)i{x) = cos(7ra;) and then with 

02(x) = 5cos(7ra;). In the first two figures below we present the graphs of the corresponding 

numerical solutions w^{x,t) and w^{x,t) obtained using a Crank-Nicolson finite difference 

method (we emphasize that these results are independent of the particular numerical method 

or accuracy of approximation method). It is clear from the first figure below that lof (a;,i), 

plotted for {x,t) G [0,1] x [0,10], converges to the constant function hi{x) = 0, while in the 

next figure we see that io^(a;, t) converges very rapidly (on the time interval 0 < f < .5) to a 

nonconstant stationary solution h2{x). In fact, h2{x) satisfies the nonhomogeneous boundary 

conditions h'2{0) = /i2(l) = dc- 
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(/)i(a;) = cos(7ra;),  0 < i < 10 (j)2{x) — 5cos(7ra;), 0 < i < .5 

1 
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(f)i{x) = cos(7ra;),  t = 10 (f>2{x) = 5cos(7ra;), t — .5 

Since ac is exponentially small (for c large enough) any computer, using finite preci- 

sion arithmetic, could not distinguish between ac and "zero" and, therefore, treated h{x, c) 

(erroneously) as a stationary solution of (68)-(l")- The function h{x, c) is given explicitly by 

h{x, c) = \/2ctanh (^^(1/2 - x)] ,   /i^(0, c) = /ia;(l, c) = 0!r. (69) 

Attempts to circumvent this problem using a larger floating point number system (e.g. as 

high as 75 digits) available in a computer algebra system (e.g.. Maple) very quickly depleted 

available memory even on an SGI Origin supercomputer with 16 gigabytes of memory. Even 

in this case for only slightly larger values of the amplitude the solutions still converge to a 

nonconstant stationary solution. The point is that no attempt to brute force the problem 

away with a bigger or more powerful computer will work. There are two important points that 

must be made. The problem arises because, on one hand. Burgers' equation with Neumann 

boundary conditions is extremely sensitive to perturbations in the boundary conditions, and, 
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on the other hand, all computers today use a finite precision floating point arithmetic. 

In this final report it is not possible to provide details of how finite precision arithmetic, 

the amplitude of the initial data ^(0), and the numerical approximation of the convective 

term in Burgers' equation combine to produce the convergence to the nonconstant stationary 

solution. We do, however, give a sample formula that is derived in [?] based on digits of 

accuracy and the value of 0(0) which can be used to determine when solutions will go to 

zero or converge to an incorrect answer. Let (3 denote the base for a computer system and 

d the number of digits. On the interval [/5'""~^,/5'"], the floating point numbers are evenly 

spaced with separation P'^~^. Let Xi,X2 G [/?™~\yS'"] be two floating point numbers. If 

ki - X2\ < ^r~^ then Xi = X2.   Thus, if |xi - Xal < ^p'-'^^'^ < ^/3'-'^|xi|, or, if 

lElfilA < y^-d then a;x = x^. 
\Xi\ 2 

I ^ 1 

Floating Point Numbers 02 = cti + Z?'""* 

Using a Crank-Nicolson finite difference scheme applied to Burgers' equation with spatial 

mesh size Ax and corresponding numerical solution denoted by w^^{x,t), we arrive at the 

following conclusion: 

if     ?(MMexp(zM)</3i-'     then   w^'{x,t) !=^ h{x,c). 

if     5iMMexp(=ffl)>/J-'     then   „,A'(.,t) i=2.0. 

In our example depicted in the first two figures (above) we had Ax = 1/80, /? = 2, e = 1/10, 

rf = 15 so that Z?-^"'* Ri 6 X 10~^ while for </>(0) = 1 the left side above is approximately 

7 X 10"^ > 0^-'^ and for 0(0) = 5 the left hand side is approximately 7 x 10"^^ < P^''^. 

The explanation of the anomaly given in [1] and described above is immediately appli- 

cable only to Burgers' equation but the underlying reason that this anomaly occurs is a 

combination of the following three facts. It is the generalization of these important facts 

that will allow us to carry out the main objectives outlined below. 

1) The existence of a nearby problem with a nonconstant stationary solution: The solution 

w{x,t) of equation (68) with initial data (1") (0 G ^S(0,1)) and with nonhomogeneous 

Neumann boundary conditions 

10^(0, t) = 10^(1, i) = a«0 (70) 
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converges to the function h{x) in (69) satisfying 

-eKx{x) + h{x)K{x) = 0,   K{0) = h^{l) = a. (71) 

2) Problem Sensitivity (ill-posedness): The nonlinear ("elliptic") boundary value problem 

(71) for the stationary solution is ill-posed. Related phenomena in the numerical analysis 

of problems in fluid flow [3, 6] have recently been referred to as "problem sensitivity." In 

any case, the solution h{x,a) of (71) is not only discontinuous (in, e.g., iJ^(0, l)-norm) as a 

function of the boundary parameter a but it even has a singularity as a —> 0. 

3) Finite Precision Arithmetic: In practice, floating point arithmetic is nearly always used in 

computational work and such arithmetic is always limited to a finite set of numbers and a 

finite precision arithmetic. Furthermore different machines have a different set of numbers 

and precision. 

Our indications suggest that a similar anomaly takes place for a broad class of nonlinear 

n-dimensional (n > 1) parabolic equations containing convective type terms. Moreover, 

there is a strong numerical evidence that the same type of anomaly may occur for real 

hydrodynamic equations - Euler and Navier Stokes. 
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6    Scientific Interactions/Transitions 

In February 2002, Dr. Gilliam and Victor Shubov collaborated with Dr. John Burns of 

the AFOSR Center for Optimal Design and Control at VPI k State University. These 

discussions were concerned with the design of special sensors that damp high frequency 

oscillations. Applications include problems in regulation (such as active noise suppression) 

and various topics in hydrodynamics including applications to large eddy simulations (les). 

To date there have been four technical meetings in February 2002; December 2002; January 

2003; August 2003; and October 2003. 

Professors A. Lindquist and C.I. Byrnes were Scientific Leaders for The Semester on 

Mathematical Control and Systems Theory at the Mittag-Leffler Mathematical Institute, 

Royal Swedish Academy of Sciences, Djursholm, Sweden, January - June, 2003. 

In addition to collaborative research with engineering research and development personnel 

at Boeing, St. Louis, MO, reported below as transitions, we have presented many invited 

lectures and colloquia nationally and internationally: 

42 



December 2000: 

- Invited Speaker at the Plenary Panel 25 Seminal Papers in Control (1932-1981), 39th 

IEEE Conference on Decision and Control (Syndey, Australia), presented by Dr. A. 

Isidori. 

- Nonlinear robust output regulation for nonlinear systems, Department of Physics, Wash- 

ington University, St. Louis. Presented by James Ramsey. 

February 2001 : 

- Synthetic speech and modem mathematics: What is the connection? Seminav lecture 

presented by Professor Anders Lindquist at Stockholm University. 

- Nonlinear fault detection and isolation: a differential geometric approach, Presented by 

Dr. A. Isidori at the annual GAMM Meeting, Zurich, (Invited plenary lecture). 

- Nevanlinna-Pick Interpolation with applications to systems and signals, Modelling, 

Identification and Control Conference,Innsbruck Austria,presented by Dr. C.I. Byrnes. 

April 2001 : 

- Nonlinear output regulation with adaptive internal model. Presented by Dr. A. Isidori 

at KHT Stockholm, (Invited Lecture). 

- Nonlinear output regulation with adaptive internal model. Presented by Dr. A. Isidori 

at Technical University of Delft, (Invited Lecture). 

- Nonlinear fault detection and isolation: a differential geometric approach. Presented by 

Dr. A. Isidori at University of Lyon, (Invited Lecture). 

May 2001 : 

- An analytic interpolation approach to robust control, presented by Professor Anders 

Lindquist at Russian-Swedish Control Conference, Moscow (Plenary lecture). 

- Synthetic speech and modem mathematics: What is the connection?, Seminar lecture 

presented by Professor Anders Lindquist at Uppsala University. 

June 2001 : 

- Practical stabilizability and tracking for nonlinear systems: the nonequilibrium case, 

London Mathematical Society Workshop on Mathematical Theory of Nonlinear Con- 

trol, presented by Dr. C.I. Byrnes (Plenary Lecture). 
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July 2001 : 

- Nonlinear fault detection and isolation: a differential geometric approach, Presented by 

Dr.. A. Isidori at the IFAC NOLCOS Symposium (Invited plenary lecture). 

- Dynamics of airflows containing dust particles and fluid suspensions, 5th SIAM Confer- 

ence of Control and Applications, San Diego, CA., July 2001, Victor Shubov (Invited 

Lecture). 

- A global analysis approach to robust control, presented by Professor Anders Lindquist 

at the 5th IFAC symposium on Nonlinear Control Systems (NOLCOS 2001 IFAC), 

Saint-Petersburg, Russia, (Plenary lecture). 

- Practical stabiliability and tracking for nonlinear systems: the nonequilibrium case, at 

the 5th IFAC symposium on Nonlinear Control Systems (NOLCOS 2001 IFAC), Saint- 

Petersburg, Russia, presented by Dr. C.I. Byrnes (Plenary lecture). 

August 2001 : 

- Partial Realization Theory: A Basic Paradigm in Signals, Systems and Control, Pre- 

sented by Dr. Anders Lindquist at the Fourth SIAM Conference on Linear Algebra in 

Signals, Systems and Control, Boston, USA, (Plenary lecture). 

October 2001: 

- Output Regulation and Regulator Equations, 'Invited lecture presented by Dr. David 

Gilliam at the Texas Tech Student SIAM Conference. 

November 2001 : 

- Convex Optimization Algorithms for Classical Moment Problems, with Applications to 

Systems and Signals, Presented by Dr. Christopher Byrnes at Cybernetics in the 21st 

Century: Information and Complexity in Control Theory, University of Tokyo, Japan, 

(Invited lecture). 

- A global analysis approach to robust control. Presented by Dr. Anders Lindquist at 

Cybernetics in the 21st Century: Information and Complexity in Control Theory, Uni- 

versity of Tokyo, Japan, (Invited lecture). 

- A short course on Nevanlinna-Pick interpolation theory, Eight hours of lectures pre- 

sented by Dr. Anders Lindquist at Abo Academi University, (Invited lectures). 

December 2001: 
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- Finesse et Geometrie: the Spirits of Nonlinear Control, the Bode (plenary) Lecture 

delivered by A.Isidori at the annual IEEE Conference on Decision and Control, Orlando 

(Florida), Dec. 2001. 

- On the duality between filtering and Nevanlinna-Pick interpolation, Presented by Profes- 

sor Anders Lindquist at the 40th IEEE Conference on Decision and Control (CDCOl), 

Orlando, Florida. 

- Examples of output regulation for distributed parameter systems with infinite dimen- 

sional exosystem, Presented by Dr. David Gilliam at the 40th IEEE Conference on 

Decision and Control, Orlando Florida. 

- Examples of Regular Linear Systems Governed by Partial Differential Equations, Pre- 

sented by Dr. David Gilliam at the 40th IEEE Conference on Decision and Control, 

Orlando Florida. 

February 2002 : 

- Convex Optimization Algorithms for Classical Moment Problems, with Applications to 

Systems and Signals, Presented by Dr. Christopher Byrnes at the Mathematisches 

Forchungsinstitut Oberwohlfach, Oberwohlfach, Germany (Invited lecture). 

- Robust tracking of uncertain systems, Presented by Dr. Alberto Isidori at the Mathe- 

matisches Forchungsinstitut Oberwohlfach, Oberwohlfach, Germany (Invited lecture). 

- Regular linear systems generated by parabolic equations, Lecture presented by Dr. Vic- 

tor I. Shubov at the Texas PDE Conference, San Antonio, TX. 

March 2002 : 

- A New Approach to the Generalized Moment Problem, with Applications to Systems, 

Signals and Control, Presented by Dr. Christopher Byrnes at the Department of Math- 

ematics, Fudan University, Shanghai, China. 

April 2002 : 

- A convex optimization approach to generalized moment problems. Invited colloquium 

lecture by Professor Anders Lindquist at the Stieltjes Analysis Colloquium, Thomas 

Stieltjes Institute for Mathematics, Amsterdam, the Netherlands, April 8, 2002. May 

2002 

- Shaping the Steady-State Response of Nonlinear Systems, Invited Lecture presented 
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by Dr. Christopher I. Byrnes at AFOSR Conference on Future Directions in Control, 

Arhngton, VA. 

June 2002 : 

- A New Appraoch to the Generalized Moment Problem, with Applications to Systems, 

Signals and Control, Presented by Dr. Christopher Byrnes at Universita' di Padova, 

Padova, Italy. 

- Shaping the Steady-State Response of Nonlinear Systems, Invited Lecture presented by 

Dr. Christopher I. Byrnes at Universita' di Bologna, Bologna, Italy. 

July 2002 : 

- Finesse et Geometrie: les esprits de I'automatique non-lineaire. Invited lecture pre- 

sented by A.Isidori at the Ecole Normale Superieure, Paris. 

- A convex optimization approach to generalized moment problems, Invited lecture pre- 

sented by Professor Anders Lindquist at MTNS 2002, Notre Dame. 

- Output Regulation for DPS with Infinite Dimensional Exosystem, Invited lecture pre- 

sented by Dr. David Gilliam at MTNS 2002, Notre Dame. 

August 2002 : 

- Output Regulation for Nonlinear Systems, one day workshop at the IFAC World Congress, 

Barcelona, presented by Drs. C.I. Byrnes, A. Isidori, L. Marconi, A. Serrani. 

October 2002: 

- Gordon McKay Lecture Series at University of California, Berkeley, Invited lecture 

presented by Dr. A. Lindquist. 

- Analytic interpolation with degree constraint with applications to systems and control 

and signal processing,' Distinguished Lecturer in EECS Joint Colloquium, UC Berkeley, 

Invited lecture presented by Dr. A. Lindquist. 

- Shaping the steady state response of nonlinear control systems, Department of Mathe- 

matics and Statistics Texas Tech University Lubbock, Texas, Invited lecture presented 

by Dr. C.I. Byrnes. 

- Shaping the steady state response of nonlinear control systems. Symposium on New 

Trends in Nonlinear Dynamics and Control, US Naval Postgraduate School, Monterey, 

California, Plenary Lecture presented by Dr. C.I. Byrnes. 
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- Robust Tracking of Uncertain Trajectories, with Application to Helicopter Landing, 

Symposium on New Trends in Nonlinear Dynamics and Control, US Naval Postgraduate 

School, Monterey, California, Plenary Lecture presented by Dr. A. Isidori. 

- A convex optimization approach to generalized moment problems, Symposium on New 

Trends in Nonlinear Dynamics and Control, and their Applications, US Naval Post- 

graduate School, Monterey, California, Invited Lecture presented by Dr. A. Lindquist. 

November 2002: 

- Internal model based design for the suppression of harmonic disturbances, Directions in 

Mathematical System Theory and Optimization, Royal Institute of Technology, Stock- 

holm, Sweden, Invited Lecture presented by Dr. C.I. Byrnes. 

- On the solution of the regulator equations, SIAM Conf., Texas Tech University, Invited 

Lecture presented by Dr. D.S. Gilliam. 

- An optimization approach to generalized moment problems with complexity constraints, 

seminar at Uppsala University, Sweden, Invited Lecture presented by Dr. A. Lindquist. 

December 2002 

- Shaping the steady state response of nonlinear control systems, 41st IEEE Conference 

on Decision and Control Las Vegas, Nevada, Plenary Lecture presented by Dr. C.I. 

Byrnes. 

- Identifiability of shaping filters from covariance lags, cepstral windows and Markov 

parameters, 41st IEEE Conference on Decision and Control Las Vegas, Nevada, lecture 

presented by Dr. C.I. Byrnes. 

- The regulator equations for retarded delay differential equations, 41st IEEE Conference 

on Decision and Control, Las Vegas, NV, lecture presented by Dr. D.S. Gilham 

- Modeling modal based sensors for oscillatory systems, 41st IEEE Conference on Decision 

and Control, Las Vegas, NV,  lecture presented by Dr. D.S. Gilham 

- An optimization approach to generalized moment problems with complexity constraints, 

seminar at the Royal Institute of Technology, Stockholm, Sweden, Invited lecture pre- 

sented by Dr. A. Lindquist. 

January 2003: 

- Output regulation for distributed parameter systems with infinite dimensional exosys- 

tem, Institut Mittag-Leffler, Djursholm, Sweden, Invited lecture presented by Dr. D.S. 
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Gilliam. 

- Shaping the Steady State Response of Nonlinear Control Systems, Institut Mittag- 

Leffler, Djursholm, Sweden, Invited lecture presented by Dr. C.I. Byrnes. 

- Stability of gas and fluid flows containing particles, Institut Mittag-Leffler, Djursholm, 

Sweden, Invited lecture presented by Dr. V. Shubov. 

- Regular linear systems governed by parabolic equations, Institut Mittag-Leffler, Djur- 

sholm, Sweden, Invited lecture presented by Dr. V. Shubov. 

February 2003: 

- Shaping the steady state response of nonlinear control systems, Departments of Elec- 

trical Engineering and Systems Science and Mathematics Washington University St. 

Louis, Missouri, Invited lecture presented by Dr. C.I. Byrnes. 

- Output regulation with infinite dimensional exosystem and decay of generalized Fourier 

coefficients for Gevrey class functions, Florida State University, Tallahassee, FL., In- 

vited lecture presented by Dr. V. Shubov. 

March 2003: 

- An optimization approach to generalized moment problems with complexity constraints, 

seminar at Institut Mittag-Leffler, Djursholm, Sweden, Invited lecture presented by Dr. 

A. Lindquist. 

April 2003: 

- Disturbance suppression via state feedback for Hamiltonian systems, IFAC Workshop 

on Lagrangian and Hamiltonian Methods in Nonlinear Control, Sevilla, Invited lecture 

presented by Dr. A. Isidori. 

- A global analysis approach to robust control, seminar at Institut Mittag-Leffler, Djur- 

sholm, Sweden, Invited lecture presented by Dr. A. Lindquist. 

May 2003: 

- Toward a general non-equilibrium theory of output regulation, Institut Mittag-Leffler, 

Invited lecture presented by Dr. A. Isidori . 

June 2003: 
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- A global analysis approach to robust control, Workshop on Geometry in Nonlinear Con- 

trol, Stephan Banach International Mathematical Center, Poland, Invited lecture pre- 

sented by Dr. A. Lindquist. 

- Nonequilibrium Output Regulation for Nonlinear Distributed Parameter Systems, Insti- 

tut Mittag-Leffler, Djursholm, Sweden, Invited lecture presented by Dr.  C.I. Byrnes 

July 2003: 

- Nonequilibrium output regulation for nonlinear control systems, Computation, Control 

and Biological Systems, Department of Mathematics and Statistics, Montana State 

University, Bozeman, Montana, Invited lecture presented by Dr. C.I. Byrnes . 

- Nonequilibrium output regulation for distributed parameter systems. Computation, Con- 

trol and Biological Systems, Department of Mathematics and Statistics, Montana State 

University, Bozeman, Montana, Invited lecture presented by Dr. D.S. Gilliam. 

September 2003: 

- Nonequilibrium Output Regulation, AFOSR Contractors Meeting Dynamics and Con- 

trol, Destin, Florida, Invited lecture presented by Dr. C.I. Byrnes. 

November 2003: 

- Nonequilibrium Output Regulation, New Directions in Control Theory and Applications, 

Texas Tech University, Lubbock, TX, November 14 - 15, Invited lecture presented by 

Dr. C.I. Byrnes. 

- Internal Model Adaptation in Non-equilibrium Theory of Output Regulation, New Di- 

rections in Control Theory and Applications, Texas Tech University, Lubbock, TX, 

November 14 - 15, Invited lecture presented by Dr. A.Isidori. 

- Generalized Interpolation iri H°° Solutions with Bounded Complexity, New Directions 

in Control Theory and Applications, Texas Tech University, Lubbock, TX, November 

14 - 15, Invited lecture presented by Dr. A.Lindquist. 

Transitions: 

In September of 2001 Dr. Byrnes, Gilliam and Isidori began a collaborative project on 

control of UAV, UCAV and tailless aircraft with Dr. Yutaka Ikeda Automatic Air Collision 

Avoidance Systems, Phantom Works, The Boeing Company (yutaka.ikeda@boeing.com). 
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The purpose of the project was to transition their prior work, and recent extensions thereof, 

on robust output regulation to flight control technologies for UCAVs. 

Six technical meetings, were held on: September 15, 2001; October 15, 2001; November 

8, 2001; March 7, 2002; April 19, 2002; and May 24, 2002. These working meetings focused 

on transitioning this work to flight control methodologies for take-oS and landing of the 

Boeing TAFA model, with the transition of that work to UAVs and UCAVs being done by- 

Boeing engineers. This project resulted in the publication of one paper on the suppression 

of harmonic disturbances in the measured roll and yaw rates in UCAVs: 

Byrnes, Christopher I.; Gilliam, David S.; Isidori, Alberto; Ikeda, Yutaka; Marconi, 

Lorenzo Internal model based design for the suppression of harmonic disturbances. Directions 

in mathematical systems theory and optimization, 51-70, Lecture Notes in Control and 

Inform. Sci., 286, Springer, Berlin, 2003. 

7    New Discoveries, Inventions or Patent Disclosures 

We have made 3 patent disclosures and been granted 3 U.S. patents in the areas of speech 

processing and signal processing. Two of the patents relate to speech processing. The flrst 

is a new methodology for speech synthesis and processing, with contemplated applications 

in telephony. The second is a new methodology, based on the first, for speaker recogni- 

tion with application in the use of speech as a biometric in security systems. We believe 

this methodology would be of major interest to the DoD and other agencies using security 

systems. 

The third, and most recent, patent discloses a new approach to spectral estimation which 

is tunable to be higher resolution over prescribed frequency bands than other existing meth- 

ods. We believe this methodology would also be of major interest to the DoD. 

The status of the patents are: 

The European patent was applied for the US Patent No 5,940,791 - Method and apparatus 

for speech analysis and synthesis using lattice ladder notch filters, with Drs. C.I. Byrnes 

and A.G. Lindquist as inventors. 

On July 3, 2001 US Patent No. 6,256,609 - Method and apparatus for speech analysis 

and synthesis including speaker recognition, - was issued to Washington University , with 

Drs. C.I. Byrnes and A.G. Lindquist as inventors. 

US Patent 6,400,310, Method and apparatus for a tunable high-resolution spectral esti- 
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mator, granted to Drs. C.I. Byrnes, T. Georgiou and A.G. Lindquist through the University 

of Minnesota and Washington University on June 4, 2002. 

Canadian and European apphcations pending for the international extension of the US 

Patent 6,400,310, Method and apparatus for a tunable high-resolution spectral estimaitor. 

8    Additional Information, Awards and Honors 

- 3 IEEE Fellows (Dr.s C.I. Byrnes, A. Isidori, A. Lindquist). 

- At the 42nd IEEE CDC, Maui, Hawaii, in December 2003, C. I. Byrnes, T. Georgiou and 

A. Lindquist was awarded the 2003 IEEE George S. Axelby Award for the best paper in 

the IEEE Trans, on Aut. Control. 

- The paper A convex optimization approach to the rational covariance extension problem, 

by C. I. Byrnes, S. V. Gusev and A. Lindquist was selected in 2000 to be published in an 

enhanced form in SIAM Review as a SIGEST paper. 

- At the 40th IEEE CDC, Orlando, Florida, in December 2001, A.Isidori was awarded the 

2001 Hendrik W. Bode Lecture prize from the Control Systems Society of IEEE. 

- IFAC Best Paper Award, (C.I. Byrnes and A. Isidori), 1993 IFAC World Congress. 

- IEEE George S. Axelby Award as the best paper in the IEEE Trans, on Aut. Control, 

1991 ( C.I. Byrnes and A. Isidori). 

- Dr. C.I. Byrnes, elected Fellow of the Academy of Sciences of St. Louis in 1998. 

- Dr. C.I. Byrnes was awarded an Honorary Doctorate of Technology from the Swedish 

Royal Institute of Technology, November 1998. 

- Dr. C.I. Byrnes was elected in March 2001 as a Foreign Member of the Royal Swedish 

Academy of Engineering Sciences. 

- The Graduate College Distinguished Research Award: C.I. Byrnes, 1988, ASU. 

- Fellow, Japanese Society for the Promotion of Science: C.I. Byrnes, 1986. 

- A. Isidori, The DiflFerential Geometric Approach to the Detection of Faults in Nonlinear 

Systems, Plenary Lecture, NOLCOS 2001. 

- A.Isidori, Finesse and Geometric: the Spirit of Nonlinear Feedback, Bode Plenary Lecture, 

CDC 2001. 
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Quazza Medal awarded to Dr. A. Isidori at 13th IFAC World Congress in San Francisco, 

1996 for Pioneering and Fundamental Contributions to the Design of Nonlinear Feedback 

Systems. 

Alberto Isidori was listed in the Highly-Cited database among the top 10 most-cited au- 

thors in Engineering in the world for the period 1981-1999. 

Dr. A. Lindquist, Foreign Member of Russian Academy of Natural Sciences, 1997. 

Dr. A. Lindquist elected Member of the Royal Swedish Acad. of Engr. Sci., 1996. 

Dr. A. Lindquist, Honorary Member of Hungarian Operational Res. Soc, 1994. 
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