
AFRL-IF-WP-TR-2003-1539

RAPID-PROTOTYPING OF
APPLICATION SPECIFIC SIGNAL
PROCESSORS (RASSP) EDUCATION
AND FACILITATION

South Carolina Research Authority
5300 International Blvd.
N. Charleston, SC 29418

Advanced Technology Institute

DECEMBER 2000

Final Report for 13 June 1994 – 31 December 2000

Approved for public release; distribution is unlimited.

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

Ai~~:JF&f' j' j .'

Team Leader
Embedded Information Sys. Eng. Branch
Information Technology Division
Air Force Research Laboratory

a~~~ Chief
Embedded Infomlation Sys. Eng. Branch
Infomlation Technology Division
Air Force Research Laboratory

Do not return copies of this report unless contractual obligations or notice on a specific document
requires its return.

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECMCATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

ALFRTOLSCMPELLI V
Team Leader
Embedded Information Sys. Eng. Branch
Information Technology Division
Air Force Research Laboratory

SAM]
^^•/..^t^ yai»Bir»!y\

lAflES S. WILLIAMSON, Chief
Embedded Information Sys. Eng. Branch
Information Technology Division
Air Force Research Laboratory

Do not return copies of this report unless contractual obligations or notice on a specific document
requires its return.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

December 2000 Final 06/13/1994 – 12/31/2000
5a. CONTRACT NUMBER

F33615-94-C-1457
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

RAPID-PROTOTYPING OF APPLICATION SPECIFIC SIGNAL
PROCESSORS (RASSP) EDUCATION AND FACILITATION

5c. PROGRAM ELEMENT NUMBER

63739E
5d. PROJECT NUMBER

A268
5e. TASK NUMBER

02

6. AUTHOR(S)

5f. WORK UNIT NUMBER

 11
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

South Carolina Research Authority
5300 International Blvd.
N. Charleston, SC 29418

Advanced Technology Institute

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/IFTA Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7334

DARPA Tactical Technology Office
3701 Fairfax Drive
Arlington, VA 22203-1714

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

 AFRL-IF-WP-TR-2003-1539
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Report contains color. This report is also available on the companion CD-ROM when the AD’M number is ordered from
DTIC (the AD’M additionally contains Appendix C, an HTML-based tutorial which is available only on the CD-ROM).
14. ABSTRACT

The Rapid-Prototyping of Application Specific Signal Processors (RASSP) program was a major DARPA/Tri-Service
initiative to reinvent the process by which embedded digital signal processors were developed. The goal of the DARPA/Tri-
service RASSP program was to dramatically improve the design process for complex digital systems, particularly embedded
signal processors. A key objective was to reduce the total product development time by at least a factor of four while making
similar improvements in product quality and life cycle cost. Also important was the ability to field state-of-the-art equipment
at system build time and to rapidly upgrade the system throughout its life cycle. The RASSP Education and Facilitation
(E&F) program was an unprecedented program set up to disseminate the information developed by 24 other RASSP
programs to enable a paradigm shift in the way signal processors were designed. The RASSP E&F program is made up of
four distinct functions: education, information server, interface, and transition. Major accomplishments include the
establishment and maintenance of a webserver, the publication of the “RASSP Digest,” development of educational and
training materials, and technology transfer including executive seminars, workshops, RASSP Course Modules, and IEEE
publication of two RASSP CD-ROMs. The second edition of the RASSP CD-ROM presents the essence of the knowledge
from the entire RASSP program. The webserver has been relocated but is still operational.
15. SUBJECT TERMS

RASSP, RASSP E&F, RASSP Education and Facilitation, application specific signal processors, RASSP Digest, RASSP modules,
VHDL Interactive Tutorial, VHDL – Electronic Systems Design Methodologies and Interactive Tutorial, Model Year Architecture
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 292
 Maya Rubeiz
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6653 x3593
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

iii

TABLE OF CONTENTS
List of Figures .. iv
List of Tables ... iv
List of acronyms .. v
1 Executive Summary.. 1
2 Introduction... 2
3 Accomplishments.. 6

3.1 RASSP Webserver... 6
3.2 RASSP Digest.. 19
3.3 Courses, Seminars and Presentations .. 22

3.3.1 Course Modules .. 22
3.3.2 RASSP Workshop Participation ... 24

3.4 Publications ... 25
3.5 The RASSP CDs.. 25

4 Lessons Learned.. 31
5 Bibliography ... 35
Appendix A -RASSP Program Participants .. 37
Appendix B -Abstract Descriptions Of The RASSP E&F Course Modules 39
Appendix C - VHDL: Electronic Systems Design Methodologies and Interactive Tutorial
and Brochure... 44
Appendix D - VHDL Interactive Tutorial (Brochure).. 48
Appendix E - RASSP Digests................. ... 55
Appendix F - Rapid Prototyping Of Application Specific Signal Processors
(external)(book) ...280

iv

LIST OF FIGURES
Figure 1 - Selected List of Foreign Country Visitors to the RASSP Website 10
Figure 2 - RASSP Webserver Accesses per Month.. 11
Figure 3 - RASSP Webserver Unique Hosts per Month... 12
Figure 4 - Megabytes of Data Transferred per Month.. 13
Figure 5 - RASSP Webserver Bytes Transferred per Unique Host per Month 14
Figure 6 - RASSP Webserver Home Page .. 15
Figure 7 - RASSP Documents Page.. 16
Figure 8 - RASSP Digest Page .. 16
Figure 9 – Example of Path to VHDL Memory Models... 17
Figure 10 - RASSP VHDL Support Page ... 17
Figure 11 - RASSP VHDL Model Page ... 18
Figure 12 - RASSP VHDL Memory Models.. 18
Figure 13 - RASSP CD-ROM... 26

LIST OF TABLES
Table 1 - Steps to Accomplish the Goal of the RASSP Education and Facilitation

Program.. 4
Table 2- Selected List of Educational Visitors to the RASSP Website 6
Table 3 - Selected List of Commercial Visitors to the RASSP Website 7
Table 4 -Table of Contents for all RASSP Digest ... 19
Table 5 - Sites of Executive Seminars .. 22
Table 6 - RASSP Modules.. 23
Table 7 – Feedback on Modules Taught in Classes by Universities Not Associated with

the RASSP E&F Team... 23
Table 8 - Selected Conferences and Workshops Having RASSP E&F Participation 24
Table 9 - Selected Educator Workshops Provided by RASSP E&F................................. 25
Table 10 - Table of Contents for Second RASSP CD-ROM.. 27
Table 11 - List of Schools that have Received the 2nd Edition ... 28
of the RASSP CD-ROM ... 28

v

LIST OF ACRONYMS

ADL Arthur D. Little
ASEE American Society of Engineering Educators
ATI Advanced Technology Institute
CD-ROM Compact Disk Read Only Memory
DAC Design Automation Conference
DARPA Defense Advanced Research Projects Agency
DSP Digital Signal Processor
GT Georgia Institute of Technology
GOMAC Government Microcircuit Applications Conference
IEEE Institute of Electrical and Electronics Engineers
EE Electrical/Electronics
HTML Hypertext Markup Language
HW/SW Hardware/Software
NASA National Aeronautics and Space Administration
PDF Portable Document Format
RASSP Rapid Prototyping of Application Specific Signal Processors
RASSP E&F RASSP Education and Facilitation
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VIUF VHDL International Users Forum
VLSI Very Large Scale Integration
UC The University of Cincinnati
UVA University of Virginia

1

1 EXECUTIVE SUMMARY

The RASSP Education and Facilitation (E&F) program was the first Department of

Defense program dedicated to extracting technology developed in a major research and

development initiative and inserting it into industry and academia. As a result of this

multi-year DARPA/Tri-Service effort, the technologies and methodologies developed by

the Prime, Technology Base and Benchmarker contractors have been inserted into

industry and academia. This method has allowed technology to be accessible for use

without the usual gap of years between technology development and its widespread use.

The success of RASSP E&F can be measured not only in terms of what was done during

the program, but also in terms of the legacy provided by a book, CD-ROMs, course

modules, a website and the students and faculty who have been exposed to RASSP

technology.

The RASSP webserver has provided a means to disperse information worldwide to

government, industry and academia. With over two million hits, the web page has

proven to be a significant tool to reach an ever-expanding audience, regardless of location

or time constraints. The RASSP Digest newsletter provided a professional journal that

was keyed to the most significant audience, with thousands of copies delivered. The

newsletter provided articles and news written by experts in engineering and education.

Over 3,000 EE degrees are awarded annually by 264 engineering schools in the United

States. Over 70 of these schools now use RASSP modules as part of their teaching

methodology. Over 800 copies of the first edition of the RASSP CD were purchased by

practicing engineers and academia. To further enhance the penetration of the RASSP

methodology into academia, complimentary copies of the second edition of the RASSP

CD were sent to electrical engineering department heads of 107 universities and colleges.

These statistics show the success of the program in its goal to insert the latest RASSP

technology into educational programs and provide practicing engineers access to the

RASSP technology.

2

2 INTRODUCTION

Rapid-Prototyping of Application Specific Signal Processors (RASSP) program was a

major DARPA/Tri-Service initiative to reinvent the process by which embedded digital

signal processors were developed. The goal of the DARPA/Tri-service RASSP program

was to dramatically improve the design process for complex digital systems, particularly

embedded signal processors. A key objective was to reduce the total product

development time by at least a factor of four while making similar improvements in

product quality and life cycle cost. Also important was the ability to field state-of-the-art

equipment at system build time and to rapidly upgrade the system throughout its life

cycle. RASSP met many of these goals through a combination of advanced design

methodology emphasizing virtual prototyping, concurrent engineering, and design re-use;

modular, scalable signal processor architectures; and a comprehensive supporting base of

electronic design infrastructure, including automation tools, hardware and software

libraries, enterprise integration capabilities, and standards. The program adopted an

incremental refinement "model year" design methodology as a way of stressing the

importance of continuous improvement, meeting short development schedules (3 to 12

months), and avoiding point design solutions. The model year methodology requires that

systems be upgradable on an annual basis, with increasing function and performance.

Many of the results of the RASSP program have been applied to other classes of

electronic systems. Appendix A contains a list of RASSP program participants.

The RASSP program also pioneered two innovative concepts for managing a process-

oriented program. First, development teams were benchmarked with semiannual

"quizzes" --small design exercises that provided the feedback needed for continuous

process improvement. The quizzes were based on design of a synthetic aperture radar

image formation processor. Second, the program included an Educator/Facilitator

contractor with explicit responsibility to ensure that RASSP design technology transitions

effectively to the electronics community at large and continued to mature after

completion of the RASSP program.

3

The goal of the RASSP

Education and Facilitation

program was to develop a state-

of-the-art education system to

accelerate RASSP technology

transfer to industry,

government and academia.

Over the past decade,

electronic system capabilities

have grown rapidly and

manufacturing has made great

strides in keeping up with this growth. However, design and verification techniques have

fallen behind manufacturing. Furthermore, the gap between academia and real-world

capabilities has widened significantly. Very few graduating engineers have the skills and

knowledge needed by industry in the area of digital signal processor design. Educational

techniques have not kept pace with technological advances. In addition, industry

management does not have sufficient information to make technology pay-off decisions,

especially when faced with the lag between current knowledge and current technology.

These problems hinder technical growth and increase design time.

To overcome this problem and accomplish its goals, RASSP E&F developed and

provided methodologies to enable change in the way embedded design was presented to

the engineering community, how it was taught in universities, and how it was presented

to industry decision-makers. Table 1 describes these steps used to accomplish the

RASSP E&F's goal. In accomplishing it goal of developing a state-of-the-art education

system to accelerate RASSP technology transfer to industry, RASSP E&F had to enable a

significant paradigm shift in embedded system design education.

o “...In some specialties, engineers must

update half of everything they know

every couple of years…” Ernest T.

Smerdon

o “A paradigm change in design

methodologies from I.C.

implementation to system integration

is mandated.” James Freedman

4

Table 1 - Steps to Accomplish the Goal of the RASSP Education and Facilitation

Program

Much of the success of the RASSP E&F program has been due to the diversity of the

team. The team consisted of two levels of participants. Major participants provided

much of the technical work and managerial support. Supporting participants provided

additional specialized expertise on specific tasks. The RASSP E&F program was led by

SCRA's Advanced Technology Institute (ATI) which provided program management and

technical support.

Major participants included:

• The University of Virginia (UVA) which provided technical expertise in the area of

VHSIC {Very High Speed Integrated Circuit} Hardware Description Language

(VHDL), RASSP methodologies and instructional methodologies;

• Georgia Institute of Technology (GT) which provided technical expertise in the area

of VHDL, RASSP methodologies and instructional methodologies;

• The University of Cincinnati (UC) which provided technical expertise in the area of

VHDL and RASSP methodologies;

• Raytheon which provided expertise in the area of electronic manufacturing and

technologies; and

• Arthur D. Little (ADL) which provided program management support.

• Generate awareness and elicit user interest by providing a single point

source of information about RASSP

• Develop, incorporate and disseminate an education system for

university and continuing education that will facilitate the teaching of

state-of-the-art system design techniques

• Educate senior executives in industry and government on the benefits

of RASSP technology

5

Supporting participants included:

• Pennsylvania State University which provided assistance with the VHDL: Electronic

Systems Design Methodologies and Interactive Tutorial CD-ROM;

• Mississippi State University which provided assistance with the VHDL: Electronic

Systems Design Methodologies and Interactive Tutorial CD-ROM;

• Web Services, Incorporated which provided assistance with the VHDL Interactive

Tutorial CD-ROM and the RASSP webserver;

• Enterprise Integration Technologies which provided assistance with the RASSP

webserver; and

• Merkle and Mears which provided assistance in the area of current design

methodologies.

6

3 ACCOMPLISHMENTS

Over 264 engineering schools in the U.S. grant electrical engineering (EE) degrees, and

RASSP E&F interacted with over 100 of these. Approximately 38% of the colleges and

universities in the U.S. who grant EE degrees have been impacted by this program. Over

70 schools have used modules developed by RASSP E&F. Major accomplishments

include the establishment and maintenance of a webserver, the publication of the RASSP

Digest, development of educational and training materials, and technology transfer.

These accomplishments are discussed in the following sections.

3.1 RASSP Webserver

The RASSP Webserver was a key element, providing a central location source for

information about the program. The website provides VHDL models and numerous

RASSP Documents on-line as well as links to related DSP and VHDL sites. IEEE

recognized the RASSP website as one of the "Top-3" in DSP. From the beginning of the

program to 31 July 1999, a total of 2,493,745 requests were made from the website and

25,216.2 megabytes of data were transferred. During the course of the program, it was

frequently accessed by engineers and students from many United States commercial and

educational institutions as well as from many foreign countries. Tables 2 and 3 provide a

list of educational and commercial institutions that frequently visited the RASSP website.

Figure 1 shows the top twenty-seven foreign countries that visited the RASSP website.

Table 2- Selected List of Educational Visitors to the RASSP Website

Educational Visitors to the RASSP Website
Arizona State University
Auburn University
California Institute of Technology
California State University - Northridge
Case Western Reserve University
Clarkson University
Clemson University
Florida International University
Howard University
Massachusetts Institute of Technology
Michigan State University

7

Educational Visitors to the RASSP Website
North Carolina State University
Northwestern Polytechnic University
Oregon State University
Pennsylvania State University
Princeton University
Portland State University
Rice University
Rutgers University
San Jose State University
Stanford University
Texas A&M University - Kingsville
University of Arkansas - Fayetteville
University of California - Davis
University of California - Santa Barbara
University of Central Florida
University of Cincinnati
University of Illinois - Urbana Champaign
University of Massachusetts
University of Minnesota
University of Missouri - Rolla
University of South Carolina
University of Texas at Austin
University of Virginia
Virginia Tech
Washington University

Table 3 - Selected List of Commercial Visitors to the RASSP Website

Commercial Visitors to the RASSP Website
Alexa Internet
America Online, Inc.
Banco Santander
Cadence Design Systems
Digital Equipment Corporation
EXCALIBUR Group, A Time Warner Company
Excite, Inc.
Harris Corporation
Home Network
Honeywell, Inc.
Hongkong Telecom IMS
IBM Corporation
Imagelock, Inc.

8

Commercial Visitors to the RASSP Website
Intel Corporation
JavaNet
Mentor Graphics Corporation
NETCOM On-Line Communication Services, Inc.
Nokia Head Office
Philips Electronics B.V.
Real Time Technologies, Inc.
Rockwell International Corporation
S3, Inc.
SAIC
Sara Lee Hosiery
Schlumberger Ltd.
Science & Applied Technology
Scudder, Stevens & Clark
Seagate Technology, Inc.
SGS-THOMSON Microelectronics
Shasta Networks
Siemens Business Communications Systems, Inc.
Siemens Research and Technology Laboratories
Sierra Imaging
Silicon Automation Systems
Silicon Dynamics
Silicon Logic Engineering
Silicon Valley Research, Inc.
Silicon Value
SiliconWave, Inc.
Simoco Telecommunications Ltd.
SISA
Smith International
Snow Hill Network Services
Software & Technologies, Inc.
Solidum Systems Corp.
Sony Corporation of America
South Bend Tribune
South Coast Computing Services, Inc.
Southern California Edison
Sovam Teleport
Spacebridge Communications Corporation
Spectrum Signal Processing, Inc.
Sterling Commerce
Stone Age Imaging, Inc.
Stroock & Stroock & Lavan
Sundstrand Corporation
Superonline
Surf South

9

Commercial Visitors to the RASSP Website
Sybron Dental Specialties
Synopsys, Inc.
Tec-Masters, Inc.
Texas Instruments
The Internet Access Company
The Silicon Group, Inc.
Thomson & Thomson
VORT Corporation
Webco International
Xilinx, Inc.

Figure 2, which follows, shows that the RASSP webserver site has been a very active

site. The peak usage was in May 1997 with over 130,000 accesses. Figure 3 shows the

number of unique hosts that accessed the webserver on a per month basis. Figure 4

shows the data transferred on a monthly basis, and Figure 5 shows the data transferred

per unique host per month. The peak was in July 1998, with a transfer of over 1.5

megabytes per host, and continues at over 200,000 bytes per host in July 1999. This

graph is important because it shows that website users are not just browsing, but are

downloading the files from the webserver.

Activity on the website increased yearly as the RASSP program produced material that

was posted on the website and published in the RASSP Digest newsletter. The RASSP

program was very active in 1997 when the peak occurred, and accesses remain strong

even after the prime and technology base efforts ended. See Appendix A for a list of the

program participants for these efforts. The website has been available since the

beginning of the program; however, major disruptions did occur due to hurricanes,

telecommunications failure or computer failure. The last major update to the webserver

was made in July 2000 with much of the RASSP material from the second edition of the

CD-ROM posted. The RASSP webserver will continue to operate for at least six months

after the RASSP E&F program ends. The URL for the RASSP website is

http://rassp.scra.org.

10

Figure 1 - Selected List of Foreign Country Visitors to the RASSP Website

Foreign Visitors to the RASSP Website*
Australia (.au) Mexico (.mx)
Austria (.at) Netherlands (.nl)
Belgium (.be) Poland (.pl)
Brazil (.br) Portugal (.pt)

Canada (.ca) Russian Federation (.ru)
Denmark (.dk) Singapore (.sg)

Finland (.fi) South Korea (.kr)
France (.fr) Spain (.es)

Germany (.de) Sweden (.se)
India (.in) Switzerland (.ch)
Israel (.il) Taiwan (.tw)
Italy (.it) Thailand (.th)

Japan (.jp) United Kingdom (.uk)
Malaysia (.my)

* Dark blue color represents countries visiting site

11

Figure 2 - RASSP Webserver Accesses per Month

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

A
ug

 '9
4

O
ct

 '9
4

D
ec

 '9
4

Ja
n

'9
5

M
ar

 '9
5

M
ay

 '9
5

Ju
l '

95

S
ep

 '9
5

N
ov

 '9
5

Fe
b

'9
6

A
pr

 '9
6

Ju
n

'9
6

A
ug

 '9
6

O
ct

 '9
6

D
ec

 '9
6

Ja
n

'9
7

M
ar

 '9
7

M
ay

 '9
7

Ju
l '

97

S
ep

 '9
7

N
ov

 '9
7

Fe
b

'9
8

A
pr

 '9
8

Ju
n

'9
8

A
ug

 '9
8

O
ct

 '9
8

D
ec

 '9
8

Ja
n

'9
9

M
ar

 '9
9

M
ay

-9
9

Ju
l-9

9

S
ep

-9
9

N
ov

-9
9

12

Figure 3 - RASSP Webserver Unique Hosts per Month

0

1,000

2,000

3,000

4,000

5,000

6,000

A
ug

 '9
4

O
ct

 '9
4

D
ec

 '9
4

Ja
n

'9
5

M
ar

 '9
5

M
ay

 '9
5

Ju
l '

95

S
ep

 '9
5

N
ov

 '9
5

F
eb

 '9
6

A
pr

 '9
6

Ju
n

'9
6

A
ug

 '9
6

O
ct

 '9
6

D
ec

 '9
6

Ja
n

'9
7

M
ar

 '9
7

M
ay

 '9
7

Ju
l '

97

S
ep

 '9
7

N
ov

 '9
7

F
eb

 '9
8

A
pr

 '9
8

Ju
n

'9
8

A
ug

 '9
8

O
ct

 '9
8

D
ec

 '9
8

Ja
n

'9
9

M
ar

 '9
9

M
ay

-9
9

Ju
l-9

9

S
ep

-9
9

N
ov

-9
9

Unique Hosts

13

Figure 4 - Megabytes of Data Transferred per Month

 0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

A
ug

 '9
4

O
ct

 '9
4

D
ec

 '9
4

Ja
n

'9
5

M
ar

 '9
5

M
ay

 '9
5

Ju
l '

95

S
ep

 '9
5

N
ov

 '9
5

Fe
b

'9
6

A
pr

 '9
6

Ju
n

'9
6

A
ug

 '9
6

O
ct

 '9
6

D
ec

 '9
6

Ja
n

'9
7

M
ar

 '9
7

M
ay

 '9
7

Ju
l '

97

S
ep

 '9
7

N
ov

 '9
7

Fe
b

'9
8

A
pr

 '9
8

Ju
n

'9
8

A
ug

 '9
8

O
ct

 '9
8

D
ec

 '9
8

Ja
n

'9
9

M
ar

 '9
9

M
ay

-9
9

Ju
l-9

9

S
ep

-9
9

N
ov

-9
9

Megabytes

roushrv

14

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

A
ug

 '9
4

O
ct

 '9
4

D
ec

 '9
4

Ja
n

'9
5

M
ar

 '9
5

M
ay

 '9
5

Ju
l '

95

S
ep

 '9
5

N
ov

 '9
5

Fe
b

'9
6

A
pr

 '9
6

Ju
n

'9
6

A
ug

 '9
6

O
ct

 '9
6

D
ec

 '9
6

Ja
n

'9
7

M
ar

 '9
7

M
ay

 '9
7

Ju
l '

97

S
ep

 '9
7

N
ov

 '9
7

Fe
b

'9
8

A
pr

 '9
8

Ju
n

'9
8

A
ug

 '9
8

O
ct

 '9
8

D
ec

 '9
8

Ja
n

'9
9

M
ar

 '9
9

M
ay

-9
9

Ju
l-9

9

S
ep

-9
9

N
ov

-9
9

Bytes
Figure 5 - RASSP Webserver Bytes Transferred per Unique Host per Month

roushrv
14

15

The RASSP webserver underwent over six major modifications in layout over the course

of the program. These changes were due to improvements in web technology, as well as

changes in the data available. Another cause for updates was the increase in web

expertise and expectations.

Figure 6 shows the RASSP Webserver homepage. Major items of interest are listed in

the right frames, and the menus for traversing the site are in the left frames. Figure 7

shows part of the RASSP Document main page, and Figure 8 shows part of the RASSP

Digest main page. The steps that a user would follow to obtain information in the VHDL

area are shown in Figure 9 and elaborated in Figures 10, 11 and 12.

Figure 6 - RASSP Webserver Home Page

^ RAS5P HObE RACE - \l\la»'aiSp iVtLCilQ Oiq - Nei^L-ap

Fil? GG QirnmunicDbir Help

RASSP

BBtkground

VHDL
Ccup^B N'OCIJIEZ

DJaelflimar

^New IL'^SSP dtfvdop^d CD-ROM beiruj iOldbvOielEEE! -

Th^^ VHDL. EtKlJonK Systems Design ilstmiiokif^ antilnteitatin
TuK^J CD-ROW HffiaeaeJ 35 panotlTieDftHPARaii.idPfntorffitrtgal
A|.... aion Specific Signal PiucK^r^ LP'°S5PJ pmgran TTHgodolllBPASS*

|i ■nicularlvembe'file'jsignal protp^Kf^ ^liev(i'=^^:'T'^'>9^loiediKellielold
proiluLldUhVlijprrmnllnTKtiij afld^^df^laiciffourAliiru rnd<nosiniia
ini|:'(iverr^rir^inproiiui:[qiiaiirij^<]|ir&iVt^*v^ AbuirnpDiiQniiiutwdiAl^b?
ri^ii] 5H^e-o^lhp-a^lMU^P^^^lal5lJlffi^^bJl'J□^^ealldH^lq)•(J!flIl)^*a^telle5V5tnl

jrnrc^hoLn iiL iif'd lycla J\\\^m\JDfa:^i&<lCt>-ifOUc(/^'5Mairi^nanfitlomt
jrncu^ ^re^i IM Tup.DivertDc^fin and tnclfUf'^DKirdg fatesnidQc.uoh.anil
relerenfe maten al Thp CD-POM ar^enrzaion 3Pcn*5 ^juo K slan m ff>v 'J* Itfte lotus

ar^s^, tTidr&byprC'^ding maM]mum ulilVIrtrho CD-ROM The^ue at^a^aroa^'dlove.

■ VHZiLTuKnal-HTML^Muenceofcciiirserncpail^lO, ll, r2, l3«@0andleti5i«UnvandVWitd[rpis
svCTerre

< Top-DUVHTI Design TuTan^ - HTI^L ^equertia nl^oui^err-iiaLilQg r4 ^,30 ^2 57&56atdldKfor
UnfandiAilnckivHa ^vstema

' Ca^eSrudiea-The^ered-irtorld benchmark case aril 63 cmvuteanirnradifc&cnbllieffio-dciwi
im^ign prai:^^^ EuunlTiuugn empi^aimd Digital Signal FTUi:Q^^oi£[DSPr are IEHIK its dehr«y
mKHani&m for me pro^e^g IT can [^ ac*iieO [■! oiher areas

■ AppiKannnNnP?^-These appifOTon nctesDrmjid'jaddiiicnai derail r^ie'itedredotdaeaslifli
ara i:(iVQradinineCa^9S[u(l&^ Tliay (ana^Q be u^aia^ ^QnO-domlalsisTtce^

< VhDL Ba^&d Mcqui^iiiori -Thi^ maierLain<vii[ii&viTJiiMir<£ pt(i.y^tHca»<in [hfiiCBctficp-doMi
design in de^lnpmgreojremeriis anrtpeilJiniinQ^felern'Jesi^ rvHiiing dScteHabtfonife

< Coui^f Module^-The^e are 13 PPT (Qur^e rrt(kdult^hsnich^s?rodd9gnS'][Dbetau^ii
undurgraduala'gradual& loui^t^ riaddiUcin idiQ laEffiCQ.iMiiglhQccmplf'reHiti-dQMipiociKSQrg
provided

' VhDLSrandardi-Key IEEE VhDL ^tandarfc and amilrlar^handlKickfarVHDL'lesi^inaijieviHCie
formal

■ lEEESldimgi-I^B lEEESlandwJlTirVI-EiLW^cbci jnd V«Eb> Erihu^ jVVAi^SJ la Suffirf Dii^i aid

- IEEE5ldinr5-1^3 IEEE ^tjndjrd'MllDLLji^jgD RDhrBnci LbiiDJ
■ IEEE &ldl(i76j 3111, Amandrnni Id IEEE ^idlCPH-HI]
- lEEESldliT&lhJT I'^l .IEEE Sfindaii Neirgl^wi ItEE SH f IVD-I9ff I^E Slvifii^ VHiX LartbH*

iDacurnepr Dune

16

Figure 7 - RASSP Documents Page

Figure 8 - RASSP Digest Page

H" J-.'-J-".'*- ora •d-kmlir r~^rn

RASSP

B
r

RASSP Documents

Ph ma ry Deve I ope rs

■ LacV—HS Uan^m fie

RASSP Benchm^rh

Search DcMZiumflnfs

^mmi I mi:
Uf r HItf.

i Ttahnala^ff Lib

■ MlT|jicf*iUb'OoctfnM«oq

Technology Base Developer^

^flucation and Fqcilitiitian

ConlQronco*;

RASSP tfHDL Wodgling TgrminolQatf and T.iJfonQmv

I.JJliL.J!VJJMgi l.^l-l

RASSP

vm

DFKfHfpH

R.\SSP Digesl
RU5P EdLHAliortd a[:lrvilin

- VHX HgnEBggl^iJnr^siN'^riran
■ ATei:nnp:alRBDo<EltrorRAS=PE<U:9liiinaA(Uh1l]«;
■ RAS^PEOnaicinaAiLl t;
- L'lrLnr^tnrJon hPNioPiDBnwTirpjBA&^P
- Rj^^ FTiiTTPaionji 1.l^-ll\l(^
' ^I-CL H-'RuThi tl<^ II idiiiii an UEMiiilnij

Vol 3,SeplHnber 1«G

TubhHlfCHH'HTll-

' EanrfB Comir
" TahniiJni^B^^Eirn^

' lti'S£PE50ATiXi&Fdn 1 iXaiBdtfcVi&WCMffiJtfl
^ An AEDlcElKin Conbquraion UrauaiB Ti:'Mubcixiiii'jlEt'

TW D^n<i>jc<i>,im
" ftiEictdrp LM,^

- 4fA5ePEgiATMt?Fr(irTtEr>dl-Vhi«WCrfuiipiDMgi
Tone

" EteETr9lg9Tl!.^iiLa P»^lg»
" gs^lan-i-g^i DtgT MghrdrtjuiliT EirturHHd Simi<

Rrfiie^WiT
' NjTia iL arm ^^irLmbo Alundn'^ For ^gnul Rr<>.'«^^ira
' • Ul^l l-lL<irLL hb L»fiil^J:ulHil bi i-LTAlU PdbMui U :P

t ACEPT J L"IHIJ Fn^rnirr^nl lnr ^<&|3II CgEmn
•■ RtilOii ildiiL^ I^U^iiiiJ r^jiliUiniLn - A'"fJL-Ea^ll

MEra^dit^y.yrc'.oilJEioii TiLol
' foibimf:-^w^-.'

17

Figure 9 – Example of Path to VHDL Memory Models

Figure 10 - RASSP VHDL Support Page

 RASSP Support Page for VHDL VHDL Models RASSP VHDL Memory Models

?j PiA^^PnUkJEPAdE- iikrSroi&iPalriarpArg-F'QlBcapQ
FUE £d< Vifr— 1^ ^ommiritiBiiii HE|I

[T^iiJ

RASSP

Dacurnena
VHDL
News pller
RFlalrd Linka
Team
Disclaimer

RASSP Support Page for VHDL
SCRA 1^ manlaning iTii^ server fo DARPA ag Uie RASSP Educalor aio FatiliHCir in
C'rd&tlotruuide ojrrertanlea^if/atce^&iHeinlormalmiKilliere^warcli MmiTunilv
'pVnileS-CRAa'DrtRPAinlendlokeepirie inforrralicinaccurae andlimelv. il':amcil I
giaremse either Efo<5 msy be tioughllo ouratermon '^g Ifredbarkform gnti>*iii Pg I
cmscled as so£ii aepoesiWe Forlimiiaiorfl and reemcinor^ onuemgitiigiTialeiiQliee
iigC-^a AIMER pgi^

Models^ PnxBB^ij6 Mnftb

These niEKtel^ nre from boti RA35P and non-RASSP icurce^ and are lifted by funcB and dasilicalKxi

Guidelines and Coding Styles

These guidelines and coding styles Ihdt relate lo VMDL code devekjpmentr

Standards

Courses/Tutonals

Ttie^e courts and rulorial^ provide VHDL tranng.

ItASEP VHDL References

fiftm Passed RASSP Conference Paoera

18

Figure 11 - RASSP VHDL Model Page

Figure 12 - RASSP VHDL Memory Models

flASSP

Tram

VHDL Models
yi»iiif MIJMMnaflDfWftptiOJIfa' H RA55P D«.rl[ip«d rJdCklJD.

^CRA E E^PPrl ao DO] ^L^FETiiet^ "ETi em ^u^lCifU ^rUdf^E Qfrt If ir« niSlerl a (SiyTHEIQ,
^il-O. U^»L ^ Diuf^ Ih'^ilLlt^ «ic| ir^ ITL^ De lourd on Dii^ ^0r>i^r IZH" un ^14 ^war p^nim
Ki WPiiB SK-^BT THE Tnam j| mff, nn nsiB r**n lerlft] a mffT nol i-^Tne DKTI lB?led tfimpeieW
and i IS»3 H IS ai"9 [^SE Ci«n ng.

THIS crOe IS [■K^i'^ 3^^'■W'|'^■'^^|"^'i'siv'""'^m i^Wl Ir'l"i; iTiaraiJi amwr
Etire^^^D Df iiriUi^d irpiljQnu Diil rp3 Imlal ID me implEil n^ii^it E^ CII meicnsnlsDiir^ aid
IBf^Wi a j^ncuQi pLij4£t For tjtiiai LTiL art] m^b iCDcr^ nn i^iii^ Ih ^ niQiend ^4 ll>^
n^LAhCP Daw

SuneafiOu dL^umuiiE en fills ^r>«r Lcrnan Iva lETf^rhic^ aipoirlfs 1^ mronriEu^n aaai&3
md ■"■"lar*!) IT. nner mECiuli^^ Peaw rpHe ma ^I.RA 6 D^liPA do nol cdrcii and cama
OnaiffW* r"B'sipt-arcn nmshnhE^ «c ursr^', or snen lhs COITIH>J&] ciafinfa nl Ihe^* oilEida
-■aflTidi EiTi>Bi"^lM [TOLflh 11 lur aramcin via ^eDmaslei 3fid Uiill DB ronscled HB Kon

'Bufc^]n<CTCOTnh-ci MoJcli

' M.nu'[>.T!FOMo^

'I^:AI'I.AI'IJ1MQIUI

■ I ^ 1 ■ H I \
', ' k. , III .r| < k ■]"1 -llrl.l|lU .LLnkll III

*]
•*ff-i JJ J

■j RASSPkn^ MjllQiMI l|l l*llllil IMli Hllll I ■■!■

RASSP

T<*n
bncUintfl

in: >r<^^sNWTor\ fAi't^H I Cjia^sFFLil-Vid^^- |
llmal Flflshl■^a[^D^^^^Clllfls|| *MD FHgi Mmqy MnBli

lir.^^iol3noi.ugE-^GMi^daill

Cypre&s Memory Models

1

..^ -, -■ --._'• a. >ii n cs 101 al fn I -b 1 ■.
f"^ -y,"r-'~\y;^\',S-'->i)r- 11 dl CvDi^i moiltJs
V^i^jiT^^.rL'nh L^^i Bi'^iT^CQl
Ciiaaaaty hi^^s^flhi Siai^ uiii>«isi>

Cijuam c-7pir3 ^£:^

&zi hVdi T^u^iomt Lf^bi Fil F miiorul
<:i4«iAdly MlE'Sffil'i ^lata UniwarsrV

.a.--i ■^

W urioB.e<
0*rp*fllT^onoriT,Le^i FJlFunorai
Oaatodfy hi ^asifiihi fViaia Univuisrrr

C*si-ijlini jflK . ^ E-iSlat-ilVAVRjVMH^LiUiUEnflP*
■JerpMJl Tau^nDrny Le«l Fil F imilDrdl
Ci^aitulv >4^^s^|j|Pi Siaia uniHtfi^irt

iJ

19

3.2 RASSP Digest

During the course of the program, several issues of the RASSP Digest were produced,

providing a professional journalistic format for the promulgation of the RASSP concepts.

Over 10,000 hard copies of the Digest have been distributed, with over 1,300 individuals

on the hard copy mailing list. An additional 500 individuals received e-mail notification

that the issue was posted on the RASSP website. Most of the individuals receiving either

a hard copy or e-mail notification were industry or government engineers actively

engaged in management or design of electronic systems, or were professors teaching

VHDL or DSP. The digest featured articles written by experts in engineering, education

and management. These articles focused on the primary development activities, the

benchmarking activities, and the technology base developments, and reported conference

events. On the webserver, links were available to HTML versions of each article as well

as to a PDF version of the complete issue. Table 4 lists the table of contents of all issues

of the digest. See external Appendix E for printed copies of the RASSP Digest.

Table 4 -Table of Contents for all RASSP Digest

Issue Table of Contents
RASSP Educational
Activities
Vol. 4, June 1997

• Editor’s Corner
• Engineering Education: Doing Business as a Business in the 90’s
• VHDL International’s University Program
• A Technical Rationale for RASSP Educational Activities
• RASSP Educational Activities
• Executive Education: Key to Implementing RASSP
• RASSP Informational Activities
• VHDL CD-ROM Information and Upcoming Workshops/Conferences

Technology Base Efforts
Vol. 3, September 1996

• Editor’s Corner
ο Technology Base Efforts

• RASSP ESDA Tools Part 1: Detailed HW/SW Codesign
ο An Application in Configuration Language for Multicomputer Tool

Development
ο Autocoding Update

• RASSP ESDA Tools 2: Front-End HW/SW Codesign Design Tools
ο EaSE Trades Technical Review
ο System-Level Design Methodology for Embedded Signal Processors
ο Numeric and Symbolic Algorithms for Signal Processing
ο COMET Project: Hardware/Software Cosynthesis for DSP Systems
ο ADEPT: A Unified Environment for System Design
ο Performance Modeling Workbench - A VHDL-Based

Hardware/Software Codesign Tool

20

Issue Table of Contents
ο ANSI C to Behavioral VHDL Translator, Ada to Behavioral VHDL

Translator
ο MAT2DSP - A MATLAB Tool for the Automatic Evaluation of the

Implementation Requirements of Signal Processing Algorithms
ο Timing Insensitive Binary-to-Binary Translation (TIBBIT)
ο Design Tools and Architectures for Dedicated DSP Processors

• RASSP Model Libraries: VHDL
ο VHDL Hybrid Models
ο Automated Generation of VHDL Processor Models for Simulation

and Synthesis
ο Mississippi State Develops On-Line FPGA VHDL Model Generator

The Road to Enterprise
Integration
Vol. 3, 1st Qtr. 1996

• Editor's Corner
ο The Road to Enterprise Integration

• Prime Development
ο Integrated Process Control and Data Management in RASSP

Enterprise Systems
ο Enterprise Integration

• Technology Base
ο The National Industrial Information Infrastructure Protocols Project

(NIIIP)
ο Concurrent Engineering Wheels
ο Agility Through Information Sharing: Results Achieved in a

Production Environment

Model Year Architecture
Vol. 2, 4th Qtr. 1995

• Editor's Corner
ο RASSP Model Year Architectures

• Prime Development
ο The Standard Virtual Interface - An Interoperability Approach

• Technology Base
ο A RASSP Approach to HW/SW Codesign
ο A Hierarchical and Integrated Built-in Self-Test Methodology
ο An Overview of Automated Processor Specification and Task

Allocation Techniques for Embedded Computer Systems
RASSP at 24 Months
Vol. 2, 3rd Qtr. 1995

• RASSP at 24 Months
• The Second Annual RASSP Conference, a Mid-Program Review
• Second Annual RASSP Conference, Synopsis of Session 2, "Introduction

to RASSP and 2nd Year Overview"
• Sanders RASSP Program Overview
• Lockheed-Martin Advanced Technologies Laboratories
• RASSP Second Year Overview
• RASSP Steering Committee -- Calendar of Events

4X - Charting the Course
Vol. 2, 2nd Qtr. 1995

• Prime Development
ο Advance Technology Laboratories' Path to 4x Improvements
ο Road to 4x

• Benchmark Program
ο RASSP Benchmark Program: Measuring 4x
ο Rapid Prototyping of Application-Specific Signal Processors:

Current Practice, Challenges, and Roadmap
• Technology Base

21

Issue Table of Contents
ο Timing Insensitive Binary-to-Binary Translation (TIBBIT)
ο Graph Translation Tool (GrTT)

• RASSP VHDL Working Group Update
ο RASSP Working Group Discusses Terms and Taxonomies

Very High Speed
Integrated Circuits
(VHSIC)
Hardware Description
Language (VHDL)
Vol. 2, 1st Qtr. 1995

• Executive Outlook
ο RASSP and the Lockheed-Martin Merger
ο ARPA Manufacturing Technology Programs Ensure Military Access

to Affordable Advanced Technology
• Prime Development

ο VHDL Modeling for Signal Processor Development
ο Architectures for Rapid Prototyping of Embedded Signal Processors
ο Honeywell Develops VHDL Performance Model Library
ο Object-Oriented VHDL Provides New Modeling and Reuse

Techniques for RASSP
• Technology Base

ο The Ptolemy Kernel-Supporting Heterogeneous Design
ο VHDL Component Modeling: Impact on the RASSP Program

• Benchmark Program
ο Assessing and Improving Current Practice in the Design Of

Application-Specific Signal Processors
• Editor's Corner

ο Editorial Viewpoint
• Summer '95 RASSP Short Courses
• Calendar of Events

RASSP After One Year
Vol. 1, 4th Qtr. 1994

• RASSP After One Year
• RASSP Education and Facilitation
• Conceptual Prototype Demonstrates RASSP's Future
• Martin Marietta RASSP Design Center Enables Design
 Environment Implementation
• The Martin Marietta RASSP Team Demonstrates and Presents Rapid

Prototyping Concepts at the First Annual Conference
• Introduction to the Lockheed Sanders RASSP Team
• The Lockheed Sanders RASSP Approach
• The Lockheed Sanders Demonstration Program
• Lockheed Sanders Beta Site Program
• RASSP Conference Success
• VHDL Models
• The Benchmark 1 Executable Requirement
• Vive La Difference
• Acknowledgements
• Available Technical Publications
• RASSP Digest Rapid Prototyping of Application-Specific Signal

Processors
• RASSP Steering Committee
• Calendar of Events

22

3.3 Courses, Seminars and Presentations

Educational and training material was developed that included course modules, seminars

and presentations. Executive seminars consisted of slide presentations and information

developed to bring information about RASSP technology to the managerial level in

industry and government. At each of the seminars, input was sought and the feedback

was used to update and improve the seminar presentations. Eighteen seminars were

given on-site. A representative sample of seminar host sites is listed in Table 5.

Table 5 - Sites of Executive Seminars

Date Organization Number of
Attendees

Nov-95 National Security Agency 50
Dec-95 NASA – Langley 35
Dec-95 Texas Instruments 35
Jan-96 MICOM 70
May-96 GEC Marconi 12
Sep-96 Rockwell Collins 12
Sep-96 Tinker ALC 10
Nov-96 Alliant Defense Systems 11

3.3.1 Course Modules

Course material was developed using a modular approach. Sixteen modules were

developed under the program. Each module consists of an abstract of the material

covered, lesson material, references, and in many cases a series of programmed questions

and answers and a laboratory. These modules contain over 2,000 PowerPoint slides.

Each module was designed to be a self-contained unit of instruction material, and

provides the equivalent of three hours of classroom instruction. In addition, some

modules include an additional three hours of lab work. A list of the modules appears in

Table 6, and a complete abstract of each module is available in Appendix B. These

modules plus two WAVES modules, that were developed as part of the U.S. Air Force's

Fault Simulation and Test Pattern Generation program, are on the CD-ROM in Appendix

C.

23

Table 6 - RASSP Modules

VHDL Basics
Structural VHDL
Behavioral VHDL
Advanced Concepts in VHDL
HW/SW Codesign Overview
DSP Architectures for RASSP
Scheduling and Assignment for DSP
DSP Algorithm Design

Communication Protocols
RASSP Methodology Overview
Requirements and Specification Modeling
Virtual Prototyping Using VHDL
Test Technology Overview
Cost Modeling for Embedded Digital Systems Design
Performance Modeling Using VHDL
Synthesis Using VHDL

The success of the approach is reflected in the demand for the use of these modules. Six

university courses were offered by the RASSP E&F team member universities (UVA,

GT, UC), and over 70 nonparticipating universities have used or are planning to use the

RASSP modules.

The modules are designed to be adapted to different teaching environments. At some

universities they have been used to facilitate the instruction of required engineering

courses. Other examples of module usage in the classroom are listed in Table 7. This

table does not include classes offered by the team member universities and shows how

the modules are used outside of the RASSP E&F team. In addition, two modules were

used as part of the lecture material for the interactive video network course

"Multidisciplinarity and Collaborative Design for Systems on a Chip" taught by the Air

Force Institute of Technology, Ohio State University and Oakland University.

Table 7 – Feedback on Modules Taught in Classes by Universities Not Associated
with the RASSP E&F Team

University and Instructor Description

Old Dominion University

 - Dr. Jack Stoughton

Used the VHDL modules to offer ECE695 Rapid Systems
Prototyping - a first time VHDL course for graduate students.
Modified modules to be used in a TV course. Plans to use VHDL
module material to offer ECE443 Computer Architecture - a senior
undergraduate required course.

University of Missouri, Rolla

 - Dr. Hardy Pottenger

Used the VHDL and Synthesis modules to teach a short course
“Digital Logic Synthesis Using VHDL” to the IEEE St. Louis
section. Used VHDL modules in EE311 Intro. to VLSI Design - a
senior required course using FPGAs. Used RASSP Methodology
Module in EE310 Intro. to Digital System Modeling Using VHDL -
a senior undergraduate/entry level graduate course.

24

University and Instructor Description

University of Notre Dame

- Dr. Jay Brockman

Used VHDL modules in CSE322 Computer Architecture II - a senior
level required course and CSE521 Graduate Computer Architecture -
an entry level graduate course. Switched these courses from
schematic-based design to top-down VHDL-based design. As a
result, “students were able to do more and larger designs than was
possible in previous years - writing behavioral descriptions first
enabled errors to be caught earlier resulting in less redesign.”

Loyola Marymount University

- Dr. Nazmul Ula

Plans to introduce VHDL for the first time in the Fall of 1999 in
ELEC698 VHDL Based Digital System Design - a senior
undergraduate or graduate course. Future plans include introducing
VHDL into the undergraduate logic design course and computer
architecture course “We could not have introduced VHDL into the
curriculum this early without the benefit of the VHDL modules.”

Kansas State

 - Dr. Bill Hudson

Plans to use the VHDL modules in EECE241 Introduction to
Computer Architecture - a beginning logic design course for
freshman or sophomore undergraduates. Future plans are to
introduce the use of VHDL, synthesis and virtual prototyping
upwards in the curriculum as the class with first exposure moves up.

University of Massachusetts

 - Dr. Wayne Burleson

Used the DSP Algorithms and Architectures module in two graduate
courses, VLSI Architectures and Computer Arithmetic. Plans to use
other modules in a graduate course in Embedded Systems.

Cal. State University

 - Dr. Larry Owens

Plans to use VHDL lab material in ECE176 Computer Aided
Engineering and Digital Design - a senior undergraduate elective
course.

3.3.2 RASSP Workshop Participation

Members of the RASSP E&F team participated in several workshops and conferences by

presenting papers about the RASSP program or making RASSP information and material

available from booths. A representative list of these functions is shown in Table 8.

Table 8 - Selected Conferences and Workshops Having RASSP E&F Participation

• DSP World Conference
• IEEE Design Process Workshop
• DAC Conference
• VIUF
• IEEE VLSI DSP Workshop
• University of California, Berkeley
• 1st Annual RASSP Conference

• 2nd Annual RASSP Conference
• NASA System Engineering and Analysis

Symposium’
• GOMAC
• Conference
• ASEE National Conference
• Mentor Users Group

Several VHDL Educators' Workshops were held which presented detailed information on

RASSP and VHDL to educators. These workshops were a key component in helping the

RASSP E&F team achieve their goal. By directing these workshops mainly at faculty

25

members, it provided the opportunity to "teach the teacher" and thereby insert the

technology into the academic environment at a quicker pace. A representative list of these

workshops is shown in Table 9.

Table 9 - Selected Educator Workshops Provided by RASSP E&F

• VHDL Educator's Workshop
• Digital Design 2000 - A Workshop on

Innovations in System Design and Their
Impact on Academic Curricula

• Top-Down Design of Embedded Digital
Systems Educator's Workshop

• IEEE Microelectronic Systems Education
Conference

• ARPA/VI Educator's Workshop

3.4 Publications

RASSP E&F has over 30 papers and/or presentations to its credit, including a special

issue of IEEE Design and Test of Computers: Rapid Prototyping that focused on Rapid

Prototyping and included both the RASSP technology and its Education and Facilitation.

RASSP articles can be found in journals as well as conference proceedings. A

representative listing of publications facilitated by RASSP with full citations can be

found in the Bibliography.

3.5 The RASSP CDs

Perhaps the pinnacle of the E&F program has

been the success of the first RASSP CD-

ROM, VHDL Interactive Tutorial, published

by the IEEE. See Appendix C for the

brochure. The CD-ROM provided the four

VHDL course modules in HTML format linked to the VHDL Language Reference

Manual IEEE 1076-1993 and Mosaic Browsers (see Figure 13). Between March 1997

and December 1999, 816 copies were sold. The CD was available as stand alone or

bundled with IEEE standards.

RASSP CD Sales 1st Edition:

506 CD only sales
310 CD with standards sales

26

Figure 13 - RASSP CD-ROM

The second edition of the CD-ROM, VHDL: Electronic Systems Design Methodologies

and Interactive Tutorial, was renamed so that the title encompassed the additional

material (see Figure 13). The second edition contains 50 times the information of the

first CD-ROM. It also has over 500 Megabytes of information in over 8,800 files with

over 6,000 hyperlinks. The CD-ROM is a multi-faceted presentation mechanism and

provides many links between its different focus areas. The CD-ROM organization allows

the user to start in any of these focus areas, thereby providing maximum utility. As

shown in the table of contents (Table 10), the second edition of the CD-ROM provides

information for those starting in VHDL as well as those looking to improve their top-

down design and VHDL knowledge. Some of the material comes from other programs

such as the U.S. Air Force VHDL Interactive Training for Acquisition and Maintenance

Specialists (VITAMINS) program under contract number F33615-96-C-1910 and U.S.

Air Force, Fault Simulation and Test Pattern Generation program under contract 95-C-

0220. To help get this information into the academic environment, the RASSP E&F

program in cooperation with the IEEE sent a copy of the CD-ROM to the electrical

engineering department heads of 107 universities and colleges in the United States. A list

of these schools is provided in Table 11. Much of the RASSP generated material on the

• VHDL Tutorial (HTML)
• IEEE 1076 HTML

• Mosaic Browser

CD-ROM Version 1 CD-ROM Version 2

• VHDL Tutorial (HTML)
• Top-Down Design Tutorial (HTML)

• Case Studies of the RASSP
Process (HTML)

• Application Notes for the RASSP
Process (HTML)

• Course Modules and Labs (18)
• IEEE VHDL Standards (12)
• Veribest Demo Simulator

• VIUF Proceedings
• RASSP Conference Proceedings

• Glossary
• VHDL Taxonomy

27

CD-ROM will be placed on the RASSP webserver, which will remain operational for a

period after the program ends.

Table 10 - Table of Contents for Second RASSP CD-ROM

VHDL: Electronic Systems Design Methodologies and Interactive Tutorial

• VHDL Tutorial - HTML sequence of course modules 10, 11, 12, 13 & 60 and labs for Unix
and Windows systems.

• Top-Down Design - HTML sequence of course modules 14, 29, 30, 32, 57 & 59 and labs for
Unix and Windows systems.

• Case Studies - These real world benchmark case studies provide an introduction to top-down
design process. Even though embedded Digital Signal Processors (DSP) are used as delivery
mechanisms for the process, it can be applied in other areas.

• Application Notes - These application notes provide additional detail in selected technical
areas that are covered in the Case Studies. They can also be uses as stand-alone references.

• VHDL Based Acquisition - Material from the VITAMINS program which covers the use of
top-down design in developing requirements and performing system design.

• Course Modules - These are 18 PPT course modules, which were designed to be taught in
undergraduate/graduate courses. In addition, two labs covering the complete top-down
process are provided. Includes two modules from the Fault Simulation and Test Pattern
Generation program.

• VHDL Standards - The key IEEE VHDL standards and a military handbook for VHDL
design.
ο IEEE Std 1029.1-1998, IEEE Standard for VHDL Waveform and Vector Exchange (WAVES) to Support

Design and Test Verification
ο IEEE Std 1076-1993, IEEE Standard VHDL Langua ge Reference Manual
ο IEEE Std 1076a-2000, Amendment to IEEE Std 1076-1993
ο IEEE Std 1076/INT-1991, IEEE Standards Interpretations: IEEE Std 1076-1987 IEEE Standard VHDL

Language Reference Manual
ο IEEE Std 1076.1-1999, IEEE Standard VHDL Analog and Mixed-Signal Extensions
ο IEEE Std 1076.2-1996, IEEE Standard VHDL Mathematical Packages
ο IEEE Std 1076.3-1997, IEEE Standard VHDL Synthesis Packages
ο IEEE Std 1076.4-1995, IEEE Standard for VITAL Application-Specific Integrated Circuit (ASIC) Modeling

Specification
ο Approved Draft of IEEE Std 1076.6-1999, IEEE Standard for VHDL Register Transfer Level Synthesis
ο IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture
ο IEEE Std 1149.1b-1994, Supplement to IEEE Std 1149.1-1990, IEEE Standard Test Access Port and

Boundary-Scan Architecture
ο IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model Interoperability

(Std_logic_1164)
ο MIL-HDBK 62, Documentation of Digital Electronic Systems with VHDL

• References - When possible, references listed in the material are included on the CD-ROM.
This includes RASSP material as well as VIUF Conference Proceedings.

• VHDL Models - These are models that were developed as part of the RASSP program.
They include process and memory models.

• VHDL Tools - These include a VeriBest simulator, VHDL GUI interface and VHDL model
generator.

• VHDL Taxonomy - This document provides a framework for classifying VHDL models to
promote model reuse.

• Glossary - Provides definitions of terms within the context of the VHDL language, VHDL
simulation, Digital Signal Processing and RASSP. Links to documents where the terms are
used are included.

28

Table 11 - List of Schools that have Received the 2nd Edition
 of the RASSP CD-ROM

SCHOOL DEPT.
AIR FORCE INSTITUTE OF TECHNOLOGY Dept. of Electrical and Computer Engineering
CATHOLIC UNIVERSITY OF AMERICA Dept. of Electrical Engineering
CHRISTIAN BROTHERS UNIVERSITY Dept. of Electrical Engineering
CITADEL MILITARY COLLEGE Dept. of Electrical Engineering
CLARKSON UNIVERSITY Dept. of Electrical and Computer Engineering
CLEMSON UNIVERSITY Dept. of Electrical and Computer Engineering
CLEVELAND STATE UNIVERSITY Dept. of Electrical and Computer Engineering
COLLEGE OF NEW JERSEY Dept. of Engineering
COLORADO STATE UNIVERSITY Dept. of Electrical Engineering
COOPER UNION Dept. of Electrical Engineering
DARTMOUTH COLLEGE Thayer School of Engineering
DREXEL UNIVERSITY Dept. of Electrical and Computer Engineering
EMBRY-RIDDLE AERONAUTICAL
UNIVERSITY

Dept. of Electrical Engineering and Computer
Science

FAIRLEIGH DICKINSON UNIVERSITY School of Engineering & Engineering Technology
FLORIDA AGRICULTURAL & MECHANICAL
UNIVERSITY

Dept. of Electrical Engineering

FLORIDA ATLANTIC UNIVERSITY Dept. of Electrical Engineering
FLORIDA INSTITUTE OF TECHNOLQGY Division of Electrical & Computer Science and

Engineering
GANNON UNIVERSITY Dept. of Electrical Engineering
GEORGE MASON UNIVERSITY Dept. of Electrical and Computer Engineering
GONZAGA UNIVERSITY Dept. of Electrical Engineering
GROVE CITY COLLEGE Dept. of Electrical Engineering
HAMPTON UNIVERSITY Dept. of Electrical Engineering
HARVEY MUDD COLLEGE Dept. of Engineering
HOFSTRA UNIVERSITY Dept. at Electrical Engineering
HOWARD UNIVERSITY Dept. at Electrical Engineering
KETTERING UNIVERSITY Electrical and Computer Engineering Dept.
LAFAYETTE COLLEGE Dept. of Electrical Engineering
LAMAR UNIVERSITY Dept. of Electrical Engineering
LAWRENCE TECHNOLOGICAL
UNIVERSITY

Dept. of Electrical Engineering

LEHIGH UNIVERSITY Dept. of Electrical Engineering & Computer
Science

LOUISIANA TECH UNIVERSITY Dept. of Electrical Engineering
LOYOLA MARYMOUNT UNIVERSITY Dept. of Electrical Engineering and Computer

Science
MANHATTAN COLLEGE Dept. of Electrical Engineering
MANKATO STATE UNIVERSITY Electrical Engineering & Electronic Engineering
MERCER UNIVERSITY Dept. of Electrical & Computer Engineering
MERRIMACK COLLEGE Electrical/Computer Engineering Dept.
MILWAUKEE SCHOOL OF ENGINEERING Dept. of Electrical Engineering & Computer

Science
MISSISSIPPI STATE UNIVERSITY Dept. of Electrical & Computer Engineering
MONMOUTH UNIVERSITY Electronic Engineering Dept.
MONTANA STATE UNIVERSITY Dept. of Electrical & Computer Engineering
MORGAN STATE UNIVERSITY Dept. of Electrical Engineering
NAVAL POSTGRADUATE SCHOOL Dept. of Electrical & Computer Engineering

29

SCHOOL DEPT.
NEW JERSEY INSTITUTE OF
TECHNOLOGY

Electrical & Computer Engineering Dept.

NEW MEXICO STATE UNIVERSITY The Klipsch School of Electrical & Computer
Engineering

NORTH CAROLINA A&T STATE
UNIVERSITY

Dept. of Electrical Engineering

NORTH DAKOTA STATE UNIVERSITY Electrical Engineering Dept.
NORTHEASTERN UNIVERSITY Dept. of Electrical & Computer Engineering
NORTHWESTERN UNIVERSITY Dept. of Electrical & Computer Engineering
NORWICH UNIVERSITY Dept. of Electrical Engineering
OAKLAND UNIVERSITY Dept. of Electrical & Systems Engineering
OHIO NORTHERN UNIVERSITY Dept. of Electrical Engineering
OHIO STATE UNIVERSITY Dept. of Electrical Engineering
OKLAHOMA STATE UNIVERSITY Dept. of Electrical & Computer Engineering
POLYTECHNIC UNIVERSITY Dept. of Electrical Engineering
PRAIRIE VIEW A&M UNIVERSITY Dept. of Electrical Engineering
SAGINAW VALLEY STATE UNIVERSITY Electrical & Computer Engineering Dept.
SAINT LOUIS UNIVERSITY Dept. of Electrical Engineering
SEATTLE PACIFIC UNIVERSITY Dept. of Electrical Engineering
SEATTLE UNIVERSITY Dept. of Electrical Engineering
SOUTH DAKOTA SCHOOL OF MINES &
TECHNOLOGY

Dept. of Electrical & Computer Engineering

SOUTH DAKOTA STATE UNIVERSITY Dept. of Electrical Engineering
ST. CLOUD STATE UNIVERSITY Dept. of Electrical Engineering
TEMPLE UNIVERSITY Dept. of Electrical & Computer Engineering
TENNESSEE TECHNOLOGICAL
UNIVERSITY

Dept. of Electrical & Computer Engineering

TEXAS A&M UNIVERSITY - KINGSVILLE Dept. of Electrical Engineering & Computer
Science

TEXAS TECH UNIVERSITY Dept. of Electrical Engineering
TRINITY COLLEGE Dept. of Engineering
TRINITY UNIVERSITY Dept. of Engineering Science
TRI-STATE UNIVERSITY Dept. of Electrical & Computer Engineering
TUSKEGEE UNIVERSITY Dept. of Electrical Engineering
UNITED STATES AIR FORCE ACADEMY Dept. of Electrical Engineering
UNITED STATES COAST GUARD
ACADEMY

Dept. of Engineering

UNITED STATES MILITARY ACADEMY Dept. of Electrical Engineering & Computer
Science

UNITED STATES NAVAL ACADEMY Electrical Engineering Dept.
UNIVERSITY OF AKRON Dept. of Electrical Engineering
UNIVERSITY OF ALABAMA AT
BIRMINGHAM

Dept. of Electrical & Computer Engineering

UNIVERSITY OF ALABAMA IN HUNTSVILLE Dept. of Electrical & Computer Engineering
UNIVERSITY OF ALASKA - FAIRBANKS Electrical Engineering Dept.
UNIVERSITY OF BRIDGEPORT Dept. of Electrical Engineering
UNIVERSITY OF CENTRAL FLORIDA Dept. of Electrical & Computer Engineering
UNIVERSITY OF DAYTON Dept. of Electrical & Computer Engineering
UNIVERSITY OF EVANSVILLE Dept. of Electrical Engineering & Computer

Science
UNIVERSITY OF HAWAII AT MANOA Dept. of Electrical Engineering
UNIVERSITY OF KENTUCKY Dept. of Electrical Engineering

30

SCHOOL DEPT.
UNIVERSITY OF MAINE Dept. of Electrical & Computer Engineering
UNIVERSITY OF MARYLAND AT
BALTIMORE COUNTY

Dept. of Computer Science & Electrical
Engineering

UNIVERSITY OF MINNESOTA, DULUTH Dept. of Electrical & Computer Engineering
UNIVERSITY OF NEBRASKA Dept. of Electrical Engineering
UNIVERSITY OF NEVADA, LAS VEGAS Dept. of Electrical & Computer Engineering
UNIVERSITY OF NEW HAMPSHIRE Dept. of Electrical & Computer Engineering
UNIVERSITY OF NEW HAVEN Dept. of Electrical & Computer Engineering
UNIVERSITY OF NEW ORLEANS Dept. of Electrical Engineering
UNIVERSITY OF NORTH CAROLINA AT
CHARLOTTE

Electrical Engineering Dept.

UNIVERSITY OF NORTH DAKOTA Dept. of Electrical Engineering
UNIVERSITY OF PUERTO RICO -
MAYAGUEZ

Electrical & Computer Engineering Dept.

UNIVERSITY OF SOUTH ALABAMA Dept. of Electrical & Computer Engineering
UNIVERSITY OF SOUTH CAROLINA Dept. of Electrical & Computer Engineering
UNIVERSITY OF SOUTHERN MAINE Dept. of Engineering
UNIVERSITY OF SOUTHWESTERN
LOUISIANA

Dept. of Electrical & Computer Engineering

UNIVERSITY OF TENNESSEE, KNOXVILLE Dept. of Electrical Engineering
VALPARAISO UNIVERSITY Electrical & Computer Engineering Dept.
VIRGINIA MILITARY INSTITUTE Dept. of Electrical Engineering
WEBB INSTITUTE OF NAVAL
ARCHITECTURE

Dept. of Electrical Engineering

WEST VIRGINIA UNIVERSITY Dept. of Computer Science & Electrical
Engineering

WEST VIRGINIA UNIVERSITY INSTITUTE
OF TECHNOLOGY

Dept. of Electrical Engineering

WESTERN MICHIGAN UNIVERSITY Dept. of Electrical & Computer Engineering
WESTERN NEW ENGLAND COLLEGE Dept. of Electrical Engineering
WIDENER UNIVERSITY Dept. of Electrical Engineering
WILLIAM MARSH RICE UNIVERSITY Dept. of Electrical & Computer Engineering

31

4 LESSONS LEARNED

It soon became obvious that the lifeline and the success of the RASSP E&F program was

going to depend on the ability of RASSP E&F to obtain information from the other

RASSP programs. Unlike most programs, companies needed to share their knowledge

to improve the overall design process. Initially, some of the companies involved with the

RASSP program where reluctant to provide the level of detail needed to understand and

implement the companies' findings. As these companies became more comfortable

talking with E&F team members, and as information from other RASSP program

members became available, information from the companies flowed more freely. Help

from the government managers was key in breaking down barriers that naturally occur in

the competitive environment of electronic design.

The availability of RASSP information to the public was an important key to its success.

When RASSP started, the World Wide Web was in its infancy and as the web became

more prevalent, access by both industry and academia increased. The RASSP web server

became the dominant passive mechanism for providing information.

Publication of the RASSP Digest provided a formal approach for providing information to

managers, engineers and professors. RASSP participants wrote the articles describing

their tasks and accomplishments. Many times this provided information that would not

have otherwise been published.

The RASSP E&F philosophy of "teaching the teacher" shortened the time required for

new/different methodologies to make inroads into the university environment. The

workshops and seminars where a critical component of reaching the academic

community. The modular approach that we took allowed us not only to educate the

teachers, but also to provide them with the support material (modules) needed to quickly

integrate what was learned into their lectures.

32

Leading professors in the electronic design field developed the RASSP E&F modules.

Based on their knowledge and experience, they were able to distill the information

collected from the other RASSP participants into a form that was understandable and

usable by the academic community. However, one problem that was encountered was

that the effort to gather the material, analyze it, create an outline and then produce a

quality slide was long and difficult. Slide generation was especially a problem because

each slide and accompanying note page was created manually by engineers with expertise

in the subject area. Non-technical individuals performed only slide formatting. Engineers

also reviewed the slides and performed additional editing. While this required technical

resources to perform some non-technical tasks, it was deemed to be the best approach.

Much of the material was created from scratch or from handwritten course notes and to

put the material in a form in which non-technical individuals could produce the slides

would have added additional steps to the process.

33

Summary

Significant accomplishments of the RASSP E&F program include:

• The establishment and maintenance of a webserver;

• The publication of the RASSP Digest;

• Use of RASSP E&F modules by over 70 engineering schools;

• Development of educational and training materials and implementation of technology

transfer including:

• Executive Seminars;

• Workshops;

• RASSP Course Modules; and

• IEEE publication of two RASSP CD-ROMs.

The results of the RASSP E&F can be summarized as follows:

RASSP E&F set off as an unprecedented program set up to disseminate the information

developed by 24 other RASSP programs to enable a paradigm shift in the way signal

processors are designed.

With more than 30 papers and/or presentations to its credit, RASSP has been able to

reach a wide national audience. The website has been accessed by dozens of universities

and hundreds of commercial enterprises, indicating the nature and far ranging impact of

RASSP E&F. These accomplishments indicate the successful achievement of generating

awareness and eliciting user interest, as well as educating industry on the benefits of

RASSP technology.

Of the 264 engineering schools in the United States which grant EE degrees, RASSP

E&F interacted with over 100 of these. Over 70 schools have used modules developed

34

by RASSP E&F. In addition by providing 107 schools that offer electrical engineering

programs with a copy of the 2nd edition of the RASSP CD-ROM, the RASSP

methodologies will be available to hundreds of professors.

The second edition of the RASSP CD-ROM presents the essence of the knowledge from

the entire RASSP program. This knowledge is available not only to professors and

students, but also to practicing engineers that may want to learn new skills or to enhance

their knowledge in areas in which they are already working. Because of the broad

spectrum of effort (executive seminars, workshops, course modules, CD-ROMS,

webpage) RASSP E&F surpassed its goal of developing, incorporating and disseminating

an education system to teach state-of-the-art system design techniques.

35

5 BIBLIOGRAPHY

1. IEEE Design and Test of Computers: Rapid Prototyping, Fall 1996.

2. Batchman, T., ed., IEEE Transactions on Education, Vol. 40, No. 15, 1997.

3. King, S.Y., ed., Journal of VLSI Signal Processing Systems, Vol. 15, Nos. 1 & 2, 1997.

4. Gadient, A., Hines, L., Welsh, J., Schwalb, A., "The RASSP Manufacturing Interface:
Enabling Distributed Design Through an Agile Infrastructure, Results from a Production
Implementation,” Concurrent Engineering Research and Applications Journal, Spring 1997.

5. Gadient, A.J., Madisetti, V.K., Aylor, J.H., Wilsey, D.P.,“A Paradigm Shift in Digital System
Design Education With Industry Participation,” Proceedings American Society of
Engineering Educators Annual Conference, Washington, D.C, June 1996.

6. Bullock, K, Streeter, M., Hoffman, G., Muncaster, McCullough, M., “Managing the RASSP
Virtual Enterprise”, Proceedings of Second Annual RASSP Conference, Arlington, VA, July
1995.

7. Hein, C., “Exploiting VHDL Design in RASSP,” Published in Proceedings of VHDL
International Users’ Forum, Fall 1994 Conference, McLean, VA, November 1994.

8. Hein, C., Gadient, A., et al., "A VHDL Modeling Terminology and Taxonomy for RASSP,"
Published in Proceedings VHDL International User’s Forum, Boston, MA, October 1995.

9. Freedman, J., ed., “Design Needs for the 21st Century,” SRC White Paper, September 1994.

10. Rundquist, “Model Year Upgrade of the AN/AAS-42 Infrared Search and Track”, RASSP
Digest, Vol. 2, 4th Qtr. 1995.

11. Smerdon, E.T., “Lifelong Learning for Engineers: Riding the Whirlwind,” National Academy
of Engineering Workshop, June 27, 1996.

12. Zebrowitz, H., “The Rapid-Prototyping Application-Specific Signal Processors (RASSP)
Program,” IEEE Spectrum, July 1996, p. 81.

13. Saultz, J.E., “Rapid Prototyping of Application-Specific Signal Processors (RASSP) In-
Progress Report,” Journal of VLSI Signal Processing, Vol.15, No. 1, January 1997.

14. Pridmore, J., “The Standard Virtual Interface - An Interoperability Approach”, RASSP
Digest, Vol. 2, 4th Qtr. 1995.

15. Welsh, J., Kalathil, B., Chadha, B., Finnie, E., Tuck, M., Selvidge, W., and Bard, A.,
“Integrated Process Control and Data Management in RASSP Enterprise Systems”, Published
in Proceedings of the Second Annual RASSP Conference, Arlington, VA, July 1995.

36

16. Scanlan, L., Lee, W., Vahey, M., and McCollough, M., "RASSP Methodology Evaluation
and Lessons Leaned Developing IRST Signal Processor, Journal of VLSI Signal Processing,
Vol.15, No. 2, January 1997.

17. Scanlan, L. and Fisher, L., “Road to 4X”, RASSP Digest, Vol. 2, 2nd Qtr. 1995.

18. Richards, M.A, Gadient, A.J., Frank, G.A., and Harr R., “The RASSP Program: Origin,
Concepts, and Status”, Journal of VLSI Signal Processing, Vol.15, No. 1, January 1997.

19. Richards, M., “The RASSP Program Overview and Accomplishments”, Proceedings of First
Annual RASSP Conference, Arlington, VA, August 1994.

20. Richards, M.A, Gadient, A.J., and Frank, G.A., eds., Rapid Prototyping of Application
Specific Signal Processors, Kluwer Academic Publishers, February, 1997.

21. Madisetti, V., Corley, and Shaw, G., “Rapid Prototyping of Application Specific Signal

Processors - Educator/Facilitator Current Practice Model (1993) and Challenges”,
Proceedings of Second Annual RASSP Conference, Arlington, VA, July 1995.

37

APPENDIX A -RASSP Program Participants

38

Government Efforts
 Air Force
 Army

DARPA
Navy

Prime Efforts
 Lockheed Martin Advance Technology Laboratory
 Sanders, A Lockheed Martin Company

Technology Base Efforts
 CFI
 Georgia Institute of Technology
 Honeywell Technology Center
 Hughes Radar and Communication Systems
 Intermetrics, Inc.
 JRS Research Laboratories, Inc.
 Management Communications and Control, Inc.
 Massachusetts Institute of Technology
 Mercury Computer Systems, Inc.
 Mississippi State University
 Ohio State University

Omniview, Inc.
 University of California at Berkeley
 University of California at Davis
 University of Cincinnati
 University of Minnesota
 University of Oregon
 University of Virginia

Benchmarker Effort

 Massachusetts Institute of Technology Lincoln Laboratory

Educator and Facilitator Effort

 SCRA's Advanced Technology Institute

39

APPENDIX B -Abstract Descriptions Of The RASSP E&F Course

Modules

40

§ Module 10 -- VHDL Basics
§ Abstract: The VHDL Basics module introduces the VHSIC Hardware

Description Language and its fundamental concepts. VHDL is a language
specifically developed to describe digital electronic hardware and its attributes.
VHDL is a flexible language that can be applied to many different design
situations. This language has several key advantages, including technology
independence and a standard language for communication. The module describes
many of the advantages of using VHDL and a short history of the language.

§ Module 11 -- Structural VHDL
§ Abstract: The Structural VHDL module describes the use of VHDL for

describing models in terms of component instantiations and interconnections.
Structural VHDL can be appropriate at any level of design. For example,
testbenches for completed components are often described using structural
VHDL. Furthermore, structural VHDL supports the use of libraries and
component reuse.

§ Module 12 -- Behavioral VHDL
§ Abstract: The Behavioral VHDL module describes features of the language that

describe the behavior of components in response to signals. Behavioral
descriptions of hardware utilize software engineering practices and constructs to
achieve a functional model. Timing information is not necessary in a behavioral
description, although such information certainly can be added.

§ Module 13 -- Advanced Concepts in VHDL
§ Abstract: The Advanced Concepts in VHDL module spans a wide range of

topics, including several that may be applied to higher levels of design
abstraction. Many of these constructs will have been introduced in the first three
VHDL modules in this sequence, but this module covers them more
comprehensively. Examples of such constructs include signal assignment
statements, and the capabilities and differences when they are used as concurrent
VHDL statements or sequential VHDL statements. Similarly, the VHDL process
is discussed in more detail than in earlier modules. It should also be noted that
TEXTIO and shared variables are introduced in this module.

§ Module 14 -- Hardware/Software Codesign Overview
§ Abstract: The Hardware/Software Codesign Overview module is intended to

introduce the hardware/software codesign to the practicing design, software, and
systems engineers, and to the senior undergraduate or first year graduate student.

41

The module provides key codesign concepts and attempts to show the benefits of
the codesign approach over the current design process.

§ Module 21 -- DSP Architectures for RASSP
§ Abstract: The DSP Architectures for RASSP module is intended to provide

digital signal processing (DSP) architectures both from an historical and an
RASSP perspective to system and architecture design engineers or to first year
graduate students.

§ Module 22 -- Scheduling and Assignment for DSP
§ Abstract: The Scheduling and Assignments for DSP module is intended to

provide to system engineers or to first year graduate students an understanding of
scheduling and assignment concepts with emphasis on DSP applications.

§ Module 23 -- DSP Algorithm Design
§ Abstract: The DSP Algorithm Design module is intended to provide to system

engineers or to first year graduate students an understanding of DSP algorithm
design.

§ Module 25 -- Communication Protocols
§ Abstract: The Communication Protocols module is intended to provide to system

engineers or to first year graduate students an understanding of communications
in scalable DSP architectures.

§ Module 29 -- RASSP Methodology Overview
§ Abstract: The RASSP Methodology Overview module provides an introduction

to how design practice is studied and how improved methodology is implemented
and continuously refined. Definitions are provided so that a consistent
terminology is established. The module gives a comparison of the pre-RASSP and
current RASSP methodology. It also describes potential process improvements
and how they may enable the RASSP program to achieve its cost and life cycle
reduction goals. Examples of key improvements such as hardware/software
codesign, integrated product development, enterprise integration and virtual
prototyping are described. Finally, the module shows the enterprise integration
mechanisms used to control and manage design methodology.

42

§ Module 30 -- Requirements and Specifications
Modeling
§ Abstract: The Requirements and Specification (RSM) module provides an

introduction to the topic of executable requirements and specifications. Their use
leads toward a more formalized listing of requirements and specifications than has
been traditionally provided.

§ Module 32 -- Virtual Prototyping using VHDL
§ Abstract: In today's engineering design environment, designers are limited in

their ability to maximize reuse by the fact that there is no efficient way to search
for, access, and integrate reusable design objects across multiple sources;
frequently, these potential sources of reusable design data are uncoupled from the
design environment. This paper details an approach for managing reusable design
objects in a collaborative engineering environment that enables Rapid Prototyping
of Application-Specific Signal Processors (RASSP) and the architecture of the
RASSP Reuse Data Manager (RRDM), specifically developed to support this
approach.

§ Module 43 -- Test Technology Overview
§ Abstract: The Test Technology Overview module is intended to provide an

overview of digital systems testing to the general design engineer. The module
contains basic information on the fundamentals of testing including motivation,
current practice, and basic fault modeling techniques. The basic algorithms for
test generation and fault simulation for both combinational and sequential designs
are then covered followed by a presentation of the theory of IDDQ testing.

§ Module 57 -- Cost Modeling for Embedded Digital
Systems Design
§ Abstract: Designers of high-end embedded systems or large volume consumer

products are faced with the challenge of rapidly prototyping designs which meet
stringent electrical specifications along with tight physical constraints, under
restrictive system engineering constraints such as cost time to market (TTM) and
resource limitations. The goal is to design a minimum cost system, with
consideration of lifecycle costs, as opposed to a minimum cost hardware system.
This module describes a new RASSP design methodology called Cost Modeling
and its application to the embedded digital system design process. A detailed case
study and a thorough description of hardware and software cost estimators are
presented.

43

§ Module 59 -- Performance Modeling using VHDL
§ Abstract: The Performance Modeling Using VHDL module is intended to

present the area of system level performance modeling using VHDL. The first
section of the module includes a background of performance modeling including
the objectives of performance modeling and definitions of common performance
modeling terms. Techniques for performance modeling such a Petri Nets, queuing
models, and uninterpreted models are covered along with how simulation based
performance modeling is impleme nted in VHDL.

§ Module 60 -- Synthesis using VHDL
§ Abstract: The Synthesis using VHDL module describes how one can synthesize

digital systems using VHDL. It does not teach VHDL, nor does it teach synthesis.
The former is the task of earlier modules, while the latter is the task of various
synthesis tools that take in an input specification in VHDL and process it.

44

APPENDIX C - VHDL: Electronic Systems Design Methodologies and

Interactive Tutorial

Published by the IEEE (brochure and limited version of the CD-ROM.)

This version CD-ROM contains only the RASSP components of the complete
publication.

/6JO"ililiI! "spJepu~s/ /:d~4

vsn tEEt-55880 rN "eMe~e:>s!d
tEEt xog Od

aue, saoH 5vv
\

sa9!"!PV spJepue~s 3331

~~~I
c9# ~!WJad

3331

OIYd
aoe~sod "sOn

"OJO ~!!OJd-UON >tJOM~aN uo~ewJolUI spJepue~s 3331

/5io-aaai-spjBpuBis//:dHq 

3331 

aivd 
86Bisod sn 

•6JO l!iOJd-uoN 

VSn leei-SSSSO CN AeAHBieasy 
l££l xog Od 

auei saoH sn 
saijiAipv spjBpuBis 3331 

)|J0M)9N uoiiBuiJO^ui spjepuB^s 3331 

3331 

roushrv
45



F
~

 
"t:I 

IV
~

 
~

 
"C

~
 

~
 

0

~
 

Q
I 

"!5
~

 
~

 
0- 

.
- 

"~
 

Q
I 

w

~
~

::Q
w

":E
~

~
w

V
I 

:.=
 

o-t
~

 
:E

 
~

 
E

~
 

"t:I 
0

~
 

-~
.t:

'- 
"'" 

~
 

O
J

~
 

~
Q

I::Q
Q

:, 
>

.}3
~

 
~

 
"V

i 
"-

>
~

 
~

 
~

C
 

Q
I 

>
.c 

~
::::: 

§ 
~

 
.z.

w
 

.~
 

0. 
~

o-t~
E

o
"- 

.g. 
0

0 
U

 
u 

C
O

J 
~

 
~

 
.~

V
I 

c:s 
V

I 
Q

)
~

 
e? 

~
 

Q

"t:I 
~

 
it: 

~
~

 
~

 
0 

~
~

1:t;o
~

 
~

 
~

 
'71

0 
"t:I 

0.
.- 

"~
 

E
 

0
V

I:, 
0 

~
 

~
 

"t:I

.c 
;.., 

"t:I 
~

Q
I-Q

)-
'- 

~
 

~
 

..
0. 

~
 

u 
~

E
 

:j:; 
Q

0 
e 

V
I 

~
u 

~
 

:E
 

>

~
 

0. 
-

Q
I 

0-
£.5 

V
I 

0

~
O

IC
 

Q
J"O

 
O

IC
C

 
O

I~
 

Q
J 

C
 

0
ra 

"- 
"- 

ra 
"~

 
.~

""'~
V

I"'~
N

-
Q

J 
"~

Q
J

". 
~

 
-- 

-
"~

~
 

"0 
Q

J 
"0 

-
~

 
U

 
"0 

~
 

U
 

~
 

.~
0. 

V
I 

raU
"'"

0 
Q

J"O
-C

 
","0 

~
0."0 

C
"O

' 
C

 
Q

I

C
..e~

 
e!t~

c
Q

J 
~

Q
JV

I 
Q

J
~

"O
 

Q
J"O

 
::I~

"
O

Q
J"oC

"O
 

~
V

I 
C

 
"- 

C
 

~
"0::1 

-C
.~

 
C

X
J 

~
C

 
::I 

V
I 

-a."
"'~

oQ
JE

 
ra

Q
J 

C
"'" 

O
I~

 
C

~
::c 

0 
V

I 
~

 
~

 
.- 

~
:p 

Q
J 

~
 

01 
C

 
"0 

--

",~
Q

JC
::IQ

J'"
o.Q

JQ
Jra 

"O
~

E
~

 
C

 
~

 
ra 

C
 

.-
.- 

0 
'-'

O
V

lO
lC

~
~

Q
JC

O
O

-"'"

~
 

O
IQ

J:P
- 

~
~

.- 
ra 

0."0 
~

 
0

- 
::I 

~
 

.t: 
Q

J 
U

J 
""

C
:'g'.E

 
u 

"'t::j 
g.

""'m
 

V
lC

_"""
V

I 
.;j 

'" 
t:

::I 
~

"O
 

'" 
. 

"O
C

::I 
-C

Q
J

C
O

U
~

""'~
"'"

-- 
:P

 
tJ:: 

ra 
"0 

ra 
'"

V
I 

~
 

"'"
'"

~
 

'"
E

.~
 

.- 
'" 

"E
 

"'-
Q

J 
6 

"0 
.t: 

ra 
ra 

V
I

+
-' 

V
I 

+
-' 

0. 
e! 

-C
 

-t: 
.

V
I 

Q
J 

-- 
0 

0, 
...

>
. 

-0 
~

 
U

 
01 

"- 
C

V
I 

O
I~

"O
 

C
:X

: 
x

~
cc 

.c:5"..
'" 

.g' 
:x 

C
 

'" 
-t: 

..' 
>

::1
V

I 
- 

0 
u 

'" 
~

'" 
ow

 
-~

 
+

-' 
V

I 
~

 
0

0."0 
E

 
- 

C
 

Q
J 

'-

E
 

u 
~

 
Q

J 
"0 

U
 

Q
J-

0 
.- 

e! 
C

 
E

 - 
01

u 
C

 
'" 

Q
J 

0.0'" 
ra

Q
Je~

E
.9V

1~
::I

-C
+

-'"O
::I"'C

>
 

01
+

-'u..u>
"'Q

JC
C

 
.!!. 

ra 
0 

Q
J 

"'E
-C

 
ra

-"'-c"O
"O

 
",

V
I 

a;
+

-' 
"~

 
-0

'" 
.t:: 

"'"
0 

t- 
S

.t:: 
0-0

01 
+

-' 
~

'" 
c: 

'-
0 

Q
I 

0
'- 

E
 

~
.t:: 

Q
. 

-0
+

-' 
0 

Q
I

~
 

V
I

-0 
Q

I 
'"

2 
~

 
-0

c: 
-0 

c:
Q

I 
V

I 
~

E
 

E
 

.9!.
Q

I 
Q

I 
.Q

-0. 
t; 

..!9
E

 
;>

, 
0;0

"~
 

V
I 

>

c: 
"~

 
~

0 
c: 

.!!J
".p 

0 
0

~
 

'- 
0

+
-' 

1j 
+

-'
0 

Q
I 

-'
c: 

"Q
j 

Q
~

 
'"- 

~
~

 
0 

>
E

 
V

I 
'"-

'- 
Q

I 
0

.E
 

~
 

z.
.t:: 

Q
I

-0 
Q

. 
"t:

Q
I

V
I 

~
 

~
~

 
~

 
>

.Q
 

~
 

Q
I

, 
c: 

.t::
-0 

.~
 

+
-'

~
 

;., 
;>

,
e 

., 
.Q

.Q
 

V
I 

-0
'" 

Q
I

~
 

-0 
u

c: 
c:

V
I 

o~
 

Q
I

"~
 

V
I 

-0

-' 
';>

, 
os:

Q
 

~
 

Q
I

~
 

-0 
V

I
- 

0 
"~

>
 

+
-'

C
"",~

"",m
. 

-"'~
01"" 

ccE
.Y

J~
tj)

.~
 

~
 

>
. 

~
 

.~
 

~
 

'" 
.c 

>

In 
.c 

o.~
"",~

o
tj)U

J 
1ni:.'0I0~

0 
U

J
U

J
-C

 
'" 

0 
0 

~
 

'" 
~

tj) .- 
~

 
..."'"

c-t-C
 

0 
0.-I~

'
~

-O
::l~

~
O

->
~

 
0 

o.~
"-?;;%

 
0 

e

O
co. 

-C
V

1>
~

0.
I 

0 
::I 

'" 
'0. 

<
I: 

V
I

0. 
.- 

V
I 

V
I 

- 
~

 
- 

.c
V

I 
~

.v 
- 

In 
'" 

U
~

 
~

 
"'U

~
~

"'+
':E

~
 

'" 
~

 
V

I 
.~

 
'"

>
 

~
 

"'" 
~

O~
 

U
 

~
 

~
-C

 
- 

~
o.

C
 

V
I 

'" 
~

 
V

I 
'"

E
~

_)(~
In~

V
I)( 

"'-

'v 
'" 

~
 

~
 

'" 
'" 

0 
a

. 
+

' 
'c 

.c 
(;) 

u 
u 

~
- 

, 
0 

'>
. 

0
O

~
O

. 
",~

..",(;)
%

 
0.~

-C
£"- 

O
.cU

>
- 

~
 

~
 

+
'

~
""~

C
~

m
 

'"
.c 

0 
C

~
-C

'" 
~

~
O

O
lO

C
£

>
 

~
 

::I 
0 

"'" 
.- 

.c 
~

:p 
O

.c~
 

",V
1.!9 

V
I 

c
~

 
O

",.~
o~

 
_"'0

'v 
~

 
v 

00- 
'" 

U
~

 
V

I 
;.c..., 

V
I 

c 
'"

'" 
.¥ 

'" 
U

 
'" 

(IJ 
~

""C
ln_""".c"'~

,~
 

:::; 
~

 
0 

2:; 
~

 
~

 
~

>
. 

.c 
f- 

>
.

Zo 
c 

0 
~

 
~

~
 

+
,"'" 

~
~

 
"- 

0 
--C

.2 
'i 

"" 
~

 
c 

:p 
c 

.Y
J 

c
C

\~
0~

00-
V

I 
C

\ 
~

 
:p 

.u 
'~

 
0 

.j;:
'" 

.Y
J 

::I 
~

 
.::; 

,- 
V

I
-C

 
.~

 
0 

0" 
U

 
0. 

"0
'.. 

C
 

\0 
.- 

0. 
"0 

-I 
-I

~
 

or--~
-o.<

I: 
~

oo
~

~
o 

~
 

0.- 
c%

%
0 

"" 
>

<
1: 

0_»

s:0'pIVE.E.~~-:;;s:O
J

.ce!C
o

E0u-cs:IV

.z.
-cs:O

J

~O
J

V
I~

'000~00Ln

t=01
"V

i
" 

Q
)

: 
"C

Q
) 

Q
)

.t: 
~

 
Q

)
IV

 
~

!'1 
~

 
~

1:: 
~

 
"C

0 
IV

 
~

C
o.t: 

IV
C

o"" 
.t:

=
' 

0 
V

I 
C

1 
0

-,:§ 
Q

 
1'i 

t=
:I: 

Q
) 

IV
 

~
>

 
Q

)
- 

"C
 

IV
 

~
V

I 
t=

"C
 

=
'

t=
1V

t=
U

IV
 

V
I 

0
E

"~
 

01 
~

V
I 

.~
 

C
o

=
' 

Q
) 

V
I

.t: 
.t: 

Q
) 

"C
"C

 
t=

"C
 

t=
 

Q
) 

IV
t=

 
:>

. 
~

1V
"'1V

t=. 
,. 

0
V

I 
t=

 
~

 
"...,

Q
) 

0 
"E

 
...

"~
 

:p 
IV

 
~

.t: 
IV

 
.t: 

~
U

 
U

 
"~

IV
~

O
"C

E
"[: 

0
Q

) 
t=

E
.t: 

>
 

0.~
.

O
";"'Q

)
.r. 

t=
 

IV
 

U
Q

) 
.~

 
t=

:>
. 

E
 

t=
 

IV
.r. 

C
o 

=
' 

t=
Q

) 
0 

E
 

:!;
~

 
~

 
t=

.r. 
~

 
E

 
.~

IV
Q

)O
IV

~
 

C
 

u 
~

C
l! . 

. 
.

~..-
"f-t~

\:
-~.;...:

~'--'- '---l\:.

..~C.;,-=
-

~ -

tJ'-':
t:-

..~ ..,'

~
'\

~
:,

"..
u..

the comprehension and use of IEEE VHDL ('l/e/y High Speed 

Integrated Circuit Hardware Description Language), this unique and 

sophisticated product offers a comprehensive and reliable tutorial 

on VHDL and Top-Down Design only available from IEEE. 

provides fully interactive VHDL and Top-Down Design 

tutorials with links to a hyper-text version of IEEE Std 

1076-1993. These robust tutorials are supported by a 

vast quantity of "real-world" based Case Studies and 

Application Notes, based on the DARPA Rapid Prototyping 

of Application Specific Signal Processors (RASSP) program. 

In addition to these, laboratory exercises, VHDL Models, 

VHDL Tools, references and the complete set of viewable 

VHDL standards are on the CD-ROM which provides over 

500 MB of user-friendly and comprehensive information. 

In the computer systems industry, incompatible and often proprietary 

electronic design description languages were once used for describing 

hardware making it difficult for engineers to understand design 

documentation. Proprietary description languages hindered hardware 

development and created the need for a uniform, industry-accepted 

means of describing hardware. IEEE responded in 1987 by standardizing 

the VHSIC (Very High Speed Integrated Circuit) Hardware Description 

Language, or VHDL. 

VHDL is a broad-based formal notation implemented throughout 

today's industry in all phases of electronic systems development. This 

is evidenced by the variety of VHDL tools available and used worldwide. 

eadable by both machines and humans, VHDL supports the... 

• Development, verification, synthesis and testing of hardware design 

• Communication of hardware design data 

• Maintenance, modification and procurement of hardware 

\/'f|fj!      iPSF.rfdva   \si.nna\ 

im^:   %^!i^. 

roushrv
46



_l;; ~~ 
~

~
 

~
~

..~
 

-'
~

 
~

o- 
-- 

~
 

0--- 
"" 

- 
~

- 
"~

'6'" 
~

'6 
~

~
 

'"
.0 

E
" 

~
.c 

,,~
 

~
... 

F
'

~
 

0.- 
'"U

 
- 

'" 
'"",

~
 

-- 
~

 
- 

'"", 
u 

.c~
 

- 
~

 
-0-

~
-o 

-0"" 
o~

",-0 
""~

:1'"
0<

 
'"~

~
"

. 
.;;... 

":0
s: 

~
 

~
 

:5!-~
,,- 

~
o.

...; 
E

-g 
J!.e

z 
0.", 

0.
. 

:E
~

 
~

~
 

~
o

~
 

-0
. 

>
--0

U
 

Z
 

'"
0 

.
~

~0
I

g 
s

~
 

8
~

 
ci.

is 
.:J

0t1i~
!~~

~~
 c

~
 

x 
I

"' 
'" 

I
~

 ~
 

i

!H
~

o
--~
~

~
:J.

~
"'"aI

~
~

~
::I.~

'"
" 

'-' 
'"

"'9"

15t$~
B"Jl.~

~
 

'" 
'" 

"
E

 
'" 

"'
S

:;--;;£
.~

 
~

 
E

 
9

~
ggj~

~
"'~

~
"'-c"
Q

) 
to 

.;; 
Q

)

£Q
)m

m
-5~

.O
!.O

! 
,

"',..,..,.. 
. 

~
15ooa 

~
 

~
13 

~
 

.§.
If 

~
 

'"

~

T 
VHDL Interactive Tutorial CO-ROM integrates many 

different focui areas through a sophisticated Unit 

structure. Fhe CO-ROH organization allows you to 

start in any of these focus areas, ther^ (iroviding 

maximum utilization. 

Subtotal! 

DC, FL, m, MI, OH Shipments 
Add Sales Tax 

Handling 
Charge 

CA, NY shipments, add Sales Tax 
on Subtotal and Handling 

Residents of Canada, 
add appropriate GST/HIS tax 

TOTAL 

These focus areas include: 

• VHOL tutorial • VHDL Standards 

• Top-Down Design Tutorial • References 

• Case Studies ' • VHOL Models 

• Application Notes • VHDL Tools 

• VHOL-Based Acquteitton • VHDL Taxonomy 

• Course Modules • Glossary 

Pteasa check the appropriate bm: 
a Payment enclosed (make diecks payalMe to IEEE) 
3 Please invoice me (subject to credit approval; purchase order required) 
□ Please charge to the credit card listed below    aAWDi    n MasteiCard/EuraCard   a Diner's Oub    a VISA 

Card No.. 

Signature _ 

Exp. Date _ 

Tkh product is licensed for sirvgl«-j 

be avaiiabU upon requut l-m»\i (ti 
iripte-user tksRs«s wilt 
tih0i«9ii!M.org. 

S«* Ihe 'RtAOME-TXr file on th« CO-ROH for operation ImtlUCtiont. 

roushrv
47



 

48 

 

 

 

 

 

 

APPENDIX D - VHDL Interactive Tutorial 

 Published by the IEEE (brochure only.)  
 
 
 
 

 

 

 

 

 



i From 
IEEE Standards Press 

1 
♦ 

IEEE 

VHDL         1 
InteractveTutoria 

Lee 
A CD-ROM 

irning Tool for IEEE Std 1076 VHDL 

IEEE STANDARDS Ptuss 
Tha SouKu fc» rodoy* 5«aodordj tnhmalion 

PubMmdbrtmlBaiUlKiiFltclticolond Bodnma tngm—rt, he 

roushrv
49



Ai . ding in the comprehension and use of IEEE VHDL (Very High Speed Integrated Circuit

Hardware Description Language), this unique product offers a comprehensive and reliable
utarial on VHDL-not available anywhere else. An enhancement to IEEE Std 1076-1993,

the interactive tutorial is organized into four modules designed to incrementally add to the users'
understanding of VHDL and its applications. By integrating these modules. with the VHDL
Language Reference Manual, IEEE Std 1076-1993, in a hypertext environment, this outstanding
teaching tool helps users learn the language and makes VHDL more usable.

This hands-on tutorial shows clear links between the many levels and layers of VHDL and provides
actual examples of VHDL implementation, making it an indispensable tool for VHDL product deve~
opers and users. It describes the construct of the VHDL interface specs-what VHDL is, what it
does and how it's implemented.

The YHDL CD-ROM tutorial provides an eosy-to-vse logical method of referencing the standard.

Moreover, it comes bundled with the Spyglass@ MosiacTM 2.11 browser and is available for use

in WindowsTM (3.1 and 95), Macintosh@, Sun@ OS and Sun Solaris@ environments.

VHDL Interactive Tutorial CD-Rom
Available in the Following popular formats

.. Microsoft Windows@ (3.1 and '95 compatible)

.. Macintosh@

.. Sun@ as

.. Sun Solaris@

Each format is also available packaged with a printed copy of IEEE Std 1076-1993, VHDL
Language Reference Manual. See order form for details.

Aiding in the comprehension and use of IEEE VHDL (Very High Speed Integrated Circuit 
Hardware Description Language), this unique product offers a comprehensive and reliable 
tutorial on VHDL—not available anywhere else. An enhancement to IEEE Std 1076-1993, 

the interactive tutorial is organized into four modules designed to incrementally add to the users' 
understanding of VHDL and its applications. By integrating these modules* with the VHDL 
Language Reference Manual, IEEE Std 1076-1993, in a hypertext environment, this outstanding 
teaching tool helps users learn the language and makes VHDL more usable. 

This handson tutorial shows clear links between the many levels and layers of VHDL and provides 
actual examples of VHDL implementation, making it an indispensable tool for VHDL product devel- 
opers and users. It describes the construct of the VHDL interface specs—what VHDL is, what it 

does and how it's implemented. 

The VHDL CD-ROM tutorial provides an easy-to-use logical method of referencing the standard. 

Moreover, it comes bundled with the Spyglass® Mosiac'^" 2.11 browser and is available for use 

in Windows™ (3.1 and 95), AAacintosh®, Sun® OS and Sun Solaris® environments. 

VHDL Interactive Tutorial CD-Rom 
Available in the Following popular formats 

■^Microsoft V\^indows® (3.1 and'95 compatible) 

•■ Macintosh® 

-• Sun® OS 

*• Sun Solaris® 

Each format is also available packaged with a printed copy of IEEE Std 1076-1993, VHDL 
Language Reference Manual. See order form for details. 

roushrv
50



I n the computer systems industry, incompatible and often proprietary

electronic design description languages were once used for describing
hardware - making it difficult for engineers to understand design doc-

umentation. Proprietary description languages hindered hardware devel-
opment and created the need for a uniform, industry-accepted means of

describing hardware. IEEE responded in 1987 by standardizing the
VHSIC (Very High Speed Integrated Circuit) Hardware Description

Language, or VHDL.

YHDl is a broad-based formal notation implemented throughout today's
industry in all phases of electronic systems development. This is evi-
denced by the variety of YHDl tools available and used worldwide.

Readable by both machines and humans, VHDl supports the
. Development, verification, synthesis and testing of

hardware design
. Communication of hardware design data

. Maintenance, modification and procurement of

hardware

In the computer systems industry, incompatible and often proprietary 

electronic design description languages were once used for describing 
hardware — making it difficult for engineers to understand design doc- 

umentation. Proprietary description languages hindered hardware devel- 

opment and created the need for a uniform, industry-accepted means of 

describing hardware. IEEE responded in 1987 by standardizing the 
VHSIC (Very High Speed Integrated Circuit) Hardware Description 
Language, or VHDL. 

VHDL is a broad-based formal notation implemented throughout today's 
industry in all phases of electronic systems development. This is evi- 

denced by the variety of VHDL tools available and used worldwide. 

Readable by both machines and humans, VHDL supports the 
• Development, verification, synthesis and testing of 

hardware design 

• Communication of hardware design data 

• Maintenance, modification and procurement of 
hardware 

roushrv
51



agonized into four easy-to-use modules that build upon each other, the VHDL Interactive
utorial allows users to set their own learning pace.

Module I-Basic VHDL
Provides an introduction to the VHSIC Hardware Description language and its fundamental
concepts and describes the many advantages of using VHDl.

Module 2-Structural VHDL
Introduces the concepts and constructs of structural modeling using VHDl. It brings you to the
point where you can write code using the concepts of structural design in VHDL. What's more,
it addresses the use of VHDL for describing models in terms of component instantiations and
interconnections.

Module 3-Behavioral VHDL
Describes features of the language that describe the behavior of components in response to sig-
nals. The VHDL constructs in this module focus on describing hardware utilizing software engineer-
ing practices and it concludes with a comprehensive example using the SDSP microprocessor.

Module 4-System Level VHDL
Covers a wide range of topics, focusing on VHDl constructs as applied to higher levels af
design abstraction. This concentrates on the usefulness of VHDl at the system level while it pre-
sents examples in which VHDl is used to mode! the system at high levels of abstraction.

This product is licensed for single user purposes. Use for multipl&iJser environments will be available upon
request. For more information, please e-mail stds. vhdlinfo@ieee.org or call 908. 562. 3804.

. 11... ~,.J.. h.&vinl ",wnn ni Ihi. ",M,1d i. C 1996 SCRA no

o rganized into four easy-to-use modules that build upon each other, the VHDL Interactive 
utorial allows users to set their own learning pace. 

Module 1—Basic VHDL 
Provides on introduction to the VHSIC Hardware Description Language and its fundamental 
concepts and describes the many advantages of using VHDL. 

Module 2—Structural VHDL 
Introduces the concepts and constructs of structural modeling using VHDL. It brings you to the 
point where you con write code using the concepts of structural design in VHDL. What's more, 
it addresses the use of VHDL for describing models in terms of component instantiations and 
interconnections. 

Module 3—Betiavioral VHDL 
Describes feotures of the language that describe the behavior of components in response to sig- 
nals. The VHDL constructs in this module focus on describing hardware utilizing software engineer- 
ing practices and it concludes with a comprehensive example using the SDSP microprocessor. 

Module 4—System Level VHDL 
Covers a wide range of topics, focusing on VHDL constructs as applied to higher levels of 
design abstraction. This concentrates on the usefulness of VHDL at the system level while it pre- 
sents examples in which VHDL is used to model the system at high levels of abstraction. 

This product is licensed for single user purposes. Use for multiplenser environments will be available upon 
request. For more information, please e-mail stds.vhdlinfo@ieee.org or call 908. 562. 3804. 

' Tt.. n>nrl.ilo hdrvin/rwfi'nn nf (his nmrfiie^ H £3 1996 SCSAr" 

roushrv
52



CEE Mfl<rU< ^(Q. 

Co(iTp(iiy_ 

0*f  

Cp/1\HitJ Codv, 

Do IB mm ix'f 

- ItanrbipihoB-b' 

LCD □ 1-1700, BAT 

oy 

 Cii'jnhv   

ProdudNo PubllcaliOli 

Sun BoloHi Vsniefi 

with lEIt Eld 1076-1993 

CP-IOM wirfi IEEE 
lad 107A-1Tn 

Sone OS ^A-4rK1 wHi lEEi 
Svd 1D7A-IV44 

Sun SoJoti VofiJen 
willi lUE M 107A-19n 

SPllCQNVT 

SPllCGfJlT 

SPnOtWVT 

sPlioftfjyT 

SPH07JJfT 

a'nafl'^J¥T 

SPiiow^n 

199.00 

199.00 

199 00 

lQ?oa 

114V OD 

1U9.D0 

1149.00 

1149.00 

PttCO 

1A9J0 

IA9.30 

1A9 30 

140 30 

1104 ]□ 

1104.30 

1104 30 

1104.30 

PlHtHt <h«f k ihe approfinatm baxi 

'■qi^rsif With v^^ 

PIHUA rfiorga rrcdil mid (li*f ksd IMIOI^ 

fj JO rrwlTiihuiK pWrhoiw twqu/mdl 
LI APHKnan Ewpju Ll MC/EutncDrd 
UDinviClub LIVISA 
Cj-dNo    
Enp OoM,  
SlftntiiirO   

CA, OH, f L A, P^ odd apiiJmablB HIBI iru' 

'Hmufllng [Wot: 

On KY and dC ihlptrwHi. odd idn Ku' 

lHid«nii d Coiudo, odd ?\ GST Hu: 

TOTAL 

ToM      « 

! 

i 
I 

fAsH:     lEH OHfviw Swvia ' 443 HD« Lan^ PO Box 1331 ' Pixcatawoy, W0BaSV1331 USA 

roushrv
53



Institute of Electrical and Electronics Engineers, Inc.
IEEE STANDARDS PRESS

445 Hoes lane, PO Box 1331
- Piscataway, NJ 08855.1331 USA

IEEE (908) 562.3829

http://stdsbbs.ieee.org/

VHDL INTERACTIVE TUTORIAL-YOUR COMPLETE VHDL TRAINING TooL
Nov. '96

.

Institute of Electrical and Electronics Engineers, Inc. 
IEEE STANDARDS PRESS 

445 Hoes lane, PO Box 1331 
Piscataway, NJ 08855-1331 USA 
|908) 562-3829 
http://stdsbbs. ieee.org/ 

VHDL INTERACTIVE TUTORIAL—YOUR COMPLETE VHDL TRAINING TOOL 
Nov. '96 

roushrv
54



 

55 

 

 

 

 

 

 

 

 

 

 

APPENDIX E  - RASSP DIGESTS  (external) 



Vol. l,No. 1,4thQtr. 1994 

^ m 

Im 

RASSP\ 

AfiPA   •    Tri-Scrv*ce 

In This Issue 
RASSP After One Year 
RASSP Edticalion and Facilitation 

Conceptual Prototype Demonstrates RASSP's Future 
Martin Marietta RASSP Design Center Enables Design 

Environment Implementation 
The Martin MarietUi RASSP Team Demonstrales and 

Presents Rapid Prototyping Concepts at the 
First Annual Conference 

Introduction to the Lockheed Sanders 
RASSP Team 

The Lockheed Sanders RASSP Approach 
The Lockheed Sanders Demonslration Program 
Lockheed Sanders Beta Site Program 
RASSP Conference Success 
VHDL Models 

The Benchmark 1 Executable Requirement 
Viv^e La Difference 
Available Technical Publications 

elcome to the inaugural edition of The RASSP Digesir the 
quarterly newsletter for the U.S. Department of Defense's 
RASSP Program! The primary aim of the nevvsSctter is to 
chronicle RASSP-rebled aclivities and to infonr^ the gen&ral 

rapid systems prototyping community of develapments and new resulis 
developed by the RASSP Program. Each issue will include notices of ujx:om- 
ing RASSP related cittlvities oad tbcu^ on one of the topical themes that 
impact rapid systems development, These typically inckide^ but are not 
restricted to, an Exccuteve Outlook section ihat presenHS the vtews and com- 
menEs from a programmatic pofnt of view md a Prime Development section 
that presents developments from the Lockheed Sanders and Martin Marietta 
programs, reievanl to the newstetier's current lopical theme. In addition, a 
Technology Base .lection presents one or more articlei^ highlighting the 
advanced technology being developed widhin the universities ancf compa- 
nies o^ the RASSP Technology Qiise. The Benchmark section will provide an 
update on Ihe resulb and issues oi she RASSP benchmarking activity. Lastly, 
them will be an Editi:)ri.il section that disci^SMi^s recent viewpoints Al^d offers 
technical articles on various hutes in the area of rapid systems prc^totyping. 
Irs \hh hsue^ the editorial presents a high-level comparison of the RASSP 
approach vis-'a-vls current practice approach. 

If yoti have IdijBs for topical themes to be addressed in t'uEure issues of 
the RASSP Digest, please contact the editors at the address below. 

Dr. Anthony). Gadient 
Email: gadieni^'scra.org 
SCRA 
5300 International Boulevard 
North Charleston, 5C 29418 

Dr. Vijay K, Madisetti 
Email: vkm@ee.gatech.edu 
Georgia Tech 
Sch. of Elec. & Computer Eng. 
Atlanta, GA 30332-02SO 

roushrv
56



The RASSP Digest 

RASSP 
After One Year 

Mark Richards, ARPA (ESTO), 
RASSP Program Manager 

The Rapid 
Prototyping 
of Applica- 
tion Specific 
Signal Pro- 
cessors 
(RASSP) pro- 
gram is a 
major ARPA/ 
Tri-Service 
initiative to 
reinvent the 

design process for embedded dig- 
ital signal processors. Our goal is 
to improve the time it takes to go 
from concept to fielded prototype 
on both new designs and 
upgrades by a factor of four, with 
similar improvements in life cycle 
cost and supportability. 

RASSP is aimed at the whole 
system design process, from spec- 
ification to manufacture. The pro- 
gram emphasizes complex digital 
systems at the board and 
multi-board levels. Consequently, 
it spans heterogeneous systems 
involving mixes of standard and 
custom hardware, field program- 
mable devices, and software on 
programmable processors. 

At this writing, the RASSP Pro- 
gram is one year into the four year 
span of the primary development 
programs which are the core of 
the program. What has been 
accomplished in the first year? 

Programmatically, the ARPA/ 
Tri-Service team has finished the 
major undertaking of building the 
RASSP team and ramping the pro- 
gram up to full speed. RASSP 
now involves some twenty-five 
contracts in four general areas. 
Lockheed Sanders (Nashua, NH) 
and the Martin Marietta 

Advanced Technology Labora- 
tory (Moorestown, Nj) each are 
developing and demonstrating 
complete RASSP design sys- 
tems. They are supported by a 
technology base development 
effort involving a large number of 
universities, not-for-profit, and 
commercial firms performing 
research and development in digi- 
tal signal processing and elec- 
tronic design automation. RASSP 
also includes innovative Education 
and Facilitation (E&F) and bench- 
marking efforts, both new experi- 
ments in ARPA programs. 
Current design metrics emphasize 
evaluation of point tools. The 
RASSP benchmarking effort will 
develop system-level benchmark 
design problems and process met- 
rics, and share RASSP design 
experience with the larger com- 
munity.   The E&F will ensure that 
RASSP design concepts and expe- 
rience are widely disseminated to 
the larger end user, commercial 
EDA, and educational communi- 
ties. 

Technically,  RASSP efforts are 
focused in three general areas: 
design process methodology, dig- 
ital signal processor architecture, 
and electronic design infrastruc- 
ture which includes EDA tools, 
libraries, and enterprise integra- 
tion capabilities. While progress 
has been made in all three, I 
would like to concentrate on the 
first and third areas. 

A good design system should 
be driven by methodology, tem- 
pered by available tools and other 
infrastructure. The RASSP Pro- 
gramRASSP Program is emphasiz- 
ing development of a concurrent 
systems engineering methodol- 
ogy. Both Lockheed and Martin 
have defined first versions of a 
RASSP design process that 
includes a highly integrated func- 
tional design process (meaning 
the process of translating require- 
ments into functional specifica- 

tions and constraints, and then 
mapping those specifications into 
a hardware/software architecture 
optimized under the constraints), 
augmented with concurrent engi- 
neering capabilities such as early 
cost estimation, producibility 
assessment and so forth. A num- 
ber of successes have been 
achieved in linking tools for DSP 
algorithm development to tools 
for system simulation and hard- 
ware/software codesign. The 
RASSP Program is also exploring 
the limits of VHDL as a language 
for system representation across 
many levels of abstraction, from 
executable specifications to 
behavioral and RTL-level designs 
suitable for synthesis, to gate 
-level design documentation. This 
effort has made substantial 
progress and is also illuminating 
many practical problems, from 
simulation speed to library popu- 
lation. The latter point brings us 
to the area of design infrastruc- 
ture. 

The RASSP Program has 
Invested in its first year in a num- 
ber of efforts to help populate 
VHDL part libraries, ranging from 
direct development of models to 
efforts to commercialize model 
generation tools. One of the 
most visible signs of our early 
progress will be the announce- 
ment in 1995 of a number of new 
or accelerated EDA products and 
enhancements directly attribut- 
able to these RASSP efforts. 

RASSP faces a number of near 
term challenges. Before a second 
year elapses, the developers must 
integrate the first version of a 
comprehensive design system.    , 
The first benchmarking results will 
become available, and are cer- 
tain to include many lessons 
about what is and isn't working in 
the RASSP methodology. Virtual 
prototypes of each developer's 
demonstration projects will be 
completed, providing another 

Vol. 1, No. 1,4thQtr. 1994 

roushrv
55

roushrv
55

roushrv
57



The RASSP Digest 
test of the early methodology and 

tools. Finally, we must also begin 

to make progress in our efforts to 

explore DSP architectural struc- 

tures which inherently support 

rapid design. 

While the RASSP Program is 

now up to full speed, opportuni- 

ties still exist to work with us to 

meet the goal of dramatically 

improving embedded DSP design. 

The ARPA/Tri-Service team 

remains interested in partnering 

with end users on additional dem- 

onstration projects. And of 

course, we are always interested 

in hearing of good new technical 

ideas applicable to the RASSP 

Program. 

The RASSP Education and Facil- 

itation team is there to help you 

learn more about RASSP. This 

newsletter contains a great deal of 

information about all aspects of 

the program. To learn still more, I 

encourage you to log into the 

RASSP World Wide Web server at 

http://rassp.scra.org/, or contact 

the RASSP E&F team directly. 

And be sure to join us for the Sec- 

ond Annual RASSP Conference 

next Summer! 

RASSP Education 
and Facilitation 

Jack Corley 
SCRA 

The RASSP (Rapid Prototyping 

of Application Specific Signal Pro- 

cessors)  Education and Facilita- 

tion (RASSP E&F) program is 

developing the innovative educa- 

tion and facilitation system 

needed to make RASSP technol- 

ogy widely used. 

The RASSP E&F team has three 

primary objectives: 1) to transfer 

the RASSP knowledge and tech- 

nology into use in defense and 

commercial industry, 2) to trans- 

fer the RASSP knowledge and 

technology into university curric- 

ula, and 3) to facilitate the contin- 

uous improvement of RASSP 

through rapid feedback. 

To accomplish these objectives, 

the RASSP E&F program is devel- 

oping university and continuing 

education; a single point source 

for all RASSP information; and 

facilitating technology transfer to 

industry and academia. To stay 

abreast of RASSP technology 

development and provide user 

input to help steer the develop- 

ment,  RASSP E&F maintains a 

strong interface with all other 

RASSP programs. 

RASSP is developing the meth- 

ods, tools, and DSP architecture 

needed for a paradigm shift in 

the way systems are designed, 

verified, and upgraded. That para- 

digm shift is needed to reach the 

RASSP objective of a four-fold 

decrease in design time with asso- 

ciated improvements in quality 

and upgrade potential.   However, 

even if the RASSP technology 

were fully available today, there 

are very few educators or engi- 

neers who are familiar with the 

key facets of that technology. 

Other components of the 

RASSP initiative are eliminating 

design tool, DSP architecture and 

methodology gaps. The RASSP 

E&F program must address the 

scarcity of trained industrial tech- 

nical staff and educators.  Unless 

these individuals are trained in the 

effective use of RASSP concepts, 

RASSP objectives can not be met. 

Education and Facilitation are vital 

if commercial and defense com- 

panies are to realize the RASSP 

benefits.  RASSP E&F must both 

increase the supply of, and accel- 

erate the demand for skilled 

RASSP technologists. 

Our RASSP E&F approach rec- 

ognizes the large diverse audi- 

ence of management, 

engineering, and university peo- 

ple that must be reached and 

their differing needs and objec- 

tives.  Different techniques will be 

used to reach that diverse com- 

munity, emphasizing the portions 

of the overall RASSP message rel- 

evant to the particular target audi- 

ence. 

The RASSP E&F program will 

develop a RASSP Education Sys- 

tem (RES), demonstrate the RES 
effectiveness, and ensure its long- 

term availability as the innovative 

education and training needed to 

make RASSP technology widely 

used.  RES will be developed and 

delivered in both academic and 

industrial settings. This education 

will act to increase both the sup- 

ply of, and the demand for RASSP 

qualified engineers. 

EDUCATION & TRAINING 

Vol. 1,No. 1,4thQtr. 1994 

roushrv
58



The RASSP Digest 
The RASSP E&F goal is to col- 

lect, consolidate, and disseminate 
RASSP information and technol- 
ogy. RASSP E&F will educate the 
user and facilitate proliferation of 
RASSP into industrial practice and 
RES into university curricula to 
change the way embedded sys- 
tem design is performed and 
taught.  RASSP E&F will also pro- 
vide users with a mechanism to 
feedback their perspective to 
RASSP developers, ensuring that 
RASSP is continuously improving 
its focus on key user issues. 

The RASSP E&F team is work- 
ing with industry and academia to 
identify the issues that must be 
addressed for successful change. 
The entire RASSP E&F offering is 
tailored to meet those needs. 
Careful attention to overcoming 
barriers is being coupled with 
innovative learning and informa- 
tion dissemination techniques to 
ensure the target audience is 
receptive and RASSP technology 
widely used.  RASSP E&F will con- 
tinually monitor and improve the 
effectiveness of the RES 
approach, delivery mechanisms, 
and information content. 

The RASSP E&F team consists 
of leading university professors, 
technical managers, electrical 
engineers and computer scientists 
from SCRA, Georgia Tech, Univer- 
sity of Virginia, University of Cin- 
cinnati, Raytheon, Merkel and 
Mears Group, EIT and Arthur D. 
Little (ADL). To accomplish the 
necessary technology and knowl- 
edge transfer, RASSP E&F has four 
organizational segments:  Inter- 
face, Education, information, and 
Transition. Jack Corley (SCRA) 
and Vijay Madisetti (Georgia 
Tech) provide the overall pro- 
gram leadership, while team lead- 
ers include Jim Aylor (University 
of Virginia), Joe Wong (Raytheon,) 
Hal Carter (University of Cincin- 
nati,) and Anthony Gadient 
(SCRA). 

The RASSP E&F team is using a 
spiral, continuous improvement 
approach to deliver education 
and facilitation. This spiral con- 
sists of four steps: 1) define/refine 
objectives, 2) define/refine infra- 
structure and requirements,  3) 
develop/refine mechanisms and 
metrics, and 4) deliver and evalu- 
ate effectiveness. 

An innovative approach to 
modular courseware is being used 
by the Education segment. This 
modular approach provides a sim- 
ple, cost-effective way to continu- 
ally improve the material, use the 
same material for multiple pur- 
poses, and stay abreast of the 
RASSP technology improvements. 
Each module will contain three 
components:  1) theory and fun- 
damentals, 2) examples and met- 
rics, and 3) detailed RASSP 
systems design examples linked to 
RASSP tools and methodologies. 
This unique approach simplifies 
course creation, maintenance, 
and transfer to educational institu- 
tions outside the initial RASSP 
E&F team. 

To reach the geographically dis- 
persed audience, RASSP E&F is 
making maximum use of comput- 
ing and communications facilities 
for innovative instruction delivery 

(multimedia, Internet, video-based 
instruction, etc.) State-of-the-art 
Internet communication tools will 
provide a logical single-point inter- 
face to on-line education materi- 
als, information and services from 
RASSP E&F, the other RASSP pro- 
grams and EDA vendors. The 
same Internet tools will be used 
for team collaboration and to 
interface with other RASSP pro- 
grams. 

Through these distributed edu- 
cation and facilitation mecha- 
nisms, RASSP E&F is providing the 
apparatus needed to make RASSP 
technology broadly available. The 
overall effect will blur the bound- 
ary between information, educa- 
tion, and use of RASSP services. 
Users will skip introductory and 
tutorial material as they become 
expert, with on-line reference 
manuals, interactive help and 
refresher training only a click 
away.  Users will progress effort- 
lessly from novice to expert. The 
end-result should make RASSP 
technology ubiquitous, making 
the RASSP four-fold improvement 
goals broadly realized. 

Your comments and sugges- 
tions are vital to the continuing 
improvement of RASSP and 

User Monitoring 
and Feedbacl< 

Broad 
Communication 

RASSP E&F FACILITATION 

Vol. 1,No. 1,4thQtr. 1994 

roushrv
59



The RASSP Digest 
RASSP E&F. Contact information 
to remember includes;   

Phone: 803-760-3376 
Email: info@rassp.scra.org 

ftp: ftp.rassp.scra.org 
World Wide Web 

(Mosaic and Lynx viewers) 
http://rassp.scra,org 

We need your help for RASSP 
to meet its, 

Conceptual 
Prototype 
Demonstrates 
RASSP^s Future 

Harley Stein 
Martin Marietta 

Martin Marietta's RASSP con- 
ceptual prototype is a forward- 
looking view of the future RASSP 
workstation. It shows the steps 
the Martin Marietta team is focus- 
ing its efforts on to achieve the 
RASSP 4X design time improve- 
ment. 

Common Desktop Environment 
Provides Five Keys 

The conceptual prototype envi- 
ronment is based on the Com- 
mon Open Software 
Environment (COSE) consortia's 
Common Desktop Environment 
(CDE). Martin Marietta devel- 
oped several skeleton applications 
using CDE interface builders. 
These skeletons simulate function- 
ality that is not available in "real" 
applications. "Along with the skel- 
etons, we've augmented the con- 
ceptual prototype with screen 
shots of actual applications," said 
Andrew Schwalb, developer of 
the Martin Marietta conceptual 
prototype. "This gives it a realistic 
look and feel." 

The screen shots help show the 
functionality provided by the dif- 

ferent applications through the 
entire RASSP framework. The 
prototype will evolve throughout 
the program to encompass added 
functionality as the tools mature. 

Martin Marietta selected CDE 
as its standard interface specifica- 
tion for RASSP for five key rea- 
sons: 

-Unprecedented 
interoperability 
-Efficient user interaction 
-Transparent network support 
-Virtual workstations 
-Shared groupware applications 
CDE is being co-developed and 

embraced as the standard inter- 
face application far nearly all 
major workstation vendors, 
including Sun Microsystems, 
Hewlett-Packard, IBM, Novetle, 
and recently, DEC. This specifica- 
tion will provide a common look 
and feel, and ensures compatibil- 
ity for all Martin Marietta's RASSP 
applications. The RASSP design 
philosophy is to use the full capa- 
bilities of CDE without incurring 
the cost of developing a totally 
new environment. 

Workspaces Combine 
Common Data 

One of the primary internal fea- 
tures is the virtual workstation, 
which allows users to segregate 
data related to a project into orga- 
nized, easy-to-access categories. 
These categories, or workspaces, 
combine common data into a sin- 
gle environment The workspaces 
currently defined for the RASSP 
enterprise system are: 

-Project workspace 
-Workflow workspace 
-Product/library data 
workspace 
-Network/Interfaces workspace 
-Design tools workspace 
-General user workspace 

Martin Marrieta plans to refine 
the workspaces as data organiza- 
tion is refined during the course 
of the RASSP Program. 

Interoperability Demonstrated in 
Key Areas 

Interoperatibility is the key to a 
successful RASSP Program. Mar- 
tin Marietta's conceptual proto- 
type shows some of the key areas 
that its team mates are develop- 
ing, including project information 
workspaces, the link between the 
workflow manager and several 
tools, the use of desktop video 
conferencing tools, and network- 
ing. 

The project information work- 
space example demonstrates how 
a project management tool gets 
updated status information pro- 
vided by the workflow manage- 
ment tool. This link enables 
RASSP users to see status on a 
Gannt chart, reference a step 
within a workflow, and find any 
ties to a requirement. "All this 
information is available with a few 
keystrokes," said Schwalb. "The 
burden of data management is on 
the RASSP design framework, not 
on the users." 

The workflow manager inte- 
grates the design process with 
tool launch, design review/autho- 
rization, and data management 
capabilities. The tie between the 
workflow manager and the tools 
provide users with transparent 
data access following a work- 
flow. The demonstration shows 
the power of abstracting users 
from the underlying data manage- 
ment details using several exam- 
ples. 

The desktop video conferenc- 
ing tools enable users to interact 
remotely with engineers, project 
managers or customers without 
leaving the workstation. The pro- 
totype shows a design engineer 
grappling with an application 
problem.  The engineer immedi- 
ately connects with support staff 
who talk the engineer through the 
problem, and who can also take 
control of the application and 
show the engineer how to solve 

Vol. 1, No. 1,4th Qtr. 1994 5; 

roushrv
60



The RASSP Digest 
the problem, * 

The network example show5 an 
engineer using the system to 
select a location to manufacture a 
product. Through the network 
the engineer can assess the manu- 
facturing center's capabilities, 
send a preliminary design to the 
center, and receive feedback 
regarding the manufacturability of 
the product. 

The Martin Marietta concep- 
tual prototype was unveiled at the 
first Annual RASSP Conference. It 
is available for demonstration at 
Martin Marietta Laboratories/ 
Moorestown in Moorestown, 
New Jersey. The evolving con- 
ceptual prototype was demon- 
strated at the 1994 GOMAC and 
will be demonstrated at 1995 
DAC. 

Martin Marietta 
RASSP Design 
Center Enables 
Design 
Environment 
Implementation 

Lynn Kline 
Martin Marietta 

Martin Marietta's RASSP 
design center provides a facility 
for the team to implement the 
integrated RASSP design environ- 
ment. The RASSP design environ- 
ment is important because it 
enables a significant portion of 
the 4X improvement in develop- 
ment schedule and 4X reduction 
in life-cycle cost. 

The RASSP design center at 
Martin Marietta Laboratories in 
Moorestown has a 30-Gigabyte 
data server and 10 Sun Microsys- 
tems' Sparc 10 workstations dedi- 
cated to RASSP. The team plans 
annual hardware enhancements 

using Martin Marietta capital. 
These workstations are networked 
into the Moorestown Laborato- 
ries' resources.   Martin Marietta 
plans to connect to the outside 
world in early 1995 using EINet 
from MCC to provide flexible and 
secure on-demand connectivity. 

Martin Marietta's design envi- 
ronment  implementation team 
leveraged the heritage of its Engi- 
neering Process Improvement 
(EPl) program to combine an 
already integrated set of CAD 
tools with additional DSP analysis 
tools to implement its Baseline 0 
design environment. Martin Mari- 
etta has now defined a set of 46 
tools from 26 vendors. Intergraph 
will provide a framework to inte- 
grate all tools and automate pro- 
cess and workflow control. These 
tools are fully described in Martin 
Marietta's "CAD System Descrip- 
tion" document. The tools are 
organized according to their use 
within the RASSP design method- 
ology. 

The tools for the systems, archi- 
tecture, and detailed design (hard- 
ware and software) areas are 
summarized in the following para- 
graphs. 

System Design tools support early 
development of system partition- 
ing, test, reliability, and mainte- 
nance concepts. 

RTM by Marconi System Tech- 
nology enables life-cycle 
requirement traceability 

PRICE S/M/H/HL by Martin 
Marietta for computer-aided 
parametric cost estimating 
enables life-cycle cost analysis 
throughout the design process 

RAM/ILS by Management Sci- 
ences Inc. enables feedback on 
reliability, availability, maintain- 
ability, and integrated logistics 
support during early trade-off 
analyses 

RDD-100 by Ascent Logic 
enables system definition, func- 

tional analysis, function alloca- 
tion, interface design, scenario 
development, and thread analy- 
sis 

IPS by Interleaf provides a 
complete document publish- 
ing tool 

RRDM by Aspect will provide 
access to reuse data and librar- 
ies 

Architecture Design tools help 
analyze architecture and hard- 
ware/software codesign in a vari- 
ety of ways: functional analysis, 
trade-off studies for architecture 
selection, partitioning/mapping, 
and architecture verification. 

NetSyn byJRS Research Labo- 
ratories enables multiproces- 
sor design analysis and 
synthesis to support architec- 
tural trade-offs 

SPW by Alta Group of 
Cadence enables interactive 
design, simulation, and imple- 
mentation of digital signal pro- 
cessing and communication 
systems 

BONeS by Alta Group of 
Cadence performs detailed, 
discrete architectural simulation 
and is used to obtain high-fidel- 
ity performance metrics early 
in the system design 

MatLab by Mathworks pro- 
vides advanced image process- 
ing functionality and numeric 
computation 

Ptolemy by BDTI/UC Berkeley 
supports multi-domain analysis 
of complex systems 

GEDAE by Martin Marietta pro- 
vides a software front-end for 
hardware testbeds that enables 
graph-based programming and 
front-end analysis of multipro- 
cessor trade-offs 

ADEPT by University of Vir- 
ginia  provides a unified VHDL 
environment to support hard- 
ware/software codesign and 
trade-offs 

Vol. 1, No. l,4thQtr. 1994 

roushrv
61



The RASSP Digest 
Hardware Design tools supfiort 
seamless coupling from the higher 
level architectural requirements, 
hardware/software codesign, and 
behavioral tools down to the func- 
tional and detailed-level hardware 
design processes. 

Design Architect by Mentor 
Graphics captures designs at 
the architectural, logic, and cir- 
cuit levels for top-down design 

QuickVHDL by Mentor Graph- 
ics creates, debugs, and simu- 
lates VHDL models 

QuickPath by Mentor Graphics 
provides static path analysis 

QuickFault by Mentor Graph- 
ics provides deterministic fault- 
simulation 

MCM Station by Mentor 
Graphics provides layout, ther- 
mal analysis, and signal integ- 
rity analysis of MCMs or PWBs 

Design Vision by Vista graphi- 
cally represents behavior for 
modeling VHDL, viewing simu- 
lation results, and documenta- 
tion 

SimMatrix by Precedence pro- 
vides a simulation backplane to 

support interactive co-simula- 
tion 

FIDELITY by Omniview allows 
designers to rapidly synthesize 
and evaluate alternative hard- 
ware architectures 

VPS by Quickturn Design Sys- 
tems enables hardware emula- 
tions 

SmartModels by LMG group 
of Synopsys provides full and 
bus functional simulation librar- 
ies for a large number of COTS 
parts 

Design Compiler by Synopsys 
enables high-level design syn- 
thesis of ASICS 

C-MDE from LSILogic enables 
ASIC development 

FPGA Foundary from Neocad 
supports FPGA development 

Lasar by Teradyne provides 
dynamic min/max timing path 
analysis 

Victory by Teradyne provides 
test analysis 

Software Design tools support 
library development, detailed 
design, and source code develop- 
ment. Martin Marietta will be add- 

ing more software tools soon. 

Teamwork by Cadre Technolo- 
gies provides structured design 
analysis and documentation in 
support of software develop- 
ment 

Sun ADA by Sun Microsys- 
tems supports HOL source 
code development in the work- 
station environment; target-spe- 
cific HOL compilers are being 
installed to support emerging 
DSP chips 

CDEM will be provided by 
AT&T to support distributed 
software debugging capabilities 
for multiprocessor systems 

PIE and TIBBIT by University of 
Oregon will provide a perfor- 
mance analysis and a binary-to- 
binary software translation 
capabilities 

GrTT and |LiPIDgen by Man- 
agement Communications and 
Control Inc. will provide auto- 
code generation and run-time 
system for graph execution 
control 

Martin Marivtta Internal Networks 

SunSparc 10 
Worl<station$ (lOi 

SPARCcenter 
1000 

Emerprige System 
Hardware 

RASSP External Interface 

The Martin Marietta Design Center enables design environment implementation 

Vol. 1, No. 1,4th Qtr. 1994 

roushrv
62



The RASSP DJRest 
For more information regard- 
ing the RASSP Design Center 
or its tools, contact Lynn Kline 
at 609-866-7191. 

The Martin 
Marietta RASSP 
Team 
Demonstrates and 
Presents Rapid 
Prototyping 
Concepts at the 
First Annual 
Conference 

Stephen O'Neill 
Martin Marietta 

The Martin Marietta RASSP 
team demonstrated 16 rapid pro- 
totyping developments at the 
first Annual Conference at the 
Hyatt Regency in Crystal City, Vir- 
ginia August 15-18. 

The ARPA/Tri-Service-spon- 
sored four-day conference was 
part of the government's mission 
to publicize the RASSP Program, 
which will dramatically improve 
the way in which signal proces- 
sors are developed and fielded. 
Eventually, the rapid prototyping 
technology, which has concur- 
rent engineering at its core, will 
be applied to digital processing at 
large. 

The Martin Marietta RASSP 
team members also presented 
seven papers covering various 
parts of the development to the 
nearly 400 conference partici- 
pants. 

The Martin Marietta exhibit 
consisted of five booths. In one, it 
demonstrated its concept of oper- 
ations. In the other four its sub- 
contractors demonstrated various 

items of the program's enterprise 
system, architecture, hardware 
design, and pervasive technolo- 
gies: 

Enterprise System - Enterprise 
integration: Intergraph and 
Mentor - Library management 
integration: Aspect and Men- 
tor - Manufacturing interfaces: 
SCRA   - Electronic networking: 

A large percentage of the Mar- 
tin Marietta team members are 
EDA industry leaders and have 
committed to release early ver- 
sions of their developments. One 
of the many representatives from 
the signal processing and CAD 
industry commented that "the 
Martin Marietta team had demon- 
strated a world class capability." 

'^asA 

^ 
-A /.-.;: 

A'^t' 

f^   I/': r 
**!"" tf"^" V 

X-I^.Wm 
• '*'* ... 

MCC Architecture - Multipro- 
cessor network synthesis: JRS - 
Simulation interoperability: 
BDTI, Alta, and U.C. Berkeley - 
Autocode generation: MCCI 

Hardware Design - Hardware 
emulation for DICE: Quickturn 
and TRW - Simulation back- 
plane for architecture verifica- 
tion: Precedence - System and 
board-level synthesis: Omni- 
view - Multichip system design 
advisor: MCC - Model genera- 
tion tools: LMG 

Pervasive Technologies - Object- 
oriented VHDL extension: 
VISTA - Hierarchical test and 
economics advisor: MCC - 
Hierarchical built-in self-test 
design: LV Software - Paramet- 
ric cost modeling: Martin Mari- 
etta PRICE Systems. 

Companies interested in 
becoming beta sites for the 
RASSP methodology and design 
system should contact: 

Jim Saultz 
(609) 866-6402 

via e-mail 
jsaultz@atl.ge.com. 

Vol. l,No. 1,4thQtr. 1994 

roushrv
63



Introduction to the 
Lockheed Sanders 
RASSP Team 

Cory Myers 
Lockheed Sanders 

In order to meet the goals of RASSP, Lockheed Sand- 
ers teamed with Motorola, Hughes Aerospace, and ISX. 
The technical work on the program is split nearly equally 
between Lockheed, Motorola and Hughes while ISX has 
a small, but significant role. Lockheed Sanders brings 
demonstrated expertise in rapid development and signal 
processing.  Hughes brings extensive signal processing 
and military system development. Motorola brings rec- 
ognized expertise in process improvement and in com- 
munications. ISX demonstrates skill in the management 
of large consortia. 

Because of the success which Lockheed and the US 
Air Force have had on the F-22 program with the use of 
Integrated Product Teams, we chose to use a similar 
management technique on RASSP. Our program con- 
sists of four integrated Process and Product Develop- 
ment Teams. These four teams include Systems, Design 
Environment, Demonstration, and Proliferation (Figure 
1). All four companies have significant roles in all four 
teams. 

Lockheed leads the Systems team as well as being the 
prime contractor on the program. The Systems team pro- 
vides the methods and architecture that will support 

The RASSP Disest 
rapid development. These include the model year 
concept, the extensive use of virtual prototypes, 
the ability to "plug and play" hardware and soft- 
ware components, and extensive use of reuse 
libraries. 

Motorola has the lead responsibility on the 
RASSP Design Environment (RDE). The RDE pro- 
vides a flexible environment for the management 
of the development process, including work flow 
management, configuration management, metric 
collections, and communications. The RDE (as well 
as other services, including "pay-per-view" tool 
rental) will be provided commercially through the 
Electronic Information Corporation. 

Hughes leads the Demonstration team. (Our 
demonstration is an IRST upgrade to the Navy's F- 
14). The demonstration team proves our methodol- 
ogy and environment while providing rapid feed- 
back to the developers as to potential 
improvements. 

ISX has the lead responsibility for the Prolifera- 
tion team. The Proliferation team distributes the 
RASSP process and the RDE to beta sites to further 
demonstrate the process and to provide additional 
feedback to the developers. 

The remainder of this article provides the reader 
with a better understanding of our RDE, our dem- 
onstration efforts, and our proliferation work. The 
RASSP Approach section gives a description of the 
organization of our system and how it will enhance 
the rapid development of signal processing sys- 
tems. The Demonstration section gives a detailed 

Lockheed Sanders RASSP Program 

Methodology 
Development 

User 
Environment 

Validate Process 
& Environment 

Field/Support 
Process 

Figure 1. Organization of the Lockheed Sanders RASSP Team 

Vol. 1,No. 1,4thQtr. 1994 

roushrv
64



The RASSP Digest 
description of the problem that 
we are undertaking and the meth- 
ods that we are using. The Prolif- 
eration section describes our 
approach to beta sites and gives a 
glimpse at the future of the Elec- 
tronic Information Corporation. 

The Lockheed 
Sanders RASSP 
Approach 

Ron Ireland 
Motorola 

Driving the Lockheed Sanders 
RASSP Program product is the 
program goal as stated by Pro- 
gram Manager Mark Richards: 

^Dramatically improve f/ie pro- 
cess by which embedded digital 
signal processors are designed, 
manufactured, upgraded and 

supported/' 

This is put into quantitative 
goals of improving by a factor of 
4: 

1) the total cycle time to produce 
a DSP product, 

2) the cost of producing a DSP 
product, and 

3) the quality of a DSP product 
The Lockheed Sanders RASSP 

Program Approach to producing 
the products necessary to meet 
the program goals is: 

• Develop a RASSP design pro- 
cess 

• Define and implement a 
RASSP Design Environment 
(RDE), a design environment to 
support the RASSP design pro- 
cess 

• Analyze the design process 
needs of a target design 
project (e.g., a beta site) 

• Identify which parts of the 
RASSP design process address 
the target project design pro- 
cess needs 

• Incorporate into the target 
project design process those 
selected RASSP design process 
features deemed to be needed 
(process mapping) 

• Determine the project design 
environment improvements 
needed to support the new 
project process 

• Provide to the project those 
RASSP Design Environment 
features which have been 
developed by the Lockheed 
Sanders RASSP team. 

The Lockheed Sanders Program 
Product (those services and soft- 
ware products needed to support 
the approach described above) 
includes the following: 

• A RASSP Design Process 
• Deliverable Software (This soft- 

ware is developed by the Lock- 
heed Sanders RASSP 
development team. It is not 
COTS software) 

- Integration and other Special- 
ized Software (metrics collec- 

tion, metrics reporting,   user 

interface software to enhance 

user friendliness) 

-Customization Files 

-Process description for Work 

Flow Management products 

-Encapsulation wrappers 

• Consulting Service 

-Process definition (assist, to the 

extent needed, the user in 
defining his/her process) 

-Process improvement analyses 
and implementation (identify 

areas of potential design pro- 

cess improvement, quantify 

the potential impact of the 

proposed process improve- 

ments, seamlessly incorporate 

into the user design process 

the RASSP features that have 

been selected) 

-Process Automation 

-Distributed Document Man- 

agement automation 

-Design environment definition 

(Features needed to optimally 

support the user design pro- 

cess) 

-Customization of COTS soft- 

ware (Process instantiation 

using a COTS Work Flow 
Manager, Distributed docu- 

ment management using a 

COTS document management 

product plus selected RASSP 

provided features. Application 

Encapsulation) 

-Metrics definition, automatic 

collection and analysis 

The Lockheed 
Sanders 
Demonstration 
Program 

LeRoy Fisher 
Hughes 

The goal of the RASSP Demon- 
stration effort is to provide valida- 
tion of the RASSP Process and 
RASSP Design Environment in the 
context of real-world signal pro- 
cessor design. Over the course 
of the RASSP Program, three full 
releases of the RASSP Design 
Environment (RDE) will be used, 
along with corresponding 
releases of the RASSP Process. 
Each release of the RDE will be 
utilized in the development of 
model year upgrades to the dem- 
onstration vehicle. Model Year 0 
work has been performed largely 
with tools from the RDE tool set. 
New RDE integration and infra- 
structure capabilities are being 
used as they become available. 
Figure 2 illustrates the close rela- 
tionship between the three pri- 
mary RASSP efforts - Process 
Development, Design Environ- 

10 Vol. l,No. l,4thQtr. 1994 

roushrv
65



The RASSP Digest 
menl Development and Demon- 
stration, 

The objectives ot the RASSP 
demonstration5 are to: 

1) Use an embedded signal 

processing system as a test 

case, spanning the develop- 

ment cycle from concept to 
specification, architecture 

analysis, design, manufac- 

ture and support, so that 

the entire RASSP process 

can be evaluated as it 

evolves during the contract. 

2) Design the system using the 

RASSP model year con- 
cept - the abilit\' to upgrade 

system design rapidly and 
often, incorporating the lat- 

est technology and incre- 
mentally upgrading the 
system throughout its lite 

cycle. 

3) Provide process metrics and 

lessons-learned for method- 
ology and process refine- 

ment.   Measure the 

progress toward reducing 
product development time 

by a factor of four. 

4) Provide feedback on the use- 
fulness of specific tools and 

the design environment. 

5) Provide clear, convincing 

data that the RASSP meth- 

odology is practical and 

effective for complex 

design tasks. 

By demonstrating the process 
and tools as they are being 
defined, the program becomes 
much more than an esoteric 
study. The demonstration helps 
focus and prioritize develop- 
ment.  It also checks the useful- 
ness of the tools early in the 
development cycle. Adequate 
design complexity ensures that 
the process and tools are viable in 
real-world examples. Because 
requirement definition is real, 
there is no opportunity to gloss 
over details, as might be possible 
for a simple laboratory demon- 
stration. A tangible demonstra- 
tion also provides an 
understandable scope of work 
for which metrics can be col- 
lected and improvements in the 
RASSP process explained. Met- 
rics gathered across multiple 
years clearly show that the design 
process has improved. 
Demonstration Vehicle 

The demonstration vehicle for 
RASSP is an airborne infrared 
search and track (I RST] processing 
system using programmable pro- 
cessors.  It employs a heteroge- 
neous Multiple Instruction 
Multiple Data (MIMD) architec- 
ture using commercial off the 

shelf (COTS) processor chips, 
operating systems, and system 
software tools. The IRST proces- 
sor was chosen as the preferred 
demonstration for several reasons: 

1) Scalability. The IRST algo- 

rithms were available in a 
scalable manner for a 

coarse grain MIMD paral- 

lel processor. Coarse grain 

in this sense is a non-shared 

memory, message passing 

architecture. The available 
software design and initial 

partitioning provided a 
starting point for showing 

model vear improvement 

and demonstrating reuse. 

By starting from this well- 
thought-out design, a more 

complex system demonstra- 

tion can be achieved. 

2) Modularity. The IRST algo- 

rithms and software are 
modular to allow RASSP 

process exploration to be 
performed at different lev- 

els of rigor for different 

functions. This modularity 
allows the scope of the 

demonstration to be 

adjusted to meet RASSP 
needs and schedule. 

3) Tools,   Some of the algo- 

rithms are described at the 

Three Releases Design 
of RASSP Design        Trades 
Environment (RDE) 

RDE 

Process 
Development Metrics 

Process 

Demo 

Evaluations 

I   Hardware 
I    Software 

Three Full 
Cycles of Test 
and Evaluation 

i 
Figure 2. Relationship Between RASSP Activities 

Vol. 1, No. 1, 4th Qtr. 1994 11 

roushrv
66



The RASSP Digest 
math level in Matlab/one 

of the RASSP analysis tools, 

thus allowing a top-down 

exploration of hardware/ 

software partitioning and 

design. 

4) Ease of implementation. 

Some of the existing algo- 

rithms easily lend them- 

selves to hardware 

implementation (e.g., con- 

volution and registration). 

Also, test imagery is avail- 

able. 

5) Applicability. IRST process- 

ing has received much 

recent interest as a means 

to meet airborne and ship 

defense requirements. 

Thus its demonstration 

should be of interest to mul- 

tiple potential Government 

organizations.  Ideally, 

these organizations can 

start with the RASSP dem- 

onstration databases, apply 

the RASSP process, and 

create their own IRST solu- 

tion tailored to specific 

application requirements. 
Demonstration Model Year 0 

concludes with the construction 
of a complete IRST processing 
system. Algorithms and some C 
software were available at the 
beginning of the Model Year 0 
effort. The architecture, interface 
cards, processor, and Ada soft- 
ware are the design elements for 
this first model year. The design 
uses standard buses and inter- 
faces, such as VME, RS-170, and 
RS-422. The system will have 
about 20,000 lines of application 
code and about 24,000 lines of 
VHDL code. 

Lockheed 
Sanders Beta Site 
Program 

Ron Ireland 
Motorola 

The Lockheed Sanders Beta 
Site Program is an integral and 
critical part of the overall RASSP 
Program. This part of the pro- 
gram is where real users outside 
of the Lockheed Sanders Team 
deploy the Lockheed Sanders 
RASSP Product within their busi- 
ness. This part of the program is 
where we learn how well we 
really did in addressing the RASSP 
Program objectives. 

The Lockheed Sanders philoso- 
phy is to involve the beta site 
projects early in the life of the pro- 
gram. Candidate projects are 
kept informed of the program 
direction and status. In turn, 
these candidate sites provide us 
with their input on our direction. 
Through this close working rela- 
tionship, the beta sites will be pro- 
vided first access to RASSP 
Products including: 

Process improvement recom- 
mendations 
Design environment recom- 
mendations needed to sup- 
port process improvement 

Integration software pro- 
duced by the Lockheed Sand- 
ers RASSP team 
Special purpose software pro- 
duced by the Lockheed Sand- 

-'■     ers RASSP team. 

As the RASSP products are 
deployed at the beta sites the 
Lockheed Sanders Beta Site Sup- 
port Team will provide high levels 
of support and will continue to 
work with the user team members 
throughout the life of their 

project. 
Over the next year the beta site 

program will provide the Lock- 
heed Sanders RASSP Products to 
three different sets of users: 

Internal (to the Lockheed 
Sanders Team) projects - initi- 
ated in October 1994 
Selected government labs - 
initiated in January 1995 

First external projects initiated 
in 3Q95 

The status of the beta site pro- 

gram can be described in terms of 

each of these sets of users: 

Internal beta sites have been 
identified; the definition of 
the packages that will go to 
these projects are being 
developed 
We are providing informa- 
tion to government lab 
projects who are interested in 
being external beta sites 
Dialog with several compa- 
nies who have potential beta 
site projects is on-going 

For additional information on 
the Lockheed Sanders Beta Site 
Program or to learn how you 
might become a beta site contact: 

Ron Ireland, Manager 

Lockheed Sanders RASSP Beta 

Site Program 

Motorola-GSTG 

8201 E. McDowell Road 

Scottsdale, AZ 85252 

Phone: 602-441-2348 
emall:RonJreland@rassp.mot.com 

12 Vol. 1, No. 1,4thQtr. 1994 

roushrv
67



The RASSP Disest 

V 

r.'ft'**-: rJS9if '^ 

RASSP 
Conference 
Success 

Mark Hoffman 
ISX 

The Lockheed Sanders prime 

contractor team provided a booth 

area at the conference.   In this 

area,  a RASSP videotape was 

continuously run providing an 

introduction to the Lockheed 

Sanders team and its approach to 

RASSP. Also provided in the 

booth area for Sanders was a set 

of demonstrations illustrating 

technologies and methodologies 

being developed and employed 

by that team to address the 

RASSP goals of 4X improvements 

in the areas of cost, time, and 

quality.   These demonstrations 

included: 

The RASSP Design Environment 

(RDE) Release 0.1: 

The product of the first year of 

RASSP effort, this prototype was 

the first of four stepping stones 

toward a RASSP environment and 

concentrated on document/data 

control and access and support 

for bug reporting. 

RDE 1.0 Work Flow Manager: 

This demonstration illustrated 

many of the features of the 

RASSP 1.0 work flow manager 

scheduled for release in June '95. 

The work flow manager was 

loaded with the current RASSP 

process definition to illustrate the 

contributions of reuse and con- 

current engineering to the goals 
of4X. 

RASSP Visionary Demonstration: 

This demonstration is a Macin- 

tosh based, multimedia program 

illustrating the "vision" of a future 

RASSP environment. This view 

was constructed by the team to 

help focus their own views on 

what a RASSP environment 

should provide. 

RASSP Virtual Prototype: 

This demonstration of the Vir- 

tual Prototype was shown by 

members of the Demonstration 

Team. The VHDL demonstration 

showed the MCV9/ISA model 

executing an application program 

example and compared the 

results with a similar application 

program executing directly on the 

workstation. 

Multithreading Multiprocessors 
Demonstration: 

The multithreaded, multipro- 

cessor demonstration illustrated 

the use of a multi-processor work- 

station as a VHDL simulation 

accelerator.  Simulation accelera- 

tion is essential as VHDL mode! 

complexity increases. 

WWW Mosaic demonstration: 

The Lockheed Sanders RASSP 

team has constructed a detailed 

World-Wide-Web Mosaic home 

page providing information on the 

team, its organization, goals, 

plans, and status.  Most of this 

web is available to the public via 

URL "http://rassp.sanders.com." 

Video Teleconferencing Demon- 
stration: 

The video teleconferencing 

demonstration illustrated the use 

of freeware video and screen-shar- 

ing tools used by the team in 

order to aid in the development 

of the RASSP environment itself 

In this way, the Lockheed Sanders 

team is using components of their 

own RASSP environment and 

methodology in its own develop- 

ment. 

Several of the Technology Base 

BAA contractors were also 

located in the Lockheed Sanders 

booth area including: 

University of California, Berkeley 

MIT/Boston University 
Research Triangle Institute 
CA SEER 
Georgia Tech 

CFI (CAD Framework Initiative). 

Points of Contact 

Additional information about 

the Lockheed Sanders RASSP 

Team and their plans and status 

can be obtained from several 

sources.  A Mosaic World-Wide- 

Web home page is available 

through URL http://rassp.sand- 
ers.com. 

Vol. 1, No. 1,4th Qtr. 1994 13 

roushrv
68



The RASSP Digest 
The Lockheed Sanders RASSP 

Team also supports an automated 
fax-back service at 1-800- 
99RASSP. This number may be 
used to request additional specific 
information through an operator. 
Electronic mail requests for other 
RASSP information can be made 
through rassp-info@rassp.Sand- 
ers.com. 

VHDL Models 

Hal Carter 
University of Cincinnati 

in this month's Tech Base col- 
umn we will present the efforts 
taking place to create VHDL mod- 
els for RASSP.  Future columns 
will present Tech Base efforts in 
other areas such as simulation, 
synthesis, and translation tools; 
analysis algorithms and tools; and 
enterprise integration. 

The information below gener- 
ally describes the nature of the 
models being created and how 
they fit into the RASSP Program. 
A later issue of The RASSP Digest 
will provide more detailed infor- 
mation about each model and 
how they can be obtained from 
the RASSP repository. 

VHDL Hybrid Models 
Fred Rose, Honeywell 
Jim Ay lor, Univ. of Virginia 

Hybrid models will allow the 
RASSP designer to seamlessly use 
multiple abstraction levels within 
the same simulation. This pro- 
gram will develop models and util- 
ities to support hybrid modeling. 
VHDL is being used to model 
designs from early algorithmic 
and performance levels to behav- 
ior to detailed gate design. The 
primary advantage for using 
VHDL throughout the design 
cycle is keeping the design in the 

same representation throughout. 
The expressive power of VHDL is 
well suited to this task.  However, 
unless techniques which allow 
seamless integration of these mul- 
tiple levels are developed, this 
great advantage of VHDL will be 
lost. Individual tools and design 
representations will continue to 
be used, maintaining the current 
disarray and confusion in the 
industry for system level design. 
While the tailored RASSP VHDL 
DID calls out multiple VHDL lev- 
els, no technique exists to inte- 
grate these multiple models. In 
many cases, unrelated tools will 
be used and VHDL will merely be 
an output format,almost an after- 
thought. Unless a clean, straight- 
forward technique is developed, 
this will be true on the RASSP Pro- 
gram. 

The complexity of model inte- 
gration comes from different 
information content and format 
for the different model levels. Per- 
formance models use a token 
(VHDL record structure) as a sig- 
nal which contains no detailed 
data information. Behavioral mod- 
els use integer and real signal 
structures which contain detailed 
data information. Register trans- 
fer level models use bit level sig- 
nal structures, such as the IEEE 
1164 9-state logic system, which 
also contain detailed data infor- 
mation. Each of these levels also 
handle timing differently. 

There are multiple reasons to 
mix levels. One may not have 
detailed design information for a 
particular block and may be 
forced to abstract the behavior. 
One may want to develop a 
detailed design for another block. 
Simulation performance may not 
be satisfactory with detailed mod- 
els at all levels. Detailed models 
are used to verify timing assump- 
tions made earlier. Software analy- 
sis may be desired but a detailed 

hardware processor model may not 
be available or may be too slow. 
These are all commonplace design 
occurrences. 

Performance Modeling 
Workbench 
Charles Buenzli, Omniview 
Fred Rose, Honeywell 

The Performance Modeling 
Workbench (PMW) will be a fully 
integrated VHDL environment for 
system-level hardware/software 
codesign and performance analy- 
sis.  PMW will minimize the 
"up-front" model generation penalty 
through a comprehensive library of 
parameterized VHDL hardware and 
software models that allow the sys- 
tem designer to quickly generate 
and evaluate alternate architectures 
early in the system design process. 
A powerful, comprehensive results 
analysis package will allow the 
designer to compare and verify per- 
formance at each stage with previ- 
ous results and the system 
requirements.  Since all models are 
in VHDL, each stage of the design 
process is documented in a stan- 
dardized, consistent, and verifiable 
form. The PMW will be based on 
the existing Honeywell performance 
modeling library. 

VHDL Modeling of Architec- 
tural Building Blocks 
Joanne Degroat, Ohio State Uni- 
versity 

The objective of this effort is the 
creation of a library of synthesizable 
(and simulatable, of course) com- 
mon building block components 
that can be used to quickly design 
and implement a DSP or an  SIC for 
use with a DSP. The library and 
associated documentation will pro- 
vide a "data book" of reusable com- 
ponents with information on the use 
of the model for simulation and syn- 
thesis. Models with appropriate 
variations will be generated under 
the effort for fixed point integer 
units including adders, multipliers. 

14 Vol. 1, No. l,4thQtr. 1994 

roushrv
69



The RASSP Digest 
linear shifters, and barrel shift/ 
rotate units; and floating point 
units including single, double, and 
extended precision floating point 
adders, floating point multipliers, 
and transcendental function units. 

VHDL Modeling of Cypress 
Semiconductor Standard 
Parts 
Scoff Calhoun, Mississippi State 
University & Cypress Semicon- 
ductor. 

The objective of this effort is to 
develop VHDL models of 
selected Cypress Semiconductor 
standard integrated circuits. Mis- 
sissippi State and Cypress have 
entered an agreement where by 
Cypress will provide timing infor- 
mation necessary to create VHDL 
models of high quality and accu- 
racy to be released as part of the 
RASSP Program. 

Several critical part types will 
be modeled to develop a baseline 
VHDL model library of standard 
parts. Advanced PLDs, FPGA, 
FIFO, and Dual Port memories are 
the part types under investigation. 
A meeting is scheduled between 
Cypress and MSU for later in the 
Fall to determine the first part to 
be modeled and the modeling 
support information which will be 
provided to MSU by Cypress. 

MSU will also be releasing two 
VHDL modeling support tools as 
part of the RASSP contract. The 
first is TestView which is an auto- 
matic VHDL testbench synthe- 
sizer. TestView allows users to 
develop custom VHDL test- 
benches for the model under test 
(MUT) which are portable to any 
IEEE-1076 simulator. ConfigView 
provides a graphical user interface 
to VHDL configurations. Config- 
View allows large configurations 
to be easily edited to customize 
simulation executions. Each of 
these programs will be released as 
MOTIF and Sun Microsystems 
COSI applications. Beta release 

for TestView is scheduled for 2nd 
quarter 1995. ConfigView Beta 
release will follow in 3rd quarter 
1995. 

CAD Tools for the Develop- 
ment and Reuse of Models 
of Signal Processing Soft- 
ware and Hardware 
Geoff Franl<. Research) Triangle 
Institute 
Jim Armstrong, Virginia Polytech- 
nic Institute 

Besides developing software 
partitioning and VHDL test 
bench generator tools, RTI and 
VPI will be developing a signal 
processing algorithm library and a 
VHDL module library. The capa- 
bilities of these algorithms and 
modules will be analyzed, refined, 
and demonstrated. Furthermore, 
these algorithms and VHDL mod- 
els will be interfaced to the tools 
in the RASSP design environment. 

Populating VHDL Libraries 
for RASSP 
Vijay Madisetti, Georgia Tech 

This project will develop librar- 
ies of VHDL models for digital 
electronic macrocells, compo- 
nents, sub-systems and systems. 
The end product will be an exten- 
sive library that includes commer- 
cial-off-the-shelf (COTS) parts, 
digital signal processors (DSP), a 
VHDL math library, and tools to 
aid in the generation, mainte- 
nance and standardization of 
VHDL libraries for RASSP.  Our 
VHDL models for i860 and VME 
are being used extensively by the 
RASSP primes in their virtual pro- 
totyping demonstrations (which 
were also presented at the RASSP 
workshop in 1994), and models 
for the ADSP 21060 (SHARC,) 
PowerPC, TMS320C30, and other 
COTS and DSP chips are currently 
in development. All models are 
being collected into a respository 
for rapid dissemination, once they 
are validated and released. Tech- 
nical point of contact: Dr. Vijay K. 

Madisetti, (404) 853-9830, email 
vkm@ee.gatech.edu. 

The Benchmark 1 
Executable 
Requirement 

Allan H. Anderson 
MIT Lincoln Laboratory 

The first RASSP benchmark, 
which was delivered to Martin 
Marietta and Lockheed Sanders 
by MIT Lincoln Laboratory in early 
August, included a tape cartridge 
with about 1/2 Mbyte of data and 
source code for an executable 
specification for a Synthetic Aper- 
ture Radar processor. The data is 
an accurate description of the sig- 
nal transformations which the pro- 
cessor is to perform and it's 
system environment. 

The use of executable specifi- 
cations is essential to the RASSP 
Model Year concept which seeks 
to ensure that a signal processor 
will employ state-of-the-art tech- 
nology when fielded and that it 
will be possible to upgrade the 
system throughout its lifetime. It is 
also a key to achieving improved 
design time and quality because it 
can provide a thread of evolving 
models from system definition to 
implementation. 

What constitutes an executable 
specification and how to name 
the different varieties is a subject 
of active discussion, but common 
to all definitions is simulation of 
the processor in its environment. 
A design process can be thought 
of as a successive refinement and 
adding of detail to a processor 
model beginning with initial 
requirements and ending with a 
virtual prototype which models 
the hardware and software system 
in complete detail. An example of 

Vol. 1, No. 1,4thQtr. 1994 15 

roushrv
70



The RASSP Digest 
executable model evolution would include 
at least the three levels shown in the figure 
on page 16. They are: 

1. Requirement - a simulation of the 
required signal transformations, with tim- 
ing, in the environment in which the pro- 
cessor will operate. As shown in the 
figure on page 16, the environment 
includes a signal source, a controller and 
a data sink which may perform compari- 
sons with a desired output. These com- 
prise a testbench for the processor which 
will be used throughout the development 
to ensure conformance with the require- 
ment. 

2. Conceptual - simulations with different 
algorithms and performance models for 
exploring design trade-offs. Each concep- 
tual model may contain modules at differ- 
ent levels of detail. 

3. Virtual prototype - the final model with 
the processor partitioned into software 
and hardware modules. The virtual proto- 
type's output will be identical to that of 
the final system and it is the definitive def- 
inition of the processor. Certain virtual 
prototype modules may serve as source 
for hardware synthesis. 

Important advantages of interoperability 
and reuse accrue to use of one modeling 
language from requirement to virtual proto- 
type but the needs at different levels are 
quite different. In the requirement the algo- 
rithm may not be specified in full detail. In 
conceptual models there is a high premium 
on fast execution time to improve designer 
productivity. And the virtual prototype must 
model hardware in detail and be capable of 
executing application code if the device is 
programmable. Languages and software 
environments such as Matlab, Processing 
Graph Methodology, C, Ptolemy, and VHDL 
are all candidates for executable specifica- 
tion languages. The optimum strategy for 
design with executable specifications is an 
important focus in the RASSP community. 

The Benchmark 1 design exercise calls 
for creation of a virtual prototype for a real- 
time SAR processor for an existing radar, the 
MIT Lincoln Laboratory Advanced Detec- 
tion Technology Sensor (ADTS). The ADTS 
radar is a fully polarimetric Ka-band radar 
installed in a Gulfstream Gl aircraft which 

PROCESSOR, 

(SOURCE) CONTROL 

TESTBENCH 
L . 1 

REQUIREMENT 

PROCESSOR 

TESTBENCH 

CONCEPTUAL 

PROCESSOR 

TESTBENCH 

VIRTUAL PROTOTYPE 

16 Vol. 1,No. 1,4thQtr. 1994 

roushrv
71



The RASSP Digest 
has flown about 400 data collec- 

tion missions. The processor is 

specified so that it could be 

installed in the aircraft or on a 

UAV and create real-time images 

from ADTS data. At the peak rate 

of about three images per second 

a one-gflop/sec processor is 

required. 

Since Lincoln Laboratory was 

working with an existing system 

this requirement has some of the 

characteristics of a system 

upgrade. The data input interface 

to the processor and data formats 

were completely determined and 

real data was available. There was 
some freedom for Lincoln in spec- 

ifying the data output format and 

port and the control interface is a 
new design which is not com- 

pletely specified to the two design 

teams. 

The sponsors and Lincoln 

decided to create an all-VHDL 

Executable Requirement.  The 
SAR strip map algorithm was 

implemented in VHDL through a 
straight forward translation of an 

existing C program. It primarily 

uses real and integer variables and 

VHDL signal variables very spar- 

ingly and executes the algorithm 

in zero simulated time. The 

VHDL created strip maps are 

essentially identical to those cre- 

ated with the C program.  Data 

timing is modeled at the proces- 

sor data input and output ports 

and the user can set processor 

latency between 0.1 and 3 sec- 

onds. 

The VHDL testbench simulates 

the sensor system output by refor- 

matting data from disk files and 

presenting it to the processor at 

the proper simulated time.  It pre- 

sents commands and setup data 
to the processor as a simulated 

host and writes output data from 

the processor to files and com- 
pares it with other disk file data. 

Latency is measured and com- 

pared with a user supplied refer- 

ence. The processor and 

testbench model comprise 2430 

lines of VHDL and use an existing 

math library. 

The VHDL processor simula- 

tion is about 25 times slower than 

a C program for the math parts of 

the SAR algorithm, that is, an FIR 
filter, FFTs and vector multipliers. 

However, for the entire simulation 
with I/O, data reformatting and 

the small amount of timing simu- 

lation, the VHDL simulator is 

about 200 times slower than the 

C program which does no timing 

simulation. To simulate one frame 
of 512 pulses, for one polariza- 

tion, in the Vantage Spreadsheet 

simulator requires about 2 1/2 
hours on a Sun SPARC 10/51 

workstation. This running time is 

acceptable for doing a require- 

ment simulation but not when the 

testbench is used with processor 

models for conceptual design. 
Lincoln Laboratory is doing fur- 

ther work to identify any ineffi- 

ciencies which may be 

contributing to run time. 

The simulation was written to 

run on any IEEE STD 1076-1937 

compliant simulator. Successful 

runs on Vantage Spreadsheet, 

Mentor QuickVHDL and 

Cadence Leapfrog simulators at 

Lincoln Laboratory and Lockheed 

Sanders, Martin Marietta and 

Wright-Patterson Air Force Labo- 

ratory, respectively, are proof of 
success. The simulation runs 

were done on different, but simi- 
lar, uniprocessor workstations and 

no dramatic differences in run 

time was observed. 

The delivered testbench will be 

used to exercise the virtual proto- 

types created by the developers. 
The second benchmark will prob- 

ably be a prototype hardware 
implementation of the SAR pro- 

cessor and for that development 
Lincoln Laboratory is building a 

hardware testbench which will 

source and sink data in real time. 

Vive La Difference 

Vijay Madisetti 
Georgia Institute of 

Technology 
The erudite readers of The 

RASSP Digest may be curious as 

to the differences between the 

"current design process (circa 
1993)"  as opposed to a newer 

RASSP-like design process. 

Indeed, this editor has put much 

thought to this issue given the rel- 

evance, importance, and timeli- 

ness, of such a comparison. 

Some preliminary ideas that 

emerged from months of expo- 

sure to various facets of RASSP 

and also to current design prac- 
tice are presented in the next few 

sections for your consideration, 

where this editor compares and 

contrasts two different (radically?) 

design processes, in the interest 

of space, high-level differences in 

design flow will be the focus of 

this discussion, as opposed to 
more involved architecture- and 

methodology-dependent facets 

that are well documented else- 

where. Thus, this editorial con- 

cerns itself with one (iterative) 

pass from concept to product. 

Higher-level loops that iterate 

over model-years will be the sub- 

ject of future articles.   We may 

recall that RASSP is targeted 

towards the design and prototyp- 

ing {from concept to product) of 

large embedded DSP systems (we 

do not target ASICs as their tech- 

nology is somewhat mature and 
sufficient resources are already 

addressing their rapid design and 

realization). Examples of systems 

of interest range from efficiently 

packaged single-board embedded 

DSP systems (as found in high-per- 

Vol. 1, No. T,4th Qtr. 1994 17 

roushrv
72



The RASSP Digest 
formance workstations using 

MCM-based chassis) to large 

multi-chassis STAP radar signal 

processor systems which typi- 

cally have performance require- 

ments ranging between 20-1000 

BFLOPs of computational inten- 

sity at pixel rates of 10 Mhz, 

within the form constraints of 

size, weight, and power of 2-50 

ft^ 100-1400 lbs, and 1-10 KW, 

respectively. Boards represent 

subsystems, while multiboard con- 

figurations can represent com- 

plete systems, and involve 

hardware fabrication, assembly, 

and integration with application, 

control and diagnostic software. 

Figure 1 {listed below) represents 

a high level depiction of current 

design practice, and Figure 2 on 

page 19 represents a preliminary 

RASSP design flow. Both process 

flow diagrams start at the level of 

the representation of the applica- 

tion requirements. The algorithm 

to be implemented (e.g., a STAP 

radar signal processor system) is 

specified in an executable form (a 

VHDL/Ada, or a C/Matlab pro- 

gram) together with stimuli and 

test benches,  in addition, the sys- 

tem has certain performance 

characteristics and constraints 

that must be met by the proto- 

type (representative values being 

given in the preceding paragraph). 

After an appraisal of the applica- 

tion characteristics is completed, 

a partitioning of the application 

onto hardware (HW) or software 

(SW) is carried out manually by 

an experienced hardware system 

designer, and is to some degree 
ad hoc. Those portions of the sys- 

tems that are to be cast as ASICs 

are selected, and common-off-the 

shelf (COTS) components such as 

processors and memories are 

chosen as targets for mapping SW 

components,  and inital estimates 

as to the allocation of these parts 

are drawn and reviewed. The 

application is partitioned into sub- 

systems (boards) so that each of 

these boards executes a portion 

(in SW or HW) of the algorithm, 

and their ensemble (the multi- 

board system) will hopefully pro- 

totype the required radar system 

with satisfactory performance. 

Since software (SW) cannot exe- 

cute without target hardware, 

application and control software 

developed for each of these 

boards can only be tested and 

debugged after the hardware fab- 

rication (assembly) and test of the 

board is completed (which can 

take 2-4 months per board, that 

too if complex ASIC design is not 

involved).  After the hardware 

board is fabricated, application 

and control code is debugged in 

an iterative design cycle a of Fig- 

ure!. After successful design and 

test of the board-level HW/SW 

subsystem, the multi-board sys- 

tem is integrated manually, 

wherein the software and the 

hardware are merged and tested 

Current Practice - Circa 1993 

Application 

:   Behavior 
!. Slimuli&TeSl   ; 

i Performance ; 
i Constraints   ; 

Manual 

Note: Silicon tab/manutacture in in-cycie design ioops. 

Manual 

HW/SW 
Partition 
iie lection 

X 
SW Design - 

Application & Control 
Code Generation 

Cotle Opti 

tJaniiat 

Board 

SW 
Debug 

ZT 

Manual 
TEST PROTOTYPE 

Multiboard 
Integration 

Multiboard 
HW/SW 
Debug 

HW Design- 
,COTS + ASIC + 

Parts 
Automated 

SW HW 

JSeleclion 
Redesign 

rPast experience' I 
Verification 

(Manual) 

^' Control & 
Diag. SW 
(Mam i a I) 

T 

FIELD 
PROTOTYPE 

Manufact 
S Assembly 

mt 

Application 
Control & 

Diag. SW 

Board = Subsyetem 
Multiboard = System. 

(il 

Behavior-Algonthm (e.g., 60 dp suppression)   & Execulable Specs &Test 
PerformancB = MFLOPs. Sample lates 
Constraints = Size, volume, power, area, lomi.. 

Figure 1 
The author's vision of a "current practice" (circa 1993) design flow showing dependence between 

the software and hardware design and development cycles, with silicon fabrication and assembly/ 

test (shaded regions) incorporated into three design loops (a, b, c) 

18 Vol. 1, No. l,4thQtr. 1994 

roushrv
73



The RASSP Digest 

Target RASSP Design Flow - Preliminary (Fall 1995) 

Application 

Behavior 
Tesl & Stimuli 

i Pertormance 
: Constraints 

SW Reuse 
Libraries 

(   Mpln^^^ r^nll&rljnn J 

Manual 
HW/SW 
Partition 

Seleciion 

3W Code Design 
& Verification 

VIRTUAL PROTOTYPING 

Largely Aiilomaled 

Co-X 

HL 

DFX 

Virtual HW 
Design & Verit. 

Integration & 
Sim u I at ion-based 

Verilicaiion 
T 

4--4- 

Compare      ■^ 
(Manual) 

FIELD n^EST? 
PROTOTYPE 

"Past experience' 

VHDL HW Model 
Libraries 

HW Modelers 
Emulation/ICE 

FAB 
SYSTEM 

~>n- 

S oft ware 

Integral! on 

Note: No silicon/HW fab in in-cycle design loops, 

m 
Olf-cycie updates 

Figure 2 
The author's vision of a Preliminary RASSP Design Process (Fall 1995). Note the high degree of automation, 
removal of hardware fab from in-cycle design iterations, automated metrics collection, in addition to creation, 
maintenance and validation of VHDL libraries. Tesl prototyping (in silicon) is included as an option, and its selec- 
tion depends on the accuracy of the modeling efforts. 

via diagnostic soflvware and input 

from the application (stimuli and 

test). This integration is done manu- 
ally and involves silicon fabrication, 

mantifacture and assembly/test, 

and is iteratively refined until an 

acceptable test prototype is synthe- 

sized. The three sofliware design 

loops a, b, and c all include hard- 

ware fabrication, and the final field 

prototype is realized after satisfac- 

tory integration and test, often 

involving a total concept to proto- 

typing delay of 3-4 years, at the cost 

of 20-30 man-years. In one repre- 

sentative radar signal processor sys- 

tem studied by this author, the final 

HW count was about 150 boards 

incorporating a total of about 

25,000 LSI/COTS components 

including an ASIC front-«nd filter 

and a 64-processor TMS320C30- 

based processing engine. The final 

SW count in lines of source code 

(LOSC) was 5K LOSC for the DSP/ 

radar signal processor application, 

30K LOSC for control,   60K LOSC 

for diagnostics, and 25K LOSC for 

functional and pertormance verifi- 

cation, representing a 20:1 ratio 
of system-level design code size to 

DSP application code size. 

Designers focussing on hardware/ 

software codesign are requested 

to include in their codesign soft- 

ware related to diagnostics and 
functional verification in addition 

to application (algorithmic) code 

generation.   In the preliminary 

RASSP design flow of Figure 2, the 

primary difference (from Figure 1) 

is that the hardware fabrication 

and assembly at the subsystem 

and system-level is eliminated 

from the in-cycle design loop. The 

software is run on virtual hardware 

(in the form of VHDL models or 

hardware modelers and emula- 

tors)  long before any HW fabrica- 

tion and assembly is begun. This 

"virtual prototyping" environ- 

ment significantly speeds up the 

design cycle through the use of 

models at multiple levels of design 

abstraction  in the constituent 

VHDL libraries.  The board-level 

and the multi-board integration is 

simulated and tested, additional 

control and diagnostic software is 

developed and debugged entirely 

in a user-friendly software envi- 

ronment, if the model libraries 

were accurate, the next Stage 

could itself be that of the field 

prototype. However, at least one 

RASSP prime has planned to 
include the actual hardware test 

prototyping stage within the pre- 

liminary RASSP design process to 

validate and improve upon the 

process of virtual prototyping. 
The preliminary RASSP process, 

however, retains the manual 

HW/SW partitioning block as 

observed by the reader   The 

advanced RASSP-like design flow 

{Figure 3), scheduled for late 

1996-1997, is envisioned by this 

editor as incorporating an  addi- 

tional stage defined as "concep- 
tual prototyping" which involves 

Vol. l,No. 1,4thQtr. 1994 19 

roushrv
74



The RASSP Digest 

Target HASSP Design Flow - Mature. 

SRR 

No hardware in in-cycle design loops. 

(Fall 1996-Winter 1997] 

PDR 
I, 

f' 
1 

I 

r 

5W Reuse 
Librartes 

OJi-cycl9 updates 

tun 
I 
I 
■ 
1 
I 

Application 

!   Behavior 
! Test & stimuli. 

j Performance i 
i Constraint   i 

:  J 

CONCEPTUAL 
PROTOTYPING 

EslrmaUm-Da&ed syslem 

Funcfonal [>esigr' Area, Power 
Tigdeofls 

We!ri(5,5oflware,*orkfknv 

Docurrtenlalkxi and lite-cycle 
Supporl 

Praliminary WV/SW Parlrtioriing 
Allocaf kyi. Schadulrng. Asslgrir 

JhD 

r- 
SW Dssigr? 

S Veriti cation 

VIRTUAL PROTOTYPING 
Aulomaial 

t  

H Co-X 

Virtual HW 
Design & Verif. 

Integration S 
Simulation-based 

Verification 

Compare 
fpart]/ amo.) 

DFX 

^ 

r i- 
Eualjale 

(Automal«i) 

VKQL HW Model 
Reuse   Libraries 

Interoper^le Tool 
Suites/Enterprlsg Irit. 

Olt-cycia updates 

HW Modelers 
FmLilatlon tools 

^u1omatfld Metrics 
Collection 

FIELD 
PROTOTYPE 

I f     FAB 
(*■ Manufact. 
I    Assembly, 

lOI 

Software 

Behavior ^AlgorHbmlc behavior (e.g., SAR)       , ADA or VHDL Executable plus Test 
Parlormance = MFLOPS, Data rates, throughput * Stimuli 
Conslrflints = Form. Fit Siie, Power. Area. 

Figure 3 
The author's vision of a Mature RASSP design process (late 1996-1997) with no silicon in the rn-cyde design 
loops, enterprise integration, interoperable tool suites, automated metrics collection, and an additional stage for 
rapid early algorithm, functional, architectural, and HW/SW partitioning in an automated manner called   "con- 
ceptual prototyping". The design reviews (SRR, PDR, CDR, TDR) are also shown. 

early design, and replaces the 

manual HW/SW partitioning 

block of the "current practice" of 

Figure 1.   Conceptual prototyp- 

ing utilizes autOTTiated tools that 

allow rapid estimation and evalu- 

ation of algorithmic, functional, 

architectural and enterprise- 

related trade-offs early in the 

design process. A few candidate 

conceptual prototypes are then 

culled from the dozen or so gen- 

erated at this stage, and then 

passed on to the virtual prototyp- 

ing stage.  Here, extensive evalua- 

tion and detailed design is done 

in virtual hardware and software 

leading to successful and rapid 

integration, again through the use 

of HW/SW reuse libraries, 

interoperable tools, and enter- 

prise integration. The entire pro- 

cess depends heavily on 

automation, and feedback cur- 

rently being obtained from bench- 

mark designs on candidate RASSP- 

like processes by the primes and 

other RASSP participants will be 

used to refine and improve upon 

both the rapidity, as well as the 
correctness of the first-time proto- 

typing efforts of large DSP sys- 

tems. The envisioned process 

presents a number of open prob- 

lems related to both conceptual 

and virtual prototyping and verifi- 

cation that must be effectively 

addressed by various RASSP par- 

ticipants and the larger electronic 

systems design and application 
community, promising an exciting 

time for digital system designers 

trying to cut the prototyping times 

by a factor of four!.   In summary, a 

RASSP-like process differs from 

current practice design process in 
the following ways:    1. No hard- 

ware fabrication, assembly, and 

test is present in in-cycle design 

loops.     2. Late binding of hard- 

ware allows the design product to 

be state-of-shelf at time of manu- 

facture or use,   3. Extensive use of 

conceptual and virtual prototyp- 

ing optimizes efficiency of the final 

product, and guarantees right-first 

time designs.   4. Design reuse sup- 

ported by generation, mainte- 

nance, and upgrades of 

application-specific VHDL libraries 
for rapid design of signal proces- 

sors,   5. Enterprise integration and 

interoperability between various 

point design tools facilitates 

design portability and standardiza- 

tion,    6. Extensive use of automa- 

20 Vol. 1, No. 1,4th Qtr. 1994 

roushrv
75



The RASSP Digest 
tion to facilitate — a nested-loop 
and iterative design process, 
automated metrics collection and 
distributed collaboration facilities 
for large design project manage- 
ment speeds up the prototyping, 
a documentation and life-cycle 
maintenance process,    com- 
ments. 

Disclaimer The views in t/i/'s article are solely 
those of the author, and do not necessarily 
reflect the views of Advanced Research Projects 
Agency (ARPA),  U.S. Department of Defense, 
loc/cheed Sanders Inc., Martin Marietta Corpora- 
tion, SCRA, or Georgia Tech. 

Valuable feedback from Drs. 
Mark Richards (ARPA), Gary 
Shaw (MIT-LL),   Dave Martinez 
(MIT-LL), Anthony Gadient 
(SCRA) and Jack Corley (SCRA) 
greatly improved the technical 
presentation and is acknowledged 
with gratitude.  Please note that 
the next issue will address "VHDL 
and its use in rapid system devel- 
opment" and related RASSP 
efforts in this area. 

Available Technical Publications 
The RASSP Program:  Overview and Accoivplishments 
M. A. Richards, ARPA 
RASSP: Viewpoint from a Prime Developer 
W. R. Hood, C. Myers, Lockheed Sanders, Inc. 
Martin Marieta RASSP Program Overview 
J. Saultz, Martin Marietta Laboratories 
RASSP Benchmark Program Overview 
G. A. Shaw, M.l.T. Lincoln Laboratory 
RASSP Education and Facilitation 
J. Corley et al, SCRA 
RASSP Technology Base R&D Overview 
J. Hines, D. Barker, Wright Laboratory 
VHDL Performance Modeling 
F. Rose, T. Steeves, T. Carpenter, Honeywell Technology Center 
RASSP Methodology Overview 
J. Pridmore, W. Schaming, Martin Marietta Laboratories 
Processes and Experiences in VHDL Top-Down Design 
R. Dreiling, Lockheed Sanders 
VHDL Executable Requirements 
A. H. Anderson, G. A. Shaw, C. T. Sung, M.l.T. Lincoln Laboratory 
Test Bench Development for RASSP DSP Models 
J. Armstrong, Virginia Tech; G. Franck, Research Triangle Institute 
Design and Simulation of Heterogenous Systems using Ptolemy 
B. Evans, A. Kamas, E. Lee, University of California at Berkeley 
CAD Tool Interoperability Through Standards 
D. Cottrell, J. Teets, CAD Framework Initiative 
ADEPT: A Unified System Level Modeling Design Environment 
S. Kumar et al, University of Virginia 
Board and MCM Level Synthesis for Embedded Systems: The COMET Co-synthesis Environment 
R. Vermuri, H. Carter, P. Alexander, University of Cincinnati 
Applications of a Formal Model of VHDL 
D. Benz, X. Fan, P. Wilsey, University of Cincinnati 
Algorithms for Signal Processing 
A. V. Oppenheim et al, Massachusetts Institute of Technology 

Vol. 1, No. 1,4th Qtr. 1994 21 

roushrv
76



The RASSP Digest 

Available Technical Publications (con't) 

VLSI Discrete Wavelet Transform Architectures 
K.K. Parhi and T. C. Denk, University of Minnesota 
Adapting Algorithms to Architectures Through Transformations 
G. Frank, B. Clark, W. Ransdell, Research Triangle Institute 
Overview of the RACE Hardware and Software Architecture 
B. Isenstein, Mercury Computer Systems Inc., B. Kuszmaul, Massachusetts Institute of Technology 
Estimating the Requirements of Signal Processing Algorithms 
B. Friedlander, University of California at Davis 
Rapid Prototyping of Digital Systems with COTS/ASIC Components 
S. Famorzadeh et al, Georgia Institute of Technology, R. Dreiling, M. Faico, Lockheed Sanders, Inc. 
The Value of the Lockheed Sanders RASSP Approach 
J. Trepanier, Lockheed Sanders, Inc. 
Rapid Prototyping and the RASSP Design Environment (RDE) 

J. Summers, Motorola 
Image Signal Processor Demonstration 
M. Vahey, Hughes Aerospace and Electronics Company 
RASSP Technology Insertions 
J. Pridmore, J. Evans, R. Graybill, Martin Marietta Laboratories 
SAR Processing for RASSP Application 
B. Zuerndorfer, G. A. Shaw, M.I.T. Lincoln Laboratory 
Time Insensitive Binary to Binary Translation of Real Time Systems 
B. Cogswell, Carnegie Mellon University 
Z. Segall, University of Oregon 
Predicting the Future with RASSP Benchmarks 
J. C. Anderson, M.I.T. Lincoln Laboratory 

For information regarding the availability of these publications, please send your 
request to info@rassp.scra.org 

RASSP D/gesf-Rapid Prototyping of Application-Specific Signal Processors 
The RASSP Digest is published quarterly and provides information for and about the RASSP Program and 
rapid systems development. For more information, contact Dr. Anthony Gadient or Dr. Vijay Madisetti, Edi- 
tors, at: the addresses below. 

Dr. Anthony J. Gadient 
Phone : 803-760-4082 
FAX: 803-760-3349 
Email: gadient@scra.org 
SCRA 
5300 International Boulevard 
North Charleston, SC 29418 

Dr. Vijay K. Madisetti 
Phone: 404-853-9830 
FAX: 404-853-9171 
Email: vkm@ee.gatech.edu 
Georgia Tech 
Sch. of Elec. & Computer Eng. 
Atlanta, GA 30332-0250 

Debbie Anderson 
Managing Editor 
Phone: 803-760-3792 
Email: andersond@scra.org 

22 Vol. 1, No. l,4thQtr. 1994 

roushrv
77



The RASSP Digest 

RASSP Steering Committee 
ARPA (ESTO) 
-Mark Richards 
-Elliot Cohen 

Program Manager 

ARMY (ARL/EPSD) 
-Clare Thornton 
-Randy Reitmeyer Administrative COTR, Martin Marietta 

-Arne Bard Technical COTR, Martin Marietta 

NAVY 
-Ingham Mack (ONR) 
-Gerry Borsuk (ONR) 
-joe Killiany (NRL) 
-}. P. Letellier (NRL) 

Administrative COIR, Lockheed/Sanders 
Technical COTR, Lockheed/Sanders 

AIR FORCE 
-Bill Edwards 
■Stan Wagner 
-John Nines 

Technology Base and Facilitation/ 
Educator COTRs 

Vol. l,No. 1,4thQtr. 1994 23 

roushrv
78



The RASSP DJRest 

. Calendar of Events 

VHDL International Users Forum 
For More Information: VIUF 
(415)329-0510 

April 3-6, 1995 San Diego, CA 

32nd Design Automation Conference 

2nd Annual RASSP Conference 
For More Information: Patricia Wolfbope 
(703) 351-8282 
Email: pwolfliop@sysplan.com 

June 12-16, 1995 San Francisco, CA 

July 24-27, 1995 Arlington, VA 

SCRA 
5300 International Blvd. 
N.Charleston, SC 29418 

24. Vol. 1, No. 1,4thQtr. 1994 

roushrv
79



R
A

S
S

P
 D

ig
es

t

R
A
S
S
P
 -
 R
ap
id
 P
ro
to
ty
pi
ng
 o
f 
A
pp
li
ca
ti
on
 S
p
ec
if
ic
 S
ig
na
l 
P
ro
ce
ss
or
s

Vol. 2, No. 1, 1st. Qtr. 1995

 In This Issue

Executive Outlook

RASSP and the Lockheed-Martin Merger 

ARPA Manufacturing Technology Programs Ensure Military Access to 

Affordable Advanced Technology

Prime Development

VHDL Modeling for Signal Processor Development

Architectures for Rapid Prototyping of Embedded Signal Processors
Honeywell Develops VHDL Performance Model Library
Object-Oriented VHDL Provides New Modeling and Reuse Techniques for 

RASSP 

Technology Base

The Ptolemy Kernel-Supporting Heterogeneous Design

VHDL Component Modeling: Impact on the RASSP Program

Benchmark Program

Assessing and Improving Current Practice In The Design Of  
Application-Specific Signal Processors

Editor’s Corner

Editorial Viewpoint  

 2
 2

 3
 7
11
12

14
18

20

24

roushrv
80



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                         2

The RASSP Digest

As information technologies continue to be-
come more capable, more compact, and more
affordable, they will increasingly pervade
forward deployed and mobile military sys-
tems.  The Advanced Research Projects
Agency's Electronic Systems Technology
Office (ARPA/ESTO) has the charter to fo-
cus on electronic systems technology to pro-
duce the smaller, lighter, more mobile
information systems needed by modern warf-
ighters.

One of ARPA's technology investment areas
which supports these goals is the electronic
modules area.  The Rapid prototyping of Ap-
plication Specific Signal Processors
(RASSP) program is an important component
of the electronic modules program, but it is
only a part of the story.  Other ESTO pro-
grams in electronic module technology in-
clude Physical Electronic Packaging, Multi-
Chip Integration (MCI), and Application
Specific Electronic Modules (ASEM).

The Physical Electronic Packaging and MCI
programs are developing multi-chip module
(MCM) technology for digital systems oper-
ating at clock rates from 100 MHz to several

GHZ, along with an order-of-magnitude re-
duction in manufacturing cost, development
of a domestic supplier infrastructure, and ac-
celeration of the acceptance and insertion of
advanced multi-chip integration technolo-
gies.  MCM technology offers the potential
of 10-100X improvements in density, as
much as 2-3X reduction in power, 10X im-
provement in reliability, and reduced cost.

The ASEM program strives to ensure the ex-
istence of an end-to-end capability to rapidly
acquire electronic modules and subsystems.
The program integrates and builds on the do-
main-specific building blocks such as physi-
cal packaging technology, packaging
computer-aided design (CAD), flexible man-
ufacturing processes and equipment, com-
puter-integrated manufacturing (CIM),
intelligent tests, design, interface, and test
standards.  A recent addition to this program
was the establishment of a quick turn-around,
semi-custom foundry for SEM-E format
printed circuit boards populated with MCM
technology.

RASSP represents the next step up in the
"food chain" in this progression of ESTO

programs aimed at improving the ability to
design, package, and manufacture electronic
modules.  A new ESTO program in electronic
systems packaging currently under consider-
ation will continue the progression.  In com-
bination with programs of other ARPA
offices in devices and circuits and in comput-
ing architectures and communications, these
programs address the U.S. electronics indus-
try's capability to develop complex, state-of-
the-art electronic modules all the way from
materials to system-level architecture.

It should be evident from these descriptions
that manufacturing and affordability con-
cerns pervade ARPA's electronic modules
programs.  In fact, they are a critical compo-
nent in all of ARPA's planning. In the last
several decades, the defense industrial base
has become more and more isolated from the
national or commercial industrial base, but
today this defense-unique industrial base is
shrinking. Furthermore, the most advanced
technologies are no longer emerging exclu-
sively through Department of Defense (DoD)
investment, nor is the DoD any longer the
dominant customer for most high technology.
The United States must move toward a na-

Because the two RASSP prime contractors are Martin Marietta Laboratories and Lockheed Sanders, many
people have asked about the effect of the proposed merger of the Lockheed and Martin Marietta Corpora-
tions on the RASSP program. After extensive discussions over the last few months, the Department of De-

fense, Federal Trade Commission, and the companies have agreed that the two RASSP primary development contracts will be continued
essentially as is. Appropriate steps will be taken by the government and the companies to ensure that the two development efforts remain
individually viable and competitive with one another.

Lockheed Sanders and Martin Marietta Laboratories were selected in the original RASSP competition because of their unique approaches to
design methodology, digital signal processor architectures, and EDA infrastructure development. These attractive capabilities are not funda-
mentally changed by the proposed merger. Furthermore, the mechanisms established at the beginning by the RASSP program to ensure pro-
liferation of RASSP design technology to the electronics design community at large remain in place and will still be effective after the merger.
The continuation of both efforts provides the DoD the greatest possible breadth of technology development and impact on the EDA and de-
fense supplier industries, and remains the best way to ensure the success of the RASSP program.

ARPA Manufacturing Technology Programs Ensure
Military Access to Affordable Advanced Technology

by Mark Richards, RASSP Program Manager

RASSP and the Lockheed-Martin Merger

Mark Richards, RASSP Program Manager

(Note: portions of this column were adapted from a speech on technology partnerships given by Dr. Gary Denman, Director of ARPA in February of this year.)

roushrv
81



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                         3

The RASSP Digest
clude SEMATECH, Electronics and Materi-
als programs, Advanced Simulation, and
Computing and Communications Systems.
On the contrary, these are historical ARPA
programs that are part of the nation's most
successful military high-technology opera-
tion and are more vital to national security to-
day than ever before.  ARPA has a long
history of delivering leading edge technolo-
gies that have provided the military the tech-
nological superiority it needs to prevail in
crises, and many of these technologies have
proven to have commercial application as
well. ARPA's focus on leveraging commer-
cial investments and knowledge as part of its
technology research and development pro-
gram will help meet critical defense needs by
breaking down the barriers between the com-
mercial and defense industries. Industry-led
commercial development as a spin-off of

critical military technology development has
an important consequence for present and fu-
ture military budgets -- the broader the appli-
cation of the technology, the lower the unit
cost to the military.

Defense R&D dollars are carefully invested
to satisfy military needs -- to promote lower
costs and higher quality at increased perfor-
mance. DoD maintains a strategy to do what
it can to ensure U.S. commercial industry re-
mains at the cutting edge in those technolo-
gies that are also critical to our military
capabilities. This necessarily requires DoD to
support leading-edge research and develop-
ment that accelerates the development of
emerging commercial technologies that si-
multaneously meets defense needs.

tional technology and industrial base that will
serve military as well as commercial needs.
This strategy will allow DoD to exploit the
rapid rate of innovation and market-driven ef-
ficiencies of commercial industry to meet de-
fense needs, thereby achieving access to
leading-edge technology, affordable prod-
ucts, and the ability to rebuild military capa-
bility should the world situation call for it.
Developing technologies, components, and
subsystems today that leverage commercial
know-how will make the DoD stronger and
more capable of meeting our national securi-
ty needs of the future.

And yet manufacturing technology, which in-
cludes the electronics module program and
RASSP in particular, is one of several ARPA
programs that have recently come under fire
as not relevant to national security. Others in-

A personal note:  It has been my privilege to serve as the RASSP program manager for the last two years.  In early May, I will be leaving
ARPA for a new assignment.  I am pleased to announce that Mr. Randolph (Randy) Harr of ARPA/ESTO will take over at that time as RASSP
program manager and see the program to its completion.  Randy has extensive experience in EDA, most recently at Stanford University and
Synopsys. He will be a tremendous asset to RASSP, and I personally could not be more delighted to have someone of his caliber take over the
program or more encouraged for its prospects under his guidance.

VHDL Modeling For Signal Processor Development

Abstract

1This paper presents modeling approaches and experiences in the
use of the VHSIC Hardware Description Language (VHDL) for the
development of application–specific signal processors. Within our
work on the ARPA/Tri–Service RASSP program we have devel-
oped and used VHDL modeling techniques for modeling the per-
formance of signal processor systems and for the detailed design of
signal processor systems. These approaches have been applied to
modeling a large Infra–Red Search and Track system from a func-
tional model, through performance modeling, through a full func-
tional model, down to a detailed hardware implementation model.

1. Introduction

The ability of designers to rapidly develop and field application–
specific signal processing is dependent on their ability to accu-
rately model the systems that they wish to build. This modeling
starts with modeling of the application to be developed, and it con-
tinues through architectural analyses and into detailed design.

Accurate modeling of the system being developed is key to good
selection of architecture and to rapid development of hardware.
Good models of hardware speed development by reducing errors in

1.The Lockheed RASSP team is under contract to the Naval Research Lab-
oratory, 4555 Overlook Ave., SW, Washington, DC 20375–5326. The
Sponsoring Agency is: Advanced Research Projects Agency, Electronic
System Technology Office, 3701 North Fairfax Drive, Arlington, VA
22203–1714. The Lockheed RASSP team consists of Lockheed Sanders,
Inc., Motorola, Hughes, and ISX.

design and by allowing simultaneous hardware/software develop-
ment.

The Rapid Prototyping of Application Specific Signal Processors
(RASSP) program is an ARPA/Tri-Service initiative to create a new
process for the development of military signal processors [1]. The
objective of RASSP is to dramatically improve the process by
which complex digital systems, particularly embedded signal pro-
cessors, are specified, designed, documented, manufactured, and
supported. The program is focused on the development of a process
for the conversion of an initial set of requirements to an optimum
signal processor architecture design and embodiment while simul-
taneously enhancing the ability to perform seamless upgrades as
requirements change. RASSP is also addressing the obsolescence
problems created by the inconsistences between the life cycles of
major systems and their supporting technologies. 

RASSP's objective is not just to support prototype development, but
to support full–scale production and life cycle system support. This
means that RASSP must support full military system design,
including Ada, quantity production, and support. It must provide a
mechanism for capturing the complete behavior of the system in a
form that can be inexpensively maintained and upgraded for twenty
years or more without compromising performance or safety.
RASSP must support large teams working on large projects, fulfill-
ing their needs while capturing the benefits of a “skunk works”
project development style. Accurate modeling, at all levels of
abstraction, from the functional to the detailed hardware level, is
key to achieving these goals.

by Cory Myers and Ray Dreiling

roushrv
82



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     4

The RASSP Digest
2. Our Modeling Approach

Our RASSP design methodology is derived from the traditional top
down design paradigm with the incorporation of the Virtual Prot-
type concept [2]. The basis of this concept is to develop a complete
description, in standard languages like VHDL and Ada, prior to
fabrication. The design is checked out completely as a model prior
to commitment to hardware. In this way design errors are caught
when they are easy to fix, and the system performance can be vali-
dated in simulation.

The choice of VHDL as the modeling language is important
because VHDL provide:

Completeness: VHDL provides the mechanism for capturing the
system behavior in a form that can be maintained and upgraded for
twenty years or more; and

Portability: VHDL is an industry standard so models developed in
VHDL can be ported to a wide range of simulation environments
and can be maintained over the system’s lifetime.

Our basic modeling approach is illustrated in Figure 1. The model-
ing begins with a functional description and proceeds through a
series of refinements to produce detailed hardware and software.
During this refinement process, as a sequence of models are devel-

oped to model system function, system performance, system
detailed behavior, and detailed system design.

2.1. Functional Modeling

The functional definition phase produces a data flow model that
defines the systems behavior as a set of interconnected sub-func-
tions prior to hardware/software partitioning. These sub-function
models are either used directly or translated for reuse in lower level
definition phases. We have used VHDL modeling in the functional
definition phase, particularly in the context of the design of a SAR
image processor for purposes of benchmarking the RASSP Process
[3]. The use of VHDL modeling for a functional specification of a

signal processing algorithm is unusual. It has the following advan-
tages:

Consistent Testing Environment: Our design process is based on
VHDL modeling so the functional definition is captured in the
same form that the hardware development will be captured in. This
allows for later side by side comparison between the functional rep-
resentation and the detailed hardware design within the same envi-
ronment.

Path to Synthesis: For those portions of the functional specifica-
tion which will be implemented in custom hardware, rather than in
a programmable processor, the VHDL description provides a better
starting point for the hardware synthesis problem.

2.2. Performance Modeling

The Performance Modeling phase examines candidate architectures
for trade-offs in both hardware/software partitioning and architec-
tural elements. Performance models incorporate abstract applica-
t ion software descriptions. We have used a set o f VHDL
performance modeling libraries developed for the Air Force [4].
This library defines five basic types of architectural elements, as
follows:

Pipelines: These architectural elements model
devices which implement first–in/first–out behav-
ior. Their behavior is primarily characterized by a
delay.

Memories: These architectural elements model
storage. Their behavior is characterized by their
access time.

Bus Interface Units: These architectural elements
model busses. Their behavior is characterized by a
transmission rate.

I/O Devices: These architectural elements describe
sources and sinks of data. They are characterized by
their data rate.

Processors: These architectural elements describe
programmable processors. They are characterized
by their scheduler and by parameters of a set of
resources.

An architecture is defined by connecting the archi-
tectural elements and mapping functional pieces to
either dedicated hardware elements, which are
modeled as pipelines, or to programmable proces-
sor elements. Functions mapped to programmable
processors are modeled by specifying an abstract
description of their resource and memory usage

requirements. For example, an FFT implemented on a programma-
ble processor may be characterized as requiring a certain number of
floating point operations and a certain number of memory refer-
ences. Characterization of processing elements and algorithms can
be made data–dependent in a limited manner but the basic piece of
data that flows between modeling elements, a token, consists of a
marker that data has been produced, not the content of the data.

Architectural performance of mapping functions to architectural
elements is determined by running the performance model and
recording statistics about processor utilization, bus utilization, pro-
cessing latency, memory usage, throughput, etc. Performance mod-

Figure 1. Our approach to model development starts with a functional
model and refines it into a set of hardware and software descriptions.

roushrv
83



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     5

The RASSP Digest

eling is used in conjunction with static analysis, as illustrated in
Figure 2.

2.3 Full Functional Modeling

A Full Functional Model provides a model that is structurally cor-
rect and exhibits the functional and performance characteristics of
the entities being modeled. At this level dedicated hardware ele-
ments are modeled by their behavior, not in a way that implies their
implementation. For example, a dedicated filtering chip would be
modeled in way that was correct bit–wise but did not imply the
implementation structure.

At this level of modeling, we have been using Instruction Set
Architecture (ISA) and Instruction Set Simulator (ISS) models. Our
ISA modeling approach is to develop VHDL behavioral models of
a processor that can execute software and provide complete access
to the internal registers of the processor [5]. Our ISS modeling
approach is to integrate a commercial processor simulator into a
VHDL environment. In either case, the processor model is com-
bined with a Bus Interface Model (BIM), which models the detailed
interaction of the processor at its connections, to make the full func-
tional model. We have used this approach both to model individual
chips, i.e., the i860, and to model single board computers. 

Both the ISA and the ISS approaches allow the application software
that is to run on the target hardware to be run in the simulation envi-
ronment prior to physical hardware delivery. It is at this stage in the
modeling process that detailed errors about the meaning of inter-
faces can be identified and corrected. Additionally, this type of
model gives the software much more accessibility to the state of

hardware than is often the case when the software is
run on the physical hardware.

2.3. Detailed Implementation Modeling

The Detailed Implementation Modeling provides
models which are sufficient to determine the imple-
mentation of components. For example, at this level
the exact structure of multipliers, adders, and registers
would be obvious for a digital filter. This detailed
model is derived from the abstract behavioral model
by a combination of synthesis tools and manual
design.

It is our approach to the modeling problem to only
develop detailed implementation models for those
components which we are developing. For compo-
nents that are purchased, we use the abstract full func-
tional model. Thus, a complete system simulation is a
mixed level model.

3. Results

Our experiences with the VHDL modeling approach
includes development of an Infra–Red Search and
Track (IRST) processor and a Synthetic Aperture
Radar (SAR) processor [6,3]. Both processors have
been developed from functional specification to hard-
ware designs using the modeling approach. We will
describe our work on the IRST processor in more
detail here. Our work on the SAR processing problem
will be completed by mid–1995.

3.1. The IRST Processor Problem

The IRST processing problem is illustrated in Figure 3. It takes
input data from an infrared sensor at between 15 to 135 million
samples per second depending on the sensor size. Input data is in
fixed point format. The output rate is small, being just detected tar-
get message reports and graphic symbology. The image size is 2200
by 1800 pixels and processing takes place most in overlapping sub-
images of about 200 by 200 pixels.

The processing required for the IRST problem is a function of the
sensor coverage, the scene revisit interval, the type of filtering algo-
rithm, and the number of target movement hypotheses. Require-
ments can range from half a million to several hundred billion
operations per second (BOPS). For our problem we require 5
BOPS.

3.2. Modeling for the IRST Problem

For the IRST problem we have developed a working system that is
to be flown aboard a test aircraft. In terms of our modeling process
we performed the following steps:

Functional Modeling: We developed a VHDL model of the IRST
processing algorithm by translating an existing C code implementa-
tion.

Performance Modeling: We used the performance modeling
approach to analyze three candidate architectures for the IRST pro-
cessing problem. We examined the Mercury Raceway architecture,
the Intel Paragon MP, and the ISI Embedded Variant and were able
to determine that the most appropriate architecture for this problem
was the Mercury Raceway (due to communications issues). The

From Functional
Modeling

Preliminary
Specification

Trade
Studies

Map Functions into
HW and SW

To Preliminary
Software Design

Capture
Static

Attributes

Capture
Architectures

Model
Software

Tasks

Software
Task
Descriptions

Architectural
Alternatives

Performance
Model

Simulation

VHDL Descriptions

Spreadsheet
Analysis

Spreadsheet
Database

Architecture N

Performance
Model

Architecture 1

Architecture 2

System
Architecture
Trade–offs

To Full Functional
Modeling

Preliminary
System HW
Specification

Performance Evaluations

Performance
Model
Library

Figure 2. Development of architectural alternatives involves
performance modeling of system.

roushrv
84



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     6

The RASSP Digest

resulting architecture consisted of a Mercury Raceway with multi-
ple MVC9 boards (16 i860 processors per board), dual video input
cards, a video output card, and a system controller, as illustrated in
Figure 4.

Full Functional Modeling:  We developed a full functional model 
of the MCV9 board using an ISA model of the i860. We also devel-
oped behavioral models of the video input and output boards. 
Driver software was run on the i860 models and was used to control 
the video input and out-
put models.

Detailed Implementa-
tion Modeling: We
de ve lop ed  de ta i l e d
implementation models
for the custom compo-
nents (FGPA program-
ming) on the video input
and output boards.

The total VHDL model
consists of over 60,000
lines of code (LOC),
including 4000 LOC for
the i860 ISA model,
4000  LOC fo r  Me r -
cury’s custom processor
connection ASIC, 4500
LOC for Mercury’s cus-
tom interconnect ASIC,
and 5300 LOC for the VME logic. These models were developed
by a team of eight people, geographically distributed among Lock-
heed Sanders, Hughes, and Motorola, over a period of nine months.
The model is capable of processing 1500 simulated instructions per
second for the ISA model using the Vantage VHDL simulator on a
Sparc 10/40 workstation.

3.3. Lessons Learned in the IRST Problem

During this modeling process we have observed the following
strengths in the modeling process:

Common Language: The use of VHDL performance modeling
allowed the system engineers, the hardware engineers, and the soft-
ware engineers all to interact on a common, executable, model of

the processing problem.
This eliminated many com-
munications issues within
the team.

Elimination of Hardware 
Errors: The development of
a complete system model
with the proper structure
allowed the development
team to catch and eliminate
several hardware interface
errors that would normally
have been found after physi-
cal integration.

Early Software Debug-
ging: T he  ab i l i t y  t o  run
driver software on the behav-

ioral model allowed system software debugging to start early. This
process caught coding errors which otherwise would not have been
caught until after physical integration. Additionally, the simulation
environment has the potential to provide more access to what was
happening in the hardware than is often found in the physical hard-
ware.

Hardware/Software Codevelopment: The modeling approach
allowed simultaneous development of hardware and software.
Additionally, within the simulation environment the hardware and

software engineers were able to easily negotiate the details of regis-
ter formats and coding.

We have also observed some weaknesses in the modeling process,
including:

Lack of Existing Models: Development of the performance mod-
els, the ISA model, and the behavioral models were time–consum-
ing efforts. We often had to develop our own full functional models
for COTS parts. Fortunately, much of what was developed here can
be reused on other problems.

Lack of Software Debugging Tools: Our use of the ISA model for
a processor did not allow the use of standard debugging tools. We

Figure 3. The IRST processing problem requires target detection and tracking. The
shaded steps are required processing while the others are required only
in heavy clutter environments.

Figure 4. The IRST processor consists of video input, processing, video output, and a controller.

roushrv
85



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     7

The RASSP Digest
[2] R. Dreiling, “Processes and Experiences in VHDL Top Down
Design,” in the Proceedings of the First Annual RASSP Confer-
ence, August 1994.
[3] B Zuerndorfer and G. A. Shaw, “SAR Processing for RASSP
Application,” in the Proceedings of the First Annual RASSP Con-
ference, August 1994.
[4] Honeywell SRC, “Graphics Processor Definition VHDL Pro-
cessor Model,” AF Contract F33615–90–C–3800.
[5] S. Famorzadeh, T. Egolf, V. K. Madisetti, P. Kalutkiewicz, M.
Falco, and R. Dreiling, “Rapid Prototyping of Digital Systems with
COTS/ASIC Components,” in the Proceedings of the First Annual
RASSP Conference, August 1994.
[6] M. Vahey, “Image Signal Processor Demonstration,” in the Pro-
ceedings of the First Annual RASSP Conference, August 1994.

are working to solve this problem by using an ISS model in our cur-
rent SAR work.

Maturity of the Performance Modeling Library: T he chos en
library of performance models was not the most mature. The
RASSP program is addressing this issue by funding commercializa-
tion of the performance modeling technology.

Large Simulation Resources Required: The VHDL simulations
required a Sparc 10 workstation with 256 Mbyte of memory and
500 Mbyte of swap space. Simulation runs typically produced sim-
ulation files of 200 Mbytes. We are working to reduce these
requirements by investigating alternative VHDL simulation tech-
nologies.

4. Summary

In summary, we have presented a top–down approach to developing
a complete VHDL model of a signal processing system. This
approach has been used successfully for modeling the development
of an IRST processor for our RASSP demonstration project.

REFERENCES

[1] J. Corley, V. Madisetti, and M. Richards, “Introduction to
ARPA's Rapid Prototyping of Application Specific Signal Proces-
sors (RASSP) Program,” in the Proceedings of ICASSP 1995.

Architectures for Rapid Prototyping of Embedded Signal Processors
by G. Caracciolo and J. Pridmore

Abstract
The Rapid Prototyping of Application-Specific Signal Processors
(RASSP) program is striving to change the way embedded signal
processor design is performed, providing >4X improvements in
time-to-market, cost, and design quality. These improvements will
be achieved using a methodology that stresses hardware and
software reuse in conjunction with Model Year Architectures that
facilitate reusability and upgradeability through open interface
standards. This paper will describe a Model Year Architecture
approach for the development of cost-effective signal processors
that can be applied to a wide range of military and commercial
applications.

1. Introduction
The drivers for RASSP signal processor architecture definition
result from the requirements imposed on signal processors to meet
changing mission-critical processing needs and military
requirements for long-term life cycle support. Additionally,
RASSP must address the full spectrum of signal processing
applications, from low-cost commercial applications, such as
cellular communications and HDTV (1-10 processors), to very
large military sensor systems, such as shipboard radar systems
(100 - 1000 processors). This range of requirements imposes a
formidable challenge in defining an architectural approach that
addresses low-cost technology insertion, upgradeability, and
extensibility.

The Model Year Architecture (MYA) is being developed to
address these issues, promoting design upgrades and reuse via
standardized, open interfaces, while leveraging state-of-the-art

commercial technology developments. Designs are performed
using a concurrent engineering process that facilitates continuous
product improvements via iterative virtual prototypes, which can
be easily retargeted to support a range of applications[1]. Model
Year architectures must support scalability, heterogeneity, open
interfaces, modular software, life cycle support, testability, and
system retrofit. 
 
RASSP Model Year architectures must be supported by library
models to facilitate trade-offs and optimizations for specific
applications. The hardware and software elements within the
library are encapsulated by functional wrappers, which add a level
of abstraction to hide implementation details and facilitate
efficient technology insertion. Thus, the notion of Model Year
upgrades is embodied in reuse libraries and the methodology for
their utilization.

2. Model Year Architecture Framework
The RASSP program supports the design of architectures through
a framework that provides a structured approach to ensure that
designs incorporate all the required Model Year features described
above[2]. The basic elements that comprise the MYA are the
Functional Architecture, Encapsulated Library Components, and
Design Guidelines and Constraints, as shown in Figure 1.
Synergism between the MYA framework and the RASSP
methodology is required, as all areas of the methodology,
including architecture development, hardware/software codesign,
reuse library management, hardware synthesis, target software
generation, and design for tests are impacted by the MYA
framework.

For more information on VHDL Modeling For Signal Processor

 Developmnet, contact Cory Myers at        cory@sanders.com

roushrv
86



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     8

The RASSP Digest

the Functional Architecture is that application-
specific realizations of a signal processor are
embodied in the proper definition and use of
Encapsulated Library Elements. Encapsulation
refers to additional structure added to otherwise
raw library elements to support the Functional
Architecture and ensure library element
interoperability and technology independence to
the maximum extent possible. Incorporated within
the reuse libraries are application notes that the
designer can use to properly apply and aggregate
the individual hardware and software components
into a final processor product.

The MYA Framework also provides a set of
Design Guidelines and Constraints for general
architectural development, such as how to
properly use the functional architecture
framework, general use of encapsulated libraries,
and most importantly, procedures and templates to
encapsulate new library components. These design

The Functional Architecture defines the necessary components
and the manner in which their interfaces must be defined to ensure
that the design is upgradable and facilitates technology insertion.
As such, the Functional Architecture is a starting point for
developing solutions for an application-specific set of problems,
not a detailed instantiation of an architecture. Specifically, the
Functional Architecture specifies a high-level starting point for
performing application-specific architecture selection; a standard
approach for selecting and implementing standard, open
interfaces; and guidelines for efficient verification and test. The
Functional Architecture DOES NOT specify the topology or
configuration of the signal processor architecture, specific
processor types, or system-level interface standards (external to
the signal processor).

The Functional Architecture concept is based on the use of
abstract architectural objects and standard functional interfaces at
key points within a layered architecture. An important aspect of

guidelines and constraints are incorporated into
the RASSP design methodology.

The Model Year Software Architecture, shown
in Figure 2, simplifies developing high-
performance, real-time DSP applications
allowing the developers to easily describe,
implement, and control signal processing
applications for multiprocessor
implementations. The architecture supports the
Model Year concept by providing a common
Application Programming Interface (API) to the
underlying real-time operating system services.
This allows a new hardware platform with a new
microkernel to change for each model year
while maintaining the API. Support for the API
is through the RASSP Run-Time System
(RRTS), which provides the services required
for the control and execution of multiple graphs

on a multi-processor system. The RRTS and its support for the
API forms the essential component of software encapsulation for a
processor object.

The application layer is divided into two parts, similar to the
Processing Graph Method (PGM) developed by the Naval
Research Lab [3]. The first part of an application is the Command
Program, which provides response to external control inputs,
starting and stopping data flow graphs, managing I/O devices,
monitoring flow graph execution and performance, starting other
command programs, and setting flow graph parameters. The
Control Interface provides services that implement these
operations. 

The second part of the application layer is the data flow graphs
(DFGs), implemented using a data flow language. Services
provided by the DFG interface are largely invisible to the
developer and include managing graph queues, interprocessor

Functional Architecture Design Guidelines,
Constraints,
I / F Standards

ModelYear ArchitectureFramework

Application
Notes

Encapsulated
Library
ElementsRASSP

Re-Use
Libraries

Modular Software
Architecture

System Application

- Radar - ...
- IRST - ...
- UW Acou. - ...

RASSP
Methodology

MYA Framework
Integrated
into RASSP
Methodology

Specific Instantiationof
ModelYear Archtecture

Figure 1. Model Year Architecture Framework

Figure 2. Model Year Software Architecture

roushrv
87



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     9

The RASSP Digest
communication, and scheduling. The RASSP program will
support static and dynamic scheduling paradigms. The constructed 
flow graph will be converted into a HOL such as C or Ada via
autocode generation and will contain calls to a standard set of
domain primitives. A full suite of tools is being developed on
RASSP to support this software architecture. All RASSP tools
will be made commercially available.

3. Applying the Model Year Architecture Framework

3.1 Hardware Architecture 
Verification of a MYA signal processor is iteratively performed
throughout the codesign process, requiring the reuse libraries to
support models at various levels of hierarchy. Three levels of
VHDL modeling hierarchy are currently being developed and
used in a series of benchmarking experiments to define reuse
library elements for RASSP:

Performance/Uninterpreted/Architectural models provide
timing-only behavior for processor nodes, buses/
interconnects, etc. to support high-level architectural trade-
offs (number and types of processors, type and topology of
network). 

Abstract Behavioral Models provide full functional behavior
at the data output level with (potentially) an abstract level of

timing. This level includes both algorithm-
level and Instruction Set Architecture (ISA)-
level models. 

Full-Functional and Bus-Functional models
provide full functionality at the signal level
and timing fidelity at the clock level. This
includes Register Transfer Level and logic
models.

Through these models, the Functional Architecture
constructs are supported. For example, Figure 3
illustrates an application of a functional interface
at the hardware level for a construct called a
Reconfigurable Network Interface (RNI). The RNI
is divided into three logical elements: 1) local
interface, 2) external interface, and 3) bridge
element. The local and external interfaces
implement the specific protocols to the elements
being interconnected, in this example a HIgh
speed Parallel Port Interface (HIPPI) and VME
interface. The bridge element, which typically
consists of a buffer memory and a controller
implemented via custom logic (e.g. FPGA, ASIC)
or a programmable processor, performs the actual
bridging function. The buffer memory facilitates
asynchronous coupling and flow control between
the two networks, while the controller coordinates
data transfers. The three logical elements of the
RNI are implemented as encapsulated library
elements that serve to isolate changes resulting
from upgrades. For example, the VME interface

could be replaced by another encapsulated interface, such as the
Scalable Coherent Interconnect (SCI), with little or no impact on
the HIPPI hardware and software.
 
To refine details of various architectural constructs and to
determine their performance impact, a number of experiments are
ongoing, primarily through VHDL modeling and simulations. For
example, i860 ISA-level models [4] and the FPASP5 vector
processor model developed by Rome Laboratory [5] are being
used in conjunction with models for Peripheral Component
Interconnect (PCI) and HIPPI interfaces. These models are being
used as vehicles for refining the functional architecture concept by
encapsulating the models and demonstrating a plug-and-play
capability among the i860, FPASP5, and the different interface
elements. Note that the functional interface at the software level
must also be maintained, which will also be verified by executing
interface software on the simulation models.

3.2 Software Architecture 
Software development cannot be discussed without its relationship
to the architecture of the signal processor; in fact, it is an
important part of the application-specific architecture design
process. The representation of architectural elements as objects
includes not only hardware representations in the form of VHDL
models, but also behavior defined by the software libraries
associated with that hardware. The software portion of

Figure 3. Functional Interface Example Applied to a 
                Reconfigurable Network Interface

roushrv
88



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     10

The RASSP Digest

Reqmts
Analysis

Executable
Functional

Spec

Arch
Indep
DFG

Allocated
Graph

Partitioned
SW

Graph

Partition
Code

Generation

Equivalent
Application

Graph

Load
Image

Command
Prog

DFG/Command
Functional
Simualtion

Target Code
Generation

Systems Architecture Detailed Design

Command
Program

Spec

Figure 4. RASSP Graph-Based Software Development Scenario

architectural objects is handled by the process shown in Figure 4.
This process depicts the progression of software generation from
the requirements to load image, with emphasis on the graph
objects involved and the general RASSP process in which they
occur. It also shows the parallel development and co-simulation of
the command program. 

Architecture definition involves the creation and refinement of the
data flow graphs that drive both the architecture design and the
software generation for the signal processor. The data flow
graph(s) of the signal processing are developed, and the nodes are
allocated to either hardware or software. Automated generation of
the software partitions is performed to provide executable threads
that are to be run on the DSPs. These autocoded partitions are
combined into an application graph which is functionally
equivalent to the original. The graphs are co-simulated with the
command program to ensure proper interaction. 

The final step in the software development, which is the
production of the load image, occurs during detailed design. The
software load image generation is an automatic build process that
is driven by the autocode generation results. The inputs to the
process include the architectural description, the detailed DFGs
describing the processing, the partitioning and mapping
information, the autocode generation results, and the command
program. The process is controlled by a software build
management function which extracts the necessary information
from the library and manages the construction of all the
downloadable code as directed by the partitioning and mapping
data. 

This process is verified through virtual prototyping prior to
committing to an actual hardware build and is carried out at
several levels of hierarchy including performance level
simulations, ISA level simulations of key hardware and software
elements, and low-level simulation of hardware interfaces.

4. Conclusions
The RASSP program is applying a Model Year Architecture
concept to the rapid prototyping of embedded signal processors.
This concept facilitates reusability and regular, low-cost
technology upgrades. This is accomplished through the definition
of a framework for developing open architecture signal

processors, which can be applied to a wide range of military and
commercial applications. The framework relies heavily on Object-
Oriented concepts to properly encapsulate the architectural reuse
library components that are modular and scalable. Ongoing work
is refining the concepts of the Model Year Architecture
framework, including the definition of architectural object classes,
interfaces, and attributes for the various elements. Additionally,
benchmarks are being developed to quantify hardware and
software overhead through virtual prototype examples to refine
the encapsulation concept. The MYA will support an automated
reuse-based code generation process for heterogeneous
multiprocessors.

ACKNOWLEDGMENT
The work reported here was supported by the ARPA/Tri-Service
RASSP program, contract DAAL01-93-C-3880.

References
[1] Mark Richards, The Rapid Prototyping of Application Specific
Signal Processors (RASSP) Program: Overview and
Accomplishments, Proceedings of the First Annual RASSP
Conference, August 1994.

[2] Gerald Caracciolo, RASSP Model Year Architecture Working
Document Version 1.0, October 28, 1994.

[3] Naval Research Laboratory, Processing Graph Method
Specification, Version 1.0 11 Dec. 1987.

[4] V.J. Madisetti, T. Egolf, S. Famorzadeh, L-R Dung, Virtual
Prototyping of Embedded DSP Systems, to appear in Proceedings
of IEEE ICASSP 95.

[5] Richard Linderman, Ralph Kohler, Designing a Wafer-Scale
Vector Processor Using VHDL, GOMAC 1991 Digest of Papers.
1991 pp 65-68.

For more information on Architectures for Rapid Prototyping of Em-
bedded Signal Processors, contact Jeff Pridmore at 
                                                                    jpridmore@alt.ge.com

roushrv
89



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     11

The RASSP Digest

by Fred Rose, Honeywell RASSP Technical Director
Honeywell Develops VHDL Performance Model Library

guideline, and to provide a robust library to achieve the system
VHDL performance modeling. 

2. Performance Model Interoperability
For the RASSP program to truly realize the full benefits of
performance modeling, a common modeling approach is required.
VHDL is the Lingua Franca, that is the language for doing
business, of the EDA world. As the EDA industry increasingly
moves to a “plug and play'' business model, a common language
becomes essential.  However in addition to a common language,
common usage or style is required.  This has been recognized
from the beginning in the VHDL community and a variety of style
related standardization activities have occurred.  However, to date,
these efforts have focused on lower levels of design abstraction.
The performance model interoperability guideline will raise that
level of abstraction.

It is critical that the performance models interoperate with the
tools used to specify and capture the RASSP requirements and
system design information. The interoperability guideline defines
how Honeywell's performance model library will function with
other elements of the RASSP environment.  Honeywell will work
with the primary architecture-level tool vendors, including JRS,
Vista, and Omniview, on the Martin Marietta team, and
additionally Lockheed-Sanders and the University of Virginia to
establish interoperability with their tools and VHDL performance
models. This interoperability guideline is meant to be a consensus
opinion on VHDL performance modeling interoperability.
Because Honeywell has a role on the Martin team to develop and
support VHDL performance models, this document is initially
heavily weighted towards that role. Hopefully as this technology
becomes more widespread throughout the RASSP community, the
interoperability guideline will become more generic.

The interoperability guideline consists of the following sections:

* Token Description - Describes the signal structure;
* Functional Memory - Describes the standard technique

for communication of functional information within the
bounds of a performance model;

* Software Architecture Interface - Provides an overview
of the approach to modeling software using the generic
Honeywell processor performance model;

* Implementation Plan - Contains the plan for future
VHDL performance model interoperability guidelines;

* Model Descriptions - Contains descriptions for primitive
elements in the library, generic configuration
capabilities, output capabilities, and RASSP DID
requirements;

* Examples - Used to illustrates the application of VHDL
performance models. Future releases of this document
will contain more detailed examples of relevant RASSP
architectures;

1. Introduction
The design and development of high performance computing
systems is becoming increasingly complex.  A primary ingredient
of a sound design methodology is a detailed performance model of
the system.  A performance model expressed in VHDL serves as a
simulatable specification, aids the identification of bottlenecks,
and supports performance validation.  It also allows trade-off
studies for what-if analysis and documentation of design
decisions.  Honeywell Technology Center (HTC) has developed a
library and a corresponding methodology for developing VHDL
performance models. These models can be used for capturing and
documenting architectural level designs, and for doing
performance analysis studies of the architecture. HTC is
significantly enhancing this library for the Martin Marietta
RASSP team.

Performance modeling is applied during the early stages of system
development. It provides another tool to the system designer but is
not intended to be stand-alone nor discarded at the end of the
system development stage. Performance modeling can aid
evaluation of design alternatives, capture design decisions and
assumptions, examine system behavior at boundary conditions,
and help determine bottlenecks and overdesign. The system
designer can also utilize performance modeling for examining
system sizing, topology, partitioning and capability issues. An
important benefit of performance modeling is that it provides early
interaction of system, hardware, and software designers.

HTC has developed a generic, parameterizable library of VHDL
performance models. This library consists of input/output devices,
memories, bus communication elements, and a processor model.
The processor model is the key element to the performance
modeling methodology as it facilitates hardware/software
codesign and coanalysis. The processor model has the capability
of modeling software tasks and scheduling.

This VHDL performance environment allows the systems
architect to capture the system under study in a consistent,
verifiable form. The VHDL simulation produces metrics which
can be used by any commercial analysis package, spreadsheet, or
other appropriate format to aid the design decision process. The
results can be directly compared with the system specification to
verify that the architecture meets the performance requirements.
Once the architecture is verified (the latency, utilization, and
throughput meet requirements, the system is self consistent, and
size, weight, and power limits are met), the system is ready to
proceed to detailed design. The performance model can also
produce the architecture's characterization for its use in a higher
level model, where this design would just be another building
block.

The primary focus of HTC's RASSP tasks for Martin Marietta are
to help facilitate interoperability at the system design level by
developing a VHDL performance model interoperability

roushrv
90



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     12

The RASSP Digest
3. Model Development
The VHDL performance modeling methodology is targeted
towards high level description, specification and performance
analysis of computing systems. The tools and techniques
themselves are not targeted towards any particular application.
The level at which is appropriate to apply these tools is at the
architectural level. Architectural level includes the actual device
or entity under study such as a signal processor, and its
environment, such as sensors and actuators. In the case of an
electronics system, an architectural level description would
include information about both the hardware and software. Note
that the definition of "system" is loose here. While  the application
of performance models  is constrained to electronic systems, the
library should be fully capable of representing systems consisting
of ASICs, boards, and subsystem cabinets, and sensor networks.

Regarding model capability, the two modeling/simulation areas
which the existing HTC current performance models did not
address well were large multiprocessor systems and signal and
image processing application specific models.  Since the
application specific models are best addressed on a case by case
basis, HTC is directing our activity to the multiprocessor
modeling area.

The  prior HTC modeling capability  concentrated on small scale
multiprocessing systems. As a result, the processor model
developed into a powerful, highly flexible generic model.
Communication models on the other hand have been limited to
processor-memory bus models with rudimentary arbitration
schemes.

The  proposed modeling capability  will include an efficient "light
weight" processor models as well as a generic interprocessor
communication models. Multiprocessor systems will require more
elaborate communication models capable of more advanced
protocols and arbitration mechanisms. Scalable point to point
communication models capable of supporting several different
protocols are needed to model large multiprocessor designs.

4. Related Contracts
Under a separate RASSP technology base contract, Omniview, in
conjunction with HTC, will develop commercial quality product
called the Performance Modeling Workbench (PMW).  The PMW
will provide an extensive graphical user interface for performance
models. The performance models, based on the HTC VHDL
performance model library, will adhere to the requirements
specified in the interoperability guideline.  The PMW will also
include multi-processor modeling tools such as output analysis,
capture, route/message cost, and architecture visualization.

Lastly, the performance models will be constructed in a manner to
support hybrid modeling.  Hybrid modeling supports performance
analysis with interfaces to functional models of communication
and other device models. Functional modeling of selected system
components will be necessary. A good example of this is the
detailed functional modeling of the underlying communication
mechanisms. Under a RASSP technology base contract,
Honeywell, along with the University of Virginia, will develop
models and utilities to support hybrid modeling.

Object-Oriented VHDL Provides New Modeling and Reuse Techniques for RASSP 
by Dr. Sowmitri Swamy, Vista RASSP Program Manager

SCHAUMBURG, IL - Vista Technologies, Inc. and Martin Marietta
identified new object-oriented constructs that can be implemented as
an extension language to VHDL. This approach will improve system
modeling and simulation, and increase the potential for component
reuse.

The extension language, OO-VHDL, is a super-set of VHDL. It en-
ables designers to mix OO-VHDL objects and traditional VHDL
components as part of the same system description. It is important to
note that this work is not defining a new language based on VHDL.
It is identifying new constructs that can be implemented on top of
VHDL.

A pre-processor implementation will generate simulatable VHDL
code, which enables designers to leverage existing VHDL tools,
such as analyzers and simulators. This approach provides users with
the benefits of the language extension quickly and at modest cost,
because no changes are needed in existing VHDL simulation tools.
An object-oriented approach is already well established as the pre-
ferred method to designing complex systems, particularly software
systems. Its benefits, based on several years of experience, have

been widely documented. Until now, it has not been used to design
complex systems that also involve hardware design, such as signal
processing systems.

1. Improved System Modeling and Simulation
Extensive simulation is a key ingredient in the RASSP methodology
to develop new signal processing architectures or to make model
year upgrades to architectures. Simulations are performed at several
levels - system, architecture, register-transfer - using models written
in VHDL.

For commercial, off-the-shelf components, application-specific in-
tegrated circuits, and programmable logic, designers get simulation
models from commercial model libraries or generate them from au-
tomated modeling tools. But at the higher levels of the design hier-
archy, designers develop (abstract) models individually and
manually during the design process. The burden of generating these
models, and ensuring that they are fit for reuse in subsequent model
years, means that the RASSP environment must provide support for
quick model development with the capability for reuse.

For more information on Honeywell Develops VHDL Performance

Model Library, contact Fred Rose at         rose@src.honeywell.com

roushrv
91



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     13

The RASSP Digest
removed from the queue and serviced.

Concurrence control is an important aspect of system-level design.
However, signal-based concurrence control, such as bus-resolution,
is at too low a level. Of the existing concurrence control approaches,
the distributed processing model (similar to the remote procedure
call model) and the Ada rendezvous are the most desirable for high-
level behavioral modeling because of their ease of use and general-
ity. OO-VHDL combines the distributed processing and Ada ap-
proach; this combination is referred to as DP/A in OO-VHDL.

3. Modeling Examples Prove Effectiveness of 
Object-Oriented Approach

To explore and test new OO-VHDL language constructs, Vista de-
veloped example system-level models written in tandem with the
development of the language extensions. OO-VHDL models for the
IEEE 802.4 Token Passing Bus Access Method for standard LANs,
and ESPS, an example signal processing system, proved the power
of object-oriented language constructs. These models demonstrated
the effectiveness of OO-VHDL for rapid prototyping of system be-
havior that involves hardware/software interactions, and complex
synchronization of concurrent hardware or software entities.

4. Language Standardization Effort
Standardization efforts are underway to add object-oriented features
to VHDL in 1997 or sooner, if possible. An IEEE Design Automa-
tion Standards Committee group was formed for this purpose. The
language and supporting tools will be made available free to users to
generate valuable comments and suggestions.

5. The O-O VHDL Modeling Process
The pre-processor approach translates OO-VHDL models into
VHDL 1076. It allows simulation tools used in the RASSP environ-
ment to be used for OO-VHDL simulation. This approach allows
EntityObjects and VHDL components, including commercial, off-
the-shelf components, to be freely mixed in any modeling situation.
The OO-VHDL modeling process starts by generating the OO-
VHDL models using a design entry tool. The modeler is provided
with an extensive collection of OO-VHDL objects in an OO-VHDL
design library that can be reused or extended in the object sense. The
model is then converted into standard VHDL by the pre-processor
and simulated. During simulation, the traceability tool allows users
to track the simulation in terms of the original OO-VHDL model de-
veloped by the user.

System-level models contain abstract components that are eventual-
ly  implemented as a hardware component, a software component,
or a mixture of the two. The cornerstone of OO-VHDL is the Entity
Object, which enables the object-oriented specification of an ab-
stract component - whether it is a hardware design unit or a software
object. Using the object-oriented concept of  “inheritance,” design-
ers can reuse an EntityObject by making incremental changes in its
behavior or interface.

The interaction between EntityObjects involves passing messages
between them. These messages are commands to the recipient of the
message to execute a specific operation. During system-level simu-
lation, designers track the behavior of the system by examining the
sequence of operations performed by various EntityObjects.

2. Elements of the OO-VHDL Approach
OO-VHDL provides new capabilities for encapsulation, reusability,
inheritance, and message passing. Objects are typically described in
two parts: an interface part and an implementation part, roughly cor-
responding to a VHDL entity declaration and architecture body. The
object interfaces, known as class description, document the opera-
tions performed by an object. By reading a class description, it is
easy for designers to determine the functionality of a component im-
plementation part.

An object-oriented approach increases the potential for component
reuse. For example, suppose a simple behavioral description of a
highway/farm road traffic light controller exists, and you have to add
left turn signals. The traditional approach would be to copy the old
behavioral description and modify it. An object-oriented design re-
use process factors out the common functionality of similar compo-
nents in an inheritance hierarchy. Without inheritance, reuse can
only occur at the component level; that is, either you must use the
component as is, or you must design a new one.

Operations define an abstract procedural interface to an EntityOb-
ject. Messages invoke the operations. When an OO-VHDL message
is sent, the invoker suspends operation until the corresponding ac-
tion (the operation) is complete. From the sender's point of view,
sending a message has the semantics of calling a procedure. This dif-
fers from the hardware model of communication through signals,
which requires specialized protocols to synchronize behaviors and
to exchange data between components.

However, unlike procedure calls, a message only requests that a par-
ticular operation be performed -- it does not cause the operation to
execute immediately. An EntityObject services messages sequen-
tially. To enforce sequentially, OO-VHDL queues all message re-
quests sent if an EntityObject is actively servicing another operation
request. When the current operation is completed, the next request is

For more information on modeling at the system and architectural lev-

els, contact Dr. Sowmitri Swamy by phone at 708-706-9300, by fax at

708-706-9317, or by E-mail at swamy@vistatech.com.

roushrv
92



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     14

The RASSP Digest

1. Introduction
A technology base team at the University of California at
Berkeley is developing a software environment called Ptolemy
that supports heterogeneous design. An early contribution of this
effort has been the design of a compact software infrastructure
upon which specialized design environments (called domains) can
be built. The software infrastructure, called the Ptolemy kernel, is
made up of a family of  C++ class definitions. Domains are
defined by creating new C++ classes derived from the base classes
in the kernel.
 
Domains can operate in any (or all) of three modes:

Simulation -- A scheduler invokes code segments in an order 
appropriate to the model of computation.

Code generation -- Code segments are stitched together to
produce one or more programs that implement the specified
function.

Compilation -- The specification is analyzed and translated into
optimized code in any target language.

At Berkeley, we have built a variety of domains that operate in the
first two modes only, although code generation domains often
have elements of optimization from the third.

The use of an object-oriented software technology permits each of
these domains to interact with one another without knowledge of
each others' features or semantics. Thus, using a variety of
domains, a team of designers can model each subsystem of a
complex, heterogeneous system in a manner that is natural and
efficient for that subsystem.

2. The Design of the Kernel
The overall organization of the latest release of the Ptolemy
system is shown in Figure 1. A typical use of Ptolemy involves
starting two UNIXTM processes, as shown in Figure 1(a), the first
containing the user interface (VEM) and the design database
(OCT), and the other containing the Ptolemy kernel. An
alternative is to run Ptolemy without the graphical user interface,
as a single process, as shown in Figure 1(b). A textual interpreter
called "ptcl" is used in this case. It is also possible to design other
user interfaces for the system.

The executables "pigiRpc" or "ptcl" can be configured to include
any subset of the available domains. The most recent picture of
the domains that Berkeley has developed is shown in Figure 2.
Many different styles of design are represented by these domains.
More are constantly being developed both at Berkeley and
elsewhere, to experiment with or support alternative styles.

The Ptolemy kernel provides the most extensive support for
domains where a design is represented as a network of blocks, as

shown in Figure 3. A base class in the kernel, called Block,
represents an object in this network. Base classes are also
provided for interconnecting blocks (PortHole) as well as for
carrying data between blocks (Geodesic) and managing garbage
collection efficiently (Plasma). Not all domains use these classes,
but most current ones do, and hence can very effectively use this
infrastructure.

Figure 3 shows some representative methods defined in these base
classes. For example, note the initialize, run, and wrapup methods
in the class Block. These provide an interface to whatever
functionality the block provides, representing for example
functions performed before, during, and after execution of the
system.

Blocks can be hierarchical, as shown in Figure 4. The lowest level
of the hierarchy, as far as Ptolemy is concerned, is derived from a
kernel base class called "Star." A hierarchical block is a "Galaxy,"
and a top-level system representation is a "Universe."

3. Models of Computation
The Ptolemy kernel does not define any model of computation. In
particular, although the Berkeley team has done quite a bit of
work with dataflow domains in Ptolemy, every effort has been
made to keep dataflow semantics out of the kernel. Thus, for
example, a  network of blocks could just as easily represent a
finite-state machine, where each block represents a state. A
particular domain defines these semantics. Suppose we wish to
define a new domain, called XXX. We would define a set of C++
classes derived from kernel base classes to support this domain.
These classes might be called "XXXStar," "XXXUniverse," etc.,
as shown in Figure 4.

The semantics of a domain are defined by classes that manage the
execution of a specification. These classes could invoke a
simulator, or could generate code, or could invoke a sophisticated
compiler. The base class mechanisms to support this are shown in
Figure 5. A "Target" is the top-level manager of the execution.
Similar to a Block, it has methods called "setup," "run," and
"wrapup." To define a simulation domain called "XXX," for
example, one defines at least one object derived from Target that
runs the simulation. As suggested by Figure 5, a Target can be
quite sophisticated. It can, for example, partition a simulation for
parallel execution, handing off  the partitions to other Targets
compatible with the domain.

A Target will typically perform its function via a Scheduler. The
Scheduler defines the operational semantics of a domain by
controlling the order of execution of functional modules.
Sometimes, schedulers can be specialized. For instance, a subset
of the dataflow model of computation called "synchronous
dataflow" allows all scheduling to be done at compile time. The
Ptolemy kernel supports such specialization by allowing nested
domains, as shown in Figure 6. For example, the SDF domain

The Ptolemy Kernel — Supporting Heterogeneous Design
by The Ptolemy Team

roushrv
93



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     15

The RASSP Digest

PTCL (with Tcl)

KERNEL

PIGIRPC (with Tk)

OCT RPC
DOMAINS

GRAPHICAL USER
INTERFACE

PTCL (with Tcl)

KERNEL

DOMAINS

(a) (b)

VEM

 Figure 1. The overall organization of Ptolemy version 0.5.1, showing two possible execution styles. This
report concentrates on the kernel  and its relationship to the domains .

SDF DDFBDF

Thor

DE

CGC

CG56

CG96

Silage

VHDLF

CG

PTOLEMY
KERNEL

MDSDF

Sproc

PN

VHDLB

synchronous dataflow

dynamic dataflow

multidimensional SDF

Boolean dataflow

circuit simulation

discrete-event

communicating processes

process networks

C
od

e 
ge

ne
ra

tio
n 

do
m

ai
ns

CPDMM

design methodology management

Figure 2. The most recent view of the set of domains developed at Berkeley. This article will discuss only CG,
                which underlies all of code generation.

(see Figure 2) is a sub-domain of the BDF domain. Thus, a
scheduler in the BDF domain can handle all stars in the SDF
domain, but a scheduler in the SDF domain may not be able to
handle stars in the BDF domain. A domain may have more than
one scheduler.

4. Mixing Models of Computation
 Domains in Ptolemy can be mixed. Thus, one system-level design
can contain multiple subsystems that are designed or specified
using different styles. The kernel support for this is shown in
Figure 7. An object called "XXXWormhole" in the "XXX"
domain is derived from "XXXStar," so that from the outside it
looks just like a primitive in the XXX domain. Thus, the
schedulers and targets of the XXX domain can handle it just as

they would any other primitive block. However, inside, hidden
from the XXX domain, is another complete subsystem defined in
another domain, say "YYY." That domain gets invoked through
the setup, run, and wrapup methods of XXXWormhole. Thus, the
wormhole is polymorphic in a broad sense.

5. Code Generation
The domains shown in Figure 2 are divided into two classes:
simulation and code generation. In the simulation domains, a
scheduler invokes the run methods of the blocks in a system
specification, and those methods perform some function
associated with the design. In code generation domains, the
scheduler also invokes the run methods of the constituent blocks,
but these run methods synthesize code in some language. i.e., they

roushrv
94



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     16

The RASSP Digest

PortHole PortHole

Block
•  initialize()
•  run()
•  wrapup()

PortHole
•  initialize()
•  receiveData()
•  sendData()
•  type()

PortHole PortHole

Geodesic

Plasma

Geodesic
•  initialize()
•  setSourcePort()
•  setDestPort()

Particle
•  type()
•  print()
•  initialize()

Particle

Block Block

Figure 3. Block objects in Ptolemy can send and receive data  encapsulat-
ed in Particles thr ough Por tholes. Buffering and transport is han-
dled by the Geodesic and garbage collection by the Plasma. 
Some methods are shown.

generate code to perform some function, rather than performing
the function directly. The Target is responsible then for generating
the connecting code between blocks (if any is needed). This
mechanism is very simple, and language independent. We have
built code generators for a number of languages, as indicated in
Figure 2.

An alternative mechanism that is supported but less exploited in cur-
rent Ptolemy domains is for the target to analyze the network of
blocks in a system specification and generate a single monolithic im-
plementation. This is what we call compilation. In this case, the
primitive blocks (Stars) must have functionality that is recognized
by the target. In the previous code generation mechanism, the func-
tionality of the blocks is arbitrary and can be defined by the end user.

6. Conclusions
 In summary, the key idea in the Ptolemy project is
to mix models of computation, implementation lan-
guages, and design styles, rather than trying to de-
velop one, an all encompassing technique. The
rationale is that specialized design techniques are (1)
more useful to the system-level designer, and (2)
more amenable to high-quality high-level synthesis
of hardware and software. The Ptolemy kernel dem-
onstrates one way to mix tools that have fundamen-
tally different semantics, and provides a laboratory
for experimenting with such mixtures.

The Ptolemy kernel has been used successfully
outside Berkeley for a number of domain designs.
A notable example is the work of Berkeley Design
Technology, Inc., as part of the Martin Marietta
RASSP program, to use the Ptolemy to connect
the SPW and Bones tools from the Alta Group at
Cadence.

Examples of Derived Classes
•  class Star:: Block
•  class XXXStar:: Star
•  class Galaxy:: Block
•  class Universe:: Galaxy, Runable
•  class XXXUniverse:: Universe

XXXStar Galaxy XXXStar XXXStar

XXXStar

Galaxy XXXStar

XXXStar

XXXUniverse

Figure 4. A complete Ptolemy application (a Universe) consists of a network of Blocks. Blocks may be Stars (atomic) or
Galaxies (composite). The “XXX” prefix symbolizes a particular domain  (or model of computation).

More information about the Ptolemy project, plus access to
all of the software and documentation, is available on the
worldwide web via the URL http://ptolemy.eecs.berkeley.edu.

The current Ptolemy team is: Shuvra Bhattacharyya, Joseph T. Buck,
Wan-Teh Chang, Brian L. Evans, Steve X. Gu, Sangjin Hong,
Christopher Hylands, Asawaree Kalavade, Alan Kamas, Allen Lao,
Bilung Lee, Edward A. Lee, David G. Messerschmitt, Praveen K. Murthy,
Thomas M. Parks, José Luis Pino, Farhana Shiekh, S. Sriram, Juergen
Teich, Warren W. Tsai, Patrick J. Warner, Michael C. Williamson.

roushrv
95



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     17

The RASSP Digest

Target:: Block
•  initialize()
•  setup()
•  run()
•  wrapup()
•  galaxy
•  scheduler
•  children

Scheduler

Target

Target Target

Scheduler Scheduler

Figure 5. A Target, derived from Block, manages a simulation or synthesis execut ion. It can
invoke i t’s own Scheduler on a Galaxy, which can in turn invoke Schedulers in sub-

Figure 6. A Domain (XXX) consists of a set of Stars, Targets and Schedulers that
support a particular model of computation. A sub-Domain (YYY) may
support a more  specialized model of computation.

Scheduler

YYYDomain

Scheduler

Scheduler

YYYStar
XXXStar

YYYStar

Target

Target

Target

XXXDomain

XXXStar
YYYStar

XXXUniverse

XXXWormhole

XXXDomain

YYYDomain

YYYtoUniversalXXXfromUniversal

YYYfromUniversalXXXtoUniversal

E
ve

nt
H

or
iz

on

Scheduler

Scheduler

Particles

Particles

Figure 7. The universal EventHorizon provides an interface
between the  external and internal domains.

roushrv
96



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     18

The RASSP Digest
VHDL Component Modeling: Impact on the RASSP Program

by J. Scott Calhoun and  Dr. Bob Reese

Abstract
Mississippi State University's Microsystems Prototyping Laborato-
ry (MPL) has been contracted as part of the RASSP Technology
Base to develop VHDL models of selected Cypress Semiconductor
standard integrated circuits. Mississippi State and Cypress have en-
tered an agreement whereby Cypress will provide timing informa-
tion necessary to create VHDL models of high quality and accuracy
to be released as part of the RASSP program. MPL is also under con-
tract to delivery VHDL-based tools which will assist the model de-
veloper in testing created VHDL models. Finally, MPL will be
participating in the RASSP E&F through the development and re-
lease of a HTML-based VHDL course (this effort is currently non-
funded).

1. Component VHDL Models and the RASSP Design 
    Process
The Rapid Prototyping of Application Specific Signal Processors
(RASSP) initiative is intended to dramatically improve the process
by which complex digital systems, particularly embedded digital
signal processors, are designed, manufactured, upgraded, and sup-
ported. RASSP seeks an improvement of at least a factor of four in
the time required to take a design from concept to fielded prototype
or to upgrade an existing design, with similar improvements in de-
sign quality and life cycle cost. The motivation for RASSP is the
need to provide affordable embedded signal processors for a wide
range of DoD systems that are state-of-the-art when they are fielded,
rather than when they are first defined.

To accomplish these goals, improvements are being sought at all
levels of today's system design methodology. In addition, RASSP is
pushing the envelope upward in the electronics design process to de-
velop tools and capability which will integrate system requirements
and specification development; along with top-level hardware and
software design development into the overall RASSP design flow
seamlessly. The primary tangible output from a successful iteration
of the RASSP design process will be the ability to produce virtual or
model-year prototypes of complex digital electronic systems. These
virtual prototypes will contain all the information necessary to
quickly and successfully manufacture physical prototypes which
will meet the documented system requirements. Simulation of the
model-year prototypes utilizing VHDL (or some derivative there of)
is the main verification mechanism by which the system is shown to
meet the requirements levied against it.

At the design data level where individual system printed circuit
boards are to be produced, simulations exist where there is a one-to-
one correspondence between inner connected simulation models
and the physical representation of the integrated circuits. From a sys-
tem perspective this is the last and lowest level of simulation per-
formed to verify the design correctness prior to fabrication. Many of
the integrated circuits used in a PCB design may be ASICs. Those
that are not fall into a broad category of circuits which are referred
to as standard off-the-shelf components. This class of components

include microprocessors (general purpose, signal, FPU, etc.),  bus
interface components (VME, MIL-STD-1553, etc), memory (RAM,
PROM, FIFO, etc.), programmable logic devices (EPLD, PAL, FP-
GA, etc.), and specialized bus drivers (buffers, latches, transceiv-
ers). These components represent the bulk of the digital standard
components sold by semiconductor companies in the world today
for use in complex digital system designs. The RASSP Technology
Base program has funded several VHDL modeling efforts to assist
the RASSP program in obtaining VHDL models necessary to devel-
op and demonstrate the overall RASSP design process. Mississippi
State University has been funded to develop VHDL models of mem-
ory and programmable logic device standard components offered by
Cypress Semiconductor, Inc. When completed, these models (along
with others developed by the RASSP program) will be used to create
the board level simulations necessary to verify correctness of
RASSP designs prior to fabrication. This verification allows for vir-
tual board designs to be debugged in simulation avoiding costly fab-
rication rework cycles.

2. VHDL Modeling at MSU
MSU has been tasked to provide VHDL models for standard Off-
The-Shelf (OTS) logic devices provided by Cypress Semiconductor,
Inc. Cypress has a design division located in Starkville where many
of the components targeted for modeling ware designed. This af-
fords ready access to internal data which may be needed to insure the
accuracy and performance of developed models. Cypress has en-
tered an agreement to work with MSU to provide all component in-
formation necessary to deliver to the RASSP program the highest
quality of models possible.

The program calls for MSU to address the following part types:

1.  Flash PLD
2.  FPGA
3.  Erasable PLD
4.  Dual Port SRAM
5.  Single Port SRAM
6.  PROM
7.  FIFO

The modeling strategy developed at MSU will be to develop base-
line methodologies for each part type listed above. In addition, as
part type methodologies are developed, part models for multiple
components in a part type will be developed as quickly as possible
to deliver the maximum number of models possible. The following
subsections describe the development strategy for each of the part
types which are currently under development.

2.1 Single Port SRAM and PROM
Two general VHDL packages have been developed for generic
memory device modeling. Both packages are memory-organization
independent. 

roushrv
97



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     19

The RASSP Digest
The packages are as follows:  
1.  A general memory package which statically allocates all model

storage.  This is suitable for ROM models and small RAM mod-
els.

2.  A general memory package which dynamically allocates model
storage and has a user-controlled option for swapping memory
pages to disk.  This is suitable for large and small RAM models.
The models developed to date are: 32K x 8 EPROM (CY7C256),
32K x 8 SRAM (CY7C199- CMOS, CY7B199 - BiCMOS),  64 x
4 SRAM (CY7C195 - CMOS, CY7B195 - BiCMOS). The
EPROM model uses the static memory model while the SRAM
models use the dynamic model.  The SRAM models utilize ap-
proximately 98% common code with timing packages accounting
for most of the non-shared code.  

2.2 Flash and Erasable PLD
A 22V10 PLD model (PALC22V10d) has been developed; the mod-
el makes extensive use of GENERATE statements based upon the
JEDEC map to create the internal simulation structure. The GEN-
ERATE methodology  gives good runtime  performance in that only
the programmed portions of the device contribute to the simulation
overhead.  We plan on following this methodology in modeling the
more complex Cypress PLDs represented by the  CY7C37X family. 

2.3 Dual Port SRAM
We are currently studying the issue of dual port SRAM modeling.
Dual port SRAMs such as the CY7B138 with on-board arbitration
offer significant modeling challenge.

2.4 FPGA
Our FPGA modeling plans center around the Cypress pASIC380
family. At this time we have held only preliminary discussions with
Cypress concerning possible modeling approaches.

3. VHDL Component Modeling Issues
The amount of VHDL component models available today is still rel-
atively small. Therefore, there are and will be a number of modeling
issues with regard to VHDL component models as models become
available to the RASSP community as part of this program. These
issues are briefly discussed.

3.1 EIA-567A
EIA-567A defines three packages and a recommended methodology
for representing timing, electrical and physical view information in
VHDL.  At this time the EIA-567A specification has been followed
in those areas in which it was felt that EIA-567A added value.  To
date, the timing view package has been utilized to a limited extent.
Examples of 567A timing view compliance include adding generics
for input wire delay and output load delay and generics for control-
ling 'X'-value and message generation on timing violations. MSU
did not follow the recommended methodology for encoding timing
parameters; a specialized timing package for representing databook
timing values was developed.  One reason for not using the 567A
methodology is that it requires renaming the databook timing pa-
rameters to follow a  generic template. This puts the burden on the
model writer to deal with timing parameter name translation which
can be error-prone.  This also makes the model source code more ob-

tuse to external readers who  know  the databook timing parameters
and are not familiar with the 567A specification.  Finally, there is no
provision in the EIA-567A timing view for having different speed
grades (e.g. -10, -15, -20),  short of writing a different package for
each grade which makes model code maintenance and test bench
configuration awkward. 

3.2 Model Portability and Interoperability
MSU has tested the models in both Vantage and Model Tech envi-
ronments in order to ensure portability of the models. As per EIA-
567A, the models utilize the IEEE-1164 standard logic package for
the state/strength value system of the models. MSU is in the process
of obtaining a set of models which will act as an interoperability test
set. These models include a processor and several component mod-
els. MSU plans to create testbenches where MSU developed models
and the obtained models will simulate in the same environment to
ensure interoperability of MSU models with other industry devel-
oped models. In addition, MSU plans to work with other RASSP
Technology Base contractors to create VHDL simulations which
demonstrate the viability of VHDL as a simulation media through-
out the RASSP design process.

4. Model Documentation and Release
VHDL component models developed by MSU are being document-
ed and released via the World Wide Web (WWW). MSU has ob-
tained permission from Cypress to post Web versions of the three
component datasheets representing part of the initial model release.
The model release mechanism will be built into the electronic
datasheet for each part. Because of export restrictions on RASSP de-
liverable, VHDL model release will be limited to RASSP program
participants.

4.1 WWW Component Datasheets 
The WWW component datasheets are viewable from the MSU
RASSP homepage (http://www.erc.msstate.edu/mpl/rassp/html/
overview.html) by clicking on the VHDL Model Library icon. This
presents the overall Cypress BiCMOS/CMOS Databook from which
the datasheets for the parts to be modeled are contained. Traversal of
the databook homepage reveals sections for part types (STATIC
RAMS, PROMS, EPLDS). Each listing in these part types document
represents a part that is either modeled or is projected to be modeled.
Those which are complete are hyperlinked to the homepage for the
individual circuit. A portion of the homepage for the 27C256 is
shown on the next page (see Figure 1.)

4.2 WWW Component Model Release
RASSP VHDL models are export restricted. For initial releases from
the RASSP Technology Base programs, the models are being re-
leased via the WWW utilizing restricted access and data encryption.
There will be a single point of contact for model release per RASSP
contractor or government organization. The procedure for release
RASSP VHDL models is as follows:

1.  Model release is an extension of the WWW component datasheet.
2.  Model release portion of the WWW component datasheet is http

access protected with user/password required for access.
3.  Data encryption (des) is utilized with user key assigned by MSU.

roushrv
98



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     20

The RASSP Digest
4.  User/passwd/deskey authentication required.
       o single point RASSP contractor release
       o phone call authentication required
       o user/passwd/deskey assign over phone
5.  WWW user/passwd used to access release for in component
datasheet.
       o single file for each model

       o des encryption prior to transfer
       o ftp transfer to user site
       o des decrypting by user with deskey
       o each transfer logged
An example model release is shown below:

Assessing and Improving Current Practice in the Design Of
Application-Specific Signal Processors by G. A. Shaw and V. K. Madisetti

Abstract
The Department of Defense ARPA program for Rapid Prototyping
of Application Specific Signal Processors (RASSP) exists to signif-
icantly improve the process by which embedded digital signal pro-
cessors are developed (prototyped) and supported (maintained and
upgraded). As used in the RASSP program, the term prototype sig-
nifies a system that is a precursor to a deployed system, but still
meets all of the essential performance goals and is designed to
facilitate maintainability and upgradeability. In this paper, current
practice in the design of embedded digital signal processors, as
exemplified in the traditional waterfall design methodology, is
examined and shortfalls in the design methodology and supporting
tools are identified.  Opportunities for improving the traditional
design practice are then identified and evaluated in terms of poten-
tial benefits, as well as impediments, to implementation and adop-
tion by the community.
 
1. Introduction
Within the past 10 years, high-end signal processing applications
have grown from millions of operations per second, implemented in
hard wired or uni-processor architectures, to billions of operations

per second implemented on arrays of programmable multiproces-
sors. At the same time, the functionality that was once implemented
at the board level with large-scale integrated circuits has been sub-
sumed at the chip level in very large scale integrated circuits con-
taining millions of transistors and hundreds of pins, employing
clock rates approaching 100 MHz and complex software develop-
ment environments. The introduction of more complicated building
blocks, higher clock rates, and tightly-coupled hardware and soft-
ware environments has opened a gap between traditional design
and verification methods and the complexity and supportability
required for contemporary digital signal processors.  Furthermore,
with new DSP chip technology being introduced annually, tradi-
tional methods of optimizing a design for a given application and
associated processing engine are no longer cost-effective or appro-
priate in terms of supporting an upgrade path.

Applications requiring embedded signal processors are as numer-
ous and diverse as the methodologies employed to design and build
them. Consequently, there is no unique model of ‘‘current practice’’
as it applies to the design of application specific signal processors.
Nevertheless, a representative model of current practice is essential

Figure 2. 27C256 VHDL Model Release FormFigure 1. 27C256 WWW Component Datasheet

For more information on the VHDL Component Modeling
contact J. Scott Calhoun at    jscott@erc.msstate.edu 

roushrv
99



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     21

The RASSP Digest
independent. For example, methodology affects development cost
(resource) and quality (product).

2.1 Process View
The traditional design methodology, which is embodied in military
process standards such as DOD-STD-2167A for software develop-
ment, is a waterfall design process, as illustrated in Figure 1.

The underlying concept behind the waterfall design process is a
progression through various levels of abstraction, or phases, with
the intent of fully characterizing each level of abstraction before
moving to the next level, and providing a comprehensive work
package at each phase. Strict adherence to the waterfall design
methodology is impractical, in part because the requirements for an
embedded signal processor are often vague at the beginning of a
project, and the processor is often subject to significant design
changes. For example, in a radar system, waveforms, processing
algorithms, and subsystem interfaces may all be modified during
the course of signal processor development. Nonetheless, this
methodology is characteristic of current practice, particularly in the
defense industry. While following the waterfall design methodol-
ogy does not preclude attaining the RASSP goals of rapid design
cycle time, low life cycle cost and model year upgrade capability,
the waterfall design methodology does tend to foster a number of
bad design practices including:

1. Low exploitation of concurrent engineering,
2. Emphasis on wrong problems early in the design phase
3. Inflexibility late in the design phase,
4. Low level of customer interaction and subsequent satis-

faction,
5. Significant rework and cost resulting from not discover-

ing design flaws until the integration phase.

Figure 2 is a simplified representation of a waterfall design method-
ology for embedded signal processor design. Perhaps the most sig-

to the RASSP program in order to assess where improvements are
needed, and also as a basis for measuring progress of the RASSP
program toward the goals of reduced design cycle time, reduced
cost, and improved quality.

The focus of the RASSP program is on high-performance form-fac-
tor constrained signal processors consisting of anywhere from a
few to hundreds of processing engines.  The models described here
are an attempt to characterize, at least in an average sense, the cur-
rent practice in developing such state-of-the-art embedded signal
processors at the inception of the RASSP program, circa 1993.

2. Current Practice Model Views
In developing a representative or ‘‘industry standard’’ model of cur-
rent practice, there are at least three views of interest to the RASSP
program which are shown in Table 1.

Table1:  Current practice Views

The process view emphasizes issues such as the steps or methodol-
ogy followed, the degree of concurrent activity, and the productiv-
ity achieved. The resource view might also be termed generalized
cost, and emphasizes the people, tools, time, etc. required to
develop a prototype signal processor. The product view emphasizes
issues related to the soundness and performance of the product, as
well as adherence to requirements. The three views are clearly not

VIEW EXAMPLES

Process Design Flow Productivity, Test, Reviews

Resource Development Time Cost, Tools, Libraries

Product Form Performance, Defects, “...ili-
ties”

 Figure 2. Simplified current practice design flow.
Figure 1. Waterfall development 

methodology.

roushrv
100



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     22

The RASSP Digest

In Figure 3, requirements and architecture development together
represent only 10% of the total. However, once an architecture is
selected, much of the development and life cycle cost of the system,

Table2: SAR Processor Requirements

ITEM REQUIREMENT

Max. Volume 2.2 cuf

Max. Power 500 W

Max. Weight 60 lbs

I/O Rate 18/27 MB/s

Interface Fiber

Polarizations 3

Frame Size 2048x512 pixels

Dynamic Range >103dB

as well as achievable performance, are determined.  Also note that
testing and integration consume a larger percentage of cost than the
combined software and hardware development (34% versus 22%).
The software development in this example consists mainly of well-
defined algorithms such as FFTs.
 
State-of-the-art electronic design automation (EDA) tools to sup-
port the design flow of Figure 2 may cost as much as $80K-$100K
per single-user license, and a collection of these tools, spanning the
end-to-end process, could cost in excess of $1M to purchase, and
$150K or more a year to maintain, excluding training costs. Despite
the cost of the tools, interoperability across tools is not assured, par-

nificant deficiency in the methodology is that hardware subsystems
and application software are not integrated until late in the process,
and significant design flaws may go undetected until the integration
step.

2.2 Resource View
Figure 3 is an estimate of the relative distribution of cost associated
with the development of the synthetic aperture radar (SAR) image
formation processor described in [1]. A number of activities such as
program management and reporting have been omitted from Fig-
ure-3 for simplicity. The performance requirements for the proces-
sor are summarized in Table 2.

Figure 3. Relative dollar cost associated with various development tasks.

ticularly in the case of commonly used high-level
system design tools. Computer-aided design
(CAD) and computer-aided software engineering
(CASE) tools are available to support either the
hardware or software design, but there is little to
support the co-design and simulation of hardware
and software. In particular, there are few libraries
and models to support co-simulation of hardware
and software, and there are not standards for
interoperability of models at various levels of
design abstraction.

3. Opportunities For Improvement
Incremental improvements in design practice
occur more or less continually, but significant
improvements are almost always due to a revolu-
tionary change in the resources or processes
employed [2]. The shortfalls in traditional design
methodology suggest areas which might be tar-
geted for revolutionary change.

3.1  Opportunity for Process Improvement

3.1.1 Executable Requirements
Figure 2 emphasizes the fact that current practice is to provide pro-
cessor requirements in written form, often hundreds of pages of
requirements which must be interpreted and captured in a traceabil-
ity tool. Provision of requirements in machine readable and execut-
able form has the potential to significantly reduce the ambiguity in
written requirements. The SAR benchmark described in [1]
includes an executable requirement written in VHDL which is
intended to serve as the basis for test bench generation during
detailed design and verification.

3.1.2 Virtual Prototyping
 A virtual prototype [3], consisting of a software model of the hard-
ware executing a representation of the application code, has the
potential to uncover design flaws before the costly step of hardware
fabrication and test fixture generation. In the case of integrated cir-
cuit design, technology for first-pass correct design. The same con-
cepts can be applied to board level design provided suitable models
and simulation tools are available. A virtual prototype also has the
potential to support early customer evaluation and exploration of
performance trades.
3.1.3 Successive Refinement
Unlike the waterfall development methodology, which emphasizes

roushrv
101



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     23

The RASSP Digest
complete descriptions of the signal processor at each level of
abstraction in the design process, successive refinement emphasizes
rapid development of a less than full function prototype to uncover
potential problems early and to influence the design through hands-
on experience. The terms successive refinement, spiral design,
incremental development, risk-driven design  are all used some-
what interchangeably to describe this basic approach. Spiral design
was pioneered for software development [4], but the concept can be
applied to hardware as well. Benefits of successive refinement
include the ability to involve the end user in evaluating early proto-
types, early discovery of problems in the design concept, and
improved estimates of the cost and schedule to produce a fully-
functional prototype. However, successive refinement can be costly
when hardware fabrication is in the loop, and virtual prototyping
represents a potentially cost-effective methodology for supporting
successive refinement.

3.1.4 Co-development Methodologies
Co-development, or hardware-software co-design, refers to the
ability to begin with an implementation-independent representation
of the requirements for a signal processor and evolve these require-
ments to a hardware and software implementation that is optimum,
or nearly so, in some sense. Virtual prototyping supports hardware-
software co-design by facilitating the transfer of functionality
between hardware and software, enabling performance analysis and
trade-offs prior to the existence of the hardware.  Current practice
predominantly relies on the experience of designers to allocate
functionality to either hardware or software early in the design.
Once the allocation is made, the hardware and software develop-
ment tends to proceed along relatively independent paths with few
opportunities created for improvement through trade-off analyses.

3.1.5 Parametric Cost Estimation
Parametric cost estimators (PCEs) have been shown to give engi-
neering managers a competitive edge by accurately predicting
project costs. PCE tools, available now in stand-alone form, can be
integrated with front-end design tools to provide a more quantita-
tive and traceable basis for architecture selection. In the absence of
a well-defined cost estimation methodology, critical items, such as
testability, are often overlooked in determining cost, schedule and
risk associated with candidate architectures. Representing each can-
didate architecture by a  set of cost breakdown structures and apply-
ing the appropriate PCE tools helps ensure that all relevant aspects
are considered. PCE tools also enable assignment of numerical val-
ues for cost, schedule and risk associated with each candidate archi-
tecture and provide documentation of the basis for architecture
selection.

The ability to identify and quantify life cycle cost issues is an
important capability afforded by PCE tools. Hardware life cycle
costs are a function of maintenance concept (e.g. throw away vs. fix
a failed module), and a specific maintenance concept must be sup-
ported by the appropriate built-in test features and external test
equipment. PCE tools provide a means for rapidly evaluating a
large number of maintenance concepts, and results of the PCE life
cycle analysis have a direct impact on test requirements and archi-
tecture selection.

3.2 Resource Improvements 

3.2.1 Standard Hardware Interfaces
As DSP chips continue to gain in complexity and functionality, the
major effort in embedded processor design has shifted to special-
ized hardware for systolic processing and the communication and
control interfaces for multiprocessor architectures. The VME bus is
a familiar example of a standard interface which facilitates rapid
development of application hardware by promoting reuse and stan-
dard protocols for communication.  However, bus architectures do
not scale well, and interfaces with substantially higher bandwidth
and latency are required for many applications. Designing for
upgradeability demands the use of standard, scalable interfaces and
memory architectures. Standard interfaces are essential in promot-
ing widespread software and hardware reuse.

3.2.2 Reuse Libraries
DSP chip developers currently provide C-language instruction set
simulators and highly optimized FFT and other software modules
with a new chip. The provision of these tools and libraries promotes
reuse on a wide scale. However, virtual prototyping and hardware-
software co-development methodologies require many additional
models at at various levels of abstraction. Currently, such models
are not widely available, and concerns exist over the intellectual
property embodied in such models.  Modeling standards including,
for example, the appropriate levels of abstraction, are needed to
support wide-spread reuse.

In the case of application software, substantial reuse has been
shown to yield gains of or more in productivity for uni-processor
development [5]. However, substantial reuse of software in embed-
ded signal processing is hampered by the lack of standard commu-
nication and control interfaces and the highly parallel hardware.
Reuse can be enhanced by the architecture concepts described
below.

3.3 Product Improvements 

3.3.1 Model-Year Architectures
Programmable processing chips tend to double in performance
approximately every 18 months, and, with multiple vendors devel-
oping new chips, improved technology is available on even shorter
cycles. In order to field signal processing systems with the latest
available processor technology, the hardware and software architec-
tures must be sufficiently ‘‘portable’’ or standardized to support late
binding of the processor chips to the software and board level com-
munication fabric. In the case of software, this flexibility is
achieved through high-level language implementation for the con-
trol and standardized library calls for DSP number crunching, such
as FFTs. In the case of the hardware, the equivalent of a high-order
language is a high-level description of the custom designs which
can be synthesized into a preferred technology, such as FPGAs. The
equivalent of the optimized DSP library is standardized interfaces
and associated communication protocols.

3.3.2 Executable Specifications
In the same way that executable requirements facilitate the initial

roushrv
102



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     24

The RASSP Digest
development of a signal processor, the final design can also be doc-
umented in a machine readable and executable form. Executable
specifications have long been the norm for application software
written in a high-level, portable language. The existence of stan-
dards for hardware design languages affords the opportunity to doc-
ument hardware in a similar fashion, facilitating upgrades and
reducing life-cycle support costs.

4. Conclusion
Historically, significant improvements in the required design-cycle-
time and cost to produce embedded digital signal processors have
been brought about by revolutionary changes in the design process
or resources comprising the design environment. Presently, the pro-
cess from schematic entry to printed wiring board, or from CASE
tool to application code, is fairly mature. However, substantial
improvements are feasible in the front-end processes relating to
requirements capture, functional modeling, partitioning into hard-
ware and software, and designing for easy upgradeability and sup-
portability.

A MOSAIC server has been established on the World Wide Web as
a source of additional information and publications. The Lincoln
Laboratory RASSP home page is accessible via the uniform
resource locator (URL) http://rassp.scra.org.

References
[1] B. W. Zuerndorfer, et al, ‘‘RASSP Benchmark-1 Technical
Description,’’ MIT Lincoln Laboratory Project Report RASSP-1,
13 December 1994. 

[2] K. A. Radtke, ‘‘The AT&T Hardware Design Environment: A
Large System’s Hardware Design Process,’’ 31 ACM/IEEE Design
Automation Conference, 1994. 

[3] V. K. Madisetti, et al, ‘‘Virtual Prototyping of Embedded DSP
Systems,’’ Proceedings IEEE International Conference Acoustics,
Speech, and Signal Processing, 1995. 

[4] B. W. Boehm, ‘‘A Spiral Model of Software Development and
Enhancement,’’ ACM Software Engineering Notes, August 1986. 

[5] R. B. Grady Practical Software Metrics for Project Management
and Process Improvement, Prentice Hall, NJ, 1992. 

Editorial Viewpoint  
by Anthony  J. Gadient

One of the most important factors contributing to the dramatic re-
duction in development time provided by the RASSP program is the
effective use of the Very High Speed Integrated Circuits (VHSIC)
Hardware Description Language (VHDL).  For this reason, we have
chosen to focus on the RASSP VHDL activities in this edition of the
RASSP Newsletter.

One of the activities being undertaken by RASSP which will con-
tribute significantly to the effective use of VHDL in top-down sys-
tem-level design is the development of a "taxonomy" of VHDL
models.  Many of you might wonder what the benefit of this activity
will be and why it is being undertaken.  This editorial is aimed at ad-
dressing this question by explaining the benefits a formal taxonomy
of VHDL models will provide to the RASSP and VHDL user com-
munities.

The RASSP design methodology and a VHDL taxonomy are like the
‘yin’ and the ‘yang,’ highly interrelated concepts, each inseparable
from the other.  To understand the importance of one, it is necessary
to understand the other.  Therefore, to explain the utility of a VHDL
taxonomy  it  is  first necessary to examine what a design   method-
ology is.  

A design methodology may be characterized as a directed, cyclic
graph where cycles represent the iterative define-analyze-refine pro-
cess that distinguishes design from other activities.  For this reason,
many work flow management systems use directed graphs as a way
to present work flows (or design methodologies) to the end-user.
Given this characterization of a design methodology, one can think

of the nodes of the graph as representing design activities which of-
ten involve the invocation of design tools.  Edges may be thought of
as representing the flow of information and control from one design
activity to the next.  It is here that the idea of a VHDL taxonomy and
that of a design methodology merge.

The purpose of a VHDL taxonomy is to provide a way of character-
izing VHDL models in terms of a set of attributes and attribute val-
ues so that one can relate edges (information flow) in a workaholic
to VHDL models that may either be produced by a design activity or
obtained from a design reuse library. For this reason, the successful
development of a VHDL taxonomy  requires many things to be un-
derstood, for example:

a)  Where does a particular type of model fit in the design pro-
cess?

b)  What design risks are reduced through a particular type of
model's use?

c)  What are the benefits /costs associated with the use of a par-
ticular type of model, for example, what errors will it de-
tect, how much development and execution time are
required, and so forth?

Many schemes have been developed to help us organize and think
about the design process; most recognized amongst these is the Ga-
jski-Kuhn Y-chart.  In the VHDL community the Ecker-cube has ob-
tained considerable attention.  The VHDL taxonomy activity being

For more information on the Assessing and Improving
Current Practice in the Design of Application-Specific signal
Processors contact vijay.madisetti@ee.gatech.edu or
shaw@ll.mit.edu

roushrv
103



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     25

The RASSP Digest
undertaken by the RASSP program is building upon these earlier ef-
forts.  The attributes and attribute values that are used to characterize
a VHDL model lie at the heart of this activity.  Ideally, this set of at-
tributes would possess two properties:

Property 1: It would be desirable if two VHDL models that
differ in at least one attribute value would be used by different
activities in the design process or be used by one design activ-
ity for distinctly different reasons.

Property 2: It would be desirable if a model could be automat-
ically categorized by automatically determining its attribute-
values.

The first property would support RASSP's drive to reduce develop-
ment time by a factor of four by facilitating VHDL model reuse and
model interoperability.  Theoretically, the first property ensures that
an isomorphism exists between the design methodology and the
VHDL taxonomy.  This fact ensures that a VHDL reuse library can
be organized so that designers working on a particular activity can
easily obtain VHDL models that are potentially relevant to what
they are working on by requesting models with certain attribute val-
ues.  For instance, a designer that is developing the architecture for
an embedded system is interested in quickly and easily identifying
where bottlenecks for a particular architecture exist and performing
"what-if" analysis until a well-balanced system architecture that
meets the cost and form-fit-function constraints of the system is
identified.  In this process, access to VHDL models that possess cer-
tain qualities that can be used to help evaluate evaluate the system’s
performance is required.  Today, such models are often referred to
as "Performance Models."  

So, you might ask, why bother with a taxonomy (determining a set
of attributes and attribute values for characterizing different types of
models).  Why not, for instance, just call performance models, "per-
formance models," and when a designer needs performance models
he requests "Performance Models" from the reuse library.  Unfortu-
nately, the simple solution implied by this question may not be ap-
propriate.  Given the term "Performance Model," different
individuals are likely to have different understandings of what a per-
formance model is.  As Fred Rose from Honeywell Technology
Center writes, "As the EDA industry increasingly moves to a ‘plug

and play’ business model, a common language or ‘lingua franca’ is
essential.  But more than a common language is required; common
usage or style is also required."  In essence, the intent of this com-
mon style is to ensure that models of a certain type possess certain
characteristics or attributes.  By developing a taxonomy that identi-
fies the appropriate set of attributes for characterizing VHDL mod-
els and identifies the attribute values a particular model type should
possess, the taxonomy provides a more rigorous definition for a
model type than a simple name.  This rigor also enhances the in-
teroperability between two different models of the same type by en-
suring that each model of a certain type exhibit a shared set of
characteristics.  Model interoperability and therefore “plug and
play” can be further enhanced by adherence to Property 2.

By satisfying Property 2, the taxonomy can provide the basis for au-
tomating the process of determining whether a given model adheres
to some modeling style or not.  Because the development of model-
ing guidelines is the approach being taken within the VHDL com-
munity to address the model interoperability or "plug and play”
issue, automatically determining whether a given model satisfies a
style's requirements can provide significant benefit to the RASSP
community. 

However, defining a taxonomy for VHDL models that satisfies this
second property is a significant undertaking because it requires the
taxonomy to be formally specified, for it is only through a formal
machine processable definition that Property 2 can be realized.

The RASSP Program's efforts to develop a taxonomy for VHDL
models is one of the critical elements being addressed by RASSP
that will enable effective top-down system level design with VHDL.
The development of a VHDL model taxonomy will contribute to the
widespread usability of system level VHDL models and provide the
basis for sharing hardware design knowledge in the form of reusable
VHDL libraries.  A great deal of excellent work has already been
done in this area by Dr. Harr of ARPA, Prof. Madisetti of Georgia
Tech, Carl Hein of Martin Marietta, Paul (Kassey) Kalutkiewicz of
Lockheed Sanders and a score of others too numerous to name.
However, a great deal remains undone.  As Winston Churchill once
said, "...this is not the end.  It is not even the beginning of the end.
But it is, perhaps, the end of the beginning."  So it is with RASSP's
efforts to define the conceptual structure for organizing VHDL mod-
els by defining a VHDL taxonomy.

roushrv
104



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     26

The RASSP Digest

Announcing Summer '95 RASSP Short Courses  
The RASSP Education & Facilitation team will offer two short courses on key advances of the RASSP pro-
gram.  Each of these four-day courses is intended for design engineers and will provide hands-on exercises
in addition to the lectures.  

Rapid Prototyping Methodology Using VHDL 
Topics Include:

 -VHDL Basics
- Behavioral VHDL
- Structural VHDL
- System-level VHDL
- RASSP Methodology Overview
- System Level Modeling
- Hardware Synthesis
- Test Technology Overview
- Libraries
- Virtual Prototyping using VHDL

Led by:    Prof. J. Aylor, University of Virginia
Course Dates:   August 7-10, 1995
Location:           Boston, MA

Algorithm and Architectural Design for Embedded DSP Systems 
Topics Include:

- RASSP Methodology Overview
- DSP Architectures
- Algorithm/Functional Design for DSP 
- HW/SW Partitioning
- Scheduling and Assignment for DSP
- Communication and I/O Architectures 
- Real Time Systems
- Virtual Prototyping for DSP Architectures

Led by:    Prof. V. Madisetti, Georgia Institute of Technology
Course Dates:   August 22-25, 1995
Location:           Tuscon, AZ

Enrollment will be limited to 20 attendees per course.  A reg-
istration fee of $350 will be charged to cover lunches,  refresh-
ments, course material, and other administrative expenses. To
Register for the short  courses you can phone RASSP E&F at
803-760-3376 or E-mail us at  courses@rassp.scra.org

roushrv
105



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     27

The RASSP Digest

RASSP Steering Committee

RASSP Digest-Rapid Prototyping of Application-Specific Signal Processors
The RASSP Digest is published quarterly and provides information for and about the RASSP Program and rapid 
systems development.  For more information, contact Dr. Anthony Gadient or Dr. Vijay Madisetti, Editors, at the 
addresses below:

Dr. Anthony J. Gadient Dr. Vijay K. Madisetti
Phone : 803-760-4082 Phone: 404-853-9830
FAX: 803-760-3349 FAX: 404-853-9171
Email: gadient@scra.org Email: vkm@ee.gatech.edu
SCRA Georgia Tech
5300 International Boulevard Sch. of Elec. & Computer Eng.
North Charleston, SC 29418 Atlanta, GA 30332-0250

Tommy C. Taylor
Managing Editor
Phone: 803-760-3792
Email: taylor@scra.org

ARPA (ESTO)
-Mark  Richards                    Program Manager
-Elliot Cohen

ARMY (ARL/EPSD)
-Clare Thornton
-Randy Reitmeyer              Administrative COTR, Martin Marietta
-Arne Bard            Technical COTR, Martin Marietta

NAVY
-Ingham Mack (ONR)
-Gerry Borsuk (ONR)
-Joe Killiany (NRL)     Administrative COTR, Lockheed/Sanders
-J. P. Letellier (NRL)     Technical COTR, Lockheed/Sanders

AIR FORCE
-Bill Edwards
-Stan Wagner Technology Base and Facilitation/
-John Hines Educator  COTRs

roushrv
106



Vol. 2, No. 1, 1st. Qtr. 1995                                                                                                                                     28

The RASSP Digest

Calendar of Events

VHDL International Users Forum April 2-6, 1995 San Diego, CA
For More Information: VIUF
415-329-0578

32nd Design Automation Conference June 12-16, 1995 San Francisco, CA
For More Information: MP Associates
303-530-4333

2nd Annual RASSP Conference July 24-27, 1995 Arlington, VA
For More Information: Mark Feuchter
703-351-8463

SCRA
5300 International Blvd.
N. Charleston, SC 29418

roushrv
107



PK&^r i'^.-^i;t ;'ruE 

: i Vol.2,2nd, Qtr. 1995 
lyL'--'-'-^Ci*W T^ rfii'. > fp-'*-? Ht 

1 

Methodology 

Reinventing 
ipElectronic 
t/Design '"'" 

Architecture Infrastructure 

MCRA^ GT*UVA • Raytheon 

ARPA Tri-Sefvice 

In This Issue 
Editor's Corner 

2 An Approach to 4x 

pPrime Devel<|pnient 
3 Advance Technology Laboratories' 

it:   ^''"'tf'path to4x Improvements^ 

6 Road to 4x 

Benchmark Program 
10 RASSP Benctimailc Program: Measuring 4x 

13 Rapid Prototyping of Applicaticm Specific 
Signal Processors: Current Practice, 
Challenges, and Roadmap * 

Technology Base     , 
18 Timing Insensitive Binary-to-Binary 

Translation (TIBBIT) 
21 Graph Translation Tool (GrTT)      f 

RASSP VHDL Working Group Update 
23 RASSP Working Group Discusses Terms and 

Taxonomies-/: '"'":v--'   M^^~ 

^ 

roushrv
108



This issue of the RASSP Digest focuses on the ambitious goal RASSP has set to provide a 4X improvement in time-to-market, life-cycle 
cost and design quality. The methods by which RASSP will achieve these improvements is presented together with the progress that 
RASSP has made towards achieving these ambitious objectives. Papers presenting an analysis of current practices and ways of measuring 
the improvements to current practice are provided. The RASSP Digest editors hope the readers will find this issue of the RASSP Digest 
both informative and beneficial. 

Don't forget to mark your calendars to attend the 2nd Annual RASSP Conference, July 24-27,1995 at the Hyatt 
Regency Crystal City in Arlington, Virginia. To receive more information or reserve your spot at the conference, 
contact Mark Feuchter, System Planning Corporation, 1429 N. Quincy Street, Arlington, VA 22207 or via Internet 
at the following addresses: 

rassp_conference @ arpa.mil 
http://rassp.scra.org 

*r \ ^/ 4* t- 

.  * -r- ^Wi- 
- '^J- 

- "II 

-.-■[ f    ^ K, -^ 
-V .;,V=-=- _ _i _ 

. h-- 

|>  V     -, 
An Approach to 4X 

->i 
-^'1 

.- + '-4'*^, 
!-^i-,-  --^■-*-- 

1^ -. ^   L   J-M_^:  /4 .i:-H .- 

1 -f 

'■ '..    ■i^illLl.Vl' j; 

^^mi 

     III „.;'-.- A'-"'-:-- ■^•-   - 

^byVijay Madisetti 

This editorial higlilights four main advantages of the RASSP 
approach that the author beheves will result in significant 
improvements to current practice: 

• Top-Down Design Methodology Using VHDL and the Use 
of Virtual Prototyping at ^'arious Levels: The prototyping 
time identified by the RASSP E&F current practice (1993) 
model will be reduced by 25% using a top-down design 
methodology. In addition, the benefit of the top-down design 
methodology towards rapid legacy system upgrades is very 
promising. The new ideas of executable specifications and 
requirements    will    have    consequences    on    the    design 
methodology of systems of the future. 

Reuse Design Libraries for Application Specific HW/SW 
Components: The extensive reuse of past design experience 
(in an automated manner) is expected to lead to improvement 
in algorithm design, ai-cliitecture selection, performance 
evaluation and effective HW/SW integration through error 
detectiori and correction. The expected improvement due to 
reuse is a 20-25% reduction in the development time identified 
by the RASSP E&F current practice (1993) model. 

Automation and Enterprise Integration: These capabilities 
are rapidly improving as commercial CAD vendors are 
attempting to provide interoperable tool suites and high-level 
and behavioral synthesis environments. These effects ai-e 
aimed at rapidly and effectively raising the level of design 
abstraction leading to impressive gains in productivity. The 
capability for paperless design specification and reuse, together 
with concurrence control and effective teamwork capabilities 
through improved automation and design environment 
integration is expected to improve prototyping time of the E&F 
current practice model by 20-25%. 

•     Customer Satisfaction and Virtual Corporations: The use 
of virtual prototyping allows rapid customer evaluation of 
designed prototypes without incurring expensive hardware (or 
FPGA-based prototyping) costs. All design and 
implementation is done entirely in software prior to EMD. The 
flexibility of customer input leads to rapid incorporation of 
design specification changes or upgrades into most stages of 
the design process. For example, a change of word length from 
16 to 18 bits can be incorporated into a large design even at the 
final design stages (HW/SW integration) in a matter of a few 
hours by changing the VHDL architecture files followed by 
recompilation. The new design process ensures that multi- 
corporation teams can be rapidly put together by extracting 
specialities of various teams to harness them on one 
application rapidly and efficiently through the use of 
cooperative teamwork-based design environments and the 
sharing of design experience through portable reuse libraries. 

Thus, RASSP is providing a low risk process flow for large system 
design, especially in fixed-price contracts where the vendor runs 
significant risks of cost overruns for underestimating the design 
complexity management. Another possible advantage to using the 
RASSP approach is the elimination of the DEMVAL stage of 
current practice model due to increased confidence in the virtual 
prototyping process. These gains, though difficult to quantify, will 
be of enormous significance to the operation of virtual corporations 
of the near future. 

Acknowledgments 
The editor acknowledges with gratitude inputs from various 
RASSP participants and programs. However, the views expressed 
in this editorial are the author's own, and do not necessarily 
represent the viewpoints of the US Department of Defense, ARPA, 
MIT-Lincoln Laboratories, Lockheed Martin-ATL, Lockheed 
Martin-Sanders, Raytheon, Hughes, Motorola, or SCRA. 

VoL 2, 2nd. Qtr. 1995 2 

roushrv
109



' '■^:. 

fr;   --.T V^. I 
I ' I "I - 

. ^-y 
='   .'. -yr- 

m-- :, fV ^'  '^-'^.: 

•"■■   .\.j'   ■■■' •     4V I 

;t  y ' 
" i:   r 

A 
V.. -. ■ 

To provide 4X improvements in time-to-market, life-cycle cost, 
and design quality, Lockheed Martin's Advanced Technology 
Laboratories is uniquely combining the three elements of the 
RASSP technology triad ~ methodology, Model Year 
Architecture, and design environment ~ into an integrated, rapid 
prototyping environment. 

1. Problem 
Today's military designs are the product of a long, serial design 
cycle that has limited ability to respond to changing requirements 
and technology. Current practice surveys — as detailed by 
Madisetti and Corley in this issue of the RASSP Digest -- indicate 
that today's developments require anywhere from 37 to 73 months. 
Commercial   processor  technology   offers   significant  capability 

two to three years, yet typical military 
development/deployment cycles are more than five years. The 
result technology in the fielded system is one to two generations 
behind the state-of-the-art at the time of deployment 

upgrades   every 

Technology obsolescence is further exacerbated over the life cycle 
of the system. The platform life cycle for military systems is often 
more than twenty-five years, and the DoD focus is on further 
extending life cycles. Systems can thus be upgraded 8-10 times 
over their operational lifetime, with about half of these required to 
meet new operational requirements. 

2. The RASSP Approach 
RASSP's Model-Year concept strives to fundamentally change the 
design process from a custom-oriented, serial design approach, 
shown in in the left side of Figure 1, to the iterative, simulation- 

Traditional 

Threat 

Requirements 

Process 

Technology 

Concept 

Traditional Designs 
" Static, sequential process 

(waterfall model) 
-- Custom designs 
-- Technology dated when fielded 
-- High design (NRE) and life cycle costs (LCC) 

based approach, shown on the right side of Figure 1. The result is 
a series of virtual prototypes (fully simulated design 
implementations) that can be built quickly for insertion into 
products as new developments or upgrades, 

The virtual prototype is developed as an evolving executable 
specification, which is a form ofan information model composed 
of these: 

Functional and performance simulation models, 
Testbenches, 
Requirements ~ size, weight, power, cost, etc., 
Process description — previous and upcoming steps in the 
design process along with engineering notes, lessons learned, 
etc.. 

Lockheed Martin evaluated existing practices  and defined the 
changes required to implement a 4X improvement.    Figure 2 
shows   the   schedule   for   an   actual   48-month   radar   upgrade 

time   required   for   concept   development, 
and 

program, 
architecture 

with   the 
trade-offs,    detailed    design. manufacturing, 

integration and test. Note that the schedule also includes a 10- 
month redesign cycle for unanticipated reworks that occur due to 
either design errors or functional updates uncovered during 
integration and test. The second set of schedule elements shows 
the improvements RASSP must provide to accomplish 4X. 
Evaluation of the figure indicates several key points. Under 
RASSP, a higher percentage (about 1/3 of the 14.5 months) of the 
overall development cycle is spent during concept design and 
trade-offs than in current practice (about 1/4 of the 58 months). 

New Paradigm 

Threat 

Requirements 

Process 

Concept 

Technology 

Build 

Insertion Candidates 

RASSP Virtual Prototyping (VP) 

- Dynamic, risk-driven concurrent process 
(spiral model) 

-- Incorporates evolving requirements 
-- Rapid insertion of COTS technology 
- Low-cost insertion, LCC 

Figure 1. Current design approach versus the RASSP Model-Year concept 

Vol. 2, 2nd. Qtr. 1995 3 

roushrv
110



^siS!:::i!tiSirm.-iLim-'^^. 

Prime Development The RASSP DigesUM 

Where will the payoff come from? 
• Big Hitters 

-- Improved quality 
- Eliminates redesign/ 

fabrication 
- Drastically reduces integration/ 
test 

--Design reuse 
- Reduces manufacturing/ 

detailed design 
• Key Contributors 

" Productivity is the key contributor 
- Shrink system and 

architecture trade-offs 
- Concurrent access to 

information/tools improves 
productivity across the board 

18 
Months 

12 
Months" 

6 
Months' 

High Impact Too Late! 

milk 

Concept     Trade-     Detailed 
offs Arch.    Design 

Fab/ 
Test 

Redesign Integ. 
&Test 

Key 
Today - 58 months      □ With RASSP - 14.5 months 

Figure 2. Current practice versus RASSP process comparison. 

Less time (1/4 of the 14.5 months) is spent in redesign, integration 
and test for RASSP than for pre-RASSP approaches (41% of the 
58 months). 

In all cases, RASSP promises to provide signifcant cycle time 
improvements - but what are the elements that lead to this payoff? 
First, the only way to achieve 4X is to eliminate redesign and 
drastically reduce the integration and test time for systems. Simply 
improving design efficiency will not achieve 4X; the design portion 
of the process only accounts for 50 percent of the total task. 
Second, detailed design and manufacturing times must be reduced 
to further lower cost and shrink schedules. 

Providing the gains described in Figure 2 requires these actions: 

• Implementing concurrent design practices using integrated 
hierarchical design verification to improve design quality and 
performance, 

• Maximizing reuse of both hardware and software elements to 
dramatically decrease cycle time, 

• Improving productivity enables rapid implementation of the 
steps that lead to improved quality, such as hardware/software 
codesign and virtual prototyping. 

Lockheed Martin is quantifying the time-to-market and life-cycle 
cost impact of these elements by developing a parametric model of 
the RASSP process using the PRICE cost estimation tool. We have 
modeled a typical airborne radar example for both current practice 
and the projected RASSP process. While this work is still ongoing, 
sensitivity analyses using the tool emphasized the above 
conclusions. Our simulations show that reuse will probably account 
for more than half the projected improvements. The second major 
factor is producdvity, which enables many of the quality elements 
described above, and which can also supply up to a factor of 2X. 

We are still introducing new RASSP concepts into the price model, 
such as the effects of virtual prototyping (enabling first-pass 
success) on schedule and cost, and the impact of the Model-Year 
upgrade approach on long-term life-cycle support costs. Our studies 
in these areas will further quantify the impacts of the technology 
developments and provide a more robust model of the RASSP 
process. A robust model of this type is very important to help 
potential users project the improvements in time-to-market and life- 
cycle cost they can expect out of RASSP ~ not all projects will be 
able to realize 4X. Factors that affect improvements include 
availability of models to support virtual prototyping, the amount of 
reuse applicable to the project, and domain-specific elements that 
dictate specific approaches. 

3. RASSP Technology Enablers 
The three major impact areas -- quality, reuse, and productivity ~ 
are closely linked to the RASSP technology triad, as shown in 
Table 1. All of Lockheed Martin's ongoing technology 
developments that support these impact areas cannot be describedin 
this article; several key developments highlighted in the table are 
summarized in the following paragraphs for each area of the 
technology triad. 

We expect several key elements of the RASSP Methodology that 
depart from current practice to be large contributors to the 4X 
improvements: 

• Processes to support design efficiency and reuse, including 
application of object-oriented analysis and design techniques, 
and maximum use of reuse libraries, 

• Maximizing use of concurrent engineering, including the 
concept of Integrated Product Development Teams; we 
emphasize methods to enhance both concurrency and 
collaboration between tasks throughout the design cycle, 

Vol. 2, 2nd. Qtr. 1995 

roushrv
111



^^smt'iTtt.^r 
iv ^f\ 

in-i^r' 
la^m 

T-^JSJ 
-^:-i^^^^ 

■:.-?'"rlC^ 
r<-^f 

r"--i«rl?jH^.* ■■■"<.' The RASSP Z>i^^s^ 
• Applying the spiral development model to signal processor 

design, providing a risk-driven, iterative approach to rapidly 
developing prototypes, 

• Creating a new architecture process that implements hardware/ 
software codesign to hierarchically design and verify the signal 
processor hardware and software design throughout the design 
cycle. The result is a fully operational virtual prototype before 
manufacturing release. 

In conjunction with Methodology, the RASSP Model Year 
Architecture is a framework for hardware and software reuse. It 
provides the design guidelines and constraints for implementing 
signal processors to support efficient upgrades using modular 
building blocks. Lessons learned from early programs in software 
reuse showed that placing elements in a library does not create an 
environment that supports reuse; the approach must be an 
integrated, fundamental part of the overall design process. The 
Lockheed Martin Model Year Architecture provides resources and 
constraints to the design process and enforces a structured 
approach that implements scalable, modular hardware and 
software processing elements in a functional architecture. An 
instantiation of the functional architecture results in a set of 
encapsulated library elements. Encapsulation refers to structure 
added to otherwise "raw" library elements to support the 
functional aixhitecture framework and ensure library element 
interoperability and upgradability. 

Table 1: RASSP technolog>' triad developments supporting 4X improvements 

Resue Improved Quality Efficiency 

Model Year 
Architecture 

Virtual Interface stds 

Re-use frdmework 
Application notes / 
development 
guidelines 

Validated HW / SW 
libraries 

VHDh / HOL 
reuse 
templates / toolkits 

Methodology Integration of MYA 
into process 

O-O design 
approach 

Risk driven 
interative design 

HW/SW codesign 

Steamlined 
processes 

Concurrent / Paral- 
leized tasks 

Infrastructure 
-Enterpri se System 

- Design 
Environment 

Library 
management 
system 

Graph-based SW 
generation 

Workflow 
magagement 

Virtual 
Prototyping 

Distributed 
interaction 

Integrated data 
management 

HW/SW codesign 
tools 

The Model Year Architecture also provides a set of design 
guidelines and constraints for general architectural development, 
such as how to properly use the functional architecture 
framework, general use of encapsulated libraries, and, most 
importantly, procedures to encapsulate new library components. 
These design guidelines and constraints are incorporated into the 
RASSP design methodology. 

The RASSP approach to implementing the Model Year 
Architecture is based on modular, scalable aixhitectures that use 
functional standard interfaces. By standardizing on functional 
interfaces, we can maximize independence from technology 
(electrical versus optical) and specific hardware versus software 

(processor-based versus dedicated hardware). We are using this 
approach to define several Standard Virtual Interfaces that 
define functional VHDL encapsulation wrappers, which enable 
modules to be seamlessly interconnected with minimal 
performance impact. 

The RASSP Enterprise System provides the overall 
infrastructure to support Integrated Product Development Team 
interaction. The Design Environment provides the tools to 
implement end-to-end virtual prototyping. The enterprise system 
is the framework for effective integration of the software tools and 
models used to develop and manufacture RASSP products. The 
elements of the enterprise system that most contribute to 4X 
improvements are the Design Methodology Manager (DMM) and 
Product Data Management capabihties. 

The DMM guides users through the process, providing access to 
the appropriate tools at the proper times, ensuring that complete 
data packages are generated and that all critical steps in the 
process are followed. This capability will greatly improve the 
quality of designs to ensure first-pass design success. Seamless 
tool access throughout the design process is also provided. DMM 
triggers the appropriate elements within the Product Data 
Management System to ensure that data automatically transitions 
between workflow steps in the proper format. By abstracting 
engineers from the details of the tool interaction and data 
management, large productivity gains can be reahzed and error- 
prone manual data translations eliminated. 

The Design Environment strives to provide a seamless set of end- 
to-end tools to support hardware/software codesign and full design 
verification before manufacture via virtual prototypes. The tools 
being extended on the RASSP program that we expect to have the 
largest impact are those that support hardware/software codesign, 
and these include architecture trade-off, architecture-level design 
verification, and automated software generation tools. 

The architecture selection tools enable users to select and size a 
processor architecture based on processor requirements generated 
during the subsystem design phase. Users first partition the 
functionality between hardware and software, and then verify top- 
level functionality using algorithm-level tools, such as Matlab, 
SPW or PGSE and evaluate the overall timeline performance 
using tools such as JRS's Netsyn. Other important factors, such as 
size, weight, power, cost, reliability, etc., are also included in the 
trade-offs at this level through a tool suite integrated into an 
architecture design advisor. 

Once users have selected a candidate architecture, it is verified 
using the architecture verification tools, as shown in Figure 3. 
This tool suite consists of a set of performance and functional 
simulators at various levels of design abstraction (abstract 
behavior, ISA-level, Register Transfer Level, etc.) and models of 
computation (data flow, control flow, event driven, etc.) that are 
iteratively invoked by users to hierarchically verify the processor 
design before detailed implementation. Emulation and hardware 
testbed capabilities will also be integrated into the capability by 
combining    simulation    backplane    and    mixed-level    domain 

Vol. 2, 2nd. Qtr. 1995 

roushrv
112



Prime Development The RASSP Digest 

Commercial 
Hardware 
Testbed 

(Mercury, etc.) 
GEDAE 

Behavioral 
Simulators 

ISA 

Network 
Simulation 

BONeS 
Data Flow 

SPW 

Ptolemy HSIM 
j ^"^"^"^'i ■'■'■'■'■'■'■'■'■'■'■'■'■'■ ■'■ j ̂ L^ .:.:-^--^^-^^-^i^'^ii^^^^^:^:^^^^^^^ 

(Ptolemy kernel) technology. We have already demonstrated 
early results of these capabilities on RASSP. 

Automated software development is tightly coupled into the 
RASSP architecture process as graphs, implemented using the 
Navy's Processing Graph Methodology specification, to specify the 
algorithm and control functionality of the system. This enables 
users to start, stop, and initialize graphs, set graph parameters, and 
start and stop I/O procedures. User can specify top-level command 
programs to a large extent using state-based tools. RASSP is 
implementing a set of autocode generation tools that will enable 
users to take PGM graphs and automatically generate 
downloadable code for embedded multiprocessor environments. 
These tools implement the Model Year Architecture by using the 
reusable software libraries and targeting the code generation to 
support the Model-Year application programming interface (API) 
and run-time system (RTS). 

4. Conclusions 
The Lockheed Martin RASSP team is providing fundamental 
technology improvements via the RASSP technology triad to 
enable 4X improvements in design-cycle time, quality, and life- 

Figure 3: Architecture verification tools, 

B 
a 
c 
k 
P 
I 
a 
n 
e 

J 

Ptolemy 

VHDL (QuickVHDL, Vantage) 

Verilog 

Logic (Quicksim) 

Emulation (Quickturn) 

Etc. 

Precendence 

cycle cost reduction. We are demonstrating initial implementation 
of our reuse-based methodology implemented in an enterprise-wide 
system that supports distributed, collaborative interaction. We 
expect the Model-Year paradigm to be able to demonstrate 4X 
improvements over today's custom-based design approaches well 
before the end of the program. While the performance 
improvements across a wide range of programs will vary based 
upon the application, type of development, and availability of 
models, large improvements are already being demonstrated for 
ongoing programs. 

Road to 4X 
l^^>si*>i 

1. Introduction 
The RASSP Program has ambitious goals: 4X decrease in product 
development cycle-time, 4X decrease in Ufe-cycle costs and 4X 
increase in product quality. Reaching these goals requires a map, 
so we can choose the route that leads to the desired destination 
while avoiding financial mountains too high to climb or technology 
gaps too wide to jump. With the map we can expend all of our 
energy navigating the routes that will accelerate our progress. 

In the sections that follow, the factors that contribute to cycle-time 
and quality will be identified along with the barriers to change. 
Next we describe some of the approaches being taken by the 
Lockheed Sanders RASSP team to address each of the factors and 
associated barriers. We will then summarize the results of a 
product development task analysis to show how each RASSP 
process reduces cycle-time and improves quality. Finally, we will 
assess the progress of the IRST Signal Processor Demonstration 
Team towards achieving 4X. 

by Larry Scanlan and Leroy Fisher 

2. Contributors to Cycle-time, Cost and Quality 
The fishbone chart shown in Figure 1 identifies the major factors 
contributing to cycle-time, cost and quality. Each will be described 
briefly in the following paragraphs. 

Information 

Requirements 

People 

\ 

Manasement 

\ 

Products 

Processes Automation Standards 

Figure 1. Fishbone chart showing the significant contributing factors to 
cycle-time, cost and quality 

2,1 People 
People represent a critical element in the quest for 4X. People 
make decisions, people apply expertise, people enable, people 
obstruct,   people  create,  people  destroy,  and  people  drive  the 

Vol. 2, 2nd. Qtr. 1995 

roushrv
113



Prime Development 

process. The inherent adaptability of people makes them 
indispensable to creative activities. At the same time, the capacity 
for independent function and innovative approaches result in high 
levels of variabiHty whenever people contribute to a process. To 
harness the creativity and minimize the variability, people need 
ready access to all the necessary facts and data, must be trained and 
must be empowered to make decisions and act on those decisions in 
an open and disciplined way. 

2.2 Processes 
Processes ~ both business and engineering ~ form an essential 
foundation to the establishment of predictable cycle-time, cost and 
quality. They must be defined, understood and institutionalized to 
be effective. The consistent application of process across the 
organization and across time reduces variability and, with suitable 
measurement, provides a systematic method for continuous 
improvement. 

According to the Boston Consulting Group [1], "structural sources 
of competitive advantage such as ... low cost production ... or 
technology are no longer enough. Companies win by having 
business processes that recognize and meet customer needs fastest." 
Hammer and Champy in their book "Reengineering the 
Corporation" [2] cite several case studies where business process 
improvements and information technology have been combined to 
achieve results far beyond 4X. Clearly, process is an essential 
enabler in the quest for 4X. 

2.3 Automation 
Automation frees people to use their energy and creativity to solve 
problems and to continuously improve. However, as the saying 
goes, automating a bad process will only give you bad results more 
quickly. The science of knowing when and how to automate will be 
as important as the technology of automation. 

Automation includes applications that accomplish single tasks such 
as logic simulation as well as infrastructure tools that enable 
communications, information management, process management 
and so on. It is sometimes useful to make the distinction between 
domain-specific applications and cross-domain applications where 
domains can represent specific engineering disciplines or 
organizational entities. 

2.4 Information 
Information and its reuse are vital for faster and better product 
development. Knowledge, the essence of information, must be 
easily preserved as it is created and even more easily made 
available when needed (reuse). Information includes rationale, 
metrics, product information, component information, process 
information, resource information, and market information to 
enumerate only a few of the many information categories. 

The reuse of information keeps us from reinventing every time a 
new design problem comes up. To reuse something you have to 
have first captured the data. The more the collection of this data 
can be made either automatic or an easy part of working, the more 
complete will be the database for future reuse. Once captured, the 
information needs to be made available to the engineer or manager 

RASSP Digest 
in a manner that makes reuse easier than starting over. When 
finding the information is perceived as more difficult than starting 
from scratch, the carefully captured information will have no value. 
The database and user interface must be robust and the search 
engine powerful to take advantage of reuse. The RASSP Design 
Environment can do a sreat deal in this area. 

2.5 Management 
Management represents the key decision-making element that can 
either make things happen or bog things down. Situational 
awareness, the ability to provide the right information at the right 
time, is a key enabler of the management function. Management is 
also a central force in institutionalizing processes and ensuring their 
consistent application. 

Management is responsible for constructing plans and forecasts, for 
acquiring and allocating resources, for ensuring the growth of the 
people, and for making sure the business remains profitable. This 
authority means that management bears a large portion of the 
responsibility for the success or failure of the organization in 
reachins 4X. 

2.6 Standards 
Standards, while difficult to establish, have the capability for 
significantly accelerating product development. Standards for the 
representation of data make information sharing, reuse, and long 
term support across an entire industry easy. 

3. Barriers to 4X 
Change is difficult, and a number of barriers need to be overcome 
to accomplish our 4X objectives. 

3.1 Cultural 
Existing company and institutional cultures represent one of the 
most significant barriers to improvement. Cultural barriers exist in 
the form of resistance to change, overly localized perspectives, and 
reluctance to be measured. 

3.2 Financial 
Financial barriers hamper the ability of an organization to acquire 
new technology, to field new processes, and to train and motivate 
the workforce. Failure to plan for and invest in new design 
automation technologies, such as high speed simulators or VHDL- 
based design techniques, can result in longer development cycle- 
times, lower product quality and higher product costs. 

3.3 Technological 
Technology barriers can impede progress on both the product 
roadmap and on the process or operations roadmap. On the product 
side, these barriers inhibit or delay the introduction of new 
products. On the process side, desirable changes in the way 
activities are peiformed will be delayed because the supporting 
technology is not mature. For example, synthesis from Behavioral 
VHDL has not been widely available in the past and has limited the 
process options for top-down design. 

3.4 Informational 
Even if the culture supports change, the resources are there to 
finance it, and the technology is available on the shelf, information 
must be present to trigger necessary change. Situational av^areness 

Vol. 2, 2nd. Qtr. 1995 

roushrv
114



Prime Development The RASSP Digest 
is a key element in supporting managed change in both process and 
product. 

Lack of information, wrong information or poorly timed 
information can all contribute to inappropriate tactical and strategic 
decisions. Part of the information barrier is inadequate experience, 
poor or improper training and lack of awareness that help might be 
available. This results in re-inventing and re-learaing rather than 
re-usins. 

4, Key Elements Leading to 4X Improvement 
The Lockheed, Motorola, Hughes and ISX RASSP Team is 
developing a balanced set of approaches to address each of the 
factors that contribute to improvement and the baiTiers that impede 
improvement. This balanced approach involves developing new 
engineering and business processes and new technology as well as 
improving access to resources and information. 

4.1 Top-Down VHDL Design 
Top-down VHDL design forms the cornerstone of the product 
design process. It begins with development of VHDL models for 
entire systems and continues onto hardware/software pardtioning 
and through detailed hardware design and development. These 
models comprise the Virtual Prototype(s) of the system and system 
elements. 

Top-down VHDL design is most effecdve at compressing the 
timeline within distinct phases of design. Addidonally, using 
VHDL as the carrier of product information and product intent 
significantly lowers the informadon barriers between design phases 
and provides a firm basis for supportability as a product is fielded. 
This significantly reduces the rate at which errors are introduced 
into the design, enables early integration of hardware and software 
and leads to reduced Hfecycle costs. 

Top-down VHDL design leads to higher product quality through 
the unbroken thread of product functionality from final design back 
to original requirements. In addition, eaidy use of high-level VHDL 
models allows a larger design space to be explored and evaluated, 
enabling more informed trades between cost, time and function. 

4.2 Structured Softw are Development 
Structured software development complements the VHDL-based 
hardware design process, supporting hardware software codesign. 
The two together enable modular product design thereby 
facihtating design for reuse; the precursor to reuse of design. 

Structured Software Development, like Top-Down VHDL Design, 
is most effective at compressing the timeline within distinct phases 
of design. And, like VHDL, the use of standard languages (Ada, 
for example) significantly lowers the information barriers between 
different phases. 

4.3 Integrated Product Development (IPD) and Virtual 
Corporation Technology 
Integrated Product Development teams have all of the disciplines 
needed to accomplish product development from concept to field 
support working as a single integrated team to efficiently and 
concurrentiy create new innovative products. The team approach 
enables tight linkages between hardware, software, product design. 

manufacturing, procurement, reliability, maintainability and 
supportability to be established and maintained. 

IPD can be made significantiy more powerful with the addition of 
tools and processes to enhance situational awareness. The RASSP 
Design Environment Prototype (RDEP), first shown at our six- 
month review and updated regularly since that time, incorporates 
several    situational    awareness    tool    concepts. Workflow 
management, process management, automatic notification and a 
common desktop environment are some of the tools that offer 
potential for making sure everyone has access to the facts necessary 
to make informed decisions. We are also developing methods to 
extend our situational awareness capabilities further and have plans 
for experimenting with several alternatives to assess their 
effectiveness. 

Virtual corporation technology extends the concept of IPD to 
encompass multiple companies, geographically separated to 
perform as if they were a single company located in a single 
location. Virtual corporation technology allows the flexible 
creation of teams comprised of electronically co-located workers 
and addresses both engineering and management issues. It includes 
these: 

Coordination technology 
• Electronic information exchange 
• Cross company secure access to design automation 

Cross company secure access to expertise 
• Cross company secure access to reuse information 

4.4 Reuse Databases and Libraries 
Our RASSP Team recognizes the importance of reuse and reuse 
libraries. We are capturing the VHDL elements from the IRST 
Demonstration Model Year 0 in a database and will be 
demonstrating their reuse in Model Year 1. Our experiences will be 
valuable in assessing the additional requirements for easy reuse. 
We are also demonstrating how processes can be reused by 
applying parts of the Model Year 0 process to Model Year 1. 
Because we learned a great deal during Model Year 0 and because 
Model Year 1 has added complexities such as legacy system 
considerations, the process has been refined and tailored to meet the 
needs of the next IRST Demo. Our experiences in trying to reuse 
process elements will further our insight into process reuse. 

As with situational awareness, the RDEP has been used to capture 
our reuse concepts and to act as an interactive requirements tool. 
We are currently conducting user evaluations of the RDEP, 
including feedback on our plans for reuse databases and reuse 
libraries. This feedback combined with our actual experiences 
using the RDE during Model Year 1 will verify our approach and 
suggest ways to improve. 

4.5 Rapid and Disciplined Process 
The RASSP Rapid and Disciplined process features mechanisms 
that support overlapping, concurrent activities where information 
flow between activities is tagged with an estimate of its maturity. 
This methodology makes the sharing of in-process information 
easy but more disciplined than in the basic IPD structure. This 
enables down-stream activities to begin work, as appropriate, with 

Vol. 2, 2nd. Qtr. 1995 8 

roushrv
115



- '"i.'r r"^,-^ ^i^-^-^-r.f^^ -;,!=n""i(i>:.' '^y:,-. 

preliminary information. The RASSP document management and 
product data management facilities have been designed to support a 
disciplined process of review and promotion. 

4.6 New Technology Development and Adoption 
The RASSP team is approaching new technology in several w^ays: 

• 

• 

On-going evaluation of key technology areas 
Coordination with the RASSP-funded Technology Base 

• Joint efforts with the EDA supplier community 
• Development   of   management   technologies   that   facilitate 

adoption of product technologies 

Even without RASSP, technology growth will result in significant 
productivity improvements over the few years that RASSP is 
funded. We, however, are leveraging these "natural' advances to 
achieve dramatically better results much earlier. 

5. Product Development Task Analysis 
At the RASSP 18-Month Review held in El Segundo in February 
1995, we presented a model for reaching 4X. This model was 
based on the results of a task analysis of the design process from 
very early system concept development and feasibility through 
development, test, production, and field support. Approximately 
70 specific tasks were identified, and the associated duration, based 
on current practice, for each task was determined. The process 
flow was based on ADQAS (Advanced Design for QuaUty 
Avionics) [3] to ensure a disciplined methodology with a high 
probability of yielding exceptional product quality. 

The baseline development timeline resulting from the assignment 
of duration to tasks was compared with the current practice model 
proposed by Vijay Madisetti and Jack Corley of the RASSP 
Education and Eacilitation team and found to fit easily within their 
minimum and maximum timelines as can be seen in Figure 2. To 
make an equivalent comparison, it was necessary to correctly align 
the starts of the two timelines. Our timeline began two phases 
earher than the E&F current practice model. In addition, the E&F 
current practice model stopped with E&MD while ours included 
production and out-year supportability upgrade. This favorable 
comparison helped increase our confidence that we had accurately 
captured the basic product development process. The only anomaly 
occurs in the time assigned to Preliminary Design. The E&F 
current practice model assigns less time to this task than we do, 
probably because of differences in our definitions of when one 
phase ends and the next phase begins. 

Months 
36 
T 

Madisetti E/F 
Baseline IVIin. 

IVladisetti E/F 
Baseline Max. 

Figure 2.   Comparison of Madisetti Current Pracdce Model and the Task 
Analysis Timeline. 

We next applied the RASSP improvement elements discussed 
above to each of the 70 tasks to estimate how much reduction in 
task duration should result from the application of RASSP 
technology. In each case, an identification of which RASSP 
improvement elements were being applied and a rationale for why 
they should yield a reduction in cycle-dme were codified. 

Analysis of the task analysis data revealed three important 
conclusions: 

Achieving  4X  requires  more  than  within  task  cycle-dme 
reduction. 
The early phases of the product design process are shortened 
the least while the later phases show the greatest benefit. 
Three   elements   contribute   to   more   than   half   of   the 
improvement. 

The data show that a three dmes improvement in cycle-dme can be 
expected by applying RASSP improvements to individual tasks. 
Achievement of the full four times improvement requires 
integradon of individual tasks using the RASSP Rapid and 
Disciplined process to achieve effective task concurrency. Figure 
3 graphically shows the 3X and 4X reductions in cycle-dme. 

Scanlan 
Baseline 

RASSP Task 
Time Improved 

RASSP Task 
and Process 
Improvements 

Figure 3. Within task improvements yield a 3 times improvement in cycle- 
time and the Rapid and disciphned Process applied across tasks provides 
the balance of the improvement to reach 4X. 

An examination of Figure 3, reveals that some phases of the 
product development process are accelerated a great deal while 
others remain nearly the same in duration. In particular the 
Preliminary Design Phase takes nearly as long with RASSP as 
without. This is because the use of RASSP Top Down Design 
methods and Virtual Prototyping demand more work prior to PDR 
than the traditional methodology. However, the Detail Design 
Phase is substantially reduced because the Virtual Prototype has 
matured the design significanUy. Similarly, the discipline and 
simulate-before-build-philosophy of RASSP make the E&MD 
Phase much shorter. This differs from a more traditional approach 
that allocates very large blocks of time to system integration and the 
correction of errors carried from the beginning of the design 
process. 

Finally, we examined the data to determine which particular 
RASSP improvement elements were being cited most often and 
what proportion of the cycle-time reduction they contributed. Table 
1 summarizes the top four improvement elements or factors. The 
largest contributor was Top Down Design using VHDL, which also 
includes Structured Software Development for programmable 
processing elements. This was expected and is consistent widi the 
RASSP philosophy. Similarly, reuse was, as expected, an important 

VoL 2, 2nd. Qtr. 1995 

roushrv
116



Benchmark Program 

contributor. Finally, team and management situation awareness 
was cited nearly as often as reuse and significandy more often than 
improved design automation tools. These data reinforce the 
observation that RASSP is not a tools program. 

Table 1:    Percent Contribution to Reduced Cycle-time by the 
largest four Improvement Elements. 

Improvement Element or Factor % 

Top  Down   Design   using   VHDL   &   Virtual 

Prototypes  
Reuse of Desiens, Tools, Databases & Processes 
Team / Management Situational Awareness 
New / Improved Design Automation Tools 
All Other Combined 

26 
18 
16 

34 

6. Progress toward 4X - IRST Image Signal Processor 
The Model Year 0 IRST Image Signal Processor development, 
undertaken as part of the Demonstration portion of the program, 
provides the first measure of how we are progressing toward the 4X 
goal. A comparison with the achieved schedule and cost of the 
IRST Demonstration wirh a similar program bid by Hughes m 1993 
reveals a 2.2X improvement in both measures. The achieved 
design quality, measured as first time integration success, was not 

The RASSP Digest 
as good as it was expected to be. Everything that was simulated 
using the Virtual Prototype worked the first dme. However, 
integradon dme was impacted by the need to correct errors in 
portions of the design that had not been simulated. Integradon dme 
was, however, less than that typically associated with a design of 
this complexity. While quality, measured as fitness for use, was 
high when the hardware was delivered to the Aircraft, there is 
clearly room for the addidonal improvements in quality that will 
lead to near zero integration time. 

7. Conclusions 
The work described above provides a roadmap for the RASSP 
Prosram to follow as we condnue the development of the Process 
and Infrastructure that will yield a four-dmes reducdon in cycle- 
dme and cost with an equal increase in quality. 

References 
[1] "Reengineering and Beyond," Boston Consuldng Group. 1993. 

[2] M. Hammer, J. Champy, "Reengineering the Corporadon: a 
Manifesto for Business Revoludon," Harper Business, 1993. 

[3] Hughes Aircraft Company Radar Systems, McDonnell Douglas 
Aerospace, 'Advanced Design for Quality Avionic Systems," 
March, 1993. 

RASSP Benchmark Program: Measuring 4x 
by G. A. Shaw 

1. Introduction 
The primary goals estabHshed for the benchmark component of the 
RASSP program are 

1. Evaluate performance of the RASSP design methodology 
reladve to standard pracdce with emphasis on design cycle 
dme, cost, and quality of products. 

2. Identify weaknesses in the design methodology and suppordng 
tools, and recommend correcdve acdons or improvements 
wherever possible. 

Small design problems, nominally 6 months in duradon and 5-1 OK 
hours of effort, are udlized as the primary vehicle for observing and 
assessing the performance of the RASSP process. The first two 
design problems, or benchmarks, are related to the design of a 
processor for synthetic aperture radar formation on board an 
unmanned air vehicle [1]. 

The 4X improvements sought through RASSP are to be measured 
reladve to DoD contractors' standard pracdce at the start of the 
RASSP program (July, 1993). Therefore, a standard pracdce 
baseline must be developed for each benchmark as the basis for 
evaluadng RASSP progress tow^ard the principal goals of reduced 
design cycle time, reduced cost, and improved quality. 

2. Some 4x Measurement Challenges 

2.1 Limitations of Statistical Characterization 
The principal metrics targeted for improvement by RASSP, dme 
and cost required to produce an embedded signal processor, and the 

quality of the resulting product, are dependent on a multitude of 
variables. As evidence of this fact, note that commercial parametric 
cost esdmadon tools may require the specificadon of hundreds of 
parameters in order to esdmate the cost and design cycle time 
associated with a particular hardware and software development 

effort. 

The success of commercial parametric cost estimation tools 
provides evidence that, given a stable design process and many 
trials over which to make measurements, it is possible to develop 
reliable predictors of future performance. However, the RASSP 
process is condnually evolving, and the users of RASSP are 
continually learning how to efficiendy use the process, so that the 
development of a statisdcally significant database for calibradng 
performance of the overall process is not currently feasible. As a 
consequence, the most significant chaUenge for the benchmark 
activity is to develop quantitative metrics for assessing the 
performance of the evolving RASSP process over the half-dozen or 
fewer available benchmarks (trials). 

The general approach adopted for the benchmarking is to compare 
performance of the RASSP process to parametric cost estimates for 
the same design problem (i.e., benchmark). The parametric cost 
estimates represent a statistically derived standard practice 
baseline. The result is a comparison of a single RASSP "trial" to an 
average of many standard practice "trials." 

2.2 Interdependency of RASSP Objectives 
A second challenge stems from the fact that some of the goals, such 
as reduced cycle time and development cost, might be achieved at 

Vol. 2, 2nd. Qtr. 1995 10 

roushrv
117



Benchmark Program vJ-.i^'T .■fff-^*eir,3<- The RASSP Digest 
the expense of other goals, such as improved product quahty. For 
example, developing a design for thirty-year supportability with 
buih-in test (i.e.. improved quahty and Hfe cycle cost) will add to 
the development effort (design cycle time and cost) of a processor 
with otherwise equivalent functionality. Similarly, provision for 
model year upgradability and reuse of the application software 
(reduced life cycle cost) will add to the development time and cost 
of the first version of a processor. 

As a consequence, a simple measure of development time or cost 
for a processor is not sufficient to demonstrate that RASSP is 
achieving the desired performance goals because it ignores too 
many other dimensions of the development process and 
requirements. Instead, one must compare the time and cost 
achieved using RASSP to the actual or estimated time and cost 
achievable using standard practice, assuming the same set of 
processor requirements and objectives, and the same level of 
expertise on the part of the Development teams. 

2.3 Dependence on Experience of Personnel 
The expertise of the benchmark execution team, and in particular 
the prior experience with similar processor designs, has a 
significant impact on the cost, schedule, and quality of a processor. 
The importance of the development team experience on a project is 
illustrated by applying the PRICE-H parametric cost estimation 
tool to estimate the development cost of a 6U VME form-factor 
board for SAR processing. Changing the parameter which defines 
the amount of prior experience in developing similar boards from 
"significant" to "none"' approximately doubles the cost of the 
board. This implies that without resorting to any process 
improvements, it is possible to achieve a 2x reduction in cost 
merely through the choice of individuals assigned to the 
development. 

Clearly these types of dependencies need to be accounted for by 
developing a baseline standard practice model which reflects the 
level of expertise and prior experience represented in the RASSP 
benchmark execution team. 

2.4 Maturity of Technology 
Contemporary embedded digital processor designs are almost 
exclusively comprised of integrated circuits, and it is the 
encapsulation of complexity within the integrated circuit that 
enables wide availability and application of sophisticated 
technology such as programmable DSP chips. However, in the 
1960s, if one were to measure the cost-effectiveness of developing 
a digital design exclusively with integrated circuits, the results 
would suggest that the technology was not cost effective simply 
because there were not a sufficient number of existing integrated 
circuits, design tools, and trained designers. 

In the same sense, some of the methodologies being explored in the 
RASSP program, such as top-down VHDL design with virtual 
prototyping, are not fully mature. Therefore, in assessing cost- 
effectiveness of these methodologies, the cost of developing 
infrastructure, such as simulation libraries, and providing training, 
should be distinguished from the cost of applying the methodology 
to a given application. 

3. ARPA's Approach 
The creation of a benchmarking component in the RASSP program 
represents a novel approach to assessing progress in a process- 
oriented development program. While process measurement and 
evaluation is not novel there is no prior history from which to 
extract methodology or best practices for measuring improvement 
of a complex, evolving, design process such as RASSP. The 
approach adopted for benchmarking is driven by the challenges 
oudined above and a desire to address as many of the principal 
measurement and assessment goals as possible, subject to the 
resources available for both the execution and the evaluation of the 
benchmark. Wherever possible, existing measurement tools and 
process metrics have been chosen to exploit historical performance 
data, and proven measurement methodologies. 

3.1 Benchmark Evaluation Process 
Over the hfe of the RASSP program, the benchmark process 
involves concurrent activity in three major areas: 

1. Developing benchmark applications and supporting 
material such as data, written specifications, executable 
requirements, test benches, and suitable performance and 
complexity metrics. 

2. Evaluating benchmark execution including on-site meetings 
and observations, clarification and correction of requirements, 
milestone reviews, and interpretation of metrics. 

3. Reporting, including benchmark evaluation reports, conference 
papers, and briefings. 

3.2 Metrics 
The principal RASSP performance metrics, such as design cycle 
time, are measured for a given benchmark application and 
compared to an estimate for standard practice to provide an 
indication of the relative performance of the RASSP process. 
However, coarse-grain metrics, such as design cycle time, provide 
little insight into where RASSP is improving or failing relative to 
standard practice. Therefore, for each principal metric, such as 
design cycle time, supporting metrics are necessary if insight into 
the benefits and deficiencies of the underlying process is desired. 

Table  I provides a sampling of principal and suppordng metrics. 

Another use of metrics is to normalize application complexity 
across benchmai'ks. For a given benchmark, complexity is used to 
estimate the cost and design cycle dme for a standard practice 
approach using parametric cost modeling. The observed cost and 
schedule required to complete a benchmark using the RASSP 
methodology is compared to the esdmate of standard practice cost 
and schedule. Complexity metrics are also needed to assess the 
improvements in RASSP over successive benchmarks. In order to 
compare the cost and design cycle over successive benchmarks, 
normalized complexity numbers, such as source lines of code per 
person month (SLOC/PM), are used. 

3.3 Standard Practice Model 
As noted earher. the principal RASSP metrics, such as design cycle 
dme, depend on a large number of dependent and independent 
variables,  and the scope  of the benchmarking effort does  not 

Vol. 2, 2nd. Qtr. 1995 11 

roushrv
118



provide for the development of a complicated, parameterized model 
from first principles. 

Three options were therefore considered for the cuiTent practice 
model: 
1. A model based on average cycle times at each phase of the 

design could be developed for a representative application. 
However, an average model would not be capable of reflecting 
the specific conditions of a given benchmark, for example the 
level of experience of the staff, or the degree of reuse. Another 
problem with an average model is thai it would not necessarily 
scale to the six-month duration of a benchmark. 

2. 

3, 

A similar application might be identified and the actual cost 
and schedule compared against the performance on the RASSP 
benchmark. Several problems arise with this approach 
including locating a similar application, and accounting for the 
differences in personnel and technology at the time the similar 
application was developed. 

A detailed parametric cost model could be developed for each 
benchmark. The model would be specialized to account for the 
specifics of the benchmark such as the number and experience 
of personnel, the complexity of the software and hardware, and 
numerous other variables that affect cost and schedule. 

Table 1. Principal and Supporting Metrics 

Metric lypical Units 

Design Cycle: Days 

•Process Step iime Minutes/step 

•SA\' Reuse NCSLOC^ (%) 

•H/W Reuse Device (%) 

•Productivity NCSLOC/day 

•Concurrency — 

•Delays Days 

Product Cost: Person-Hours 

•Components Ibtal Cost 

•Manufacturing Person-hours 

•Testing Person-hours 

•Documentation Person-hours 

•MTTR Hours 

•Life Cycle Est. Cost 

Product Quality: Defects 

•H/W Defects Defects/Unit 

•S/W Defects NCSLOC/Defect 

•lime to Repair Minutes 

•Svstem Defects Defects/Release 

•MTBF Hours 

a. Non-commented source lines of code 

The parametric model approach was selected based on cost- 
effectiveness, and adaptability to the specific character of each 
benchmark. Commercially available parametric cost esdmation 
tools provide an estimate of the total cost and development cycle 
time to develop hardwai'c or software. The parametric estimates 
rely on input parameters describing the hardware or software 
technology, the experience of the developers, and the complexity of 
the problem to develop a cost and development time estimate. An 
explicit model of the development process is not required, although 
some tools, such as the PRICE-S and SEER-SEM software 
estimators, allow mil-standard development processes. Parametric 
estimators account for the underlying process indirectly by 
calibration of the estimators through regression on historical data. 
Thus parametric cost estimation provides a mechanism for 
developing standard practice estimates for two of the three primary 
RASSP metrics, namely cost and design cycle time, without 
requiring an explicit cun^ent pr^ciice process model. 

Parametric cost estimators also include a capability for estimating 
life cycle cost. Since production quantities of hardware are not 
planned as parr of the benchmarks, and since the duration of the 
RASSP program is only four years, actual measurement of life 
cycle performance is not feasible. Estimation methods are therefore 
the only means available for assessing life cycle cost and 
supportability issues. 

3.4 Parametric Cost Estimators 
A key benchmark task is to measure the cost and design cycle time 
of the RASSP methodology relative to what would be achievable 
using industry standard practice at the start of the RASSP program 
in July of 1993. In order to accomplish this task, multiple, 
commercial, parametric cost estimation tools are employed for the 
following reasons: 

1. The fact that a cost estimation tool is commercially available 
and supported suggests some measure of success has been 
achieved with the tool in accurately predicting cost and 
schedule. 

2. Commercial tools incorporate "industry standard" default 
parameters many of which are updated on an annual basis. 
Dates in the past or future can be selected to account for the 
historical or projected impact of technology. 

3. The use of more than one tool to predict cost and schedule 
helps ensure that the estimators are being used correctiy. 

4. The widespread availability and use of commercial cost 
estimation tools makes them a commonly encountered and 
well understood basis for representing the complexity of a 
particular application. 

The PRICE family of parametric cost estimators, SEER, and 
REVIC, are all used in developing the standard practice baseline for 
a given benchmark [2]. 

4. Status 
The first RASSP benchmark, which began in September of 1993, 
required the development of a VHDL-based virtual prototype for a 
SAR processor.   The second benchmark, which is now underway, 

Vol. 2, 2nd. Qtn 1995 12 

roushrv
119



Benchmark Program The RASSP Digest 
requires the Developers to carry the virtual prototype to a physical 
implementation as a means of assessing the fidelity and value of the 
virtual prototype model and methodology. At the conclusion of 
Benchmark"2, the actual time and cost to develop the SAR 
processor will be compared to an industry standard practice 
baseline. Expectations are that the effort expended in developing 
the virtual prototype will lead to significant reductions in the time 
and cost required to develop the processor hardware. 

The VHDL modeling effort on Benchmark-1 has produced a 
limited database for calibrating parametric cost estimators for 
VHDL software development. Using hues of code as the principal 
metric,   good   agreement   has   been   demonstrated   between   the 

parametric cost estimates and the actual VHDL effort. The 
calibrated parametric cost model can be used to estimate the 
savings associated with automatic code generation (synthesis of 
VHDL code), and reuse relative to manual coding of VHDL. 

References 
[1] B. W. Zuerndoifer and G. A. Shaw, "SAR Processing for 
RASSP Application," Proceedings of the First Annual Rassp 
Conference, August, 1994. 

[2] J.C. Anderson, "Predicting the Future with RASSP Bench- 
marks.'" Proceedings of the First Annual RASSP Conference, 
August 1994. 

Rapid Prototyping of Application Specific Signal Processors: 
Current Practice, Challenges, and Roadmap 

!(Eitiu;6»?:i-j:"'^i-:;'- ^:^^h::^^' [pim-'-^'-r.^^-:^'.'.'";-. ■:-'vtLj:.;;^Hr ,<: !^^.^::^^f^ 

by Vijay Madisetti and Jack Corley 

The authors present a ''current practice (circa 1993)" model for 
the design and prototyping of application specific (e.g., signal 
processing) parallel processors. A number of limitations in 
current design practice are highhghted together with challenges 
faced and a roadmap for candidate solutions. The Rapid 
Prototyping of Application Specific Signal Processors (RASSP) 
project of the US Department of Defense (ARPA and Tri- 
Services) targets a 4X improvement in the design, prototyping, 
manufacturing, and support processes (relative to current practice). 

1. Introduction 
This section introduces classes of high-performance application 
specific parallel processors. Secdon 2 presents "current practice 
(circa 1993)" based on extensive study of industrial practice 
through first-hand communications with various industrial and 
defense contractors at Lockheed Sanders, Martin Marietta, Hughes 
Avionics Systems, Motorola, MIT Lincoln Laboratories, and 
Raytheon corporations, by the authors as part of the RASSP 
Education and Facilitation effort over the past year. Section 3 
describes the challenges facing application specific parallel 
processor specification, implementation, verification and support, 
and section 4 outlines the areas of focus of the RASSP [1] efforts 
that attempt to improve upon the current practice in a manner 
expected to have a lasting impact on the way signal processors are 
procured, designed, and manufactured [2]. 

1.1 Representative Architecture 
A typical high-performance avionics parallel signal processor 
operation flow is shown in Figure 1 [3]. The inputs are recorded 
by sensor arrays, and the data is pre-processed by an array of 
(typically hardwired) computational elements, the Sensor-Specific 
Processing (SSP), that are optimized with the sensor array and the 
recording environment. Typical SSP operations include range 
adjustment, background subtraction, matched filtering, and track- 
to-track correlation. Given the high computational throughput, 
restricted functionality and severe form constraints (size, volume, 
area and power), the SSP functions are typically ASICs with non- 
standard interfaces. 

Sensors 

C >i 
20-100 MB/s 

C > 

C > 
Raw Data 

c 

Sensor 
Specific 

OPs 

Application 
Specific 

OPs 

Mission 
Specific 

OPs 

Displays 

KZ 

V-' 200 GOPS 1-TOO GOPS    0.05 - 0.1 GOPS 

J 

J 

< J 
K J 

Figure 1. Typical System Architecture 

After, this time-critical processing is completed, the Application 
Specific Parallel Processing (ASPP) (about 30-100 processors) is 
commenced on an aiTay of processors and communications 
elements, with appropriate test, control, and maintenance 
structures. Typical ASPP operations include coordinate 
transformation, Kalman filtering, tracking, and parametric 
estimation and involve application related functionality. The 
ASPP functions also require relatively high throughput, and 
should have as much flexibility (i.e., programmability) as 
possible. In an ASPP implementation lies the problem of multi- 
objective function optimization and tradeoffs among form factors, 
performance, programmability, ease of upgrades, and capability 
for test and diagnostics. 

The Mission-Specific Processing (MSP) typically requires 
interpretation of the ASPP processing, and can be confined to a 
few processors that are often co-located within the ASP box. 
These functions include clutter analysis, track handoff, decision 
analysis, kill assessment, etc.. The relative orders of processing in 
GOPS are also depicted (decreasing to the right) in Figure 1, while 
memory requirements increase towards the right, with the most 
memory required by the MSP stage (typically 200-400 Mbytes). 
Typical  high-end  form  factor  constraints  for  volume,   power, 

wei2ht. and I/O rates are in the order of 2-3 ft^ 40-500W, 10-60 
lbs, and 30 Mbytes/second, while for low-end low power portable 
applications they are considerably more severe (in size and 
powder).   Interprocessor communication  bandwidth  requirements 

Vol. 2, 2nd. Qtr. 1995 13 

roushrv
120



Benchmark Program 

can range between 40-1000 Mbytes/second, 

1.2 Architectural Design Space 
A combinatorially significant number of alternatives exist in the 
implementation of the SSP, ASPP, and MSP functionality. A few 
key architectural attributes [3] are hsted below: 

• Computational Elements -- types (data, control, ASICs, or 
DSP) of processors, coarse or fine-grain task assignment, 
heterogeneous or homogeneous processing, size of memory 
elements, degree of coupling between memory and processors, 
software and algorithms utilized, SIMD or MIMD types of 
control. 

• Communication Elements ~ buses used, backplane 
architectures, interface to buses within system, interfaces to 
environment, routing and communications protocols. 

• Topologies -- allocation of physical resources (processors, 
memories, communication elements), interconnection 
topologies and technologies (fiber, parallel/serial, etc.), I/O 
configurations, integrated test and fault-tolerance capabilities. 

1.3 Typical System Specifications 
A number of specifications/requirements form the input to the 
prototyping process, and they can be weighted in relative order of 
importance. These include (in no specific order): 

(1) Functionality and Performance, 
(2) Environment, 
(3) Interfaces and Packaging, 
(4) Security, 
(5) Schedule for deployment, 
(6) Cost, 
(7) Software and Hardware restrictions, 
(8) Size and Volume, 
(9) Weight, 
(10) Power, 
(11) Reliability, 
(12) Maintainability, 
(13) Fault-tolerance, 
(14) Scalability, 
(15) Standardization. 

A successful design has to achieve a satisfactory degree of 
comphance with each of these specifications [3]. 

2. Current Prototyping Practice 
We now examine current practice (1993) in the prototyping of 
application specific parallel signal processors. 

2.1 System Development Phases 
The life cycle of a typical large system roughly follows the six 
phases shown in Figure 2. The focus of this study is on phases 3- 
6. Often, phase 3 is bypassed, and the sequence shown by the 
dotted-line is followed. In some cases, phase 3 follows 4, and is 
followed by phases 5 and 6. The dollar cost figures for each of 

Vol. 2, 2nd. Qtr. 1995 

The RASSP Digest 
these phases in terms of resources (capital and personnel) can run 
into a few tens of millions in the initial phases of Figure 2, and as 
high as a few hundreds of millions (or more) in the later phases of 
system development, deployment and maintenance. The cost 
incurred/committed rises steeply with the onset of phase 3. 

Pre-Concept 
Exploration 

Concept 
Definition / 
Specfication 

Demonstration 
Validation 
(DEMVAL) 

Life cycle 
Support       i^ 
Upgrade    , 

Production 
Deployment 

▼     ▼ 
Engineering 

Manufacturing 
Development 

(EMD)     4 

Figure 2. T\'pical System Development Phase 

Clearly, decisions and tradeoffs made in the early phases have 
significant financial impact later in the system development 
lifespan. In addition, the long time span (often 8-10 years) 
between phases 2 and 5 render some aspects of the technology 
obsolete by the time a concept is fielded. While customer input is 
significant in phases 1-3, it diminishes in phases 4-6 leading to 

Ofi{i<»^ai 

System        i 
Requirements j 

Definition 

I 
System 

Architecture   I 
Definition 

T 

6-12 months 

T 
Hardware 

Design 

; 

ir 

Software 
Design 

i 11 
Interface 
Design 

■ .■■■. ;i^»^:;r;!".'.';'.; 

Hardware 
Manufacture 4& 

Test 

Software 
Code & Test 

Deliverables 

Documentation 

Hardware/Software 
Integration & Test 

Production & 
Deployment 

t 

Field Test 

-12 mrmths 

Figure 3. Current Practice Design Process (1993) 

14 

roushrv
121



Benchmark Program 

Optional Sensors & 
Actuators 

Choice of DSP 
Algorithm 

IVIission requirements (functional and form constraints 
and goals - power, weight, volume, throughput, ,,.) 
Production Requirements (Manufacture / Test) 

- cost / schedule 
- methodology _(HW, SW, test) 

Operational Description 
- environment, user, signal 

System Requirements 
Definition 

- Operational scenarios 
- Algorithm 
- Risk areas/mitigstion 
- Development plan 

Tools 

Editors 
Spreadsheet (BO^eS) 

F2I>2 Requirements "db" 
Ana!>'S-S report V^  

- Completeness report 
clai-ity, testabilit)', compatibility 
meets operational scenarios 

- Cost -^-  
- Tractability Tools 

VHDL Simulators 
frcformancc Analysis - CSIM 
RDD~100, BONeS 

I 
Tradeoff 
Studies 

Overall Architectural 
Definition 

Performance model 
Architecture 
HW/'SW Requirements documents 
Tracability matrix 
Development plan 
Simulation, test/stimulus response 
Sizing 

Technology Assessment 
(packaging ..) 

Alternative approaches 
COTS vs. Custom 
(Bus, processors, protocols, interfaces) 
Bottlenecks and degradation. 
Scalability, fault tolerance, .. 

f 
HW Requirements 

T 
^ 

SW Requirements 

B-2 Specifications 
Interface Control Documents (ICD) T B-2 Specifications 

Interface Control Documents (ICD) 

Figure 4. System SpecificationyArchitecture Definition (1993) 

significant risl<s to the manufacturer in fixed-price contracts, or to 
the customer via cost overruns when redesign or rework is 
required. Life cycle support (phase 6) can last between 10-30 
years. The capability for rapid upgrade is an effective insurance 

I   against technological obsolescence of the fielded system [6]. 

2.2 Current Practice (Circa 1993) 
Figure 3 presents the current practice model for system design. 
The various stages in a "waterfalf'-type process flow are 
demarcated together with time ranges (min, max) for each stage. 
Figures 4, 5, 6, and 7 describe each of the stages of Figure 3 in 
greater detail, again presenting details of the time required for 
each substage, together with tools used, process inputs and 
outputs. Because the figures are very detailed, it is hoped that 
they are self-explanatory. The time lines have also been validated 
via communications with the industrial entities involved in lar-ge 
system design and implementations. 

3. Areas for Improvement 
Some observations with respect to the design flow in Figure 3 that 

Vol. 2, 2nd. Qtr. 1995 

The RASSP Digest 
provide pointers to areas for improvement [6] are described next. 

3.1 Automation and Enterprise Integration - Though progress 
in automation has been significant in the area of Hardware Design, 
system-level design, architectural exploration and tradeoffs, far 
less progress has been made in software design, hardware/ 
software integration, or in integrating manufacturing and product 
design activities and database libraries. Most of the information 
transferred between various stages of the design process is manual 
and is usually documented on paper with little standardization. 
The price (in cost and time) for this lack of integration is paid by 
the system designer who has to manually translate descriptions 
from one CAD tool to another with little, if any, interoperability 
provided (this is time-consuming and expensive considering that 
over thirty individual point tools are used at various stages in the 

B-2 Specs       I Interface Control Documents (ICD) 

2-3 months 

Preliminary Hardware 
if 

Design 
(Make / Buy) 

Preliminary Parts List 
Preliminary Test Plan 
Preliminary Block Diagram 

Tools 
McDraw 
Schematics editors 

Architecture Tradeoffs 
Preliminary Function Partitioning 
Make / Buy Decisions 

Datailed Hardware Design 

Backplane 
Module/ 
Board 

ASIC 

I 
FPGA/ 
PLD 

Microcode 
Firmware 

V 3 months 

Procurement 

Post-layout simulations 
Release Packages (drawings, BOM, 
drill pkgs, auto-insertion, mill, gerber 
Production Test Vectors 
Bonding Diagrams 
Netlist fc. 

files 
I 

1 
Manufacturing/ 

Assembly 

2-4 months 

Rework 

SW/HW 
Integration 

&Test 

10-24 months 

Physical Configuration Audit (PCA) 
Functional Configuration Audit (FCA) 

Full 
Production Field Test 

8-12 months 

^ 
Mfg. Field 

Test 
Hi^^^^^^^B^^H ■ ^^^^^^^^1 

LRIP 0-3 months 

(Limited Rate Initial production) 

Figure 5. Hardware Design Flow (1993) 

15 

roushrv
122



'^m^^^ ■i»:^^.-'-i 

Benchmark Program Z\ w^.',^^ f 
.•rT;-ii .>:.''.:-;• ^I'r ". = '^ The RASSP D/g^st 

design process flow of Figure 3). Standardization efforts have 
been initiated very recently in an effort to meet these needs 
through the use of VHDL [7]. 

3.2 Design with Reuse — Application specific systems can 
benefit from reuse of design information from past designs. 
Algorithms can be rapidly designed using reuse libraries of 
commonly used functional blocks. Architectures can be quickly 
synthesized using reuse components from past designs. Thus 
reuse is a feature that can be leveraged with advantage in cutting 
down the prototyping times incurred in large projects, if there 
were a mechanism to formally capture reuse information in a form 
that could rapidly be assimilated ni an application specific design. 
Figure 3 provides little opportunity for design with reuse. 

hardware fabrication & engineering cost and, in addition, provide 
capability for complete system design using a process known as 
virtual prototyping [4]. The assumption, of course, is that libraries 
of HW models in softwai'e are available. VHDL can be used with 
advantage in this true HW/SW codesign philosophy -- one that 
embraces a hardware-less system design. Our experience has 
shown that hardware-less HW/SW codesign is very efficient, 
reduces time for HW/SW integration to a matter of weeks and also 
allows rapid upgrades, together with significant savings in cost. 
Once virtual prototyping is completed, the field prototype can be 
quickly and efficiently manufactured. 

3.5 Executable Requirements and Specifications Figure 3 
highlights the fact that current practice is to provide processor and 

3.3 Design for Reuse — In continuation of the 
previous point, any successful attempt at resolving 
the prototyping bottleneck must include a 
methodology to ensure that future designs can 
benefit from current design efforts. This can be 
facilitated if efforts were taken to populate libraries 
of reuseable components (from the current projects) 
in a foiTn that the future design efforts can reuse. 
Contrasting with Design with Reuse which takes 
place ''in-cycle,' Design for Reuse can be initiated 
"off-cycle" via population, maintenance, and 
upgrades of VHDL reuse libraries. 

3.4 VHDL-based Co-Development and Codesign 
Methodologies and Virtual Prototyping   - True 
HW/SW codesign allows both hardware and 
software to be designed within a common framework 
and simulated together before being fabricated. 
Current practice attempts to automate this process 
via HW/SW Interface partitioning followed by 
three individual paths to HW, SW and Interface 
design and implementation, respectively. A 
drawback with this approach is that (as shown in 
Figure 8(i)) software can be designed and tested only 
if the hai-dware platform (at board and rack levels) is 
available. The latter is time- and cost-consuming. 
Software is not just application specific software, but 
also control, diagnostic and test software. Often, 
control, diagnostic, and test software requires an 
order of magnitude larger man-hour effort to develop 
than does application softwai'e [6]. Conventional 
hardware software codesign methods assign a token 
interest in the issue of software required for control, 
diagnostic and test puiposes, and attempt to catch all 
integration issues under the term "interface." The 
approach shown in Figure 8(ii) represents a "true" 
HW/SW codesign wherein software models (in 
VHDL) of HW are provided to the SW developers 
and the entire software is designed, tested and 
integrated with the HW models long before any 
hardware is fabricated or manufactured. Thus, the 
design loops L_l and L_2 are quick and require no 

B-5 Specs 

2-3 months 

iL ntcriucc Control Oocumcnt 

Preliminar^y SW 
Design CSCI 

Tools 
Editors 

Block Diagram Descriptions 
Communication Protocols 
Pointers to Resue Libraries 

Preliminai-v SW Design / Model 
Prcliminai'v Test Plan 
Preliminary Interface Design Document 

Detail Software Design 

CSCI 

CSCI 

Design, source code and debug (CUS) 

^^S!;!;J^'^^^""^V 

■^■^■■■■^ ■^^" 

CSC Integration and Test 

CSCI Integration and Test 

Redesign 

Rework 

Tools 
Editors 
Debu*^l»ers 
Emulators 

Source Code 
SW Design Documents 
SW Test Descriptions 

SW Test Descriptions 
Source Code Listing 

6-8 months 

Updated Source Code 
Software Test Report 
Operation and Support Documents 
Version Description Documentation 
SW Product Specifications 

y CSCI Functional and Physical Conf. Audits 

HW/SW 
Integration & Test 

Mfg. Field 
Test 

10-24 months 

►    Field Test 
TRIP Full 

Production 

0-3 months 6-12 months 

Figure 6. Software Design Flow (1993) 

Vol. 2, 2nd. Qtr. 1995 16 

roushrv
123



Benchmark Program 

system requirements in written form, often in hundreds of pages of 
documentation which must be interpreted and captured by a 
requirements traceabihty tool. Requirements that are machine 
readable and executable are invaluable both in terms of efficiency 
and accuracy of interpretation as well as in regression testing of 
the design over many abstraction levels. An executable 
requirement of a complex application specific system would be an 
effort that pays for itself in later stages of the design process. The 
final design itself can be documented in the form of an executable 
specification which would be machine readable and capable of 
being executed. Executable specifications simplify later upgrades 
of legacy system and also in reducing life-cycle costs. MIT- 
Lincoln Laboratories has initiated some work in this area as part 
of the RASSP effort. 
3.6 Modular Software and Hardware Development - VHDL- 
based   software   and   hardware   development   supports   HW/SW 

1-3 months 

HW/SW 
Interface 

Design 

1 

Software 
Design 

f 
Subsystem 
Integration 

Plan 

1-3 months 

B-2, B-5 
Specs I 

Cost ind product goals 

Schedule \ from HW/SW design 
Equipni ent delivery schedule 

Functional 
Test 
Benches 

Test Plan 
Multiform Test Plan 
Frame Test Plan 
Backplane Test Plan 
Module Test Plan 

Module level integration *& test 
Backplane level integration & test 
Subsystem level integration & test 

To Mfg. Field Test 

Figure 7. HW/SW Integration (1993) 

8-18 months 

codesign and, in addition, enables reuse of application specific 
components. Structured system design and development 
environments such as that shown in Figure 8(ii) utilize effective 
software engineering principles, significandy reduce the loss in 
design quality and requirements traceability while passing from 
one stage to another in the current practice model of Figure 3 and 
are a requirement for any new design methodology for rapid 
prototyping. The notion of a standardized virtual interface (SVI) 
between all constituent hardware and software components to 
ensure rapid "plug-and-play" capability would be attractive for 
rapid prototyping, and its implications in terms of standai'dization 

Vol. 2, 2nd. Qtr. 1995 

The RASSP Digest 
and efficiency remain to be explored [5]. 

HW/SW 
Partitioning & 

Allocation 

HW Design 
+ Build 

SW Design 
+ Code 

Interface 
Design 

L-1 I L-2 

rework 

HW/SW"   W 
Integration 

I       ^ rework 

(i) Pre-RASSP Hardware Fabrication/Manufacture 
in the design loops L-1 and L-2  

Reuse 
HW/SW 
Libraries 

HW/SW 
Partitioning & 

Allocation 

SW-only 
Environment 
(VHDL) 

HW Design 
+ Model 

SW Design 

L-1 

Interface 
Design & 

Model 

I 
Integration 
HW Model 

+ SW 
L-2 

1 
System 
Build 

(ii) Post-RASSP Hardware Fabrication/Manufacture 
eliminated from design loops L-1 and L-2 

Figure 8. HW/SW Codesign 

(i) Current practice (1993-1994) 
(ii) Post-RASSP 
Note elimination of hardware fabrication, assembly and 
board/system level manufacture from the design loops. 
Savings result in time and cost, and the capability for 
customer input and concurrent life-cyle support and upgrade 
is enhanced. Shaded areas imply hai-dware. 

17 

roushrv
124



Technology Base The RASSP Digest 
3.7   Integrated Process and Product Development Teaming 
Integrated manufacturing, product and design teams provide the 
tight Hnkage required to efficiently and concurrently create new 
products quickly. Enterprise integradon allows this tight 
coupling between hardware and software design, manufacturing 
procurement, reliability, maintainability, and supportability 
when utilized in conjunction with a top-down design 
methodology. The cuiTcnt practice model of Figure 3 illustrates 
recent efforts in this direction, though room exists for further 
intesration. 

4. Summarv 
For the first dme a detailed picture of the current practice (1993) 
design flow in the design, prototyping and deployment of high 
performance application specific parallel processing systems is 
presented. Some limitations of the current practice approach 
are outlined, and improvements sought by the US Department 
of Defense's RASSP program are presented. 

Acknowledgments 
The authors acknowledge with gratitude inputs from various 
RASSP participants and programs. However, the views 
expressed in this paper are the authors' ow^n and do not 
necessarily represent the viewpoints of the US Department of 
Defense, ARPA, MIT-Lincoln Laboratories, Lockheed Martin- 
ATL. Lockheed Martin- Sanders, Raytheon, Hughes, Motorola, 
or SCRA. 

References 
[1] M. Richards, 'The Rapid Prototyping of Application Specific 
Signal Processors Program," Proc. of First Annual RASSP 
Conference, August 1994. 

[2] L. Scanlan, "RASSP: Road to 4X," The RASSP Digest, Issue 
2, Vol 2, 2nd Qtr 1995, (http://rassp.scra.org). 

[3] F. Shirley, "The RASSP Architecture Guide - Rev. C," 
Document    AVY-L-S-00081-lOl-C,    Lockheed    Sanders    Inc., 
Nashua. NH, April 14, 1995. 

[4] V. Madisetti, T. Egolf, S. Famorzadeh, L-R. Dung, "Virtual 
Prototyping of Embedded DSP Systems," Proc. of IEEE ICASSP 
95. 

[5] G. Caracciolo, J. Pridmore, "Architectures for Rapid 
Prototyping of Embedded Signal Processors," Proc. of IEEE 
ICASSP 95. 

[6] G. Shaw, V. Madisetti, "Assessing and Improving Current 
Practice in the Design of Applicadon Specific Signal Processors," 
Proc. of IEEE ICASSP 95. 

[7] Proceedings VHDL International Users' Forum (VIUF), 
Spring 1995. 

Timing Insensitive Binary-to-Binary Translation (TIBBIT) 

1. Introduction 
The TIBBIT project is developing novel methods of applying 
binary-to-binary translation (BBT) technology to real-time and 
embedded applications. While BBT has been used commercially 
for translating workstation-class applications by companies such as 
DEC, HP, Tandem, NonStop and others, the technology has yet to 
be applied to the domain of real-time and embedded systems in 
which applications can be very tightly ded to the underlying 
hardware in terms of both functionality and dming. Transladon 
methods developed under TIBBIT allow muldple real-time and 
embedded applications to be migrated from dedicated processors to 
newer, faster multiprocessing systems while ensuring that the 
hardware/software interfaces, and the timing of I/O events 
generated or processed by the applications, is kept equivalent to 
that of the original application and platform. A retargetable 
framework is employed which supports a wide variety of 
architectures including digital signal processors. 

In the pursuit of increased performance at reduced cost, real-time 
and embedded applications may resort to ad hoc methods of 
enforcing the dming of operations, and there is little guarantee that 
event dming will be regulated by hardware alarms or a timer-driven 
scheduler. The result is that migration to a different processor with 
different   dming   can   disrupt   the   careful   balance   of   timing 

by Bryce Cogswell and Zary Segall 

incoiporated in the original design,  leading to  subtle bugs or 

complete failure on the target platform. Figure 1 diagrams the 
problem of ensuring equivalence of both application and hardware 
interacdons. 

(i^oW> 

Legacy 

Software 

& Platform 

Binary 

Translated 

Application 

Correct 
timing/operation? 

Figure 1. Problem of maintaining correctness of I/O accesses. 

The goals of the TIBBIT methodology are as follows: 

Semantic equivalence: The resultant program is semandcally 
equivalent to the original program. 

Vol. 2, 2nd. Qtr. 1995 18 

roushrv
125



Technology Base The RASSP Digest 
External timing equivalence: The timing of the program on the 
target is equivalent to the source platform within some 
predictable error bound. 
Processor independence: The scheme should be effective 
across a wide range of processor architectures. 

• Use existent I/O architecture: The interfaces to external 
devices to which the source processor is attached are 
preserved. 

• Quantifiable performance: The success of a translation can be 
predicted prior to translation, and the degree of timing 
equivalence can be quantified. 

• Automated translation: The translation process should be 
nearly or entirely automated. 

2. Approach 
The type of code that is of concern when migrating to a faster 
processor is that which implicitly uses the processor performance to 
regulate program timing, such as: 

Read_Port(); 
...compute... 
Read_Port(); 
...compute... 
Read_Port(); 
...compute... 

The minimum delay between consecutive reads of the port, which 
is satisfied on the source processor by the time spent performing 
intermediate computations,  may or may  not be satisfied  after 
migration to a faster target. 

Our approach to the problem is to precisely track and mimic the 
timing behavior of the code as it was when executing on the source 
processor. During the translation from the source to the target, a 
timing code is inserted into each block of instructions that describes 
the amount of time required to execute that block on the source 
processor. This timing information is analyzed as the target 
processor executes each block in turn, and is used to compute the 
time at which the current block on the target would be executed on 
the source. This forms a virtual clock which tracks dme as it passes 
on the source. We call this the source clock. It contrasts with the 

target clock, which is the real, or wall-clock, time. Figure 2 shows 
how the code is augmented with timing information such that even 
in the presence of loops or conditional execution, the time spent 
executing the block on tiie source processor is known. 

At regular intervals during execution the target processor compares 
the values of the source clock and the target clock and determines 
the difference between its progress and the progress the application 
would have achieved on the source processor. The result is used as 
feedback to the scheduler that runs the various applications that 
have been migrated to the target processor. 

Scheduling on the target can be done two ways: To maximize the 
degree of timing equivalence, a dedicated target processor can be 
used; the application can be scheduled on the target under rate 
monotonic scheduling. Using RMS allows multiple TIBBIT 
translated and native applications to be executed concurrently. 

compute 1+2 

^ 

compute 

computey+u   (^ compute J(+3) 

( computeJ(+3) 

( compute X+4) 

Figure 2. Code fragment augmented with timing information. 

3. Analysis 
Given an application that a user wishes to binary translate to a 
target platform with a specified degree of timing equivalence, we 
wish to determine whether the translated application will meet the 
user-specified timing-equivalence requirements under worse-case 
conditions. The modeling of translated tasks is performed by 
considering the maximum amount of time required on the target to 
execute a code fragment requiring a given amount of time on the 
source processor, and then adding in the overhead of performing the 
TIBBIT scheduling. 

Table 1 provides a summary of the parameters impacting TIBBIT 
schedulability, while Table 2 specifies the greatest amount by 
which timing on the target processor can become out of sync with 
the source. The precondition column specifies the condition that 
must hold for the task to be schedulable under TIBBIT, while the 
max behind and max ahead columns bound the maximum dming 
error that can occur. 

Symbol 

T. d 

t ov 

T. 

t elk 

csw 

Definition 

A user-selected time interval on the source. 

Maximum time for target to execute code 
requiring time T^ on source. 

TIBBIT instrumentation granularity. 

Time to read real-time clock on target. 

Scheduler overhead for target. 

Table 1. Summary of TIBBIT model parameters. 

Target 
processor Precondition 

Max 
behind 

Max 
ahead 

Dedicated ^d ^ ^ov^^^dk ^ov'^^clk Tc 

Multitasking ^d — ^ov'^^'-csw T   t 
^ d ''CSW Td+Tc 

Table 2. Summary of TIBBIT algorithm characteristics. 

Vol. 2, 2nd. Qtr. 1995 19 

roushrv
126



Technology Base 

4. Results 
The algorithms and models developed under TIBBIT have been 
validated by translating a variety of applications developed for the 
Motorola M68000 Education computer to both Unix and PC 
platforms. Most of the applications are drawn from a mix of C and 
assembly language programs given as lab assignments for the 
undergraduate Real-Time Systems class at Carnegie-Mellon 
University, and represent systems whose implementation and 
timing is unknown to the user of the translator. 

The timing equivalence of translated code has been measured as 
accurate as 80 microseconds in the short-term and 0.1% in the long 
term, with an overhead of about 20% additional processor 
utihzation due to timing instrumentation. 

An example of the abilities of the system is an application that 
reads a data set from the serial port, performs a simulation based on 
the data, and returns a single byte indicating whether the simulation 
was successful or not. A host program executes on another 
machine, communicating via the serial line, and records the time 
recorded for the simulation to complete for various data sets. This 
test highlights the problem of modeling the timing behavior of an 
application whose I/O timing is completely data dependent. The 
time required for each simulation varies according to the contents 
of the data set, and it is essentially impossible to determine how 
long it will last before performing it. 

Figure 3 shows the execution time recorded by the host for a 
particular data set, in which the RMS period the translated 
application is scheduled with is varied from 100 to 100000 
microseconds. 10 trials are run at each period, and the graph shows 
the average and the actual measured values. The 'V shows the 
bounds on timing that are predicted by the model, while the line in 
the center gives the average timing of the trials. 

The RASSP Digest 

300 

CO 

I 
§200 

0 

■j3 

g 100 
-T-H 

o 
U 

—[—1—1-—t— 

Predicted bounds 
Observed (and average) arrival times 

o- 

0 ' ' ' 
0.1 1 10 

Period (milliseconds) 
Figure 3. Timing error as a function of period. 

100 

Increasing the period decreases the processor utilization required 
on the target, since context switching and scheduling overhead is 
reduced. At the same time, however, the accuracy of the time 

equivalence is diminished. The graph demonstrates that the bounds 
predicted by the models are accurate over a range of scheduling 
periods. 

The largest application translated to date is a real-time M68000- 
based operating system, implemented in a combination of C and 
assembly code, which allows one to execute one of 6 different 
applications embedded in it, each application spawning from 1 to 8 
tasks that interact with each other, the O.S. and the user. The 
operating system contains a flexible scheduler that can be 
configured to use any of the common scheduling algorithms and 
provides support for semaphores, priority control, interrupt driven 
or polled I/O, etc. 

This application was assigned as the final project of the Real-Time 
Systems class, and the applications that execute on top of it are 
designed to stress the system and make evident weaknesses in the 
performance and fairness of the real-time scheduler. TIBBIT 
translation of this application similarly stresses the ability of the 
target platform to maintain those same timing constraints, and when 
the degree of timing equivalence is relaxed beyond about 5 
millisecond, many of the sample applications fail with obvious 
regularity. 

5. Conclusions 
The TIBBIT project has developed a means of binary translating 
real-time and embedded applications from slower to faster 
processors while maintaining the timing characteristics of the 
original host. The translation is performed by augmenting the 
translated code with timing information from the source processor, 
and using that information at run time to ensure that the timing of 
events corresponds with the original timing. The algorithms have 
been modeled and validated under a real implementation, and 
results demonstrate that timing equivalence can be maintained to 
within 80 microseconds or 0.1%. 

Vol. 2, 2nd. Qtr. 1995 20 

roushrv
127



i Graph Translation Tool (GrTT) 
.:-^^'^:^"-'.- ■^■■. 

^ 1-   'I-   i' . -.1 ' 
It*. - r.   r-ir'  :"^v 

-■ :* \ 

• IK    SI''-4:.E= '_>! >:. ^_  W-   k,' 

Management Communications and Control, Inc. (MCCI) is 
developing GrTT (Graph Translation Tool) under a RASSP 
technical base BAA contract. GrTT is an autocoding tool that will 
translate Processing Graph Method (PGM) graphs to Ada behavior 
models. GrTT may be used to create behavior models of either 
hardware or software architecture partitions of PGM data flow 
graphical application specifications. The functional behavior of the 
model will be identical to the graph partition represented. Identical 
outputs will be produced by either model execution or data flow 
execution of the processing graph on a common input data set. A 
dynamic view of model execution is supported thus providing 
visibility of the modeled graph's execution behavior. 

Implementation of the RASSP HW/SW codesign process by the 
Lockheed Martin Advanced Technology Laboratories Team utilizes 
PGM for data flow specification of the application. Processin 
within the PGM graph's nodes is specified by domain primitives. 
Domain primitives are target independent signal processing and 
data flow control function specifications. Their use in the PGM 
application specification provides an open apphcation 
programmer's interface (API) to the team's tools implementing the 
architecture selection and design processes. Domain primitive 
graphs are partitioned by the architecture tools into hardware and 
software allocations. The allocations are further partitioned to 
become either hardware component partitions or software 
partitions. Software design tools will generate stand-alone PGM 
graphs for each partition. GrTT may be used to generate behavior 
models for each hardware or software partition. 

Figure 1 illustrates the partition modeling concept. An application 
partition graph is shown on the left in both iconic and notational 
form. Each node has its unique name above the line and specifies 
the domain primitive implementing the node below the line. 
Queues represent FIFO buffering of the 
data between the nodes. Node execution 
parameters associated with the node ports 
that   are   linked 

by Chris Robbins 

it produces an Ada procedure that is the behavioral equivalent of 
the input graph. Graph variables that cause the input graph to alter 
data flow, node firing rates, or primitive processing will cause 
identical behavior in the behavior model that GrTT produces. 

_ -   _   \    ^ 

GrTT consists of three major objects: the SPGN parser, graph 
analysis, and autocoder objects. GrTT is supported by the domain 
primitive database which provides data support for both GrTT, the 
target independent translation, and the RASSP target dependent 
translations of domain primitive graphs. The translation process 
that these objects implement is illustrated in Figure 2. The SPGN 
parser accepts a partition graph SPGN file and enumerated graph 
variable (GV) sets. The parser creates a validated graph object, a 
data structure representing the 
eliminates any invalid SPGN. 

execution    are    validated 

Error  checking input graph. 
All values of variables affectin 

primitive execution are validated against constraints and 
requirements of the domain primiuves. The graph object represents 
a flattened graph in which all subgraphs and family constructs have 
been expanded. GrTT's graph analysis object creates a state 
machine behavior specification from the graph object and behavior 
data provided by the domain primitive database. Any behavior 
error conditions are determined at this point. An example of such 
an error might be a graph with a periodic execution sequence that 
would be too long to code or w^ould require too large a memory 
map. This long periodic execution sequence is normally caused by 
an ilLadvised combination of node execution parameters. GrTT's 
autocoder object generates an Ada procedure implementing the 
state machine specification for all GV value sets. This Ada 
procedure becomes the primitive for an equivalent node replacing 
the partition in the original domain primitive application. A single 
equivalent node graph containing the procedure as its primitive is 
also generated by the autocoder object. 

to specify a queues 
thresholding criteria for node execution, 
data amounts to be read, and data amounts 
to be consumed from the queues upon 
node execution. Data amounts produced 
onto output queues per node execution are 
functions of the domain primitive controls, 
read amounts, data modes, etc. Node 
execution parameters, process controls and 
parameters may be made run-time 
variables and provide the capability to 
externally modify graph execution. Data 
flow execution (execution of nodes when 
thresholding criteria are met) guarantees 
determinism or causal behavior of the 
graph. GrTT accepts apphcation partition 
graphs in their notational form plus sets of 
enumerated values of graph variables, and 

% GRAPH (partition 3 
GIF    -NTI::NX 

NT2:iNT, 
Al :Dl"LOATARRAYr>rn), 
A2 iDFLOAT ARRAY(NT2) 

INPUTQ   =0SAMP:rLOAT   
OUTPUT Q ^QAPT: CFLO.'' 
) 

ycQUEUE(QRC;DFLOAT) 
%QUEUE(QAVE:FLOAT) 
%QU12UlI(QDirr::-LOAT) 
'ycNODE(MAG 

PRIMITIVE = D_MAG 
PR1M_IN =524 

QSAMP 
TITRESHOLD^ 

PRTM_OUT=0RC 
) 

%NODE(rTR_A\T 
PRIMITIVE =D_^FIRiS 
PRIMJN =524 

UNUSED. 
NTI, 

1. 
Al, 
QRC 

THRESHOLD = 
PRIM_OUT =QAVE 

) 

(])Qb-'\M? 

C1)QRC 
{ 

(OQAVE 

(l)QDU'T 

W(])OAFr 

/* PARirt EONS-Auto Cods Genci-aior-Ver 
main() 

itit ^NTl; lj!Sx 

double    *Ai:    Program 
double *A2: 
float * OSAMPO004: 
COM]'ll-.X_rE0A'l'     *QAinO005; 

double        dfA__N2{6); 
+Ioat tA_N2(6): 
int LN2. i_N2, k_N2. M_N2, ] ._N2; 
double drA_N3f8); 
noat rA_N:5(S): 
int i_N3, j_N3. k_N3, M_N3. L_N3: 
int i_N4,j_N4: 
lloal t\vo__N4; 
READ^VAR (A2, 8. 0, 6240); 
READ^VAR (A I, 6. 0, 6304); 
two N4 = 2; 

-PAUAIiriGN ■ 
- Aiiki Code- Gcrcrjiloi 
-Viir.'^ionO 1 ]7'S")A 
procedure riirurion^ is 

Behavior 
Model 

QRampO    FLOAT_TypG_packjge FI.OAT_Vcctor_Accc^?,Typc = 
rLOAT_Type_Paclciisc FL.O\T3'eclor_Ty|>e(l   524'.; 

QrcO    F>ri 0\T T>pe_pQtlcaHC nrLOAT_\Vclor_AcccssTypc  = 
D} LOAT Ty|ic_Pin:kaacDF!.OAT_VccLi)r_Tipc(l   524). 

OavcO      FLO \T_Tyf^_pnck.^af F].()AT_V<:ctor_AcMs,'iT>7-c. 
QrJiFTO      riOAT Typcpii^kngo FI-OATVcclor^AcccMTipe, 
Qa[\Q        rFLOArjl\pe_p-n:kaacCM.OAT_Vcc1oi_Acccft.iT>pc. 
A]_V:ir      r5F[.OAT_T>pc_p,ickHiiic DE U>Al _V«tor_AccrSflTyre' 
A2_Var     DFLOAT_Type_pfl^kagenFL0AT_V(!C[or_AcccMTyp5, 

N2N_AddT  DTN-r Type_Pa-:kageDINT_Vccior_Acceii!:_Ti-p«  » 
DlNT_Typc_Packagc Dl\T_Veclor_lypc(l   11. 

M2MX_Adcr  Dn\T 'lypo^Package DJVr_Vcclor_AcceS'i_TiT>e  = 
DTVT_'T^ pe_T'ii^kHi^e DINT_Vcclor_Typf( I    1 \. 

N2>rr  Addr  D[Vr'Ty;ic_Pni:kiiec r3]Vr_Vccior_Acccss_Typc  - 

K2n   Addr  DIKT  Type  PnckiH     y:-:^.-^:'.-:-:-:-'"■:rr^'>7.'^;i.r.v. 
HINT T^'pcPflck 

heg 111 

Al  Var =newDrLOAT_'T^'p; 

L L L L_L_L_,_, ■ ■-^^ ■ rrrrrr,•',•',',".".-. —---^-W-\\\yyy,OTOT'X^iT'T'' '-'-■-■-^"-4 * 

!^-Jx ^ . ■-- M.^-r----- 

mhmmmimij3 

^^^^^^T^ 
^^^^^^ --iV^^    ™ 

nmr ^^J" 

:^^^-----  -l^'^^'llli^^^^^^^^^^ 
J^^      I 

Figure 1. GrTT Behavior Modeling of PGM Graphs. 
GrTT produces an Ada behavior model of a DSP 
program translated from a PGM graphical specification. 

* 

Vol. 2, 2nd. Qtr. 1995 21 

roushrv
128



Technology Base The RASSP Digest 

SPGN File 

i 
SPGN 

PARSER 

QI?        -NTIilNl', 
NI':i;INI\ 
Al  ;13ri,OAT  ARI-^AVrNin 
A3   DFLOAT AR«AY[NT2) 

IN'U'I'O    -QSAMP : FLOAT 
OUTPUT O  =0API: Ci-LOAT 
) 

I 
>|        GRAPH 

ANALYSIS 

ir."c/^|ff--,r->irT   P-, .-T-. 

« 

Validated 
Graph 
Object 

Behavior 
Specification 

yy. 

%SODEii']-l R_AVE 
PRIMITIVE-D   FIRIS 
PRJM^ns" =52^1 

UNUSED, 
W\'\. 
\, 
Al. 

THRESHOLD = X> 
PRIM_OUT =QAVe 

READ 
READ 
READ 
READ 
READ 

A2 
Al 
NT2 
NT I 
QSAM?Q004 

64 
48 
4 
4 

PRIMITIVE: MER MAG 

« 

Y WRITE 
Y READ 
YREAD 
Y WRTTI1 
Y CONSUME 
Y READ 
Y \S'TUTE 
Y CONSlfME 

wis 
wls 
QSAMPQ004 
C_N"1 
QSAMPQ004 
C_N1 
QRCQOOl 
C Kl 

PRTMTTIVE MER_F:R 

Y \^'R1TE C_X2 
YREAD QRCQOOl 

▼       t 

DOMAIN 
PRIMITIVE 
DATABASE 

Ada 
Behavior 

Model 

-PARATmON3 
- Auto Code Generalor 
-Version i).l 12/5/94 
procedure Partition3 is 

QsampQ  iFLOATType^packiige.FLOATVector^AccessTvpe : = 
FLOATTyps Package.FLOAT_Veclor_Typc(i..524): 

QrcQ   :DFLOAT_Tvpe_pr,ckage.DFLOAT_Vector_AccessType ' = 
DFLOAT_Typc_Package.DFLCAT_Vcctor_Type(] .524); 

QaveQ    :FLOATjrypc_Facliago.FI,OA'r_Vcctor_AccesyTypc: 
Qdifty     :FLOAT_Typc_packagc.l^LOAT_\cc!or_Acccss'Jypc: 
QaltQ       :CFLOAT_Typt;_pack:agc.CFLOAT_\'ectoi-_Acccg5Tvpe; 
Al_\'ar     :DFLOAT_Type_packagG.DFLOAT_Vector_Acccss7ype; 
A2_Var   :DFLOAT_Type_package.DFLOAT_Vector_AcceSiType; 

N2N_Addr  DINT 'iypc^Package.DINT_Vec:or^Acccss_Type ■- 
DlNTJIVpe_Package.DINT_VcctorjrVpe(I.'l); 

N2MX_Addr :DlN'r_'[ypc  Packagc.DlNTV^cior AcccssTyp; : = 
D[NT_Typc_?ackagc.DINT_Vecror_'iVpc(L.l); 

N2NT_Addr ;DTNT_Typc_^ackage,DINT_\cctar_Access_Type ■= 
DlNT_Type_Package.DENT_Vector_Type{l..l); 

N2D_Acidr :DrNT_Type_Package.DTNT_Vec-or_Acccss_Type : = 
DJNT_TypL;_Package.DINT_Vecror_Type(l..i); 

begin 

A IVar ■= new DFI.OATType 

2096 

2048 
4/ 
4/ 

2096 
2096 

4/' 
2096 
209f 

4152 
4/ 0 
4/ 0 
4/ 0 
4/ 0 
4/ 0 
4/ 0 
4/ 0 

Figure 2: Graph Translation tool Architecture and domain primitive 
Database Support. Ada behavior models are autocoded intermediate 
behavior specifications translated from PGM graphical specifications, 

hybrid simulation with a lower level 
structural model of a system component. 
The GrTT behavior model will simulate 
all behavior of the system not included in 
the lower level model. 

Figure 3 illustrates the execution of a 
GrTT generated behavior model of a PGM 
graph partition. Input and output vectors 
are shown above the single node graph 
with a GrTT generated behavior model 
primitive. The model may be generated 
with "taps'' specified for any internal 
partition queues the user may wish to 
view. Behavior of those tapped queues 
will be generated durins execution, thus 
providing the user with a virtual 
oscilloscope view of internal partition 
behavior. A demonstration version of 
GrTT will be completed by October, 1995. 
A beta version will be available for 
evaluation in the first quarter of the 
calendar year 1996. A commercial 
release, as part of MCCI's autocoding 
toolset, is planned for 1996. 

V. ' 

COQSAMP 

(])QRC 

The behavior models generated by GrTT may be used to fulfill several important HW/SW 
codesign functions. GrTT software partition behavior models may be used to validate target- 
specific autocoded executables. The single node graph with a GrTT behavior model 
embedded as its primitive may be used to validate the partition translation and generate test 
vectors for other target- specific translations of the team's autocoding process. GrTT behavior 
models may be embedded as equivalent nodes' primitives in an equivalent graph generated 
during software architecture verification in the team's codesign process.   Equivalent graph 

execution usin2 GrTT behavior 
models will support validation of 
application requirements capture 
through the translation process. Since 
Ada syntax is used in VHDL, Ada 
procedures implementing behavior of 
PGM graph partitions will be 
common for hardware and software 
implementations. Because of this, 
GrTT behavior models of hardware 
partitions may be embedded as the 
procedural part of a VHDL behavior 
architecture, thus automating 
generation of VHDL behavior models 
from graphical architecture 
specifications. GrTT may be used to 
support hybrid, multi-level VHDL 
simulations. GrTT will produce a 
behavior system model from a graphic 
specification that may be used in a 

C1 >Q AVE 

(l)QDIFF 

C1)QAFT 

% PR^^GMATA 
|1]QAVE, l-UQD 

PS IIIQRC, 
FP 

Figure 3. GrTT Behavior Model Exeeutin Output. 

Vol. 2, 2nd. Qtr. 1995 22 

roushrv
129



T... .1; 
RASSP VHDL 0f^ U ^...\^i^'■l> The RASSP Digest 
RASSP Working Group Discusses Terms and Taxonomies 

by Carl Hein, Leader, RASSP VHDL Modeling Terminology Workgroup 

During the "Workshop on RASSP VHDL Modeling" at the 
January RASSP Principal Investigators Meeting in Atlanta, GA, 
RASSP contributors discussed how to adopt a consistent modeling 
terminology and taxonomy. A consistent terminology will 
facilitate communication among the RASSP participants by 
providing a common language where everyone knows and 
understands the terms. Cuixently. many participants use different 
words for similar concepts and do not correspond on the meaning 
of common terms. 

At the PI meeting, a VHDL Modeling Terminology/Taxonomy 
working group composed of by Randy Harr, ARPA RASSP 
Program Manager, Todd Carpenter of Honeywell Technology 
Center. Carl Hein of Martin Marietta, Paul Kalutkiewicz of 
Lockheed Sanders, and Vijay Madisetti of Georgia Tech. was 
formed. 

This article focuses on the working group's discussion of ideas 
presented by Martin Marietta, and the group's attempt to take a 
first step toward developing a universally acceptable set of terms 
and taxonomy. 

1. Initial Terminology 
The working group suggested that current modeling terms that are 
generally regarded as useful and well understood by the RASSP 
community (shown in Table I) become the base of a common 
RASSP terminology. The working group will then refine the 
definitions and names, and add other terms as needed for RASSP. 

2. Initial Taxonomy 
The tenns in the table are grouped into several classes. System- 
level refers to models for which there is not a prior notion of 
hardvv'are or software implementation details. Other terms refer to 
the hierarchy of detailed hardware and software or describe 
general model content, such as behavior, function, and structure. 

And there are terms that refer to parallel hierarchies, such as the 
structural hierarchy. 

3. Comparing Previous and Proposed Taxonomies 
The working group compared three model definition approaches 
(shown in Table II) to draw parallels and identify consistent 
threads. 

The Eckerl and Madisetti spaces have two axes in common; their 
remaining axes do not directly correspond. Both have an axis for 
"Time'' resolution and a second axis that represents the resolution 
of "Values" in a model. Ecker calls the second axis "Value," 
while Madisetti calls it "Format." The Gajski-Kuhn Y- chart has a 
similar axis called "FunctionaLRepresentation." The third axis of 
the Ecker cube is similar to the "Structural-Representation" axis of 
the Gajski-Kuhn Y-chart, but has no corresponding axis in the 
Madisetti case. 

None of the remaining axes of the taxonomies directly correspond 
to each other. The Y-chart seems limited, and none of the methods 
appear to directly address the hardware/software codesign aspect. 

4. New Axes 
After examining the previous taxonomies, the working group 
discussed various types of axes that might more clearly represent 
model attributes relevant to a RASSP designer. Martin Marietta 
emphasized selecting relatively simple axis names and concepts 
that are quickly understood. This goal was to enable wide 
acceptance among new students and working design engineers in 
the industry. 

First, a common set of attributes were proposed to describe a 
model's resolution, both internally and externally, but 
independently. Distinguishing between the two views is important 
in selecting, using, and building models because it enables clarity 

Table I - Common Abstraction Level Terms 

Hardware Specific Terms: 
ISA 
Full-Functional  or Full-Beiiavioral) 
Bus-Functional or Interface-Behavioral) 
RTL 
Logic Level 
Switch Level 
Circuit Level 

System Level Modeling Terms 

Mathematical Equation Level 
Algorithm Level 
Performance Level or Network Architecture Level 
Functional 
Behavioral 

Other Terminology: 
Behavioral Model 
Functional Model 
Structural Model 

Structural Hierarchy: 
DSP System Level 
Chassis Level 
Board Level 
Module Level 
Chip Level 
Cell Level 

Software Specific Terms: 
Data Flow Graph 
DSP Primitive 
Subroutine Calls 
HLL Source Code Lines 
Assembly Code 

icro Code 

Vol. 2, 2nd. Qtr. 1995 23 

roushrv
130



RASSP VHDL The RASSP Digest LL---'   -.rl 

Table II - Prior work 

Source   - Taxonomy Axes 

Qajski and Kuhn:  Y-chart Funct. 
Rep. 

Struct. 
Repr 

Geom. 
Rep 

Ecker: Eckercube Tiininc Vaue View 

Madisetti:  RASSP Taxonomy Timing Format Vaue State 

and precision. Existing terminology often mixes attributes, as 
viewed from inside a model, from similar attributes, as viewed 
from outside the model. The previous taxonomies had a common 
set of attributes that applies to both cases. 

Next,Martin Marietta realized that what characterizes a model in 
every case is its relative "resolution of details" of some type or 
another. This means that the axes should all be in terms of 
resolution. The group identified four orthogonal aspects that are 
described in various degrees of resolution: 

1) Timing detail 
2) Value detail 
3) Structural details 
4) Functional details 

The proposed taxonomy ended up with eight 
attributes to describe a model's level of description: 

1. Internal Resolutions: timing, value, stmcture, and 
function. 

2. External Resolutions:  timing,  value,  structure, 
and function. 

Note that this attribute set does not describe how a 
hardware model appears to software. The eight 
attributes do not address the hardware/software 
codesign aspect. To remedy this, the group proposed 
a ninth axis to represent the level of software 
programmability of a hardware model or, 
conversely, the abstraction level of a software 
component in terms of its complementary hardware 
model where it executes. Figure 1 shows the axies 
with example resolutions. The text box explains the 
corresponding axes in greater detail. 

The working group discussed several examples of 
mapping common model terms onto the axes. Each 
model type was easily distinguished from the others 
on the new axes. Though outside the scope of the 
meeting, working group pardcipants discussed 
positioning model types on the axis. The next step in 
the consensus-building process is the concise 
definition of the modeling terms relative to the axes. 
5. For More Information 
RASSP participants are encouraged to consider and 

comment on the terms and taxonomies presented here, and to offer 
terms that were overlooked. Although not completed, the group's 
intention is to assign concise definitions to the listed terms. For 
details, please contact Carl Hein by phone at 609-866-6541 or by 
email at chein@atLge.com. 

References 
[1] Ecker, W. and Hofmeister, M., "The Design Cube - A Model 
for VHDL Design Flow Representation," Proceedings of the Euro- 
VHDL, 1992, pp. 752-757. 

Low Res 

I    ► 
Machine      Micro    Assembly    HLL Statements      Primitives      Major Modes        Not programmable 
Code Code      Code ( ADA, C ) ( Subroutines ) (Search, Track )   ( Pure SW og HW ) 
0xb3d8 ^      (fmul rl, r2)     (i := i+1;) (FFT(a,b,c)) 

(Idmar; opA rl; opB r2; add; dst muxA) 

{ Note: Low Resolution of Details = High Level of Abstraction, 
High Resolution of Details = Low level of Abstraction) 

Figure 1. Proposed Taxonomy 

Vol. 2, 2nd. Qtr. 1995 24 

roushrv
131



RASSP VHDL The RASSP Digest 

Further Explanation of Axes presented in Figure 1. 

Time Resolution 
The Time Resolution axis represents the resolution of events that are modeled in terms of their time scale. Resolution is analogous to precision, which is to be 
distinguished from accuracy. For instance, a model's time resolution may be stated in terms of the starting and ending times of major system functions, where each 
function spans thousands of clock-cycles. In such a case, we say the model resolves events down to the major function level and not down to the clock-cycle level, even 
though the accuracy of the starting and stopping times may be specified accurately to within one clock-cycle. 

Value Resolution 
The Value Resolution axis represents the resolution with which values are specified in a model. Again, note that resolution is analogous to precision, as distinguished 
from accuracy. For instance, both 3.09 and 3.10 contain three digits of precision, yet the later represents the value 3.1000 more accurately. Similarly, a 3-bit hardware 
register containing the value negative-one (-1) may be modeled with high resolution in terras of its actual two's-complement binary "Obi 11" (or signed-magnitude 
binary "OblOl") form, or it may be modeled more abstractly as a signed integer "-1" or even floating-point value -l.OE+00. All are equally accurate, but the first 
instance most precisely resolves the value to its form as actually contained in the target device. The more abstract the representation of a value is, the lower its 
resolution of implementation details for representing it. 

Structural Resolution 
The Structural Resolution refers to the level of information detail a model provides about how the modeled component is constructed out of constituent parts. For 
example, one model of a processor chip may have no information about its internal structure. A second model of the same chip may specify its structure in terms of five 
major blocks. A most detailed model might specify the internal structure in terms of the interconnection of specific logic gates. 

Although more abstract, the second model is perfectly accurate as long as the five major blocks can be identified as connected in the gate-level model. This 
understanding of structural resolution holds for both external structure and internal structure, as described in this example. For instance, a port on an abstract model 
may be a single composite value with many fields, but no information about the physical structure. A high-resolution model would specify the ports' structure in terms 
of bit-widths, address and data bus, and hand-shaking lines. 

Functional Resolution 
^^ The Functional Resolution axis refers to the level of detail with which the functionality of a component or system is modeled. For instance, a highly abstract model 

might specify the function of a digital filter in terms of its mathematical transformation, while a high-resolution model might resolve the function in terms of the 
boolean operations that implement the target device. Both models can be functionally accurate. 

In the extreme, the most abstract (or low-resolution) model might contain no functionality at all. As with internal functionality, the external functionality specifies the 
interface behavior of a device's (or system's) ports. 

Software Programming Resolution 
The Software Programming Resolution axis refers to the level of granularity with which a hardware component may be programmed. More accurately, it is the level of 
instructions that the model of a hardware component interprets in executing target software. 

For instance, a network performance model only interprets instructions on the level of DFG primitives, such as MATINV, VMUL, or FFT. Such primitives often 
represent hundreds of lines of source code, but are interpreted as a single instruction in terms of a time-delay by a network performance model. An ISA model 
interprets individual assembly instructions. In this sense, the ISA model is programmable at a much finer granularity, or higher resolution, than the network 
performance model. 

At the lower extreme, a model of a micro-code programmable processor is programmable at an even lower level of granularity than the ISA model, since it allows 
control of individual register and multiplexer structures within the device during execution of an assembly-level instruction. At the opposite extreme are software 
design components or non-programmable models, since neither in itself interprets programmable instructions. 

Vol. 2, 2nd. Qtr. 1995 

roushrv
132



The RAISP Digest is 
Prograin and rapid sf stems 
or Dr. \|iay tsetti. 5=-^^ T^ Ji* 

I"' ] 

Dn Anthony J, Gadiept 
Phone: i03-76#4082 
FAX: 803-760-3349 
Email: ^dient@scra.ir 
scRA :*-- 
5300 International Boulevard 
North Ghariesijn, Sai94181 

Kristi Adams 
Managii^ Editor 
Phone 8#-760^3376 | 
Email: a^amsk@scra.or 

ing of Application Spieeific Signal Processors 
quarterly and provides information lor andl about the RASSP 

development.   For more infbrmatiton, contact Di; Anthony Gadient 
attlie:addresses below: 

Dr. Vijay K.Madisetti 
Phone: 404-851-9830 I I 
|AX: 404-853-S171 

rtl: vkm @ #,gateidli.edu 
gia Tech 

Seh, of Flee. & Computer Eng. 
i,GA3#32- 

^«.^ 

W' 

RASSP 
ARPA (ESTO) 
-Randy Harr 

ARMY 
-Randy Reitniej er 
-ArneJBard 

MA\'Y 
-Ingham Mack (ONR) 
-Gerry Borsuk (ONR) 
f-Joelilliaiiv(NRr.)^^:i¥ 
-J. R Letellier (NRL) 

AIR FORCE 
-Stan Wagner 
-JohnHines 

' ' -/!r'<i'-^'^^^'^f=S'-''-'^"i.- 

Program 

Adminislrati^ COTR, Martin Marietta 
Ifechnicyl COTR, Martin Marietta 

Administratlvl COTR^ LocKleed^ajIders 
Technical COTR, Lockheed/Sanders 

Educator Facilitator iand Technology Base 
:C0TRS :»/■/ 

■■■J  ^•■.<'M•^   • 

Vol. 2, 2nd. Qtn 1995 26 

roushrv
133



;->H' 

I I I i I I I 
Ck:1^Hiii«;irirri tivryii-uitoiA-.    i'l «: Tll',>»H   5'4-- VI - 

L:xriy->jXvj. 
j "AviiA"' ^"^ii 

-.i- ^ ■i^^; 

^;*^::^".i^*J;■^f .-. s^    ■■■■<^> 

TM RXSSF Educatidil & Ficili 
V    i 

?^^->^^^ 
ly^ >A-^        ^>H^v^> 

Eich 
offeitwi short courses on kly 

^    '^^ 

^>   ^?' 

iTSeSihlS 
. ;;JA:; 

^> I^^S'W-^ 

-On exfflpcisei'. 
^KW^- 

^^^ 

-:     -^^ \v 

'?=^J 
-^,.^. 

x-^ 

^.^■S ^i>^ 

■■f^—> 

a-.^i^: 

BP^iirqmpmg^ mnMJ^Iffil^pigMjmlude: ^^v 

.ri. EnroUttient #iUfbe limited to 20 attend^s per course. A registration fee of 

>A   >^vJ^   V 

^   (^ \i     'f?i-i   i t;^:^s/^ 

■fv^S    v> 

y-^^* 

i&irsfeiiiyatertiK;aiwi: 
itherlSamiiMStratiM expenses. Top^egisllr for ime 

>vS> 

,e<0iiirsef yoil'caft 
phon£It^SSi^:'E&ft';a«i8035i60-3ll)^ E-xftailulM cotnises@rassp.scra.Qrg 

m- •^    v-^r^ 

^  r    -v^^ 

':^^    y^ Of re er tIie'V»tki:llHe W#^at litll://raip*W^^ 
^^^^ 

A i^^ V 

^^>^v^^ 

S^ 

ses. 
>t-v 

'^: 

^^. 

ti^<^ 

,ii,. 

..^^> ^ 

^i^.A:r. 

r.-^.vwir •. 

•^  r ^VA 

■^  ^_^■^^ 

X^    \        ^^> 

r^ 
lu^i 

i'^    i-- 

^V^ 

^S    ^v^ 

■'^ 

X^    .^i> 

r-r^i>^"s 
■"-" ■ '^ f >^ > 

ver 2;«2M:iQii5i9 
^■^ 

■^* ^ ^A-.-^ ,S-S A-S > 

t^^^&' 

^.v: SJ\\*>^ > 

/^ 

<h-^^-^.' 

^.^ 

i V.       ^ 

>i^ 

■"-■^i 'i'.i •^. ^^-r. ^rryjuyy^TA ^iS^ 

= ?^i 
27 

>S    ^ ^^ 

^^i^^^ ^■x^LWJiiiLt   ;Si     ^ ;!Ly>^S>?>^:jo;>jj;^>,>^ii>^. ■> >j\ «J«-S »» X >jtf>l-OV^rl-^«^^«^;^-rri-» ^^i *i(-^.ii^' 'l^iS   ^iM^^iti:^«^:i*-M*.^-!^^ 

roushrv
134



X--: 

:y^..^^.j:Wii'.ij'3.'^\.^j:':^':, ..'::.L!S!Bafii^3i' iiiii 
7v^"\3^vt,V'^ 

2nd Annual RASSP Conference 
For More Information: Mark 
703-351-8463 

July 24-27,1995 

RASSP Short Course 
Rapid Prototyping Using VHDL 
For More Information: 803-760-3376 
WWW http://rissp.scra.org 

ilugust 7-11,1995 

RASSP Short Course ^"§11^ 22s25,1|95 
Algorithm and Architectural Design and 
Prototyping of Embedded DSP System! 
For More Information: 803-760-3376 
WWW http://rassp.scra.org 

yiUF Conference     | 
For More Information: Pam Rissman 

15-329-0578 or fax: 415-324-3150 

October 15-18,1995 

CALS EXPO October 23-26,1995 
For More Information: Dn D. Brent Pope 
202-775-1440 or brentpope@delphi.com 

DSP World Expo 
For More Information: Ann Harris 
617-891-6000 or1)SPWorll@ world.std.coni 

October 24-26,1995 
m-k,^^'-' 

Arlington, VA 

Boston, MA 

Phoenix, AZ 

. ■■::-       ^ 

ji 

Boston, MA 

Long Beach, CA 

'"i 

Boston, MA 

roushrv
135



R
A

S
S

P
-

R
ap

id
P

ro
to

ty
pi

ng
of

A
pp

lic
at

io
n

S
pe

ci
fic

S
ig

na
l P

ro
ce

ss
or

s

R
A

S
S

P
D

ig
es

t RASSP at 24 Months
Vol. 2, 3rd. Qtr. 1995

In This Issue
2 RASSP at 24 Months

2 The Second Annual RASSP Conference
A Mid-Program Review

3 Second Annual RASSP Conference,
Synopsis of Session 2, "Introduction to

RASSP and 2nd Year Overview"

4 Sanders RASSP Program Overview

20 Lockheed Martin Advanced Technologies
Laboratories RASSP Second Year Overview

Methodology

ARPA Tri-Service

Reinventing
Electronic

Design
Architecture Infrastructure

RASSP

c

roushrv
136



We welcome the readers to this special issue of
that is devoted entirely to the achievements and

accomplishments of the RASSP primes as documented in the
Second Annual RASSP Conference, held between July 24-27,
1995 in Crystal City, Virginia. RASSP is now 24 months old
with a wide variety of accomplishments to date. The
demonstrations and presentations at the RASSP conference have
clearly shown that 4X is within reach, commercialization of
RASSP technological breakthroughs is occuring, and that users,
vendors, and suppliers are accepting executable specifications,
virtual prototyping, VHDL-based system design automation,
reuse libraries, enterprise integration and workflow systems, and
virtual corporations as ideas that are no longer constrained to the
drawing board, but whose day has come.

As RASSP enters its third year, the RASSP Educator and
Facilitator (RASSP E&F) program has offered short courses and
numerous management tutorials to a variety of industrial
organizations. As the transition phase of the RASSP E&F
program ramps up, the RASSP E&F team will help to ensure the
successful transfer of the RASSP technology by continuing to

The RASSP
Digest

facilitate the successful progression of organizations through a
four phased technology transfer process of (1) developing
awareness of the RASSP technology, (2) generating
understanding of the benefits of the RASSP technology, (3)
working with the RASSP primes to support the use of RASSP
technology on selected pilot programs, and (4) obtaining
organizational commitment to RASSP by incorporating the
RASSP methodology and technology into daily business practice
as the ultimate goal.

This special issue of the indicates that the time is right for
phase (3). As the old adage goes, the "proof of the pudding is in
the eating." for there is a lot to in this issue.

Digest

Bon appetit, Digest

The Second Annual RASSP Conference -- A Mid-Program Review
Randy Harr

The second annual RASSP conference, recently held in Crystal
City, Virginia from July 24-27, 1995, served as a turning point for
the RASSP program in many ways. First, now that the program
has been underway for two years, there were significant results to
show. Second, it was the first real chance the community at large
has had to look at all facets of the RASSP program in one
location and see the breadth and depth it has. Last, it was the
halfway point of the program and served as a marker to look back
at where we have come from and begin to focus on the realistic
results of the program.

The conference consisted of three major activities: a detailed
exhibition and demonstration hall, a concurrent technical
program, and the tutorial program. Additionally, side "birds-of-a-
feather" meetings and ad-hoc interactions served to focus many
researchers in the community to discuss the problems they
overcame and the new ones they face.

The expanded exhibition was a highlight for this year's
conference as over 300 attendees saw demonstrated the latest
advances in tools for designing large DSP systems and the results
of applying the tools to some real-world design problems. A
theme throughout many of the booths was the results of the first
benchmark -- the architecture design and virtual prototype of the
SAR image formation processor. From the executable
specification to the detailed virtual prototypes, people were able
to follow the design process of a high performance, parallel DSP
implementation. Also highlighted were the many booths from
the RASSP technology base development and the corollary, non-
funded, commercial market for DSP systems. Overall, the
exchange was very beneficial for the RASSP and DSP system
community.

The technical program concurrent with the exhibition was
focused around ten major themes. These themes were the
introduction to RASSP and its second year accomplishment,
demonstrations of the RASSP process, projecting RASSP
benefits, systems performance modeling, HW/SW development
processes, VHDL prototyping, benchmark results, model year
architectures, design process management and novel design
approaches. Each provided in depth coverage of development
details of the front to back end design tools and processes.

In addition to the technical program, a tutorial day focused on
providing in depth information about specific, important topics.
The topics were Ptolemy, RASSP Design for test (DFT)
methodology, and VHDL-based, top-down virtual prototyping for
large DSP systems. Ptolemy is a significant new develop-ent in
the RASSP program under the guidance of Dr. Edward Lee of
the University of California, Berkeley. The results to date of this
co-funded effort (the industry funds the other half) have already
had a wide ranging impact with major EDA vendors, commercial
mixed-signal developers, and the research community. The
tutorials and the conference as a whole represent a significant
effort within the RASSP program to focus on adoption and
proliferation during the program development.

The first day of the general sessions and exhibits was also
focused into an overview day which was separately promoted and
drew an extra 75 attendees. It started with a keynote address by
Dr. Robert Kahn, President, CNRI, and one of the founding
developers (both in industry and at ARPA) of the ARPAnet and
related technologies. His informative talk on the infrastructure
needs of the National Information Infrastructure provided some
insight into the methods being taken to re-build the base of the

Vijay K. Madisetti
School of Electrical

& Computer Engineering
Atlanta, GA 30332-0250

vkm@ee.gatech.edu

Dr. Anthony J. Gadient
SCRA

5300 International Blvd.
N. Charleston, SC   29418

gadient@scra.org

2

RASSP at 24 Months Vijay K. Madisetti & Anthony J. Gadient

roushrv
137



Mark Richards
GA Tech

SEAL/RSD CCRF
Atlanta, GA   30332-0800

mark.richards@gtri.gatech.edu

The Second Annual RASSP Conference, Synopsis of Session 2,
"Introduction to RASSP and 2nd Year Overview" Mark Richards

quickly expanding Internet so that virtual enterprises, large scale
design, and commerce can occur over this shared and open
resource. Following was an overview of the RASSP program
which highlighted the early insertions and success of applying the
RASSP technology to real system design problems.

Specifically, RASSP over the past year has been successful in the
design of a back-end IRST companion to the ARPA sponsored
Airborne InfraRed Measurement System (AIRMS) -- a high
resolution IR detector and test station. By simply applying
VHDL-based virtual prototyping to this project they realized a
2.2x overall savings in design time -- mostly coming from a very
short HW/SW integration and test activity. This demonstration (a
model year 0 excercise in IRST development of which you will
see more in the coming years) was conducted over a virtual
enterprise consisting of Hughes Aircraft (CA), Motorola (AZ)
and Sanders, a Lockheed Martin Company (NH).

Additionally, a prevalent highlight was the UAV SAR image
formation benchmark in which MIT Lincoln Labs developed an
executable specification (in VHDL) and a real-time data
source/sink. Two contractors then went off to design and build
solutions -- first virtually and then in real hardware and software.
The virtual prototype was used to assess performance, verify
design criteria and validate critical software pieces before
actually committing to hardware or full software development. A
third contractor (Mitre) simply took the software specification
and ported it to an Intel Paragon multi-processor computer to
assess the viability of using general purpose, high performance
computing architectures for this type of DSP algorithm. You are
encouraged to get a copy of the proceedings and learn more about
this exciting project.

The RASSP program, for the first time, is putting VHDL to use at
all layers of abstraction in the design process. The significance is
that this is the first, real documented case of using VHDL from
executable specifications through performance analysis, system
level modeling and down to RTL/Gate level synthesis -- a feature
that has been touted as a capability for many years. A significant
result  of  the  RASSP  program  is  the  putting  into  practice  the
process and tools to support using a single language for [digital]
functional specification from the requirements down to the final
gates of the hardware. It is requiring real issues to be addressed
such as how to deal with algorithm and software development in
a language based specification refinement environment and how
to define layers or stages in the design process at which models
or detail should be defined.

Much is going on in the RASSP program and will continue to
become apparent over the coming year. New, linked architecture
analysis and design tool suites, taxonomies for modeling in
VHDL at many abstraction levels, process modeling/
tracking/metric tools and support, model year architectures for
simpler upgrades, design for test, links to manufacturing, more
professional development and university courses, and many
others. Please make sure to attend our third conference next July
to see the developments and provide additional insight to the
team to assist them in solving your problems.

The Second Annual RASSP Conference The DigestRASSP

The two RASSP prime contractors, Lockheed-Martin Advanced
Technology Laboratories (ATL) and Lockheed-Martin Sanders,
have the daunting job of developing a well-founded vision of the
methodology needed to achieve real improvments in the DSP
prototyping  process,  creating  and  assembling  the  technologies
needed to implement the vision, and demonstrating that it works
in applications of real importance to the Department of Defense.
The intent of this first technical session of the conference, titled
"Introduction to RASSP and 2nd Year Overview," was to provide
the attendees with a mid-term snapshot of the two development
efforts: their vision, the new capabilities developed and
demonstrated to date, and the steps still needed to realize the
RASSP 4X goals.

Bill Hood, Sanders RASSP Program Manager, presented the
overview of the Sanders effort. Mr. Hood emphasized the critical
role of top-down design and VHDL to build virtual prototypes of
new DSPs as the key methodology concept, attributing a 2.2
speedup in design time to these techniques in a flight hardware test
case. He went on to describe Sanders' ENTIRE design
environment and tools suite, with special attention to the role of
data management tools and to the Sanders experience to date in

establishing and working in a "virtual corporation" environment.

The ATL effort was summarized by its program manager, Jim
Saultz. The ATL development approach has emphasized
enhancing and integrating best-of-class technologies required to
realize a RASSP design environment. This approach has already
benefited the general digital design market through a number of
new commercial tool offerings from new and established EDA
companies. Mr. Saultz described ATL's efforts in defining an
effective  approach to DSP  architecture that would  support  the
RASSP goals of hardware/software codesign and model year
product upgrades and then mapping this approach to EDA tools.
Like Sanders, ATL stressed the importance of data management in
building a complex RASSP design system.

Randy Harr
ARPA

370 North Fairfax Road
Arlington, VA   22203-1714

rharr@arpa.mil

3

roushrv
138



Abstract

1. Introduction - RASSP Works!

1.1 How Will We Reach 4 X and
How Are We doing So Far?

,

,

This Sanders-led team of Motorola, Hughes and ISX has met all
of the primary RASSP program objectives during the first two
years of the program. This paper reviews the goals of the
program and the unique ways in which our team is meeting them.
The flexible methodology and design environment are described
along with the progress made in creating a standard enterprise
framework. The progress of the demonstration and benchmarking
effort  is  detailed,  as  is  the  work  towards  proliferation  of  the
RASSP process. The emphasis on VHDL and Ada-based virtual
prototyping and its impact on Model Year Upgrades is discussed.
The creation of the Virtual RASSP Corporation and the special
Internet communication protocols developed to support the
program are reviewed. Accomplishments in each of the program
areas are reviewed along with specific goals for the next year of
the program. Particular emphasis is placed on our Model Year 0
demonstration in which we designed, fabricated, and tested
Infrared Search and Track (IRST) flight hardware in less than a
year. Comparison of the time and resources required to perform
Model Year 0 with a comparable non-RASSP development
demonstrates that we have already achieved a factor of more
than 2.2 X improvement in development time and development
cost.

RASSP is a Weapon System Development Process

RASSP is a DoD program to develop a process that meets four
ambitious goals. Over the four-year life of this ARPA project the
cost and development time of upgrading and replacing embedded
digital signal processors is to be reduced by a factor of four (4 X).
At the same time the program is to provide for the marked
lowering of life cycle costs and the development of weapon
systems that work correctly the first time. At this halfway point of
the program it is appropriate to measure progress toward these
goals.

We have chosen four major approaches which, when successful,
will result in exceeding the goals of the RASSP program. In the
order of most contribution to least, these are the goals:

-- By
enforcing the use of a and using

and VHDL for all design work, we are able to build
full-fidelity for weapon systems
processors. We have

process methods.

-- The intense cultivation of reuse as a
philosophy, particularly with respect to software modules

Use “Top-Down” Design and VHDL Exclusively
top-down design process

Ada
Virtual Prototypes

designed, built, integrated, tested
and delivered 3-D IRST flight hardware in 11 months
at a cost of $3.5 Million. This is an improvement of
more  than  2.2  X  in  speed  and  cost  over  traditional
“waterfall”

Emphasize Reuse

in Ada and hardware models in VHDL, has already begun
to show reductions in design time, along with concurrent
reductions in cost.

which includes new tools
especially developed to promote reuse.

is demonstrating today a
Instead of the

hundreds of encapsulations or integrations normally
entailed in tying dozens of EDA tools together, ENTIRE
needs only one per tool. by
providing easier access to the many component libraries
available today without necessarily having to use the
specific tools normally associated with them. ENTIRE
also enables our team to perform

--
will

allow industry-standard tools such as PGM, MATLAB,
and Ptolemy to be easily used with each other and with
other EDA tools. This helps ensure that the weapon
systems that are built using RASSP

These additions are necessary to meet
RASSP first-pass quality goals, although generally we do
not consider improvement of individual tools as part of
our RASSP process.

In the first 18 months of the program, we have started (and in
some cases completed) six major processor development
programs. These range from full-custom DSP hardware
implementations to custom Ada software upgrades on COTS
general purpose processors. We have also installed our RASSP
ENTIRE environment at five sites outside the program, and are
supporting these organizations as they learn to use it. Three other
sites are scheduled to receive RASSP ENTIRE by January 1996.

-- During the last year,
we designed, built, and installed a processor system on an
ARPA aircraft. This system is an upgrade to the signal
processor in the ARPA Advanced Infrared Measurement
System (AIRMS).

Based
on independent measures this is 2.2 - 2.7 times faster and
is about 1/3 the cost of previous industry standard effort.
After building the “Virtual Prototype” in software, the

Reuse is supported by our RASSP
Design Environment (RDE)

Reuse will
contribute about 1.6 X to the 4 X goal.

Produce an Integrated Design Environment -- ENTIRE
(Environment and Tools for and Integrated RASSP
Design Environment)
breakthrough in tool integration.

ENTIRE encourages reuse

distributed work using
geographically separated Integrated Product Teams
operating as Virtual Companies. We are on track to
demonstrate at least a 1.5 X improvement with
ENTIRE.

Improve the Process The appropriate addition and
extension of system tools in the ENTIRE suite

meet the users’
requirements, work right the first time, and are in turn
easy to upgrade.

Flight Hardware in 11 Months

This development took less than 11
months and cost less than $3.5 million (Figure 1).

New Hardware Development Programs Started

,

,

,

1.2 What Weapon Systems Are We Using RASSP
On Now?

Sanders RASSP Program Overview

W. Hood, M. Hoffman, J. Malley, C. Myers, R.Ong, E. Rundquist, L. Scanlan, F. Shirley, D. Uyemura

4

The DigestRASSP

roushrv
139



FIGURE 1.  RASSP Demonstration of IRST hardware for
AIRMS aircraft took 11 months,  and improvement over
standard practice of a factor of 2.2 in development time.

Demo Complexity
Baseline

Req
Def

Prelim
Design

Detail
Design

E&MD Build
& Integration

0 6 12 18 24 30 36

RASSP Demo
Achieved

11.1 Months

24.2 Months

2.2 X Improvement
in Development Time

hardware was built one time and checked out and
integrated in 6 weeks. Total board checkout time was less
than two weeks of these 6 weeks.

-- Because of the
reusable way (we call it “state-of-the-shelf”) in which
RASSP approaches upgrades, we will be able to use much
of the AIRMS work to replace seven processor boards in
the F-14D Infrared Search and Track (IRST) weapon
system with 2 identical boards. We will demonstrate this
reduction in board count and complexity with flight
hardware in 9 months, beginning this month. The current
functionality of the IRST will be maintained.

--
Beginning in March 1996, we will apply the RASSP
process to upgrading an F-14D IRST to include the most
advanced of the new US Navy algorithms.

-- RASSP process and technology will be
used to upgrade the F-15 radar signal processor. This
program which starts in July and has the endorsement of
the F-15 SPO, will upgrade the APG-63U. The Navy F-18
radar program "piggy-backs" an upgrade to the APG-70.
This processor upgrade will take 18 months and will result
in a a potential reduction in life-cycle costs of more than
$300 million. Flight test is scheduled in early 1997 before
the end of the RASSP contract.

-- We have
successfully concluded a RASSP-based signal processor
design contract for the US Navy. This acoustic program is
called ACOMMS. Synthetic Aperture Radar Image
Processor Built, Multiple Applications Found -- during the
past year RASSP developed improvements to a Synthetic
Aperture Radar (SAR) image processor designed as a
payload for an unmanned air vehicle. This is an upgrade
of a radar designed by Lincoln Laboratory. We are half
way through this development which will produce
working    hardware    in    12    months.    Two    classified
applications of the design are being pursued.

-- Sander’s Advanced Engineering
and Technology Division has won the JAST SAVE

F-14D IRST Hardware Upgrade

F-14D 3-D IRST Systems Engineering Started

F-15 APG-63U Radar Upgrade USN F-18 APG-70
Radar Upgrade may Follow, Savings could Exceed
$300 Million

US Navy/ARPA Fund ACOMMS Program

JAST Uses RASSP

,

,

,

,

,

contract which includes funding for installation and
support of the Sanders RASSP design environment in Fort
Worth and Georgia for use in the development of the
aircraft systems on the JAST program.

-- Our design
environment has been installed at Woods Hole
Oceanographic Institute, Sandia National Laboratory, and
the Johnson Space Flight Center. It is currently scheduled
to be installed at Lincoln Laboratory and the Wright
Aeronautical Laboratories in 1995. Beta sites of our
process are now being offered to the US defense industry
without restriction or limitation.

In order to meet the goals of the program, a well-defined
approach to implementing RASSP is required. This approach is
based  on  four  equally  important  program  pieces.  The  first  of
these is to provide a                                                                    for
users of the process. This process can then be easily adopted by
the DoD industrial community. This allows a user to keep
operating with those tools with which he is familiar. The second
part of our approach is based on the provision to the user of a
development paradigm which supports

which are spread across
teams. This part of our approach includes tools for

remote, cooperative work. Also included is a flexible
environment which includes the incorporation of a

for access to tools.

One of the central functions of our RASSP approach is the
The RDE along with

the EDA tools for a specific application becomes
. Our

development of the RDE and ENTIRE is aimed at solving the N-
squared problem normally found in either encapsulating or
integrating large numbers of tools to each other. Along with this
goal go two more that are equally important. Finding a way that
allows easier access to the huge number of commercially
available data bases (component as well as VHDL and Ada), and
controlling the configuration of programs developed in a
distributed environment are major issues that our program is
addressing.

Each of these "builds" is evaluated and used
by the rest of the program to do real work. Each year we formally
release the RDE for external use. Concurrently with the
build/release process we begin the development of the next
release. This lets all of our team, our users and our customers see
where we expect to be in the next year.

The RDE development effort uses previously
developed RDE utilities in conjunction with the RASSP process
of software development. This release of the RDE contains a
common set of infrastructure services for use in a wide range of
applications:

ENTIRE Finds New Uses and Users

flexible methodology and environment

large distributed
environments geographically
separated

pay-per-use
concept

RASSP Design Environment (Figure 2).
ENTIRE

(Environment and Tools for an Integrated RDE)

We are building complete versions of the RDE and ENTIRE
every four months.

The release being used at this conference is the fourth build of
the RDE.

common desktop, automatic metrics collection,
metrics analysis, reuse utility, technical review utility,
problem reporting utility, log utility, and remote data access.

,

2. Approach

Sanders RASSP Program Overview The DigestRASSP

5

roushrv
140



The RDE is being tailored for use on our Model Year 1
demonstration to include domain specific tools, translators,
libraries, and process support. The fully populated and tailored
design environment is described as the ENTIRE concept. Our
plans and progress on the RDE are reported in detail in
“ENTIRE,” a paper by Ong, Costantino, and Philips presented at
this conference.

Aerospace, and ISX.

Integrated Process and
Product Development Teams (IPPDTs)

Systems, Design Environment, Demonstration, and
Proliferation.

“single responsibility, shared
execution.”

erase the geographical
distances

video conferences between desks
share

workstation screens, send encrypted files fire-wall
protected servers

through various ftp
protocols.

model year development

virtual prototyping

The technical work on the program is split
nearly equally between Sanders, Motorola and Hughes while ISX
has a small but significant role. These four companies have
widely varying styles and business cultures. They are also spread
out all over the United States. As a result, we have been forced to
confront the issue of creating first a large virtual program and
finally to face the challenge of creating a large virtual
corporation.

Because of the success which Sanders and the US Air Force have
had on the F-22 program with the use of Integrated Product
Teams, we chose to use a similar management technique on
RASSP. Our program consists of four

. These four teams
include

Sanders leads the Systems team as well as being
the prime contractor on the program. Motorola has the lead
responsibility on the Design Environment, while Hughes leads
the Demonstration team. ISX has the responsibility for the
Proliferation effort. All team companies share each of the team’s
tasks. This leads to the concept of

This has worked well on the RASSP program.

Typical of the innovative ways used to
separating the team members is the extensive use of the

Internet. By using T-1 lines throughout the team, we are able, for
example, to carry on separated
by thousands of miles. At the same time engineers can

between
around the country, and can access our

MOSAIC server with its homepage directions to current RASSP
activities. Concurrently, tools sited at one team’s location can be
used remotely, or can be transferred

The Sanders team has set up a tiered ftp site for
document access. Various levels of security and access are
available, ranging from “Sanders only” through “Sanders plus
Team” to “Team plus ARPA/Triservice Steering committee" to
"Unrestricted.” This ftp site uses a document data base system
that allows the customer access to more than 5000 documents
created in the first half of the program, including all deliverables.
This allows timely and cost effective review and commenting by
the customer. It lowers delivery costs to zero for these reviews,
and allows "final" delivery to take place instantaneously. Having
the USG on-board as part of the team (including DPRO and USN
contract monitors) opens the program, prevents surprises, and
reduces costs.

The Sanders methodology is definable by looking at its four
fundamental parts. The first of these parts is a systematic and
codified top-down design process integrated into an iterative
approach to . A second key attribute of
the methodology is the emphasis on completing the
hardware/software trade-off analysis before the system
architecture selection.

The last two parts of the methodology are closely linked. We use
a technique in which a complete VHDL
model is developed to reduce integration risks. The last piece of
our methodology involves delivery of a complete description of
the system as a VHDL model. This includes source code for all

2.2 RASSP Methodology

The Sanders team has embarked on an ambitious Demonstration
plan to execute three model year builds of flight hardware using
our RASSP process. These Demonstration Model Years will add
functionality to

The first of these Model Years is complete
and has resulted in

and a cost of $3.5 Million. The next model year will
result in replacing seven different boards from WRA-2 in the

processor with 2 identical boards while maintaining
the current 2-D functionality. The third model year will use the 5
empty slots to add to the F-14.

In addition to the Demonstration, Sanders is executing a series of
which measure the process improvement of our

approach in an incremental way that makes full use of metrics as
a gauge of progress. The first of these benchmarks involves the

The second set uses
RASSP to

The fourth part of our approach is to
widely. dedicated to the proliferation of RASSP. An
example is that the original concept of a facilitator on the
program came from . Proliferation to a range of users
provides a way of verifying our process. also give us a
way  to  get  feedback  on  the  strengths  and  weaknesses  of  our
process.

In order to meet the goals of RASSP and to execute the approach
that we selected,

two Infrared Search and Track (IRST) signal
processing systems.

first-pass AIRMS flight hardware in 11
months

F-
14D IRST

full 3-D capability

Benchmarks

virtual prototyping of a Synthetic Aperture Radar for
application to an Unmanned Air Vehicle.

upgrade the signal processing in the F-15 and F-18
radars.

proliferate the process
Sanders is

Sanders
Beta sites

Sanders teamed with Motorola, Hughes

2.1 Program Organization

messages translations services

Process Management
Project Management
Configuration Management
Requirements Management

Design/Product Data
Models
Libraries
Documentation

Tool
A1

Tool
A2

Tool
An

Common Desktop

Core Tool Capacity

Repository:

COTS or Custom Tools:

Communication Layer:

FIGURE 2. The RASSP Design Environment allows the
insertion of either COTS or custom tools into an open
framework which supports communications and
design management.

The DigestRASSP

6

Sanders RASSP Program Overview

roushrv
141



programmable processors in the design. All source code is
written in Ada.

The emphasis on virtual prototyping improves the quality of
design, documentation, and error checking. This reduces mistakes
that can have costly consequences which do not appear until late
in the development cycle. Our objective in RASSP is to produce
a in which a design is
successively refined as a growing, verifiably consistent data
package over the course of its development. The initial functional
requirements are captured and ported into a simulation
environment

This is refined until it becomes a
complete                                                 This acts as a test bench
and also provides the requirements for the next lower level of the
design. This top-down development process is used over the life
cycle of a signal processor in an iterative way. These iterations
allow for continuous improvement, i.e., RASSP Model Year
Upgrades, of the signal processing system throughout its
development and deployment. Upgrades can include functional
improvements, repackaging for reduced power, cost, weight, or
volume, or to replace parts out of production with those more
readily available. The functional and performance specifications
from one model year become the executable specification for the
next. The hierarchical VHDL description provides for easy reuse
of any downward chain, and redevelopment starting from any
upward intact chain. The corresponding code provides for
software reuse in a similar manner.

The RASSP Design Environment (RDE) from Sanders, Hughes
Aircraft, Motorola, and ISX Corporation facilitates Integrated
Product Development (IPD) by providing a collaborative work
environment. The RDE provides support for automating the
product development process. This will enhance the DSP product
with respect to a 4X (four times) improvement in development
time, cost, and quality. The
with its support of rapid iterations, incremental promotion, and
scalable configuration management controls. The IPD approach
can be employed during all phases of a product’s life cycle from
conceptual and detailed design through production to field
support. A fundamental thread in supporting IPD is
communication between individuals within and across teams of
people, especially when the teams are not co-located. Therefore,
it is of utmost importance that effective, secure, and timely
communication of status, schedules, product data, and other
information items be provided to all team members wherever
they may be located.

The RDE
commercially available high-speed communication services allow
for linking to geographically diverse sites. Since team members
represent different companies, organizations and product
development disciplines, the RDE must be able to support
whatever tools are used in a heterogeneous computing
environment.

The ENTIRE concept is defined as RDE software which is

top-down design methodology

supported by a VHDL simulator.

“executable requirement”
“executable specification.”

Ada

RDE enables the IPD philosophy

The RDE provides technologies or services that fully support
geographically distributed concurrent design, development
and the electronic exchange of product information.

2.3 RASSP Design Environment and ENTIRE

comprised of a RASSP-supplied domain-independent set of
infrastructure services coupled with a user supplied set of domain
dependent design automation tools. Installations of the RDE will
be tailored to include integrated tools and libraries which will
exchange data via standard/common formats or through
translators.

containing all of the product life-cycle data (product
and management data) for both current and previous RASSP
designs, as well as modular building blocks for design reuse.
Each project has a different set of requirements for product
development and therefore a unique set of CAD tools are needed
to support the project. Recently initiated projects may utilize
existing tool sets, current versions of tools, or the best possible
tool solutions from multiple CAD vendors. A major advantage of
this approach is that the integrated database produces, in one
location, all of the relevant program documentation. This has a
major positive impact in reducing the life cycle costs of a
program. It also saves both the contractor and the government
money in the development cycle. In order to adapt to different or
changing tool sets the RDE must have the flexibility to be
tailorable. The RDE will be delivered with a set of core RDE
utilities plus an integrated set of CAD tools. Each site
configuration of an RDE will probably contain a different set of
CAD tools which have been determined by product development
requirements. The CAD tools in the RDE will be integrated
together along with component and model libraries. The
information that is exchanged between tools will be in a manner
such that tools can be substituted with different tools of at least
the same functionality and still allow the data to automatically
flow from one process step to another.

by
allowing new and improved design automation tools to be
utilized in conjunction with the core utilities. All of the
components in the RASSP Engineering Database (REDB) are
designed to allow remote team members to work together on the
same project as if they were in the same room. The utilities and
tools will be integrated in a manner which allows information to
be exchanged securely between team members that work in
remote locations (illustrated in Figure 4). One of the RDE
features that supports this is the database communications.

The
server can be hosted either on the local computer, or a computer
in a remote network. Each RDE server has the ability to
communicate with other servers. If data is requested from a
database, if the data resides in a remote database, the data will be
requested from the remote server. Secure data sharing and
conferencing will be achieved with commercial encryption and
decryption products. Additional security is being addressed with
firewall boxes. The combination will provide authentication (no
IP spoofing) and privacy (encryption).

The Demonstration is a key part of developing the RASSP
process and tools.

the demonstration assesses the usefulness and
performance of the RASSP design environment and its associated
tools. It provides a measure for design complexity and process

Another significant aspect of the RDE is a distributed
database

This ENTIRE tailoring will contribute to 4X improvement

Each
RDE connects to a RASSP Engineering Database server.

By developing actual hardware and
software systems,

2.4 RASSP Demonstrations and Benchmarks

The DigestRASSP

7

Sanders RASSP Program Overview

roushrv
142



maturity and allows us to quantify progress toward the four-fold
improvements which are the primary goals of RASSP. The
demonstration, then, allows us to test the methodology and the
RDE, and it lets us demonstrate the Model Year Upgrade concept.

The development of a real-time infrared search and track
processing system serves as a real-world application of the on-
going development of methodologies and processes intended to
achieve a four time improvement of cycle time at the end of the
four year program. This development is an integral part of
RASSP program. Real world applications are used to validate and
provide metrics on the effectivity of the methodology and
processes.

The specific demonstration in the Sanders RASSP program
involved upgrading the Infrared Search and Track signal
processor on the ARPA AIRMS aircraft for Model Year 0. This
Model Year demonstration has been successfully completed.
Model Year 1 upgrades the IRST
processor on the F-14D aircraft.
Much of the work from Model
Year 0 is being reused. In the
demonstration Model Years we
build Virtual Prototypes using
multi-leaf VHDL models and
software whose source code is
written in Ada. This prototype is
used to support three Model Year
Upgrades (0, 1, and 2). Model Year 2, featuring full 3-D
capability IRST inside the original 2-D physical, weight, power,
and connection constraints will fly on an F-14 in 1997. Model
Year 0 is flying in 1995 on an ARPA special mission testbed
aircraft. Model Year 1 (F-14 flight hardware) will be operational
in early 1996.

The primary purpose of the Proliferation function in the Sanders
program is to successfully transition our RASSP process to other
organizations. This team also interfaces with the
Educator/Facilitator and with standards organizations such as
CFI, SAE, and IEEE. They also help coordinate the activities of
the University and Industrial BAA winners with the Sanders
RASSP team. An additional important task of the Proliferation
activity is to establish and support the beta sites as our RASSP
process moves to new users. This encourages the “new users” to
be part of our team and helps assure that the commercial software
is useful -- there is a lot of power inherent in a large group of
product buyers.

The RASSP Program has ambitious goals:

We assess in this
section the progress of the Sanders RASSP towards achieving
4X. We also show that the results of a balanced set of activities
lead to our improved ability to perform on real problems with
immediate benefit to our military readiness. This concrete,
demonstrated performance on real problems provides convincing

(IRST)

4X decrease in
product development cycle-time, 4X decrease in life-cycle
costs and 4X increase in product quality.

2.5 RASSP Proliferation Approach

3.1 The Road to 4 X -- Over Half Way There

3. Accomplishments

evidence of our progress.

The Sanders, Motorola, Hughes and ISX RASSP Team is
developing a balanced set of approaches to address each of the
factors that contribute to improvement and the barriers that
impede improvement. This balanced approach involves
developing new engineering and business processes and new
technology as well as improving access to resources and
information.

in Sanders’ RASSP Process
and allows each

contemplated design alternative
to be captured in executable
requirements and an executable
specification; this automatically
provides concurrent constructs of
design documentation: provides
executable design-to-baseline for
the next level of design;
facilitates rapid impact

assessments and design verification; and provides the potential
for automatic verification of design properties, alternatives, and
synthesis.

The RASSP Process, being developed by the Sanders Team,
applies rapid and virtual prototyping using state-of-the-art design,
development and simulation tools, and DOD standards, including

, and to project affordability,
manufacturability and sustainability. Early application of subsets
of this process, such as in Benchmark efforts, have demonstrated
the possibility of applying VHDL and Ada for Virtual
Prototyping of design in order to identify and rectify problems
before processing the actual hardware. This approach also
enhances risk analysis and mitigation by providing for generation
and analysis of alternate design solutions in the virtual prototype
phase rather than after “metal is bent and circuits fabricated.”

Virtual prototyping in our process will eventually allow each
contemplated design alternative to be captured in executable
requirements and in an executable specification; this will also
provide a concurrent construct of design documentation, along
with executable design-to-baseline for the next level of design.

The Sanders RASSP team uses a                                      concept
for developing VHDL descriptions of weapon system signal
processors (Figure 3). This work spans four companies and
several universities and small suppliers across the country and
involves all aspects of a project, i.e. design, analysis, fabrication,
and test. This section describes the communications and
coordination methods developed for use across the Virtual
Corporation, including a brief look at the processes needed to

Our team has demonstrated that we
are more than halfway to our goal by demonstrating a
speedup and cost reduction of 2.2 X - 2.7 X on a real DoD
weapon system upgrade.

Virtual prototyping uses VHDL
and Ada

VHDL and Ada, to derive early insight into product
performance and risk

Virtual Corporation

3.2 Prototypes and Corporations -- The Two “Virtual
Virtues”

3.2.1 Virtual Prototypes

3.2.2 Virtual Corporations

"Our team has demonstrated that we are
more than halfway to our goal by
demonstrating a speedup and cost reduction
of 2.2 X - 2.7 X on a real DoD weapon system
upgrade."

The DigestRASSP

8

Sanders RASSP Program Overview

roushrv
143



support a distributed design database, source code coherence
across multiple networks, and secure communications. The result
of these efforts is a team able to complete all its modeling and
designs without a single co-located designer or design review and
with successful completion of all the hardware development and
savings in travel costs.

complex multi-processor digital systems with a

Integrated Product Development teams

working as a single integrated team to
efficiently and concurrently create new innovative products. The
team approach enables tight linkages between hardware,
software, product design, manufacturing, procurement, reliability,
maintainability and supportability to be established and
maintained. IPD can be made significantly more powerful with
the addition of tools and processes to enhance situational
awareness.

technology extends the concept of IPD to
encompass multiple companies, geographically separated to
perform as if they were a single company located in a single
location. Virtual corporation technology allows the flexible
creation of teams comprised of electronically co-located workers
and addresses both engineering and management issues.

The Sanders Team employs a variety of techniques and tools to
enable an integrated program management approach. None of
these is more fundamental to our virtual enterprise than that of
the Integrated Product and Process Development Team. This
methodology focuses on the use of interdisciplinary teams
throughout the process and product development cycle. This
philosophy provides for a broad range of expertise from a range
of disciplines when conducting each step in the development
process. In the Sanders virtual enterprise, these teams are further
diversified by ensuring that each IPPDT has membership from
each corporate enterprise member.

One of the primary difficulties involved in working in a virtual
enterprise is the coordination of technical activities. The
identification and proliferation of a system concept within a
geographically distributed team is key.

The RASSP team has employed the concept of a
to help satisfy these needs. A visdem

is a multimedia application developed and refined in a rapid
prototyped manner. This visdem typically captures program
organization, technical approach, and most importantly, the
operational concept. This operational concept constitutes a visual
contract between development team members and the target user
community, showing how the system under development is to
look, feel, function, and be utilized.

The next step in the validation and development cycle of the
RASSP system is to take the most promising concepts identified
in the visdem and build them in a much more realistic
environment. This step is the development of a conceptual
prototype.

The conceptual prototype varies significantly from the visdem.
First, the

It is developed using the
language and standards identified by the core development team.
It uses and provides reusable code synergistically with the core
development team. It provides some very limited functionality.

distributed
design team.

have all of the
disciplines needed to accomplish product development from
concept to field support

Virtual corporation

Visionary Demonstrations:

“Visionary
Demonstration” (Visdem)

Conceptual prototypes:

conceptual prototype is built on the
development/delivery platform.

Early in the Sanders proposal effort, the goal of establishing and
was set. Since

that time, the team has worked continuously to identify and refine
the infrastructure necessary to reach this end. The Virtual
Corporation infrastructure borrows heavily from the successful
experiences,  methodologies,  and  tools  used  and  developed  by
each team member over many projects and many years. These
components have been melded together with additional services
and utilities identified by the RASSP team to provide the support
necessary for managing, running, and succeeding within a Virtual
Corporation. This effort has been extremely successful to date.
The methodologies, tools, and standards that enable a Virtual
Corporation span the areas of Program Organization and
Management, Advanced Concept Engineering, and Data and
Information Management. The Virtual Corporation infrastructure
is being captured and refined within the RDE and Process
Development efforts themselves so that, ultimately, the RDE may
be used by the team to manage and support its continuing RDE
development.

The notion of a virtual company is a fairly recent development
that appeared with the advent of global networks such as the
Internet. The RASSP program uses this concept to conduct
business that requires a design team for the development of a
complex digital processor. The technical domain is challenging
because of the amount of detailed information exchange required
by the design team.

because of the intangibles involved in
creative tasks. The technical domain also has demanding resource
requirements for creating and exchanging associated data in terms
of workstation and network capacity. The RASSP Program
challenges technology limits and explores the development of

operating as an integrated Virtual Corporation

The proper level and degree of information
exchange is the design aspect that poses the biggest problem
for a virtual company

Virtual
Design

Data Base

Lockheed
Team

Motorola
Team

Hughes
Team

Electronic
Communications

FIGURE 3. Development of the RASSP Demonstration
Virtual Prototype took place in a distributed environ-
ment using cross-country electronic communications
and a shared design database.

The DigestRASSP

9

Sanders RASSP Program Overview

roushrv
144



Its major focus again is the illustration of functionality rather than
the robust provision of that functionality.

The primary purpose of the RASSP inter-company network is to
support the work on the RASSP program by providing electronic
communication between team members. A variety of computer
platforms and operating systems are employed on the network.
The RASSP inter-company network allows for information
transfer among these heterogeneous systems in the form of Email,
application data files, Video Teleconferencing (VTC), and shared
windows.

Top Down
Design begins with development of VHDL models for entire

RASSP inter-company network:

Top-down VHDL combined with structured software
development enable modular product design.

3.3 Top Down Design and VHDL -- The RASSP Process
Twins

3.3.1 Top Down Design and VHDL

systems and continues on to hardware/software partitioning and
through detailed hardware and software design and development
(Figure 4). These models comprise the Virtual Prototype(s) of the
system and system elements.

The implementation of the Virtual Corporation allows designers
instantaneous access to data and highly interactive and dynamic
electronic communication with all design team members. While
the technologies to support such goals are still maturing, the
RASSP team took a realizable approach by implementing design
data bases and technical communications with state-of-the-shelf
hardware and software.

This choice is based on the
interoperability and design documentation attributes of the
language. These features allow designers to share design objects
and convey a working understanding of design behavior, enabling
the creation of a virtual company.

The cornerstone of the hardware
approach is IEEE standard VHDL.

RASSP uses the characteristics of HDL languages and Virtual
Prototyping as the basis for a methodology that produces a
top down design approach that includes a totally portable

FIGURE 4. The RASSP Design Process allows the top-down evolution of system requirements through
an iterative decomposition of requirements into smaller units.

POWER SUPPLY

ANALOG PROCESSOR BOARD

SYSTEM

SUBSYSTEM

UNIT

DIGITAL PROCESSOR BOARD

Develop
Architecture

Synthesize
Design

Customer
Requirements

Develop
Requirements

Develop
Requirements

Develop
Requirements

Develop
Requirements

Reuse

Develop
Architecture

Develop
Architecture

Develop
Architecture

Synthesize
Design

Synthesize
Design

Synthesize
Design

The DigestRASSP

10

Sanders RASSP Program Overview

roushrv
145



VHDL description.

Our RASSP Team recognizes the importance of reuse and reuse
libraries.

Application-specific systems benefit from reuse of design
information and functional block libraries from past designs.

This also includes modeling methods for
discrete levels of abstraction that facilitate interoperability. These
features are ideal for a multi-company design project that must
accomplish virtual system integration and maintain a design data
base.The methodology requires a system of procedures for data
management across the virtual company. A data promotion
scheme was developed that allowed incremental levels of
dependency and maturity for source code.

We are capturing the VHDL elements from the IRST
Demonstration Model Year 0 and from Benchmarks 1 and 2 in a
database and will be demonstrating their reuse in Model Year 1 and
Benchmarks 3 and 4. Our experiences will be valuable in assessing
the additional requirements for easy reuse. We are also
demonstrating how processes can be reused by applying parts of
the Model Year 0 process to Model Year 1 and to Benchmarks 3
and 4. Because we learned a great deal during Model Year 0 and
because Model Year 1 has added complexities such as legacy
system considerations, the process has been refined and tailored to
meet the needs of the next cycles of designs.

Algorithms can be rapidly designed using reuse libraries of
commonly used functional blocks. Architectures can be quickly
synthesized from reuse components of past designs. Use/reuse of
the library of primitives allows the engineer to rapidly and
confidently  capture  system  functionality  in  terms  of  behavior,
variables and communication channels for data/information flow
among system elements. Critical paths for control and data flows
can be identified, captured and analyzed, and requirements can be
associated to, and linked with, functions. And the biggest payoff
is that there are no irrevocable decisions, so it is not necessary to
get it “perfect” the first time -- one just has to improve it each
time through. Thus the inevitable “misstated requirement” or
misunderstood operational environment is no longer the largest
cost driver in the design and fielding process.

The Sanders RASSP Team’s evolution of the RASSP Process
began at program initiation. Since then, Integrated Process and
Product Development Teams (IPPDTs) for Demonstration and
Benchmark performed design of systems using such of those
process attributes as were applicable. For example, the
Demonstration and Benchmark tests are, in and of themselves,
applications of the Model Year design concept; VHDL and Ada
were used to develop and evaluate virtual prototypes before
construction of actual hardware. After these efforts had been
underway, representatives of each team were formed into an ad
hoc Process Focus Team that captured what had been done, how
it was done, identified strengths and weaknesses, and began to
document and refine the process. This documentation and
refinement is currently well underway, under the Systems
Engineering IPPDT’s Process Group and will lead to use of the
defined process in the upcoming Demonstration and Benchmark
applications, as verification that the process has been adequately
captured and as validation of process effectiveness. Throughout
this effort, the RASSP Design Environment (RDE) IPPDT has

3.3.2 Reuse

3.4 Progress Through Process and Method

been tracking the progress and looking at how to apply
automation to the process environment by incorporating tools,
utilities, databases and communications so as to enhance
performance of the design effort.

At the start of 1995, we presented a model for reaching 4X. This
model is based on the results of a task analysis of the design
process from very early system concept development and
feasibility through development, test, production, and field
support. Approximately 70 specific tasks were identified, and the
associated duration, based on current practice, for each task was
determined. The baseline development timeline resulting from
the assignment of duration to tasks was compared with the
current practice model proposed by Vijay Madisetti and Jack
Corley of the RASSP Education and Facilitation team and found
to fit easily within their minimum and maximum timelines.

The process is captured in electronic form in our RDE at
differing levels of abstraction, wherein the top level is a
tool-independent graphical view, and lower levels provide
discrete tool-dependent workflow fragments.

The on-line process description includes process step
descriptions, entry/exit criteria, tools, metrics,
performance estimators (“thermometers”), guides and
aids.

The top-level process application is tool- and workflow-
manager software-independent.

Tool integration is achieved by the use of the RDE’s
“ENTIRE” application. The process structure is tailorable
to the specific needs of a project or customer, and phases
and levels can be added -- as needed -- and integrated into
the overall process.

The process accommodates the spiral engineering model
by supporting rapid iterations through requirements,
architecture and synthesis and incrementally developing
the product with rapid top-down iterations and bottom-up
feedback.

The use of technology-independent functional models for
the virtual prototype enhances reuse of functional
primitives, and allows architectural trades to be performed
more rapidly.

The virtual prototype can be tightly linked to the
synthesized design through functional-to-structural
interface models, thereby tightly coupling all levels of the
physical design to the functional behavior.

The process builds the product through a common
functional description for hardware and software.

This process supports the concept of “model year
upgrade” because it provides the use of previous model
year models as a baseline for further developments, allows

This
favorable comparison helped increase our confidence that we
had accurately captured the basic product development
process.

Key achievements in Sanders’ RASSP Process.

,

,

,

,

,

,

,

,

,

The DigestRASSP

11

Sanders RASSP Program Overview

roushrv
146



for modification of the functional models in the virtual
prototyping stages, and allows for partitioning and re-
targeting during the synthesis activities.

To present the RASSP Process in a “recognized engineering
format,” the Sanders Team chose to adapt the preliminary version
of the

for tailoring into the RASSP Process Description and
to apply the Format for the design construct
representation.

The Sanders Team has been defining and documenting its
common description of the “RASSP Process” for the purpose of
achieving both commonality of understanding and “process
configuration management.” Further, they recognize that at
contract end the legacy process definition must be sufficiently
robust to provide for its continued successful use by industry and
government engineering design teams.

It
has been developed using the preliminary version of the new
IEEE 1220 standard for systems engineering to assist in
definition and description. Our overall process description
extends through the six phases of the system life-cycle of
engineering effort related to product development, down six
levels of product decomposition, and includes three recursive
steps  within  our  “Process  Engine”  for  analysis:  “develop  and
validate requirements baseline,” “develop and verify functional
architecture,” and “synthesize and verify hardware, software, and
physical design.”

Sanders’ process uses a “finish-to-finish” engine rather than a
“finish-to-start” sequencing.

The result is encouragement to evaluate
details and mitigate risks early in the design. The Sanders RASSP
Process also encourages rapid prototyping activities, including
early prototypes of user and other interfaces and of partial and
end-to-end threads through the design to permit independent
evaluation, optimization and validation. The Process structure is
tailorable to the specific needs of customers and projects, so the
specific steps within any particular iteration of its application can
be different from all others. However, the overall methodological
approach should be consistent.

How well is all this working?
multiple new weapon

system upgrades have been and are being started.

each of the three major industrial
members are internally instantiating the RASSP Process.

The RASSP Design Environment (RDE) is central to our data

The RASSP Process Now:

IEEE System Engineering Process, P-1220 (“Standard
for Application and Management of the Systems Engineering
Process”)

IDEF 0

The Sanders RASSP Process is intended as a combination of
“top-down” hierarchical and “spiral development”
engineering sequences, applied in Model Year progressions.

Rather than require each activity
to finish before the succeeding one starts, they only require
that all previous activities be complete before succeeding
activities can terminate.

First Criterion: Has the Sanders
RASSP Process been used? Answer: Yes,

Second
Criterion: Are the team’s parent companies incorporating the
RASSP Process? Answer: Yes,

Data Base Access and Data Control -- The Key to Reuse, the
Focus of Automation

3.5 ENTIRE

access, data integration, and automation efforts.

The RDE development effort
uses previously developed RDE utilities in conjunction with the
RASSP process of software development which is rated at SEI
Level 3 (Repeatable and Transferable). This release of the RDE
contains a common set of infrastructure services for use in a wide
range of applications:

The RDE is being tailored for use on our Model Year 1
demonstration to include domain specific tools, translators,
libraries, and process support. A preliminary list of applications
for the Demonstration are given in the paper. The fully populated
and tailored design environment is described as the ENTIRE
concept (ENvironment and Tools for an Integrated RDE).

The RASSP Design Environment (RDE) facilitates Integrated
Product Development (IPD) by providing a collaborative work
environment. The RDE provides support for automating the
product development process. The RDE enables the IPD
philosophy with its support of

A fundamental thread in supporting IPD is communication
between individuals within and across teams of people, especially
when the teams are not co-located. The RDE provides technolo-
gies or services that fully support geographically distributed
concurrent design, development and the electronic exchange of
product information. The RDE supports whatever tools are
needed in heterogeneous computing environments. The ENTIRE
concept is defined as RDE software which is comprised of a
RASSP-supplied domain independent set of infrastructure
services coupled with a user-supplied set of domain dependent
design automation tools. Installations of the RDE will be tailored
to include integrated tools and libraries which will exchange data
via standard/common formats or through translators. Another
significant aspect of the RDE is a distributed database containing
all of the product life-cycle data (product and management data)
for both current and previous RASSP designs, as well as modular
building blocks for design reuse.

Each project has a different set of requirements for product
development and a unique set of CAD tools needed for support.
In order to adapt to different or changing tool sets the RDE must
have the flexibility to be tailorable. The RDE will be delivered
with a set of core RDE utilities plus an integrated set of CAD
tools. The CAD tools in the RDE will be integrated together
along with component and model libraries. This ENTIRE
tailoring will contribute to 4X improvement by allowing new and
improved design automation tools to be utilized in conjunction
with the core utilities.

The RDE stores and retrieves project and product information
from the RASSP Engineering Database (REDB). This
heterogeneous database contains all the information required by
the project, from lists of users to design schematics. The REDB is

The current
version of the RDE is the fourth build of the RDE out of a
planned total of ten, and represents a total of 300,000 lines of
code developed for this program.

common desktop, automatic metrics
collection, metrics analysis, reuse utility, technical review
utility, problem reporting utility, log utility, and remote data
access.

rapid iterations, incremental
promotion, and scalable configuration management controls.

ENTIRE Can Be Tailored

ENTIRE Uses SHORE/EXODUS (A University Developed and
ARPA Contracted Database).

The DigestRASSP

12

Sanders RASSP Program Overview

roushrv
147



distributed for team members to be able to securely access project
and product data from remote locations. Information is placed
into the REDB through a programming interface. This interface
allows utilities or tools to access the repository independent of
the  underlying  database.  There  may  be  only  one,  or  multiple
databases beneath the interface. Each database must implement
the functions in the interface to work with the RDE. The
programming interface allows access to object-oriented
databases, relational databases, or CAD framework databases.
The REDB is the repository for the design information that is
commonly shared between the tools. The information is stored in
a common format for each type of design data. Any tool that
requires the data as input can then acquire and use the data.

This scheme does not use tool-to-tool translators, but format-to-
tool translators. The advantage of this technique is that if a
translator is required, it only needs to read and write the data
from a tool into a common format, independent of other tools
with which it interfaces. This technique, based on CFI's concept
of Design Representation (DR) solves the tool-to-tool
interoperability problems. The formats are then readily captured
by databases.

All of the components in the RDE are designed to allow remote
team members to work together on the same project as if they
were in the same room. The utilities and tools will be integrated
in a manner which allows information to be exchanged securely
between team members that work in remote locations.

The RDE Desktop is an environment shell in which working
conditions can be customized and tools can be encapsulated,
accessed and launched.

The RDE Remote Data Access Utility (RDA) is comprised of
client/server software for accessing the RASSP database. This
utility consists of a Service, a Server Broker, and a Client. These
database operations are implemented using the Team Design
Manager (TDM) tool by Cadence.

The “Log Utility” provides a mechanism for people to enter
miscellaneous text information about things they are doing on a
day-to-day basis.

The RDE automates data collection and metric generation as
much as possible. Towards this end, the RDE metric tools query
the various databases encapsulated within the RASSP Design
Environment and extract necessary data. Then, the metric tools
collate the data and create various metric reports.

The RDE provides a problem-reporting mechanism for design
teams to effectively capture “Problem Reports” and to distribute
those reports to the responsible individuals. It has a Motif-based

Tool Encapsulation & Integration Not Needed

ENTIRE Allows Distributed Development

What’s In ENTIRE?

Desktop

Remote Data Access Utility

Log Utility

Metrics

Problem Reports

user interface for the GNU problem report tool.

The Reuse Utility encourages the reuse of software modules and
structures by providing a method of storage and retrieval of
information on available reusable units. A series of friendly,
organized GUIs assist the user in adding, updating, and querying
the database.

The Technical Review Utility facilitates Peer Reviews at each
stage of a development process to help ensure a quality design.
The RDE Technical Review Utility allows the identified
reviewers to review the design information when they have the
time to do so. The Review Utility removes geographic and
temporal constraints from the review process.

The RDE can be used throughout all phases of a product's life
cycle from conceptual and detailed design through production to
field support. A wide variety of disciplines will be utilized
throughout the product development process which requires the
use of many classes of tools including tools for program and
project management, requirements capture and analysis,
algorithm development, software engineering, and electrical and
mechanical hardware design, modeling, and simulation. The RDE
software currently runs on Sun SPARC platforms using SunOS
version 4.1.3. TDM (Team Design Manager) from Cadence is
required for source configuration control of design data.

The validation will include test
of the flows of information between tools, making sure the
libraries work properly with the versions of the tools and
ensuring that the tools are properly installed in the desktop, and
that the necessary tool-specific TDM policies are written and
work. Validation of the RDE also involves regression tests to
ensure the software conforms to the requirements.

The ENTIRE Concept supports a heterogeneous computing
environment, links between geographically diverse locations,
tailorable configuration management, and exchange of product
information between the many varied disciplines. ENTIRE
supports an improved product development process allowing for
rapid iterations, incremental promotion, and scalable
configuration management controls. In this role ENTIRE is an
enabler to help achieve the RASSP goals of 4X improvement in
product   development time, cost, and quality.

The development of a real-time infrared search and track

program served as a
real-world application of the on-going development of
methodologies and processes intended to achieve a four-time
improvement of cycle time at the end of the four-year program.

Reuse Utility

Technical Review Utility

ENTIRE Supports Multiple Tools

Validation of ENTIRE
Validation of the RDE will be done with the Demo team's
Model Year 1 design (Figure 5).

Summary

(IRST)
processing system now flying on the ARPA Advanced
Infrared Measurement System (AIRMS)

3.6. RASSP Takes Flight

3.6.1. AIRMS and F-14 IRST

The DigestRASSP

13

Sanders RASSP Program Overview

roushrv
148



FIGURE 5. The RASSP Demonstration Model Year 1 detailed design process
will be supported within the RDE using COTS tools.

Symbol
Libs

Mech
Libs

Symbols

RASSP

New
Pkg

Mentor Design
Architect

VHDL Code

Mentor
Prototype

Mentor
Layout

VHDL Simulator

VHDL Editor

RDE

Convert
to VHDL

Fab
Cards

Comp xxx

Comp xxx

Comp xxx

Preliminary
Layout

Board Layout
and Route

Delays

Vantage
or Mentor

Models
Test Benches

Stimulus

We created a complete VHDL virtual prototype

Infrared Search and Track processing detects unresolved
(sub-pixel) moving objects in an infrared image.

of processing
hardware and Ada software before the design was fabricated. The
rapid laboratory checkout that ensued is an indicator that virtual
prototyping has great value. The virtual prototype was used to
simulate processing modules, custom interface modules and the
Ada software. The RASSP IRST project was performed by a
virtually co-located team with Team members from Hughes in El
Segundo,   California;   Motorola   in   Scottsdale,   Arizona;   and
Sanders in Nashua, New Hampshire. Using the Internet for file
sharing, e-mail, and video teleconferencing, the entire hardware
and software design was performed without requiring travel for
design reviews or coordination. VHDL descriptions done at each
location were integrated to form the virtual prototype. The virtual
prototype facilitated distributed design checkout since the
designer and reviewer could check their own portion of the
design from their own office.

The virtual prototype developed for RASSP models a complex
multiprocessor system composed of commercial off-the-shelf
(COTS) processing modules, custom interface modules, and Ada
code. This section describes the IRST processing system
elements in order to aid in understanding the scope of the virtual
prototype.

Performance
is limited by scene clutter (clouds and terrestrial background).
Algorithms are applied to register multiple frames of data, filter
out clutter, boost target signatures, and thereby detect and track
targets. The detected targets are displayed with graphic
symbology overlays on top of the original scene data.

IRST Processing System

The design can handle either a standard video input stream or a
custom 135 Mbyte/second digital data sensor stream. The video
output displays sensor imagery with graphic symbology overlays.
Four custom modules were designed for interfaces. COTS
modules were used for the signal processing and host controller.

The Data Input/Distribution module is a card with 35 ICs,
including 4 FPGAs. We used two daughter cards to adapt to
sensor-specific electrical and timing interfaces. A custom
interface is used for control and status. A Mercury RACEWAY
interface permits high-speed video transfer to the processor
modules. A video output displays one of the two sensor inputs
with  symbology.  A  video  crossbar  connects  the  two  daughter
cards, the video output, and the RACEWAY interfaces. Routing
logic under software control passes the image to selected
processing elements in the multiprocessor system. The IRST
processing system soft ware contains 18,000 lines of code.

The process supports hardware/software
co-design, with the initial phase of the virtual prototype serving
merely as a performance model of the end system that shows
busses, major computing elements, and I/O. We modeled
software and sensor workload as tokens to evaluate processing
element and bus loading. In subsequent design refinement, we
developed behavioral models of processing elements, interface
circuits, and buses. These, in turn, were refined to register
transfer level descriptions that supported design synthesis of

The IRST processing system virtual prototype totals over
39,000 lines of VHDL. An additional 18,000 lines of software
implement the algorithms and control software.

The RASSP virtual prototype was developed using a top-
down VHDL design methodology with progressive addition of
more hardware details.

Virtual Prototyping — The Error Sieve

The DigestRASSP

14

Sanders RASSP Program Overview

roushrv
149



FIGURE 6. The RASSP AIRMS Demonstration custom
hardware was checked out in the virtual prototype
before fabrication, leading to significantly reduced

integration and testing.

programmable logic. Instruction set level modeling of the
processing elements allowed execution of control and built-in test
Ada software within the VHDL model. By completing each level
before beginning the next lower level of detail, we caught design
errors early in the design cycle.

A VHDL-Based Instruction Set Architecture (ISA) model of the
Intel i860 microprocessor was developed by the Georgia Institute
of Technology. The ISA model implements all registers,
instructions, and status logic visible to a programmer. It allows
i860 object code to run as it would on real hardware.

The system level virtual prototype combines all system hardware
and software elements. The simulation checks for consistency of
protocols across interfaces: board-to- board and hardware-to-
software. The simulator also aids development of low-level
diagnostic tests debugged on the virtual prototype and then
executed on the real hardware. All tests were written in Ada.

During November,
we initiated 169 simulations, of which 135 were completed. They
simulated 897 milliseconds and used 402 hours of wall clock
time running on a Sparc 10. By running Ada code on the virtual
prototype, we discovered three hardware errors and eight
software errors. Checking out the design on the virtual prototype
helped us discover numerous design errors; however, the rate of
discovering and fixing errors was slow due to the current long
nature of simulation run times.

Some analog
portions could not be checked, and these required minor tuning.
The virtual prototype provided a forum for hardware and
software engineers to discuss details sooner and change early
system concepts when performance simulation or early VHDL
modeling showed timeline problems. Many software errors were
fixed before the laboratory checkout. Running the actual software
on the ISA model identified hardware design problems not
discovered in standard VHDL simulation. Simulation run times
were so slow that we could explore only those activities near the
beginning of the hardware initialization cycle (the first 150
milliseconds). We could test only a limited portion of the
software because of the slow simulation times and because the
operating system could not be run on the virtual prototype; only
software that did not use operating system calls or the run time
system could be executed. There is a clear need for better
simulation run times.

The virtual prototype changed the development schedule such
that although the

Instruction Set Architecture Model

System Level Virtual Prototype

Results

The simulation time for a large complex processing system
such as the IRST system can be very long.

All hardware designs checked in the virtual prototype worked
in the laboratory the first time (Figure 6).

Executing the operating system and run
time software is essential to fully check out the software and
refine the hardware/software design.

design stage lasted longer than in
conventional development, the hardware checkout and system
integration went much faster.

3.6.2 SAR Image Processor for UAV

A  virtual  prototype  of  a  synthetic  aperture  radar  processor  is
being created by Sanders as part of Benchmarks 1 and 2. It
includes VHDL models and Ada application code. The current
status is that the virtual prototype has been completed, and we are
developing a hardware prototype to validate the virtual prototype.

Our RASSP Benchmark 1 is phase one of a two-phased
development of a synthetic aperture radar (SAR) processor. The
Benchmarks are another set of means by which the government
assesses the progress the contractor is making toward program
goals. RASSP chose the SAR processor as the initial benchmark
because it is a computationally challenging system that is a good
test vehicle for architectural modeling and virtual prototyping.
The intent of RASSP Benchmark 1 was to obtain metrics on the
developer's initial design process, and to start developing the
metrics for comparing the usefulness of design processes and
changes to those processes.

The requirements for the SAR processor were specified by the
government’s designated benchmarker, MIT Lincoln Laboratory.
They supplied the requirements for the application utility, the
signal processing algorithms, data timing and formats, and the
physical requirements of the hardware. The SAR processor is a
particularly computationally intensive application in that it
requires many complex FFTs and vector multiplications.

The design process was one of virtual prototyping:
implementation trade-offs, followed by modeling, software
development and some hardware design. VHDL was used to
create an end-to-end virtual prototype model of the SAR
processor. The hardware design went to the layout level to insure
that the virtual prototype could indeed be realized in the allocated
hardware configuration.

SAR Processor Requirements

Design Process

15

The DigestRASSPSanders RASSP Program Overview

roushrv
150



The first step in the virtual prototype design process was to
evaluate several different designs with different
hardware/software configurations. There were four options
evaluated for the implementation of the SAR processor before
detailed modeling began. Three estimation programs were used to
evaluate the top level trade-offs. A spread sheet model was
developed to quickly evaluate weight and power as board count
varied. Another spreadsheet model was used to estimate the
development and unit costs based on typical tasks durations, lines
of code, types of boards, and kinds of enclosures. Finally, the life
cycle costs (LCC), including development costs, were estimated
using the much more complex PRICE-H and PRICE-HL
parametric cost estimation models. This methodology is
significant because it allows the designer to understand all
aspects of partitioning functions into various hardware/software
combinations.

The next step in the virtual prototype design process is at a more
hardware oriented, less abstract level. Chief among the benefits
of virtual prototyping at this level are the enhanced
communications provided between customer and designer about a
new design and the implications of the customer requirements on
cost and performance. As component models become
commercially available, the designer will be able to rapidly
identify design flaws without having to actually build and debug
hardware. Further, the completed virtual prototype can serve as
an archive of the design for future designers to access and use for
component replacement and upgrades, without requiring the
physical hardware. Lastly, the virtual prototype can serve as an
“Executable Specification.” This allows a customer to exactly
specify, at any desired level, the requirements for what is to be
built, with minimal misunderstanding or error.

The level of simulation which we wanted to achieve was that the
virtual prototype should be identical, from a software perspective,
to the physical prototype. We modeled the interfaces and
functions of the key elements so that they could be controlled by
the same application code being created for the hardware. This
approach provided the co-design between software and hardware
which was desired.

MIT Lincoln Lab created a VHDL Executable Requirement. This
provided  an  input  data  set,  a  VHDL  model  of  the  input  and
output source and sink, and a simple VHDL behavioral model of
the SAR processor. The virtual prototype developed during the
benchmark was to be tested by substituting for the behavioral
model of the executable specification.

Fifteen VHDL models were developed for the SAR processor. At
the top level, the executable specification test bench was used.
Lower level test benches were used for different component sets.
The elements chosen for modelling represent key pieces of the
system that future designers will need to rapidly implement
model year upgrades. Many of these models are of industry
standard parts, thus increasing their reuse utility.

Virtual prototype modeling and the VHDL testbench

VHDL Modeling of the SAR Processor

A total of
14,909 lines of VHDL code were written, 6,823 of which were
executable. The average productivity for both models and test
benches was 32 LOC/day.

To summarize the VHDL modelling effort, models for a number
of interfaces, components, and algorithms were developed. Many
of these models are of industry standard components. Capturing
the functionality of the various portions of the SAR processor in a
virtual prototype will foster use for future designs, enabling a
very quick turn around on model year upgrades. Key to our
methodology was the ability to execute application software on
the virtual prototype. This allowed the VHDL model and
software to be integrated, tested, and corrected before hardware
fabrication. As a result, physical hardware and software
integration will be greatly simplified and less costly. The
application software was required to be in Ada. A total of 2,301
lines of executable code were written. The average productivity
was 33 LOC/day.

The purpose of the SAR processor benchmark being performed
was to exercise and measure a design methodology under
development. The design methodology features the ability to
perform trade-offs, and virtual prototype modeling features the
ability to reduce development cost, add design time, and create of
executable specifications for long term supportability. This
process greatly reduces the post design documentation creation
and validation costs of long life systems. Several key lessons
were learned in the Benchmark. First,

form. One validates and clarifies the other.
The textual version provides an easy-to-understand top level
description. The executable specification provides very precise
algorithmic and hardware interface data. Second,

Cost models, weight and size
models, algorithmic models, and hardware models all play a role
in prototyping a new system. Third,

The
VHDL models for these simulations must be designed to
minimize CPU time and memory usage. Last,

but should limit the data to be processed to a
minimum. The partial image test bench provided essentially all of
the validation required to minimize the risk of the design, and the
full image test bench provided some additional information. The
results of this benchmark will be used to fine tune the RASSP
approach,  providing  the  government  and  the  prime  contractor
with valuable information about the ability of VHDL to ensure
hardware and software integration and to validate system
performance before hardware fabrication. In addition,

Analysis of the program results in three important conclusions:

Benchmark Conclusions

Comparison of Current Practice Models with Measured
Results.

there is tremendous value
in having specifications in both text/pictorial and
executable/VHDL

many tools and
techniques with varying levels of fidelity are required to
evaluate a virtual prototype.

extensive simulations are
required to properly simulate software functionality.

the VHDL system
testbench must be designed to validate the system
functionality

the
models and the hardware design have been requested for use
in several new programs, including Benchmarks 3 and 4, a
ground penetrating radar, and an upgrade to a fighter radar.

achieving 4X requires more than within-task cycle time
reduction; the early phases of the product design process are
shortened the least; while the later phases show the greatest

3.7. Conclusion -- Where Are We on the Road to 4 X?

16

The DigestRASSPSanders RASSP Program Overview

roushrv
151



benefit; and the data show that a three times improvement in
cycle-time can be expected by applying RASSP improvements
to individual tasks. Achievement of the full four times
improvement requires integration of individual tasks using the
RASSP Rapid and Disciplined process to achieve effective task
concurrency.

Detail Design Phase is
substantially reduced

The discipline and simulate-before-
build philosophy of RASSP make the E&MD Phase much
shorter.

The largest contributor was Top Down Design using VHDL
which also includes Structured Software Development (we use
Ada) Reuse was an
important contributor. Finally, situation awareness

Some phases of the product development process are accelerated
a great deal while others remain nearly the same in duration.
Preliminary Design Phase takes nearly as long with RASSP as
without. This is because the use of RASSP Top Down Design
methods and Virtual Prototyping demand more work prior to PDR
than the traditional methodology.

because the Virtual Prototype has matured
the design significantly.

This differs from a more traditional approach that
allocates very large blocks of time to system integration and the
correction of errors carried from the beginning of the design
process.  Rework time is reduced or eliminated.

for programmable processing elements.
was cited

nearly as often as reuse and significantly more often than
improved design automation tools.

The Model Year 0 IRST Image Signal Processor development
undertaken as part of the Demonstration portion of the program
provides a measure of how we are progressing toward the 4X

goal. A comparison with the achieved of the
IRST Demonstration with a similar programs and standard
models reveals a range of between
in   both.   Everything   that   was   simulated   using   the   Virtual
Prototype worked the first time. In this case rework time was
eliminated. However, integration time was impacted by the need
to correct errors in portions of the design that had not been
simulated. Integration time was less than that typically associated
with a design of this complexity. While quality, measured as
fitness for use, was high when the hardware was delivered to the
Aircraft, there is clearly room for the

We are continually working to more completely define and
optimize our development process. We have learned many
detailed lessons during the process development and during our
demonstration and benchmark work that has allowed us to
redefine the process for future work. We will continue these
efforts and will work to incorporate the experiences from our
Beta Sites. In particular, we are working to capture process
descriptions electronically to provide them in a database and to
verify the correct connections of process inputs and outputs; we
are developing process simulation capabilities; and we are
working towards the incorporation of process metrics into a
continuous process improvement process.

-- Our success in the AIRMS IRST Model Year 0
demonstration in achieving a significant speed up in the design
process was driven primarily by the use of a HDL-based design

schedule and cost

2.2X and 2.7X improvement

additional improvements
in quality that will lead to near zero integration time.

Design Reuse

4. RASSP -- Future Plans

RASSP Program Overview The DigestRASSP

17

The DigestRASSPSanders RASSP Program Overview

Current WRA-2:

2D IRST processing algorithm

Signal processor is seven boards

Custom logic on processor boards

Custom bus connects processor
boards

!

!

!

!

Model Year 1:

2D IRST processing algorithm

Replace seven boards with two
boards - one interface board
and one processor board

No custom parts

Use a standard, open systems
bus to connect processors

!

!

!

!

FIGURE 7. During Model Year 1 of the RASSP IRST Demonstration we will replace seven boards in the
F-14 WRA-2 with two boards maintaining functionality and implementing an open systems interface

that will support future upgrades.

roushrv
152



Model Year 1:

2D IRST processing algorithm

Use a standard, open systems
bus to connect processors

No custom parts

One interface board and one
processor board

!

!

!

!

Model Year 2:

3D IRST processing algorithm

Keep interface board

Replace single processor
board with six copies of new
processor boards to increase
capability by > 10X

Maintain standard bus

No custom parts

!

!

!

!

!

FIGURE 8. During Model Year 2 of the RASSP IRST Demonstration we will use the interface built in
Model Year 1 and add new processing boards with twenty times the current processing power to

implement a three-dimentional processing algorithym.

process and facilitated by capabilities for remote collaboration.
In determining the factors which will lead to reaching our goal of
4X the use of an HDL-based design process was key. However, an
important factor in reaching the 4X goal which we have not
exercised yet is design reuse. We are now entering a portion of
the program in which we will be able to take advantage of design
reuse and tools to support it. We are building design reuse
utilities into our RASSP Design Environment and we have
identified opportunities on both the upcoming demonstration and
benchmark work to reuse past designs.

-- The RASSP Design
Environment has completed four builds and our first external
release. During the next year we will be performing three more
builds of the RDE, culminating in our second external release.
Key to our efforts in this area in the next year will be completion
of a vendor-independent database interface for the RDE. This
will allow tools to store data in their own natural data format and
for data translators to be invoked automatically if a different data
format is required. This approach will speed the integration of
tools into the environment and also will allow some access to
tool-dependent libraries even without invocation of the tool.

-- Our objective is to
complete Model Year 1 of the F-14 IRST Demonstration in nine
months (Figure 7). During this work we will replace seven boards
in the current F-14 WRA-2 box which implement two dimensional
IRST processing. We will replace these eight boards with two
boards to implement the same functionality. One board will be an
interface board and the second will implement the current two
dimensional processing algorithm. In the process we will capture

RASSP Design Environment

F-14 IRST Demonstration Model Year 1

a complete system interface description and new hardware
description in VHDL. We will also define a new system bus based
on a standard open systems bus for use in Model Year 2.

-- During the next
year we will begin work on Model Year 2 of the F-14 IRST
demonstration (Figure 8). Model Year 2 will implement three
dimensional IRST processing in the WRA-2. We will use the
interface board and the standard system bus from Model Year 1
and will implement the three dimensional IRST processing in
general-purpose processor boards which will fit in the seven
remaining slots. The end result of Model Year 2 will be a
processor with a peak processing capability at least twenty times
higher than the current IRST processor. The Model Year 2 IRST
demonstration hardware will be made available to the Navy as a
potential upgrade the existing F-14 capability.

-- Within the next two
months we will complete the SAR processor hardware and will
have a complete system that processes the full data stream using
only four slots of a VME chassis. This system will be compared
to the virtual prototype which we have completed to verify the
design process and the hardware.

-- During the next year we will execute
our next benchmark, a radar processor upgrade for the F-15. This
benchmark will replace the current front end portion of the radar
with an improved system which both enhances performance and
reduces cost. If successful, this hardware will have the potential
to be used in over a thousand planned radar systems with
potential cost savings to the government of over one hundred
million  dollars.

F-14 IRST Demonstration Model Year 2

SAR Image Processor Benchmark

F-15 Radar Benchmark

18

The DigestRASSPSanders RASSP Program Overview

roushrv
153



[20] SAFENET Tutorial, NGCR Users Conference, 16-18 February
1993, Space and Naval Warfare Command, Arlington, VA.

[21] Swartzlander and Yang, AOSP Macro Function Signal
Processor VHSIC Insertion, part of RADC-TR-87-268, January
1988, Rome Air Development Center, Griffis Air Force Base,
NY.

[22] Department of Defense Trusted Computer Systems Evaluation
Criteria (“Orange Book”), DOD 5200.28-STD, December
1985.

[23] Larry Scanlan, “The Road to 4X,” in the Proceedings of the
Second Annual RASSP Conference, July 1995.

[24] B. Hood, C. Myers, “RASSP: Viewpoint from a Prime
Developer,” Proceedings on the First Annual RASSP Confer-
ence, August 1994.

[25] Honeywell, “Graphics Processor Description VHDL Methodol-
ogy: Working Document,” 1991.

[26] W. Lee, M. McCollough, M. Vahey, “Classification of VHDL
Models,” Proceedings of the Spring 1995 VIUF Conference,
April 1995.

[27] R. Dreiling, P. Kalutkiewicz, M. McCollough “Model Develop-
ment within the RASSP Virtual Company Environment,”
Proceedings of the Spring 1995 VIUF Conference, April 1995.

[28] Vahey et al, “A Virtual Prototype VHDL Development
Methodology.” VIUF Spring 95.

[29] Dreiling et all, “Model Development within the RASSP Virtual
Company Environment,” VIUF Spring 95.

[30] R. Dreiling, “Processes and Experiences in VHDL TopDown
Design,” First Annual Conference on the Rapid Prototyping of
Application Specific Signal Processors, August 15-18, 1994.

[31] S. Famorzadeh, R. Dreiling, M. Falco, et al., “Rapid Prototyp-
ing of DSP Algorithms on COTS Systems, " First Annual
Conference on the Rapid Prototyping of Application Specific
Signal Processors, August 15-18, 1994.

[32] “Hughes to gather IR data on theater missiles,” Aviation Week
and Space Technology, vol. 140, num. 21, P 20,21, May 23,
1994.

[33] CUSeeMe Advanced technology Group in network resources,
Cornell University, Information Technology Department.

The Lockheed RASSP team is under contract to the Naval
Research Laboratory, 4555 Overlook Ave., SW, Washington, DC
20375-5326. The Sponsoring Agency is the Advanced Research
Projects Agency, Electronic System Technology Office, 3701
North Fairfax Drive, Arlington, VA 22203-1714. The Lockheed
RASSP team consists of Lockheed Sanders, Inc., Hughes, and
ISX.

Acknowledgment

References

The following are references for documents relating to both the
RASSP program in general and to Sanders RASSP Program
specifically. Many of these references are available for electronic
distribution:

[1] Mark Richards, “The Rapid Prototyping of Application
Specific Signal Processors (RASSP) Program: Overview and
Accomplishments,” Proceedings of the First Annual RASSP
Conference, August 1994.

[2] Jim Summers, “Rapid Prototyping and the RASSP Design
Environment,” Proceedings of the First Annual RASSP
Conference, August 1994.

[3] Mike Vahey, “Lockheed's Image Signal Processor RASSP
Demonstration,” Proceedings of the First Annual RASSP
Conference, August 1994.

[4] Ray Dreiling, “Processes and Experiences in VHDL Top Down
Design,” Proceedings of the First Annual RASSP Conference,
August 1994.

[5] Cory Myers, Paul Fiore, and J.P. Letellier, “Rapid Development
of Signal Processors and the RASSP Program,” Proceedings of
the 1994 IEEE International Workshop on Rapid System
Prototyping, June 1994.

[6] Fred Shirley, “Rapid Prototyping of Application-Specific
Signal Processors Architectural Issues,” SPIE, July 1994.

[7] Sanders RASSP Team, “RASSP Process Document,, Sanders
RASSP Team Document Number AVY-L-S-00078-101-A, June
1994.

[8] Sanders RASSP Team, “RASSP Architecture Metrics,” Sanders
RASSP Team Document Number AVY-L-S-00076-101-A, June
1994.

[9] Sanders RASSP Team, “RASSP Architecture Issues,” Lock-
heed RASSP Team Document Number AVY-L-S-00080-101-
H, June 1994.

[10] S. Famorzadeh, T.W. Egolf, V.K. Madisetti, “Rapid Systems
Prototyping Models &Views,” Georgia Tech, June 10, 1994.

[11] Sanders RASSP Team, “RASSP Process Document,” AVY-L-S-
00078-101-B.

[12] Jim Summers, Motorola, “Rapid Prototyping and the RASSP
Design Environment (RDE)."

[13] “Reengineering and Beyond,” Boston Consulting Group, 1993.

[14] M.  Hammer,  J.  Champy,  “Reengineering  the  Corporation:  a
Manifesto for Business Revolution,” Harper Business, 1993.

[15] Hughes Aircraft Company Radar Systems, McDonnell Douglas
Aerospace, “Advanced Design for Quality Avionic Systems.”
March 1993.

[16] Advanced Avionics Architecture and Technology Review Final
Report, Volume 1: Avionics Technology, 6 August 1993, Naval
Air Systems Command, Arlington, VA.

[17] Architecture Specification for Pave Pillar Avionics, Air Force
document number SPA90099001A, January 1987.

[18] JIAWG Advanced Avionics Architecture (A3) Standard,
JIAWG document number J87-01, 1 December 1991.

[19] Dechant, Jagodnik and Wood, The Advanced Onboard Signal
Processor: Brassboard Development and Space Qualification
Plans, part of RADC-TR-87-268, January 1988, Rome Air
Development Center, Griffis Air Force Base, NY.

19

The DigestRASSPSanders RASSP Program Overview

W. Hood
Lockheed Martin

PTP2-Coo, PO Box 868, 65 River Rd.
Nashua, NH   03061-0868

whood@rocket.sanders.com

roushrv
154



Lockheed Martin Advanced Technologies Laboratories
RASSP Second Year Overview

Abstract

1. Introduction

2. ATL  Program  Approach

The goal of the ARPA/Tri-Service-sponsored Rapid Prototyping of
Application-Specific Signal Processors (RASSP) program is to
improve by at least a factor of four the cost and time needed to
develop and manufacture signal processors. The approach to
reaching the program's goal is based on three technology thrusts;
methodology, Model Year Architecture, and infrastructure
(Enterprise).  Using  this  triad  of  technology  thrusts,  Lockheed
Martin Advanced Technology Laboratories' (ATL) RASSP team
composed of an alliance of companies has implemented the first
baseline RASSP system, which represents a significant advance
over today's state-of-the-art. The methodology and tools have
been used to demonstrate cost and design cycle improvements on
the benchmark virtual prototype (VP) and have resulted in the
development of a hardware/software system that demonstrated
first-pass success. Additional developments being performed
during the last two years of the program will provide further
benefits, enabling demonstration of 4X improvements in cost and
time-to-market. This paper provides an overview/update of the
progress since the 1994 Annual Review.

theLow cost is becoming key factor in enabling next-generation
warfighting capabilities for the majority of emerging military
systems. Many applications, such as the digitized battlefield, are
characterized by the need for low-cost, high-throughput signal
processing capabilities, which are often distributed in nature.  The
span of processing runs from simple speech processing to
complex AAW Radar Systems for AEGIS. The 4X cost and
cycle time improvements provided by RASSP will provide the
ability to affordably apply state-of-the-art commercial and
military-specific technology to make these capabilities a reality.

The Lockheed Martin ATL RASSP program approach to
satisfying the RASSP goals is based on implementing the three
technology thrusts: methodology, Model Year architecture, and
infrastructure. The methodology is based on a concurrent/
collaborative approach that embraces the full hierarchy, from
requirements to manufacturing product data descriptions. The
Model Year Architecture focuses on the leveraging of COTS
technology, coupled with designing flexible, functional interfaces
to enable regular, low-cost technology upgrades. The
infrastructure (Enterprise) system enables the methodology and
Model Year Architecture approach across multi-discipline,
concurrent-engineering teams by providing integrated workflows,
data, and network services. The resulting capability is a much
greater capability than the sum of its parts, enabling the
concurrent/collaborative virtual corporation of the future.

The ATL RASSP team strategy for development and deployment
of RASSP was to assemble a world-class team of leaders in all of
the required technical disciplines. The team, shown in Figure 1,
was chosen based on demonstrated technological leadership,

significant ongoing investments in related areas and a vision of
the future that aligned with the RASSP program goals. During
the  second  year,  all  parts  of  the  RASSP  approach  have  been
developed and integrated into a design environment that is
supported by a well-defined methodology. The ATL RASSP
team has continued to focus on a process and design environment
that the user community can easily embrace.

At this milestone in the program we believe it would have been
impossible to have made the advancements to date without lever-
aging the significant ongoing investments of our team members.
While many of our team members are commercial vendors with
their own sets of tools, the RASSP focus has been to develop
standards-based processes, architectures and information stan-
dards to support reuse, design interchange, and the ability to cus-
tomize instantiations of RASSP for individualized corporate use,
as shown in Table 1. Because tools will have the shortest half-
life on the program, one of RASSP's legacies will be the interop-
erability standards developed.

During the second year of the program, implementation of the
approaches defined during the first year have begun in earnest.
The developments to date have led to early commercialization of
RASSP-based products, as shown in Table 2. These and other
RASSP developments are demonstrating the benefits of virtual
prototyping and hardware/software codesign on first-pass design
success. Accomplishments that have shown particular promise
include:

Capture of the RASSP methodology into standard (IDEF)
process language for import into the Enterprise System
workflow management tools [1].

Development of the Model Year Architecture reuse
framework, which led to implementation of a Standard
Virtual Interface (SVI) approach and supports low-cost
retargeting and "plug and play" interconnect of processing
nodes and interfaces. This approach is being proliferated
to RASSP beta sites [2].

Implementation of end-to-end virtual prototyping
capability based on hardware/software codesign.
Hardware/software codesign will be a significant factor in
reducing integration and test, providing some of the
largest contributors to achieving a 4x improvement [3].

Development of advanced integration concepts that
support multi-domain design verification across the design
hierarchy.

Development of a library-based, data-flow-graph-driven
autocode process, which abstracts signal processing soft-
ware generation and maintenance to the graph level [4].

Development of the RASSP reuse classification hierarchy
to accommodate a broader scope of reuse information

3. Year 2 Status

,

,

,

,

,

,

James E. Saultz

20

roushrv
155



(such as VHDL models, algorithms, and software) beyond
components. This classification scheme will be proposed
as a standard to IEC and CFI.

Use of the RASSP Information Model, based on STEP
standards, as the basis for product data management. It is
currently being examined as standard across Lockheed
Martin [5].

Contributions of these developments toward the 4X goals of the
program  are  further  described  in  another  RASSP  paper  being
presented at the Second Annual Conference [6]. Additionally,
proliferation of these early developments is ongoing.
Installation/use of RASSP methodology and tools is already
being planned/adopted by key Government and Industry
organizations. This includes a number of internal Lockheed
Martin  sites  and  commercial  companies  (TRW,  Allied  Signal,
Honeywell, Litton Data Systems, Rockwell, and Westinghouse).
Several Army installations (ARL, Ft. Monmouth and NVL, Ft.
Belvoir) also plan participation.

A summary of the more detailed developments is provided in the

,

following sections for the major portions of the Lockheed Martin
program.

The RASSP Methodology has gone through a second year
update. The design portion of the process is shown in Figure 2.
During the year, the team has defined the top-level methodology
and captured it in workflow processes using the Information Data
Exchange Format (IDEF) on the Enterprise System's
methodology manager.

The RASSP Design Process starts with the
Phase. The primary functions being addressed in this portion of
the design process are these:

1. System Requirements Analysis and Refinement,

2. Functional Analysis,

3. System Partitioning.

The system process captures customer requirements and converts
these system-level needs into processing requirements, both
functional and performance. The system process has no notion of

System Definition

3.1 Methodology

ATL RASSP Second Year Overview The DigestRASSP

System Definition

ALTA
ASCENT LOGIC

MATHWORKS

MARCONI

SELF TEST SERVICES

RASSP DESIGN PROCESS

Architecture Definition

Functional
Design

ALTA
JRS

MATHWORKS

Architecture Selection Architecture Verification
Detailed Design

Model Year

Architecture

RASSP Reuse Library

Hardware Design

Design For Test

Software Design

Concurrent
Engineering

JRS RESEARCH LABS

SUMMIT

ALTA ALTA
BERKELEY DESIGN TECH.
LOGIC MODELING
GROUP
PRECEDENCE
QUICKTURN

MENTOR GRAPHICS

NEOcad
OMNIVIEW
SAVANTAGE
SDRC

SELF TEST SERVICES

CADRE
JRS

AT&T
MANAGEMENT
COMMUNICATIONS &
CONTROL

AT&T
CADRE
UNIV. of OREGON

MSI

PRICE SYSTEMS

Systems
Architecture

Hardware
Software

Test
Program Management

Enterprise System ASPECT DEVELOPMENT
ENTERPRISE INTEGRATION TECHNOLOGIES
INTERGRAPH

Etc.

RASSP/EDA partnership will commercialize the RASSP design improvement

MENTOR GRAPHICS
ROCKWELL
SOUTH CAROLINA RESEARCH AUTHORITY

LV SOFTWARE
MENTOR GRAPHICS

SUMMIT

TERADYNE
SUMMIT

SYNOPSYS
ZYCAD

VISTA

LOCKHEED MARTIN

PRICE SYSTEMS

Hardware/Software Codesign

Research/Modeling CARNEGIE MELLON UNIV.
HONEYWELL

Demonstration Program TRW

FIGURE 1. Lockheed Martin ATL RASSP Team

21

roushrv
156



Increased design re-use

Low-cost upgrades - min.

RASSP Technology
Triad

Approach Standard Information
Models

Payoff

Methodology Concurrent/collaborative product
development

Workflows-IDEF Reduced time-to-market

Full product verification prior to
manufacturing

First-pass success

Hardware/software codesign Optimized solutions
Reuse-based design

Model Year
Architecture

Use architecture to standardize
functional interfaces

Architecture/Hardware -
VHDL, Software-Ada/C

Encapsulate elements into reuse
library

Reduced development
cost

Exploit COTS processing
technology HW/SW breakage

New technology fielded
sooner

Infrastructure
(Enterprise)

Use standards-based product
data modeling/interchange

Product data flow
- PDES/STEP, Express

Seamless data transfer

Exploit electronic highway Higher efficiency

Use distributed data
management

Concurrent product
development

Table 1:  Standards-based RASSP information modeling.

Table 2. RASSP is helping to drive commercial market, as shown in these
commercialization announcements (as of June 1995).

Company Tool Capability Date

Alta Group (Cadence) MATLAB integration Algorithm import capability 3Q95
SPW/Bones integration Flow graph/event simulator integration 4Q95
(Ptolemy-based)

Aspect Development Aspect Explore system Object-oriented class hierarchy 2Q95

Intergraph Design Methodology Manager Hierarchical workflow manager,
project builder toolset

2Q95

JRS NetSyn Network synthesis 3Q95

Lockheed Martin PRICE UNIX-based cost estimation 4Q95

OmniView FIDELITY Board-level synthesis design advisor Now

Precedence SimMatrix Simulation backplane extensions
(VHDL, HSIM, Quickturn)

2Q-4Q/95

22

The DigestRASSPThe DigestRASSPATL RASSP Second Year Overview

roushrv
157



either hardware versus software functionality or processor
implementation.

The transforms processing requirements
into candidate architectures composed of hardware and software
elements, with support for codesign and at all
steps. A conceptual view of the RASSP codesign and virtual
prototyping approach is shown in Figure 3. The process truly
embraces a hardware/software codesign methodology by taking
functional processing requirements and iteratively allocating
them to hardware/software in an experimentation/verification
process. The process is inseparable from the software process,
sharing in generation and verification of detailed code. The
architecture process results in a detailed behavioral description of
the processor hardware and definition of the software required for
each processor in the system.

This part of the design is done by using a hardware/software
(HW/SW) codesign approach, which refers to the simultaneous
consideration of hardware and software within the design process
[7]. The process begins with an architecture-independent data
flow graph(s) representing the signal processing.
During the process of selecting an architecture, the
nodes of the data flow graph(s) are allocated to
hardware or software. The graph nodes allocated to
software are mapped to the multiple processors in the
architecture, and performance estimates are generated
based on timing information associated with the
processing primitives from which the graphs are
constructed. Alternative hardware architectures are
developed and the system is optimized using
execution times estimated for the target hardware.
Functional simulation is used to verify that the
generated code is consistent with the functional
baseline. Performance simulation provides the next
level of assurance that all throughput requirements are
met by using lower level models, including the
operating system, scheduling, and support software
characteristics [8]. Finally, hierarchical architecture
verification of the architecture is established using
selective performance and functional simulation at the
ISA and/or Register Transfer Level (RTL) level.

In the process, selective performance
and full functional simulation are performed again.  At
this point, however, the design has progressed to the
point where simulation at the RTL and logic levels is
most appropriate. Verification of the designs at this
level is necessary prior to release to manufacturing. It
is important to note that pieces of the design may be
in different stages of the overall process, based on the
risk analysis performed in each development cycle.
For example, if it is obvious to the designers during
systems analysis that they will need a new custom
hardware processor to meet the requirements, they
may accelerate the design of the custom processor
while the overall signal processor design is still in the
architecture process.

Architecture Process

Detailed Design

co-verification

3.2 Model Year Architecture

,

,

The Model Year Architecture task is the main contributor to the
processor architecture portion of the RASSP technology triad.
This task is providing a framework for developing application-
specific signal processor architecture designs that encourages and
facilitates hardware and software reuse, upgradability, and
technology insertion. The Model Year Architecture framework,
shown in Figure 4, is composed of the following elements:

-- A high-level hardware -
architecture that provides a starting point for developing
application-specific architectures within necessary con-
straints to ensure reuse, upgradability, and technology
insertion.

-- A software architecture
that is readily portable and upgradable because of its
modularity, standardization on a required set of services.
This architecture supports a new paradigm for application

Functional Architecture

Modular Software Architecture

Figure 2. Hardware/software codesign view
of the RASSP design process

Systems

Architecture

Detailed
Design

Build

System
Requirements

Arch
Independent
Proc Model

Hardware
Perf Model

Behavior
Model

ISA Model

RTL Model

Gate Level
Model

Prototype
Hardware

Software
Perf Model

Arch
Dependent
Proc Model

Source Code

HOL
Assembly

Load
Module

L
I
B
R
A
R
Y

S
I
M
U
L
A
T
O
R

23

The DigestRASSPThe DigestRASSPATL RASSP Second Year Overview

roushrv
158



software generation, which promotes automated re-
generation of HOL code from tar get-independent
primitives instead of porting existing HOL code for
processor upgrades.

-- Architectural-level
reuse library elements that incorporate encapsulations or
wrappers to implement a functional, technology-
independent interface referred to as a Standard Virtual
Interface (SVI). Such encapsulations support "plug-and-
play" interoperability among library elements, which
provides the benefits of decreased time to implement
design upgrades and generate architectural library
components.

-- These provide
required information to the designer for effective use of
the Functional and Software Architectures general use of
encapsulated libraries and the encapsulation procedures
themselves.

During this year, the team has defined the key Model Year
Architecture concepts of encapsulation, functional interfaces, and
layering and is implementing and refining them through a number
of ongoing experiments. The team is also finalizing baseline
specifications,  which  include  the  SVI  Specification,  Hardware

Encapsulated Library Components

Design Guidelines and Constraints

,

,

The DigestRASSP

Algorithms

Architecture
Synthesis

High-Level
Synthesis

Behavioral
Synthesis

Logic
Synthesis/
Emulation

Autocode
Generation

Manufacturing/Integration
and Test

Target SW
Build

Manager

Detailed
Hardware
Virtual
Prototype

Custom
HW

COTS
Processor(s)

Algorithm Graph

VHDL

VHDL

= =Σ
Φ

Specific Instantiation of
Model Year Architecture

Model Year Architecture Framework System Application

- Radar
- ISRST
- UW Acou.

MYA Framework
Integrated
into RASSP
Methodology

RASSP
Methodology

Application
Notes

Encapsulated
Library
ElementsRASSP

Re-Use
Libraries

Modular Software
Architecture

Functional Architecture Design Guidelines,
Constraints,
I/F Standards

Figure 3. Codesign and virtual prototyping
closes the technology gap.

Figure 4. Model Year Architecture approach.

24

The DigestRASSPATL RASSP Second Year Overview

roushrv
159



Architecture Specification, Software Architecture Element
Specification, and the Model Year Architecture Reuse Element
Specification. Additionally, implementation experiments, which
involve writing VHDL encapsulations to implement the SVI for
several processors and buses, have been performed.

Integration of the Model Year Architecture Framework into the
Design Methodology and Enterprise Framework to achieve the
required synergy between the elements of the technology triad is
ongoing. The initial integration of the Model Year Architecture
Framework based on these baseline specifications is expected by
the end of 1995.

The development of tools that support the RASSP methodology
and Model Year Architecture have made major progress during
the second year. The tool developments and integration support
the full HW/SW codesign approach and are fundamental to
achieving the RASSP 4X goals. The tool developments that have
taken place in Year 2 are summarized in Table 3. A robust set of
design and verification tools, which allow creating virtual
prototypes that can easily be turned into producible products, are
enablers for the methodology and Model Year Architecture parts
of the triad. The following sections describe the design
environment enhancements for the systems, architecture,
software, and hardware elements.

-- The system definition process is a front-end
engineering task, where signal processing concepts are developed
and top-level tradeoffs are performed to determine the signal
processing subsystem requirements. As a part of the RASSP
program, the team is performing integration of multi-discipline
capabilities into true concurrent engineering environment. This
environment consists of three major tools:

Ascent Logic's RDD-100,

Management Sciences' RAM/ILS toolset, and

Lockheed Martin PRICE Systems' cost estimating tools.
These tools are used for capturing and tracking system
engineering requirements, describing the functional
behavior of the signal processor, allocating the
requirements to signal processing subsystems, performing
high-level reliability and maintainability trade-off
analyses, and performing parametric-based cost
estimations for the signal processor's entire life cycle. The
integration of these tools on the RASSP program will give
the system engineer the capability to perform high-level
trade-off analyses.

-- A set of tools to assist the designer in partitioning
and  mapping  a  functional  application  onto  a  potentially  large
number of computing nodes is a major requirement for meeting
RASSP's time-to-market and reuse goals. JRS's NetSyn tool is the
first available tool to assist in performing HW/SW codesign for
architectural trade-offs. The RASSP team is currently integrating
NetSyn with tools from other disciplines to enable designers to
perform concurrent engineering trade-offs. The resulting RASSP
capability will be the ability to efficiently evaluate a number of

Systems

Architecture

3.3 Design environment

,

,

,

varying architecture approaches for a particular application and to
generate top-level size, weight, cost, reliability, and performance
estimates.

Once an architecture has been selected, more detailed verification
of the implementation is required, which will likely be composed
at any point in time of existing hardware and software elements,
existing models, and new components. What is required at this
level of the design hierarchy is a robust simulation capability that
allows the designer to iteratively verify the design in a
hierarchical manner, as shown in Figure 5. The RASSP program
is making multi-domain simulation capabilities available through
the productization of the Ptolemy-based Heterogeneous
Simulation Interoperability Mechanism (HSIM) by Berkeley
Design  Technologies.  Estimates indicate that the integration cost
using HSIM was reduced by a factor of 8 over traditional
integration approaches. Additional cross-domain integrations
performed to date include integration of HSIM to the Precedence
simulation backplane, as well as integration of VHDL and
emulation (QUICKTURN) environments into the backplane.
During Year 3, the team will develop a graphical user interface to
support efficient hierarchical simulation partitioning, invocation,
and visualization. The ATL RASSP team has demonstrated
flexible application mapping and code verification on
multiprocessor testbeds this year using Lockheed Martin's
Graphical Entry Distributed Application Environment (GEDAE).

One of the design approaches that has developed over the past
year is the use of VHDL to convey design information from the
initial multiprocessor system concept through synthesizable chip
descriptions. The team's efforts have focused on developing a
VHDL Performance model interoperability standard and object-
oriented extensions to support high-level modeling. This year,
the team defined a Performance Model interoperability standard
and developed an example (SAR benchmark) model using this
approach. Models have been distributed to several organizations
(TRW, Vista, HTC, Uva, JRS, and MIT) and have demonstrated
more than 100X improvement in simulation time over traditional,
ISA-level approaches. Honeywell is developing readily
reconfigurable, generic libraries, with initial libraries already
delivered, to support rapid trade-offs.

Object-oriented extensions to VHDL to support higher levels of
abstraction in model definition and to support reuse have been
developed. The approach taken has been to develop an object-
oriented preprocessor that results in fully compliant IEEE 1076
VHDL code. VISTA has developed and demonstrated a
prototype version of this preprocessor, which is now undergoing
detailed evaluations.

-- One of the key developments on ATL's RASSP
program is the development and implementation of a library-
based, data-flow-graph-driven autocode process, which abstracts
signal processing software generation and maintenance to the
graph level. Data flow graphs represent the required signal
processing using the Processing Graph Method (PGM). This
representation is totally architecture-independent. Thus, as
hardware is upgraded, the application description at the graph
level remains constant.

During architecture selection, the processing represented by the
nodes in the graph is allocated to hardware or software using

Software

The DigestRASSP

25

ATL RASSP Second Year Overview

roushrv
160



The DigestRASSP

Design Area Company Participation Tools 2nd Year Enhancements

Architecture
Definition

Alta Group of
Cadence

Signal processing algorithm
behavioral simulations and
architectural simulation and
performance verification

BONeS,
SPW

Integrated SPW and BONeS using BDT
HSIM. SPW/MATLAB interface allows
MATLAB “M” files to be included in SPW
as library block. SPW JRS Netsyn
integration support multiprocessors
designs.

System
Definition

Ascent Logic
Corporation

System requirements definition
and functional decomposition

RDD-100 Integrating RDD-100 outputs with JRS
Netsyn, MSI Rel/Maintainability and
PRICE estimating tools allows concurrent
high-level system tradeoffs.

Enterprise
System

Aspect
Development, Inc.

Design reuse library
management and system
component information

CLMS Developed the RASSP Reuse Data
Manager (RRDM) and integration into
Enterprise System.

Architecture
Verification

AT&T Multiprocessor/Parallel processor
software debugger

CDEM Distributed debugger for COTS-based
processors.

Architecture
Verification

Berkeley Design
Technology , Inc.
(BDT)

Environment for simulation and
prototyping of heterogeneous
systems

HSIM
(Ptolemy)

Productized Ptolemy kernel into HSIM
enables cosimulation of heterogeneous
high-level decision tools. Integration of
HSIM to Precendence backplane.

Research Carnegie Mellon
University (CMU)

Architecture partitioning mapping
tools

Developing processor architecture
mapping schemes.

Enterprise
System

Enterprise
Integration
Technologies

Networking services Developing secure networking capability
to support virtual corporations, exploit
electronic commerce.

Modeling Honeywell
Technology Center
(HTC)

VHDL Performance Modeling Developing a generic parametric library
of VHDL performance models and
interoperability guidelines.

Enterprise
System

Intergraph
Corporation

Enterprise framework - product
data and workflow management

DMM,
DM2.0

Developed enterprise-level object-
oriented data management to support
RASSP design reuse concepts.

Architecture
Selection

JRS Research
Laboratories, Inc.
(JRS)

Integrated architecture tradeoff
and synthesis

IDAS Demonstrate the viability of Network
Synthesis System (Netsyn) for rapid
architecture tradeoffs. Architectural
selection toolset: Netsyn, RDD-100, MSI
Rel/Maintainability & PRICE cost
analysis.

Detailed
Design

LogicVision
Software, Inc.
(LV SW)

Electronics systems test
automation tools for insertion,
synthesis and fault grading of
BIST structures

ICBIST Developing a hierarchical integrated BIST
methodology and tools for PCB, MCM
and system-level test. Development is
being integrated with LM ATL design
approach.

Table 3.  RASSP methodology and Model Year Architecture productivity tool development.

26

ATL RASSP Second Year Overview

roushrv
161



The DigestRASSP

Table 3.  RASSP methodology and Model Year Architecture productivity tool development (cont.)

Design Area Company Participation Tools 2nd Year Enhancements

Architecture/
Software

Management
Communications
& Control, Inc.
(MCCI)

Development of multiprocessor
DSP autocode tools and
distributed run-time scheduling
and control

GrTT,
uPIDgen

Developing and integrating suite of tools to
support the automatic code generation for
COTS processors from signal flow graphs
(PGM)

System &
Distributed
Design

Management
Sciences, Inc.
(MSI)

Reliability, availability, and
maintainability analysis

RAM/ILS Developing and integrating suite of tools
for reliability/maintainability predictions,
FMECA and production assessment.

Detailed
Design

Mentor Graphics
Corporation
(MGC)

Integration services and HW
design of component-based
automation tools

Falcon,
QuickVHDL,

etc.

Supporting integration of Enterprise
System and design tools that to build
COTS-based multiprocessors.

Detailed
Design

Omniview , Inc. Tool extension to synthesize DSP
boards and parallel/distributed
systems

Fidelity Extending a general purpose board
synthesis capability for signal processing
boards.

Arch/Design
Verifications

Precedence, Inc. Simulation backplane allows
multiple simulations to run
concurrently

SimMatrix Extending SimMatrix capability to permit
cosimulation of all levels of signal
processor design.

System
Definition

PRICE Systems Parametric cost estimation PRICE
S, H, M

UNIX-based parametric cost estimating
tools for doing HW, HW life cycle & SW.

Arch/Design
Verification

Quickturn
Systems

Integration of emulation &
design tools

ASIC Emulator Integration of emulation capability to
design environment.

Enterprise
System

Rockwell
Aerospace

Workflow and information
model development

Neutral workflow format process modeling
language and enterprise model repository.

Enterprise
System

SCRA Electronic interface to
manufacturing facilities

Standards-based manufacturing interface
to support virtual prototyping between
design and manufacturing organizations.

Total Test
Methodology

Self Test Services
(STS)

Design-for-test (DFT)
methodology and tools

DFT methodology to support total design
hierarchy.

Detailed
Design

Synopsys, Inc. VHDL source compilation and
logic synthesis

VHDL/Design
Compiler,

Design Ware

Supporting use of synthesis tools for
designing processors.

Demos TRW Demonstration of RASSP for
ICNI application

Demonstrations of the RASSP concepts for
signal processor design.

Software
Debugging

University of
Oregon

Software analysis and
binary-to-binary translation of real-
time software

TIBBIT , PIE Performance Instrumentation Environment
(PIE) for performance debugging.

Research
Modeling

Vista
Technologies, Inc.

Object-oriented VHDL extensions OO-VHDL,
StateVision

Developing OO-VHDL preprocessor to
generate models and test benches.

27

ATL RASSP Second Year Overview

roushrv
162



various programmable processors in the architecture. The
description of the architecture, the mapping information, and the
PGM graph are seamlessly passed from NetSyn to the Autocode
tools. Connected groups of primitives assigned to the same
processor represent graph partitions, which are automatically
translated (using the MCCI-developed Autocode tools) to source
code for the processor type to which the partition has been
mapped. This translation uses the optimized math and signal
processing libraries for the specified target processor. Along with
the Autocode tools, MCCI has completed the design and is
currently implementing a Run Time System to support the
management and execution of the autocoded graphs on the target
hardware. The Run Time System is being built with an open
interface to operating system microkernels to facilitate porting to
commercial products. The first integrated version of both the
Autocode tools and the Run Time System will be released in
4Q95 and will support the MCOS operating system and Mercury
signal processing application library (SAL). The Autocode tools
and Run Time System will provide the recently initiated
AN/UYS-2A upgrade program with both the ability to easily
retarget PGM software to the new hardware and the ability to
upgrade the hardware without modifying the software at the
graph level. This effort will represent the first real application of
automated code generation and run-time support targeted to
commercial processors.

-- Integration of DFT
activities are focused on knitting together chip to system
testability over the entire product life cycle from design
verification and manufacturing acceptance through field support.
The DFT methodology contributes to achievement of the overall
RASSP goals in two ways.  First, adoption of DFT practices, such
as being developed and practiced within industry , results in
reduced cycle time, reduced cost, improved quality, predictable
schedules (including integration and test), improved time-to-
market, and most importantly time-to-profit. Secondly, the
structured DFT methodology provides improvement of the DFT
process itself compared to current industry practice. This is
achieved by the introduction of proven system engineering
practices, such as the consolidation of test requirements.  It is also

Hardware/Design for Test (DFT)

achieved by leveraging top-down development of the overall
RASSP methodology to flow-down the test strategies and
architecture from the system to chip packaging levels and across
life-cycle phases of the product.

The team has captured the blueprints for the process
enhancements in the recently completed DFT Methodology and
Testability Architecture documents. Additionally, activities to
implement the process enhancements are proceeding.

The RASSP Enterprise System development during Year 2 has
concentrated on developing the key elements required to support
the RASSP Methodology and Model Year Architecture concepts.
The conceptual view of the RASSP Enterprise System is shown
in Figure 6.  The Enterprise System development has been broken
into the major areas described below.

The has made significant
progress and has resulted in a concept of operations, which has
been used to drive the vision of our detailed developments. The
team has completed enterprise-level integration of several of the
elements of the methodology, which includes implementation of
the workflows into the Intergraph Design Methodology Manager
integration of the tools associated with those workflows into the
Desktop manager and integration of the tool's data into the
RASSP Product Data Management System. The
methodology/workflows for the complete hierarchy of design
steps will be completed early in Year 3.

The portion of the Enterprise
System was updated with the new Intergraph DM2.0 Data
Management tool (Metaphase Data Management tool). DM2.0 is
the central part of the RASSP Product Data Management System,
and is an Object-Oriented Data Management tool that supports
the RASSP Configuration Management and Authorization
Models and policies that were developed this year. The use of
DM2.0 ensures that RASSP is supported by a viable commercial
approach that will be distributed by a commercial supplier.

Enterprise System integration effort

Enterprise Data Management

3.4 Enterprise System

The DigestRASSP

Design
Environment

Enterprise System
Hardware
Testbed

'Behavioral'
Simulators

VHDL
Simulator

Arch/Perf
Simulator

Ptolemy

Analog

RTL/logic

S
im

B
ac

kp
la

n

Figure 5. RASSP hierarchical architecture
verification approach.

28

ATL RASSP Second Year Overview

roushrv
163



The DigestRASSP

Aspect and Lockheed-Martin are developing the RASSP
for hardware, software,

architecture, systems, VHDL model, and algorithm design
objects. Aspect Development is working closely with ATL to
standardize this hierarchy as a product of the RASSP program.
The specific Reuse Data Management approach being pursued
takes full advantage of Aspect's Object-Oriented Component
Library System and the latest reuse tool, referred to as Explore-
CIS.  An example browser window is shown in Figure 7.

The RASSP Enterprise System is addressing the
requirements. During the second year,

the team has implemented an approach for interfacing the RASSP
board design tool outputs through a STEP AP210 approach. The
Manufacturing Interface portion of the development is also
leveraging the SCRA PreAmp development toolset developed
under a NIST program. The RASSP Design-to-Manufacturing
approach is being implemented at the Lockheed Martin Ocala
Manufacturing Facility in Florida. The design-to-manufacturing
effort is looking at building a bridge between STEP and EDIF.

RASSP funding also supports extensive
. Tool integrations, which enable bi-directional data

exchange and synchronization through the graphical user
interface and in batch modes, include:

1. Intergraph Corporation's Design Methodology Manager
(DMM),

2. Intergraph's new Data Manager (DM2.0), which will manage
product data in the RASSP enterprise environment,

3. Mentor Graphics' Library Management System (LMS) and
Design Architect.

In the , several collaborative tools

Reuse
Design Object Classification Hierarchy

Design-to-
Manufacturing Interface

design tool and data
integration

Collaboration Design area

were identified and will lead to a selection and integration during
Year 3. The leading candidates are the ARPA-sponsored MECE
tool developed by the Lockheed Martin Palo Alto Laboratories
and the SRI Collaborative tool.

The final area being addressed in the Enterprise System is the
. The ATL RASSP team member responsible

for supplying Enterprise System Network Services is Enterprise
Integration Technologies (EIT). The EIT group will be making a
secure network server available for supporting the Design-to-
Manufacturing Interface Experiment being run at the Lockheed
Martin Ocala PWA shop. During the third year, the number of

Network Services

Figure 6. RASSP Enterprise System.

Figure 7. The RASSP Reuse Design Object
Classification Hierarchy in the Explore-CIS class

browser window.

29

ATL RASSP Second Year Overview

Information
Highway

Information
Highway

Information
Highway

New COTS-
Based Design

Software

Tech. Insertions/
Design Upgrades

System
Architecture

New Custom
Design

Workflow
Mgmt System Mechanical

Electronic
Design

RASSP
PDMS

Management/
Document

Information
Highway

Manufacturing
Text

roushrv
164



RASSP sites using the EIT capability will be expanded to allow
demonstrating the distributed design and manufacturing approach
that is being developed. This capability will be used to
demonstrate the virtual corporation being developed for the
RASSP program.

A number of benchmark and demonstration efforts are ongoing to
impact high-visibility military platforms, demonstrate RASSP
technologies, and provide feedback for optimization. The largest
activity is the AN/UYS-2A upgrade, which is currently
beginning. This demonstration will provide greater than 30X
capability upgrade to the UYS-2A processor aboard the LAMPS
helicopter to support shallow water target detection/classification
in first-quarter-1997 flight test. Major features include
implementation of a 4 GFLOP Floating Point Commercial
Arithmetic Processor (FCAP) SEM-E board in the AN/UYS2A,
and use of the RASSP Autocode capability to enable cost-
effective retargeting across a wide range of Navy programs.

TRW is using the RASSP system to develop a Spread-Spectrum
Preprocessor (SSPP) targeted for the requirements of the
Integrated Sensor System (ISS) and Joint Advanced Strike
Technology (JAST) programs [9]. Spread-spectrum processing is
a key part of many communication links, including JTIDS,
EPLRS, GPS, and WNA. The JAST mission is to create
affordable strike warfare systems. Several of JAST's methods to
achieve its goals are parallel to RASSP, such as commonality,
improved practices, reduced upgrade costs, and simulation.
Specific cost savings goals are 33% O&S, 64% production, and
6% R&D. TRW has developed one virtual prototype SSPP
optimized for maximum COTS usage. Three more virtual
prototypes are planned for this year. In 1996, TRW will add more
features and build one of the virtual prototypes in end-item
hardware that will be available to the ISS and JSAT program for
flight tests.

The KINDLING Demonstration is a small effort to apply portions
of the RASSP process to a classified application. Use of graph-
based autocode generation capabilities has demonstrated almost
10X improvement in algorithm software generation for pieces of
this application. The team is also working on the definition of an
Executable Specification, which is being considered as a potential
Government procurement approach for upcoming programs.

The use of the RASSP methodology and design tools were used
to design the Benchmark 1 Virtual Prototype [10]. The
Benchmark 1 experience has lead to demonstrating an approach
for applying VHDL to model full computing systems that contain
upwards of hundreds of processor elements. A central theme is
the promotion of true hardware/software codesign through the
independent specification of the software and the hardware to
support the rapid exploration of various software applications and
mappings on many architectural candidates. Reduction of the
design cycle-time to less than a half-hour for relatively complex
applications such as the Synthetic Aperture Radar (SAR) allows
multiple design iterations per day .

The team completed successful architecture verification and
optimization of a full SAR DSP system containing 24

3.5 Benchmarks, demonstrations, proliferation

cooperating processor nodes running multiple iterations of the
SAR application algorithm, which span several seconds of
simulated real time. The system models provide early design
verification via data-flow-graph-driven simulation of software as
partitioned, mapped, and executed on the hardware architecture.
This verified the RASSP virtual prototyping approach by
providing early design verification of software as partitioned,
mapped, and executed on the hardware architecture, prior to
hardware manufacture. The benchmark also demonstrated
hierarchical simulation and testbench data from virtual prototype
to verify RTL-level descriptions of custom boards and FPGAs.

The team also implemented the RASSP methodology and
demonstrated an object-oriented approach to autocode generation
of command program for SAR. Benchmark 2 demonstration will
show ease in retargeting the application for a Model Year product
upgrade (i860 transition to 21060).

The Lockheed Martin ATL RASSP program progress during Year
2 has shown that many of the proposed concepts are achievable.
These developments are being used to demonstrate the benefits in
schedule, cost, and quality that can be achieved in signal
processor design. The Benchmark 1 and 2 efforts have clearly
demonstrated the adaptability and flexibility that can be achieved
by using the RASSP methodology and design environment. The
team's Benchmark 1 virtual prototype was focused on building a
SAR processor using a COTS processor-based approach. Delay
in delivery of the full functional/performance vendor part forced
a mid-stream change in the COTS approach. Because the design
had been captured in hierarchical models/simulations, it was very
easy to retarget to an available COTS processor. This unplanned
programmatic deviation is not uncommon among real-world
programs.

The demonstrated capability to develop the first model year
release of the system with a small perturbation in time and cost
has convinced the ATL RASSP team that the virtual prototyping
paradigm being pursued has fully proven its benefits. A
minimum of 2X improvement in the schedule and cost, while
maintaining the quality of the design, was demonstrated. The
ATL Benchmark team plans to implement the Model Year 2
approach using an improved processor that will substantiate the
Model Year Architecture methodology being pursued. The goal
is to then show that a new set of algorithms (non-SAR
application) could be easily mapped to the COTS-based
architecture.

The UYS-2 program upgrades will demonstrate the benefits of
the RASSP Methodology and design tools. The use of the virtual
prototyping tools and automatic code generation tools coupled
with new concepts, such as the ARPA Myrinet development, will
demonstrate the ease of building COTS-based processors for
multiple service applications with the RASSP concepts at
significantly reduced cost and schedule.

In addition to demonstrating the use of RASSP concepts, the
team will deploy a large number of the tools for use by the total
international electronic design community. This is an exciting
part of the program because it will help fund continued

4 Summary

The DigestRASSP

30

ATL RASSP Second Year Overview

roushrv
165



improvements to the tools and will allow the community to
develop models and examples that can be used by the user
community.

The RASSP concepts are being applied to other ARPA-Tri-
Service programs. The first such program is the Afford-able
Multi-Mission Manufacturing (AM3) program. The ATL RASSP
team believes the RASSP enterprise concept and implementation
will also have applications to many other design and
manufacturing requirements.

[1] Bard, A., Finnie, E., Forte, M., Selvidge, W., Stavash, J.,
Tuck, M.C., and Wedgwood, J.,

, Second Annual RASSP Conference Proceedings,
1995.

[2] Caracciolo, G. and Pridmore, J.,
, Second Annual

RASSP Conference Proceedings, 1995.

[3] Bard, A. and Schaming, W.B.,

, Second Annual RASSP Conference
Proceedings, 1995.

[4] Robbins, Christopher,
, Second

Annual RASSP Conference Proceedings, 1995.

Workflow Modeling for
Implementing Complex, CAD-Based, Design Methodolo-
gies

Reuse-Oriented Model Year
Architectures for Rapid Prototyping

Hardware/Software Codesign
in the Lockheed Martin Advanced Technology Laboratories'
RASSP Program

Autocoding in the Lockheed Martin
ATL RASSP Hardware/Software Codesign Process

References

The DigestRASSP

[5] Bard, A., Chadha, B., Finnie, E., Kalathil, B., Selvidge, W.,
Tuck, M.C., and Welsh, J.,

, Second
Annual RASSP Conference Proceedings, 1995.

[6] Pridmore, J.,
,   Second   Annual   RASSP   Conference

Proceedings, 1995.

[7] Bard, A., Myers, C., and Schaming, W.B.,
, RASSP Working Document, 1994.

[8] Hein, C. and Nasoff, D.,
, Second Annual RASSP

Conference Proceedings, 1995 .

[9] Kuttner, C.,
, Second Annual RASSP Conference

Proceedings, 1995.

[10] Jaffe,  R.,  Kline,  W.,  and  Pridgen,  J.,

, Second Annual RASSP Conference
Proceedings, 1995.

Integrated Process Control and
Data Management in RASSP Enterprise Systems

Advanced Technology Laboratories' Path to
4X   Improvements

Hardware/
Software Codesign

VHDL-Based Performance
Modeling and Virtual Prototyping

TRW RASSP Model Year 1 Spread Spectrum
Pre-Processor

RASSP  Technology
Insertion into the Synthetic Aperture Radar Image
Processor Application

Jim Saultz
Martin Marietta

1 Federal Str. A&E, 2-W
Camden, NJ   08102
jsaultz@atl.ge.com

31

ATL RASSP Second Year Overview

RASSP Digest-Rapid Prototyping of Application Specific Signal Processors
The RASSP Digest is published quarterly and provides information for and about the RASSP Program and rapid systems
development.  For more information, contact Dr. Anthony Gadient or Dr. Vijay Madisetti, Editors, at the addresses below:

Phone: 803-760-4082 Phone: 404-853-9830 Managing Editor
FAX: 803-760-3349 FAX: 404-853-9171 Phone 803-760-3376
Email: gadient@scra.org Email: vkm@ee.gatech.edu Email: adamsk@scra.org
SCRA Georgia Tech
5300 International Boulevard Sch. of Elec. & Computer Eng.
North Charleston, SC 29418 Atlanta, GA 30332-0250

Dr. Anthony J. Gadient Dr. Vijay K. Madisetti Kristi Adams

RASSP Steering Committee
ARPA (ETO)

Randy Harr                                  Program Manager
ARMY

Randy Reitmeyer Administrative COTR, Lockheed/Advanced Technology Labs
Arne Bard Technical COTR, Lockheed/Advanced Technology Labs

NAVY
Ingham Mack (ONR)
Gerry Borsuk (ONR)
Joe Killiany (NRL) Administrative COTR, Lockheed/Sanders
J. P. Letellier (NRL) Technical COTR, Lockheed/Sanders

AIR FORCE
Stan Wagner Educator Facilitator and Technology Base
John Hines COTRs

n

n

n

n

n

n

n

n

n

roushrv
166



SCRA
5300 International Blvd.
N. Charleston, SC 29418

Methodology

ARPA Tri-Service

Reinventing
Electronic

Design
Architecture Infrastructure

RASSP

c

32

Calendar of Events
VHDL International Users Forum (VIUF) October 15-18, 1995 Boston, MA
For More Information: Pam Rissman
415-329-0578 or fax: 415-324-3150

GOMAC, RASSP Seminar October 18, 1995 Orlando, FL
For More Information: Ed Hakim
908-427-2185

CALS  Expo October 23-26, 1995 Long Beach, CA
For More Information: Dr. D. Brent Pope
202-775-1440 or brentpope@delphi.com

DSP World Expo October 24-26, 1995 Boston, MA
For More Information: Ann Harris
617-891-6000 or DSPWorld@world.std.com

4th International HW/SW Co-Design Workshop March 18-20, 1996 Pittsburg, PA
For More Information: Prof. Don E. Thomas
412-268-3545 or thomas@ece.cmu.edu

NSF Workshop on Workflow and May 8-10, 1996 Athens, GA
Process Automation in Information Systems
For More Information: Prof. Amit Sheth
706-542-2310 or amit@cs.uga.edu

Design Automation Conference (DAC) June 3-7, 1996 Las Vegas, NV
For More Information: MP Associates
303-530-4333

roushrv
167



roushrv
168



2

As organizations focus on core competencies, the need to bring
diverse organizations together to satisfy the various resource needs
required for large product developments (such as a new weapon
system or automobile) is becoming increasingly important.
Successfully forming a virtual corporation in a timely fashion faces
several challenges.  Flexible enterprise integration systems can
provide the infrastructure needed to overcome these challenges.

This edition of the The RASSP Digest is focused upon the RASSP
efforts to develop the enterprise integration infrastructure necessary
to support collaborative design in a distributed, heterogeneous
environment.  This infrastructure is vital to enable the rapid
formation of virtual organizations so important to business and the
Department of Defense (DoD) today.

To achieve the enterprise integration objective of electronically
enabling virtual collocation in time and space, four sets of related
problems must be addressed.

n Connectivity
n Interoperability
n Security
n Business/Cultural

Connectivity implies that an organization be accessible via the
information highway.  Interoperability requires the ability for
organizations using different applications on different platforms to
be able to effectively and efficiently exchange information.  This
spans the range from different organizations using different word
processors on different platforms (e.g., PC’s and Macintosh’s) being
able to exchange information and make effective use of it, to the
ability of different designers to share complex models of hardware
and make effective use of these models.   Security issues span the
realm from encryption to support information exchange over public
networks to authentication mechanisms that allow one to ensure
they are communicating with whom they think.

By solving these three sets of related problems, new capabilities
are enabled that represent services that an enterprise integration
framework can provide.  These services include capabilities such
as workflow management systems, enterprise product data
management systems either stand-alone or integrated with a
workflow management system, and enterprise library management
systems.

Lastly, there are numerous business and cultural issues that must
be addressed to allow the effective application of enterprise
integration technologies like those being developed on RASSP.  The
RASSP Education & Facilitation program is working to overcome
these business and cultural barriers.

RASSP Digest Theme: The Road to Enterprise Integration
Anthony J. Gadient and Vijay K. Madisetti

To cover the enterprise integration area, a collection of five papers
has been assembled.  The first two papers present the efforts of the
RASSP prime contractors.  The first paper, Integrated Process
Control and Data Management in RASSP Enterprise Systems,
by John Welsh, et. al. of the Lockheed Martin Advanced Technology
Laboratories' (LM-ATL) RASSP team, describes the LM-ATL
enterprise system, highlighting the components that make up that
system and presenting a strategy by which the services provided
by this enterprise framework can improve efficiency in task
execution and information management.  The second paper,
Enterprise Integration, by James Chieks of the Lockheed Sanders
RASSP team, highlights many of the technical and business/cultural
difficulties involved in achieving enterprise integration.  These two
papers by the RASSP primes are followed by two invited papers
which help to present a comprehensive view of the enterprise
integration area.  The first of these invited papers, The National
Industrial Information Infrastructure Protocols (NIIIP) Project, by
Richard Bolton of the NIIIP Project, presents an overview of this
important, ARPA funded project.  The NIIIP technical vision is to
define ways for existing applications to inter-operate and to make
the technologies fit together in a useful manner based on existing,
emerging, and defacto standards such as ISO 10303 (STEP).  The
next invited paper, Concurrent Engineering Wheels, by Biren
Prasad, Managing Editor of the Concurrent Engineering Research
and Applications Journal, focuses on the topic of cooperative
product development or concurrent engineering.  Enabling
concurrent engineering is one of the primary benefits provided by
enterprise integration.  The final paper, Agility through Information
Sharing: Results Achieved in a Production Environment, presents
the RASSP program’s efforts to develop an agile manufacturing
interface utilizing the RASSP enterprise integration capabilities.
The results presented in this paper, a 10x reduction in design to
manufacturing cycle-time and more than an 80% reduction in
rework, highlight the benefits that can be achieved from enterprise
integration.

Once again, bon appetit, for there is a lot to Digest in this important
issue.

Anthony J. Gadient
SCRA

5300 International Blvd.
N. Charleston, SC 29418

gadient@scra.org

Vijay K. Madisetti
ECE,

Georgia Tech.
Atlanta, GA 30332-0250

vkm@ee.gatech.edu

roushrv
169



3

Abstract

The RASSP Enterprise System provides key automation support
for multidisciplinary teams of engineers and managers in the
execution of complex development projects. As a result, the system
facilitates greatly improved productivity, as well as efficient
program control and orderly management of design
configurations. Core concepts of the RASSP Enterprise System
include integration of tools and tool frameworks into an enterprise
environment; program execution control through workflows;
integrated data management functions; concurrent engineering
team support; and integration of design engineering and
manufacturing. This paper presents a strategy for the use of the
RASSP environment, methodology/workflows, and information
models to improve efficiency in task execution and information
management on signal processor development projects.

1. Enterprise System Overview

The RASSP Enterprise System architecture is hierarchical,
integrating individual design tools, as well as collections of tools,

which are themselves integrated into specialized frameworks. This
architecture includes provisions for purchasing systems and product
data management systems [1]. The architecture also provides a
distributed reuse system with an object-oriented repository at the
enterprise level and coordinated local framework/tool libraries.

The concept of operation for the enterprise framework includes
the ability to execute project plans, expressed as workflows, by
teams of engineers. Execution of a workflow by a member of a
design team, as indicated in Figure 1, initiates control commands
to a CAD/CAE tool as relevant for the particular workflow step.
This execution also initiates data transactions with the enterprise
product data management system; local data management systems;
and library systems, as relevant for the particular workflow step.
In addition, project management tools are coupled with the
enterprise environment, which receives regular status updates as
workflow steps are executed. This process facilitates effective, non-
interfering project management.

John Welsh, Biju Kalathil, Bipin Chadha,
Mary Catherine Tuck, William Selvidge,
Elisa Finnie, and Arne Bard

Integrated Process Control and Data
Management in RASSP Enterprise Systems

roushrv
170



4

The RASSP DigestIntegrated Process Control and Data Management
in RASSP Enterprise Systems

Execution of the workflows is performed using enterprise
methodology management tools, which provide links to tools, data
access mechanisms, and other services. This process removes these
functions as required responsibilities for the design engineer,
allowing increased focus on the real design tasks and significantly
improving productivity. Using this process, project engineers or
supervisors would no longer be responsible for design and
implementation of project plans based on workflows using the
system.

In addition, the enterprise framework provides multiple workspace
views for the design environment to support workflow usage. These
views include

n Tool and application workspace

n A data workspace for product and reuse information

n Project/workflow workspaces.

The resources, data objects, and applications available to a
particular engineer are defined by his or her identity and role in an
authorization hierarchy implemented in the Enterprise System.

2. Workflow Management

Workflow management in the RASSP system is comprised of
methods and tools to provide the project team with an environment
that facilitates day-to-day work. We have adopted a process-model-
driven philosophy for workflow management. The RASSP
methodology leverages process models for electronic design that
were developed by Lockheed Martin’s Engineering Process
Improvement program. These models are being augmented with
new RASSP process models that specifically address signal
processing issues and provide many enhancements to electronics
engineering processes. The RASSP methodology also provides

approaches for concurrent engineering, evaluation of multiple
alternative solutions, failback paths, and iterations.

The detailed representation of the RASSP methodology and related
methodologies are modeled using extensions to IDEF3 [2]. The
workflow model captures

n Process steps

n Their precedence relationships

n The personnel roles authorized/required to perform work

n The information objects involved (created, used, modified,
destroyed, etc.) in the process step

n The tools to be launched or controlled at each step.

The information objects represent place holders for instances of
objects that will flow through the workflow. A neutral, process
information exchange language (Process Modeling Language -
PML) has been developed to facilitate exchange of process data
among process-modeling and process-enactment tools. A parser to
convert process model data from TopDown Flowcharter to PML
format has been developed. The parsed information is stored in a
PML repository, which Rockwell is developing. Some
implementation details can be found in Lockheed Martin Advanced
Technology Laboratories’ paper, entitled “Workflow Modeling for
Implementing Complex, CAD-Based Design Methodologies” [3].

The workflows are hierarchical in nature — representing the various
disciplines associated with electronic design. The workflows consist
of reusable workflow segments, which can be combined in various
configurations to address specific project needs. Figure 2 represents
a module final design segment. These segments consist of multiple
process steps, each of which are also reusable. Thus, options

roushrv
171



5

The RASSP DigestIntegrated Process Control and Data Management
in RASSP Enterprise Systems

Enterprise Data Model was therefore developed based on multiple
sources of  product data requirements.

The RASSP team is implementing the enterprise data management
system using the Intergraph DM2.0 distributed product data
management product [7]. As a result, the team is mapping the
RASSP enterprise data model to the core model of the DM2.0
product (Figure 3) and is implementing extensions that make
practical and commercial sense. Some of the new classes being
added to DM2.0 are security classification, anomoly, product
concept, and software configuration item.

The DM2.0 product manages the enterprise documents and their
metadata, product structure and configurations, user roles and
authorizations, storage locations and vaults, and related data in a
distributed environment. It also interfaces with the reuse libraries
to facilitate reuse of the enterprise information. DM2.0 provides
these services either directly or under the control of a workflow
manager, based on the needs of particular projects. This enables
the workflow manager to access and store information (such as
design documents, bills of material, and test procedures) by a
process step, as needed.

For configuration management [8] and authorization, RASSP-
developed models define specific requirements for these
capabilities. Support for implementation of these models is provided
using the rules subsystem of DM2.0. A combination of DM2.0
and secure internet services will provide distributed product data
management capability for a multi-organization, multi-site
environment.

4. Reuse Management

Library management in the RASSP system involves the release,
cataloging, and searching of reusable design objects. The RASSP
Reuse Data Manager (RRDM) supports this library management.
Sources for reusable design objects in the RASSP system include:

n CAD tool libraries

n CAD-tool-independent libraries

available to a user organization are either to make use of the RASSP
workflows in current form or to develop process plans based on a
combination of reuse of RASSP workflow segments, individual
process steps, and possible custom user steps.

The RASSP team is producing workflows that will represent the
design disciplines and support activities represented in Table 1. To
date, the team has implemented detailed hardware design and
multiple architecture design processes. Development of systems
and software design processes, as well as enhanced supporting
processes, are currently underway.

To support implementation, the detailed workflow information
captured in IDEF3X is represented using a workflow-tool-
independent language form, the Process Modeling Language
(PML). This information can then be  transferred to an enterprise
workflow tool. Utilization of processes in the enterprise workflow
tool involves conversion to an executable form that is compatible
with the specific workflow tools being used in the enterprise
environment. The Design Methodology Manager (DMM),
developed by Intergraph, is the workflow management tool that
the Lockheed Martin RASSP system is using for this purpose [4].
In addition to the PML workflow, tool-encapsulation files provide
specific tool control information necessary for control of the tool-
using workflows in the enterprise environment. This information
includes path and name of executables, argument variables, files
and data required, pre- and post-processing required, and so on.

3. Information Management

Enterprise information is a key corporate asset and requires a well
planned management strategy. The RASSP team developed an
enterprise data model, which specifies the metadata that the design
engineers and project/system administrators need to track the
product and reuse information in the system. In development of the
RASSP Enterprise Data Model, several standard models were
analyzed relative to RASSP-specific requirements. Models
analyzed include the Product Data Control Model (which Rockwell
developed on the USAF Integrated Data Strategy program), the
STEP parts and protocols AP203 [5], and Part 44 [6]. The

roushrv
172



6

n Component vendor data books

n Design objects created within a design organization.

In today’s design environments, the ability of the design engineer
to maximize reuse is impaired because there is no efficient way of
searching for reusable design objects across multiple sources, and
the various sources of reusable data are not coupled with the design
environment. In addition, mechanisms and processes for organizing
reusable design objects created within a design organization are
lacking. Also lacking is the effective sharing of the reusable design
objects within the organization, as well as with other cooperating
organizations.

The RASSP Enterprise System will include tools and methods for
integrating the various sources of reusable design objects to provide
a single source for searching for reusable design data and will
enable enterprise-wide sharing of reuse data. The approach consists
of

1) Developing a design object class hierarchy, which classifies
the various types of design objects in the RASSP domain and
models the descriptive data associated with the design objects

2) Developing a commercial library management system, which
will implement the design object class hierarchy and provide

mechanisms for searching for design objects across multiple
libraries and across a virtual enterprise.

A support workflow is also provided by the RASSP system for
addition of new reuse elements and/or classes in the system. This
process includes certification of the new elements, possibly to the
classification hierarchy, and generation of documentation updates.

Additionally, the RASSP reuse  management system supports
loosely-coupled and tightly-coupled federations of cooperating
organizations in sharing library data. The core library management
search and browse function, which supports the RASSP design
object class hierarchy, was implemented by Aspect Development.
This function was released as a commercial product in May 1995.
Extensions for integration of reuse library systems are currently in
development. An initial version of the reuse class hierarchy is shown
in Figure 4. The RRDM extensions being developed support:
capabilities to manage default and template objects, manage
parametric searches, modify existing objects, modify class
hierarchy, and so on.

5. Project Planning

A project plan is a specific collection of workflows that have been
customized to meet the specific requirements of a project and the
performing organization. The RASSP Enterprise System includes

The RASSP DigestIntegrated Process Control and Data Management
in RASSP Enterprise Systems

roushrv
173



7

tools to enable construction of these project plans using workflow
segments or other project plans that are maintained in the workflow
reuse system (Figure 5). These tools enable selection of the
workflow segments, customization of the workflows, linkage of
the segments, and definition of totally new workflows. Because
the workflows also include the data object definitions, the process
of combining workflows into projects produces data object
templates. These data object templates specify the detailed
information associated with, or produced on, the projects.

Within the RASSP enterprise environment, a project builder toolset
that is being developed as an extension of DMM provides
capabilities for construction of project plans using the workflow
segments or activities, as well as previously developed program
plans. These capabilities include the ability to

n Cut and paste workflow models (shallow and deep-copying)

n Browse multiple models

n Interface with reuse repositories

n Capture metadata about models, such as where used, rationale,
metrics, author, etc.

The RASSP DigestIntegrated Process Control and Data Management
in RASSP Enterprise Systems

n Analyze newly created models for consistency.

The RASSP team anticipates that user organizations will use these
tools to create new instances of these workflow models (or even
design new workflow models), which are tailored to particular
project needs. These models can also be added to the workflow
library and made available for use on future projects.

The data object set for a given project represents a set of place
holders, or data templates, for management of the project data.
These are mapped onto the RASSP information model, which
specifies the requirements for management tracking of the data
objects. Execution of the workflow steps produces more detailed
design information within design objects, such as additional product
structure information and/or documentation information.

In execution of the project plan constructed from the workflows,
the activities and data object specifications are instantiated for the
particular project. As part of this process, users are assigned to the
roles in the project plan, and actual object instances are associated
with their place holders. The information manager generates the
appropriate objects, work locations, and so on to facilitate the
workflow. The information models and information manager are

roushrv
174



8

The RASSP DigestIntegrated Process Control and Data Management
in RASSP Enterprise Systems

therefore closely coupled to the process models and the workflow
manager. The harmony between the two enables the users to perform
the right tasks using the right information in a transparent fashion.

Summary/Status

Through integration of workflow/process technology and data
management of product and reuse information, the RASSP Enterprise
System, provides significant capability for enabling large productivity
gains for signal processing/electronics engineering teams. The
development plan for  the RASSP Enterprise System includes four
prototype build cycles. The team demonstrated the initial prototype
system, which focuses on electronic hardware design, in February
1995. The implementation of the functional design and architecture
design processes — which are the focus of the Build 2 system —
were demonstrated in February, 1996.

Key benefits include a practical approach to apply workflow
technology in an engineering environment, capability for planning
and management of complex products involving CAD environment,
and improvements in reuse implementation through an integrated,
distributed strategy.

Accomplishments to date include definitions of four RASSP
workflows; an initial definition of PML, prototypes of a PML parser
and PML repository, an initial definition of a reuse hierarchy,
extensions to DM2.0 classes, and extensions to RRDM functionality.

References

[1] Martin Marietta, “RASSP First Annual Interim Technical
Report,” Moorestown, NJ, 1994.

[2] Armstrong Laboratory, IDEF3 Process Description Capture
Method Report, AL-TR-1992-0057, Wright Patterson Air
Force Base, OH, 1992.

roushrv
175



9

The RASSP DigestIntegrated Process Control and Data Management
in RASSP Enterprise Systems

[3] Lockheed Martin Advanced Technology Laboratories,
“Workflow Modeling for Implementing Complex, CAD-
Based Design Methodologies,” Camden, NJ, 1995.

[4] Intergraph Corporation, Design Methodology Manager —
Users Guide, Huntsville, AL, 1993.

[5] International Standards Organization, Configuration
Controlled 3D Designs of Mechanical Parts and Assemblies,
ISO 10303-203, Fairfax, VA: U.S. Product Data Association,
1993.

[6] International Standards Organization, Product Structure
Configuration, ISO 10303-044, Fairfax, VA: U.S. Product
Data Association, 1994.

[7] Intergraph Corporation, DM/Manager — Users Guide,
Huntsville, AL, 1995.

[8] Martin Marietta, “The Configuration Management Model for
the RASSP System,” Moorestown, NJ, 1994.

John Welsh, Biju Kalathil and Bipin Chadha
Lockheed Martin Advanced Technology Laboratories

Camden, NJ
jwelsh@atl.lmco.com, bkalathi@atl.lmco.com,

bchadha@atl.lmco.com

Mary Catherine Tuck and William Selvidge
Intergraph Corporation

Huntsville, AL
mctuck@ingr.com, wselvid@ingr.com

Elisa Finnie
Aspect Development
Mountain View, CA

elisa@aspectdv.com

Arne Bard
Army Research Laboratory

Ft. Monmouth, NJ
abard@ftmon.arl.mil

Enterprise Integration
James Chieks

Abstract

This paper addresses the implementation of the virtual
corporation within the context of rapid signal processor design.
The paper examines one paper and one presentation, items [1]
and [2], written by the Rapid Prototyping of Application Specific
Signal Processors (RASSP) Lockheed Sanders Team.  The
Lockheed Sanders Team comprises four companies, Sanders,
Motorola, Hughes and ISX. The Lockheed Sanders team members
work as an entity to achieve the RASSP goals of 4X improvement
in time-to-market, life-cycle cost and design quality. The
references present processes, tools and enabling methodologies
allowing team members collaborative, concurrent design of an
Infrared Search and Track (IRST) processor. A summary of these
references follows. The RASSP Design Environment (RDE)
evolution presents advances in enterprise integration.  Necessary
processes and technologies presented drive further advances
toward the virtual corporation.

1.  Review

Brief summaries of previous works provide background and a
foundation for advancing the virtual corporation. The author
encourages the reading of the actual works in conjunction with
this paper.

1.1 Collaborative VHDL Modeling Within the RASSP
Program Demonstration Project

Reference [1] describes the deployment of a virtual technical design
environment employing electronic collocation. The key factor was
the choice to use the IEEE 1076 specification for VHDL as an
interoperable design language across heterogeneous computing
environments. Exchange of VHDL source code supported
concurrent development of a design partitioned among three
companies. Additional processes and techniques implemented to
support multi-site use of VHDL included:

n Operating within an Integrated Product and Process
Development Team (IPPDT).

n Daily teleconference meetings to address status.

n Internet based email for data delivery, code debug and
coordinative communications.

n Video Conferencing for collaborative program reviews.

n Desktop Conferencing as a collaborative review medium.

n Multi-platform (Sun Microsystems & Hewlett Packard
workstations), multi-node, internet-hosted, virtual design
database.

roushrv
176



10

n Data Mirroring between design database nodes to preclude
bandwidth issues associated with transparent network access.

n Common directory structures among nodes to support data
mirroring

n 24 hour availability.

n Background processing in the UNIX operating system for task
automation. Use of source code management scripts to maintain
data coherency between sites. File Transfer Protocol (ftp) as
the bulk data movement utility.

n Tar compression to reduce Internet loading.

n Scripted utilities to automate and standardize the VHDL source
code build.

n A Data Promotion scheme to support build dependencies and
implement information hiding between sites.

n Design partitioning strategy that minimized complex
interaction between sites.

n Common multi-platform design environment software at each
team member site.

n Security measures for data encryption.

n Security measures to allow database access only to RASSP
team members.

The above strategy resulted in the successful completion of a design
and implementation where participants rarely met face-to-face.
Reference [1] presents the following obstacles:

n Time zone differences.

n Email delivery delays.

n Visual electronic collocation limitations (slow update rates,
limited visibility). The video conferencing environment suffers
from bandwidth limitations resulting in less than real time
response. As a result of the IRST project, RASSP use of video
teleconferencing is limited to

l Early project contact to establish team rapport.

l Critical program stages where project direction is being
established.

n Internet bandwidth limitations. Due to bandwidth limitations
the IRST performed automated bulk data movement of
compressed files during non-peak hours.

n Necessity of Non-VHDL graphical methods for
communicating design complexities. The IRST project used
design tool specific features where it assisted understanding
complexities.

Two recommendations from reference [1] include

n Use of ‘make’ files in place of script files for the VHDL build
process.

n A VHDL file naming structure that supports configuration
control in the build process. Since the IRST project, RASSP
developed a VHDL coding style guide that incorporates
directory and file naming conventions for collaborative design.

1.2  Achieving Electronic Collocation for
 Collaborative Work Groups On RASSP

Reference [2] presents several tools needed for electronic
collocation (many covered in reference [1]). Specific tools and
network architectures are mentioned with an explanation of their
function within RASSP.  Also introduced is the use of the World
Wide Web and email list servers in the RASSP program as
alternative data distribution medium. The web contributes greatly
to enterprise integration by providing ready access to documents
in the Hypertext Markup Language (HTML) as well as providing
a graphical interface to documents on the ftp server. The RASSP
IPPDT has benefited from the publishing of the RASSP top-down
design process. Use of the Web has incorporated enterprise security
features such as IP address screening and password-protected
access.

Several needs within the RASSP collaborative electronic
collocation workspace are addressed within Reference [2]
including:

n The need to plan deployment of file server based data and
documents.

n Platform independent scalable security.

n The investment and organizational commitment needed or
successful electronic collocation.

n The benefit of establishing initial relationships face-to-face
prior to electronic collocation.

n The difficulty of implementing project management systems
in an electronic collocation workspace.

2.  Enterprise Integration in the RDE

RASSP is advancing the enterprise integration with the evolution
of the RDE and process development on RASSP. The RDE
facilitates Integrated Product and Process Development by
providing a collaborative development environment. The RDE
supports automating the development process to improve product
development, specifically concerning cycle time, product cost, and
product quality.

The RDE is part of the RASSP Rolling Wave. The Rolling Wave
incorporates the iterative “Model Year” methodology with the IRST
distributed development environment representing RDE Model
Year 0. Subsequent iterations of the RDE have resulted in a RDE

The RASSP DigestEnterprise Integration

roushrv
177



11

Prototype (hot mock-up) and RDE Release 1.0. Each iteration
incorporates improvements in enterprise integration capabilities.

2.1  RDE Prototype

The RDE Prototype consists of a simulated distributed design tool
framework. The prototype serves as a research vehicle. A wide
variety of engineers and program managers from three companies
experienced the look and feel of a distributed design environment.
Among the concepts proposed by the prototype are

n Security: A more robust and secure distributed database.

n Ease of Use: A Graphical User Interface based on the UNIX/
X-Windows standard.

n Distributed Operation: The ability to install client-side utilities
and third party tools.

n Electronic Collocation: An integrated  collaborative work
environment for conducting on-line desktop screen sharing.

n Accessibility: Data file search capabilities.

n Measurability: Automated design metrics capture.

2.2  RDE Release 1.0

The knowledge gained through the development and demonstration
of the RDE Prototype proved invaluable in the design and
implementation of RDE Release 1.0. The additional enterprise
integration concepts incorporated include

n Replication: The RDE operates in beta site installations
consisting of government, industry and academic settings.
Training provided by RASSP staff acclimates users and
administrators. The RDE is delivered on magnetic tape and
built on the host processor by RASSP staff.

n Greater Platform Independence was demonstrated.

l RDE Servers: Sun Sparc w/SunOS,  Hewlett Packard.

l RDA Clients: Sun Sparc, w/SunOS, Macintosh.

n Increased Security: Use of third party application providing
DES data encryption (Hughes’ ‘Netlock’).

n Increased Data Hiding: Role assignments and file access
privileges.

n Data Tendering: The capture and recording of situational
parameters along with data submission.

n Scalability: Supporting large numbers of nodes, clients and
tools.

Some issues identified during RDE development reside outside the
domain of tool-based solutions. These are people issues.  The
success of electronic collocation is rooted in the rapport established
among the distributed staff. Face-to-face interaction is essential

early in the program. Differences in management style and work
cultures lower communication bandwidth in an electronic
environment. Program management should sponsor an “all-hands”
program overview event for the team to get acquainted. Video taping
this event acclimates and provides training for employees that join
the program later. Initial relationships are re-enforced using video
conferencing for early stages of the program. The benefits of video
conferencing decrease as working relationships increase the
communication bandwidth. Adding structure to daily and weekly
operations also increases bandwidth. RASSP teams meet regularly
in teleconferences.  Structured meeting agendas, meeting minutes
and action item tracking improve team awareness and progress.

2.3 Future Requirements

For future tool development, modularity and open architecture
design are enabling characteristics. The electronic collocation
architecture needs an open interface. This supports third party tool
suppliers to develop plug and play modules or to develop data format
translators between incompatible tools.

References

[1] Collaborative VHDL Modeling within the RASSP Program
Demonstration Project: Ray Dreiling, Paul Kalutkiewicz,
Sanders, A Lockheed Martin Company, Mike McCollough
Hughes Aerospace & Electronics Company. December 1991.

[2] Achieving Electronic Collocation for Collaborative Work
Groups On RASSP, Karen Amestoy Hughes Aircraft,
November 8, 1994.

[3] The Extended Enterprise: A descriptive Framework, Some
Enabling Technologies and Case studies in the Lotus Notes
Environment. Michael Bloch and Yves Pigeur, Ecole des
HEC, University of Lausanne, Journal for Strategic
Information Systems.

Sun, Sparc and SunOS are registered trademarks of Sun
Microsystems Inc.  Hewlett Packard is a registered trademark of
Hewlett - Packard Company. Windows is a registered trademark
of Microsoft Corporation. Macintosh is a registered trademark
of Apple Corporation. UNIX is a registered trademark in the
United States and other countries, exclusively licensed through
X/Open Ltd. X Windows System is a registered trademark and
product of the Massachusetts Institute of Technology.

The RASSP DigestEnterprise Integration

James Chieks
Hughes Aircraft

m/s RE/R01/A508
P.O.Box 92426

Los Angeles CA, 90009-2426
    chieks@rassp.hac.com

roushrv
178



12

The National Industrial Information Infrastructure Protocols (NIIIP) Project
Richard Bolton

Abstract

This article describes the NIIIP Consortium, its mission, and
technical vision.  It provides an overview of the NIIIP reference
architecture and its features.  It highlights the key state-of-the-
art elements of the NIIIP solution, the NIIIP spiral development
plan, and the NIIIP deliverables.  It summaries the Consortium’s
accomplishments and future plans. Project information is
available at http://www.niiip.org.

1.  Introduction

In today’s fast-changing global marketplace, manufacturing
organizations need to align themselves closely with both their
suppliers and customers. Product cycle times are no longer measured
in months and years but in days and weeks. Timeliness and
responsiveness are just as important to business success, as are
quality, and cost requirements.

Today, the incompatibility of the information technology used by
manufacturing organizations, suppliers, customers, and associates,
is the major inhibitor to close alignment with new customers and
suppliers and to the reduction of cycle times. The goal of the NIIIP
project is to solve this incompatibility within Virtual Enterprises
and allow organizations to collaborate with each other regardless
of data structures, processes, or computing environments.

2.  What is the NIIIP?

The NIIIP Consortium consists of a group of thirteen leading United
States information technology suppliers and users with a common
interest in developing a software architecture and providing
technologies to enable Virtual Enterprises. Virtual Enterprises are
temporary consortia or alliances of companies formed to exploit
fast-changing opportunities. The NIIIP Consortium is national in
scope and its members bring a wealth of experience and technology
to support Virtual Enterprises. Together with the Federal Government,
they share costs and skills to create the necessary infrastructure to
support Virtual Enterprises across the United States1 .

NIIIP Consortium Members include: CAD Framework Initiative,
Digital Equipment Corp., Enterprise Integration Technologies,
General Dynamics - Electric Boat Division, IBM, International
TechneGroup Inc. (ITI), Lockheed Aeronautical Systems, Magavox
Electronic Systems, National Institute of Standards and Technology,
Rensselaer Polytechnic Institute, STEP Tools Inc., UES Inc., and
the University of Florida.

2.1  Mission and Technical Vision

NIIIP’s mission is to enable U.S. Industrial Virtual Enterprises to
provide globally competitive products, services, and solutions cost-
effectively and in a timely manner — regardless of organization,
geographic and technical boundaries or company size — and to
make U.S. manufacturing the global standard that other nations
try to emulate.

NIIIP’s technical vision is to define ways for existing applications
to inter-operate and to make the technologies fit together in a useful
manner based on existing, emerging, and defacto standards. NIIIP
focuses on establishing a computer system infrastructure that: makes
Virtual Enterprise collaborative computing pervasive among U.S.
manufacturers; provides state-of-the-art software technologies to
allow participants to effectively collaborate; allows companies
within Virtual Enterprises to share costs and skills, and access
global markets with each participant contributing its core expertise.

2.2  Reference Architecture

The technology requirements of Industrial Virtual Enterprises
include common communication protocols, a uniform object
technology base for system and application inter-operability,
common information model specifications and exchange, and
cooperative management of integrated Virtual Enterprise processes.

The NIIIP reference architecture is distributed, open and non-
proprietary software infrastructure that enables Virtual Enterprises
to integrate resources and technologies into a production system.
As shown in Figure 1, “NIIIP Technology Components,” NIIIP is
integrating the technologies from four communities to enable the
proliferation of Virtual Enterprises across the United States.

NIIIP furthers the adoption and convergence of existing standards
and the definition of new ones by working with standards
organization such as: the International Standards Organization’s
Standard for the Exchange of Product Data (ISO-10303 STEP),
Internet Engineering Task Force (IETF), the CAD Framework
Initiative (CFI), Work Flow Management Coalition (WFMC),
Object Management Group (OMG), and others.

1 This research is sponsored by the Advanced Research Projects Agency under ARPA
Order No. B761-00 and managed by the United States Air Force under contract

F33615-94-2-4447.

roushrv
179



13

The RASSP DigestThe National Industrial Information Infrastructure
Protocols (NIIIP) Project

As shown in Figure 2, “The NIIIP Infrastructure,” the NIIIP
component protocols consist of a set of thirteen components, their
interrelations, and mutual obligations, that allow the formation of
various kinds of Virtual Enterprises depending on how many
components are selected. These thirteen NIIIP components are
packaged into five subsystems positioned across three layers.
Currently, a set of system protocols are in the process of being defined
that capture common behavior across components and represent a
Virtual Enterprise model with both build-time and run-time protocols.

The NIIIP components consist of classes and objects that are
described in terms of an amalgam of object modeling paradigms
taken mainly from standard sources:

n Interface (CORBA IDL)

n Info Model (ISO-10303 EXPRESS)

n Rules (Event, Condition, Action)

n Constraints (EXPRESS)

n Associations (OMG Relationship Service, OSAM*, etc.)

In Layer I, the user layer or wrapping services layer, end-user
applications interface to the NIIIP environment. Layer II, the
middle-ware or coordination service layer, provides services to
Layer I applications. Layer III, the mediation services layer,
provides services to Layers I and II.

roushrv
180



14

The Project Control subsystem consists of Desktop and Agent
components. These represent the Virtual Enterprise control function
for the end-user or end-user surrogate. The Virtual Enterprise
services subsystem contains the design and collaboration tools.
They represent the data function for the end-user.

The Task and Session subsystem controls work within the Virtual
Enterprise. They might share resources distributed across enterprise
boundaries and through various firewalls. The Knowledge and
Rules Management subsystem provides the monitoring of Virtual
Enterprise rules that allow inter-enterprise resource sharing. The
Layer III Decision Support subsystem components help to resolve
faulty requests, provide for the acquisition of new knowledge, and
provide for negotiation between agents in dispute.

2.3  Components

The thirteen NIIIP components are summarized in Table 1. Internal
to each component are one or more objects (OMG “interfaces”).
No single NIIIP-compliant product will likely support all the
behaviors specified by the thirteen components. Many products
will, however, function as instances of NIIIP-compliant classes
generated during the NIIIP conformance testing process.

NIIIP will make its architecture public, and will deploy its
technologies nationwide so that organizations can adopt the
technology and apply it to their particular situations.

The RASSP DigestThe National Industrial Information Infrastructure
Protocols (NIIIP) Project

2.4  State-of-the-art Technology

The NIIIP protocols provide an infrastructure for the inter-operation
of commercial-off-the-shelf (COTS) products in the industrial
domain.

In the NIIIP environment, resources of member organizations such
as database systems, product data files, expert systems, application
systems, are uniformly modeled as components in an object-oriented
framework. Key elements of the NIIIP solution include

n the NIIIP Common Language (NCL) that allows Virtual
Enterprise implementors to model resources and associated
protocols. This language is an optional superset of DMG IDL
and ISO EXPRESS and can be used directly,

n a distributed Virtual Enterprise monitor for ensuring that
business and security rules are enforced,

n middleware for secure Internet access and inter-operability
across firewalls,

n NIIIP tools for uniform real and simulated work management
solutions to allow Virtual Enterprise members to pre-plan and
validate the flow of information and sequence appropriate
technical and business review processes that support the
manufacturing cycle, and

n protocols for mediated and negotiated data and process
interchanges based on the Virtual Enterprise knowledge base.

roushrv
181



15

The RASSP DigestThe National Industrial Information Infrastructure
Protocols (NIIIP) Project

Cycle 2
During this cycle, NIIIP will partially implement its protocols —
component and system — with emphasis on the Knowledge Base,
Monitor, Mediation, and Agents with CORBA over the Internet.
Workflow and ORB interoperability will also be included.

Cycle 3
During this cycle, NIIIP intends to complete an implementation
of the protocols defined during cycles 1 and 2. This includes the
use of both system and component protocols.

Acknowledgments

The author wishes to recognize the following individuals for
their help in the preparation of this article: Esther Odescalchi,
Art Goldschmidt, Alex Putman, and David Zenie.

2.5  Spiral Development

To minimize technical risks, NIIIP’s spiral development plan
includes iterative development, incremental increases in function,
and use of rapid prototyping tools.

The NIIIP consortium, as show in Figure 3, “NIIIP Tasks,” has
twelve tasks. Its Reference Architecture drives the development of
Protocols that allow experimentation with various subsets of the
technology across the Internet. Protocols allow the construction of
commercial, defense, and research pilots. The Consortium will
accelerate standards, deployment, and commercialization.

3.  NIIIP Accomplishments and Plans

Cycle 1
During this cycle, NIIIP instantiated its protocols with emphasis
on Task, Session, Workflow and Data (including STEP)
Management with CORBA over the Internet. The Consortium
demonstrated the initial infrastructure and documented the
experiences learned. These experiences are incorporated into
subsequent NIIIP Cycles.

Richard Bolton
National Industrial Information

Infrastructure Protocols (NIIIP) Consortium
1055 Washington Boulevard

Stamford, CT   06901
director@niiip.org

roushrv
182



16

Abstract

The Concurrent Engineering approach to product design and
development has two major themes. The first theme is establishing
a concurrent product and process organization. This is referred to
herein as “process taxonomy.” The second theme is applying this
process taxonomy (or methodology) to design and develop the
total product system. This is referred to as integrated product
development (IPD). Each theme is divided into several essential
parts forming major arms of the so called concurrent engineering
wheel-set [Prasad, 1996a].  This article describes a Concurrent
Engineering (CE) wheel-set and explains the basic principles on
which this very subject is founded.

The first theme called  product and process organization (PPO)
has nine arms. The second theme named integrated product
development (IPD) has ten arms. The materials in these two CE
themes are brought together to balance the interests of both the
customers and the companies. The arms of the PPO theme are
Life-cycle Management: Process Re-engineering, Cooperative
Work-groups, System Engineering, Information Modeling, The
Whole System, and Product Realization Taxonomy. The arms of
the IPD theme are Total Value Management, CE Metrics and
Measures, Concurrent Function Deployment, Product Development
Methodology, Decision Support Systems, Intelligent Information
System, Capturing Life-Cycle Values, Life-Cycle Mechanization,
and IPD Deployment Methodology [Prasad, 1996b].

In the Concurrent Engineering (CE) system, each modification
of the product realization represents a taxonomic relationship
between specifications (inputs, requirements and constraints),
outputs,  and the concept it represents [ASME/NSF, 1996]. At the
beginning of the design process, the specifications are generally
in abstract forms. As more and more of the specifications are
satisfied, the product begins to take shape (begins to transform
into a physical form). To illustrate how a full CE system will work,
and to show the inner-working of its elements, the author defines
this CE system as a set of two synchronized wheels. The
representation is analogous to a set of synchronized wheels on a
bicycle. Figure 1 shows  this CE wheel set.

1. CE Wheel Set

The first CE wheel represents the  integrated product and process
organization. The second CE wheel accomplishes the integrated
product development. The two wheels together harmonize the
interests of the customer and the fostering CE organization
(frequently referred to as an enterprise). Three concentric rings
represent the three essential elements of a wheel. The middle ring
represents the CE work-groups, which drive the customer and the
enterprise the way a human drives a bike. The work-groups are
divided into four quadrants representing the four so-called CE
teams. These teams are: the personnel team, the technology team,
the logical team and the virtual team. The outer ring for each

wheel is divided into eight parts. The arms for the first wheel
constitute the PPO theme. The PPO theme explains how a CE design
process (referred to herein as CE process taxonomy) provides a
stable, repeatable process through which increased accuracy is
achieved. The PPO theme starts with manufacturing
competitiveness reviewing history and emerging trends. The
remaining parts of the PPO theme describe the CE design process,
explain how concurrent design process can create a competitive
advantage, describe CE process taxonomy, and address a number
of major issues related to product and process organization.  The
arms of  the second wheel constitute the IPD theme.

2. First CE Wheel: Integrated Product and Process
Organization

The innermost ring of the first CE wheel is a hub. The layout of the
hub is the same for both wheels. The hub represents four supporting
“M” elements: models, methods, metrics and measures. Models
refer to information modeling. Methods refer to product realization
taxonomy. They are part of the PPO theme. CE Metrics and
Measures are part of the IPD theme. The complexity of the product
realization process (PRP)  [NSF/ASME, 1996] differs depending
upon the (i) types of information and sources, (ii) complexity of
tasks, and (iii) the degree of their incompleteness or ambiguity.
Other dimensions encountered during this PRP that cannot be easily
accommodated using traditional processes (such as serial
engineering) are: (iv) timing of decision making, (v) order of
decision making, and (vi) communication mechanism. The elements
of the first CE wheel define a set of systems and processes that
have the ability to handle all of the above six dimensions. In the
following section some salient points of the arms are briefly
highlighted.

n Manufacturing Competitiveness: The price of the product is
dictated by world economy and not by a country's economy or
a company’s market edge alone. Those companies that are
global can quickly change to suit a changing world market
place and position themselves to compete globally rather than
locally. This arm outlines what is required to become a market
leader and compete globally. Successful companies have been
the ones who have gained a better focus on eliminating waste
(which normally would slip into their products), by
understanding what drives product and process costs and, how
value can be added. They have focused on product and process
delivery-system — how to transition process innovations into
technical success and how to leverage the implementation
know-how into big commercial success. Many have chosen to
emphasize high-quality flexible or agile production in product
delivery rather than high-theme (mass) production.

n Life-cycle Management: Today, most companies are under
extreme pressure to develop products within time periods that
are rapidly shrinking. As the market changes, so do the

Concurrent Engineering Wheels
Biren Prasad

roushrv
183



17

The RASSP DigestConcurrent Engineering Wheels

requirements. This complicates the management of
continuously varying product specifications and the handling
of ongoing changes within this shrinking time period. The
ongoing success of an organization lies in its ability to: continue
to evolve; quickly react to changing requirements; reinvent
itself on a regular basis; and keep up with ever-changing
technology and innovation. Many companies are stepping up
the pace of new product introduction, and are constantly
learning and embracing new ways of engineering products more
accurately the first time, and more often thereafter. This arm
outlines life-management techniques, such as change
management and process improvement, to remain globally
competitive.

n Process Re-engineering: The global marketplace of the 1990s
has shown no sympathy to tradition. The reality is that if the
products manufactured do not meet the market needs, demand

declines and profits dwindle. Many companies are finding that
true increases in productivity and efficiency begin with such
factors as clean and efficient processes, good communication
infrastructure, teamwork, and a constancy of  shared vision
and purpose. The challenge is simply not to crank up the speed
of the machine so that its outputs (per unit of time) are
increased, but to change the basic machinery or process that
produces the outputs. To accomplish the latter goals, this arm
describes several techniques to achieve competitive superiority
such as benchmarking, CPI, organizational restructuring,
renovation, process re-engineering, etc.

n CE Techniques: The changing market conditions and
international competitiveness are making the time-to-market
a fast shrinking target. Over the same period, the diversity and
complexity of the products have increased multi-fold.
Concurrency is the major force of Concurrent Engineering.

roushrv
184



18

Paralleling describes a “time overlap” of one or more work-
groups, activities, tasks, etc. This arm describes seven CE
principles to aim at: Parallel work-group; Parallel Product
Decomposition; Concurrent Resource Scheduling;
Concurrent Processing; Minimize Interfaces; Transparent
Communication; and Quick Processing; This arm also
describes the seven forces that influence the domain of CE as
agents (referred to here as 7Ts) namely: talents, tasks, teams,
techniques, technology, time and tools.

n Cooperative Work-groups: It has been a challenge for the
design and manufacturing engineers to work together as teams
to improve quality while reducing costs and lead-time. A single
person, or a team of people, is not enough to provide all the
links between human knowledge and skills, logical
organization, technology, and the set of 7Cs coordination
attributes. A number of supporting teams are required, some
either virtual or at least virtually collocated. For the waltz of
CE synthesis to succeed, CE teams need clear choreography.
This arm describes for the first time the four collaborative
teams that are essential for managing a CE organization.
Examples of collaborative features include capabilities of
electronic meeting, such as message-posting and interactions
through voice, text, graphics and pictures.

n System Engineering: Most groups diligently work to optimize
their subsystems, but due to a lack of incentives they tend to
work independently of each other. This results in a product
which is often sub-optimized at each decomposed level.  System
engineering requires that product realization is viewed as a
“system-centered” problem, as opposed to “component-
centered.” Systems Engineering does not disagree with the
idea of compartments or divisions of works, but it emphasizes
that the interface requirements between the divisions (inter-
divisional) and across the level should be adequately covered.
That way, when the time comes to modernize other components
of the system, one has the assurance that previously introduced
technologies and processes will work logically in a fully-
integrated fashion, thereby increasing net efficiency and
profitability.

n Information Modeling: A successful integrated product
development (IPD) requires a sufficient understanding of the
product and process behaviors. One way to achieve this
understanding is to use a series of reliable information models
for planning, designing, optimizing and controlling each unit
of the IPD process. The demands go beyond 3-D CAD
geometric modeling. The demands require schemes that can
model all phases of a product’s life-cycle from cradle to grave.
The different aspects of product design (planning, feasibility,
design, process-planning), process design (process-execution,
production, manufacturing, product support), the human
behavior in teamwork, and the organization or environment in
which it will operate, all have to be taken into account. Five
major classes of modeling schemata are defined:

(a) Product representation schemes and tools for capturing and
describing the product development process and design of
various interfaces, such as design-manufacturing interface;

(b) Schemes for modeling physical processes, including simulation,
as well as models useful for product assessments, such as DFA/
DFX, manufacturability evaluation of in-progress designs;

(c) Schemes for capturing (product, process, and organization
structure) requirements or characteristics for setting strategic
and business goals;

(d) Schemes to model enterprise activities (data and work flow)
in order to determine what types of functions best fit the desired
profitability, responsiveness, quality and productivity goals;
and

(e) Schemes to model team behavior, because most effective
manufacturing environments involve a carefully orchestrated
interplay between teams and machines.

n The Whole System: While designing an artifact, work-groups
often forget that the product is a system. It consists of a number
of subassemblies, each fulfilling a different and distinct
function. A product is far more than the collection of
components. Without a structure or “constancy-of-purpose”
there is no system. The central difference between a CE
transformation system and any other manufacturing system,
such as serial engineering, is the manner in which the tasks’
distribution is stated and accomplished. In a CE transformation
system, the purpose of every process step of a manufacturing
system is not just to achieve a transformation, but to accomplish
this in an optimal way. This arm proposes a system-based
taxonomy, which is founded on parallel scheduling of tasks
and breakdown structures for product and process, and work
to realize a drastic reduction in time and cost in product and
process realizations.

n Product Realization Taxonomy: This constitutes a “state of
series of transformation” leading to a complete, or mature
design. Product Realization Taxonomy involves items related
to design completeness, product development practices,
readiness feasibility, and quality assessment. In addition, CE
requires these taxonomies to have a unified “product realization
base.” The enterprise integration metrics of the CE model
should be well characterized, and the modeling methodologies
and/or associated ontology for developing them should be
adequate for describing and integrating enterprise functions.
The methodologies should have built-in product and service
accelerators. Taxonomy is comprised of the product, process
descriptions, classification techniques, information concepts,
representation, and transformation tasks (inputs, requirements,
constraints and outputs). Specifications describing the
transformation model for product realization are included as
part of the taxonomy descriptions.

The RASSP DigestConcurrent Engineering Wheels

roushrv
185



19

3. Second CE Wheel: Integrated Product
Development

The second CE wheel defines integrated product development
(IPD). IPD in this context does not imply a step-by-step serial
process. Indeed, the beauty of this wheel (integrated product
development) is that it offers a framework for a concurrent product
design and development. A Framework within which the CE teams
have flexibility to move about, fitting together pieces of the puzzle
as they come together. CE teams have an opportunity to apply a
variety of techniques contained in this theme (such as: Concurrent
Function Deployment, Total Value Management, Metrics and
Measures, etc.), and to achieve steady overall progress towards a
finished product.

n Concurrent Function Deployment: The role of the organization
and the engineers is changing today, as is the method of doing
business. Competition has driven organizations to consider
concepts such as time compression (fast-to-market),
Concurrent Engineering, Design for X-ability, and Tools and
Technology (such as Taguchi and Value Engineering), while
designing and developing an artifact. Quality Function
Deployment (QFD) addresses major aspects of “quality” with
reference to the functions it performs, but this is one of the
many functions that need to be deployed. With conventional
deployment, it is difficult, however, to address all aspects of
Total Values Management (TVM) such as X-ability, Cost,
Tools and Technology, Responsiveness and Organization
issues. It is not enough to deploy just the  “Quality” into the
product and expect the outcome to be World Class. TVM efforts
are vital in maintaining a competitive edge in today’s world
marketplace.

n CE Merits and Measures: Metrics are the basis of monitoring
and measuring process improvement methodology and
managing their effectiveness. Metric information assists in
monitoring team progress, measuring quality of products
produced, managing the effectiveness of the improved  process,
and providing related feedback. Individual assurances of DFX
specifications (one at a time) do not capture the most important
aspect of Concurrent Engineering — the system perspectives,
or the trade-offs across the different DFX principles.  While
satisfying these DFX principles in this isolated manner, only
those which are not in conflict are usually met. Concurrent
engineering views the design and evaluates the artifact as a
system, which has a wider impact than just sub-optimizing the
sub-systems within each domain.

n Total Value Management: The most acclaimed slogan for
introducing a quality program in early corporate days was
simply to provide the most value for the lowest cost. This
changed as competitiveness became more fierce. For example,
during the introduction of the traditional TQM program in 1990
“getting a quality product to market for a fair price” was the
name of the game. The new paradigm for CE now is TVM:

“ to provide the total value for the lowest cost in the least
amount of time, and provide what satisfies the customers the
most while generating a fair profit for the company.” Here
use of value is not just limited to “quality.” To provide long
lasting added value, companies must change their philosophy
towards things like X-ability, responsiveness, functionality,
tools and technology, cost, architecture, etc.

n Product Development Methodology: A systematic
methodology is essential in order to be able to integrate:
(a) teamwork; (b) information modeling; (c) product realization
taxonomy; and (d) measures of merits (called CE metrics),
and quantitatively assess the effectiveness of the
transformation. This may involve identification of performance
metrics for measuring the product and process behaviors.
Integrated product development methodology is geared to take
advantage of the  product realization taxonomy.

n Frameworks & Architectures: In order to adequately support
the CE 4Ms (namely: modeling, methods, metrics and
measurements), it is necessary to have an architecture that is
openly accessible across different CE teams, information
systems, platforms, and networks. Architecture consists of
information contents, integrated data structures, data states,
behavior and rules. An architecture not only provides an
information base for easy storage, retrieval, and version control
tracking, it can also be accessed by different users
simultaneously, under ramp-up scheduling of parallel tasks,
and in synchronization. We also need a product management
system containing work management capabilities integrated
with the database. This is essential because in CE there exists
a large degree of flexibility for parallelism that must be
managed in conjunction with other routine file and data
management tasks.

n Capturing Life-cycle Intent: Most C4 tools are not really
“capture” tools. In static representation of CAD geometry,
configuration changes cannot be handled easily, particularly
when parts and dimensions are linked. This has resulted in
loss of configuration control, proliferation of changes to fix
the errors caused by other changes, and sometimes ambiguous
designs. By capturing “design intent” as opposed to “static
geometry,” configuration changes could be made and controlled
more effectively using the power of the computer than through
traditional CAD attributes (such as lines and surfaces).  The
power of a “capture” tool comes from the  methods used in
capturing the design intent initially so that the required changes
can be made easily and quickly if needed. “Life-cycle capture”
refers to the definition of the physical object and its environment
in some generic form. “Life-cycle intent” means representing
the life-cycle capture in a form, which can be modified and
iterated until all the life-cycle specifications for the product
are fully satisfied.

The RASSP DigestConcurrent Engineering Wheels

roushrv
186



20

n Decision Support System: In CE, cooperation is required
between CE teams, management, suppliers, and customers. A
knowledge-based support system will help the participating
teams in decision making and reflecting balanced views.
Tradeoffs between conflicting requirements can be made on
the basis of information obtained from sensitivity, multi-
criterion objectives, simulation, or feedback. The taxonomy
can be made a part of the decision support system (DSS) in
supporting decisions about product decomposition by keeping
track of what specifications are satisfied, ensuring common
visibility in the state of product realization, including
dispatching and monitoring of tasks, structure, corporate design
histories, etc.

n Intelligent Information System (IIS): Another major goal of
CE is to handle information intelligently in multi-media—
audio, video, text, graphics. Since IIS equals CIM plus CE,
with IIS, many relevant CE demands can be addressed and
quickly processed. Examples include (a) over local or wide
area networks, such as SQL, which connects remote, multiple
databases and multimedia repositories; (b) any needed
information, such as recorded product designers’ design notes,
figures, decisions, etc., can be made available on demand at
the right place at the right time; (c) any team can retrieve
information in the right format and distribute it promptly to
the other members of the CE teams.

n Life-cycle Mechanization: Life-cycle mechanization equals
CIM + Automation + CE. Life-cycle mechanization is arranged
under a familiar acronym: CAE, for CIM, Automation, and
CE. Since CAE also equals IIS plus automation, the major
benefits of mechanization in CAE come from removing or
breaking barriers. The three common barriers are: (a)
integration (this is a term taken from CIM), (b) automation,
and (c) cooperation (which is a term taken from CE). CE
provides the decision support element, and CIM provides the
framework & architecture plus the information management
elements. Life-cycle Mechanization refers to the automation
of life-cycle functions or creation of computerized modules
that are built from one another and share the information from
one another. This includes integration and seamless transfer
of data between commercial computer-based engineering tools
and product-specific in-house applications. This tends to reduce
the dependency of many CE teams on communication links
and product realization strategies, such as decomposition and
concatenation.

n CE Deployment Methodology: The purpose of this arm is to
offer an implementation guideline for product redesign and
development through its life-cycle functions.  IPD
implementation is a multi-track methodology. The tracks
overlap, but still provide a structured approach to organizing
product ideas and measures for concurrently performing the
associated tasks. Concurrency is built in a number of ways,

The RASSP DigestConcurrent Engineering Wheels

depending upon the complexity of the process or the system
involved. This arm proposed a set of  “Ten Commandments,”
which serves to guide the product and process iterative aspects
of IPD rather than just the work-group collaborative aspects
during the development cycle. The CE teamwork in the center
of the wheel ensures that both local or zonal iterative
refinements and collaborative refinements take place during
each concurrent track.

4. A Synchronized Wheel Set for CE

All the above arms of CE put together create a synchronized wheel
set for CE, as shown in Figure 1. The teamwork, with four
cooperating components (technological teams, logical teams, virtual
teams, and personnel teams), is in the inner circle. The 4Ms (models,
metrics, measurements and methodology) form the center of this
wheel. It has four arms to it: Information Modeling; Product
Realization Taxonomy; Measures of Merit; and Integrated
Product Development. The 4Ms are shown in the center because
they provide the methodology for guiding the product realization
process. The two inner rings, which are the same for both wheels,
make the wheels a synchronized set. The teams in the inner circle
are the driving force of the methodology (listed in the center) and
controller of the technologies (listed on the outer circle). The
emphasis of a team-centered wheel for CE is a departure from a
conventional function-centered approach. Outer circles of each
wheel contain the remaining arms of integrated product and
process organization (PPO theme) and integrated product
development (IPD theme), respectively. The idea of this inner circle
is to provide team-centered 7Cs (Collaboration, Commitment,
Communications, Compromise, Consensus, Continuous
Improvement, and Coordination) interplay across layers of
enabling technologies and methodologies. Everything is geared
towards cutting and compressing the time needed to design, analyze,
and manufacture marketable products. Along the way, costs are
also reduced, product quality is improved and customer satisfaction
is enhanced due to the synchronized process. There is, however, a
finite window in which the benefits of time compression and cost
cutting are available. As more manufacturers reduce lead time,
what once represented a competitive advantage can become a
weakening source. Fortunately, the CE wheel-set provides a
continuum (dynamic) base through which new paradigms (process,
tools and technology) can be launched to remain globally
competitive for the long haul.

5.  Major Attributes of this Synchronized Wheel-Set

Whether you are a firm CE believer or not, this dual wheel set
provides a complete view of CE from all aspects and perspectives.
The management perspective, which is a part of the philosophical
aspect, relates to organization and culture. The wheel-set articulates
major CE aspects by illustrating the differences between the best
methodologies (and taxonomies) from what is currently being
practiced.

roushrv
187



21

Examples of  major attributes incorporated in the dual wheel-set
are:

n Eight fundamental principles on which CE is founded

n Seven primary components of concurrency and simultaneity

n CE environment and its five essential components

n Seven C’s to ensure cooperation among work-groups

n Seven primary influencing agents (called 7Ts) for achieving
concurrency and simultaneity.  

n Cooperative work-group environment spanned by four
concurrent teams: (namely — logical team, personnel team,
virtual team and technological team)

The first wheel (PPO theme) deals with process taxonomy for CE.
Process taxonomy is necessary to adequately classify, distribute
and distinguish differences in behaviors of complex enterprise
integration systems. The innermost core of this process taxonomy
is its foundation, which has four supporting “M elements”: models,
methods, metrics and measures as mentioned earlier.

The RASSP DigestConcurrent Engineering Wheels

References

[1] Prasad, B., 1996a, Concurrent Engineering Fundamentals,
Volume I: Integrated Product and Process Organization, New
Jersey: PTR Prentice Hall.

[2] Prasad, B., 1996b, Concurrent Engineering Fundamentals,
Volume II: Integrated Product Development, New Jersey:
Prentice Hall, (in Press).

[3] ASME/NSF, 1995, Mechanical Engineering Curriculum
Development Initiative: Integrating the Product Realization
Process (PRP) into the Undergraduate Curriculum, New
York: American Society of Mechanical Engineering.

Dr. Biren Prasad
Automated Concurrent Engineering

Electronic Data Systems
DELPHI Automotive Systems

1401 Crooks Road, Troy, MI 48084
bprasad@cmsa.gmr.com

Agility through Information Sharing:
Results Achieved in a Production Environment

Abstract

As organizations seek to improve their competitive position by
responding effectively to the increasing rate of change in the
market place, the need for agile enterprises and agile
manufacturing has come to the forefront.  In this paper we examine
the essential role that information sharing plays in enabling the
agile manufacturing of complex products.  The principle goal of
an agile manufacturing interface is to provide the information
sharing infrastructure necessary to enable the formation of virtual
organizations and to provide them with the robust DFx (Design
for x, where x = producibility, testability, maintainability, etc.)
mechanisms they need in order to develop high quality products
in a timely, cost effective manner.  Results achieved from the
implementation of an agile manufacturing interface in a
production environment are highlighted.  These results include a
10x reduction in the cycle-time required to go from design to
manufacturing set-up, and a reduction in the rework for complex
Printed Circuit Assemblies  of up to 80%.

1. Introduction

In order to remain globally competitive, it is critical that
organizations establish processes that allow them to adapt to an
ever changing market place.  This need for agility is particularly

Anthony J. Gadient,  Lynwood E.  Hines,  John Welsh,  Andrew P.  Schwalb

pronounced for organizations involved in the design and/or
manufacture of complex products.  A manufacturing interface that
allows design and manufacturing organizations to interact in an
effective and efficient manner is essential to realizing the necessary
agility.  Such an agile manufacturing interface must allow
designers to quickly asses the level of compatibility between a
design and a manufacturing facility, while simultaneously providing
manufacturers with the ability to effectively interact with a diverse
variety of design organizations.

The Rapid Prototyping of Application Specific Signal Processors
(RASSP) Program is a $150M ARPA and US Department of
Defense initiative (1994-1997) intended to dramatically improve
the way complex embedded digital electronic systems, particularly
embedded digital signal processors, are designed, manufactured,
upgraded, and supported.  The target RASSP improvement is at
least a four-fold (4x) reduction in the time to go from design concept
to fielded prototype with equivalent improvements in cost and
quality.  The motivation for the RASSP initiative is the pervasive
need for affordable embedded signal processors throughout a wide
range of electronic systems.

To achieve the RASSP 4x objective, the RASSP program has
supported the development of an agile manufacturing interface.

roushrv
188



22

The RASSP Digest

The RASSP Manufacturing Interface provides the mechanisms
necessary for diverse design and manufacturing organizations to
work synergistically and thereby help ensure first-pass
manufacturing success.

In this article, the information sharing and DFx requirements for
an agile manufacturing interface are presented.  The principle goal
of an agile manufacturing interface is to provide the information
sharing infrastructure necessary to enable the formation of virtual
organizations and to provide them with the robust DFx mechanisms
they need in order to develop high quality products in a timely,
cost effective manner. The results achieved from the implementation
of an agile manufacturing interface to support the RASSP process
are presented.  These results, realized in a production environment,
include a 10x reduction in the time required to transition from design
to manufacturing set-up, and a reduction in rework of complex
Printed Circuit Assemblies (PCA) of up to 80%.  The role that
effective information exchange plays in enabling these results is
highlighted.

2. Background

A traditional flexible manufacturing system will provide some of
the capabilities needed to achieve both the reductions in cycle-
time and cost and the improvements in quality sought by the RASSP
program.  However, stronger coupling between design and
manufacturing is needed to fully realize the RASSP objective.  To
achieve this, an agile manufacturing interface must enable close
collaboration between design and manufacturing groups throughout
the product development process.  An agile manufacturing interface
supports this level of collaboration by providing the information
sharing infrastructure and DFx mechanisms necessary to develop
complex products that achieve first-pass manufacturing success.

2.1 Limitations of Traditional Approaches

Today, the information sharing capabilities and DFx mechanisms
necessary to support the sophisticated collaboration requirements
of agile enterprises do not exist.  Typically, little communication
occurs between organizations until critical information exchange
is required.  When an exchange of information occurs, little or no
consideration is given to the receiving group’s information
requirements.  This results in what is popularly referred to as the
over-the-wall paradigm of information exchange.

PCA design and manufacturing organizations all too often operate
within this paradigm.  The PCA design group will declare a design
“finished” once it meets their requirements.  Typically, these
requirements focus on form, fit, and function while ignoring other
considerations such as producibility.  It has long been recognized
that such a paradigm is inefficient.  Companies have taken steps to
adopt concurrent engineering principles to ensure that other
considerations, such as manufacturability, are taken into account
earlier in product design.  Several different approaches have been
used in an attempt to accomplish this.  In the electronics area, one
approach has been to incorporate generic Design For Manufacturing

(DFM) rules into Electrical CAD (ECAD) systems.  ECAD
systems equipped with this primitive DFM capability can analyze
a PCA and report issues that might negatively impact producibility.
A second approach has been to form Integrated Product
Development (IPD) Teams consisting of representatives from
various disciplines other than design, such as manufacturing.  These
domain experts are typically collocated with the design team to
ensure that their domain’s concerns are considered during the design
process.  Therefore, by including a manufacturing engineer on the
IPD team, manufacturing knowledge specific to one facility can
be applied to improve the producibility characteristics of product
designs.

Both of these approaches have improved the overall situation.
However, each has significant drawbacks. Neither approach enables
the consideration of multiple manufacturing facilities or production
lines, nor do they support the need for agility that is so important
in today’s defense and commercial environments.  In order to be as
effective as possible, DFM rules must include knowledge specific
to the manufacturing facility and production line that will be used
to produce the product being designed.  Every manufacturing facility
will contain different equipment, will organize its equipment
differently, and will have its own idiosyncrasies.  These
idiosyncrasies can significantly impact producibility and are often
poorly documented, if documented at all.  Knowledge of this kind
is generally distributed among the technicians and manufacturing
engineers that operate a manufacturing facility.  Because these
idiosyncrasies are not considered by the generic DFM checking
capabilities that ECAD systems provide, serious producibility
issues can exist after the generic DFM rules indicate that no issues
remain.  Because unknown producibility issues often exist when
manufacturing begins, first-pass manufacturing success is rarely
achieved.

While the IPD team approach can significantly improve the
producibility of designs, it is far from an ideal solution.  First,
resource limitations constrain the number of manufacturing
personnel that can participate on an IPD team, ensuring that only a
subset of a manufacturing facility’s characteristics can be taken
into consideration by the design team.  Second, physical collocation
of manufacturing experts with designers is expensive and subject
to potential interpersonal management issues.  Third, the
manufacturing knowledge used with this approach exists primarily
in the mind of the manufacturing engineer, and thus is volatile from
the design organization’s point of view.  Access to this knowledge
can be interrupted or eliminated by factors such as illness, changes
in employment, and retirement.  Finally, the IPD approach does
not easily support the optimization of a design across multiple
manufacturing facilities.  Because the field of potential
manufacturers is severely restricted early in the design process,
this approach restricts a design organizations flexibility.

What is needed is an agile manufacturing interface that provides
the mechanisms necessary to enable an automated, concurrent
engineering environment.  Such a solution must eliminate the

Agility through Information Sharing:
Results Achieved in a Production Environment

roushrv
189



23

The RASSP Digest

fundamental, underlying impediments to first-pass manufacturing
success of complex products, allow design organizations to quickly
interface with different manufacturing facilities, and simultaneously
allow manufacturing facilities to effectively interface with many
different design organizations [Gad94].

2.2  The ARPA/Tri-Service RASSP Program

The ARPA/Tri-Service Rapid Prototyping of Application Specific
Signal Processors (RASSP) program is a 4.5 year, $150M effort
aimed at improving the process by which embedded digital
electronic systems are developed.  The objective of the RASSP
program is to reduce by a factor of four the cost and time needed to
develop and manufacture embedded signal processing systems while
simultaneously improving their quality.  RASSP has targeted three
areas for development in support of achieving this objective:

n Methodology

n Model Year Architecture

n Infrastructure

The methodology being developed combines concurrent engineering
concepts with collaborative teaming approaches.  The model year
architecture focuses on leveraging commercially available
capabilities, coupled with flexible interfaces, to enable regular,
low-cost technology upgrades.  Improvements in infrastructure are
being pursued to increase the effectiveness of the methodology and
model year architecture being developed.  These infrastructure
efforts are focused on two areas.  The first is aimed at improving
the capability of system level design tools that can be used to
automate and improve the decisions made early in the design
process.  The second focus area is developing improved enterprise
integration capabilities, such as enterprise product data management
(PDM) systems integrated with workflow management systems
and enterprise reuse libraries.  By providing integrated workflow
management and secure, high bandwidth Internet access, the
infrastructure effort will enable application of the methodology
and model year architecture across distributed, multi-discipline
concurrent engineering teams within a virtual corporation.

A critical component of the enterprise integration capabilities being
developed by the RASSP program is the RASSP Manufacturing
Interface (RASSP-MI).  The goal of the RASSP-MI is to enable
first-pass manufacturing success of PCAs within a virtual enterprise
by effectively supporting agile manufacturing.  This goal directly
supports RASSP’s goal of significantly improving the quality of
and reducing the time and cost required to design and deploy signal
processor systems.

3. Agile Manufacturing Interface Requirements

In order to enable the formation of virtual organizations, an agile
manufacturing interface must provide a robust information sharing
infrastructure coupled with the DFx mechanisms necessary to
realize cost effective, first-pass manufacturing success.  The
following sections discuss these requirements in greater detail and

describe how they have been implemented in the RASSP
Manufacturing Interface.

The information sharing requirements for an agile manufacturing
interface can be divided into two categories.  The first requirement
is that the information being shared have a predictable and mutually
agreeable form;  that is, its syntax must be understood by both
sender and receiver prior to any exchange of information.  The
second requirement is that the information being shared have a
predictable and mutually agreeable content; that is, the semantics
of the information to be exchanged must be understood by both
sender and receiver prior to any exchange of information.  This
implies that data “flavoring” is not allowed.  The content or semantic
requirement can be further refined as follows:

Semantic Requirements

n Complete

n Consistent

n Accurate

n Correct

When the data requirements of a receiving activity, such as
manufacturing, are not formally understood by a sending activity,
such as design, the completeness of the information transferred
can not be assured.  For example, features of a design considered
insignificant to a designer may be crucial to a manufacturer.  A
design organization may transfer what they consider to be a
complete design to the manufacturer, only to discover later that the
manufacturer requires more information. Rectifying this situation
requires a costly, time consuming iteration between design and
manufacturing before production can begin.

The consistency of the information transferred from one activity to
another must also be assured.  The absence of Integrated Product
Data Management (IPDM) between organizations results in an
environment in which the consistency of the information may be
compromised.  For example, it is not uncommon for a manufacturing
engineer to make a “minor” change to the layout of a design, such
as changing a signal name in the netlist, after the layout has been
completed.  The resulting lack of consistency between different
views of a product can result in costly and unnecessary delays in
manufacturing.  These delays will result either from problems
caused directly by the inconsistent information (when the
inconsistency goes unrecognized), or due to the design iterations
required to correct the inconsistency.

The most challenging requirements to meet are those of accuracy
and semantic correctness.  The issue of accuracy arises when
information is exchanged in a form other than its native
representation.  Indeed, even exchanging information in native form
can present accuracy problems unless the environment for both
sender and receiver (architecture, software environment, etc.) are
identical.  A design is correct when it meets its functional
specification and all “ility” requirements are satisfied, such as

Agility through Information Sharing:
Results Achieved in a Production Environment

roushrv
190



24

The RASSP Digest

manufacturability, testability, maintainability, etc.  The need to
verify that these “ility” requirements are met drives the need for
robust DFx checking mechanisms that perform design validation
as part of an agile manufacturing interface.

4. The RASSP Manufacturing Interface

Figure 1 presents the RASSP Manufacturing Interface (RASSP-
MI) architecture.  The role played by each component of the
RASSP-MI architecture in realizing the agile manufacturing
interface requirements described above is presented in the
following sections.

4.1 Information Sharing Standards

The utility of standards in a concurrent engineering environment
can be seen in [And94] which describes the role standards played
in supporting the concurrent engineering of the engine mount for
the Boeing 777 aircraft.

The RASSP-MI makes effective use of robust, widely accepted
standards to provide “data buses” which ensure that information

can be exchanged between product life-cycle elements (design,
manufacturing, testing, field service, etc.) without the loss or
duplication of information.  The role for information sharing
standards in the context of the RASSP agile manufacturing
interface is illustrated in Figure 2.

The use of robust standards in the RASSP-MI supports many of
the information sharing requirements described previously.
Standards such as EDIF [Lau96] and ISO 10303 (STEP) [ISO96]
are specified such that they meet the predictable form requirement
and can support the content requirements in several ways.  By
enabling the representation of all needed information, the
completeness requirement is supported.  The consistency
requirement is supported by defining rules as part of the standard
that can be used to automatically check the consistency of the
information to be exchanged.  Lastly, by providing a formal
definition of the semantics of the information to be exchanged
via an information model, both EDIF and ISO 10303 enable
techniques that can ensure the information exchanged is accurate.
This is discussed in more detail next.

Agility through Information Sharing:
Results Achieved in a Production Environment

roushrv
191



25

The RASSP Digest

4.2  Assuring Product Data Accuracy

To ensure that the information exchanged accurately conveys the
semantics of the original representation, the RASSP-MI makes
use of a novel EXPRESS driven approach to data conversion.
Using this technique, a formalized definition of the information’s
semantics is created using the EXPRESS information modeling
language [ISO94].  This formal definition enables semantic
mappings between different representations to be developed.  An
example of a semantic mapping is illustrated in Figure 3.

ENTITY pin;
  name : STRING;
  geom : SET [1:?] OF curve;
  xyloc : ARRAY [1:2] OF REAL;
  rotation : REAL;
  mirror : mirroring;
END_ENTITY;

ENTITY package_terminal;
  location : cartesian_point;
  id : STRING;
END_ENTITY;

ENTITY
  x : REAL;
  y : REAL;
  z : OPTIONAL REAL;
END_ENTITY;

Note that this mapping is incomplete; a complete mapping of the
PIN entity would show the correspondence between all attributes
in the two information models.  Using the EXPRESS Driven Data
Conversion technique defined in [Hin94], these semantic
mappings form the basis for accurately converting data from one
form into another.

4.3  Assuring Product Data Correctness

As described earlier, the most challenging information sharing
requirement, that of semantic correctness, can only be met by

Agility through Information Sharing:
Results Achieved in a Production Environment

robust DFx mechanisms.  This drives the need for robust DFx
checking mechanisms within the RASSP agile manufacturing
interface.

The DFx capability supports the validation of a data-set’s
correctness relative to specific criteria, such as producibility and
testability.  The DFx mechanism applies rules to check a data-set
against the specified criteria.  The values and semantics of the
specified criteria exist as a machine processable description of
relevant manufacturing capabilities in terms that are meaningful
to a designer.  An example of a DFx rule is presented below:

Example DFx rule:

∀∀∀∀∀ traces  .  if  trace_width < min_trace_width

                     => issue ( min_trace_width )

In the above example, trace_width and min_trace_width represent
variables.  The variable trace_width is determined from the
description of a product, whereas the variable min_trace_width is
obtained from the process description that represents a
manufacturing facility’s capabilities.  The DFx analysis
mechanism will evaluate the above rule to determine if any trace
in the design is narrower than the minimum trace width defined
by the manufacturing facility.  If a trace is found that violates this
condition, an issue is generated that can be resolved through
negotiations between design and manufacturing to either alter the
manufacturing process, alter the design, or ignore the issue.  The
manufacturing-facility-specific DFx analysis supports an iterative
cycle of design analysis and refinement, which can be repeated
until no significant issues remain for a design.  While some non-
fatal issues may be unresolvable due to design constraints,

roushrv
192



26

The RASSP Digest

knowledge of these will result in more realistic manufacturing
cost estimates than could be achieved without the aid of such
DFx capabilities.

The RASSP-MI provides the necessary DFx capabilities through
a World Wide Web (WWW) accessible Producibility Analysis
(PA) tool.  Together, the WWW and PA support the secure
transmission of design information, remote analysis, the secure
return of analysis results, and any ensuing negotiations that may
be required. An example of the information provided by the
RASSP-MI PA tool is presented in Figure 4.

The architecture described here has been used to develop the agile
RASSP-MI.  The results obtained while using the RASSP-MI in
a production environment are presented next.

5. Results To Date

The RASSP-MI has been integrated into the RASSP enterprise
system and is being utilized by the key PCA manufacturing facility
within Lockheed Martin Corporation.  Several PCA designs have
been processed by the RASSP-MI at this facility to produce a
number of PCAs.  The results to date indicate a significant
reduction in rework and design-to-manufacturing cycle-time.
These results are detailed next.

5.1  Baseline Production Environment

Until recently, the process of transitioning PCA product designs
from Lockheed Martin’s design facilities to its key manufacturing
facility involved significant manual data conversion, data reentry,

and manual quality assurance procedures.  These manual processes
required significant time to perform and introduced errors and
inaccuracies into data generated for production.  These data
conversion and quality assurance steps took place after a PCA
design was considered “complete” and had been transferred to
the manufacturing facility.

Because the manufacturing facility has traditionally not been part
of the product design process, manufacturability issues are often
present in data received from design.  These issues must be resolved
before production can begin.  Resolution might require a re-design
effort by the team originating the design.  Because the cost of design
modification late in the design cycle is high, manufacturability
issues that are not insurmountable are often allowed to remain,
even though they increase the recurring manufacturing costs of
the product.  These problems have not only contributed to
difficulty in achieving first-pass manufacturing success, but
unnecessarily increased production difficulties and therefore
cycle-time and cost.

The RASSP-MI corrects this by facilitating collaboration and
negotiation between design and manufacturing engineers throughout
the product design process.  The role of the RASSP-MI in this
process is illustrated in Figure 5.

Two practices are still in place at the manufacturing facility which
are legacies of previous product data generation methods.  The
first of these practices is to manufacture the first three PCAs of the
first manufacturing run of a new design by a purely manual process.
This is done to ensure that the process of product assembly is well
understood.  This knowledge can then be used to help address
difficulties encountered during automatic assembly of the remaining
PCAs.  The second legacy practice is to produce only 20 PCAs per
manufacturing run (referred to as a batch).  This is done to provide
significant opportunities for manufacturing engineers to fine-tune
the automatic assembly process in order to maximize yield.

Prior to use of the RASSP Manufacturing Interface, inaccurate
placement of surface-mount components caused significant
recurring production difficulty.  The manual data exchange process
employed did not assure accuracy of placement information to
within 1/1000th of an inch.  Without this level of accuracy, it was
common for small discrete surface-mount components to move
during the solder reflow process due to component drift.  For
some components, this movement caused them to make poor or
no contact with their designated connection points on the Printed
Circuit Board (PCB).  Attempts to counter this effect centered
around modifying “offset” values in the automatic surface-mount
placement equipment.  Failures observed during the manufacture
of a batch of PCAs would be analyzed by a manufacturing
engineer, who would then use the analysis results to modify
placement equipment “offset” values in an attempt to correct the
component misplacement problem.  This approach improved
yields, but was never able to eliminate this production problem,
even over several years of production of the same design.

Agility through Information Sharing:
Results Achieved in a Production Environment

4T*^UhH^^wHj 

l^m      -j^      ha^      bx ■*» 

fc::^ ^ 

^jaB 

roushrv
193



27

The RASSP Digest

Despite the ingenuity and tenacity of the engineers and technicians
supporting this facility, the inaccurate data utilized for production
exacted a heavy toll.  For one program examined, 100% of 80,000
manufactured PCAs had defects caused by inaccurate placement
of surface-mount components.  These defects required manual
repair.  To make matters worse, on average approximately 30%
of the components on each PCA required rework.  Remarkably, it
was determined that the cost required to overcome these
difficulties, given the over-the-wall paradigm the facility was
obligated to operate within, exceeded the cost of performing the
repairs.

5.2  Results Using the RASSP-MI

To date, four PCA designs have been processed using the RASSP-
MI.  These PCA designs are comparable in complexity to the
design previously discussed.  Using the RASSP-MI, NC code for
component placement machines is derived automatically from
the original CAD data representation of the design.  Therefore,
the placement information in the NC code is as accurate as that
present in the CAD system.  Due to the increased quality of the
placement data, it was determined that all of the “offset” values
that had been programmed into the surface-mount placement
equipment at the manufacturing facility could be reset to 0, which
resulted in a simplification of the programming procedures
required for this equipment.

Agility through Information Sharing:
Results Achieved in a Production Environment

Of the four designs processed thus far, three realized first-pass
manufacturing success.  The remaining design experienced a 70%
success rate.  For this design, examination showed that a
misinterpretation of the manufacturing facility’s information
requirements was the cause of the poor yield.  The EXPRESS
driven approach to data conversion allowed this problem to be
quickly identified and corrected.

In addition to supporting first-pass success, the RASSP-MI
reduced the design to manufacturing set-up time by more than
a factor of 10.  The first-pass success and cycle-time
improvements were achieved by adhering to the information
sharing requirements described previously, eliminating
unnecessary process steps, and providing an automated
concurrent engineering capability between design and
manufacturing.

5.3  Payback Analysis

Equation 1 below defines C
t
 to be the recurring cost associated

with the time required to correct surface-mount component
placement errors introduced by the baseline manual data
conversion process previously described in section 5.1.

roushrv
194



28

The RASSP DigestAgility through Information Sharing:
Results Achieved in a Production Environment

( ) ( )C ME T P T N MTt lr m r r p lr= • + • • •

Where:

n ME
lr
 is the labor rate of a Manufacturing Engineer

n Tm is the time spent modifying automatic placement “offset”
values per day of production

n Pr is the percent of PCAs requiring repair due to poor
component placement

n Tr is the average time spent repairing a PCA

n N
p
 is the total number of PCAs produced

n MTlr is the labor rate of a Manufacturing Technician

Using the RASSP-MI, C
t
 is negligible.  Using the baseline process,

Ct was significantly higher.  Equation 2 presents the production
savings on a per unit basis that has been enabled using the RASSP-
MI, SRASSP.

[ ]
,

,

[ ]
.

,

[ ]
.

$200, $150,

,

[ ]
$20

1

8
250 30

80 000
15

80 000

2
05 10

80 000

3
05

000
10

000

80 000

4

S

Years
Days

Year
ME

Man Minutes

Day

PCAs MT
Man Minutes

PCA

PCAs

S
Man Years ME Man Years MT

PCAs

S
Man Years

Man Year
Man Years

Man Year
PCAs

S
PCA

RASSP

lr

lr

RASSP
lr lr

RASSP

RASSP

=

⋅ •
⋅

• •
⋅ ⋅






 +

⋅ • •
⋅ ⋅





⋅

=
⋅ ⋅ • + ⋅ ⋅ •

⋅

=
⋅ ⋅ • ⋅ + ⋅ ⋅ • ⋅

⋅

=

Using Equation 1 and assuming typical fully burdened labor costs,
the per unit savings enabled by the RASSP-MI are $20/PCA, as
shown in Equation 2.  Given the production rate of the
manufacturing facility, the development costs of the RASSP-MI
will be paid back in under 6 months.

It should be noted that significant quantities of the four PCA
designs processed to date will be produced in the near future.
Perhaps even more importantly, given the benefits identified
through the use of the RASSP-MI, an additional 25 design projects
are expected to be processed by the RASSP-MI over the coming
months.

These results highlight the benefits of the agile RASSP
Manufacturing Interface and explain why the Lockheed Martin

PCA manufacturing facility was identified for a best-practice
award [Best95].  With further refinements, it is expected that first-
pass manufacturing success of PCAs will be consistently achieved
using the capabilities provided by the RASSP agile manufacturing
interface.

6  Summary

The goal of an agile manufacturing interface is to enable the
formation of virtual organizations by providing the information
sharing infrastructure and robust DFx mechanisms those
organizations need in order to develop successful products.  This
paper presented the requirements for an agile manufacturing
interface and the results obtained using the agile manufacturing
interface developed by the RASSP program (the RASSP-MI) in
a production environment.  By reducing cost and time-to-market,
the RASSP-MI is contributing significantly towards the
accomplishment of the RASSP program’s goals of a 4x
improvement in cycle-time, quality and cost.

In conclusion, the RASSP Manufacturing Interface allows
physically distributed design and manufacturing teams to work
collaboratively in a virtual organization to design
manufacturability into complex products early in the design
process.  It also ensures that complex product designs are ready
to be manufactured before production begins, thereby ensuring
first-pass manufacturing success.  For complex products in
general, implementations of this capability promise to produce
significant reductions in product development time and cost while
improving product quality.

Acknowledgments

The research presented in this paper has been supported in part
by the Defense Advanced Research Projects Agency (DARPA)
Electronics Technology Office (ETO) and the Army Research
Laboratory under the RASSP program, subcontract TTM 748358.
Special thanks are extended to Ronald A. Pierce and David
Dunham (Manufacturing Engineers) who provided invaluable
assistance in collecting historical manufacturing facility
information and results data.

References

[Gad94] A. J.  Gadient, G.R.  Graves & J.C.  Boudreaux,
“PreAmp:  A STEP Based Concurrent Engineering
Environment for Printed Circuit Assemblies,” In
Proceedings Concurrent Engineering:  Research and
Applications Conference, pp. 529-537, August, 1994.

[And94] B. Anderson,  S. Ryan, “Using STEP  Application
Protocols to Enable Concurrent Engineering in Real
World Pilot Implementations”, ,” In Proceedings
Concurrent Engineering:  Research and Applications
Conference, pp. 349-353, August, 1994.

[Lau96] Lau, R.Y.W., EDIF:  Electronic Design Interchange
Format Version 4 0 0 Information Model, Electronic

roushrv
195



29

The RASSP Digest

Anthony J. Gadient, Lynwood E.  Hines
Advanced Technology Group, SCRA

5300 International Blvd.
N. Charleston, SC   29418

gadient@scra.org, hines@scra.org

John Welsh
Lockheed Martin Advanced Technology Laboratories

Camden, NJ
jwelsh@atl.lmco.com

Andrew P. Schwalb
Lockheed Martin Corporation

498 Oak Road
MP-A22

Ocala, FL   34472
aschwalb@ocala1.lmc-ocala.com

Agility through Information Sharing:
Results Achieved in a Production Environment

Industries Association, EDIF Steering Committee,
1996.

[ISO96] ISO/DIS 10303-210:1996, Industrial automation
systems and integration ¾ Product data
representation and exchange ¾ Part 210 Printed
circuit assembly product design data.

[ISO94] ISO 10303-11:1994, Industrial automation systems
and integration ¾ Product data representation and
exchange ¾ Part 11: Description methods: The
EXPRESS language reference manual.

[Hin94] L.E.  Hines, A.  J.  Gadient, “EXPRESS Driven Data
Conversion,” In Proceedings Concurrent
Engineering:  Research and Applications
Conference, p. 313-322, August, 1994.

[Best95] “Report of Survey Conducted at Lockheed Martin
Electronics & Missiles, Orlando, FL”, Best
Manufacturing Practices Center of Excellence,
College Park, Maryland, April 1995.

roushrv
196



30

roushrv
197



31

roushrv
198



32

roushrv
199



roushrv
200



2

RASSP is a $150 million DARPA research program headed (in
separate efforts) by Lockheed Martin's Advanced Technology Labs
and Sanders Corporation.  In addition to these prime efforts, over
two dozen contractors (including universities, non-profit and
commercial organizations) contribute to RASSP technology as part
of several Technology Base contracts.  Many impressive results
from these efforts are documented in this special issue of the RASSP
Digest.

The typical implementation of a RASSP system consists of three
stages:

(1) hardware design and integration,

(2) software integration, and

(3) hardware-software integration and test.

These are described as follows:

(1) Hardware design and integration involves design of the
architecture of the multiboard system (processors, interconnect,
and topology), building and configuring the runtime deployed
platform, designing and installing cabling, configuring each
module, and assigning interrupts and memory addresses for
each hardware subsystem.  The goal is to create a memory
map of the entire system and also deal with packaging and test
issues.

(2) Software integration (primarily control and diagnostic
software) involves developing device drivers and I/O interface
libraries to enable communication with the application
software.  It also includes functional and unit testing of the
runtime utility and software modules, and testing the various
I/O utilities independent of the application software.

(3) Hardware-software integration and test involves designers
using external test equipment and software to stimulate the
prototype in an environment similar to the target one.  Designers
also provide an application development that allows the user
to map their application onto the runtime hardware-software
platform completed in stages (1) and (2).  In a typical RASSP
system, the second stage usually requires development of about
twenty times the software (in lines of uncommented code) as
the third stage.

RASSP is investigating two rapid prototyping approaches.  In the
first approach, an application is mapped onto a predefined, off-
the-shelf embedded platform through code generation.  In the second

RASSP Digest Theme: Technology Base Efforts
Vijay K. Madisetti and Anthony J. Gadient

approach, the platform itself is designed, and integrated together
with the application software.

In the first section of this issue of the RASSP Digest, the RASSP
Technology Base results using the first approach described are
presented.  In these efforts, the runtime hardware and software is
already pre-designed and available commercially off-the-shelf
(COTS).  In both articles, the Mercury Raceway platform is the
target platform onto which the application is rapidly ported.  Since
the first two stages of the design process described previously are
eliminated, this environment allows for rapid implementation as
the two articles in this section show.

In the second section of the Digest, we focus on the second approach,
where the actual hardware and the software architecture themselves
are being designed. Clearly, there is a greater freedom in design
choices with this approach, and more effort required in the design,
integration and test. The articles in this section describe the new
methodologies and tools developed by the RASSP Technology Base
to address the challenges this increased flexibility provides.

Virtual prototyping in RASSP depends on the availability of a rich
set of verified libraries at multiple levels of abstraction to aid in
the design and verification process. The third section of the Digest
describes the development of libraries from the performance level
to the component level. Techniques for automating model generation
and verification, and the issues of hybrid modeling are discussed.

RASSP and VHDL have been closely linked due to the very
powerful expressive features of the language.  Extensions to VHDL,
as developed by some Technology Base efforts, are presented in
the final section of the Digest.

We hope you will find the new technology and tools presented in
this special issue of significant utility in your quest for an efficient
system-level design automation environment.  Extensive details
on these RASSP developments are also found on the RASSP WWW
server (http://rassp.scra.org).

Vijay K. Madisetti
ECE,

Georgia Tech.
Atlanta, GA 30332-0250

vkm@ee.gatech.edu

Anthony J. Gadient
SCRA

5300 International Blvd.
N. Charleston, SC 29418

gadient@scra.org

roushrv
201



3

Abstract

Developing software applications for scalable, heterogeneous
platforms is a highly specialized, time consuming task. This paper
discusses a new development that provides an interface for
developers and is an intermediary for innovative application
development tools. A 'component software' approach insulates
both the application developer and tool developer from platform
issues while facilitating high-performance execution of
applications. Central to the development is a new open application
framework that uses an application configuration language based
on the well-known Tool Command Language (Tcl), written by
John K. Ousterhout of Sun Microsystems and UC Berkeley.
Adoption of the framework by advanced tools potentially offers a
dramatic programming productivity gain over existing practices.

1. An Application Framework

An open application framework provides a pre-existing application
structure to assist the developer in creating portable applications.
The application framework described herein should be readily
understood by RASSP developers since it provides a software
development methodology analogous to the methodology applied
in computer aided engineering (CAE) tools for developing complex
chip or board designs. Hardware designers approach a complex
design as a set of interconnected components as opposed to a
monolithic entity. Users of CAE tools have various text-based and
visual-based methods for representing a design. Early and often
modeling and simulation of a design is essential for development.
Portability and reuse are inherent in the CAE tool flow and further
amplified by the establishment of standards.

The application framework addresses the requirements of software
engineers who implement single-program multiple-data (SPMD)
and multiple-program multiple-data (MPMD) scalable systems.
For example, the framework is applicable to digital signal
processing (DSP), image processing, simulation, or any application
modeled as series of data transformations or as event-driven
processes.

2. Application Configuration Language

Central to this development is the definition of a robust scripting
language for expressing the relationships between the software
application and a heterogeneous processor configuration called the
Application Configuration Language (ACL). ACL is implemented
as an extension of Tcl. Tcl is a procedural language that provides a
complete set of control statements (e.g., lists, arrays, variables,
procedures).

Talaris is a project name at Mercury Computer Systems for an
ACL application framework for developers and high-level tools
for RACE multicomputers. ACL, however, is system independent,
and other ACL frameworks for different targets are underway.  The

points about the Talaris Framework will apply to other ACL
frameworks.

The Talaris Framework uses component software concepts to
provide a software reuse model and an application building
mechanism that replaces the use of cumbersome make and shell
scripts. These are the Talaris Framework characteristics:

n Centralizes hardware and software configuration information.

n Expresses assignment, data flow, and scale information
algorithmically in a rich and natural manner.

n Supports scaling of heterogeneous system components without
imposing an application design model.

n Remains independent of system-specific APIs and supports
legacy executable programs.

n Eliminates all target-specific setup and initialization code.

n Enables fast turnaround of configuration changes.

n Supports deployment.

n Creates open framework interfaces that leverage standards.

Talaris reduces application building efforts by providing a ACL
script and an inventory of software Programs and Modules.
Software Programs are self-contained executable files (e.g., image
files) whose interaction is opaque to the Framework. Software
Modules are functions or subprograms that have Ports. Each module
will run as its own thread. Ports represent how a Module sends
messages, shares memory, transfers data, or synchronizes with other
Modules. ACL does not impose any particular Port API and can
use generic mechanisms.

3. Framework Structure

Figure 1 shows the Talaris Framework. The Generator receives
input from three sources: 1) ACL commands, 2) reusable Modules,

An Application Configuration Language
for Multicomputer Tool Development

Barry Isenstein,
Michael Krueger
and Arlan Pool

roushrv
202



4

and 3) executable Programs. ACL commands may be user
interactive, recorded in a user-written script, or produced from a
tool client. ACL describes the hardware configuration and the
software application. For example, ACL describes how Modules
connect to each other. In the CAE analogy, a Module is comparable
to an integrated circuit (IC), a Port to a pin on that IC, and the
connection of Ports to a wire that connects pins.

The Generator, which runs on a workstation, creates a Launch Kit.
By interpreting the ACL commands, the Generator builds
executable images from Modules as needed. The Generator also
places run-time setup information into each Launch Kit.

The Launcher, which runs on a designated processor, analyzes the
Launch Kit. The Launcher then loads images, sets up the global
interprocessor communication environment, and spawns each
process. The application is now running. Embedded applications
require only a Launch Kit(s) and the Launcher.

Figure 2 introduces the concept of Talaris Domains. Domains are
containers for components and are useful for dealing with
heterogeneity, application scale, and configuration. It is desirable
that changing any one of these aspects result in only a minimal
effort. Connections take place within a Domain. Assignments are
across Domains.

The four Domains are as follows:

Software Domain

The Software Domain is where instances of Modules and their
Port connections are created. Heterogeneity is supported by
specifying that Modules are either written in a portable language
or for performance reasons, critical Modules have an optimized
version for each processor type. In a modeling environment,
Modules are behavior models of the function instead of functional
components. The Software Domain represents the functionality of
the application.

Process Domain

The Process Domain depicts the assignment of Modules to
processes. Process scheduling policies are parameterized in this
Domain. The Process Domain places an executable software
structure on the functional application.

Target Domain

The Target Domain describes the ideal assignment of processes to
Compute Environments (CEs). The Target Domain expresses the
ideal scalability assignment of an application that might prove
useful for actual hardware assignment.

Hardware Domain

The Hardware Domain is the processor assignment that represents
the actual hardware present. Connections of components within
the Hardware Domain (not shown in Figure 2) represent the
processor connection topology. In a modeling environment, the
Hardware Domain represents simulation models of existing or
future hardware.

4. More on ACL

ACL includes all standard Tcl commands. A partial list of Tcl
commands illustrates usefulness for implementing embedded
command processing:

variables: set, $x, array, $x(y), incr, argv, env

control: if, for, foreach, while, exit

lists: list, lappend, llength, lindex, lreplace, concat

strings: string, join, split, append, format

functions: proc, return

I/O: open, close, eof, gets, puts, cd

other: catch, eval, exec, expr, trace

Following is a list of the ACL commands:

types: declare, get_type, delete

instances: create, delete

assignments: assign, deassign

connections: connect, disconnect

properties: set_property, get_property, delete_property

scale: set_scale, get_scale

run-time environment: target

information: query

application construction: generate

application control: load, initialize, start, run

It is not within the scope of this paper to explain detailed ACL
examples. We refer the reader to the ACL tutorial  and other
documents available at http://www.mc.com/technology.html.

The RASSP DigestAn Application Configuration Language for
Multicomputer Tool Development

roushrv
203



5

Figure 3 shows an illustrative example of a simple Software Domain
connection to a Hardware Domain assignment (explicit Process
and Target Domain assignments are optional).

5. ACL Development Scenario

An ACL development scenario starts with an inventory of Modules
and Programs. Modules are supplied as libraries by vendors, created
with code generation tools, or manually written. This inventory
provides a reusable code base for concurrent and future projects.

An ACL script is required that 1) defines and creates Modules and
Programs, 2) defines and creates Processes (optional), 3) describes
the Target (optional) and Hardware Domains, and 4) makes the
assignments between Domains. The ACL script could represent a
manual effort, an automatic task from a high-level tool, or a
combination of manual and automatic efforts.

The ACL script is then loaded into the Generator. The Generator
incrementally builds a model of the application and database of
connections and assignments. The Generator is eventually given
the ACL command to “generate,” and the following two step process
takes place:

Step 1: The Generator analyzes the application

n determines what runs where

n devises a plan for initializing connections

n performs additional validation

n links Modules and Agent Module to form generated
executables

n creates the Launch Script used later to initialize and start the
application

Step 2: The Generator creates the Launch Kit with

n Launch Script (loading, spawning, IPC setup)

n executables for generated programs (made from Modules)

n executables for user programs (Programs)

The single ACL command “run” instructs the Launcher to do its
job. In summary form, the Launcher

n analyzes the Launch Kit

n extracts and executes the launch script

n loads executables

n sets up global IPCs

n spawns threads in processes

To accomplish its function, the Launcher uses a special Module
provided by Talaris called the Agent Module. The Agent Module
is linked into generated programs and provides the “main()” entry
point. The Agent Module uses data in the Launch Kit provided by
the Launcher to create and initialize local IPCs and prepare Modules
for execution. The Agent Module then reports back to Launcher,
and when directed by the Launcher, starts the Modules.

6. Comparision to Conventional Development

Table 1 illustrates the comparison of a conventional software
development cycle to using the Talaris Framework. As indicated
in Table 1, ACL, the Generator, and the Launcher replace, or
obviate, many of the conventional development tasks.

Although Talaris supports legacy code through the Program entity,
achieving the main benefits of the Framework occur when
employing Modules (boxed area in Table 1). The Framework allows
the code developer to concentrate on application code rather than
learning platform-specific API protocols. Application development
can then be  focused on functional correctness (i.e., making
connections in the Software Domain), scheduling policies
(parameterized in ACL Software and Process Domains), and on
application mapping (i.e., making assignments across Domains).

Connections and assignments can be expressed algorithmically
using powerful Tcl and ACL constructs. For example, it is possible
to create a process-to-processor mapping algorithm in ACL that
responds to parameter changes in hardware interconnect, scale,
and heterogeneity.

The developer determines the optimum assignment and mapping,
either by an algorithmic or a manual approach. The Talaris
Framework does not impact application performance since no
generated code is added to the application. Modules are directly
connected as if they were coded manually. The application
performance will depend on the effectiveness of the assignment
and scheduling, and the platform’s implementation of the Port APIs.

The RASSP DigestAn Application Configuration Language for
Multicomputer Tool Development

roushrv
204



6

The RASSP DigestAn Application Configuration Language for
Multicomputer Tool Development

7. Talaris as a Tool Intermediary

The Talaris Generator presents itself as an interactive shell on the
development system. A Talaris project goal is to facilitate rapid
third-party development of advanced tools by eliminating many of
the platform-specific build and run issues that are typically a large
portion of a tool porting effort.

Advanced tools will “hide” the ACL framework from the
application developer. Software Modules become reusable
components for quick and easy manipulation by the developer using
innovative tools with clever user interfaces. A tool presents a helpful
interface(s) (e.g., data-flow GUI) to the programmer for connecting
and assigning software and hardware Modules. Code generation
tools could be invoked to create software Modules. Intelligent tools
may assist the developer in offering semi-automated hinting to
complete automation of Module assignment to hardware elements.
The tool appropriately issues ACL commands to a framework and
when directed, the framework dutifully constructs and runs the
resulting application.

With an ACL framework ported to other platforms, a single tool
can offer portable execution by simply directing output to a different
target system.

Barry Isenstein, Michael Krueger and Arlan Pool
Mercury Computer Systems, Inc.

199 Riverneck Road
Chelmsford, Mass. 01824
barry_isenstein@mc.com

8. Future Work

Work with Talaris Framework will focus on three areas:
1) robustness and standardization, 2) high-level tool development,
and 3) research for large-scale systems.

Talaris represents a new approach which has been a missing
ingredient in the effort to develop scalable systems. With sufficient
experience by both application developers and tools vendors, formal
standardization of ACL will be pursued so that control of the
interface will be passed to a public body.

Mercury will assist vendors and research organizations interested
in interfacing existing high-level GUI-based tools to the Talaris
Framework. Mercury expects various types of tools to be available
in the areas of performance modeling and application building, in
addition to porting the Talaris Framework to other hardware
platforms.

The most promising aspect of the framework is the potential to
solve difficult large-scale system problems. Topic areas include
automated scheduling, assignment, dynamic reconfiguration, and
fault resilience.

roushrv
205



7

Autocoding Update Christopher B. Robbins

Abstract

Management Communications and Control, Inc. (MCCI) is
developing autocoding tools under subcontract to Lockheed
Martin, Advanced Technology Laboratories, Camden (LM/ATL).
Under the technology base program, MCCI has developed the
Graph Translation Tool (GrTT).  These tools are intended to
complement each other and will be integrated in MCCI’s
autocoding toolset. The alpha version of our toolset has recently
been evaluated by comparing the autocoded RASSP synthetic
aperture RADAR (SAR) benchmark with an earlier hand
optimized implementation.  MCCI has recently completed work
under its RASSP tech base contract on the Graph Translation
Tool (GrTT).  In technical testing, we used the same SAR
benchmark.  This article reviews the autocoding process and
describes the combined use of GrTT and the autocoding toolset.
A summary of the LM/ATL evaluation and MCCI’s GrTT testing
is presented.

1. Autocoding Process

The autocoding process translates the data flow graph software
architecture specification to an efficient parallel application for
the target hardware architecture.  Inputs to the autocoding process
are application specifications in the form of a Processing Graph
Method (PGM) data flow graph and hardware architecture
specifications.  Application graphs are target independent.  This is
an open API, specifying applications in a form that may be
automatically coded for all RASSP targets.  PGM is a target
independent specification method.  Target independent domain
primitives are specified as the node executables.  The autocoding
process is applied in two levels; top level design and detailed design
and coding.

In top level design, the Equivalent Application Generator Tool is
used to partition input graphs into a connected set of component
graphs specifying execution and functional behavior that is identical
to the original graph.  If allocations are not already specified,
application graphs may be partitioned into software allocation and
hardware partition graphs.  The tool is then used to generate PGM
graphs for each hardware partition and the entire software
allocation.  The software allocation graph is then repartitioned to
the programmable elements of the target architecture.  An equivalent
application graph for the software allocation is created.  In the
equivalent application graph, each equivalent node replaces a
software partition.  At the ports of the equivalent nodes, the
equivalent application graph behavior will be identical to that of
its respective partition graph.  The equivalent application graph
and the set of hardware and software partition graphs complete the
top level software specification.  A performance assessment of the
equivalent application graph is generated.  The performance
assessment may be used to quickly reject unfeasible designs.

GrTT is used in top level design to validate requirements capture
from the algorithm development stage of codesign.  GrTT accepts

a partition graph with enumerated sets of external graph controls
as its input.  GrTT generates Ada graph behavior models that exhibit
input graph behavior for all enumerated values of control.  Behavior
consists of a procedure implementing a sequence of domain
primitive executions and intermediate queue states.  A GrTT test
support utility is provided that executes GrTT procedures as single
node applications.  GrTT behavior models are executed on test
vectors generated by higher level design tools to verify requirements
capture by the top level design.  This feature may be used to verify
both software and hardware partitions.  Because of the closeness
of Ada and VHDL syntax, GrTT behavior models may be reused
as VHDL behavior architectures for hardware partitions.

The second level of the autocoding process is a generation of source
code for the partition executables and a configuration file for the
equivalent application graph.  Configuration files are target
architecture specific application descriptions binding graphical
equivalent application entities to specific target hardware
realizations.  A load image specification is then created specifying
the complete application to the compiler supporting the target
architecture.  Unit testing of executables is supported at this level.

Using the MPID Generator tool, each partition graph is translated
into ‘C’ source code for an executable program implementing the
partition behavior.  MPIDs (Multi Processor Interface Descriptions)
are optimized implementations of partition behavior utilizing the
math library primitives supported by the target processor.  MPIDs
become the primitives of the equivalent nodes.  Test images of the
MPIDs are created.  These are single node applications used in
validation testing of what are in effect the application’s CSUs.  Unit
testing results are compared with GrTT test vectors to validate
partition translation.  With its executables validated, correct
execution of the application can be expected.

The Application Generator generates configuration files from the
equivalent application graph and the hardware description file.
Hardware description files are automatically built from the input
architecture description and may subsequently be edited by the
user.  A run-time support (RTS) utility is provided with the tools.
The RTS provides application management, execution, and external
control interface support.  When instantiated, executable and
controllable images of the application are created by the RTS from
the application’s configuration file.  A load image specification
consisting of all configuration files in the application system, all
supporting MPID source files, and necessary system files is then
automatically generated.

2. Autocoding the SAR Benchmark

Engineers at LM/ATL Camden recently completed an evaluation
of the alpha version of our autocoding tools.  In this evaluation, the
RASSP SAR benchmark was implemented using our toolset.  The
work required to develop the application and the code performance
was compared with that of the previously hand coded effort.
Demonstration cases were developed with GrTT for inclusion in

roushrv
206



8

the technical report for our tech base effort.  We used the same
benchmark to demonstrate use of GrTT in the context of an
application development scenario.

Since the alpha version of our tools does not include the Equivalent
Application Generator, partition graphs were manually created from
the input software allocation graph.  Figure 1 shows the allocation
graph.  It includes range processing and azimuth processing
subgraphs.  The range processing and azimuth processing partition
graphs and equivalent application graph created from the allocation
graph are also shown.

GrTT behavior models were generated from the range partition
graph to demonstrate GrTT in the context of the benchmarked
development scenario.  Figure 2 shows an excerpt from the GrTT
behavior for the range partition.  MPID source files were generated
for the partition graphs using the MPID Generator tool.  Figure 3
shows an excerpt of the MPID generated from the same range
processing partition graph.  The GrTT behavior model was

The RASSP DigestAutocoding Update

-y     "-^        o_b3 V  o_b4 - 

« 

(1 ..n_p_rcnoe)yranoe 

(I„n_p^ranoe.l..nj3_azlyO 

(I ,.njD_ciz)oijtl 

1 

□ 
1    , 

- GfTT Auto Cod« G»n»ratof 
-Version 0.1    7/5«5 T n-P 

^ 

proccdura Rangaj ( 
PAD : in CFLOAT Typ«_Packao«.CFLOAT_V«ctof_Acc»ss_Typt 
VMUL: in CFLOAT Typ«_PBck«9«.CFLOAT,V»ctof_Accws_Typ 
RCSMUL : in FLOAT Typ. P»ok«a«FLOAT V»ctof_AccM«_T¥p 
Y RNG : in CFLOAT Typ« P«CIM)J».CFLOAT V»ctor ACCMS Ty 
X_Ptr :inlnt«9«r 
0 B : out CFLOAT Typ«_PK*«g«.CFLOAT_Family_Amiy_Acc* 
Y_Ptra: out DIMT^Typ«_PackaQ«.DIMT_Famiiy_Arniy_A<x«»s_Ty 

(mj,       \ 
ID.VFU   J 

T" 
/wtndDw«X>\ 

□ N_R : constant:-235; 

N_P_AZ : constant:. 4; 

ID^VMU   J 

Fill : CFLOAT_Typ«_PBckaae.CFLOAT.V»otof_Typ« (0 .. N.FFT 
Wind : CFLOAT Typ« Packa9«.CFLOAT_V.ctof_Typ« { 0 .. N_FF 
Ffto : CFLOAT Typ« Pickag*,CFLOAT Vactof Typa (0.. N FF 
Haco : CFLOAT_Typ«_PackaB..CFL0AT_V»ctof_Typ« { 0 .. N_FF 

[mo 
b«gjn 

[ 
READ OUEUE(Y RNG, X Ptr. N R) 

D VWt (N R. 
N FFT-NR, 
0, 
PAD. 

N fl. 
Y RNG. 
X_Ptr. 
Fix, 

fiajnJI     \ 
ID.VMU.  J 

/p.corrwj \ 

^4   " fe° "^ 

/* Graph RANGEJ Translated to: 
rangej.c by the MCCI Auto Code Generator - Version 02^ 

(Include <mco5.h> 
Vlnckjde <sal,h> 

/* The header file, gtobal_definltlons.h Is a file which dec 
* constants and types which are common to MPIDGen 
* OS well as the services provided by the run-time systerr 
V 
#include ■global_def^nltio^^s.h" 
dlnchjde "system_comrr>on„types,h' 
((include "mode_ref,h" 
(include "pfo^ofyp^s.srts.h" 

r The header file, rangej.constants.h. Is a file which Is pre 
' MPIDGen. Ttih heoder file defines constants required t 
' procedures defined in this file as well as the code proc 
' as: MAX_P1D_STATES ond QSAMP_MAX_FAMILY_SIZE. 
7 

((Include "mp_rangej.cor«tants.h' 
r The heoder file, rangej.In_neps.h, Is a file which Is prod 
* l\i1PIDGen. This header file defines arrays which contali 

of each member of each pott for each MPID state, Tl- 
* of eoch of these arrays is as follows: 

<queue_name>_(read/offset/consume)_amount(MA> 
(<QUEUE^NAME>_MAX_FAM!LY_ 

Thus, the read amount for the queue, qsamp, would b 
following array: 

gf^ ^    ' ^°"^ 

roushrv
207



9

The RASSP DigestAutocoding Update

Christopher B. Robbins
Management Communications

and Control, Inc.
2000 North 14th Street, Suite 220

Arlington, VA   22201
crobbins@mcci-arl-va.com

Figure 4. Comparison of Output Vectors from MPID Tester and GrTT Behavior Model

Table 1.  Comparison of Handcoded vs Autocoded Software Design

exercised using the GrTT test utility on input data supplied by the
LM/ATL benchmark development team.  MPIDs were tested using
the unit tester and validated against the same test vectors.  Figure
4 shows a comparison of GrTT behavior model testing and MPID
source testing using the common input test vector.  An application
image was created using a prototype application generator.  Input
and output procedures were written to interface the software
allocation to the hardware implementation of the input/output
processing.  These are user written procedures; however, input/
output service routines provided with the tools were utilized that
perform graph functions; e.g., enqueueing data.  Two design

iterations were completed during
the evaluation period to optimize
the autocoded implementation’s
performance on the available
test hardware.  The autocoded
applications executed correctly
without the need for a run-time
test and fix effort.

3. Summary of Evaluation and Test Results

Table 1 summarizes the results the evaluation and compares them
with the hand coded optimized implementation.   MCCI’s autocoded
implementation of the benchmark required an additional processor
for its memory.  Features not included in the alpha version of the
toolset will make memory usage comparable to the hand coded
version when incorporated.  GrTT testing was accomplished by
MCCI independent of LM/ATL’s evaluation.  Results are compared
with the validation testing accomplished by LM/ATL to illustrate
its future integration.

4. Progress Towards 4x
Productivity Improvement

LM/ATL’s evaluation of the alpha version
of the autocoding tools demonstrated that
MCCI’s autocoding tools will generate
application code with performance
comparable to optimized hand coded
implementations with an order of magnitude
improvement in development productivity.
This will meet the productivity enhancement
goals required in the software generation
elements in LM/ATL’s productivity
improvement model.  Further improvements
are anticipated as our tools mature.  A
reevaluation of the beta version of the
autocoding tools is planned for July '96.
Further improvement in run-time
performance and productivity should be
observed.  We believe this additional
improvement beyond the requirements will
have beneficial synergistic effect with other
elements of the codesign process.

Observation Hand Coded Autocoded Comment 

Validation Run time testingMPID unit testing GrTT testing performed 
GrTT by MCCI, MPID unit tests 

by LM/ATL 
Number of 7 8 8 required for memory 
Processors only, processing load can 

be met with 7 
Processing Time <7sec/sec 6.662 sec/sec 
Development Time 6 man months <3 man weeks 10x improvement 
Integration and Test 
Time 10 man weeks 2 man weeks 5x improvement 

MPID O_B1_0(real) MPID O_B1_0 (imag) 

1H r 
Diff 0. _B' _0 (real) 

0.5- ■ 

0 ■ 1            '1     1 
-0.5   • • 

-1 fi   ■ 

0,8 T 

0.6   ■ 

0.4 

0.2 + 

0 

-0.2   ■• 

-0.4   ■• 

-0.6 

Diff O_B1_0 (Imag) 

Figure 4 Comparison of Output Vectors from iUIPID Tester and GrTT Behavior Model 

roushrv
208



10

Abstract

A methodology for  the rapid, systematic, through and efficient
exploration of very large digital processing design trade spaces
has been developed.  The resulting process is implemented as an
Early System Evaluation and Trades (EaSE Trades) Design
Advisor Tool.  The Navy's Processing Graph Methodology (PGM)
and JRS Integrated Design Automation System (IDAS) combined
with the use of Design of Experiment (DOE) techniques for the
experimental exploration of candidate design alternatives have
achieved breakthrough improvements in the way trade studies
are accomplished.

1. Objectives

The objective of RASSP is to improve the process by which
embedded digital signal processors (DSP) are designed,
manufactured, upgraded, and supported.  This initiative has top-
level goals of developing an advanced, systematic design capability
to achieve

n 4x or better design and redesign speed improvement,

n 4x or better improvement in life cycle cost.

The RASSP design system relies heavily on virtual prototyping,
that is, extensive simulation at increasing levels of fidelity.  DSP
system and architecture simulation tools, such as the JRS NETSYN
are being developed to meet the virtual prototyping goals.  These
tools offer powerful methods for examining system alternatives early
and often in the design process. They can be applied on problems
covering a wide range of architectures, applications, and rates.

The capability of these new tools opens doors to exploration of
vast alternate trade spaces.  Even with the improvement in speed
offered by these tools, thorough trade studies using simulation tools
often cannot examine all potentially interesting trade conditions.
Because of cost and time constraints, we are often forced to narrow
the number of cases using engineering judgment or other subjective
criteria.  Important alternatives may be excluded before the trade
analysis even starts.  The solution lies in the use of a systematic
methodology to search the trade space of alternatives.

In many commercial industries, the challenge of intelligently sampling
a large trade space is accomplished using the field of statistics
commonly referred to as Design of Experiments (DOE).  By definition,
DOE  is the planned, structured, and organized observation of input
(independent) variables (hereafter referred to as factors), and their
effect on the output (dependent) variables (hereafter referred to as
responses). In many industries and applications, DOE analysis has
resulted in a considerable reduction in data collection necessary
for exploration of large candidate trade spaces.

The Early System Evaluation and Trades (EaSE Trades) Program
is developing a methodology for the rapid, systematic, thorough,

and efficient exploration of large digital signal processing trade
spaces.  The process uses DOE as the basis for a Design Advisor
that aids the engineer in the selection of simulation cases that will
help to find the best trade choice quickly and efficiently.

2. Technical Approach

The EaSE Trades method is shown in Figure 1. It outlines the step-
by-step process for rapidly searching the large, multidimensional
design trade space of the DSP system.  Sampling is done with
confidence that all the potentially applicable trade conditions will
be considered.  The following paragraphs detail this process.

Screening Matrix Selection - In most physical situations, some
variables will be much more important and effective than others at
meeting the customer's needs. DOE screening studies take
advantage of this to quickly, and systematically, reduce the number
of simulation cases that need to be examined.  The user specifies
the factors to be traded, the responses of interest, and any constraints
on the problem.  The EaSE Trades method uses sampling techniques
designed for screening to intelligently choose simulation cases from
the large trade space as represented by the factors being traded.
The sampling plan recommends a matrix of test conditions to be
simulated on NETSYN. The simulation results quantify the
response values of interest.

Analysis and Visualization Refining Matrix Selection - The smaller
trade space is then examined in a more refined experiment.  DOE
sampling techniques which are designed to produce a second order
polynomial description of the response surface are used to create a
matrix of test conditions to be simulated on NETSYN.  A second
order regression equation for each response of interest is derived
from the refined experiment.

Analysis and Adequacy Check - The "goodness of fit" of the second
order equation is tested statistically to assess the adequacy of the
second order equation to describe the observed responses.  If
required, additional samples can be simulated to facilitate the use
a higher order polynomial to describe the relations between factors
and responses.

Gary W. PanzerEaSE Trades Technical Review

roushrv
209



11

Design Optimization - Assuming a good fit, the second order
polynomial equations are used to trade-off alternative solutions.
The equations are solved for the solution that best meets the
customer's needs.  This optimum design is then simulated on
NETSYN to confirm the predictions of the second order model.

The final product will be a confirmed optimum design for the DSP
system.

3. Technical Results

Processing an experiment through the EaSE Trades Design Advisor
produces results depicted in Table 1.  This partial table lists the
coefficients on an equation that predicts system performance.
Coefficients of lesser importance have been removed from the table.

Table 1. Representative Equation
Coefficients Factor Coefficient

The processing system's response equation is in the form:

Y = B0 + B1X1 + B11X12 + B2X2 + B22X22 + B3X3 + B33X32 +
B12X1X2 + B13X1X3 + B23X2X3 + B123X1X2X3

Examining the above table, the negative coefficient values for the
linear terms indicate a decreasing effect on the response time when
the number of processors is increased. This is in agreement with

The RASSP DigestEaSE Trades Technical Review
Contract Number F33615-94-C-1498

our intuitive expectation.  Processors P11 and P31 also appear as
the most important in the response time.  This is also in agreement
with our expectations since they are the fastest processors as
indicated by their specifications. Further analysis determined that
the data behaved inverse square linearly, i.e., the reciprocal of the
square of the response time gives the best fit. This confirms our
original understanding of the system's 'inverse exponential'
behavior.

4. Deliverables

The major deliverables of the program are

Methodology Definition Document - This material covers the
technical aspects of the system operation for this program.  It defines
the overall strategy for conducting the research, and the approach
to controlling the experiments and evaluating the results.

Integration and Test Plan - This documents the specific plan,
including schedule, for mechanizing the tool interfaces, debugging
and testing for proper operation prior to conducting methodology
evaluations in the validation phase of the program.

Methodology Evaluation Plan - This is a specific plan how
evaluations are to be conducted. It is intended to provide for a
cost-controlled and disciplined research approach.

Final Report - This is a program and technical report that
summarizes the work accomplished.  Other deliverables will be
included by reference or as appendices as specified by the contract.

Design Advisor Prototype - The Design Advisor software and
documentation that is in-place at the conclusion of the research
will be made available.

Gary W. Panzer
Hughes Radar and Communication Systems

P.O. Box 92426, RE/R01/A528
Los Angeles, CA   90009-2426

panzer@bala.hac.com

roushrv
210



12

1. Objectives

This project focuses on design methodology for complex real-time
systems in which a variety of design methodologies and
implementation technologies must be combined.  Design
methodologies are encapsulated in models of computation, whereas
implementation technologies are implemented as synthesis tools.
Applications that use more than one model of computation and/or
more than one synthesis tool are heterogeneous.  Hardware/
software codesign is one example of heterogeneous design.

2. Technical Approach

The key idea in the Ptolemy project is to mix models of computation,
implementation languages, and design styles, rather than trying to
develop one all-encompassing technique. The rationale is that
specialized design techniques are (1) more useful to the system-
level designer and (2) more amenable to high-quality high-level
synthesis of hardware and software.

3. Technical Contributions

We support heterogeneity by defining formal models of computation
such as dataflow and finite-state machines at arbitrary levels of
granularity, hierarchical mechanisms to compose models into
complex systems, and algorithms to synthesize systems in hardware
and software.  We address

Algorithm Specification: graphical/algebraic specification [1];
algorithm restructuring [1]

System Specification: scalable systems; syntax management;
integrated documentation; design methodology management [1]

Modeling: multidimensional dataflow [2]; finite state machines
(FSM); synchronous/reactive (SR) controllers; process networks;
formal mathematical analysis of dataflow models

Scheduling of Dataflow Graphs: joint minimization of program
and data memory for embedded DSP processors [3]; optimization
of synchronized communication between processors [3];
hierarchical scheduling [4]; incremental compilation [4]; dynamic
scheduling

Simulation: compiled simulation [4]; mixing models of control
(FSM, SR), dataflow, and discrete-event subsystems [5]; mixed-
signal analog/digital simulation

Synthesis: converting (untimed) dataflow graphs into (timed)
clocked circuits; fast partitioning algorithms for hardware/software
codesign [6]

We test our ideas in the Ptolemy software environment.  Ptolemy
provides a framework for mixing tools with fundamentally different
semantics and a laboratory for experimenting with these mixtures.
Many different kinds of tools cooperate in the specification,
simulation, and synthesis of systems.  We mix our own custom

tools with many existing ones to create a system-level design tool:

Block diagram specification: octtools design database; vem
schematic editor; Ptolemy higher-order functions for scalable
systems

Parameter specification: Ptolemy expression evaluator; Tcl;
MATLAB; Mathematica; Tycho

Simulation: Ptolemy dataflow, discrete-event, and finite state
machine domains; Ptolemy kernel-, MATLAB; Esterel; Tcl/Tk;
Synopsys VHDL System Simulator; Model Technology VSIM
VHDL Simulator; xgraph; xv; soundtool; Utah Raster Toolkit;
GNU threads

Software synthesis: Ptolemy C, C++, and DSP assembly code
generators; GNU and cfront C and C++ compilers; make; Motorola
56000 assemblers and simulators

Hardware synthesis: Ptolemy VHDL generation synthesized by
Synopsys Design Analyzer.

4. Deliverables

During the RASSP contract, we published ninety papers and two
books, released five versions of the Ptolemy software, initiated a
news group, comp.soft-sys-Ptolemy, and created a Web site
http://Ptolemy.eecs.berkeley.edu/ for rapid dissemination of
papers, software, documentation, and tutorials. Several other
RASSP participants, such as Sanders, MIT/BU, and BDTI, have
leveraged the Ptolemy software environment for rapid prototyping.
Cadence has commercialized our ideas on dataflow modeling and
scheduling in their SPW tool and our ideas on heterogeneous
simulation in their CONVERGENCE architecture to allow the
SPW and Bones simulators to cooperate.

The Ptolemy Project is broader than the RASSP contract. The
Ptolemy Web site has a tutorial on the TI C30 DSP processor, a C
code documentation extractor, and Signal Processing Packages for
Mathematica, which Wolfram Research Inc. commercialized as
the Signals and Systems Pack.

System-Level Design Methodology
for Embedded Signal Processors

The Ptolemy Team1

1 Over the course of the RASSP contract the Ptolemy team has been directed
by Prof. Edward A. Lee and co-directed by Prof.  David Messerschmitt.
Ptolemy software development was managed first by Alan Kamas and later
by Christopher X. Hylands.  Dr. Joseph T. Buck is the primary designer of
the Ptolemy software architecture.  The technical staff has included Dr.
Brian L. Evans, Dr. Alain Girault, Dr. Takashi Miyazaki, Dr. H. John Reekie,
Dr. Juergen Tcich, and several industrial scholars. The Ptolemy team also
consists of Dr. Shuvra S. Bhattacharyya, Wan-Teh Chang, William Chen,
Kang Ngee Chia, Stephen A. Edwards, Ron Galicia, Michael Goodwin,
Steve X. Gu, Dr. Soonhoi Ha, Sangjin Hong, Farbad Jalilvand, Asawaree
Kalavade, Karim P. Khiar, Joel King, Allen Lao, Bilung Lee, William Li,
Xiao Mei, Praveen K. Murthy, Dr. Thomas M. Parks, Jose' Luis Pino, Farhana
Shiekh, S. Sriram, Matthew Tavis, Warren W. Tsai, William Tsu, Patrick J.
Warner, and Michael C. Williamson.

roushrv
211



13

5. Selected References

[1] B.L. Evans, S.X. Gu, A. Kalavade, and E.A. Lee, “Symbolic
Computation in System Simulation and Design,” Invited Paper,
Proc. of SPIE Int. Sym. on Advanced Signal Processing
Algorithms, Architectures, and Implementations, July 9-16,
1995, San Diego, CA, pp. 396-407.

[2] P.K. Murthy and E.A. Lee, “An Extension of Multidimensional
Synchronous Dataflow to Handle Arbitrary Sampling
Lattices,” Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Proc., Atlanta, GA, May 7-10, 1996, vol. 6, pp. 3306-
3309.

[3] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward
A. Lee, Software Synthesis from Dataflow Graphs, Kluwer
Academic Press, ISBN 0-7923-9722-3, April, 1996.

[4] J.L. Pino, M.C. Williamson, and E.A. Lee, “Interface
Synthesis in Heterogeneous System-Level DSP Design Tools”

The RASSP DigestSystem-Level Design Methodology for
Embedded Signal Processors

Proc.  IEEE Int. Conf. on Acoustics, Speech, and Signal
Proc., Atlanta, GA, May 7-10, 1996, vol. 2, pp. 1268-1271.

[5] W.T. Chang, S.H. Ha, and E.A. Lee, “Heterogeneous
Simulation - Mixing Discrete-Event Models with Dataflow,”
Invited Paper, Journal on VLSI Signal Proc., RASSP special
issue, to appear.

[6] A. Kalavade and E.A. Lee, “The Extended Partitioning
Problem: Hardware/Software Mapping and Implementation-
Bin Selection,” Proc. IEEE Int. Work. on Rapid Sys.
Prototyping, June 1995, pp. 12-18.

The Ptolemy Team
Department of Electrical Engineering

and Computer Sciences
University of California, Berkeley, CA   94720-1772

http://ptolemy.eecs.berkeley.edu/

Numeric and Symbolic Algorithms for Signal Processing
Alan Oppenheim

Abstract

The overall goals of the RASSP Technology Base program at the
Massachusetts Institute of Technology involve the areas of
algorithms (numeric and symbolic) design for signal processing
applications. Specifically, the task focuses on identifying and
developing approximate classes of emerging and classical
algorithms which will exercise and challenge RASSP tools and
process.

1. Objectives

The following were the main technical objectives of our RASSP
program at MIT.

1. Develop and analyze algorithms for approximate signal
processing and incremental refinement.

2. Develop and analyze algorithms for low-power signal
processing.

3. Develop and implement signal processing systems using both
numeric and symbolic processing representations.

4. Develop and analyze new methods for algorithm-based fault
tolerance.

5. Investigate novel algorithms based on emerging mathematical
paradigms.

We will now describe each of these objectives and their associated
activities briefly.

2. Activities and  Accomplishments

2.1 Approximate Algorithms

In the area of approximate algorithms, a number of incremental
refinement (IR) algorithms have been proposed for various DSP
transforms. Specifically, an IR approach was developed for FFT-
based Maximum Likelihood (ML) detection.  We have also recently
extended previous work on an IR approach to approximation of
the Discrete Fourier Transform/Short Time Fourier Transform
(STFT) by analyzing the probability of achieving a desired tradeoff
between cost and quality for a given class of signals.  We have
also extended these algorithms to support mixed-radix signal
representations, allowing a greater computational efficiency to be
achieved in the IR context.

Our current activities in this area are directed to obtaining specific
performance results for IR FFT-based ML detector on real sinusoids
in noise, and considering techniques for reducing memory and
hardware requirements for the IR two-dimensional Inverse Discrete
Cosine Transform (IDCT) [3-5].

2.2  Low Power Signal Processing

In the area of low power design, we are investigating algorithmic
and architectural approaches to reformulating algorithms to
minimize power consumption.  We have examined the tradeoffs
between accuracy and power consumption and demonstrated low
power implementations in FIR and IIR filters using adaptive
approximate processing concepts. We have also investigated the

roushrv
212



14

links between "activity" and optimum ordering of filtering
operations.

This work has resulted in new techniques that dynamically adjust
filter order based on signal statistics, and demonstrate low power
filter implementations.  A Matlab-based simulation was also
developed to evaluate transition activity of various ordering
schemes.

Our future activities in this area include methods to quantify power
reduction in IIR filter structures, and apply low power techniques
to image coding.  Extensions to adaptive wordlengths are also to
be investigated.  Tradeoffs between memory-based (lookup) and
arithmetic-based signal processing will be evaluated from these
viewpoints.

2.3 Numeric/Symbolic Signal Processing

In this area, we and our subcontractors at Boston University led
by Professor Nawab, have investigated the design and
implementation for a variety of DSP algorithms. The application
of knowledge-based control to signal processing systems has been
studied, resulting in a Integrated Processing and Understanding of
Signals Architecture (IPUS) within existing design environments
[6].

A number of new developments include upgrading our IPUS C++
platform to support full IPUS functionality.  We have integrated
this into the Ptolmey design environment from UC Berkeley to
obtain an IPUS domain. A number of testbeds for clutter analysis
have been implemented within Ptolemy, using the IPUS domain.

Our future activities in this area are to release the IPUS domain
for Ptolemy in version v.0.6 in Summer 1996. We will also develop
a support for heterogeneous simulation with the IPUS domain using
Ptolemy's wormhole feature.

2.4 Algorithm-based Fault Tolerance

Researchers at the University of Illinois (Abraham et al, 1984)
proposed algorithm-based fault tolerance (ABFT) to protect
algorithms against faults using the following steps:

Step 1: Encode operands to introduce redundancy.

Step 2: Modify algorithms for encoded data.

Step 3: Check for and correct codes.

Step 4: Decode.

Our approach is based on the following steps:

n Recognize algebraic structure in algorithms (e.g., groups, rings,
vector spaces, semigroups and dynamical computational
processes).

n Encode by well-behaved algebraic mapping to larger algebraic
set to introduce redundancy (Step 1 above).

The RASSP DigestNumeric and Symbolic Algorithms for Signal Processing

n Alegebraic structure then points to necessary modification of
the algorithms (Step 2), error checking and correcting (Step 3),
decoding (Step 4).

n Extract hardware implementations.

A number of accomplishments include algebraic tools and methods
for incorporating error detecting and correcting capabilities into
nonlinear signal processing algorithms.  We have also characterized
all parity-type codes for fault-tolerant computations for certain
algebraic structures, and included mechanisms to support ABFT
in hardware, [8].

2.5 Emerging Mathematics for Signal Processing

In this area we have studied non-linear signal processing algorithms
for the application of chaotic systems, soliton systems, and
stochastic resonance systems and their implication in the
development of DSP systems.  This has also been directed at
implementation aspects of next-generation wireless
communications, a "spread-signature CDMA" system that combats
strong multipath fading [1,2,5].

Our current work  at the MIT RASSP group in this area  includes
developing fractal models for data traffic and the development of
protocols for efficient traffic management. We will also continue
to examine real-time DSP-based implementation of spread-
signature CDMA systems for wireless applications, and explore
the use of stochastic resonance systems in noise suppression [7].

3. Summary

Significant accomplishments in the areas listed above have been
documented in technical reports, papers, and software releases as
outlined in this article.   Refer to the RASSP server for further
information on the MIT Technology Base program.

4. Selected Publications

[1] K. Cuomo, A. Oppenheim, S. Strogatz, "Robustness and Signal
Recovery in a Synchronized Chaotic System", International
Journal of Bifurcation and Chaos, Vol. 4, No. 6, pp 1629-
1638, 1993.

[2] E. Weinstein, A. Oppenheim, M. Feder “Iterative and
Sequential Algorithms for Multisensor Signal Enhancement,”
IEEE Trans. on Signal Processing, Vol 42, No. 4, April 1994.

[3] J. Winograd, S. H. Nawab, “Incremental Refinement of DFT
and STFT Approximations,” IEEE Signal Processing Letters,
February 1995.

[4] S. Nawab and E Dorken, “A Framework for Quality vs
Efficiency Tradeoffs in STFT Analysis,”  IEEE Trans. on
Signal Processing, April 1995.

[5] G. Wornell, “Spread-Signature CDMA: Efficient Multiuser
Communication in Presence of Fading,” IEEE Trans. on
Information Theory, September 1995.

roushrv
213



15

The RASSP DigestNumeric and Symbolic Algorithms for Signal Processing

[6] J. Winograd, S. Nawab, “A C++ Software Environment for
the Development of Embedded Signal Processing,” IEEE Intl.
Conf. on Acoustics, Speech and Signal Processing, ICASSP-
95, Detroit, 1995.

[7] J. Winograd, S. Nawab, A. Oppenheim, “FFT-based
Incremental Refinement of Suboptimal Detection,” IEEE Intl.
Conf. on Acoustics, Speech and Signal Processing, ICASSP-
96, Atlanta, 1996.

[8] C.N. Hadjicostis and G.C. Verghese, “Fault-Tolerant
Computation in Semigroups and Semirings,” submitted for
journal review, 1996.

A. V. Oppenheim
DSP Group, RLE

MIT
Cambridge, MA 02139
avo@allegro.mit.edu

COMET Project: Hardware/Software Cosynthesis for DSP Systems
Ranga Vemuri

COMET design tools can be used in a variety of design processes
or as stand-alone tools. The flow in Figure 1 suggests a top-down
cosynthesis approach from high-level requirements specifications.

3. COMET Technology

3.1  Requirements Specification

VSPEC is the requirements specification language of COMET.
VSPEC is a declarative annotation language for VHDL entities.
Through VSPEC, designers specify requirements the system design
should meet and constraints on its implementation. A VSPEC
specification consists of a collection of logical statements and
declarations that annotate a VHDL entity  construct.

VSPEC adds seven clauses to a VHDL entity that allow a specifier
to define “what” the entity must do without defining “how” it will
be done. The requires, ensures  and sensitive to  clauses are
used to specify the functional requirements of the device. Non-
functional constraints are described in the constrained by  and
modifies  clauses. The internal state of the component is declared
in the state  clause and the includes  clause is used to make
predefined types and operators visible in a VSPEC component [1].

VSPEC specifications can be used to evaluate component
reusability. Specifications are used to compare the behavior of
existing components to the requirements of a new system. Effective
component reuse requires a tool for finding potential reuse
candidates from within a component library. A component
classification and retrieval tool, named REBOUND, is developed

1. Project Objectives

The goal of the COMET project is to develop languages, techniques
and tools for hardware, software cosynthesis of board- and MCM-
level DSP (Digital Signal Processing) systems from very high level
requirements specifications.

COMET target architectures can be either self-contained embedded
processors in a primarily non-computing environment or special
purpose co-processors that perform compute intense tasks
delegated by a master computer system. In both cases, the DSP
architecture may contain custom hardware components, custom
software components executing on an off-the-shelf DSP/GP
processor or both. Hardware components may in turn be application
specific integrated circuits (ASIC), multichip modules (MCMs),
field programmable gate arrays (FPGA) or a combination of these,
mounted along with off-the-shelf parts on a printed circuit board
(PCB).

2. The COMET Design Environment

Typical top-down design of the target architectures begins with
requirements specification and analysis and continues to the design
synthesis of both hardware and software components. COMET
architecture is centered around (1) VSPEC, a declarative interface
requirements specification language for VHDL entities, (2)
hardware/software partitioning techniques for embedded DSP
systems, and (3) codesign performance analysis methods and tools.
COMET design environment is shown in Figure 1.

roushrv
214



16

to provide efficient retrieval of VSPEC components [2].

3.2  Hardware/Software Partitioning

The goal of system partitioning is to generate a first level
hardware-software architecture of the system by
partitioning the system specification into specifications
of hardware components and software components. The
hardware components will be further processed by
hardware synthesis tools. The software components will
be bound to execute on a selected DSP or general purpose
processor configuration. The hardware and software
components will be connected to constitute a VSPEC -
VHDL architectural description of the system. The
functional requirements and constraints stated in the
VSPEC specification drive the derivation of the specific
hardware-software mix.

Initially, the VSPEC system specification is refined based
on queries into the design library. As a result of the queries,
components are selected based on their ability to satisfy
the system function and constraint attributes. In case the
existing components do not meet the requirements, a design
that partially satisfies the requirements may be generated.
Alternatively, the designer may be queried for additional
components. Scoreboard algorithm for hardware software
partitioning and binding is based on the iterative
improvement and allows inclusion new constraints as they
arise.

3.3  Codesign Performance Analysis

Accurate performance estimation is critical to the success
of a design synthesis system. The COMET performance
estimator is used to evaluate the performance, in terms of area,
speed, throughput rate, and power dissipation, of the library
components as well as the performance of a contemplated
hardware-software architecture of a system. The estimator can be
used interactively or through the partitioning engine to filter inferior
architectures and to select a constraint-satisfying hardware-
software binding for a given specification. Various hardware-
software alternatives can be selected for each component in the
architecture and for each selected configuration performance
envelopes can be generated.

COMET performance estimator is based on the PDL (Performance
Description Language) system for performance modeling and
analysis. Tradeoff analysis is a central aspect in the codesign
process. PDL system supports performance analysis and tradeoff
visualization for rapid prototyping of codesigns [3, 4].

3.4  Hardware Partitioning and Synthesis

COMET hardware synthesis system consists of a multicomponent
partitioning engine and a set of synthesis tools for ASIC , FPGA
and MCM synthesis. The multicomponent partitioning engine [5,
6] is a hierarchical partitioning and package binding tool that

accepts behavioral specifications in VHDL, constraints on area,
power consumption, pin counts, speed and cost and generates a
hierarchical partition of the specification with each component in
the partition bound to a package among a set of available packages.
The partitioning engine uses a back-tracking algorithm for
constraint- directed search. Power estimation is based on data
gathered by dynamic profiling of the VHDL specification using
typical stimuli.

The ASIC synthesis system DSS (Distributed Synthesis System)
[7] accepts behavioral specifications in VHDL and constraints on
clock period and area. It generates register level designs in VHDL.
Register level designs contain two parts: a data path and a finite
state controller. The data path is in the form of structural VHDL
in which each component is instantiated from a predefined
parameterized register level component library.

MCM synthesis environment MSS [8] is embedded in COMET
to facilitate synthesis of multichip modules. Multichip designs can
be generated in two ways: (1) Register level designs generated by
DSS can be partitioned into multiple chip designs, or (2) an
integrated behavior synthesis and partitioning step can be

The RASSP DigestCOMET Project: Hardware/Software Cosynthesis
for DSP Systems

roushrv
215



17

performed to obtain multichip designs directly. These multichip
designs are then processed by package level place and route tools.
We currently use Mentor Graphics MCM Station.

3.5  Software Compilation

The software synthesis tools in COMET translate DSP-based
software behavioral specifications expressed in a subset of VHDL
into efficient machine code. The overall approach to software
synthesis is to translate behavioral descriptions expressed in VHDL
into C and then use commercial C compilers to translate C into
machine code to execute on the target processor. The currently
supported processors are the Texas Instruments TMS430C51, Sun
Microsystems SPARC, and Intel 80386. The compiled code can
be statically analyzed for timing performance to ensure compliance
with timing constraints expressed in the VSPEC specification.

The VHDL subset used as input for software synthesis is similar
to that used for asic synthesis [7]. VHDL behavioral constructs
are fully supported along with a limited subset of structural
constructs. Explicit timing , such as VHDL after  clauses or specific
time in wait statements, is not supported.

The execution environment consists primarily of a small
multitasking operating system kernel which will provide
interprocess communication service, task management, and input/
output support. The task scheduler will create, maintain and
monitor all tasks in the run-time space, while the interprocess
communication protocol will support a simple message passing
mechanism where a process writes its request and data in a message
channel whenever it tries to communicate with others, and then
optionally waits until a response is received.

4. Availability of COMET Technology and Tools

COMET tools are freely available to the RASSP community. Some
of the COMET tools (DSS behavioral synthesis tool, MSS
multicomponent synthesis tool, PDL performance modeling and
analysis environment, VHDL to C compiler, VSPEC parser) are
relatively mature. Other tools (Rebound, Scoreboard) are under
development with release versions expected shortly. Triquest
Design Automation Inc., is in the process of receiving a subcontract
to quality enhance and distribute some of the COMET tools.

A WAVES Level 2 usage guide is available to aid in the preparation
of test benches in the IEEE standard WAVES language [9].

The RASSP DigestCOMET Project: Hardware/Software Cosynthesis
for DSP Systems

COMET tools have been successfully used to synthesize various
designs including reconfigurable coprocessors [10]. Further
information on the COMET project is available through worldwide
web page http://www.ece.uc.edu/~ ddel/comet.html.

References

[1] P. Baraona, J. Penix, and P. Alexander, “VSPEC: A Declarative
Requirements Specification Language for VHDL,” Current
Issues in Electronic Modeling, vol. 3, pp. 51-75, 1995.

[2] J. Penix, P. Baraona, and Perry Alexander, “Classification and
Retrieval of Reusable Components Using Semantic Features,”
Proc. 10th Knowledge-Based Software Engineering
Conference,” pp. 131-138, 1995.

[3] R. Vemuri, R. Mandayam, and V. Meduri, “Performance
Modeling Using PDL,” IEEE Computer, April 1996.

[4] J. Walrath, et al., “Performance Modeling and Tradeoff
Analysis During Rapid Prototyping,” Proc. Application
Specific Array Processors, 1996.

[5] N. Kumar, V. Srinivasan, and R. Vemuri, “Hierarchical
Behavioral Partitioning for Multicomponent Synthesis,” Proc.
European Design Automation Conference, 1996.

[6] M. Vootukuri, R. Vemuri and N. Kumar, “Partitioning of
Register Level Designs for Multi-FPGA Synthesis,” Proc.
VIUF Conference, Spring 1996.

[7] J. Roy, R. Dutta, N. Kumar, and R. Vemuri, “DSS: A
Distributed Synthesis System for VHDL Specifications,” IEEE
Design and Test of Computers, pp. 18-32, June 1992.

[8] R. Vemuri et al., “An Integrated Multicomponent Synthesis
System for MCMs,” IEEE Computer, pp. 62-74, April 1993.

Ranga Vemuri
University of Cincinnati

ECECS Department, M.L. 30
Cincinnati, Ohio   45221-0030

ranga.vemuri@uc.edu

roushrv
216



18

Abstract

This paper presents an unified end-to-end design environment
that supports the design of digital systems from initial concept
down to the final implementation. A tool called ADEPT
(Advanced Design Environment Prototyping Tool) has been
developed to implement this environment. ADEPT supports both
system level performance and dependability analysis in a
common design environment using a collection of predefined
library elements, called ADEPT modules. These modules have
a VHDL description as well as an underlying colored Petri Net
representation associated with them. As a result, both simulation-
based and mathematical approaches for analysis can be
employed. A novel aspect of ADEPT is the ability to simulate
both uninterpreted (performance) and interpreted (behavioral)
models in a common simulation environment using a technique
called hybrid modeling. Hybrid modeling allows the stepwise
refinement of system level models into implementation level
models. The ADEPT design tool is available via anonymous ftp.

1. Introduction

An end-to-end unified design environment based upon the use of
VHDL is being developed by the Center for Semicustom Integrated
Systems (CSIS) at the University of Virginia. This environment
also has a mathematical basis in Petri Nets thus providing the
capability for analysis through simulation or analytical approaches.
A tool set called ADEPT (Advanced Design Environment
Prototyping Tool) has been developed to implement this
environment. ADEPT supports the integrated performance and
dependability analysis of system level models. ADEPT is also
being extended to support operational specification modeling and
hardware/software codesign. Additionally, ADEPT has the
capability to simulate both uninterpreted and interpreted models
in a common simulation environment using a technique called
hybrid modeling. Hybrid modeling allows the stepwise refinement
of system level models into implementation level models.

This unified design environment provides several advantages over
previous design environments. First, a common modeling language
that spans numerous design phases is much easier to use,
encouraging more design analysis and consequently better designs.
A common modeling language enables the possibility of a common
simulation environment. The common simulation environment
decreases the need for translators and multiple design environments
which reduces inconsistencies and the probability of errors in
translation and greatly speeds the design process. Second, the
existence of a mathematical foundation within the unified
environment provides the capability for complex system analysis
using analytical approaches.

The major components of the ADEPT environment are a library
of predefined elements (called ADEPT modules) from which
system level performance and reliability models can be constructed,

and a set of tools for automating the construction, simulation, and
analysis of these system level models.

2. The ADEPT Modules

In the ADEPT environment, a system model is constructed by
interconnecting a collection of ADEPT modules. The modules
model the information flow, both data and control, through a
system. Each ADEPT module has an associated VHDL behavioral
description and a corresponding Colored Petri Net (CPN)
representation. These CPN descriptions can be used to reduce the
system model size and consequently reduce the overall simulation
time of the model. In addition, the CPNs can be transformed into
Markov models from which dependability measures (reliability,
availability, safety, etc.) can be obtained using well known
analytical techniques.

The ADEPT modules communicate by exchanging tokens, which
represent the presence of information, using a uniform, well defined
handshaking protocol. Higher level modules can be constructed
from the basic set of ADEPT modules. In addition, custom modules
can be incorporated into a system model as long as the handshaking
protocol is adhered to.

A token is implemented as a record in VHDL. In the token, the
first element in the record is the STATUS field of the token and
the second element is an array of user defined COLOR fields. The
STATUS field is used to implement the token passing mechanism,
that is, the “handshaking” between the ADEPT modules. The
COLOR fields contain up to 18 integer tags that can hold user-
specified information. Modules are provided which can manipulate
the information in the COLOR fields.

The basic set of ADEPT modules is divided into six categories:
control modules, color modules, delay modules, fault modules,
miscellaneous parts modules, and hybrid modules. The control
modules, such as the Switch, and Queue modules, store and control
the flow of tokens. The color modules enable the manipulation of
the token color fields and the delay modules model the temporal
aspects of a system. The fault modules are used to model the
presence and detection of faults and errors in a system model. The
miscellaneous parts category contains modules that are used for
data collection within the ADEPT system. The hybrid category
contains modules which aid in the construction of hybrid models,
as explained below.

Because ADEPT uses VHDL as its simulation language, it
provides the designer with the unique ability to simulate
uninterpreted (performance) models with interpreted (behavioral)
models in a common environment, termed hybrid modeling. Hybrid
modeling allows the modeler to cosimulate elements which are
modeled at different levels of design detail within the same model.
The hybrid modeling interfaces within ADEPT are mainly
concerned with handling the performance (uninterpreted) modeling

ADEPT: A Unified Environment for System Design
Moshe Meyassed, Bob McGraw, Robert Klenke, James Aylor, and Barry Johnson

roushrv
217



19

graphically interconnected with signals. Once constructed, a model
such as the one shown in Figure 2 can be analyzed for performance
and dependability measures using the ADEPT tools described
below.

4. The ADEPT Analysis Tools

System level models in ADEPT can generate data that can be
analyzed to determine system performance and dependability
measures. In ADEPT, the miscellaneous parts category contains
modules that collect data on the token flow during the model
simulation. Several post processing tools are included in the
ADEPT tool set that can generate performance metrics such as
throughput, utilization, latency, and queue lengths from the
information captured by the miscellaneous parts modules. These
tools can display the performance information either as text, or as
an animated graphical display.

In ADEPT, fault modules can be inserted into a system level model
to measure the dependability attributes of a system. Dependability
analysis can be undertaken in ADEPT using either simulation
based or analytical approaches. In the simulation based approach,
the ADEPT model, with the fault modules inserted, can be directly
simulated for various mission times to gather statistics on
dependability metrics. However, because of the typically low
failure rates used in fault modeling, significant simulation time
may be required to accurately measure the required dependability
metrics. Alternatively, a version of the ADEPT fault modules has
been created that allows the ADEPT model to be interfaced to the

The RASSP DigestADEPT: A Unified Environment
for System Design

Figure 2.  Sample DA Screen

to functional/behavioral (interpreted) modeling transition. The
hybrid modeling interface must handle the actual conversion of
the tokens from the uninterpreted model into the values (integers,
reals, bits, etc.) required by the interpreted model and the “filling
in” of the information in the interpreted model that may not be
present in the uninterpreted model.

The hybrid category of ADEPT modules contains the elements
necessary to construct the hybrid interfaces. Modules are included
to construct hybrid interfaces between uninterpreted models and
interpreted models with both combinational and sequential
elements.

3. The ADEPT Front-end Tools

The overall architecture and design flow of the ADEPT
tool set is shown in Figure 1. The ADEPT system
includes a graphical front-end that the designer can
use to construct system level models using ADEPT
modules. The graphical front end is currently based
on the Mentor Graphics’ Design Architect schematic
capture system. Once the schematic is constructed
using Design Architect, it is exported to the ADEPT
tool set as EDIF 2.0.0. The ADEPT tools then translate
the EDIF into either a hierarchical VHDL netlist
representation or a CPN representation. The user can
simulate the hierarchical VHDL that is obtained by
utilizing the behavioral VHDL descriptions of the
ADEPT modules. Alternatively, the equivalent CPN
can be used to perform analytical model reduction or
dependability analysis functions.

Figure 2 is a sample DA screen showing an ADEPT
model. The schematic shown is that of a Triple Modular
Redundancy (TMR) system with three dedicated repair
processes. Most of the elements in this top level
schematic are hierarchical, with separate design
“sheets” describing how each component is constructed
from ADEPT modules. The various components are

Figure 1.  ADEPT Design Flow

AM: ADEPT Module 
PN: Petri Net 

AM 
Symbol 
library 

Schematic 
Capture 

Mentor Graphics 
Design Architect 

I Mentor Database 

en write 

AM-PN 
description 

I Hierarcliical EDIF 2,0.0 

Translator from EDIF 
to Internal ADEPT mr 

format (edH2mr) 

AM -VHDL 
library 

Analytical 
Dependability Evaluation Simulation Based Performance & 

Dependability Evaluation 

sj  

1 

TMR Conputcr bgston Model 
C«ilh dod'Cated rc0tirner») 6-ieOiiri^ v»j 

OK 

||"'i> Mf.  II '■   II'*' I' ip "I' ■CT'W" 
^g['!;.t ts 3,? •^•^^p'^'H tee 

SI 

roushrv
218



20

Reliability Estimation System Testbed (REST) developed by
NASA. The ADEPT-REST interface allows the REST engine to
manipulate the ADEPT model in such a way that it can create a
Markov model of the system based on operational and failed system
states and then analyze it to determine the dependability metrics
of the system.

In addition to the simulation based approaches which use the
VHDL model of the system, the CPN representation can also be
used to perform analytical reliability analysis. The CPN description
of the system model is reduced by removing all information in the
model that does not affect reliability analysis. The resulting reduced
CPN is then translated into a Markov model. The Markov model
can then be solved using standard techniques to obtain
dependability information.

Finally, a tool called AnimateAdept is included in the ADEPT
tool set. AnimateAdept provides the ability to view the flow of
tokens in the model using the Design Architect schematic. The
status of tokens is represented by four different colors, and signals
in the schematic change their color dynamically according to the
temporal status of the tokens flowing through them. Additional
information, such as user-defined color information, can also be
presented dynamically on the screen. AnimateAdept provides a
quick and easy way to debug models and understand the way in
which phenomenon like bottlenecks and deadlocks are formed.

5. Application-Specific Libraries

The basic set of ADEPT modules can be used to model almost
any type of system. However, the ADEPT modules include a fairly
low level of functionality and thus large system models constructed
from them may have some simulation performance or model
complexity problems.

Fortunately, ADEPT allows the generation of application specific
libraries of modules. This feature provides the ability to create
libraries of modules which target modeling certain types of systems.
By utilizing such a library, the user can save a significant amount
of time constructing and simulating different models in the same
application area.

Several such libraries have been created and included in the
standard ADEPT environment. One such library includes elements
for modeling digital communication networks. Five different
communication networks, ATM, Ethernet, Myrinet, Raceway
Interconnect, and the SCI, were used to guide the development of
this library. This communication library contains four types of
ADEPT modules: transmitters, receivers, routers, and bus routers.
The transmitter modules are responsible for taking a particular
message at their input and formatting and packetizing this message
according to the communication protocol being modeled. The
transmitter then sends the proper packets through the
communications network. The receiver is responsible for the
converse of the transmitter, it takes the packet data from the
network and reconstructs the original message to be sent to its

output. Separate transmitter and receiver elements exist for each
protocol that is included in the library. The router is responsible
for routing the packet data from one of its inputs to one or all of its
outputs. The router can be parameterized for modeling all of the
networks mentioned with the exception of the Ethernet in which
case a bus router must be used. The bus router performs the same
function as the router, however, only one message may be present
on the bus router at a time. With the development of this
communication library ADEPT users can now create models of
communications networks quickly and easily.

A library of modules in ADEPT geared towards modeling cycle-
based synchronous systems such as state machines and
microprocessors is currently being developed. The cycle-based
modeling environment employs techniques which enforce
synchronization requirements at clocked memory elements. This
library contains abstract models of the combinational devices
(special purpose logic, ALUS, routing elements) and sequential
devices (synchronous and asynchronous memories, register files)
which are commonly used for processor development. Analysis
techniques are also being developed to evaluate different
architectures at an abstract level of design. Such techniques include
tests for minimum cycle time, tests for determining the optimal
amount of microconcurrency for a given instruction, throughput
analysis, utilization analysis and functional analysis.

6. Obtaining ADEPT

The current version of ADEPT is available via anonymous ftp.
For information on obtaining ADEPT, consult the ADEPT home
page: http://csis.ee.virginia.edu/~rassp/adept.html. ADEPT
currently runs on a Sun SPARC platform and requires Mentor
Graphics’ Design Architect as a front end. However, interfaces to
other schematic capture tools, such as ORCAD and CADENCE,
are under development.

7. Related Publications

Additional information on ADEPT related research can be found
in the following papers:

[1] S. Kumar, R.H. Klenke, J.H. Aylor, B.W. Johnson,
R.D.Williams, and R. Waxman, “ADEPT: A Unified
Environment for End-to-End System Design,” Journal of
Current Issues in Electronic Modeling.

[2] R. Rao, A. Rahman, and B.W. Johnson, “Integrated
Performance and Dependability Analysis Using the Advanced
Design Environment Prototype Tool ADEPT,” Proceedings
of the AIAA Computing in Aerospace Conference, San
Antonio, TX, 285-300, March, 1995.

[3] M. Meyassed, R. McGraw, J.H. Aylor, R.H. Klenke, and R.D.
Williams, “A Framework for the Development of Hybrid
Models,” Proceedings of the 2nd Annual RASSP Conference,
July, 1995.

The RASSP DigestADEPT: A Unified Environment
for System Design

roushrv
219



21

The RASSP DigestADEPT: A Unified Environment
for System Design

[4] S. Kumar, J.H. Aylor, B.W. Johnson, and W.A. Wulf, “A
Framework for Hardware/Software Codesign,” IEEE
Computer, vol. 26, 39-45, December, 1993.

[5] G. Swaminathan, J.H. Aylor, and B.W. Johnson, “Model
Reduction Techniques Using Colored Petri Nets,” Proceedings
of the 1993 TECHCON, Atlanta, GA, 291-293, October,
1993.

Moshe Meyassed, Bob McGraw, Robert Klenke,
James Aylor, and Barry Johnson

Center for Semicustom Integrated Systems
Department of Electrical Engineering

University of Virginia
mm8u, rmm2d, rhk2j, jha, bwj @Virginia.EDU

parameterized library of VHDL-based performance models.  How
ever, most users found them too complex to understand and  use
[2-5].  It is Omniview’s vision and goal for PMW to provide an
integrated, user-friendly environment for VHDL-based
performance modeling that will remove these impediments and
efficiently analyze the volume of performance data from systems
having hundreds or thousands of processors.

2. PMW Overview

The PMW enables designers to rapidly construct performance
models by providing a library of reusable performance-modeling
elements.  This library is based upon the Honeywell Performance-
Modeling Library and leverages off the performance-modeling
techniques developed at the University of Virginia [6].  The PMW
library, which is implemented in VHDL, contains detailed
performance models of processors, memories, communication
devices, input and output devices, operating systems, and
application software (Figure 2).  These models define the speed at
which processors execute various classes of instructions,
characterize the sequence of instructions representing software
applications, and the speed at which memories, input and output
devices, and communication elements process data.  In addition,
these models may be simulated with fully-functional models
supporting an all-VHDL, design process where the functional
blocks of a performance model can be incrementally refined to
functional models as necessary.

The PMW provides a suite of design editors for configuring
performance models that combine elements from the PMW
performance-modeling library (Figure 3).  A graphical-capture tool
is used to successively decompose a system into functional blocks
defining the system’s hardware architecture.  Performance models
for the leaf-level hardware blocks are defined by selecting an
element from the PMW library, specifying the connections among
its ports and the other elements in the system, and customizing the
clement’s parameters so that it exhibits the desired behavior.  The
software architecture of a system is defined by decomposing the
software into tasks and specifying the messages communicated
among each task.  The behavior of each individual task is defined

Performance Modeling Workbench -

A VHDL-Based Hardware/Software Codesign Tool

Abstract

Omniview, Inc., in conjunction with the Honeywell Technology
Center, is developing a VHDL based Hardware/Software Codesign
tool, code named Performance Modeling Workbench (PMW), as
part of the RASSP Technology Base program.  PMW allows a
designer to rapidly create alternative hardware/software
architectures and simulate them to validate system performance,
find bottlenecks, and identify overdesigns.  PMW facilitates the
RASSP 4X goal by reducing performance model development
time by an order of magnitude and by surfacing problems early
in the design cycle.

1. Introduction

Incremental refinement and validation of each design phase through
VHDL modeling is one of the cornerstones of the RASSP design
methodology.  VHDL performance models, because of their high
level of abstraction, play a key role in this process during the early
system design phases (see Figure 1). They also bridge the
communication gap between system design and the detailed design
of the hardware and software.

Performance models describe a system’s time-related aspects:
throughput, response time, latency, and utilization.  They generally
do not model the applications data or its transforms except for
some high level control related behavior.  As a result, performance
models simulate much faster than behavioral models.  In one
example [1], a 24 processor system modeled in VHDL at the
performance-level simulated the equivalent of 2,857,000
instructions per second, versus 5 instructions per second for a single
I860 processor modeled at the Instruction Set Architecture (ISA)-
level model.

The major impediments to the widespread adoption of VHDL
performance modeling bus been the lack of commercially available
performance models in VHDL and a user-friendly environment
that allows the designer to model systems in familiar terms and
isolates him from the underlying implementation details.  The
Honeywell Technology Center has partially solved the model
availability problem with their development of a generic,

Charles W. Buenzli, Jr.
and Jay Runkel

roushrv
220



22

The RASSP DigestPerformance Modeling Workbench - A VHDL-Based
Hardware/Software Codesign Tool

by creating a flow chart.  The
computational requirements of each
flow chart block are specified by
selecting predefined software
elements from PMW library or by
characterizing the instructions and
memory operations executed by the
block.

The PMW provides analysis and
visualization support to enable a
designer to verify the behavior of
performance models, to identify
bottlenecks and over-designs, and to
compare design performance.
Visualization support is necessary
because of the vast amount of data
communicated among the components
of a complex system.  This information
overwhelms the displays provided by
most VHDL simulators, especially
when there is a large number of

[3] Steeves, T., et al, “Evaluating Distributed Muliprocessor
Designs,” Proceedings 2nd Annual RASSP Conference, Arlington,
VA, July 1995, pp 95-102.

Figure 1.  Performance Modeling Domain (shaded area) in the RASSP Design Process

processors in a system.

The PMW analysis support includes standard analysis tools, such
as activity timeliness bar graphs, and histograms, which display
the latency, throughput, and utilization of system components
(Figure 4).  In addition, the PMW provides analysis tools that
animate the architecture diagrams created in the hardware and
software editors to display The system’s simulation behavior.  These
animation tools color code the system components according to
their latency, throughput, and utilization to help a designer quickly
identify bottlenecks and overdesigns.  The PMW can also export
simulation results and performance metrics so that they can be
loaded into spreadsheets or other analysis tools.

3. Conclusion

Prototypes of PMW are being used by RASSP participants, other
DoD agencies and commercial companies.  The feedback from
these evaluation sites has been very positive and has been used by
the development team to implement a continuous quality
improvement process that will insure the commercial product
resulting from the Technology Base research will meet their needs.
A commercial product release is scheduled for the fourth quarter
of 1996.

4. References

[1] Carpenter, T. & Hein, C., “VHDL-Based Top-Down Virtual
Prototyping for Large DSP Systems, “Lockheed Martin Technical
Presentation,” Camden, NJ, November 2. 1996.

12] Rose, F., Steeves, T. & Carpenter, T., “ VHDL Performance
Models,” Proceedings 1st Annual RASSP Conference, Arlington,
VA, August 1994, pp 60-70.

Require./
Executable

Specification

Functl.
Design

RASSP Design
and Re-Use

Libraries

HW
Code

SW
Code

SW Design

Integration & Test

HW Design

HW/SW
Partition

Performance Modeling Domain

Figure 2.  PMW's Performance Modeling Library

roushrv
221



23

The RASSP DigestPerformance Modeling Workbench - A VHDL-Based
Hardware/Software Codesign Tool

[4] Shackleton, J., & Steeves, T., “Advanced Multiprocessor
Systems Modeling,” Proceedings Fall 1996 VIUF, Boston, MA,
October 1995, pp 8.21-8.28.

[5] Carpenter, T., Rose, F., & Steeves, T., “VHDL-Architectural
Assessment Environment.”

[6] Aylor, J.H., Waxman, R., Johnson, B.W., & Williams, R.D.,
“The Integration of Performance and Functional Modeling in
VHDL,” Chapter 2 in Performance and Fault Modeling with
VHDL, edited bv Joel M. Schoen, Prentice Hall, Inc., Englewood
Cliffs, NJ,1992, pp 22-145.

Charles W. Buenzli, Jr. and Jay T. Runkel
Omniview, Inc.

100 High Tower Blvd., Suite 201
Pittsburgh, PA   15205

charles@omnivw.com, runkel@omnivw.com

Figure 4.  PMW's Analysis Tools

Figure 3.  PMW Hardware and Software Design Editors

 ,M;.;u,r.»  

-I    t-^   -L^   -Lhl    Utt   Ut    Jj|i>    L^    i^    U^    U^    1J,\ 

t   Ml   t«   t   W   ■   vim 

> 'i*! 

roushrv
222



24

ANSI C to Behavioral VHDL Translator

Ada to Behavioral VHDL Translator

1. Introduction

JRS Research Labs has developed two source language Translators,
an Ada-to-VHDL Translator and a C-to-VHDL Translator, as part
of the RASSP BAA program, under contract No. F33615-94-C-
1497 with Wright Laboratory WL/AAKE.

The Translators perform source-to-source code translation, i.e., given
an input program coded in Ada or C, the output is a behavioral VHDL
source code program which is functionally equivalent to the original
input program, in the sense that a VHDL compilation and simulation
of the translated file will produce the same results as an Ada or C
compilation and execution of the original source file.

Much of the program structure, data structures, identifier names,
and even comments from the input program are preserved. The
VHDL source file produced by the Translators is portable and
independent of a specific VHDL implementation.

The Translators provide an automated method for translating
existing code libraries from Ada or C into behaviors in VHDL
which can be directly simulated. This provides a generalized tool
to aid the process of hardware/software codesign, which can be
used either standalone or incorporated into a larger tool framework.

2. Technical Approach

An intermediate form called the HIL (High-level Intermediate
Language) was defined as an intermediate step in the translation
process. The HIL form is at a relatively high level of abstraction,
so that high level language constructs such as declarations,
expressions, statements, etc. can be directly expressed. Compilers
were developed using the Unix tools Lex (scanner) and Yacc (parser
generator) to compile both Ada and C to the HIL form. A single
HIL-to-VHDL Translator was then developed, which accepts the
HIL form from both frontends and generates behavioral VHDL
source code. This Translator module utilizes a rules file which
defines the translation rules for each HIL statement. The user is
permitted to provide certain types of special application-specific
extensions to the translation rules. A runtime library was hand-
coded in VHDL to provide some necessary runtime support for the
translated programs.

3. Operation Summary

The input to the Translators is a source file coded in either Ada 95
or ANSI C. The full languages are supported for parsing, although
some program constructs or statements may not be translatable
into VHDL, and appropriate error or warning messages are issued
for such statements.  Ada input files may contain any number of
compilation units. For C input files, the user has a choice of
preprocessing header files or not.

The output program is structured such that any translated input file
results in a VHDL output file which can be directly compiled in

VHDL. Since VHDL does not permit subprograms as compilation
units, procedures and functions which are translated are
encapsulated in a package. The Ada Translator supports a
rudimentary library system for context clauses, so that translating
a set of Ada programs has the same order-of-translation
requirements as compiling them with an Ada compiler, i.e.,
WITH'ed units must be translated first. For C programs, each input
file is translated into a single VHDL package; statements outside
functions are placed in the package specification, along with a
subprogram declaration for each function. The package body
contains the subprogram bodies.

The Translators can also automatically generate an entity/
architecture testbench for validating the translated programs,
subject to some limitations.

4. Restrictions and Limitations

The Translators are, in general, limited to those features which are
directly supportable in VHDL; however, there are some exceptions
to this rule. Although the Ada-to-VHDL Translator accepts Ada
95 syntax, virtually all of the Ada 95 extensions, such as tagged,
abstract, and protected types, child packages, etc., are not supported
for VHDL translation, since there are no corresponding VHDL
capabilities. The major features of Ada 83 which are unsupported
are tasking, exceptions, subunits, fixed point types, representation
clauses, most attributes, and certain classes of records not supported
in VHDL, such as variant and discriminated records.

The C-to-VHDL Translator does not support variable length
argument lists, abstract declarators, GOTO statements, automatic
type conversions, certain types of complex switch statements,
subarrays, and some other minor items.  Because pointers are so
important in C programs, partial support for pointers and pointer
operations is provided even though VHDL does not support pointers
directly. Support is limited to simple local pointers to scalar types.
Thus, parameters or local variables declared as "int *" or "float *"
are supported, but constructs such as pointers to functions, arrays,
or structures, arrays of pointers, functions returning pointers, and
pointers to pointers are not supported at this time.

A limited runtime support library is provided with the Translators,
which includes primarily basic math routines. Specifically, the
Translators do not include support for the full standard Ada 95 and
ANSI C libraries. However, references to these library routines
are not errors, per se, since they will result in the generation of
valid VHDL source code containing equivalent calls.  However,
the user is responsible for creating the VHDL support packages
necessary to compile and/or simulate programs which utilize these
library functions.

5. Results and Status

The Ada-to-VHDL Translator correctly translates 302 of 315 Ada
routines in a library of signal processing primitives obtained from

Robert J. Sheraga

roushrv
223



25

the government. The C-to-VHDL Translator correctly translates
410 of 499 C routines in a commercial library of signal processing
routines. These translations were validated by VHDL simulation
of the translated source files. Numerous other test cases were also
run successfully, including some standard Ada ACVC tests and
standard C benchmark programs.

6. Summary and Conclusions

Hardware and software development are no longer separate camps,
but are fast merging as a result of hardware/software codesign
methodologies utilizing tools which focus on the overall system
design problem. As the boundary between hardware design and
software design continues to blur, it becomes increasingly important
that algorithms be transportable, or at least easily convertible,
between functionality expressed in Ada and C on the software side,
and VHDL on the hardware side. If we view Ada and C not only
as programming languages but also as specification languages for
algorithms for which we intend to eventually synthesize hardware
implementations, then the importance of these issues becomes even
more apparent. A VHDL version of an algorithm coded in Ada or
C can be used to synthesize custom hardware to implement the
algorithm, or as part of a VHDL functional simulation of a processor
designed to execute the algorithm.

Future considerations for the Translators include removing some
of the language restrictions, generating optimized VHDL code,
and generating VHDL code which is optimized for synthesis and/
or targeted to a specific synthesis environment.

7. Example Program

The RASSP DigestANSI C to Behavioral VHDL Translator
Ada to Behavioral VHDL Translator

Robert J. Sheraga
JRS Research Laboratories, Inc.

1036 W. Taft Avenue
Orange, California   92665-4121

bob@jrs.com

Input file:

------------
/* Complex Vector Power Computation -- C version */

void voc_pwr_c (n, x, y, z)
int    n;
float  *x;
float  *y;
float  *z;
{

int i;
float *xp, *yp, re, im;
xp = x;
yp = y;
*z = 0.0;
for (i=0; i < n; i++) {

re = *xp++;
im = *xp++;
*yp = re*re + im*im;
*z += *yp++;

}
}

Output file:

--------------
use work.C_Data_Types.all;
use work.HVT_Runtime_Library.all;
package voc_pwr_c is

-- Source file is /a+b/sonia/hvt/c2h/src/voc_pwr_c.c
-- Source language is C
--/* Complex Vector Power Computation -- C version */
procedure voc_pwr_c

(n : in Integer;
x_Array : inout Float_Array;
y_Array : inout Float_Array;
z_Array : inout Float_Array);

end voc_pwr_c;
package body voc_pwr_c is

procedure voc_pwr_c
(n : in Integer;
x_Array : inout Float_Array;
y_Array : inout Float_Array;
z_Array : inout Float_Array) is

variable x : Pointer_to_Float := x_Array'Left;
variable y : Pointer_to_Float := y_Array'Left;
variable z : Pointer_to_Float := z_Array'Left;
variable i : Integer;
variable xp : Pointer_to_Float := nil;
variable yp : Pointer_to_Float := nil;
variable re : Real;
variable im : Real;

begin
xp := x;
yp := y;
z_Array(z) := 0.0;
i := 0;
while i < n loop

re := x_Array(xp);
xp := xp + 1;
im := x_Array(xp);
xp := xp + 1;
y_Array(yp) := re * re + im * im;
z_Array(z) := z_Array(z) +
y_Array(yp);
yp := yp + 1;
i := i + 1;

end loop;
end voc_pwr_c;

end voc_pwr_c;

roushrv
224



26

Abstract

MAT2DSP is a MATLAB toolbox whose function is to estimate
the implementation requirements of advanced signal and image
processing algorithms specified in the form of MATLAB programs.

1. Objectives

The MAT2DSP toolbox seeks to be a user-friendly tool designed
for researchers developing advanced signal and image processing
algorithms. This is intended to supply quick and rough estimates
of what would be needed to implement their algorithm on a specified
processor (or processors) without necessarily involving them in
all the implementation details. Such rapid feedback will enable the
researcher to do a rudimentary but painless cost/benefit analysis
early in the design process and focus on algorithms which are likely
to meet the system constraints.

2. Summary of Technical Approach

mode analysis tool, invoked when pre-run analysis is not possible,
obtains the same estimates while running the target program,
primitive by primitive.

The report generator combines the information in the functional
profile along with the database information to present reports
summarizing or detailing the cost/requirements to the user. A user
interface is intended to enable the user to customize the report and
make comparisons across different processor platforms.

The database creation package is used initially to generate the
database and subsequently to update or augment it. It involves an
experiment manager to benchmark implementations of the
primitives on different platforms and a database generator to
compile and consolidate the collected data from the experiment
manager into the database for use by the report generator.

Figure 1  gives an overview of the whole MAT2DSP package
highlighting the interrelationship of its main components.

MAT2DSP - A MATLAB Tool for the Automatic Evaluation of the
Implementation Requirements of Signal Processing Algorithms
S. Bose and B. Friedlander

The main approach being pursued here is to
decompose any algorithm into its basic functional
units called primitives and use a database
containing the cost/requirements for
implementing each primitive on any specified
processor to obtain an estimate for the whole
algorithm or any of its functional parts on that
processor. Such an  estimate is necessarily rough
since it ignores the possibility of optimization in
the implementation. However this can be supplied
quickly and easily without requiring the target
user to get involved with all the finer aspects of
the processor implementation, enabling a rapid
and easy feedback as stated in the objective.

The MAT2DSP has four main components - a
program analyzer, a database incorporating
information on various DSP processors, a report
generator for presenting the estimates of cost/
requirements and a database creation package for
generating the database for each DSP processor.

The program analyzer's task is to parse the input
MATLAB program and generate a functional
profile of the algorithm, i.e., break up the algorithm in a hierarchy
of functional sub-units terminating at the primitives. Further, the
costs associated with each sub-unit are obtained  in one of two
alternative modes -- pre-run analysis and run-mode analysis. This
is done using a translated version of the target program in which
all the primitives are mediated via a special program which therefore
allows access to them.  The pre-run analysis tool generates the
estimates without actually running the algorithm;  the estimates
are then independent of the actual values of the input.  The run-

3. Technical Contributions/Achievements

As of now the program analyzer component has been completed
and a version is being tested. An automated experiment manager
has been developed for obtaining data running MATLAB on various
platforms.  However the data for DSP processors has to be collected
manually which is the task currently underway. A simple report
generator and user interface has also been developed.

Figure 1.  The Program Components of the MAT2DSP Package

Target 
Program 

Cost Requirements 
Report 

/^~\      C ^     A DataBase 
\ _ )—^Experiment Manager   J     '^Generato; 

List of 
MATLAB 

primitives   MATLAB DSP Processors 
Platforms 

o 
o 
o 
o 
o 

DataBase 
& 

Interpreter 

Database Creation 

roushrv
225



27

The RASSP DigestMAT2DSP - A MATLAB Tool for the Automatic Evaluation of the
Implementation Requirements of Signal Processing Algorithms

5. Publications

[1] B. Friedlander, “MAT2DSP -- A Tool for Evaluating
Implementation Complexity of Signal Processing Algorithms,”
Intl.  Conference on Acoustics, Speech and Signal Processing,
Detroit, Michigan, 5/8-12/95.

[2] A. Zeira, S. Bose and B. Friedlander, “MAT2DSP - A Tool
for Automatic Evaluation of the Implementation Costs of Signal
Processing Algorithms,” submitted to the Journal of VLSI
Signal Processing, special issue on “Design and
Implementation of Signal Processing Systems.”

[3] A. Zeira and B. Friedlander, “Run-time analysis of the
computational requirements of MATLAB programs,”
MAT2DSP Technical Report, July 1995.

[4] S. Bose and B. Friedlander, “The MAT2DSP Database
Generator,” MAT2DSP Technical Report, September 1995.

Timing Insensitive Binary-to-Binary Translation (TIBBIT)
Bryce Cogswell and Zary Segall

Abstract

TIBBIT provides technologies that automate the migration of
legacy embedded software systems to model-year platforms while
preserving their semantic and timing properties.  A working
demonstration system is complete and has been modeled and
validated for software running on a number of source and target
architectures.

1. Objectives

The majority of software for embedded systems is developed for a
specific processor and platform environment.  In addition to being
targeted toward a specific instruction set architecture (ISA), such
software typically incorporates hard-coded knowledge of the
system’s I/O ports, timing facilities, interrupt mechanism, etc.  In
many instances, the code may also take advantage of the
programmer’s knowledge of processor timing information, i.e.,
either the minimum or maximum time a given code fragment may
require to execute.  Upgrading a legacy system designed these
assumptions to model year hardware typically requires a complete
rewrite of the software, foremost to achieve ISA compatibility, but
also because locating and correcting every instance of reliance upon

the original specification is a daunting task.  The TIBBIT project
aims to provide an automated migration path for software developed
on legacy hardware to model year hardware.  Instances of program
reliance upon source-hardware features are automatically detected
and modified to reflect the target-hardware environment.

The goals of the TIBBIT methodology are as follows:

n Semantic equivalence: The resultant program is semantically
equivalent to the original program.

n External timing equivalence: The timing of the program on
the target is equivalent to the source platform within some
predictable error bound.

n Processor independence: The scheme should be effective
across a wide range of processor architectures.

n Use existent I/O architecture: The interfaces to external
devices to which the source processor is attached are preserved.

n Quantifiable performance: The success of a translation can
be predicted prior to translation, and the degree of timing
equivalence can be quantified.

S. Bose and B. Friedlander
Department of Electrical and Computer Engineering

University of California
Davis, CA 95616

sbose@ece.ucdavis.edu, friedlan@ece.ucdavis.edu

Table 1 summarizes the current status of the various components.

As of now, it has been possible to compare estimates of the running
time of MATLAB programs with the actual times. The observed
discrepancy of 20-50  is well within the design goals.

4. Deliverables and Availability

At the end of the project the MAT2DSP toolbox and related
documentation will be delivered  to the government.

Table 1.  Current Status of the MAT2DSP Tools

1 Program Components Status 

f Program analyzer 
Parser-translator Working version 
Run-mode analysis tool Working version 
Pre-run analysis tool Experimental version 

1 Database creation tools 
Automated experiment manager for Matlab Working version 
Experiment manager for DSP processors Under development.'^ 
Database generator with graphical interface Working version 

i Database 
For running MATLAB Available 
For DSP processors Data is being collected. 

1 Report Generator 
User interface for entering input parameters Working version 
Report generator Current version produces 

short and long reports. 
Augmented interface allowing 
more interactive user input. 

To be developed. 

roushrv
226



28

n Automated translation: The translation process should be
nearly or entirely automated.

2. Technical Approach

TIBBIT builds upon previous work in binary-to-binary translation
(BBT), where the object code of an application is analyzed using
control and dataflow analysis, and instruction sequences (e.g., basic
blocks) are then translated from the source ISA to the target ISA,
preserving the semantics of the program.  TIBBIT extends this
process by determining not only the semantic properties of the
program, but also the timing properties.  During translation the
time required to execute each basic block is computed for the source
ISA, and this is used to modulate the speed at which the application
executes on the target ISA.  At regular intervals the target processor
compares its progress with what would be achieved by the source
ISA, and adjusts the amount of processing time dedicated to the
task accordingly.  Scheduling on the target can be done two different
ways: to maximize the degree of timing equivalence a dedicated
target processor is used; otherwise, the application is scheduled on
the target under rate monotonic scheduling.  Using RMS allows
multiple TIBBIT- translated and native applications to be executed
concurrently.

To facilitate the creation of binary translators for new architectures,
an automated translator generator, called Astra, has been created.
Astra takes as input a machine description file which specifies the
syntax and semantics of a source ISA's binary format, and produces
a binary translator capable of decompiling applications into an
intermediate representation that is subsequently compiled using
gcc.  This translation approach eases ports to new source ISA's
and yields target ISA independence.

3. Technical Contributions

The TIBBIT project has yielded a methodology and prototype
translation system capable of migrating applications from legacy
to model-year hardware while maintaining all semantic and timing

characteristics.  Sample translators have migrated applications from
the M68000 and TMS320C30 architectures to MIPS, PowerPC,
Sparc and Pentium based systems.  Translated systems retain timing
equivalence with the original systems to within 80 microseconds
while scheduled under the Rate Monotonic Scheduling algorithm
on the target with other tasks (Figure 1), and within 25 microseconds
when executing on a dedicated processor.  Processor utilization
overhead incurred by the timing instrumentation is about 20%.

A model predicting the degree of timing equivalence achievable
for a given translation has been developed and validated.  The
model uses characteristics of the source and target ISA timing, as
well as the application being translated, to compute the timing
accuracy that can be achieved by the translation software.  Current
work builds on this foundation to further reduce timing error by
reordering instructions during the translation to minimize “trouble
spots” in the code.

The RASSP DigestTiming Insensitive Binary-to-Binary Translation (TIBBIT)

Figure 1. Timing Error as a Function of Scheduled Period

Table 1 specifies the factors affecting TIBBIT schedulability while
Table 2 specifies the greatest amount by which timing on the target
processor can become out of sync with the source.  The precondition
column specifies the condition that must hold for the task to be
schedulable under TIBBIT, while the max behind and max ahead
columns bound the maximum timing error that can occur.

4. Deliverables

The following deliverables have been produced in the course of
the TIBBIT project.  Basic methods and techniques for semantic
and timing equivalent legacy migration were developed.  A working
implementation used to translate monolithic applications and
executives on uniprocessor systems is complete, and has been
validated using real-world programs. The retargetability of the
system has been demonstrated on numerous platforms.

Table 1. Summary of TIBBIT Model Parameters

Table 2. Summary of TIBBIT Algorithm Characteristics

300 

•a 

^200 

6 
B 
O 

•a u 
100 

o 
U 

0.1 

Predicted bounds 
■ Observed (and average) arrival times 

1 lb i6o 
Period (milliseconds) 

Symbol Definition 

Td A user-selected time interval on the source. 

'ov Maximum time for target to execute code 
requiring time T^ on source. 

Tc I'lBBir instrumentation granularity. 

^clk Time to read real-time clock on target. 

^csw Scheduler overhead for target. 

Table 1. Summary of TIBBIT model 
parameters. 

Target 
processor Precondition 

Max 
behind 

Max 
ahead 

Dedicated Td ^ ^nv+'^fclk ^ov+^clk Tc 
Multitasking Td ^ 'ov+2'c.?w ' d'^csw Td+Tc 

Table 2. Summary of TIBBIT algorithm 
characteristics. 

roushrv
227



29

The RASSP DigestTiming Insensitive Binary-to-Binary Translation (TIBBIT)

Finally, the Astra translator generator has been demonstrated for
translating from both CISC and DSP architectures to various RISC
platforms.

5. Technical Papers

Further details on the implementation and results of the TIBBIT
project are available in a number of technical papers. The
fundamental concepts of the system are first proposed in “Timing
Insensitive Binary to Binary Translation of Real Time Systems”
(Cogswell and Segall, Carnegie Mellon Tech Report, March ’93).
Initial results for the timing equivalence implementation are
described in “Timing Insensitive Binary to Binary Translation”
(Cogswell and Segall, Real-time workshop ISCA ’94).
“Performance Impact of Architectural Features During Binary
Translation” (Cogswell and Segall, PACT ’95) analyses the
architectural features in the source and target ISAs that contribute
to overhead incurred during the translation process, quantifying

the features that make a target ISA a good “match” for a legacy
system.  The feasibility and limitations of supporting multiprocess
architectures, as either a source or target platform, are examined
in “Timing Insensitive Binary-to-Binary Migration Across
Multiprocessor Architectures” (Cogswell and Segall, WPDRTS,
’95). Finally, a comprehensive look at the modeling, implementation
and results of the project is provided in “Timing Insensitive Binary
to Binary Translation” (Cogswell, Carnegie Mellon Ph.D. thesis,
’95).

Bryce Cogswell and Zary Segall
Computer and Information Science

University of Oregon
Eugene, OR   97403

zs@cs.uoregon.edu, cogswell@cs.uoregon.edu

Design Tools and Architectures for Dedicated DSP Processors
Keshab K. Parhi and Ching-Yi Wang

This research was supported by the Advanced Research Projects Agency and the Solid
State Electronics Directorate, Wright-Patterson AFB under contract number AF/F33615-
93-C-1309.

Abstract

Current demands on prototyping complex DSP applications has
placed more emphasis on developing efficient methods and CAD
tools. In our research, we have developed the Minnesota
ARchitecture Synthesis (MARS) system that is capable of
converting high-level behavioral descriptions into hardware
architectures in very short run times.  MARS utilizes the Mentor
Graphics toolset as a GUI, simulator base, and layout editor.
MARS also provides a structural VHDL output of the final design.
Other efforts have developed novel and efficient architectures
for difficult DSP applications such as: discrete wavelet
transforms, novel topologies for ADSL/HDSL applications, and
Reed-Solomon encoders.

1. Introduction

Our primary goals for the RASSP project is to develop CAD tools
that efficiently explore various design decisions and their impact
on the final implementation. We are also investigating efficient
and novel architectures for difficult signal processing applications.
The motivation behind developing these new architectures is to
gain a better understanding of efficient translations from algorithm
to hardware and this will lead to better CAD tools. We have been
developing the Minnesota ARchitecture Synthesis (MARS) system
which will automatically generate high-performance, dedicated
architectures within a heterogeneous design environment. We are
also investigating the design of high-performance and low-power
architectures for the following DSP applications: discrete wavelet
transforms, novel topologies for ADSL/HDSL applications, finite
field arithmetic architectures, and Reed-Solomon encoders.

2. Design Tools

In the process of rapidly designing prototypes of real-time DSP
systems, the use of high-level synthesis has become a more common
and crucial step in the design flow because many real-time
applications require high sample rates or low power consumption
that can only be implemented by dedicated architectures. We have
developed two approaches to this problem, a heuristic technique
and an optimal integer linear programming (ILP) model based
technique. Heuristic methods are attractive because they can
generate good results in short CPU times; however they cannot
guarantee optimal solutions. The more formalized approaches that
utilize ILP models are attractive because they are capable of
generating optimal solutions and are more flexible; however they
suffer in exponential increases in run times as the design constraints
become less restrictive. Most of the previously developed synthesis
systems assume that all same type operations will be assigned to
one type of hardware functional unit (e.g., all addition operations
will be processed by full adders). A few systems allow for different
types of processors for the same type operations; however, they
only utilize homogeneous architectures where all of the processors
are implemented using a single implementation style such as bit-
parallel or bit-serial. Our work considers synthesis using a
heterogeneous architecture environment where different types of
functional units (including implementation styles) can be used to
process same type operations. By allowing heterogeneous

roushrv
228



30

processors in the final architecture, the data format of one processor
may not necessarily be the same as another processor [1][2][3].
For example, the final design may contain an adder which computes
one word in one clock cycle and a second adder which processes a
half-word in one clock cycle. This leads to the need for data-format
converters which accept input data in a certain format and generate
output data in a different format where the data format may be bit-
serial or digit-serial or bit-parallel.

3. Architectures

We are also investigating the design of efficient and novel
architectures for three different and unrelated DSP applications.
Through this work, we have developed new architectures and
systematic techniques that have lead to more robust CAD tools.
The three different DSP applications that we are pursing include
high-performance architectures for the discrete wavelet transform,
new designs for ADSL/HDSL applications, more efficient
architectures for finite field arithmetic, and low-power Reed-
Solomon encoders. We developed new systematic techniques for
designing efficient lattice structure discrete wavelet transform
architectures.  From this work, we described a general approach to
design efficient architectures for multirate applications [4][5]. We
have also developed novel topologies for ADSL/HDSL applications
[6]. In this work we compared the efficiency of the various
architectures and analyzed the tradeoffs during the design process.
We developed and implemented new low-latency arithmetic
processors for finite field applications and designed efficient Reed-
Solomon encoders [7].

4. Deliverables

Our deliverables include the MARS synthesis toolset, a small test
library of functional units and converters, and all publications on
all aspects of our research supported by the RASSP contract.

5. Conclusion

We developed two techniques that efficiently performs high-level
synthesis within a heterogeneous design environment. We developed
a heuristic that is fast and efficient and a set of ILP models that are
more flexible and can guarantee optimal solutions. Both techniques
generate a low-cost solution (including data-format converters) in
terms of total area consumed. This heuristic algorithm has been
incorporated into the MARS-II synthesis system and is integrated
within the Mentor Graphics toolset. Although the heuristic approach
cannot guarantee optimal results, our experiments have shown that
MARS-II is able to produce optimal and near optimal solutions in
one to two orders of magnitude less time than our more robust ILP
models. We have developed new systematic techniques for
designing efficient discrete wavelet transform architectures. We
have also developed new architectures for ADSL/HDSL
applications and new low-latency arithmetic processors for finite
field applications and low-power Reed-Solomon encoders.

References

[1] K. Ito, L. E. Lucke, and K.K. Parhi, “Module Selection and
Data Format Conversion for Cost-Optimal DSP Synthesis,”
in International Conference on Computer Aided Design, (San
Jose, CA), pp. 322-327, November 1994.

[2] C.-Y. Wang, and K.K. Parhi, “High-Level DSP Synthesis using
Concurrent Transformations, Scheduling, and Allocation,”
IEEE Transactions on Computer Aided Design, Vol. 14, No.
3, pp. 274-295, March 1995.

[3] Y.-N. Chang, C.-Y. Wang, and K.K. Parhi, “Loop-List
Scheduling with Heterogeneous Functional Units,” in Great
Lakes Symposium on VLSI, (Ames, IA), pp. 2-7, March 1996.

[4] T. C. Denk and K. K. Parhi, “Systematic Design of
Architectures for M-ary Tree-Structured Filter Banks,” in VLSI
Signal Processing VIII (T.Nishitani and K. K. Parhi, eds.),
pp. 157-166, IEEE Press, 1995. (Proc. of the 1995 IEEE
Workshop on VLSI Signal Processing, Osaka, Japan).

[5] T. C. Denk, M. Majumdar, and K. K. Parhi, “Two-Dimensional
Retiming with Low Memory Requirements,” in International
Conference on Acoustics, Speech, and Signal Processing,
(Atlanta, GA), pp. 3330-3333, May 1996.

[6] A. Shalash and K. K. Parhi, “Discrete Mutlitone Versus
Carrierless AM/PM Architecture Comparison,” in
International Symposium on Circuits and Systems, (Atlanta,
GA), pp. II:560-564, May 1996.

[7] S. K. Jain and K. K. Parhi, “Efficient Standard Basis Reed-
Solomon Encoder,” in International Conference on Acoustics,
Speech and Signal Processing, (Atlanta, GA), pp. 3287-3290,
May 1996.

The RASSP DigestDesign Tools and Architectures for Dedicated DSP Processors

Keshab K. Parhi and Ching-Yi Wang
Department of Electrical Engineering

University of Minnesota
200 Union Street SE

Minneapolis, MN  55455
parhi@ee.umn.edu

roushrv
229



31

VHDL Hybrid Models

Abstract

Hybrid modeling is the capability of mixing high-level
performance constructs and functional components in a common
analysis environment. A coordinated research effort between the
Honeywell Technology Center (HTC) and the Center for
Semicustom Integrated Systems at the University of Virginia (UVa)
is addressing issues related to hybrid modeling.

1. Introduction

The primary objective of hybrid modeling is to handle the complex
task of translating data and control flow between models at different
levels of abstraction and interpretation. The necessary information
content at interface boundaries varies with the model abstraction
level. As models become more detailed the amount of information
in the interface increases. Differences in information content cannot
be handled purely via translation (such as translating an integer
representation of data into a bit vector). Rather, information might
need to be synthesized or otherwise generated when interfacing to
a more detailed model. When interfacing to a less detailed model,
information might need to be discarded, encapsulated, or abstracted.
This must all occur seamlessly within a single model context, where
multilevel models interconnected with the hybrid interface
components operate in a integrated fashion.

Within the RASSP methodology, hybrid modeling supports the
spawning of mini-spirals to develop critical or high risk items. Based
upon risk, pieces of the overall design may be at differing maturity
levels. This is where the concept of hybrid modeling becomes
important. As the overall system model is developed, certain high
risk areas need further development. From a modeling perspective,
this will be accomplished with more detailed models. Using
modeling terminology, the system level uninterpreted (performance)
model will have certain components replaced with the more detailed,
interpreted (functional) models. To continue the RASSP philosophy
of virtual prototypes, methods must enable the mixture of different
model abstractions.

The hybrid modeling capability permits incorporation of detailed,
functional or behavioral models into the overall system performance
model. This allows the designer to explore and determine effects
of the detailed design which would not otherwise be well
characterized or understood. The RASSP concept of model/design
reuse means that major parts of a new design will be constructed
from well understood components, where these components may
be processors, MCMs, or modules. Therefore a good
characterization of these components should exist for use in
uninterpreted modeling. However, characterizations for high risk
or new components are usually initial approximations. As that new
component design becomes more refined, these initial
approximation may change. That change could have a ripple effect
throughout the entire design. Hybrid modeling permits
heterogeneous simulation and analysis to occur within the VHDL
simulation environment to establish good estimates of behavior

early in the design cycle.

The hybrid model allows validation of certain assumptions and
dependencies. While a detailed model of the critical portion might
run stand-alone, and the timing results back-annotated into the
performance model, this may not work in all cases. For instance,
many classes of contention, such as memory, network, and processor
scheduling and overhead, might only be resolved with the majority
of the system modeled, providing accurate workload
characterizations. Hybrid models permit this early in the design
cycle, without requiring the entire system be modeled at an
equivalently detailed level.

2. Approach

The approach to the hybrid modeling problem has been to define a
taxonomy for hybrid models, develop a common structure for hybrid
architectures, and develop a set of generic VHDL architectures
and library elements to support a wide range of hybrid modeling
applications.

The classes of hybrid modeling are defined by those model attributes
which fundamentally alter the development and implementation of
the hybrid interface. The hybrid modeling space is partitioned
according to the following characteristics:

1. The hybrid model objective

2. The timing and synchronization mechanism of the model

3. The nature of the interpreted element

4. The data transformation mode

5. The data type of the interpreted signals

The details of the hybrid taxonomy are contained in [1].

Honeywell has developed a library of hybrid architectures to
enhance our existing VHDL Performance Modeling Library (PML)
[2]. The commercialization of the PML is discussed in an
accompanying article.

The typical hybrid architecture is shown in Figure 1. As with the
PML, an attempt was made to design the architectures as generic
as possible. Unfortunately this is more difficult for hybrid
architectures than for performance architectures. The functional,
or interpreted, component interface can be significantly different
from one model to the next. Performance models, on the other hand,
typically use a similar signal structure.

The approach of developing hybrid architectures for existing PML
components was chosen for several reasons. The insertion of
functional model components into a performance model is a likely
methodology step under the RASSP methodology. Also the existing
PML gives a solid basis for developing an initial library of hybrid
architectures for validation purposes. HTC is concentrating on the
implementation aspects of hybrid models while UVa is focusing
on some specific research issues [1] such as models with sequential

Fred Rose

roushrv
230



32

interpreted elements with known and unknown
inputs, and adding hybrid capability to the
ADEPT environment. Additionally, UVa has
developed a set of components to allow the
integration of the UVa ADEPT models and HTC
PML models within one simulation environment.

3. Results

Releases of the Hybrid Modeling Library (HML)
have been made in December 1995, and May
1996. The HML is released in conjunction with
the PML. The HML contains hybrid architectures
for the following PML components: indevice,
outdevice, iodevice, pipeline, processor, and a
communication element. The HML also contains
the PML/ADEPT interface components.
Examples of interpreted components are also
contained in the HML to provide examples of
complete hybrid architectures. The May release
of the library also contains a hybrid interface
generation toolkit. The purpose is to make the
development of hybrid architectures as easy as
possible for the user. Additionally the HML will
be integrated with the commercial PMW and other
capabilities of the Omniview tools are being
investigated with respect to hybrid architecture
generation.

Verification of the HML against real world design
examples is ongoing. Results of this work will be
available at a later date.

The PML, and associated HML, are available to
RASSP contractors through Omniview. They will both be available
through the commercial Performance Modeling Workbench.

For more information about the PML and ADEPT, reference the
HTC (http://www.htc.honeywell.com/projects/rassp/) and UVa
(http://csis.eee.virginia.edu/rassp/adept.html) Web pages, which
are available off the E&F Web page (http://rassp.scra.org/).

References

[1] Meyassed, M., et al, “A Framework for the Development of
Hybrid Models,” RASSP Conference Proceedings,
Washington, D.C., July, 1995.

The RASSP DigestVHDL Hybrid Models

[2] Steeves, T., F. Rose, T. Carpenter, J. Shackleton, O.von der
Hoff, “Evaluating Distributed Multiprocessor Designs,’’
RASSP Conference Proceedings, Washington, D.C., July,
1995.

Fred Rose
Honeywell Technology Center

3660 Technology Drive
Minneapolis, MN   55418

rose_fred@htc.honeywell.com

roushrv
231



33

Automated Generation of VHDL Processor
Models for Simulation and Synthesis

Vijay K. Madisetti
and Yong-Kyu Jung

Abstract

A new process for automating the creation of full-behavioral and
Instruction Set Architecture (ISA) models in VHDL for complex
processors and components is described, with results from the
automation of a PowerPC 601 described in some detail.  A number
of advantages to this approach are described together with its
impact on the hardware/software codesign and system prototyping
processes.1

1. Introduction

The Rapid Prototyping of Application-Specific Signal Processors
(RASSP) project of the US Department of Defense (ARPA and
Tri-Services) targets a 4X improvement in the design, prototyping,
manufacturing, and support processes (relative to current practice).
As per current practice (circa 1993), the prototyping time from
system requirements definition to production and deployment, of
multiboard signal processors, is between 37 and 73 months [8].
Out of this time, 25-49 months is devoted to detailed hardware/
software (HW/SW) design and integration (with 10-24 months
devoted to the latter task of integration). With the utilization of a
promising top-down hardware-less codesign methodology based
on full-behavioral VHDL models of HW/SW components, it
appears feasible that the HW/SW integration time could  be reduced
to a few weeks (1-2 months) [10].  Potential show-stoppers lie in
the limited availability of high quality VHDL behavioral models
of components (timing and function). In addition, the time to build
a single model of a complex RISC processor (such as i860XP) is
approximately a person-year. We describe a mechanism via which
full-behavioral models of complex components can be automatically
generated in VHDL from published information available in data
manuals.  This method could also be used in the iterative design
synthesis of custom pipelined processors for domain/application-
specific applications.

2. HW/SW Codesign Practice

The Educator/Facilitator current practice (1993) model for signal
processor design is presented in detail in [8] in this proceedings.
The various stages in a “waterfall”-type process flow are
demarcated together with time ranges (min, max) for each stage.
The time lines have also been validated via communications with
the industrial entities involved in large system design and
implementations.   In this paper, we focus on the specific tasks of
hardware (HW), software (SW), and interface design and their
eventual integration.

2.1 Whither True Codesign?

True HW/SW codesign allows both hardware and software to be
designed within a common framework, and simulated together
before being fabricated.  Current practice attempts to automate
this process via HW/SW/Interface  partitioning followed by three

individual paths to HW, SW and Interface design and
implementation, respectively (as shown in Figure 1). A drawback
with this approach is that software can be designed and tested only
if a hardware platform (at board and rack levels) is available.  The
latter is time- and cost-consuming (even if it utilized FPGA
technology or HW modelers). It must be understood that the
software is not just application-specific software, but also control,
diagnostic and test software.  Often, control, diagnostic, and test
software requires an order of magnitude larger person-hour effort
than does application software [8].  Conventional hardware
software co-design methods assign a token interest in the issue of
software required for control, diagnostic and test purposes, and
attempt to catch all integration issues under the term “interface.”
The approach shown in Figure 1(ii) represents a “true” HW/SW

Figure 1. HW/SW Codesign - (i) Current practice (1993-
1994) and (ii) True HW/SW codesign.  Note elimination of
hardware fabrication, assembly and board/system level
manufacture from the design loops. Software can be tested
on virtual hardware that is also concurrently being designed.
Savings in time and cost, capability for customer input, and
concurrent life-cycle support and upgrade planning is
facilitated. Shaded areas imply hardware (board/MCM level).

1 This research was supported by Advanced Research Projects Agency (ARPA),
Department of Defense, under the RASSP program, 1994-1997.

roushrv
232



34

codesign wherein software models (in a HDL such as VHDL) of
HW are provided  to the SW developers and the entire software is
designed and tested and integrated with the HW models long before
any hardware is fabricated or manufactured.  Thus, the design loops
L1 and L2 are quick, and require no hardware fabrication &
engineering cost, and in addition provide capability for complete
system design using a process known as virtual prototyping
[1,5,10].

2.2 Showstoppers

The assumption, of course, is that libraries of full-behavioral HW
models in SW are accurate, available and interoperable, and that
simulation times can be kept manageable. VHDL can be used with
advantage in this true HW/SW codesign philosophy — one that
embraces a hardware-less system design.   Recent experience with
hardware-less HW/SW codesign has shown that it is efficient, often
reducing time for HW/SW integration to a matter of weeks, and
also allows rapid upgrades, together with savings in cost [9]. Once
virtual prototyping is completed, it is expected that that pathway
through which a field prototype can be manufactured, supported
and upgraded will be straighforward.

3. Models for HW/SW Codesign

Several classes of models have been found suitable for HW/SW
codesign.  When emphasizing HW/SW integration two classes have
been found particulary useful - ISA models and full-behavioral
models.   We will utilize the RASSP taxonomy [6] to define these
two classes.

(1) Instruction Set Architecture (ISA) Models — An ISA model
describes the function of the complete instruction set recognized
by a given programamble processor, along with (and as operating
on) externally known register set and memory/input-output space.
An ISA model will execute any machine program for that processor
and give exactly the same results as that processor (e.g., bit-true)
as long as the initial states are the same for both simulation and the
real system. Port registers, if modeled, are also bit-true. Instructions
span multiple clock cycle, and ISA models need not contain any
internal structural implementation information.

(2) Full-Behavioral Models (FBMs) — A full-behavioral (also
known as full-functional model [10]) is a processor model that
exhibits all documented timing and functionality of  the modeled
component, without specifying internal structural implementation
details.  Thus, the full-behavioral model is more detailed than the
ISA model in that it includes clock-edge timing information in
addition to functionality.  A number of full-behavioral processor
models are available from Georgia Tech’s RASSP Techbase effort
[5]. The issue of creating ISA and FBMs will be examined next.

3.1  Populating VHDL Model Libraries

While complete or incomplete gate-level VHDL models are
sometimes available from vendors, and are accurate for use as ISA
and FBMs, a number of limitations exist — (1) gate-level models

The RASSP Digest
Automated Generation of VHDL Processor Models
for Simulation and Synthesis

are very slow in terms of simulation times, (2) reveal confidential
component design (intellectual property) information, and (3) HW/
SW codesign assumes that the hardware component is continuously
being designed (e.g., changing instruction set, optimized behavior,
etc), and thus the gate-level description does not exist. Thus, the
focus is on creation of behavioral models of complex parts.
Commercial Instruction-set simulators (ISS), which can provide
debug information for processors, have limited applicability within
a VHDL-based environment (without wrappers and loss in
efficiency) where multiple models at varying levels of detail are
co-simulated during the top-down design process.   In addition,
they do not allow redesign of the hardware component, a trend that
is increasing finding favor in application-specific markets (e.g.,
use of core-based functional design of DSP ASICs [2]).

The current approach to model development is best described in
[3,4,10]. All these approaches model the internal and external
microarchitecture of the component behaviorally from
manufactured-supplied data (or via abstraction to higher levels of
functional and timing information from gate-level descriptions).
This is a manual, time consuming (in person-years), and error-
prone (i.e., verification) operation, and often equivalent to designing
the component all over again.  While we have used this approach,
and continue to use this approach in developing ISAs and FBM
models, an investigation into automated generation of these models
was long overdue.

3.2  A New Approach - Autogeneration

An alternative approach to developing ISAs and FBMs that is
automated is described in Figure 2.  The processor being modeled
(or designed) is described by parametrized generalized time-
stationary [2] pipelines (single or multi-), associated memories/
registers, and a generalized controller.   The user-defined or vendor-

Figure 2. Automated Processor Model Generation
(AMG) for Simulation

Application 

Code 

Controller 

Processor 1 
(Data manual) 

Processor 2 
(Data manual) 

Generated 
Lookup Tables 

JL 
Generated 

Lookup Tables 

LC 

A 
/     -^ 

Multiple multistage pipelines 

^ l-^  ( CachejT"^ 

REG >->   MEM A 
Output 

Files 

^ AMG 
To Verification 

roushrv
233



35

supplied information on the instruction set, architectural constraints
(hazards, timing), are captured in terms of processor-specific input
data files. These parametric input data files then are automatically
converted to lookup tables (LUTs).  The LUTs are utilized by the
AMG to generate the control (timing) and functional information
from the input application instruction stream.  We have used this
approach to synthesize behavioral models of the PowerPC 601
RISC processor and an implementation will be described in the
next section.

3.3  A New Approach - Iterative Synthesis

The approach described in Figure 3 describes the process flow for
automating the iterative synthesis of application-specific processors.
Here the instruction-set of a programmable processor can itself be
customized and iteratively designed during the HW/SW codesign
process. The application drives the iterative instruction-set and
architecture codesign (which are captured from input data files as
LUTs) by the AMG.  The controller, pipeline, and associated logic
of the AMG are then simulated to measure performance on the
target application.  After optimization of the instruction set and
timing, the AMG may be synthesized using commercial RTL-level
or behavioral synthesis tools.  Application-specific functional
libraries can also be used with advantage when combined
withVHDL and the emerging VITAL standards for sign-off quality
timing simulation.  Future papers will discuss and document the
approach of Figure 3.

output files. The same AMG can be reused for creating models of
multiple versions of the same chip, or independent families of
processors.

4.1  Structure of the AMG

The automated ISA model generator consists of six major “blocks,”
as described on the following page (See Figure 4).

The RASSP Digest
Automated Generation of VHDL Processor Models
for Simulation and Synthesis

Figure 3. Automated Processor Model Generation
(AMG) for Iterative Synthesis

4. Automated Model Generator - AMG

The automated model generator (AMG) is an ISA or FBM model
that accepts the application instruction stream and processor-
specific data in the form of input tables, that are processed internally
to provide all documented functional and timing characteristics as

Figure 4. The Anatomy of Georgia Tech's Automated
VHDL Model Generator (AMG). Hardware vendor or
designer-supplied data is obtained as *.DAT, which are
then automatically converted to lookup tables (LUTs) by
the AMG. The output file is the behavior of the hardware
executing the software (functional values and timing).

Domain 

Features 
Target Instruction 

Set Design 

Controller 

AMG 

Generated 
Lookup Tables 

I 
Optimization 

Multiple multistage pipelines 

REG     L.   MEM   *^, 

To Fab 

roushrv
234



36

1. Pipeline: A single pipeline for a RISC processor consists of
the following six stages — (1) Instruction Fetch (IF), (2)
Instruction Dispatch (IDP), (3) Instruction Decode (ID), (4)
Instruction Execute (IE), (5) Cache Access (CA), and (6) Write
back (WB). These stages were implemented as procedures
within a VHDL process description of the pipeline.

2. Memory Block (MB):  The MB consists of an instruction
queue (IQ), instruction and data memories (IM  & DM), and
a cache (CACHE).

3. Data Register Block (DRB): The DRB consists of a number
of register arrays (DER, ECR, CWR), including a general
purpose register (GPR) to allow storage for resolution of
pipeline data hazards. A number of 32-by-32 bit data register
arrays are also reserved for the user.

4. Control Register Block (CRB): The CRB consists of register
arrays (CR, HIR (hazard information registers), SCR (system
control registers), HDR (hazard destination registers) to control
various stages of the pipeline.

5. System Generating Logic (SGL) Block: The SGL converts
specific input data (i.e., in form of tables.dat) from
manufacturer or instruction-set designer into Lookup Tables
(LUTs) that can be used by the AMG.  Thus, information about
differing processors can be converted to a standardized internal
representation that can then be utilized by the AMG in
generating instructional function and timing. The six
automatically generated internal LUTs are opcode lookup table
(OPLUT) containing opcodes and extended opcodes for user-
defined instructions, a decode lookup table (DCLUT)
containing information on the bit length of the opcode and other
instruction fields, an execute lookup table (EXLUT) that stores
information for the execution latencies and the identification
of every instruction to map into an executable location in the
IE, a hazard lookup table (HLUT) containing information on
data hazards of registers and memory,  an extended opcode
lookup table (EOLUT) consisting of data related to extended
opcodes, and a system generation lookup table (SGLUT) that
is used by the SGL. It may be iterated that the SGL
automatically creates these LUTs based on manufacturer or
designer-supplied processor or instruction-set information.

6. Stage Buffer Block (SBB): The SBB consists of buffers for
stages of the pipeline (e.g., IFB, IDB, WBB, IWB, etc).

4.2  Operation of the AMG

We now discuss the operation of the AMG as follows —

1. Step 1 (Fetch and Dispatch): An instruction if fetched from
the IM and brought to the IQ and CA in the pipeline.  The IF
fetches the instruction from the IQ and stores it in the IFB.
The IDP then initiates the dispatch of the instruction from the
IFB and translates it into the IDB. In order to decode this
instruction, the opcode or the extended opcode is first extracted

from the instruction.  The instruction type is then docoded from
the information available in the lookup table OPLUT.

2. Step 2 (Decode): The ID then obtains the extended opcode
information from the EOLUT and the instruction format from
the DCLUT using the decoded instruction type information as
a key.   In the final step at the ID, the instruction is
dissassembled, the information disseminated, and valid
instruction fields are stored in the IEB. After completing the
decode operation, the ID checks for data dependency on the
current instruction. The information stored in DER is utilized
for this check, and the information is propagated to the hazard
registers, HIR and HDR, with operate in conjunction with the
HLUT.  Operands for the operation are put in the IE buffer
(IEB).

3. Step 3 (Execute): The IE begins operation if the IEB is
nonempty. The IE updates the GPR and the DER, and picks
out appropriate information from the EXLUT — i.e.,
instruction execution latencies, location of procedures,
requirements for cache access for executing the function or
process, and then executes the procedure (the AMG currently
supports upto 1024 user-defined operations). The result is then
stored in the WBB or sent to the CA (if cache access is needed).
The HIR and HDR are then updated to allow hazard resolution
for the subsequent instructions in the pipeline.

4. Step 4 (Cache Access and Write Back): The CA then reads/
writes data from/to the cache in case of a cache hit, or the DM
in case of a cache miss. The WB updates the CWR through
the DER or ECR before writeback. If the instruction is
processed by CA, the CWR is updated by the ECR, else, it is
updated by the DER (resolving hazards between IE and CA).
The result is then written to the GPR and all hazard conditions

The RASSP Digest
Automated Generation of VHDL Processor Models
for Simulation and Synthesis

Figure 5. Register and Memory Data Structures

4K 
GPR 
DER 
ECR 
CWR 

32 bits 

(integer) 
OPLUT 

2    SCR 

IK 

32 

HIR 

32 

HDR 

(integer) 
SGLUT 11 

(integer) 4K 

EXLUT 

EOLUT 
HLUT 

IK 
32 

DCLUT 512 

roushrv
235



37

The RASSP Digest
Automated Generation of VHDL Processor Models
for Simulation and Synthesis

Figure 6. Results from the AMG-generated PowerPC 601 Model

Description of tlie Instruction Timing & Test Bench 

TABLE 1. Instruction Timings for the Test Bench 'A' 

Addr. of Inst. Inst.Name rD/BI    rS/rA/rB Instruction Cycles 
12 3 4567891111-444455555-888999 

0123  678901234  789012 

0 "add" rD=I 0/2/3 f d e w i 
1 "rnuix" rD=2 0/1 /3 fdeeeeew     1 

2 "Idx" rD=3 2/0/0 f  .   . .dec Wy 

3 "add" rD=2 0/3/3 f  .  d e w 1 
4 "divx" rD=l 0/2/3 f d e e - e e w     1 

5 "strx" 3/ 1/2 f  .   . - .  d e c wl 

6 "brx" BI=3 ~ f d  .  e w 

7 "addi" rD=2 0 /2/0 - f.>    1 
3 "add" rD=l 0/3/3 f d e w 1 
4 "divx" rD=l 0/2/3 - f d e - e e w     * 

5 "strx" 3/ 1/2 - f  . -  .  d e c w X 

6 "brx" BI=3 ~ f d   .   e w 

"f : Instruction fetch & dispatch stage  1 
"d" // decode stage 
"e" // execute stage 
"c" // cache access stage 
"w' // writeback stage 
">" purge nstfuction on the pipeline 
"." stall or the pipeline 

TABLE 2. Characteristic of the instructions 

Instruction name Opcode Extended opcode Instruction Type Latencies 

add 31 248 1 1 

addi 14 0 2 1 

Idx 34 0 3 1 

strx 31 215 4 1 

mulx 31 107 1 5 

divx 31 331 1 36 

brx 18 0 5 1 

TABLE 3. Description of the instruction fields 

Instruction Type rD rS rl r2 BI Cl Eop SIM UIM RC AA C2 RSV 

1 5 0 5 5 0 1 9 0 0 1 0 0 0 

2 5 0 5 0 0 0 0 16 0 0 0 0 0 

3 5 0 5 0 0 0 0 0 16 0 0 0 0 

4 0 5 5 6 0 0 9 0 0 0 0 0 1 

5 0 0 0 0 24 0 0 0 0 0 1 1 0 

rD : Destination Register 
rS : Source Register 
rl : working Register 1 
r2 : working Register 2 
BI : immediate field for branch 
Cl : control bit 1 
Eop : extended opcode 
SIM : signed immediate field 
UIM : unsigned immediate field 
RC : record bit 
AA : absolute address bit 
C2 : control bit 2 
RSV : reserved bits 

TEST BENCH 'A' ( INPUT) 
8 :end addr+1 

of inst. stream 
0 :start addr. 

of inst. stream 
011111(KXX)1()0()1(XXX)11(X)1111 KXXX) :"add",    rD=l 
0111110(X)1(X)(XX)1000I lOOOl lOIOl 10 :"mulx". rD=2 

1 (XX) 1 (XXK) 11000100000000000001111 :"ldx".    rD=3 
on 11 i(xx)i(xxx)i i(xx)i i(X)i 111 KXXX) :"add",    rD=2 
011111(XXX)1(XX)1(XXX)110101(X)10110 :"divx", rD=l 
on iii(xx)ii(xxx)i(xx)ioooi 10101110 :"su-x",   rD=l 
01 (X) 1 (XXKXXXXXXXXXXXXXXXXXXX) 11 (X) :"brx".    BI=3 
(X)l 11(XXX)1(XXX)1 l(XX)l l(H)l 1(X)11110 "addi".    rD=2 

FEST BENCH A ( OUTPUT) 
4 end of cycle time "add",   rD=l 
9 II "mulx" rD=2 
11 II "Idx".   rD=3 
12 II "add",   rD=2 
4X II "divx", rD=l 
50 II "strx",   rD=l 
5) II "brx",   BI=3 
53 II "add",   rD=2 
89 II "divx", rD=l 
91 II "strx",   rD=l 
92 II "brx",   Bl=3 

roushrv
236



38

caused by the current instructions are void. The WB also
generates the output file with the necessary user-specified
information on execution times and functional results required
from the model.

4.3  Implementation of the AMG

To test the AMG we first implemented the AMG in VHDL, and
successfully modelled a subset of the ISA of the PowerPC 601
with a single pipeline.  More recently, the AMG has been
generalized to model multiple concurrent pipelines and other
processors (e.g., i860 and ADSP 21060).

In one of our PowerPC 601 variations of the AMG, that is fully
operational, each memory within the MB was implemented as a
32 bit-vector array (same as the instruction length). The IQ IM,
and DM are 64-by-32, 8K-by-32, and 20K-by-32 arrays,
respectively. The SBB was implemented as four buffers, one of
which is the IEB that is a 256-integer variable buffer for maintaining
latency and executing function information in the IE stage, the others
maintain bit-vector and one integer type variable for maintaining
the latencies of other pipeline stages.  Figure 5 summarizes the
sizes of the other register and memory arrays utilized in our
implementation. Note that the user of the AMG can tailor the
pipeline to suit his/her implementation specifications, and can also
utilize more than one pipeline within the AMG (i.e., the PowerPC
601 has three pipelines — integer, floating, and branch). The AMG
currently has been implemented in about 5K lines of uncommented
VHDL source code.

4.4  Performance of the AMG - PowerPC 601

Figure 6 describes the performance of a PowerPC 601 model
generated by the AMG. The input source code is described in Test
Bench A, and was input to the AMG.  The AMG then generates
the function and timing behavior via output files (shown also in
Figure 6), and via VHDL signals (that are displayed on a VHDL
simulator spreadsheet in Figure 7).  Tables 1 and 2 in Figure 6
describe the detailed clock-cycle resolved operations of the pipeline
for the PowerPC 601. The exact timing for the completion of each
instructions are also shown. In Figure 7, for instance, the multiply
is described in the decode buffer as 7c4118d6, and has a latency
of 5 clock cycles, which are successively decremented as shown
on the signal INST.EXE.CYC.1. Typical instructions executed per
second on the virtual model generated by an unoptimized AMG
were in the order of 500-1000 for single pipelines, and less for
multiple pipelines (10-200). For a 1000 instruction test bench,
the execution times on a Sparc10 workstation were; multiple
pipeline AMG (242.95 sec), PowerPC with multiple pipelines
(235.55 sec), Single pipeline AMG (18.0 sec), PowerPC with
single pipeline (1.45 sec).  The time required to generate a
model is limited only by the time it required to enter the
input.DAT tables from the manufacturer’s data sheets (or in
the case of iterative synthesis, from the designer), and took about
a person month for the PowerPC.  The AMG consists of about 5K
lines of VHDL source code and utilized the Vantage VHDL

The RASSP Digest
Automated Generation of VHDL Processor Models
for Simulation and Synthesis

Spreadsheet at Georgia Tech’s DSP Laboratory.

5. Summary and Conclusions

Models have been shown to very useful in the system prototyping
process, often reducing HW/SW design and integrations costs by
a factor of four or more. The contributions of this paper are as
follows -

1. A new method for automated generation of full-behavioral and
ISA models for complex pipelined processors has been
proposed.  We believe that this is the first such proposal and
its implementation.

2. A new method for iterative synthesis, where the instruction-
set of a processor can be customized to the application software,
utilizing true hardware/software codesign is proposed.

3. Successful demonstration of the proposed method for automated
generation, using the  PowerPC 601 as an example.   Our
results show that the speeds in instructions per second range
between 500-100 for single pipelines and 5-100 for multiple
pipelines and comapare well to manually generated behavioral
models.  The time required for model development is, however,
shorter, requiring a few person-months for an ISA model
(without interface timing), as opposed to 1-3 person-years for
the manual method of model generation.

Further optimization of the automated model generation process is
an ongoing investigation.

Figure 7. VHDL Simulations of the AMG-generated
PowerPC 601 Model Using Testbench of Figure 6

Confirm the Behavior of the Processor

Acknowledgements

Thanks to M. Rubeiz of Wright Patterson Labs (USAF) for
carefully reviewing the manuscript.

■I'tiDI     I'        ^l' nil     11 nilh'^   'I' 

roushrv
237



39

The RASSP Digest
Automated Generation of VHDL Processor Models
for Simulation and Synthesis

Vijay K. Madisetti and Yong-Kyu Jung
ECE,

Georgia Tech.
Atlanta, GA 30332-0250

vkm@ee.gatech.edu

References

[1] M. Richards, “The Rapid Prototyping of Application-Specific
Signal Processors Program,’’ Proc. of First Annual RASSP
Conference, August 1994.

[2] V. K. Madisetti, VLSI Digital Signal Processors, IEEE Press,
Piscataway, NJ, May 1995.

[3] Z. Navabi, “Using VHDL for Modeling and Design of
Processing Units,” Proc. of 5th Annual IEEE ASIC Conference
and Exhibit, pp. 315-326, 1992.

[4] L. Maliniak, “Process Builds Accurate VLSI Behavioral
Models,” Electronic Design, pp. 63-70, May 3, 1993.

[5] V. Madisetti, T. Egolf, S. Famorzadeh, L-R. Dung, “Virtual
Prototyping of Embedded DSP Systems,” Proc. of IEEE
ICASSP 95.

[6] C. Hein, T. Carpenter, P. Kalutkiewicz, V. Madisetti, “RASSP
VHDL Modeling Terminology and Taxononomy - Revision
1.0,’’ Proc. of Second ARPA RASSP Conference, July 1995.

[7] C. Myers, R. Dreiling, “VHDL Modeling for Signal Processor
Development,” Proc. of IEEE ICASSP 95.

[8] V. Madisetti, J. Corley, G. Shaw “RASSP: Current Practice
(1993) E&F Model and Challenges,’’ Proc. of ARPA Second
RASSP Conference, July 1995.

[9] The RASSP Information Server - WWW URL http://
rassp.scra.org.

[10]T. Egolf, V. Madisetti, S. Famorzadeh, P. Kalutkiewicz,
“Experiences with VHDL Models of COTS RISC Processors
in Virtual Prototyping for Complex System Synthesis,’’
Proceedings VHDL International Users’ Forum (VIUF),
Spring 1995.

Mississippi State Develops On-Line FPGA VHDL Model Generator
Robert Reese and J. Scott Calhoun

Abstract

As part of our RASSP Tech Base VHDL modeling and distribution
objectives Mississippi State University (MSU) has developed and
released an on-line FPGA VHDL model generator.

The objectives of the MSU tech base contract are to provide VHDL
models for COTS parts, primarily concentrating on PLDs, RAMS,
and ROMS.  To date, we have released VHDL models for several
parts in these general families, including several standard PLD
models (22V10, several PALs), standard RAM/ROM models, dual
port RAMS, and some general bus interface glue logic models.
We have also made available several VHDL packages which are
useful for creating additional part models within these general
families.

Another objective of our program was to advance beyond low-
complexity PLD models and provide a VHDL model for a field
programmable gate array.  Recently, we made an alpha release
of a VHDL model for the Xilinx X4000 FPGA family.  The
remainder of this article will discuss our approach to this model.

1. Xilinx X4000 FPGA

The Xilinx X4000 family is a static RAM based FPGA.  The basic
logic cell is called a Configurable Logic Block (CLB) and contains
two 4-input lookup tables, two D flip-flops, and dedicated carry

logic. The lookup tables can implement two separate 4-variable
functions; the output of the tables can also be combined to form a
third logic function. The lookup tables can also be used as an
asynchronous SRAM, synchronous SRAM (X4000E) or dual port
SRAM (X4000E). Combinational outputs can be registered via
the flip-flops if desired.

I/O is handled via a versatile Input Output Block (IOB) which
have several configuration options such as registered/non-registered
on the input or output signals, tri-state output, programmable  output
slew rate, pullup/pulldown on output, and output polarity.  There
are several other logic resources on the chip as well - an on-chip
oscillator, fast decoders, tri-state buffers, pullups, high-drive
buffers, startup logic, and boundary scan capability.

2. Modeling Goals and Approach

Our goals in modeling the X4000 was to provide a VHDL model
which supported logic functionality, timing, system level features,
and have good performance. System level features include
simulation of capabilities not normally supported during gate level
development - i.e, startup emulation, boundary scan support, and
in-system programming.  The SRAM programming of the X4000
gives the part a dynamic reconfigurability capability via in-system
programming.  After looking at the problem, we decided not to
support dynamic reconfigurability in our VHDL model of X4000

roushrv
238



40

for several reasons:

a. Supporting dynamic reconfigurability could severely impact
model performance, both in execution time and in memory
footprint.  This conflicts with our goal of achieving good
performance.

b. Dynamic reconfiguration is not a capability which is used that
often.

c. Supporting dynamic reconfigurability would require a non-
disclosure agreement with Xilinx concerning the format of the
programming bit-stream which might hinder model
distribution.

Not supporting dynamic reconfigurabilty meant that a static VHDL
model could be generated from one of the intermediate logic
representations which are created during the design/mapping
process.  Xilinx supports two netlist formats which describe mapped
logic - XNF (Xilinx Netlist Format) and LCA (Logic Cell Array).
XNF is an intermediate gate level description while the LCA netlist
uses the on-chip logic primitives (CLBs, IOBs, tri-state buffers,
etc). We chose the LCA format because we felt it would be easier
to support system level features (startup, boundary scan) at this
level and because the generated  package/speed-grade timing
information refers directly to these primitives.

3. Model Library and Generator

A VHDL X4000 module library was written to support the logic
primitives.  Currently, the first release (May 96) of this library
supports all logic functionality except for the startup and boundary
scan logic.  Some timing functionality is included but work is still
in progress in this area. A Perl5 script named 'lca2vhd' converts an
LCA file into a VHDL structural model which uses the X4000
module library. Any net delay information present in the LCA file
(produced by Xilinx back annotation)  is represented in the VHDL
model.  X4000 module timing information is read from a separate
file generated by the Xilinx mapping process and is based upon
selected package type and speed grade.  The 'lca2vhd' script converts
net names in the LCA file to VHDL-compatible names; a command
line option allows user control over name mapping which proves
useful in generating vectored signal names. The X4000 module
library has been tested with both Mentor Quick-VHDL and Vantage
VHDL development environments.

4. On-line Model Generation

In keeping with the on-line release mechanism used by MSU to
distribute its VHDL models, the FPGA model generator takes this
paradigm to the next level. The FPGA VHDL model library for
the X4000 is distribtued via the World Wide Web (WWW)
download at

http://www.erc.msstate.edu/mpl/vhdl/html/models/library/xilinx.html

The RASSP DigestMississippi State Develops On-Line FPGA VHDL Model Generator

Figure 2: On-Line Model Generation OutputFigure 1. LCA Upload/Model Generation/Model
Download Form

Figure 2. On-Line Model Generation Output

roushrv
239



41

The RASSP DigestMississippi State Develops On-Line FPGA VHDL Model Generator

Once the X4000 library is downloaded and compiled, VHDL
models of specific X4000 designs can be generated via the on-
line model generator at

http://www.erc.msstate.edu/mpl/vhdl/html/models/library/
xilinx/lcaform.html

This unique form takes advantage of an emerging HTTP feature
allowing files to be uploaded to the web server {Note: this
feature is currently supported by Netscape Version 2.0 or
greater}. LCA files (with optional name mapping and timing
files) are uploaded to the MSU RASSP webserver.  The
uploaded files are fed to the lca2vhd generator. The generated
models are then tarred and compressed and available for
download. The model generator form along with and example
of the generator output execution is illustrated in Figure 1 and
Figure 2.

This unique application takes a significant step towards the
use of on-line CAD systems which may be prevalent in the
future. We hope to collect usage data that will help the DoD
and CAD industry determine the value of these on-line
applications. An example of the model generator output for a
CLB component used within a design is given below.

CLB_PD: x4000CLB
GENERIC MAP (

WD_G4 => 3.6 ns,
WD_G3 => 1.9 ns,
WD_F4 => 1.3 ns,
WD_F3 => 1.1 ns,
WD_F1 => 2.1 ns,
WD_C1 => 3.7 ns,
WD_K => 1.4 ns,
MGeneration => MGeneration,
XGeneration => XGeneration,
Ref  => Ref&":CLB_PD",

-- Config F4:F4I G2: G3:G3I X: Y: XQ:QX YQ:
FFX:K:RESET

FFY:RESET DX:H
-- DY: F:F3:F4:F1
-- G:G3:G4 H:F:G:H1 H1:C1 DIN: SR: EC: RAM:

CARRY: CIN: COUT: CDIR:
CLBTags => CLBTagsArrayData(PD_blk),
CLBTiming => CLBTimingRecordData,
RAMTiming => RAMTimingRecordData,

-- F = (F1*~((F3 + F4)*~(F3*F4))), G = (G3*G4),
H = (~H1*(G + F))

CLBFuncs => CLBFuncsArrayData(PD_blk)
)
PORT MAP (

G4 => N_1I120_PATH_NET_23,  -- $1I120/PATH/
NET_$23
G3 => N_1N237,          -- $1N237
G2 => open,
G1 => open,

Robert Reese and J. Scott Calhoun
Microsystems Prototyping Laboratory

Engineering Research Center
P.O. Box 6176

Mississippi State, MS 39762
reese@erc.msstate.edu

F4 => N_1I120_PATH_C_1002_4,  -- $1I120/PATH/
C_1002_4
F3 => N_1I120_PATH_N_437, -- $1I120/PATH/

N$437
F2 => open,
F1 => N_1I120_PATH_NET_38,  -- $1I120/
PATH/NET_$38
C1 => N_1N116_2,          -- $1N116_2
C2 => open,
C3 => open,
C4 => open,
K => N_CLK,                  -- CLK Y => open,
YQ => open,
X => open,
XQ => N_1N237,          -- $1N237
COUT => open,
CIN => open,
GSR => GSR_LCA2XNF

);

In the above generic map for 'CLB_PD', the 'CLBFuncs' generic
contains the lookup table and carry logic mapping which is

PD_blk =>
(funcF => "0000000010011001",  -- F1(MSB),F2,F3,F4
inputs
funcG => "0001000100010001",  -- G1(MSB),G2,G3,G4
inputs func
H => "00101010",          -- F(MSB), G, H1
funcC => (OTHERS => '0')      -- carry logic function

),

The 'CLBTags' generic contains a structure defining the particular
CLB configuration.  Timing data is passed within the 'CLBTiming'
and 'RAMTiming' generics with net delays specifed via the various
'WD_*' generics.

5. Future Work

Our current goals (in order):

a. Complete all timing functionality.

b. Add X4000E support; this variant of the X4000 adds
synchronous SRAM and dual-port SRAM capability in the
CLB.

c. Add startup emulation and boundary scan support.

Our schedule calls for completion of this work by September '96.

roushrv
240



42

1. Introduction

The Study Group on Object Oriented VHDL is continuing its work
within the Design Automation Standards Committee (DASC). It
is now considering a preliminary version of a Design Objectives
document. This document contains the objectives that will guide
and constrain the study group in its efforts to produce a definition
of Object Oriented VHDL. Before we examine this document, we
will set it in context. We will then set out its various sections, and
discuss them

There are three parts to the efforts of the Study Group:

1. To determine a methodology using object oriented design
methods and techniques for VHDL designs.

2. To establish if there are any short-term object oriented
extensions that can be presented to the VHDL Analysis and
Standardization Group (VASG) for consideration in the 1998
restandardization effort.

3. To assemble a long term definition of VHDL extended with
object oriented constructs.

The Design Objectives (D.O.) document will support the third of
these activities. This is based on the fact that VHDL provides many
good features and support efficient design methodology. However,
there are certain limitations in the power of the language which
can be (at least partially) addressed by Object Oriented Extensions.

This document tries to identify these different objectives and to
sort them into two categories: high priority and low priority. The
semantics of these categories is the following:

n High priority objectives, which must be considered first. If
one of these objectives cannot be reached, the Study Group
must justify the omission, for example because of significant
difficulties to implement it.

n Low priority objectives will be considered second. They will
be implemented only if the cost of implementation is extremely
low, and any decision to implement one of them must be
accompanied by a rationale.

The first part of the Design Objectives document is a glossary,
which will be presented next.

2. Glossary

The Glossary is an important part of any document.  In particular,
it is an important part of a document that is the product of a variety
of different engineers from different disciplines. The first version
of the glossary simply attempts to define the basic terms of object
oriented programming. These are given below.

Class An abstraction which helps in describing a system by
means of objects (instantiation of classes) which
communicate by triggering methods.

Object A specific instance, or instantiation, of a class.

Method An operation, or procedure, that is associated with a
class, and which therefore operates on the objects of that
class.

3. High Priority Design Objectives

The following design objectives  are proposed as high priority ones.
They are given in no particular order, below. With each is given a
rationale, and a brief explanation if necessary.

3.1. Add Inheritance Mechanism(s) to VHDL

Rationale: VHDL does not allow the designer to incrementally
modify existing “objects’’ (i.e. entities, types, etc.) and create other
ones which are only slightly different. This requires the designer
to write two or more) complete pieces of code. This has implications
in terms of source code testing and validation.

The key issue here is avoiding this copy & paste coding method.

Inheritance  mechanisms let  a  current class  inherit information
from another class, called the mother class (and implicitly from all
the mother's ancestors).

Inheritance is a way to improve reusability. It is a static mechanism,
which may be resolved before simulation.  Multiple inheritance
(inheriting from two or more mother classes) is a separate issue,
and is a low priority D.O.  Inheritance may trigger:

n Inheritance of all methods of the mother class.

n Inheritance of all attributes of the mother class.

n Redefinition of an existing method of the mother class.

n Addition of a new method to the current class.

n Addition of a new attribute to the current class.

3.2. Method Call or Message Passing

Rationale: The only communication mechanism of VHDL today is
based on the signal value resolution semantics. At a high level of
abstraction, dealing with this communication mechanism very often
implies knowledge of which protocol will be used to exchange data
and coding that protocol in terms of signal assignments. This yields
over-specification and restricts the scope of application of VHDL.

Communication in OO-VHDL should include a higher level of
abstraction which only requires the target's object name, the method
to be called and its parameters.

David L. Barton and
Jean-Michel Berge

A Proposed Design Objectives Document
for Object-Oriented VHDL

roushrv
241



43

3.3. Add Type Polymorphism to VHDL

Rationale: Strong typing is certainly an excellent mechanism to
guarantee a high level of safety of the code; however, the possibility
of explicitly inhibiting (at least partially) this mechanism has to be
considered for different reasons:

n While progressing from the very beginning of the design cycle
(the very first “specification’’) to the final implementation (the
“synthesizable’’ description), the type of data is usually refined.
This leads to many problems, such as introduction of conversion
functions or modification of interface types (ports or generics),
that have consequences for encapsulation.

n Furthermore, a strong typing at a high level of abstraction very
often implies giving more information than necessary in order
to anticipate compatibility with lower levels of abstraction.
This leads to over-specification.

n Finally, strong typing sometimes leads to less reusability of
code by requiring development of the same algorithms for
different (but often closely related) types.

It might be interesting to verify at compilation time type
compatibility; for example a 6 bit integer may be extended to an 8
bit integer.

As a remark, we can see two different ways of considering
polymorphism:

n Dynamic polymorphism is implemented by message passing.
Given the name (or handle) of an object, another object can
send it a message without knowing the type of the target object.
For example, an object can send a “increment’’ message to a
counter without knowing if it's a DCD counter or a 6 bit counter.

n Static, relative to type, to soften in some cases the hard-typing
of VHDL. Hindley-Milner type systems, as used in MHDL,
are examples of practical static polymorphic systems.

For 90% of cases, only a type compatibility check and an easy to
do static conversion at compilation time is required to assure type
compatibility.

3.4.  Keep VHDL Concurrence

Rationale : One of the strongest aspect of VHDL is its ability to
manage both the sequential and the concurrent worlds. Objects
should keep this quality ( i.e. : objects shouldn't be considered as
single thread). Sequential and concurrent code should be freely
combinable.

3.5.  Add Class Libraries to VHDL

Rationale: One of the main benefits of Object Oriented Techniques
in the software domain  is the high degree of reusability that libraries
of objects can provide. Five kinds of “design units’’ are the basic
elements of current VHDL libraries, and none of them can be
considered as a “pure object'' or a “pure  class’’ (entity/architecture

are not flexible enough  and packages cannot be  instantiated). OO
Extensions must extend this somehow.

3.6.  Easiness of Use, Methodology

OO-VHDL should fit the hardware view of the system and be
usable by Hw/Sw designers.

One of the most important aspects of the object oriented
development is a strong need for a complete methodology. This
methodology has to handle all intermediate steps of a design cycle
using object oriented concepts. This includes steps where object
descriptions (and simulations) are mixed with (existing?) VHDL
descriptions (and simulations).

4. Low Priority Design Objectives

These items are less developed than the high priority objectives.
Further development will come during the Study Group
deliberations. There is no particular order to this list.

4.1.  Add Broadcasting to VHDL

One of the main characteristic of object-level communication is
that you only need to know the name of an object and the path
itself as in VHDL signal communication. Broadcasting is a way to
communicate to a set of other objects without knowing their names.

4.2.  Add Dynamic Creation/Disappearance of
  ''Objects''

An object should not necessarily exist from the beginning to the
end of the simulation.

4.3.  Multi-Inheritance

This is the faculty to inherit from more than one mother class.
Multi-inheritance  implies to  define how  to solve inheritance
conflict (for example: inheriting the same attribute twice).

4.4.  Add an Exception Mechanism

Exceptions are a control  mechanism existing in other languages.
They are very often used to interrupt a regular treatment to  execute
specific error treatment.  A general “reset’’ section may be an
example of the use of exception mechanism in hardware.

4.5.  Better Documentation Capabilities

Several participants have expressed a desire for better
documentation capabilities in VHDL. This would aid class re-use,
as well as help make the written classes self-documenting.

5. Additional Remarks

In addition to the explicit Design Objectives, the Study Group has
also discussed whether OO-VHDL should provide some kind of
linkage to further development steps of some sort. This would
include at least synthesis; it is synthesis that is mentioned most
often. This may be comprised of “designing a synthesizable VHDL
source from OO-VHDL source.’’ It is not clear how this will be

The RASSP DigestThe Design Objectives Document for Object Oriented VHDL

roushrv
242



44

managed; however, it may be connected with method management.

6. Conclusion

We need to emphasize the preliminary nature of this design
objectives document. At the time of writing, it has been neither
reviewed nor approved by the Study Group. Nevertheless, it is put
forward as a strawman for use by the Working Group in its
deliberations.  We believe it accurately reflects the current thinking
of the Study Group in general.

There may be movement of design objectives between the low
priority and high priority categories, and additional objectives may
be added. The Study Group will review this document at the
meetings in conjunction with the 1996 Design Automation

The RASSP DigestThe Design Objectives Document for Object Oriented VHDL

Conference, and will continue to refine the document in the coming
months.  Eventually, it will form the basis of language change
proposals and of the OO-VHDL definition.

David L. Barton
Intermetrics, Inc.

7918 Jones Branch Dr.
McLean, VA 22102

dlb@severn.wash.inmet.com

Jean-Michel Berge
CNET-France Telecom

CNS/CIT
Chemin du Vieux Chene

38240 Meylan France

Introduction

In 1996 EDAC, SEMATECH, and CFI with ARPA funding support
jointly sponsored a workshop to develop an industry-wide
Roadmap for development of standards within Electronic Design
Automation. The initial workshop was held March 20-21, 1995
at the Westin Hotel in Santa Clara, California. As described later
in this document, the 1996 version of the EDA Standards Roadmap
is now available in printed hardcopy form, as well as online on
the web.

The EDA Standards Roadmap and the EDA Industry Council
John Teets

1. Goals

The goal of this effort was to identify and formally document an
EDA Standards Roadmap as a staged sequence of development,
which must occur over the next decade to meet the requirements of
Design and Test of both semiconductors and electronic systems.
This Roadmap considers the target goals as well as a flexible co-
existence and migration strategy to the goals from where industry
is today.

2. Scope

The scope of this Roadmap
covers EDA Design and Test
Requirements in areas of
productivity and complexity
management as identified by the
"SIA 1194 National Technology
Roadmap for Semiconductors"
(NTRS) and the SRC Semi-
conductor White Paper Report
"Design Needs for the 21st
Century: White Paper," Sept.,
1994. The context is on standards
and modeling which cut across
all technology areas relating to
electronic design.

The Roadmap provides focus on
productivity and complexity
management requirements and
dose not address any specific

Increased chip densities and the
design of higher performance
systems have outgrown the current
era of loose collections of EDA
tools. Designs across the next
decade will demand integrated and
highly interoperable systems that
allow the designer to traverse back
and forth among sophisticated
CAD tools at all levels of design
from architecture to implementa-
tion. Keeping pace with this
advancement and the required
productivity improvements will
necessitate cooperative work
across the industry, toward
creating and adopting standards to
meet EDA system needs in the
areas of designer productivity and
design complexity management.

EDA Roadmap "Top Ten Projects"
Recommended

Technology Transfer:

1.  Chip Data Representation (CHDStd)
2.  Synthesizable Subsets (RTL Subsets)
3.  Delay Project (DCS/DCL)
4.  Software Licensing Policy
5.  Open Modeling Forum (OMF)

1997 Roadmap Development:

1.  PCB/MCM (Above Chip)
2.  Test Standards
3.  System Level Design and Verification
4.  Design Reuse
5.  Design System Environment
6.  Design Complexity Management

roushrv
243



45

The RASSP DigestThe EDA Standards Roadmap and the EDA Industry Council

CAD tool functional algorithm requirements. Further, while the
sponsors are predominately U.S.-based, the Roadmap is not
restricted to U.S. company inputs. It addresses worldwide standards
requirements in the following areas:

n EDA CAD System Integration and Interoperability - Design
and Data Management

n Technology Libraries and Models

The purpose of the Roadmap is to set direction and priority on
industrial and government investments into these requirement areas,
specifically recommending redundant competitive efforts that
should be converged, and cooperative efforts for which investments
in multiple developments serve best to achieve needed goals.
Furthermore, the Roadmap provides direction to industry to enable
proprietary EDA develop-ment and a base on which CAD groups
can plan their proprietary CAD system integrations based upon
open EDA standards.

3. Roadmap Organization

Development of the Roadmap was performed under the direction
of CFI, EDAC, and SEMATECH by an invited group of technical
experts (Roadmap Development Working Groups) from a cross-
section of industry, and the results were approved in October 1995
by a select body of key industry leaders (Industry Council) who
have the authority and influence to assure implementation of the
result.

4. The EDA Industry Council

The EDA Industry Council first met in August 1995 for the purpose
of reviewing and adopting the work of the EDA Standards
Roadmap effort.

The mission of the Industry Council, as presented by Robert
Rozeboom, chairman of the Council, is outlined below:

n Mission: (why does the Council exist)
Promote the adoption and use of open EDA practices and technology

in electronic hardware design.

n Vision: (description of the desired future state)
Sufficient data reuse and tool interoperability exists in the EDA
industry such that users can focus their energy on satisfying
customer needs with new technologies.

n Strategy: (how will this vision be accomplished)
Identify and define directions for critical EDA Standards needed
to accomplish business objectives. Facilitate the implementation
and promote the use of these standards by aligning industry
resources.

n Tactics: (specific tasks)
Establish and maintain the EDA Standards Roadmap based on the
NTRS Roadmap and user requirements.

Identify and use "fast track" standards processes for implementation
and adoption of standards

For more details on the above, those readers with access to the
web are referred to the EDA Industry Council Home Page at http:/
/www.cfi.org/ic, and the online version of the Standards Roadmap
which is accessible from there. The Roadmap can also be
downloaded in PostScript form from the CFI ftp site via anonymous
login to ftp.cfi.org to /public/Cfi/Development/Roadmap/EII/
Roadmap.ps. A presentation to the Industry Council which overview
the "top ten" projects is also available for download from the IC
Home Page.

Your feedback on the Roadmap and EDA Industry Council activities
is encouraged and welcome! Please contact John Teets
(teets@cfi.org) for additional information.

The EDA Industry Council Members

Electronics Companies:

Joseph Borel, SGS Thomson Microelectronics
John Darringer, IBM
William Evans, Lucent Technologies
Jan-Olof Kismalm, Ericsson
Lance Mills, Hewlett-Packard
L. J. Reed, Motorola

EDA Vendor Companies:

Joe Costello, Cadence
Aart deGeus, Synopsys
Alain Hanover, ViewLogic
Wally Rhines, Mentor Graphics

Semiconductor Companies:

Lambert van den Hoven, Phillips Semiconductor
Greg Ledenbach, SEMATECH
Robert Rozeboom, Texas Instruments (Chairman)
Gadi Singer, Intel
Kinya Tabuchi, Mitsubishi Electric
Hitoshi Yoshizawa, NEC

Standards Groups/Government:

Andrew Graham, CFI
Randy Harr, ARPA

John J. Teets, II
CFI

4030 W. Braker Lane, Suite 550
Austin, TX   78759

teets@cfi.org

roushrv
244



46

Abstract

Hardware Description Languages (HDLs) play an important role
in the design and verification of digital devices. Unfortunately
most HDLs are informally defined and thus, they are frequently
defined only partially, with some aspects of the language subject
to varying interpretation. The formal models project is developing
formal models and theories for the standard hardware description
language VHDL. Included in the project are a collection of
theories for defining (i) when a VHDL description is well-typed,
(ii) equivalent static structures within the language standard, (iii)
the semantics of VHDL's evaluation (or simulation time)
behaviors, and (iv) semantic preserving rewriting operators that
are used to optimize the analysis and parallel simulation of VHDL.

1. Project Overview

Besides a formal syntax definition, few formal semantic models
for Hardware Description Languages (HDLs) are ever constructed.
Furthermore, informal (English) specifications of “so called”
standard languages allow for numerous interpretations where only
one is desired. This paper reports our efforts to construct formal
models for the hardware description language VHDL. In particular,
the project develops the following models and theories (Figure 1):

1. Static Model: The static model is a set theoretic definition of
post-elaborated VHDL models. Included in the static model
are axioms that define when a VHDL model is well-typed
(e.g., the data type of the target and expression in a signal
assignment statement match).

2. Equivalence Axioms: The equivalence axioms formally define
equivalent structures in VHDL. The structures of VHDL
included in the equivalence axioms are only those that are
formally described to be equivalent in the language standard.
For example, the language standard defines the equivalent
process statement representation for a concurrent signal
assignment statement.

3. Reduction Algebra: While equivalence axioms define
equivalent structures, the reduction algebra defines operators
that transform between equivalent VHDL structures. The
operators of the reduction algebra thus implement transforms
that satisfy the constraints of the equivalence axioms. A
mechanized theorem prover has been used to show that the
rewriting operators correctly adhere to the constraints of the
equivalence axioms.

4. Dynamic Model: The dynamic model is a reduced form, set
theoretic model derived from the static model. The dynamic
model is derived from the static model using operators from
the reduction algebra. Using the PVS theorem prover, this
reduction has been shown to be complete and idempotent.
Included in the dynamic model is a formal, declarative
specification of the dynamic behaviors described by a VHDL
model (hereafter called the dynamic semantics). The dynamic
semantics is formed using an interval temporal logic and defines
only the (signal and variable) state space defined by a specific
VHDL model.

5. Rewriting Operators: The rewriting operators are a collection
of transforms that we use to optimize VHDL for parallel
simulation. The transforms are shown to preserve the dynamic
semantics of VHDL and are embedded in a VHDL analyzer/
optimizer/code generator for optimizing the performance of
the QUEST project time warp simulator. Initially, we have
developed 16 rewriting operators to merge VHDL process
statements and early experiments have shown speedups as high
as 2.2.

In the remainder of this paper, we briefly describe our technology
transfer activities (Section 2) and highlight the significance of the
static model technology developed as part of this project (Section
3). Additional details on other aspects of this project can be found
in the papers enumerated in the bibliography at the end of this
paper. The project is also summarized on the web at the following
URL: http://www.ece.uc.edu/~paw/rassp.

2. Technology Transfer

The formal modeling project includes efforts to support the transfer
of technology into the practicing community of VHDL-based design
and analysis of digital systems. These activities include the
application of the formal models to optimize parallel simulation
(described above in the rewriting operators) and the insertion of

A Formal Model of Digital Systems Compatible with VHDL
Philip A. Wilsey, Sheetanshu L. Pandey and Kothanda Umamageswaran

roushrv
245



47

the technology into other VHDL analysis activities at the University
of Cincinnati (Figure 2). In particular:

n The static model, well-formedness axioms, and reduction
algebra are being used to aid VHDL analysis. The well-
formedness axioms are being used in the type-checker of the
SAVANT VHDL analyzer; the static model and reduction
algebra is being used to define a reduced form intermediate
representation (AIRE) that is being jointly developed with John
Willis. The AIRE project is planning to develop and standardize
the VHDL intermediate form. A VHDL intermediate file
format is also planned.

n The dynamic model is being used to define the TyVIS parallel
VHDL simulation kernel. The rewriting operators are being
used by the VHDL optimizer/code generator in the SAVANT/
QUEST projects.

3. Impact of the Static Model and Its Reduction

Many of the transforms that are formally developed in the static
model exist in an informal form in the VHDL language reference
manual. Some exist solely as additional reductions that can be used
to simplify and optimize CAD tool construction. For example a
simulation code generator can be greatly streamlined by the use of
these transforms. More precisely, assume that a front end analyzer
has been constructed to parse VHDL into the static model form
and further, that a set of reduction procedures have been
implemented to rewrite the model form according to the reduction
algebra. By reducing the VHDL into its core constituent elements,
a simulation code generator need only recognize the, much smaller,
core language elements (the entire set of concurrent statements

can be eliminated from
the code generator's
vocabulary).

The reduction algebra
also simplifies the
construction of a dynamic
semantics for VHDL. In
fact, several of the
operators in the reduction
algebra were developed
specifically to simplify
the construction of the
dynamic model. For
example, rewriting signal
assignment statements so
that the right-hand-side
(rhs) is simply an
expression instead of a
waveform is a direct
consequence of a desire
to simplify construction
of the dynamic semantics.

In addition, in the construction of the dynamic semantic model, we
have also experienced unexpected benefits from the static model
and its transformations. In particular, the representation of transport
delays in signal assignment statements as inertial delay with a reject
pulse limit of 0 nanoseconds has allowed us to derive a new
approach for marking transaction lists. In particular, we have been
able to develop a marking scheme that relies on constraints on
time intervals rather than on a sequential algorithm that update
transaction lists.

Finally, we expect to see additional benefits in the optimization of
CAD tools as the formal models develop. For example, the static
model and its transforms might well impact the design space
explored by a synthesis tool. As another example, the new marking
scheme described in the previous paragraph may significantly
impact the performance of parallel simulation subsystems. While
we expect to see additional benefits, further developments of the
semantic models and the associated transforms must be developed
and applied in the construction and optimization of CAD tools.
We are exploring these avenues in several other research projects.

Bibliography

[1] S.L. Pandey, D.M. Benz, and P.A. Wilsey, “Formalizing the
Static Structures of HDLs for the Optimization of CAD Tools,”
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems. (submitted).

[2] S. Pandey, K. Umamageswaran, and P.A. Wilsey, “A Complete
Reduction Algebra for VHDL,” International Conference on
Formal Methods in Computer-Aided Design (FMCAD),
November 1996. (submitted).

The RASSP DigestA Formal Model of Digital Systems Compatible with VHDL

roushrv
246



48

The RASSP DigestA Formal Model of Digital Systems Compatible with VHDL

This research was supported in part by the Defense Advanced Research Projects Agency
and monitored by the Air Force Wright Laboratory under contract number F33615-93-
C-1315.

Philip A. Wilsey, Sheetanshu L. Pandey
and Kothanda Umamageswaran

Computer Architecture Design Laboratory
Dept. of ECECS, PO Box 210030

University of Cincinnati
Cincinnati, OH 45221-0030

paw@ece.uc.edu

[3] S. L. Pandey, K. R. Subramanian, and P. A. Wilsey, “A
Semantic Model of VHDL for Validating Rewriting Algebras,”
EuroMicro '96, September 1996. (forthcoming).

[4] P. A. Wilsey, D. M. Benz, and S. L. Pandey, “A Model of
VHDL for the Analysis, Transformation, and Optimization of
Digital System Designs,” Conference on Hardware
Description Languages (CHDL'95), 611-616, August 1995.

[5] T. McBrayer and P. A. Wilsey, “Process Combination to
Increase Event Granularity in Parallel Logic Simulation,” 9th
International Parallel Processing Symposium, 572-578, April
1995.

[6] P. A. Wilsey, “Formal Models of Digital Systems Compatible
with VHDL,” Working Document, Computer Architecture
Design Laboratory, University of Cincinnati, 1994 (revised
1995, 1996). (available on the www at http://www.ece.uc.edu/
~paw/rassp).

roushrv
247



49

roushrv
248



50

roushrv
249



51

roushrv
250



52

roushrv
251049



roushrv
252



2

Editor's Corner
Anthony J Gadient and Vijay K. Madisetti

In the past, the commercial Electronic Design Automation (EDA)
and the academic/industrial research communities have been aware
of the requirement for an intensive effort to study the digital system
design process in its entirety; however, resource needs, fuzzy
objectives, and short-time horizon have handicapped progress.
Currently, the Rapid Prototyping of Application Specific Signal
Processors (RASSP) program is overcoming these handicaps and
is developing a number of new technologies that will lead to shorter
prototyping times, improved product quality, and reduced life cycle
costs.

Successfully transferring the technology being developed by the
RASSP program to industry and academia is a critical component
of the overall RASSP effort. To accomplish this goal, a novel,
ground breaking  RASSP Education & Facilitation (RASSP E&F)
program was explicitly funded and a team tasked with leading the
RASSP efforts to transfer technology from the RASSP program to
the university and industrial communities.

To successfully transfer RASSP technology, the RASSP E&F effort
must teach engineers and scientists how to use the RASSP top-
down design concepts and give managers an appreciation for the
potential payoff of RASSP technology, thereby creating both a
technology push and technology pull. To accomplish this goal, the
RASSP E&F team has adopted a multifaceted approach. This
approach is designed to help push and pull individuals and
organizations through the five step technology transfer process
illustrated in Figure 1.

Accomplishing this process involves: (1) making available the
information/knowledge necessary to progress from one stage of
the process to the next, and (2) providing an education system that
will assist in the transfer process. The RASSP E&F objectives in
these  areas are described below:

Information:  develop awareness and interest in RASSP technology
by providing easy access to useful and well organized RASSP-
related information.

Education: educate senior management as to the potential benefits
obtainable through the application of RASSP technology thereby
stimulating the use of RASSP technology and the demand for RASSP
trained professionals; work with universities to effect a paradigm shift
in the graduate, undergraduate, and continuing professional digital
system design curricula of small- and medium-sized universities to
ensure that graduating students can meet industry’s need for RASSP
trained engineers, scientists, and managers.

The activities of the RASSP E&F program in each of these areas
is detailed in this issue of the RASSP Digest. The newsletter starts
with two invited papers that highlight the need for an activity like
RASSP E&F. Professor Pettus, Chairman of the Department of
Electrical and Computer Engineering at the University of South
Carolina, presents an overview of the problems plaguing the
university community today. Mahendra Jain, Director of VHDL
International, presents industry’s need for engineers educated in state-
of-the-art system design techniques. These papers motivate the need
to change the educational system. The article by Madisetti and
Gadient entitled “A Technical Rationale for RASSP Educational
Activities” explores the need to change the existing embedded digital
system design education paradigm in more detail and presents the
technical rationale underlying the educational efforts being
undertaken by the RASSP E&F program. The article by Salinas,
et. al., entitled “RASSP Educational Activities” details the RASSP
E&F activities designed to enable and support the needed shift in
the university education paradigm. The result is a clarion call to
stimulate academic participation in a progressive educational
program that adopts the latest instructional methods and industrial
strength tools to revolutionize the way system design is taught in
United State’s colleges and universities. The article by Scharf and
Karns entitled “Executive Education: Key to Implementing
RASSP” details the RASSP E&F activities designed to present
the business case underlying the RASSP technology. The article
by Stinson, et. al., entitled “RASSP Informational Activities” details
the RASSP E&F activities designed to disseminate information
about RASSP.

Vijay K. Madisetti
ECE,

Georgia Tech.
Atlanta, GA 30332-0250

vkm@ee.gatech.edu

Anthony J. Gadient
SCRA

5300 International Blvd.
N. Charleston, SC 29418

gadient@scra.org

roushrv
253



3

roushrv
254



4

Engineering Education:  Doing Business as a Business in the 90�s
Robert Pettus, Professor and Chair, Electrical and Computer Engineering, University of South Carolina

1. The Inevitability of Change in Engineering
Education

When I was asked to write this article, I was asked to talk about
the need for changes in engineering education, given (i) limited
resources and (ii)  rapidly changing technology. Since we have
dramatic reductions in our resources, a new Dean of Engineering,
an entirely different assessment scheme from the South Carolina
Commission on Higher Education, and new and totally changed
Accreditation Board for Engineering and Technology (ABET)
accreditation criteria on the way, I can be very passionate about
this topic. However, a reasonable view is that change is an inevitable
part of the engineering profession, and therefore, of engineering
education. In addition to the forces which shape education in
general, we are also affected by technological change and by the
nature of the job market. We differ from science, for instance, in
that we are seeking to solve the problems of the future as opposed
to discovering the secrets of the past. For example, two of the four
courses that are required in the sophomore year of the current
University of South Carolina (USC) electrical and computer
engineering curricula did not exist when I was a student in the
early 1960’s. The fundamental nature of the job market has changed
over the past decade. Employers are more selective about hiring
decisions. Students are more likely to have to sell their skills and
experience than their degree.

On some occasions, the forces which affect the engineering
profession and engineering education are aligned. For instance, in
the late 1960’s and early 70’s, the simultaneous declines of the
space program, the defense industry, and the commercial aerospace
industry created a significant (negative) impact. These situations
create a “burning platform” environment in which the need for
change is obvious and the resistance is minimized. To a great extent,
the current forces created by limited resources and rapidly changing
technology have created a similar need for significant change.

2. Technological Change

Technology affects us by both the rate of the change and by its
nature.  Most branches of science show an exponential growth
rate of 4 to 8% per year. For example, Chemical Abstracts took
37 years to publish its first million abstracts, 18 years to publish
the second million, and 1.75 years to publish the third million [1] .
Those individuals and institutions that ignore this exponential
growth tend to make bad decisions, such as that made by the former
head of a major (but now much smaller) computer company, who
stated that he did not believe there would ever be a place for a
computer in the home. Some changes, particularly new technology
such as the transistor, result in changes of curricula. Other changes,
in enabling technologies such as the computer, affect the manner
in which we do business. The most profound current change is
being created by improvements in our ability to communicate. Our
educational system has been based on the concept of a central

repository of information since its inception. Cellular phones,
television, the internet, and other new telecommunication
technologies are changing this concept. These changes have been
occurring sufficiently gradually that we have not yet seen any
widespread changes. However, the idea of moving the knowledge
to the student as opposed to moving the student to the knowledge
will likely have some profound changes over the next decade. One
concept which might not make the change is the semester. When
education is delivered directly to the customer, we may have to
adapt to the customer’s schedule. Educational institutions may have
to act more like the power company in this regard.

3. Limited Resources

Engineering education has been subjected to the same down-sizing
as has industry. Funding for higher education in South Carolina
has been either flat or decreasing for almost 10 years now. To cite
an example, the number of faculty in the USC ECE department
has dropped from 23 in 1989 to 15 at the end of the Fall semester
1996. The state-appropriated operating budget has dropped to
essentially $0. Limited resources, while probably more due to
temporal than technological change, have been the burning platform
for engineering education in the 90’s.

4. Strategic Directions for Engineering Education

A number of American institutions have transformed themselves
in the latter part of the 20th century. Foreign competition has forced
business to become more efficient and more customer focused. This
competition, particularly from the Pacific Rim, was sufficiently
intense to create a tense situation. Those companies that have done
the best job in changing to a new situation, i.e., reducing their
costs while providing value to their customers, are also the most
profitable. Engineering education (and education in general) must
learn from the lessons of industry. In particular, we must become
more customer focused. We must also respond positively to the
changing social needs and environment of our country. In this area,
the US Army provides a positive example. Like many businesses,
the Army has been re-engineering. In this case, the crucible was
the Vietnam conflict. The current Army is an inclusive organization
which reasonably reflects the demographics of the country and
which is largely free of many current societal problems, such as
drug use. I believe that the Army provides some good lessons in
dealing with social problems, and is a better model than industry,
because it cannot use exclusion to any great extent to create quality.
If education, especially public education, is to serve an appropriate
role, then we must provide our services to a broad segment of the
public.

About four years ago, electrical and computer engineering at USC,
together with the rest of the University, began a series of changes
designed to re-engineer the way we did business. The first thing
we did was to rethink our basic philosophy.  Our industrial advisory

roushrv
255



5

board had a significant impact on us during this process. The results
were that we determined that we should:

1) Be good stewards of the resources under control of the
department and use these resources for relevant and attainable
goals.

2) Develop an awareness of the identity of our customers and
take their needs into account in all decisions.

3) Promote equal opportunity and fairness in all activities.

4) Seek to add value in all relationships.

We became more of a business and began to make the appropriate
changes.  We reduced our number of research areas from seven to
three in order to focus on our strengths.  Likewise, we dropped the
number of hours in the curriculum from 137 to 124 and focused on
the quality of the courses as opposed to the number.  Listening to
our customers also led us to put more effort into non-technical
skills.  We now have a Writing Center, with a full time director,

The RASSP DigestEngineering Education:  Doing Business as a Business in the 90’s

staffed by graduate students from the English Department’s
Composition and Rhetoric program.  Students spend a substantial
amount of time working in organized groups to learn team skills.
The funds required to run these programs come from revenues
generated by our research program, which has prospered when run
like a business.  In short, we have found that, as the title says, we
must do business like a business in the 90’s.

Reference

[1] “Electronics and the Dim Future of the University”, Eli M.
Noam, Science, vol 270, 13 October 1995.

VHDL International is a nonprofit organization whose mission is
to cooperatively and proactively promote VHDL as a standard
worldwide language for the design and description of electronic
systems. With VHDL International's commitment to supporting
electronic systems designers, semiconductor suppliers, EDA
companies and others in the industry, VI sought to assess whether
the upcoming generation of electrical engineers have tools and the
training they will need to take part in the post-digital electronics
industry.

In 1994, VHDL International completed a major education survey.
The objective was to assess the level of VHDL knowledge of BSEE
graduates and what steps VI can take to increase the VHDL
knowledge in engineering schools. This survey was completed by
Texas Instruments in the US. Toshiba in cooperation with Electronic
Industries Association of Japan completed a similar survey in Japan.

VI found undergraduate BSEE students receive significant training
in UNIX/C programming environment, but little training in specific
HDLs, such as VHDL or other HDLs. Based on the results of the
survey it was determined that only 14% of the US graduating seniors
and 2% of the Japanese graduating seniors had a working
knowledge of VHDL.

VI made a commitment to increase the level of VHDL knowledge
both in the US and Japan. As part of this commitment VI and its
member companies have put together a program targeted at the
universities in US and Japan. As part of this university program
Compass, Ikos, Mentor Graphics, and Viewlogic have donated  or

agreed to provide VHDL software and training materials to the
universities in US and Japan. VI is also cooperating with DARPA
to cosponsor  VHDL workshops for university instructors so that
there are enough qualified VHDL instructors to teach VHDL
courses in the universities.

We have already completed the first and second phases of this
university program in the US and Japan. In the first phase we sent
out the education report, a contact list of VI member companies
participating in the university program, a list of VHDL text books
and articles, and several issues of VHDL Times which is published
by VHDL International. This information packet was sent to about
90 US universities and 56 have responded to take part in the second
phase of this program. In Japan 29 universities are participating in
this program. In the second phase of this program VI has mailed
VHDL learning kits with VHDL simulation software from
Compass. Viewlogic has also sent their software out to
participating universities in the US and Japan. Mentor Graphics
and other VI member companies will be doing the same. Any
university interested in VI university program should contact
VI at 408-492-9806 or email at viadmin@vhdl.org.

Mahendra Jain
Executive Director, VHDL International

3140 De La Cruz Boulevard
Santa Clara, CA   95054

jainm@vhdl.org

VHDL International's University Program
Mahendra Jain, Executive Director, VHDL International

Robert Pettus
Professor and Chair, Electrical and Computer Engineering

University of South Carolina
Columbia, SC   29208

pettus@ece.sc.edu

roushrv
256



6

roushrv
257



7

A Technical Rationale for RASSP Educational Activities
Vijay K. Madisetti and Anthony J. Gadient

1.  Introduction

This article describes, the technical rationale behind the RASSP
Education & Facilitation program.  In this ground-breaking effort,
the Department of Defense’s Advanced Research Projects Agency
(DARPA) has explicitly funded technology transfer from its Rapid
Prototyping of Application-Specific Signal Processors (RASSP)
program to the university and industrial communities. Rather than
follow the traditional passive approaches (e.g., licenses, papers,
patents) for technology transfer from DoD programs to the industry
and the universities, it was felt that an active contracted effort
would meet the objectives of RASSP better and in a more timely
manner.

The RASSP E&F goals may be summarized as follows:

1. Propose a relevant curriculum in system-level design, and
create a high quality base of educational material based on
RASSP program results to support it.

2. Propose and implement a model for technology transfer
commensurate with the needs of industry and academia.

3. Utilize modern technologies, such as distributed collaboration
and WWW, to provide the necessary infrastructure to support
technology transfer.

The remainder of this article will discuss Bloom’s
Learning Taxonomy and the RASSP E&F team’s
Educational Maturity Model.

2.  Bloom�s Learning Taxonomy

Science is generally based on experimental
methods that allow the formulation of general
theoretical constructs. Applied sciences focus
scientific theory to purposeful activity. Technology
and engineering, on the other hand, put applied
science to work efficiently in a process context.
While science seeks basic understanding,
technology and engineering are primarily goal-
oriented activities in response to societal needs
[3,4].

Technical and engineering knowledge can take
three forms. Descriptive knowledge describes
things as they are, usually rules, general concepts,
and principles in a narrative manner. Prescriptive
knowledge is the technical know-how gained from
repeated application of descriptive knowledge, and
can be captured and transferred via case studies
and demonstrations. Finally, tacit knowledge is
implicit. This encompasses “tricks of the trade”,
including protected and competitively sensitive
knowledge. Shop floor and “skunk works” type

innovations are difficult to capture, and tacit knowledge can only
be learned by doing. Thus “hands on” or proximal learning
methodologies are most suitable for transferring tacit technological
knowledge.

We found Bloom’s taxonomy [2] very useful in the development of
a novel Educational Maturity Model (EMM) that has been used as
a framework for developing the RASSP educational material to
support the transfer of technical knowledge. Bloom classified
learning in the classroom into the following levels.

n Knowledge: Student learns terminology, facts, and definitions,
including benefits of applying the technology under study.

n Comprehension: Student can make use of ideas and material
without seeing their full implication. Extrapolation to new
situations is possible in limited context.

n Application: Student can apply knowledge to practical cases
through the use of tools.

n Analysis: Student can break down the components of a system,
and can identify hierarchies and relationships between
elements. Organizational structures and assumptions (unstated)
can be recognized.

roushrv
258



8

The RASSP DigestA Technical Rationale for RASSP Educational Activities

n Synthesis: Student is able to synthesize a system from start,
using decomposition methods or otherwise. This include ability
to produce a plan to design and implement the system, and a
mechanism to verify that the plan works and will achieve
objectives.

n Evaluation: Student can evaluate, compare, critique, and judge
various alternative solutions and improve upon the product.

3.  Educational Maturity Model (EMM)

Derived from Bloom’s taxonomy, we developed our Educational
Maturity Model (EMM) [5], Figure 1, that allows us to classify
the levels of maturity of educational material (see also Figure 2).

1) Basic - This level of material supports knowledge and
comprehension abilities on the part of the student.

2) Applicative - This level indicates that educational material
facilitates usage of tools and application of knowledge to
practical problems in limited context.  Knowledge is primarily
narrative.

3) Deductive - Supports learning of analytical aspects of
technology, and the capability to apply general principles to
specific cases. Prescriptive aspects of the knowledge are
transferred at this level.

4) Productive - This level supports synthesis-related and evaluative
aspects of learning and is the most advanced level. Included are
the tacit aspects of the technology being transferred.

The underlying  ideas that motivate the EMM, indicate that Level
1 (basic) can be supported by typical classroom instruction and
presentation, Level 2 (applicative) can be supported by hands-on
laboratories that make use of point tools (e.g., a VHDL simulator)
to perform simple example problems, Level 3 (deductive) can be
supported by advanced hands-on labs and notes describing the design
of an advanced subsystem(s), and the most advanced level, Level 4
(productive) can be supported by material that allows the hands-
on design and prototyping of actual complex systems through the
use of tools and through evaluation of various trade-offs. Level 4
educational material prepares the student, with little additional on-
site training, for an immediate role as a productive engineer in
industry or government. Often a particular industry may hire
engineers educated to Level 3 and provide on-site courses to raise
the level of knowledge to Level 4. Level 4 does not stand alone but
requires “Level 3 understanding” in a number of related areas of
specialization, as it deals with aspects of the complete system.

The Educational Maturity Model (EMM) allows organizations to
develop and evaluate training material at each of the levels.
Currently, very little is done in the typical university classroom
beyond Levels 1 and 2.  Levels 3 and 4 are primarily outcomes of
knowledge gained in industry, and would greatly benefit the quality
of education in the engineering area were it included in the
university curricula. Cooperative industrial training, where the
student spends summers in industry, is often an attempt to substitute

for Levels 3 and 4.

In our efforts as part of the RASSP program, in addition to Levels
1 and 2, we have attempted to ensure that the material produced
would support education at Levels 3 and 4. To accomplish this, the
RASSP E&F team has developed a novel module-based framework.
Similar to the knowledge unit concept proposed by the Joint
Curriculum Task force [1], modules are developed on specific topics
and then used in the development of a new course or for updating
an existing course. The attractiveness of this approach is that it is
easy to insert new material into an existing course or change the
emphasis of a course through the use of modules. Likewise, it is
easy to develop a new course that is customized towards a specific
set of goals by grouping together a collection of modules. These
capabilities are extremely useful in overcoming the traditional
difficulty that instructors have in inserting new courses into an
existing curricula.

A typical module, illustrated in Figure 3, consists of three components.
The first component is the fundamental theory underlying the topic
being covered. For example, in the module on Test Technology, the
theory includes a discussion of the test problem, test generation and
fault simulation theory, and design for testability techniques. The
second component consists of examples, problems, and case studies.
This component provides simple examples that illustrate the theory
and provides problems that can be used for homework exercises.
The third component of a module is a hands-on laboratory exercise.
The laboratory exercise is intended to rigorously demonstrate the
concepts taught in the other sections of the module by providing an
opportunity to apply those theories on a significant problem in a
learn by doing fashion. The article by Maximo Salinas, et. al.,
entitled “RASSP Educational Activities” presents the RASSP E&F
educational activities in more detail including a description of the
RASSP E&F team’s development of a comprehensive curriculum
for digital system design.

roushrv
259



9

The RASSP DigestA Technical Rationale for RASSP Educational Activities

Vijay K. Madisetti
ECE,

Georgia Tech.
Atlanta, GA 30332-0250

vkm@ee.gatech.edu

Anthony J. Gadient
SCRA

5300 International Blvd.
N. Charleston, SC 29418

gadient@scra.org

Thus, the Educational Maturity Model (EMM) allows a synergistic
effort in both the creation, testing, and archiving of educational
material relating to new technology developments.  We have
recently proposed the creation of a national digital design archive
that would utilize the state-of-the-art techniques to address the
issues of quality, peer review, and comprehensiveness of a library-
based educational system.  Course modules, simulation tools, and
interactive laboratories, will now undergo a systematic
classification and review process before being incorporated into
the proposed National Digital Design Archive[5].

References

[1] ACM/IEEE-CS Joint Curriculum Task Force, Computing
Curricula 1991, ACM Baltimore, MD., Order No. 201880,
1991.

[2] Bloom, B. S. (1956). Taxonomy of educational objectives,
Handbook 1: Cognitive domain. New York: Longmans Green.

[3] Frey, R.E. (1989). A philosophical framework for
understanding technology. Journal of Industrial Teacher
Education, 27(1), 23-35.

[4] Lewis, T. and Gagel, C. (1992). Technological literacy {A critical
analysis. Journal of Curriculum Studies, 24 (2), 117-138.

[5] Madisetti, V., Gadient, A., Stinson, J., et. al., (1997) DARPA’s
digital system design curriculum and peer-reviewed educational
infrastructure,  Proceedings of the American Society for
Engineering  Education, June 1997

roushrv
260



10

1. Introduction

Today, digital system design education is focused on a limited subset
of embedded digital system applications. The academic focus tends
to be on applications that are limited in complexity, lack real-time
constraints, and can generally be satisfied by “hardware-only”
implementations due to their limited flexibility [1,3]. The design
of larger systems is taught via extrapolation of this approach.

Industry needs engineers that are trained in the latest, most effective
embedded digital system design technologies. To meet this industrial
need, the educational modus operandi must be updated to
incorporate the revolutionary new design techniques being
developed in the RASSP program and elsewhere.

To ensure the successful transfer of RASSP program technologies
in the longer term, RASSP technologies need to be reflected in the
curricula of our academic institutions. To accomplish this goal, a
novel RASSP Education & Facilitation (RASSP E&F) program
was defined and a team was tasked with leading the RASSP
education efforts. The RASSP E&F program was awarded in June
1994 to a team led by SCRA with team members from the Georgia
Institute of Technology, the University of Virginia, Raytheon, the
University of Cincinnati, Arthur D. Little and Enterprise Integration
Technologies (EIT).  The mission statement for the education team
was fairly comprehensive:

n Educate senior management as to the potential benefits
obtainable through the application of RASSP technology
thereby stimulating the use of RASSP technology and the
demand for RASSP trained professionals;

n Work with universities to effect a paradigm shift in the graduate,
undergraduate, and continuing professional digital system
design curricula of small- and medium-sized universities to
ensure that graduating students can meet industry’s need for
RASSP trained engineers, scientists, and managers.

The education program of the RASSP E&F effort described in  this
article has been designed to allow the incorporation of not only the
RASSP-developed technologies, but also all future technologies
necessary for improved products and processes. The key strengths
of this program are two-fold. First, the program is modular so that
academic programs can use only those portions that are appropriate.
Second, the program supports the continuous upgrade of the
material, thereby making the educational material always up-to-
date, and supporting the involvement of all participants in the
education of system design. The latter attribute creates the potential
for activities that can outlive the RASSP program.

2.  Module Concept in Education

The RASSP E&F team has developed a novel module-based
framework that can be used to efficiently insert the technology
being generated on the RASSP program into university curricula.

RASSP Educational Activities
Maximo Salinas, James Aylor, Robert Klenke, Harold Carter, Vijay Madisetti, and Anthony Gadient

Similar to the knowledge unit concept proposed by the Joint
Curriculum Task force [2], modules are developed on specific topics
and used to develop courses. The attractiveness of this approach is
that it is easy to insert new material (through the use of a module)
into an existing course. This technique is extremely important
because of the inertia of curricula development.

Each module consists of a comprehensive discussion of one
technical sub-area, (e.g., virtual prototyping) and presents the
technical details, examples, and case studies needed to obtain a
thorough understanding of the topic. The specific material found
in a module includes such items as presentation materials, notes
on presentation materials, predefined laboratories, and homework
problems with solutions.

A typical module, illustrated in Figure 1, consists of three
components.  The first component is the fundamental core of design
principles (e.g., in a high speed IIR digital filter design module, it
could outline the use on the basic operations such as retiming,
pipelining, and unfolding of the flow graph).  The second component
consists of examples, metrics, case studies and problems.  This
component provides simple examples that illustrate the theory
covered in the fundamental core and provides problems that can
be used for homework exercises.  The third component of a module
is a hands-on laboratory exercise.  The laboratory exercise is
intended to rigorously demonstrate the concepts taught in the other
sections of the module by providing an opportunity to apply those
theories on significant problems in a “learn by doing” fashion.

Each module represents a unit of a course that is independent of
other modules in the course (aside from prerequisite requirements).

roushrv
261



11

A typical module is designed to provide three hours of lecture time.
The laboratory portion of a module may actually not exist for all
modules or may span multiple modules. In the ideal situation, the
lab components represent a continuous, semester long design project
broken into smaller pieces.

There are many advantages to encapsulating a focused amount of
material in a modular fashion. These include:

n Modules can be used in a “mix and match” scenario, depending
upon the particular area of digital system design as well as the
target audience needs;

n As technology advances in an area, only modifications to
applicable modules are necessary. This approach reduces the
cost of upkeep and makes it easier to keep pace with the rapid
pace of technological change;

n Modules can be easily incorporated into existing graduate or
advanced undergraduate courses within a university.

The following is a comprehensive list and overview of the modules
that have been developed by the RASSP E&F team. Each module
is developed by the organization with the greatest strength in that
technical topic. For example, the DSP Architectures module was
developed by the Georgia Institute of Technology, whereas the
Design for Manufacturing module is being developed by Raytheon
and Arthur D. Little. Because the development of each module
may be done by a different author, a standard template was
developed to maintain a consistent format amongst the modules.
These modules are available to instructors for use in their curricula
via <http://rassp.scra.org/ >. Note that new modules currently
under development are shown in italics and are scheduled for
completion in Summer 1997.

n VHDL Basics: an introduction to the VHSIC Hardware
Description Language (VHDL), IEEE Std 1076-1993, and its
fundamental concepts.

n Structural VHDL:   a description of the use of VHDL in
describing models in terms of component instantiations and
interconnections.

n Behavioral VHDL:   a description of VHDL features that can
be used to describe the outputs of a component in response to
changes in its inputs.

n Advanced Constructs in VHDL:  a description of the
constructs in VHDL that are more reminiscent of high-level
programming languages such as file I/O, abstract data types,
shared variables, etc.

n System Level Modeling:  an introduction to techniques used
for modeling systems at a high level (CPU, Memories,
Interconnect, etc.) in a top-down design process.

n Hardware/Software Codesign:  an introduction to the
concepts of codesign (concurrent design) of hardware and
software, from specifications, for embedded systems.

The RASSP DigestRASSP Educational Activities

n Hardware/Software Partitioning:  an introduction to the
techniques used, in the design of embedded systems, to
determine which functions are to be implemented in software
on COTS processors and which are to be implemented in
hardware (ASICs) and the trade-offs associated with such a
partitioning.

n DSP Architectures:  a description of various computation,
communication, I/O, software, test, and maintenance
architectures for embedded digital signal processors.

n Scheduling & Assignment for DSP:  methods for allocation,
scheduling and assignment of a set of software tasks in a DSP
application to a selected hardware architecture.

n DSP Algorithm Design:  a description, including examples,
of a number of simulation-based functional and timing design
and verification environments for design of digital signal
processing algorithms.

n Communication Protocols:  a presentation of selected
communications protocols for DSP architectures geared
towards understanding the relationship between them and
overall system performance.

n RASSP Methodology Overview:  an introduction to the
RASSP program including a comparison of pre-RASSP and
current RASSP design methodologies.

n Virtual Prototyping for DSP Architectures:  a description
of virtual prototyping (simulation based design) as applied to
the design of DSP systems.  Included are executable
specifications, algorithm development, architecture selection,
detailed design and implementation and test.

n Virtual Prototyping using VHDL:  A discussion on how a
virtual prototyping based top-down design flow is realized in
VHDL. A complex design example is presented showing
detailed integration and test.

n Hardware Synthesis Overview:  an introduction on the
concepts of hardware synthesis including definitions, how
synthesis tools function, and general coding styles for
successful hardware synthesis.

n Libraries: Generation, Maintenance, and Reuse
Overview:  an overview of problems that inhibit hardware/
software reuse practice and current solutions for them. A survey
of reuse metrics and a tool that tracks them is also presented.

n Test Technology Overview:  a presentation of the
fundamentals of digital systems testing including fault
modeling, test generation and fault simulation algorithms, and
design for testability and built-in self test techniques.

n Requirements and Specifications Modeling:  a description of
how executable specifications are derived from customer
requirements, and a description of how they drive the top-down
design process through regression testing.

roushrv
262



12

n Performance Modeling using VHDL:  a presentation of the
environments that exist for doing simulation based performance
modeling using VHDL. A discussion of hybrid modeling – the
simulation of mixed performance and behavioral models – is
included.

n Enterprise Integration:  a presentation on the supporting EDA
infrastructure, tool/configuration management rationale,
workflow methodologies, and distributed collaboration and
design environments, utilized in a top-down system-level
design process.

n Cost Analysis for Design:  a discussion of how quantitative
and empirical cost models for design, implementation, test
maintenance, and production can be utilized in the front-end
design of embedded digital systems, in a concurrent engineering
approach.

n Robust Design for Quality:  a presentation on how products
can be designed for 6-sigma quality. Included are state-of-art
discussions on Taguchi methods, Monte Carlo methods, surface
response, and fuzzy set methods for improving quality of
products by improving their tolerance to process parameter
variations with case studies.

n Project Management:  this presentation covers the scheduling,
administrative, workflow, financial, and customer-support
related issues in managing large electronics system design
projects.

n Design for Manufacturing:  a description of how products
and processes are designed for ease of manufacture.

n Implementation Technologies: a description of the various
technologies available for implementation of digital systems
including trade-offs and changes in the design process for them.
Included are FPGAs, ASICs, Custom ICs, and MCMs.

After initial development, each module goes through an extensive
review process beginning with an internal RASSP E&F peer review,
which aligns the modules’ focus for coherent course integration.
Because authors have different styles, care must be taken to
maintain consistency in module formats,  terminology, and content,
in terms of depth and detail. External review by independent experts
from academia and industry helps to assure correctness and
relevancy of the information captured in the modules.

The presentation material is being developed using Microsoft
PowerPoint(TM), version 4.0. The slides use bulletized text,
illustrations, etc. to communicate the subject matter. Associated
with each slide is a “notes page.” These notes provide the instructor
with in-depth information including background, context, and
references for further topic exploration.  If desired, copies of the
slides may be provided to the students.  Although the hard copies
tend to be in black and white, the presentations are in full color,
when shown with a projection system.

3.  University Education

To create the technology push for RASSP, an innovative program
targeted primarily at small- and medium-sized universities has been
established. As is illustrated in Figure 2, the education and research
programs within universities are ultimately driven by the application
needs of industry and government. These application areas
determine the types of resources (e.g., qualified personnel) and
technologies (e.g., research) that industry and government need
from the university community. To ensure the successful transfer
of RASSP technologies over the long-term, these technologies must
be reflected in the curricula of the academic institutions. This
approach will assure that industry’s need for “resources” who
understand the RASSP technology and for improvements to that
technology will be met by the university community. This approach
will also provide the RASSP technology push that will complement
the technology pull being created through Executive Seminars.
Furthermore, given the increasing rate of technological change in
the area of embedded digital systems, it is important that
mechanisms be established that will help assure that the academic
community can meet the changing needs of industry and
government.

The need to update the existing curricula is evidenced by a recent
survey sponsored by Texas Instruments and Toshiba. The results
of this survey, designed to assess the status of hardware description
language (HDL) education in engineering schools within
universities in the United States and Japan [5], indicated an
alarmingly low percentage of graduating seniors possessing a
working knowledge of either VHDL or Verilog. Given the

The RASSP DigestRASSP Educational Activities

roushrv
263



13

importance of top-down, language-based design techniques to meet
the design challenges brought about by the rapid change in
manufacturing capabilities, the results of this survey are significant.
Indeed, this survey stimulated Robert Rozeboom, VP of Texas
Instruments, to say, “It’s clear there is a significant need, and
therefore, opportunity to increase the amount of training among
undergraduate electrical engineering students at major
universities worldwide [4].”

Through the RASSP E&F program, DARPA and the Tri-Services
are working to help universities adapt their curricula to incorporate
RASSP technology so that tomorrow’s graduates (BS, MS, Ph.D.)
will be able to better meet the needs of industry and government.
The approach being taken is to not only help the university
community incorporate RASSP technology today, but also to
establish a framework that will help the university community to
effectively and efficiently respond to the ever changing needs of
industry and government brought on by the dramatic rate of
technological change.

One of the key challenges in the development of module-based
RASSP curricula is determining what modules should be developed.
The relationship between the module definition process and a
module-based RASSP curriculum is presented in Figure 3. Using
this technique, an example concentration area within a masters

The RASSP DigestRASSP Educational Activities

degree program is illustrated by the three courses shown in Table 1.
These courses, RASSP 100, RASSP 101 and RASSP 102 have
been piloted at the University of Virginia, the University of
Cincinnati and the Georgia Institute of Technology. Currently more
than 80 universities around the United States have obtained modules
developed by the RASSP E&F team for use in their curricula.

The proposed university course sequence begins with RASSP 100,
which focuses on rapid prototyping using VHDL, and explores the
different levels of modeling, the relatively new practice of hardware/
software codesign, and library reuse. It is followed by RASSP 101
and RASSP 102. RASSP 101 explores DSP algorithms and
architectures in detail. RASSP 102 then examines some of the
enterprise level issues associated with embedded digital system
design. Not shown in Table 1, RASSP 103, is a project-based course
designed to apply the principles learned from the earlier RASSP
courses and to expose the student to a “near” industry scale problem.
Table 1 also illustrates the flexibility of the modular approach.

By defining a module-based framework, proposing an example
curriculum, and developing specific course material, the RASSP
E&F program is creating an infrastructure that can help to ease
transition from today’s circuit design dominated curricula, to one
that incorporates the spectrum of top-down design capabilities
needed to design sophisticated, embedded digital systems. The most
significant attribute of the module based approach is its ability to

roushrv
264



14

outlive the RASSP program and be
ultimately “managed” by the
education community itself.  It is
also generic in such a way that it
can help universities more easily
adapt to the rapidly changing state-
of-the-art in embedded system
design technology.

3.1  Transferring the E&F
Education Framework

In addition to developing an
infrastructure to assist in the
transfer of the RASSP technology,
the RASSP E&F team is leading a
series of “teach the teacher”
educator workshops. These
workshops are designed to provide
instructors with the understanding
and material they need to include
the latest technology in the classes
they teach. The RASSP E&F team
is working with other
organizations, for example, the
National Science Foundation and
VHDL International (VI), to
ensure that the widest possible
benefits are derived from these
workshops.

Working together with VI, several
workshops have been held and
others are scheduled. The focus of
these workshops is on VHDL and
its use in top-down design. (For more information see pages 6 &
9). VI is working with its members to ensure low or no cost access
to VHDL software for universities. Together, the VI and RASSP
E&F efforts are providing the impetus for addressing the need so
clearly stated by Robert Rozeboom, VP of Texas Instruments. In
addition, a Top-Down Design Workshop for Educators has been
developed and is scheduled for mid-August at the University of
Virginia.

4.  Professional Education

In order to transfer RASSP technology to engineers, educators,
and managers, the E&F Education team has devised a format in
which the education modules can be delivered in three to five day
short courses available to working professionals. Initially, a series
of short courses modeled after the university courses RASSP100,
101, and 102 which included largely the same modules was
developed. It is important to emphasize that the modules used in
these short courses are exactly the same as those in university
courses. Any required laboratory and other exercises accompanying

The RASSP DigestRASSP Educational Activities

the modules, however, required modifications to accommodate the
more limited time constraints imposed by the short courses over
the university courses.

More recently, however, the short course mechanism has been
modified to address different audience’s needs. The team has de-
emphasized the predefined short course sequence and allowed
industrial audiences to design their own short courses by selecting
from the list of available modules in an almost a la carte fashion.
The education team must, of course, ensure that any prerequisites
are satisfied.

5.  Executive Education

To help create a pull for the RASSP technology and professionals
versed in that technology, a series of Executive Seminars have
been developed and delivered. Targeting senior executives in
industry and government, these seminars are designed to generate
understanding and the desire to incorporate RASSP technology
into their business by focusing on the business implications
underlying the RASSP technology and presenting the business case

roushrv
265



15

behind this technology. To date, seminars have been given to senior
managers in such places as Rockwell, Alliant Defense Electronics
Systems, the National Security Agency (NSA), Texas Instruments,
Allied Signal Corporation, NASA, and so on.

The seminars draw much of their material from the E&F educational
modules. Unlike the university and short courses, however, seminars
will only rarely include complete modules. Rather, they present
the high-level concepts contained in the modules in order to
communicate the advances of RASSP and encourage further
inspection via additional courses or other RASSP transfer activities.
The article by Jim Scharf, Sr., Mitchell Heller, and Larry Karns
titled "Executive Education: Key to Implementing RASSP" explains
executive education activities in more detail.

6.  Conclusions

The RASSP Education and Facilitation team has been tasked with
leading the RASSP technology transfer efforts. Very early in the
process, the E&F team realized one of the key elements to a
successful transfer of RASSP technology was the incorporation of
the technology into academic programs. Realizing how hard it is
to insert new technologies into a curriculum, the E&F team
developed a novel approach to accomplish this task. This new
approach, based on the development of technology modules, is
currently being tested at the various universities of the team
members. At the same time, the E&F team is initiating programs
to see that this approach and the RASSP technology is adopted  by
the academic community. It is anticipated that the approach and
the specific modules will be of significant benefit to the educational
community, given the enormous task of keeping curricula current
with the advances in microelectronics. An additional benefit of the
module concept is the ability to reuse material for presentation in
university courses, short courses, and executive seminars.

References

[1] A.B. Tucker and B. H. Barnes, “Flexible Design: A Summary
of Computing Curricula 1991”, IEEE Computer, Vol. 24, No.
11, Nov. 1991, pp.56-66.

The RASSP DigestRASSP Educational Activities

Maximo Salinas, James Aylor, and Robert Klenke
Department of Electrical Engineering

University of Virginia
msalinas, jha, rhk2j @virginia.edu

Harold Carter
University of Cincinnati

ECI Dept., Mail Location 30
Cincinnati, OH  45221-0030

hal.carter@uc.edu

Vijay K. Madisetti
ECE,

Georgia Tech.
Atlanta, GA 30332-0250

vkm@ee.gatech.edu

Anthony J. Gadient
SCRA

5300 International Blvd.
N. Charleston, SC 29418

gadient@scra.org

[2] ACM/IEEE-CS Joint Curriculum Task Force, Computing
Curricula 1991, ACM Baltimore, MD., Order No. 201880,
1991.

[3] S.W. Director and R. A. Rohrer, “Reengineering the
Curriculum: Design and Analysis of a New Undergraduate
Electrical and Computer Engineering Degree at Carnegie
Mellon University”, Proceedings of the IEEE, Vol. 83, No. 9,
Sept. 1995, pp. 1246-1269.

[4] M. Jain, “Executive Director’s Message”, VHDL Times, Vol.
4, No. 3, page 2, Third Quarter 1995.

[5] VHDL University Education Report, from VHDL
International, Santa Clara, CA.

roushrv
266



16

roushrv
267



17

Executive Education: Key to Implementing RASSP
Jim Scharf, Sr. and Larry Karns

Abstract

Regular readers of this Digest are familiar with the RASSP goals,
the technical challenges, and how they are being met. Of equal
or greater importance to the overall success of the RASSP
program is the widespread adoption of the tools and methods,
architectures, and infrastructure by American industry. This can
only be achieved when key executives are informed of the cost/
benefit issues and convinced to make the investments necessary
to adopt the RASSP technology. This article describes the RASSP
Education and Facilitation (E&F) team efforts to document and
present the business benefits of embracing RASSP achievements.

1. Introduction

The RASSP program is now in its fourth year and has a significant
list of achievements to its credit. These results can be accessed on
the RASSP website at http://scra.rassp.org  - one of the three
highest rated websites in DSP.

RASSP is a program which was intended to benefit a wide segment
of the American Electronics Industry. To ensure that the
advancements developed under RASSP find their way into industry
and academia, DARPA has funded a separate major task under
RASSP for the purpose of Education and Facilitation to focus on:

n University Education

n Executive Education

n Single source of information.

The University Education component concentrates on creating a
technology push by educating future engineers knowledgeable in
the RASSP methodologies and architectures. This is accomplished
through development and dissemination of university level course
material for instruction in the technology and methodologies of
RASSP. This has led to the acceptance of courses of instruction at
a number of key universities which will ultimately result in a
continuing supply of engineers skilled in RASSP methods.

The Information activity of the RASSP E&F program has the goal
of disseminating information about the RASSP program and related
activities. Mechanisms such as this Digest and the RASSP web
site are used to accomplish this. The RASSP web site provides
access to RASSP program information and links to many simulation
models for digital circuits.

The Executive Education task has the goal of creating the
technology pull or demand for RASSP methodologies and
engineers trained in them. The targets for this effort are threefold.
First, it is industry which creates jobs and builds products, and the
adoption of the RASSP methodologies and approaches will increase
the demand for the supply of  skilled engineers. Second, purchasers
of these needed services and systems, namely the government
project and program offices, will help create demand if they request

systems designed in the RASSP manner. Finally, demand can be
created at the specific defense management colleges by training
government program managers in the advantages of acquiring
systems based on RASSP. This article focuses on the Executive
Education activity of the RASSP E&F Program.

2. The Need for Executive Education

It is necessary to educate key executives and decision makers about
the benefits that they can derive from RASSP adoption.  To
successfully educate any audience, the needs of the customer must
be addressed in order to get and hold his/her attention and maintain
interest while conveying information.

One goal of RASSP E&F is to communicate with executives who
manage people that design digital signal processors and systems
or who manage the procurement of  those systems.  They need to
be informed of the benefits that they and their companies or agencies
can derive from RASSP.  In order to have the maximum impact on
executives, a familiar venue with which they can relate needs to be
utilized.

3. The Executive Education Approach

Educating the DSP community  is necessary in order to create the
demand for RASSP. Presentations or seminars are given to key
individuals in the target organization. The RASSP E&F team works
hand in hand with the RASSP prime contractors to ensure maximum
success of these seminars. The components of the Executive
Seminar are:

n Management Presentation including the business case for
adopting the RASSP methodologies, architectures and tools
(infrastructure),

n Top level technical presentations, and

n Technical  demonstration(s).

The Management Presentation, including a RASSP business case
has been prepared and delivered by the RASSP E&F team. The
technical presentations and demonstrations are delivered by the
RASSP prime contractors.

The demographics and desires of the target audience define the
structure of the executive seminar (i.e., agenda for the day). The
day can be the Management Presentation alone. This will be done
by a member of the RASSP E&F team and can be accomplished
with or without the attendance of one or more individuals from the
RASSP prime contractors. Our experience has shown tremendous
advantages when a member of the prime contractor's team is present
to answer any of the more technical questions. This presentation,
with questions, lasts about two hours and is aimed at the high level
decision makers of an organization.

The second option is to add technical presentations, presented by a
member of the RASSP prime contractors, to the management, or

roushrv
268



18

business case, presentation. This will add another couple of hours
to the Management Presentation, so this Executive Seminar would
last a half day. While the first part of the presentation is aimed at
the high level decision makers in the organization, the target
audience for the technical presentation is the technical manager
and lead engineer.

A company, or government program office, can elect to have a day
of RASSP by also adding technical demonstrations for the
afternoon. The audience for these demonstrations would be similar
to that for the technical presentations. If this option is chosen, there
needs to be a great deal of discussion among the target audience,
the RASSP prime contractors and the RASSP E&F team
representative. There are many tools and parts of the methodology
that can be demonstrated during this half day. An entire
demonstration of everything involved in the RASSP program could
take a week or more, so it is imperative that the major interest of
the target audience be understood to maximize the benefit of the
time spent during these demonstrations.

4. The Management Presentation

The purpose of the Management Presentation is to present the
business case for the adoption of the RASSP methodologies,
architectures and infrastructure. The presentation is organized into
the following sections:

n Problem statement

n Efforts already being done outside of RASSP

n The need for RASSP

n The RASSP technical approach

n Results to date

n Business case analysis

n Next Steps.

The primary purpose of this presentation is to present a framework
by which an organization, together with a RASSP prime contractor
and RASSP E&F, can begin to calculate the organization specific
benefits of  adopting the RASSP technology. It is this presentation,
along with the scheduling (in conjunction with the Government) of
the executive seminars, that is the major focus of the Executive
Education function of the RASSP E&F program.

4.1 Scheduling a Seminar

The process of scheduling and setting up an executive education
seminar begins with suggestions of candidate organizations and initial
contacts and telephone inquiries to validate the choice of organization,
obtaining Government approval, and locating the proper facilitator at
the candidate site. Any organization can become a candidate for an
executive seminar by contacting the RASSP E&F program
representative, Anthony Gadient, (803) 760-3376. Candidate
organizations need to be involved in the development of digital

signal processing, either for military or commercial markets, or
they should be government representatives involved in the
procurement of DSP systems. The facilitator at the site will be
responsible for arranging a meeting with high level executives at
his organization.

4.2  Prior to the Seminar

Prior to formalizing the agenda and schedule, the prospect is
encouraged to visit the RASSP www site (http://rassp.scra.org )
and to view a 15 minute video tape overview of the RASSP program
produced by one of the prime contractors.

If only the single executive briefing can be achieved in the first
meeting, all efforts are made to encourage follow up at a later date
at the customer’s site or at the prime vendor’s site for the full
technical lecture and demonstration(s).

4.3  Seminars Delivered to Date

To date the Management Presentation has been delivered at eight
major organizations, including Texas Instruments, GEC Marconi,
and Rockwell/Collins. Additionally, the Management Presentation
has been delivered at government installations, such as Tinker Air
Logistics Center.

4.4 Feedback

Subsequent to the delivery of an Executive Seminar, the attendees
are asked to fill out a simple one page, two sided evaluation form
regarding the achievement of objectives and to solicit ideas on how
the experience could be improved for the attendee. Responses
received to date have been positive, and a number of good
suggestions have been offered which will be incorporated into future
presentations.

One area that is being improved is the business case for RASSP.
Executives are attentive to messages transmitted in terms of profits
and losses, assets and depreciation, expenditures and savings and
overall return on investment (ROI). While experiential data has
been used to support the business case, it is very hard to come by
good, independently verified business case data. The RASSP E&F
Executive Education team is working diligently in seeking out good
data and any feedback or suggestions would be welcomed.

The RASSP program itself is producing a significant volume of
verified cost data. One of the key elements of the RASSP program
is the development and measurement of specific performance
improvements through benchmarks. These benchmark projects are
defined and monitored by MIT Lincoln Lab, an entity independent
of any of the RASSP prime contractors or tool vendors.

5. Back to Business

The current presentation already contains convincing evidence of
the business reasons to adopt the benefits derived from RASSP. A
basic business example from the current presentation is shown in
Figure 1. This graph  shows that in a commercial setting, a delay

The RASSP DigestExecutive Education: Key to Implementing RASSP

roushrv
269



19

in bringing a product to market within a proper “market window”
of time can cost a company in lost revenues and consequently lost
profits. The case is made that RASSP accelerates the development
process significantly, thus averting the potential loss.

DARPA’s thrust with RASSP can have even more impact for
military prime contractors. As shown in Figure 2, the typical
scenario for systems development is centered around achieving a
significant level of performance beyond current capabilities. This
typically involves trying to push technology too far in the early
years of a program with a point solution in order to achieve (possibly
overly ambitious) goals, only to see system performance ultimately
fall behind the commercial development curve in later years. The
cost of the single point push at the inception of the project is high
and artificially inflates systems cost, while the loss of capacity in
the later years drives the early need for a replacement system -
again at higher cost.

By contrast, RASSP’s Model Year Architecture approach alleviates
the problems on both ends of the time line, saving a great deal of
cost. With the RASSP Model Year Architecture approach
(displayed in Figure 3),  a scalable, flexible approach is taken in
the initial design phase, and all of the information is captured in a
database.  As time progresses, lessons are learned from the initial
design, and the technology curve continues to advance.  With a

high degree of reuse guaranteed, it is far more cost effective to roll
out improved designs in succeeding model years than the traditional
“push hard, then age” scenario.

Figure 4 shows how the costs of a project are committed early,
long before a physical prototype can be produced. Once these costs
are committed, it becomes too late to run “what if” studies or to
explore alternative architectures and methods which might have
improved the system performance or reduced costs or both.

Through the process of Virtual Prototyping, hierarchical models of
trial systems can be built, explored and evaluated in a software
virtual prototype. Actual data showing the benefits which can be
achieved by the use of Virtual Prototyping, when presented as in
Figure 5, makes a powerful case that is easily understood by
engineer and executive alike. Direct enumeration of the actual
average times required on a RASSP based system, which has been
reduced from months to days, conveys a strong and unmistakable
message. Graphics, such as these, coupled with compelling stories
of actual use of RASSP techniques, help to make a forceful case
for the executives who make the business decisions.

The RASSP DigestExecutive Education: Key to Implementing RASSP

roushrv
270



20

6.  Continuing Improvement

Work is continuing with the RASSP prime vendors and MIT Lincoln
Lab to develop additional business cases and amplify and focus
the messages from the cases already in use. Collaboration is being
actively pursued with other companies who have case history data
for work that they have done using methods that are subsets of
RASSP. Additional information is being sought from companies
who wish to adopt some or all of RASSP’s methodology,
infrastructure and architecture and who are willing to participate
in “before and after” case studies for future publication.

One significant piece of additional work that has recently begun is
the development of a formal business case example for the adoption
of RASSP by a DSP systems vendor. The initial case chosen for
study was one developed by Lockheed Martin ATL under their
contract to study cost models. They have produced a detailed
comparison of the development of a new AWACS-like system with
significant DSP requirements both under the RASSP methodology
and in the conventional manner. This report provided the basic
facts required to build a business case.

The model for building the actual case came primarily from the
Department of the Army, "Economic Analysis Manual", U.S. Army
Cost and Economic Analysis Center, July 1995. The results of the
analysis showed that it was possible to utilize the cost savings
from switching to the RASSP approach on the demonstration-

validation phase alone to pay for all required tooling and training
required by the adoption of RASSP and still produce an acceptable
return on the initial investment (Table 1). In this case, the traditional
methods would cost $12.9 Million for the Demonstration/Validation
phase. Adopting RASSP techniques would require an initial
investment of $2 Million, but would return 103% on the investment
in two years.

Updates to the Executive Seminar presentation will be made as
new information evolves. Likewise, the RASSP E&F Program will
continue to make improvements to better achieve the goal of
promulgating and proliferating the benefits of the RASSP program
to American industry and government.

The RASSP DigestExecutive Education: Key to Implementing RASSP

Jim Scharf, Sr.
Raytheon Electronic Systems

Software Engineering Laboratory
M/S-T3MJ26

50 Apple Hill Drive
Tewkesbury, MA 01876

Larry Karns
Arthur D. Little

5300 International Blvd.
North Charleston, SC  29418

karns@scra.org

roushrv
271



21

roushrv
272



22

Abstract

The purpose of the RASSP E&F Information Activity  is to develop
awareness and interest in RASSP technology by providing easy
access to useful and well organized RASSP-related information.
This article provides insight into two of the mechanisms that were
implemented in order to provide access to the RASSP-related
information: a newsletter and world wide web site. Additionally,
the article looks at the upper hierarchy in which data is stored on
the RASSP world wide web server.

1. Introduction

To develop awareness and interest in RASSP technology, the
RASSP E&F program is providing universal access to RASSP
information in a number of ways. A World Wide Web (WWW)
site “http://rassp.scra.org/ ” for the RASSP program has been
established. This WWW site was identified in IEEE Spectrum as
one of the top-three web sites for Digital Signal Processing
(DSP)[1]. The RASSP WWW site contains both general and
specific RASSP information including a RASSP overview, technical
documents from RASSP contractors, and educational material to
support the teaching of the advanced methods being developed by
the RASSP program. In addition to the RASSP WWW site, this
periodical, entitled The RASSP Digest, is published that provides
insight into the accomplishments and progress obtained in RASSP
and other related programs. Technical articles, conference tutorials
and papers are also developed to facilitate information distribution.

2. The RASSP Digest

The RASSP Digest provides periodic highlights of the RASSP
program. Each issue has a focus and contains a wealth of
information on the RASSP efforts in the focus area as well as articles
from well-known authors outside the program. The current and all
past issues are on the web server in multiple formats. The newsletter
page may be accessed from the main menu. The list of  topics
covered to date are as follows:

n RASSP Education Activities – Vol. 4, June, 1997

n Technology Base Efforts – Vol. 3, September, 1996

n The Road to Enterprise Integration — Vol. 3, 1st. Qtr. 1996

n Model Year Architecture — Vol. 2, 4th. Qtr. 1995

n RASSP at 24 Months — Vol. 2, 3rd. Qtr. 1995

n 4X - Charting the Course — Vol. 2, 2nd. Qtr. 1995

n Very High Speed Integrated Circuits (VHSIC) Hardware
Description Language (VHDL) — Vol. 2, 1st Qtr. 1995

n RASSP After One Year — Vol. 1, 4th Qtr. 1994

RASSP Informational Activities
Jack Stinson, Tommy Taylor, Tom Egolf and Shahram Famorzadeh

3. RASSP Information Server

The RASSP Information Server contains information regarding all
parts of the DARPA sponsored RASSP program. The format for
the frames used on the RASSP server is seen in Figure 1. The
"Main Menu Frame" on the left side is always present. The large
"RASSP" in the upper left corner will return you to the homepage.
The "Secondary Menu Frame" at the top of the page changes based
on the page selected. Finally, the "Information Frame" in the middle
of the page is where the information appears.

Figure 1

Link to Home Page
(always present)

Secondary Menu Frame
(changes based on page

being accessed)

Main Menu Frame
(always present) Information Frame

The “Main Menu” buttons provides links to the major areas of
focus for the RASSP server. This information includes background
information about the program and program participants;
documents; educational material and activities; VHDL models,
programming guides and software; newsletter issues and sign-up;
links to DSP and VHDL related sites; biographical information on
the RASSP E&F team members; addresses of RASSP team
members; calendar of RASSP and related events and a tool for
searching documents on the RASSP server. To help you in your
understanding the layout and contents of  the RASSP server,
selected areas will be described in the remainder of this article.

roushrv
273



23

3.1 Background Information

The “Background Page”, seen in Figure 2, provides and overview
of the RASSP Program and the Secondary Menu provides links to
the government sponsors, MIT/LL Benchmarking program,
Lockheed Martin ATL prime program, Technology Base programs
and the Education and Facilitation program. The Technology Base
page provides links to the RASSP pages of  the 21 university and
research institution efforts as well as an overview of these efforts
in developing the support technology for the RASSP Program.

3.2 Documents

The “Documents Page”, as shown in Figure 3, is reached from the
main menu. The Secondary Menu contains links to documents in
the major areas of the program. The Information Frame contains
papers or information that is highlighted and instructions on
obtaining plug-ins for your browser to view some of the documents.
The documents are mostly in HTML, Adobe Arcrobat (PDF) or
PostScript.  Some documents may also be in native format.

The RASSP DigestRASSP Informational Activities

Figure 2

Figure 3

Figure 4 is the Lockheed Martin Advanced Technology
Laboratories (ATL) documents page and shows an example of the
format that is used.

Figure 4

3.3 RASSP Education And Facilitation Information

The “Education Page”, provides access to information and material
created by the RASSP E&F effort. Figure 5 shows some of the
items that are available. One of the major items that the RASSP
E&F program has accomplished is the creation of university level
course modules that cover a variety of important topics. These are
available free of charge electronically to qualified professors. The
“Modules” button provides a list of the  modules and a link to a
request form. The “Abstracts” button takes you to a link that
contains a full page description of each module. The “Request”
button will take you to a form to request the course modules and
the “Feedback” button allows users to provide feedback on the
modules by completing a form. The “Courses” button provides
information on RASSP E&F courses and workshops.

Figure 5

JtAssr ■ nAki V   ,liiT   4-- 

tAssr rd? ^' i 'fj I 
■j-iiaii   <fH^H  KOhfa Mi^°-»4 

t^lfMlM 

Li< f^i ■HI'XF.^ Tn>r<■<l^ lllull 

^*^-r Mir lim* ■ <-I<v V--Vi> 

^ -F h   II   ^Ti a'Pfi^i 
«.^» HIVll ■  »-■,—   ^——^-— 

- ■—— k -^-^-i^-H ll'ik 

^■Hli U ■   I .    -^—  OU-Ilud 
O ■— * F»--i r^"H M-»i 
O l~>--:r H >Ti a lli'< I'll 

. ^ -   ■■       .- -   . ^ I—— ■>« ■■ L 
- Pr—' V >v-n XB-r ""IIV 

^.^n% K n- I- KiP.I-tl 
-—-   I  rilHH   ■-»■■■  ftlUlM*^ 

■-— " ■—-- r^rlM N'T 
^n.j_ V »- <b IT'  Jill 

O •.mi. H i^KiiHMi iiai: 

'lA55^ 

_. 1 ._i 

-i..i a. 

-^--■^ 

Viiil_li 1 .UakBIta JC«;ii*P* I flpiiuii 

^'||J| II I'.TE.I.-UJ.HII^. 

I   r ^.<i 

i^H .1—Kb uu ■■« -itm - 

    --^—    Y*—~-—  'J    t-llU    IHllnv.lthv 

■T'-- 1^1^ 111--v^-i^v rl'il i^-- r-i ■■'ii.>.l>l» 

IHH F*'V •■ ki-BN* r^i n-^ Tkj^Hii- ~i iFin 

PBbm lllllMl IIIBB IV-IB* U^ 

roushrv
274



24

3.4 VHDL Models and Information

The “VHDL Page” is the focal point for VHDL Models and
Information.  Figure 6 shows some of the information that is
available.  Each of these pages is linked to a wealth of information
in the selected  topic  area.

The RASSP DigestRASSP Informational Activities

Figure 6

Figure 7 shows the representative tree structure of  the topic areas
and the population in each of these areas that can be accesses from
the VHDL page.

One of the major links under the “VHDL Page”  is the “VHDL
Models Page”. Figure 8 provides an overview of the different model
functionalities available and some of the individual model types
available in each function.  Most of these models reside on the
RASSP server, but some links are to other servers.

When you select the VHDL button on the Main Menu a disclaimer
box will appear.  Some of the box is shown in Figure 9. This box
contains disclaimer and copyright information about the VHDL
Models and material. This disclaimer must be read and accepted
before you download any information.

3.6 Search Tools

The RASSP Information Server “Search Tool” allows users to
perform an integrated electronic full-text search with Boolean
operations on the RASSP Information Server. The “Search Tool”
page is shown in Figure 10. This search is available only on
documents residing on the RASSP server.  A search on “Harr and
VHDL” will return all the documents that contain both “Harr”
and “VHDL”.  Note that the search is not case sensitive and “harr
and vhdl” will return the same list of documents.

4. Conclusion

The RASSP E&F Information activities are aimed at providing
single point access to RASSP Program information. This article
has discussed two major mechanisms which help achieve this
objective.   Accesses to the RASSP Information Server has been

Figure 9

Figure 8

roushrv
275



25

steadily increasing (see Figure 11) with over 1,000,000 since it began.
To see for yourself the wealth of information available, visit us at
http://rassp.scra.org/ . The contents of the RASSP server are
updated on a regular basis and any feedback on the web server is
appreciated. You can send feedback by selecting the “Webmaster”
button at the bottom of most pages or by sending email to
info@rassp.scra.org.

The RASSP DigestRASSP Informational Activities

Figure 10

References

[1] R. Comerford, Editor, “Web Sights, Searching the Web”, IEEE
Spectrum, page 116, January 1996.

Jack Stinson, Tommy Taylor
SCRA

5300 International Boulevard
N. Charleston, SC   29418

stinson@scra.org, taylor@scra.org

Tom Egolf, Shahram Famorzadeh
ECE

Georgia Tech.
Atlanta, GA   30332-0250

egolf@ece.gatech.edu
shahram@eedsp.gatech.edu

fAssr 

roushrv
276



26

Calendar of Events

Design Automation Conference (DAC) June 9-13 Anaheim, CA WWW.DAC.COM

Microelectronic Systems Education July 21-23 Arlington, VA www.cedcc.psu.edu/mse97

DARPA/VI VHDL Educator's Workshop July 13-15 Northeastern University navabi@ece.neu.edu
Boston, MA

Top-Down Design of Embedded Digital August 11-14 University of Virginia, johnson@scra.org
Systems Educators Workshop Charlottesville, VA

VHDL Performance Modeling Workshop November 16-17 Charlottesville, VA johnson@scra.org

VHDL International Users' Forum (VIUF) Oct 19-22, 1997 Hyatt Regency Crystal City Hotel www.vhdl.org
Washington, D.C.

roushrv
277



27

roushrv
278



28

roushrv
279



 

 

 

 

 

 

 

APPENDIX F  - Rapid Prototyping Of Application Specific Signal 

Processors 

Published By Kluwer Publishers (book)(external.) 
 

 

roushrv
28079



Please search Kluwer Academic Publishers (www.wkap.nl) to view more information 
about this book. 
 
Book Title: 
   
Rapid Prototyping of Application Specific Signal Processors 
 
edited by 
 
Mark A. Richards 
Georgia Tech Research Institute, Atlanta, USA 
 
Anthony Gadient 
South Carolina Research Authority, Charleston, USA 
 
Geoffrey A. Frank 
Research Triangle Institute, NC, USA 
 
Kluwer Academic Publishers, Boston 
ISBN 0-7923-9871-8 
February 1997, 204 pp. 

roushrv
281


	Untitled
	Untitled
	Untitled



