RTO-MP-102

RTO-MP-102
AC/323(IST-034)TP/19

NORTH ATLANTIC TREATY ORGANISATION

-\

RESEARCH AND TECHNOLOGY ORGANISATION
BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE

© RTO/NATO 2003

Single copies of this publication or of a part of it may be made for individual use only. The approval
of the RTA Information Management and Systems Branch is required for more than one copy to be
made or an extract included in another publication. Requests to do so should be sent to the address

above.

RTO MEETING PROCEEDINGS 102

Technology for Evolutionary Software

Development
(Technologies pour le développement de logiciels évolutifs)

Papers presented at the Information Systems Technology Panel (IST) Symposium held in Bonn,
Germany, 23-24 September 2002.

Published June 2003

Distribution and Availability on Back Cover

This page has been deliberately left blank

Page intentionnellement blanche

RTO-MP-102
AC/323(IST-034)TP/19

NORTH ATLANTIC TREATY ORGANISATION

-\

RESEARCH AND TECHNOLOGY ORGANISATION
BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE

RTO MEETING PROCEEDINGS 102

Technology for Evolutionary Software
Development

(Technologies pour le développement de logiciels évolutifs)

Papers presented at the Information Systems Technology Panel (IST) Symposium held in Bonn,
Germany, 23-24 September 2002.

D
v

The Research and Technology
Organisation (RTO) of NATO

RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote
cooperative research and information exchange. The objective is to support the development and effective use of national
defence research and technology and to meet the military needs of the Alliance, to maintain a technological lead, and to
provide advice to NATO and national decision makers. The RTO performs its mission with the support of an extensive
network of national experts. It also ensures effective coordination with other NATO bodies involved in R&T activities.

RTO reports both to the Military Committee of NATO and to the Conference of National Armament Directors. It comprises a
Research and Technology Board (RTB) as the highest level of national representation and the Research and Technology
Agency (RTA), a dedicated staff with its headquarters in Neuilly, near Paris, France. In order to facilitate contacts with the
military users and other NATO activities, a small part of the RTA staff is located in NATO Headquarters in Brussels. The
Brussels staff also coordinates RTO’s cooperation with nations in Middle and Eastern Europe, to which RTO attaches
particular importance especially as working together in the field of research is one of the more promising areas of initial
cooperation.

The total spectrum of R&T activities is covered by the following 7 bodies:

e AVT Applied Vehicle Technology Panel

e HFM Human Factors and Medicine Panel

e IST Information Systems Technology Panel

e NMSG NATO Modelling and Simulation Group

e SAS Studies, Analysis and Simulation Panel

e SCI Systems Concepts and Integration Panel

e SET Sensors and Electronics Technology Panel
These bodies are made up of national representatives as well as generally recognised ‘world class’ scientists. They also
provide a communication link to military users and other NATO bodies. RTO’s scientific and technological work is carried
out by Technical Teams, created for specific activities and with a specific duration. Such Technical Teams can organise

workshops, symposia, field trials, lecture series and training courses. An important function of these Technical Teams is to
ensure the continuity of the expert networks.

RTO builds upon earlier cooperation in defence research and technology as set-up under the Advisory Group for Aerospace
Research and Development (AGARD) and the Defence Research Group (DRG). AGARD and the DRG share common roots
in that they were both established at the initiative of Dr Theodore von Karman, a leading aerospace scientist, who early on
recognised the importance of scientific support for the Allied Armed Forces. RTO is capitalising on these common roots in
order to provide the Alliance and the NATO nations with a strong scientific and technological basis that will guarantee a
solid base for the future.

The content of this publication has been reproduced
directly from material supplied by RTO or the authors.

Published June 2003

Copyright © RTO/NATO 2003
All Rights Reserved

ISBN 92-837-0029-5

OTTAWA/HULL

Printed by St. Joseph Print Group Inc.
(A St. Joseph Corporation Company)
1165 Kenaston Street, Ottawa, Ontario, Canada K1G 6S1

Technology for Evolutionary Software Development
(RTO MP-102 / IST-034)

Executive Summary

Traditional military procurement has taken a static view of the system development process.
Requirements, which are assumed to be fixed, drive the definition of a specification, the system is
developed to meet that specification, and then the resulting system is fielded. The principal risk
foreseen is that if the requirements are not correctly identified, the system may fail.

In practice getting the requirements right is difficult, all the more so because in a rapidly changing
technology like software, the technical requirements change not only during the intended lifetime of
the system, but even during the time required for developing the system. Political imperatives can also
change requirements rapidly. More seriously, having to wait to deploy the system until the full
functionality has been implemented can have serious consequences, which might have been averted if
partial functionality had been made available earlier.

Evolutionary Software Development, which has long been practiced in the commercial marketplace,
represents a solution to all these problems. Instead of a single “big bang” system delivery, it is
accepted that the system should be delivered over a sequence of releases, each more complete than its
predecessor, but possibly also accommodating changes in those requirements already implemented.
The “design-a-little”, “build-a-little”, “deploy-a-little”, “learn-a-little” iteration accommodates an
increasing appreciation of the true requirements based on practical experience, as well as allowing for
disruptive changes in requirements from external influences affecting user expectations, available
technology, or different functionality that could not, even in principle, be predicted in advance. The
incremental delivery and fielding means useful functionality can be put in place, and a way forward
can be laid out, even if funding for completion is not yet assured. The key to accomplishing this risk
reduction at a cost comparable to the traditional approach is to plan across many releases, rather than
treating each release as an isolated event.

The Symposium itself was an opportunity for taking stock of experience in applying Evolutionary
Software Development to real, primarily military, systems. Successes were recorded, and
complications were noted, leading to a need for future refinement of the process. Although there are
open questions in how best to apply the process, these were not addressed by the submitted papers. As
with many other conferences affected by the downturn in the economy this year, attendance
unfortunately was down, only 69 attendees.

A novel aspect of the Symposium was that it was preceded by a free tutorial to acquaint newcomers to
the history of Evolutionary Software Development. The Symposium consisted of two keynote
speeches, and 21 submitted papers. The keynote speeches represented North American and European
views, covering industrial, academic and military perspectives. The submitted papers, which
represented experience from 9 nations, were divided among six sessions:

e Software process

e Strategies and approaches

Software and system architectures

e Components and user interfaces

Techniques

Lifecycle issues

iii

The Software Process session looked at how agile methodologies can be adopted, how the evolutionary
model overcomes disadvantages intrinsic to the V-model, how a short customer interaction cycle can
improve predictability and customer satisfaction. It also proposed a process improvement project aimed
at using the V Model as a single integrated process for hardware, software, and logistics. The
Strategies and Approaches session examined procurement strategies incorporating evolutionary
practices, considered an end-to-end service as a strategy for a backbone around which to apply
increments, and an evolutionary development as a risk minimization strategy for a pilot C3I system for
the Romanian army. The Software and System Architectures session studied tradeoffs between radical
revision and a sequence of smaller changes within a product line. It reviewed treating airport support
systems as an evolving product line. It described the role of architecture in building adaptable systems
for support of modern army activity. It listed four principles to guide architecture to meet the multiple
viewpoints necessary for naval combat systems. The Components and User Interfaces session dealt
with modern technologies for implementing web based and other user interface intensive applications,
where feedback iterations are essential to user satisfaction. The Techniques session looked at
“trustability” as a criterion for creating a collection of components as a capital asset. It considered a
new specification technique to allow developers to describe and track evolving architectures. It
presented visual tools to understand and accelerate the development and evolution activities. Finally,
the Lifecycle Issues session reflected on management requirements for evolving software, the potential
of knowledge management techniques to assist with software that evolves, and the challenges of
deployment of evolving distributed applications.

The conclusion that can be drawn from the Symposium is that Evolutionary Software Development is
being used effectively today to meet the need for software systems that can adapt to meet requirements
that change at today’s hectic pace. More widespread uptake of this approach would benefit the military
community.

iv

Technologies pour le développement
de logiciels évolutifs

(RTO MP-102 / IST-034)

Synthese

Traditionnellement, les responsables des approvisionnements militaires ont considéré le processus de
développement de systtmes comme un élément statique. Selon cette logique, les besoins, qui sont
supposés étre définitifs, déterminent le cahier des charges, le systéme est développé pour répondre a ce
cahier des charges, et le systtme qui en résulte est mis en service. Le principal risque a prévoir est
I’identification erronée des besoins, qui peut conduire a la défaillance du systéme.

Dans la pratique, la définition des besoins s’avere difficile, d’autant plus que pour une technologie en
évolution rapide telle que celle des logiciels, les besoins techniques changent non seulement pendant la
durée de vie prévue du systeme, mais également lors de son développement. Les besoins peuvent
également changer subitement en raison d’impératifs d’ordre politique. Il est un fait plus préoccupant :
I’attente de la mise en ceuvre de ’ensemble des fonctions avant de pouvoir utiliser le systeéme peut
avoir des conséquences graves, ce qui pourrait €tre évité par une mise en service plus rapide d’une
partie seulement des fonctions.

Le développement de logiciels évolutifs (ESD), pratiqué depuis longtemps dans le commerce,
permettrait de résoudre 1I’ensemble de ces problémes. Avec cette approche, il est admis que la livraison,
au lieu de se faire en une seule fois, peut étre réalisée en plusieurs étapes, chacune étant plus complete
que la précédente, tout en acceptant éventuellement de modifier des besoins déja satisfaits. L.’itération
« concevoir un peu », « construire un peu », « déployer un peu », « apprendre un peu », autorise une
compréhension toujours plus grande des vrais besoins, qui se fonde sur I’expérience pratique et tient
compte de la perturbation créée par 1’évolution des besoins sous I'influence de facteurs externes
affectant les attentes des utilisateurs, des technologies existantes et de fonctions différentes, qui ne
pourraient pas €tre anticipées, méme dans le principe. Par une livraison et une mise en service
progressives, on peut mettre en place des fonctions utiles et établir une marche a suivre, méme si le
financement de la réalisation de 1I’ensemble n’est pas encore garanti. Cette réduction du risque peut tre
obtenue pour un cofit comparable a celui engendré par une approche traditionnelle si le systéme est
livré par étapes, chaque livraison n’étant plus considérée en situation isolée.

Le symposium a été I’occasion de faire du retour d’expérience quant a 1’application de I’ESD en vraie
grandeur, et principalement a des systemes militaires. Les succes enregistrés mais également les
difficultés identifiées motivent le besoin d’évolution du processus a 1’avenir. Si certaines questions sur
I’emploi « au mieux » du processus restent ouvertes, elles n’ont pas été traitées dans les documents
soumis. A 1’identique de nombreuses conférences organisées cette année, qui ont été affectées par la
mauvaise conjoncture économique, la participation au symposium a été réduite (69 participants
seulement).

L’organisation d’un cours didactique gratuit, de familiarisation des néophytes a I’historique de ’ESD,
était I'un des aspects novateurs du symposium. Celui-ci s’est articulé sur deux discours d’ouverture et
21 communications. Les deux discours ont permis de présenter les points de vue nord-américain et
européen sur les perspectives industrielles, universitaires et militaires. Les communications, qui
faisaient I’état de I’expérience acquise par neuf pays, ont été réparties en six sessions :

e Processus logiciel
e Stratégies et approches

e Logiciels et architectures systemes

e Composants et interfaces utilisateur
e Techniques

e Questions relatives au cycle de vie

La session sur le processus logiciel a été axée sur la recherche de modalités de mise en ceuvre des
méthodologies « souples », la capacité du modele évolutif a pallier les désavantages propres au
modele V, de ’amélioration de la prévisibilité et de la satisfaction du client grace a une relation client
fournisseur en boucle courte. On y a également étudié une proposition de projet d’amélioration du
processus visant a I'utilisation du modele V comme processus intégré unique pour le matériel, le
logiciel et la logistique. La session sur les stratégies et les approches, qui était axée sur un systeme
pilote de C3I pour ’armée roumaine, a permis d’examiner certaines stratégies d’approvisionnement
incorporant des méthodes évolutives et de réfléchir, d’une part, a un concept de service « de bout-en-
bout » qui servirait de stratégie centrale pouvant étre améliorée par étapes et, d’autre part, de
considérer le développement évolutif comme stratégie de réduction, au plus faible niveau, des risques.
La session sur les logiciels et les architectures systemes a été consacrée, pour une gamme de produits, a
I’examen de compromis entre une remise a plat complete et une série de changements mineurs. La
possibilité de considérer les servitudes d’un aéroport comme une gamme de produits évolutifs a été
envisagée. On y a également décrit le role des architectures dans la conception de systemes adaptables
pour le soutien des activités d’'une armée moderne. Quatre principes directeurs permettant de concevoir
les architectures en fonction des multiples facettes des systemes navals de combat ont été préconisés.
La session sur les composants et les interfaces utilisateur a porté sur les technologies modernes pour la
mise en ceuvre d’applications exigeant de nombreuses interfaces utilisateur accessibles sur I’Internet ou
d’autres sources, pour lesquelles les itérations des retours d’information sont indispensables a la
satisfaction client. La session sur les techniques a examiné le concept du « niveau de confiance » en
tant que critere pour la constitution d’un jeu de composants considérés comme immobilisations. On y a
présenté une nouvelle technique de rédaction de cahiers des charges permettant aux concepteurs de
décrire et de suivre des architectures évolutives. Des outils optiques pour la compréhension et
I’accélération des activités de développement et d’évolution ont été présentés. Enfin, la session sur les
cycles de vie a permis aux participants de se pencher sur les besoins des gestionnaires en logiciels
évolutifs, la possibilité de tirer profit de certaines techniques de gestion de I’information pour le
développement de ces logiciels, ainsi que les défis posés par la mise en ceuvre d’applications évolutives
réparties.

Il ressort de ce symposium que I’ESD doit étre effectivement mis en application au plus tdt pour
répondre a la nécessité de logiciels adaptatifs propres a satisfaire des besoins changeant au rythme
effréné d’aujourd’hui. Une adoption plus généralisée de cette approche serait avantageuse pour les
militaires.

vi

Click inside the blue boxes or on the titles to view the corresponding section

(except for items marked in red, which were not available for production)

Contents

"

Information Systems Technology Panel

Acknowledgements/Remerciements

A Tutorial on EVO was presented on Sunday afternoon 22 September E
by T. Gilb .

Technical Evaluation Report
by T. Gilb

Keynote Address #1: Software Architecture: Leverage for System Evolution
by D.E. Perry

SESSION I: SOFTWARE PROCESS
Chairman: Dr Milan SNAJDER (CZ)

Applying Agile Methods in Rapidly Changing Environments
by P. Kutschera and S. Schafer

Practical Aspects of Evolutionary Software Development for Future Complex Military
C3I-Systems
by W. Rath and A. Kainzinger

Evolutionary Development Methods — How to Deliver Quality on Time in Software
Development and Systems Engineering Projects
by N. Malotaux

An Integrated System Development Process Including Hardware and Logistics Based on a
Standard Software Process Model
by W. Kranz

SESSION II: STRATEGIES AND APPROACHES
Chairman: Dr Ryszard RUGALA (PL)

Progressive Acquisition: A Strategy for Acquiring Large and Complex Systems
by H. Hummel

The Backbone Approach to Evolutionary Systems Development
by A. Miller

A Romanian Approach for Evolutionary Software Development
by L. Boiangiu

+ The Tutorial was not available for production.

vii

xii

Reference

KN1

SESSION III: SOFTWARE AND SYSTEM ARCHITECTURES
Chairman: Prof. Fuat INCE (TU)

Balancing Evolution with Revolution to Optimize Product Line Development 8
by D. Muthig and K. Schmid

Towards an Evolutionary Strategy of Developing a Software Product Line in the Field of 9
Airport Support Systems
by F.B.J. de Laender

Incremental System Development in the Royal Netherlands Army 10
by B. Smid
Principles of Future Architecture for Naval Combat Management Systems 11

by J. Skowronek and J.H. van ‘t Hag

Keynote Address #2: Evolutivité des systemes: le point de vue du client KN2
(A Customer Vision of Evolutionary Systems)
by P. Lodéon

SESSION 1IV: COMPONENTS AND USER INTERFACES
Chairman: Dr Helmuth STEINHEUER (GE)

The Evolutionary Software Development Process Used in the Upgraded AMX Human 12
Machine Interface Design
by R. Ambra and F. Ruta

Web Application Development — State-of-the-Art Technologies 13
by M. Donovang-Kuhlisch

Evolvable Web-based Applications with J2EE 14
by M. Vigder, J.H. Johnson and M. Northcott

The Use of Tryllian Mobile Agent Technology in Military Applications 15
by C. Karman

SESSION V: TECHNIQUES
Chairman: Dr Michel LEMOINE (FR)

Software Components Development and Follow-up: The “Design for Trustability” (DfT) 16
Approach
by D. Deveaux, J-F. Le Cam and A. Despland

Evolutionary Development of Software Architectures 17
by A. Rausch and M. Broy

Design of Information Systems Using the Visual Tools 18
by S. Spodniak

SESSION VI: LIFECYCLE ISSUES
Chairman: Mr Yves VAN DE VIJVER (NE)

Managing Product Requirements with Evolutionary Lifecycle Model 19
by Y. Nazarenko and V. Beck

Knowledge Management: Acceleration for Software Development Processes and 20
Improvement of Quality Management
by C. Nagel

viii

Theme

Today’s NATO military systems depend on large, complex software with the need to adapt to new and
evolving requirements, technologies and policies. However this requirement is not quite compatible with
the traditional project oriented view of software development, which is prevalent in today’s military
acquisition methods. Traditional methods of software development are being gradually replaced in the
commercial community by more ‘“evolutionary” or incremental development methods that presuppose a
sequence of releases with changing functionality.

Although commercial software has been very active in exploiting such new methods, the military side has
been slower to adopt them, even where the advantages appear obvious. The commercial marketplace
recognizes that successful products need continual renovation in order to respond to competitive pressure
and to demonstrate continuing vendor commitment, as well as to address changed requirements, exploit
new technologies, and accommodate rising user expectations. Because these future specifications even in
principle cannot be known in advance, the process of product evolution has been integrated into product
development. Deferring less critical functionality to later releases also facilitates earlier deployment of
initial functionality.

In the military world too, although for somewhat different reasons, future requirements even in principle
cannot be known. Nevertheless, traditionally the convenient fiction has been adopted that a fixed
specification can be defined, and used not just for competitive procurement, but to monitor the progress of
the development process and assess the quality of the resulting deliverable. A corollary is that maintenance
has been treated as a minor activity, not requiring the skills, experience and judgement of the original
developers. Infrequent major upgrades have been treated as independent development projects.

The rate of change in the industry now exceeds the capacity to sustain this fiction. Desired functionality
does not get deployed fast enough, or sometimes even at all, and the expense of keeping systems current is
prohibitive. Procurement needs to take into account the full system lifetime. The current unsatisfactory
software process affects almost two dozen of the DCI items.

There is a need to review the advances in evolutionary software development in the commercial market,
evaluate the requirements of military software development, bring forth lessons to be learned, identify areas
of research and draw projections especially for the procurement community. Both the software architecture
of the product and the software process to develop and support the product, need to facilitate this sequence
of evolving releases.

The main focus of the symposium is how to exploit evolutionary software development for military
software. Adoption of commercial practice to the military context needs to be examined, both for successes
and for failures. Resolution of challenges not yet satisfactorily treated even in the commercial domain is
needed. Of course, challenges unique to military software need to be considered. Assessment of the
effectiveness of the approach in practice would be valuable.

Theme

Les systemes militaires de ’OTAN d’aujourd’hui dépendent pour leur fonctionnement, de logiciels
complexes et ils doivent s’adapter a des politiques, des technologies et des besoins, nouveaux et évolutifs.
Pourtant, cette situation n’est pas tout a fait compatible avec 1’approche classique du développement de
logiciels, qui est orientée projet et qui prévaut dans les méthodes d’approvisionnement militaire
d’aujourd’hui. Du point de vue commercial, les méthodes classiques de développement de logiciels sont en
train d’étre remplacées peu a peu par des méthodes de développement plus cumulatives ou « évolutives »,
qui présupposent une série de mises sur le marché avec des fonctionnalités différentes.

Si les responsables du développement de logiciels commerciaux ont activement exploité de telles méthodes
nouvelles, les militaires ont tardé a les adopter, méme lorsque les avantages paraissaient évidents. Pour un
produit, la réussite sur le marché commercial passe par un renouvellement constant de facon a répondre a la
pression de la concurrence et a témoigner de I’engagement permanent du vendeur. Il est ainsi possible de
répondre a des besoins changeants en exploitant de nouvelles technologies, et en satisfaisant les attentes
croissantes des utilisateurs. Puisqu’il est impossible, méme en principe, de connaitre a 1’avance ces futures
spécifications, le processus d’évolution du produit a été incorporé dans le développement du produit.
Reporter des fonctionnalités moins critiques sur des versions futures présente 1’avantage supplémentaire de
faciliter le déploiement immédiat des fonctionnalités initiales.

Dans un environnement militaire également, bien que les raisons soient quelque peu différentes, il est, en
principe, impossible de connaitre a I’avance les besoins futurs. Néanmoins, il est généralement admis qu’il
soit possible de définir une spécification fixe, et de I’appliquer non seulement a 1’approvisionnement
concurrentiel, mais aussi au suivi du processus de développement et a I’évaluation du produit qui en résulte.
En corollaire, la maintenance a été considérée comme une activité mineure, n’exigeant ni les compétences,
ni ’expérience, ni le discernement des responsables chargés du développement initial. Il est arrivé que des
mises a niveau importantes mais rares aient été traitées comme des projets de développement indépendants.

Le rythme d’évolution dans I’industrie rend impossible la persistance de cette fiction. Les fonctionnalités
souhaitées ne sont pas déployées a temps, voire méme pas du tout, et le colit de mise a jour des systémes
devient prohibitif. Le processus d’approvisionnement doit tenir compte du cycle de vie global du produit.
Le processus d’approvisionnement de logiciels non satisfaisant actuel affecte plus d’une vingtaine des
articles DCI.

Il est nécessaire d’examiner les avancées dans le domaine du développement des logiciels évolutifs pour le
marché commercial, d’évaluer les besoins du développement des logiciels militaires, de déterminer les
enseignements tirés, d’identifier les domaines de recherche et de faire des prévisions, en particulier pour les
spécialistes de I’approvisionnement. Il est important que 1’architecture logicielle du produit et le processus
logiciel indispensable au développement et au soutien du produit, facilitent cette série évolutive de mises
sur le marché.

Le symposium est principalement axé sur I’exploitation du développement des logiciels évolutifs aux fins
des logiciels militaires, avec examen des adaptations, réussies ou non couronnées de succes, des pratiques
commerciales au contexte militaire. Bon nombre de défis restent a relever, méme dans le domaine
commercial. Il va sans dire que les défis qui ne concernent que les logiciels militaires sont aussi a prendre
en considération et il sera également intéressant de procéder a une évaluation des approches actuellement
adoptées.

Information Systems Technology Panel

Chairman

Prof. Ann MILLER

Distinguished Professor of Electrical and
Computer Engineering

University of Missouri-Rolla

125, Emerson Electric Co. Hall

Rolla, MO 65409-0040

UNITED STATES

Deputy Chairman

Dr. René JACQUART
Directeur du DTIM
ONERA/CERT/DTIM

2, Av Edouard Belin, BP 4025
31055 Toulouse Cedex 4
FRANCE

TECHNICAL PROGRAMME COMMITTEE

Dr. Milan SNAJDER

Ministry of Defence

Military Technical Institute of Electronics
Pod Vodovodem 2

150 07 Prague 5

CZECH REPUBLIC

Dr. Michel LEMOINE
ONERA/DPRS/SAE

2, avenue Edouard Belin, B.P. 4025
31055 Toulouse Cedex 14
FRANCE

Dr. Helmuth STEINHEUER

Bundesamt fiir Wehrtechnik und Beschaffung IT I 5

Ferdinand-Sauerbruch Str 1
Postfach 30 01 65
D-56073 Koblenz
GERMANY

Chairman:

Director

CANADA

MEMBERS:

xi

Dr. Morven GENTLEMAN

Global Information Networking Institute
Dalhousie University
6050 University Avenue
Halifax, Nova Scotia B3H 1W5

Mr. Yves VAN DE VIJVER
National Aerospace Laboratory
Anthony Fokkerweg, 2

P.O. Box 90502

1006 BM Amsterdam

THE NETHERLANDS

Capt. Ryszard RUGALA
Ministry of Defence

R&D Marine Technology Centre
Dickmana 62

81-109 Gdynia

POLAND

Ir. Luboslav LACKO

Military Technological Institute
ul. kpt. Nalepku

03101 Liptovsky Mikulas
SLOVAK REPUBLIC

PANEL EXECUTIVE

From Europe: From the USA or CANADA:
RTA-OTAN RTA-NATO

Lt. Col. A. GOUAY, FAF Attention: IST Executive

IST Executive PSC 116

7 Rue Ancelle, BP 25 APO AE 09777

F-92201 Neuilly sur Seine, Cedex

FRANCE

Telephone: +33 (1) 5561 2280 / 82 - Telefax: +33 (1) 5561 2298 / 99

HOST NATION LOCAL COORDINATOR
Dr. Jirgen GROSCHE
Forschungsgesellschaft fiir Angewandte
Naturwissenshaften (FGAN)
Neuenahrerstrasse, 20
D-53343 Wachtberg
GERMANY

Acknowledgements/Remerciements

The Panel wishes to express its thanks to the German members of RTA for the invitation to hold this Symposium in
Bonn and for the facilities and personnel which made the Symposium possible.

Le Panel tient a remercier les membres du RTB de 1’Allemagne aupres de la RTA de leur invitation a tenir cette
réunion a Bonn, ainsi que pour les installations et le personnel mis a sa disposition.

xii

T-1

Technical Evaluation Report

Tom Gilb
Result Planning Limited
Iver Holtersvei, 2
NO-1410 Kolbotn
Norway

Introduction: Background for the meeting:

In 1994 the US DOD issued a software engineering standard (MIL-STD 498) which
substantially changed the decades old (Mil Std 2167, 2167a) recommended development
practice from ‘Waterfall’ to ‘Evolutionary’. This practice has been continuously
emphasized since then (‘Evolutionary Acquisition’)'. To my knowledge, and experience,
most other NATO countries have been largely unaware or uninterested in this
development®, but the practice has been carried out in some projects, as documented by
this symposium.

Experience, not least as presented at this symposium, shows that this method of
procurement and development has many practical and economic advantages. But it is a
new paradigm which has some new problems and these are not thoroughly solved and
publicized. We are in fact in early stages of understanding this method (even though
some military and space use goes back to the 1970’s).

As the symposium credibly demonstrated we all have a lot to learn from each other about
the experiences. We need to understand the opportunities for improving military
procurement, and to decide on short term action to effectively spread this method to both
suppliers and the military establishment.

! http://www.dau.mil/pubs/gdbks/evolv.pdf
 The Uk MOD and especially their procurement agency seemed to have no knowledge of this
development when I spoke to them last year on the subject.

T-2

Summary of Problems Revealed

(some are merely implied from presentations and discussion, some are explicitly identified by speakers or questioners.)

® Lack of agreed terminology/concepts
Both in the talks and in questions it was apparent that we lack an agreed common
terminology, even for basic concepts such as what is ‘Evolutionary’.
* Lack of comparable experience reporting.
The papers and experiences were not reported in any systematic and consistent manner. If
participants, and later readers of the documentation are to fully understand and compare
the experiences, there should be some common framework which speakers can aspire to.
® Lack of common training programme [Evo]
None of the speakers mentioned any form of training in Evolutionary Project
Management. There does not seem to be training at University level and very little
commercial training. It seems that we might at least identify the training that exists, and
develop some common notion of what that training might contain.
* Lack of a NATO standard
There are US DoD Standards (Dod 498 (Obsolete) and
Evolutionary Acquisition Guidelines (JOINT
LOGISTICS COMMANDERS
GUIDANCE FOR USE OF EVOLUTIONARY
ACQUISITION STRATEGY TO ACQUIRE
WEAPON SYSTEMS
http://www.dau.mil/ AND SEARCH FOR “EVOLUTIONARY”
PUBLISHED BY THE DEFENSE SYSTEMS MANAGEMENT, COLLEGE
PRESS, FORT BELVOIR, VA 22060-5565
REISSUED AND REVISED JUNE 1998 AND 2001 WITH A NEW FOREWORD
http.//www.dau.mil/pubs/gdbks/evolv.pdf)
* Lack of appropriate system level requirements disciplines.
Several speakers commented that they had recognized the need for better requirements
specification methods, particularly non-functional (quality) requirements. This is of
course a general need with or without Evolutionary projects. Evolutionary projects can be
viewed as gradually delivering specified requirements. So, if the requirements are unclear
or absent, the entire evolutionary process is out of control.
* Lack of specific measurement capability for Evo.
Speakers alluded to the need to be able to measure what was going on in the evolutionary
environment. We need to develop common concepts of measurement which help projects
report and control their project. We need to be able to tie these measures to contractual
progress, and possibly payments for resulting progress.
* Contractual/acquisition Problems
Speakers alluded to both the fact that conventional acquisition and contracting processes
could inhibit intelligent use of evolutionary method options. We need to develop and
understanding of these problems and recommend tactics that can be employed in
contracting and acquisition to enable and to exploit the evolutionary process.
® Tailoring to diverse user groups (by those groups)

T-3

One speaker brought up their practice of designing their software so that a variety of end

users could themselves tailor the system to some degree. It is not clear how intimately

tied this is to evolutionary processes, but I wanted to mention that it seems interesting to

explore this further in case it does.

* Several speakers viewed evolution in terms of ‘product line management’, and this
deserves some deeper thought and perhaps a general picture of how product line
management is related to evolutionary methods.

Some Recommendations
« Conceptual Clarity

- Adopt a glossary of concepts to standardize our common understanding and

communication.

I recommend that we develop and publish, and maintain an “Evolutionary System
Development” Concept Glossary. By ‘concept glossary’ I means that Evolutionary
Process Concepts are well defined, they are numbered for neutral reference, and one or
more terms are attached to the concept definition, in any NATO Language. This concept
glossary would contribute to solving many current problems such as common vocabulary
in papers and presentations, and common terminology for measurement of the
development process.3

« Requirements Engineering

- Quality, Performance and Cost requirements quantified.
Evolutionary development can be viewed as a process for continuous delivery to
stakeholders of specified requirements. These requirements can be classified as function,
and performance (including quality). Most people are well aware of how to specify and
track work capacity and cost consumption, but are consistently failing to quantify and
evolutionarily track quality requirements (such as usability, interoperability, security,
adaptability, portability). Some speakers are even in doubt as to whether we can quantify
some of these concepts! We need to make the process of quantification of all critical
system requirements easily available to NATO system developers. This can be done by
publishing the quantification process, by publishing known scales of measure (DOD has
published thousands of military scales of measure which I have a copy of), and by
publishing known measuring methods corresponding to these scales. This material needs
to be integrated with training and glossary products.

- Methods to tackle continuous real-time flow of potential and necessary new or

modified requirements.

Several speakers alluded to the problem of evolutionary methods which insist on being
open to new and improved requirements during the development process. This helps
systems evolved more competitive specifications, but the methods needed to evaluate,
specify, prioritize, risk analyze, quality control, integrate these new requirements may

? I can offer my own 620+ concept glossary (found on www.gilb.com) as an example and
I am willing to contribute it as a starter, and am willing to work on the NATO version
with others. This already contains quite a few Evo specific concepts.

* A first help will be found in my book Gilb: Principles of Software Engineering
Management , and in even greater detail on my Requirements Slides (www.gilb.com) -
freely available.

T-4

need special attention in the evolutionary environment. We could potentially work out the
nature of these problems, and make best practice recommendations.’

« Literature Database

The conference alone has built a critical mass of papers and presentation slides about
Evolutionary practices in the NATO community. I would suggest that it is important that
these, as well as past and future efforts are made available on a long term basis on the
website. I could imagine adding links to other web literature, and adding or developing a
bibliography of the know literature about Evolutionary Development as it emerges.”

 Best Practices Data

If we are to determine what is a best practice, and determine when a previous best
practice is less competitive than it was, we need data about the expected benefits and
costs of that practice. At the very least, if any evolutionary practice is to be called a
known best practice some quantitative evidence should be shown. A simple example
would be the question of how long the delivery cycle should be. ’ Possibly by
contributing NATO data to international databases we could get even better comparisons
and free analysis. But we still have to organize the contributions!

« Manage ‘Experience Reports’ (ask authors for useful facts benefits, costs deviations)

> The nature of some of these problems and suggested solutions will be found in papers

on my website (www.gilb.com). See Competitive Engineering (manuscript), Risk

Management (the paper and the manuscript) and Priority Management.

® Frauenhofer Institutt has done this for the Inspection literature for example. I

contributed my personal Bibliography on a CD on the Bonn Sunday Evo tutorial, (MG

has a copy) and am happy to submit it as input to others when we decide to get systematic
about this literature.

7 Extensive, available, research has been done and is being done on practice databases,
such as a HP (Bronson, Sharma papers are on the CD mentioned above). Here is a
call for data and a website: (May 2002 email) Perhaps you could help me. I am
conducting another worldwide survey of

> software development practices. Mostly we are interested in how incremental

> techniques (evolving specs, short subcycles, frequent builds, early

> integration testing, early betas, etc.) compare with more conventional

> techniques in affecting schedules, bugginess, costs, and the like.

> Hewlett-Packard was the pilot site. We now have 100 or so projects from the

> US, Japan, India, and elsewhere. We need more. We are accepting any type of

> system, application, or embedded software project with at least two people.

> Respondents don't have to answer all questions, but they should do most of

> them. My partners on the academic side are Chris Kemerer, now of U. of

> Pittsburgh, and Alan MacCormack, of Harvard Business School. Participants

> will get an early analysis of the results, before we publish, which will

> help them benchmark themselves against different practices and standards

> around the world. This is the URL for the survey.

>

> http://web.mit.edu/surveys/pearl/

T-5

When soliciting papers and presentations, we could guide potential authors as to what
kind of reports we are soliciting. For example it should be clear that experience reports or
research should contain specific comment on: disadvantages, problems, benefit and costs.
Currently this is up to the author to decide to do, and many papers were excellent at doing
this, but others did not feel the obligation, but might have risen to the challenge if
provoked or guided.

Our review process should use these presentation guidelines to select papers and to give
feedback to authors.

I assume that the value of the conference increases as to the degree of factual information
given. One paper was chemically free of any such data. I discussed this with the author’s
who told me that there was in fact some data and more would be collected as time went
on. This was developed recently, but there is no reason why up to the minute data should
not be presented oral or with updated slides. We just have to decide to manage this. It
starts with deciding on our guidelines.

« Develop Teaching Syllabus [Evo] - & effective dissemination

I would recommend that we develop several recommended teaching guidelines. This can
start by having presentations from teachers who give their experience with teaching the
subject. We could experiment with special NATO training courses using these outlines.
We might develop a notion of certification (“This Training Course complies with the
latest NATO Syllabus Recommendations™). There are many universities developing their
software engineering syllabus who would probably be interested in some
recommendations.

« Develop the notion of ‘Design’ (not function) to deliver performance/quality
requirements evolutionarily
Logically it is specific designs that when implemented in the evolving system actually
deliver the evolutionary performance improvements. Software culture seems only dimply
aware of this, and hides their design under the false flag of functional requirements. I
believe that essential clarity about the nature of the evolutionary process would be gained
if this point were made clear, and understood by the software culture. In a sense we are
arguing for the necessity of ‘programmers’ to think like real software engineers and
software or system architects. This point can be brought out in the teaching syllabus and
glossary. Designs when implemented in an evolutionary system bear with them multiple
performance contributions, multiple costs and unwanted side effects. No speaker brought
out this point explicitly.

« Develop Measures and measurement technology for Evo.

I believe that all these recommendations would benefit from development of specific
relevant measures (definitions of units of measure) and corresponding measuring
processes (tests). These measures should be developed for both the evolutionary process
itself, and for the products it produces. Emphasis should be put on Evo-specific measures
like measures of feedback and change. But, as the software measurement culture is in
fact poorly developed, we might find that we need to include less-specific measures (like
how to measure ‘Usability’). This might be done in the context of a wider NATO
software engineering programme.

T-6

In particular there are a class of measures which enable both the short- and long-term
evolution itself, by determining how ‘open’ the system architecture is for ‘change’. These
are things like adaptability, maintainability, portability®, and testability.

« Develop Contract concepts and templates appropriate to Evo.

Evolutionary development offers both new opportunities in contacting, and some new
problems. We need to focus on defining the contracting options. We need to develop,
maintain and publish template contracts and contract frameworks. One of the biggest
opportunities is to develop a ‘pay as you deliver value’ system of contracting.

« Develop architectures and concepts to devolve tailoring to end users
It seems interesting to investigate the connection between end user tailoring and
configuration control and evolutionary methods, as pointed out by one of the talks.

« Product Line: develop a clear relationship between ‘product line management’ and
Evo.

Product line management is essentially about up front architecture and investments that

allow product tailoring and variation at lower cost, and faster than otherwise. This is a

major variation of evolutionary development and it seems well worth developing this

knowledge to more general understanding of how to plan it, and the economics and

benefits of doing it’.

8 Specific methods for defining these quality characteristics are in the above mentioned
book and website.
? Klaus Schmid pointed out to me by email after the conference:“ ... over time. Thus
many, if not all, product line techniques can also contribute to tackle the evolution
problem. (Foresight (Scoping), Variability Modelling -- Make explicit the potential
for different resolutions of uncertainty, etc.)”

T-7

Some other comments on the symposium:

* It is great to have a whole conference devoted to the important topic - we are pioneers
for the whole industry

* The speakers have been universally excellent in content and presentation (oral and
written)

* The informal exchange of technical information has been at a high level

® The quality of humour and goodwill is top class

* And Bonn is a lovely city to visit!

OTHER TOPICS THAT NEED SOME COMMENT

On the enrollment: the enrollment for all such events is generally down in NATO
countries, due to a combinations of travel fear, and budget limitations in bad economic
times. It is not just a reflection of the subject.

As to publicity, I have to admit that I only learned of the conference through one of the
speakers — and yet I have a primary interest in the subject.

It is worth noting that the entire subject of evolutionary software development is not well
appreciated by the community — it is not a pop topic yet. But all the more reason for
NATO to take the lead in organizing efforts to make it more well known. It is clear from
the speakers experiences that it is a better project management method than any other
they know.

I am not sure of the reasons for a lack of military participation. I suppose we have to ask
them directly. Procurement and development of military software are largely civil tasks it
seems. The military role is to define policy (Evo policy seems defined by civilians in
USA) and to participate in setting requirements (but from their point of view the
requirements are the same with or without evo), and in the Evo process itself to
participate in giving field feedback from the evolutionary increments.

This page has been deliberately left blank

Page intentionnellement blanche

KNI1-1

Software Architecture: Leverage for System Evolution

Prof. Dewayne E. Perry
Motorola Regents Chair in Electrical & Computer Eng.
Dept. of Electrical & Computer Engineering
College of Engineering
University of Texas
Campus Mail Code: C0803
Augstin, TX 78712, USA

In the interests of readability and understandability, it is RTO policy to
publish PowerPoint presentations only when accompanied by supporting
text. There are instances however, when the provision of such supporting
text is not possible hence at the time of publishing, no accompanying text

was available for the following PowerPoint presentation.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

This page has been deliberately left blank

Page intentionnellement blanche

1-1

. Click here to view PowerPoint presentation; Press Esc to exit .

Applying Agile Methods in Rapidly Changing Environments

Peter Kutschera
IBM Unternehmensberatung GmbH
Pascalstrasse 100, D-70569 Stuttgart-Vaihingen, Germany
Steffen Schiifer
IBM Unternehmensberatung GmbH
Leopoldstra3e 175, D-80804 Miinchen, Germany

1 Introduction

Software development approaches have changed significantly throughout the last decade . Until the recent
emerge of e-business, software development projects were mainly targeted at the implementation of well-
known business processes. Projects took typically several months or even years to complete. After
completion, only those projects were considered successful which implemented all of the given requirements
correctly and completely. Due to the perception that it is economically much cheaper to detect errors in the
project’s life cycle early, a ‘classical’ software engineering approach for software development projects has
been used. The idea was to flawlessly fix the given requirements and then to set up a relatively detailed
design before starting with the implementation. This has been accomplished by writing comprehensive
documentation which was later thoroughly reviewed to find as many errors as possible. Although this
method has been applied somewhat successfully to software development projects in the past, this approach
is not suitable for commercial projects in the era of e-business where things are moving fast. Due to the fact
that many project development efforts are using leading-edge technology that is not yet well understood or
even evolves during project lifetime and the underlying business models typically rely on a quick
time-to-market, it is impossible to pin down a complete requirements list at the onset of a project. Project
goals and system functionality need to be frequently adapted, in order to stay competitive in marketplace.
Limited timeframe of many projects, of sometimes only a few weeks instead of months, as well as the
necessity to quickly respond to changing business needs, are all demanding for a different approach for
software development. This is why a lot of well-known methodologists proposed “lightweight” approaches
for software development during the past two years or so. In February 2001, those methodologists formed
the “Agile Alliance” and presented their manifesto [1] for software development. Due to this fact, it is
expected that a larger community in software industries will regard the agile software development approach
with its evolutionary aspects as a viable alternative to the classical software engineering approach for
projects in changing environments.

The approach for agile software development presented in this paper is targeted at commercial software
development projects and is based on IBM’s Global Services Method. We use a more traditional, but
incremental software engineering approach as a base and adapt this to specific needs in rapidly changing
environments. We have used this approach because we believe that certain software development
methodologies can be adapted to become agile. Also, our project teams are able to use a development
method they are familiar with, rather than applying a totally new one. The adaptation consists of two steps.
As a first step, the number of artifacts which have to be produced throughout the project is significantly
reduced to put more focus on working software than on documentation. Second, we introduce a project
organization with short iterative releases, in order to enhance the client’s opportunity to provide feedback
and to drill down or introduce additional requirements. Besides the use of a methodology which is able to
cope with requirement changes, the underlying software architecture plays an important role in the overall
development project, because it must be flexible enough to incorporate new requirements without breaking
the code that has already been developed. The issue of designing a flexible software architecture is addressed
in this paper, before we conclude with a case study where the usage of the approach presented in this paper
has been successfully demonstrated.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

2 Related Work

All of the methodologies for agile software development that have been introduced during the last years can
either be categorized as meta process methodologies or specific development methods. Meta process
methodologies do not describe specific development approaches, but rather focus on general procedures to
support the development team in establishing a project-specific development approach. Adaptive Software
Development [6], the family of Crystal methodologies [5] and Scrum [2] belong to that category. In contrast
to the meta process methodologies, specific development methods like the Dynamic Systems Development
Methods (DSDM) [8], eXtreme Programming (XP) [7] or Feature Driven Development (FDD) [4] describe
proven practices or give concrete hints to guide a development team to implement software that is adaptable
to changes.

Although a lot of different agile methodologies have been proposed in the past, almost no references about
real-world software project using agile methods can be found in the literature. One exception to the rule is
the famous Chrysler C3 payroll system [3] where XP has been used for the first time and successfully been
applied. Thus, one of the goals of this paper is to fill this gap.

3 The Principles of Agile Software Development

In this section, the principles of agile software development are introduced. So, the goal of adopting a
standard software development method which is described in greater detail in the next section, is to achieve
these principles.

Besides the fact, that these principles illustrate the essence of agile software development, they present the
prerequisites for our tailoring approach.

The following principles of software development are taken from the Agile Manifesto [1]:

e Individuals and interactions over processes and tools. This means, the successful outcome of a project
depends more on the interaction of skilled professionals than on the usage of a well-defined process or the
latest tools. Although this point is valid, we regard this issue beyond the scope of this paper.

e Working software over comprehensive documentation. This statement addresses the need to reduce
comprehensive documentation, because an extensive documentation does not mean that the actual
problems have been well understood. In addition, it incorporates significant overhead every time
requirements are added or have to be changed.

e Customer collaboration over contract negotiation. The key message of this statement is that collaboration
with the client is one of the critical success factors of a software project, because through active
collaboration the client can help the team to understand the wants and needs.

e Responding to change over following a plan. Generally speaking, making a plan and following it, is not a
bad practice. This statement covers a slightly different aspect where changing requirements are not taken
into account, because they do not fit according to the project plan. Obviously, to deliver a system in time
that implements requirements no longer important to the user, is useless. The solution to this problem is
the usage of short release cycles, together with the client’s ability to introduce new requirements or
change priorities.

Based on the principles for agile software development, the conclusion is to use only as much documentation
as really necessary, to introduce short release cycles and to involve the customer as much as possible, as a
reviewer and domain expert throughout a software development project.

4 Applying Agile Principles to a Standard Software Development Method
4.1 General Approach For Software Development

IBM’s Global Services Method which we use for software development projects, before the method adoption
for rapidly changing environments is presented in greater detail in this section.

Basically, our software development method has two major elements: a set of work products and a
recommended, but adaptable work breakdown structure. Work Products are artifacts that are produced during
a project and can be final deliverables of a project as well as internal project-specific results. Every Work

1-3

Product has a well-defined purpose and is produced by team members with specific roles (e.g. business
analyst, IT architect, etc.). The Work Breakdown Structure hierarchically divides the project into phases,
activities and tasks which are performed by team members acting in the various roles.

A typical custom application development project consist of the five phases depicted in Figure 1:

1.

During the solution outline phase the project scope and approach are defined. Requirements are gathered
on a high level, and an initial architecture, as well as a project plan are developed.

. The purpose of the macro design phase is to drill down on the initial set of requirements gathered before,

to refine a functional and operational architecture and to perform the installation of the development
environment.

. The micro design phase is used to refine the existing macro design which means that requirements are

analyzed in more detail for a specific release and the architecture / design are further developed.

. During the build phase, the design is refined, the source code is crafted, documented and tested. In

addition, any educational material to train end users is produced.

. In the deployment phase, the acceptance tests are run, the transition to the production environment is

performed and the next iteration is planned.

On a typical project Micro Design, Build, and Deployment are performed multiple times, i.e. once per
release. To be absolutely precise, Build Cycles are even conducted multiple times within a release, building
short term increments. In a nutshell, we start off with a truly iterative and incremental software development
method, comparable to the Rational Unified Process (RUP).

Micro
Design

Solution

Macro Build Deployment
Outline Design +

m Plan the phase

m Review the client
environment

m Analyze the system
context

m Analyze requirements

m Create high-level
architecture

m Perform business
impact analysis

m Define solution
strategy

m Refine requirements

m Define architecture

m Design Ul

m Build development
environment

m Perform reviews

m Design test strategies

m Refine macro design

m Define training and
support

m Plan development

m Develop support
material

m Finish test
specifications

m Develop

m Test

m Plan deployment

m Perform acceptance
test

m Set up production
environment

m Cutover to
production

m Plan next release

Figure 1: Standard Approach for Software Development Projects

4.2 Method Adoption: Which Artifacts should be used?

The first step of the method adoption for an agile process consists of the selection of artifacts that should be
used in the project. IBM Global Services’ method consists of more than 150 artifacts, and on a large,
‘traditionally’ run project most of them are produced.

We believe the following documentation is essential for every serious real-world agile software development

project:

Purpose

Name of the
artifact

Description

Requirements

Non-functional
Requirements

The non-functional requirements incorporate a list of aspects

like scalability, response time, etc.

Use Case Model

The functionality of a system is described by sequences of use
cases. This description might be rather short, similar to the user
stories that are mentioned in the XP methodology, including a
sketch of the user interface and the functionality behind the
different user actions (referencing other use cases). Additional
refinement is possible during the iteration where the use case
gets implemented.

System
Architecture

System Context
Diagram

This diagram gives a high-level overview of the different
components of a system (e.g. browser, application server, ERP
package, etc.) as well as the different type of users. It is helpful
to the client to understand the architecture of the system.

Architecture
Overview Diagram

In contrast to the System Context Diagram which treats the
system under construction as a black box, the Architecture
Overview Diagram depicts a high-level view inside the system
and thus shows the major logical building blocks. Again, this
artifact is helpful to the client to understand the overall system
topology.

Component Model

This artifact gives a more detailed description of the software
components. It describes each components’ responsibilities and
interfaces. The level of detail applied here, depends on the
experience of the project team. In a small team with highly
experienced developers, this description can be rather short.

Operational Model

The Operational Model is a diagram which depicts the
hardware infrastructure that is used to meet the software’s non-
functional requirements. In addition, it shows the mapping of
software components to the underlying hardware.

Standards

A simple list of standards that are mandatory in the context of a
project (e.g. LDAP for authentication, the Java programming
language).

Software

Release Plan

A release plan which is a classical project management activity
incorporates aspects like the duration of a release or certain
tasks, the number of people needed to complete a release,
which skills must be available during a release.

Standards

Coding Guidelines

Coding guidelines are mandatory for all of the software
developers.

Release
Planning
(part of every
iteration)

Increment Goals

A list of the features which are part of every iteration.

Deployment Plan

This artifact could be called an installation guide which
describes how to deploy the working software to the
production system.

Test Planning

Test Strategy

The test strategy described the purpose, the time and the people
that involved in the testing activities.

1-5

We believe that the list of artifacts above is minimal, but to further stress this point, we’d like to clarify:

e The requirements documentation can be rather short. Every use case can be described on a single page or
even a list of bullet points. All of the non-functional requirements could be typically addressed in a
maximum of five pages.

e The system architecture should be a maximum of 15-20 pages, otherwise nobody will ever read it. The
documentation should be easy to comprehend and accessible to all team members.

e The standards consist of coding guidelines which are relevant for the developers only.
e Release planning is a typical project management activity which must be done.

e A test plan describing the general test strategy can be rather brief but must be documented. A few pages
will be enough.

Just by using good development environment it is possible to abandon a lot of documentation. Extensive
design documentation, like class - or sequence diagrams in object-oriented projects, are no longer necessary
to be kept up to date manually when good tools can be used. Instead, class diagrams or sequence diagrams
are sketched on a piece of paper, implemented, and then thrown away. Leading-edge CASE-Tools let
developers reverse engineer their code and depict what is coded in more accessible UML diagrams. Testing
tools can support automated regression tests and thus reduce the amount of detailed test specifications up
front. JUnit is frequently used for unit testing and is extremely efficient. Integrated Development
Environments (IDEs) with code browsing facilities (e.g. WebSphere Studio Application Developer) make
code easily accessible and further reduce the amount of required documentation. It is important to note
however, that the source code itself should be very well documented. Source code reflects the ultimate
design, and hence, comments there should be extensive.

As a conclusion, it can be stated that the appropriate selection of artifacts helps to reduce the documentation
to an acceptable level and to focus more on working code. Key documents describing requirements, or the
high-level architecture of the system should be easy to understand and must be kept up to date.

4.3 Method Adoption: What is the appropriate Project Organization?

The second step of the method adoption consists of finding an appropriate project organization for agile
software development. A proposal is presented in Figure 2 which consists of two phases, in contrast to the
five phases of the IBM Global Services’ method. Only crucial activities and tasks are distilled into those two
phases, in order provide a really lightweight approach. So, a project starts by performing an initial outline
phase, combining the solution outline and macro design phase, followed by short iterative release cycles,
combining the micro design, build and deployment activities.

Outline Phase Release

Solution Macro I j Micro Build Deployment
Outline Design J ﬂ Design

Activities: Activities:
m Review Client Environment m Plan the Release
m Outline Requirements m Refine Requirements and Application Model
m Outline Application Model m Refine Architecture Model
m Outline User Experience m Perform Programming Cycle
m Outline Architecture Model m Perform Tests
m Outline Solution Strategy = Plan Deployment
m Prepare Development m Perform Acceptance Tests
m Setup Production Environment
m Deploy to Production
u Perform Client Review

Figure 2: Proposed Project Organization for Agile Software Development

In general, the initial outline phase might not take more than two months, this should be enough to define the
scope of the project, gather the most important requirements and design a high-level architecture of the
system. Thus, the outline phase consists of the following activities:

Review client environment: The goal of this activity is to obtain or document the clients’ IT standards and
to identify any pre-determined components of the future IT architecture.

Outline requirements: During this activity the system context is established to describe the main objects
that make up the environment and the system being developed, it identifies what is part of the system and
what is not. This activity is also used to gather the functional requirements as use cases. The non-
functional requirements which are gathered during this activity, too, are used to understand the
complexity and performance requirements of the system and are key drivers of architecture and
infrastructure design.

Outline application model: The application model consists of the business objects and their interactions.
Because the goal of this activity is to understand the scope and complexity of the application, this activity
results in a high-level object model capturing the responsibilities of the major business objects as well as
their interactions.

Outline user experience: This activity is used to create a high-level understanding of the interactive
aspects of the application. During this activity the user interface design guidelines as well as the user
interface architecture are to be defined.

Outline architecture model: The goal of this activity is to formulate an initial vision of the overall system
which makes it possible to evaluate alternative high-level architectural overviews and choose between
them. During this activity, it makes sense to identify relevant assets and check the possibility to re-use
them in the current project context. The functional aspects of the architecture is captured in the high-level
component model whereas the high-level operational model is used to describe the operational aspects.
Although only high-level architectural models are created, it is important that these models are designed
to fulfill the clients’ performance requirements. Finally, this activity is used to decide which commercial
products should be acquired to support the development of the application.

Outline Solution Strategy: This activity is meant to ensure a common understanding of the project as well
as to provide a basis for performing the estimations to able to plan the development effort. During this
activity the test strategy gets defined and the release and the deployment plans are outlined.

Prepare development: Before starting with development of the software increments, obviously the actual
development environment must be set up. This means that the necessary hardware and software has to be
acquired and to be installed. Additionally, the coding guidelines for developing source code must be
defined.

After completion of the outline phase, iterative development of a release can begin. A release cycle can be
completed in, say six to ten weeks time including release planning, refinement of the requirements,
implementation and deployment of the software. In detail, the following activities are part of every release
cycle:

Plan the release: As the first step of this activity, all of the remaining requirements have to be prioritized
by the client according to their importance. The goal of this step is to ensure that the most important
requirements are addressed as part of the next release cycle. Then, the duration to complete the most
important requirements is estimated to define the scope of the next release cycle. The outcome of this
activity is a release plan consisting of all the requirements addressed by the current release and the time of
their completion.

Refine requirements and application model: The purpose of this activity is to detail the requirements for
the upcoming release. So, the system context, the use cases and the non-functional requirements are
finalized as part of this activity.

Refine architecture model: During this activity the component and operational model for the current
release are completed to provide the basis for a detailed design and implementation.

Perform programming cycle: This activity consists of tasks to design the object model, build and test the
source code. This is the actual coding.

Perform tests: The goal of this activity is to test the functionality of a component which consists of
internal logic and design, exception handling and code coverage. Basically, developer tests are

1-7

accomplished by performing source code reviews and conducting unit tests. To test the proper interaction
between the various components, intermediate releases are built so that integration level tests can be
performed.

e Plan deployment: As part of this activity, the plan to guide and control the roll-out of the system is refined
and the code is physically packaged for installation.

e Perform acceptance tests: The purpose of this activity is to execute the application in a production-like
environment and to verify the system meets the clients’ functional and technical requirements. Thus, as
part of this activity user acceptance tests and system integration tests are conducted.

e Setup production environment. During this activity the necessary software and hardware infrastructure are
set up to install the components of the application. Additionally, all of the data sources which are used by
the application have to be installed.

e Deploy to Production: After setting up the production environment, the application is finally brought into
the production environment and again thoroughly tested.

e Perform Client Review: The goal of this activity is to receive and analyze the client feedback which has
been given during the integration and acceptance tests. All of the requirements that must be re-worked
should have top priority in the next release cycle. This activity concludes the release cycle and lays the
groundwork for the subsequent release.

As a conclusion it can be stated that by using short iterative release cycles and involving the client frequently
in the development project by the means of reviews and feedback activities, it is possible to allow for
requirement changes during a project’s life cycle.

S Designing a flexible Software Architecture

Based on our experiences in different software development projects, many projects fail due to the fact that
they are trying to establish a detailed architecture long before software development actually starts.
However, for applying an agile software development method, an iterative approach for designing the
software architecture is also a must. This can be accomplished by defining a high-level software architecture
which captures all of the following strategic aspects during the outline phase that has been introduced in the
last section:

e Durability: Using state of the art technology and considering open standards ensure the viability of the
architecture in the future.

e Stability: Utilizing components as the underlying design concept for the software makes it possible to
change the implementation of the components without breaking their contracts.

o Flexibility: Taking different alternatives for the realization of a software component into account (a
custom application development versus package integration approach) helps minimizing future risks.

This strategic architectural view presents the framework for the iterations during the release phase. Now,
during every iteration tactical decisions regarding the realization of the different components are made. A
tactical decision could be, for example, to develop the first version of a component during an iteration and
change the custom code in a later iteration of the project when a commercial solution becomes available.
Thus, on one hand, tactical decision are used to be able to deliver software in a timely fashion which
corresponds with the overall strategic architectural view. On the other hand they are used to refine and
validate the strategic architectural view which becomes more and more consolidated over time.

6 Case Study

As one brief example, we present a software development project that built a mobile device portal for a
Finnish Wireless Service Provider. The project got started in May 2000 and was mission critical, with an
ambitious schedule and a fixed deadline. Development effort has been split over various subprojects, with a
25+ developers team developing the portal platform, and some twenty smaller teams implementing the actual
applications. Due to legal reasons related to operator licensing, the portal had to be online by April 2001.
Original project management chose an ad-hoc software development approach, neglected requirements
gathering, unit testing, and other good practice, so the project came in trouble. Project management and

development approach was then changed in January 2001. We then started to apply the approach proposed in
this article with great success.

The first release of the mobile portal got deployed beginning of April 2001. After this initial launch,
additional releases, improving on the platform and consisting of 5-8 new applications got launched every
month. A range of XP programming practices has been successfully applied: solving problems in the
simplest way, constant refactoring of code, pair programming, rigid unit testing using the JUnit testing tool,
emphasis on well documented source code over producing separate documentation and complete builds at
least once a day.

Thus, by applying agile software through adoption of an iterative development approach which the team was
familiar with and the principle to compromise scope over delivery date, the project was successfully
completed.

7 Conclusion

In this article an approach for tailoring a standard iterative development methodology has been presented.
The key issues for using such an approach for agile software development were the reduction of the number
of artifacts to an acceptable level and a proposal for an appropriate project organization which improves
customer collaboration and is adaptable to changing requirements. The feasibility of our approach has been
demonstrated by applying it in a real-world mobile portal project in the area of telecommunication.

8 References

[1] Agile Alliance: Manifesto for Agile Software Development, available at http://www.agilealliance.org
[2] M. Beedle, K. Schwaber: Agile Software Development with SCRUM, Prentice Hall, 2001

[3] The C3 team: Chrysler goes to the Extremes, Distributed Computing, pp.24-28, October 1998. Also
available at http://www.xprogramming.com/publications/dc9810cs.pdf

[4] P. Coad, E. Lefebvre, J. De Luca: Java Modeling In Color With UML: Enterprise Components and
Process, Prentice Hall, 1999

[5] A. Cockburn: Agile Software Development, Addison Wesley, 2001

[6] J. Highsmith: Agile Software Development Ecosystems: Problems, Practices, and Principles,
Addison Wesley, not published yet

[7] R. E. Jeffries, et al: Extreme Programming Installed, Addison Wesley, 2000
[8] J. Stapleton: DSDM — Dynamic Systems Development Method, Addison Wesley, 1997

2-1

Practical Aspects of Evolutionary Software Development for Future
Complex Military C3I-Systems

Wolfgang Rath / Albert Kainzinger
ESG Elektroniksystem- und Logistik GmbH
Einsteinstr. 174, D-81675 Miinchen
Germany

Email: wrath@esg-gmbh.de / akainzinger @esg-gmbh.de

Summary

After a discussion of the major drawbacks of the Waterfall Model for military C3I projects over the last
years, requirements for a modern process model are listed and process models are evaluated with the
conclusion to use an intelligent combination centred around the Evolutionary Model. The implications for
the cooperation between industry and the military customer are discussed together with contractual aspects.

Experiences with the Present Situation

In the last years several large military information technology (IT) projects were completed in Germany,
dealing with Command, Control, Communication and Information (C3I) like e.g. ADLER, JASMIN,
SAMOC or HEROS. In all of these projects the framework for the process model was the Vorgehensmodell
(V-Model) of the German DoD which is a contractual part of all major German military IT projects. The V-
Model is based on the well-known Waterfall Model with integrated quality assurance (QA) measures such as
verification (tests) and validation. The advantages of the V-Model particularly compared to the way IT
projects were managed before are:

e Integrated detailed standardized description comprising all aspects of system development, project
management (PM), configuration management (CM) and QA, with the option of tailoring to specific
project needs.

e Suitability for large and complex projects.

e The method of starting with requirements, then specifying the system, developing and testing it, allows
the delivery to be checked against the requirements, thus making fixed price projects contractually
possible, as there is a strong trend towards this kind of projects at the invitation for tender.

Despite all these good intentions many projects had and still have certain difficulties, for example
overrunning time and costs or, despite formal completion, low acceptance by the end user. The practical
experience obtained in many years of practice with the V-Model therefore shows the following
disappointments and disadvantages:

e [t is an illusion that (1) the requirements really describe what the customer wants and (2) the customer
knows at the beginning exactly what he wants. In fact, in C3I systems there are many levels of
administration between the end user (soldier) and those who prepare the request for proposal. Sometimes
this is even done by industry. Very often projects are therefore overloaded with unnecessary
requirements in order to cover all possible aspects and other important requirements are forgotten. In
reality the definition of the requirements should be a continuous refinement process.

e Industry has to invest a lot of (uncompensated) manpower into the tender offerings and in order to be
compliant generally describe a solution which becomes part of the contract. This makes it difficult to
make changes during the project progress.

e In the Waterfall Model with its distinct phases (requirements, analysis, design, coding, testing), the
phases are completed in turn and frozen. In large projects different people with different skills are
usually involved in each phase and there are sometimes years between the definition of the requirements
and the testing of the resulting software. This prevents necessary feedback from the later phases into the
former ones, although theoretically this is foreseen in the model.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

2-2

e In practice, tools for Computer Aided Software Engineering (CASE) are installed to implement the
above phases. The result of each phase is generally a large amount of documentation or tree-structured
information on the computer. As this means of knowledge transfer between the engineers in consecutive
phases is very formal and bureaucratic, the key ideas become less prominent. This is also very frustrating
for the engineers involved.

e As each phase represents a contractual milestone in the project, it is difficult to make changes arising
from technical progress, changed user requirements, or simply because things do not perform as desired
in practice. These changes are usually shifted into maintenance and upgrade phases of the project.

e As the result of the work is only available at the end, practical user acceptance is tested at a very late
stage.

¢ Due to the rapid progress of software technology (object orientation, CORBA, web based, JAVA, XML,
.NET) and the tendency to use these latest technologies for new projects, the experience of design
engineers with these technologies is limited.

The basic idea behind the Waterfall Model is controlling and documenting first the entire design and then the
entire realization. This is a copy of the process in classical engineering areas such as the building industry.
Here the design by the architect, the statics and detailed planning are performed first. This planning phase
uses consumes in the order of ten percent of the total costs. The construction phase therefore consumes the
remaining 90 percent and it is impossible or very expensive to change the building once it is finished and the
correction of errors is expensive. In general a long experience concerning the technical background and the
user requirements can be reused in the planning. This situation is quite different in the software industry. The
planning phase (analysis, design) takes a lot more effort (about 50 percent) and the user requirements and
technological basis are less precise and fixed. The construction (coding and testing) is less expensive and
changes can be incorporated quite easily at almost any stage of the realisation. In fact, when taking the
maintenance phase into account software is never complete. Also hardware changes are not extremely
expensive at least for off the shelf parts in C3I systems. Therefore the methods of classical engineering
should not be applied accordingly in software engineering.

Figure 1 gives a simplified classification of projects (not only IT) depending on the kind of technology used
for the realization and the familiarity with the customer needs. The transition between the categories is of
course fluent. The above example of the building industry and also most of the continuous update of standard
software products are of category I. Software projects are generally of category II or III. If they are of
category IV the probability of failure is high and due to the lack of experience in both areas, the planning
phase in the Waterfall Model is extremely difficult.

A

Customer/
Features

New 11

Standard
III
Known
Standard
>
Known New Technology

Figure 1: Simplified project categories

2-3

Requirements for a Modern Process Model for C31-Systems

As a result of the above analysis of the present situation and the experiences over many years in the
development of military C3I-system we require for a modern process model in particular that the following
aspects are respected:

e (C3l-systems are living systems which grow and change during their lifetime. Therefore requirements
should not be regarded as frozen at the project begin, but may be changed at any time.

e Critical or new features or techniques must be — at least partially — quickly implemented and tested.

e As the user acceptance depends very much on the Man Machine Interface (MMI) the end user must be
permanently involved in its development.

e The performance (response time and reliability) is critical and must be tested at an early stage with
realistic data quantities, in particular in complex networks and when new communication protocols and
data storage techniques are used.

e Lean documentation. As little paper work as possible, with the key ideas in a reader friendly form.
Documentation after the development rather than before.

Other Process Models

Since the early days of the Waterfall Model other alternatives have been discussed to cope with certain
disadvantages of the Waterfall Model and some of these are used quite successfully in the civil industry.
Among these are the Prototyping Model, Concurrent Engineering, Spiral Model, the Rational Unified
Process, the Incremental Model, Evolutionary Model and Extreme Programming. We assume that the reader
is familiar with the key characteristics of these models. These methods are not exclusive and some use
features of others. Figure 2 illustrates the main application areas for some of these models as a function of
the project size (Costs/ Duration). In very complex and large projects like the current multinational avionics
projects (EUROFIGHTER or TIGER helicopter) with several companies involved there is no real alternative
to the V-Model, despite all its shortcomings. The Evolutionary Model, which is not too different from the
Incremental Model, seems to be a good compromise for typical C3I projects with one main contractor. It can
also be seen that e.g. Extreme Programming is more suitable for small projects, but it might be used in
certain parts of a project otherwise managed by the Evolutionary Model. As C31 systems typically are very
sensitive to MMI aspects it appears useful to use Rapid Prototyping for the MML.

So what is required in the future is rather the flexibility to combine the best out of the pool of models. These
methods have in common that they try to arrive more quickly than the V-Model at practical results for a
restricted scale of the project which can then be evaluated by the customer/ user so that corrections can be
implemented at an early and less cost sensitive stage. In fact, one should not be too academic with the
definition of the model. The basic ideas of the Evolutionary Model and Extreme Programming are quite
natural and were used long before these names were invented and books were written about them.

Practical Prerequisites for the Implementation of the Evolutionary Model

The introduction of the Evolutionary Model for product development in the commercial IT industry should
not be a difficult task because it has implications only on internal processes as far as change of requirements
and funding are concerned. There is no official contract between two partners which must be fulfilled. So the
experiences with the Evolutionary Model obtained here cannot be easily applied on military projects, which
have to be based on a contract between industry and the military customer and where certain legal and
formal procedures must be respected.

In fact a military C3I project starts only with the winning of the contract. Therefore future requests for
proposal must no longer expect a tender offer according to the V-Model, with detailed descriptions of how
the requirements will be fulfilled, in order to be compliant. The offer should rather split up the project into
iteration steps, which are described starting with the critical parts of the project. For each step a time frame
of 3-6 month for typical C3I projects should be given with a payment milestone and a quotation. In this way
each step can be ordered separately when the former is finished, with a certain overlap to assure continuity.
This allows the customer to stop the project if he is not satisfied, losing less money than when a project is

24

formally finished but with unsatisfactory results. This is an incentive for the industry to deliver good work,
although the requirements are less well defined at the beginning of the project than with the V-Model. If a
project runs into problems this can be recognised at an early stage even by the customer and countermeasures
can be taken in time.

The selection process for the winning proposal should be based on the expertise of the companies in this area
and in the description of their suggested stepwise approach and finally the total costs.

The introduction of the Evolutionary Model also has certain implications for the relationship between
industry and the military customer during the development period. As the development is split up into
several steps with an evaluation at the end which defines the requirements for the next step, the customer
must maintain during the whole project duration a development support team (if possible located with the
development team of the industry) which has the competence to judge the results and to make contractual
decisions. The team leader has to coordinate internally the different departments involved on the customer
side, so that the customer speaks with one voice. Because each step in the Evolutionary Model depends on
the former a quick reaction is necessary.

The possibility of the customer stopping the project after each step and the closer cooperation through the
support team should draw both partners together to ensure the success of the project.

Conclusion
Even if there is a common understanding that the Evolutionary Model is a promising approach for handling

future military C3I and other projects profound changes mainly in the legal and commercial procedures but
also in the practical cooperation are necessary before it can be successfully applied.

Costs S N
(Man Years) ":::::::::::::::::::::::::::;g:/::::::
Not relevant j::::::::::j:j:j:j:j;jéfj:j:j:j:::
30-60 " V-Model
e
Incremental i
Model ::::::::::::::::
15 : L
Evolutionary
Model
3 Extreme

Programming Not relevant

3 Month 1 Year 2 -3 Years

Project Duration

Figure 2: Application Areas of Project Models

3-1

Evolutionary Development Methods
How to deliver Quality On Time in Software Development and Systems
Engineering Projects

Niels Malotaux
N R Malotaux - Consultancy
Bongerdlaan 53
3723 VB Bilthoven
The Netherlands

niels @malotaux.nl
www.malotaux.nl/nrm/English

1 Introduction

Software developers systematically fail to manage projects within the constraints of cost, schedule,
functionality and quality. More than half of IT users still is not content with the performance of IT suppliers
[Ernst&Young, 2001]. This is known for some 35 years. Solutions have been developed during the past 35
years, with impressive results published already years ago (e.g. Mills, 1971 [1], Brooks, 1987 [2], Gilb, 1988
[3]). Still, in practice not much has changed. An important step in solving this problem is to accept that if
developers failed to improve their habits, in spite of the methods presented in the past, there apparently are
psychological barriers in humans, preventing adoption of these methods. The challenge is to find ways to
catch the practical essence of the solutions to manage projects within the constraints of cost, schedule,
functionality and quality and ways to get the developers to use these solutions.

The importance of solving the problem is mainly economical:

e Systematically delivering software development results within the constraints of cost, schedule,
functionality and quality saves unproductive work, both by the developers and the users (note Crosby,
1996: the Price Of Non- Conformance [4]).

e Prevention of unproductive work eases the shortage of IT personnel.

Enhancing the quality level of software developments yields a competitive edge.

e Being successful eases the stress on IT personnel, with positive health effects as well as positive
productivity effects.

In this paper, we show methods and techniques, labelled “Evo” (from Evolutionary), which enable software

developers and management to deliver “Quality On Time”, which is short for successfully managing projects

within the constraints of cost, schedule, functionality and quality. These methods are taught and coached in
actual development projects with remarkable results.

The paper is based on practical experiences and on software process improvement research and development
and especially influenced by Tom Gilb (1988 [3], later manuscripts [5] and discussions).

requirements
analysis

2 History

Most descriptions of development
processes are based on the Waterfall
model, where all stages of develop-
ment follow each other (Figure 1).
Requirements must be fixed at the
start and at the end we get a Big Bang
delivery. In practice, hardly anybody
really follows this model, although in
reporting to management, practice is
bent into this model. Management

architectural
design

detailed
design
inplementation
qualification
testing

& testing
Figure 1: Waterfall development model

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

3-2

usually expects this simple model, and most development procedures describe it as mandatory. This causes a
lot of mis-communication and wastes a lot of energy.

Early descriptions of Evolutionary delivery, then called Incremental delivery, are described by Harlan Mills
in 1971 [1] and F.P. Brooks in his famous "No silver bullet" article in 1987 [2]. Evolutionary delivery is also
used in Cleanroom Software Engineering [6]. A practical elaboration of Evolutionary development theory is
written by Tom Gilb in his book Principles of Software Engineering Management in 1988 [3] and in newer
manuscripts on Tom Gilb’s web-site [16].

Incremental delivery is also part of eXtreme

Programming (XP) [15, 17], however, if people
claim to follow XP, we hardly see the Evo element | cyele 1 2 3 4 5 n1 n
practiced as described here. \
- - : 5 % % 1% % 1% % 15 %

We prefer using the expression Evolutionary ST & T o T 6T 6T @ ST

- . O T T TR T T 3 % %
delivery, or Evo, as proposed by Tom Gilb, because \ 2 % X %z % 3 \

; . . NN N NN

not all Incremental delivery is Evolutionary.
Incremental delivery methods use cycles, where in Figure 2: Evolutionary delivery uses many waterfalls

each cycle part of the design and implementation is
done. In practice this still leads to Big Bang
delivery, with a lot of debugging at the end. We would like to reserve the term Evolutionary for a special
kind of Incremental delivery, where we address issues like:

Solving the requirements paradox.

Rapid feedback of estimation and results impacts.

Most important issues first.

Highest risks first.

Most educational or supporting issues for the development first.

Synchronising with other developments (e.g. hardware development).

Dedicated experiments for requirements clarification, before elaboration is done.

Every cycle delivers a useful, completed, working, functional product.

At the fatal end day of a project we should rather have 80% of the (most important) features 100%
done, than 100% of all features 80% done. In the first case, the customer has choice to put the
product on the market or to add some more bells and whistles. In the latter case, the customer has no
choice but to wait and grumble.

In Evolutionary delivery, we follow the waterfall model (Figure 1) repeatedly in very short cycles (Figure 2).

3 Issues Addressed by Evo

3.1 Requirements Paradoxes

The 1* Requirements Paradox is:

e Requirements must be stable for reliable results.
e However, the requirements always change.

Even if you did your utmost best to get complete and stable requirements, they will change. Not only
because your customers change their mind when they see emerging results from the developments. Also the
developers themselves will get new insights, new ideas about what the requirements should really be. So,
requirements change is a known risk. Better than ignoring the requirements paradox, use a development
process that is designed to cope with it: Evolutionary delivery.

Evo uses rapid feedback by stakeholder response to verify and adjust the requirements to what the
stakeholders really need most. Between cycles there is a short time slot where stakeholders input is allowed
and requested to reprioritise the list. This is due to the 2" Requirements Paradox:

e We don’t want requirements to change.
e However, because requirements change now is a known risk, we try to provoke requirements change as
early as possible

We solve the requirements paradoxes by creating stable requirements during a development cycle, while
explicitly reconsidering the requirements between cycles.

3.2

Actually, few people take planned dates seriously. As long as the
end date of a project is far in the future (Figure 3), we don't feel any
pressure and work leisurely, discuss interesting things, meet, drink
coffee, ... (How many days before your last exam did you really
start working...?). So at the start of the project we work relatively
slowly. When the pressure of the finish date becomes tangible, we
start working harder, stressing a bit, making errors causing delays,
causing even more stress. The result: we do not finish in time. We
know all the excuses, which caused us to be late. It's never our own

Very short cycles

3-3

hard work

start plan'ning

Figure 3: We only start working harder when

the pressure of the delivery date is near
Usually we are late.

fault. This is not wrong or right. It's human psychology. That is how we function. So don't ignore it. Accept

it and then think what to do with it.

Smart project managers tell their team an earlier date (Figure 4). If
they do this cleverly, the result may be just in time for the real date.
The problem is that they can do this only once or twice. The team
members soon will discover that the end date was not really hard
and they will loose faith in milestone dates. This is even worse.

The solution for coping with these facts of human psychology is to
plan in very short increments (Figure 5). The duration of these
increments must be such that:

e The pressure of the end date is felt right the first day.
e The duration of a cycle must be sufficient to finish real tasks.

Three weeks is too long for the pressure and one week may be felt
as too short for finishing real tasks. Note that the pressure in this
scheme is much healthier than the real stress and failure at the end
of a Big Bang (delivery at once at the end) project. The experience
in an actual project, where we got only six weeks to finish
completely, led to using one-week cycles. The results were such,
that we will continue using one-week cycles on all subsequent
projects. If you cannot even plan a one-week period, how could you
plan longer periods ...?7

3.3 Rapid and frequent feedback

hard work

smart planning?

T T
start planning

Figure 4: To overcome the late delivery
problem, a smart project manager sells
his team an earlier delivery date.
Even smarter developers soon will know.

hard work

(YYVYYY

stért plan'ning

Figure 5: The solution:
choose short, realistic “delivery dates”.
Satisfaction, motivation, fast feedback.

If everything would be completely clear we could use the waterfall development model. We call this
production rather than development. At the start of a new development, however, there are many
uncertainties we have to explore and to change into certainties. Because even the simplest development
project is too complex for a human mind to oversee completely (E. Dijkstra, 1965: “The competent
programmer is fully aware of the limited size of his own skull” [12]) we must iteratively learn what we are

actually dealing with and learn how to perform better.

This is done by “think first, then do”, because thinking costs less than doing. But, because we cannot foresee
everything and we have to assume a lot, we constantly have to check whether our thoughts and assumptions

were correct. This is called feedback: we plan something, we do it
as well as we can, then we check whether the effects are correct.
Depending on this analysis, we may change our ways and
assumptions. Shewhart already described this in 1939 [13]. Deming
[14] called it the Shewhart cycle (Figure 6). Others call it the
Deming cycle or PDCA (Plan-Do-Check-Act) cycle.

In practice we see that if developers do something (section 2 of the
cycle), they sometimes plan (section 1), but hardly ever explicitly
go through the analysis and learn sections. In Evo we do use all the

Act Plan
What can What do we
we learn want to know

or to do
Check Do

Analyse the
effects

Carry out plan

Figure 6: Shewhart cycle, Deming cycle,
PDCA cycle.

34

sections of the cycle deliberately in rapid and frequent feedback loops (Figure 7):

o The weekly task cycle

In this cycle we optimise our estimation, planning and tracking abilities in order to
better predict the future. We check constantly whether we are doing the right things in
the right order to the right level of detail for the moment.

o The frequent stakeholder value delivery cycle
In this cycle we optimise the requirements and check our assumptions. We check | projeet A

constantly whether we are delivering the right things in the right order to the right | oreanisation
level of detail for the moment. Delivery cycles may take 1 to 3 weekly cycles.

(oS0

o The strategic objectives cycle
In this cycle we review our strategic objectives and check whether what we do still
complies with the objectives. This cycle may take 1 to 3 months.

e The organisation roadmap cycle
In this cycle we review our roadmap and check whether our strategic objectives still
comply with what we should do in this world. This cycle may take 3 to 6 months.

roadmap

G20,

In development projects, only task cycles and delivery cycles are considered. In any [Figure 7: Cycles in Evo
task cycle, tasks are done to feed the
current delivery, while some other tasks

may be done to make future deliveries

possible (Figure 8). _>_>

34 Time Boxing *

Evolutionary project organisation uses

time boxing rather than feature boxing. If - > id
we assume that the amount of resources o~
for a given project is fixed, or at least

“a
limited, it is possible to realise either:

. n the time | Rl 0>l > (>
e A fixed set of features in the time

needed to realise these features. We

. . Figure 8: Current tasks feed the current delivery cycle,
call this feature boxing. as well as prepare for future delivery cycles.
e The amount of features we can realise

in a fixed amount of time. We call this time boxing.

To realise a fixed set of features in a fixed amount of time with a given set of resources is only possible if the
time is sufficient to realise all these features. In practice, however, the time allowed is usually insufficient to
realise all the features asked: What the customer wants, he cannot afford. If this is the case, we are only
fooling ourselves if we try to accomplish the impossible (Figure 9). This has nothing to do with lazy or
unwilling developers: if the time (or the budget) is insufficient to realise all the required features, they will
not all be realised. It is as simple as that.

The Evo method makes sure that the customer gets the most and most important features possible within a
certain amount of time and with the available resources. Asking developers to accomplish the impossible is
one of the main energy drains in projects. By wasting energy the result is always less than otherwise
possible.

In practice, time boxing means: ressiurces
e A set number of hours is reserved for a task.
e At the end of the time box, the task should be 100% done. That means really
done.
e Time slip is not allowed in a time box, otherwise other tasks will be delayed / \%
and this would lead to uncontrolled delays in the development. time features
e Before the end of the time box. we check how far we can finish the task. If Figure 9: If ressources and
we foresee that we cannot finish a task, we should define what we know time are fixed,
now, try to define what we still have to investigate, define tasks and estimate the features are variable

the time still needed. Preferably, however, we should try whether we could

3-5

go into less detail this moment, actually finishing the task to a sufficient level of detail within the time
box. A TaskSheet (details see [8]) is used to define:
e The goal of the task.
e The strategy to perform the task.
e How the result will be verified.
e How we know for sure that the task is really done (i.e. there is really nothing we have to do any more
for this task, we can forget about it).

3.5 Estimation, planning and tracking

Estimation, planning and tracking are an inseparable trinity. If you don't do one of them, you don't need the
other two.

e [f you don't estimate, you cannot plan and there is nothing to track.
e If you do not plan, estimation and tracking is useless.
e If you do not track, why should you estimate or plan?

So:

e Derive small tasks from the requirements, the architecture and the overall design.
e Estimate the time needed for every small task.
e Derive the total time needed from:
e The time needed for all the tasks
e The available resources
e Corrected for the real amount of time available per resource (nobody works a full 100% of his
presence on the project. The statistical average is about 55%. This is one of the key reasons for late
projects! [9])
e Plan the next cycle exactly.
e Be sure that the work of every cycle can be done. That means really done. Get commitment from those
who are to do the real work.
e Plan the following cycles roughly (the planning may change anyway!).
e Track successes and failures. Learn from it. Refine estimation and planning continuously. Warn
stakeholders well in advance if the target delivery time is changing because of any reason.
e There may be various target delivery times, depending on various feature sets.
If times and dates are not important to you (or to management), then don't estimate, plan, nor track: you don't
need it. However, if timing is important, insist on estimation, planning and tracking. And it is not even
difficult, once you get the hang of it.

If your customer (or your boss) doesn't like to hear that you cannot exactly predict which features will be in
at the fatal end day, while you know that not all features will be in (at a fixed budget and fixed resources),
you can give him two options:

e FEither to tell him the day before the fatal day that you did not succeed in implementing all the functions.
e Or tell him now (because you already know), and let him every week decide with you which features are
the most important.

It will take some persuasion, but you will see that within two weeks you will work together to get the best
possible result. There is one promise you can make: The process used is the most efficient process available.
In any other way he will never get more, probably less. So let's work together to make the best of it. Or
decide at the beginning to add more resources. Adding resources later evokes Brooks Law [9]: "Adding
people to a late project makes it later". Let's stop following ostrich-policy, face reality and deal with it in a
realistic and constructive way.

3.6 Difference between effort and lead-time

If we ask software developers to estimate a given task in days, they usually come up with estimates of lead-
time. If we ask them to estimate a task in hours, they come up with estimates in effort. Project managers
know that developers are optimistic and have their private multiplier (like 2, V2, e or) to adjust the
estimates given. Because these figures then have to be entered in project-planning tools, like MS Project,
they enter the adjusted figures as lead-time.

3-6

The problem with lead-time figures is that these are a mix of two different time components:

e Effort, the time needed to do the work

e Lead-time, the time until the work is done. Or rather Lead-time minus Effort, being the time needed for
other things than the work to be done. Examples of “other things” are: drinking coffee, meetings, going to
the lavatory, discussions, helping colleagues, telephone calls, e-mail, dreaming, etc. In practice we use the
Effort/Lead-time ratio, which is usually in the range of 50-70% for full-time team members.

Because the parameters causing variation in these two components are different, they have to be kept apart
and treated differently. If we keep planning only in lead-time, we will never be able to learn from the
tracking of our planned, estimated figures. Thus we will never learn to predict development time. If these
elements are kept separately, people can learn very quickly to adjust their effort estimating intuition. In
recent projects we found: first week: 40% of the committed work done, second week: 80% done, from the
third week on: 100% or more done. Now we can start predicting!

Separately, people can learn time management to control their Effort/Lead-time ratio. Brooks indicated this
already in 1975 [9]: Programming projects took about twice the expected time. Research showed that half of
the time was used for activities other than the project.

In actual projects, we currently use the rule that people select 2/3 of a cycle (26 hours of 39) for project tasks,
and keep 1/3 for other activities. Some managers complain that if we give about 3 days of work and 5 days to
do the work, people tend to “Fill the time available”. This is called Parkinson’s Law [10]: “Work expands so
as to fill the time available for its completion”. Management uses the same reasoning, giving them 6 days of
work and 5 days to do it, hoping to enhance productivity. Because 6 days of effort cannot be done in 5 days
and people have to do, and will do, the other things anyway, people will always fail to succeed in
accomplishing the impossible. What is worse: this causes a constant sense of failure, causing frustration and
demotivation. If we give them the amount of work they can accomplish, they will succeed. This creates a
sensation of accomplishment and success, which is very motivating. The observed result is that giving them
3 days work for 5 days is more productive than giving them 6 days of work for 5 days.

3.7 Commitment

In most projects, when we ask people whether a task is done, they answer: “Yes”. If we then ask, “Is it really
done?”, they answer: “Well, almost”. Here we get the effect that if 90% is done, they start working on the
other 90%. This is an important cause of delays. Therefore, it is imperative that we define when a task is
really 100% done and that we insist that any task be 100% done. Not 100% is not done.

In Evo cycles, we ask for tasks to be 100% done. No need to think about it any more. Upon estimating and
planning the tasks, effort hours have been estimated. Weekly, the priorities are defined. So, every week,
when the project manager proposes any team member the tasks for the next cycle, he should never say “Do
this and do that”. He should always propose: “Do you still agree that these tasks are highest priority, do you
still agree that you should do it, and do you still agree with the estimations?”. If the developer hesitates on
any of these questions, the project manager should ask why, and help the developer to re-adjust such that he
can give a full commitment that he will accomplish the tasks.

The project manager may help the developer with suggestions (“Last cycle you did not succeed, so maybe
you were too optimistic?”’). He may never take over the responsibility for the decision on which tasks the
developer accepts to deliver. This is the only way to get true developer commitment. At the end of the cycle
the project manager only has to use the mirror. In the mirror the developer can see himself if he failed in
fulfilling his commitments. If the project manager decided what had to be done, the developer sees right
through the mirror and only sees the project manager.

It is essential that the project manager coaches the developers in getting their commitments right. Use the
sentence: ‘“Promise me to do nothing, as long as that is 100% done!” to convey the importance of completely
done. Only when working with real commitments, developers can learn to optimise their estimations and
deliver accordingly. Else, they will never learn. Project managers being afraid that the developers will do less
than needed and therefore giving the developers more work that they can commit to, will never get what they
hope for because without real commitment, people tend to do less.

3-7

3.8 Risks

If there are no risks whatsoever, use the waterfall model for your development. If there are risks, which is the
case in any new development, we have to constantly assess how we are going to control these risks.
Development is for an important part risk-reduction. If the development is done, all risks should have been
resolved. If a risk turns out for worse at the end of a development, we have no time to resolve it any more. If
we identify the risks earlier, we may have time to decide what to do if the risk turns out for worse. Because
we develop in very short increments of one week the risk that an assumption or idea consumes a lot of
development time before we become aware that the result cannot be used is limited to one week. Every week
the requirements are redefined, based upon what we learnt before.

Risks are not limited to assumptions about the product requirements, where we should ask ourselves:

e Are we developing the right things right?
e When are things right?

Many risks are also about timing and synchronisation:

e (Can we estimate sufficiently accurate?
e Which tasks are we forgetting?
e Do we get the deliveries from others (hardware, software, stakeholder responses, ...) in time?

Actually the main questions we are asking ourselves systematically in Evo are: What should we do, in which
order, to which level of detail for now. Too much detail too early means usually that the detail work has to be
done over and over again. May be the detail work was not done wrong. It only later turns out that it should
have been done differently.

3.9 Team meetings

Conventional team meetings usually start with a round of excuses, where everybody tells why he did not
succeed in what he was supposed to do. There is a lot of discussion about the work that was supposed to be
done, and when the time of the meeting is gone, new tasks are hardly discussed. This is not a big problem,
because most participants have to continue their unfinished work anyway. The project manager notes the
new target dates of the delayed activities and people continue their work. After the meeting the project
manager may calculate how much reserve (“slack time”) is left, or how much the project is delayed if all
reserve has already been used. In many projects we see that project-planning sheets (MS Project) are mainly
used as wallpaper. They are hardly updated and the actual work and the plan-on-the-wall diverge more and
more every week.

In the weekly Evo team meeting, we only discuss new work, never past work. We do not waste time for
excuses. What is past we cannot change. What we still should do is constantly re-prioritised, so we always
work on what is best from this moment. We don’t discuss past tasks because they are finished. If discussion
starts about the new tasks, we can use the results in our coming work. That can be useful. Still, if the
discussion is between only a few participants, it should be postponed till after the meeting, not to waste the
others’ time.

3.10 Magic words

There are several “magic words” that can be used in Evo practice. They can help us to doing the right things
in the right order to the right level of detail for this moment.

Focus

Developers tend to be easily distracted by many important or interesting things. Some things may even really
be important, however, not at this moment. Keeping focus at the current priority goals, avoiding distractions,
is not easy, but saves time.

Priority
Defining priorities and only working on the highest priorities guides us to doing the most important things
first.

Synchronise
Every project interfaces with the world outside the project. Active synchronisation is needed to make sure
that planned dates can be kept.

3-8

Why
This word forces us to define the reason why we should do something, allowing us to check whether it is the
right thing to do. It helps in keeping focus.

Dates are sacred
In most projects, dates are fluid. Sacred dates means that if you agree on a date, you stick to your word. Or
tell well in advance that you cannot keep your word. With Evo you will know well in advance.

Done
To make estimation, planning and tracking possible, we must finish tasks completely. Not 100% finished is
not done. This is to overcome the “If 90% is done we continue with the other 90%” syndrome.

Bug, debug

A bug is a small creature, autonomously creeping into your product, causing trouble, and you cannot do
anything about it. Wrong. People make mistakes and thus cause defects. The words bug and debug are dirty
words and should be erased from our dictionary. By actively learning from our mistakes, we can learn to
avoid many of them. In Evo, we actively catch our mistakes as early as possible and act upon them.
Therefore, the impact of the defects caused by our mistakes is minimised and spread through the entire
project. This leaves a bare minimum of defects at the end of the project, avoiding the need for a special
“debugging phase”.

Discipline

With discipline we don’t mean imposed discipline, but rather what you, yourself, know what is best to do. If
nobody watches us, it is quite human to cut corners, or to do something else, even if we know this is wrong.
We see ourselves doing a less optimal thing and we are unable to discipline ourselves. If somebody watches
over our shoulder, keeping discipline is easier. So, discipline is difficult, but we can help each other. Evo
helps keeping discipline. Why do we want this? Because we enjoy being successful, doing the right things.

4 How do we use Evo in projects

In our experience, many projects have a mysterious start. Usually when asked to introduce Evo in a project,
one or more people have been studying the project already for some weeks or even months. So in most cases,
there are some requirements and some idea about the architecture. People acquainted with planning usually
already have some idea about what has to be done and have made a conventional planning, based on which
the project was proposed and commissioned.

4.1 Evo day

To change a project into an Evo project, we organise an “Evo day”, typically with the Project Manager, the
architect, a tester and all other people of the development team. Stakeholder attendance can be useful, but is
not absolutely necessary at the first Evo day, where we just teach the team how to change their ways. During
the Evo day (and during all subsequent meetings) a notebook and a LCD projector are used, so that all
participants can follow what we are typing and talking about. It is preferable to organise the Evo day outside
the company.

The schedule is normally:

Morning

e Presentation of Evo methods [11]: why and how.

e Presentation of the product by the systems architect (people present usually have different views, or even
no view, of the product to be developed).

Afternoon

e In the afternoon we work towards defining which activities should be worked on in the coming
week/cycle. Therefore we do exercises in:

e Defining sub-tasks of max 26 hours.
In practice, only few activities will be detailed. People get tired of this within 20 minutes, but they did the
exercise and anyway we don’t have time to do it all in one day.

e Estimating the effort of the sub-tasks, in effort-hours, never in days, see “Difference between effort and
lead-time” above.

e Defining priorities.

Listing the tasks in order of priority.

Estimating effort on top-priority sub-tasks if not yet done.

3-9

Dividing top-priority activities, which have not yet been divided into sub-tasks.

The team decides who should do what from the top of the list.
Every individual developer decides which tasks he will be able to deliver done, really done at the end of

the cycle. If a commitment cannot be given, take fewer tasks, until full commitment can be given.

At the end of the day everyone has a list of tasks for the coming week, and a commitment that these tasks
will be finished completely, while we are sure that the tasks we start working on have the highest priority.

4.2 Last day of the cycle

The last day of a cycle is special and divided into 3 parts (Figure 10):

The project manager visits every developer individually and discusses the results of the tasks. If the

commitments could not be met, they discuss the causes: Was the effort estimation incorrect or was there a
time-management problem. The developer should learn from the results to do better the next time. After
having visited all developers, the project manager has an overview of the status of the project.

stakeholders. Here the Requirements Paradox is handled:

The status of the project is discussed with the customer, product manager, or whichever relevant

during the week, the requirements were fixed,

now is the 1 to 2 hours timeslot that the stakeholders may re-arrange the requirements and priorities. At
the end of this meeting, the requirements and priorities are fixed again.

Finally, the project manager defines task-proposals for the developers and discusses these proposals with

them individually. Developers agree that these tasks have the highest priority and commit to finishing

these tasks during the cycle.

4.3 Team meeting

Having prepared the individual task-lists for the next cycle, in the team meeting, at the end of the last cycle

day, or the beginning of the first new

cycle day, the following is done:

e Experience from the past cycle may

cycles

be discussed if it could benefit
subsequent work.
The status of the project is

discussed. Sub-tasks may be (re-)

mon

defined and (re-)estimated if full |

. . . . & o >
participation is useful. o Se S . & & & S o f‘i& .
Th ks f h 1 ey & & S & FES @

J e tasks for the next cycle are 1 &€ S5 o & & L S

. . &S) & & > & 2 2
formally assigned and committed to. | &° & S & & <
Now all participants hear who is 7 <& AN & <«
going to do what and may react |4 — Last day of a cycle
. a, Q & 3
upon 1t. Lo & o o & PN
. . e S & &f FE€ £
e Discussion may be allowed, if it £ & ‘\o«if @‘Z& &¢
.. A & & o <2
affects most participants. ¥ &L © Figure 10: Structure of a weekly cycle

The discussions may cause some
reprioritisation and thus reshuffling of tasks to be done.

Weekly team meetings typically take less than 20 minutes. A

typical reaction at the end of the first Evo team

meeting is: “We never before had such a short meeting”. When asked “Did we forget to discuss anything
important?”, the response is: “No, this was a good and efficient meeting”. This is one of the ways we are

saving time.

5 Check lists

There are several checklists being used to help defining priorities and to help to get tasks really finished.

These are currently:

e Task prioritisation criteria
e Delivery prioritisation criteria
e Task conclusion criteria

51 Task prioritisation criteria

To help in the prioritisation process of which tasks should be done first, we use the following checklist:

Most important issues first (based on current and future delivery schedules).

Highest risks first (better early than late).

Most educational or supporting activities first.

Synchronisation with the world outside the team (e.g. hardware needs test-software, software needs
hardware for test: will it be there when needed?).

e Every task has a useful, completed, working, functional result.

5.2 Delivery prioritisation criteria

To help in the prioritisation process of what should be in the next delivery to stakeholders we use the
following checklist:

e Every delivery should have the juiciest, most important stakeholder values that can be made in the least
time. Impact Estimation [7] is a technique that can be used to decide on what to work on first.

e A delivery must have symmetrical stakeholder values. This means that if a program has a start, there must
also be an exit. If there is a delete function, there must be also some add function. Generally speaking, the
set of values must be a useful whole.

e Every subsequent delivery must show a clear difference. Because we want to have stakeholder feedback,
the stakeholder must see a difference to feedback on. If the stakeholder feels no difference he feels that he
is wasting his time and looses interest to generate feedback in the future.

e Every delivery delivers the smallest clear increment. If a delivery is planned, try to delete anything that is
not absolutely necessary to fulfil the previous checks. If the resulting delivery takes more than two weeks,
try harder.

5.3 Task conclusion criteria

If we ask different people about the contents of a defined task, all will tell a more or less different story. In
order to make sure that the developer develops the right solution, we use a TaskSheet (details see [8]).
Depending on the task to be done, TaskSheets may be slightly different. First, the developer writes down on
the TaskSheet:

The requirements of the result of the task.

Which activities must be done to complete the task.

Design approach: how to implement it.

Verification approach: how to make sure that it does what it should do and does not do what it should not
do, based on the requirements.

e Planning (if more than one day work). If this is difficult, ask: “What am I going to do the first day”.

e Anything that is not yet clear.

Then the TaskSheet is reviewed by the system architect. In this process, what the developer thinks has to be
done is compared with what the system architect expects: will the result fit in the big picture? Usually there
is some difference between these two views and it is better to find and resolve these differences before the
actual execution of the task than after. This simply saves time.

After agreement, the developer does the work, verifies that the result produced not less, but also not more,
than the requirements asked for. Nice things are not allowed: Anything not specified in the requirements is
not tested. Nobody knows about it and this is an irresolvable and therefore unwanted risk.

Finally, the developer uses the task conclusion criteria on the TaskSheet to determine that the task is really
done. These criteria may be adapted to certain types of tasks. In practical projects, where software code was
written we used the following list:

The code compiles and links with all files in the integration promotion level.
The code simply does what it should do: no bugs.

There are no memory leaks.

Defensive programming measures have been implemented.

All files are labelled according to the rules agreed.

File promotion is done.

I feel confident that the tester will find no problems.

This checklist is to make sure that the

task is really done. If all checks are requirements derived newly change problem
OK_ then the work is done. If it later d tasks defined tasks requests reports
turns out that the work was not l
completely done, then the checklist is
Changed_ > database €
6 Change requests and ces

Problem reports l

task candidates hours priority
Change Requests (CR) are requested | [Tt it . Eetiect
. . as ¢ Later

changes in the requirements. | [H <«—— « Analysis task

<+—— * New task

Problems Reports (PR) report things
found wrong (defects), which we
should have done right in the first
place. Newly Defined Tasks (NT) are | === &
tasks we forgot to define. If any of | nours: reaiefton

these is encountered, we never start prioys 9= ighest 1= lowest, 0 omheld
just changing, repairing, or doing the [Figure 11: All activities, including Change Requests, Problem Reports and Newly
new task. We work only on defined Defined Tasks use the same mechanism for estimation and prioritising:
tasks, of which the effort has been the list of Candidate Tasks.

estimated and the priority defined. All

tasks are listed on the list of candidate tasks in order of priority (Figure 11). Any CR, PR or NT is first
collected in a database. This could be anything between a real database application and a notebook.
Regularly, the database is analysed by a Change Control Board (CCB). This could be anything between a
very formal group of selected people, who can and must analyse the issues (CRs, PRs and NTs), and an
informal group of e.g. the project manager and a team member, who check the database and decide what to
do. The CCB can decide to ignore or postpone some issues, to define a new task immediately or to define an
analysis task first. In an analysis task, the consequences of the issue are first analysed and an advice is
documented about what to do and what the implications are. Any task generated in this process is put on the
list of candidate tasks, estimated and prioritised. And only when an existing or new task appears at the top of
the candidate list, it will be worked on.

SICIE S LY ENES

7 Tools

Special tools may only be used when we know and understand the right methods. In actual projects, we have
used MS Excel as an easy notepad during interactive sessions with a LCD projector showing what happens
on this notepad in real time. When tasks have been defined, MS Project can be used as a spreadsheet to keep
track of the tasks per person, while automatically generating a time-line in the Gantt-chart view (Figure 12,
top left). This time-line tells people, including management, more than textual planning. It proved possible to
let MS Project use weeks of 26 hours and days of 5.2 hours, so that durations could be entered in real effort
while the time-line shows correct leadtime-days. There is a relation between requirements, stakeholder
values, deliveries and tasks (Figure 12). We even want to have different views on the list of tasks, like a list
of prioritised candidate tasks of the whole project and lists of prioritised tasks per developer. This calls for
the use of a relational database, to organise the relations between requirements, values, deliveries and tasks
and the different views. Currently, such a database has not been made and the project manager has to keep
the consistency of the relations manually. This is some extra work. However, in the beginning it helps the
project manager knowing what he is doing. And when we will have found the best way to do it and found the
required relationships and views we really need, then we could specify the requirements of a database. If we
would have waited till we had a database to keep track of all things, we probably would not have started
gaining Evo experience yet. Whether existing tools, like e.g. from Rational can solve this database problem
sufficiently, is interesting to investigate.

S i i
==t gl N
5| T B requirements
oS i £
EESE . S B
g aY 5|
-g Past Tasks John T T —
= . / ask 1 Value 1 / Delivery 1
T [This week John Task 2 —— |Vawez Delivery 2
g Still to do John Task 3 Value 3 / Delivery 3
E Past Tasks Bill Task n Value n Delivery n
- . " N~ -
E This week Bill Task n+1 Value n+1 > Delivery n+1
E Still to do Bill Task n+2 Value n+2 Delivery n+2
prioritized
§ Past Tasks Sue Task m Value m
:“g This week Sue Task m+1 Value m+1
2 |stilltodoSue Task m+2 Value m+2
S
prioritized
prioritized
Figure 12: Relations between requirements, stakeholder values, deliveries,
and different views on tasks.

Important before selecting any tool is, however, to know what we want to accomplish and why and how.
Only then we can check whether the tool could save time and bureaucracy rather that costing time and
bureaucracy.

8 Testing with Evo

When developing the conventional way, testing is done at the end of the development, after the Big Bang
delivery. Testers then tend to find hundreds of defects, which take a long time to repair. And because there
are so many defects, these tend to influence each other. Besides, repairing defects causes more defects.

Software developers are not used to using statistics. If we agree that testing never covers 100% of the
software, this means that testing is taking a sample. At school we learnt that if we sample, we should use
statistics to say something about the whole. So we should get used to statistics and not run away from it.

Statistics tell us that testing is on average 50% effective. Until you have your own (better?) figures, we have
to stick to this figure. This means that the user will find the same amount of defects as found in test.
Paradoxically this means that the more defects we find in test, the more the user will find. Or, if we do not
want the user to find any defects, the test should find no defects at all. Most developers think that defect-free
software is impossible. If we extrapolate this, it means that we think it is quite normal that our car may stop
after a few kilometres drive. Or that the steering wheel in some cases works just the other way: the car turns
to the left when we steered to the right... Is that normal?

In Evo, we expect the developers to deliver zero-defect results for the final validation, so that the testers just
have to check that everything works OK, as required. Although software developers usually start laughing by
this very idea, we are very serious about this. The

aim of testing earlier deliveries of Evo cycles is Evolutionary development

not just testing whether it “works”. Also, testing Delivery Delivery Delivery detvery

is not to make life difficult for the deVClOpCI‘S. In Measure quality| | Measure quality| |Measure quality| | Final validation |
Evo, the software developers ask the testers to

help them to find out how far the developers are Figure 13: Testing of early deliveries. helps the developers
from the capability of delivering a defect free to get ready for zero-defect final delivery.

product at, or before, final validation (Figure 13).

9 Conclusion

We described issues that are addressed by the Evo methods and the way we organise Evo projects. By using
these methods in actual projects we find:

Faster results
Evo projects deliver better results in 30% shorter time than otherwise. Note: 30% shorter than what by
conventional methods would have been achieved. This may be longer than initially hoped for.

Although this 30% is not scientifically proven, it is rather plausible by considering that we constantly check
whether we are doing the right things in the right order to the right level of detail for that moment. This
means that any other process is always less efficient. Most processes (even if you don’t know which
process you follow, you are following an intuitive ad hoc process) cause much work to be done incorrectly
and then repaired, as well as unnecessary work. Most developers admit that they use more than half of the
total project time on debugging. That is repairing things they did wrong the first time.

Better quality

We define quality as (Crosby [4]) “Conformance to Requirements” (how else can we design for quality and
measure quality). In Evo we constantly reconsider the validity of the requirements and our assumptions and
make sure that we deliver the most important requirements first. Thus the result will be at least as good as
what is delivered with the less rigorous approach we encounter in other approaches.

Less stressed developers

In conventional projects, where it is normal that tasks are not completed in time, developers constantly feel
that they fail. This is very demotivating. In Evo projects, developers succeed regularly and see regularly
real results of their work. People enjoy success. It motivates greatly. And because motivation is the motor
of productivity, the productivity soars. This is what we see happening within two weeks in Evo projects:
People get relaxed, happy, smiling again, while producing more.

Happy customers

Customers enjoy getting early deliveries and producing regular feedback. They know that they have
difficulty in specifying what they really need. By showing them early deliveries and being responsive to
their requirements changes, they feel that we know what we are doing. In other developments, they are
constantly anxious about the result, which they get only at the end, while experience tells them that the first
results are usually not OK and too late. Now they get actual results even much earlier. They start trusting
our predictions. And they get a choice of time to market because we deliver complete, functioning results,
with growing completeness of functions and qualities, well before the deadline. This has never happened
before.

More profits
If we use less time to deliver better quality in a predictable way, we save a lot of money, while we can earn
more money with the result. Combined, we make a lot more profit.

In short, although Brooks predicted a long time ago that “There is no silver bullet” [2], we found that the
methods presented, which are based on ideas practiced even before the “silver bullet” article, can be said to
be a “magic bullet” because of the remarkable results obtained.

10 Acknowledgement

A lot of the experience with the approach described in this paper has been gained at Philips Remote Control
Systems, Leuven, Belgium.

In a symbiotic cooperation with the group leader, Bart Vanderbeke, the approach has been introduced in all
software projects of his team. Using short discuss-implement-check-act improvement cycles during a period
of 8 months, the approach led to a visibly better manageability and an increased comfort-level for the team
members.

We would like to thank the team members for their contribution to the results.

References

[11 H.D. Mills: Top-Down Programming in Large Systems. In Debugging Techniques in Large Systems.
Ed. R. Ruskin, Englewood Cliffs, NJ: Prentice Hall, 1971.

[2]1 F.P. Brooks, Jr.: No Silver Bullet: essence and Accidents of Software Engineering. In Computer vol 20,
no.4 (April 1987): 10-19.

31 T. Gilb: Principles of Software Engineering Management. Addison-Wesley Pub Co, 1988, ISBN:
0201192462.

[41 P.B. Crosby: Quality Is Still Free. McGraw-Hill, 1996. 4th edition ISBN 0070145326

[51 T. Gilb: manuscript: Evo: The evolutionary Project Managers Handbook.
http://www.gilb.com/Download/EvoBook.pdf, 1997.

(61 S.J.Prowell, C.J.Trammell, R.C.Linger, J.H.Poore: Cleanroom Software Engineering, Technology and
process. Addison-Wesley, 1999, ISBN 0201854805.

(71 T. Gilb: manuscript: Impact Estimation Tables: Understanding Complex Technology Quantatively.
http://www.gilb.com/Download/IENV97.ZIP, 1997.

[8] N.R. Malotaux: TaskSheet. http://www.malotaux.nl/nrm/English/Forms.htm, 2000.

[91 F.P. Brooks, Jr.: The mythical man-month. Addison-Wesley, 1975, ISBN 0201006502. Reprint 1995,
ISBN 0201835959.

[10] C. Northcote Parkinson: Parkinsons Law. Buccaneer Books, 1996, ISBN 1568490151.

[11] N.R. Malotaux: Powerpoint slides: Evolutionary Delivery. 2001.
http://www.malotaux.nl/nrm/pdf/Evolntro.pdf.

[12] E. Dijkstra: Paper: Programming Considered as a Human Activity, 1965. Reprint in Classics in
Software Engineering. Yourdon Press, 1979, ISBN 0917072146.

[13] W. A. Shewhart: Statistical Method from the Viewpoint of Quality Control. Dover Publications, 1986.
ISBN 0486652327.

[14] W.E. Deming: Out of the Crisis. MIT, 1986, ISBN 0911379010.

[15] Kent Beck: Extreme Programming Explained, Addison Wesley, 1999, ISBN 02016164 16.

[16] http://www.gilb.com.

[17] http://www.extremeprogramming.org.

Niels Malotaux is an independent consultant teaching immediately applicable methods for delivering Quality On Time
to R&D and software organisations. Quality On Time is short for delivering the right product, within the time and
budget agreed, with no excuses, in a pleasant way for all involved, including the developers. Niels does not just tell
stories, he actually puts development teams on the Quality On Time track and coaches them to stay there and deliver
their quality software or systems on time, without overtime.

Practical methods are developed, used, taught and continually optimised for:

e Evolutionary project organisation (Evo)
e Requirements generation and management
e Reviews and Inspections

Within a few weeks of turning a development project into an Evo project, the team has control and can tell the customer
(or the boss) when the required features will all be done, or which features will be done at a certain date. Niels enjoys
greatly the moments of enlightenment experienced by his clients when they find out that they can do it, that they are in
control, for the first time in their lives.

Copies of the latest version of the booklet Evolutionary Project Management Methods by Niels Malotaux can be
downloaded from http://www.malotaux.nl/nrm/pdf/MxEvo.pdf

4-1

An Integrated System Development Process including Hardware
and Logistics based on a Standard Software Process Model

Wolfgang Kranz
EADS Deutschland GmbH
Systems & Defence Electronics, NGO1
Landshuter Strasse 26
D-85716 UnterschleiBheim, Germany

phone: +49 (0) 89 31 79 — 2786
fax: +49 (0) 89 31 79 — 2528
Email: wolfgang.kranz@sysde.eads.net

Abstract

Starting from the results of two CMM-based assessments EADS Systems and Defence Electronics - the for-
mer DASA (Daimler Chrysler Aerospace) - started a process improvement program. One goal of the pro-
gram was to define an integrated development process for mixed software / hardware systems and the logis-
tic support based on the “V-Model”, the software development standard of the German Federal Office for
Procurement. Another goal was the fast and efficient implementation of the process throughout the whole
organisation. All of the goals were reached. The benefits from the improvement program resulted in signifi-
cant development cost and time savings and a return on invest in the second year. Due to its officially at-
tested conformity to the V-Model the process empowers development contracts for general systems.

1. Motivation

EADS (European Aeronautic Defence and Space Company) was newly formed in 2000 from German
Daimler Chrysler Aerospace (DASA), French AEROSPATIALE MATRA and Spanish CASA. The com-
pany has revenues of 30.8 bn € per year and has more than hundred thousand employees. EADS Systems &
Defence Electronics (EADS / S & DE) is a division of EADS in the defence electronics business. The typical
products of S & DE are airborne systems, intelligence surveillance & reconnaissance systems, C3I systems
and naval & ground systems.

M8/M9
M1 M2 M3M4 N‘[S N‘IG 1\/‘[7 M‘l() M11 M12
Product planning phas¢ Predeployment Product support Rundown
phase phase phase
| | | | [[| |
Product Management

S
E Product

roduc 9
38 : Development After Sales Support)
3 Product Planning I \ \ [1 g
© Production ‘g
: [[[[]] :
) -

Marketing
\ I L [T[] \
\
Acquisition Project / Order Handling
> Purchasing
Picture 1 Business Processes

A major part of the yearly revenues is made from engineering activities so productivity in engineering is a
key business factor. The business and particularly the development projects in Germany are spread over

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

42

various sites. For these reasons in the former DASA Defence and Civil Systems - the German Defence Elec-
tronics part of the company - there was a demand for a common business process system comprising product
management and planning process, acquisition, marketing and other processes (see picture 1). Special atten-
tion was contributed to the development process. Due to the fact that characteristic products (i. e. ground and
airborne radar, communication systems) include software, hardware and logistics an integrated system de-
velopment process was required.

2. Background

Since 1996 a process improvement project resulting in an integrated system development process, based on
the recommendations of a CMM assessment, was already in place. The quality of this process was confirmed
by a CMM reassessment and resulted in savings of 15% in cost and 30% in time within 2 years for the site
considered (the former Siemens SI defence business). This know how was used - apart from similar experi-
ences of the other sites - as one basis for the new integrated system development process model.

The goal of the improvement project was to “harmonise” the different cultures and sites and to integrate their
development experiences into a new cross-functional development process. When the integration started SW
and HW processes were different between the various sites and also not harmonised inside of one specific
site. The development process for the logistics was living in projects but not defined or even harmonised
with SW and HW. Consequently the improvement project included the integration of the SW and HW devel-
opment processes as well as the incorporation of the logistics aspects.

3. The V-Model

When the project was started analysis of existing process standards has been made. No standard was found
which fully included SW and HW and logistic processes. In the SW departments of the company the use of
the V-Model 97 [VM97] (a German government software development standard for IT projects) is often
mandatory in software development contracts with the German Federal Office of Procurement. The VM97 is
compatible to several process and quality management standards (i.e. GAM-T17, US-DOD-498, ISO 12207,
ISO 900x, STANAG 4159, AQAP 110/150, etc.). Besides this the VM97 is also used in civil organisations
like ministries, insurances, banks and industry. It is also applied in German speaking European countries like
Austria and Switzerland.

Summary > Summary for VM-GBV
Templates
VM-GBV SD SRS SD 3-7 [SIVXEY)
Regulations 1,2,8,9 b M QA VM 97
BRH GPO RL R
Miniml{m Business Cross O!)ject Chomegri af
Imeey N\ T | e Bl S RS
oliection o
Manuals RE SEC SI Sz T KVP KS
Rgvers.e V-l;’[l::;lell Sal:e.ty apd Scenarios sPezif. ‘i;'l:[;]g:l_ Improve- Complex
Engineering ITSEC Criticality Tailoring e ment Systems
functional .
VM-GBV methods tool best practices
Tools requiremts checklists
AU 251 AU 252 examples
. GBV Tools &
VM97 modified - gene
E e SD HW SW PM CM QA 1ILS ral
Picture 2 Structure of VM-GBV

The VM97 was found to be modular constructed and to have all extension possibilities for HW and logistic
processes. Therefore the decision was made to use this VM97 as a basis for the integrated development proc-

4.3

ess. The original VM97 (picture 2) consists of the four sub-models SW engineering (SD), project manage-
ment (PM), configuration management (CM) and quality assurance (QA). For the integrated new develop-
ment process model the VM97 was adapted and extended by three additional sub-models to cover all aspects
of joint system (SD), hardware (SD-HW), software (SD-SW) and logistic support (SD-ILS) development.
The existing “best practices” could be integrated too. The resulting generic process model (known as VM-
GBV) is a combination of modified VM97 and new parts (picture 2).

The goal of the process improvement was to follow the original VM97 with all modifications so that the re-
sulting VM-GBYV should be conform to the VM97 standard. Therefore in the development of the new sub-
models SD-HW and SD-ILS the same kind and method of description as in the VM97 were used. Due the
interdependence between the submodels the original VM97 submodels had to be modified too.

The VM-GBY is the basis for the product development process and supports engineering activities across all
business processes in the whole product life cycle (e. g. product planning process). It is an integrated system
development process that is universally applicable to all development projects in S&DE (whether software,
hardware, logistics, or some combination thereof).

VM-GBV with Software, Hardware and Logistic Activities

SD 1 SD 9
System Requirements Analysis Transition to Utilization '
VM-GB

SD 2 SD 8
System Design System Integration

SD 3 (ILS) SD 3 (HW) SD 3 (SW)

Log. Requirem. § HW Requi}'em SW Requirem. SD7 15‘2 7 SD7
Analysis Analysis Analysis (SW) () (ILS)
SW HW Integr.

O SD 4 (ILS) SD 4 HW) SD 4 (SW/ Inte- Inte- of Log.
ReqUIrementS Preliminary Preliminary Pre]infinar))/ gration gration Elements .
& Architecture Log. Design HW design SW design Integratlon
SD 5 (ILS) SD 5 (HW) SD'5 (SW)
QA Detailed Detailed HW Detailed SW CM
Logistic Design Design
Design
SD System
SD 6 (SW) SW Implemention Development
SD 6 (HW) HW Implementation CM Configuration
Management
i - SD 6 (ILS) Implementation of Logistic Elements .
- New in VM-GBV g PM Project
Management
) Original VM 97 PM QA Quality
Realisation Assurance
Picture 3 The system engineering process model VM-GBV

The VM-GBYV system engineering process is controlled by activities (picture 3) and resulting products (i. e.
documents, SW, HW). The documents are regulated by “product models” having an uniform layout and a
specific structure.

4. Tailoring

The general applicability requires that not all of the V-Model rules are relevant for every project. In order to
make the V-Model applicable for a concrete project it is therefore necessary to decide:

— Which activities are required for the realization of the project?
— Which products (documents, HW, SW) must be generated within the scope of the project?

The connected deletion of activities and products that are not relevant is referred to as Tailoring. It is the
main intention of tailoring to guarantee that in every project the actual costs and efforts serve the project
goals. This is achieved by the reduction of the generally valid (generic) regulations of the V-Model to the
regulations required for objective reasons. These reasons must be documented as deletion conditions in the

4-4

“Project Handbook”. Apart from the description of the project, its organization and its objectives, the result-
ing subset of the V-Model ("project-specific V-Model") is the primary part of the project management (PM)
and is to be defined in the Project Handbook.

The tailoring of the VM-GBYV includes also the adaptation of the project to the product life cycle phase. In
the start of the product planning phase (the study) a rough technical architecture is necessary but normally no
implementation. Whereas in the product development all activities are necessary. So during the different
product life cycle phases the activities of the VM-GBV are repeated in the related details. Over the whole
cycle the VM-GBYV and therefore its activities and related products are reused several times (picture 4). This
reuse — if consequently applied — prevents mistakes and is one big advantage of the process model.

® ® Fowew ©

x> Product Planning > Product Definition > Predeployment > Product support >>

/ Product Management
Rundown

” .
\\\ 1 ATR
\\\ 144) z 4 4 LR Y 44
\ \\‘ \ ! \\

Product Definition of Feasibility Product Product
Study Requirements Proof Development Upgrade
Picture 4 Adaptation of the VM-GBYV to the different life cycles by Tailoring

5. Process Implementation

The benefits of such an integrated process model are best realised when the process is in practical use across
the entire organisation. Therefore one of the prime goals was to obtain a maximum acceptance in the organi-
sation. So the focus of the activities was more on the implementation of the process in the organisation than
on the definition of the process. By reusing the former results the definition phase was only 3 months. Fine
tuning of the process model was done during implementation.

The implementation strategy throughout the organisation included coaching covering all projects, role-based
training courses and a communication plan with public relation activities. In addition to coaching, training
was another key factor and this was implemented in a top-down manner specific to the various target audi-
ences, i.e. managers received training in the basics of the VM-GBV and key personnel in the projects re-
ceived more detailed training.

One big advantage for the users was the transfer of the product models to templates — prefabricated docu-
ments with uniform layout and specific structure — which could be immediately used in the projects by
downloading them with the computer’s office SW. Because of the different sites having different office and
IT systems the templates were offered via the EADS Intranet. This forced the implementation of the whole
VM-GBYV into the Intranet. So the engineers use their computer to enter the process model and the discus-
sion about handling of large process paper work is gone.

The success of the implementation strategy is confirmed by the broad acceptance of the VM-GBV through-
out the organisation.

4.5

6. Results

Though not all of the new projects using VM-GBYV first time are completed an improvement in site and cul-
ture integration can be observed. Project audits show that the running projects using VM-GBYV are well on
track of the project goals. The finished projects show a better performance in meeting time and cost targets.

In international projects we see a growing demand for integrated system processes. These may be proofed by
the newly established CMMI system process assessment which becomes more and more common. Based on
the experiences of two CMM assessments our VM-GBYV system process model is designed to meet the re-
quirements of CMM 3. This together with the conformity to the VM97 which has been attested officially by
the German Federal Office of Procurement is a very solid basis for a good performance in development con-
tracts. The adaptation to international standards is done by reference lists. So the project may work internally
with the VM-GBYV standard and can relate its results and development phases to the requested international
standard.

As mentioned the VM97 is used for SW development also by civil organisations. Consequently the Change
Control Board (CCB) for the VM97 includes representatives of these organisations as well as representatives
of the German MOD and the related industry associations. This CCB decided to integrate HW and logistic
processes into the VM97. Together with other modifications this may lead to a new VM97.

7. Conclusions

The VM-GBYV is one of the first known integrated system processes for HW, SW and logistic development.
It proofed its performance over the entire organisation. The integration of the logistic process is a special ad-
vantage in the defence environment. Because of the conformity to the external defence standards the VM-
GBYV makes the communication between customer and contractor as well as inside their organisations easier.
It is a good basis for well structured and controlled development projects. By application of VM-GBYV the
performance in development contracts for general systems will be highly improved.

8. References

[VM97] Development Standard for IT Systems of the Federal Republic of Germany, June 1997,
URL.: http://www.v-modell.iabg.de/vm97.htm

This page has been deliberately left blank

Page intentionnellement blanche

5-1

Progressive Acquisition:
A Strategy for Acquiring Large and Complex Systems

Dr. Helmut Hummel
IABG, Dept IK61
Einsteinstrasse 20

D-85521 Ottobrunn
Germany

Email: hummel @iabg.de

Summary

In 1995 the Technical Area 13 (TA-13) of the Western European Armament Group (WEAG) launched “A
Collaborative Programme of Work to Produce Guidelines for the Improvement of the Process of Acquisition
of Defence Information Systems”.

This programme, which by short was called the “TA-13 Acquisition Programme” first specified European
Requirements for the Acquisition Process (EURAP) and - based on that - it aimed to improve the acquisition
of Defence Information Systems (DIS) via the adoption of novel iterative approaches.

By the end of 2000 the effort resulted - after an evaluation period - in a new acquisition approach that defines
Progressive Acquisition (PA) and proposes guidance for its use.

1 Introductory Remarks

There have been many examples in the past of large DISs procured under the classic, strictly sequential,
"big-bang" model which have been delivered late, failed to meet user’s real needs when delivered, and which
exceeded their initial cost estimates.

In general, the application of the "big-bang" model to DIS acquisition may suffer from:

e Difficulties in the expression of needs:
It is usually not feasible to define at the beginning in detail what all the operational capabilities and
all the functional characteristics of the entire system should be. These usually evolve over time as
development progresses.

e Instability of the available technology:
The DIS acquisition lifecycle spans a long period of time during which evolution of technology may
occur.

e Complexity of the systems:
DISs are very large and complex systems, and it is difficult to cope with them adequately without an
approach for mastering such complexity.

1.1 The WEAG TA-13 Acquisition Programme

Considering the problems mentioned above Incremental and Evolutionary Acquisition approaches (IA/EA)
have raised much interest over recent years, as a means of reducing the risks related to the acquisition of
large DISs. Thus the WEAG TA-13 launched a programme for improving DIS acquisition by using IA/EA
approaches as a starting point.

The participating nations in this co-operative effort were France, Germany, Italy and United Kingdom, with
Sweden as an observer.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

5-2

1.2 From IA/EA to the PA Approach

From the study of IA/EA approaches emerging in participating nations, in the US, in NATO or more widely
in literature, it became obvious that there was a serious terminology confusion concerning the differing use
of the "incremental”" and "evolutionary" qualifiers.

In practice, a combination of both incremental and evolutionary approaches is very often desirable. PA pro-
vides a “unified” approach to acquisition, enhancing previous efforts on incremental and evolutionary acqui-
sition approaches.

2 Acquisition in the PA Context

The PA document defines the acquisition’ process as
“... the process for buying a system, software product or software service and, normally, all
activities undertaken by the purchaser during the entire life-cycle associated with the exis-
tence of an information system, from the initial step to the final one. For example: budget,
study, tender and contract, development, quality control...”

An acquisition, as defined in PA, has three major stakeholders:
e The acquirer - the “organization that acquires or procures a system, software product or software
service from a supplier.”
e The supplier - the “organization(s) responsible of delivering a system according to its requirements.”
e The user - a “person that will make direct usage of a system or will be responsible for people making
such direct usage.

In general, definitions for acquisition assume that some form of contractual relationship is established be-
tween the acquirer and the supplier.

Contracts may be established at many different points in the acquisition of an information system, and the
object, and nature, of contracts issued during the acquisition may vary widely (e.g. contract with an individ-
ual expert for some days of consultancy or selection of a prime contractor to conduct all phases of acquisi-
tion up to system delivery based on the stated requirements).

For simplicity reasons, acquisition and development processes are considered to be the two sides of a cus-
tomer/supplier relationship:
e The acquisition process describes all activities under the responsibility of an “acquisition team” pro-
curing a system for the benefit of its users.
e The development process describes all activities to be performed by a “development team” for con-
structing and delivering the system to the acquirer.
e The acquisition process includes all that is necessary for contracting activities in the development
process (for example, requirements definition, contract establishment and contract execution).

Hence, in PA development is understood as being a sub-process of the overall acquisition process.

3 Progressive Acquisition

PA is a strategy to acquire a large and complex system, which is expected to change over its lifecycle. The
final system is obtained by upgrades of system capability through a series of operational increments. PA
aims to minimize

e many of the risks associated with the length and size of the development, as well as

e requirements volatility and evolution of technology.

"' In some contexts, the term procurement may be used to denote a concept similar to Acquisition as defined here. Under PA, pro-
curement is limited to “the range of activities associated with contracting the delivery of an information system” and is simply “a part
of the acquisition sequence.”

5-3

3.1 The PA Concept

An essential goal of PA is the rapid fielding of an usable system, which addresses an initial and validated
statement of needs, while planning for iterative upgrades of system capability along a series of system in-
crements. Each successive increment provides an operational version of the system, meeting a pre-specified
subset of the overall requirements that the final system is expected to meet.

Continuous feedback from operation of previously fielded increments by the user is an important ele-
ment of the approach. It may significantly influence the definition and development of later increments.
In the same way, technology updates may be accommodated across increments. Such updates may re-
flect evolution or obsolescence of hardware and software items, including commercial off-the-shelf
products, in the technological environment of the system.

In figure 1 an overview of the PA approach is shown.

ﬁ Legend

A
s Operational Need 7"
p—

ez
— %ﬁ
— rireiEne e

Production Activity

via Froto(yplng via Operational Use from Technology

Develop, Test, Field
Core Increment

l Updales

reat ion

Develop, Test, Field
2nd Increment

Develop, Test, Field
n-th Increment

In-Service Support

Figure 1: General PA Approach

The key elements of the PA approach are the following:

An Overall System Concept describing the desired final system capability (including the concept of op-
eration and system functional requirements in broad terms) is defined by user representatives.
A System Architecture designed to be capable of accommodating system evolution with minimum re-
design.
A PA Plan defining the progressive achievement of the final system capability through iterative devel-
opment, fielding and supporting of successive increments, each providing upgrades to the system opera-
tional capability.
In parallel, the operational concept for a Core Increment of the system is defined in detail:

- the subset of the Overall System Concept to be implemented in the Core Increment is delineated,

- the requirements of the Core Increment are refined as appropriate.
The Core Increment is then developed, tested, fielded and sustained by an in-service support unit.
It is then operated by the user in the operational environment, providing feedback to be considered in the
definition of later increments.
The following successive increments are then iteratively defined, approved, developed, tested, fielded
and supported in the same way as the Core Increment.
Variations may occur in the way that the planning of successive increments is distributed over time, de-
pendent upon the specific needs of the project. Successive increments may overlap, or they may be
strictly consecutive, or even possibly staggered in time.

This iteration continues until the final system configuration is achieved.

5-4

The Two Dimensions of PA

PA proposes a common progressive philosophy, which is flexible in nature, and must be adapted to the needs
of each specific acquisition. As such, PA defines a framework in which acquisition may be characterized by
two complementary dimensions: incremental, and evolutionary.

The incremental dimension of PA is a means to reduce the inherent risks associated with the length and size
of the development of large and complex DISs. The "incremental" qualifier refers to the staged planning,
development and delivery of system capabilities considering essentially a stable set of requirements. The
incremental nature of an acquisition is characterized by the ability to partition the system into successively
(incrementally) developed, tested and fielded parts of the capability with each increment building upon the
previous until the entire system is complete.

3rd Increment

Stable Requirements

@ 2nd Increment

\Y

Core Increment

System Architecture

S o
e

150

Figure 2: Incremental System Growth

The evolutionary dimension of PA is essentially a means to reduce the risks associated with the expression of
needs of a DIS. It is often not feasible to define in detail the full requirements at the outset of some projects.
In addition to such uncertainty, requirements may be highly unstable over time. The "evolutionary" qualifier
refers to the evolution of requirements to be addressed to result in the system capability. The evolutionary
nature of an acquisition is characterized by its degree of openness to feedback from the user, and to signifi-
cant technology evolution across successively developed, tested and fielded increments of the capability.

.
" o . 2

WivE Feedback

i€ Ny 4
o Final System
Initial J al Syste
Requirements .F' _'_;\:
‘ :% = | ’
|

O g 3rd Increment
©

2nd Increment)
Core Increment)

Figure 3: Evolutionary System Growth

When acquiring a DIS under PA, the features of both incremental and evolutionary dimensions will be com-
bined within an acquisition as shown in figure 4.

5-5

3rd Increment

2nd Increment
Core Increment Function 2

Initial System Architecture

Function 1 Function 2

...........

H planned function

_ developed function

Function function as initially defined
Function modified or new function after user
feedback

Legend

Figure 4: Incremental and evolutionary system growth with PA

Tailoring PA for a Project

When acquiring a DIS under PA, each of its two dimensions may be more or less relevant depending on spe-
cific risks or characteristics of the subject acquisition. Therefore, PA must be "tailored" for each specific
acquisition to establish to what extent the acquisition will be incremental and/or evolutionary.

The tailoring subsequently influences the initial definition of the successive increments established in the PA

Plan, which must state

e which elements of the capability are to be delivered by each of the successive increments (that is, how
incremental the acquisition is) and

e how far evolution of previously delivered capability is accommodated across remaining increments (that
is, how evolutionary the acquisition is).

This tailoring of PA is to be driven by an analysis of the subject project. Relevant characteristics of the proj-
ect need to be assessed, in order to be able to identify the risks threatening the acquisition as well as opportu-
nities for PA to address those risks.

Also, feedback obtained from users and technology during the acquisition may modify elements that influ-
enced the initial overall planning of the project, possibly including the system architecture. Therefore, future
re-tailoring of PA may be necessary in the course of a project. This should be considered before initiating a
new increment, and may require updates to the PA Plan.

3.2 The PA Process

The PA Process defines the sequence of activities needed to implement the PA approach, and the contents of
the work products associated with these activities.

Compared to other acquisition approaches, PA is essentially an iterative approach where a series of incre-
ments are successively acquired. The activities internal to the acquisition of a single increment are similar to
those in a “big-bang” acquisition, so that when describing the PA sequence they can be considered as a sin-
gle activity.

There are three types of activities in the PA sequence:

e Upstream activities at the beginning of the acquisition, which result in the Overall System Concept that
is an initial input to the remaining acquisition sequence.

e Long-term activities before entering the acquisition of the core increment)and possibly at each iteration)
which result in the System Architecture and the PA Plan that will drive the rest of the complete DIS ac-
quisition.

e [terative activities for each increment, which allow the acquisition of a single increment and, when evo-
lution is afforded by the PA Plan, the operation of the delivered system and the collection of feedback

5-6

from user’s experience as well as requirement and technology evolution, in order to possibly influence
future increments.

Figure 4 illustrates these activities.

Upstream PA Activities

Overall System Concept

Long-term PA Activities

System Architecture

Architecture
impacted?,

PA Plan

Iterative PA Activities

Retailoring 5 Acquire a
needed? Define single
Ny Increment
Develop
Feedback
Test
Field

a—

Sustain

Evolution
afforded?
no

Operate Delivered System

System
ompleted?,

l yes

End of Acquisition

Legend

Figure 5: The PA Sequence of Activities

The essential work products are:

The Overall System Concept containing all of the information needed to describe the user’s needs, goals,
expectations, operational environment, processes, and characteristics for the planned DIS. The subset of
the Overall System Concept to be implemented in an increment is refined as appropriate into require-
ments prior to the development of that increment.

The System Architecture being a critical element that should be carefully defined although a high degree
of details may not be possible initially. It must be designed to be capable of accommodating system
evolution with minimum system redesign. Among other aspects, it should describe the functional and
technical architecture, the relationships between the elements of the architecture and the requirements
(traceability) and the use of off-the-shelf products.

The PA Plan being the high-level management plan for a project under PA covering the entire lifecycle
by providing a long-term perspective with sufficient flexibility to accommodate adjustments dictated by
user feedback and technology evolution. The PA Plan must be revised iteratively as a result of project
progress. The content of the PA Plan should describe, at least, the definition of series of increments, the

5-7

nature of user feedback accommodated between increments, the treatment of technology evolution and
project organizational aspects.

In order to maximise the benefits of using PA, it is necessary to tailor the general approach offered by PA.

This enables a PM to align the acquisition process to suit the specific nature of his project. For tailoring the

following approach is applied:

e first the project under consideration is assessed against relevant characteristics,

e then the results of this assessment are analysed to deduce the relevance of each dimension during the
acquisition.

(Project characteristics represent elements of the project context that may create an opportunity or a risk for

applying PA in one of its dimensions (incremental or evolutionary) in the acquisition project under consid-

eration. Also, the influence of each element gives a measure of its weight in the final decision

The activity of tailoring PA to a specific project is in four steps:

Step 1 Find project characteristics applicable for the project domain
The first step of the PA tailoring is to specify those project characteristics that are applicable
for the project under consideration.
An example for project characteristics is provided in table 1 below.

Step 2 Assess the project against these characteristics
Each characteristic selected for the subject project must be evaluated either as true or false
considering this project. Only those characteristics assessed as true will be considered in the
next step.

Step 3 Deduce the relevance of each dimension
The relevance of each dimension of PA is deduced by considering the respective opportu-
nity, risk and influence of all the project characteristics evaluated as true during the assess-
ment of the project.

Step 4 Produce the PA Plan
Producing the PA Plan for a project mainly results:
- in the definition of the series of increments in the PA Plan, thus determining the number of
increments to be delivered up to the final system and the capability that will be offered by
each increment, and
- in the identification of the amount and nature of feedback accommodated between incre-
ments.

5-8

Management

Financial flow is uncertain.

Financial flow is limited in time.

Similar systems exist, reuse is possible.
Schedule is tight.

Costs estimation is uncertain at outset.
Acquisition staff is limited (number and skills).

Requirements

Requirements are not clearly and completely known.
Non-functional requirements are well understood and described.
Technical constraints are completely known.

Requirements are unstable

User feedback is required to fully understand requirements.
Change in system mission may occur rapidly.

System Complexity

System breaks naturally into functional increments.

Core architecture of the system is already completely described.
System is completely new.

Interoperability with other systems is expected during system life.
OTS products are expected to be used extensively.

Extensive innovation in software and/or hardware is needed.
System depends on highly evolving technology.

System Delivery

Early capability is needed.

User wants all system capabilities at first delivery.
Different configurations will be installed on several sites.
System will be installed on many sites.

Yes
Yes [
Yes [d
Yes [
Yes [d
Yes [

Yes [d
Yes [
Yes [
Yes [
Yes [
Yes [

Yes [
Yes [
Yes [
Yes 1
Yes [
Yes
Yes [

Yes [
Yes [
Yes [
Yes [

No
No [
No 1
No [
No 1
No d

No [d
Nod
No [
No
No [
No

No [
No
No [
No 1
No [
No [
No

No
No
No [
No [

Table 1: Example of possible project characteristics

3.3 The PA Recommendations

The PA document provides an extensive set of recommendations, grouped by themes and sub-topics, on how
to put PA into practice. These recommendations are intended for project managers responsible for acquiring
a DIS. They address issues that are specific to PA, as compared to more traditional acquisition models, or

that become of higher relevance under PA.
Themes and sub-topics addressed by recommendations are:

Requirements Management:

the necessity for a well-defined requirements management process, and specific elements of this process
requirements management issues related to the iterative nature of PA

the role of the DIS in the military processes
the identification of requirements needing special care
the methods for describing requirements

Quality and Risk Management:

risk management specificity under PA, taking into account such risk factors as multiplicity of suppliers,
overlapping of increments, pressure from the user or non-involvement of the user

ensuring quality level throughout the acquisition process

5-9

Use of OTS Products and Reuse:

- the need for a long term strategy for OTS product usage

- specific criteria for selecting OTS products

- the role and integration of OTS products in the system architecture
- the need for an explicit reuse strategy on customer side

- the reuse of requirements and designs

Architecture and Planning:

- content and role of the PA Plan

- control over the architecture

- openness of the architecture

- traceability, visibility and documentation of the architecture
- early stabilisation of the architecture

- long-term perspective on the architecture

- planning of increments

- compatibility between increments

Financial and Approval Issues:

- strategic planning: how to manage constraints stemming from changes to national budget provisions and
policy

- financial aspects with regard to the current regulations and/or applicable laws, and PA specific needs

- global system cost estimate over a long period of time

Supportability:

- taking into account the supportability of the system along the acquisition process

- cost of maintenance, including corrective actions (depending on the quality of the system), costs of
changes (depending on the openness of the architecture), hidden costs as regression tests, documentation,
user interfaces

- structure of technical and functional CM

- taking into account the data management in the configuration and maintenance management

Interaction Between Organisations:

- interaction between all of user, customer and supplier
- interaction between the user and the PM

- interaction between the user and the supplier

- MoD organisation

Following is an example of such a recommendation in order to get a feeling on the advice given in the PA
document.

RO47

Master and control the architecture

Why

Under PA, architecture is an essential input to the PA Plan which is under the re-
sponsibility of the PM.

The architecture is of great influence on costs and thus deserves attention.

Moreover, the ability to change supplier must be preserved. As a consequence, the
PM must have a long-term view on the architecture and must be able to manage
technical risks related to it.

What & How

The PM must master and control as much as possible the architecture of the DIS.
He must also influence the architecture if conflicts arise with the technical strategy
of the supplier.

The PM must have an in-depth understanding of all the views of the architecture.
The architecture of the DIS must be such that:

* the architecture is compliant with global policies established by the cus-
tomer,

* the PM has the ability to impose changes in the architecture,

e change of supplier while keeping the same architecture is possible.
Special attention must be put on:

e ensuring portability via maximum use of standards,

e avoiding proprietary solutions,

* tracing architectural entities against requirements.

This recommendation requires adequate contracting clauses if the definition of the
architecture is contracted as well as detailed documentation of the architecture.

It also requires that sufficient resources and skills are available to the PM.

See also

RO19 RO037 R048 R051 R052 R053 R087 R095 R102

The application of Progressive Acquisition during an evaluation phase in different nations to real projects
and via case studies, seeking feedback and improvement needs from the Project Managers (PM) of such
projects, has allowed verification of the PA concepts and recommendations in practice and produced an im-

Example of a PA Recommendation

4 Conclusion

proved final version of the document.

It is encouraging to note the positive feedback received regarding the concept of PA, as being an approach
that is clear and very relevant to the problems faced by large Defence Information System (DIS) projects.
Further, the ‘concept’ of PA has been proven because the principles have been used to acquire complex DIS,
which have met and in some areas exceeded users expectations. The DIS in this case has also been delivered
to time and within cost. Thus, the ‘progressive’ approach to acquiring such systems has been found to be a

successful strategy for modern DIS.

Click here to view PowerPoint presentation; Press Esc to exit '

The Backbone Approach to Evolutionary Systems
Development

Prof. Ann Miller
Cynthia Tang Distinguished Professor of Electrical and Computer Engineering
University of Missouri-Rolla
125 Emerson Electric Co. Hall
Rolla, MO 65409-0040
United States

Abstract:

While the introduction of the waterfall life-
cycle model was a vast improvement over
ad hoc process, there are inherent
deficiencies in the waterfall model that have
led to variants on the theme, including
incremental, spiral, and evolutionary models.
This paper addresses the planned evolution
of large-scale systems from the design and
build of smaller components based on an
incomplete, yet end-to-end system, termed a
backbone. The paper will discuss both
engineering and business advantages of this
approach to system development and also
present some of the lessons learned in
applying the backbone life-cycle model in
two very large case studies. In the first case
study, the system was an innovative product
that would best be described as a “mega-
system”. Thus, there was no history on
which to build and the backbone approach
was selected to provide early customer
feedback regarding the viability of the
system. In the second case study, the
backbone approach was applied to a major
upgrade of an existing system. The issue
here was the inclusion of a “piggy-backed
system” with the potential that the added
hardware and software might interfere with
the basic system operations. The backbone
approach was used to demonstrate the non-
interference of the two systems. Many
advocates of various life-cycle models tend
only to concentrate on the successful
aspects of their approach. This paper will
also discuss the two most significant
challenges encountered, namely, (i) timely,
efficient integration and test and (ii) tool and
process support for configuration
management of overlapping versions.

Keywords:

Evolutionary development, large system
development, life-cycle models, process
models, prototyping strategy, risk
management.

Introduction.

Software-driven systems are ubiquitous.
Furthermore, software provides an ever-
increasing percentage of the features and
functions of the system. This software trend
is true in commercial products as well as
military systems. As these trends continue,
the complexity and size of the software
continues to grow. Measured by size,
software content in systems seems to be
following a software variant of Moore’s Law
[1] with exponential increases in size every
generation, or approximately every 18
months if the systems are not related by
product line.

Yet studies, such as the Standish Group’s
Chaos Report on commercial and
government IT projects, have shown
numerous failed and inadequate software
projects [2], with only 16% of projects
completed on time and within budget, and of
those, only contained on average 61% of the
specified functionality.

When one factors in the pressure of time-to-
market, the task of software development is
a difficult one. Clearly, there is a need for
technologies and tools to aid in software
development. However, there is also a need
for better methodologies as well.

This paper will explore the backbone
approach to the evolutionary software life-
cycle model and, in particular, discuss its

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

6-2

application in two very large
communications systems.

Life-Cycle Models.

The classical waterfall model of systems
analysis, systems requirements document,
software requirements documentation,
requirements analysis, preliminary design,
detailed design, code and unit test,
integration and test, then finally software
and system qualification test was an
excellent first step in establishing rigor and
repeatability in software development [3].

Because military systems were among the
first large-scale software projects,
standardized procedures for the waterfall
life-cycle model were developed. These
became the basis for the U. S. Department
of Defense Military Standard 2167A.
However, the waterfall model quickly
became impractical on large systems for a
variety of reasons, among which were
changing requirements, new requirements,
and new customer expectations. While the
original model did not preclude iteration, it
did not specifically embrace the notion.
Thus, project teams tried to force the
development into these clean categories
and were frustrated with the need to return
to “previous phase” activities, due to
changes.

Over, various iterative life-cycle models
emerged and have been implemented to
provide a sequence of builds, thereby
providing an opportunity to grow the full
system over time.

One of the most popular iterative models is
the Spiral Model, proposed by Barry Boehm
[4]. An issue with the original spiral model is
that the product is not released until the final
development spiral. This does not reduce
the time-to-market pressures. Clearly, the
spiral model can be modified to allow a
releasable version at one of the post-test
spirals.

Incremental models have been used which
provide overlapping releases and this model
does support early deliverable products.
Consumer electronics companies have
honed the incremental model into a fine art.
Still, there were less than successful
implementations of the incremental life-cycle

with overlapping builds; these
implementations were characterized by a
lack of focus on the early builds. It has been
shown that successful implementation of this
model requires a consistent system
architecture, clear life-cycle objectives, and
a well-defined initial operational capability
(10C) [5].

This author distinguishes between
incremental and evolutionary development
and prefers the use of the term evolutionary
life-cycle model. The major reason is that
incremental implies that each build is a
super-set of the previous build. In actuality,
that is frequently not the case. Often, some
features and functions change or are
discarded from one release to the next.
Probably the most notable is the Ariane5
disaster, in which a requirement from
Ariane4 was no longer needed in Ariane5.
According to the investigating board [6], the
launcher began to disintegrate 39 seconds
after lift-off because the angle of attack
exceeded 20 degrees. The angle of attack
was computed by software in the on-board
computer based on data transmitted from
the active inertial reference system. For
Ariane5, the software module computed
meaningful results only before lift-off but it
continued computations during flight based
on a requirement from Ariane4. The
function continued to supply data and
caused the missile to go off course which
led to its destruction by ground control.
Thus, there is a need to not only include
new requirements and to modify existing
requirements, but also to delete old
requirements and functionality.

There are several excellent essays on the
management aspects of program evolution
[7,8]. We shall address some of the
technical and management aspects of
design and test based on the backbone life-
cycle model.

The Backbone Life-Cycle Model.

The backbone is a particular approach to the
evolutionary life-cycle model with
overlapping builds which specifies that the
first build of a very large system be a
complete end-to-end system or backbone
[9], which can serve as a skeleton on which
the rest of the system is built. By the
restriction of being an end-to-end first build,

the backbone allows for early demonstration
of capability since it accepts some limited
set of “real” input and processes that input to
produce some limited set of “real” output.

A backbone-based evolutionary system
provides many of the advantages of any
incremental system: (i) maximizing the
benefit of cycles of learning, (ii) starting with
a simple system and adding functionality,
(iii) demonstrating early capability, and (iv)
basing builds on potential effects of revenue.
The backbone also shares some of the
same disadvantages of any incremental
system: (i) an architecture which supports
evolution of design must be carefully
chosen, (ii) additional testing time is needed,
(iii) configuration management of concurrent
builds from multiple development teams is a
non-trivial task, and (iv) multiple possibilities
exist for the content of each of the builds.

Defining the Backbone.

For either an incremental or backbone
approach, there can be numerous ways to
carve out the first build of a large system.
However, the backbone model's emphasis
on an initial end-to-end skeleton does help
to guide the selection among the choices.
The backbone definition is a challenge but it
also offers an opportunity to clarify the
product under development. In other words,
the backbone method treats software
development as an on-going problem
solving process [9].

Backbone software is not a throw-away
prototype, written in a special language just
for the purpose of a demonstration. It is the
core of the ultimate product. Further, it
should not merely be a user interface shell;
it should perform some actual, albeit limited,
processing of typical input and it should
produce the expected output, at least in a
few specified conditions or operations. And
while the final system may have numerous
COTS components, the backbone is also
not merely the target hardware with the
selected COTS software [10].

Allocation of functionality to each of the
builds is a major consideration in any
evolutionary development. Each project
carries its own special set of priorities and

risks; monitoring of high-risk areas is
another factor that can determine the
allocation of functionality through the
evolutionary design. In any large
development, clear and frequent
communication between the various
development organizations is necessary; the
staging of functionality in the backbone and
follow-on builds needs to be coordinated
among those organizations.

Our first case study was a large commercial
satellite communications product
development in which the author served as
Chief Software Engineer (CSE). The
definition of the backbone occurred over
several weeks. The first backbone meeting
consisted of the manager and the technical
lead from each major component of the
planned system with the CSE. The walls of
a conference room were covered with large
sheets of paper that were blank except for a
time line. Each team of manager/technical
lead was given a stack of papers that
described the features and functions of their
portion of the final product. They were
asked to post these sheets on the wall
according to the time line when they felt they
could deliver the feature so that it was ready
to be incorporated into the system. As you
might guess, the features tended to be
clumped just before the final system
integration and test. As managers and
engineers walked the walls, they noted
interdependencies. For example, the team
responsible for the billing software could not
complete that function without information
on the call; yet the call processing team had
felt that this would be a late feature.

The ensuing “wall walk” discussions were
valuable not only for documenting
interdependencies, a necessary step in
sequencing the builds, but also for bridging
some of the natural gaps between the many
development teams which were
geographically and organizationally
dispersed. The wall walk also increased the
buy-in to the builds, because the managers
and lead engineers committed to the stages
of their deliverables. Of course, many
changes occurred and some schedules
slipped, but those who took part in the wall
walk became champions of the process.

The combination of management and
technical participation is crucial in the
definition of the contents of the backbone.

6-4

Development and test engineers are
necessary participants to verify the
interdependencies and to accurately
estimate and schedule the various features.
Because of the long life-span of large
system development, management typically
views an early capability demonstration as a
high priority.

In our commercial satellite communications
example, the satellite’s design,
development, and manufacture formed a
pacing item in the schedule. Further, this
project was going to be the largest software
development challenge for the company to
date. Management wanted an early
demonstration of capability and a realistic
plan to proceed from that first build to the
final product. The set of wall-walks
determined that the software backbone
could be designed to accommodate three
functions: (i) telemetry tracking of the
satellite, (ii) geolocation of the caller, and (iii)
transmission of single-channel voice
packets. The first fielding of the product
would need to handle multiple-channels of
voice; however, the backbone could be built
with the simplest case of a single channel,
as long as the design could expand to
support multiple channels. The software
backbone was designed, coded and tested;
it was then exercised with breadboard
equipment from the evolving hardware
components for the ground control portion of
the system and complementary breadboard
hardware in a plane that was flown
overhead. The satellites were still in design,
but a single channel phone call was placed
from breadboard “phone” on the ground,
forwarded to the “simulated satellite”
overhead, and sent to another “phone” on
the ground. The backbone demonstration
was a complete and early success for the
team. A backbone’s early demonstration of
capability in a large system is a milestone
that can provide a major morale boost to the
development team as well as giving
management and investors confidence in
the evolution of the produce.

Once the backbone was demonstrated,
overlapping releases were underway. A
significant issue for the team was the
integration and test of multiple releases.
The decision was made to create a “pre-
integration and test team” whose sole job
was to assure the successful build of the
release about to be tested.

Configuration management (CM) of the
builds was recognized early as a significant
risk in the program. While the development
of the system was performed by many
suppliers across the globe, it is interesting to
note that only one tool was required of all
the teams and that was the CM tool.

The second case study was also a satellite
system, this one a government
communications satellite. Because of the
long development time, the satellites were
built in an overlapping fashion, with the
launch of one satellite, the next was being
build and the follow-on to that was in the
design stage. While the “follow-on” satellite
was being designed, another government
agency approached us following a failed
launch of their satellite. They asked if we
would consider the addition of some of their
equipment on our satellite. We had been
using a backbone approach to the follow-on
development and two independent teams
(one government and other a commercial
team funded by the government) were able
to demonstrate non-interference of the
additional equipment in a very short cycle.

Conclusions and Lessons Learned.

The following are some of the findings
related to implementing the backbone life-
cycle model from several large-scale system
development efforts, including the two case
studies; these efforts include a mix of both
commercial and government systems. Most
of the projects also included COTS
components, which were planned for
inclusion and then staged in the appropriate
evolutionary release.

As with all evolutionary models, the
backbone life-cycle model offers significant
benefits from both a technical perspective
and a management perspective, including
early demonstration of capability, taking
advantage of cycles of learning, and basing
builds on expected revenue. The backbone
model also shares some of the issues of
other evolutionary models, namely, it
requires coordination and buy-in from the
various development and test teams. For a
large, complex system, there are usually
many ways to design the backbone; but the
emphasis on an end-to-end system helps to
keep the development on track.

Two high risk areas for the backbone model
are management of the integration and test
activity and configuration management of
the releases.

In summary, an evolutionary software
development based on an end-to-end
backbone with pre-planned builds for the
expected life-time of the product, even with
anticipated but unknown changes, can
reduce total life cycle costs and support the
successful fielding of a quality product.

References.

1. DeMarco, T. and A. Miller, “Managing
Large Software Projects”, IEEE
Software, July 1996.

2. Standish Group,
Commercial and
Projects, 1999.

3. Royce, W. W, “Managing the
Development of Large Software
Systems: Concepts and Techniques”,
originally published in Proceedings of
WESCON, August 1970; also available
in Proceedings of 9" International
Conference on Software Engineering
(ICSE 9), IEEE/ACM, 1987.

CHAOS Study of
Government T

10.

6-5

Boehm, B. W., “A Spiral Model for
Software Development and
Enhancement”, IEEE Computer, 1988.
Boehm, B. W. “Anchoring the Software
Process”, IEEE Software, July 1996.
Lions, J. L. et al, Ariane5 Flight 501
Failure: Report by the Inquiry Board.
European Space Agency, 1996.
Lehman, M. M. and L. A. Belady,
Program Evolution, Academic Press,
1985.

Pfleeger, S. L., Software Engineering,
Theory and Practice, Prentice Hall,
1998.

Miller, A. “Design and Test of Large-
Scale Systems”, Joint Proceedings of
the International — Conference on
Software Management and International
Conference on Applications of Software
Measurement, March 2000.

Miller, A., COTS Software Supplier
Identification and Evaluation Brussels,
NATO Symposium on Commercial Off-
the-Shelf Products in Defence
Applications, the Ruthless Pursuit of
COTS, April 2000.

This page has been deliberately left blank

Page intentionnellement blanche

7-1

A Romanian Approach for Evolutionary Software Development

Mrs. Lidia Boiangiu
Military Equipment and Technologies Research Agency
P.O. Box 51-16, 76550 Bucharest
Romania

Email: Iboiangiu @acttm.ro

Abstract: The traditional waterfall life cycle has been the mainstay for software developers for many years.
For software products that do not change very much once they are specified, the waterfall model is still
viable. However, for software products that have their feature sets redefined during development because of
user feedback and other factors, the traditional waterfall model is no longer appropriate. In this paper we
describe how evolutionary software development was applied for a Romanian project.

Keywords: Evolutionary Software Development

1. Introduction

Software development is usually organized by a life cycle model which structures and guides the
activities between an initial idea of a product and its final implementation or performance testing. The most
prominent model is the waterfall life cycle model in which the development process is organized as a
sequence of steps from the initial software concept, requirements analysis, and etc. through implementation
and testing. Each phase is separated; reviews are hold at the end of each phase to determine whether the
project is ready to advance to the next phase. However applying the waterfall life cycle model requires a
correct and complete understanding of the project already from the beginning since backing up from
mistakes, made in previous phases, is a difficult and expansive task. To overcome these restrictions, and to
cope with changing needs of the customers, life cycle models like evolutionary prototyping or evolutionary
delivery have been developed which allow the development of the system concept as one moves through the
project.

The evolutionary development model divides the development cycle into smaller, incremental
waterfall models in which users are able to get access to the product at the end of each cycle. The users
provide feedback on the product for the planning stage of the next cycle and the development team responds,
often by changing the product, plans, or process.

2. Romanian Approach

At present the Romanian Army doesn’t have an integrated, automated ground forces tactical
command and control system. At the end of 2000, the Military Equipment and Technologies Research
Agency, decided to develop a pilot for a tactical command and control system oriented to brigade echelon
and below. The development and test results of this system shall be the base for requirements of future
command and control systems of the Romanian Army.

In the development of this pilot we intended to cover some of the most important operational
capabilities that such a system has to accomplish. These capabilities will allow the commander and staff to:

— Collect, process and organize battle information.
— Develop courses of action based on situational factors.
— Exchange information efficiently with lower echelons.
— Present information as graphic displays.
The challenge to software development was to build specified elements in such a manner so:
— As soon as possible the user could test them and return feedback
— Develop an open system
— Assure a complete control of the source code
in order to provide the ultimate proof of quality: high user satisfaction with no major problem reports.

The system was specified as system of systems (subsystems). Three main application elements were
specified in system design phase: TSDS, ASIST and IEM. TSDS has to build, update, and display tactical
situations. ASIST has specific applications for supporting typical commander and staff activities (time

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

7-2

calculations, force ratio calculation, transport calculation). IEM has to assure the transfer of information
to/from the lower echelon.

2.1. Selecting an appropriate development strategy

During early integrated product and process definition cycles we made a risk analysis in order to
select the appropriate development strategy.
The risk analysis for selecting an appropriate development strategy took in account next
risk/opportunity items:
— Requirements are not well understood
— User prefers all capabilities at first delivery
— Limited staff available
— Early capability is needed
— User feedback is needed to understand full requirements
— System breaks naturally into increments
— Rapid changes in technology anticipated.
We listed risk items and opportunity items for each strategy and assigned each item a risk or
opportunity level High (H), Medium (M), or Low (L). Table 1 shows the assigned risk and opportunity levels
used in risk analysis for development process selection.

Risk Item Risk Opportunity Item Opp.
(Reasons against this strategy) Level (Reasons to use this strategy) Level
Once-Through (Waterfall) Development
Requirements are not well understand H Use;r peiEll e M
delivery
Limited staff available now H
Rapid changes in technology anticipated- H
may change the requirements
Incremental Development
Requirements are not well understood H Early capability is needed H
User prefers all capabilities at first delivery M System breaks naturally into increments M
Rapid changes in technology anticipated- H Limited staff available now H
may change the requirements
Evolutionary Development
User prefers all capabilities at first delivery M System breaks naturally into increments M
Early capability is needed H
Limited staff available now H
User feedback and monitoring of
technology is needed to understand full H
requirements

Table 1 Risk/Opportunity Levels for Risk Analysis

For our system, the high risks of poorly-understood requirements, rapid technology changes and
limited staff availability push the decision away from once-through or incremental strategy, while the needs
for an early capability and for user feedback in order to understand full requirements push the decision
toward evolutionary strategy.

Therefore, we decided to use evolutionary strategy based on a trade-off among the risk opportunities.

The attributes of the proposed approach include:

— Use of software development environments/tools

— Object-oriented design

— Software standards

— Continuous interaction and feedback from the military end-users.

— Commercial-off-the-shelf development environment/tools and host/target hardware.

7-3

2.2. Planning software builds

The amount of time and human resources for this project was limited, so we decided to use time
boxing in order to realize the project. This method makes sure that the user gets the most important features
possible within the given amount of time and with the available human resources.

In the development team for our project participate not only the developers, but also the testers and
the system architects. Different people have different roles depending on development phase. This was
possible because some of our engineers are well trained.

During the first meeting of the Project Manager and all people of the development team, the
operation capabilities were analysed in order to establish the most important features. The result was a
prioritised list of the features. The features were included in three different modules that were prioritised in
order of their importance, thus:

— Collect and organize battle information and present it as graphic displays — TSDS module
— Exchange of information between echelons using radio stations — IEM module
— Assist of the commander and staff to develop courses of action based on situational factors —
ASIST module.
The following checklist was used to prioritise the modules:
— Most important issue first: we need to have and see organized battle information.
— Most educational activities first: our team needed to be educated in tactical field; the user
needed to accommodate with a new system that has strictly rules.
— Synchronisation with the world outside the team: IEM module needs hardware for test.
— IEM module and ASIST module have no sense without a tactical situation.
Based on prioritised module list, together with customer we planned to develop two builds:
— First build implements requirements for TSDS.
— The second build implements requirements for ASIST & IEM.
These builds were chosen based on the following delivery prioritisation checklist:
— Every delivery should be made in the least time.
— Every subsequent delivery must show a clear difference.

Both checklists are presented in [2].

In order to develop the builds we decided to apply for both the waterfall model for planned activities
according to ISO/IEC 12207: software requirements analysis, software architectural design, software detailed
design, software coding and testing, software integration, software qualification testing.

After its development, the first build is delivered to end-user in order to obtain feedback.

Because time between delivery dates for first and second build is very short, we decided that the
second build to begin before obtain the feedback for the first build. If this feedback shall arrive to late to take
into account during the development for the second build, we decided to deliver a supplementary release. For
this release we shall use a maintenance process.

The testing process shall be refined to include both regression testing of previous builds, and the
testing of new capabilities.

3. Conclusion

Our system is one of the systems that automate human functions. As it is specified in [3] for such
systems, users are not able to state final operating capability requirements originally, because staff functions
change, user insight into operations increases, and concepts of operation are modified by the introduction of
automation. So using evolutionary approach is essential in the development of this system.

Using evolutionary methods for our project we found same conclusions as N.Maltoux in [2]:

o Faster results

For the first build we implemented those requirements with right level of detail for that moment.
This approach saved time, because no supplementary time was spent to redo most of the work
again, in case of change of the specification parts or for new features added to the program. The
next builds took into account the requirement changes either because errors that had to be
corrected, or because of new requirements.

e Better quality

A function is what a system does. We define quality as how well a function performs. All
deliveries have been provided in order to obtain the ultimate proof of quality: high user
satisfaction with no major problem reports (all the functions performs very well). User

7-4

evaluation and feedback at every stage (build) of the product evolution is a primary quality
method for our pilot system. In this way we obtained necessary data to reconsider the validity of
the requirements for every build, and so we were sure that we delivered the most important
requirements for that moment.

Less stressed developers

Because there was no supplementary work in development of the builds, the tasks were
completed in time. The team saw real results of their work in short time. And because people
enjoy success, these real results brought greatly motivation to have happy developers.

Happy customers

Our users know that they have difficulty to tell us what they really need. The early delivery gave
them the possibility to produce feedback. So they became responsive to their requirements
changes. Also, their interest and support to detail requirements for next builds increased because
they feel that we know what we are doing. The most of the reports received after the first
delivery, were “good ideas” for enhanced functionality beyond the initial requirements, not
problem reports.

For our team the evolutionary development methodology shall become a significant asset. Its most
silent, consistent benefits shall be the ability to get early, accurate, well-formed feedback from users and the
ability to respond to that feedback.

The challenges in using evolutionary method successfully are mostly, but not exclusively, human
resource issues. These include the shift in thinking about a new project structure paradigm and perceptions
that evolutionary method requires more planning, more tasks to track, more decisions to make, and more
cross-functional acceptance and coordination.

4. References

[1] IEEE and EIA, Industry Implementation of International Standard ISO/IEC 12207: Software Life
Cycle Processes-Implementation Considerations, IEEE/EIA 12207.2 1998

[2] N. Malotaux: Evolutionary Development methods. How to deliver Quality On Time in Software
development and System Engineering projects. 2001 http://www.malotaux.nl/nrm/English

[3] T.Gilb: Evo: The Evolutionary Project Managers Handbook. 1997
http://www.result-planning.com/Download/EvoBook.pdf

5. List of Acronyms

METRA
TSDS
ASIST
IEM

Military Equipment and Technologies Research Agency
Tactical Situation Display System

Assistant (Decision Support Module)

Information Exchange Module

8-1

. Click here to view PowerPoint presentation; Press Esc to exit .

Balancing Evolution with Revolution to
Optimize Product Line Development

Dirk Muthig and Klaus Schmid
Fraunhofer Institute Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern
Germany

Email: muthig @iese.fhg.de / schmid @iese.fhg.de

Software development today faces several challenges. There is a critical need to reduce cost, effort, and time-to-
market of software products, but, at the same time, complexity and size of products are rapidly increasing and
customers are requesting more and more quality products tailored to their individual needs [1].

These challenges especially hold for software in a military context because military software typically means
software embedded in a hardware context, software that is often developed in variants customized to diverse
operational contexts, and software that must rapidly evolve to keep pace with changing needs. Nevertheless,
there is a strong demand to develop and enhance these systems with a minimum of resources and to adhere to
strongest quality requirements.

In this paper we explore typical situations of organizations that develop and evolve a whole family of similar
systems (i.e., a software product line) and how these situations can be improved in an effective and efficient
way. Therefore, evolutionary and revolutionary approaches to product line development are introduced, as well
as possible ways for combining these approaches to optimize the development and evolution of a particular
product line.

Software Product Lines in Practice

Nearly all software organizations today develop and maintain more than a single product. This holds for
organizations that develop tailored systems individually for single customers, as well as for organizations that
develop products for a mass market. Even for organizations that believe to develop a single product only,
surveys have uncovered that also these organizations spend most of their resources on tailoring their systems to
the needs of individual customers or enhancing systems by features that are newly required by customers [2],
and thus also these organizations must maintain and evolve a set of customer-specific variants.

The products developed by an organization typically are similar applications in the same application domain.
Hence, these products share some common characteristics and thus can be viewed as a software product line.
Product line engineering is an approach for
exploiting common characteristics and controlling

Single-system . . .
T mon development varying aspects systematically. The product line
o economics are illustrated by Figure 1. Compared to
4\(\9 traditional single-system development, product line
4 "7 engineering requires an upfront investment into a
————— common infrastructure. This investment may delay,
______ Product line
_____ approach
7 A
/
/ Variety- .
I’ . Intensive Dynamic
’ Variety
I' Change-
7 Intensive
!/ >
] Change Rate
1 # Delivered systems
Figure 2: Characterization scheme for
Figure 1: Software product line economics software product lines

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

8-2

on the one hand, the first systems in the line but, on the other hand, enable an organization to build applications
much faster in the future. Typically, somewhere between the second and the fourth system delivered the
investment starts paying off.

Product lines of organizations can generally be characterized by the rate of variety and change over time, that
is the number of product variants existing at a given point in time and the difference between the sets of existing
product variants between a fixed time span [3]. The main product line categories are visualized in Figure 2.

Today, complexity and size of software products is rapidly increasing and customers are requesting more and
more quality products tailored to their individual needs. Consequently, the variety and the change rate of the
average product line increases. The higher the variety or the change rate of its product line, the bigger the
challenges an organization must master and thus the higher the requirements on its development skills. Hence,
there is a need for organizations to learn how to manage a product line or how to improve their way of managing
it. The following list gives an overview of typical problems that arise as the complexity of a product line
increases:

e The same functionality is developed several times for different products or customers.

e The same changes must be repeated for different products.

e Identical features behave differently depending on the particular product.

e Some products cannot be updated anymore and customers must migrate to another product variant or
version.

e [t is not possible to predict the costs of introducing an implemented feature from a product into another
variant.

e Changes to the common infrastructure lead to unpredictable changes of behavior in the various products.

¢ The maintenance effort explodes and thus free resources for new product developments become rare.

If these problems are handled unsystematically, they result in a code base that is significantly larger than
necessary with respect to the in total covered functionality. Figure 3 compares the code size typically associated
by the different development and maintenance approaches. The straight line represents the sum of the sources of
all delivered systems. Experience tells that maintaining this set of systems in practice typically leads to a much
larger code base simply because new functionality is added but is not fully integrated with the existing, similar
functionality. In contrast, with a product line approach, the code size is typically smaller than the sum of single-
system sources because common parts are developed and maintained only once. However, the above listed
problems may also exist in organizations that already recognized their product line and thus created a common
platform for their systems This happens simply because either developers of particular products do not know that
the functionality they require has already been realized as part of the platform (or in the context of another
project) or the platform does not evolve as fast as required and thus provides over time less and less of the
functionality required. To avoid this, systematic product line approaches are required that guide developers and
maintainers while using the common infrastructure.

A practical experience, normalized wrt.
sum of with traditional individually-
component maintenance developed software

sizes approaches

practical approach
without restructuring

Total Functionality

Figure 3 Code size versus covered functionality

8-3

Improvement Strategies

The identified need for support in managing software product lines led to the emergence of software
development methods that focus explicitly on the production of multiple variants of systems: product line
development methods such as PuLSE™ (Product Line Software Engineering)1 [4], FAST [5], or FODA [6].
Their key idea is the systematic construction, usage, and evolution of a reuse infrastructure (e.g., a platform) to
efficiently develop new products, as well as to share maintenance effort among the products based on the reuse
infrastructure. This initial development of the reuse infrastructure typically requires a significant up-front
investment (cmp. Figure 1). The investment does, on the one hand, not directly result in sellable products and
may also delay the delivery of the first products derived from the infrastructure. But on the other hand, the
investment enables an organization to produce and maintain products at dramatically lower costs in the future
although the reuse infrastructure itself needs to be continually adapted and evolved.

In reality, some products of the product line will usually already exist. As we are typically not in a position to
put continuing product development and evolution on hold and because future product requirements are highly
uncertain, we cannot directly jump into idealistic product line development. Rather, the key question is how to
design the transition to a controlled management of software product lines. The optimal strategy for an
organization, however, heavily depends on its current development practices and the nature of its software
product line. Hence, a single, generally valid strategy for migrating towards systematic product line development
does not exist but a good strategy must be identified out of a broad spectrum of potential strategies individually
for every software development organization. This spectrum of potential strategies is defined by the two extreme
strategies: revolution and evolution.

The revolution strategy completely focuses on the variety dimension of the product line characterization. That
is, it tries to understand variety in the application domain first, then plans and constructs a reuse infrastructure
covering the identified variety, and finally derives the required products from the reuse infrastructure. The
advantages of the revolution strategy are a well-structured infrastructure that covers also future products due to a
careful up-front analysis and the minimal development costs for new products. The disadvantages of the
revolution strategy are the risky and significant up-front investment and the delay of new products that may
defeat short- and mid-term business.

The evolution strategy completely focuses on the change dimension of the product line characterization. That
is, it keeps pace with daily business by directly answering new product requests, as well as change requests,
based upon the existing infrastructure but incrementally records variety and incorporates it into the existing
infrastructure. Over time, the existing infrastructure thus evolves into a reuse infrastructure that allows variety to
be controlled systematically. The advantages of the evolution strategy are the delay-free continuation of the daily
business and the lower risk due to the lack of large investments. The disadvantages of the evolution strategy are
the slow pace of the migration to an optimal infrastructure, as well as the potentially additional effort for rework
and restructuring of the reuse infrastructure during the incremental migration due to the latest variety knowledge.

In this paper, we introduce these two strategies, their benefits, and their drawbacks. We discuss how elements
of these strategies can be balanced to optimize product line development for organizations. We will also discuss
in the context of two examples how such a balance may look like in practice more concretely.

Revolution
As long as both, the variety rate and the change rate of an organization’s product line are relatively moderate, the
organization may be able to maintain their delivered systems and to satisfy requests for new products by
traditional, single-system practices. However, the overall code size will grow over time, thus maintenance effort
will grow accordingly, and at a certain point in time the organization realizes that it runs into serious problems.
If an organization, after realizing this maintenance problem, immediately stops its current way of doing things
and changes completely to a systematic product line approach, we talk about a revolutionary strategy for
migrating to product line engineering. More generally, a revolution step means that an organization analyzes,
besides its running projects, current and potential, future requirements on its products (or particular subsystems)
and uses the analysis results to construct (or improve) an infrastructure for building future products.

Figure 4 illustrates the characteristics of revolution steps. The straight line represents the normalized code
size, as well as the normalized functionality covered, in a single-system context over time. That is, by delivering
a system, the overall code size to be maintained by an organization increases by the code size of the system, as

" PuLSE is a registered trademark of Fraunhofer IESE.

8-4

well as the functionality covered by the overall code base increases by the functionality supported by the
delivered system. In order to get a straight line (and thus a clearer diagram), both the code size and the
functionality of the current system are normalized, that is, both are identical for all systems delivered.

If the organization begins with a revolution step, the covered functionality initially is far above the
functionality required by the first few systems. The revolution steps, therefore, requires some investment to
achieve such a good level of functionality coverage. Unfortunately, this investment typically delays the delivery
of the first systems. The top-most line in Figure 4 captures the functionality coverage achieved by a
revolutionary strategy. The icons at each of the lines indicates when a system is delivered relatively to the
traditional single-system approach. Hence, we see that after the revolution step systems can be constructed much
faster than with a single-system approach and thus the revolution will pay off quickly — typically after less than a
handful systems delivered. In the figure, for example, with the fourth system delivered the product line approach
becomes better than the single-system approach. From time to time, further investments may be required to keep
the product line infrastructure ahead of time. That is, further revolution steps are performed, for example, if new
market trends have been identified.

Similar characteristics can be analogously observed for the overall code size to be maintained by the
organization. After the initial revolution step, the code size has already achieved a larger level than for a single-
system (typically 20% to 100% more). That is, much more code than needed for the first system is developed up-
front. Over time, however, the code size stays nearly constant; only customer-specific and not anticipated
funtionality must be added to the existing infrastructure. Further revolution steps may reduced the code size by
refactoring the added funtionality in a way that common parts are shared to an extend as large as possible.

In the long run, revolution steps allow an optimal code size to be achieved with respect to a certain set of
required functionality. However, the delay of the first system(s) may be unacceptable and there is the risk of
investing in the wrong functionality. The latter may happen not only due to an insufficient up-front analysis but
also due to unforeseeable changes in the market.

—— norm. Codesize

—&—normal. Functionality

—— functionality (single
system)

~gmu
‘ ‘ ‘ | |

0 2 4 6 8 10 12 14
Time (in # delivered single systems)

code size or convered functionality

Figure 4 Revolution characteristics over time

Evolution

Instead of a revolutionary strategy, an organization may prefer - with respect to time and risk - an evolutionary
approach for migrating to product line engineering. Here, we assume again that product line engineering has
been chosen as the most promising approach for an organization to solve its development and maintenance
problems.

Figure illustrates the characteristics of an evolutionary strategy in the same way as Figure 4 illustrated it for
the revolutionary strategy. In the evolution case, the amount of covered functionality is much closer to the
functionality covered by individual, single-systems. This is the case because the evolution strategy follows daily

8-5

business but integrates all developed functionality into a single product line infrastructure. That is, optional or
alternative functionality is captured explicitly but in an integrated form that allows any combination of this
variant functionality to be constructed easily. This includes also combinations that are not supported by systems
delivered so far. Consequently, the overall covered functionality by the evolutionary product line strategy is
above the functionality covered by the single-system approach.

For similar reasons, the overall code size is below the sum of single systems. The evolutionary product line
strategy systematically controls common and variant code parts. Any part of the code that is shared by (a subset
of) systems delivered exists only once and thus all related maintenance activities must be performed only once.

Although evolution avoids a significant delay of the first system(s), as well as the risk of investing into
eventually not required functionality, it also comes along with some risks. Following the evolution strategy, the
main characteristics of an organization’s product line infrastructure are determined by the requirements of the
first few early projects. If later projects, for example, have more ambitious requirements that are beyond what
the infrastructure is able to satisfy, then a effort-intensive redesign of (parts of) the infrastructure may be
necessary. This kind of problem mainly occurs in the context of non-functional requirements, such as
performance or security, which are typically hard to change for a given architecture or design because their
realization typically affects many different parts.

Besides the risk of required rework, an evolutionary strategy does not enable an organization to stay ahead of
the market and thus does not enable an organization to proactively plan future products or enter new markets in
the near neighborhood.

As described, both of the two extreme strategies have specific benefits, as well as drawbacks. In the
remainder of this paper, we discuss how elements of the two strategies can be balanced to optimize product line
development for an organization.

——norm. Codesize

—<&—normal.
Functionality

—a— functionality (single
system)

0 2 4 6 8 10 12 14

time (in # delivered systems)

ode size or covered functionality

Figure 5 Evolution characteristics over time

8-6

Balancing
In practice things are typically not just black or white. Rather, it is one of the key challenges to find an adequate
balance in order to combine the benefits of the evolution and the revolution approach in a way that maximizes
the advantages of the product line development Error! Reference source not found. Both approaches have
their unique advantages and drawbacks. By analyzing these advantages and drawbacks we will be able to
propose an optimal approach.
The two approaches differ along the following dimensions:

= The amount of resources that are needed until the first product can be delivered

= How much time is needed until the first product can be delivered

= The importance of available information (or plans) on future products

= How important a good understanding of the domain is

= The impact of changing technologies and customer requirements

= The ability to handle very large numbers of products and especially a very broad range of variation

= The way that existing (or legacy) systems can be integrated

= The total benefits it can bring in terms of effort savings and quality improvements and their distribution

over time

Upon further analysis of these factors, however, we see that they do not necessarily vary only on the level of a
product line as a whole. Rather, most — if not all — of the factors actually vary on the level of individual
subdomains [8]. This allows an even more fine-grained balancing of the two product line growth strategies.
While those subdomains that are more adequate for an evolutionary approach to product line development can be
managed in an evolutionary mode, those that are more adequate for a revolutionary approach can be managed in
a revolutionary manner (cf. Figure 6).
This leads to the key question: how can we identify which subdomain is more appropriate forwhich approach.
Based on a characterization of the various subdomains in terms of the criteria given above, we can deduce the
appropriateness of the different subdomains for this task.

Revolton | Eowon [Revolution

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuuuuuuuuuuuuu

Figure 6: Different domains are handled using different approaches

8-7

This question is actually strongly related to the question whether product line development is at all a viable path
for product development. We developed an assessment approach called PULSE-B&R that aims at evaluating the
various sub-domains in order to determine their appropriateness for product lines. This approach assesses the
various sub-domains in terms of the following criteria:

The maturity of the domain — a rather high level of maturity is required for revolutionary development as
it requires a good understanding of the domain. A certain minimum level is also required for
evolutionary development in order to enable the development of somewhat generic assets.

The stability of the domain — stability is strongly supportive of a revolutionary approach as any severe
changes during the building of the reuse infrastructure may destroy the investments made. Evolutionary
development is intrinsically an approach to deal with unstable domains.

The resource constraints — especially the revolutionary approach requires some upfront investment.
Nevertheless in the presence of very high resource constraints (e.g., it is clear that it is impossible to
build the next three products with the available resources) it may actually be a hint for a revolutionary
approach as shown by some of the most successful product line case studies (cf. [10], [11]). However, in
case of restricted resources in a risk-adverse organization an evolutionary approach is typically more
appropriate.

The market potential — the market situation actually has a rather strong impact on the approach to
choose. First of all a minimum potential has to be expected in order to make product line development a
reasonable approach. Second, different situations have different implications for the choice of evolution
vs. revolution:

o In case a new market shall be entered it is usually more appropriate to make the up-front
investment for a revolutionary approach. If a transition within an already existing business is
made, an evolutionary approach might be more appropriate.

o If the uncertainty regarding the number and requirements for further products is rather high than
an evolutionary approach is more appropriate as a risk-mitigation strategy.

o If the market is expected to have very high potential in terms of number of needed products (or
required variation of the subdomain) than a revolutionary approach is more appropriate.

o If after the first product has been built, a large number of products needs to be developed in a
short time-span (e.g., in order to capture market-share) than a revolutionary approach is more
appropriate.

The commonality and variability — a certain minimum of commonality is required for either approach.
However, for extremely high ranges of variability a revolutionary approach is typically more apt as this
requires a careful pre-design of the variability supporting measures.

The existing assets — software assets, especially code, that does already exist strongly influences the
decision among the two approaches: in case some systems are already under continuous development, it
is appropriate to perform evolutionary development as the product development is usually required to
continue with as little interruption as possible. On the other hand, if no products exist yet or the existing
products are legacy that needs to be reengineered anyway, than it is usually very appropriate to invest
the additional effort of a systematic preplanning to develop the new software architecture in a way that
supports as many of the future products as possible.

The PuLSE-B&R approach to product line assessment provides a detailed framework for analyzing these factors
in a systematic manner Error! Reference source not found. and supports the evolution versus revolution
distinction in a disciplined way. This approach can be used to characterize the various domains in a way that
provides a basis for deciding which approach should be used on which subdomain. This provides a basis for
optimally aligning a combination strategy as shown in Figure 6 to the specific context.

8-8

ool
o0 560
[Sonnt - Theory
l———————

(extremes)

functionality

Combined strategies on a per subdomain basis

¢ Different starting points (coordinated with projects)

/ 2 4 6 8 10

Time (in delivered single
systems)

Figure 7: Combined Strategy of Evolution and Revolution

Figure 7 shows the result of a combined strategy of revolution and evolution. Some subdomains (based on their
appropriateness and the overall requirements on the product line) are developed in an evolutionary way, while
others are developed in a revolutionary way. This allows to combine the advantages of both strategies like risk
mitigation, early start of product development, and highly effective product line development.

Where exactly the ideal combined strategy is within the space described in Figure 7 for a specific product line
strongly depends on the specific situation. We will now illustrate this with two case studies. These case studies
are similar to real product line development projects we worked with, however, in order to be particularly
illustrative we simplified some issues and combined some constraints from different projects.

Case Study 1

The first company we want to study is about to enter a new market. It is clear once the market has been entered,
any customer request that would be turned down would result in very unsatisfied customers that would probably
not come back. On the other hand sufficient resources exist in order to support some upfront planning and
development phase that will allow to develop at least a basic reuse infrastructure already targeting the product
line as a whole. With this as a basis, it is decided that the product line as a whole should tend rather strongly
towards a revolutionary approach. However, on a detailed level it is analyzed that the various subdomains
relevant to the product line strongly vary in terms of their characteristics. While for most subdomains the
variability is largely predictable, there are also some subdomains that are rather unpredictable in terms of their
variability.

While the market that should be entered is new, this company still has some legacy to build on. However, it clear
from the start that the existing software architecture of the legacy system will — for some technical constraints —
not be supportive for the large range of new systems that need to be built. Thus, a large restructuring is obviously
required anyway, leading to a non-neglectable effort and time-delay.

For these reasons the management of the company decides that the time-delay can be expanded a little bit and an
adequate planning needs to be made. They analyze the envisioned market and come up with a rough plan for the
future product line consisting of about ten main products. This is used as a key input to developing a new,
generic software architecture. With this vision in mind, reengineering is started, leading to the identification and
recovery of software components that are used as a basis for the new reuse infrastructure that is set up. These
components are wrapped and will be part of the new software architecture. This architecture is expected to
support at least the next ten systems and probably more.

The reengineering of the components requires some time. The remaining asset building activities and the
architecture development take slightly more time than would have been required for developing a single system.

8-9

However, once the reuse infrastructure has been set up, new products are developed very rapidly showing an
improvement of a magnitude over what would have been expected for the individual development of systems.

Case Study 2

Our second company is in a strongly different situation. They are already well into the market. Again and again
their customers require new, and usually unexpected features. They see no way in fully predicting those
variations. Even more severely these features impact most levels of the software structure: thus, it is at most for
very few subdomains possible to perform a major restructuring as required by the revolutionary approach.
However, more severely, they are under continuous demand for new products. Thus, delaying the next product to
provide time and resources for performing this restructuring is not an option. Therefore, the decision is made that
a strongly evolutionary path to product line development is more appropriate for this product line. In this case
only components are touched that need to be changed for a new product anyway. When a component change is
required, it is refactored in a way that allows to support several of the existing products thus reducing the overall
amount of maintenance required. In addition the refactoring aims at developing a component that is easily
extensible and that may support at least the directly foreseeable products. Thus, by adding a little bit of extra
work in each project, slowly but surely the company migrates towards product line development. The key is that
any redevelopment is strongly aligned with rework (i.e., adaptation) that is required anyway. However, it is done
in a way that aims at bringing the whole set of products somewhat closer to the ultimate vision of product line
development.

As a result of this approach the cycle times required for developing new products are successively reduced over
the next product developments. In particular maintenance times are reduced as the amount of replicated code is
successively reduced. Over the next few iterations the developers are more and more able to spend their effort on
developing new functionality instead of maintenance.

Analysis and Outlook

The two extremes in the spectrum of improvement strategies provide contrary advantages and disadvantages.
Usually, neither a revolution nor an evolution strategy is perfectly suitable for an organization. In this paper,
therefore, we discussed strategies in between the two extremes and how revolutionary and evolutionary elements
of an improvement strategy can be balanced to optimize the benefits for an organization and its product line
development in the future. The difficulty here is to identify the specific strategy that is ideally adapted to the
product development situation in the company. We discussed some criteria that are key to optimally balance the
two approaches in a specific situation. These criteria should be applied on a sub-domain level as supported by
the PuLSE-B&R approach Error! Reference source not found.. While the overall strategies may result in
considerably different patterns of product line transition and evolution, they are both well supported by the
PuL.SE-approach [4].

References

[1] M. Broy, S. Hartkopf, K. Kohler, and D. Rombach. Germany: Combining Software and Application
Competencies, IEEE Software, July/August, 2001

[2] E. Kamsties, K. Hérmann, and M. Schlich. Requirements Engineering in Small and Medium Enterprises:
State-of-the-Practice, Problems, Solutions, and Technology Transfer, in Proceedings of the Conference on
European Industrial Requirements Engineering, 1998

[3] S. Sanderson and M. Uzumeri. The Innovation Imperative - Strategies for Managing Product Models and
Families, Chicago: Irwin, 1997

[4] J. Bayer et. al.. PULSE: A Methodology to Develop Software Product Lines, in Proceedings of the Fifth
ACM SIGSOFT Symposium on Software Reusability (SSR'99), pp. 122-131, ACM, May 1999

[5] D. Weiss and C. Lai. Software Product Line Engineering, Addison-Wesley, 1999

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study, Tech. Report CMU/SEI-90-TR-21, Software Engineering Institute (SEI), November
1990.

[7] Klaus Schmid and Martin Verlage. The Economic Impact of Product Line Adoption and Evolution. IEEE
Software, Vol. 19, No. 4, 2002

[8] Klaus Schmid and Isabel John. Case Study of a Product Line Benefit and Risk Analysis. Proceedings of 1.
Deutscher Workshop fiir Software-Produktlinien (P. Knauber, K. Pohl eds.), Kaiserslautern, IESE-Report
No. 076.00/E, pp. 15-22, 2000

[9] Klaus Schmid. An Assessment Approach To Analyzing Benefits and Risks of Product Lines, The Twenty-
Fifth Annual International Computer Software and Applications Conference (Compsac'01)}, pp. 525-530,
2001

[10] Len Bass and Paul Clements and Rick Kazman, Software Architecture in Practice, Addison-Wesley, 1999.

[11] James C. Dager, Cummin's Experience in Developing a Software Product Line Architecture for Real-Time
Embedded Diesel Engine Controls. In: Software Product Lines: Experience and Research Directions,
Proceedings of the First Software Product Line Conference (SPLC1), Patrick Donohoe (Ed.), Kluwer
Academic Publishers, pp. 23-46, 2000

9-1

. Click here to view PowerPoint presentation; Press Esc to exit .

Towards an Evolutionary Strategy of Developing a Software Product
Line in the Field of Airport Support Systems

Francois B.J. de Laender
National Aerospace Laboratory NLR
P.O. Box 90502
1006 BM Amsterdam
The Netherlands

laender @nlr.nl

1. Introduction

A product line approach to software development has received more attention during the past few years, both
in industry and research. It is seen as a next step in an evolution of software reuse practices, from subroutines
in the 60s, to modules in the 70s, to objects in the 80s, to component-based systems in the 90s [SEI 02].

Two years ago within NLR an initiative was born to develop a new generation of related software products
in the field of airport environmental support. The purpose of these products is to support enforcement and
decision making concerning airport related aspects such as environmental impacts, capacities and logistics. It
would be a gradual replacement and extension of current products used by research organisations,
commercial and military airfields and governmental organisations.

There was an early notion that most of these (existing and planned) products have very much similarities
with respect to functional and quality requirements. Moreover, software product integration on a domain-
level within the airport (environmental) support domain, was found to be one of the major weaknesses.

In case the products have many features in common, the product-line approach to software development
promises large economical benefits [SEI 02], [Bosch 00]. Therefore, the decision was made to adopt a
product line approach, integrating the products in a platform, called ASAP (Airport Scenario Analysis
Platform).

It was recognised that the adoption of the product line would mostly be project-integrating and
reengineering-driven in an incremental fashion [Schmid et al 02]. The reason for this more light-weight
evolutionary approach was mainly a matter of financial and human resources and an incomplete picture of
software products that could possibly be realised in the long-term.

The gradual transition from a traditional system development method to a product line development
approach raises numerous problems to be solved, related to architecture, process and organisation.

This article will be an early experience report of the adoption of, and evolution towards, a rich-featured
ASAP product line, with a focus on architectural issues.

Chapter 2 gives some background about business drivers and context of ASAP. Chapter 3 will contain an
overview of the initial ASAP product line architecture, seen as the basis for the recently started instantiation
of products. In chapter 4 there will be a discussion of the expected evolution of the ASAP-product line, the
changing requirements and consequent impact on architecture and components. Finally, chapter 5 concludes
this article.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

9-2

2. Background

ASAP motive

During the past decade, NLR developed software systems in the field of airport environmental support.
Several years ago it appeared that some of these legacy systems are at the end of their lifecycle. The
technology becomes rapidly out-of-date, it is more difficult to incorporate new user requirements and severe
software maintenance problems were likely to occur. Moreover, there was a strong tendency to using the
existing software applications in multi-disciplinary environments. Collaboration between several disciplines
(or domains) is required to solve the problems in the field of airport environment and traffic regulation.

It was concluded that the existing software was not suitable to support this process in an efficient manner.
Integration solutions on operating system or middleware level are available, but the NLR business requires
an increased integration on the domain level, to reach really integrated solutions.

The business goals and requirements

The business goals that were formulated for ASAP are:

e Create a state-of-the-art platform for applications dealing with simulation and monitoring a full airport.

e Enable NLR to offer (internal and external) customers products with varying complexity (from simple
stand-alone applications to complex distributed service based systems).

e The variability in the customer base ranges from research institutes, commercial airports, small airfields,
military airfields, consultancy firms and other governmental organisations.

e Software products must be capable of containing software components that evolve very rapidly, even on

a daily basis. Examples of these are research calculation models in their development phase.

Reduce the time-to-market and further improve quality.

Improve integration of domain models and establish a common vocabulary.

Improve interdisciplinary co-operation.

Legacy applications must be gradually incorporated into the new platform; they must be kept supported

as long as no viable alternative is available.

In addition to these, some software-related requirements were formulated:

e Adoption of a component-based and object-oriented development approach, standardisation on the
Unified Modelling Language (UML)

Adherence to open standards (e.g. CORBA)

Implementation operating system platform-independent

Database vendor independent

Maximise use of (Commercial) Off-The-Shelf software, if the required features are not domain-related
(e.g. middleware)

e Maximise use of standard frameworks, patterns and code-generation facilities.

ASAP initial work

Based on these goals and requirements the initial work on ASAP was carried out.

The starting point was a high-level scope definition of ASAP. This was based on current products, a vision
document containing a product strategy and the specification of a few short-term planned ASAP-based
products. The first architectural design was very high level, functionality-based, focussing on common key
abstractions and "organising" them in domains.

The description of the architecture was performed in an "industrial way" rather than an "academic way"
[Bosch 99a] and was focussed on conceptual understanding from several viewpoints.

Subsequent work was focussing on detailing some parts of the product line design, which were found to be
most critical, both in terms of core functionality as technical aspects. For the latter, prototypes were made of
parts of typical ASAP products, such as user interface, middleware and object persistence.

As stated in the introduction, the development of a complete core asset base up-front any product-
instantiation was neither desired nor possible. The status at the start of the first product instantiation was; a
product line architecture with a somewhat limited scope, modelling key abstractions and fulfilling the quality

9-3

attributes that were found most relevant (see also section 3). Moreover, the focus was on defining the
commonality across the products and on making those core assets available, which were required for the first
product.

Parallel to architecture and prototype development, a development infrastructure was set up. This
infrastructure contains a set of tools for requirements management, configuration management, visual
modelling and coding and testing. A key aspect is the use of code-generation based on UML models. To a
large extent, this results in the generation of C++ code for the CORBA servers. Only the implementation of
the more complex class operations must be done manually. Also database schemas can be generated, where
applicable. The first experiences with the generation of code for ASAP components are promising and seen
as indispensable for efficient product (re-) instantiation when requirements evolve rapidly.

There are hardly any tools that support the product-line development of ASAP as it should ideally be. So, the
development infrastructure contains a tool-set that is also used for traditional software development.
However, the structure of the development infrastructure is centred on the product line architecture, with
respect to the organisation of documents, models, code and repository.

ASAP evolution

The first development freeze of the ASAP architecture and components, was just a starting point in a process
of evolution.

It is important to have a "strategic plan" to control this evolution on a high level, to support the growth to a
mature rich-featured product line. For this reason, NLR has made an ASAP roadmap for a 5-year period, to
be updated on a yearly basis. This roadmap contains plans for incorporating legacy products and new
products, based on expected market and technology developments. Moreover, it contains short-term project
planning. The project duration for making ASAP products will generally not exceed 6 months.

3. ASAP architecture

The business goals and requirements mentioned in the previous section where the basis for the architectural
design for ASAP as it exists now. This section contains a brief description of the ASAP architecture,
focussing on the architectural style and variability mechanisms.

Architectural style

Tracing back to the business requirements for the ASAP product line, it was recognised that the quality
attributes maintainability (especially reusability), portability, efficiency (performance) and interoperability
are the most relevant. Given this, a layered architecture was chosen as the dominant architectural style for
ASAP. Within this layering, object-oriented frameworks should provide some of the variability mechanisms.

In fact, a two-dimensional layering strategy was chosen. The first, and most important, dimension in this
layering strategy is the reuse-based layering. The second dimension is the responsibility-based layering.

ASAP defines four layers in the reuse-based dimension:
e application-specific
e domain-specific
e middleware
e gsystem

The system layer is the most generic layer. Its component's scope is mostly company-wide and contains
software like operating systems, operating systems APIs and network related software.

The middleware (or domain-independent) layer has a general purpose with broad applicability used in many
domains (even across product lines), often related with the term horizontal reuse. Typical components in this
layer are mathematical libraries, user interface toolkits, application servers, database management systems.
The domain-specific layer contains software components with more limited applicability, reusable only in a
specific application domain, but possibly across product lines. The term vertical reuse is often assigned with

9.4

these components. The semantics of the components are domain-dependent, and hence, have little or no use
outside the domain. Within ASAP the following domains are currently defined: Airport modelling, Aircraft
modelling, Flight modelling, Traffic modelling, Route modelling, Noise modelling, External Safety
modelling, Scenario management and Project management.

The application-specific layer is the most specific layer and contains software components that are strongly
controlling in nature, and tend to have the least reusability. Examples of these components in ASAP are
interfaces to flight Monitoring and Registration systems, a user interface framework and cross-domain Data
Management.

The main reason to separate the domain and application layer is the improved reusability of the domain
components. It also matches with the guidelines to support the evolution of product lines as published in
[Svahnberg 99a].

In the responsibility-based dimension of the ASAP layered architecture five layers (logical tiers) are
distinguished, often seen in distributed systems:

e presentation
dialog/workflow
application logic
business logic
data access
The presentation and dialog layers contain all components that are required for presentation to and
interaction with the end-user. The application logic layer consists of components that are used for
implementing the application (interaction) logic. The business logic layer consists of components that are
used for implementing business (or domain) entities/rules/calculations. Finally, the Data Access layer
consists of components that are used to store/retrieve data from persistent storage (files or databases).
Depending on the chosen deployment platform of the product, the above mentioned logical tiers will be
combined to one or more physical tiers.
Table 1 gives an integrated view of the layering approach with typical types of components.

presentation/dialog application/business logic data access
appl.lcatlon- User interface framework Application service System interfaces (XML or
specific components custom)
. . . Domain rel n fil
domain- Domain model related user |Business process/rules/data omain related standard file
. . access (XML or custom)
specific interface components components

stored procedures

CORBA
middleware |Java

Web service libraries
system Native Ul libraries O/S services O/S File systems

(Web) Application server

CORBA ORB and services Database Management Systems

Table 1 : ASAP layering approach

Variability mechanisms

In the case of ASAP, object-oriented frameworks are defined for the components in the domain- and
application-specific layer. For the middleware and system layer (Commercial) Of-The-Shelf software is
used. If applicable, the frameworks of the (C)OTS software are used.

The object-oriented framework contains the definition of the variation points that are built into the
components. The specific use of these variation points in an ASAP product determines the configuration of
the comprised components.

There are several mechanisms to realise the variability in the components [Jacobsen et al 97]:

Inheritance:

Inheritance is a powerful mechanism. Within ASAP it is widely used for realising variability. However,
inheritance reduces the encapsulation so it should be used with care. In ASAP its use is limited to extending
abstract base classes or operations and the class hierarchy is limited to one or two levels.

9-5

Extensions:
The ASAP architecture also contains several extension points. Extensions are (mostly) small types, that can
not be used by itself. They are most powerful if several variants of the extension can be attached.

An example of using extension points is the use of dynamic binding of noise load calculation models, as
depicted in figure 1.

Noise load

Noise load extension point
calculation model

/run-tin&

Model x Model y

Figure 1: Use of dynamic binding of noise load calculation models

An extension point Noise Load Calculation Model is defined with a given interface. At run-time different
calculation models can be plugged-in, each with there own behaviour.

This mechanism is especially important during the development of calculation models (algorithms) in a
research environment. One of the business requirements of ASAP is, that it supports the use of multiple
variants of calculation models that can be used without shutting down the complete system. Variants can be
added or removed on a daily basis, thus these parts of the software evolve much more rapidly than the other
software components in the framework base.

Configuration:

With configuration all variants in all variation points are included in the component. The use of a variant at
run-time is specified through parameters.

This mechanism is currently not used in the application- and domain-specific layers. However, it is used in
the middleware layer, to select database access drivers. This contributes to the requirement of a database
vendor independent solution.

Parameterisation:

As an example of parameterisation within ASAP, some specific C++ language techniques are applied to
realise variability. Worth mentioning is the variability "CORBA ORB vendor". Through macros, the
CORBA libraries of a specific vendor can be bound during the software building process.

Generation:

Code generation is an important mechanism to establish variability in ASAP. The specification of the server-
side component interfaces and implementation classes is generated from the UML-models. A special
compiler generates large parts of the code, based on this specification. The generation process can be
configured by numerous parameters, which affect the generated result.

A typical example is the way to make an inheritance tree persistent in a relational database. For example,
through the setting of parameters, this can result in storing all classes in one table, or storing each class in a
separate table.

Domain Specific Languages:

Calculation models in ASAP require their own set of calculation parameters. As previously mentioned,
calculation models are dynamically bound, with varying sets of parameters. There are two issues: (1) the
extension point must support this parameter set variability and (2) an associated user interface must be

9-6

available that supports this dynamic behaviour. For this reason XML is used. The XML data structure
contain both the values and the definition of the calculation parameters and is exchanged between the server-
side calculation model component and the client-side user interface component. Based on this XML
definition the user interface component can dynamically generate the appropriate controls on the screen for
data input and validation. This process is illustrated in figure 2.

client-side components server-side components

Noise load calculation screen

Noise load
model

Noise calculation parameters parameters
I ! XML structure

| | <=> Noise load

I I calculation model

1

!
]
!

7 run-time
1]
I

1)
static generated
at run-time

Model x Model y

Figure 2 : Example of a domain specific language

4. ASAP evolution

The current status of the ASAP core asset base is such, that the first products (applications) can be
instantiated. A large part of the core assets are under configuration management and are evolving for more
than a year. The evolution of the ASAP artefacts did not raise severe problems until now, because product
development was in its early stage (the first product) and the architecturally significant requirements of the
product were foreseen and within scope of the ASAP product line.

However, as time passes and more products are realised with ASAP, the management of the product line is
becoming more complex.

Evolution of software product lines is a complicated and important subject. Researchers and adopting
organisations recognise this, but there is still very little experience in the industry and it is still not studied
very much in the research community. There are only a limited number of case studies available, for example
[Svahnberg 99a], [Romanovsky 02] and some publications of studies to develop models or taxonomies for
product line evolution [Svahnberg 99], [Schach et al 02], [Bosch 02].

The next paragraphs will discuss some aspects of the ASAP product line evolution with a focus on the ASAP
architecture.

Evolving in maturity

The ASAP product line artefacts (core assets and products) will gradually grow in maturity. Bosch [Bosch
02] proposes a software product line maturity framework. Referring to this maturity framework, one can
conclude that ASAP has passed the stage of "standardised infrastructure" and has reached the "platform"
level. This can be justified by the fact that there has been a strong focus on domain engineering during ASAP
development and currently a considerable amount of reusable core assets has been made available. Again
referring to this maturity framework, ASAP has not yet reached the level of "software product line". NLR
expects this to reach in a few years, when most of the software products in the ASAP relevant domains are
build on the ASAP core assets. See also the next figure.

9-7

configurable
product base

software

product line | O,)
platform -] O

standardised

infrastructure | O

independent

VRN
products \Wj [[[[
1999 2000 2001 2002 2003 2004 2005

Figure 3 : Past and expected maturity evolution of ASAP

Coping with changes during evolution

Evolution is driven by the change of requirements. The change of requirements of product line and products
affect the architecture and comprised components. A major goal will always be to minimise the impact of
changes on architecture and components. Adequate architectural decisions can support this.

Early work ([Svahnberg 99]) contains some generalisations and classifications with respect to types of
changes during product line evolution. This classification is used in the following discussion on what the
expected major changes will be in the ASAP product line and what impact they may have.

Starting a new product line

In the future it may be possible that there will be a business requirement to incorporate software products,

new or legacy, into the ASAP product line. Two reasons to start a new product line may be :

1. The required variability in one or more variation points becomes to large to accommodate to the new
product. In this case an other product line can be cloned or specialised from the current ASAP product
line. The approach to be chosen depends on the architectural similarities.

2. An independent product has to be incorporated, that is architecturally different from the product line
architecture and it is not feasible to reengineer this product. A solution may be to clone a subset of the
product line core assets, and transform the architecture so that the new product can be easily integrated.

First and foremost, there is the intention to prevent this kind of evolution of ASAP. However, it can not be

excluded beforehand. In the research field of airport support systems, there exist a lot of software products

with very different architectures. There may be good business or technical reasons to start a new product line
based on this new product and a part of the core assets of ASAP.

Introduction of a new product

In the case of ASAP there can various reasons to incorporate a new product:

1. A new market opportunity arises with a different type of (potential) customers. It is difficult to predict
what the consequences will be beforehand. Although the middleware layer of ASAP supports a lot of
operating systems and database systems, there is a small probability that the ASAP standard
infrastructure does not fit with that of the potential customer. Another point is the introduction of new
features. There is a strong belief that the changes in the domain-specific layer can be kept minimal and
can be a accommodated by the current variation points or by introduction of new variation points. The
changes will largely occur in the application-specific layer.

2. Incorporation of an existing independent product. For ASAP, this is currently recognised as one of the
most likely changes. In the field of airport support systems this will often be the case with calculation
models. Numerous variation points are defined where these models could be attached (see also the
discussion of variability mechanisms in section 3). In case the model can not be rewritten to the standard
component model in ASAP (CORBA/C++), an adapter has to developed. A concrete example of this will
be the incorporation of legacy noise calculation programs implemented in Fortran. Reengineering these
would require a costly development and re-validation programme. Otherwise, it could be decided to not
incorporate a product in the product line, but to treat it as an external system. In that case other
application integration technology should be applied, mostly on the middleware layer (e.g. web service
technology).

9-8

3. Extension of the product line scope. In the case of ASAP this is also likely to occur. The scope of ASAP
was initially constrained to the domains of Airport Environmental Support (Noise, Emissions, External
Safety), leaving out applications for air traffic management and airport capacity, for example. It is
expected that in a short term, the scope will be increased to these other airport related domains. Early
investigation shows that the current frameworks in the domain-specific layer can be extended such that
the impact on the currently developed products can be kept minimal.

Addition of new features

This type of change will occur most frequently. The impact strongly depends on the scope of the feature.
Addition of new features will be seen most in the application-specific layer and in the components
implementing the extensions in the domain-specific layer. In these situations the addition of features has the
least impact. The basic principle will always be to incorporate the feature in the ASAP core asset base and
make it available for other products. Only in exceptional situations product-specific components will be
developed, for example, if a required feature will be temporary or experimental in nature or can not be
realised by the core asset base without significant architectural changes.

Extension of standards support

The middleware layer of ASAP is comprised of components or frameworks based on open standards (e.g.
CORBA). This layer shields the components in the higher layers from changes in infrastructure technology.
In the case of ASAP, new versions of these open standards will only require regeneration of code based on
the UML models and subsequently rebuilding the products.

However, support for a completely different standard, such as Microsoft's DCOM or Web Services, can not
be realised without severe architectural consequences. In this respect, OMG's Model Driven Architecture
initiative is worth mentioning. It would enable changes from one middleware platform to another far more
easier.

New versions of infrastructure

As mentioned earlier, ASAP supports most of the well-known operating systems, hardware platforms and
database management systems. The components in de application-specific and domain-specific layer do not
contain any infrastructure dependent code. Like the previous point, changes in infrastructure should be a
matter of rebuilding products.

Improvement of quality attributes

Improvement of quality attributes will often require changes on the architectural level. The changes with

respect to quality attributes that are foreseen are :

e Increased performance: the ASAP products are calculation-intensive. Even though the ASAP design
realises a lot of improvements in this respect compared to the legacy software, the need for better
performance could raise. Solutions that are easy to realise are (1) deploying the calculation intensive
components to high performance servers and (2) the addition of servers, the middleware supports load
balancing between them.

e Improved security: this will become more important in the near feature when ASAP products must be
able to be used over the internet (through the firewall). The current middleware used in ASAP only
supports authorisation. At the moment it is expected that additional security measures will have no
impact on the application- and domain-specific layers.

e Better interoperability: enterprise application integration is a very important subject in every organisation
nowadays. ASAP products must be able to be integrated with other systems in a heterogeneous
environment (for example through web services). Currently, studies are performed to investigate this
problem area.

Post-fielding and runtime evolution

ASAP products support some mechanisms to change the functionality at run-time:

e The addition or deletion of application services on the server-side.

e The change of calculation models on the server-side can be handled at run-time. Changes in related user
interfaces are dynamically propagated to the clients.

e The change of interfaces to external systems that deliver (actual) airport monitoring data can also be
handled at run-time

9-9

e For the client-side of the ASAP applications, each end-user has functionality available to personally
manage the installation of new or updated client-side software.

5. Conclusion

The ASAP product line developments are well underway and should result in a mature product line within a
few years. The core asset base will further evolve while more products will be based on it. The initial
development required substantial additional investments to make a core asset base available, such, to be able
to instantiate the first products from it. From now, the economical benefits will become more prevalent.

It is likely that the current architecture will be able to incorporate changing requirements without problems,
as long as the impact on the middleware layer is minimal. Incorporating legacy products may require large
reengineering efforts. If this is the case and it also requires an extension of the product line scope, then it is
generally better to leave it outside the product line and integrate it in a different manner.

The ability to generate large parts of the code makes evolution easier to manage. However, for ASAP there is
currently only one middleware platform available as target for code generation.

Large scale systematic planned reuse, in combination with more formal methods (and tools) for mapping
middleware platform-independent domain models to source code would result in an even more efficient
evolution, especially if changes have impact on the middleware layer as well.

6. References

[Bosch 99] J. Bosch, "Product-Line Architectures in Industry: A Case Study". Proceedings of ICSE 99, P.
544-554, ACM press. May 1999.

[Bosch 99a] J. Bosch, "Evolution an Composition of Reusable Assets in Product-Line Architectures: A Case
Study”. Proceedings of the First Working IFIP Conference on Software Architecture, February 1999.

[Bosch 00] J. Bosch, "Design and Use of Software Architectures - Adopting and evolving a product-line
approach", ACM press., 2000.

[Bosch 02] J. Bosch, "Maturity and Evolution in Software Product Lines: Approaches, Artefacts and
Organization”. Presented at the 2nd Software Product Line Conference (SPLC2), January 2002.

[Gurp 01] J. van Gurp, J. Bosch, M Svahnberg, "On the Notion of Variability in Software Product Lines".
Proceedings of The Working IEEE/IFIP Conference on Software Architecture (WICSA 2001), pp. 45-55,
August 2001

[Herzum et al 00] P. Herzum, O. Sims, "Business Component Factory - A Comprehensive Overview of
Component-Based Development for the Enterprise", OMG-Press, 2000.

[Jacobsen et al 97] 1. Jacobson, M. Griss, P. Jonsson, "Software Reuse - Architecture, Process and
Organization for Business Success", Addison-Wesley, 1997.

[Romanovsky 02] K. Romanovsky, "Generation-Based Software Product-Line Evolution: A Case Study",
2nd International Workshop "New Models of Business: Managerial Aspects and Enabling Technology", St.-
Petersburg , 2002.

[Schach et al 02] S. Schach, A. Tomer, "Development/Maintenance/Reuse: Software Evolution in Product
Lines”. Published on The Israeli Workshop on Programming Languages & Development Environments
Organized by IBM Haifa Research Lab, Haifa University, Israel, July 1, 2002

9-10

[Schmid et al 02] K. Schmid, M. Verlage, "The Economic Impact of Product Line Adoption and Evolution”.
IEEE Software, pp. 50-57, July/August 2002.

[SEI 02] P. Clements, L. Northrop, "A Framework for Software Product Line Practice". Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University. http://www.sei.cmu.edu/plp/framework.html,
2002.

[Svahnberg 99] M. Svahnberg, J. Bosch, "Characterizing Evolution in Product Line Architectures".
Proceedings of the 3rd annual International Conference on Software Engineering and Applications
(SEA'99), Scottsdale, Arizona, 1999

[Svahnberg 99a] M. Svahnberg, J. Bosch, "Evolution in Software Product Lines". Journal of Software
Maintenance, Vol. 11, No. 6, pp. 391-422, 1999.

10-1

. Click here to view PowerPoint presentation; Press Esc to exit .

Incremental system development in the Royal Netherlands Army

Lt. Col. B. Smid MBT
Royal Netherlands Army
DM/C31/C2SC
Postbus 9012
6710 HC Ede
The Netherlands

Lt.col Bert Smid is currently head of the development section of the Netherlands Command and Control
Support Centre. He graduated from Military Academy as a Signals Officer in 1980 after which he fulfilled
various functions within 101 Signals Group (Regiment) among which G3 of the Signals Group. From October
1994 till April 1995 he was head of the Communications Plans bureau in G6 section UNPROFOR. From
1995 till 2001 he was head of the Data Communications section within the ISIS project, project manager of
the Dutch Battlefield Management System project.

Since 1992 the RNLA is involved in army digitisation. This paper briefly describes the
backgrounds of the digitisation process within the RNLA. Furthermore the role of a
system-architecture for the digitisation process, the implications the architecture for and
the importance of system development are explained. Finally the lessons learned during
the digitisation process are mentioned

1. Introduction

Evolutionary system development is one of the key factors for the successful
development of systems within the Royal Netherlands Army (RNLA).

Modern (peace support) operations require flexible systems that can easily be adapted
to changing user requirements and the environment in which the systems are used.
The application of new and even emerging COTS technology can help to provide the
functionality that is needed in the field, but is currently often restricted to the office
environment. This results in a continuous struggle to provide the operational users
with up-to-date tools in an environment that puts severe limitations on the use of
commercial ICT equipment and protocols.

The development of current and new C2-systems is primarily based on engineering
techniques using commercial of the shelf (COTS) hardware and software and using
an only slightly amended COTS development methodology. In this process the
RNLA acts as system integrator using industry as supplier of hardware, software and
ICT-engineers.

Using an incremental and both user and architecture centric approach has delivered
Network Centric Warfare based systems that are completely integrated in today’s
military decision making process at the various levels of command, but can easily be
adapted and extended to future requirements.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

10-2

Since 1992 the RNLA is involved in the process of army digitisation. This resulted in

the first operational use within the RNLA of an ATCCIS based battle management

system named the Integrated Staff Information System (ISIS) in 1995.

From then on digitisation within the RNLA has resulted into:

m The use of ISIS at more than one level of command within the land component of
Ace Mobile Force (AMF(L)) during various trials in 2000 and 2001.

m The development of a Battlefield Management System (BMS) for use at battalion
level and below, which entered its field trials in 2001.
Extensive research aimed at the introduction of a BMS for the dismounted soldier.
The development of a generic framework (C2 Workstation (C2WS)) as a
foundation for the development of new functionality for C2 support.

m The development of an overarching C3I-Architecture, which is mandatory for all
army C3I-projects.

The need for adaptation to changing user requirements, ICT developments and
adaptation to the military environment led to the conclusion that the RNLA would
have to act as a systems integrator. Therefore all current ICT systems are being
developed within the RNLA by a mix of military and hired civil ICT experts under
the leadership of an RNLA project manager. This approach has significantly
increased the flexibility of the development process, reduced the time required for
system development and delivered systems that have already shown their added value
in the operational environment.

Experiences gained from the digitisation process have led to the establishment of a
national C2-Support Centre (C2SC), which is now responsible for the development of
all future C2-systems within the Royal Netherlands Army. By the method that is
chosen for system development the C2SC also acts as the system integrator. By the
inclusion of C2-experts from the Air Force and Navy the C2SC is evolving into the
national C3I-development and training centre.

Role of Architecture

The main roles of ICT architecture for system development are:

m Laying down the relationship between ICT systems and the supported processes,
mainly command and control.

m Reflecting the characteristics of the operational environment in which the systems
have to operate.

m Ensuring interoperability between systems.

This implicates that the ICT architecture is dynamic and will be adapted to changing
RNLA tasks and processes, changing technology and best practices from running
projects. Within the RNLA this ICT architecture is established as an overarching C31
Architecture mandatory for all C2 systems, taking the Network Centric Warfare'
concept as a starting point. This concept is aimed at optimal information

' Network Centric Warfare,Developing and Leveraging Information Superiority, 2nd edition by David S.
Alberts, John J. Garstka and Frederick P. Stein, CCRP, 1999.

10-3

dissemination between sensors, shooters and decision makers regardless of the

physical layout of the information network.

Complementary principles that underpin the C3I Architecture are:

m Zero Latency, implying that information dissemination will take minimal delay.

m Zero Dependency, making systems and system parts as independent as possible
resulting in the absence of a single point of failure and an optimal performance
even under partial breakdown of systems.
Zero Maintenance, minimizing maintenance using redundancy and self-healing
Actor Based Security, resulting in a multi-level secure environment where the
access of classified information depends upon the role of the user (actor).

Starting from a vision and scooping phase in 1999 in which the architectural
principles mentioned above were formulated the actual architecture is established.
This C3I-Architecture is subdivided into domains, phases and aspects to improve
clarity.

Domains

The Operation Architecture (OA) helps give an understanding of the operational
environment (the Operational processes and organisation) for which ICT systems will
developed to support the operational (business) processes.

Understanding of the Operational processes is a prerequisite for the design and
development of flexible solutions in the sense of information and communication
systems. The Operational Architecture describes the Operational processes, their
relationships, process threads that will be triggered by Operational events and the
description of the process by Operational services.

The System Architecture (SA) describes the architecture of the Information Systems
and the Communication Systems that are used to support the Operational processes.
The System Architecture describes the resultant systems environment of the C3IA
program. It describes which applications and communication systems will be present,
how they will interact and where the Operational services will be implemented.
Identified applications can be existing legacy applications, can be part of a newly
installed (ERP) package or can be newly built within or outside the C3IA program.
The Systems Architecture describes the architecture of the individual systems by
means of components which deliver services to support Operational services for
specific Operational processes.

The Technical Architecture (TA) defines the infrastructure (middleware, hardware,
network, transmissions media, protocols etc.) required to run systems. The other
domains mainly trigger the development and change; not only by the functionality but
also by the characteristics of those domains. Characteristics include performance
requirements, volume figures, frequencies, actuality of information, method of use of
functionality and resources, etc. The development and implementation of the
technical infrastructure take these characteristics as a major input.

Although they are separate architecture domains, the three architectures have strong
relationships and for the different aspects of functionality, security and management,
they together form the architecture for C3IA.

10-4

Phases
Within each domain several areas are identified. For each domain of the C31
architecture the three phases listed below will be followed:

m Conceptual - this phase will describe the concepts, strategy, requirements and
environmental constraints of the concerning track;

m Logical - this phase will describe the mechanisms, design and structures at a
logical level,

m Physical - this phase will identify the mapping of the logical design in the
physical environment of the off-the-shelf products, components and interfaces
that will be implemented.

S
et
?&Q
Manaﬁement
Securit
Phases
[1| . .
| %
T Operational Architecture
o T

System Architecture

\ / Technical Architectur

Conceptual Logical Physical
(what) (how) (implementation)

Domains

||) -
(]) -

Aspects

The subjects of the architecture to be described can cover a variety aspects which are
of interest. The most important aspects are Functionality, Security and
Management.

The most important architecture is the one that describes the core functionality of a
business. This functionality deals with the vision, mission and goals of the
organisation. The Functionality Architecture is therefore the primary architecture and
the others are supporting architectures for other aspects.

The Security Architecture describes the security that must be taken into account for
the formulated functionality. The architecture of the other aspects follows the same
structure and also covers the same three domains, i.e. Operational, System and
Technical (infrastructure). For example, the Security at the System Architecture level

10-5

describes the security with respect to the Systems (Information systems and
communication systems) in the Functionality Architecture.

Management Architecture describes the management aspect that is needed for the
control and changes of the implemented functionality, as well as the implemented
security.

It also encompasses the management of the ICT operations; the control,
administration and management of the objects which will be taken into operation and
which are liable to change. This aspect also covers the administration and
maintenance of the results of the Business Process Modelling activities.

The C3I Architecture is a layered, service-oriented and component-based System
Architecture, which is important with respect to flexibility, maintainability and
evolutionary development.

Another point is reuse in order to reduce costs and - more importantly - to develop
new functionalities more quickly, based on a set of generic components. In the field
of C2 there are many applications that can be based on a generic C2 framework.
Several of those C2 applications will be based on a GIS functionality that will be part
of the C2 framework.

An advantage of such an approach is also that this C2-framework will offer over time
a stable library of software that can be used as a ‘toolkit’ by developers.

Interoperability in the mobile environment is an important issue, because coupling
with existing system, systems of third parties and the exchange of information is of
crucial interest in an environment where everything revolves around situational
awareness. An interface to other systems must therefore be part of the applications
portfolio. This is shown in the following figure.

Information Cammun ication

Systems Siystems
=
c2 |15 | 2| 5 [loper|| T || 7 ||
ST IS S || Pers || 41| 5 || M
& =l ll & || || . ||H
cenl c25uite Loa fl | o]2
Ce Framewark Standard Aps

The generic components with respect to C2 will be positioned in the C2 suite and C2
framework.

On top of the component framework one can find the C3I functional areas. These
functional areas can be split up into functional modules that offer certain
functionalities in accordance with their functional area. The functional modules are

10-6

situated on top of the framework. Generally speaking, the component framework can

be divided into three parts.

m The top part holds the functional components. The functional components contain
‘C3I functional area’ related information that is so generic it can be seen as part of
the framework (ISIS, BMS).

m The middle part holds the framework categories and their related services (C2
suite).

m The lower part holds the basic framework components (C2 basic framework)

The purpose of the framework is:

m To increase reliability through reuse of tested code/proven technology
m To increase the design and development speed of functional modules
m To achieve consistency in design and development

Implications for software development

Although architecture in itself is an indispensable requirement for successful system
development it is not sufficient by itself. Based on the C3I-Architecture, the
incremental system design and engineering is aimed at the maximum use of COTS
components. Only when the required components are not available or lack the
necessary functionality, components are developed within the C2SC. Due to this
approach the RNLA has the full responsibility for the C2-system integration.

In order to successfully implement C2 systems in the operational environment the
system development process has to be intertwined with the architecture development
process and consist of:

Incremental development
Modularity

Technology scan
Experiments

User involvement

Incremental software development is applied to reduce development risks by
addressing the most critical or vital system elements first and to have user feedback at
an early stage in the development process. This enables adaptation to changing user
requirements and minimises the effects of misinterpretation of requirements by ICT-
developers during project realisation.

As a rule of the thumb the time between incremental software releases should not
exceed six months.

10-7

Usertest

Determine Retest
adjustments adjustments
and

new
functionality

Implement Adjust
adjustments
and by
new functionality

if required

integration test

Integration test

The role of the user in this process can’t be overemphasised. Developers can’t always
consider the circumstances in which the systems are used. User interfaces, response
times and ergonomics can make the difference between successful system
implementation and complete failure especially at the lower tactical levels of
command. Extensive user participation in order to evaluate functionality as early in
the development process as possible is a prerequisite for successful system
development.

Modularity

Modularity not only simplifies the software development process but also enables the
reuse of modules and changes inside the modules without affecting the system as a
whole. By modules both software and hardware is meant as the mandatory use of
COTS implies the use of commercial products and protocols when possible. The
result of this modular approach is thus the possibility to extend the system without
difficulty.

Technology scan and experiments

In order to be able to incorporate new components and protocols in both the
architecture and the development process a continuous scan of new and emerging
components, technologies and protocols in the civil ICT market place is necessary.
As these components are not always designed to operate in the military operational
environment experiments have to prove their applicability. These experiments can
consist of laboratory and field tests in order to examine the behaviour of components
in the operational environment and in co-operation with components that already are
part of the C3I-Architecture. Once approved these components become part of the
“basket of products” available for system development.

10-8

Development methodology

In order to control the software development process through all its phases in an
evolutionary context and an environment where variety of projects is carried out
simultaneously with ICT experts from different companies working part time in
different project teams, uniformity in the development process is mandatory. The
C2SC started experimenting with the application of the Rational Unified Process® in
2001. This methodology based on best practices of software engineering and the use
of UML as a visual modelling tool has proven its applicability for military C2 system
development in the C2SC.

Lessons learned

In it’s almost 7 years of army digitisation the RNLA has experienced the advantages
and disadvantages of developing and using battle management systems at various
levels of developing and using battle management systems at various levels of
command from division to platoon level. Despite the small scale of system
deployment both developers and users gained a lot of knowledge applying the
paradigm “Build a little, test a little, field a little, learn a lot”. The use of ISIS within
the AMF(L) has added to this knowledge and proven the advantages of the use of a
graphically oriented system for information exchange in a multinational environment.
Momentarily the main lessons learned from the RNLA digitisation process are:

m Evolutionary system development is one of the key factors for the successful
development of systems within the Royal Netherlands Army (RNLA).

m An overarching, layered, service-oriented and component-based C3I-Architecture
is a prerequisite for flexibility, maintainability and evolutionary development of
C2 systems within the RNLA and for system interoperability both within the
RNLA and with international partners.

m Component-based system architecture enables extensibility and easy adaptation of
systems to changing user requirements.

m In house development speeds up the development process considerably, increases
flexibility throughout the development process, reduces development costs and
enables anticipation of changing user requirements and emerging technologies.

m Incremental system development with extensive user involvement dramatically
reduces project risks at an early stage.

m Extensive user involvement in the design, development and implementation phase
of projects establishes a broad user commitment and increases development
speed.

m Acting as a system integrator requires specialist knowledge within the RNLA, but
considerably reduces time to market and development costs. . It prevents long-
term dependency from the industry in the development phases since intellectual
property is owned by the MOD.

m The current RNLA procurement policy does not support the swift procurement of
ICT components forced by Moore’s law, predicting the doubling of ICT-power
every 18 months.

m The use of battle management systems at different levels of command
considerably increases the situational awareness of units and commanders and
reduces the collaborative decision making process at all levels of command.

10-9

A graphically oriented battle management system helps international staffs and
units to overcome the language barriers.

Commitment of leadership is essential for successful implementation of C2-
systems in the operational environment

This page has been deliberately left blank

Page intentionnellement blanche

' Click here to view PowerPoint presentation; Press Esc to exit '

I L L L L L L L N N T R L

Principles of Future Architecture
for Naval Combat Management Systems

Dr. Jacek Skowronek / Mr. J. H. (Hans) van 't Hag
Business Unit Combat Systems
Thales Naval Nederland
Zuidelijke Havenweg 40
NL-7554 RR Hengelo
The Netherlands

e-mail: jacek.skowronek @nl.thalesgroup.com / hans.vanthag @nl.thalesgroup.com

Abstract-- The challenges in the development of complex, distributed systems such as Naval Combat
Management Systems are formidable, encompassing separate problems in the operational (customer) domain,
as well as problems emerging from the specific character of the market and the required development
organizations. Those challenges require system architecture principles, which can address multiple viewpoints
of the system. A set of four principles is proposed which contributes to the goal of defining such an
architecture. Those principles are segmentation, information backbones, model-driven engineering and
component-based development. It is argued that through the combination of those principles the architectural
challenges can be tackled.

Index Terms -- command & control systems, architecture, system qualities, publish/subscribe

[. INTRODUCTION

The development of large, complex, software-intensive systems (an example of which are Naval Combat
Management Systems) continues to pose formidable challenges. These challenges manifest themselves in the
evolution of the context in which those systems operate: the modern naval military operations. Recent conflicts
demonstrate the need for systems, which are able to cope with increased amount of observed information while
supporting decreased manning. Coalition-based nature of modern conflicts results also in the need for modern Naval
CMS systems not only to connect and exchange data, but also to interoperate with other ship- or land-based systems
to fulfill a common goal.

The complexity in Naval Combat Management Systems exists not only in the operational domain, but also in the
development area, manifesting itself in increasing difficulties of achieving multiple quality dimensions (such as
performance and interoperability) in the same system. Separate challenges arise from the complexities of modern
industrial environment, in which systems have to be developed in multi-company and multi-national contexts, as well
as from the increasing discrepancy between the pace of technological change (months) and the lifetime of deployed
systems (decades).

Challenges such as those have been addressed by proposing system architecture as a high-level, stable abstraction
of the system, capturing the most important design decisions in the system. However, traditional notions of system
architecture, capturing only the structural aspects of the design, are proving to be insufficient to address the multi-
dimensional design problems described above, and common in the practice of Naval Combat Management System

J. Skowronek,. is Innovation Manager System Architecture at Thales Naval Nederland. He has obtained his Ph.D. in the area of Database Systems at the
University of Twente, Enschede, The Netherlands. He can be reached at e-mail: jacek.skowronek @nl.thalesgroup.com.

J. H. van ' t Hag is Innovation Manager Infrastructure at Thales Naval Nederland. He can be reached at hans.vanthag @nl.thalesgroup.com. The website of
Thales Naval Nederland can be found at www.thales-nederland.com

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

development. Similarly, existing design patterns (such as the client/server framework) applied in distributed systems
are often unable to cope with complexities of such systems.

In this paper, we outline the challenges posed before system architectures in Naval Combat Management Systems,
dividing them into those present in the application domain, those arising in the technical areas, and those created by
the specific industrial environment for this market. We then propose a system architecture, encompassing more
aspects of the system than only the structural, which addresses those challenges. Our vision is based on principles of
segmentation, model-driven engineering and component-based design, and the concept of an ubiquitous, reliable,
real-time information backbone. Although the elements of the vision have been proposed in the past, we trust that it
is their combination that can solve the primary problems of complex Naval CMS system development.

This vision is the basis of development of future generations of our products: Naval Combat Management Systems.
As the challenges mentioned above are not unique to the NCS domain, we hope that described solutions contribute to
the practice of complex system development also in other application domains.

II. OPERATIONAL, TECHNICAL AND INDUSTRIAL CHALLENGES FOR NAVAL COMBAT
SYSTEMS

A. Operational context for Naval CMS systems: future naval operations

The application domain that we consider is the domain of Naval Combat Management Systems. Those are
Command & Control systems, located on a naval ship, that assist the command team in its responsibility for
execution of its mission. The Naval CMS systems' main capabilities encompass awareness of situation around the
ship (or a group of ships: a naval force) using sensors, recognition of threats against the ship or force and response to
those threats using actuators such as missile and gun systems. Other capabilities of a Naval CMS include those
frequently called Command Support capabilities, and which in general are concerned with preparation of the ship's
mission. They also include the preparation and supervision of execution of diverse plans, as well as reception and
interpretation of communication from external parties (other vessels or shore-based parties).

The capabilities of Naval CMS systems evolve due to changes in the political and military situation in the world.
Those changes in the present situation are shaped by recent conflicts such as the Falklands war, Persian Gulf war, as
well as peacekeeping and peace-enforcing operations in the Balkans. The experiences of those conflicts have been
captured in recent editions of strategic doctrine documents of major navies.

One of the main characteristics of modern naval conflicts is their asymmetric character. This character manifests
itself in the fact that most of the conflicts in recent decades are between single nations ("rogue states") or non-state
entities such as partisan forces, and multi-national coalitions such as the NATO. The asymmetric character manifests
itself in the fact that there is frequently no state of war between the conflicting parties, which greatly increases the
complexity of operation of military forces through unclear rules of engagement. Also, the coalition-based character
of those operations greatly increases the difficulties in making different systems operate meaningfully together
(interoperability). The most extended form of interoperability between combat systems is known under the name of
Network-Centric Warfare [20], which promotes the use of information grids, the nodes being the military entities in
the theatre of operations. The NCW concept calls for an autonomous, rather than hierarchic, decision-making
process, based on ubiquitous access to information by distributed entities. The concept calls for establishment of
multiple information grids (e.g. sensor grid, engagement grid, planning grid), each one making specific information
available to multiple entities at a required quality of service.

Engagement Grid:
Weapons Direction g

Awareness Grid:
Common
Tactical Picture

Planning Grid:
Common
Operational
Picture

Figure 1. Grids in network-centric warfare.

However, the challenges related to technical realization of information grids in the combat environment with the
proper performance are formidable [7], due to geographical dispersion, the use of low-rate and non-reliable
communication media (radio, satellite communication), and the possibility of enemy counteraction. Also, the concept
of interoperability needed here goes beyond simple standardization of interfaces known in the COTS world,
including the need to interoperate between different sensor/actuator providers (equipment interoperability) as well as
between whole vessels belonging to different navies (tactical interoperability).

One of the consequences of the end of the Cold War was also the change in the main environment in which the
conflicts take place. While Cold War naval conflicts could be expected to take place in open seas (blue water),
modern asymmetric conflicts frequently take place in coastal (littoral, brown water) areas. This results in new
challenges for sensor design and traditional capabilities such as Anti-Air Warfare, but also in increased importance of
capabilities such as amphibious operations and land-attack warfare.

In parallel, the military forces of modern nations are frequently confronted with the need to operate with reduced
manning levels. This is due to the lack of permanent threat of war, reduced tolerance for human casualties, and
resulting lack of political commitment to the maintenance of large manned units. For example, recent building
programs for frigate-sized vessels in NATO countries demonstrate a planned manning reduction by half between the
old and the new vessel. At the same time, the new vessels are capable of receiving much-increased amounts of
information due to installation of more modern sensors. The resulting increase of information per human is
frequently called information overload. Reduced manning results also in the replacement of humans with automated
systems (demonstrated by recent increase of interest in Unmanned Air Vehicles, and their surface and subsurface
counterparts).

B. Technical trends in system architectures for C&C systems

Besides trends in the operational environment of Naval Combat Management Systems, their architecture is
impacted by general technical trends and developments in the Information Technology (IT) industry. Naval Combat
Management Systems are one of the examples of the broader class of Command & Control systems; other examples
of that class are energy management systems, traffic management systems, and certain forms of stock trading
systems. Therefore, observation of trends in those areas can lead to important conclusions for NCS systems.

One of the most important characteristics of the class of systems which we are interested in is their distributed
character [22]. This character manifests itself not only in the physical distribution of the system's components (data
and processing), but also the fact that global coordination and control (for example load balancing and resource
allocation problems) between the components becomes more complex. In general, two forms of control can be

applied in distributed systems: hierarchical and autonomous. In the hierarchical model, control is located in one
system component (controller), other components being controlled by the controller. In case of Naval Combat
Management Systems, which can be subject to attack, disabling the control component can effectively cripple the
whole system ("single point of failure"). In the autonomous model [19], each of the components exerts a certain
amount of control over itself and possibly other components. Such components are frequently called autonomous
agents, as they can be seen as acting autonomously. In this case, disabling any single component will not disable the
whole system. However, to achieve a meaningful behaviour in the whole system, certain rules have to be applicable
to the interactions between agents, so that global strategies can be executed. First, all agents should have timely and
current access to global state information, allowing them to become informed of the situation. Second, there should
be rules deciding in what way global strategies can be executed. Different approaches to the second problem have
been proposed. In the market-based approach (computational economies), agents engage in market-like interactions
to establish control [17], [18], [19]. Other forms include static approaches such as graph-theoretic approach [21], and
0-1 programming techniques [16].

An important trend in system architectures is the increasing importance of non-functional requirements (e.g.
performance, reliability, and interoperability) in the process of software and system design [14]. These requirements
are currently seen as shaping the system architecture, and should therefore be given sufficient attention in the design
process. While previously the challenges in system development have primarily concerned fulfillment of large
volumes of functional requirements, they primarily lie now in the need to balance multiple, conflicting non-
functional requirements (quality attributes). An example of such a conflict is the conflict between the need for
interoperability and performance. Interoperability is frequently provided by defining layers with standard interfaces
within the system. Such multi-layered systems, however, often require multiple translations of messages through the
system layers, which adversely impact their performance. This is just one of the examples of complex relationships
between system quality attributes. An important avenue of research in this area is centered on the notion of
architectural patterns [15], which capture the knowledge concerning well-known solutions to common architectural
problems. Often, such patterns explicitly name the architectural qualities being impacted, which allows the architect
to make informed choices for their usage.

Another aspect of interest in complex system development is the emergence of model-driven engineering
principles and code generation. While, in previous decades, software was frequently laboriously crafted in source
code, there is an increasing trend to model the software systems in a common notation such as UML [9], preferably
using easy-to-use tools, and then generate the source code from the models. Model-driven engineering provides the
benefits of responding more quickly to changes in the computing platform (upgrade in the source code language
requires just a re-generation, provided generators are available), as well as the ability of (automatic) verification and
validation on the model level. Such validation and verification capabilities require, however, the model notation to be
based on some formal basis. Extensions to UML have been proposed [10] which go into that direction. A related
area of research in recent years has been that of component-based development (CBD) [5][6]. The basic premise of
this approach is that systems should be constructed from components and connectors, connectors being an extension
of the notion of interface. The components execute within the context of a container, which provides a number of
services, such as persistence, to the component. There are emerging standards and products in this area, although no
standard is currently seen as dominating.

C. Industrial context for Naval CMS systems

Besides operational and technical aspects, system architectures of large and complex systems have to be suited for
the industrial context in which they are being developed. In case of naval CMS systems, this context is determined by
the stable or decreasing budgets on one hand, and the increasing diversity of military missions on the other. In this
sense, the navies are being asked to "do more with less", with as consequence, the increasing importance of naval
platforms performing multiple missions.

As mentioned before, modern missions are often executed in coalition: this leads to coalition-wide approach to
system acquisition. Such an approach often requires formation of multinational consortia in which work-share is
distributed to multiple national and industrial partners. Also, such complex platforms often require multiple expertise
areas from system providers. Those reasons lead to formation of industrial consortia for the development of the naval
combat systems. In such a configuration, system components are developed by default by different partners, and a

single party gets the responsibility for system integration. In more complex situations, there may be multiple levels of
system integration. In this case, the CMS can be integrated by one party and then delivered to another party (e.g. the
shipyard) as a subsystem in a larger system (e.g. the vessel). Such program configurations pose significant challenges
to the system architecture, which, besides being technically sound, must promote multi-site development. It is also in
the industrial context that standardization of interface languages (such as for example OMG's IDL) plays an
important role.

Another aspect of the industrial environment, which is specific to military combat systems, is the large
discrepancy between the lifecycle of underlying technologies and the lifecycle of system acquisition, usage and
disposal. While the first rate can often be measured in the scope of months up to a year (typical release cycle for
modern software products), the typical lifecycle of a naval combat system from the formulation to its disposal can be
up to 30 years! This poses a formidable challenge for designing system architecture for such as system.

In the current practice, it is common that naval combat system architecture remains stable throughout the whole
lifecycle. However, naval customers also require the application of most current COTS equipment within the system.
This calls for system architecture allowing for intermediate updates of system components during the development,
but also after the system has been deployed. In case of Naval CMS this involves software and hardware updates of
the system located on the naval vessel itself. On the other hand, those updates and, in general, changes in COTS
components cannot adversely impact certain system-wide properties. In other words, the challenge lies in a system
architecture capable of maintaining system-wide properties while allowing evolution of its components.

III. ARCHITECTURAL REQUIREMENTS AND PRINCIPLES FOR NAVAL COMBAT SYSTEMS

The external context of system development in the area of Naval Combat Management Systems shapes the
requirements for system architecture. In summary, those requirements can be formulated as follows:

e The changing character of modern naval conflicts leads to the need for a network-centric approach to warfare,
in which information (including a timely picture of the situation) is made available to multiple distributed
entities using multiple grids of differing quality of service.

e The emergence of network-centric warfare leads to new interoperability challenges: on the level of different
sensors/actuators (equipment interoperability), on the level of joint and multinational operations (tactical
interoperability), and on the level of different COTS products (COTS interoperability).

e The discrepancy between rate of change of system components and the lifecycle of the system ("brittleness")
requires an architectural approach to modifiability and system evolution.

e The need for application of COTS components while maintaining system quality attributes calls for a
component-based approach with formal definition of component interfaces supported by model-based
engineering principles.

e Specific requirements within Naval Combat Management Systems in the area of reliability and currency of
information should be addressed on the architecture level by application of autonomous and distributed
control principles.

As a response to those requirements, we propose a vision of system architecture based on the application of four
basic principles:
Segmentation,
Information backbones,
Model-driven engineering, and
Components, connectors and containers,

Those principles are elaborated in the following sections.

A. Segmentation

Our vision for future Naval CMS architecture is based on the concept of architectural segmentation. The
segmentation addresses inherent differences in fulfilling non-functional requirements existing within a naval combat

vessel. That's why the rationale for introduction of segments begins with an analysis of main functions performed by
such a vessel.

In general, we perceive a naval combat ship (and in fact every military entity) as being capable of performing 3
main functions:

e Command & Control: observation of the surrounding situation, its interpretation, evaluation of possible

threats, and establishing the course of actions as response to those threats.

o Warfighting: execution of warfare actions resulting from the awareness function, by deploying sensors and

actuators to perform actions such as defence against incoming missiles.

¢ Planning: planning of the unit's mission, as well as evaluation of past missions, based on access to historic and

repository data.

Each of those functions is not executed by the CMS system only: in fact, they are executed by a collaboration of
human (crew) and non-human actors (such as the CMS system, sensors and actuators). According to the principles of
network-centric warfare (NCW) [8] [20], each of those functions is considered to be a separate node in one of the
diverse information grids, encompassing more than one vessel.

According to NCW concepts, the warfighting node, although co-located on the same vessel as a planning node will
participate in two different grids, namely the engagement grid and planning grid. Similarly, a shooter node can
receive its engagement order from a remote awareness node (called also C&C node in NCW literature) on a separate
vessel or on shore.

In a typical course of action on board of a frigate-sized vessel, a planning node on-board will determine a long-
term mission plan (so called OPGEN and related plans), and will distribute it via formatted messages to the planning
nodes within the force. It also distributes a subset of the plan to C&C nodes being under its control, notably to the
C&C node aboard the same ship. The C&C node is located in a CIC room with multiple operators and consoles: it
interprets and executes its part of the force mission plan. It employs sensors to observe and evaluate the surrounding
situation. In the self-defence mode, if a threat becomes apparent, the C&C node sends an engagement order to the
warfighting node on board to defend against a threat. The warfighting node determines the appropriate manner of
defence (e.g. choosing the available anti-air missile) and executes the engagement, reporting its results to the C&C
node. Note that C&C and warfighting nodes aboard different ships communicate with each other within their
respective grids.

To determine which architecture should be applied to provide a solution for each of the main functions and for the
system as a whole, it is important to analyse functional and non-functional aspects, which are relevant for each
function. This analysis presented in short in the following paragraphs, leads to the introduction of the notion of
architectural segments.

An architectural segment is a set of components, interoperating to fulfil combined capabilities, structured
according to a common architecture and providing common architectural properties (such as performance,
modifiability etc.).

In our architecture, we distinguish three architectural segments, corresponding to the three main functions
identified above:

e Combat Execution segment, corresponding to the warfighting function

e Command & Control, corresponding to the C&C function

e Command Support, corresponding to the planning function

For each of the segments, we propose to introduce separate (although not completely distinct) sets of architectural
principles (patterns). The motivations for this approach are the differences in functional and non-functional properties
between the segments. Those differences are based on analysis of interval of interest and scope of interest within
each segment. Interest (also called universe of discourse) is defined as the population of external entities (such as
ships, warplanes, submarines etc.) which are relevant to a system function for its proper operation. The concepts of
interval and scope of interest are deemed to be essential in Naval Combat Management Systems, and are explained in
the following subsections.

1) Interval of interest

The interval of interest is defined by the length and variability of the period of time during which external entities

become interesting to a system function (capability). Taking as example a surveillance capability: in terms of

operational use there is a limited period of time (before the current moment in time) during which tracks should be
displayed on a situation display. This period, although varied, is determined by the short-term character of
surveillance user roles. Conversely, there exist capabilities, which require much longer periods of interest in relation
to the current moment in time. Also, the period of interest can be “placed” in different places in relation to the current
moment in time: e.g. in the past for evaluation, and in the future for planning.

In general, there exist different kinds of intervals of interest: those bound to current time, those which can be
moved freely on the time “line”, and those for which the placing on the time line is irrelevant. Most of capabilities in
traditional Naval Combat Management Systems are of the first kind, while capabilities of the second kind are
becoming increasingly important in Command Support activities. The third kind of intervals is common in non-Real-
Time (NRT) systems.

2) Scope of interest

The scope of system interest concerns the amount (scope) of interesting entities external to the system. The system
interest can vary depending on the capability concerned. For example, the interest of one running engagement
contains only 1 classified and identified target. The interest of a picture compilation capability consists of possibly
hundreds of observations (tracks). The interest of planning capabilities consists of real-world entities such as force
elements (other naval vessels), as well as static features such as landmasses.

As can be observed, both the scope and the kind of system interest vary between capabilities. In terms of scope,
either a capability is focused on a single external entity or on a group of entities (with the totality of all entities in the
theatre of operations as the extreme). In terms of kind, difference can be noticed in terms of concepts representing
observations about entities (tracks) and the entities themselves (ships, aeroplanes etc.).

Besides differences in interval and scope of interest, the three system functions exhibit differences in non-
functional requirements. Therefore, for each segment, we also present the architectural consequences derived from
the analysis of the representative functions within the segment. In this analysis, experts have ranked levels of
qualities to assess their relative importance. This results in a list of system qualities [14], sorted according to the level
of their importance within the segment, as well as in an assessment of the type of information primarily present
within the segment. The analysis resulted in the identification of a subset of system qualities from [14], which are
deemed as relevant for Naval CMS systems, as well as introduction of new system qualities, which represent three
different forms of interoperability.

Both the list of qualities and the information assessment are an important input for choosing the proper architecture
styles and patterns for each segment

3) Combat Execution segment

The Combat Execution architectural segment groups capabilities essential to the survival of the unit and its
function as a war-fighting entity (in contrast to its role as an observation or planning entity). Therefore, it groups
capabilities related to:

e execution of engagements, including employment of sensors (e.g. tracking radars) and actuators

e monitoring and initiation of reactions on crucial environment events

e changes of global system states related to warfare such as cease-fire

The Combat Execution architectural segment is characterised with local current interest, containing units being
defended (which can be distinct from the own unit) as well as single targets being engaged (each of the engagements
is “interested” in one target). The engagements are not “interested” in other engagements being executed at the same
time, and have only marginal interest in the other operational entities besides the ones on which the participating
sensors/actuators are located, and the ones being defended. Note that a separate capability within the Combat
Execution segment is responsible for scheduling of engagements and allocation of sensors and actuators to (possibly
multiple and concurrent) engagements. Also, the interval of interest is bound to the current moment in time.

Following system qualities are deemed as important for the Combat Execution segment:

1. End-to-end and throughput performance, due to the segment's function as “warfighting machine” of the
vessel. The high performance expresses itself for example in required maximal values for end-to-end times of
functional flows (scenario's) within the system concerning engagements, as well as the need to maintain a
required throughput of data transport between system components.

2. Safety, due to the participation of subsystems which could inflict damage to humans and equipment. Specific
measures, for example, are required to guarantee timely interruption of engagement at all times by a human actor
(a crew member).

3. Dependability, due to the participation of critical subsystems which could be lost if certain amount of
performance is not provided during the engagement. For example, failure of the tracking component within the
system during the time when its own missile is in flight can lead to loss of a missile.

4. Equipment interoperability defined as the ability for the segment to operate with different sensors and
actuators. Note that this form of interoperability is somewhat different from the mainstream IT world, in which it
can be provided in the form of adherence to standards. Currently, there are no standards for sensor and actuator
interfaces, which poses a considerable challenge for system integrators.

Within the Combat Execution segment the primary kind of information being exchanged are tracking
observations. Observations are representations of external objects (e.g. incoming missiles) provided by sensor
subsystems. In case of Combat Execution, a specific form of these observations, provided by so-called tracking
sensors, are used to guide actuators to engage the target. For example, certain kinds of anti-air missiles have to be
guided with target position data during the engagement (in-flight). Other forms of important information within the
segment are different kinds of timed orders to sensor and actuator subsystems. These orders are issued both before
the start of the engagement and during the engagement (e.g. abort engagement order). The important characteristic is
the fact that those orders frequently have to be issued in a specific sequence, and on specific instances of time, to be
appropriately realised. In that sense, the Combat Execution segment comes closest to the notion of a hard real-time
system.

4) Command & Control segment

The Command & Control architectural segment groups capabilities essential to the function of the unit in the well-
known observe-evaluate-decide cycle. While the Combat Execution architectural segment’s primary concern is
successful execution of a set of engagements, the focus of Command & Control lies in:

e observation of the operational picture,

e interpretation and analysis of observations, leading to

e identification of entities in the operational environment,

e derivation of statements about those entities (e.g. "track 1281 is hostile"), and

e eventual decisions as to actions taken in reactions to those statements and in concord with the mission of the

unit.

The Command & Control architectural segment is also characterised by the global current operations universe,
encompassing current observations from many sensors. A characteristic of the Command & Control architectural
segment is that the nature of entities (observations) in the system universe varies within the architectural segment.
This evolution manifests itself in creation of system-wide observations (system tracks/tactical tracks) from sensor-
generated observations (sensor/primitive tracks). During that evolution, observations are successively annotated with
information on the nature of the observed object: its class (aircraft, vessel, submarine, etc.) and identity (hostile,
friendly, etc.). As in the Combat Execution architectural segment, the interval of interest is bound to current moment
in time.

Following architectural qualities are deemed important within the segment:

1. Throughput performance, due to its function as the “awareness machine” (observation centre) of the vessel. In
that role, multiple sensors (local and remote) provide sensor observations to the system at the same time. The
requirement for high performance expresses itself for example in high-load operational scenarios, in which the
levels of external sensor observations are defined, for which the system is to provide guaranteed levels of
performance. Higher levels of sensor observations can result in a degradation of system performance.

2. Tactical interoperability, indicating the level to which a given function can be involved in military tactical
procedures and standards on own-ship level as well as force level. The importance of that quality is motivated by
the fact that most current operations are executed in a force context, in which multiple vessels contribute to the
awareness of the situation. Specific military standards (Link 11/16/22) exist which allow vessels within the force
to exchange information on objects each of them observes. These standards define also the manner in which the
observations by the own ship are reconciled with observations contributed by other vessels (link correlation).

3. Dependability defined as in Combat Execution segment.

In terms of information exchanged within the segment, it includes periodic information such system-wide
observations (system tracks). It also includes sporadic access to repository information required during recognition
and identification processes, in which the available repositories are consulted to determine the class and identity of
the external object. The periodic flows are expected to have much larger required throughput than in the Combat
Execution segment due to the participation of multiple on-board sensors and tracks provided from other vessels
through Link subsystems.

5) Command Support segment

The Command Support architectural segment groups capabilities related to the ability of the unit to plan its own or
other units’ actions, and analysis and interpretation of the general long-term operational situation (picture). The
difference of the observation focus between the Command Support and Command & Control segments lies in fact
that in C & C, the picture is primarily created in relation to own unit, while in Command Support focus can lie on the
own unit, but also on formations of bigger scope (forces, task groups etc.). Also, Command Support can also be
concerned with non-current (past and future) operations, as opposed to current operations focus of the Command &
Control architectural segment.

e The focus of the segment’s activities lies in:

e Preparation, storage and distribution of operation plans.

Visualisation of current, past and future general operational situation.
Support for investigation related to mission planning

e Command Support-related communication with operationally-relevant parties outside own ship such as shore-
based headquarters

The segment universe for the Command Support architectural segment can be characterised as both the local and
global non-current operations universe. This relates to the capabilities requiring moving the time frame of interest
into the past (such as evaluation) or into the future (such as planning). Another characteristic of the Command
Support architectural segment is caused by the need to abstract from the details provided by the observations and to
reason about the “real-world objects” observed by own and remote sensors. This means that Command Support
capabilities rely on the Command & Control nodes (on-board and remote) to provide it with tracks on the level
reducing ambiguity caused by differing means of observation. The Command Support transforms the system track
representation into a representation which lies even more closely to the reality: it provides the track representation
with history and/or future, it annotates it with hypotheses relating to its mission and role, it places the track
representation in the context of the plans.

Another important characteristic of the Command Support segment capabilities is the fact that they often require
access to heterogeneous repositories containing data relevant to the vessel's planning activities.

We can derive the following architectural characteristics from the above analysis:

e Security, due to the access from the vessel to information outside (in shore-based headquarters as well as on
the Internet). Also security is important due to high level of usage of COTS equipment (software and
hardware).

e Tactical interoperability, as defined in the Command & Control segment. The difference applies to the
different standards used for exchanging information, as well as different procedures used. While in C&C the
main standards are Link standards, in Command Support the primary means of information exchange between
vessels are formatted text messages (e.g. ADATP-3 standard).

e COTS usage and interoperability, defined as the level of usage of COTS components in the system and the
ability of the components of the system to interoperate with Commercial Off The Shelf components. These
include productivity tools just as those used in the general IT (Microsoft Office). The ability is in general
achieved by adhering to de-facto standards of the general IT industry.

Within the Command Support segment, primarily sporadic operations are applied. This corresponds to activities

involved with retrieval of relevant data from operational repositories, and establishing relationships between
information retrieved from different repositories. The repository integration problem of the Command Support

11-10

segment is closely related to the area of business intelligence' in Management Information Systems, to the extent that

architectural solutions applied there (such as multi-tier architectures) form viable options for Command Support

architecture. The primary kinds of information within Command Support are presented as multimedia documents,
frequently linked in a hypertext structure. In that sense, of all segments the Command Support lies closest to the

Internet in terms of its architectural requirements: it requires transparent access to (possibly remote) repositories in a

document-structured manner.

6) System-wide architecture characteristics
Similarly to each of the segments, system qualities valid for all segments have been derived. These include:

1. Reusability defined as the ability to reuse the system's components in future applications. It is frequently the
case that the investments required to develop an important system component strongly motivate its reuse in a
number of future applications.

2. Portability defined as the ability of the system to run on different computing environments. This requirement is
motivated by the discrepancy in technical evolution and system lifecycle described in section II.C.

3. Modifiability defined as the ability to make changes quickly and cost-effectively. In the Naval CMS market, this
is motivated by high variation between different customers in the specific sensors and actuators, as well as
differences in operational functionalities required. This requires an approach of tailoring a reference product for
each of the customers.

4. Operational flexibility, referring to the ability to adapt the vessel (including the CMS and sensors/actuators) to a
given new mission within a short period (within one month). This is motivated by the need of modern naval
vessels to be adaptable to crisis situations.

5. Integrity: referring to the unifying theme or vision that unifies the design of the system at all levels. This quality
is especially difficult to achieve in a segmented architecture. This aspect is addressed in next section.

In previous sections, we have provided the motivation for introduction of architectural segments, based on the
analysis of main operational functions, their non-functional characteristics, and the main kinds of information
employed. The benefits and challenges of segmented architecture are summarized in the following section.

7) Benefits and challenges of introduction of segmented architecture
The introduction of the segments within the architecture allows for introduction of differing architectures within
segments. This is beneficial due to following reasons:
e Architectural segments exhibit differing architectural characteristics, due to the varying priorities, system
qualities, nature of interest and varying kinds of information flows. These characteristics per segment are
summarised in the following table.

SEGMENT | PRIMARY QUALITIES NATURE OF PRIMARY INFORMATION
INTEREST
Combat End-to-end and throughput Local current Periodic tracking observations
Execution performance operations Timed orders
Safety
Dependability
Equipment interoperability
Command Throughput performance Global current Periodic observations
& Control Tactical interoperability operations Repository information
Dependability
Command Security Non-current operations | Multimedia hypertext documents
Support Tactical interoperability Formatted messages
COTS usage and
interoperability

Business intelligence term describes systems, which derive relevant business information from data gathered during the operation of the business. Two

technologies frequently applied in this area are data mining and data warehousing.

11-11

e Achieving the combinations of system qualities requires application of distinct architectural principles in
segments, as many of the qualities exhibit conflicting architectural consequences (as in case of COTS
interoperability in performance).

e Proper definition of architectural segments allows for application of existing architectures within architectural
segments without modification. This is beneficial because relatively little new elements have to be introduced
in each architectural segment, and existing designs, components and complete products can be used to
implement specific capabilities within the architectural segments.

However, introduction of segmentation in architecture brings about certain difficulties:

The segmentation can impact the system's conceptual integrity. This can adversely impact the process of
construction of the system because of differing principles applied in each of the segments. However, we argue that
the loss of integrity is inevitable consequence of the introduction of the notion of network-centric warfare, in which a
vessel can no longer be equated with one system. In fact, in NCW vision a vessel becomes a "deployment" platform
for differing nodes, dynamically participating in diverse grids. In such architecture, integrity within a grid may
become more important than integrity within the vessel (platform). In a related way of thinking, integrity is related to
control, meaning that achieving run-time integrity often requires a controlling component. Note from section II.B that
such hierarchic means of control are susceptible to negative effects, which autonomous or distributed control attempt
to address. This means an increasing consensus that global integrity in network-centric context is not preferable and
achievable. This is replaced by autonomous, distributed control with ubiquitous access to information in a grid,
allowing the nodes to reason independently about the situation. This, of course, requires a reliable, high-performance
distribution infrastructure. Such an infrastructure is, in our opinion, an essential component of our architecture, and is
addressed in the following section.

B. Information backbone

The characteristics of future network-centric warfare presented in section II.A, together with derived architectural
characteristics of different segments in a Naval CMS systems (section III.A), drive the requirements of the services
required from the underlying platform. In terms of middleware requirements, they manifest themselves as needs for:

e Autonomy of applications through loose coupling

e Real-time access to global "information space”, allowing autonomous applications to establish their context

and to cooperate

e Reliability of applications allowing them to recover or be restarted when they fail

e Spontaneous character, allowing nodes to join and leave "the grid" dynamically

These requirements exhibit significant differences to requirements posed before middleware platforms in the
general IT market, where the qualities of interoperability often take precedence. The interoperability requirement has
led to formulation of several middleware platforms based on principle of interface languages with simple, event-
based or request/reply interaction semantics. One of such platforms is the Internet/intranet infrastructure, based on set
of protocols defined by the W3 Consortium. The basic protocol for the Internet is the HTTP protocol [12], which
defined the set of requests and responses transmitted between the WWW client (the Web browser) and the WWW
server. The accompanying HTML standard defines the language in which hypertext pages are written. The design of
those protocols, and the whole Internet architecture, is driven by the required quality of interoperability between
globally distributed, heterogeneous information providers. The interoperability is provided through standardized
platform-independent languages for transport and structuring of data. Due to the fact that as broad as possible
interoperability was required, the syntax and semantics of those languages is simple to implement. However, the
same architecture exhibits certain characteristics, which make it less suitable for some elements of a Combat
Management System, notably for the Combat Execution segment. For example, it introduces a single point of failure
in the form of WWW server, which adversely impacts the reliability of the system. Similarly, the HTTP protocol
does not enforce or prescribe any performance or quality-of-service aspects, which makes it impossible to achieve the
required performance and safety requirements. On the other hand, the Internet architecture forms a good fit with the
Command Support segment, where COTS interoperability with simple interaction semantics is perfectly sufficient.
This example illustrates the fact that while middleware in the Command Support segment can be based on standard
solutions from the COTS world, such solutions do not necessarily have to apply in other segments.

11-12

Within the Combat Execution and Command & Control segments, we introduce a principle of information
backbones, which in our view address the primary functional and non-functional requirements valid for those
segments. These principles are supported by SPLICE architecture [4], which is an architecture characterized by the
design principles to minimize dependencies between components and to share the stable system properties by
focussing on autonomous component behavior and a (stable) shared information model. The architecture is
accompanied with a supporting middleware and infrastructure that drastically reduces application complexity while
offering true system adaptability yet guaranteeing real-time and fault-tolerant system properties by promoting
autonomous software components that use a normalized interaction environment to share properly modeled and
distributed system information. The main components of the architecture are (see also Figure 2):

e Autonomous applications, each of which can act as producer and/or consumer of data

e Publish/subscribe data network, distributing produced data over the network

e Agents and local databases, maintaining the local copies of subscribed data

Application-1 Application-2 Application-3

Producer Cc‘er

Local Database

] |

PUBLISH / SUBSCRIBE DATA NETWORK

Moo omammne

Ae)

Figure 2. SPLICE-2 infrastructure

The basic principles of the infrastructure relate to the Blackboard design pattern [15], in which multiple
independent components are capable of reading and writing in a common data "repository". SPLICE bears also
strong resemblance to coordination languages and models like Linda, Gamma and Swarm, where active entities are
coordinated by means of a shared database.

The way in which the described infrastructure addresses requirements mentioned above is as follows.

The applications in the SPLICE infrastructure are autonomous, as there is no single controlling component in the
architecture. Each of the applications can build its own context by subscribing to the information it requires, and can
produce data independently of all others. The publish/subscribe data network, together with agents and local
databases takes care of (real-time) provision of the produced data to all applications, which are subscribed to it.

The infrastructure supports real-time access to information by distributing information to local databases of the
components needing it. The distribution can achieve very high levels of end-to-end (< 0.5 msec) and throughput
(thousands of updates per second) performance. This fits well within the context of Naval CMS systems, where
sensors produce large volumes of data periodically. In this way, in every local database, a view of the external
situation can be created, allowing multiple components to perform their functions independently.

The reliability of applications is supported by the fact that applications have to store their context in the database
as well. This context information is distributed to local databases on multiple other nodes. This means that when a
hardware node fails, applications from that node can be restarted on another node with preservation of their context.
The infrastructure takes care of detecting the failure of the node and restarting of applications on another node.

11-13

Additionally, the infrastructure allows for multiple instances of the same application to be active at the same time. If
one application fails in this case, the other instance becomes active (hot standby).

The infrastructure provides a form of spontaneous joining and leaving of applications, by providing a reliable
high-performance distributed storage mechanism, as well as by employing a discovery and heartbeat protocol for
establishing the applications present.

The described infrastructure has been applied in hundreds of instances of Naval CMS systems worldwide and has
proven to provide unmatched qualities in comparison with its competitors. Additionally, the principles of
autonomous infrastructures begin to find their way into the IT market, as proven by Jini [2], JavaSpaces [3] and
Openwings [23] initiatives. The principles of our architecture are currently being used in industry standardization
efforts such as Object Management Group and Openwings [23]. Our infrastructure addresses the "brittleness" of
current request/reply architectures when applied to complex problems of large, distributed Command & Control
systems. It fits perfectly with the basic principles of network-centric warfare: the inherent autonomy and dynamics of
modern operations, the lack of centralized single point of failure, the ability to recover from local failures. It is, in our
opinion, an infrastructure that is capable of addressing network-centric challenges.

Both the high-level segmentation of the system, as well as infrastructural aspects form important elements of our
vision. However, sufficient attention has also to be paid to the aspects of system development methodology, as they
ultimately determine the success of an architecture in industrial context. The following two principles of model-
driven engineering, and components, connectors and containers, address those challenges.

C. Model-driven engineering

As noted in section II.C, one of the main characteristics of the current industrial environment for Naval CMS
systems is the increasing discrepancy between the lifecycle of technologies (months/years) and lifecycles of systems
(decades). This leads to increasing "brittleness" of current sets of industry standards, which are seen as varying too
fast to provide a stable basis for system development. One of the reasons that the variation is so high is because
industry standards are too dependent on the underlying platform technologies, and are forced to vary together with
them’. A significant body of research, and recently a significant industry initiative (OMG MDA) [1] attempts to
address this problem by promoting the principles of model-driven engineering. According to this principle, system
development should be based on the notion of different kinds of models with (semi-automatic) translations between
them:

e Platform-Independent Models (PIM), in which the details of the underlying execution platform and
middleware are hidden. This allows them to be easier to validate because they are uncluttered by platform
semantics.

e Platform-Specific Models (PSM), which are produced by (human, semi-automatic or automatic) translation
from PIMs and are specific to a certain execution platform (e.g. CORBA, .NET). Execution platform vendors
are expected to produce such automatic translations.

The executable code is then produced from the PSMs. Both PIM and PSMs should be produced in some kind of
notation such as UML [9]. The models make use of abstract pervasive services that are available in all platforms,
such as directory, persistence and security services.

During system development, platform-independent models of the application are successively refined until they
reach a certain level of maturity. Then, a choice can be made as to the execution platform for the system, and the PIM
will be translated into a PSM, which may then, again, be iteratively refined. At some point the source or executable
code will be produced.

The model-driven engineering principles contribute to the solution of the "brittleness problem" by allowing
applications to be modeled in a platform-independent manner. In this way, certain functionalities within the system
can be specified in a stable manner. In the practice of CMS systems, there are multiple candidates for such
functionalities within the domain, such as track management, sensor data fusion, etc. This will allow creating a stable
set of platform-independent models, from which platform-specific models can be created through the years as the

% Or, when the standards cannot vary fast enough, they are abandoned.

11-14

platforms evolve. In this way, the system can be kept up to date with platform developments also after it is has been
deployed. The development of such platform independent models has yet another advantage. It allows them to
become standardized across the Naval CMS industry, similarly as they will be standardized within the health care
and financial communities. This will greatly enhance the possibilities of interoperability and cooperation,
corresponding well to the increased consortium-based development of Naval CMS systems.

D. Component-based development

As indicated in section II.C, it is the specific character of Naval Combat Systems which frequently requires
complex systems to be developed in a consortium-based organization, in which multiple partners contribute
subsystems to system integrators. It is our belief that for such complex project organizations to function properly, it is
essential that they use the principles of component-based development (CBD). Those principles encompass the
following notions:

e Components as a deliverable software artifacts with contractually defined, formal interfaces

e Connectors as a means of formally specifying interaction semantics between components

e Containers as a means of formally specifying the services provided by the underlying execution platform

These notions have been proposed in [5] and [6], and are schematically shown in the following figure:

Connector

Container

Figure 3. Components, connectors and containers

Component-based development stresses formal specification of components, connectors and containers. Such
specification are required not only to contain static description of component interfaces, but also include elements of
dynamic behaviour, expressed for example by means of UML sequence or collaboration diagrams. According to the
principles of CBD, system design involves the following activities (divided into those on system and subsystem
level):

On system level, a system model is created, which includes:

e System-level behavioral constructs such as system use cases, annotated with functional and non-functional

requirements

e System component model, containing the components within the system, the connectors between them, and the

containers providing services to them

e System-level interactions and their "realizations" in terms of collaborating components. These can be for

example expressed using use case and collaboration diagrams from UML.

Based on the system model, component specifications can be developed, and component implementation can
proceed. After the component is implemented, it can be tested against its specification, and integrated with other

11-15

components on the system level. Both system and component-level activities can take place in iterations, in which a
component is delivered incrementally, each of the increments containing parts of the component specification.

In the context of Naval CMS systems, which are frequently developed in consortia, the principles of component-
based design can provide significant advantages. In comparison with traditional processes, they extend the notion of
interface to the notion of connector, which allows for formal capturing of interface dynamics between the
components. Through introduction of UML, we have now a powerful and extensible notation, which allows
specifying much more aspects of components than previous notations allowed. And, in the principle of iterative and
incremental component delivery, we have now a means of addressing risks in an early stage of system design, by
addressing the risky part of component specifications in early iterations.

1V. FUTURE RESEARCH

The four principles of system architecture for Naval CMS allow us to address a significant amount of requirements
induced by the operational, technical and industrial context as described in section II. However, significant
challenges are still present. Those include the following aspects:

e The notion of global system state becomes blurred in the context of a segmented system. Such a notion plays a
role in the Naval CMS domain, as certain safety aspects require global and timely "state change" (e.g. when
going to a higher readiness state based on emerging threat). Such a state change is expected to impact many
components in the system, including termination of components, and starting new components. Those actions
are expected to take place over segment boundaries. Further research is required to determine how such actions
can be reconciled with the notion of differing architectures within segments, and, in consequence, which
architectural properties will have to be enforced for all segments.

e On a similar note, further research is required to determine how system-wide architectural properties can be
enforced in the context of component-based design. It is well known that properties such as system
performance cannot be solved within component-boundaries. Specific combinations of well-performing
components can still, through the dynamics of their interaction, introduce performance problems on the system
level. A mechanism is needed to represent non-functional requirements on the system level, and more
importantly, to translate them into component-level requirements. An interesting avenue of research in this
area concerns the question of how a performance scenario (workload) which has traditionally been specified on
the system level, translates into a component performance scenario given a specific component model.

e The principle of autonomous cooperating components stands in certain contrast to the notion of object-oriented
modeling. While in OO, the objects are expected to hide their state behind a method interface, the information
backbone principle (as described in section III1.B) requires independent components to have access to all state
within the system, and to store its internal state in the global backbone. A methodic and architectural approach
is required to reconcile those two approaches.

e The notion of platform-independent and platform-specific modeling requires research when considering
specification of non-functional requirements, such as performance. The current ways of modeling performance
requirements frequently mix platform-specific and platform-independent aspects, while no general principles
are known how the two can be distinguished.

e Also in the context of model-driven development, which places transformational techniques at its center, it is
not yet known how non-functional properties and interface dynamics can be meaningfully translated from the
platform-independent to platform-specific level and then to source or executable code.

V. CONCLUSION

In this article, we have presented our vision on the architectural challenges and principles for future Naval Combat
Management Systems. We have outlined those challenges in the operational area, where the emergence of littoral and
coalition-based warfare leads to new interoperability requirements, encompassed within the concept of network-
centric warfare. Within the technical context, the specific non-functional requirements for CMS systems such as
reliability and performance lead to emergence of agent-based and autonomous control principles, which challenge

11-16

existing architectures for C&C systems. In the industrial context, the need for consortium-based development within
the naval market poses specific requirements on the role of system integrators and component (subsystem)
developers, and requires architectural approach. It is also in this area that the discrepancy in lifecycles between the
system and its COTS components becomes a large problem.

We propose to address these challenges by embracing four architectural principles: segmentation, information
backbones, model-driven engineering and components, connectors and containers. We believe that those principles
address the fundamental challenges of network-centric warfare, by introduction of information backbones allowing
timely distribution of information to agents. We also recognize different kinds of nodes within a CMS system by
introducing the concept of architectural segments: Combat Execution, Command & Control and Command
Support. We address the new interoperability challenges such as lifecycle discrepancy between technologies and
whole systems, by the principles of model-driven engineering, in which we are capable of separating fast changing
platform-dependent interfaces from the application models, which can be developed and kept stable in a platform-
independent manner. The concept of component-based development, including the notion of connectors, allows for
efficient execution of projects in consortium context typical in the Naval CMS market, and to precisely define the
roles of system integrators and component developers in that context.

In that form, we hope to address comprehensively the problems in our application domain, believing in the broader
role of architecture as not only concerning the structural and mechanistic aspects of systems, but rather addressing
also the industrial and non-functional aspects (viewpoints) of the system.

REFERENCES

[1] Architecture Board ORMSC, "Model-Driven Architecture (MDA)", July 2001, Internet: www.omg.org.

[2] K. Arnold, "The Jini™ Specification, Second Edition", Addison-Wesley, 2000.

[3] E. Freeman et al., "JavaSpaces™ Principles, Patterns and Practice", Addison-Wesley, 2000.

[4] M. Boasson, E. de Jong, Software Architecture for Large Embedded Systems, Proceedings of the IEEE
Workshop on Middleware for Distributed Real-time Systems and Services, December 2, 1997, San Francisco,
CA,

[5S] D. F. D'Souza, A.C. Wills, "Objects, Components and Frameworks with UML: The Catalysis Approach",
Addison-Wesley, 1999.

[6] C. Szyperski, "Component Software: Beyond Object-Oriented Programming", Reading Mass., Addison-Wesley
Longman, 1998.

[7]1 E. Whitman, "Naval Force Protection within Network-Centric Operations".

[8] D. S. Alberts, J. J. Garstka, F. P. Stein, "Network-Centric Warfare: developing and leveraging information
superiority", CCRP Publication Series, 1999.

[9] "Unified Modeling Language Specification", Object Management Group, Internet: www.omg.org.

[10]J. Warmer, A.G. Kleppe, "The Object Constraint Language: Precise Modeling with UML", Addison-Wesley,
1999.

[11] V. Matena, B. Stearns, "Applying Enterprise JavaBeans™: Component-Based Development for the J2EE™
Platform", Addison-Wesley, 2000.

[12] HyperText Transfer Protocol, Internet: www.w3c.org

[13]]. Siegel, "CORBA 3 Fundamentals and Programming, Second Edition", John Wiley & Sons, 2000.

[14] L. Bass, P. Clements, R. Kazman, "Software Architecture in Practice", Addison-Wesley,1998.

[15]F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, "A System of Patterns", John Wiley & Sons,
2001.

[16] T.C.K. Chou, J.A. Abraham, "Load Balancing in Distributed Systems", IEEE Trans. on Software Engineering,
8(4), 1982.

[17]D. Ferguson, Y. Yemini, C. Nikolaou, "Microeconomic Algorithms for Load Balancing in Distributed Computer
Systems", Proc. Distributed Computer Systems, 1988.

[18]D. F. Ferguson, C. Nikolaou, J. Sairamesh, Y. Yemini, "Economic Models for Allocating Resources in
Computer Systems", in Market-based Control of Distributed Systems, ed. Scott Clearwater, World Scientific
Press, 1995.

11-17

[19] B. A. Huberman (ed.), "The Ecology of Computation", North-Holland, 1988.

[20]J. G. Roos, "An All-Encompassing Grid", Armed Forces Journal International, January 2001.

[21]H. S. Stone, "Multiprocessor scheduling with the aid of network flow algorithms", IEEE Trans. on Software
Engineering, 3(1), 1977.

[22] H.S.M. Zedan (ed.), "Distributed Computing Systems: Theory and Practice", Butterworths, 1990.

[23] Openwings website: www.openwings.org.

This page has been deliberately left blank

Page intentionnellement blanche

KN2-1

. Click here to view PowerPoint presentation; Press Esc to exit '

Evolutivité des systémes : le point de vue du client

IPA Patrick Lodéon
Service technique des stratégies et des technologies communes
Département ingénierie des systemes complexes
8, Bd Victor,
75015 Paris, France

e-mail : patrick.lodeon@dga.defense.gouv.fr

I. Introduction

Au sens de la norme MIL STD 499B (ou de I’EIA-632), un systéme est « un ensemble composite
d’hommes, de matériels, de logiciels et de processus organisés, pour que leur interfonctionnement permette,
dans un environnement donné, de remplir les missions correspondant a un besoin ou un objectif établi ».

Cette définition souligne I’hétérogénéité des constituants d’un systeéme qui ont chacun leurs évolutions
et leurs contraintes propres, mais qui forment un tout cohérent et organisé. Un systéme est indissociable de
ses processus : son cycle de vie, sa capacité a évoluer, capacité a étre maintenu, etc. Enfin, la définition du
systtme correspond a un environnement et a un besoin définis préalablement. Les évolutions de
I’environnement ou des besoins entraine donc une évolution du systeme.

L’une des caractéristiques des systemes militaires définis précédemment est une grande durée de vie.
Les phases de spécification, de développement et de réalisation de ces derniers sont relativement longues
comparées aux programmes civils. La phase d’exploitation en service opérationnel peut aussi durer jusqu’a
plusieurs dizaines d’années.

L’une de nos préoccupations en tant que responsables de 1’acquisition de systemes est d’assurer durant
le développement et I’exploitation de tels systemes une certaine robustesse aux évolutions techniques,
technologiques, normatives et fonctionnelles mais aussi aux obsolescences inévitables des matériels support.

La stratégie jusqu’alors adoptée reposait essentiellement sur une définition figée au plus tard dans le
cycle de développement, I’emploi de technologies propriétaires pour pérenniser les chaines de production, la
constitution de stocks pour résoudre les problemes d’obsolescence, et un maintien des compétences
humaines nécessaires a faire fonctionner I’ensemble. Afin de conserver une cohérence d’ensemble, cette
stratégie a du s’étendre, outre le systeme lui-méme que nous désignerons par « systeme principal », aux
systeémes annexes chargés de faire fonctionner ou de faire évoluer le systeme précédent. Ces systemes sont
respectivement le « systéme pour faire » qui regroupe 1’ensemble des moyens nécessaires a la conception, le
développement et le maintien en condition opérationnelle du systeme principal, et le « systeme de soutien »
qui, par son action permet au systeme principal de remplir sa fonction ; ce systeme comprend donc par
exemple, les servitudes du systeme principal, mais aussi la formation des utilisateurs, etc. Ces deux derniers
systemes, souvent occultés par le systeme principal n’en constituent pas moins deux systémes a part entiere
qu’il faut faire vivre au méme titre que le systéme principal.

Si cette stratégie a été relativement efficace, du moins concernant le maintien en condition
opérationnel des systémes, elle a aussi montré ses limites et n’est plus raisonnablement applicable car
I’environnement au sens large des systemes a évolué.

Tout d’abord, la plupart des briques €lémentaires (composants électroniques, COTS, langages de
programmation, etc.) sont maintenant du ressort du domaine civil et la proportion de composants strictement
militaires n’est plus que de quelques pour cent. Ce changement se traduit par une dépendance quasi-générale
du secteur militaire envers le secteur civil et par un accroissement du taux de renouvellement, ce qui créé des
obsolescences. Cette accélération se traduit aussi sur les systemes par un besoin de faire évoluer les systémes
militaires plus rapidement qu’auparavant.

Les systemes militaires héritent donc des avantages et des contraintes liés au marché civil, et tout en
gardant une longue durée de vie, sont amenés a évoluer plus rapidement. Cette « dérive » vers le monde civil
ne doit pas masquer les spécificités propres aux systemes militaires qui, elles, demeurent. Les nouveaux
systemes doivent €tre autant, sinon plus, disponibles, maintenables, fiables que les précédents. Ils doivent

Communication présentée lors du symposium RTO IST sur les « Technologies pour le développement de logiciels
évolutifs », organisé a Bonn, en Allemagne, 23-24 septembre 2002, et éditée dans RTO-MP-102.

KN2-2

étre capables d’évoluer rapidement, fournisseur (maitre d’ceuvre) et client (maitres d’ouvrages) doivent
s’assurer de la maitrise, des spécifications et des développements.

Parallelement, et c’est une évidence, ’optimisation budgétaire impose une sélection des plus
drastiques des méthodes, des solutions, et des stratégies a mettre en ceuvre dans ce contexte. Il est donc exclu
qu’a une mise a jour corresponde le cofit d’un développement ex nihilo.

Le développement et I’exploitation d’un nouveau systeme semble donc étre une équation sans
solution. Heureusement, les évolutions précédentes se sont aussi accompagnées d’évolution des méthodes de
développement et d’ingénierie des systemes. Ces dernieres ne sont pas directement transposables a nos
systemes, il faut les adapter judicieusement.

Les systemes actuels et ceux en développement sont donc condamnés a étre €volutifs pour faire face
aux nouveaux besoins, sous contraintes de codt, sans en perdre la maitrise. Cette évolutivité se distribue entre
logiciel et matériel qui doivent toujours rester en adéquation. C’est pourquoi nous parlerons de systéme
plutdt que de matériel ou de logiciel. Le systéme pour faire et le systeme de soutien sont aussi évolutifs.

Le terme de systeme regroupera donc aussi bien le systeme principal que le systeme pour faire ou le
systeme de soutien. Par ailleurs, le systéme principal ne limite pas bien slir aux seuls systemes opérationnels
mais a I’ensemble des systémes utilisés ou développés pour les besoins de la défense. Par exemple, les
systemes utilisés en simulation, notamment en simulation pour l’acquisition sont parmi ceux dont la
contrainte d’évolutivité est tres forte.

Apres avoir évalué les besoins qui se traduisent en évolutions, nous verrons que I’évolutivité des
systemes et par conséquent des logiciels qui en font partie est une démarche globale qui doit se faire en
cohérence avec une approche de type ingénierie des systemes. L’évolutivité est aussi d’autant plus difficile a
gérer que les acteurs impliqués sont nombreux. La contractualisation convenable d’un projet constitue aussi
une condition nécessaire a la mise en ceuvre pratique de I’évolutivité.

Notre point de vue est celui du client qui acquiert un systeme militaire et doit faire en sorte qu’il
fonctionne. Par conséquent, il se concentre surtout sur la spécification des évolutions et la spécification d’un
systeme évolutif, les processus de mise en ceuvre des évolutions et leur cofit, et les relations client —
fournisseur. Il faut étre ouvert aux nouvelles méthodes mais étre pragmatique et avoir les pieds sur terre !

II. L’évolutivité créée par le besoin

L’évolution des matériels utilisés pour des applications militaires ne peut guere résister au rythme
imposé par le domaine civil, et, a I’inverse du logiciel qui ne vieillit pas, tout systeéme est amené a voir se
succéder les avis d’obsolescence de ses constituants. Il est donc indispensable de prévoir dans la vie d’un
systeme de remplacer progressivement ses constituants matériels.

Ce fait induit deux remarques. Premi¢rement, le remplacement d’un constituant du systeme implique
le plus souvent une modification des interfaces physiques ou fonctionnelles avec le reste du systeme. Le
concepteur doit alors évaluer I’impact des modifications d’interface sur le reste du systéme, a colit maitrisé,
et réaliser celles-ci pour maintenir la cohérence et la fonctionnalité globales. Ceci peut se révéler rapidement
trés complexe si le composant impacté a un grand nombre d’interfaces, par exemple, le changement d’un bus
de communication.

Deuxiemement, le remplacement d’un élément matériel signifie en général une adaptation en
profondeur, voire une refonte du logiciel associé. Il est donc nécessaire, au mieux d’avoir un logiciel portable
ou adaptable dans des conditions satisfaisantes au nouveau matériel, au pire de disposer de spécifications
fonctionnelles précises permettant le développement du nouveau logiciel.

Un cas particulier consiste, comme corollaire du gain d’intégration a attendre des nouvelles
technologies a regrouper plusieurs constituants en un seul. Cette méthode a 1’avantage de diminuer le
nombre d’interfaces, au prix d’un découpage fonctionnel différent, mais ne représente pas nécessairement un
gain pour les systemes a tres forte évolutivité.

Nous voyons donc qu’une simple obsolescence matérielle, qui peut €tre considérée comme un
événement certain dans la vie d’un systeme impose de disposer non seulement de méthodes performantes
d’analyse d’impact sur I’ensemble du systeme pour assurer la maitrise de I’évolution a cofit raisonnable,
mais aussi d’une connaissance totale des interfaces internes au systeme et des allocations fonctionnelles
faites sur ces constituants.

Tout ceci s’applique, tant au systeme principal, qu’au systeme pour faire ou au systeme de soutien :
par conséquent, il peut étre opportun de faire évoluer un composant du systéme principal (sans que ce dernier

KN2-3

soit obsolescent) dans le but de faire évoluer le systeéme pour faire (par exemple, obsolescence d’un langage
de programmation).

Un autre facteur d’évolutions consiste en un changement du besoin. Cette €volution est alors
généralement de nature fonctionnelle, il s’agit alors d’étendre les capacités du systéme pour s’adapter a un
nouvel environnement ou a des nouvelles menaces, ou bien favoriser les interactions avec d’autres systemes
ou des systémes de rang supérieur.

Dans le premier cas, les fonctions existantes doivent &tre modifiées ou s’enrichir d’une fonction
supplémentaire. Comme précédemment, il est donc, non seulement nécessaire de disposer d’un modele
fonctionnel du systéme suffisamment précis et adapté, mais aussi de la répartition de ces fonctions en termes
de logiciel et de matériel. A ce titre, une évolution fonctionnellement simple, mais d’implémentation
complexe a été d’assurer la compatibilité a ’an 2000 des systémes. C’était certes une €volution purement
logicielle, bien que certains matériels ont dus €tre changés (présence de logiciel enfoui). De plus, les
spécifications des logiciels n’étaient pas adaptées a ce type de modification, ce qui a rendu I’identification
des corrections d’autant plus complexe.

Dans le second cas, il s’agit de créer une nouvelle interface avec un autre systeme. Ce type d’évolution
est amené a prendre de plus en plus d’importance. Les systémes pass€s voire actuels étaient relativement
indépendants les uns des autres, ils échangeaient peu d’information, leur utilisation pouvait en revanche se
faire de facon conjointe. Par exemple, plusieurs types d’unités (chars, unités d’infanterie, etc.) concourent a
la réalisation d’une opération de combat terrestre. Les réflexions récentes sur la conception des systémes et
les progres en matiere de technologie et de partage de 1’information (et les gains a en attendre), imposent des
interactions beaucoup plus fortes entre les systemes. Ces réflexions partent d’une analyse des menaces et
d’un besoin en termes de capacité opérationnelle d’un systeme de forces. Par une approche top-down, cette
capacité opérationnelle est ensuite répartie sur les systemes (systemes actuel et systemes futurs). On décline
donc un systéme de systemes en systemes individuels. Cela suppose que les systémes constituant le systéme
de systéme aient la capacité d’échanger et de partager de I’information.

Cet échange d’information ne se limite pas a une capacité d’interopérabilité au sens strict. Les
nouvelles architectures de systeéme de combat (par exemple, celles étudiées pour le combat aéroterrestre
futur) étendent le partage de I’information (produite par exemple par des capteurs abandonnés ou non, des
drones, des unités sur le champ de bataille) a la construction d’une situation tactique globale partagée par
tous les acteurs du champ de bataille et I’utilisation de cette situation par les différents systemes d’armes.
L’exigence d’interopérabilité cede alors la place a la construction d’un véritable systtme de combat
infocentré (network centric warfare) ou le systtme de forces, composé d’acteurs hétérogenes mais
complémentaires constitue un tout cohérent.

L’architecture d’un systeme de combat infocentré ne pourra &tre spécifiée d’un bloc. Des rebouclages
seront nécessaires : il correspondront d’une part au développement de nouveaux systemes et a leur
intégration dans le systéme infocentré et d’autre part, a la modernisation des systémes existants pour les
rendre compatibles d’une telle architecture. La construction d’un tel systeme (qui est en fait un systéme de
systémes) est alors incrémentale et itérative : les premiers systemes de forces infocentrés intégreront un
nombre limité de services qui sera étendu a mesure de I’arrivée d’autres systemes et de 1’avancement des
réflexions sur le concept méme d’architecture infocentrée. Voici donc une architecture qui sera a la fois en
développement et en utilisation opérationnelle.

Une grande partie des systemes existants ou a venir est amené a participer aux systemes de combat
infocentrés. Ces systemes devront aussi éventuellement s’interfacer avec des systémes étrangers en cas
d’opérations multinationales.

Les systémes existants évolueront donc vers ce partage de 1’information, les nouveaux systémes seront
nativement pourvus de ces fonctions mais devront €tre évolutifs car le systéme de systemes est amené lui
aussi a évoluer.

Dans le domaine de la simulation, la simulation pour 1’acquisition est évolutive par essence. Il s’agit
en effet, de concevoir une simulation de systeme de systemes comme ceux décrits précédemment dont le but
est d’évaluer techniquement un systeme de systeme dans son environnement opérationnel. Cela permet d’en
déduire les performances nécessaires et donc les spécifications de chacun des sous-systémes constitutifs.
Cette démarche permet, étant donnés les systemes existants et la capacité opérationnelle du systeme de
systeme, de spécifier un futur systéme inclus dans le systtme de systeme. Ce futur systeme n’étant
évidemment pas connu a priori, la simulation devra évoluer a mesure des études technologiques et des études
de concept qui aboutiront au développement du futur systeme. Cette simulation est amenée a €tre utilisée tout
au long de la vie du systeme de systémes (cela comprend donc les phases de spécification, de faisabilité, de

KN2-4

développement, voire méme de maintien en condition opérationnelle d’un systéme constitutif), qui de par ses
constituants est sans cesse en évolution.

Les évolutions ne sont pas toujours générées en phase d’exploitation mais peuvent aussi survenir des
la phase de développement. Non seulement, des obsolescences peuvent apparaitre des le développement,
mais les évolutions peuvent €tre liées au besoin qui n’est alors pas toujours completement défini en début de
développement. L’approche de développement d’un tel systeme n’est alors pas strictement top-down mais un
rebouclage existe entre client et fournisseur afin de gérer le raffinage du besoin et I’adéquation des solutions
qui sont mises en ceuvre pour le satisfaire.

III. Evolutivité et maitrise du projet

L’évolutivité d’un systeme ne doit pas en faire perdre la maitrise. La maitrise d’un systéme commence
par la maitrise des spécifications du systeme et leur adéquation aux besoins, donc par la maitrise des
exigences du systeme.

Un soin particulier doit étre apporté a la définition du référentiel d’exigences. Une exigence doit étre
en effet nécessaire, simple (facile a lire et 2 comprendre), indépendante de 1’implémentation, faisable,
complete (c’est-a-dire qu’elle ne nécessite pas I’ajout informations complémentaires), claire et univoque (une
seule interprétation possible), vérifiable (il existe un moyen de mesure qui sera appliqué lors de la validation
du systeme). Par ailleurs, le référentiel d’exigences doit étre complet (il décrit I’ensemble du systeme),
cohérent (I’ensemble des exigences est non contradictoire), et minimal (pas de duplications d’exigences).

Il est nécessaire, non seulement d’assurer la tracabilité entre le besoin et les spécifications qui
permettent la réalisation du systeme, mais de plus, d’étre en mesure de séparer, parmi les besoins et les
exigences exprimées dans ces spécifications, celles qui correspondent aux différentes €volutions.

Ceci permet d’avoir en plus la visibilité sur I’évolution du produit lui-méme et non de disposer d’un
état du systeme a un instant donné. Il est alors possible de réaliser des évolutions sur le systeéme en cours et
de programmer des évolutions qui seront prises en compte ultérieurement. Il faut en effet étre pragmatique,
les grands systemes militaires n’évolueront pas aussi vite que les systémes civils (typiquement plusieurs
versions par an, méme en phase stabilisée), une période de quelques années semble €tre un compromis
raisonnable. L’évolutivité (du moins celle connue a un moment) devra donc étre planifiée. Le référentiel
d’exigences associé a un systeme devra aussi étre mis a jour et accompagner le systeme pendant toute ses
phases de vie. Ce référentiel peut étre créé€ lors du développement du systéme, mais servira beaucoup en
phase d’exploitation pour les évolutions.

Le besoin décliné en spécifications peut aboutir a des spécifications qui regroupent plusieurs milliers
d’exigences. De plus, on admet généralement qu’un logiciel d’ingénierie systeme est nécessaire a partir
d’une centaine d’exigences, c’est donc le cas pour la quasi-totalité des projets militaires. Lorsqu’un besoin
nouveau doit étre pris en compte ou qu’une obsolescence force une évolution, ce sont toutes les exigences
précédentes qui sont potentiellement impactées. Il s’agit alors de mettre a jour le besoin, d’en déduire les
exigences a rajouter, mais surtout de vérifier que I’ajout de ces nouvelles exigences ne remet pas en cause la
cohérence du référentiel d’exigences original. Dans le cas contraire, I’analyse d’impact détermine comment
modifier les exigences originales pour que le nouvel ensemble soit cohérent tout en respectant globalement le
besoin initial. Certaines exigences sont donc a décomposer ou a reformuler.

Le nouveau référentiel d’exigences n’est donc pas en général une simple somme de 1’ancien référentiel
et des nouvelles contraintes mais un nouveau référentiel. C’est I’une des raisons essentielles pour lesquelles
garder I’historique et la justification des passages aux référentiels successifs est fondamental.

Par ailleurs, c’est le client qui définit le besoin ou les spécifications de haut niveau et le concepteur qui
décline ces spécifications jusqu’au produit final. Il est donc nécessaire de disposer d’un référentiel
d’exigences partagé entre le client et son fournisseur. Ce référentiel est jusqu’a maintenant transmis
essentiellement sous forme documentaire (spécifications de besoins ou spécifications techniques) ce qui est
infiniment moins productif qu’un modele partagé du référentiel entre le client et son fournisseur. A défaut
d’avoir un outil commun, il faut au moins disposer d’un modele d’exigences commun. Le référentiel partagé
ne doit pas étre percu de part et d’autre comme une perte de marge de manceuvre : le client dispose de la
partie supérieure du modele, c’est a dire les exigences de haut niveau issues du besoin tandis que le
fournisseur aura a décliner ces exigences jusqu’au niveau du produit. Il s’en suit une meilleur maitrise du
risque.

KN2-5

Ce partage de modele permet de limiter le temps nécessaire a la traduction d’une évolution du besoin
en spécifications et par conséquent raccourcit le cycle de traitement des évolutions. Les études actuelles
s’attachent a rechercher un référentiel du c6té client qui permette de disposer des fonctionnalités précédentes
(tragabilité et maitrise des €volutions a travers les analyses d’impact sur les exigences). Dans une seconde
phase, il s’agira d’adapter et de mettre en commun ces référentiels avec nos fournisseurs. Cette mise en
commun du référentiel d’exigences se décline aussi entre le fournisseur et ses sous-traitants.

L’autre volet nécessaire pour la maitrise des évolutions regroupe les processus attachés au systeme.
Certaines normes existent déja, et celles qui sont les plus a méme de proposer des éléments de solution sont
les normes d’ingénierie des systemes ou du logiciel, en particulier les normes 1SO12207, IEEE1220 et
EIA632. 1l faut donc en extraire les processus adaptés aux systémes militaires a fortes contraintes de
pérennité, tout en gardant autant que possible le référentiel normatif existant qui est appliqué a nos systeémes.

Ces trois normes sont organisées par processus. La norme 1SO12207, largement répandue, couvre
I’ensemble des processus liés au logiciel : acquisition, fourniture, processus techniques, processus
organisationnels, etc. La norme IEEE1220 qui date de 1998 propose les processus techniques nécessaires a
I’élaboration d’un systeme, depuis le recensement du besoin initial jusqu’a élaboration de la solution qui le
satisfait. L’EIA632, issue des travaux conjoints de I’EIA (Electronic Industry Alliance) et de 'INCOSE
(International Council on Systems Engineering) prolonge 'IEEE1220 a la gestion de projet et aux activités
de vérification et de validation du systeme. Aucune norme ne couvre en effet la totalité des besoins des
systemes pérennes (et donc, dans une certaine mesure ceux des systemes évolutifs).

En partant de la norme ISO12207, on rajoute alors les processus provenant des autres normes qui
permettent de satisfaire le besoin. On obtient alors un ensemble de 4 classes de processus : les processus de
base qui se décomposent en acquisition, fourniture, développement, exploitation, maintenance, les processus
support qui comprennent les processus de documentation, de gestion de configuration, de vérification, de
validation, de revue, d’audit, les processus organisationnels qui comprennent les processus de management,
d’infrastructure, d’amélioration, de formation. La dernieére classe de processus constitue le processus
d’ajustement (prévu par la norme ISO12207), il compléte les processus précédents qui sont des processus
issus de la norme ISO12207 et prend en compte notamment, les exigences fortes de pérennité, et les
contraintes normatives existantes utilisées pour les programmes d’armement. Ce processus doit par ailleurs
étre personnalisé pour chaque projet.

L’ensemble de ces processus ne constitue pas une méthode pour la réalisation d’un systeme pérenne
ou évolutif mais aboutit a des recommandations et des actions qui permettent gérer au mieux pérennité et
évolutivité du systeme. Un processus doit étre en effet instancié et personnalis€é pour chaque type
d’application.

Les processus de vérification et de validation sont particulierement critiques pour les systémes
pérennes ou destinés a évoluer. Le coflit de ces processus est un élément déterminant.

Nous voyons donc qu’au dela de la maitrise des exigences lies au systeme, le référentiel des
exigences du systeme étant partagé entre le client et le fournisseur, il est nécessaire de définir un certain
nombre de processus adaptés aux systemes pérennes. Ces processus peuvent s’appuyer largement sur ceux
donnés dans la norme ISO12207 et sur un processus d’ajustement a rajouter.

Si la maitrise des processus associé€s au systeme contribue largement a la gestion de la pérennité de ce
dernier et permet de prendre en compte des nouveaux besoins, il ne peut rendre un systéme évolutif. En effet,
un systeme ne devient pas évolutif, il est (ou n’est pas) évolutif. Rajouter une exigence d’évolutivité alors
que le systeme est déja en développement ou pire en exploitation opérationnelle peut s’avérer catastrophique
en termes de colits. Les modeles classiques considerent généralement une augmentation quasi exponentielle
du cofit d’'une modification a mesure que celle-ci est introduite en fin de développement, en intégration, ou
en exploitation opérationnelle. L’évolutivité, en tant qu’exigence n’y échappe pas.

La propriété d’évolutivité se pose donc au tout début de la conception du systeme, en phase de
spécification. L’évolutivité ayant un cofit, il faut évaluer a priori si faire un systeme évolutif est une
opération rentable. Par conséquent, I’évolutivité doit étre spécifiée par le client et déclinée en solution par le
concepteur du systeme. En fait, la plupart du temps, le client spécifie seulement que son systeme doit étre
évolutif, ce qui reste tres flou. D’une part, une exigence ainsi formulée aboutira a une spécification
incomplete de 1’évolutivité ; la solution proposée n’est alors pas toujours en mesure de satisfaire le client.

D’autre part, en tant qu’exigence, 1’évolutivité doit étre vérifiable donc mesurable.

KN2-6

En tant que client, spécifier I’évolutivité d’un futur systeme est une tache difficile (il s’agit en fait de
prévoir le futur). Le client doit établir un plan de maitrise de I’évolutivité préalablement a 1’expression de
I’exigence. Ce plan contiendra les grandes classes d’évolutions envisagées pour le systeme : la cause de
I’évolution (obsolescence, évolution du besoin militaire, ajout de nouvelles fonctions, accroissement des
besoins en performances, etc.), la phase du cycle de vie du systeme ou 1’évolution est susceptible d’étre
nécessaire, la cible de I’évolution, etc. Ce plan doit contenir aussi des éléments quantitatifs, notamment une
estimation du nombre d’évolutions envisagées.

Concernant les obsolescences, le client et le fournisseur ont des intéréts communs : le client veut avoir
un systeme maintenable et capable d’évoluer tandis que le fournisseur souhaite garder une maitrise des
compétences nécessaires a la maitrise du systeme (ces compétences sont généralement mutualisées sur
plusieurs projets). Le plan de maitrise de I’évolutivité doit étre donc complété par le fournisseur en fonction
de ses propres besoins et discuté avec le client. Cela correspond & une planification des évolutions du
systeéme pour faire afin de conserver la maitrise du systeme principal. L’origine des évolutions (fournisseur
ou client) doit étre prise en compte. Un tel plan permet d’exprimer clairement le type d’évolutivité souhaité
par le client (et aussi par le fournisseur).

C’est en fait le nombre estimé d’évolutions du systtme qui permet de déterminer le degré de
modularité de ce dernier. Une conception modulaire du systéme est d’autant plus intéressante que le nombre
d’évolutions envisagées est grand. Dans le cas d’un systeéme faiblement évolutif dont un accroissement
significatif des performances n’est pas envisagé, 1’optimisation du rapport colit / capacité d’évolution
orientera le concepteur vers une architecture qui contiendra un nombre réduit de sous-ensembles et
probablement vers une définition relativement figée. A contrario, dans un systéme ou la contrainte
d’évolutivité est tres forte, c’est une architecture largement modulaire qui prévaudra. Les fonctions seront
ségréguées au maximum afin de limiter 'impact de I’évolution de 1’une des fonctions sur le reste du
systtme. Ce choix augmente localement le nombre de sous-ensembles et complexifie 1’architecture du
systeme et la gestion des interfaces entre sous-ensembles. Cela a aussi pour effet d’augmenter le cofit de
développement du systéme, avec en contrepartie une diminution du colt marginal lié a chaque évolution a
venir. Pour un nombre important d’évolutions, le cofit global de possession du systéme est donc diminué.

L’autre aspect consiste en la mesure de 1’exigence d’évolutivité qui doit se faire lors de la réception du
systtme et non lors du traitement de la premiere évolution. Cette mesure a priori est difficile et
essentiellement non quantitative. Elle repose donc plutot sur des principes. Le premier principe est que
I’évolutivité est d’autant plus grande que le systeme a été concu sur une base de normes et de standards
stables et pérennes. Cette base permet de disposer ou de concevoir des produits dont les interfaces sont
parfaitement connues. Cela permet de limiter I'impact de la propagation des modifications qui seront
effectuées lorsque les évolutions surviendront. En mati¢re de logiciel, on a toujours tendance a segmenter les
programmes en couches dont les interfaces sont fixées : par exemple, séparation entre drivers, systéme
d’exploitation et applications. Le client et le fournisseur doivent aussi s’entendre sur un certain nombre de
regles qui seront appliquées pendant le développement et lors des évolutions du produit. Ces regles
permettent de faciliter les €volutions ultérieures, elles dépendent du type de produit (systeme d’arme,
simulation, systetme d’information, etc.) et du niveau d’exigence qualité fixé (par exemple un logiciel
critique comme un logiciel embarqué sur un calculateur). On citera par exemple dans le cas du logiciel :
regles de nommage du code produit, limitation de la complexité des modules, limitation des chemins
d’exécution, interdiction de la récursivité, etc.

Dans le cadre de nos activités de simulation pour 1’acquisition, nous avons en charge de spécifier et de
faire réaliser un simulateur de combat aéroterrestre. Le but de ce simulateur est d’évaluer techniquement et
opérationnellement des architectures de systtmes de combat aéroterrestre futurs en vue d’en établir les
spécifications. Ces architectures seront évaluées quantitativement a 1’aide de métriques. Les bibliotheques du
simulateur comprendront des briques élémentaires (capteurs, réseaux de communication, armement, moyens
de défense, etc.) qui assemblées, représentent chacune des architectures a évaluer. L’ensemble des briques
technologiques nécessaires n’est pas encore complétement connu, car les solutions technologiques sous-
jacentes ne sont pas encore développés, ou simplement utilisables. Ces €léments devront étre intégrés dans
les simulations a mesure de leur disponibilité.

Si ’'une des méthodes consistera a créer de nouvelles instances de modeles déja existants, mais avec
un paramétrage adapté, certains modeles devront étre développés et rajoutés, apres la réalisation du
simulateur. Rajouter par exemple un modele de capteur ou d’unité se congoit relativement bien dans une

KN2-7

architecture de simulation modulaire. En revanche, rajouter et intégrer un nouveau modele d’architecture de
réseau infocentré a un impact sur I’ensemble des autres modeles.

Le simulateur utilise comme matériel des machines standard, et est donc vu essentiellement comme un
développement logiciel.

Le besoin d’évolutivité est donc tres fort. La spécification du besoin d’évolutivité s’est faite sur
plusieurs axes. Le premier a €té de faire reposer 1’architecture de simulation sur des standards connus et non
propriétaires, ce qui permettra de disposer de spécifications d’interfaces stables dans le temps. Ensuite, le
type d’évolutivité souhaité a été spécifié : obsolescence du matériel, bien slir, mais aussi intégration de
nouveaux modeles et de nouvelles fonctions. Cela permet au fournisseur de mieux cerner les besoins client.
Le nombre d’évolutions est important méme si chaque évolution peut étre relativement modeste. Une
documentation technique, exclusivement dédiée aux évolutions a été spécifiée. Cette documentation donne
les informations techniques et décrit les processus nécessaires a 1’ajout d’une fonctionnalité. L’une des
exigences est que cette documentation puisse étre utilisée par une équipe indépendante du fournisseur dans le
cadre d’une évolution. Nous avons aussi spécifi€¢ des clauses de propriété industrielle compatible avec cette
approche.

La question de la mesure s’est ensuite posée. Comment vérifier que la solution proposée satisfait bien
les exigences d’évolutivité ? Un test d’évolutivité du simulateur a été spécifié, ce test fait partie intégrante du
développement. Une €équipe, indépendante du fournisseur, ajoutera une fonctionnalité au logiciel de
simulation. Cette fonctionnalité sera définie en cours de développement. L’équipe chargée de faire évoluer le
logiciel utilisera la documentation et les processus spécifiquement congus pour faire évoluer le simulateur.
Un retour d’expérience sera mis alors a profit. Les écueils rencontrés seront analysés, la documentation
technique et les processus pour 1’évolutivité seront ajustés en conséquence.

A défaut d’avoir pu mettre en ceuvre une mesure a priori de 1’évolutivité, nous avons donc planifié une
évolution « a blanc » pour tester I’exigence. On notera que dans ce test, on ne mesure pas I’influence du
« systeme pour faire » dans la performance des solutions proposées.

IV. Maitrise des processus d’intégration — vérification — validation

Toute évolution se produisant pendant la phase d’exploitation du systéme a un impact majeur sur
I’ensemble du systeme et nécessite, outre 1’évolution proprement dite, la mise en ceuvre du processus d’IVV
au niveau du systéme. Ce processus consiste a intégrer les constituants du systeme (intégration), a vérifier
que le systeme ainsi intégré est conforme aux exigences systéme (vérification). La dernic¢re étape consiste a
s’assurer que le systeme satisfait le besoin pour lequel il a été fourni, c’est I’étape de validation.

Le cofit d’application de ce processus constitue une part importante du coiit global 1i€ & I’évolution. Le
retour d’expérience sur les programmes passés montre que si le processus d’IVV aboutit a une revalidation
complete du systeme (qui peut nécessiter par exemple un ou plusieurs essais en vols dans le cas de systemes
aéroportés ou de missile), le cofit devient inacceptable. Les demandes d’évolution sont alors gelées voire
abandonnées (par exemple, une demande d’évolution pour changer un équipement de vol). La stratégie de
vérification — validation est donc essentielle pour que les demandes d’évolution des utilisateurs aboutissent.

Cette stratégie se construit des la phase de spécification du systeme. En phase de spécification, le
référentiel d’exigences est construit, chaque exigence doit étre vérifiable. Par conséquent, la stratégie de
vérification du systéme doit étre établie a mesure que le référentiel d’exigences se construit (chaque exigence
doit étre associée a au moins une vérification). Le processus d’IVV commence donc des le début du projet
par la validation du référentiel d’exigences par rapport aux besoins du client, et la validation du systeme de
vérification qui y est associé. En fait, on peut avoir au début des rebouclages entre systeme de vérification et
référentiel d’exigences. Ce qu’il faut a tout prix éviter c’est le rebouclage en phase d’intégration ou de
vérification. Le processus d’IVV se déroule différemment suivant la phase de vie du systéme (conception,
développement, production, ou utilisation). Nous nous attacherons a la vérification et a la validation systéme
en phase d’utilisation.

Dans cette phase qui correspond a I’introduction d’une évolution, la vérification — validation aura
deux buts : vérifier que 1’évolution introduite correspond bien au besoin qui a €té exprimé et vérifier que le
systeéme global continue a répondre de facon satisfaisante aux exigences qui lui sont allouées (y compris
lorsque certaines de ces exigences ont été modifiées ou reformulées). Le premier point consiste en la
validation de la demande d’évolution par rapport au besoin exprimé.

KN2-8

Le deuxiéme point consiste en la vérification de la non-régression du comportement et des
performances du systeme. Cela se fait en trois étapes. La premicre étape vérifie que le nouveau référentiel
d’exigences (exigences initiales éventuellement modifiées et évolutions demandées traduites en exigences)
hérite bien de I’ensemble des propriétés du référentiel original et qu’il est cohérent (exigences non
contradictoires). La deuxieme étape consiste a dériver suivant le méme processus le systeme de vérification.
Cela consistera a concevoir un nouveau systeme de vérification hérité du précédent. Ce systeme permet de
vérifier I’ensemble des exigences (exigences inchangées, exigences modifiées, exigences nouvelles). La
troisieme étape consiste a vérifier le systtme a I’aide du nouveau systeme de vérification. L’une des
caractéristiques du systeéme de vérification sera alors d’étre aussi évolutif, par conséquent on limitera le
nombre d’exigences par élément de vérification. En effet, plus un élément du systéme de vérification adresse
d’exigences et plus celui-ci sera remis en cause facilement en cas d’évolution.

On notera que dans le processus de vérification suite a une évolution, il convient de comparer le
systeéme ayant évolué au nouveau référentiel d’exigences (muni de son systeéme de vérification) et non a
I’ancien. En effet, la maniere dont le systeme satisfait une méme exigence avant et apres 1’évolution peut étre
différente. Les exigences originales qui ont du étre modifiées ne sont en effet pas nécessairement vérifiables
de la méme facon.

Lors de I’établissement du systeéme de vérification, plusieurs méthodes permettent d’effectuer des
vérifications suivant le type d’exigence adressé. On citera :

e [linspection qui est une constatation immédiate de la propriété d’un produit, elle est généralement
utilisée pour vérifier une exigence directement observable, une inspection adresse en général peu
d’exigences et nécessite peu d’outillage ;

e [’analyse qui consiste a vérifier une exigence en mettant un processus déductif a partir de calculs,
de simulations, d’examen (exemple analyse de code logiciel) ; I’analyse est bien adaptée a montrer
I’adéquation entre une solution et les exigences sources ;

e la démonstration permet de vérifier des caractéristiques observables sans mesures particulieres sur
le systtme. La démonstration est aussi bien adaptée pour faire le lien entre une solution et ses
exigences. La démonstration peut nécessiter un ensemble d’outils spécifiques (par exemple : outils
de preuve formelle pour les logiciels) ;

e e test ou par des mesures et des outillages spécifiques, on mesure directement un ensemble de
grandeurs observables sur le produit ou un comportement particulier. Le test, contrairement a
I’inspection, peut nécessiter des outillages spécifiques et de colit important (bancs de tests), il
s’accompagne d’un plan de test qui permet de définir les objectifs et les conditions de mesure du
composant ou du systeéme.

Nous voyons encore une fois qu’un test directement repris du systeme original peut s’avérer fallacieux
et inefficace (mé&me s’il est concluant) s’il adresse une exigence qui, lors de I’évolution du systeme, a été
répartie ou reformulée.

Les méthodes précédemment citées se répartissent en méthodes amont qui sont employés sur le
référentiel d’exigences ou sur la solution trouvée pour le satisfaire et en méthodes aval qui sont utilisés sur
les constituants du systeme.

Le systtme de vérification a pour objet d’assurer les vérifications du systeme principal. I se
décompose en plusieurs fonctions : 1’allocation des vérifications qui consiste a établir les liens avec les
exigences éventuellement suivant différentes vues (fonctionnelle, physique, composant, etc.), identification
des moyens associés aux méthodes précédentes (constitution d’un outillage de test, plan de tests, de moyens
de simulation, etc.), la mise en ceuvre des vérifications et la stratégie de vérification. La stratégie de
vérification permet d’optimiser les activités de vérification, les moyens qui sont associés a ces activités, et
par conséquent le colit global du processus d’IVV.

La stratégie de vérification peut influer sur le choix d’une solution satisfaisant le besoin et par
conséquent sur le systeme lui-méme. Ainsi dans le cas des logiciels critiques (logiciels embarqués, logiciels
de vol), les exigences de sireté de fonctionnement et de fiabilité imposent des processus tres lourds de
vérification — validation, et dont les évolutions sont souvent difficiles a gérer en termes de cofit. Lorsque cela
est possible, la conception et le développement d’un tel logiciel doit se faire en utilisant un formalisme de
haut niveau dés la capture du besoin (ou la disponibilité de 1’extrait du référentiel d’exigences systeme qui
adresse le logiciel). Plusieurs formalismes de description utilisant la logique mathématique et/ou la théorie
des ensembles sont disponibles. Ils permettent de réaliser un modele fonctionnel du logiciel. Le modele doit
décrire I’ensemble des fonctions du logiciel et les différentes interfaces.

KN2-9

Le modele peut étre basé sur une description structurée (ex : SADT, SART), sur des méthodes semi-
formelles de spécification, ou sur des méthodes formelles (méthode B, etc.). L’ensemble de ces méthodes
implémentent 1’adéquation entre la solution proposée et le besoin ou le référentiel d’exigences, sans toutefois
aller (sauf pour B) jusqu’a la production de code.

Les méthodes formelles (comme B) consistent en revanche en un modele mathématique du logiciel qui
part d’une description du besoin formalisée mathématiquement. Cette description est décomposée (on parle
de raffinage des exigences) jusqu’a obtenir des éléments qui peuvent étre implémentés en fonctions
logicielles. L’adéquation entre les exigences raffinées et les exigences de niveau supérieur est démontrée
mathématiquement (preuve mathématique par la démonstration d’un théoreme). Cette démonstration est
réalisée de maniere semi-automatique. Ces méthodes peuvent aller jusqu’a la production automatique du
code. Il y a donc équivalence mathématique entre le besoin exprimé formellement et le logiciel produit. On
voit que dans cet exemple, la stratégie de vérification repose essentiellement sur la démonstration. En
théorie, il n’est alors pas nécessaire de procéder a des tests de vérification du logiciel.

L’avantage de telles méthodes est de pouvoir, en cas d’évolution de disposer d’une formalisation qui
permet de vérifier mathématiquement la cohérence et la complétude du nouveau référentiel d’exigences. A
partir du nouveau modele de haut niveau, il faut alors & nouveau démontrer la preuve mathématiques des
différents niveaux d’exigences et raffiner les nouvelles. La génération semi-automatique des preuves facilite
beaucoup une telle opération.

Le processus d’intégration — vérification — validation doit donc &tre pensé lors des premieres phases de
développement d’un systeme, il doit &tre remis a jour a chaque évolution. Les processus d’IVV ne sont pas
directement transposables vers le systéme ayant subi une évolution car il faut vérifier préalablement
I’adéquation avec le nouveau référentiel d’exigences.

V. Contractualisation et propriété intellectuelle

L’évolutivité ne se limite pas aux seuls criteres techniques ou organisationnels. L’évolutivité se gere
aussi dans les relations contractuelles entre client et fournisseur. Nous souhaitons maintenir une concurrence
sur toutes les phases de vie d’un systeme. Il est donc possible de remettre en concurrence un fournisseur lors
de la phase de maintien en condition opérationnelle d’un systeme. Cela permet de maintenir une concurrence
d’autant que le nombre de nouveaux projets reste limité. En théorie, il serait logique que fournisseur ayant
développé le systeme soi le mieux-disant, mais une telle question est loin d’étre triviale surtout si le systeme
considéré fait appel largement a des produits sur étagére (COTS).

Ces relations souleévent trois types de problemes : I’intégration des évolutions dans le maintien en
condition opérationnelle du systeme, la responsabilité de I’entité effectuant les évolutions (elle peut étre a
priori différente du concepteur), et la propriété intellectuelle des composants qui composent le systeme.

Lors d’une évolution du systeme, il peut il y avoir remise en concurrence. Si le fournisseur retenu est
nouveau, il devra acquérir la maitrise du systeme, réaliser 1’évolution, et assurer un minimum de maintien en
condition opérationnelle. Ceci suppose que la documentation ait été€ convenablement spécifiée dans la phase
de développement précédente. Par ailleurs, les droits de propriété industrielle doivent permettre une telle
opération.

Dans le domaine de la simulation, nous souhaitons, afin d’avoir la maitrise des évolutions, avoir la
propriété de [Darchitecture de simulation. La plus value et le savoir-faire industriel se trouvent
majoritairement dans la conception des modeles fins. Dans le cas de modeles génériques, nous acquerrons la
propriété des modeles afin de pouvoir les organiser en banques de modeles et les instancier pour différents
jeux de parametres (cela permet de modéliser de nouveaux éléments dans les simulations oll un modele
générique suffit). En revanche, la propriété des modeles fins (par exemple modeles fins de systemes d’armes)
reste au concepteur qui en assure la maintenance (ces modeles ne seront pas accessibles par d’autres
fournisseurs). Ainsi, beaucoup d’évolutions sont rendues possibles car elles ne concernent que I’architecture
de simulation. Ces évolutions peuvent étre menées par les fournisseurs les mieux a méme techniquement et
financierement de les réaliser. Nous voyons sur cet exemple, la segmentation d’un systeéme en terme de
propriété intellectuelle en deux parties indépendantes de tout découpage fonctionnel ou technique. Ceci est
aussi a prendre en compte lorsque sont envisagées les possibilit€s d’évolution d’un systeme. La
contractualisation joue un role essentiel pour avoir une évolutivité réelle.

KN2-10

VI. Conclusion

Nous sommes a la fois responsables de 1’acquisition des systemes et de leur pérennité, mais aussi de
leurs évolutions. Les durées de vie de ces systemes se comptent en dizaines d’années. Par ailleurs, vis a vis
de nos clients (les forces armées) nous sommes a la fois fournisseurs du systeme de défense (qui est un
systeme de systeme) et clients vis a vis de nos fournisseurs industriels a qui nous commandons les systémes
qui, intégrés, constituent le systeme de défense.

Cette situation implique une maitrise de 1’évolutivité des systemes qui seront intégrés dans le systeme
de défense. Cette maitrise impose, dans une logique d’optimisation des cofits de spécifier les contraintes
d’évolutivité lors de la conception du systeme. De plus, la quasi-totalité des systeémes actuels ou a venir
devra subir des évolutions.

Enfin, la maitrise de 1’évolutivité des systemes n’est possible que si elle accompagnée d’une démarche

proactive d’ingénierie des systémes.

12-1

The Evolutionary Software Development Process used in the Upgraded
AMX Human Machine Interface Design

Capt Roberto Ing. Ambra
Reparto Sperimentale Volo - Gruppo Gestione Software
Aeronautica Militare
Aeroporto Militare “M. De Bernardi”
Pratica di Mare - 00040 Roma
Italy

Email: roberto.ambra@]libero.it

Ing. Fabio Ruta
System Laboratory and Simulation
Alenia Aeronautica S.p.A
Corso Marche, 41 - 10149 Torino
Italy

Email: fruta@aeronautica.alenia.it

1. Summary

The paper describes the study carried out by the joint effort of the Italian Air Force Official Test Centre (IAF
OTC) and Alenia Aeronautica S.p.A. (Main Contractor) for the Analysis and Design (A&D) of a new
Cockpit Human Machine Interface (HMI) for the Italian AMX aircraft, a dedicated aircraft to perform tasks
concerning close air support, interdiction and close interdiction against enemy forces behind battlefield areas.
The study has been the result of the need to improve the war power of the aircraft for NATO missions, which
are always more and more demanding in terms of precision, efficiency and effectiveness. The process
adopted was devised to produce a fast approach to the implementation and utilisation of new facilities aboard
the single seat version of the aircraft. The main requirement of the project, on which the whole process is
based, is the necessity to install new weapons/sensors (Precision Guided Munitions and Laser Designator
Pod) and new equipment for their management such as Global Positioning System (GPS), Inertial
Measurement Unit (IMU), Multi Functional Display (MFD), Communication Equipment, Computer Symbol
Generator (CSG) and other facilities for the pilot. Therefore, an experimental Software Development
Approach, together with the application of advanced software engineering techniques, based on the use of a
rapid prototyping approach, has been chosen for this project. A methodology adopting the Concurrent
Engineering process, tailored for the specific project, has been used to perform and develop the aircraft
upgrade activities. The main advantages and disadvantages emerging by use of the Software Development
Process, under concurrent engineering organisation, are described and recommendations are highlighted.

2. Introduction

The different war scenario in which today’s weapon systems are involved requires better performance and
shorter periods of time to deliver software or hardware modifications. The Operational Flight Program of an
aircraft represents the core of the correct employment of a weapon system within certain threat conditions
and for that it must be continuously updated in order to keep up with the incremental growth capabilities. The
presence of evolving threats and the more advanced weapon systems require the Nations to develop new
weapon systems and, possibly, to upgrade and improve the current aircraft in order to support the new
operational needs. Frequently, the political and governmental policy, dictated by potential conflict
conditions, imposes tight time constraints within which to improve the current weapon systems.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

These conditions were presented to the IAF for improving the AMX aircraft in order to enhance its air-to-
surface operational capabilities. The AMX, designed from the outset to perform an attack mission at high
subsonic speed and low altitude, provides mission flexibility, including an ability to operate from temporary
bases, penetrate areas defended by ground forces, find the target and deliver ordnance accurately on single
pass. The upgrade required an improvement in the role of attacking enemies’ spaces with precision and
effectiveness without risking, by getting too close, to be engaged by the counter-air defence. The whole
process had to be accomplished in a short period of time, with limited costs, including several modifications.
In light of the above-mentioned critical constraints, a new software development process, under concurrent
engineering methodology, has been applied.

The paper describes the tailored methodology adopted by the working team and the software development
process for the Cockpit HMI upgrade with particular reference to the following aspects: concurrent
development; operational requirements and platform evolution; incremental delivery; upgraded process
automation; and user familiarisation & training.

The hardware modifications consisted of:

1. a new data bus (Weapon Bus MIL-STD-1760C) for communication with the new precision guided
weapons installed and the Convertible Laser Designation POD (CLDP) sensor;

2. a new CSG, to support the Bus Controller/Main Computer (BC/MC) in fulfilling the operations
related to the visualisation, on the MFD and Head Up Display (HUD), of the navigation and attack
information; the new CSG also acts as BC of the new Weapon Bus;

3. anew MFD (Liquid Crystal Display — LCD) instead of the previous Cathode Ray Tube (CRT);
4. new navigation system equipment (IMU and Global Positioning System - GPS);
5. new central store stations to accommodate the new weapons and the CLDP.

The software modification followed directly from the hardware enhancement in order to make the new
equipment able to interact with the already existing ones. The new “adoption” of C code for the graphic
software related to the HUD and MFD symbology generation increased the speed of the development process
because of the higher versatility of the language. The application software for the management of the
processor cards inside the CSG and the Input/Output (I/O) interfaces with the buses (Avionic Bus and
Weapon Bus) is still Ada language.

The paper describes the software aspects of the integration by focusing mainly on the requirements
engineering activities, which would lead, in the latest phase, to produce an Operational Requirement
Specification (ORS) document that would specify and constrain the final system and would be the starting
line for the contractual agreement between the Main Contractor and the Customer.

The whole process was developed by basing it on a new methodology dictated by evolutionary software
development and rapid prototyping techniques with an incremental delivery method.

The following part of the paper is structured as follows: Section 3 briefly introduces the Operational needs,
User requirements and general constraints to the programme; Section 4 explains the working methodology
and tools adopted by the working groups to perform the activities and respect the programme constraints and
Section 5 the tools employed; Section 6 illustrates the Evolutionary Software Development as a general
overview used for the software development. In conclusion, the advantages and disadvantages are described
in order to give recommendations and suggestions to improve the methodology adopted in the present work,
on the basis of the experience gained.

3. Operational Needs and User Requirements

Recently, the aerospace industry has seen important changes in the operational environment, with more
complex and stringent requirements for new aircrafts. At the same time, the technology maturity level has
allowed enhancements to the operational capabilities, through the use of new systems and sensors able to
assist the aircrew in the operational missions.

12-3

The positive performance demonstrated by the AMX during the NATO operations in Bosnia encouraged the
Italian Air Force (IAF) to upgrade the aircraft and improve its navigation and attack capabilities. IAF
considered several retrofits for the weapon system and, specifically, for the integration of a laser designation
pod and precision guided munitions, to provide the aircraft with a laser and GPS guided bomb self
designation capabilities.

The AMX dedicated attack aircraft is currently employed by the Italian and Brazilian Air Forces for Close
Air Support (CAS), Tactical Air Support for Maritime Operations (TASMO) and Battlefield Air Interdiction
(BAI) as well as in armed reconnaissance primary roles. Its secondary capability is Offensive Counter Air
(OCA) and Air Defence in limited areas. A two-seater version has also been developed to be used in
Operational Conversion Units (OCUs) and as a lead-in trainer for any advanced fighter aircraft.

In order to support and perform the new user requirements, by means of extensive modification and
substitution of the avionics and armament systems, the AMX upgrade programme introduces extensive
enhancements of operational capability with respect to the AMX Final Operational Clearance (FOC). In
order to allow the management of these new weapon system functionalities, optimised to maximise mission
effectiveness, reduce pilot workload and provide the pilot with a state-of-the-art advanced and integrated
HMI, controls, presentation interfaces and the associated functional/operational modes had to be upgraded
accordingly.

The introduction of new multi-function colour displays, new dedicated Control Panels and Hands On
Throttle And Stick (HOTAS) controls, integrated with the on-board navigation, attack, and communication
systems, exploits the crew capability to access the required information elements during the critical phases of
the mission, with the objective to increase situational awareness and reduce pilot workload. To improve
mission capability at night, Night Vision Goggle (NVG) compatibility is provided for both internal and
external. An integrated warning system is provided, including tone/voice aural cues and a visual warning
presentation on the MFD. In detail, the upgrade "touches" the following main areas:

= Navigation System: integration of a new IN/GPS (Inertial Navigation/Global Positioning System),
VOR/ILS (VHF Omni directional Range / Instrument Landing System), Digital Map Generator
integration, Computer Symbol Generator, and upgrades to the current MFD and HUD formats.

= Attack System: JDAM (Joint Direct Attack Munition) integration, CLDP integration, definition and
implementation of new tactical multifunction display formats, attack modes and load configurations.

= Communication and Identification System: voice warnings integration, a new radio with 8.33kHz
spacing capability, satellite communication and new Identify Friend or Foe (IFF) modes.

= Lighting System: introduction of internal and external Night Vision Goggles compatibility.

4. Working Methodology

High level requirements, tight programme time constraints and system integration peculiarities have imposed
the use of an adequate and tailored working methodology and personnel organisation to support the
development of the AMX Cockpit HMI upgrade. Specifically, in order to respect the above-mentioned
constraints, an agile as well as responsive organisation is required to analyse and satisfy the changing needs
of the Customer requirements.

This section provides a description of the Concurrent Engineering (CE) activities that was adopted in order to
define and capture the operational and functional requirements of the AMX weapon system during the
concept and development phases. In particular, the detailed operational and functional requirements to be
satisfied during the development phase are detailed in order to assure that the final product is functionally
and operationally compliant with the Customer expectations (User Requirements) and that the relevant HMI
is adequate to allow the user to manage the final product functions with an acceptable level of workload in
the specified operational situation cases.

As for any development programme, where the human factor is the key part of the system, the early stage of
development will be dedicated to extracting the requirements from the user (requirements elicitation),
translating them into engineering terms and then validating the technical hypothesis for subsequent
implementation into the system through an adequate process capable as far as possible to meet the changing
Customer needs (requirements evolution). The Human Engineering activities used during the cockpit HMI
upgrade, in an iterative process, include:

= Analysis of Customer operational and functional requirements and feasibility studies;

= Implementation of the proposals;

= Rapid Prototyping and virtual mock-up activities;

= Software integration in the simulated scenario;

= System Design Evaluation;

= Operational and Functional requirements specification, by means of a formal document (ORS).

Figure 1 describes the logical flow of the “Process’s” activities and highlights, in the red and blue boxes, the
two working groups which carried out the several activities. A more-in-depth description of the organisation
of the people is given later in this section.

Corrective

Requirements Operational/F unctional f
9 P Actions

Analysis Requirements Definition

High Level Real Time
Requirements Prototyping

__ O

VAPS Formats: PWG
Realisation, Compliance
implementation &
Integration on the Flight
Simulator

Evaluation Operational/F unctional
Real Time Simulation Requirements ‘
“man-in-the loop” Specification

Aircraft
Implementation

Figure 1 - The ""Process"

The objective of the "Requirements Analysis" activity is to analyse the high-level Customer requirements
and decompose them in a series of numbered, single-item requirements that are formally agreed upon with
the Customer. The activities enable to verify the reception and understanding of the Customer needs by the
system designer, provide both the designer and the Customer with an agreed list of requirements and
therefore bound the development of the system. They also allow the generation of a Requirements
Compliance Matrix (RCM) to be used for system evaluation/validation procedures. The Customer
requirements understanding process could frequently produce a new requirement, based on new Customer
needs or the availability of new technologies. The iterative process, made it possible to analyse the
requirements evolution and to include them in the design.

The output of the “Requirements Analysis” activity defines the design solutions needed to satisfy the
requirements by means of preliminary specifications for the prototype implementation and its preliminary
evaluation. Identification of applicable functions, displays and controls philosophy on existing facilities is
also performed. Using the Test and Evaluation (T&E) iteration, the output of this detailed design activity is
qualified for being embodied in the final design. In this phase detailed requirements are defined and allocated

12-5

to the hardware and software design of controls, information, display characteristics and cockpit layout, in
accordance with the preliminary description of the basic requirements from the previous tasks. Strict co-
ordination and interaction between the different Working Groups (WGs) is required due to the overlapping of
the different competencies. A preliminary evaluation is also done. In addition, re-iteration of the design
procedure will be performed according to the results of the test/evaluation activities, leading to the final
design standard. This includes feedback activities, if required, to refine/update operational/functional
requirements.

The detailed design process is supported by the prototyping activity, which represents the starting point for
the requirement analysis activities carried out both by the Customer and Main Contractor. The T&E process
has been scheduled in the form of an iterative process composed of subsequent evaluation sessions. The
activity is carried out in order to: demonstrate conformance of the design solution to the specified design
criteria and requirements, allow quantitative definition of the adequacy of the design solution with respect to
the interaction with the pilot and identify undesirable design features, cases for failure/errors, as well as
incompatibilities with effective and safe operation.

Evaluation is performed in different stages. A preliminary evaluation of specific functions is done using
mock-ups, rapid prototyping and graphic workstations in order to refine the queries emerging from the
prototyping phase. An evaluation is also done on the Flight Simulator, within a simulated aircraft
environment tailored to the T&E purposes and with controls and displays that are representative of the final
ones. A final evaluation is carried out on the aircraft, during flight tests, in order to accept the new
functionalities.

Considering the predominant operator-oriented attitude and the skill to perform the activities just illustrated,
the adopted process includes the participation of the Customer IAF OTC, the Aircraft Manufacturer Main
Contractor (Alenia Aeronautica) and the Avionic Supplier (Galileo Avionica) in a structured organisation of
working groups dealing with operational functional requirements definition (Operational Requirements
Working Group - ORWG) and system implementation (Prototyping Working Group - PWG). The ORWG,
composed of pilots and engineers both from OTC/Operational Flight Squadrons and Industries, is in charge
of all the activities and issues related to the operational employment of the weapon system. The PWG, on the
other hand, handles HMI development and management, including test and evaluation purposes. The WGs
composed by appointed representatives from the Customer, the Supplier and the Main Contractor, with
different levels of involvement and in accordance to the specific task assigned, has been formalised with a
structure organisation described in Figure 2.

Customer Participant

* Operational Test Centre
 Software Engineer Support

Operational
Requirements Interaction
Working Group

Prototyping
Working Group

Main Contractor (co-ordinator) Supplier Main Contractor (co-ordinator)
* Aight Operations * Engineering Team * FAight Operations
* HMI Specialists * HMI Specialists

* Avionics Specialists * Flight Simulator Specialists
* General System Specialists Avionics Specialists

* Installation Specialists * Installation Specialists

Figure 2 - Working Groups Structures

The ORWG and PWG, described in Figure 2, perform all the activities related to:

= the analysis and definition, with the Customer's formal agreement, of the operational, functional and
Cockpit HMI requirements for system development;

12-6

= the definition of the cockpit operational and functional concepts in terms of controls and displays
available to the pilot;

= the definition of the cockpit layout and installation requirements in terms of location of equipment
and their interfaces with the pilot;

= the operational/functional system design;

= the testing, evaluation and validation of the design solutions by means of appropriate tools (virtual
facilities, flight simulators, rigs).

The Working Group functions, in terms of inputs and outputs are summarised and showed in Figure 3.

2
r RERN
';i/ = -l/ Feni
. o

Figure 3 - ORWG and PWG functions

Appropriate documents have been prepared within the WGs organisation (see Figure 3) in order to: allow
verification of the compliance of the system design to the requirements, verify adequacy of the design
process to the applicable standards, identify risk areas and support the decision-making process.

The working methodology process to perform the human engineering activities, based on a tight interaction
between ORWG and PWG, on the other hand, is based on the idea of developing an initial system
implementation, exposing it to user comments and refining it through many versions until an adequate
system has been developed (incremental development). Rather than having separate specification,
development and validation activities, these are carried out concurrently with rapid feedback across them and
fast deployment of the modifications requested by the Customer. An evolutionary approach has been chosen
because it is often more effective than other approaches in producing systems by meeting the immediate and
changing needs of Customers (requirement evolution).

S. Tools employed

Appropriate methodologies and software tools, fully supported by the avionic system architecture, are used
to build the prototypes in order to gather what exactly the Customer expects the Main Contractor to provide
as final product.

The methodology is supported by VAPS (Visual APplicationS) computer models, three-dimensional mock-
ups and electronic drawings of the HMI elements (e.g. displays and control panels layout and location in the
cockpit) and the Avionic Supplier Graphic Software Development Environment (GSDE). The GSDE is
tightly coupled with the new CSG architecture and provides the hardware and software capabilities to
support the direct use of graphic software produced by the VAPS tool set.

The Flight Simulator contributes to the final definition of the required solution. VAPS, a software product of
ENgenuity Inc., provides a graphical environment where the full appearance and behaviour of HMIs can
rapidly and graphically be designed, built, tested and modified. The developer can iterate rapidly through
these steps to accommodate required changes to original designs. It automatically generates ANSI C code
which implements exactly the HMI that has been designed, tested and accepted within the VAPS HMI
development environment. The Avionic Supplier GSDE, in conjunction with the CSG hardware and
firmware libraries, enables to download the code directly onto the target machine.

12-7

VAPS is based on two software packages, which are:

¢ VAPS Designer containing an Object Editor (OE), Stateform Editor (SE) and Run-Time
Environment (RE)

¢ VAPS Development containing a C Code Generator (CCG) platform by which the executable file is
generated in order to be first tested and then loaded onto the target machine.

The typical process starts by drawing objects in the OE and grouping them in larger entities called ‘“Frames”.
The SE is a spreadsheet-like interface to define the logical interactions of the HMI components. It
implements a Finite State Machine (FSM) by using a C-like language called Augmented Transition Network
(ATN). The FSM, embodied in the ATN program, controls the product changes in mode and the interactions
with other components.

Finally VAPS provides the RE, in which the whole HMI can realistically be animated and exercised. Users
can interact with the HMI, which can be connected to real data, to simulation data, or to automatically-
generated test data. The next step is to use VAPS ANSI C Code Generator (CCG) to generate, automatically,
error-free ANSI C code which exactly implements the HMI that has been designed, tested and accepted.

Thus, VAPS can be used throughout the various stages of building the HMI and re-hosting it to the
environment in which it will be deployed. The source code generated by the tool can be compiled for the
development platform, typically a Windows NT or UNIX workstation for testing purposes. As well, and
possibly more usefully, the HMI code can be cross-compiled and downloaded directly into the target
platform, aboard the aircraft, for execution. The key point is the fast response time in case later HMI change
is required. The re-generation and cross-compilation of the modified HMI can be performed in a matter of
minutes. This protects the project from the otherwise devastating impact of late changes to the HMI
requirements (see Figure 4).

FORMATS: Formats
Design, Prototyping
validation, testing and
C Code Generation

C Source Code to generate
the Graphics application to
be executed directly on the

. LRU target machine
Y-
Source Code \ Cross Compiling &
Generation Linkage LRU SW

VAPS development
Workstation

Equivalent
Display
FORMATs

Jonpae2
_/)

LRU TARGET

DISPLAY TARGET (MFD)

Figure 4 — Development and deployment process based on VAPS toolset and Avionic Supplier GSDE

The whole activity was carried out by using rapid prototyping techniques, facilities and simulation tools in
order to exploit the man-in-the-loop evaluation of the design solutions in an appropriate simulation
environment. The level of accuracy of the simulation is tailored to the specific evaluation activities as jointly
agreed by the involved parties through the definition of the test requirements.

The operational requirement evolution, within the time allocated for the development process, can be
summarised in Table 1. Here the philosophy of incremental development and delivery has been applied and

the list of the different MFD prototypes, with the relative requirement evolution, is showed. The number of
prototypes witnesses the necessity of using such a methodology, which allows the customer to modify or
adjust what is possible to see and try, and not just read in a document.

Prototype version Requirement
Prototype 1 Prototype architecture, Soft Keys (SKs) implementation and Formats definition
Prototype 2 Map visualisation, Navigation Formats, Alignment Management Formats
Prototype 3 Bull's Eye management Formats
Prototype 4 Declutter philosophy with different levels of decluttering
Prototype 5 Optimisation of the Navigation read-outs with Wind Directions
Prototype 6 Improvement of Map management philosophy with the use of a specific menu
Prototype 7 Introduction of new scales for map visualisation
Prototype 8 Generation of new Formats for JDAM management
Prototype 9 Modification of some the SKs position
Prototype 10 Introduction of new formats: Avionic Status (on the ground, in the air), Map Setting
Prototype 11 Generation of new Formats for CLDP management
Prototype 12 Implementation of new functionalities: IFF, Rolex, Grid Setting
Prototype 13 Final adjustments for delivery with ORS document

Table 1 — Increments of the requirements and prototype versions
Figure 5 shows the different prototype versions and the amount of time needed by the PWG, composed of 5
people, to implement the new requirements emerging from the ORWG. The project had duration of about 15
months from the first list of requirements issued by IAF to the final ORS, which includes all the requirements
discussed and agreed upon with the relevant implementation to be integrated on the aircraft.

Requirement increments and time allocated

[If??{ﬂ?«ﬁ{(

Prototype version

140

120

100

Days 60
40
20
0

Figure 5 — Allocation of time for each prototype version

The Flight Simulator, as a developed high level prototype, has been used for initial evaluation of operator
procedures and equipment/operator interfaces in order to identify any potentially unsafe procedures and
unacceptable workload demands in the operational scenario. Moreover, the virtual and ergonomic mock-ups
have been used to verify the design feasibility (installations and system aspects) and evaluate the ergonomic
aspects (visibility, readability, reachability and operability). Properly, the Alenia Aeronautica AMX Flight
Simulator (see Figure 6) has been upgraded with the new VAPS formats which could be directly embodied in
the Simulator with minimal SW modifications or adjustments.

12-9

Figure 6 - AMX Alenia Flight Simulator

In response to the above detailed programme policies, appropriate use of CE methodology required,
availability of adequate tools and a particular software development process to support and obtain, within the
time schedule, the final release software to be implemented on the aircraft.

6. The “Evolutionary Software Development Process”

Software process models have been changing through the years according to the needs of the market and the
availability of resources, both in terms of manpower and costs for system development. Therefore new
methodologies and approaches, which could meet, in a faster and more efficient way, the needs of the
Customer have been addressed.

Software processes have evolved to exploit the capabilities of the people employed in the process and the
specific characteristics of the system being developed. However, there is no ideal process to use and different
organisations have developed completely different approaches to software development, according to the
skills, the structure of the working teams and the strategies of the organization itself.

The fundamental activities that are common to all software processes concern: specification, design and
implementation, validation and evolution, in order to define, specify, realise and evaluate the Customer’s
requirements.

The first published model of the software development, and still used nowadays, is called “waterfall” model
(see Figure 7) because of the cascade from one phase to another.

The principal stages of the model map onto the fundamental development activities: Requirements analysis
and definition, System and software design, Implementation and unit testing, Integration and system testing,
Operation and maintenance.

Requirements
definition

System and
SW design

Implementation
and unit testing

Integration and
system testing

Operation &
maintenance

Figure 7 — The software life cycle (“waterfall’” model)

12-10

The structure showed in Figure 7 is a good compromise when the software requirements are well understood
from the early stages, and when the software development is part of a larger systems engineering project. The
drawback of such an approach is the heavy and often long passages from one stage to another, due to the
large amount of documents to be produced and approved before a new stage can be started. The waterfall
model requires Customers to commit to a set of requirements before the design begins and the designers to
commit to particular design strategies. Changes to requirements, during development, require reworking of
the requirements, design and implementation. However, the advantage of the waterfall model is certainly the
simplicity of the management model. Additionally, its separation of design and implementation should lead
to robust systems which are amenable to change.

Evolutionary development, on the other hand, is based on the idea of an initial implementation of a system,
exposing it to user comments and refining it through many versions of the system until an adequate version is
able to accomplish the needs outlined by the Customer (end—user) early on in the requirement definition.

There is no better way than trying a requirement before agreeing to it. This is only possible if a “system
prototype” is produced by developers.

A prototype, by definition, is an initial version of the system under development (either hardware or software
based) that is used to demonstrate concepts, try out design options and generally, to identify problems and
their possible solutions with the help of the Customer.

The prototype supports two requirements engineering process activities:

1. Requirements elicitation, because system prototypes allow both the system engineers to experiment
and see how the system supports their work, and the Customer to check on the actual satisfaction of
its needs. According to that, further modifications or new system requirements can be proposed for
integration.

2. Requirements validation, because the prototype can reveal errors and omissions in the proposed
requirements. The cost of fixing requirements errors, at later stages in the process can be very high
and increase the overall development costs significantly. Furthermore, the system specification may
be modified or updated to reflect changed understanding of the requirements or new “entries”.

As well as allowing to improve the requirement specification, developing a system prototype may have other
benefits:
i. misunderstandings between software developers and users may be identified as the system
functions are being developed and demonstrated;
ii. a working system is available quickly to demonstrate the state of the implementation;
iii. the prototype can be used as a starting point to write more accurate specification;
iv. the prototype system can be used for training purposes before the final system has been delivered
(first familiarisation to the system);
v. the prototype can be used for system testing.

Figure 8 highlights the methodology followed by using an Evolutionary Approach for System Analysis &
Design and delivery of the intermediate versions till the final one is released.

12-11

Specification

Initial version
Intermediate
Versions

Final version

Outline
description

Development

.
.
Validation

Concurrent activities
Figure 8 - Evolutionary development

The evolutionary approach to software is more effective and suitable than the waterfall model in producing
systems which have to meet the immediate needs of Customers. The advantage of a software process, which
is based on an evolutionary approach, is that the specification of the requirements can be produced
incrementally during the development process and are not committed to before design and implementation
begin. The system reflects the Customer’s better understanding of new features and directly embodies them
in order to be assessed and accepted by the Customer. No time is spent in the production of formal
documents to change the proposed requirements. Instead there is an effective and fast response for
requirements evolution. There are no added costs for software modifications, which are operated on the
prototype during the development phases.

In the current case study, the exploratory development (or evolutionary prototyping) has been adopted. The
objective of the process is to work with the Customer (end-user) to explore his requirements, and deliver a
final system by means of a prototype which will turn into the final delivered system. The process starts with
well-understood requirements and carries on, step by step, by exploring new features possibly added to the
system as they are proposed by the Customer.

Developing the HMI, following the traditional software development approach, can be the most labour-
intensive, time-consuming, and frustrating aspect of a product’s development. Not only must the product’s
input and output needs be satisfied, HMIs must also be ergonomic to human users (combat pilots for the
case-study).

The often-conflicting requirements mentioned above typically contribute to a situation where a significant
fraction of product development effort must be expended in the hand-coding of the HMI from a written
specification. Such a situation almost guarantees that the specification will be misunderstood or
misinterpreted by those attempting to implement it. Worse, of course, is the situation where a variety of
people on a development team misinterpret different segments of the HMI specification document. This leads
to many reiterations that are costly and involve significant reworking with a consequent delay in delivering
the final product. The system design and implementation phase must be reworked and updated to make the
system up-to-data with the changed requirements.

A valid process iteration, which supports the evolutionary approach, is surely the “incremental development”
where the software specification, design and implementation is broken down into a series of increments
which are developed in turn. There is no complete system specification until the final increment is specified.

12-12

Define outline
requirements

Assign requirements
to increments

Design system
architecture

Validate
increment

Develop system
increment

Integrate Validate integrated)
increment system Final
System

System incomplete

Figure 9 — Incremental development

Following the flow showed in Figure 9, the development of the system begins with a definition of outline
requirements and proceeds with the assignment of requirements to increments according to their level of
understanding or their difficulty for implementation in the system. A number of delivery increments are then
defined, with each increment providing a subset of the system functionality. As new increments are
acknowledged, they are integrated with existing increments so that the system functionality improves with
each delivered increment. Plans and documentation are produced for each system increment in order to
record the “before” and the “after” of each increment. The documentation consists of a report of the
assessment of the end-user, who has tried out the prototype and has found inconsistencies or something
lacking in the functionalities implemented till that moment. Through this documentation, a new working
session can be started, finalising the effort in implementing what the Customer has asked for and
consequently a new increment will take place in the system.

Rapid prototyping development techniques emphasise speed of delivery rather than other system
characteristics such as performance, maintainability and reliability. Most prototyping systems now support a
visual programming approach where some or all of the prototype is developed interactively. Rather than
write a sequential program, the prototype developer (or developers) manipulates graphical icons representing
functions, data or user interface components and associates processing scripts with these icons. An
executable program is generated automatically from the visual representation of the system and is deployed
on the target machine as the final step, simplifying program development and reducing prototyping costs.

Based on the case study of the enhanced AMX Cockpit HMI, explored and described in the previous section,
the use of a graphical tool to produce the appearance, behaviour and data manipulation of the HMI, enables
the software operators to develop exactly the interface the user wants with no concerns about the difficulty or
the time to implement it.

VAPS has guaranteed a valid and indispensable tool to produce a new version of the prototype as long as the
increments were decided by the Customer during the assessment reviews. The whole process explained in the
previous section can be, then, synthesised in Figure 10 where the complete sequence of steps is illustrated.

[=] =]

: :
= -0~ B -[es

Requirements VAPS Platform FRAME.c Cross-Compiler Loadable File

o

Multi Functional
Display

Figure 10 — Deployment process based on VAPS toolset and Avionic Supplier GSDE

As far as HMI SW development process is concerned, this includes a set of activities starting with the
software requirement specifications and ending with the software loading onto the target machine. The stages
illustrated in Figure 10 include the specification, development and validation pictured in Figure 8.

12-13

There are three main problems with evolutionary prototyping that are particularly important when large,
long-lifetime systems are to be developed:

1. Management problems Managers can find it difficult to follow the rapid increments of the system if
an appropriate structure has not been devised to support the activities. Prototypes evolve so quickly
that it is not cost-effective to produce a great deal of system documentation.

2. Maintenance problems The lack of ad-hoc documentation implies maintenance problems. This
means that anyone apart from the developers is likely to find it difficult to understand the state of the
activity and be able to continue the work.

3. Contractual problems The normal contractual model between a Customer and a software developer
is based around a system specification, which is made as soon as requirements are “frozen” by them.
When there is no such a system specification, it may be difficult to design a contract for the system
development. The evolutionary methodology has surely meant a radical change to the way the
government agencies intend to proceed for the procurement of new systems and then difficult to
accommodate. System specification has always represented a part of a contract that had to be fixed
and frozen “a priori” before any work could be begun for the system development. This could
guarantee a monitoring of the progress of the development process and assess the quality of the
resulting delivery.

These difficulties mean that Customers must be realistic about the use of evolutionary prototyping as a
development technique. It allows small and medium-sized systems to be developed and delivered rapidly.
System development is certainly reduced and usability improved. The success of such an approach is surely
guaranteed by the consciousness of the limited dimensions of the system in terms of functionalities required
and framed allocated time.

7. Project results

The use of a consolidated working methodology in terms of project organisation and human activities,
supported by means of adequate tools and tailored on the basis of design typology, made it possible to
operate adequately in the user requirement exploration activities needed to develop and implement a system
which could meet, rapidly and successfully, the final user requirements within imposed time and cost‘s
constraints.

The CE methodology, supported by the use of adequate tools, in an evolutionary software development
environment, has allowed the main objectives of the current work to be accomplished within the time
constraints and with remarkably limited costs for development and production. It has been possible to sit
around the same table with Industry, the Customer and the Avionic Supplier, in order to define, understand
and capture the Customer’s requirements, verifying and validating directly the feasibility of implementation
and the relevant associated costs. Moreover, the use of advanced tools to define and analyse the
implementation proposals has strongly and heavily limited the modification impacts due to requirements
evolution.

Rapid prototyping and flight simulation has permitted the definition and evaluation, in real-time, of the user
requirements and the relevant implementation in the exploratory software development process. In addition,
the rapid prototyping provided the final users with a "first familiarisation" of the system, important in
understanding the main system functionalities. A significant role was surely played by the graphical tool
VAPS that allowed developers and end-users to assess the system implementation and vary it according to
the user queries with fast response and no excessive costs. In this way, Customers do not have to wait until
the entire system is delivered in order to gain valid information and contributions from the Supplier. The
software can be immediately used as soon as it is developed for the assessment.

Customers can use the early increments as a form of prototype and gain experience, which informs the
requirements for latter system increments.

12-14

The advantage of using such a powerful tool has certainly contributed to improving the long and complicated
course of operations adopted in the Military organisation for system development. The whole methodology
based on the adoption of VAPS, in conjunction with the Avionic Supplier GSDE, resulted in flexibility and
versatility to explore, understand, define and implement the Customer’s operational requirements.
Furthermore, the tool permitted the implementation and integration of the software respectively into the
Flight Simulator and on the aircraft with limited adjustments. No excessive time was spent to adapt the
software before downloading it into the target machine but rather a simple cross-compilation was used
through a re-hosting station. (Avionic Supplier GSDE)

The presence of VAPS has also improved the level of understanding of such choices, coming from the end-
user, who could work, for the first time, very close to the designers and developers of the system prototype.
The assessment, at times, was carried out informally by the end user who could address the work better by
“playing” with the prototype before sitting for review meetings.

However, a not-agreed upon formalisation of the project organisation structure, in the preliminary phase, in
part delayed the process because of an undefined interface between the various involved parties. In addition,
the lack of an agreement about the input/output flow of the activities, in terms of documentation contents and
layout, contributed to an even further delay.

Furthermore, the contractual problems slowed down the course of the activities because of the need to have
an agreed upon and formally written specification before any actual implementation of the work on the
aircraft could be started by the involved Industries. The hypothetical solution for the entire development
process which could result in greater flexibility and openness to requirements changes even when an agreed
upon implementation has been already fixed. Obviously, the improved course of operation would interest
both parties, Supplier and Customer, in order to reach a mutual understanding and compromise.

The choice of working methodology and tools to be used is very complicated and it depends on the design
typology and the boundary conditions, which can influence the design effectiveness. Specifically, the use of
several working groups operating at different sites delayed the process time-schedule. Therefore the lesson
learned says that, for a particular project, under important time constraints, a specific task force, operating
full-time at the same site, should be used.

8. Conclusions

The paper describes the study carried out by the jointed effort of the IAF OTC and Alenia Aeronautica for
the A&D of a new Cockpit HMI for the Italian aircraft AMX. The study is the result of the need to improve
the war capabilities of the AMX for NATO missions and up-to-date it with the more demanding necessity of
precision, efficiency and effectiveness against enemy targets.

In order to perform the system conceptions and develop the upgraded system, an evolutionary software
process under a concurrent engineering approach was used. The paper explains and describes this experience,
analysing the main advantages and disadvantages met during the development process.

A clear interpretation of the methodologies has been illustrated by means of a customised development
process, where the main activities related to software requirement elicitation, software specification, software
design and implementation were carried out by means of a powerful tool, with an incremental delivery
method. The use of such a methodology was supported by the flexibility of both the tool and the developers
who managed, with excellence and professionalism, to perform the many and skilful activities related to
software implementation.

The results can be easily listed, and they range from a new way of approaching the relationship between
Customer and Main Contractor to a quick and simplified methodology to perform tasks even when time and
costs seem to be an insurmountable obstacle.

The approach used has made it possible to achieve the main objectives of the aircraft upgrade, deleting the
critical conditions that had characterised the reference scenario. Specifically, the concurrent engineering
approach, supported by the use of advanced tools, has made it possible to explore the user requirements and

12-15

the relevant implementation. At the same time, the adoption of a software exploratory process has guaranteed
the adequate support to understand/capture the user requirements and follow, in short time, the system
development and its consequent evaluation.

The ability demonstrated by analysing, designing, implementing and testing the modifications of both
hardware and software, empowered the potential of such an approach to software development that seemed
to be inapplicable to a military structure, where an initial commitment about requirements and specifications
used to be the starting point for any system implementation.

The paper, which summarises the whole development process, is intended to be an encouragement for future
applications of new methodologies and a proof of the possibility to explore new frontiers. From this
experience, the main lesson learned concerns the advantages emerging from the correct application of the
concurrent engineering approach, which makes possible the close collaboration and co-operation between the
Customer and Main Contractor and the Avionic Supplier. This collaboration has proved to be mutually
beneficial and the results of the project show that this process should be used again in future collaborative
programmes.

Acknowledgements

We would like to thank all the people “behind the scenes”, including the Engineering Team of the Avionic
Supplier, that made this project feasible, and, in particular, the people who were directly involved in
performing the work: Gabriele Grasso, Paolo Calabrese, Amedeo Donadono. In addition, we would like to
thank Maj Angelo De Caro and Ing. Salvatore Lo Presti for the support during the paper preparation.

References

[1] MIL-HDBK-46855A. Human Engineering Program Process and Procedure. Dated 17 May 1999.

[2] STANAG 3994 Application of Human Engineering to Advanced Aircrew Systems.

[3] “Software Engineering” 6" Edition - Ian Sommerville.

[4] Galileo Avionica doc. n. S03151-01SUM , Software User’s Manual for the generation of an application
executable for the raster graphic module (EGC-R) , using VAPS and CCG.

This page has been deliberately left blank

Page intentionnellement blanche

. Click here to view PowerPoint presentation; Press Esc to exit .

Web Application Development -
State-of-the-Art Technologies

Ms Margarete Donovang-Kuhlisch
IBM Deutschland GmbH
Godesberger Allee, 115
D-53175 Bonn
Germany

1. Portals — unified Access to Enterprise Information

What might have been a rather long-term, visionary view in the beginning of this millennium
(/1/), 1s today’s reality in the marketplace:

Due to the tremendous increase of data available — both in digital as in analog form — and the
need to gain information and knowledge out of it and take action upon, the competitive
workplace today IS an information portal across and between enterprises.

Access to ANY data, from ANY source, from ANY client, at almost ANY time is a necessity for

customers and clients driven by the pressures Enterprise Content Management
of success and business. Consequently, the IT
community is hard pressed to develop solutions
for the integration of enterprise data in a
meaningful fashion. Enterprise Information
Integration (EII) widens the grip of the already
conquered world of EIP’s (Enterprise
Information Portal) unstructured data (rich
media, web content, most various documents)
by including “structured” data, which fits into
the columns and rows of traditional databases.

WWW
Customer Service
Soluriens

Integration B
-— % Fax
N & Compurer Cutput

i

RN |, cermally produce
e PR lierally procuce
d S PC documenss

EIl and ECM are about leveraging information within all possible forms of content containers
and presenting it to all kinds of user devices and media types. Data management has overgrown a
two-folded evolution:
e management of structured data:
o 60’s: application level programming
o 70’s: database management systems for certain fixed application characteristics (e.g. IMS)
o 80’s: DBMS allowing optimizing for different application characteristics (e.g. DB2)
e management of unstructured data:
o 80’s: application level programming
o 90’s: content management system optimized for certain application characteristics (e.g.
Visuallnfo)
o 00’s: CMS allowing optimization for different application characteristics (ECM, e.g.
Content Manager 8.1)
With the combined management of structured and unstructured data ECM can address all
variations of accessing business content via the portal:
e Operational Content (databases)
e Dynamic Web Content
e Media Assets (digital audio and video)

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

13-2

e ¢-Mail
e Workgroup Documents
e Business Documents (contracts, invoices, forms,...)

A Portal by definition is a personalized web page — making the web the main application
problem space.

2. Enterprise Content Management

The promise of the web is to make all these diverse content sources immediately available, while
hiding differences in their underlyind formats. IBM offers a framework for leveraging diverse
content formats called “Enterprise Content Management (ECM)”. The framework embraces three
historically separate technologies: Web Content Management (WCM), document management
and digital media asset management.

Integrated Document Management is about
e capturing, managing and controlling of the following
content types:
o host reports
o images
o documents
o email messages
e version control and
e check-in/check-out of documents for modification.
Digital Assets are multimedia documents, i.e. video,
audio and high-resolution images as well as stream and/or
multicast content. Finally Web Content Management (WCM) addresses the managing issues for
e web pages, HTML and JSP
e web sites
e individual parts such as images and documents.

Management

The disciplines of ECM and the supporting services for applications built to solve the
organization-wide challenges of e-business thus reside in the middle of the portal solutions.

On top of the described content management functions for one thing there are services available
for digital rights management (DRM) within the IBM Electronic Media Management System
(EMMS). DRM is a chain of hardware and software services and technologies that govern the
authorized use of digital content and manage any consequence of that use throughout the entire
life cycle of the content, thus provides for persistent protection of pervasive content.

On the other hand services are provided for
information integration: the combined
el functionality of the former products IBM Data

Web Site i

fasai sl Joiner and IBM Enterprise Information Portal
\3 Investors

(EIP) are available to read/write access all types
of data sources and perform heterogeneous
replication between them:
e DB2, IDS, Oracle, SQLServer, Sybase,
| Teradata
IBM WebSphere Application Server o Excel, BLAST, flat file

versal Database -- Tivoli Storage Mgr - Lo fl e Documentum, XML

as well as use search, crawling, text mining and workflow on federated data sources, such as:
e CM, CM OnDemand, CM ImagePlus, EDMSuite

e Digital Library

e ODBC/JIDBC,

e Domino etc.

Besides the fact, that all types of necessary support functions for the needs of ECM in CGM-
products, the above pictures states something else, too:

the CGM-software is based on open standards and web technologies, in particular on a J2EE-
compliant Web Application Server and browser- or Java-based (applets) client interface to the
enterprise specific solution portal, may it be a B2E- (business-to-employee), B2C- (business-to-
consumer) or B2B- (business-to-business) portal.

3. Challenges in Web Application Development

The web represents a complex, highly dynamic, rapidly changing application problem space. A
web application designed to solve business problems and assist in business processes
incorporates many resource types representing diverse, yet highly interrelated IT-components
including: HTML, GIF, JPEG, DHTML, scripting, Java applets, Active X controls, servlets, etc.,
most of which are not even collectively compiled.

Because of the wide range of content types, building a web application requires a set of diverse,
highly specialized skills and roles including: programmers, graphic designers, database
designers, business experts and document designers. The overall architecture of web applications
is established by the target runtime environments including client web browsers and HTTP and
web application servers.

- The resulting distributed web applications require
Heterogeneous deployment environments i o . L
Many languages, many platforms compromises between accessibility, availability,
integrity, ease of use, performance and footprint.

Client /S ication i .
— e e Typically the components have been developed
f»\f\sualstudm (VE) m? * Islands of skills, cultures, processes, tools . .
~PoserEider BIBA | | \ccdto build, intearate, migrate, preseve | USINE Various languages and many platforms. For
oo most organisations the e-business evolution and
wSrallTa =HTML
L S G e, | transformation is taking place in the context of an
b it existing environment, that has evolved through
- coBoL [E\ N ‘ many years — if not decades — of investment. Prior
=-PL/1 i Unix / Linux, iSeries, -] . .
vRPG Il | setes. Winiems s to develop new application, therefore , often stands
& 0t Web Application S th d to migrat 1 d integrat
k. cacic >) Web Application Server e need to migrate, preserve, evolve and integrate
Host / Terminal eXlsting ones.

On top of that, techniques for developing web applications ol %E Deployment Management

are changing fast — the simultaneous use of diverse toolsets j “‘Ebs‘“e;e'::zm
that operate in multiple domains is required. Typically . E @@} Clent Server
those are very poorly integrated. There is no such thing as |Fz—— b —

COBOL

Jjust a team of programmers, sharing a single language, B
.] Portal

there are performance analysts, business rules analysts, L] Develogrrent
quality assurers, performance testers, programmers of all = :g B o
b Senvice

kinds.

| 4
] ’? Development
Quality Assurance

Application Design and Modeling

13-4

Therefore a tool integration platform must provide an integrated development experience and
allow tool and application developers to target different levels of integration based on the desired
level of investment, time to market and specific tool needs:

an integrated experience unlocks greater productivity
by bringing order and collaboration to rapidly
expanding e-business development teams. An open
integration platform removes the compromise of
best-of-breed tools that must be integrated by the

$ 250 = customer within their development process or a well
Independent tools and poarly Bestorbreed tools anateams working | 1NtEErated environment with a limited set of tools

connected islands of development together in an integrated environment
only.

By an integrated environment one is meant, in which each of the mentioned roles is addressed
and is appropriately linked with the others.

4. Eclipse

The Eclipse.org Consortium was formed by

industry leading companies: Borland, IBM, Borland @)vebew oo
Merant, QNX Software Systems, Rational SEINA =T
Software, RedHat, SuSE, TogetherSoft and [aimund =

. . . Sus SYBASE
WebGain to deliver new-era application ¢ ER - o F £ Clogethrson

. & = aticona

development tools. The Eclipse board members RAPNCERNT R
meanwhile have seen quite an increase in
number; all joined members have committed)
themselves to release Eclipse platform compatible W Move ig
product offerings. ek, 0 TRaws BTERPRISE

The Eclipse Platform is an Integrated Development Environment (IDE) for anything — and for
nothing in particular. It is designed for building individual, yet enterprise-wide and cross-
enterprise IDEs, that can be used to create applications as diverse as web sites, embedded Java
programs, C++ programs and Enterprise Java Beans (EJBs).

The Platform has a lot of built-in functionality, most of which is quite generic, though. It is
extended by additional tools to work with new content types, do new things with existing content
types and focus the generic functionality onto something specific.

The Platform provides a focal point for integrating and configuring the best-of-breed tools
available in such a manner, that best fits the end user’s development process and web application
architecture. Integration levels encompass: None — Invocation — Data — API — User Interface,
each of which has its unique impacts on the specific tool development.

The Workbench provides a central integration point for project control and resource-specific tool
integration, thus providing a common view of the complete application across all components
and the entire team.

Definitely the Eclipse Platform shows a lot of momentum:

Eclipse Platform downloads top 1 Million in first 6 months:
o site continues to see days with downloads in excess of 10,000
o over 170,000 developers, companies or organizations from over 100 countries
o April 2002 represented the highest download request period since inception with over
250,000 download requests
o from over 30,000 unique organizations
over 60 open source or freeware plug-in projects available:
o from WebLogic and Oracle server management to Medical Information Systems
o visit www.eclipse-workbench.com and eclipse-plugins.2y.net for project links
o 1in French, visit: www.eclipsetotale.com
over 175 vendors that have delivered or are building Eclipse plug-ins
17 % Linux downloads, 80 % Windows downloads, 3 % Solaris
over 100 resolved country domains
o highest percent non-US downloads: Germany 13 %, Japan 12 %, Italy 7 %, France 6 %,
UK 5 % (excludes .com and .net domains)

S. WebSphere Application Development Strategy

integration platferm similar in nature to :%
open deployment platforms (e.g., Apache

Open and Integrated Application Development IBM took a first step towards delivering such a
comprehensive, integrated development
environment in November 2001 by donating its

Business Problem 1 | WebSphere Studio Workbench to the Eclipse
e et et n integrated, open ; . .
FeInabity o oghea boskoForced — WebSphere | | organization and by announcing WebSphere
i evemeae Studio Studio, an development environment built on this

platform. More than six years of investment in

Technology Problem mommmmmammes| | the creation of an open deployment platform to
i IBM to an independent . .
Lack of an open application development | oven sowee organication fully leverage the potential of this open software

feclipse

infrastructure lay before — driven by the overall
WebSphere application development strategy:

1J2EE / Linux)

comprehensive and integrated development environment:
o addressing the complete application life cycle through partnership with industry leaders
o maximizing productivity through team integration and asset and skill reuse
o supporting most programming languages and rapid development technologies
o openness for extension by all vendors and customers
broad middleware and platform support:
o leading operating systems, databases, transaction and messaging systems and application
Servers
o connectivity among these systems and with leading business applications
o support for delivery all application components as services — internally or vial the web
thriving developer community:
o growing pool of reusable assets and best practices
o growing pool of trained skills
o growing network of collaboration and support
leadership in open technologies:
o competition on open standards drives cost down and quality up
o avoids single vendor lock-in and technology dead-ends
o developers desire open standard skills to ensure they remain vital.

13-6

5.1. Eclipse — WebSphere Studio Workbench

Eclipse is three things: a Java toolkit and platform for writing tools and applications, a Java IDE
— a development environment for itself — and an open source project — including tools, that
support OS development.

Eclipse thus provides a set of services shared by all incorporated tools:

Underlying extension philosophy and mechanism are
plug-ins; the goal basically is “everything is a plug-in”.
This mechanism is scalable, allows controlled extension
and provides efficient class look-up: plug-ins declare

common user interface
common help system

interface to local and shared resources through an

open repository interface

common project management and debug facilities

their pre-requisites.

Text
Editor

Resource | |
Navigator | | Content
Outliner
Properties
View | || Bookmark
View
5.2. WebSphere Studio

WebSphere Studio
Workbench

A personalized, extensible
development platform organized via
developer

"Perspectives”

Products built on =
: WebSphere
* | studic Workbench
inherit these

* | capabilities plus
‘plug-ins' built by

Debugging Services

Project Management

e Desktop & Help Frameworks

I

Local & Team (CYS) Resource Management

Aiming at an integrated experience for the
application developer, the workbenche provides
the standard components of any portal solution:
customizable by the programmer there is the
central piece of an editor — specific to the just
active tool. Links, content and application
integration, such as collaboration tools, complete
the workbench portal.

WebSphere Studio — IBM’s development environment itself is a portal-like environment that
integrates best-of-breed tools and middleware from IBM, partners and developers. It is a

Multilanguage, multi-platform environment unifying the development team producing higher
productivity through the composition of modular application services:

Macromedia ColdFusion MX
for WebSphere . _
) IBM Server &
Design patterns, samples Mddeware | ariner Tools
anil hest practices S & Middiawars

mﬁphm
Applization Sorver

0 pen source
Eclipse plugins

Yersata Studio
versata. for WebSphere

WebSphere Studio is available in different — application-nature-oriented — packages, each of
which open to extensions for individual needs.

WehSphere Studio
WehSphere Studio Application Developer
Site Developer

»Two configurations for professional developers of Java & J2EE lications
*Two configurations for developers of dynamic Web applications & sites g L i apr

*Wizard-driven support for open Web standards *Advanced tools for code generation and performance tuning
*«Includes Rational ClearCase LT as a team development option »Visual tools for generating integration adapters & application flows

*Includes a highly integrated WebSphere Application Server test environment | | . Includes a highly integrated WebSphere Application Server test environment
and deployment automation tools and deployment automation tools

Visual builder for service and

Integrated page petformance analysis = application choreography **

ClearCase LT team repository =

“ Integrated WAS EE server
and deployment tools =
Integrated WAS & Tomcat
servers and deploy tools =

¥ pllcatlon 8 o 7y Future: Visua Java
e, Developer D Ul Builder

, 7 Performance profiling
and debugging tools

Developer & Relational DB tools

pSsiServices SUIDDLtock = Integration E dition orly

. . The base Application Developer configuration includes
Q Extensive Web, XML and Rich WebSphere Application Server Advanced Edition as the
Media tools unit test environment

-~ Advanced configuration only.
The base Site Developer configuration, added J2EE tools and wizards
in version &, will include WebSphere Appication

Server Express as the unit test environment

Studio Workbench Site Developer

WebSphere Studio WebSphere Studio
Enterprise Developer Device Developer
*For developers & integrators of host and J2EE-based « For professional developers of J2ME applications for devices and

embedded systems
*Web applications and services - supporting a variety of languages
* The power of WebSphere with the convenience of mobile devices
*Rapid Application Development {(RAD) tools for business developers
=Supporting: PalmO$, PocketPC, BREW, QNX, Linux, OSE

*COBOL and PL/I development of host and distributed assets *Integrated WebSphere Micro Environment and remote test/debug

Remote EICID for host
COBOL & PL/M assets

Enterprise
Developer

Device
Developer

B . EGL Rapid Application
} Development (4GL RAD)

J2ME Teols

Remote device
test and debug

Q Integrated WebSphere

Micre Environm ent

Visual modeling of Web

} applications that include

non-WebSphere components

Application Developer Studio Workbench

WebSphere Studio Site Developer is a set of tools and perspectives for professional developers
of web sites and web applications. WebSphere Studio Application Developer extends the Site
package by adding a robust set of J2EE development tools optimized for professional and team
development. The Enterprise Developer configuration adds the perpectives for remote edit-

13-8

compile-debug of host-based COBOL and PL/1 assets for developers integrating these asssets in

their e-business applications.

The value of WebSphere Studio is enhanced by a huge variety of Partners, such as:

* Dassault CAA - Javalnteractive Dashboand (June 2002

* Instantiations CodeFro Studio™ Wy ebSphere Edition - productivity tools

* Make Technolgies Rapid Development Endine

 Mid-Comp Ovyster - Web application stressteging

* MKS Source | ntegrity Entemrise - Software configuration managerment

* Parasoft Jtest 4.5 Integration Utility - functional test tools

* Rational™ < DE™ Professional w2002, ClearCage Version Control - Design
* Serena Change Manager adapter - Enterprise change managemeant

* Sitraka JFrobe Integration Utility - Perfarmance tuning

* Starbase StarTeam - Change and corfiguration management

w Systinet WASF Developer for Eclipse - Web services development toals
*Telelogic Synergy - Change and configuration management

*Versant endin Tool Integration - Application acceleration

* BrowserSoft Business Component Designer - Business Ohjects and Rules

w CAST Application Viewer for WebSphere - Application mining (Late April 2002)

* Computer Associates All Fusion Harvest Change Manager - Lifecycle management (April 2005
* CommerceQuest Business Process Integrator 3.1 - Business application integration

 Embarcadero Describe Entemrize - LML Design and Development (A pril 2002
* Genuitec EASIE Flug-in Suite for J2EE - JBOSE, Oracle, WeblLogic server manager

* Internwoven TeamSite plug-in for WebSphere Studio - code control repositony
* Legacy.d PERCobaol - EJBs, JavaBeans, Servlets development via COBOL (Late March 20023

* MERANT PV CS Wersion Manager Integration toWwebSphere Studio - Enterprise change management

* Transvirtual X OE - Package management, rapid application development, and portability for ermbedded clients

*Versata Business Logic Designer for WebSphere Studio - Rapid J2EE application development

and development tools

These partners are among an ever growing list of vendors supplying Eclipse plug-ins. It is
significant to note that the leading repository and change management / version control vendors
have delivered or announced support for integrating with WebSphere Studio. Some have already
validated their products as “ready for WebSphere Studio”.

5.3. WebSphere Value Proposition

A comprehensive integrated development
environment is only one aspect of IBM’s
application development strategy — broad
middleware and platform support is yet
another one.

No application is developed without first
thinking about the system on which it will
run. No single system in the world provides
the best environment for every kind of
business application — a successful
application development strategy must take
this into account and allow deployment of
application on best-of-breed “appliance”

Service

integration S i Transaction Servers
Sevars
b \ B
' N

Web Applicati on B

Weh

L ¢ gl
mlemef‘

@D -_—

Presenttion
Severs

Linux Windows AIX zSeries iSeries Solaris HP-UX

i Systems Managen e, Knowiledge Maagemertt
Tholl el Storage & Secury S e & Lolighordion
) Dashase & Dynanic e-business
mammemmm Business intaligence WebSphsre HulAt: PR

SCrvers.

The third element of IBM’s strategy is a focus on a thriving developer community that can
support to development teams and be a source of skills for more easily growing a team as
needed. The following programs are therefore vehemently supported:

WebSphere Developer Domain ibm.com/websphere/developer

o community web site for developers — technical articles, tutorials, downloads, monthly
Technical Journal, WebSphere for Newcomers ...
o WebSphere Developer Domain China expecting 1.5 M page views in 2002

o 1Q02: 3.3 M page views — 89,000 visits to WebSphere Tech Previews — 1400+
registrations for WebSphere Studio Linux Webcast — articles rated “good-excellent” by
1500 readers
e WebSphere Innovation Centers
o centers of technical support where ISVs and Integrators get technical support as they port
applications and develop skills to deploy in customer engagements
o first “virtual” WebSphere Innovation Center launched via partnership of IBM Learning
Services and Computer Generated Solutions (CGS), a worldwide IT services company
e WebSphere Users Groups
o IBM support of websphere.org — independent user group management that links IBM,
partner, and other speakers with user groups in their area
o 17 groups and 1248 registered members added to-date in 2002
o total: 125 active groups and 4300 registered members
e WebSphere Education and Certification
o product education — www.ibm.com/services/learning
o developer certification - www.ibm.com/certify

So, the WebSphere Value Proposition summarizes to:

o lerating time-to-val
* Comprehensive Build-to-Integrate Platform acce‘ © _at‘ g time-to Va_ ue
Improve tim e-to-value by building new integration-ready applications [] maxlmlzlng return—on—lnvestment
which leverage existing software assets
e lowering cost
* Integrated Application Development i e cnabling competive advantage
Maximize ROI and lower labor costs with superior developer productivity P
and the flexibility of a "portal-like" integration of best-orbreed tools " =
Expand business opportuniies . .
S i Deployiseni e Adiniskiaiion and productty with a delivered through a leading open
Lower cost of ownership and minimize startup investrn ent with highly h h Eh&s J EEEM'EMEE development and deployment
productive and fexinle administration, deployment & management servic mm furthe et X
chapier in e-business environment.
* Intelligent, End-to-end Application Clo$ Optimization
Create competitive acvantage and optimize pricefperformance while meeting the changing demands of
ynamic e-business with industry leading reliability, scalability, performance & security

A. Anhange

A.l. References

Within the scope of this paper a lot of subjects could only be touched and not fully elaborated on.
There is further information and reading available on — among other — sources:

/1/ Report 2000: Computer workplace 2000 — an enterprise information portal !
/2] www.eclipse.org

/3] www.software.ibm.com/websphere

/4/ www.alphaworks.ibm.com

/5/ www.ibm.com/developerworks

/6/ www.ibm.com/software/data/cm

/7] http://www-3.ibm.com/software/data/cm/library.html
/8/ www.ibm.com/websphere/developer

/9/ www.websphere.org

/10/ www.ibm.com/services/learning

/11/ www.ibm.com/certify

/12/ http://www7b.boulder.ibm.com/wsdd/zones/newcomers/
/13/ http://www.devx.com/dbzone/

13-10

A.2. Abbreviations

Acronym Description

API Application Programming Interface
ASP Active Server Page

B2B Business-to-Business

B2C Business-to-Consumer

B2E Business-to-Employee

C3IL Communication, Command, Control, Information & Logistics
CGM Commercial/Governmental/Military-of-the-Shelve
CGS Computer Generated Solutions

CMS Content Management System

CRM Customer Relationship Management
DB2 Data Base 2

DBMS Database Management System
DHTML Dynamic Hypertext Markup Language
DRM Digital Rights Management

ECM Enterprise Content Management

EIl Enterprise Information Integration

EIP Enterprise Information Portal

EJB Enterprise Java Beans

EMMS Electronic Media Management System
ERP Enterprise Resource Planning

GIF Graphics Interchange Format

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrate Development Environment
IDS Informix Dynamic Server

IMS Information Management System

ISU Industry Solution Unit

IT Information Technology

J2EE Java 2 Enterprise Edition

J2ME Java 2 Micro Edition

JDBC Java DataBase Connect

JPG JPEG file interchange format

JSP Java Server Page

LOB Line of Business

ODBC Open DataBase Connect

QoS Quality of Service

RAD Rapid Application Development

ROI Return-of-Investment

TEC Technical Expert Council

TSM Total Storage Management

UDDI Universal Description & Delivery Information
WAS WebSphere Application Server

WAS EE WebSphere Application Server Enterprise Edition
WCM Web Content Management

WWW World Wide Web

XML eXtended Markup Language

13-11

A.3. About the Author

Margarete Donovang-Kuhlisch, Masters Degree in Mathematics & Computer Science, works as a
consulting Client IT Architekt for IBM Germany, Public Sector, SSU Defense in Bonn,
Germany. She furthermore is elected member of IBM’s Technical Expert Council (TEC) for
Germany, Austria and Switzerland. Her main work area is the architecture and the solution
design and project management within the military application scope C3IL. She can be contacted
by telefone +49-228-881-435 or electronically at mdk @de.ibm.com.

This page has been deliberately left blank

Page intentionnellement blanche

14-1

. Click here to view PowerPoint presentation; Press Esc to exit .

Evolvable Web-based Applications with J2EE

Mark Vigder / J. Howard Johnson / Mark Northcott
Institute for Information Technology
National Research Council
M-50, Montreal Rd.
Ottawa, ON, K1M 2A4
Canada

{mark.vigder | howard.johnson | mark.northcott} @nrc.ca

1 Introduction

Modern software systems are increasingly being implemented as widely distributed Web-based
applications. To support such systems, a number of competing commercial architectures,
technologies, and standards have entered the marketplace including the J2EE standard from Sun
Microsystems [??] and the .NET standard from Microsoft [??]. These standards not only provide
an API through which services can be invoked but also have implications on the design,
construction, maintenance, and evolution of software systems.

In order to evaluate the capabilities of these platforms, the NRC has undertaken a project to
rewrite an internal application using the J2EE technology. The application, a distributed Web-
based groupware program, was successfully developed and enhanced over the last few years [?7].
Unfortunately, as the application has grown the evolution and management has become
increasingly effort intensive. Evolution of the software has caused problems in the following
areas:

e User functionality. User functionality causes problems for two reasons. First, the new
functions are being requested from users to satisfy more of their needs. As the software has
grown, adding the functionality has become increasingly difficult. Secondly, the software is
being used to support a number of disjoint and diverse user communities. Because the
requirements of these communities differ, multiple versions of the software are being
supported. This multiversion support has greatly increased the maintenance effort required.

e Access control. The Web-based system has strict requirements for setting policies for
controlling user access to system resources. Within the different user communities these
policies can vary considerably. Moreover, these policies change over time and in some cases
can be delegated. The current version of the software requires significant tweaking to set or
change the security policies for any particular user or group, with many of the security policy
features configurable only through changes to the source code. With the diverse user
communities, and the frequent changes to the policies within a community, this has resulted
not only in a great deal of maintenance effort, but also in the possibility of errors in policy
implementation.

e Scalability. As the system has grown the user base has grown along with it. This has put
strains on all system resources resulting at times in degraded performance. The current
version of the system is limited in how large it can be scaled without performing a complete
overhaul of the software design.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

14-2

e Portability. In order not to restrict deployment options, it is desirable to have the system be
portable to many different environments. This includes, for example, executing on a different
OS, with different databases, and with different Web servers. Within the current application,
significant effort is required to port to any new platforms.

In order to address these maintenance and evolution problems, the software is currently being
redesigned using the J2EE platform. With J2EE, organizations are committed not only to
developing to a particular framework within which the applications execute, but are also
committed to an architectural model on which their software must be based and a process model
with which software is constructed and evolved. Although these models are neither bad nor good,
organizations must recognize the implications of these models in order to make effective use of
the standard.

The J2EE standard embodies not only an execution platform, but also has implications on the
development process. Well-defined roles are explicit in the J2EE, enhancing a team development
approach and a separation of concerns. Among the roles and responsibilities are:

¢ (lient side developer responsible for the user interface and client side functionality.

¢ Business logic developer responsible for the OO data modeling and developing the business
logic for the enterprise.

e Application assembler responsible for composing the programmatic elements into a
distributable application, defining database relationships, transactions and queries, and
identifying security roles and access rights.

e Deployer responsible for mapping the application elements to the local environment, database
and server management, and performance and scalability.

Our objective is to try to mitigate some of the problems identified previously by leveraging the
capabilities and strengths of the J2EE platform. In redesigning the system to the J2EE standard
we have attempted to utilize these roles to architect the system in a way that maximizes the
evolvability of the system. With the prototype, we are performing experiments to determine the
level of effort required to implement the different maintenance and evolution activities, and how
well the J2EE platform handles issues such as security and scalability.

This paper will summarize the information gathered to date on our successes and failures in
building an evolvable and maintainable system with J2EE. The strengths of J2EE will be
identified, as well as areas where we have found it incapable of solving our problems.

2 The application

The application we are developing as our prototype allows users to submit documents, and for
committes to analyze and review the documents. Strict access controls are required to restrict the
access rights of users to submit, modify or view any of the information within the system. We
have used it, for example, to review submissions to conferences. Documents are submitted by
authors, and assigned to various committees. The committees are responsible for soliciting
confidential reviews and deciding on any action to take with the document. Users of the system
can assume different roles, at times being an author of a document, a committee member
responsible for making decisions regarding the document, or a reviewer of a document.

The application is required to support the entire document review process and to facilitate the
structured interaction between users. The approach used for submitting, reviewing and accepting
documents must be flexible and tailored for each organization's requirements.

14-3

3 J2EE component technology

The J2EE is a server side component technology designed to make scalable applications by
integrating reusable components. It allows designers to focus on the business logic of an
application without concern to many other issues such as security, concurrency, scalability,
transactions, distribution, and data storage.

The J2EE architecture is a multi-tier model, with clearly identified layers for presentation,
business logic, and data model. These three tiers can be developed and evolved independently of
each other, allowing development of the software to be subdivided between different teams.

A J2EE platform consists of a number of containers within which the components from each of
the tiers executes. Over the last couple of years, many commercial containers have come on to the
marketplace and these are evolving rapidly. Although vendors are free to implement their
containers in any way they want, they must provide the primary J2EE services, including
concurrency, transactions, persistence, distributed objects, asynchronous messaging, naming, and
security.

Once the designers and implementers have developed the presentation and business logic for the
application, the entire application, including client and server side components, are packaged into
a single archive file for distribution and deployment. In order to deploy the application, the local
administrator must install the application within the local J2EE container(s), and describe how the
services are to be provided to the application.

4 Issues for evolution

Evolution issues we wanted to explore included how to port a legacy application to a modern
technology, as well as how to deal with the issues of access control, portability, scalability, and
tailorability. This section discusses what we have learned in each of these areas.

4.1 Security authorization policies

In terms of the application we were developing, the security issue of concern was how to handle
the evolving and changing security authorization policies. We required a means of identifying
who had what access rights to which resources. Moreover, these access control rights had to be
easily changed and modified. The modifications should be done by end users familiar with the
organization’s business processes.

Unfortunately, this is one area where J2EE did not provide all the assistance that we would have
liked. Using the Java Authentication and Authorization Service (JAAS) we were able to provide a
flexible way of authenticating users. Although we used this service to provide a simple password
based authorization, it is designed so that a more secure authorization method can be plugged in.
For example, a smart card, public/private keys, or biometric authorization can be inserted into the
application without modifying the core application code base. In fact these different authorization
techniques can be added by a local administrator without changing any of the code.

The strength of the J2EE model is that it cleanly separates the authorization and access control
policies from the business logic of the system. The business logic contains no security or access
control information. The implementer identifies the different user roles, and their access rights.
This is done using a descriptor file in XML format and a declarative security model. At
deployment time, the local deployer augments this information to describe how these roles map to
local users and groups and what authentication mechanism is to be used.

The weakness of J2EE is that the declarative security model provides only a very coarse-grained
control that was insufficient for our purposes. It is perhaps sufficient for many simple e-
commerce applications where there are well-defined roles, such as customer or shipper, and the

14-4

functions performed by these roles is well defined and constant. For our purposes, however,
where the access control policies depend on many interrelated factors, we could not express the
policies we needed in the simple J2EE declarative structure. Moreover, it was not possible to
easily change the defined policies without redeploying the system.

In overcoming these deficiencies in J2EE, we still wished to maintain the clean separation
between the business logic and the security policies. The business logic and the security policies
must be modified independent of each other. The method we chose to implement the policies was
to provide security wrappers around each of the protected resource objects. Although currently
hardcoded into the code, the wrappers could be modified to load the policies from an XML file
and enforce them during execution. Changing security policies could then be done by modifying
the XML file and reloading it.

The wrapper concept is implemented within at least one other J2EE platform [??]. However, since
it is not part of the J2EE standard, and we required that the application be portable across
different platforms, we had to implement our own wrapper technology in order to maintain
portability across platforms.

4.2 Portability

One of the advertised advantages of J2EE is the portability across multiple platforms.
Applications are packaged in a single Enterprise Application Archive file for distribution.
Deployment consists of installing this archive within the local platform and defining a set of
mappings to the local environment. For our application, the local mappings consist of: mapping
the J2EE object model onto the local database; setting the directory names to allow the distributed
objects to be located; and configuring the local security roles.

In order to determine the effort required to port to different platforms, we deployed the
application on three different J2EE platforms with three different databases. The J2EE platforms
consisted of: the J2EE reference implementation from Sun; Websphere, the commercial platform
from IBM; and JBoss, an open source J2EE platform provided by a commercial organization that
is primarily in the business of selling services. The primary database used was DB2, the relational
database offered by IBM. We also used two smaller relational databases that came bundled with
JBoss and with Sun’s reference implementation.

In porting to these different platforms, we have observed the following.

First, porting the presentation, business logic, and data model, presented few problems. There
appeared to be slight differences in the implementation of the J2EE standard (plus the odd bug in
the J2EE implementations) but this is not surprising with such a new technology and commercial
organizations trying to keep current with their offerings.

Second, the largest problem that we had was porting the application to the different databases.
Every database is slightly different in how it represents the different data types, length of column
names, etc., and these differences required significant effort to locate and fix. On the positive
side, however, none of this effort required reprogramming. The database schema descriptions and
mapping to the object model is all represented within an XML descriptor and the porting could be
done by a local administrator rather than the original application developers.

Other issues related to porting could be handled in a relatively mechanical way and did not
require significant effort.

4.3 Scalability

One of the advantages of J2EE is that scalability is one of the issues that has been removed from
the concerns of the designers and implementers. Scalability becomes an issue related to the
particular J2EE platform and is one of the major differentiating factors between the available

14-5

platforms. Commercial and open source platforms that are successful in the marketplace must
provide a high level of scalability.

Separation of scalability from the business logic and other issues means that the designers and
implementers can implement the business logic of the system with minimal concern for how the
application will be scaled as the user base grows. Scalability becomes a concern that is addressed
by the local system administrator, by selecting and configuring an appropriate platform.
Configuration allows the administrator to provide clustering on the server side and to add
resources as required.

There is currently a huge difference in the licencing cost associated with the different J2EE
platforms, ranging from free for the open source products, to many tens of thousands of dollars
for the commercial products. One would expect that scalability is one of the main differences
between these products. Unfortunately, there does not yet exist any independent benchmarking to
verify whether customers really are getting value for money for the large licencing fees they pay.
We have not yet scaled our application to the level where we have reliable benchmarks for the
different products.

4.4 Tailorability of business processes

One of the major issues we had to deal with in the evolution of the application was the
modification and tailoring of the system functionality in order to satisfy different user groups.
These changes arose for two reasons. First, each user group had somewhat different business
processes and therefore somewhat different requirements. Second, as the system was used, users
better understood their own needs and how the application could support those processes. Thus
they would continually be modifying their own processes and requesting further support. Both
these issues are prevalent within any evolving software system.

Within the current application, any of these changes requires reprogramming and reinstalling the
software.

Within the prototype, we are attempting to address these issues at three levels:
1. Tailoring that can be performed by knowledgeable end-users;

2. Tailoring that can be performed by local administrators and managers with little or no
programming; and

3. Tailoring that can be performed by programmers at each installation.

For maximum flexibility, we are attempting to move as much of the tailoring to the first two
categories, and minimize the tailoring within category three. Not only will this minimize the code
variants being supported, but it also allows people close to the users to decide on the changes
required and to make (and remake) the changes quickly.

Although J2EE and component technologies do not themselves provide full tailoring facilities,
there are features of J2EE that support some levels of tailoring. As well, certain design principles
and patterns that tend to be used assist in the tailoring.

In particular, the presentation layer is well separated from the code that implements the business
process and the data model. Thus, any tailoring that does not involve modification to the process
or to the data model can be done by modifications to the presentation. Since the presentation is
represented as a set of JSP pages with custom tags to access the model, changing the process at
his level becomes relatively easy for someone familiar with the technology and does not involve
changes to the code base. Types of changes that can be made using this technique include:

¢ Any changes to the presentation, including language changes.

¢ Any changes to the business process that involve how and what data is viewed by the user.

14-6

e Changes to the business process that involve reordering of the events associated with the
business process.

Changing the data model is a much more difficult problem, and as yet we do not have a
successful solution. The data model is the definition of the data objects within the system, and
defining the relations between these objects. Ideally, any solution would satisfy the following two
criteria. First, the main code base does not change and updates to it can be easily integrated into
each customized site. Second, the changes do not require significant or complex coding, building
and deployment.

5 Discussion and conclusions

Although we do not yet have the prototype J2EE system in production, we have been able to learn
a significant amount about the technology. One lesson learned is that the J2EE platforms provide
a large amount of infrastructure required to build scalable, reliable server side platforms. The
implementers can focus on the business processes being implemented, and ignore many of the
issues that are handled by the platform. Using this infrastructure comes with a cost, however, and
that cost is the complexity of the technology and the resulting effort required to use it effectively.
We have found quite a large learning curve to bring people (including ourselves) up to speed on
the technology. Granted, much of this problem is due to the newness of the technology and the
primitive nature of the tools engineers use to build the application. As the technology matures,
one can expect the tools and the process to build and evolve these applications to be easier.

In terms of the evolution problems identified earlier, we have reached the following conclusions.

First, in terms of security, in particular implementing access control policies in a flexible manner,
J2EE did not provide the level of support we required. Although we are developing a solution to
this problem, it is outside the J2EE framework. It is likely that future versions of the J2EE
standard will address these deficiencies. However this will present us with a new evolution
problem, namely how to port our application to new versions of an evolving standard.

Second, many of our portability problems were solved using the J2EE standard. Except for some
minor problems with incompatibility with the standard, something to be expected with a brand
new technology, we are able to get the application running on numerous platforms simply by
modifying the XML descriptor file to configure the application and the platform in a compatible
way. Although setting up the configuration files correctly is nontrivial and requires some effort
from a highly trained individual, no change to the Java code was required. Moreover, most
changes to the code did not require changes to the configuration files and would run on each of
the platforms directly.

Third, scalability became a non-issue as far as the designers and programmers were concerned,
and the problem was moved to where it really belonged: the server-side system administrator.
Issues of scalability were a function of the J2EE platform being used and how it was configured.
In effect, this became a problem of the server-side system administrator rather than a problem of
the application designer.

Fourth, tailorability of the user services was perhaps the most difficult problem we were trying to
address. As expected, J2EE did not provide any clear support for tailorability. It does, however,
make a clear separation of concerns between different issues, and this creates a more flexible
architecture for tailoring the application. For example, by having a well-defined presentation tier,
much of the tailoring we require can be isolated to this tier without modifying the business
process model and the data model. Moreover, this layer can be easily modified by someone
skilled in presentation design with little or no programming knowledge.

In summary, we have found that many of the problems we have identified are being addressed by
J2EE. The main problems encountered have been the complexity and lack of proper tools for

14-7

application construction. However, we believe that many of these problems are due to the
immaturity of the technology and will be solved in the near future.

References

[1] Java™ Platform, Enterprise Edition, http://java.sun.com/j2ee

[2] Microsoft .NET, http://www.microsoft.com/net/

[3] JBoss, http://www.jboss.org

This page has been deliberately left blank

Page intentionnellement blanche

L LLLLLLLL LT
: Click here to view PowerPoint presentation; Press Esc to exit .

The Use of Tryllian Mobile Agent Technology in
Military Applications

Ms. Christine Karman
Tryllian BV
Joop Geesinkweg. 701
1096 AZ Amsterdam
The Netherlands

1 Introduction

1.1 TARGET AUDIENCE

This technical white paper discusses version 1.3 of Tryllian’s Agent Development Kit
(ADK). The goal of the paper is to provide experienced Java programmers with a feel
for what they get by using the ADK.

For information with a more commercial angle (e.g. applicability of agents, benefits,
availability of the ADK etc.) please visit our website, www.tryllian.com.

1.2 BACKGROUND

The ICT world is synonymous with change, and to keep up with the speed and
sophistication at which this takes place, appropriate services need to be provided.
These services not only need to be reliable but they also need to be fast, mobile,
flexible, and cross-platform, all aspects of what mobile agent technology has to offer.
Mobile agents can be used as solutions interfaces in various areas such as, e-
commerce, network security and wireless computing.

Commercial services and infrastructures using agent technology will be able to
provide these benefits for their users, allowing them to provide better service along
with creating time and money savings. Flexibility, through extensibility and
interoperability will allow new and legacy systems to benefit.

©2001 Tryllian BV. All rights reserved. No part of this document shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this document, the publisher and author
assume no responsibility for error or omissions. Neither is any liability assumed for damages resulting from the
use of the information contained herein.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Use of a term in this document should not be regarded as affecting the validity of any trademark or
service mark.

Warning and disclaimer

Every effort has been made to make this document as complete and as accurate as possible, but nor warranty or
fitness is implied. The information provided is on andas is' basis. The author and the publisher shall have neither
liability nor responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this book.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

15-2

From a technical standpoint, mobile agents are independent software programs that
can transparently mobilize entire applications or carry out tasks autonomously, and
have the ability to travel across any number of networks or other devices, or in other
words, distributed objects. Agents can therefore transmit information, or request
services from each other, across a widely distributed heterogeneous network. The
current trend towards distributed computing underlines this vision and this principle.

Tryllian’s software provides the necessary elements such as security, mobility,
intelligence and various sets of plug-in behavior. By combining these various sets,
highly modular and scalable systems can be built using agent “building blocks.”
Expanding on them, system integrators can use our development tools to build any
type of mobile agent framework or application they wish.

2 The Agent Development Kit

The kit is made up of different components that work together with each other to form
a developing and runtime environment. First of all below you can see from the
diagram how the architecture and different components work with each. After that we
will give a brief description of some of the most important components of the ADK.

1.3 OVERVIEW

The picture below shows the architecture and main concepts of Tryllian’s agent
world. The various concepts are explained in the following paragraphs.

29l

s
\

20| 9©
@sys S . @ agents J

agent

AFC

room room

Habitat

Agent Runtime Environment

Java Virtual Machine

Two of the most important components of the ADK are the AFC and the ARE. Most
developers will interact with the AFC to construct their agents. The AFC encapsulates
all the functionalities of the ARE and therefore you will normally not need to use the
ARE directly. When you want create functionalities that are not provided by the AFC,
you will then directly interact with the ARE.

1.4 THE AGENT FOUNDATION CLASSES (AFC)

The Tryllian ADK allows application programmers to define all of the components
that are required to build an agent-based application. The AFC is the interface layer
and contains all interfaces and classes needed to interact with the agent-based
elements. All of the API’s that are seen by the developer can also be found here.
An important part of understanding the development kit is the use of the
communication protocols (see below). The ADK provides some easy to use tasks that
make the actual language used extremely simple.

By using the AFC classes, you can:

Create your own agents

Create tasks for your agents to perform

Create messages for your agent to send to other agents

Create your own agent languages

Log your agent’s activities

Use the ADK’s development tools and support software to test your agents

1.5 THE AGENT RUNTIME ENVIRONMENT (ARE)

All communication between individual agents and the system is implemented by the
ARE in the form of messages sent to system agents. The ARE runs on top of the JRE
(Java Runtime Environment). Because of this a habitat can run on any machine that is
running an operating system that supports Java 1.3 or higher

1.6 HABITAT

A habitat is a collection of one ore more rooms that share a common code base and a
Java Virtual Machine. It provides services like the agent execution model, inter-
platform communication, inter-habitat travel, room and agent persistence and the
security model. Agent applications typically exist of several habitats, each hosting a
number of rooms.

1.7 RoOOMS

Rooms are the travel destinations for mobile agents. Agents can only exist in rooms.
Rooms typically provide agents with a registry service where agents can check in and
check out when they enter or leave the room. This is also where agents can advertise
their properties and capabilities, in order for other agents to find them.

Rooms can be created when the habitat is start-up (by specifying them in the habitat
configuration file) or dynamically by agents with sufficient privileges.

1.8 SYSTEM AGENTS

All actions in the ARE are requested by messages sent to a number of system agents.
They are based on the same philosophy as general agents, but they are created and
maintained by the ARE. Developers will interact with agents through messages, this is
the only form of communication that a developer will have with the agents. To make
life easier a lot of this communication has been wrapped and is available through
predefined tasks.
The most important system agents are:
Habitat agent. This agent allows communication with the entire habitat.
Room agent. The room agent is the primary point of interaction for any agent.
Agents can query this agent for information on their environment (rooms,
other agents etc.).
e Transporter agent. The transporter agent is the point of interaction for an
agent that wants to move to another location.
In general systems agents are not mobile.

15-4

1.9 AGENTS, TASKS AND COMMUNICATION

A Tryllian agent consists of two parts: its body and its behavior. The body is the part
of the agent that executes the agent code, sending messages and moving the agent
code over the network. It is the most 'technical' part and least configurable.

The behavior specifies the actions and the knowledge of an agent. It has the form of a
task model: a set of interdependent tasks. Communication between agents and
between an agent and its environment (i.e. system agents) is done by sending and
receiving messages.

3 Development and deployment tools

Clients of Tryllian are building applications and solving day-to-day problems that
provide new facilities that would be hard to deliver without agent technology. So far
an application for on-line diagnosis of telephone switching systems has been
developed as well as an application to bring consumers and suppliers of merchandise
together. Many more applications are conceivable and are under development.

Below you can find a number of the tools that allow a developer to create and manage
agent applications.

1.10 VISUAL AGENT DESIGNER

The Visual Agent Designer (VAD) is a graphical interface for agent building. The
VAD allows you to add pre-defined tasks with the aid of template behaviors or create

them yourself so that you can create custom agents. Agents are directly generated
from the VAD.

Because of the visual nature of the VAD it is not necessary to have any knowledge or
experience with Java to create or modify simple agents. The whole process is done
through the VAD interface relieving you of programming chores. However, if you
want to create more intricate and developed agents, with added functionality and
flexibility, you will also have that opportunity. You can make you own tasks available
using Java and use the VAD as a high level behavior-modeling tool.

) visual Agent Designer =13l x|

File Edit Agent Task Switch

Cl=Ela

ISendiessageSwitch #5054866]4 B
harme Agentidl
askCount 2

indAgentinfosTask

failure

SystemOutTask

rl

[SystemOutTask

BeanSendMessageTask

failure

BystemOutTask

]

[«]

Sendhes sageSwitch [Emssmsres s [*]

| AgentFinder

The Visual Agent Designer

1.11 BUILDING BLOCKS

The ADK provides basic mobile agent functionality and libraries. The kit itself does
not address the needs of specific application types or domains. To this end separate
building blocks are provided: specialized task libraries that can be used in the same
way as the AFC task libraries. You can plug-in any number of building blocks and
even define your own.

Currently building blocks are available for database connectivity, negotiation and
workflow management. The database building block provides a generic JDBC
interface and an agent language that can support SQL-queries. The negotiation
building block provides a mechanism for agents to auction and trade according to
specified negotiation policies. The workflow building block provides a generic
framework to describe all kinds of workflow processes common in organizations and
industry. Agents can use this to automate or monitor these processes. The workflow
building block is specifically targeted for use in combination with the Visual Agent
Designer.

1.12 UNIVERSAL HOME BASE

The Universal Home Base (UHB) is a separate application (not an agent in the
habitat) providing a very user friendly view on a local habitat. The UHB gives an up-
to-date view of the places and agents in the habitat. It is mainly aimed at end users,
providing an aesthetically pleasing GUI loosely based upon Tryllian's previous agent
application called Gossip.

The UHB allows the user and the agents in the habitat to easily interact at a basic
level. The user can request some common tasks (like move to a room, move to the
Tryllian server, die) from the agent using regular GUI methods like drag & drop and
menu selections. Also, the user can create a random message in a dialog box and send
that to an agent, and see the agents reply, and view the properties of an agent. The
agent can request input from the user, which will result in (Gossip-like) balloon-
menus or (Swing) forms popping up.

1.13 REMOTE HABITAT VIEWER

The remote habitat viewer is a more down-to-earth tool that allows you to view rooms
and agents on both local and remote habitats. Not only will you be able to view these
but you will also be able to interact with them. The habitat viewer lets you:

e View rooms and their properties.

e View the agents in a room and their properties.

e Send messages to you agents.
Security settings determine the level up to which you can view and modify these
things.

1.14 MANAGEMENT TOOL

A management tool is provided to locally or remotely monitor and manage habitats.
Whereas the remote habitat viewer focuses on keeping track of individual agents, the
management tool is used for the systems management of one or more habitats.

The management console is the graphical interface between the habitat administrator
and the management tool. It provides the administrator with all the information he
needs in order to manage the habitat (viewing and editing), and for managing room
and agent properties.

15-6

The management tool also comes with a text based command line interface. This
allows one to automate the habitat management using shell scripts.

Monitoring

The management tool provides statistical information, keeping track of the traffic,
number of agents and other pertinent information. The habitat administrator can also
access and search through audit logs. The tool can send alerts on events like a high
room occupancy, high amount of message traffic etc.

1.15 KEYSTORE TOOL

The keystore tool is used to create and manage security certificates. Refer to
chapter 7, Security for detailed information on certificates.

[%Tryllian KeyStore Tool - keystore 3 - |E||1|
Keystore Certificate
developer Certificate >
developerroot .
y General Information
testall :
testhasic Brsion HA09
. Serial Murnber 258037315
testraot alid from 27 maart 2001
tryllianroot alid until 27 juni 2008
Issued To
i Marme a developer
COrganization none
Crganizational Unit none
Country Austalia
State [R=RY
Locality Sydney
Unigue ID
lssued By
Mame developer root cart. + priv. key
COrganization Tryllian B.Y.
(Crganizational Unit serveroals
Cauntry the Metherlands
State Morth-Holland
Lacality Amsterdam
Unigue ID
Signature
Signature Algarithm dsaiithSHA1 |
C.iirmnhlrn Alnnrithin U0 131437227 | |L
1B [

The Keystore tool

1.16 USING THIRD-PARTY DEVELOPMENT TOOLS

One can use any of the popular integrated Java development environments (JBuilder
etc.) for editing, compiling and running agent applications. Details on specific
configuration settings for these IDE’s are provided in the ADK documentation.

4 Agent behavior

1.17 SENSE-REASON-ACT

The developer of an agent has the ability to create the behavior part of the agent,
modeling the behavior on a sense-reason-act loop. This loop is a mechanism that
models the interaction an intelligent entity has with a dynamic or (partly) unknown
environment.

Sense @ Reason @ Act @

Get Heartbeat Execute Task Send Message Move
Message

Sense: observe the environment and model it internally; Reason: update the
internal state and determine a sensible action based on the state of the
environment and the internal state; Act: carry out the proposed action

Agents receive stimuli from their environment and store these observations in their
memory. If and how the agent reacts to these stimuli is decided during reasoning. As a
result of reasoning the agent commits to one or more actions and plans them in his
personal agenda. These actions are then executed during the act phase. Agent actions
can implicitly or explicitly influence the agent environment, for example, by sending
a message into the current room.

The implementation of the sense-reason-act mechanism has been done in such a way
that it does not require you to be an expert in artificial intelligence to program an
agent; knowledge of Java and some common sense should do:

e Sense. Receive an event. An event can be caused by an incoming message
(causing reactive behavior) or by receiving a heartbeat. Heartbeats are the
‘clock ticks’ of the agent scheduler: they activate an agent’s task once every
few milliseconds and can be used to trigger proactive behavior.

e Reason. Internal processing of the agent. Reasoning is done by executing tasks
linked to the sense events. Tasks can be predefined or user defined, either by
composing other tasks or by Java code.

e Act. Cause events. An agent can act and influence its environment by sending
messages to other agents or by moving itself to another room and/or habitat.

1.18 THE TASK MODEL

In some cases, tasks can be executed simultaneously, that is, in no particular order and
with more than one at a time. While one task is being executed, another can be
started, provided it is unrelated to the other task. If you build a price comparison
agent, finding the cheapest price for a CD, you can query five different CD vendors in
parallel.

In other cases, tasks must be executed in a defined order. Firstly, this means that some
task cannot start before another is finished. Secondly, it means that the result of one
task may influence which task is executed next. For example, your price comparison
agent will only present the cheapest CD vendor once all vendors have stated their
prices (or have failed to respond in time).

All of these considerations are dealt with by the task model that is used in the ADK.
The task model describes the way in which the various tasks of an agent are to be
executed by the task scheduler. It behaves differently from the Java code you're
probably used to, and so it requires some explanation. In the following section, the
motivation for the choice for this particular task model is explained. The subsequent
section explains the implementation of the task model.

15-8

1.19 MOTIVATION OF THE TASK MODEL

The task model as we present it is based on three considerations:

1. Tasks should be executed independent of each other as much as possible. This
is called asynchronous processing. The reasoning behind this is that tasks that
don’t need to wait for each other can be executed faster.

2. Tasks should be tailored to process messages easily. Virtually all behavior of
agents is defined in terms of sending and receiving messages, rather than
calling methods.

3. Tasks should be organizable in a robust way. This means that success or
failure of a task can be detected and used as a condition for executing other
tasks.

If you’ve ever built multi-threaded Java programs, possibly communicating by
asynchronous messages, you know that this quickly grows very complex. The task
model relieves you from all low-level implementation, coordination and housekeeping
details, allowing you to focus on functionality instead of debugging.

Furthermore the task model enables you to encapsulate subtasks in a higher-level
container task. This way functionality can be structured hierarchically. With the
Visual Agent Designer one can link and compose an agent’s tasks visually, using an
UML-like representation. This way programming agents becomes much like defining
a workflow.

1.20 IMPLEMENTATION OF THE TASK MODEL

The task scheduler keeps track of which tasks are active and listens for certain events.
A task defines what to do with an event, depending on the state of the task. Each task
has its own internal task state, which can be used to see if the task has started, is
active or has finished. When the task finishes, its state will become either success or
failure. These states can determine which task to execute next or to stop executing
tasks altogether.

5 Agent communication

1.21 INTRODUCTION

Interactive collaboration between agents can make possible the sharing of costs and
economies of scale (‘distributed problem solving’). This is particularly useful in
solving problems that require many varied and complex inputs, or computations that
are divisible into numerous, independent steps. Examples: security monitoring,
diagnosis, and maintenance of a distributed system, or query of a distributed database.

Communication is what makes your agents cooperate and interact. As with every
form of communication, both sender and receiver have to use the same set of rules in
order to understand what the other is saying to them. This set of rules is called a
protocol. It defines what can be sent, how it is sent and what can be sent back in
response.

But defining a protocol is not enough for full communication. For example, the
protocol defines, that a question can be sent and that in response an answer is sent
back. But what is asked and how the answer should be interpreted isn’t defined by the
protocol. This is defined by the language, which gives meaning to the messages
within a certain context.

An agent can use multiple languages for communication in different contexts. For
example, an agent can use a Trade language in communication with another agent,
which has something to offer. After it has sealed the deal, it finds a Transporting
agent and starts communicating with it in a Transporting language to organize
delivery of the products.

1.22 THE FIPA PROTOCOL

There are a number of defined protocols agents can use to communicate, one of them
is the FIPA protocol. FIPA is the standards organization for agent systems, see
www.fipa.org. Agents built with the ADK adhere to this protocol. This protocol is
based upon messages. Messages are sent back and forth between sender and receiver,
and are of a specific performative, all of which are defined by the FIPA protocol.
Example performantives are:

® Request. Ask the receiver to perform some action

e Agree. Tell the sender the request is granted

e Refuse. Tell the sender the request is not granted

e Subscribe. Request notification of state changes in some object of the receiver

by the sender.

The FIPA protocol also defines which messages the receiver can send in response to a
received message, for example a request can be replied with not-understood, refuse or
agree.

Apart from a message performative, messages have a defined internal structure,
containing all sorts of data. For example, who sent this message, for who it is
intended, and why was it sent. This internal structure is defined by the FIPA protocol
as well, in the form of message parameters. Some of these parameters are set
automatically by the ARE/AFC when a message is sent, but others can be sent by the
agent. These agent definable parts are used to implement an agent language. For non-
trivial agents these parts are typically structured using XML.

1.23 MESSAGE TRANSPORT

The receiving agent for a message is specified using an agent address. An agent
address is a Tryllian-specific, globally unique URL type. As the URL fully specifies
the habitat, room and agent ID, this allowing addressing of agents in different
habitats, on different platforms, too. A remote communicator built into every habitat
takes care of such inter-habitat messages. Such messages are received just like intra-
habitat messages - the receiving agent will only notice the difference if it bothers to
check the sender's address.

1.24 COMMUNICATION WITH NON-AGENTS

Several approaches are possible for communication with non-agents. An agent can be
written to provide a specific wrapper service. This agent can be given more privileges
than the default ones if it needs access to resources that are normally prohibited such
as files. Alternatively, it's possible to communicate more or less directly with the
habitat from the outside by sending/receiving messages. Currently this can be done
using the HTTP protocol, using a provided system-agent implementing this
communication service.

15-10

6 Mobility

Mobility is one of the key aspects of Tryllian’s agent technology. Mobility is not only
the ability of the agents to be able to go and do requests or tasks for their owners, but
also the ability to cross over different networks and platforms thereby. In order to
create an agent that is able to move from one location to another one you need:

e Code and state mobility. When an agent travels to another habitat, it is not
necessary for its code to be present on the other side. In that case the agent’s
code is automatically transferred together with the agent's state (data). If the
code is already present just the state is transferred, keeping mobility cost
efficient.

e Code compatibility. Two codebases (e.g. Java classfiles) can be different while
caving the same name (e.g. newer versions). The ARE provides a mechanism
for agents of different codebases to coexist. The advantage is that creating a
new version of an agent does not require the modification of existing
applications or infrastructures.

Code that is shared between multiple types of agents can be stored in a separate jar-
file. The ARE can dynamically load the classes of an agent from multiple jar-files. A
jar-caching mechanism in the ARE reduces the need for transferring code/jars.

7 Security

1.25 INTRODUCTION

This chapter contains an overview of the various aspects involved with agent security
in the ADK. It will show how security is implemented and which mechanisms play a
role in it. For the developer, security is reduced to signing his agent using the
jarsigner tool provided with the Java Development Kit, but he should know how
security works as a whole.

1.26 THE BIG PICTURE

In Java, the security is centered around the ClassLoader. A ClassLoader is responsible
for loading the necessary classes at runtime. These classes sometimes provide
functionality for accessing and modifying the system directly. For applications started
by the owner of the system, this is normally desired, but for applications loaded from
the Internet, like agents, this is not safe. To safely allow agents in your habitat, you
have to define permissions and configure who will get which. In order to decide, who
will get certain permissions and who will not, you have to determine where the agent
originated. This is accomplished by including a certificate with the agent’s jar files.
With a certificate, you can check that nobody has tampered with the agent. You can
also find out who created the agent and who this creator is trusted by. Assigning
permissions to certificates allows the habitat to determine what an agent is allowed to
do when it enters the habitat. The mechanism used by the ARE is similar to the one
used by a browser running an applet.

1.27 HABITAT PERMISSIONS

On the lowest level, you have to decide which actions the ARE is allowed to perform.
The developer usually isn’t allowed to change this, since it is the task of the habitat
manager.

What is important to understand, however, is the fact that the permissions of the ARE
are not related to the permissions of agents. This is because the agents are loaded by
the ARE with a different ClassLoader than the one used to load classes in the ARE.
This is done in order to give the ARE more permissions than Agents will ever need,

15-11

without creating a security breach, and to completely separate agent classes from the
ARE and from other agent classes.

1.28 TRUST CHAIN

The ARE keeps the information about certificates and their origins in the keystore
file. When an agent requests to enter the habitat, the ARE inspect the agents jar files
to see who created it and to check if nobody has changed the contents somehow. It
does this by inspecting the certificate included in the jar files. This certificate contains
the builder of the agent, his public key and an agent checksum. This checksum can be
verified with the public key and the classes in the jar files. The checksum can only be
created with the private key, which is only known to the builder. Although we can
now check, that no one changed the jar files, this does not protect us against any
malicious agent builder. Such a builder can create a private / public key pair on its
own, and sign his harddisk-destroying agent without a problem.

To prevent this, we have to be able to check the integrity of the builder. A certificate
issuer is a trusted authority. In order to become a trusted builder, the builder has to
find an issuer who is willing to acknowledge his good intensions. The issuer does so,
by signing the builder’s owner and public key data with his private key. The resulting
certificate checksum, together with the issuer data, is included in the certificate stored
in the jar files of an agent. When a habitat owner decides to trust an issuer, it stores

the name of the issuer and his public key, which is freely available, in his keystore
file.

When an agent requests to enter a habitat, the ARE inspects the agents certificate to
get the trust chain. It checks if the issuer at the lowest level is known in the keystore
file. If he is, the ARE allows the agent into the habitat and gives it the permissions
associated with the issuer. If he is not, the ARE checks the issuer at the next level.
This process goes on until a match is found or no more issuers are left. In the case of
no known issuer, the agent is denied access.

7.1 SECURE TRANSMISSION

All transmissions between habitats are encrypted using a secure socket layer. This
protects both mobile agents and their messages.

8 Scalability and reliability issues

Tryllian has put significant effort in making the ADK an agent platform that can
efficiently and reliably host tens of thousands of agents. Efficiency relates to use of
system resources like memory, processor time and threads; reliability relates to the
ability to handle peak loads and to recover from system crashes without loosing
agents or their state. The main features are mentioned below.

8.1 SUSPENDING INACTIVE AGENTS

Agents that do not require any proactive behavior for a while, can hint the system that
they can be suspended. An agent is suspended by storing it in a database and
removing it from memory. Logically the agent is still present: other agents still ‘see’
it. But the agent does not claim memory or processor time anymore.

An agent is transparently reactivated when it is sent a message or when a predefined
amount of time has elapsed.

15-12

8.2 BACKUP, SNAPSHOT AND RECOVERY

One can increase the reliability of an agent application by ‘persisting’ the agents and
their state in a database. If the backup feature is enabled the habitat and room
configurations and the agents and their states are stored in a database. Agents are
back-upped each time they move, causing a very low performance hit and requiring
no additional programming. In addition agents can request the habitat to back them up
after an important event (for example completing a transaction). This is called
snapshotting.

On restarting the habitat, be it after a proper shutdown procedure or a system crash,
the habitat, rooms and agents are reconstructed from the database and carry on with
their tasks.

8.3 THREAD USAGE

On most agent platforms the number of Java Virtual Machine threads grows as the
number of agents grows. This seriously limits platform scalability, since large
numbers of threads not only use a lot of resources but also cause stability problems on
all major operating systems.

The ADK solves this problem by having the agents share a thread pool. One can set
the amount of threads used by a habitat to any suitable number, in which one can take
into consideration whether the server is shared by a number of applications or is
dedicated, and the number of processors available.

9 For additional information contact

Tryllian Tryllian USA

Joop Geesinkweg 701 1300 Clay Street

1096 AZ Amsterdam Suite 600

The Netherlands Oakland, CA 94612
tel +31 - 20 - 888 4060 tel +1 - 510 - 446 7776
fax +31 - 20 - 888 4326 fax +1 - 510 - 446 7775
info@tryllian.com info-usa@tryllian.com

www.tryllian.com

16-1

mEEmEEEEEESEssEEESsEESSssEESssEEssssEEsssEEE=EEE,
. Click here to view slide presentation presented in PDF format '

Software Components Development and Follow-up: the
"Design for Trustability" (DfT) Approach

D.Deveaux - J-F.Le Cam - A.Despland
Université de Bretagne Sud - Lab.Valoria
Campus de Tohannic - rue E.Mainguy
56000 VANNES
FRANCE

Email: (daniel.deveaux|jean-francois.le-cam|annie.despland)@univ-ubs.fr

Abstract: When migrating to off-the-shelf software components that are reusable, standardized and certified,
the software industry should cope with two major difficulties: the problem of the software trustability and a
new management who the software is not anymore a product that is delivered once, but a capital that should be
maintained operational and improved over the time. To answer to this difficulties, this article proposes a new de-
velopment process, called " Design for Trustability" (DfT), that is an extension of B.Meyer’s " Design by Contract"
who contracts are better defined and tests are also embedded in the classes material. Based on a documentation
view of the software project, this approach takes in account the developers, project managers and long term main-
tenance needs. Software tools have been developed to support the documentation and controls in the DfT process,
mainly the "S<Self-Testable classes'>" environment (STclass) that supports embedded contracts and self-tests
management in several object-oriented programming languages.

In this paper, after a reminder on DT concepts and a description of the associated development process, we will
describe the STclass development support . The demonstration will be illustrated by tools developed for the
javalanguage (preprocessor, API, documentation and test tools); these tools, based on XML technologies, aim to
an interoperability on several languages. Finally, a study on related works will precede the conclusion.

Keywords:software components, software development process, testing tools, software engineering, design by con-
tracts, embedded documentation, self-testable classes, java, XML
IST topics covered (list with decreasing conformity): (1), (13), (14), (4), (8), (15)

Note: this work is partly supported by the "Conseil Régional de Bretagne" (SCoT project in the ITR program)

1 Trustability, the challenge of the next years

From a general software engineering point of view, the interest of components and reusable software
cannot be disputed, whatever the actual technology used. Still recent reports [Jezequel97a][Weyuker98|
cast a mixed feeling about (re-)using components in mission critical settings; several questions are asked:
how can you trust a component? What if the component behaves unexpectedly, either because it is
faulty or simply because you misused it? Mission-critical systems cannot be rebooted as easily as the
next desktop computer. We thus need a way to know beforehand whether we can use a given component
within a certain context, that is a specification telling what the component does without entering into
the details of the how. This specification would also give something the component could be verified and
validated against, thus providing a kind of contract between the component and its users.

In its conclusions, the Computer Science Brainstorm meeting (IST/FET) in january 2000 has iden-
tified " Guaranteed Software Systems" as one of the three proactive themes in computer science. The
identified objectives are:

e "create and develop theories, languages and tools that support [...] intuitive understanding and
evolution of software components and their aggregation into predictably reliable and secure systems",

'URL: http://www.stclass.org/

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

162

o "build libraries of guaranteed software components, where the guarantee includes intuitive under-
standing and certification of functional behaviour,[...] as well as main-tenability and evolution
capabilities".

In this theme, the main challenges identified by this meeting are to "bridge the gap between intuitive
understanding and precise semantics of software components" and to "certify software components". The
long term answers to these challenges are likely in formal techniques, visual methods and automatic
program generation, but there approaches are only in their infancy and several years are necessary to use
them in real projects development.

The so-called "Design for Trustability" (DfT) process proposed in this paper is a pragmatic approach
that gives a partial but immediate answer to these challenges. It copes with the two major difficulties
when migrating to off-the-shelf software components that are reusable, standardized and certified :

e the problem of the software reliability, especially concepts and methods that allow the developer to
build components whose properties can be specified, proved, verified and certified with a high level
of trustability

e with the growing reuse, software is not anymore a product that is delivered once, but a capital that
we should maintain operational and improve over the time.

On the first point, the "Design by Contract" [DbC]| proposed by B. Meyer [Mey97] is an interesting
way to improve the correctness and robustness level of software developments without running against
the software designers habits. However, several difficulties limit a more general usage of this approach: no
support in usual programming languages, limited support in UML (OCL). To progress in the development
of the contractual approach, our team in collaboration with several others [BJPW99] has proposed to
associate four levels of contracts that are explained in the next section, to a software component.Contrary
to descending formal approaches, DbC supports incompleteness: contracts can be partially defined, they
always improve quality. This property is a benefit in the management point of view, but it is also a
drawback for the trustability goal; to minimize this drawback, we propose to add in the use protocol of
the classes and components not only obvious contracts, but also testing units.

Concerning the second point, it is now manifest that the software production process should be mainly
a maintaining process on the long term comparable to the one used since several years in document
management: the goal of the development cycle is to support the evolution of a software piece (class,
package, component) from a revision n to a revision n+, maintaining consistency with the preceding
states and the rest of the environment. New software pieces should be considered as a special case of this
cycle. Considering software development as documents development allows the project manager to handle
all the material of the software project (textual reports, models, source code) with a better homogeneity
and limits inconsistencies between the kinds of documents and lacks of understanding between the project
actors. A process that identifies all the software project products as documents brings better contractual
relations especially for subcontracting or in the hand of trustees works (works that are made in a company
by employees of another).

The DfT makes use of technical answers that we have identified in the above paragraphs. In the last
years the object orientation have been the main factor to improve software reliability and quality: also
this process is considered only for object oriented developments; it aims, in the future, to support the
software components making. The majority of actual components are built using large class libraries,
therefore a first step is to improve the trustability of classes of these libraries, the raw material of all
software. At this time, our team works to integrate the four contract levels described below in the class
development process; this article mainly concerns the two first levels.

After a reminder on " Design for Trustability" concepts and a description of the associated development
process, we will describe the development support that we have defined to handle it, the self-testable

16-3

classes?. The demonstration will be illustrated by tools developped for the java language (preprocessor,
API, documentation and test tools); these tools, based on XML technologies, aim to an interoperability
on several languages. Finally, a study on related works will precede the conclusion.

2 The "Design for Trustability" development process

For several years, object-oriented design and object-oriented programming have allowed a significant in-
crease of software size and complexity; the main contribution in this domain is the explicit definition
of the "class protocol" (as a java interface, for example) that separates the class usage definition from
its implementation. This approach promotes the definition of a clearly defined customers-suppliers re-
lationship and is the origin of the component concept. Our assumption is that the best trustability
improvement results from the strengthening of the class protocol definition.

2.1 Classes and components protocol strengthening

To be able to use a component or library class, the integrator must trust it: he should know exactly
what the component can do, how it behaves in different environments, what resources are needed, how it
can be tested. To answer to these requirements, components or library classes designers should provide
the most usable and complete documentation and assume that general class libraries and frameworks are
available and reliable. Many tracks are prospected to improve the software trustability: type checking,
formal approaches, design by contracts, testing technic, automatic documentation, static and dynamic
analysis,... Actually, not any technic can bring alone an adequate trustability level. DfT proposes a
pragmatic approach that mixes these different aspects: 1.textual documentation, 2.behavior specification
with contracts, 3.built-in test definition and 4.quality control and assessment.

Documentation — It plays a central role in any engineering domain and also in software engineering.
Documentation of a component must cover several views, and must be up-to-date. One way of obtaining
this is to embed the technical documentation into the source code: this reduces the distance between
the code and the documentation part of it therefore offering the developer the opportunity to maintain
the documentation simultaneously with the code. Finally, extraction tools must be provided to produce
automatically different technical documents addressing the different users of the component. A main
point in documentation is its consistency, in the classes, between the classes and between the classes
and other project documents; to answer this consistency requirement we have proposed the "Docware
approach"[DFF99]in which the source code is considered as a project document comparable to any others.

Design by Contract extended — The DbC approach is now 15 years old [Mey87] but its usage is
very limited because of the proposed contracts expression weakness and the lack of support in many
programming languages. However, this way is very useful to document formally the class protocol and
control it toward its implementation. With Beugnard and al. [BJPW99] we use four levels of contracts
in protocol definition:

e syntactic aspects as defined by interface definition languages (e.g.; CORBA or Microsoft IDLs)
and typed object-based or object-oriented languages. They allow the designer of a component to
specify a) the operations this component is able to perform, b) the input and output parameters
each requires, and c¢) possibly the exceptions that might be raised along the way. Static type
checking is the compile time verification that all clients properly use the component interface,
whereas dynamic type checking delays this verification until run time

e behavioral guarantees (contracts a la Meyer), are boolean assertions called pre-conditions and post-
conditions for each service offered, as well as class invariants. The interests of formally spelling out

2URL: http://wuw.stclass.org/

164

this kind of behavior contracts have been widely documented in the literature [Mey97|. The design
by contract approach prompts developers to specify precisely every consistency condition that could
go wrong, and to assign explicitly the responsibility of its enforcement to either the routine caller
(the client) or the routine implementation (the contractor). A contract carries mutual obligations
and benefits: the client should only call a contractor routine in a state where the class invariant
and the precondition of the routine are respected. In return, the contractor promises that when
the routine returns, the work specified in the postcondition will be done, and the class invariant
will be respected.

e concurrency guarantees: the behavior contracts pretends that services are atomic or executed as
transactions, which is not always practical nor true. The next level of contract consists in specifying
the global behavior of objects in terms of synchronizations between method calls. The aim of a
synchronization contract is to describe the dependencies between services provided by a component
(sequence, parallelism or shuffle). This kind of contract can be observed in entities structure of
[Jac86] or more formally in McHale’s synchronization policies [McH94]. A stripped down version
of synchronization contracts is available in java through the keyword synchronized which specifies
that a given block (or method) should be run in mutual exclusion with other operations on the
same object. While it lacks the expressive power and versatileness of McHale’s synchronization
policies, it is still better than having to play with locks explicitly.

o quality of service statements allows to quantify the expected behavior, or to offer the means to
negotiate these values.

Since they are out of scope of this paper, the two last categories of contracts will be no further
discussed here.The first level of contract is mandatory to make the system simply work, it is actually
well supported by most languages. The second helps the clients know what’s going on in a sequential
context. The first interest of these behavioral contracts is that they provide a semi-formal specification
of the class or component in a shorter and more author independent form as textual documentation. A
second interest of such contracts, when they are run time checkable, is that they provide a specification
against what a component implementation can be tested. A third interest is that this approach supports
incompleteness: for this reason, it is more applicable in real life as pure formal approach that implies a
complete specification definition before transformations application.

Strict test strategy — Behavioral contracts never catch the complete specification, it should be com-
pleted by test material to give trustability in the software. In precedent articles [DFF100][JDLT01],
we have proposed a triangle view for designing. The class or component is viewed in three respects:
class specification through method signatures and contracts, class test and class implementation. Indeed,
due to the life cycle and possible evolution (through maintenance) of a software component, an organic
link must be maintained between the specification, the test set and the chosen implementation. Our
methodology is based on a integrated design and test approach for OO software components. Classes are
considered as basic unit components. Test suites are defined as being an organic part of software OO
component. Indeed, a component is composed of its specification (documentation, method signatures
and invariant properties), one implementation and the test cases needed for testing it. To a component
specified functionality is added a new feature which enables it to test itself: the component is made
self-testable.

Quality assessment — This control should be made at each step of the development: following Mitchell
and McKim [MMO02] for the contracts, rules should be identified for prototypes definitions, contracts,
test units writing, ... and tools (static an dynamic analyzers) should be written to control these rules
every time during development. Based on this view, it is then the class implementor’s responsibility to
ensure that all the embedded tests are satisfied. So, one can estimate the test quality relatively to the
specification, a test sequence and a given implementation. As long as the quality level is not reached,
the test sequence must be enhanced. So when used, a self-testable component may test itself with a
guaranteed level of quality. This quality level could be defined under several ways (such as classical

16-5

definition-use coverage): we have proposed the mutation analysis|[LDJ99][Off92] as a relevant way for
analyzing the quality of a the test sequence. Quality measurement is thus defined based on the fault
revealing power of the test sequence when systematic fault injection is performed. Once such a test
quality estimate is associated to a set of functionally-equivalent components, the designer can choose the
component with the best self-test ability.

2.2 The "project document" development cycle

In our point of view, all project components (texts, UML models, classes sources, ...) are considered as
"project documents" and are managed like documents in electronic document management applications:
each project development activity can be viewed as a project document evolution or transformation, the
same life cycle can be applied to all project documents.

v

PrDoc _’/Jmﬁg\ MRS modification Re uirments Specification
Va ll . 'DCM DCM pocument Content Modification
: R oy 4 IDV 1solmed Document Validation
. ” L WOV With (thers Validation

Prioc -—_ \ Ibv
V neld wepv‘_,/

‘

-
. Cliems or depends modificarion

Figure 1: The project document life cycle

It is possible to apply to Project Document an unique development cycle shown above. This life cycle
is primarily a maintaining cycle (it permits the transformation of a "PrDoc" from version n to version
n+1) and it considers that the document is in a stable state after each transformation. We propose to
split the validation of the "PrDoc" into two distinct phases:

e an internal validation phase (IDV = Isolated Document Validation) which assesses the conformance
with its specifications,

e an integration validation phase (WOV = With Others Validation) that verifies dependencies with
the rest of the project.

To answer the first item (IDV) the project document should be self-contained: it has to contain all the
information required to control its integrity, validity and specification conformance. For a program code
document, this information consists on three aspects: textual documentation, semi-formal specification
(contracts) and test cases.

Our goal is to minimize the WOV phase: this step is much harder to manage and sometimes, in case
of reusable components or library classes, it is impossible to link the component with all its clients that
are unknown from developer. The quality and validation effort should be concentrated on DCM and IDV
steps, based on a trustable definition of the protocol; this effort is based on next rules:

e complete definition of methods protocol,

e text comments with full respect of style rules (as Sun’s "java Style Guide"),
e contracts definition following rules (as Mitchell rules),

e test definition on the form of small built-in test units,

16-6

e code implementation under control of test units (as in "eXtreme Programming" approach),
e validation of written classes using review, static analysis and validation testing.

2.3 The DfT process

The creation of a new class is only a special case of this cycle, the version 0 is only empty, but the rest
of the process is the same for all evolutions:

1. Modification or initial specification: this specification can be informal (text), semi-formal (UML
model for example) or formalized in a specification language; at this step, goal and principles of
the class are explained and public methods are identified..

2. Creation of the class skeleton (for creation) or add new methods prototypes (for evolution): here
method prototypes are defined (names and types of methods and arguments) and documented
(textual comments like javadoc). This state can be manually written or generated by a tool from
an UML model.

3. Contracts definition: class invariant, method pre- and post-conditions are defined following
Mitchell rules relative to methods classification (modifiers, pure and derived accessors). At that
time, a complete user documentation can be extracted and diffused to programmers of client ap-
plications.

4. Construction of the test scenario: it is made of sequences of small test units. Often this defini-
tion implies improvements in the interface (prototypes and contracts) of the class: a first "cyclic
refinement" is also applied on steps 3 and 4. At this stage, the class should be compiled without
errors, but method bodies contains nothing.

5. Code implementation: as in eXtreme Programming process, the code development is made in
very short cycle with frequent tests; as soon a method code is written, the corresponding test units
can be launched in verification mode (white box testing) to exercise this new code. This step
introduces a second "refinement cycle" over 3, 4 and 5 steps.

6. For the validation of the class or component the full test sequence is launched in validation mode
(black box testing) to confirm the conformance to the specification. A testing report is generated
and final use documentation can be extracted.

7. Quality control can also be made on the final product using peer reviews, static analysis (statis-
tics on distribution of codes, contacts, tests and comments, for example) and some other quality
measurement as mutation index described below.

This process brings up the "documentation per anticipation" where each new concept should be
explained before its use or implementation; it also presents two "refinement cycles" that progressively
improve the global quality of the production : the test scenario writing point out lacks or inconsistencies
in class protocol or contracts, each error detected during the implementation (5) implies corrections in
the tested code, in the contracts or in the test itself. All these cyclic subprocesses improve progressively
the quality and the robustness of the class protocol (interface, contracts and tests) and implementation.

On the quality control — This point is a hard point in software engineering; very few objective measures
can be used to assess a software. In collaboration with several other research teams, we are working
to identify such measures: with Y.Le Traon (IRISA’s Triskell project) we have proposed to use the
mutation test to evaluate the quality of the protocol definition (contracts and test) against the variation
of implementation. For this purpose, mutants are generated from a validated class, with errors injected

16-7

in the code of the methods: if the error is detected by the test, the mutant is killed, otherwise it remains
alive and should be analyzed to detect why the error has not been detected. It is also possible to correct
contract or test unit. This test allows the computation of an index (ration of killed mutants to total
generated mutants) that expresses the robustness of the protocol. A tool (JMutator? downloadable on
the STclass site, see below) has been developed to automate this quality control for the java language.

For several years, this approach has been tested in academic applications (research prototypes, teach-
ing uses), we are working now to adapt it to real life through a technology transfer project, SCoT*
(French acronym for "Conception for Testability Support") with the GICAB (Groupement Informatique
du Creédit Agricole Breton), a bank software development service, and the Triskell team from IRISA
(INRIA/CNRS at Rennesl University). The goals of this project, that will be completed at end of year
2002, are to promote the self-testable classes use with a more efficient and robust support tool, and
experiment the DfT approach in real development practice.

3 Self-Testable classes (in Java)

To support the above-mentioned DfT process, we should have class document that contains all the infor-
mation relative to each class:standard code and technical comments, but also links to design documents,
contracts and test material. This is the "Self- Testable Class" concept that we have defined in 1999 and
is distributed under the name of STclass®. As an example, we expose here the principles of our STclass
environment for the java language.

Smart comments: because there is no standard support for contracts in java, we have chosen to
embed the contracts and test units into java comments. In this way our classes remain independent
from any specific tool, although they include contracts: it is still possible to compile the classes with
any standard java compiler. Nevertheless, if we want contracts to be verified at runtime, we need
a pre-processor that will extract the contracts and convert them into java code. The javacst pre-
processor generates a modified (instrumented) class, which in turn may be compiled with any standard
java compiler. The test units are written also into java comments and recognized by the pre-processor
which transforms them into java methods. Additionally, the pre-processor generates a main() method
so as to make the class really self-testable: running the class will launch its test units.

In the follow-up we will use a very simple, academic example, the Set0f Integers class. This example
is developed in more details in the "STclass programmer’s guide"8[LC02]. Let us make a short intro-
duction to our SetOfIntegers class. As you may already have guessed, an Integer may only appear
once in the set (otherwise it is not a set any more). One may add an Integer to the set, remove an
Integer from the set, check whether the set is empty or not, whether an Integer is in the set. Also the
SetOfIntegers class offers some services that are useful when manipulating sets: checking set equality,
performing set union, set intersection, and set subtraction.

3.1 How to write contracts

Let’s have a look at a service of the class that allows to add an Integer to the set. The figure 2 presents
a more precise definition of this service who contracts are defined in javadoc comment.

The javadoc comment of the method starts classically with a description of the method (lines 2 to
9). The following tags are STclass-specific: the @pre tag allows to define a pre-condition, whereas the

3URL: http://www.stclass.org/java/jmutator/
“URL: http://www.univ-ubs.fr/valoria/scot/

SURL: http://www.stclass.org/

SURL: http://www.stclass.org/java/progGuide.html

16-8

[1] /**

[2] * adds an element to the set.

[3] =*

[4] * If the argument is not in the set yet, it is added

[6] * to the set. This is a command: it changes the object
[6] * but does not return any result.

[7]1 =

[8] * @param element The element to be added to the set.

[9] =

[10] *@pre element != null // argument not null

[11] *@pre 'has(element) // argument not already in set
[12] *@pre !'isFull() // current set not full

[13] =

[14] *@post has(element // argument now in set

[15] *@post size() == size()@pre + 1 // size increased
[16] =/

[17] public void add (
[18] Integer element // element to be added
(191);

Figure 2: The add() method protocol

@post tag starts a post-condition definition. There is a third tag, used in class javadoc comment, for
defining a class invariant: @invariant. The syntax is the same for these three tags:

@<tag name><condition expression>// <condition description>

So the add() method has three pre-conditions (lines 10-12) and two post-conditions (lines 14-15). A
method may be given any number of pre- or post-conditions. In the same way, a class may have any
number of invariants. For example, line 11 says one should not try to add an Integer that is already in
the set. If this second pre-condition is not respected (by a customer of this class), one should not expect
that the method works properly. When the contracts are enabled and checked at runtime, a pre-condition
violation leads to an interruption of the execution: either the client of the method call does not respect
the contract, or the contract itself is wrong. Anyway a fault is clearly underlined, and needs to be fixed.
Beside, the second pre-condition makes a call to the has() method; this call is performed on the same
instance.In the same way, the pre-condition at line 12 makes a call to a isFull() method, which was
not planned until now. This is typically something that will happen while using contracts: because you
have to define thoroughly your class services, you are able to complete these services so that the class
may work fine in all cases. This pre-conditions clearly tell the class clients the conditions in which they
should call the add() method. Otherwise, it is clear for the programmers that they should not include
unnecessary tests into the method code: no need to check whether the parameter is null, or whether the
parameter is already in the set, ... Now let’s have a look at the second post-condition (line 15): it uses
a special @pre tag for ensuring that the size of the SetOfIntegersafter the execution of the method is
equal to the size of the set before the method call, plus one. This construct has the same semantic as the
0ld statement in eiffel language and is necessary to express completely contracts. As in UML-OCL
and R.Kramer’s iContract tool [Kra98|, we have also added an implies operator and set expressions
(forall and exists) that improves the contracts expressiveness.

Remember that the contracts will be used as a specification documentation by the clients of the class.
This is the main reason why local calls to private methods should be avoided: the contracts should be
defined in terms of public services. The javacst preprocessor will complain if private services are used
in the contracts. As a conclusion to these first contracts:

e the documentation for the method is written, it has never been so precise and concise; it will be

16-9

used by the programmers as well as by the clients of the class
e two more services (isFull() and size()) have been added to the class to give necessary information
to express contracts

Contracts are inserted into the javadoc comments: this allows to have them automatically included
into the API documentation. The STclass environment comes with an extension of the javadoc tool,
which allows to have contracts included into the API documentation.

3.2 How to write test units

As in Junit proposed by Beck and Gamma [BG98], tests are organized in small test-units and a testing
environment is provided by a small library (STclass. jar). Test units are written into simple comments
at the end of the class file, using some more STclass-specific tags as shown in figure 3 (Note: the syntaz
presented here is relative to version 3.xx of the environment; in 4.zx and later, a lightly different syntax
allows to structure test units in test cases and test suites).

/* Test definition
* Qtcreate SetOfIntegers()

Qtunit TST_add1() : adding elements
Add two elements to an empty set and verify its state

Qtunitcode

{

Integer one, two; // elements used for this unit
one new Integer(1l);
new Integer(2);

two

*

*

*

*

*

*

*

*

*

*

* testCheck("the set is empty: ", isEmpty());

* testMsg("set empty: " + isEmpty());

* testMsg("add the element " + one);

* add(one);

* testCheck("set not empty", !isEmpty());

* testMsg("set not empty: " + !isEmpty());

* testMsg("set contains " + one + ": " + has(one));
* testMsg("size equal to 1: " + (size() == 1));

* testCheck("string image equal to {1}",

* toString() .equals("{1}"));

* testMsg("string image equal to {1}: " +

* toString() .equals("{1}"));

*
*

Figure 3: A test-unit example

Three more STclass-specific tags are used for writing test units:

e the Qtcreate tag is followed by the java code for building the object to be tested. Most of the time
it will be a call to the constructor of the class. Sometimes it may be a call to a specific method:
getHandle () when dealing with a singleton for example.

e the @tunit tag starts a test unit; The tag is followed by the name of the test unit: each test unit
has a name, which will allow to call and launch it individually by its name.

e the @tunitcode tag starts the code of a test unit.

Test unit names are prefixed: TST_<name> means it is a validation test unit,TSTV_<name> means it is

16-10

a verification test unit. Validation test units are supposed to test only public services: these are the units
that have been written by the class designer along with the contracts of the public services of the class.
Verification test units are written and used by the developers to test the private services of the class.
Both units are used while writing the internal code for verification purpose, whereas only validation test
units are used for checking that the class conforms to its public protocol in the final validation phase.

Test units are expanded as regular methods: the code inside test units is standard java code who
the class under test methods are called as local methods., Some useful routines are available for common
tasks; in the above example we have used:

e testMsg() displays a formatted message (developers often like to see their tests running);
e testCheck() defines an "oracle" in both textual and conditional forms; if it is not verified, the
execution is aborted with display of the identification of the oracle.

In the presented example, all properties displayed with testMsg() are not checked with testCheck().
Indeed, during test contracts checking is activated and post-conditions are checked at end of each method
execution: it is not necessary to repeat this check by an explicit oracle in the test-unit. Also most test-
units contain only simple method calls, if they are complete, the contracts provide all the necessary
oracles.

To launch the test, on only has to launch the instrumented class itself. Test support provides many
options, especially statistics on methods calls and the possibility to launch only one or several test-units.

3.3 Testing and integrating self-testable classes

Contracts have an interesting feature: they make tests very easy to write! Once the protocol has been
specified in terms of contracts, testing it is equivalent to using it with contracts activated. This approach
is not only for individual class testing. For integration tests, activate contracts for the component to be
integrated, place the component in its environment, and use the service. A contract violation may have
several meanings:

e cither a fault remains in the protocol itself (erroneous contract),

e or there is a fault in the implementation (post-condition violation = bug that has to be fixed by
the provider of the class),

e or the client of the protocol is not conforming to the pre-conditions.

Theoretically, for a component that has been thoroughly tested before the integration phase (using test
units), there should not be any remaining error in the protocol itself, nor in the implementation. Anyway
the interesting feature of the STclass environment is its ability to underline the fault responsibility: you
instantly get the fault location, the reason why the fault happened, and the appropriate action to be
taken. This saves a lot of time while improving the trustability of the components.

3.4 Contracts, tests and inheritance

Object-oriented languages support mechanisms such as inheritance and interfaces implementation. The
STclass environment for java includes support for these mechanisms, which again will help class designers
and developers.

Defining a java interface is the same as defining a protocol between a service provider (implementa-
tion) and a service client. Contracts are perfect for defining protocols, so it is natural to define interfaces
using contracts. These contracts will be automatically inherited within implementations, which ensures
that implementations are fully compliant with the protocol. The same goes for class inheritance: the con-
tracts that are defined in the mother class are inherited into its children. This ensures coherence within

16-11

the class hierarchy and avoids contract duplication. In the same way, it is possible to define test-units
in interfaces and mother (standard or abstract) classes and reuse it in child class. So an interface can
provide a validation test for all its implementations

4 A new, XML based, tools architecture

Our definition of contracts and tests in the comments of the classes is a form of Aspect Oriented Pro-
gramming, contracts and tests are views on the class that are expressed in a different formalism. Some
authors propose to manage the contract and test support with programming tools like AspectJ; we think
that is not the good level, in several other articles [DSDKO00][DLO01], we have proposed the definition of
an intermediate model between the UML model and the source code. This model, now named O2CM
(Object Contract and Code Model) and implemented in XML, is dedicated to support source engineering
activity: documentation, metrology, version control, refactoring, ... The center of the model is a DOM
tree that represents an abstract syntactic tree (AST) that takes in account also the structured comments
from the classes and the classes relationships (inheritance, composition, association). The principal ad-
vantage of XML support is that we can reuse the large public domain XML libraries to manage parsing
and transformations.

The two tools mentionned in this article (javacst and JMutator) are based on this model and share

the same architecture.
trans-
former

y

O
D aM
@ 8 - @D

02CM

Figure 4: Generic architecture for java to java transformation tools

The base of this architecture is a pretty-printer that a) parses the source (here in java) with a dedi-
cated parser based on antlr, b) constructs an internal AST representation in DOM/XML, ¢) generates
a pretty-printed source through a XSLT transformation. A plug-ins mechanism allows to connect tools on
the DOM between the a) and c¢) operations; these tools can be transformers like javacst and JMutator,
but also editors, assessment tools or documentation extractors.

5 Related works

Our DfT approach does not really propose new concepts, but a coherent and pragmatic approach that
uses results of numerous research domains: efficient use of contracts, testing applied to object-oriented
approach, software development process, mainly "eXtreme Programming", embedded documentation
technics and XML technology.

Our approach of DbC was largely inspired from Eiffel, UML-OCL [CR99]and first java implementa-
tions like iContract[Kra98|. From Eiffel we have used the concepts of pre-, postcondition and invariant,
the 0ld mechanism and the idea that assertions are written using programming language’s (java in
this paper) expression syntax as much as possible, thereby avoiding large amounts of special-purpose

16-12

logical notations. Another difference from Eiffel is that we have extended the syntax of logical expres-
sions with quantifiers and other constructs (implies, forall, exists) that have been proposed by OCL
and iContract and are needed for logical expressiveness; at this stage, these functionalities are fully
operational in our environment, but are not efficiently implemented. Our contract model is however
planned to be extended to synchronization and quality of service contracts. For the formal description
of the behavior of methods, it represents an intermediate step between the simple use of a programming
language and the use of a real specification language like Z, Larch or VDM [GH91]|[|Gut91]; we hope that
programmers which use now STclass environment will become in some years users of practical specifica-
tion languages like JML that is an other step to simplify the programmers access to formal specification
[LBRIS|[LLP*00]. Our contracts are easier to write as full formal specification and can be incomplete;
however this facility implies that tests have to be written together.

Concerning the test, very few of the numerous first-generation books on analysis, design, and imple-
mentation of object-oriented software explicitly addressed V&V issues. Despite this initial lack of interest,
testing of object-oriented systems is now receiving much more attention (see [Bin96| for a detailed state
of the art). Binder [Bin94|details the existing analogy between hardware and OO software testing and
suggests an OO testing approach close to the built-in-test and design-for-testability hardware notions
[Wey98|. In our proposal, we go even further than Binder suggests, and detail how to create self-testable
OO components, with an explicit analogy with the built-in-self- test hardware terminology. As Beck’s
and Gamma’s JUnit|[BG98|, our test strategy is actually very pragmatic: we propose a structure that
makes easy the small testunits writing and invocation. The main differences of our approach are on the
one hand that contracts make easier, shorter and more readable the test definition, and on the other
hand that the test-units are executed as methods of the tested object, which makes possible to realize
white box verification testing. Self-test brings the guarantee that tests can not be separated from the
other class material.

Besides, the test problem may be seen from a pragmatic point of view, and some simple-to-apply
methodology can be found in the litterature, which are based on an explicit test philosophy [BG98|. In
this paper, the proposed methodology is based on pragmatic unit test definition from the class protocol
specification and aims at bridging the existing gap between unit and system dynamic tests. The no-
tion of structural test dependencies has been developed for modeling the systematic use of self-testable
components for structural system test. Moreover, an original measure of the quality of components has
been defined based on the quality of their associated tests (itself based on fault injection). For measuring
test quality, the presented approach differs from classical mutation analysis [OPTZ96],[MO91] as follows:
a reduced set of mutation operators is needed, oracle functions are integrated to the component, while
classical mutation analysis uses differences between original program and mutant behaviors to craft a
pseudo-oracle function.

The DIT process has many relationships with the "eXtreme Programming" (XP) proposals [Bec98|[Bec99].
Like XP, our starting point is the programmers habits and many answers are the same: test definition
before coding, very short development cycle with immediate test of small pieces of code, work in small
teams with different roles on each programmer (contract specifier, test writer, programmer, reviewer,...);
the acceptance by professional programmers seems to be good in the first experiences. But fundamental
differences distinguishes DfT from XP:

e DfT uses as starting point analysis and design models expressed for example with UML and the
actual evolution of DfT cousists to bring up contracts and test design at this analysis and design
level,

e the class protocol is defined at the beginning of the development process and is the result of a
structuration activity made during the design step, the modifications of this protocol are small in
the refinement cycles and concern only the contracts expression and the development rules respect,

e the contracts definition is the main difference: each new contract definition improves mechanically

16-13

the quality of the class and brings the programmer to an higher abstraction level; this improve-
ment can be accumulated over the long time, during all the life and maintenance of the software
component.

6 Conclusion

The DfT and the STclass environment give a real support to improve the trustability of object-oriented
software. This approach amplifies the Meyer’s maxim "divide to reign", developing class level controls
and making easier software integration. Simplicity and usability have been emphasised, program sources
remain compatible with standard compilers and JVM: the environment is well accepted by programmers
that dispose of a structured framework to create and maintain classes and packages. This approach is also
helpful for project managers and project owners because it assimilates clearly the process as a documents
work-flow and identifies checking points who quality assessments can be made. The pragmatic way that
we have used is not opposite to formal and model transformation approaches that are under research;
it has the great advantage to give an immediately usable result and to prepare actual programmers to
more structured working methods.

The tools that support DfT are freely available under GPL license and are now usable for real
life developments: in the frame of SCoT project, we are carrying out an experiment on a 100 classes
middleware library. This tools have also validated the idea that XML can be a model support for
software engineering and our architecture is very efficient to implement new tools.

At this time, many fundamental and applied research are to do:

e to extend contractual approach to synchronization and quality of service,

e to define better rules for interfaces and contracts definition and tools for static or dynamic assess-
ment of this rules,

e to integrate tools in well used GUI as VisualAge or Eclipse

Acknowledgements: The ideas developed in this article come from many discussions with J-
M.Jézéquel and Y. Le Traon from Triskell project”, P. Collet and R. Rousseau from I3S Lab®. Many stu-
dents one’s share the STclass tools development, especially M.Salvat, S.Florentin, G.Falcini, A.Legarec,
T.Lecoq and A.Ysvelain

References

[Bec98] A. Beck. Extreme programming: A humanistic discipline of software development. Lecture Notes in
Computer Science, 1382:1-77, 1998.

[Bec99] Kent Beck. Extreme Programming Explained: Embracing Change. Addison-Wesley, 1999.

[BG98| K. Beck and E. Gamma. Test-infected: Programmers love writing tests. Java Report, pages 37-50,
July 1998.

[Bin94] Robert V. Binder. Design for testability with object-oriented systems. Communications of the ACM,
37(9):87-101, September 1994.

[Bin96] Robert V. Binder. The FREE approach for system testing: use-cases, threads, and relations. Object,
6(2), February 1996.

[BJPW99] Antoine Beugnard, Jean-Marc Jezequel, Noel Plouzeau, and Damien Watkins. Making components
contract aware. Computer, 32(7):38—45, July 1999.

"URL: http://www.irisa.fr/triskell/
SURL: http://www.i3s.unice.fr/I3S/FR/

16-14

[CR99]
[DFF99)
[DFF+00]

[DLO1]

[DSDKO00]

[GHO1]
[Gut91]
[Jac86]
[JDLTO1]

[Kra98]

[LBROS]

[LCO2|
[LDJ99]

[LLP+00]

[McH94]

[Mey87]
[Mey97]

[MMO02]
[MO91]

[Off92]
[OPTZ96]

[Wey98]

Philippe Collet and Roger Rousseau. Towards efficient support for executing the object constraint
language. In Proc. TOOLS USA’99, Santa Barbara (Cal.), August 1999. TOOLS, IEEE.

Daniel Deveaux, Régis Fleurquin, and Patrice Frison. Software Engineering Teaching: a 'Docware’
Approach. In ACM, editor, ITiCSE’99, Cracow, June 1999. ACM - ITiCSE’99 Symposium.

Daniel Deveaux, Régis Fleurquin, Patrice Frison, Jean-Marc Jézéquel, and Yves Le Traon. Composants
objet fiables : une approche pragmatique. L’Objet, April 2000.

Daniel Deveaux and Yves Le Traon. XML to Manage Source Code Engineering in Object-Oriented
Development: an Example. In Cecilia Mascolo, Wolfgang Emmerich, and Anthony Finkelstein, edi-
tors, XML Technologies and Software Engineering, pages 28-31, Toronto, Canada, May 2001. XSE01
workshop at ICSE’2001.

Daniel Deveaux, Guy Saint-Denis, and Rudolf K. Keller. XML support to design for testability. In
Proc. of XOT’2000 workshop at ECOOP’2000, Cannes (France), June 2000.

John V. Guttag and James J. Horning. A tutorial on larch and LCL, A larch/C interface language. In
Soren Prehn and Hans Toetenel, editors, Proceedings of Formal Software Development Methods (VDM
’91), volume 552 of LNCS, pages 1-78, Berlin, Germany, October 1991. Springer.

John V. Guttag. The larch approach to specification. In Soren Prehn and Hans Toetenel, editors,
Proceedings of Formal Software Development Methods (VDM ’91), volume 552 of LNCS, pages 10-10,
Berlin, Germany, October 1991. Springer.

M. A. Jackson. System Development. Int. Series on Comp. Sc. — Prentice -Hall, 1986.

Jean-Marc Jézéquel, Daniel Deveaux, and Yves Le Traon. Reliable Objects: Lightweight Testing for
00 Languages. IEEE-Software, 18(4):76-83, jul-aug 2001.

Reto Kramer. icontract — the java(tm) design by contract(tm) tool. In 26th Conference on Technology
of Object-Oriented Systems (TOOLS USA’98), August 1998.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: a java modeling lan-
guage. In Formal Underpinnings of Java Workshop (at OOPSLA ’98), October 1998.
http://www-dse.doc.ic.ac.uk/ sue/oopsla/cfp.html.

J-F. Le Cam. Stclass Programmer’s Guide. Technical report, SCoT Project: "ITR Bretagne Program",
June 2002. Published in the STclass-java distribution.

Yves Le Traon, Daniel Deveaux, and Jean-Marc Jézéquel. Self-Testable Components: from Pragmatic
Tests to a Design-for-Testability Methodology. In Proc. of TOOLS-Europe’99. TOOLS, June 1999.

Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart Jacobs. JML: notations and
tools supporting detailed design in Java. In OOPSLA 2000 Companion, Minneapolis, Minnesota, pages
105-106. ACM, October 2000.

C. McHale. Synchronisation in Concurrent, Object-oriented Languages: Ezxpressive Power, Genericity
and Inheritance. PhD thesis, Department of Computer Science, Trinity College, Dublin, Ireland,
October 1994.

Bertrand Meyer. Programming as contracting. Report tr-ei-12/co, Interactive Software Engeneering,
1987.

Bertrand Meyer. Object-Oriented Software Construction, Second Edition. Prentice Hall, New Jersey,
1997.

Richard Mitchell and Jim McKim. Design by Contract, by Example. Addison-Wesley, 2002.

R. De Millo and A. Offutt. Constraint-based automatic test data generation. IEEE Transactions On
Computers, 17:900-910, 1991.

A. J. Offutt. Investigation of the software testing coupling effect. ACM Transaction on Software
Engineering Methodology, 1:3—18, 1992.

J. Offutt, J. Pan, K. Tewary, and T. Zhang. An experimental evaluation of data flow and mutation
testing. Software Practice and Experience, 26(2), 1996.

E. J. Weyuker. Testing component-based software: A cautionary tale. IEEE Software, 1(5):54-59,
September 1998.

17-1

. Click here to view PowerPoint presentation; Press Esc to exit .

Evolutionary Development of Software Architectures’

Andreas Rausch and Manfred Broy
Technische Universitidt Miinchen
Institut fiir Informatik
Boltzmannstraf3e 3

D-85748 Garching, Germany

1 Abstract

Today’s software development projects are confronted with a frequently changing environment: rapidly
altering business domains and processes, fast technology evolution, great variety of evolving methods and
development processes. Therefore an evolutionary development approach is required particularly for such
critical success factor like a system’s software architecture. However, existing specification and
programming techniques are not able to model and track the dependencies between the various architectural
elements with respect to the specific needs of evolutionary development of software architectures.

The foundation of the proposed evolutionary development approach is a novel, well-founded model for
software architectures. Based on this formal model we present extended specification techniques for
architects to track and manage the evolution of software architectures and to recognize and avoid failures due
to architectural evolution. A running example illustrates the usefulness of the presented concepts and
introduces practical description techniques.

2 Introduction

The need and importance of high quality software is steadily growing: in industry the degree of penetration
of software systems supporting business processes has reached a level of 60 to 90 percent [Wild0O]. The
proportion of software as an essential part of hardware products, like cars, washing machines, or TVs, is
rapidly increasing.

Today’s software development takes place under immense time, cost, and quality pressure. Ever shorter
technology time cycles lead to ever shorter product life cycles and shorter development time cycles. “Time-
to-market” has become one of the critical success factors for new products to survive this competition. The
earliest software product to the market has an advantage over later products, but customers will abandon a
product if the quality is not acceptable.

For that reasons a system’s software architecture that is understood by the stakeholders and by the
development team members is a critical success factor: one the one hand it is an abstraction providing a
communication, discussion, and reasoning platform helping managing the complexity of a software system
following the old principle of “divide et conquer”. On the other hand a system’s software architecture
provides a design plan or blue-print of a system for programmers that describes the elements of the system,
how they fit together and how they work together to fulfill the system’s requirements.

' This work originates from the research project ZEN — Center for Technology, Methodology and Management of
Software & Systems Development — a part of Bayerischer Forschungsverbund Software-Engineering (FORSOFT),
supported by the Bayerische Forschungsstiftung.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

17-2

In fact, a closer look indicates that there are several architectures of a software systems capturing the
structure of the system at different aspects and levels of abstraction. At least the following aspects should be
covered by individual architectural views:

e Application architecture: This view is most closely tied to the application domain. The use cases,
indicating the services and functions of a software system, are mapped to architectural elements called
business components, their relationships and interactions.

e Technical architecture: Here the architect addresses how the application architecture is realized with
today’s software platforms and technologies. Elements of the application architecture are mapped to
software components based on a specific technical infrastructure which is usually restricted by a given
set of nonfunctional requirements.

e [mplementation architecture: The implementation architecture determines how software components
from the technical architecture are mapped to source components and the structuring of the source code
itself is defined.

e Deployment architecture: This view describes how deployment components are produced from source
components, how these are mapped to the hardware architecture, and how the deployment components
are distributed and located during runtime.

Of courses, these four architectural views of a system’s software architecture are closely related and have to
be consistent. For instance, the last three architectural views are derived from the application architecture
taking into account the nonfunctional requirements. The consistency issue is even worse as today’s software
development projects are confronted with a frequently changing environment: rapidly altering business
domains and processes, fast technology evolution, great variety of evolving methods and development
processes.

Therefore, neither a pure top-down nor a pure bottom-up development approach is sufficient. Usually, an
evolutionary — iterative and incremental — approach is more appropriate. The purpose of the evolutionary
developed software architecture is not only to describe the important aspects for others, but to expose them
so that the architect can reason about the design. This makes it possible to analyze the trade-offs between
conflicting requirements or the impacts of evolutionary changes to the system’s software architecture.

Hence, to support evolutionary development of software architectures we must be able to model and track
the dependencies between the various architectural elements. Not only the components of a system’s
architecture have to be specified precisely, but also the dependencies between these components. Currently,
in specification techniques and programming languages dependencies between components or objects can
only be modeled in an extremely rudimentary fashion. For instance, in the UML profile for software
architectures [OMGO2] designers can only use the relation uses to specify dependencies between
components or in Java [Flan96] programmers can only use the import statement to specify that one class
relies on another.

In this paper, we present the basic concepts and techniques required for an evolutionary development of
software architectures. The foundation of the proposed approach is a precise, well-founded model for
software architectures presented in the next section. Based on this model, we show in Section 4 that existing
specification and programming techniques allow architects to specify a software architecture, but fail in case
of evolutionary development. In Section 5 we extended these specification techniques with respect to the
specific needs of evolutionary development of software architectures. Finally, in Section 6 we provide the
theoretical foundation of the proposed concepts. A short conclusion rounds up the paper.

3 Software architecture — Basic concepts

Each well-structured software system has a software architecture, regardless of whether it is explicitly
documented or not. The individual operational units of a software system during runtime, their interactions
and relationships determine the system’s software architecture at the instance level.

The specification level contains a normalized abstract description of a subset of common instance level
elements with similar properties. A software architecture description defines the separation of a software
system in a set of sub-systems respectively called components and their relationships. A component is an

17-3

encapsulated subsystem serving as a basic building block of software systems. Components are glued
together and thereby defining the system’s software architecture (cf. [BMR+96]).

The instance level is the reliable semantic foundation of the specification level, it defines the universe of all
possible software architectures that may be described at the specification level. We introduce a basic
mathematical framework to represent software architectures at the instance level. As shown in Figure 1 a
system’s software architecture consists of a set of disjoint instances during runtime: system, component,
interface, attribute, connection, message, and value instances.

<message a>

0" 0

inti=5 inti=7
String s = "Hello" String s = "Bye"

o
>

<message b>

v

time t. time t.
i+1
Figure 1 - Instance level of software architectures

In order to uniquely address these basic elements of the instance level we introduce the infinite set
INSTANCE of all instances:

INSTANCE =4 {SYSTEM U COMPONENT UINTERFACE U ATTRIBUTE UCONNECTION UMESSAGE U VALUE}

A formal model for software architectures must be powerful enough to handle the most difficult aspects of
system’s architectures (cf. Figure 1): dynamically changing structures, shared global state, and at last
mandatory call-backs. Thus, we separate the behavior of systems into these three essential parts:

e A system may change its structure dynamically. Some instances may be created or deleted (ALIVE). New
attributes resp. interfaces may be assigned to interfaces resp. components (ALLOCATION resp.
ASSIGNMENT). Interfaces may be connected to or de-connected from other interfaces (CONNECTS):

ALIVE =4t INSTANCE — BOOLEAN
ASSIGNMENT =4, INTERFACE — COMPONENT
ALLOCATION =4; ATTRIBUTE — INTERFACE

CONNECTS =4, CONNECTION — {{i,j}[1.je INTERFACE}

e A system’s state space is not only determined by its current structure but also by the values of the

component's attributes. Mappings of attributes or parameters to values of appropriate type are covered by
following definition:

VALUATION =4; ATTRIBUTE — VALUE

e Sequences of messages represent the fundamental units of communication. In order to model message-
based communication, we denote the set of arbitrary finite message sequences with MESSAGE . Within

17-4

each time interval components receive message sequences arriving at their interfaces and send message
sequences to other interfaces:

EVALUATION =4, INTERFACE — MESSAGE"

Based on the former definitions we are now able to characterize a snapshot of a software system’s
architecture. Such a snapshot captures the current structure, variable valuation, and actual received messages.
Let SNAPSHOT denote the type of all possible system snapshots:

SNAPSHOT =g4¢ ALIVE X ASSIGNMENT x ALLOCATIONXxCONNECTS x VALUATION x EVALUATION

Similar to related approaches [BSO1], we regard time as an infinite chain of time intervals of equal length.
We use the set of natural numbers N as an abstract time axis, and denote it by T for clarity. Furthermore, we
assume a time synchronous model because of the resulting simplicity and generality. This means that there is
a global time scale that is valid for all parts of the modeled system. We use timed streams, i.e. finite or
infinite sequences of elements from a given domain, to represent histories of conceptual entities that change
over time. A timed stream — more precisely, a stream with discrete time — of elements from the set X is an
element of the type

X" =gt N = X, mit N* =45; N\{0}

Thus, a timed stream maps each time interval to an element of X. The notation x' is used to denote the
element of the valuation xe X" at time te T with x'=x(t).

Streams may be used to model the behavior of systems. Accordingly, SNAPSHOT" is the type of all system
snapshot histories or simply the type of the behavior relation of all possible systems:

SNAPSHOTT =, ALIVET x ASSIGNMENTT x ALLOCATIONT x CONNECTST x VALUATIONT xEVALUTATIONT

Let Snapshoti = SNAPSHOT™ be the behavior relation an arbitrary system se SYSTEM. A given snapshot history
snapshot, € Snapshot! is a timed stream of tuples that capture the changing snapshots snapshot, over time te T.

Obviously, a couple of consistency conditions can be defined on such a formal behavior specification
Snapshot! c SNAPSHOT' . For instance, we may require that all attributes obtain the same activation state as the

interface they belong to:

Vae Attributes,ie Interface,te T . allocation} (a) = i = alive} (a) = alive (i)

Or furthermore, instances that are deleted are not allowed to be reactivated:

Vie Instanceg,te T.alive} (i) Adne T.n>ta—alivel (i) = —Ime T.m>n alive] (i)

We can imagine an almost infinite set of those consistency conditions. A full treatment is beyond the scope
of this paper, as the resulting formulae are rather lengthy. A deeper discussion of this issue can be found in
[BBR+00] and [RausO1a].

However, a system’s observable behavior is a result of the composition of all component behaviors. To show
this coherence we first have to provide the behavior formalization of a single component. In practice
transition-relations are an adequate behavior description technique. In our formal model we use a novel kind
of transition-relation: in contrast to “normal” transition-relations — a relation between state and successor
state — the presented transition relation is a relation between a certain part of the system-wide current state
and a certain part of the component’s wished system-wide successor state:

BEHAVIOR =4, SNAPSHOT — SNAPSHOT

Let behavior, cBEHAVIOR be the behavior of a component ce Component; in the system seSYSTEM. The
informal meaning of each tuple transitione behavior, is: if the specified part of the system-wide state fits (given
by the first snapshot of the tuple transition), the component wants the system to be consistent with the system-
wide successor-state in the next step (given by the second snapshot of the tuple transition). Consequently we

need some specialized runtime system that collects at each time step from all components all wished
successor states and composes a new well-defined successor state for the whole system.

17-5

The main goal of such a runtime system is to determine the system snapshot snapshoti" from the snapshot

snapshots e Snapshot; and the set of behavior relations {behavior, ... behavior, } of all components

Cy,...,Cn € Component,, ne N of the system se SYSTEM. In essence, we can provide formulae to calculate the

system behavior from the initial configuration snapshot?, the behavior relations {behavior, ,...,behavior, }, and

external stimulations via messages at free interfaces. Note, free interfaces are interfaces that are not
connected with other interfaces and thus can be stimulated from the environment.

Therefore, we first have to collect all behavior relations of all active components’:

all _active _behavior, =44 U behavior,
Vce Component, (71'1 (snapshot'S))(c)

Now, we can calculate all transitions of the active components that fit the actual system state. Let
all_active _transition} be the set of all those transitions that could fire:

all _active _ transition} =4 {(x,y)e all _active _behavior,

7T, (x) < 7, (snapshott), vi = 1...6}

Before we can come up with the final formulae for the calculation of the system snapshot snapshott™ we need

a new operator on relations. This operator takes a relation X and replaces all tuples of x with tuples of v if
the first element of both tuples is equal:

X.y =gef {a ac Yv(ae X A TT, ({a})mﬂ}(Y):@)}

Finally, we are now able to provide the complete formulae to determine the next system snapshot snapshot’™ :

next _snapshot : SNAPSHOT — SNAPSHOT

Intuitively spoken, the next system snapshot snapshotl' is a tuple. Each element of this tuple, for instance

alivel!", is a function, that is determined simply by merging the former function alive{ and the “delta-

function” 77, (an_active _wansiton}) . This “delta-function” includes all “wishes” of all transition-relations that fire.

next_snapshot(snapshotts) =4ef SNApshot!'’ = (alive‘s”,assignment;”,allocation;”,connectsts”,valuation;”,evaluationts”).

valtl — aiiyat
aliveg™ = allves<17l'7(all_active_transitiong) "

: t+1 _ : t
assignmentg” = aSS|gnmentS<17Z'e(allfactiveftransition‘s) n

PR 50 PR |
allocationg” " = aIIocatlonsqﬂ-g (

all_active _transition,) A

t+1

connectsg :connects‘sqmo(

all _active _transition!) A

Fonn £ TR ¢
valuations™ = Valuatlon5<7fﬂ(all_active_transition's) N

evaluationS™" = evaluation‘sqﬂ"z (anl_active _transition})

Obviously, there is a single basic condition that must be satisfied to ensure that the next system snapshot
snapshott™! is well-defined: the wished successor states of the active components must be disjoint or at least
equal. For instance, if a component wants the value of a attribute to be 5 and another component wants the
same attribute to be value of 7, the successor states of these components are not equal.

This condition could never be injured, as we recommend that all wished successor states are calculated
through the projection 7 (an_actve_tansion)) and ie{7,8,...,12}. Each projection I (ai_active_transion) must be a

function. Hence the wished successor states are not allowed to be inconsistent otherwise the projection is not
defined and the resulting snapshot}™ is also not defined.

? Note, the “standard” notation 7, ; (R) denotes the set of n-tuples with neNans<r as a result of the
projection on the relation R. Whereas in each tuple in 77, ; (R) contains the elements at the position i,...,i, of
the corresponding tuple from R with 1<i, <r, mitke {1...,n}cN.

17-6

Note, the presented formal model of system’s software architecture can be easily extended to model also
hierarchical software architectures — software systems that contain components which are again composed
out of so-called sub-components (cf. [RausO1a]).

4 State of the art — Specifiying and Evolving Software Architectures

«component»
RobotManager

[0,"]
«interface»
Robot

«attribute» hasConflict : Boolean
«calculated by» RESULT := self.scheduled.exists(j : Job | j.hasConflict)

«message» addJob(newdJob : Job)

«behavior description» NEW assignedJobs BETWEEN newdJob AND self;
«message» work()

«behavior description»

[0,1]
assigned

«connection»
assigneddJobs

scheduled
[0,"]
«interface»

Job

«attribute» start : Time
«attribute» end : Time
«attribute» hasConflict : Boolean

«calculated by» RESULT := self.assigned.scheduled.exists(j : Job |
(j <> self) and (self.start <= j.end) and (j.start <= self.end))
[0,7]
«component»
JobManager

Figure 2 — Software architecture of our production planning system — first version

The instance level, introduced in the previous section, defines our understanding of a system’s software
architecture. It is the semantic foundation of the specification level. The specification level contains a set of
proper description and modeling techniques to elaborate and specify a system’s architecture. The remaining
question is, how we can describe and model those software architectures with respect to an evolutionary
development approach.

Recent specification techniques, like for instance the UML 2.0 proposal for software architectures [OMGO02],
the modeling approach introduced by Christine Hofmeister et. al. [HNS99], or the various architectural

17-7

description languages [KMNDOO], do not support evolutionary development as a general concept. A small
toy example serves to clarify the general problem of applying those description techniques in the context of
evolutionary development of software architectures.

Consider a simple production planning system (PPS). The PPS has to schedule and optimize the assignment
of jobs to robots handling these jobs. Each robot can treat only a job at a time. Each job has to be handled by
one robot. Overlapping jobs assigned to the same robot cause conflicts. The major goal of the PPS is to
assign step by step all jobs to robots without a conflict and to minimize the required production time.

As we apply a component-based software architecture approach, the PPS is built from existing components.
The PPS contains two components: JobManager and RobotManager’.

The important parts of the specification of our two components JobManager and RobotManager are shown
in Figure 2. The notation we use extends the UML 2.0 proposal for architectural descriptions [OMGO02]. It is
a new, sophisticated description and modelling technique based on UML and OCL. We use UML stereotypes
to describe the basic modelling elements of software architectures: components, interfaces, connections,
attributes, and messages. Pure OCL is not powerful enough to specify all required behavior aspects. It lacks
the ability to specify the creation and deletion of new instances (components, interfaces and connections) as
well as the possibility to specify sending messages to other interfaces. We use an extended version of OCL
introduced in [RausO1la] and [RausO1b].

As shown in Figure 2 JobManager contains a set of interfaces Job. Each Job interface contains the attribute
assigned which refers to the robot handling this job. On the other hand, the component RobotManager
exhibits a set of Robot interfaces. Each Robot interface has the attribute scheduled which refers to a set of
jobs it has to handle. Both Job and Robot provide the method hasConflict() to calculate whether they cause a
conflict or not. Each method description contains an OCL-based behavior specification.

The behavior description of the method hasConflict() of the interface Job determines whether a job causes a
conflict or not. A conflict appears if the assigned robot is scheduled for another job that overlaps with the
current one. The implementation of the method is a simple translation of the OCL specification into an
operational form.

The behavior description of the method hasConflict() of the interface Robot calculates whether a robot has a
conflict or not. A conflict appears if at least two scheduled jobs of the robot overlap. Therefore the already
existing method of the interface Job is (re-)used. For reasons of reuse and encapsulation the presented
solution seems absolutely reasonable.

Now, we can glue these two components together to implement and deliver the PPS to our customers. Once a
system is shipped it usually takes only a couple of weeks until new requirements come up. In our case, we
assume that our customers want the PPS to schedule jobs not only for one robot, but also for a certain
number of robots — the jobs they have to manage get more complex. Therefore a new version of the
component JobManager needs to be specified, implemented, and finally used within the PPS.

Figure 3 shows the new version of this component. The modified parts are highlighted. A Job can now be
assigned to a set of robots with respect to the number of required robots to handle the job. The method
hasConflict() has also been modified. Now, a job causes a conflict if there is another job assigned to one of
the robots the current job is assigned to, which overlaps with the current job.

The new version of the component JobManager fulfils the required new features. Moreover, it still fits
together with the already existing component RobotManager. Probably, the new version of the PPS will be
again glued together, compiled, tested and eventually shipped to customers.

Unfortunately the new version of the PPS has a defect: a robot is expected to signal a conflict if at least two
of its scheduled jobs overlap, corresponding to the behavior specification of hasConflict() in Figure 2.
However, the Robot‘s method hasConflict() (re-)uses the Job’s method hasConflict() which has been
modified (see Figure 2). Hence, the behavior of the Robot’s method hasConflict() has also been changed. A
conflict for a robot R1 may now also be signaled if a job J1 scheduled for robot R1 and robot R2 overlaps

3 Although JobManager and RobotManager are more objects than components, it keeps the example small
but expressive enough to illustrate the problem in general.

17-8

with a job J2 assigned to robot R2. This behavior violates the expected behavior of the Robot’s method
hasConflict().

«component»
RobotManager

[0,"]
«interface»
Robot

«attribute» hasConflict : Boolean
«calculated by» RESULT := self.scheduled.exists(j : Job | j.hasConflict)

«message» addJob(newdJob : Job)

«behavior description» NEW assignedJobs BETWEEN newdJob AND self;
«message» work()

«behavior description»

[0,"]
assigned

«connection»
assigneddJobs

scheduled
[0,"]
«interface»

Job

«attribute» start : Time
«attribute» end : Time
«attribute» hasConflict : Boolean
«calculated by» RESULT := self.assigned.exists(r : Robot |
r.scheduled.exists(j : Job | (j <> self) and (self.start <= j.end)
and (j.start <= self.end)))

[0,"]

«component»
JobManager

Figure 3 — Software architecture of our production planning system — second version

The component RobotManager is no longer correct in the context of the new version of the PPS, although —
or better because — it has not been modified. The implementation is not correct with respect to the expected
behavior. The resulting defect may cause fatal faults, as for instance the optimizing algorithm of the PPS
relies on a correct calculation of the conflicts of jobs and robots. Hence, the core functionality of the PPS is
no longer correct.

Of course, this defect should have been detected during the integration test of the new version of the PPS. In
order to detect it, a corresponding test case containing proper test data must be available and executed.
Usually, new test cases including new test data are only specified and implemented for new functionality.
Existing functionality is typically tested with existing test cases in so-called regression tests. As the

17-9

discussed defect only appears if existing functionality is executed with new test data, it is quite likely that it
will not be detected during integration test.

To sum up, developing a system’s software architecture means that the system is composed from existing or
new components. These components are self-contained units of deployment, but they have to work together
to realize the functionality of the system as a whole. Correspondingly, the components of a system’s
software architecture rely on each other. The behavior of a single component depends on the “surrounding”
components within the system. It depends on the context in which the component is embedded. Hence, the
correctness of the system depends on an appropriate “component-mixture”.

In case of an evolutionary development for instance, if a single component is correct but does not longer
fulfil the needs of the others (like the modified JobManager component), the behavior of other components
depending on it may be influenced unintentionally, resulting in software system defects.

Using the known software development approaches in the way they are used in today’s software engineering
practice, namely for specification, programming, and testing issues, it is difficult to prevent those system
defects at the specification level. To detect these defects one has to either inspect the implementation or
realize and execute a failure-producing system test scenario.

Both options are unacceptable for developing a component-based software architecture. Components are
units of deployment and may be delivered by third parties. As you do not have access to the implementation
of all components, you cannot inspect all of them. Therefore we still need to realize a complete set of system
test scenarios for the system integration test, as the use of correct components does not enforce the
correctness of the component-based system built from these components. But as we all know, one cannot
identify all required test scenarios. Thus, evolutionary development of software architectures requires a
means for explicit specification of the dependencies between the components of a component-based system.

In the next section we will illustrate — based on our running example — how the existing specification
techniques can be improved towards a specification methodology with respect to the specific needs of an
evolutionary development.

S5 Extended Specification Techniques for Evolutionary Development

Support for evolutionary development requires explicitly specification of dependencies between components
or following Clemens Szyperski’s definition of a component, which is widely accepted:

“A software component is a unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed independently and is subject to
composition by third parties.” (Quotation from [Szyp97], page 34)

These characteristics have several implications. For a component to be independently deployable, the
component needs to be well separated from its environment and from other components. It needs to be
sufficiently self-contained. A clear specification of what a component provides and needs is required.

The existence of such a specification is crucial for a component to be composable with other components to
specify a system’s software architecture. To compose a software architecture from components an integrated
but decoupled specification technique is needed to explicitly describe the collaborations between the
components under composition.

We need two kinds of specification techniques:
e self-contained component island specification and
e acomponent composition specification.

As discussed in the previous section existing description techniques are currently not sufficiently powerful to
express the required component island specifications and component composition specifications. Based on
our working example we show in the following how the presented description techniques can be extended
with respect to the requirements of evolutionary software architecture development.

For each component a component island specification has to exist. This island specification is structured in
two parts. The first contains the provided properties. In our example the stereotype «provide» indicates
interfaces that contain provided properties. This part is identical with the specifications well known from the

17-10

previous section. It specifies the properties the component provides to its environment, assuming the
environment fulfils the second part.

The second part of the specification captures the needed properties of the component, therefore we use the
stereotype «need». The need part is syntactically identical to the provide part. It also contains a complete
behavior specification for the calculation of attributes or the processing of messages. In contrast to the
provide part it specifies behavior the component expects from its environment. Hence, the need part will
never be implemented, instead the needed behavior will be mapped to a provider-component during system’s
architecture specification, which equals component composition.

«component»
RobotManager
«provide» «need»
0,1 0,1
«interface» «interface»
Robol n_Job
«attribute» hasConflict : Boolean «attribute» n_start : Time \ N
«calculated by» RESULT := self. scheduled exists(j : n_Job | «attribute» n_end : Time ~ \\
j.n_hasConflict) «attribute» n_hasConflict : B eahﬂ\
«message» addJob(newJob : n_Job) «calculated by» RESULT :=\gxlf.n_assigned. sbheduled exists(j : n_Job |
«behavior description» NEW asmgnedJob% BETWEEN newJob AND self; (j <> self) and (self.n_start \; \j n_end) and (j.)._ stan <= self.n_end))
«message» work() N\
«behavior description» \ \ \ \
\ n_assigned __ > scheduled \ A \
\ o1 = ——_ « «connection» — — 0,4 \ AN \
\ _ —assigneddobs _ i S \
\ _— To—o — |
\ - S~ «sp‘cher mappmg» 0
~
! - - . PES | «sp cmer mapping»
i | «specifier r\”aPP'nQ” \ | . «sp’ecmer mapping»
«specifier mapping» «spa@mer mapping» /
| ~ «specifi » /
7 specifier mapping | 1
«cohtract» JobManager, ~_ - ~ cor}(ract» HobolManager
! > !
i S~ — e / / /
/ = - /
S ~ / / /
/ == - / 4
/ n :sc‘ﬁeduled / // /
/ ~ o] 3
/ _{ / s«interfgée»
/ - Z_<Z %
/ - «attribute» start : Time & s
/ _ - «attribute» end : Time 4
/ assigned =1 «attribute» hasConflict : Boolean
[0,1] «calculated by» RESULT := self.assigned.n_scheduled.exists(j : Job |
| «interface» (j <> self) and (self.start <= j.end) and (j.start <= self.end))
n_Robot
0,7] 0,%]
«need» «provide»
«component»
JobManager

Figure 4 — Extended software architecture description of our production planning system

Figure 4 contains the component island specification of the components JobManager and RobotManager.
The provide parts of the component island specification is almost identical with the one shown in Figure 2.
Only some of the identifiers have been exchanged. Instead, corresponding identifiers from the need part of
the specifications have been used.

For reasons of uniformity and clarity all needed properties of a component start with the prefix “n_". As
shown in Figure 4 the component JobManager needs a interface named n_Robot that has an attribute named
n_scheduled which contains a set of jobs.

Note, a component island specification is a complete and self-contained specification, all used identifiers are
defined. An implementation of such a specification can be independently tested and verified, an important
feature for successful component-based development.

Figure 4 also contains the corresponding component island specification of the component RobotManager.
Again, this specification consists of the two parts provide and need. The provide part is similar to the one
shown in Figure 2. The additional need part describes the required interface n_Job including all needed
properties.

Once all component island specifications are finished, the system’s software architecture can be elaborated
using a specialized component composition specification technique. This specification technique enables an
architect to explicitly state the behavioral dependencies between the components under composition.
Respectively, required properties of all components have to be guaranteed due to provided properties of
other components.

17-11

In our example the architect glues the components JobManager and RobotManager together to realize the
PPS. Therefore, he has to map the needed properties of our two components to corresponding provided
properties. Figure 4 also contains the component composition specification of the PPS. For instance the
needed calculated attribute n_hasConflict() of the needed interface n_Job is mapped to the provided
calculated attribute hasConflict() of the provided interface Job. For each component a composition
specification is provided that maps each needed specifier to an corresponding provided specifier. This
mapping is shown by dashed lines, that are bundled to contracts illustrated in Figure 4.

Note, an important feature of the proposed specification technique is that the need part covers not only the
syntax but also behavior — the need part is more than an “import” statement in common programming
languages. For instance, the specification includes a behavior description of the needed calculated attribute
n_hasConflict(). Accordingly, the correctness of the mapping does not require syntactical or logical equality
of needed and provided specifiers and behavior specifications, but “merely” suitable implications (see next
section).

Hence, a component composition specification allows the architect to explicitly state the behavioral
dependencies between the components under composition. Such a specification forms a so-called signed
contract. Thereby the needed properties of all components of a system are mapped to provided properties of
other components of this system. These signed contracts enable tools or at least developers to check and
validate at the specification level whether all needed properties of the used components are fulfilled or not.

Consequently, a component-based architecture is correct if all components are correct and all signed
contracts of the system are fulfilled. If a single signed contract is not fulfilled, at least one component may
cause failures leading to system failures. Using signed contracts can help detecting and avoiding system
defects at the specification level in advance.

For instance in our example from the previous section the calculated attribute hasConflict() of the component
JobManager has been modified. (Re-)checking the signed contract from Figure 4 by a tool or a developer
shows that this method is used within the component RobotManager with the synonym n_hasConflict(). The
behavior specification of the needed calculated attribute n_hasConflict() and the evolutionary improved
provided calculated attribute hasConflict() are no longer logically equal. The signed contract is broken. The
whole system is not correct any more. Applying the proposed specification techniques helps you identifying
those defects at the specification level and thus preventing system failures, especially in case of evolutionary
development.

6 Formal Foundation of the Extended Specification Techniques

The presented modeling techniques allow evolutionary development and specification of system’s software
architectures. Such a specification technique contains a normalized abstract description of specifiers at the
specification level. A specifier models all common properties of a set of elements at the instance level — the
formal foundation introduced in Section 3.

Let SPECIFIER be the infinite set of all specifiers, as for instance system specifications, component
specifications, interface specifications, attribute specifications, and method specifications. The function
specified assigns to each instance its corresponding specifier. This function models the semantic bridge from

the instance level to the specification level and vice versa:

specified : INSTANCE — SPECIFIER

For the formal foundation of the specifiers we use the infinite set TERM" of all logical expressions with a
single free variable v. It defines the set of predicates we use in our specifications, similar to the predicates
used in Hoare triples [Hoar69].

For instance, one specified property of a system could be: all instances of the attribute
AttributeWithConstantValue should always have the value 5. This specification would be formulated by
the following logical expression t € TERM":

t =4 Va € Attribute, . specified ca> = AttributeWithConstantValue = (a,5) € valuation,

A system instance s € SYSTEM is a valid implementation of such a t € TERM" if the predicate tis1 holds:
..1: TERMY x INSTANCE — BOOLEAN

17-12

This function is the foundation of our semantics. It allows us to determine whether an instance is a correct
implementation of a specification or not.

«component»
component

componente SPECIFIER

o T~

provide (component) need(component)

Figure 5 — Provided and needed properties of a component

To each specifier, especially to each component specification as shown in Figure 5, we can now assign a set
of provided properties and a set of needed properties’:

provide : SPECIFIER — P(TERM")
need : SPECIFIER — P(TERM")

These sets correspond to the need and provide part of the specifications presented in the previous section (see
Figure 4 and Figure 5). The function need (component) models all needed properties of a certain component

specification component € SPECIFIER . Are all needed properties fulfilled by the environment the
component provides the properties described by provide(component). In general, if an system instance
s € SYSTEM is a correct implementation of a given specification spec € SPECIFIER , the following
condition must hold:

VpEprovide(spec).(An)rs]z>p[sw

Vneneed(spec)

Based on these two functions provide and need we are able to explicitly model the dependencies between
the various specifiers used within a specification. A signed contract Contract C CONTRACT maps a set of
specified needed properties of a certain specifier to a set of specified provided properties of another specifier:

CONTRACT =, SPECIFIER x TERM" x SPECIFIER x TERM"

For a given signed contract the predicate fulfilled denotes whether the contract is valid for a specific
specifier or not:

fulfilled : SPECIFIER x P(CONTRACT) x P(SPECIFIER) — BOOLEAN

Let Contract C CONTRACT be a given signed contract and Specifier C SPECIFIER a set of specifiers
used within a specification, then the signed contract holds for the specifier € Specifier if all needed properties
of specifier in the contract, are assigned to provided properties of other specifiers, and finally the needed and
provided properties are logical equal.

fulfilled (specifier, Contract, Specifier) <, . ¥n € need (specifier) =

def
J(specifier,n,x,p) € Contract . x € Specifier A p € provide (x> A holds(p,n)

* P(A) denotes the powerset of the set A .

17-13

The predicate holds thereby denotes the logical equivalence of two properties. This predicate is valid, if the
provided property implies the needed property with respect to all possible interpretations with an arbitrary
system instance s € SYSTEM :

holds : TERMY x TERM" — BOOLEAN
holds(p,n) <, (pisI = nisl)

Whenever a system’s architecture is improved within an evolutionary development step the architect or a
tool have to validate whether the signed contract of the system are again fulfilled for all used components or
not. Not satisfied needed properties of components can be identified. Thus system defects may be detected
and prevented in advance. These not satisfied needed properties have to be mapped to provided properties of
other components.

Note, the correctness of this mapping is not calculable by a tool in general. To accomplish this the tool would
have to calculate the predicate holds. But the number of instances for which the tool would have to prove the
implication of properties is infinite. However, holds can be proven with the use of specialized tools that
require developer interactions, e.g. theorem proving techniques, but this is beyond the scope of this paper.

7 Conclusion

The ability for software to evolve in a controlled manner is one of the most critical areas of software
engineering. Therefore, a overall evolution-based development approach for software architectures is
needed. In this paper we have outlined a well-founded common mathematical framework for software
architectures that copes with the most difficult behavioral aspects in distributed systems: dynamically
changing structures, shared global state, and at last mandatory call-backs.

During system development a specification of the system’s software architecture is created. Software
evolution means that this specification is changed over time. Thus, we need techniques to determine the
impacts of the respective evolution steps.

In our running sample we have shown that applying the existing specification techniques fails in the context
of an evolutionary development approach. The main reason for this is that the components of a software
architecture rely on each other, but one cannot explicitly specify the dependencies between these
components.

For these reasons we have elaborated improved specification techniques: we distinguish between component
island specifications provided by component developers and component composition specifications
developed by component users. With component island specifications we precisely describe what a
component provides to and needs from its environment. In component composition specifications the
mapping of needed properties to provided properties is specified within the context of a specific software
architecture.

These composition specifications form a signed contract which can be checked and validated by developers
or tools. Thereby situations can be detected where the needs of a single component are not fulfilled within a
system’s software architecture. Thus, software defects caused by software evolution can be identified and
prevented in advance at the specification level. This will improve the correctness and robustness of system’s
software architectures.

The presented formal foundation of the proposed concepts provide a reliable base to integrate these concepts
into existing specification techniques and programming languages and to realize corresponding tool support.
This may be the next step towards a successful applied evolutionary development of software architectures in
practice.

8 References

[BBR+00] Klaus Bergner, Manfred Broy, Andreas Rausch, Marc Sihling, Alexander Vilbig. A Formal
Model for Componentware. In Foundations of Component-Based Systems, Cambridge University Press.
2000.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley & Sons.. 1996.

17-14

[BSO1] Manfred Broy, Ketil Stglen. Specification and Development of Interactive Systems. Springer Verlag.
2001.

[Flan96] David Flanagan. Java in a Nutshell. O’Railly. 1996.

[HNS99] Christine Hofmeister, Robert Nord, Dilip Soni. Applied Software Architecture. Addison Wesley
Publishing Company. 1999.

[Hoar69] Hoare, C.A.R. An axiomatic basis for computer. Commun. ACM 12, 10, October 1969, 576-585.

[KMNDOQO] Jeff Kramer, Jeff Magee, Keng Ng, Naranker Dulay. Software Architecture Description. In
Software Architecture for Product Families, Addison Wesley Publishing Company. 2000.

[OMGO02] Object Management Group (OMG). Die Object Management Group Homepage.
http://www.omg.org. 2002.

[RausOla] Rausch A. Componentware: Methodik des evolutiondren Architekturentwurfs. PhD Thesis,
Technische Universitit Miinchen. 2001.

[RausO1b] Andreas Rausch. Towards a Software Architecture Specification Language based on UML and
OCL. In the Proceedings of the Workshop on Describing Software Architecture with UML, 23rd
International Conference on Software Engineering. 2001.

[Szyp97] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison
Wesley Publishing Company. 1997.

[WildOO] H. Wildemann. Kostenmanagement in der Softwareentwicklung: Leitfaden zur markt- und
anforderungsgerechten Produkt- und ProzeBgestaltung, Miinchen, 2000.

. Click here to view PowerPoint presentation; Press Esc to exit '

Design of Information Systems Using the Visual Tools

Ing. Stefan Spodniak
Military Technological Institute
ul. kpt. Nélepku
03101 Liptovsky Mikulas
Slovakia

mailto:spodniak @ vtu.army.sk

Introduction

In general, a visual strategy is often used for improving communication. Visual tools support
this idea. We all use visual tools such as: calendars, "To Do" lists, signs in the environment
(e.g., exit), menus etc. Primary purpose of visual tools is to enhance understanding. Presenting
Information in a visual form:

e help to establish and maintain attention,

e give information in a form that anyone can quickly and easily interpret,
e clarify verbal information,
e provide a concrete way to teach concepts such as time, sequence, cause/effect,
e give the structure to understand and accept change,
e support transitions between activities or locations.
Visual tools can be use
' . !
For learning For scheduling For designing | B BN]

Figure 1, Areas of using visual tools.

The visual tools enable quicker and better way to express our idea in a graphical form. This is
also the reason why to use visual tools in planning area, organization of work and making the
projects. They often play an important role in the most stages of a software life cycle, too.

The principles of visual tools for design of information systems

The visual tools (for example Microsoft Visio, Rational Rose, Telelogic UML Suite...)
usually contain variety of graphical symbols following the rules. These graphical symbols are
supplemented by their properties. These properties are often presented in a table form. We can
change format, view, colour and other facilities of these graphical symbols.

Next significant advantage is ability to connect the graphical symbols into the wholes and
make various kinds of graphical descriptions and diagrams this way. Simple manipulation
with the graphical symbols, big variety of predefined graphical symbols, possibility to create
new ones, this is also a typical characteristic of every visual tool.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

18-2

s F L Bl
|
By Copy Drawi
== | (B2 Copy Drawing
=5l R Paste
E : | Wie P| Last Zoam
Format ¥ Whole Page
Server g 1 B
g 200%

i 100%:

; 50%

i Customn Properties Window
: L Size & Position Window

|

: g Laver Properties. ..
I.

Figure 2, an example of graphical symbol.

Why do we need to use new methods of design? Previously used methods contradict with
current needs, which come out from:

¢ Quick development of technology and technical equipment,

e Shortening of the software life cycle,

e Permanent innovation requirements of the equipment and systems,

e Increased requirements due to quality of the documentation.

We can use different methods of projecting and creating the information systems. Object-
oriented method is the most frequent method. Unified Modeling Language [1] was
designed by Booch and Rumbaugh for modeling of object-oriented systems. The UML is
used to specify, construct, visualize and document the artifacts of a software system. The
vocabulary of the UML is a notation a set of shapes and symbols. Predefined shapes represent
elements in the UML notation that support the creation of all UML diagram types. Each
diagram provides a different view of one model of a software system. One of goals of visual
modeling is to understand the architecture of application. The UML modeling diagrams give a
full understanding of software architecture for team.

UML model consists of several kinds of diagrams.

Use case diagram — show the system from a user’s perspective. In the early stages of a
development project, use case diagrams describe real-world activities and motivations.
Diagrams can be refined in later stages to reflect user interface and design details. Creating a
use case diagram involves establishing a system boundary for a set of use cases and defining
the lines of communication between a particular actor and a use case.

A conceptual diagram is a static structure diagram that represents concepts from the real
world and the relationships between them. It focuses on relationships and attributes rather
than methods, and helps to understand the terminology in the domain area for which a system
is developed.

Class static structure diagrams take user requirement and translate them into software
classes and relationships. Like conceptual diagrams, class diagrams are static structure
diagram that decompose a software system into its parts. In a class diagram, however, the
parts are classes that represent fully defined software entities rather than objects that represent

real-world concepts. In addition to attributes and associations, a class diagram also specifies
operations, methods, interfaces, and dependencies.

A state-chart diagram represents a state machine. By documenting events and transitions, a
state-chart diagram shows the sequence of states an object goes through during its life.

A state machine, which is attached to a class or use case, is a graph of states and transitions
that describes the response of an object to outside stimuli.

To represent a flow driven by internally generated actions rather than external events, use an
activity diagram.

An activity diagram is a special case of a state-chart diagram in which all of the states are
action states and the flow of control is triggered by the completion of actions in the source
state. Related to a specific class or use case, an activity diagram describes the internal
behavior of a method. Activity diagrams encourage to notice and document parallel and
concurrent activities. This makes them excellent tools for modeling workflow, analyzing use
cases, and dealing with multi-threaded applications.

A collaboration diagram represents a collaboration, which is a set of object roles related in a
particular context, and an interaction, which is the set of messages exchanged among the
objects to achieve an operation or result. It is an interaction diagram that shows, for one
system event defined by one use case, how a group of objects collaborate with one another.
Unlike a sequence diagram, a collaboration diagram shows relationships among object roles
and it does not express time as a separate dimension. Therefore, the messages in a
collaboration diagram are numbered to indicate their sequence.

Component diagrams are implementation-level diagrams that show the structure of the code
itself. A component diagram consists of components, such as source code files, binary code
files, executable files, or dynamic-link libraries (DLLs), connected by dependencies.

Use a component diagram to partition a system into cohesive components. Typically, each
component in a component diagram is documented in more detail in a use-case or class
diagram.

Deployment diagrams are implementation-level diagrams that show the structure of the run-
time system. From a deployment diagram, it is possible to understand how the hardware and
software elements that make up an application will be configured and deployed.
Deployment diagrams consist of nodes, components, and the relationships between them.
The reverse engineering function automatically generates a parts of UML model from the
source code. This function is usually dependent on the compatibility of visual tools and
program developing tools.

Design database models

Database models allow visualization of the structure of database by representing the elements
in its schema graphically. A database model is a simplified representation of the way data is
stored. It hides specific storage details that are not useful for understanding the basic
interrelationships of the stored data and highlights the essence of key logical relationships
between data items. Visual toll supports the goal of data modeling: to capture real-world
information about an application domain accurately and in a way that is meaningful and
understandable to both the user and the database designer.

In addition, we can:

Use reverse engineering to make a model from an existing database.

Import a database model from another program.

Update a database model diagram based on changes in the database.

Generate (or forward engineer) a new database from the database model diagram.

Create projects that contain multiple sub-models using different notation.

Update an existing database based on changes in the database model diagram.

Update source model documents based on changes to the project file.

18-4

courses Virtual learning system
L users
num_lesson (< PK |id
state
FK1 |akt_lesson pass
teacher sort
needfull_books SR
¢ PK |id COUrse
lesson
lessons < FK1 | element state
PK |id FK2 |lesson
—P
cours :_
teacher Studar'lt_WUI‘H
alermants PK.FK1,FK2 |id
best books
tests PK |id type
PK,FK1,FK2 |id e
PK.FK1 |id — lessaon teacher
elemant type classify
lesson lesson soUrce lesson

Figure 3, an example of database model
Visual tools in particular stages of software life cycle

In the phase of the demand specification, the visual tools make the description of
requirements for the new product quicker and better. They also decrease the risk of
misunderstandings between the author and a customer in a perception of the demands
description. They also allow quicker creation of the base materials for an agreement/contract.

For example with the use-case diagrams we can define the characteristics of the
program from the users point of view. This diagram clearly describes an interaction between
the user and created system. It describes “what” system or program has to do.

Use Case diagram

Web School

Study process

Administrator
Student

Test process

Teacher

Figure 4, an example of Use Case diagram

Next possibility to use visual tools is the creation of a graphical presentation of the users
interface without programming it. We can use it instead throw-away prototyping of software.
That way can shorten time for developing software.

New design

hly Wenu for help

i Bun
) Test

I

o

Figure 5, an example of Windows User Interface design

Table F

ITE}d Block

Further, in a stage of a program design there is also a possibility to create system
model with the help of visual tools. It is important mainly for complicated systems, which are
created by the big realization teams. Formation of the models with the use of visual tools
helps to better understand the system by all the members in a working team what further
makes the work better and more efficient. In addition, the model offers better idea about the
system and easier division of the system to parts. Because of this, the program can be created
by bigger number of independent teams or individuals as well. The databases are a special
part of the projects. Visualization of the databases, their structures, particular items and
mutual coherences this all is very important and is completed step by step from the
specification stage till the realization. Project of the database model with the visual tools is
simple and in the most cases independent from the type of used database server.

Nowadays, the design of the network programs and services is very important type of
projects. The visualization plays very significant role also is this type of program products.

Figure 2, an example of Network Templates in Microsoft Visio 2002

Active Directory Basic Metwark, LDAP Directory Logical Metwork, Diagrarn

Movell Direckory Services Visio Metwork Equipment
Sampler

There is often a possibility to generate the parts of basic code directly from some types
of model system diagrams in the high quality visual tools, for example UML models. In this
case the stage of model formation is directly linked to the stage of programming. It decreases

18-6

the risk of making a mistake and incorrect interpretation of the elements and values. What is
more, there is also a possibility to use reverse engineer a model from a source code. This
enables us to constantly keep valid and mutually corresponding version of the model and
basic code.

The visual tools are very helpful also in generating the users guide. Similarly it is
with the preparation stage of training for the user.
In a process of each development there is a need for generating a big amount of
documentation. Here it is possible to generate parts of a technical documentation directly
from the description of characteristics of individual elements in the model.
During the operation and maintenance of the system there is a need for a mistake
correction in the program or even correction of utility. If the model and program code are
properly united, the visual tools help us to be clear about the actual status.
What need to be stressed are a quality of technical documentation and also the use of the
visual tools just for the military projects as well. The maintenance of military information
systems is often executed by military teams, educated and trained specially for it. Clear and
high quality documentation is a key element from the point of view of the service quality as
well as from the possible correction of mistakes.
We have described only positives of visual tools so far. On the other hand, we can find the
problems with a use of visual tools as well. At first they are really financially demanding.
Next problem arises with the need to educate and train the workers so they could use them
properly. Thirdly, there can be incompatibility with the other tools for the software
development and administration. And finally, for example, we can’t generate database from
model for all kind of database servers.

Conclusion

Summary advantages of such solutions are:
e Higher quality of the final product as a result of better project,
Fewer mistakes in the project also in created product,
High quality documentation enables the migration members of programming team,
Higher quality of marketing,
Higher quality of system service,
Possibility of quicker and more effective innovation of system.

These advantages are connected with evolutionary method of software development.

And disadvantages are:
e Financial requirements to buy support program products,
e Time needed to master the technology,
e Problems caused by the incompatibility of some visual tools with individual software
development platforms, operating systems and databases...

To understand the importance of the visual tools is very crucial right from the beginning of
project preparation when we are making decisions about the support tools for the project
creation, and mainly tools for creating the programs. However because of the competition in
an information technology market, we often meet with a big incompatibility of the support
program products. For this reason we need to make right decision when choosing the
development platforms. They should have the brightest variety of support visual tools to use.
Similarly it is good to think early about the training for the members of a work groups.

In a case we are buying complete program or system, it is good to choose the one which was
constructed with the help of these tools and where the plan of a model is available as well. It
will surely have a significant impact on a final quality of the product and process of solving
the problems in operation.

References
[1] "Unified Modeling Language Specification"”, Object Management Group, www.omg.org

This page has been deliberately left blank

Page intentionnellement blanche

19-1

Managing Product Requirements with Evolutionary Lifecycle Model

Yuriy Nazarenko, Vladimir Beck
TelesensKSCL Ukraine
61070, 1, Ak.Proskura Str.
Kharkov, Ukraine
All projects are iterative -

it's just that some managers
choose to have the iterations
after final delivery.

Urban Wisdom

Abstract

Quite a lot of failures in conversion of defense industry that took place in the late eighties — early nineties,
not only point out the wane of the “military” approach to satisfaction of rapidly changing needs of regular
non-military business. This fact also demonstrates the presence of great opportunities for considerable
improvement of remaining military area, especially in performance and quality of both acquisition and
supply processes. In particular, the most interesting idea is to switch over to evolutionary, iterative, and
incremental lifecycle models for military systems and software projects. These models are widely used
within commercial (e.g. non-military) IT-industry. Evidently, the transition from a hard (per se static)
lifecycle model to a flexible evolutionary, iterative, and incremental ones will require review and probably
revising most of existing standards in acquisition and supply of software-intensive military systems. One of
these standards may require just rethought or remapping when implementing new lifecycle models, another
one may lead to completely rework of it or even its cancellation.

This theoretical study concerns a possibility of application “as is” of appropriate SEI CMMI specific
practices to the Requirements Management area of both Supplier and Customer organizations that decided
upon implementation of evolutionary, iterative, and incremental lifecycle models.

One cannot overrate the meaning of Requirements Management as a discipline in Systems/Software
Engineering projects, especially for military applications. Adequate balancing between formal approach to
requirements specification and flexibility of evolutionary, iterative, and incremental lifecycle models creates
solid basis for the success of both timeline and quality aspects of such projects.

1 Background

Capability Maturity Model® Integration (CMMI®M

Version 1.1. (CMMI-SE/SW)
Staged representation of CMMI-SE/SW, we decided to use as framework, contains 22 process areas (see

Table 1) distinguished between 4 maturity levels to highlight what an organization should focus on to meet
required level of process excellence. This model has been selected for the following major reasons:

(1) It’s successor of well known and widely used SEI Capability Maturity Model for Software (SW-
CMM)

(2) It’s process oriented and therefore understandable for those who is familiar with ISO 9000:2000
standards

) for Systems Engineering and Software Engineering,

® CMM, Capability Maturity Model, and Capability Maturity Modeling are registered in the U.S. Patent and Trademark
Office.

SM CMMI is a service mark of Carnegie Mellon University.

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

19-2

(3) It was harmonized with ISO/IEC 15504 and thus will not confuse the people working with SPICE'
model

(4) It seams to be aplicable for Systems/Software Engineering in both defence and commercial domains

(5) In most cases of large defence projects Software Engineering is closely interrelated with Systems
Engineering

(6) CMMI provides clear and comprehensive definition of process area and appropriate essentials
(practices) for Requirements Management

Maturity Level Organization’s focus Process areas

5: Optimizing Continuous process
improvement

Organizational Innovation and Deployment
Causal Analysis and Resolution

4: Quantitatively Managed | Product and process
quality

Organizational Process Performance
Quantitative Project Management

3: Defined Engineering processes
and organizational
support

Requirements Development
Technical Solution

Product Integration

Verification

Validation

Organizational Process Focus
Organizational Process Definition
Organizational Training
Integrated Project Management
Risk Management

Decision Analysis and Resolution

2: Managed Project management Requirements Management

Project Planning

Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis

Process and Product Quality Assurance

Configuration Management

o000 0|00 |0 DO

O

Table 1. CMMI Process Areas

Requirements Management vs Requirements Development

As you can recognize from the Table 1 CMMI consists of two process areas that deal with Requirements:
O Requirements Management, and
Q Requirements Development.

According to [1] the purpose of Requirements Development is to produce and analyze customer, product, and
product-component requirements. Instead of this the purpose of Requirements Management is to manage the
requirements for the product and product component and to identify inconsistencies between these
requirements, project's plans, and work products. Keeping in mind that each maturity level in staged
representation of CMMI forms a solid platform for the next one, let’s agree that well performed
Requirements Management and other level 2 process areas are preconditions for establishing level 3
practices including Requirements Development. Moreover, while the mentioned discipline provides primary
input for project planning, monitoring, and control, involves both Customer and Supplier organizations, it
should be revized first when implementing or transfering to the new lifecycle model. That’s why we decided
Requirements Management but not Requirements Development to be a subject of this work.

' SPICE - Software Process Improvement and Capability determination.

19-3

Lifecycle model

There are a lot of alternative software lifecycle models (e.g. evolutionary, spiral, iterative, incremental) based
on the idea of product evolution. Some of these models support full product lifecycle, while others cover just
one typical cycle of software development project. For the purpose of this work we decided lifecycle model
used in Rational Unified Process (RUP) [2]. This model (see Figure 1) supports evolutionary approach in
two levels:

O Project-level lifecycle: project’s work products evolve (or mature) passing project’s phases and
iterations (or increments)

O Product-level lifecycle: product evolves passing though several projet cycles (e.g. within product

Time >
Oveall Product lifecycle = Programme >
Previuous Current Product Evolution = System/Software Development Project Next
Evolution Evolution
Phases: | Inception Elaboration Construction Transition >
Iterations: | I1 El E2 Cl\ C2\ C3\ TI T2 >
) Life Cycle Life Cycle Initi.al
Milestones Objectives Architecture Operational
Capability

development programme)
Figure 1. RUP Lifecycle Model

While “passing through several project cycles” in the mentioned model is just repeating the same project
lifecycle structure for the next product evolution, we decided to concentrate on project level.

And the following improtant lifecycle conciderations were derived from Barry Boehm’s spiral development
invariants [3] and applied as background to this work:

(1) Key project’s artifacts (work products) are developed concurrently rather than sequentially

(2) Each project phase (e.g. Inception, Elaboration, Constrcuction, and Transition) does objectives,
constraints, alternatives, risks, review, commitment to proceed

(3) Level of effort and number of iterations within any project phase are driven by risks of not meeting
primary phase goals

(4) Degree of detail in project’s work product is driven by risks of not meeting primary phase goals

(5) Project lifecycle commitments are managed with three anchor point milestones representing primary
goals of appropriate project phase:

o LCO - Life Cycle Objectives are defined and stakeholders’ commitment to support (fund)
architecting is obtained. This is the primary goal of Inception phase.

o LCA - Life Cycle Architecture is successfully completed and stakeholders' commitment to
support (fund) full life cycle is obtained. This is the primary goal of Elaboration phase.

o IOC - Initial Operational Capability is satisfactory reached and stakeholders' commitment to
support product operation is obtained. This is the primary goal of Construction phase.

(6) Emphasis on activities and artifacts for system and life cycle rather than for software and initial
development.

19-4

2 The matter and impact of evolving requirememnts

Paraphrasing well-known proverb everyone from today’s commertial software industry can say, “The only
constant in software requirements are changes to them”. The truth of life is that any business should always
change as fast as customer needs are evolved. Just to be successful. And therefore software industry
supporting appropriate business should meet this challenge to be successful as well. Isn’t true for the military
applications?

Up to date, leastwise in defence industry, the aim of the traditional “one step” requirememnts definition and
followed by extremely formal requirements change control was to meet the following ultimate goals:

0 To allow reasonable project scope, budget, and schedule estimates before project starts
0 To stay within agreed project scope, budget, and schedule during execution
0 To have a solid baseline for final product validation and acceptance

It was likely easiest way for government aqcuisition agencies to monitor and control fixed price contract as
well as for suppliers to feel comfortable with stable requirements. However a lot of large, complex, and long-
term projects were not successful because it’s unlikely real to define good requirememnts from the very
beginning and to keep them stable up to the end of the project to meet all the listed above goals. Even you
decide to keep initial requirememnts stable, rejecting any proposed changes because of the budget and
schedule, there is high risk to fail when requirememnts looks sutisfied but the customer does not. Situation is
very similar to flying aircraft equipped with flight managememnt computer that does not allow any changes
to the initially loaded flight plan.
So, if there are no alternatives to the adopting evolutionary, iterative, and incremental lifecycle models, what
is the impact of new models on requirements management processes? First we can recognize strightway is
that managing requirememnts with evolutionary lifecycle model will require more management or even
control than it was necessary for traditional waterfall approach. Thus, you need to pay more attention on
understanding of frequent changes in product requirements, negotiating relevant changes in your
commitments, fast replanning, continuous tracking and resolving all incosistencies with your current project
assets. Requirements management shall be proactive but not reactive. It means that you should find the way
to implement requirements rather than look for the reasons to reject them. And apparently, to make all these
things available there must be established more closed collaboration between Customer, Supplier, and other
project stakeholders.
As per identified in [1] CMMI Requirememnts Management process area consists of the following specific
practices:

0 Obtain an Understanding of Requirements

0 Obtain Commitment to Requirements

0O Manage Requirements Changes

0 Maintain Bidirectional Traceability of Requirements

0 Identify Inconsistencies between Project Work and Requirements

Let’s continue with going through selected lifecycle model and understanding how these practices are
mapped to appropriate project phases, iterations, and milestones.

3 Managing Requirements for Lifecycle Objectives (LCO)

The mentioned milestone is the end of the Inception phase. As defined in Rational Unified Process [2], at
this point project Lifecycle Objectives (LCO) need to be examined. This should include joint Customer and
Supplier review of the following:

O Stakeholder agreement on scope definition and cost/schedule estimates

O Agreement that the right set of requirements are captured and that there is a shared understanding of
these requirements

O Agreement that the cost/schedule estimates, priorities, risks, and the development process are
appropriate
O Allrisks are identified and a mitigation strategy exists for each risk

19-5

In the result of such evaluation, Customer decides whether to commit support (funding) for the next project
phase (i.e. Elaboration) or not. The project may be aborted or considerably re-thought if it fails to meet the
listed criterias.

Requirements management at the Inception Phase is focused on managing high-level product requirements
that reflect customer, end user or other stakeholder’s vision on product features and scope from target
business or business domain perspective (i.e. Product Vision & Scope). This kind of requirements are part of
Life Cycle Objectives definition and will be further elaborated down to detailed requirements specifications
during Elaboration Phase. Product Vision & Scope is also a primary input for concurrently developed project
plans and other work products.

From this viewpoint CMMI Requirememnts Management practicess during Inception phase may be
interpreted as following:

CMMI Specific Practice Possible interpretation

Obtain an 0 Requirements prodivers are those organizations and/or individuals who can
Understanding of provide project participants with high-level product requirements from target
Requirements business or business domain perspective (i.e. with Product Vision & Scope)

Note: At the Inception phase Customer/End User representatives and/or Domain
Engineering professionals may play the roles of requirements providers

O Acceptable are those requirememnts that:

— Are clearly and properly stated, complete, consistent with each other,
uniquely identified, appropriate to implement, verifiable (testable), and
traceable

— Provide essential basis for current Life Cycle Objectives and their
expected evolution

Important note: Overkill in requirements detailes at this phase may further
convert your project in “obstacle race”.

O Project participants develop user interface and/or other front-end prototypes
when applicable to understand if they can commit to the requirements
provided

O Requirements providers evaluate prototypes and provide clarifications to the
requirements when necessary

Obtain Commitmentto O Project participants commitments to the Product Vision & Scope are
Requirements discussed with stakeholders, recorded in overall project plan, and iteration
plans for Elaboration phase

O Project participants and stakeholders assess impact on existing commitments
for each new and/or modified requirement within Product Vision & Scope

Manage Requirements 0 Recent versions of Product Vision & Scope with history of changes are timely

Changes available for concurrent development of project’s plans and other work
products (e.g. project participants access evolving requirememnts beginning
from the first draft and are notified about all on-going modifications of the
Product Vision & Scope as it matures up to the formally agreed and approved
baseline)

O By the end of Inception Phase a Formal Change Control Procedure is applied
to Product Vision & Scope after it’s formal review and approval.

Maintain Bidirectional O Bidirectional vertical and horizontal traceability among the Product Vision &
Traceability of Scope requirements and project’s plans and other work products is established
Requirements and maintained.

19-6

CMMI Specific Practice Possible interpretation

Identify Inconsistencies Q0 In progress of Inception Phase all the major inconsistencies between project’s
between Project Work plans being under development and evolving Product Vision & Scope are
and Requirements continuously tracked and resolved

O At the end of Inception Phase a formal reviews of overall project plan and
iteration plans for Elaboration Phase are conducted, to identify, address, and
resolve all the rest inconsistencies with Product Vision & Scope baseline.

4 Requirements Management for Lifecycle Architecture (LCA)

Since Inception Phase has been completed and Lifecycle Objectives idetified the next important phase in
software development project is Elaboration. The primary goal of this phase is represented by Life Cycle
Architecture (LCA) milestone. At this point [2] Supplier and Customer jointly examine the detailed system
objectives and scope, the choice of architecture, and the resolution of the major risks. This will ensure that:

0 The product requirements are stable
O The architecture is stable

0 The executable prototypes have demonstrated that the major risk elements have been addressed and
have been credibly resolved

0 The iteration plans for the construction phase are of sufficient detail and fidelity to allow the work to
proceed

0 The iteration plans for the construction phase are supported by credible estimates

O All stakeholders agree that the current Product Vision & Scope still can be met if the current plan is
executed to develop the complete system, in the context of the current architecture

0 The actual resource expenditure is acceptable versus the planned expenditure

Like at the end of Inception phase, in result of such evaluation Customer decides to commit or not to commit
support (funding) for the nexp project phases (i.e. Construction and Transition). The project may be aborted
or considerably re-thought if it fails to reach LCA milestone.

The primary focus of Requirements Management at the Elaboration Phase is managing Detailed
Requirements Specifications for the product derived from Product Vision & Scope analysis wich is
performed from system/software development perspective. This kind of requirements is part of Life Cycle
Architecture definition and used at Elaboration phase as primary input for concurrently developed
architecture solution, project plans and other work products. During Constrcution and Transition phases
Detailed Requirements Specifications together with Product Vision & Scope are used as Product
Requirements Baseline for the purpose of verification and validation.

From this viewpoint Requirements Management at Elaboration Phase may be interpreted as following:

CMMI Specific Practice Possible interpretation

Obtain an O Requirements prodivers are those organizations and/or individuals who can
Understanding of analyse Product Vision and Scope from system/software development
Requirements perspective and produce Detailed Requirements Specification for the product

being under development

Note: At the Elaboration phase projects’ requirements analysis team may play the
role of requirements provider. Customer/End User representatives and/or Domain
Engineering professionals are also involved for on-going and final reviews of
detailed requirements derived from Product Vision & Scope.

CMMI Specific Practice

Obtain Commitment to
Requirements

Manage Requirements
Changes

Maintain Bidirectional
Traceability of
Requirements

Identify Inconsistencies
between Project Work
and Requirements

]

19-7

Possible interpretation

Acceptable are those requirememnts that:

— Are clearly and properly stated, complete, consistent with each other and
with product Vision & Scope, uniquely identified, appropriate to
implement, verifiable (testable), and traceable

— Provide essential basis for current Life Cycle Architecture and it’s
further evolution

Important notes:

(1

2

]

Lack in requirements detailes at this phase may lead up to customer/end user
dissatisfaction with final product.

Overkill in requirements detailes at this phase may invoke overconstrained
inflexible solution that does not allow any further evolution

Project participants develop architecture prototypes to understand if they still
can commit to the requirements provided

Requirements providers evaluate architecture prototypes and provide
clarifications to the requirements when necessary

Project participants commitments to the Detailed Requirements Specifications
are discussed with stakeholders, reflected in overall project plan, and iteration
plans for Construction Phase

Project participants and stakeholders assess impact on existing commitments
for each new and/or modified requirement within Detailed Requirements
Specifications

Recent versions of Detailed Requirements Specifications with history of
changes are timely available for concurrent development of product
architecture, project’s plans and other work products (e.g. project participants
access evolving requirememnts beginning from the first draft and are
informed on all on-going modifications of requirements specs as they matures
up to the formally agreed and approved baseline)

By the end of Elaboraion Phase Formal Change Control Procedure is applied
to Detailed Requirements Specifications after their formal review and
approval.

Bidirectional vertical and horizontal traceability among the Product Vision &
Scope, Detailed Requirements Specifications, project’s plans, architecture
solution, and other work products is established and maintained.

In progress of Elaboration Phase all the major inconsistencies between
Product Vision & Scope and evolving Detailed Requirements Specifications
are continuously tracked and resolved

In progress of Elaboration Phase all the major inconsistencies between
project’s plans, architecture solution being under development, and evolving
Detailed Requirements Specifications are continuously tracked and resolved

At the end of Elaboration Phase a formal reviews of architecture design,
overall project plan, and iteration plans for Construction Phase are conducted
to identify, address, and resolve all the rest inconsistencies with product
Product Requirements Baseline (e.g. Product Vision & Scope consolidated
with the approved Detailed Requirements Specifications).

5 Requirements Management for Initial Operational Capability (I0OC)

As defined in [3], at the end of Construction Phase (Initial Operational Capability Milestone), the product is
ready to be handed over to the Transition Team (i.e. to those organizations which are responsible for product
deployment at Customer’s site). All functionality is developed and all alpha testing (if any) is completed. In
addition to the software, a user documentation is developed, and there is a description of the current release.

19-8

At this point Customer and Supplier jointly review the project against IOC criteria answering the following
questions:

O Is this product release stable and mature enough to be deployed in the user community?
O Are all the stakeholders ready for the transition to the user community?
O Are the actual resource expenditures still acceptable versus the planned ones?
Transition phase may have to be postponed by one release if the project fails to reach this milestone.

As we recognized from the above speculations both product requirements and architecture stability has been
reached at LCA milestone. It means that starting with Construction phase we lastly have full product
requirements package formally reviewed and approved, and if so, a formal change control mechanisms shall
be applied to whole Requirements Baseline (e.g. Product Vision & Scope consolidated with Detailed
Requirements Specifications). That’s a primary focus of Requirements Management during Construction and
subsequent Transition phases as well.

From this viewpoint Requirements Management at Construction Phase may be interpreted as following:

CMMI Specific Practice Possible interpretation

Obtain an Probably you don’t need to proceed with this practice since Product
Understanding of Requirements Baseline and it’s full understanding has been established at
Requirements previous phase

Obtain Commitmentto O Each change proposed to the Product Requirements Baseline is formally
Requirements assessed by project participants and stakeholders for the impact on existing
commitments before this change is approved or rejected for implementation.

Manage Requirements 0 Formal Change Control Procedure is applied to Product Requirements
Changes Baseline using generic and specific practices of Configuration Management
process area.

Maintain Bidirectional 0 Bidirectional vertical and horizontal traceability among the Product

Traceability of Requirements Baseline, project’s plans and other work products is established
Requirements and maintained.

Identify Inconsistencies 0 In progress of Construction Phase all the major inconsistencies between
between Project Work project’s workproducts being under development, and Product Requirements
and Requirements Baseline are continuously tracked and resolved

O At the end of Constrcution Phase project’s work products are formally
verified against Detailed Requirements Specifications and validated against
Product Vision & Scope to identify, address, and resolve all the rest
inconsistencies with Product Requirements Baseline.

6 Conclusion

The above speculative analysis provides us with clear evidence that we actually don’t need to change
anything in CMMI specific practices for Requirements Management to reflect some special features of
evolutionary lifecycle model. Everything in this great systems/software process framework is at right place
for reasonable usage. However, those organizations which are forced to change their traditional waterfall
lifecycle model with evolutionary one may be also confronted with big challenge of cultural changes that are
not easy to implement. Thus they may need to revise their commitments and abilities to perform
requirements management as well as directing and verifying appropriate process implementation for new
environment (i.e. CMMI generic practices). The most important thing this revising should focus on is
application of evolutionary lifecycle invariants to the requirements management process area (see Table 2).

19-9

o Key project’s artifacts are developed concurrently with requirements rather than sequentially

o Each project phase does objectives, constraints, alternatives, risks, review, commitment to proceed for
requirements management

a Level of effort for requirements management is driven by risks of not meeting primary goals of
appropriate project phase

0 Degree of detail in requirements is driven by risks of not meeting primary goals of appropriate
project phase

0 Project commitments to the requirements are managed with three anchor point milestones
representing primary goals of appropriate project phase: Life Cycle Objectives (LCO), Life Cycle
Architecture (LCA), and Initial Operational Capability (I0C)

0 Emphasis on requirements management activities and artifacts for system and life cycle rather than
for software and initial development.

Table 2. Evolutionary Lifecycle Invariants applied to Requirements Management

The listed above items clearly demostrate how much management is required to implement and maintain
evolutionary requirements management. But is there any way to improve business-process without strong
management commitment and extra effort?

7 References

[1] - Capability Maturity Model® Integration (CMMI®™) for Systems Engineering and Software
Engineering, Version 1.1. (CMMI-SE/SW)

[2] - Rational Unified Process version 2000

[3] - Barry Boehm, edited by Wilfred J. Hansen. Spiral Development: Experience, Principles, and
Refinements. Spiral Development Workshop, February 9, 2000.

This page has been deliberately left blank

Page intentionnellement blanche

20-1

. Click here to view PowerPoint presentation; Press Esc to exit '

Knowledge Management:
Acceleration for Software Development Processes
And Improvement of Quality Management

Dr. Christof Nagel
T-Systems
Entwicklungszentrum Siid-West
Neugrabenweg 4, 66123 Saarbriicken

Email: Christof.Nagel@t-systems.com

Abstract

The experience of the past software projects using an evolutionary process model has shown that some more
is necessary instead of changing the development strategy. The experience has also shown, projects with an
evolutionary model have problems with quality management and project controlling. This is often caused by
an incomplete, instable and/or ambiguous specification, which leads to greater problems especially in the
area of telecommunication software, which has a complex topology with a lot of interfaces and which has in
part high security requirements. What the project members need, they cannot get by visiting tutorials,
trainings or by reading books. They must have access to the know how and the results of other projects. Our
experience of the last two years demonstrate the knowledge management offers the project members these
necessary access, whereas the knowledge database contain the experiences, the practices, results and the
problems of at present current or past projects.

The process models do describe what have to be done in a project, but the knowledge database explains with
its content how it can be done. The content consists of experience reports from working and finished project
or other activities. Our conclusion, based on the results since the knowledge management is introduced, is
that static descriptions like process model definitions and development manuals become more and more
unimportant and that the projects need a dynamic base of practices and examples. This paper explains how a
knowledge management must be defined in order to support the incremental software development and to
improve the quality management of evolutionary software projects.

Introduction

The Development Center South-West is a business unit of T-Systems in the division of systems integration.
The Development Center produces software in the area of telecommunication systems. It builds software
systems for clients from the industrial and from the government sector and it builds of course software
systems for the Deutsche Telekom AG. It has introduced a knowledge management system based on the
business and engineering processes. The processes are supported by the knowledge base. The knowledge
management system does both; it enhances the models of the processes and improves the application of
them. The conference on professional knowledge management ([6], [5]) has shown now that knowledge
management and processes cannot be divided.

The knowledge of the Development Center based on experiences is documented and represented in a
database. The knowledge management system focuses on the support of the software engineering and
consulting processes, as the Development Center is a software-producing unit. One of our objectives several
years ago was ‘Let each member in the Development Center know what the "best practices" and experiences

Paper presented at the RTO IST Symposium on “Technology for Evolutionary Software Development”,
held in Bonn, Germany, 23-24 September 2002, and published in RTO-MP-102.

20-2

of the other colleagues are.” This objective was the starting point for the development of our concept for
knowledge management.

Evolutionary Development

The past of the last years have shown that great projects with a lot interfaces following the conventional
engineering processes have serious problems. The customers do not have exact requirements. Sometimes the
customers have only objectives, which have to be reached with a new system. The interfaces of existing
software systems around the new system were changed or the specifications of the interfaces are not exactly
defined. The new technologies for software or hardware, which have to be used for the new systems, are not
very well tried. A conventional engineering process cannot manage projects with these constraints. These
projects need other development processes or models. These models are known in the literature under terms

like “evolutionary process”, “spiral process” or “incremental process”. All this models try to give a solution
to the problem of developing a software system without exact requirements at the beginning of the project.

In the Development Center we have applied evolutionary processes to projects with unstable requirements or
other constraints as described above. Evolutionary strategies are new in the practice of projects and only a
few project managers have experiences with these strategies. A knowledge management based on a lessons
learnt concept can give a support to projects with an evolutionary development strategy.

GENIE Knowledge Management

Several years ago a self-assessment has shown, that the developers and project managers need a platform to
communicate their practices, their best practices and their problems. This was the intention to establish a
knowledge management in the Development Center.

In the past we have studied some issues in the literature ([1], [2]) and have analysed the basic concepts of the

quality improvement paradigm [4] and of the experience factory [3]. The quality improvement paradigm is
based on a cycle, an improvement cycle, consisting of the steps:

e Characterize and understand problems

e Define goals

e Select suitable process methods, techniques or tools
e Perform the methods or techniques or apply the tools
e Analyze the results

e Package the experiences and put it in a database

A detailed analysis of the quality improvement paradigm has shown in the Development Center, that several
steps of the paradigm were already established. An important role in this context has the improvement
process (see Fig. 1). A part of this process is assessments, based on Bootstrap-method, being applied to units
(projects, departments, teams) of the enterprise. By the assessment the definition, the right customisation and
the usage of the processes especially the software development process (see the process “Service Provision”
part “Order Execution” in Fig.1) are controlled.

20-3

Strategy Operational Improvement Innovation
and Planning Leadership Process Management

Service provision

Order
Account Order Execution Billing for
Management) Management Software Development Services
Consultation
Training

Platform Management

Customer Relationship Management

Technical
Infrastructure
Management

Personnel Financial

Management Management Procurement

Fig. 1. The business process model of Development Center

The business process model (shown in Fig. 1) is well defined and covers all business, order and other
management activities.

Experience Packages in GENIE Knowledge Management System

The information objects in GENIE are structured. As the users like to have the same look and feel for each
information object, all objects have the same structure. But in future it is possible to have more than one
defined structure. A structure in the objects is necessary, as the users of the systems, that mean the readers of
the objects, expect to find the information they search fast and so easy as possible. The information objects
in our case are called experience packages, as they document mostly experiences made in projects or by
employees of the enterprise. Usually each experience has its own package. One package should not contain
two or more experiences. The structure of the packages does not allow this and the handling of packages
with more than one experience is difficult especially the searching. In the structure of a package parts can be
detected, which correspond to certain steps of the cycle from quality improvement paradigm.

e Title: Each package has a title, which is build from main message of the package.

e Abstract: The abstract gives a short summary of the package in one or two sentences. This should help the
reader to decide whether the package is interesting or not.

e Problem or state: In the most cases of an experience the people have had a problem or state of their work
or their project. The problem had to be solved or state had to be improved. The original problem or state is
described in this part.

e Method, procedure: In this part of a package the methods or procedures to solve a problem or to improve a
state are described.

e Results: By introduction of a new method or procedure a result is intended. But is the result, got after
performing the method or procedure, the one, which was intended? Very often we have differences
between the desired and the real result. The real result and the deviations are described here.

e Downloads: During the performing of new methods or procedures useful programs, utilities, macros or
templates were created and used. In the experience packages are links set to these objects, so that readers
can download them.

e Comments: Each reader of a package has the opportunity to write a comment to a package. The discussion
of new methods or procedures is supported by this way.

20-4

e Characterizing, identification: Some other parts are contained in a package in order to characterize, sort
the package and to identify the author. The author has also the role of a contact person in cases where a
reader has questions to a package.

¢ Classification process: A special part contains the information for attaching the package to the processes.
By writing the corresponding ID, it is here described to which processes, sub processes or activities the
package has to be attached to. Usually more than one ID is given in this part.

An example for an experience package is given in Fig.2. This package documents a kind of communication
with a customer in order to get common objective together with the customer.

Title Strategy Workshops in an IT-Project

Abstract Strategy workshops for improvement of customer relations and competence of
consultants

The continuation of the project should be ensured. For this it was necessary to
Problem contact the customer. The origin problem was, that the customer has had no idea
about the development of the future architecture of the application.

The goals of the strategy workshops:
- improvement of customer relations
- the customer should accept the know how and the competence of the consultants

Method/Procedure The realisation of the workshops was planned as follows:

- internal workshop

- presentation of the results to the customer

- workshop together with the customer: refinement of the results and planning of the

realisation
Results The customer itself has used the results for a discussion with the management. A
new order was given to the project by the customer.
Downloads Agenda for the workshop
Comments none
Classification(Process) 6c1MDO06

Fig. 2. Example of an experience package

Using Experience Packages from GENIE

Several ways of an access to experience packages are offered by GENIE. To these ways belong the search in
and different views on the database. A further description of the ways of accesses to GENIE is also described
in [7].

GENIE offers of course an access to experience packages by a full text search on the content of the
packages. The result list consists of the title, an abstract for each package and a link to the package. The user
can decide based on the content of the abstract which of the found packages he want read.

Several views on the database support the users in finding information. For example there is a view, which
contains all packages with, downloads. A lot of packages have downloads attached; downloads with
templates, macros, table or other solutions. We know that the users request often for these packages, as they
can apply in their project the solutions contained in the downloads. Other views are the list with top quality
experience packages, or a list in which all packages are ordered by their publishing date.

In [8] we have described, why we did not defined common knowledge trees. We prefer to use a natural and
well understand taxonomy. This taxonomy is the processes of the enterprise.

20-5

Processes as a well understand Taxonomy for Experience Packages

The Development Center has as already mentioned before a well-defined system of business and engineering
processes. Each business and engineering activity is described in or covered by a process. The processes are
described in detail with activities, roles and important input or output documents of the activities. The
process descriptions are not any documents, which are only written for getting an ISO-certificate or
something else. The process descriptions are used for the work. Especially the description of the software
processes are taken in order to generate project plans, to support effort estimations, to get hints for what is to
do in the specific sub processes or something else. A base for that is a customizing of the standard software
processes in order to get a project specific process.

The idea, which was realised, was the use of these processes in order to represent the experiences of
engineering and consulting projects. The experiences described by the packages are attached to the activities
and sub processes. Our approach has several advantages:

e By coupling of activities of processes and experience packages we have on one side the standard
description of the activities how they have to be performed and on the other side the experiences. The
experiences explain how the activity can be done or offer a solution (a pattern, a tool, a macro, a
template...) or describe probable problems occured during the performance of an activity. The members of
the enterprise do not get only the standards of the processes and their activities they have to perform but
they get also examples or solutions how they can do it.

e The processes cover the business and nearly each activity of the business. By attaching experiences to the
processes similar situations can be detected which different teams/departments of the enterprise were in
during performing a process. If it can be considered that certain activities or sub processes have got a
greater number of experience packages attached, then these packages have to be analysed. Do the
packages express or describe similar performances of process activities; in that case the packages should
be used to improve the processes or a part of them. This feature will be described later in detail.

Process ID and link to the Title of the activity Number of annotated expe -
description of the standard rience packages in GENIE
and link to the packages

6¢c12 Final activities of ‘Perform Réquiremen ts Definition and Specification” GENIE (6)

6c12A01 Collection of all Results of “Performance
Requirements Definition and Specification”,

Assurance of Consistency, Checking of State “passed” Roles Input/Output Documentation GENIE (2)
6¢12A02 Collecting open Activities of Requirements Definition Roles Input/Output Documentation
6c12A03 Building Baseline “agreed Requirements Definition Roles Input/Output Documentation GENIE (1)
6¢c12A04 Update of Effort Estimation, if necessary Roles Input/Output Documentation GENIE (3)

Fig. 3. Software development process attributed with links to the knowledge management system

20-6

e The processes are defined and introduced 6 years ago. They are known and used in projects and
departments of the enterprise. The degree of knowledge about and the use of the processes are monitored
by audits and assessments. If someone has a question he or she should identify which activity or sub
process is involved and can look whether there are experiences attached. Therefore the processes offer the
users a structured access to the knowledge database. That means the processes are a taxonomy over the
content of the database. The advantage is that there was no additional effort to define this taxonomy.

In a certain way the processes and their attachments of experience packages can be understand as an
approach of an ontology or a knowledge tree. But this tree was already defined and the processes are well
known to the members of the enterprise who perform the processes. The tree is a very natural one, being
build from the structure and from the business the enterprise has. The technical realization looks as follows.
The processes are represented in an intranet. Each sub process and each activity having at least one
experience package attached has got an additional information "GENIE(*)", which express how many
packages are attached to (see Fig. 3). The number is also a link to intranet server of the knowledge
management system. By traversing the link a list of links to the packages itself is shown. Each item in the list
consists of the title and a short abstract. The list is sorted by date. The layout of the list is the one shown in
Fig. 4. Based on the title and on the abstract the reader can decide whether or not to navigate to the package

"Collection of Topics for Status Meetings"
\ Abstract| | "Systematical Preparation of Status Meetings"

"Integrated View on all projected Processes”
Abstract| | "In the Sense of EFQM and TQM there must be an inte-
grated View on all Project Processes."

"Progress Control in Projects”
\ Abstract| | “Progress Control in Projects with MS-Project and Outlook”

Fig. 4. List of published packages

Support of Evolutionary Development

Projects with an evolutionary development model cannot be planned for a long term, as the phase after the
actual one cannot be determined exactly or as after each step they have often to be planned new, whereas the
changes are much bigger than in usual projects. Often it is very helpful for the software engineers (analysts),
the developers and project managers to get hints how the next situation can be managed or how the next
problem can be solved. In the last years each evolutionary project was quite different from the others. Maybe
as the evolutionary process models are not so perfect than the conventional ones or as it is a reason, which is
based, in the evolutionary principle itself. So the problem is to put the know how in an evolutionary process
as the know how cannot be standardised. In our opinion another solution than process definition with their
standard must be found!

What the project managers and team members help, especially the new or inexperienced, is the know how
from other projects. As described a lot of situations in an evolutionary development are often new, but nearly
also often other projects have had similar problems and mostly they have solutions for the problems. But
how can the ones who have the experience and the know how come together with the ones who need it. The
platform of a knowledge management can be used for this purpose.

20-7

Actual information about other projects is contained in the knowledge management system GENIE.
Strategies, concepts and methodologies are described in the experience packages of GENIE. But we know
that the description is only the beginning of a communication between the author of the package and the
reader. The description has the purpose to give a hint to a person, which has a specific know how and
experience for a specific problem. It can be only a hint even if the packages are structured and contain
problem, concepts and results as in our knowledge management system. The experience of the last years
have shown that a description in a package can only be used for an first information and that the author of
package must be contacted for further information. If one have tried to give a complete description to a
problem and their solution then the description was to detailed and not read by the users of GENIE.

It seems to be important that certain topics are covered by packages in the knowledge management. These
topics are specific or very relevant for projects in an evolutionary area. The following topics are for example
of interest:

e Strategies:
Which release or prototype strategies should be preferred? Use of strategies in order to get
requirements. Definition of the deliverables.

e Communication:
Which communication channels to the customer should be used? Who is the corresponding partner
on the side of the customer? ...

e Controlling:
Methodologies for controlling and managing a project without having reliable estimation for effort
and time. Concepts for leading a team in this unstable area.

e Development:
Management of the parallelism of software implementation and documentation of concepts

Packages with other contents are also requested, of course. That means packages with practice and best
practices are interesting. Even descriptions of problems, which are unresolved, are useful, as they can help to
avoid similar situations.

Packages with downloads containing solutions (templates, macros, libraries...) are also used by the projects
and of course not only by evolutionary or incremental projects. The support of these packages is directly as
the projects can use existing solutions and can save therefore time and effort.

It is absolutely necessary to offer the projects a direct way to give their inputs to the knowledge management.
In [7], [8] we have described, that three methods of giving/getting input are established for GENIE
knowledge management. One of the three methods is the possibility to send input to the knowledge
management by a web-application (idea management), which can be invoked in our intranet. Everyone in the
enterprise can use this application and can document for the knowledge management the experiences he has
made in a certain step of his work. We have observed that projects with an evolutionary or incremental
development model use this opportunity to describe their experiences. The packages derived from these
experiences are interesting, helpful and have a high quality.

The practice in knowledge management in the Development Center has also shown that the web-application
idea management as the only method to get information/input for packages is not sufficient. The most
packages that were derived from these inputs are best practices. More systematic methods were needed. Two
other methods are implemented in our processes. These first of these both methods consists of enhanced
assessments based on the bootstrap method. The second one is a review by which the projects are asked for
their experience. By this method we get also practices and unresolved problems. Both of the last described
methods are used to get input in a more systematic way and to get not only best practices but also practices
and problems.

Of course with our knowledge management system we have the same problem, which the most systems in
knowledge management area have: The success of the system cannot be exactly measured. But what we have

20-8

is the feedback of the user of GENIE. This feedback shows that time and effort in the projects were saved
and mistakes were avoided. We have also the feedback that new projects with evolutionary development
strategies use GENIE in both roles: readers and authors.

Support of Quality Management

A modern quality management for software engineering projects is based on delivery processes, in which
beside the engineering and project management activities the work for the quality goals is also described.
Usually the processes should be customised according the project specific needs and objectives. The
processes contain for each activity a standard consisting of the description of the activity itself, the
dependencies to prior activities and the needed roles for performance. They are also, if necessary, templates
for some of the process activities. The last years have shown that it is not sufficient to provide the projects
with a customised process.

Some issues in the conference “Professionelles Wissensmanagement” ([6]) have proposed that knowledge
management and processes must work together as they need each other. We have, since GENIE was
introduced, the prove that processes and knowledge management must build a symbiosis. The reasons for
that are described in [8]. These symbiosis have several advantages for quality management of projects and
for the overall quality management of an enterprise.

The process activities are as already mentioned annotated with experiences from the project. The experiences
itself bear very often downloads containing the applied templates from the process. The templates can be in
the original state or can be customised for the project, from which the experience was published. So the users
of GENIE can immediately see how the templates can be applied and how they can be customised for the
needs of a project. The quality management in a project saves a lot of time as:

e A lot of questions to templates are already answered

e Discussion about the sense of template can be finished very quickly by referencing the experience
with the corresponding applied template in GENIE

The performance of the processes is not only supported by experiences with templates but also with all other
experiences. The majority of experiences, annotated to process activities, show how the activity can be
performed or which problems can occur in the corresponding phase of a project. So the experience can
accelerate the performance of an activity or can help to avoid problems.

20-9

Feedback

ACCESS

Improvements

Fig. 5. The knowledge management GENIE (EM=Employee, KE=Knowledge Engineer (collects the input,
that are the experiences, from the employees and teams), KB=Knowledge Broker (publish the experiences
and inform the other employees)

The knowledge management GENIE also supports the overall quality management. The process activities
are annotated by experiences from GENIE. The last two years have shown that the experiences are not
shared equal among the activities. The accumulation of experiences at certain process activities gives first
hints where the process should be analysed. An accumulation point with experiences in the process can have
two reasons:

1. The process step, where the accumulation point has arised, is difficult but well understood and the
project team members want show their excellent solutions for this step.

2. The process step is difficult and very often the project teams have problems to perform the step. The
problems (solved or unsolved) are documented in experiences.

In the second case it is the purpose of the overall quality management to analyse the problems and to
determine whether the problems are caused by the process itself or whether they are project specific. If they
are project specific perhaps the project need a better support by management or experts. This request for
support has to be implemented in the process as a not mandatory activity. If the process itself causes the
problems, then of course the process has to be changed at this step.

The analysis of accumulation points shows where problems in the performance of processes exist and where
the processes have to be improved. The analysis provides the overall quality management with a very
systematic approach to improve the processes. The main advantage of this approach is that the improvements
are driven directly from the practice of the projects.

Another possibility to improve the processes is to evaluate the feedback to experiences that is collected by
GENIE (see Fig. 5). GENIE provides the users with a function for giving feedback to each experience in the
knowledge database. The feedback to experiences can contain proposals for the improvement of processes.

In a summary one can say that the symbiosis of processes and knowledge management can help to accelerate
the performance and can support systematic improvement of processes.

20-10

Conclusion

These article reports the results the Development Center South-West have gained after the introduction of the
knowledge management system GENIE. The data and information in GENIE are based on experiences
packages, which are structured documents.

One difference to other knowledge management approaches is the role of processes in GENIE. At first
processes are a taxonomy for the content of the knowledge database. But the relation between the processes
and the knowledge management is not only based on a taxonomy. Both are very narrow connected so that
they build a symbiosis where the knowledge management supports the processes and vice versa.

The symbiosis itself is the base for an excellent support of the overall quality management, which defines
and improves processes. Processes can be improved in a very systematic and efficient manner. The
performance of the processes is accelerated by the experiences from the knowledge database.

The projects itself are supported by the experiences from the knowledge database. The database contains a
lot of actual descriptions to problems, practices and best practices. Also contained are downloads with
templates, macros and libraries for an use in a project. Especially the evolutionary or incremental projects
access the experience packages with content to the topics of strategies, communications and so on.

The first year after introduction GENIE is an established platform for the communication between projects.

Literature

[1] Probst G., Raub S. and Romhardt K.: Wissen managen - Wie Unternehmen ihre wertvollste Ressource
optimal nutzen. Frankfurter Allgemeine - Gabler (1997)

[2] Gensch P.: Inhaltliche Gestaltung wissensbasierter Datenbanken. Seminar: Ideen- und Projektdatenbanken,
Management Circle (1999)

[3] Rombach D., Bomarius F. and Birk A.: (internal) Workshop Experience Factory (1997)

[4] Basili V., Green S.: Software Process Evolution at the SEL. IEEE Software (1994) 58-66

[5] Abecker A., Maus H., Bernardi A.: Softwareunterstiitzung fiir das geschifts-prozessorientierte
Wissensmanagement, Professionelles Wissensmanagement - Erfahrungen und Visionen, Shaker Verlag

(2001)

[6] Schnurr H.-P., Staab S., Studer R., Stumme G., Sure Y.: Professionelles Wissensmanagement -
Erfahrungen und Visionen, Shaker Verlag (2001)

[7] Nagel C.: Knowledge Management: A pragmatic process based approach, in Software Quality, Springer
Verlag (2001)

[8] Nagel C.: Processes and Knowledge Management: A Symbiosis, PROFES 2001, Springer Verlag
(2001),Download: http://www.springer.de/comp/Incs/index.html.

REPORT DOCUMENTATION PAGE

1. Recipient’s Reference

2. Originator’'s References

RTO-MP-102
AC/323(IST-034)TP/19

3. Further Reference

ISBN 92-837-0029-5

4. Security Classification
of Document

UNCLASSIFIED/
UNLIMITED

5. Originator ~ Research and Technology Organisation

North Atlantic Treaty Organisation

BP 25, F-92201 Neuilly-sur-Seine Cedex, France
6. Title

Technology for Evolutionary Software Development

7. Presented at/sponsored by

the RTO Information Systems Technology Panel (IST) held in Bonn, Germany,
23-24 September 2002.

8. Author (s)/Editor (s) 9. Date
Multiple June 2003

10. Author’g/Editor’'s Address 11. Pages
Multiple 242 (text)

497 (slides)

12. Distribution Statement

There are no restrictions on the distribution of this document.
Information about the availability of this and other RTO
unclassified publications is given on the back cover.

13. Keywords/Descriptors

Computer architecture
Computer programming

Design

Evolutionary acquisition
Evolutionary algorithms
Evolutionary software
Information system
Information technology
Integrated systems

Interoperability

Knowledge Management

Life cycles
Methodology
Optimization
Software development
Software engineering
Systems engineering

14. Abstract

This volume contains the Technical Evaluation Report, the Keynote Addresses and 20 papers,
presented at the Information Systems Technology Panel Symposium held in Bonn, Germany,
23-24 September 2002.

The papers presented covered the following headings:

» Software Process

* Strategies and Approaches

» Software and System Architectures
* Components and User Interfaces

Techniques

Lifecycle Issues

This page has been deliberately left blank

Page intentionnellement blanche

NORTH ATLANTIC TREATY ORGANISATION

= ?

RESEARCH AND TECHNOLOGY ORGANISATION

BP 25 « 7 RUE ANCELLE
F-92201 NEUILLY-SUR-SEINE CEDEX ¢ FRANCE

Télécopie 0(1)55.61.22.99 o E-mail mailbox@rta.nato.int

DIFFUSION DES PUBLICATIONS
RTO NON CLASSIFIEES

L’Organisation pour la recherche et la technologie de I'OTAN (RTO), détient un stock limité de certaines de ses publications récentes, ainsi
que de celles de ’ancien AGARD (Groupe consultatif pour la recherche et les réalisations aérospatiales de I’OTAN). Celles-ci pourront
éventuellement étre obtenues sous forme de copie papier. Pour de plus amples renseignements concernant 1’achat de ces ouvrages,
adressez-vous par lettre ou par télécopie a I’adresse indiquée ci-dessus. Veuillez ne pas téléphoner.

Des exemplaires supplémentaires peuvent parfois étre obtenus aupres des centres nationaux de distribution indiqués ci-dessous. Si vous
souhaitez recevoir toutes les publications de la RTO, ou simplement celles qui concernent certains Panels, vous pouvez demander d’étre
inclus sur la liste d’envoi de ’'un de ces centres.

Les publications de la RTO et de I’AGARD sont en vente auprés des agences de vente indiquées ci-dessous, sous forme de photocopie ou
de microfiche. Certains originaux peuvent également étre obtenus aupres de CASI.

CENTRES DE DIFFUSION NATIONAUX

ALLEMAGNE
Streitkrafteamt / Abteilung III
Fachinformationszentrum der
Bundeswehr, (FIZBw)
Friedrich-Ebert-Allee 34
D-53113 Bonn

BELGIQUE
Etat-Major de la Défense
Département d’Etat-Major Stratégie
ACOS-STRAT-STE - Coord. RTO
Quartier Reine Elisabeth
Rue d’Evere, B-1140 Bruxelles

CANADA
DSIGRD2
Bibliothécaire des ressources du savoir
R et D pour la défense Canada
Ministere de la Défense nationale
305, rue Rideau, 9°¢ étage
Ottawa, Ontario K1A 0K2

DANEMARK
Danish Defence Research Establishment
Ryvangs Allé 1, P.O. Box 2715
DK-2100 Copenhagen @

ESPAGNE
INTA (RTO/AGARD Publications)
Carretera de Torrejon a Ajalvir, Pk.4
28850 Torrejon de Ardoz - Madrid

ETATS-UNIS
NASA Center for AeroSpace
Information (CASI)
Parkway Center
7121 Standard Drive
Hanover, MD 21076-1320

NASA Center for AeroSpace
Information (CASI)

Parkway Center

7121 Standard Drive

Hanover, MD 21076-1320

Etats-Unis

FRANCE
O.N.E.R.A. (ISP)
29, Avenue de la Division Leclerc
BP 72, 92322 Chatillon Cedex

GRECE (Correspondant)
Defence Industry & Research
General Directorate
Research Directorate
Fakinos Base Camp
S.T.G. 1020
Holargos, Athens

HONGRIE
Department for Scientific
Analysis
Institute of Military Technology
Ministry of Defence
H-1525 Budapest P O Box 26

ISLANDE
Director of Aviation
c/o Flugrad
Reykjavik

ITALIE
Centro di Documentazione
Tecnico-Scientifica della Difesa
Via XX Settembre 123a
00187 Roma

LUXEMBOURG
Voir Belgique

NORVEGE
Norwegian Defence Research
Establishment
Attn: Biblioteket
P.O. Box 25, NO-2007 Kjeller

AGENCES DE VENTE

The British Library Document
Supply Centre

Boston Spa, Wetherby

West Yorkshire LS23 7BQ

Royaume-Uni

PAYS-BAS
Royal Netherlands Military
Academy Library
P.O. Box 90.002
4800 PA Breda

POLOGNE
Armament Policy Department
218 Niepodleglosci Av.
00-911 Warsaw

PORTUGAL
Estado Maior da Forga Aérea
SDFA - Centro de Documentagido
Alfragide
P-2720 Amadora

REPUBLIQUE TCHEQUE
DIC Czech Republic-NATO RTO
VTUL a PVO Praha
Mladoboleslavskd ul.
Praha 9, 197 06, Ceska republika

ROYAUME-UNI
Dstl Knowledge Services
Kentigern House, Room 2246
65 Brown Street
Glasgow G2 8EX

TURQUIE
Milli Savunma Bagkanligi (MSB)
ARGE Dairesi Bagkanligi (MSB)
06650 Bakanliklar - Ankara

Canada Institute for Scientific and
Technical Information (CISTI)

National Research Council

Acquisitions

Montreal Road, Building M-55

Ottawa K1A 0S2, Canada

Les demandes de documents RTO ou AGARD doivent comporter la dénomination “RTO” ou “AGARD” selon le cas, suivie du
numéro de série (par exemple AGARD-AG-315). Des informations analogues, telles que le titre et la date de publication sont
souhaitables. Des références bibliographiques completes ainsi que des résumés des publications RTO et AGARD figurent dans les

journaux suivants:

Scientific and Technical Aerospace Reports (STAR)
STAR peut étre consulté en ligne au localisateur de

ressources uniformes (URL) suivant:

http://www .sti.nasa.gov/Pubs/star/Star.html
STAR est édité par CASI dans le cadre du programme
NASA d’information scientifique et technique (STI)

STI Program Office, MS 157A
NASA Langley Research Center
Hampton, Virginia 23681-0001
Etats-Unis

Springfield
Virginia 2216
Etats-Unis

Government Reports Announcements & Index (GRA&I)
publié par le National Technical Information Service

(accessible également en mode interactif dans la base de

données bibliographiques en ligne du NTIS, et sur CD-ROM)

OTTAWA/HULL

Imprimé par Groupe d’imprimerie St-Joseph inc.

(Membre de la Corporation St-Joseph)

1165, rue Kenaston, Ottawa (Ontario), Canada KIG 651

NORTH ATLANTIC TREATY ORGANISATION

= ?

RESEARCH AND TECHNOLOGY ORGANISATION
BP 25 « 7 RUE ANCELLE
F-92201 NEUILLY-SUR-SEINE CEDEX ¢ FRANCE
Telefax 0(1)55.61.22.99 ¢ E-mail mailbox@rta.nato.int

DISTRIBUTION OF UNCLASSIFIED
RTO PUBLICATIONS

NATO’s Research and Technology Organisation (RTO) holds limited quantities of some of its recent publications and those of the former
AGARD (Advisory Group for Aerospace Research & Development of NATO), and these may be available for purchase in hard copy form.
For more information, write or send a telefax to the address given above. Please do not telephone.

Further copies are sometimes available from the National Distribution Centres listed below. If you wish to receive all RTO publications, or
just those relating to one or more specific RTO Panels, they may be willing to include you (or your organisation) in their distribution.

RTO and AGARD publications may be purchased from the Sales Agencies listed below, in photocopy or microfiche form. Original copies
of some publications may be available from CASI.
NATIONAL DISTRIBUTION CENTRES

POLAND
Armament Policy Department
218 Niepodleglosci Av.
00-911 Warsaw

PORTUGAL

BELGIUM
Etat-Major de la Défense
Département d’Etat-Major Stratégie
ACOS-STRAT-STE - Coord. RTO
Quartier Reine Elisabeth

GREECE (Point of Contact)
Defence Industry & Research
General Directorate
Research Directorate
Fakinos Base Camp

Rue d’Evere, B-1140 Bruxelles S.T.G. 1020 . ,
Holargos, Athens Estado Maior da Forga Aérea
CANADA SDFA - Centro de Documentagdo
DRDKIM?2 HUNGARY Alfragide
Knowledge Resources Librarian Department for Scientific P-2720 Amadora
Defence R&D Canada Analysis SPAIN

Department of National Defence
305 Rideau Street, 9" Floor
Ottawa, Ontario K1A 0K2

Institute of Military Technology
Ministry of Defence
H-1525 Budapest P O Box 26

INTA (RTO/AGARD Publications)
Carretera de Torrejon a Ajalvir, Pk.4
28850 Torrejon de Ardoz - Madrid

CZECH REPUBLIC
DIC Czech Republic-NATO RTO
VTUL a PVO Praha
Mladoboleslavskd ul.
Praha 9, 197 06, Ceska republika

DENMARK
Danish Defence Research
Establishment
Ryvangs Allé 1, P.O. Box 2715
DK-2100 Copenhagen @

FRANCE
O.N.E.R.A. (ISP)
29 Avenue de la Division Leclerc
BP 72, 92322 Chatillon Cedex

GERMANY
Streitkrafteamt / Abteilung III
Fachinformationszentrum der
Bundeswehr, (FIZBw)
Friedrich-Ebert-Allee 34
D-53113 Bonn

NASA Center for AeroSpace
Information (CASI)

Parkway Center

7121 Standard Drive

Hanover, MD 21076-1320

United States

ICELAND
Director of Aviation
c/o Flugrad
Reykjavik

ITALY
Centro di Documentazione
Tecnico-Scientifica della Difesa
Via XX Settembre 123a
00187 Roma

LUXEMBOURG
See Belgium

NETHERLANDS
Royal Netherlands Military
Academy Library
P.O. Box 90.002
4800 PA Breda

NORWAY
Norwegian Defence Research
Establishment
Attn: Biblioteket
P.O. Box 25, NO-2007 Kjeller

SALES AGENCIES

The British Library Document
Supply Centre

Boston Spa, Wetherby

West Yorkshire LS23 7BQ

United Kingdom

TURKEY

Milli Savunma Bagkanligi (MSB)
ARGE Dairesi Bagkanligi (MSB)
06650 Bakanliklar - Ankara

UNITED KINGDOM

Dstl Knowledge Services
Kentigern House, Room 2246
65 Brown Street

Glasgow G2 8EX

UNITED STATES

NASA Center for AeroSpace
Information (CASI)

Parkway Center

7121 Standard Drive

Hanover, MD 21076-1320

Canada Institute for Scientific and
Technical Information (CISTI)

National Research Council

Acquisitions

Montreal Road, Building M-55

Ottawa K1A 0S2, Canada

Requests for RTO or AGARD documents should include the word ‘RTO’ or ‘AGARD’, as appropriate, followed by the serial
number (for example AGARD-AG-315). Collateral information such as title and publication date is desirable. Full bibliographical
references and abstracts of RTO and AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements & Index (GRA&I)
STAR is available on-line at the following uniform published by the National Technical Information Service
resource locator: Springfield

http://www.sti.nasa.gov/Pubs/star/Star.html Virginia 22161
STAR is published by CASI for the NASA Scientific United States
and Technical Information (STI) Program (also available online in the NTIS Bibliographic
STI Program Office, MS 157A Database or on CD-ROM)
NASA Langley Research Center
Hampton, Virginia 23681-0001
United States

OTTAWA/HULL

Printed by St. Joseph Print Group Inc.
(A St. Joseph Corporation Company)
1165 Kenaston Street, Ottawa, Ontario, Canada K1G 6S1

ISBN 92-837-0029-5

	Cover
	RDP
	Table of Contents
	Papers 1-7
	Papers 8-20

	Notes to users
	PowerPoint files

	Link to presentation:
	box:
	Copy A-1: Single copies of this publication or of a part of it may be made for individual use only. The approval of the RTA Information Management and Systems Branch is required for more than one copy to be made or an extract included in another publication. Requests to do so should be sent to the address above.
	Copy 2003: © RTO/NATO 2003
	EN or MP NA: (except for items marked in red, which were not available for production)
	EN or MP: Click inside the blue boxes or on the titles to view the corresponding section

