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1. TIVE ARY

The proposal for this project set forth a comprehensive plan to perform research

in three arcas:

(i) Taylor testing of conventional matcrials

(if)  Taylor testing of unconventional materials

(iii)  Biaxial testing under combined tension and torsion.
This report documents the progress that was made in developing the analytical tools to
reduce the data from Taylor cylinder tests. Also included in the report are the results of
our efforts to deduce the mechanical propertics of some unconventional materials, such
as concrete, that are ill suited for Taylor impact testing. Some progress was made on
testing and analysis of data from biaxial tests under combined tension and torsion, but
items (i) and (ii) were deemed of higher priority by the Air Force. Thus, we have more
accomplishments to report in these areas.

Regarding the first of our objectives, we achieved a major milestone with the
development of an elementary one-dimensional theory for estimating the state of stress of
ductile materials at strain-rates that exceed 10* /5. The theory could be applied to post-
test cylinder data or to a high-speed film record of a Taylor cylinder test. References to
both applications are in included in the report.

Also referring to the first objective, a modification to the Johnson-Cook Strength

Model was devised by including additional terms to more accurately account for high

strain-rate behavior. The new material model is called the Revised Johnson-Cook




Strength Model (RJC). -To cvaluate all of the parameters in the model, only Taylor
cylinder data and the results of quasi-static, uniaxial stress tests arc requircd. There is
remarkable agreement between the RIC strength model and the one-dimensional theory
mentioned in the previous paragraph, although they arc completcly independent of one
another. References are provided in the report and the results of a number of Taylor
cylinder tests are included.

Regarding the second of our objcctives, references are provided for data reduction
of Taylor cylinder tests of dense urethane (Adiprene-100). The one-dimensional analysis
was used in conjunction with a high-speed film record of the test to deduce the
mechanical propertics of the viscoelastic material. This was a novel application of the
theory because there was no perceptible deformation of the recovered specimen to
measure. A reference to these results is included in the report.

Another class of materials that are poor candidates for conventional Taylor testing
are those that are geologically based. Many of them, especially concrete, are very brittle
with very low tensile and shear strengths. Yet, it is exactly these material properties that
are presently of interest to code developers for design purposes. Although mechanical
testing of these materials has been carried out for years, there is very little known about
their response to loads that produce strain-rates in excess of 10% /s . Under high-pressure
loading when the material is confined, even less is known. As indicated before, the
brittle nature of these materials prevents many of them from being tested by any of the
usual laboratory methods. One of the most common methods for deducing the properties
of geological target materials is interpretative analysis of penetration test data, This has

the advantage of subjecting the target to the highest strain-rates and pressures, but



requires the use of an accurate penetration theory for the results to have any value.
Several improvements to classical penctration theories were proposed in order to more
accurately reflect the mechanical properties of hard targets. References to these results
are included in the report.

The work on biaxial testing led to publication of a general treatise on testing
machines and strain scnsors. This appeared as a chapter in the most recent edition of the

ASM Metals Handbook. It is included as an Appendix to this report.




2, INTRODUCTION

This report documents our cfforts to quantify the statc of stress for matcerials at
high rates of strain. Dynamic testing of matcrials at strain rates higher than 10"/s has
been a subject of considerable interest for many years. The split-Hopkinson pressure bar
is capable of testing at high straing, but the ratcs are limited to less than 10%s in practice.
Flyer plate experiments arc capable of reaching ultra high strain rates in excess of 10%s
but onfy at very low strains. Spccimen design and interpretation of the results is critical
and argumentative in both of these tests.

Our efforts have been concentrated on the Taylor impact test. The Taylor test is
capable of very large strains and strain rates in excess of 10%s even for relatively low
impact velocities. Beginning with these advantages, we sought improvements in the
Taylor test and new methods for reducing data from the test. The results we achieved are
useful and important for understanding material behavior and quantifying this behavior
into computational mechanics codes.

There are several new results presented in this report. They fall into three
categories, with some natural overlap. The three categories are: improvements in the
experimental design, analytical modeling to support data reduction, and computational
modeling to refine constitutive behavior and to support code calculations.

In the course of the project, a Taylor test facility was constructed at The University
of Alabama. The purpose of this facility was to investigate some aspects of the test for
potential improvements. One of the objectives was to demonstrate to the technical
community that the Taylor test could occupy a position of importance in the laboratory

like any other piece of materials testing equipment. In this context, we tried to




demonstrate that worthwhile and sensible conclusions about the state of stress in the
specimen could be drawn from the test without the use of expensive camera equipment.
The reliance on a recovered specimen is consistent with ordinary laboratory capability and
Taylor’s original intention. However, our objective is to usc the recovered specimen to
gain more than a simple estimate for “dynamic yield stress,” which docs not provide us
with information that has the same value it once did. Most of our innovations are directed
to this end.

To reduce the effects of radial inertia and make the propagation of plastic waves
more truly one-dimensional, experimentation with sub-scale 4 mm (0.164 inch) diameter
Taylor cylinders was investigated. These cylinders are difficult to test because of their
very low mass and their extremely small cross-sectional area. They have a propensity for
dynamic buckling and many of the recovered specimens have no value. This difficulty is
generally not shared by the larger specimens. These sub-scale specimens also present a
challenge to measure. With an initial diameter of only 4 mm, a one percent longitudinal
strain corresponds to a change in specimen diameter of only about 20 pm. This is less
than one thousandth of an inch and a source of tremendous uncertainty in experimental
results. However, the data from these tests is excellent and worth the patience required to
obtain it.

An elementary one-dimensional theory was devised to reduce the data from
recovered Taylor specimens. The fundamental basis for this theory was confirmed
through direct measurement of high-speed films and a comparison with code calculations.
In both procedures, the comparison was very favorable. This theory was successfully

applied to several specimen materials. One of the most interesting applications of the




theory is to the estimation of the quasi-static yield stress for the specimen material. This
result offers additional confirmation for the basis of the theory.

Over the past thirty years, a number of constitutive modcls have been devised to
describe the high strain-rate behavior of materials with varying degrees of success. Some
of the relations arc based on fundamental physics, while others are ad hoc. One of the
most widely used constitutive cquations is the Johnson-Cook. The advantage to this
relation is its simplicity. Traditionally, it requires only five free parameters to rclate the
effective stress to the effective strain, effective strain rate and temperaturc. The methods
used to evaluate these parameters arc well documented. However, this relation tends to
underestimate the effcct of strain-rate at higher rates. To make the Johnson-Cook strength
mode! apply to higher rate cases, three constants were added. The new relation is called
the Revised Johnson-Cook strength model. The new constants adjust the behavior at high
rates to accommodate the sudden strengthening that many materials experience when a
critical strain-rate is reached. All of the constants can be evaluated from a quasi-static
strength test and recovered Taylor cylinders. The results provide for estimates of critical
strain-rate and ultimate dynamic stress. Both are important in ultra high rate processes,

such as impact, penetration, and warhead collapse problems.




3. TAYLOR TESTING

A large number of Taylor cylinder tests were performed. The purpose of these
tests was to support the development of new analytical and computational constitutive
models that can account for high rate behavior. In both cases, the objcctive was to utilize
recovered specimen data to the maximum extent possible. As indicated in the
introduction, the analysis of specimen behavior in the radial dircction (Gillis and Jones
[5], see Appendix A) indicated that the lowest caliber specimen should be used whenever
possible. The lowest caliber smooth bore launch tube that we could purchase
commercially, without a retooling fec, was 0.167 caliber. The effect of radial inertia is
nearly absent from these cylinders. All impacts occurred against composite targets with
hardened Astralloy-V® faces. Astralloy-V® is a high strength steel that is carbonitride

treated to a hardness of R, 60-65.

A number of tests werce performed on a variety of materials. Data from all of these
tests is not included in this report. Data on OFHC copper and wrought iron 0.164 caliber
specimens is reported in Jones, Drinkard, Rule, and Wilson [13] (Appendix B). Data from
7075-T6 aluminum, OFHC copper, wrought iron, and Astralloy-V® is contained in Rule
and Jones [20] (Appendix C). Astralloy-V® data from 0.164” diameter specimens is
reported in Jones, Barkey, Rule and Huber, [13] (Appendix D). These data consist of
cylinder profile measurements, undeformed section length measurements, and overall
length measurements for a wide range of impact velocities.

The materials mentioned above were relatively straightforward to test and to

evaluate. One class of materials that turns out to be difficult to test is high strength steels

other than Astralloy-V®. In the process of hardening the steel to produce high strength,




there may be such a loss of ductility that the strain to failure is very low, even in
compression. For such specimens, there is a very narrow window in which data can be
collected. The reason for this is that the specimens shatter on impact at moderately high
velocities and sustain little deformation at low velocitics. This magnifics the uncertaintics

in the measurement of recovered specimens and their effect on data reduction.

3.1 REDUCTION OF TAYLOR TEST DATA
3.1.1 An Elementary One-Dimensional Theory for the Taylor Test

The requirements for Taylor testing have changed. The earliest theories
concentrated on taking measurements from a recovered specimen and using them to
produce an estimate for the dynamic yield stress. High-speed photography has improved
the analysis because instead of giving us only the data discernible from a recovered
specimen it provides sequential, specimen profiles during the deformation process. One
accomplishment of the research program was to document processes for the determination
of strain and strain rate from high-speed films (see House, Aref, Foster, and Gillis [8]
(Appendix E) and Cinnamon, Jones, House, and Rule [2] (Appendix F)). In the first
reference, an elementary estimate of: local stress was obtained using an impulse-
momentum balance. The approach taken in the second reference is somewhat different.
The elementary one-dimensional theory mentioned earlier was applied to a specimen by
analyzing the high-speed film record of a single Taylor test.

In Taylor’s theory of the impact test some average value of flow stress was
obtained from the post-test measurements. This stress was not associated with a particular

strain and only marginally associated with an average strain rate. Contemporary




constitutive modeling requires the state of stress of the specimen material. This presents a

new challenge.

Most materials laboratorics will not be equipped with high-speed camera
capability. Recognizing this, onc of the objectives of this modcling was to devise a
method for reducing Taylor cylinder data to estimate the state of stress in the specimen
material using only the post-test specimens. A very satisfactory theory was devised that is
capable of cstimating the state of stress at strain rates usually exceeding 10* /s and
requiring only a few specimens over a range of specimen impact velocities (see Jones,
Drinkard, Rule, and Wilson [13], Appendix B).

This theory relies upon the assumption that the particle velocity of the material
behind the deformation front is proportional to the velocity of the undeformed section.
This is a very reasonable assumption that has been computationally verified. The result is

an estimate for compressive dynamic stress o at strain e
1- 2
G‘=(1+€)}:O’0+img : )
e

In this equation, ¢ is the constant strain at which the deformation wave propagates in the

specimen, p is the specimen density, o, is a reference stress related to the quasi-static
yield stress for the specimen material, £ is the dimensionless constant of proportionality,
and v is the current velocity of the undeformed section. Once A and o, have been

determined, the dynamic flow stress for the specimen material at strain e can be estimated
with Equation (1).

To complete the description of the mechanical behavior of the material, we require

an estimate for the strain rate at the deformation front. A very useful estimate for the




maximum strain ratc after initial transicnt behavior is completed was given earlier by

Jones, Maudlin, and Foster [16]

L,~¢

)

e=

where v, is the impact velocity, L, is the original specimen length, and ¢ is the

undeformed section length at the completion of initial transient behavior. In the course of
the project, several other estimates for strain rate were developed and used in constitutive
modeling. In Jones, Wilson and Rule [19] (Appendix G), an estimatc based on

conservation of encrgy across the deformation front was given

vexp{M e - v’)}

2e0

T (+e)e 1, 4=B
eo,
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2
pv
Equations (1) and (3) are an implicit constitutive equation for the specimen material. In
this case, the parameter that connects the two equations is v, the undeformed section
velocity. Another velocity dependent strain rate estimate was given by Cinnamon, et al [2]
(Appendix F)

-V
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This estimate was used effectively in film data reduction. Each of these strain rate
estimates has some value in the context in which it was used. In any event, the state of

stress for the specimen material can be estimated from post-test measurements once B,

o,,and ¢ have been determined. Finding suitable estimates for these parameters, was the




subject of Jones, Drinkard, Rule, and Wilson [14]. Using some of the fundamental
equations from the analysis and a new definition of undeformed section length at strain ¢,
we were able to connect B to post-test measurements. The details of this analysis are

contained in Appendix B. The reader should consult Figures 3 and 4 in Appendix B.

3.2 The Revised Johnson-Cook Strength Model

Another method for reducing data from Taylor impact tests was introduced by
Rule and Jones [20] (Appendix C) in the course of examining low caliber cylinders. The
thinking that led to the development of this method was presented by Allen, Rule and
Jones [1] (Appendix H). A new constitutive model was devised that accounts for the
extreme rate sensitivity that some materials exhibit when a critical strain rate is
approached. With this model we accomplish several things. The analysis provides for
estimates for the critical strain rate and the ultimate dynamic strength of the material.
Both of these are important issues to material scientists involved in design problems in
which ultra high strain rates are possible.

Many ductile metals display an enormous increase in yield stress for strain rates in
excess of 10° /s. This observe'd behavior provided the motivation for the Revised
Johnson-Cook strength model. The goal was to retain the simplicity and convenience of
the o;*i ginal Johnson-Cook strength model, while accornmodating this extraordinary
behavior. This was accomplished with the addition of three new parameters to the

Johnson-Cook model. The new constitutive model has the form

o=(C, +C,e" )[1+C3€"£*+C4(E-—%—8;—é—-ﬂ(l—?‘*“) 5)
57 n 5




where o is the equivalent yield strength of the material, £ is the equivalent plastic strain,
£* is the dimensionless cquivalent plastic strain rate (made dimensionless by dividing by

a unit plastic strain ratc), T* is a non-dimensional temperature, and C,, M, and N are

empirical cocfficicnts and exponents. There are seven constants in Equation (5). An

cighth constant C, is added to account for the peak strain rate sensitivity that satisfics the

incquality

[l+C,€ns*+C4(E-:%;E;—-Cl,—]1|SC“. (6)
5 5

A method for estimating the values of all eight constants using only quasi-static yield
strength data and Taylor cylinder data is presented in Rule and Jones [20] (Appendix C).
The rationale behind this method is also discussed as some consider the use of such data to
be inappropriate. In general, the results are very satisfactory, achieving good agreement
with the one-dimensional analysis presented earlicr. A coﬁparison between the Revised
Johnson-Cook and the one-dimensional theory is given for Astralloy V®, a high strength
steel designed for applications requiring wear resistance, in Appendix C, Figure 7. The
comparison is very favorable. The data reduction for this type of material is difficult and
subject to some of the uncertainties mentioned earlier, Nevertheless, the results show
strong correlation. The same is true of OFHC copper in the as received condition, see
Appendix C, Figure 5. The copper is more ductile and there is less uncertainty in the

measurements. There is less scatter in the data and the agreement is very good.

12



3.3 High Spced Film Data Reduction

High-speed film data provides dynamic Taylor cylinder data. Instead of having
only a recovered specimen to analyze, we have a film record that gives us a sequence of
images of the specimen at known times relative to the time of impact. Effectively, each of

the frames of the film record is a deformed Taylor cylinder that can be measured for

mechanical characterization of the specimen material. In this project, the data from the
film record was used in two distinct ways. First, Cinnamon, Jones, House and Rule [2]
(Appendix F) used the images to confirm the fundamental assumption behind the
development of the one-dimensional model. Second, House, Aref, Foster and Gillis [9]
(Appendix E) measured the film record directly to estimate the state of stress in the

specimen material. Each of these approaches has merit and the results confirm the state of

stress estimates from the two theories presented earlicr.




4. TAYLOR TEST RESULTS
Taylor testing of a number of important materials took place over the life of the
project. The results of some of the testing have already been mentioned. However, there

arc several materials that deserve special mention. These are listed below.

4.1 Mechanical Characterization of Astralloy-V®

Astralloy-V@® is a high strength stcel manufactured and marketed by a firm in
Birmingham, AL. The product is intended for use in applications in which high wear is
anticipated. The Taylor target face is made from this material because it can be case
hardened to 60-65 on the Rockwell C scale cither by carburizing or by carbo-nitriding,
The material appears to be ideal for hard target penctration applications. The material was
tested and the results reported by Jones, et al [12] (Appendix D) and later by Rule and
Jones [20] (Appendix C), where a comparison between the estimates obtained with the
elementary theory were compared to those obtained with the Revised J ohnson-Cook

Strength Model. There was remarkable agreement (see Figure 7 of Appendix C).

4.2 Mechanical Characterization of High Strength Steels

High strength steels generally present a challenge for Taylor testing. The reason
for this is that the specimens do not deform very much at low impact velocities. At higher
impact velocities, the specimens fail because the strain-to-failure is very low for most of
the alloys. Astralloy-V® is a special case because it retains some ductility in spite of the
fact that its compressive yield stress is around 1800 MPa.

Several candidate hard steel casing materials were tested during the course of this

project. The purpose of the tests was to provide high strain-rate behavior to code

14




developers and to attempt to corrclate mechanical response to penetration performance.
Several materials were tested. The results are contained in Jones, Ahearn, Taylor and Rule

[11] (Appendix I).

4.3 Mechanical Characterization of Dense Urethane (Adiprene-100)

All of the materials described above shared one thing in common. There was a
recovered specimen for cach successtul test. There arc a number of important ductile
materials whose high rate behavior is required for which the recovered specimen provides
no information. Dense urcthane (Adiprenc-100) is such a material. The specimen
undergoes large deformation during the test, but recovers immediately, before any
measurements can be made. In this case, a high-speed film record can provide us with the
specimen behavior. Wilson, Foster, Jones and Gillis [25] (Appendix J) showed how the

elementary theory described earlier could be used in conjunction with a high-speed film

record to deduce the mechanical properties of dense urethane.

Data from selected frames of the film record was digitized and the plot of the
normalized, undeformed section length vs. normalized overall length data was a linear
relation from which the slope and intercept could be found. As observed earlier for
recovered metallic cylinders, this information is all that is necessary to estimate the state of
stress for the material. The slopes and intercepts of the lines were then used to estimate

the key parameters in the one-dimensional model and very reasonable estimates for the

state of stress at strain-rates in excess of 10* /s were made.

4.4 Mechanical Characterization of PVC and of PET
One approach to the purification of recycled thermoplastic mixtures is selective

grinding to induce differences in size and shape between polymers of different chemical

5




compositions. These mixtures could then be separated using onc of several technologies
including conventional sicving or hydrocyclones. The trick here is to select the grinding
temperature. An investigation of mechanical propertics, with emphasis on fracture
behavior, was conducted on the polymers PVC and PET (sce Green, Petty, Gillis, and
Grulke [6], Appendix K). The Taylor impact test facility at the University of Alabama
performed experiments which showed that, at room temperaturc and high strain rates,

PVC deformed plastically while PET exhibited brittle fracture.
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5. QUASI-STATIC YIELD STRENGTH ESTIMATES
One of the most interesting results that stems from the clementary analysis is
an estimate for quasi-static yicld strength. We can use the Taylor impact test to estimate
the quasi-static stress/strain curve for the specimen matcrial. The fundamental cquation

comes directly from the theory and takes the form

p+e)1 - Byv,
2etn(¢/¢,)

oy(e)= @)

where p is the specimen density, e is the mean enginecring strain, ¢ is the undeformed
section length at the end of initial transient behavior, ¢, is the undeformed section length
at the end of the event, £ is a dimensionless constant determined from experimental data,

and v, is the impact velocity of the specimen. If an estimate for ¢ can be found, then

Equation (7) can be used to estimate the quasi-static yield stress for the specimen material
at specific compressive strains e. A very simple estimate was provided by Jones, et al [13,
p.11] (Appendix B). This estimate is based on modeling the deformed and undeformed

regions of the Taylor specimen as concentric cylinders. The estimate takes the form

I
LB B e ©®
where L, is the initial specimen length and b is a parameter that is determined from
recovered Taylor cylinder data. Equations (7) and (8) produce remarkably accurate
compressive stress/strain diagrams, in spite of the fact that no load cell is involved at all.

Figures 10 and 11 of Appendix B show the comparison between experimentally

determined quasi-static stress/strain diagrams and the estimates using Taylor cylinder data

for two different materials. Obviously, the comparisons are very favorable, with the




discrepancies being attributable to uncertainties introduced by the theory and specimen
measurement. This aspect of the analysis provides us with some confirmation and
confidence for the theory.

There is very little material data reported at strain-rates of 10* / s and higher,
s0 a dircct comparison of the clementary theory with the results of some other test is
impossible. However, quasi-static testing, in cither tension or compression, can be
accurately performed for any materials (scc House and Gillis (Appendix L)). The
comparisons that the theory gives us in this case are very significant. Also, the theory car
now be applied to a scrics of Taylor tests of the same matcrial and data reduction can be
performed and the stress/strain-rate diagrams can be drawn without rclying on data from

any other test.
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6. PENETRATION TESTING

There arc classes of materials for which there are presently no reliable methods for
acquiring material properties at high strain rates. Among these are brittle geological
materials, such as concrete or rock. In spite of the fact that these materials have been
studied for dozens of years, there is very little known about their behavior at strain rates
consistent with penetration tests. Specimen size and the brittle nature of these materials
has limited laboratory testing. Most of the information that has been reported about these
materials at ultra high strain-rates comes from penetration tests. The fice constants in
penetration models can be uscd to estimate the material properties of the target from
penetration depth after the test is completed. The results are only as good as the
penetration theory used to acquire them. In this context, any improvements to the accepted
theories that can be made, may offer an improvement in the estimate of the mechanical
properties of the target.

The most reliable one-dimensional theories for rigid body penetration of hard
targets are those that stem from cavity expansion models. These theories produce
estimates of pressure on the nose of the penetrator that is dependent on the.square of the
current velocity of the penetrator. Such pressures are usually referred to as Poncelet
pressures and they lead directly to logarithmic penetration depth estimates. Nose
geometry, penetrator mass loss, and assumptions about fx"iciion and shear can all have an
influence on the results. These are the subjects of a serids of papers devoted to improving

and amplifying the one-dimensional penetration models with velocity-squared target

pressure.




A very simple theory was developed by Jones, Jerome, Wilson, and Christopher
[15] (Appendix L) to estimate the depth of penetration of hard concrete targets. This
theory was uscd to cstimate the time of penetration and can be used to find the target
properties algebraically.

The noses of rigid penctrators can have a considerable influcnce on performance at
high velocitics. In order to investigate this jnfluence, an analysis of nose geometry was
performed by Jones, Rule, Jerome, and Klug [17] (Appendix M). A product of the
analysis is an analytical formulation of a nosc shapc that minimizes the net force on the
penctrator due to a Poncelet normal pressure. The solution is explicit and in the form of a
perturbation scries in powers of the nosc ratio @ =a /b, where a is the shank radius and b
is the nose length. This result avoids the use of more complicated means to satisfy the
boundary conditions (e.g., sec R. L. Halfman [7, pp. 466-469]) and alternative constraints
on the nose, such as volume or surface area. The results are given in Abpendix M, Figure
3 for several different nose shapes. The nose factor N governs the penetration capability
for a fixed nose ratio, with the smallest values of N providing for the deepest penetration,
assuming no mass loss or change in shape occurs.

The results presented by Jones, Rule, Jerome, and Klug [17] reflect the possibilities
for penetration modeling of geological targets without friction. The blunting and erosion
of some penetrator noses indicates that this approximation may not be entirely appropriate.
This issue was addressed by Jones and Rule [10] (Appendix N) and Rule and Jones [21]
(Appendix O) for some very simple frictional models. In the first case, pressure-
dependent friction proportional to the pressure was used with reasonable success. In the

second case, constant friction was used. Constant friction can be interpreted as maximum
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target shear under high pressure. Estimating this matcrial property at high strain-rates for
geological materials is very difficult because the sample sizes must be very large and the
material is brittle. Laboratory tests to cstimate thesc material properties have yet to be
devised and penctration data was cffectively used to find them here.

One of the factors that influences the use of clementary penetration modcls to
deduce the mechanical propertics of geological target materials at high strain-rates and
pressurcs is the loss of mass and blunting of the noscs that occurs during very high speed
penetration. These cffects are not included in the penetration modeling discussed in the
previous paragraphs, but they can obviously influence the results. To address these
questions, an elementary analysis of nosc erosion and mass loss was presented by Foster,
Jones, Toness, DeAngelis, and Rule [4] (Appendix P). The principle behind the modeling
is that erosion is the result of surface melting of the penetrator nose due to friction acting
on the nose. The result is the very simple estimate for mass loss given below.

_malt,Mz

M [c,ar

€)

In this equation, & is the mechanical equivalent of heat equal to 4.18 joules/calorie, 7w? is

the cross-sectional area of the penetrator at the shank, 7, is the maximum dynamic shear
strength of the target, M is the cross-sectional area of the nose, k& JC ,dT =1032J / g for

steel, and z is the length of the tunnel. Equation (9) agreés very well with experimental
observations. Figures 2 and 3 of Appendix P show the correlation for mass loss of steel
penetrators impacting high strength concrete targets. In Figure 2, the penetrators are 4340

steel with ogive noses. In Figure 3, the penetrators are AerMet100 steel, also with ogive

nosecs.




Equation (9) is a very intcresting and useful relationship. By examining it, we see
that mass loss is proportional to the length of the tunncl that the projectile makes in the
target and inversely proportional to the heat requirced to melt the steel. Mass loss is also
proportional to the product zu® M , which is roughly equivalent to the surface arca of the
nosc. Thesc are all very rcasonable conclusions.

In Foster, Jones, Toness, DeAngelis, and Rule [4] many of the details required to
derive Equation (9) were omitted. Another paper followed (Jones, Foster, Toncss,
DeAngelis, and Rule [14]) that was devoted to filling all of the gaps and presenting as
complete a picture of the assumptions that were made in the process of arriving at
Equation (9). This paper is included in the report as Appendix Q.

The effect of friction between the target and the projectile was assessed by Jones,
Toness, Jerome and Rule [19] (Appendix R) for several different steels against the same
concrete target.

Finally, work continued on penetration of metallic targets by metallic projectiles in
Cinnamon and Jones [3]. The objective was to correlate penetration performance to the
dynamic mechanical properties of the target and the projectile. It should be noted that
there is substantial correlation between strength, crater diameter and penetration depth.

The details of this work are contained in Appendix S.
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7. CONCLUSIONS

On this project, we successfully reached a number of important conclusions. We
concentrated on the high rate response of materials and produced scveral methods for
deducing the state of stress in a significant range of strain-rates between the limits of the
Split-Hopkinson Pressure Bar and Flyer Plate experiments. The significance of these
results reflect the need for reasonable constitutive modeling of warhcad candidate
materials in the critical strain-rate regime of 10° ~10° /.

For high ratc behavior of metals and some other materials, we devised an
elementary, one-dimensional theory for estimating the state of stress. This theory is
versatile enough that an estimate for quasi-static stress was produced that was remarkably
close to that achieved by means of a load frame and load cell. This provided confirmation
for the theory, while a direct comparison with high rate results was not possible.

In the context of modeling the flow stress of materials in the neighborhood of
10* —=10° /s strain-rate, an alternative to the conventional Johnson-Cook Strength Model,
the RJC Model, was offered. Terms were added to the relation to account for high strain-
rate behavior. This required the evaluation of three additional constants. A scheme for
finding all eight of the adjustable parameters in the model using only quasi-static and
Taylor test data was given. Comparison between the RJC model and the elementary
theory was very favorable.

The elementary theory for reducing Taylor test data from experiments on an

unconventional material, that is one for which the recoveted specimen showed no

deformation, was successfully applied to film data from tests on dense urethane. The




results of the application arc very promising and suggest that the theory may have
widespread use. Everything that was obscrved in the application of the theory to
recovered metallic specimens was also present for the film record.

Air Force prioritics dictated that some cffort be directed toward characterizing
geological materials for hard target penctrator applications. The difficulty here is no
laboratory tests have been devised to date for testing these materials at strain-rates and
pressurcs comparable to those obscrved in the penetration process. As a result, we have to
rely on the free parameters in penctration models to provide us with constitutive behavior
of the geological target materials. Naturally, any improvements or modifications to
existing models may refine the estimates for material behavior. There were several papers
published on hard target penetration on this project. Included in the results are estimates
for shear stress in hard targets under high pressure.

The objectives of the project were largely fulfilled. But, in a project of this nature
that crosses several disciplines and a wide variety of material problems, there are a number
of important issues that remain to be addressed.

In the course of the investigation of hard target penetration modeling, it was clear
that friction acting on the nose of the penetrator nose was inadequately modeled by any of
the usual methods. High-speed friction is a very complex phenomenon that may have no
simple explanation. Historically, the dependence of friction on pressure and velocity is
vague because most of the testing was done at relatively low velocities. In order to mode!
hard target penetration events successfully, we will have to devise some new and accurate

friction laws.
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Constitutive modcling with the Taylor test could be accomplished if a completely
reliable estimate for strain-rate could be found. Although three different estimates for
strain-rate were proposcd in this project, all have some weaknesses. Work should
continuc in this area because the results have such important implications.

Finally, mass loss and blunting of high stcel penetrators has serious consequences
for performance. We gave an analysis that accounted for mass loss due to surface melting
of the nose. This produced a very reasonable cstimate that agreed fairly well with
cxperimental obscrvations. However, there arc a few things that should be looked into.
The changing geometry of the nose was not included in the analysis and this is one reason
for the discrepancy between the predictions and the experimental evidence. Another arca
that should be explored further is the heat required to melt the steel penetrator material.

We used the heat required to melt iron to make the estimates. This problem will be

studied in the coming years.
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RADIAL INERTIA IN THE TAYLOR IMPACT TEST
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ABSTRACT- In this paper, we examine the effect of radial inertia on the axial

stress distribution during axisymmetric constant-volume deformation. In place of

the frequently used assumption that at each axial position the axial stress is

- constant, we assume that planc cross-sections remain plane. It is shown that both
‘the radial and circumferential stress components will be compressive if only strain-
rate effects are considered. Strain-acceleration must be taken into account in order

to have radial tension, as would be expected in a dynamic tension test. Results of
this analysis are applied to the Taylor impact test.

INTRODUCTION: As an aid to visualization, the present analysis is framed in

terms of a Taylor impact test. However, it is equally applicable to any axially
symmetric, dynamic deformation.

In the discussion of radial inertia, one expects that under dynamic tension a
tensile radial stress would be required to move material radially inwards towards
the axis of symmetry. In analyses that neglect strain-acceleration, the radial stress -
is compressive. Under dynamic compression, a compressive radial stress would be
expected, to move material outwards from the axis of symmetry. In analyses that
neglect strain-acceleration, the magnitude of this radial stress is significantly
underestimated. The present analysis rectifies these problems by accounting for the
strain-acceleration. The ensuing results are applied to the Taylor impact test.

THEORY: Consider the normal’ impact of a Taylor [1948] cylinder against a
massive anvil and assume that the subsequent deformation of the cylinder is
axisymmetric. The natural coordinate system to describe the deformation is polar
cooordinates r,6,z. The prescribed symmetry obviates displacements in the
circumferential direction; displacements in the radial and axial directions are
denoted by 7 and ¢, respectively as shown in the appended drawing, The axial
displacement ¢ is assumed independent of 7. (“Plane cross-sections remain
plane.”) The radial displacement 7 must be an odd function of radial position. To
lowest order terms

n0,5,0) = N(z,0r ®
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where Nt is a dimensionless function to be determined. For isochoric
deformation , N has the form

N=(+e)"* -1 @)
where e is the enginecring axial strain.

Let the normal stress components o,,d,,0, express the force intensity

with respect to the deformed configuration. Assume that the shear stress can be
neglected and &, = o,. Then, assuming that a von Mises type of yield criterion is

obeyed, it follows that
g,-0,=0 ' €)
where o is the flow stress (positive).

Simplified by all of the fordgoing assumptions, the differential equation of
motion for the radial direction is

do, [ 0t = po*nl o (4)

where p is the mass density of the specimen material. Integrating Equation (4)
partially with respect to 7 leads to

o, ==(1/2)p0*N/at*[R? - r?] )
where R is radius of the specimen. R can be expressed as
R=R,(1+N)=R,(1+¢)™" )

where R, is the initial specimen radius. It is also possible, using Equation (2), to
express &°N' /9t in terms of strain e, strain-rate ¢, and strain-acceleration &

N 1ot =Pt 201 +e)e/ 40 +e)*". 0

In the one-dimensional analysis of Taylor [1948], the axial stress o, and
the effective stress o coincide; at least in magnitude. Furthermore, the Taylor
axial stress must be the average value over the cross-section because he used it in
the sense that o,4 equaled the axial force. The present approximate analysis
requires equal strain and strain-rate components at every point in a given cross-

section. Consequently, most constitutive selations would require a constant
effective stress.
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Assume that &, represents the average axial stress as determined from the

Taylor equations or some other onc-dimensional analysis of the test. To find the
effective stress o, the relation

6,4=[o,dd=-od+[c,dd (8)

is first employed. Here A4 = aR? is the current, local, cross-sectional area ahd the
integration is performed over it. Now, o, is given in Equation (5). Substituting
into Equation (8) and performing the integration, leads to

6, ==c~(1/4)pd* N/’ R* =-c — p3’N/t*R} 14(1+e). ®

This equation shows that the radial inertia correction can be either positive or
negative depending upon the sign of the radial acceleration. In turn, Equation (7)
shows that the sign of the radial acceleration depends upon the sign and magnitude
of the effective strain-acceleration &. Equation (9) can be rearranged to provide a
dynamic, compressive equivalent of the static, tensile Bridgman [1952] correction
factor

o =61+ pd*N /3R 146,(1+¢)). (10)

The factor in the brackets is the ratio of the magnitude of effective stress to
average axial stress.

SOME OBSERVATIONS: In the Taylor analysis, both strain-rate and strain-
acceleration are unbounded at the location to which Equation (7) should be
applied. This has long been recognized as a defect of the Taylor analysis: although

it yields a dynamic flow strength, there is no estimate of the corresponding strain-
rate prevailing in each test. '

- In the present analysis, in order to assess the relative magnitudes of the two
terms in Equation (7), the strain-acceleration will be related to the strain-rate using

the mean value theorem: é = _E (0e/ 0t*)dr =at. Here a is the time average value of

the strain-acceleration during the interval 0 to t when the strain-rate, de/o¢,
changes from 0 to é. It also represents some actual value if the strain-acceleration
is continuous during the interval. Thus, @ = &/¢ can be used to replace d%e/dr* in
Equation (7), which now becomes

PN 38 [1‘_2(1+e)} _ an)

at  4Q+e)’?|  3ét
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where the second term in the brackets represents the relative magnitude of the
strain-acceleration in comparison to unity.

Suppose that the Taylor test maximum strain-rate ¢ is in the range (minus)
10’ ~10*/s.and the rise time of the plastic wave front is in the range 1-10 us.
Then, omitting the value of e from Equation (11), the maximum relative effect of
the strain-acceleration is over 600 while the minimum is about 6. Evidently, the
strain-acceleration term can dominate under some circumstances and must always
be retained.
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Summury—There is a linear relationship between certain normalized lengths in recovered Taylor
Impact specimens. Tlus obscrvation seems to have first been made by J. W. House, although
G. L Taylor and A, C. Whiffen both produced graphs involving these same scaled variables.
However, no explanation was given for this scaling und it was not used for any specific purpose. In
this paper, a theoretical basis for the linearity is cstablished and the slope und intercept are used to
determine several important physical parumeters. These parameters are then used to determine the
state of stress at struin-rates exceeding 10%/s. This information is useful because it helps to bridge the
strain-rite gup between Split-Hopkinson pressure bar testing and the ultra-high rates achieved with
plate impuct experiments. 43 1997 Elsevier Science Lid.

INTRODUCTION

The Taylor test [1, 2] is a useful high rate materials test in which strain-rates of 10*-10*s ™!
can be easily realized for even relatively low velocity impacts. Higher rates are possible, but
often they are found during the initial transient stage of deformation [3]. This stage is
difficult 1o analyze because of the shock at impact and the effects of shock hardening on the
specimen material [4]. However, this stage attenuates rapidly into quasi-steady wave
propagation followed by specimen deceleration during the terminal transient. Although the
strain-rates are somewhat lower during these stages, the behavior of the undeformed section
of the specimen can be accurately predicted with an clementary mathematical model. The
strain-rates achieved during these latter stages are still above the limit of the Split~-Hopkin-
son pressure bar and its many variants.

After the initial transient, the motion of the undeformed section can be described by
a one-dimensional analysis. Several one-dimensional analyses for the Taylor test have been
proposed (e.g. [5-107). However, these analyses do not address the highly nonlinear front
motion during the initial transient or do not offer a very precise estimate of the state of
stress in the specimen at any specific time during the deformation. Recently, an analysis of
plastic wave propagation was presented that effectively excludes the initial transient

[11-13]. This paper provides an alternative to the method used to evaluate the key
parameters in [12].

.

AN ELEMENTARY THEORY

Taylor [1] and Whiffen [2] observed the relationship between certain normalized lengths
in a recovered Taylor specimen. House [3] later confirmed that one of these relationships is
linear. There are other scalings (e.g. [14]), but this is the most useful to date.

A very simple theory can be developed with some of the observations presented in [12].
After the initial transient at impact has attenuated, we assume that the particle velocity, u,
for the plastic material behind the plastic wave front and the undeformed section speed, v,
are approximately proportional to each other [11}:

u = fiv. (1)
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Justification for this relationship is given in [12] and its appears to persist throughout the
quasi-steady and terminal transient stages of the deformation. The initial transient refers to
nonlincar time-dependent behavior of the deformation front following impact of the
specimen. Now, conservation of mass across the plastic wave front leads to

el =mv—u=(l—pfy (2)

where ¢ is the compressive engincering strain on the plastic side of the wave front and 7 is
the current undeformed section length, see Fig. 1. Dots over variables denote time differenti-
ation. As observed before [ 1, 10], e = (Ao/A) — |, where A and A are the initial and current
cross-sectional areas of the specimen, respectively.

For a plastic wave moving with constant strain away from the impact face, the variables
in Eqn (2) may be separated:

d/ = Lad ds, (3)
e

where Eqn (3) applies to the behavior of the undeformed section after the initial transient
and may be dircctly integrated to give

1-8

¢

t-7=

(s = 5). 4)

Bars over variables are used to denote the values of the indicated variables at the end of the
initial transicnt stage.
If Eqn (4) applies until the end of the event, then it becomes

ti~2="Lp -5, ©

where /¢ and s, are the (inal undeformed section length and the final displacement of the
undeformed section, respectively. These quantities can be determined from post-test
measurement of a ductile metal Taylor cylinder, as shown in Fig. 2,

Dividing Eq (5) by Lg, the original length of the cylinder, and noting that s, = Ly — Ly
allows us to express Eq (5) in the following form:
t_ 1Bl 7 1-B_1-f5

Ll S 6
Lo 4 Lo L() e e I—'O ( )

Fig. 1. A uniform cylinder of length L, impacts an uncompliant target with velocity v,. Subsequent

deformation of the specimen can be successfully modeled in terms of deformed and undeformed

regions hh and 7. L is the current overall specimen length and s is the displacement of the back end of
the specimen.
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T

Fig. 2. Undcformed and deformed Taylor specitnens. The firal undeformed section length 7, is the
distance from the back of the specimen to the cross section with area 4 = Ap/(1 + ). Ly is the final
overall length of the deformed specimen.

This equation expresses a lincar relationship between /¢/ Lo and L,/L,. This relationship,
which has been observed experimentally by House [3], is the basis for the remainder of this
paper.

THE LINEARITY BETWEEN /,/Ly AND L(/L,

Cylindrical specimens of OFHC copper and wrought iron were impacted against an
Astralloy-V,, Steel target. The Astralloy V, was hardened to Rockwell C 58 and presented
a very uncompliant surface. To reduce the effects of friction, the target was lapped and
polished to a mirror like finish. 17 Caliber specimens were impacted against this target and
the target was rotated after each impact to assure that conditions were the same for each
test. By 17 caliber, we refer to a bore diameter of 0.170 in. for the launch tube. The test
results are shown for various strain levels as plots of £;/Ly and Ly/L, in Figs 3 and 4. Z; is
the distance [rom thec back end of the specimen to the cross-section with area
A = Ao/(t +¢) for a prescribed strain ¢ (see Fig. 2). The area A is determined from
a diameter measurement. There arc several methods suitable for this measurement. The best
is a diameter guage originally suggested by J. W. House. A hole is drilled in a steel block to
the exact diameter required. From the opposite direction, a relicf hole of larger diameter is
drilled, allowing for clearance of the specimen. Very reasonable estimates of undeformed
scction length can be made using this device. There is a level of uncertainty with all
measurement techniques and its is difficult to assess the degree of uncertainty. In fact, it may
not be worthwhile to focus on any specific source of error when it is impossible to make the
same assessment of the theory itself.

Equation (6) predicts a linear relationship between Z;/L, and L¢/Ly:

”’lf Lf
—=m—+b, 7
L~ "L, @
where
{ -4
- ®
¢
and
£ 1—-p 1-B835
b=t ¢ Ly ©)

For a given strain level, the slope and intercept values of Eqn (7) can be obtained by
conducting a series of Taylor tests over a range of impact velocities. However, often a single

B-3




S. E. Jones ¢t al.
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0.40
m = 1.024
s b 20469
035 ¢
0.30 |
0.25
0.20 +
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Fig. 3. The resulty of 17-caliber OFHC copper impact tests. The lines were drawn using the data
reduction technigue described by Eqns (10)-(12).

0.80 —: ———=—— . "
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LfLe

Fig. 4. The results of 17-cajiber wrought iron impact tests. The lines were drawn using the data
reduction technique described by Eqns (10)-(12).

Taylor test can be used to obtain data at several strain levels. Equation (8) suggests that the
slope might decrease with increasing compressive strain. This is not the case because
B decreases with increasing compressive strain,

There are two basic methods for obtaining the slope and intercept values for each strain
level from this data. A classical least squares approach can be used repeatedly (operating on
one set of constant strain data at a time) to obtain the sets of slope and intercept data for
each strain level, However, this approach does not allow for the fact that the sets of constant
strain data are actually coupled to each other since each Taylor specimen is used to obtain
data at several strain levels.
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A more consistent approach would entail using the entire duta sct at once to determine
the slope and intercept values as a function of strain. This can be simply accomplished by
assuming quadratic forms for the slope and intercept functions:

m = mg + m|e] + malel?, (10)
b = bo + by|e] + blel’. (1)

where |e| is the magnitude of the plastic strain and the m; and b are coeflicients to be
determined from the data. Accordingly, the least squares quantity to be minimized, 4, for
this application is

N 2
A=Y {(%) - [(m,} + myle] + mzf?ilz}(%) + (by + byle| + b;Ie,lz}}} , (12)
(=1 t f

where N is the number of measured data points, and (#¢/ Ly) and (L/ Lo), indicate measured
values of these parameters. An optimizer is used to adjust the m; and by coefficients of Eqn
(12) to minimize the fit error A. In this paper, it was found for wrought iron and OFHC
copper data that the slope and intercept functions of Eqns (10) and (11) were almost linear in
strain. Thus the form of these equations appears to be of a sufficiently high order to obtain
a good fit,

There are two advantages in fitting all the data at once using Eqn (12) as opposed to
doing a separate least-squarcs fit for each strain level. Firstly, the error associated with the
inherently more inaccurate low strain data is reduced since slope and intercept functions are
fit in a manner that forces them to be consistent with the more accurate high strain data.
Secondly, sets of constant strain data are not required for use in Eqn {12). This provides for
more flexibility in the deformed specimen measurement techniques.

At high impact velocities [(low (L¢/Lo)] specimen failure (void nucleation and {racture)
can occur. Also, at low impact velocities [high (L/La)] quasi-steady-state plastic flow may
not oceur. Both of these effects are not accounted for by the theory presented here and thus
produce nonlinearities in plots of Eqn (7). Accordingly, it is recommended that obviously
nonlinear high- and low-velocity data points be excluded from the least-squares calcu-
lations of Eqn (12).

ESTIMATION OF STRESS

The dynamic stress @ at the strain ¢ has been shown to take the form

— 2
o’=(1+e}[aa+(i B pvz} (13)

e

where o, is a constant refercnce stress (see [12]). In Eqn (13), p is the constant specimen
density and f# the particle velocity constant in Eqn (1). The stress ayg is negative in
compression and positive in tension.

The cquation of motion of the undeformed section is

pLy =0y (14)
{see {k?]). With a change of variables, this equation can be written in the form

dZ dv

Using Eqn (2) to eliminate dz/dt, we find

ST P

¢ ds (16)




S. B Jones ¢t al. .

The variables in this equation can be separated and the resulting equation cun be integrated
to give

P(l P v2
2” = In(Z) + C. (17)

The constant of integration C appearing in Eqn (17) can be evaluated by noting that £ = 7

when v = v,. This leads to
l = chp[ (2 Ij) vf,)]. (18)

The undeformed section no longer deforms at strain e when a critical velocity, say v = v, is
reached. At this point, the final undeformed section length £ = /¢ is reached and

= fcxp[’—’-%‘——-—;om(vf - vé)]. (19)

This relation can be used to find the reference stress g

a=p“—M%—m
v 2eln(Z/¢,)

This stress can be used in Eqn (13) to determine the dynamics stress a.

(20)

In most instances, the critical velocity v, can be set to zero, without much loss of accuracy,
as the term involving v? only contributes to the stress when v, is fairly large. [n this case,
Eqn (20) becomes

o P(l - /3)"0
° = 2eln ity

Equation (13) represents the dynamic stress in the specimen at the plastic wave front. As the
velocity of the undeformed section v approaches v, or in this case zero, @ must approach the
compressive quasi-static stress at the compressive strain e. Denoting the quasi-static stress
by a,, we see that

(21

_pl+ead — B)va
2eln(Z/¢;)

This relation expresses the quasi-static stress as a function of the strain and the parameters
from the Taylor test.

Using a quasi-static stress/strain diagram for the spccimen material and Eqn (22), we can
find the reference stress o,, and the stress provided by Eqn (13) is determined.

oy(e) = (1 + e)ag = (22)

RESULTS

The state of stress in the specimen material can now be estimated. An estimate for the
highest strain-rate after the initial transient was given by Jones et al. [15]:

b
T Lo~/
This estimate is based on Taylor’s [1] original idea for an average strain-rate over the cntire
test. In this respect, his estimate is very conservative and generally undercstimates the
strain-rate by nearly an order of magnitude. Equation (23) applies relatively close to the
impact point and provides a more accurate estimate of strain-rate.

As indicated in the previous section, the stress can be evaluated using Eqn (13) once f has
been found using Eqn (8) and o, has been found using Eqn (22). Quasi-static (compression)
stress-strain diagrams for OFHC copper and wrought iron are shown in Figs 5 and 6.
g0 = 64(e)/(1 + ¢) can be found for any particular strain from the diagrams.

é (23)
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Fig. 5. Quasi-static compression data for QFHC copper.
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Fig. 6. Quasi-static compression data for wrought iron.

The undeformed scction length at the end of the initial transient, Z, can be found from
Eqn (21). Now, the state of stress at a known strain can be predicted by Eqns (13) and (23).
Since the strain-rate estimate only applies at the instant when quasi-steady propagation of
the plastic wave with strain e begins, only the stress at this instant should be used. During
the initial transient, there is no change in the velocity of the undeformed section [16]. Thus,
the stress at the point where Eqn (23) applies is given by

0= 35{9) + Wpy{;‘

29
This is the maximum stress in the cvent for which this analysis applies. We can now plot
stress vs. strain-rate at fixed strain. Figures 7 and 8 show the results of numerous Taylor
tests of 17 caliber OFHC copper and wrought iron specimens for a series of strains ranging
from 3.6% to 16.1%. The choice of these strains was made on the basis of initial specimen
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Fig. 7. Dynamic true stress vs enginecring strain-rate for OFHC copper in the “as reccived”
condition.
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Fig. 8. Dynamic true stress vs. engineering strain-rate for wrought iron.

diameter and measurcments of final diameter were made carefully. Low caliber specimens
are difficult to measure accurately. Higher caliber tests arc feasible and deformed specimen
measurements can be made more accurately. However, the effects of radial inertia arc more
pronounced in higher caliber specimens.
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For several reasons, a 17 caliber launch tube provides the lowest practical diameter.
Lower caliber specimens may readily buckle under the impact load. Also, very low caliber
specimens are difficult to launch as the loud that the buck end of the specimen suffers in the
launch process deforms it and may cause it to come to rest in the launch tube, This makes
testing with these specimens a tedious and often unrewarding task. However, the gain from
effectively climinating radial incrtia makes it worthwhile.

ADDITIONAL RESULTS

Another point regarding the presentation of this theory can be made. The ratio Z/L is
critical to the strain-rate cstimate in Eqn (23). In the previous section, this ratio was
determined for OFHC copper and wrought iron using Eqn (22) with o, taken from the
quasi-static stress-strain diagrams given in Figs § and 6. Another approach can be adopted
which avoids the use of Figs 5 and 6. This alternative allows us to estimate the quasi-static
stress—strain diagram from Taylor impact data alone.

Equation (9) provides a relationship between Z/Lg and §/L,. In addition, it is evident that

. (25)

Fig. 9. Elementary mushrooming rod geometry. The mushroom is a cylinder with cross-sectional
aren A = Ay/(1 + ¢). The undeformed section is a cylinder of fength 7 with cross-sectional area Ay,

350
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100 +
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0 } ' } } " 4

0.00 2.00 4.00 8.00 8.00 10.00 12.00 14.00

Fig. 10. Comparison of quasi-static OFHC copper stress/strain data given in Fig. 5 with estimates
using Eqns {22) and (27).
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Table |
Resulls obtained from  Predictions obtnined from
quasi-static test using Tuylor test Percentage
data only differences
Quasi- Quasi-

static static Quasi-

Percent yield yicld static

Data comp. stress stress yield
point (m/s) steain 2/l {(MPa) 2Ly (MPa) 7/Ly stress
1 3.6 0.529 282 0.552 258 4.3 -85
Vo 171 58 0.564 288 0.572 279 1.4 -30
1.2 0.638 295 0.623 ilo -23 5.2
2 36 0.513 282 0.552 252 1.7 - 10,6
Vo =200 S8 0.548 288 0.572 270 4) -0
1.2 0.630 295 0.623 300 - 11 1.7
3 36 0.503 282 0.552 249 9.7 - 117
Vo m 212 S8 0.542 288 0.572 267 5.6 -7
1.2 0.622 295 0.623 294 0.2 -03

4 36 0.536 282 0.552 259 3.0 -8
Vo = 146 5.8 0.574 288 0.572 291 -04 1.2
1.2 0.650 205 0.623 336 -4 137
5 36 0.544 282 0.552 270 1.5 -44
Vo= 144 58 0.587 288 0.572 2 -25 8.2
112 0.662 295 0.623 359 - 58 21.7
6 3.6 0.515 282 0.552 246 7.2 - 129
Vom 174 5.8 0.558 288 0.572 274 2.5 -49
11.2 0.634 295 0.623 306 - 1.7 kX1
7 36 0.517 282 0.552 246 6.8 - 127
Vo= 170 5.8 0.558 288 0.572 273 2.5 - 52
11.2 0.641 295 0.623 314 28 64
8 36 0.538 282 0.552 266 2.6 - 5.6
Vo = 167 58 0.579 288 0.572 296 - 1.1 27
11.2 0.653 295 0.623 329 - 4.5 114
9 3.6 0.541 282 0.552 258 20 -84
Vo =153 5.8 0.593 288 0.572 294 -35 20
1.2 0.683 295 0.623 338 —88 14.5
10 36 0.498 282 0.552 232 10.8 - 179
Vo=174 5.8 0.545 288 0.572 262 49 -9
1.2 0.631 295 0.623 303 - 13 2.8
11 3.6 0.527 282 0.552 253 48 - 104
Vo = 160 5.8 0.562 288 0.572 276 1.7 —-4.1
1.2 0.643 295 0.623 319 - 3.1 8.2
2 36 0.513 282 0.552 253 1.7 -10.3
Vo = 203 5.8 0.548 288 0.572 270 44 - 6.2
11.2 0.635 295 0.623 303 - 18 28
13 36 0.527 282 0.552 252 4.7 - 10.7
Vo = 156 58 0.574 288 0.572 290 -03 0.8
11.2 0.659 295 0.623 343 -55 164
14 3.6 0.529 282 0.552 257 44 -9.0
Vo = 168 58 0.572 288 0.572 288 0.0 - 01
11.2 0.647 295 0.623 322 - 3.8 9.1

If a third relationship can be found, we use Eqs (9) and (25) with this rclationship to solve for

Z/Lo.

A very simple geometry for a mushrooming impact specimen was introduced by Jones

et al. [16] and used in a different context. Consider the mushroom to be a cylinder of

cross-sectional area = 4 = Ao/(1 + e) for a specific, prescribed strain e (see Fig. 9). Using
the geometry in Fig. 9 and noting that the volume of the undeformed rod must equal the
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sum of the volumes in Fig. 9 leads to
1 h 7
——— e ], {26)
| +e¢ Lg_; La
Equations {9), (25), and (26) can be solved simultancously to find
7 b (1=-Bl+e
— e ———— (27)
Lg ﬁ ﬁ ¢
Table 2
Results obtained from  Predictions obiained
quasi-static test from using Taylor Percentuge
duta test data only ditferences
Quasi- Quasi-
static static Quasi-
Percent yield yield static
Data comp. stress stress yicld
point strain ZiLg {MPa) .y {MPa) 7iLg stress
1 36 0.636 400 0.586 462 -19 15.5
Vy = 266 58 0.637 450 0.610 504 ~43 120
1.2 0738 523 0.713 576 3.4 10.1
2 36 0.603 400 0.586 451 - 29 12.8
V= 180 58 0.620 450 0.610 499 - 1.6 109
11.2 0.719 523 0713 564 - 08 78
3 36 0,603 400 0.58¢6 439 -27 9.3
Vo =216 58 0.612 450 0.610 479 -03 6.4
112 0.713 523 0713 552 00 55
4 16 0.631 400 0.586 463 -7 15.8
Vo = 249 58 0.633 450 0.610 503 -36 118
1.2 0.730 523 0713 571 -23 9.2
5 36 0.638 400 0.586 554 - 82 383
Vo= 170 58 0.660 450 0.610 628 -~ 16 396
1.2 0.788 523 0.713 794 - 96 518
6 36 0.579 400 0.586 401 1.3 0.3
Vy = 160 58 0.606 450 0.610 465 0.7 33
i12 1.745 523 0.713 644 —42 239
700 o — — -
TRUE STRESS
800 4 (MPa) =
500 +
400 - — MEASURED
s PREDICTED
300 A
200 +
100 +
PERCENT ENGINEERING STRAIN
0 } + } 1 + +
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Fig. 11. Comparison of quasi-static wrought iron stress/strain data given in Fig. 6 with estimates
using Eqns (22} and (27}
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With this estimate for Z/Lg, we can usc Eqn (22) to find a, = o,(e), without measuring any
loads. Notice that the ratio 7/Lqo is independent of impact velocity ve. The data from
a number of 17 culiber Taylor tests is presented in Tables | and 2. For cach strain, 7/L, is
nearly constant. The estimates for the ratio using Eqn (27) are also shown. The differences
are very small,

Figures 10 and 11 give the comparison between the compressive stress-strain diagrams
for OFHC copper and wrought iron. Considering some of the uncertainties, the compati-
sion is very favorable. It is remarkable that Taylor impact data can be used to generate an
estimate for the quasistatic stress-strain diagram for a specimen material. This provides
further evidence of the validity of the theory presented in this paper. As it stands, the thcory
has produced a uscful interpretation of impact test data that agrees with existing data to the
extent that it is possible to make a comparison. We plan to further strengthen our case with
the publication of additional test data.

CONCLUSIONS

In this paper, we have presented an elementary theory for the Taylor test with which
estimates of high strain-rate behavior of ductile metals can be accomplished. The strain-
rates exceed 10*/s which makes it difficult to compare the results to those obtained by
alternative methods because none exist at present. However, for OFHC copper data
reported by Follensbee [17], the data in this paper correlates very well (see Fig. 12). It
should be noted that the copper used by Follensbee [17] may have a different structure than
our “as-received” OFHC copper. Also there may be considerable variation between ship-
ments of OFHC Copper in the “as-received” condition.

The Taylor impact test is useful because it provides essential information in the strain-
rate regime between the Split-Hopkinson pressure bar and platc impact shear experiments.
For this reason it is of considerable interest to the defense community (e.g. sce [18]).

600 T. e mot o e em et e s e e e e e
STRESS (MPa) THIS PAPER
+ 11.2% STRAIN
o 18.1 % STRAIN
500 + FOLLANSBEE (1988)
A 10% STRAIN
v 20% STRAIN
400 o
B
'f
300 1 o M«:
vy
Wt Ak A %%ﬁg
100 +
STRAIN RATE (1/s)
0 t t t t +
01 1 10 100 1000 10000 100000

Fig. 12. Comparison of high strain-rate data for OFHC copper at 11.2% and 16.1% compressive
strain with data reported by Follansbee in 1986.
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Strain-rates of the order of 10*-10* per second are usually observed in impact and
penetration problems. We will continue to search for interpretations of test data that allow
us to model materials behavior in the high strain-rate.
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Summary — Strength models pliay a key role in the numerical simulation of impact events. A revised
form of the Johmson Cook strength modet is proposed in thix paper. The revised modol treats the
sudden strengthening thut muny ductile metals exhibit at strain eates greatee than 10%/s. Steain rates
of this magnitude are generally considered to be beyond the capability of the split-Hopkinson
pressure bar and so such abrupt strengthening behavior 1s ofien not observed and reported.
A method te cconomically estimate all cight coeflicients of the revised strength model using
quasi-static tension dut and Taylor impact (cst duta reduced with a modilied vorsion of the EPIC
finite element code is also described. Rovised streugth model coeflicients were determined for:
7075-T6 aluminum, OFHC copper, wronught iron, and a high-strength steel (Astralloy-V*). A good
fit to the quasi-static toasion ditta and Taylor impact test results was obtained for these four different
metals. The behavior of the sevised strength model at high strain rates also compared favorably with
independent predictions from an analytical model calibrated with the Taylor impact duta, © 1998
Elsevier Science Lid. All rights reserved

NOTATION

strength model cocficient

objective function for optimizer

component of objective function for matching quasi-static tension duta
component of objective function for matching Taylor impact data
strength mode! exponent

strength maodel exponent

number of quasi-static tension data points

number of Taylor impact tests

homologous temperature

volume of Taylor impact specimen

volume difference {crror) between measured and EPIC caleulated deformed Taylor impact specimen

profile

Taylor cylinder impact velocity

deformed Taylor cylinder axial dimension

Taylor cylinder initial fength

deformed Taylor cylinder radial dimension

Taylor cylinder initial radius

streagth model exponent

weight factor for objective function

equivalent plastic strain

equivalent plastic strain rate

dimensionless cquivalent plastic strain rate = &A1)
yicld strength (flow stress)

guasi-static yicld stress calculated from revised strength modet
quasi-static yicld stress measured from tension test

1. INTRODUCTION

Finite element modeling of high rate events involving ductile metals requires three basic
material models: an equation of state to predict pressures, a failure model to predict loss of
load carrying capability, and a strength model to predict the yicld strength (fow stress),
This paper discusses a proposed revision to the empirical Johnson—Cook (JC) strength

*Corresponding author. Tel.: 001 205 3481627, e-mail: wrule@coc.eng.us.edu.
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model [17 to morc closely match obscrved material behavior at high strain rates. Further,
a practical scheme for evaluating the revised Johnson-Cook (RJC) strength model cocfli-
cients by using Taylor impact test results and guasi-static tension data is disclosed.

Although the JC strength model is empirical in nature and simple in form it is the most
popular strength model in use today [2]. Simple strength models are popular because of the
difficulty in obtaining accurate strength model constunts at high strain rates. Complex
strength models generally require more, and more sophisticated, test data for coelticient
calibration. Strength model cocflicients for many common metals are not available from the
literature. Also, high rute propertics of a given material can vary significuntly depending on
grain size [3] and processing history. Thus, there is clearly a need for simple strength
models that are practical to calibrate.

2. THE REVISED JOHNSON- COOK STRENGTH MODEL
The JC strength model was first proposcd in 1983 [1]. It has the following form:

7 =(Cy + Cot¥X1 + Cylne*)1 = T*M), (N

where @ is the cquivalent yicld strength, « is the equivalent plastic strain, ¢* is the
dimensionless cquivalent plastic strain rate (made dimensionless by dividing the equivalent
plastic strain ratc by a unit plastic strain rate), T* is thc homologous temperature, and €,
N. and M arc cmpirical coeflicients and exponents. The medel also provides for setting an
upper bound for the yield strength. However, this capability is usually not required in
simulations since 13qn (1) assumes that the yield strength varies lincarly with the logarithm
of the effective strain rate and so o does not become unrealistically large even for enormous
strain rates.

A large number of studics have shown that numerical simulations employing Egn (1) can
produce results of suflicient accuracy for engincering purposcs. This is remarkable consider-
ing Eqn (1) uses simple scalar cxpressions to represent the strains and strain rates which are
sccond-order tensors, and also Eqn (1) assumes isotropic hardening. The temperature factor
is also quite simple in form. When using such simple models it is important 1o calibrate the
coeflicicnts with experimental data which is similar in nature to the intended application.
This point will play a key role in the latter part of this paper where a practical strategy for
strength model coeflicient estimation is proposed.

For many ductile metals the yicld strength incrcases more rapidly with strain rate than
that described by the form of Eqn (1) for strain rates in excess of 10%/s. To increase the strain
rate sensitivity a modificd Johnson Cook (MJC) strength model was proposed [4] with the
following form: .

=(Cy + CoeM)E*)(1 - T*Y) )

where o is an empirical exponent. However, the MJC strength model does not appear to be
widely used today probably because the strain rate sensitivity is not significantly enhanced
over that provided by Eqn (1).

Many ductile metals display an cnormous increase in yicld stress for strain rates in excess
of 10%/s (sce Fig. 1 of Ref. [5], for instance). This observed behavior provided the motivation
for the revised Johnson-Cook (RJC) strength model proposed here. The goal of this study is
to enhance the high strain rate sensitivity of the JC strength model while minimizing
changes to the modcl for those loading regimes where it has clearly been shown to be
effective. The proposed form of the RJC strength model is:

{ + C_; ln C* + C,;(""."“‘l“ "l_‘):l(l - T*M)t (3)

a=(C, +CyM Ciline €
s —Ine 8

where C, and Cs are additional empirical cocflicients.
The strain rate scnsitivity has been enhanced by the term 1/(Cs — Ine*) where Cs is the
natural logarithm of a critical strain rate level. This term tends to infinity as the strain ratc
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Fig 1. Hlustration of the strain rate factor of the RIC mode! (Eqn (1) for various C/C, ratios.

approaches the critical strain rate. Note that this strain rate sensitivity cnhancement term
contribution tends toward zcro for low strain rates due to the — 1/Cs correction term in
Eqgn (3). Thus, the RJC model approaches to the original JC modcl for low strain rates and
is identical to the JC model for a strain rate of unit magnitude where In* = 0. Further, the
entire strain rate sensitivity enhancement term Cg(I1/ACs — Ing) — 1/(Cs)) is removed for
strain rates of less than unit magnitude. In other words, the RJC model is identical to the JC
model for £* values of unity or less.

The amount of deviation of the strain rate behavior of the RJC model from JC model is
controlled by the C, factor as illustrated in Fig. 1. This provides for the fact that some
maltcrials exhibit a very sudden departure of yicld strength from linearity with respect to the
logarithm of strain rate (sec Fig. 1 of Ref. [5], for instance) while others vary more gradually
{sez Fig. 13.26(b} of Ref. [2], for examplel.

As stated previously the original JC strength model provides for specilying a maximum
value for the yicld strength a. However, a limiting value is usually not required for high
strain ratc simulations since the sensitivity to strain rate is relatively low (lincar logarithmic
dependence). However, the RIC strength model as discussed to this point predicts a phys-
ically untcnable infinite yield strength as Ine* approaches Cs. To prevent this unrealistic
occurrence the RIC model simply assumes that there exists a maximum value that the strain
rate sensitivity factor in Eqn (3) can attain for cach material which cannot be excecded
regardless of the prevailing strain and temperaturce state. The peak strain rate sensitivity
factor is defined through the nondimensional constant Cy, as follows:

{ I
% ] " — — et
[E + Calne* + ( 4((.‘5 e C.‘)J < Cs. 4)

A method for estimating C, is discussed in a following section.

The RIC scheme for limiting the strain rate sensitivity factor to physically reasonable
valucs is the simplest possible it assumes that the peak value is a constant (Ce). It is
difficult to construct a more elaborate model for peak strain rate sensitivity behavior in the
framework of the JC class of strength models duc to the lack of accurate test data. It is
technically challenging to conduct material tests at strain rates in excess of 10*/s where
C, begins to play a role. At these strain rates split-Hopkinson bar results become question-
able [6, 7], which leaves mainly flyer plate and Taylor impact testing as alternatives, Flyer
plate testing has the advantage of producing reasonably uniform stress and strain states, but
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such testing is expensive and the results can exhibit a significant amount of scatter as shown,
for instance, in Fig. 7 of Ref. [8]. Taylor testing is relatively incxpensive and datu cun be
obtained from simple post-test measurements. Unfortunatcly, there is currently some
controversy about the results obtained from Taylor tests because of the nonuniform stress
and strain ficlds produced. Thus, considering the available experimental duta, there appeurs
to be u large amount of uncertainty about the yicld strength of ductile materials at high
strain rates.

However, there is some datu to suggest that proposing a constant valuc for the strain rate
sensitivity factor is not unreasonable. Stcinberg et al. [9] assumed that there was a strain
rate level beyond which the yield strength was not significantly affccted. They were able to
obtain some experimental data to validate their assumption. Also, Jones et al. [10] state
that for dislocation activation encrgies greater than a critical value plastic flow of fc.c.
crystal metals is independent of strain rate.

The cight RJC strength model coctficients were evaluated for four different metals as is
described in the next section.

3. RJC STRENGTH MODEL COEFFICIENT EVALUATION FOR FOUR METALS
3.1. The experimental data

RJC strength model coeflicients were evaluated for the following metals: 7075-T6 alumi-
num, OFHC copper, wrought iron, and a high-strength stcel produced by Astralloy Wear
Technology of Birmingham, AL, called Astralloy-V*, These metals huve widcly varying
characteristics and thus should provide a good test of the suitability of the proposed RJC
strength model. Quasi-static tensile test data for these four metals is shown in Fig. 2.

1deally, the strength modet should be capable of making accurate predictions over a wide
range of strain rates. Accordingly, for this study coetlicients were evaluated giving cqual
weight to quasi-static tensile test data (¢'= 10" 3) and Taylor impact test data (¢ > 10%). All
test data was obtained at the University of Alabama in Tuscaloosa. A conventional,
computer controlled, hydraulically actuated, material testing machine was uscd to acquire
the quasi-static tension data. It is assumed thal the materials tested exhibit similar yielding
behavior in tension and compression.

The Taylor impact testing appuratus developed at the University of Alabama has been
described by Allen [11]. Although using the Taylor test to evaluate strength model

2000 e e :
P = 7076-T8 ALUMINUM
1800 + - = + OFHC COPPER
e « = = WROUGHT IRON
1600 + ,/ = —ASTRALLOY-V STEEL
7’
_ Wt 7
- /
200t [/
é
u
2
=
] 8 10 12 14
PERCENT TRUE STRAIN

Fig. 2. Quasi-static tensile test data for the four metals tested.
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coeflicicnts is currently considered inappropriate by some, Zerilli and Armstrong [ 3] make
the point that “the attempt to modcel a Taylor cylinder impact can provide a real test of
a material model, since conditions of strain and strain ratc are achieved which arc outside
the range of ordinary testing in particular, strain rates in the range of 10* 10°s™" and
strains in the range of 0 2", Also, Holmguist and Johnson (sce Fig. 4 of Ref. {4]) show that
strength model cocfficients obtained from currently accepted conventional tension and
torsion tests often do not produce good Taylor test simulations. Since in many cascs the
stress, strain, strain rate, and temperature ficlds of a deforming Taylor specimen are closer
in nature to the intended application than that found in conventional tests it may be
advisable to give more weight 1o Taylor impact results while evaluating strength model
coeflicients. In general, simple empirical models should be calibrated with data that most
closely resembles the intended application.

The Taylor specimens used in this study had undeformed diameters slightly in excess of
4 mm. and most had length to diameter ratios of approximately 7.5. The small spccimen
diameter was used to reduce radial inertia effects after the initial transient at impact was
completed. Radial inertia was minimized to improve the accuracy of the one-dimensional
Taylor specimen analysis technique introduced in Scction 3.4. As will be discussed, the
predictions of the one-dimensional analyses were used as an independent check of the RJC
results. Impact velocities varied between 140 and 270 m/s. Experimental data on the Taylor
specimens are given in Tables 1-4.

3.2. RJIC model coefficient optimization using the EPIC code

The main purpose for developing strength models and determining their coefficients for
different materials is to conduct numerical simulations of high ratc events. Many codes for
numerical simulations of such events have been developed. The code modified for use in this
study was the most recent version of the well-known code EPIC [12]. For some time
numerical models have also been used to evaluate the accuracy of the coefficients of their
strength models and to adjust the cocflicients so that numerical predictions matched
obscrved behavior, This has frequently been done with Taylor test data [ 1, 3,4, 13]. Usually,
only some of the deformed Taylor specimen dimensions are used to adjust certain strength
mode! cocfficients. This approach was extended for this study to include the entire deformed
specimen profile and all of the strength model coefficients (C,-Cq, N, M) were simulta-
neously determined in the process. In addition, the quasi-static yicld strength data was also
included in this fitting process as will now be described.

First, the EPIC code was modified to incorporate the RIC strength model of Eqns (3) and
{4). The new coding was setup so that only (.9999 of critical strain rate (¢**) was allowed (for
higher strain rates the strain rate sensitivity factor was simply set cqual to C,) to avoid an
accidental numerical singularity. The proposed RJC strength model was conveniently
incorporated into EPIC as strength model type 0, leaving 1 for the JC model, and 2 for the
MIC model. Thus, all the original capabilities of the code were retained.

Then, a computer program for strength model coefficient optimization was developed
which was designed to successively write out an EPIC input file (with an adjusted set of
strength model coeflicients), launch the EPIC code, and then post-process the EPIC results
1o determine the next set of strength modei cocfficicnts required to seek a better fit with the
quasi-static and Taylor test data. This process was repeated until the specified number of
coefficicnt optimization cycles had been completed. The optimization algorithm used was
the well-known, gradient-based, conjugate dircction method [14].

The objective function, F, operated on by the optimizer had two components

F = }?FQ& -+ {2 ot ﬁh“"ﬁ. (5}

Fos was the component associated with discrepancies between calculated and measured
quasi-static yield stress results. Similarly, Fr; treated the Taylor impact data. The factor fi in
Eqn (5) can be used to weight the relative importance of quasi-static versus the Taylor
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Fig. 3. Schematic cross-sectional drawing of mearured and calculated Taylor impuct specimen
deformed geometries and segmems used for profile volume error catenlations.

impact results. For this study both sets of duta were given even weight and so f# was set to
unity. Foy wis evaluated from

Neow (”osc.a = f’osm.:)
Moo [ -
. Tosm.i
Nos

where N is the number of measured quasi-static stresses under consideration, ogsw, is the
measured quasi-static yield strength, and aosc,; is the calculated quasi-static yield strength
obtained from the RJC strength model, Eqn (3). Thus, Fyy is simply the average percentage
difference between the calcutated and measured quasi-static yicld strengths.

Similarly, I\, is the average percentage volume error between the caleulated and mca-
sured deformed Taylor impact specimen profiles:

f"% = {00 (6)

-]“'_ni(.y”_"_!)
"'11 = 100 I ’———‘V' (7)
T

where Ny, is the number of Taylor specimens, Vg, ; is the volume error, and ¥ is the initial
Taylor specimen volume. The volumc error was considered to be composed of two
components. One component was associated with the absolute valuc of the difference
between the measured and calculated deformed specimen overall lengths. This quantity was
converted to a volume crror (for dimensional homogencity) by multiplying the length error
magnitude by the undcformed specimen cross-seclional arca. The other volume error
component was associated with volume differences between measurcd and caleulated
deformed Taylor impact specimen profile shapes. For determining the profile volume error
first the calculated profile was scaled to be the same length as that measured and then cach
profile was divided into 50 scgments. Figure 3 shows a schematic cross-sectional drawing of
two typical segments: onc where the radial deformation was underestimated and onc where
it was overestimated. The trapezoidal profilc crrors of cach segment of the cross section (see
shaded areas in Fig. 3) can be converted 1o segment volume crrors by the theorcm of
Pappus. Note all scgment volume errors were considered positive whether due to under-
estimating or overestimating the radial deformation. The profile volume error was deter-
mincd by simply summing together all 50 segmental volume errors,

Thus, as the optimizer drives the two volume crror components towards zcro the
calculated deformed gecometry will be made to match that measured. If the numerical model
was perfect, and if the deformed specimens were measured exactly, then the volume error
could be driven to zero. However, neither of these conditions exist in reality so all specimens
produce nonzero volume errors at the end of the optimization process. Volume crrors of the
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order of 1 3% indicate very good agreement between the measured and caleulated de-
formed Taylor impact specimen geometrics.

Fq is dimensionless as is Fos. Equal values of these quantitics indicate approximately the
same goodness of fit with their respective measured data sets. As the optimizer secks to
reduce the magnitude of the objective function (Egn (5)) a conflict arises between satisfying
quasi-static and Taylor test behavior requirements. In gencral, cach set of ditn requires
somewhat different strength model cocflicients for an optimum fit. If the data are given an
cqual weight (ff = | in Eqn (5) as was donc in this study) then Foy und Fy will have
approximately the same magnitude when the optimizer has converged.

The cocflicient optimization process was entirely automated. Once started the optimizer
automatically launched the EPIC code many hundreds of times while secking to minimize
dilferences between measured and caleulated results. It is important to note that a com-
pletely scamless computing environment was created. There is no requirement for users of
this dynamic material property data reduction technigue to be experts in the use of EPICor
numerical optimizers.

For computational cfficiency the Taylor specimens were modeled with two-dimensional
axisymmetric elements. Three node triangular elements were used. The optimizer code
automatically setup the mesh so that sets of four triangular clements occupicd approxim-
ately square regions of the cross-scction model. The initial optimizer run was sctup using
a very coarsc mesh with a single-element spanning the entire radius. This allowed the
optimizer to quickly adjust the strength model cocflicients to near-optimal values. Then the
optimizer was rerun with (wo-clements spunning the radius. There was no significant
difference between the results of these two meshes so further mesh refinement was not
required. It is fortunate that computationally intensive fine meshes arc not necessary for
convergence of the strength model coetlicients since the optimizer requires many EPIC runs
while secking to minimize the objective function. A typical data set can be reduced in a few
hours on a Pentium Pro class of PC.

3.3, RJC strength model coefficient optimization results

The results of the RJC strength modcl cocfficient optimization process for the four metals
considered in this study are listed in Table S. In general, a satisfactory (it was obtained

‘Table 5. Optimization results and RIC strength model coeilicients and exponents for four metals

7075-T6 OFHC Wrought Astrulloy-V*
Aluminum capper iron steel
No. quasi-static yield stress measurements k] 3 3 3
Ave. quasi-static yield strength percentuge 1.4 1.0 25 4.7
error Foy Eqn (6)

No. Taylor impact specimens 7 14 6 7
Ave. volume percentage crror Fyy Lgn (7) 1.7 34 53 2.2
¢ (MPa) 4524 fi3 2518 1657
C; (MPa) 457.1 2397 5847 ns
N 0.3572 0.1047 0.3796 0.3334
Cy LOBSE-2 $.813E-4 9.681E.7 1.002E-6

s 0.01114 0.1893 0.1064 0.07431
Cs 10.29 1002 9.268 10.79
{Corresponding critical strain rate = e*} (2944} (2.25E4) (1.06E4) (4.85E4)
M 113 1010 04974 1.063
C, 2919 4.74} KR IR 1.507

RIC strength modet o ={((, - C ;x:"'}{l +Cylni* + {‘.(—‘l—_ - i_)}(l — My
Cg-Ini* Cy

i |
With1 1 + Cylni* 4 Cgf ———— —~ = N
1 t + Cylni* 4 4(?5 e {,)-1 < Cs
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Fig. 4. Plots of yield strength versus strain rate for 7075-T6 aluminum for various strain levels
comparing RIC strength model results (Equs (3) and {4)) with quasi-static measurements and
estimates from a one-dimensional Taylor specimen madel.

between the measured and calculated results. The strength model coeflicients of Table 5
appear to be rcasonable when compared with those of other JC models.

It is difficult to compare the results of this study with data obtained from the literature
since, in general, common materials are not evaluated. However, a comparison can perhaps
be made with some published results on a copper. The predicted yield strength of this study
for OFHC copper under conditions of ». = 04,4+’ = 6.4E5s™ L, and T = 295 K is 1560 MPa.
This value is significantly larger than the predictions of Clifton (=482 MPa), and Fol-
lansbee and Kocks (=649 MPa) for OFE copper (sce Fig. 11 of Ref. [5]). Part of this
discrepancy can perhaps be cxplained by the fact that the materials were not identical
(OFHC copper versus OFE copper). The range of these predictions in Ref. [5] emphasize
the difficultics of determining yicld strengths at high strain rates.

The RJC model stress-strain ratc curves arc plotted in Figs 4- 7 for the four metals tested.
These plots display the expected behavior. The quasi-static (#* = 10” %) yield stress estimates
are indicated with markers on the ordinate axes of Figs 4--7. The markers indicated on the
right-hand side of these figures (in the vicinity of the critical strain rate) are discussed in the
next section. _

As can be seen from Table 5, the wrought iron results produced the poorest fit with respect
to the Taylor data, with an average volume percentage error of 5.3%. For the other materials
tested, the fit was significantly better. The measured and calculated deformed profiles for the
six wrought iron Taylor specimens are compared in Fig. 8. It can be seen from this figure that
constraining the optimizer to replicate the quasi-static behavior produced a higher strength
material model than that required for a good fit to the Taylor results. However, considering
the shapc of the wrought iron stress -strain curve (discrete yield plateau and work hardening
behavior, Fig. 2), and considering the many other approximations built into the EPIC model,
Fig. 8 shows an adequate fit to the Taylor data. It is important to note that the Taylor results
of Fig. 8 werc obtained whilc achieving an accurate fit (2.5% avcrage crror) to the
quasi-static results as can scen by the data points indicated on the ordinate axis of Fig. 6.
Running the optimizer without the quasi-static constraints produced a very high quality fit
to the Taylor data (2.3% average volume error). At this level of average error, measured and
calculated deformed profiles for most Taylor specimens are virtually identical.
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Fig. 5. Plots of yield strength versus strain rate for OFHC copper for various strain levels compar-
ing RIC strength model resuits {(Eqns (3) und (4)) with quasi-static measurements and estimates from
# one-dimensional Taylor specimen model,
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Fig. 6. Plots of yield sirength versus sirain rate for wrought iron for various strain levels compuring
RIC strength model results {Eqns (3) and (4)) with quasi-static measurements and estimates from
4 one-dimensional Taylor specimen model.

3.4. Approximate results from a one-dimensional analytical model

In some respects the Taylor impact test can be approximately treated as a one-dimen-
sional system in order to obtain closed form semi-empirical expressions describing
stress-strain rate behavior. Such an expression was recently developed [15, 16] and applied
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Fig. 7. Plots of yicld strength versus strain ratc for Astralloy-V* steel for various strain levels
comparing RIC strength model results (Eqns (3) and (4)) with quasi-stutic measurements and
estimates from a ong-dimensional “Iaylor specimen model,
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Fig. 8. Comparison of measured (black lines) and calculuted (dark gray triangular meshes) deformed
geometries of the wrought iron Taylor specimens.
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to the metals of this study. These calculutions provided cstimates for the yield strength at
high strain rates where pronounced strengthening was observed, as shown by the data
points for various strain levels on the right-hand side of Figs 4-7. Notc that these
calculations were made without ussuming any functional form for stress-strain rate behav-
jor. Thus, they provide an independent check of the optimized results obtained for the RJIC
strength model as described in the previous scction.

There appears to be a rcasonable agreement between the RIC and onc-dimensional
model results. The one-dimensional model tends to over estimate the strain rate to some
degree because it assumes a strain rate cqual to the average strain rate during the initial
transicnl portion of the impact event [15.16]. Since the one-dimensional model makes
predictions of mechanical behavior just after the initial transient, this may account for some
of this strain rate discrepancics shown in Figs 4 7.

4. SUMMARY

‘The strain rate term of the Johnson--Cook strength model was revised to treat the
dramatic incrcase in yield strength exhibited by some ductile metals at high strain rates. The
revised strength model assumes that cach material has a maximum strain rate induccd
increase in yield strength which cannot be exceeded. The RIC strength model has cight
material constants that require cvaluation. An economical method employing an optimizer
was proposed to evaluate the material constants using quasi-static tension test and Taylor
impact data. The finite clement code EPIC was modilied and used to reduce the Taylor
impact data for processing by the optimizer. RJC model material constants were cvaluated
for 7075-T6 aluminum, OFHC copper, wrought iron, and a high-strength steel (Astralloy-
V"), The RIC model appears to be capable of representing the stress--strain rate behavior of
these metals over a wide range of strain ratcs. The RJIC model also correlates reasonably
well with yicld strength estimates at high strain rates provided by a one-dimensional model
for Taylor impact specimens,
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Abstract

Hardened Astralloy-V® is thc material from
which some armor plates for civilian and military
use arc made. In order to assess the ballistic
performance of this material, we require a
mechanical charactcrization at strain-rates exceeding
10%/s. These rates cxceed the limits of conventional
Split-Hopkinson Bar testing. Howcver, the Taylor
impact test achieves these rates with cven moderately
low impact velocities. Using a new one-dimensional
analysis, proposed by one of the authors, 2 high rate
description of material behavior is possible. The
results of the one-dimensional analysis are compared
with the results obtained by modeling the Taylor
specimens with the EPIC finite clement analysis
code. These methods may be used to find high
strain-rate propertics for other ductile materials and
their ballistic performance investigated in a similar
manner.

Introduction

ASTRALLOY-V® is a high strength and high
hardness (477 BHN) steel that is used in a number of
applications. Some of the applications involve wear
resistance, which is the primary market for this
product. However, ASTRALLOY-V® has been used
as armor plate in terminal ballistics applications. To
understand and intcrpret the performance of this
armor under impact conditions, the constitutive
properties of the matcrial at strain-rates comparable
to those observed in an impact/penetration event
must be determined. This presents an analytical and
experimental challenge.

The Split-Hopkinson Pressure Bar is the most
reliable method for obtaining high rate properties'™.
However, it is difficult to approach strain-rates of the

order of 10%/s with this test. The limitation is due to the
wave speed in the pressure bars,

Strain-rates exceeding 10%s arc easily achieved in
the Taylor impact test*®. Even for low impact velocities,
relatively high strain-rates can be observed. For this
reason, the test is receiving more attention™° from
researchers and practicing engineers in the Seld
However, the difficulty is the interpretation of the results.
In this respect, there are two generally accepted methods
for interpreting test data: one-dimensional models™'® and
full scale code calculations'''2, There are advantages to
both and we will employ both methods to interpret the
test data presented in this paper.

Tavlor Impact Tests

There are a number of variants of Tayvlor test
configuration. The one that we will employ is the
conventional rod against an uncompliant (very hard,
essentially rigid) target. In this test, a cylinder of
specimen material is launched from a gun tube and
impacted normally against 2 massive target. For the tests
discussed in this paper, the cylinders and target “faces”
are Astralioy-V®.

Seventeen-caliber cylinders with length to diameter
ratios of 7.5 and 10 were impacted at a varicty of speeds
ranging from 187 mv/s to 232 m/s. The results of these
tests are reported in Table 1. The normalized undeformed

section lengths & = £ /L are the ratios of undeformed
section length, £, to initial length, L, for compressive
strains  of 3.6%, 5.8%, 112%, and 16.1%. &,
corresponds to 3.6%, &, comresponds to 5.8%, &;
corresponds to 11.2%, and &, corresponds to 16.1%.
n=(L—S;)/L is the normalized deformed length
L, /L (see Fig. ).

" Copyright © 1996 by the American Institute of Acronautics and Astronautics, Inc. All rights reserved.
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The theory presented by Jones, ct al'® predicts
that the data presented in Table | is linear for
Evsn for sufficiently high impact velocities.
Figure 2 demonstrates this lincarity. The slope m
and intercept b of these lines are related to the
particle velocity, u, behind the plastic wave front
and the conditions that exist at the end of the initial
transicnt that accompanies the shock at impact of the
specimen.,

The key parameter in the mathematical model
is B, where u=fv. The velocity of the back of
the specimen is v. The modcling process assumces
rigid-plastic behavior for the specimen material and
the magnitade of P governs the velocity
discontinuity at the rigid-glastic interface.

From Jones, ct al.'’, the relationship between
the slopes of the lines in Fig. 2 for the constant
compressive strains, €, is

m=—-—— 1)

In this equation, e=d (2) / d 2 _1isthe longitudinal,

compressive strain. The undeformed specimen
diameter is d, and the deformed specimen diameter

is d. For example, the 17-caliber specimens have an
initial diameter d, = 4.17 mm. For a compressive

strain of 5.8%, d = 4.30 mm. For each slope in Fig.
2, the corresponding value of B can now be
calculated directly with Equation (1).

A compression test on Astralloy-V® was
performed. The true stress/engineering strain curve
is shown in Fig. 3. From the quasi-static yield
stresses in Fig. 3, the values of B in Equation (1),
and the impact velocities in Table 1, we can estimate
the high rate properties of the specimen material.

Estimation of Stresses and Strain Rates

After impact, there is a short period of initial
transient behavior. The duration of this initial
transient is dependent on the strain of the observed
wave, or bulge, in the specimen. Lower strain waves
move much faster than higher strain waves.

The conditions that exist at the end of the
initial transient are denoted by bars over the symbol.
It can be shown'® that the normalized undeformed

section length £/L achieved at the end of the

initial transient can be related to the final normalized
undeformed scction length £ ¢ / L

z__ﬁ; (+e)(1-B) ,
L"" L exp{ zw' PVor- 2)

In this equation, 6g=0g(e) is the quasi-static
compressive yicld stress at the compressive strain ¢. The
uniform mass density of the specimen is p.

The valucs of og(c) arc given in Table 2. These

stresses arc taken from the stress-strain diagram in Fig.
3. Using the data in Table 2, Equation (2), and Table 1,

the ratios £/ L arc calculated for cach experiment. The
results are reported in Table 3.

In each instance, note that £/ L remains virtually
constant. This obscrvation has been used to advantage by
Jones, et al'®, where the quasi-static stress-strain
diagram was estimated from Taylor test data.

Now, the maximum stress and maximum strain-rate
can be estimated using formulas given by Jones, et al."
or Maudlin, ct al.'"* and Jones, et al.'*;

max ~ -8

1+e)(1-B)?
Sred=b) )(e ) pVy (3)

and

Q)

The results are given in Fig. 4, where stress is plotted as
a function of strain-rate for the constant strains
considered in the reduction of the experimental data. The
dotted lines on this figure indicate, approximately, stress
behavior for lower strain rates, The solid lines on Fig. 4
are predictions made using a Johnson-Cook strength
model's. These predictions are discussed in the next
section.

Astralloy-V® is a high strength steel that has a
relatively low strain to failure in tension as is typical of a
high strength steel. This lack of ductility is reflected by
the minor influence that strain-ratc has on the total
stress, o . At the highest strain, 16.1%, the increase in
stress at a strain-rate of approximately 7x10%/s is only
17% greater in magnitude than the quasi-static yield
stress at the same strain.

American Institute of Acronautics and Astronautics
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Constitutive Behavior Using A Computer Code

Validating thc high strain ratc constitutive
results (Equation (3)) obtained from the approach
described in the preceding sections of this paper (and
shown in Fig. 4) is a difficult but necessary task. The
validation approach uscd here consisted of using an
empirical equation to mode! the constitutive
response. The deformed geometrics of the Taylor test
specimens were used to calibrate the coefficients of
the empirical cquation. The cmpirical equation
applied here is a commonly used onc developed by
Johnson and Cook'®:

o= (c, + c,a§3 Xl +¢4lng, )(1 - T'cs) ©)]

where: the C, are empirical cocfficients, €, is the
equivalent plastic strain, €, is the equivalent plastic

strain rate, and T is the homologous temperature.

The empirical cocfficients, C;, of Equation (5)
were determined by using an optimizer to drive the
well known EPIC finitc element code. This involved
applying an approach described by Allen et al.'?,
where the coefficients are adjusted in an optimal
fashion to minimize the difference between
measured and calculated Taylor specimen deformed
geometries. Seven Taylor test deformed geometry
data sets were used in the coefficient fitting process
as shown in Table 4. As indicated in Table 4,
average values of the five coefficients of Equation (5)
were used for constitutive model validation. The
seven Taylor specimens produced quite consistent
sets of empirical coefficients as demonstrated by
Table 5.

The coefficicnt fitting process is most sensitive
to the impacted end of the Taylor specimen where
compressive strains, compressive strain rates, and
temperatures are highest. Thus, a severe accuracy
test of Equation (5) would be for comparison with
quasi-static tension test results, Fig. 5. From this
figure it can be scen that, according to Equation (5),
the offset yield stress is overestimated, and the
ultimate tensile stress underestimated by a
remarkably small 14%. Thus, it appcars that the
coefficients of Table 4 with Equation (5) provides a
reasonable representation of the constitutive behavior
of the Astralloy-V® material.

For comparison with previously derived
constitutive results of Equation (3), Equation (5) is
plotted on Fig. 4 (solid lines) for strain values of
3.6% (lowest line), 5.8%, 11.2%, and 16.1%
(highest line). Note that the form of Equation (5) is

such that these plots must be linear on a logarithmic
strain ratc plot and so the abrupt risc in stresses predicted
at high strain rates can not be followed. However, it can
be scen that Equation (5) (solid lines) attempts to
straddic the previously generated constitutive results of
Equation (3) (dotted lines) in Fig. 4. Thus, subject to the
constraints of the form of the equation, the Johnson-Cook
predictions of Equation (5) appear (o agree well with the
prediction of Equation (3).

Conclusions

For ycars the Taylor test has been regarded more for
its historical significance than its practical value. The
reason for this is that most analyses of the test produced
an estimate for the “dynamic yield stress” that was
unconnected to accurate estimates for strain and strain-
rate. Contemporary design considerations have created a
need for accurate estimates of material behavior at strain-
rates that are difficult to achieve by any of the accepted
methods for mechanical testing. The Taylor test achicves
rates that arc nearly an order of magnitude higher than
thosc obtained by conventional Split-Hopkinson Pressure
Bar testing. Thus, the Taylor test helps to fill the gap
between the Split-Hopkinson Pressure Bar and the ultra
high strain-rates achieved in plate impact experiments
(e.g Clifton et al.'),

A one-dimensional interpretation of the Taylor test
has been shown to lcad to very satisfactory conclusions
regarding the material behavior of Astralloy-V®. This
metal is a high strength steel that is suitable for armor
applications. In order to understand its behavior in a
terminal ballistics environment, however, its high rate
constitutive properties are required. Future efforts will
concentrate on simulating the terminal ballistic event and
on further refining the testing of the material,
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Table 1: Astralloy-V® data for 17 caliber specimens.

Vovs) | Lem) | M &1 &, &3 €4
187 3.142 | 0943 | 0.627 | 0.671 | 0.741 | 0.783
232 3,137 | 0917 | 0.592 { 0.621 | 0.683 | 0.721
216 3.134 | 0.927 { 0.608 | 0.642 | 0.704 | 0.743
232 3.137 | 0921 | 0.597 | 0.636 | 0.697 | 0.726
219 3.145 | 0930 | 0.611 | 0.643 | 0.707 | 0.746
198 3.142 | 0939 | 0.627 | 0.660 | 0.731 | 0.773

Table 2: Material parameters.

e og(e) (MPa) B p (kg/m3)
-0.036 -1750 0.948 7847
-0.058 -1840 0.900 7847
-0.112 -1930 0.760 7847
-0.161 -1970 0.605 7847
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Table 3: Normalized undeformed section length afier the initial transient.

Vo (m/s) | 2/L (e=36%) | ¢/L (e=58%) | ¢/L (e=112%) | 2/L (e =161%)
187 0.699 0.757 0.848 0.904
232 0.700 0.748 0.841 0.899
216 0.704 0.754 0.843 0.900
232 0.706 0.766 0.857 0.905
219 0.710 0.759 0.851 0.908
198 0.708 0.756 0.851 0.908

Table 4: Johnson-Cook constitutive model coefficients fit from Taylor test deformed geometries.

VELOCITY (m/s)| CONSTANT ] CONSTANT 2 | CONSTANT 3 | CONSTANT 4 | CONSTANT 5
(MPa) (MPa)
152 1333 614.1 0,2301 0.01531 1.094
187 1471 637.3 0.2289 0.01564 1.136
198 1523 642.8 0.2267 0.01571 1.131
216 1490 639.8 0.2261 0.01570 1.119
219 1662 633.7 0.2200 0.01597 1.084
232 1527 628.5 0.2261 0.01580 1,106
232 1662 641.3 0.2217 0.01598 1.151
AVERAGES 1524 633.9 02257 0.01573 1.117
Table 5: Variation in Johnson-Cook coefficients from average values,
VELOCITY PERCENTAGE DIFFERENCE FROM AVERAGE
(m/s) CONSTANT 1 | CONSTANT 2 { CONSTANT 3 | CONSTANT 4 | CONSTANT 5
152 -12.5 -3.1 2.0 2.7 «2,1
187 -3.5 0.5 1.4 -0.6 1.7
198 -0.1 1.4 0.5 -0.1 1.2
216 22 0.9 0.2 -0.2 0.2
219 9.1 0.0 -2.5 1.5 -3.0
232 0.2 0.9 0.2 0.4 -1.0
232 9.1 1.2 -1.8 16 3.0
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Figure 1: The deformed configuration of a Taylor specimen.
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Figure 2: Plots of & versus 7 for various strain levels.
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Figure 3: Plot of compressive true stress versus compressive engineering strain.
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Film data reduction from Taylor impact tests

J W House!*, B Aref?, J C Foster Jr! and P P Gillis?
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Abstract: A high-speed photographic film record of a Taylor impact experiment was analysed to determine
the strain, strain rate and stress. The stress was ealculated on the basis of an interpretive analysis by Taylor
involving the motion of a plastic wave in the material. The data on drawn OFE copper produced stresses
from 300 to 400 MPa, for strains between 0 and 45 per cent. The strain rate approximation produced a peak
valuc of 11000 s, The strain rate data showed a wide range of valucs in the plastically deforming region.

Keywords: Taylor impact experiment, dynamic plasticity, strain rate, OFE copper, film analysis

NOTATION

4 cross-sectional arca of the specimen

D diameter of the specimen

¢ arcal strain

e sirain rate

h current position of the plastic wave front

! current length of the specimen

t time

T temperature

u current velocity of the back end of the specimen
v average Eulerian wave speed of the plastic front
£ logarithmic strain

o compressive stress magnitude

p mass density

Subscript

0 initial undeformed geometry

1 INTRODUCTION

Continuum models developed to study impact and explo-
sive formation usc constitutive relationships to predict the
material properties. These material models must be cali-
brated to a set of data consistent with the problem to be
studied, namely large plastic strains and high strain racs.
The strain rates found during penetration arc 10°-10¢ 57",
whereas the data used to generate constitutive propertics

The MS was received on 10 November 1998 and was aceepted after
revision for publication on 15 April 1999,

* Corvesponding author: US Air Force Laboratory Research, Munitions
Directorate-AFRL/IMNMW, 101 West Eglin Boulevard, Suite 135, Eglin
AFB, FI 32542-6810, USA.
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rarcly exceed 10*s~!. Here a technique is described for
interpreting a high-deformation-rate cxperiment that will
provide constitutive data closer to the regime of interest.

In 1948, Taylor [1], Whiffen [2] and Carrington and
Gayler [3] reported a test aimed at providing flow stress
information on materials deformed very rapidly. This high-
deformation-rate experiment is performed by striking a
ceylindrical specimen against a massive anvil. The deformed
specimen geometry and striking velocity are processed
through an interpretive analysis to give a flow stress
estimate. Such experiments are referred to as Taylor impact
tests. Taylor’s analysis of the experiment employs a rigid-
plastic idealization of the material stress—strain curve. His
results describe the material response to impulsive loading
with a single parameter, the flow stress. Such an analysis
lacks the ability to provide a detailed description of
matcrial properties since important variables such as strain
and strain rate are absent. Other analyses formulated to
interpret the experiment have been gencrated, for example,
by Hawkyard {4] and by Joncs er al. [5]. Yet, these analyses
retain the rigid, perfectly plastic idealization found in
Taylor’s original work.

In the 1980s, the use of high-speed photography
significantly expanded the database for these experiments.
Photographic records of the deformation process have
offered an entircly new method for interpreting the results
of the Taylor test. In the present report it is shown how the
film record can be analysed to estimate the strain rate and
the stress—strain curve for the material tested.

2 ANALYSIS

Figure 1 is a schematic representation of three deformation
profiles of the same specimen photographed at different
times during a Taylor impact test. In Fig. la the specimen
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Fig. 1 Specimen radius and strain at three different times: (a) specimen radius versus axial position; (b) specimen

strain versus axial position

radius is plotted versus axial position at the times #;, £, and
13, whete 3> t; > . Here the axial position is the
distance from the anvil (or impact) face. This information
can be reduced from corresponding frames of the photo-
graphic record of the test using an optical comparator.

The optical comparator, Deltronic model DH214, is
designed to illuminate and magnify the profile geometry of
an object placed in the lens viewing area. In this casc,
instead of an objcct, a strip of 35 mm film is studied. The
enlarged image is projected on to a ground glass screen
where horizontal and vertical cross-hairs aid in determining
spatial information. The film is positioned with stepping
motors that control the ram bed of the optical comparator.
The current location of the film position identified by the
cross-hairs is obtained via a digital read-out integrated with
the stepping motor controllers. The optical comparator
provides spatial data in increments of 2.5 wm (0.0001 in).

JOURNAL OF STRAIN ANALYSIS VOL. 34 NO § -2

Mcasurement accuracy for the Taylor impact data will be
described in a separate section of the report.

In Fig. b the information from Fig. la is replotted as the
areal strain versus the axial position. Taylor’s definition of
strain

it
e=1 1 )

is used. Here A4y is the cross-sectional arca of the specimen
prior to impact and 4 is the current valuc at the location of
e. Equation (1) is identical with Taylor’s equation (10) and
defincs ¢ as being positive in compression. For the case of
planc cross-scctions remaining plane and no change in
density, ¢ equals the axial enginecring strain. For actual
tests, e closcly approximates the axial strain everywhere
except at the anvil face.
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Step | in the construction of the stress: strain curve is to
measure the change in length ol the specimen from Fig. fa.
This cnables the back end speed 1 to be caleulated from

H- 4
U= ——— 2)
=4 (

where 1 and /; are the specimen lengths at the correspond-
ing times # and 7;. Equation (2) gives the average value of
# over the interval from 1) o £, As 1 is sclected to be
closer to ¢ the average over the interval approaches the
instantancous valuc at #;. On the other hand, as Ar becomes
smaller, the separation between /; and /; approaches the
uncertainty in the spatial measurements. Therelore, some
suitable compromise is required in selection of the time
interval between profiles.

Step 2 in the construction is to determine a scrics of
plastic wave speeds from Fig. 1b. Select a convenient value
of ¢, say ¢;, and note the axial positions where that strain
occurs in the two profiles at ¢ and ;. Denote these
locations by h, and A respectively. With respect to the
anvil face, the strain ey has propagated a distance Ay - Iy
during the time interval 13 — ¢, and so

btz 3)

Here v is the average Eulerian wave speed for the strain
level e over the interval from ¢ 1o 15,

Another quantity of interest can be calculated from Fig,
tb. By drawing a vertical linc through an axial position
such as A, the change in strain ¢; — ¢ at this position can
be found for the time interval 1 — #,. Thus, some ap-
proximation to the strain rate there becomes

de e —e¢
v R e i n 4
dt  bL-—-1 @

This is called an approximation rather than an average
because e is a Lagrangian strain measure which is
embedded in the material. However, the material located at
hy at time £, is different from that at 7).

To obtain the stress associated with the sciccted strain ¢
and the estimated strain rate requires interpretive analysis.
For any constitutive model of material behaviour of the
form o = f(¢, & T) the stress can be calculated from the
foregoing information. (The logarithmic strain £ is directly
calculable from the arcal strain e but, if the temperature is a
factor, iteration is required to balance the temperature rise
with the plastic work.)

In this paper dealing with the Taylor test, the constitutive
approach taken by Taylor in his original analysis of the
problem is used. From conservation of mass, Taylor writes

Aglu -+ vy = Av &))]

S0699% o IMechE 19949

This is his cquation (8). From impuise--momentum con-
siderations

pdolte -+ v)u = a(d - Ay) (0]

which is Taylor's equation (9). Here p denotes the mass
density of the material and o is a compressive stress
magnitude. This stress is associated with the strain cor-
responding to the change from Ay to A. Using cquation (5)
to eliminate 4 from cquation {6), simplifying and rearran-
ging give

o = plu+ vy (N

In combination with cquations (2) and (3), equation (7)
associnies a stress oy with cach strain ¢, This stress does
not explicitly depend upon the strain rate from cquation
(4).

To construct a stress—strain curve for the specimen
material, first select two frames from the photographic
record and determine » using equation (2) as indicated by
Fig. la. Then reduce the profile data 1o a strain plot as in
Fig. 1b. From this diagram, several values of ¢ can be
selected, the associated values of v can be determined using
equation (3) and the corresponding values of o can be
calculated from cquation (7). These (¢, ¢) pairs can then be
plotted to produce a siress—strain curve appropriate to that
particular Taylor impact test.

Application of equation (4) will generally show different
strain rates at cach of the points plotted. This situation is no
different from the ordinary pseudo-static tension test. [n
that test the strain rate usually increases by at least an order
of magnitude at the yield point, varies with the ratc of
strain hardening during plastic flow and increases further
as strain localization occurs during necking. This has been
discusscd by Hamstad and Gillis [6].

3 EXAMPLE

The Taylor test used here as an cxample, UK-145, is onc of
a series previously described by House ef wl [7] in some
detail. In short, the specimen is hardened OFE copper
initially 7.6 mm (0.299in) in diameter and 57.1mm
(2.25 in) long. The impact velocity of the specimen was
189 m/s. Figure 2 shows threc typical frames of the
photographic record. These images are at 33.3, 63.3 and
79.9 ps. From these frames the deformed specimen lengths
can be measured dircctly and from their differences the
back end speed estimated using equation (2).

The diameter versus axial position data of Fig. 2 has
been measurcd at approximately 1 mm intervals using the
previously described technique, reduced to the areal strain
¢ and plotted in Fig. 3. For each of the three times a
relatively smooth curve is drawn through the data sct.
Using the two cutves for 33.3 and 63.3 ps, cquation (3) is
used to find values of v for cach 2 per cent increment of
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(b)

(©)

Three frames from the photographic record of the Taylor
impact test of specimen UK-145. These frames corre-
spond to times of (a) 33.3 ps, (b) 63.3 ps and (¢) 79.9 ps.
In the photographs the anvil face is to the left and the
specimen is moving in that direction. The block (lower
left in cach picture) is a fiducial establishing horizontal
and vertical length scales

strain up to a maximum of 45 per cent. Using v and the
corresponding u value determined from Fig. 2, the stresses
are calculated using equation (7). The sct of (e, o) values
obtained in this way arc plotted as full squares in Fig. 4.
The strain rate was approximated using equation (4) and
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the dara in Fig. 3. Using the two curves lor 33.3 and
63.3 ps, approximate strain rate values were caleulated at
0.5 mm increments in the range from 1.5 to 16 mm from
the impact face. The strain associated with the approximate
strain rate was assumed to be the numerical average of ¢,
and ¢, The set of (e, ¢) values arc plotted as full triangles
in Fig. 4.

Using the two curves for 63.3 and 79.9 ps the process is
repeated to generate the other set of (e, 0) and (e, &)
identified by open symbols in Fig. 4.

The stresses plotted 1 Fig. 4 arc based on two discrete
values of back end speed w. For the two time intervals
(33.3--63.3 and 63.3-79.9 us) the values arc 145 and
123 m/s respectively. The wavetront speeds v are listed in
Table 1 with the corresponding strain values. The dashed
line in Fig. 4 shows the flow stress calculated using Taylor's
original theory. The expression used is Taylor’s equation
(22) involving the initial and final projectile geometrics
and the initial Kinetic energy of the specimen. The develop-
ment of Taylor's cquation (22) is based upon an assumption
of constant plastic wave speed. The resultant flow stress is
335 MPa.

4 FILM MEASUREMENT ACCURACY

The camera manufacturer specifies the resolving power of
the camera bascd upon procedures cstablished by the
National Bureau of Standards. These test procedures estab-
lish distances between the camcra and the resolution target
consistent with the optics of the camera. The manutacturer's
claim for resolving power is 22 linc pairs per millimetre, in
the transverse direction, and 28 line pairs per millimetre in
the dynamic dircction. Scveral factors make it difficult to
correlate the accuracy of the film reduction technique with
the reported resolving power. These factors include the lens
quality, the film granularity and contrast, the film proces-
sing, the type of light and how the experiment is il-
luminated. To assess the accuracy of the film reduction
technique a choice is made to present an illustration that
gives some practical estimate of what can be expected.

The photographic record of the test SC-06 shows the
specimen just rebounding from the anvil. This frame is
shown here as Fig. 5. From this frame the specimen profile
was measured using the optical comparator. The deforma-
tion profile of the recovered specimen was also measured
on the optical comparator. These two profiles are super-
imposcd in Fig. 6. Comparison of the measurcd diameters
shows that the film reduction technique is accurate to
within about 0.17 mm (0.007 in). The overall length of the
specimen from the film data reduction is 15.2 mm
(0.598 in), compared with the recovercd specimen length
of 14.8 mm (0.583 in). On the whole, these comparisons
arc considered to show good agreement.

Based upon the uncertainty in the data of Fig. 6 an
analysis of the potential error in the strain measurement,
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Fig. 3 Strain versus axial position in specimen UK-145 at the three different times of Fig. 2

reported in Fig, 3, can be made. Rewriting equation (1) in
terms of the initial diameter Dy and the current diameter D
gives

Dy
=} -2 3
e= 1 2 ®)
Differentiation of ¢cquation (8) gives
DidDy D3dD
de=—2280"7 it 9
e 2 Dy +2 5D )]

Substituting from equation {8) and rearranging, cquation
(9) can be written as
dD  dDy
de =2(1 -- )| —— — — 10
e =2 e)( = DO) (10)

Knowing the measurement uncertaintics for the initial
diameter, dDy = 40.025 mm (£0.001 in), and the uncer-
tainty in the measured diameter from the data in Fig. 6,
dD = £+0.17 mm (:0.007 in), the maximum magnitude of
the error in the strain can be estimated using cquation (10)
(Fig. 7.

At low strains, the uncertaintics in the measurements of
D and Dy arc large compared with the magnitude of the

$06998 .« IMechl: 1999

strain. The maximum error at low strain is 2005, As D
increases, the uncertaintics in D and Dy remain constant,
and therefore the magnitude of the error at large strain
decreases. Equation (10) also indicates that, if the magni-
tudes of dD and dDy arc constant, then the uncertainty in
the strain, de, wil be reduced if larger diameter specimens
are tested. By increasing the specimen size to 12.7 mm
(0.500 in) the maximum error is reduced to £0.03.

5 DISCUSSION

The strain rates shown in Fig. 4 peak at about 10*s™',
These peak rates arc comparable in order of magnitude
with average rates calculated by Whitfen [2]. Very much
higher rates would be expected at the beginning of the
event, near the impact end of the rod. However, the frames
(shown in Fig. 2) sclected for analysis were choscn for
computational convenience to be relatively widely separ-
ated in time. Additional computations based on a very high
framing rate (about 10° frames/s) and focused on initial
impact would be expected to show a substantially higher
peak strain rate.

Taylor has a plastic deformation front that propagates
along the rod as a discontinuity in cross-sectional arca and,
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Fig. 4  Stress and strain rate versus steain for the OFE copper of specimen UK-145: m, data obtained using strain
profiles at times 33.3 and 63.3 ps; O3, duta obtained using strain profiles at time 63.3 and 79.9 ps; - - -,
stress caleulated using Taylor's [1] original analysis
Table 1 Plastic wave speeds
Velocity (m/s) for the following time intervals
Areal
strain 63.3-333 us 79,9-63.3 ps
0.02 1283 1145
0.04 123.3 138.6
0.06 126.7 138.6
0.08 135.0 138.6
0.1 146.0 135.5
0.12 143.3 138.6
0.14 146.7 138.6
0.16 148.3 135.5
0.18 150.0 141.6
02 1547 135.5
0.22 150.0 138.6
0.24 151.7 132.5
0.26 150.0 135.5
0.28 150.0 132.5
0.3 146.7 135.5
0.32 148.3 126.5
')--;4 14-:-3 ’3(2)-2 Fig. 5 One frame [rom the photographic record of the Taylor
333 ::6}1 :§’5 impact test of specimen SC-06. In the photograph the
0.4 1313 129.5 anvil face is to the left and the deformed specimen has
0.42 1283 132.5 just begun to rebound to the right. Also shown is the
0.44 125.0 1325 obturator (upper right) separating from the specimen and
0.46 6.7 138.6 the fiducial (lower leRt)
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Fig. 6 Comparison of the deformed profile of specimen $C-06 as determined by film analysis and by dircct

mcasurements

conscquently, in areal strain. [n such a case the strain rate
would be infinite. In actuality, the strain rate must build up
from zero ahead of the front to some finite maximum value
and then drop back to zero. Evidence of this behaviour can
be seen in Fig. 4. From equation (4) and the information
gathered on the first time interval (full triangles) the
strain rate increases by two orders of magnitude as the
strain varies from 1 to 30 per cent. Above 30 per cent
the strain rate is rclatively constant.

Decreases in rate at large strain are not observed until
the second time interval is analysed (open triangles). The
decrease occurs in material close to the impact face. Curves
of strain rate versus strain for the two time intervals are,
otherwise, remarkably alike.

Also shown in Fig. 4 are stress versus strain results. For
the first time interval (full squares) the stress given by
equation (7) initially increases as strain increases. At low
strains, the stress is nearly equal to the quasi-static yield
strength (300 MPa). As the strain rcaches 0.20, the stress
has increased to 400 MPa. Between the strains of 0.20 and
0.28, the stress is nearly constant, For strains above 0.28,
the stress decreases, reducing to 300 MPa at a strain of
0.44. With the back end speed u equal 1o a constant, the
variation in stress must be attributed to the change in the
plastic wave specd v (sce Table 1, sccond column). Most of
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the stress values exceed that calculated from Taylor's
original analysis (335 MP’a).

The stress for the second time interval {(open squares) is
nearly constant for strains between 0 and 0.20. Above a
strain of 0.20, the stress decreases from 315 to 300 MPa.
These stress values fall below those calculated using data
from the first time interval, and below that calculated using
Taylor’s original analysis,

The variations in stress calculated using equation (7)
result from the assumptions contained in the analysis,
Taylor assumes that a plastic—rigid interface exists in the
deforming specimen, this interface being a discontinuity in
cross-sectional area. Material that crosses from the rigid
rod segment into the plastic region is assumed to flow
instantancously to its final position. The data in Fig. 2 or
Fig. 3 show that this discontinuity does not exist. Fur-
thermore, the material particle velocity is not zero as it
enters the plastic region. The particle velocity would have
some axial and radial components that would vary with
time in accordance with the local stress state and
constitutive behaviour. When the strain rate reaches a
maximum in Fig. 4, at a strain of 0.30, the radial velocity
component is for that planc (at that time) reaching its peak
value.

The second assumption is that the rigid—plastic interface
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Fig. 7 Maximum magnitude of the uncertainty in the strain deduced from the film analysis

moves at a constant speed. Taylor makes this assumption in
order 1o define the history of the interface motion relative
to the final dimensions of the recovered specimen. The
velocity of the interface, v, is eliminated from cquation (7)
in favour of specimen geometry parameters [see Taylor’s
equation (22)). Ignoring the fact that the interface, as
defined by Taylor, does not cxist, the data in Table 1 show
that the wave speeds arc not constant. The drop in stress
calculated for the sccond time interval results from a lower
valuc of back-end speed u and overall lower values of
plastic wave speeds .

Taylor’s analysis that leads to the dashed line in Fig. 4
assumes a rigid—plastic material, i.c. a material having a
single value of flow stress. This value must naturally be an
average of the varying values exhibited by a real material
as strain and strain rates vary. As shown in the figure, the
(constant) Taylor value approximately averages the high
stress for early deformation and the lower stress that occurs
fater.

Improving the constitutive analysis of the type developed
by Taylor requires morc detailed understanding of the
motion of material inside the plastic zone. Adding high-
speed photography to the experimental diagnostics has
provided strain information with an estimate of the strain
rate. These data alone provide insight into the constitutive
behaviour by way of the motion of material in the plastic
zone. Additional sources for data are cxperimental techni-
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ques that track particle position in the specimen and
analysis of the impact experiment using finitc-clement-
bascd representation.

6 CONCLUSIONS

High-speed film data of the Taylor impact cxperiment
when properly analysed can provide additional information
on the constitutive properties of material under high-strain-
rate conditions. Analysis of images from test UK- 45 have
provided estimates of the stress, strain and strain ratc. In
this report an intcrpretative analysis similar to Taylor’s was
used to find the stress. For the drawn OFE copper the
calculated stresses ranged from 300 to 400 MPa. Approx-
imate strain rates for the cxperiment were determined by
differencing strain profiles at different times. The peak
strain rate was 11000 s™!. The strain rate data indicate that
a wide range of rates occur in the plastically deforming
region of the specimen material.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the US Air Force
Rescarch Laboratory, Munitions Dircctorate, Eglin Air

S06998 ¢ IMechli 1999



FILM DATA REDUCTION FROM TAYLOR IMPACT TESTS 348

Force Base, Florida, the technical assistance of Leonard L.
Wilson and Harold Gilland and many helpful discussions
with Dr Paul Maudlin of Los Alamos National Laboratory,

REFERENCES

1 Taylor, G. L. The usc of flat-ended projectiles for determining
dynamic yield stress. [t theoretival considerations. Proe. R, Soc.
Lond. A, 1948, 194, 289-299,

2 Whiffen, A, C. The use of flat-ended projectiles for determin-
ing dynumic yield stress. Il test on various metallic materials,
Proc. R. Soc. Lond. A, 1948, 194, 300--322,

3 Cuarrington, W, E. and Gayler, M. L. V. The use of flat-ended
projectiles for determining dynamic yicld stress. 11 changes in

S06998 ¢ IMechE 1999

microstructure caused by deformation under impact at high-
striking velocities. Proe. R Soc. Lond. A, 1948, 194, 323 131,

4 Hawkyard, J. B. A theory for the mushrooming of flat-ended
prajectiles impinging on a lat rigid anvil, using cocrgy
considerations. In. J Mech. Sci,, 1969, 11, 313-133,

§ Jones, S, E., Gillls, 2 P and Foster Jr, J. C, On the equation
of motion of the undeformed section of o Taylor impact
specimen. J. Appl. Physics, 1987, 61, 499-502.

& Hamstad, M. A, and Giills, P, . Effective strain rates in low-
speed uninxial tension tests. Murer Res. Stand., 1966, 6,
569-573.

7 House, J. W, Wilson, L. L, and Nixon, M, E, High strain-rate
material behavior using Taylor anvil experiments. In Proceed-
ings of the Sixth International Conference on The Mechanical
Behavior of Materials, Kyoto, fapan, 1991, Vol 1, pp.
343--349.

JOURNAL OF STRAIN ANALYSIS VOL 34 NO §




APPENDIX F




PVP-Vol. 414-1, Emerging Technologies In Fluids, Structures,
and Fluid/Structure Interactions — Volume 1
ASME 2000

VALIDATING THE HIGH STRAIN-RATE STRENGTH ESTIMATES
GENERATED FROM HIGH-SPEED FILM DATA AND A REVISED
ELEMENTARY THEORY FOR THE TAYLOR IMPACT TEST

John D. Cinnamon, Captain, US Air Force
Department of Astronautics
US Air Force Academy, Colorado

S. E. Jones, University Research Professor
Dept of Aerospace Engineering and Mechanics
University of Alabama, Tuscaloosa, Alabama

J. W. House, Materials Sclentist
USAF Research Laboratory, Armament
Directorate, Eglin Air Force Base, Florida

ABSTRACT

An clementary theory describing the Taylor
Impact Test is revised in this paper to utilize high-speed
film data. This approach generates high strain-rate strength
estimates for materials undergoing high-speed deformation.
First, film data from the Taylor Impact Test, at a rate of %
million frames per second, is reduced using computer image
apalysis, This film data is utilized to validate assumptions
made about transient and steady state impact behavior in
the deformation event. The film data is then used in the
theoretical model to create sirength estimates,

LIST OF SYMBOLS AND ABBREVIATIONS
ﬁ' dimensionless ratio

P specimen density

(o3 dynamic stress

g,

0 constant reference stress

quasi.static stress

a

gurrent cross-sectional area
initial cross-sectional area

compressive engineering strain
deformed section length

S N N
(]

W. K. Rule, Senlor Engineer
SCP Global Technologies, Boise, Idaho

The resulting strength estimates are validated
utilizing post-test specimen measurements in copjunction
with the EPIC code. A revised form of the Johnson-Cook
Strength model is then utilized in the EPIC calculations to
force a match between the calculated post-test specimen
geometry and the actual post-test measurements. The
dynamic stress versus strain-rate diagrams (at constant
strain) developed from the elementary theory and the EPIC
code agree extremely well.

undeformed section length

current specimen length
undeformed specimen length

slope of a linear fit

displacement of back end of specimen
velocity of the plastic wave front
current velocity of specimen back end
initial (impact) velocity of specimen
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INTRODUCTION

The Taylor test (Taylor, 1948; Whiffen, 1948) is a high
strain rate impact test, which can producs strain-rates of 10 to 10°
per second and higher. In 1998, Joues, ef al., introduced an
elementary theory to describe the Taylor impact test  This approach
described the event as being comprised of an initial transient phase
followed by a quasi-steady state phase. This process can be
modeled one-dimensionally, especially for low caliber specimens.

In this paper, film of the impact event is reduced to
validate several aspects of the theory presented by Jones, of al.
(1998). In addition, the elementary theory is slightly modified to
utilize available high-speed film frames of the event. The film data
can be used in the one-dimensional mode! to produce dynamic
strength estimates for the specimen material

An independent method of validating the stress and strain
rates geaerated by the one-dimensional model is presented using the
EPIC cods and post-test specimen measurements. Rule and Jones
(1998), outlines this approach in detail. The material properties can
be {ndependently determined by forcing the EPIC code to match the
post-test measurements. These results agree with those provided by
the one-dimensional model and the film record very well,

AN ELEMENTARY THEORY

The elementary theory for the Taylor impact test from
Jones, ot al. (1998) is reviewed here, The theory is a one-
dimensional analytical approach to the impact event. Specific
details of this theory is available in Jones, ¢ al (1998). The
equations are modified to present time to utilize the available high-
speed {ilm data analyzed in this paper. This iteration is based on a
continual effort to refine our understanding of the impact event
(House, 1989, Jones, et al., 1987, Jones, et al., 1991, Wilson, et al.,
1989, Cinnamon, et al., 1991). The goal of this effort is to estimate
the state of stress of the specimen material at high strain rates,

The impact event is divided into two basic phases. The
first is an initial transient phase, and the second is a quasi-steady
phase that includes the terminal transient.

As detailed in Jones, ef al. (1998), analysis of the plastic
wave front leads to an equation of motion, which takes the form

el=v-u=(1- Ay - m
where e is the compressive engineering strain on the plastic wave
front, £ is the current undeformed section length, V is the velocity
of the undeformed section, # is the velocity of the plastic wave
front, and F=u/v (see Figure 1.). Dots over the variables denote
differentiation with respect to time. The engineering strain behind
the deformation front, e, can be expressed in terms of the change in
area across the front, e = (4, /4)—1, where 4, and A are the initial

and current cross-sectional areas of the specimen, respectively.

The primary focus of Jones, er al. (1998) was to estimate
the state of stress for the material from post-test measurements. In
this paper, a reduction of the high-speed flm record taken during
the impact event can provide this data directly,. We will return to a
post-test approach later in this presentation to validate our results.

The dynamic stress behind the deformation front is given
by

_ A\
aa(l-o-e)[cr, -4-——-—-----(1 f) pv’] @)
where g, is 8 constant reference stress and p is the specimen
density (Jones, ot al., 1998). The reference stress can be calculated
from

3)

where 0, (€) is the quasi-static stress at the indicated strain.

An estimate for the strain-rate of the deforming specimen
at the wave front based on Taylor's original estimate (1948), takes
the form

-y
Lo -! '

This estimate is especially good immediately after the initiai
transient (Jones, ef al., 1995), Equations (1-4) form the foundation
for a theary that allow us to examine the Taylor test from a different

perspective
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Figure 1. A uniform cylinder of length L, impacts an

uncompliant target with velocity Vv,. Subsequent
deformation Is modeled using undeformed section
length, £ ; deformed sectlon length, /1; and current rod

{ength, L. The displacement of the back end of the
specimen is 5.
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ALM REDUCTION OVERVIEW
hmwyormclpwmhawmmmbtﬂymm.

ug measwemenls 10 generate stremgth estimates. A unique

ppartunity exiss wnlmuumbcuudmmmmwmuu

In some Tavior tesis, high-speed fiim data is availadle to
aamine the impact event, Details of this cxn be found in House
(1989) a=d Wilson, o al.,, (1989). Obtaining usadble dats can be s
thallenge, due 0 the sigaifeant number of varisbles in the test. In
3is paper, we tike our best film recard (SC-102, OFE as received
Copper) 0 pesform the meanzements.

Tbcﬂlrnd.\uhnvnﬂablcunﬁoum This
mwoswmusoo.ooo&mapem A typical
e appeass in Figure 2,

Figure 2. A typical frame from the film record of the
Taylor impact test. The specimen Is the lower object
deforming against the anvil face to the left. A magnet of
known dimension {fiducial) appears above the specimen
for callbration.

me:heﬁlagixism‘blewalcuhundpiﬁmt
tzmber of the parazsetess of interest Figuwre 3 highlights two of
Tanremmts hat gre available fom a speciee. . These
alaae:csmbeze.m:d!mnm&:nunyﬁmi:wnx
fixed leve! of stain

FILM REDUCTION
'M‘mmxaautwmcﬁ!mdauhlﬁme
Sousamisg process. The sieps we followed 1o produce our results

Tirst, the filz was taken of the impact event The Carden
e (House, 1989; Wilson, er al., 1989) sexp allows for &2
=uque Sames of data (alihcugh scme additiceal faces are
Available as serze of the ininal &ammes are overwriten 2t the ed of
Be Process). The Gim is then deveioped izt slide srips usiog
Taditiccal wet fiim deveicying.

' At Lis point, the frames were scanned into & compute
usg the highes: resoluticn available (1200 pixels per icch) A
tvpical Same (alter deing copped) turaed out 1o be sbout 350 pixe!s
by 1350 pixels. Obviously this conversion reducas e accunacy of
e flm data.  However, our adility to messure this daty 13
significaaly enhanced when the film data is in 8 digital ferm.

Ouumﬁlnhhampmamhiumg
mAanreacat are possible, The measurements were made using
Scion lmage for Windows (1998), The process begins when the pre.
impac: £ames are measured.  The calibration of the measuresents
is the eriteal initial mep, On cach faxe, the vertcal length of the
mbmmwwmmmmmmra
of e undeformed specimen. By verifying these two measurements
match is & validaticn of the odge choice. That is, an iccorrect edge
ctoice would lead 10 seing an incorrect pixelsfinch value in the
vestical direction, axd thereby leading to an erroncous measuremei
for the known verzeal leegth of the specmen  Afer this
Eanrenst was tker, the borizental Jesgth of the magret is
taken, setung anotber pixels/inch conversion in that direction. This
is decetsary due to fact that the film plane has some disterticn
betwees the vertical ‘and Borizomtal directions. With these
Mm:&theu&wmembmhowmpiuh
mre {n each inch in esch direction - Scion Image refers to this
éifference as an aspec: ratio,

At this poizt, the images can be examined and dany
ceecerzing the impact can be gattered By choosing & particular
mabeofpixghiamvcscﬂdi:uﬁm.wtmlooku&ephn:
wive a & pasticular sTain value Orce we have decided what
5T2ins 10 look st the Teanceects are fairly staightforward,

Measurizg £!m {a this mamcer has scme significant
Limitaticns. One of the prirary limitations is the time required
azalyze a sizgle eveat. Tac atthors were unable to devise apy ferm
of mtomaticn that might asseterate the .

Secocdly, as in sy image smalyxis, the topic of edge
defpiton and the threshold values fer ckoosiag z3 edge s
Froblematic. The Gducial increases our confidece in a reliable 3=d
reprodiucible tocknique. This data reduction does, however, lead to
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Lizitations inherent ia this optical approacy.
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Figure 3. A typical deformed specimen with the
undeformed section length, £, at a chosen strain level,
and the current overall specimen length L.



RESULTS

The first frames of data provide us with a verification of
the impact velocity and allow another validation of our film
reduction techniques. As the deformation occurs, we can measure
mushroom diameter, the cross-sectional area of the mushroom, and
plastic wave position, A .

With the cross-sectional arca of the mushroom, we can
calculate the total volume of the mushroom behind the plastic wave.
Kaowing this information, we can calculate the position of the back
end, despite it being off of the film frame. The velocity of Ais U,
and the velocity of the back end, S, 1is V.

Ons of the primary assumptions about the transient phase
of this one-dimensional analysis is that ¥ does not begin decressing
during this phase. Our film analysis showed that this was, in fact,
observable until about 60 microseconds into the event.

Undeformed Section Velocity v. Time

l.‘.m.llﬂ Q.”‘“l
»
> L J .

o8

. 2 [ ° . -
Time (microses)

Figure 4. Undeformed section velocity versus time.

Figures 4 and $ illustrate the information available from
film reduction. Figure 4 demoustrates that the assumption that
Vremains fairly constant for the transient phase of the event is
valid. Figure 5 shows the progression of the various measurements
during the event.

Also available from the film measurements is a
verification of the linearity between £/Lyand L /L, during the

impact. This relationship was exteusively used in Jones, et al.,
(1998). Figures 6 and 7 clearly show this linearity for both of the
strain levels we investigated in this paper.

Based on these measurements from the film data, we can
produce estimates of the stress and strain-rate during the event,
From Jones, et al., (1998), we can use the linearity between

£/Lyand L 1L, compute the constant £, where
p=1+me )

and m is the slope of the linear fit between £/Lyand L /L.
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Figure 5. Various measurements from the film during the
Taylor Impact Test
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Figure 6. Linearity of £/L,versus L/L,for 4.85%
Strain

At this point, we can reduce equations (2) and (3) to

2
a'.—_a"+.(l+_e)(el:—g—)—pvz

(6)

where O, is taken to be 290 MPa for 4.85% strain and 295 MPa for

9.35% strain, and o is the material deasity. .
The strain-rate can be estimated from equation (4). With

equations (4) and (6), we can construct the stress versus strain-rate

diagrams for the event.
To provide a comparison to the data generated from the

film record and the one-dimensional theory presented in Jones,
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Figure 7. Linearlty of £/L,versus L/Lytor 9.35%
Strain

¢t al., (1998), we consider the post-test enalysis given in Rule and
 Jones (1998). This approach can be ized as 8 modification
of the Johnson-Cook strength model (Johnson and Cook, 1983) to
accommodate high strain-rate behavior of the material, Rule and
Jones (1998), use post-test measurements of Taylor specimens and
mopﬁm‘mtofmtthPled:mrcpmduae:hmpost-mst
measurements after modeling & known impact. With this technique,
a set of empirical coefficients can be derived that allow this
matching to post-test geometry. These coeficients form the basis of
ge ;cvxscd form of the Johnson-Cook strength model, which takes
€ ioTm

o=(C, +C,¢“){1+C, iné +t;_"{c l{né‘ —-é—-—)}(l-—!"“)
[ e )

Q)

A complete explanation of the empirically derived constants
_ ¢,,...,Cy, N, and M can be found in Rule and Joes (1998). This

equation allows us fo generate an independent stress versus strain-
,ms:diasrammaxcsnbeusedfe:mpximwimm:m
dimensional model.
Pigm%md?mthamﬂtafmiswmpaﬁm The
éismteda:apcistsarethesctakmﬁnmﬁlmﬁ-ammdaml}ud
. usingthame-dimmsiemimod:t'fhemﬁnmmeisth:
revised Johnson-Cook model described in Rule and Jones (1998) for
: the same material. The revised Johnson-Cook model does prescribe
smmﬁmmsmmu:&ntdmmtnppmmmmﬁm.
: The figures demonstrate remarkable agreement between
: th:ﬁlmredazﬁmanﬁth:revisedlohnm-(:ookmod& In addition,
the curves have the form that we would expect, with the stress
mmmﬁuﬁmm-mmm‘ Is.

CONCLUSIONS AND RECOMMENDATIONS
Inthispapcr,we:xaminedstmhniquegnuseﬁimofthe

Taylor Impact event 10 cTeale Siess Versus strain-rate diagrams.

nislppruchmvay&memnming. Developing 8 way &
cxpedit:thismmdn:ﬁan\vinbemeofeurnmeﬁbnsm
continue analyzing svailable film data.
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Figure 8. Stress versus Strain-Rate at 4.85% Strain for
Copper
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Figure 8, Stress versus Strain-Rate at 9.35% Strain for
Copper

Gm:rzﬁnggoedﬁ}mdmésmutherchﬁimga. We need
10 increase our resolution of the impact event. One way is to change
thele:sonshecsmmmeﬁ'ec&vdyzoominonthepmﬁcmve
&ml-puﬁapsbymmingsymmeﬁddefmﬁonmdonly
lmldngatmesideafthccazmﬁmoﬂhespedmen. Ancther way
istaﬁndabeﬁcrop&mlscaminzledmiqmmgninaﬂmm&om
the film frames. Aﬁnalmyistafamsanin:reasingthemast
mteémmcﬁlmmm&dgedzmﬁmismwiapsm

Additional efforts in this i will also involve
exmﬁm!imofaddiﬁanalshotsaf&pp«mdo&umamws.




ite our current liritations, we were able to produce
remarkable results. This spproach further emphasizes the validity
and usefulness of the Taylor Impact Test in generating strength

estimates at high strain-rates.
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ABSTRACT- Many ductile metals exhibit a large increase in yield strength as a
critical high strain-rate is approached. Modeling the performance of rapidly
loaded structures constructed from such materials requires a prediction of stress
versus strain-rate behavior that includes this strengthening phenomenon. This
paper describes an approach to obtain a function to predict high strain rate
behavior from a single Taylor impact test specimen. Results are provided for

OFHC copper.

INTRODUCTION: In order to simulate many high-speed events, mechanical
properties of the materials involved at elevated strain-rates must be found. For
example, impact and penetration problems frequently require the state of stress at
strain-rates exceeding 10'/sec. Acquiring this information is a challenging
problem. The most reliable method for determining the state of stress at high
strain-rates is the Split-Hopkinson Pressure Bar experiment. But, it is generally
acknowledged that 10*/sec is the limiting strain-rate for this experiment. At the

same time, most metals are very sensitive to rate in the neighborhood of 10*/sec,
which makes testing difficult. ;

The Taylor impact test (Taylor [1948]) presents an opportunity to easily
achieve strain-rates in excess of 10*/sec. The challenge, in this case, is reducing
the data to acquire mechanical properties. Over the past few years, this problem
has been extensively studied. The solutions fall into two basic categories: one-
dimensional models (e.g., Taylor [1948]; Hawkyard [1969]; or Jones, et al [1997])
and computer-aided solutions (e.g., Johnson and Holmquist [1988]; or Rule and
Jones [1998)). Both categories have their advantages. One-dimensional analyses
can predict the state of stress with no implicit assumption about the mathematical
structure of the constitutive behavior of the material involved. However, there are
simplifying assumptions to bring the problem to one-dimension and limits on its
applicability. The computer-aided solution has fewer limits on its applicability,
but assumptions must be made regarding the mathematical structure of the
constitutive equation before any computation can be made. In this paper, we focus
on one-dimensional modeling and present a new estimate for strain-rate.
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STRAIN-RATE ESTIMATE AND RESULTS FOR OFHC COPPER:
Consider a Taylor cylinder after the initial transicnt has been completed (sce

Jones, et al [1991]). The velocity-dependent undeformed section length ¢ is given
by

L= Zexp{-f—;%@(vg -v’)} (1)

where p is the specimen density, e is the engineering strain at the deformation
front, B is a parameter related to the velocity change across the deformation
front, v, is the specimen impact speed, v is the current speed of the undeformed

section, and ? 'is the undeformed section length at the end of the initial transient.
A discussion of this result is contained in Jones, et al [1997]. The velocity-
dependent normal stress at the deformation front is

o=+ e)(a‘o + (_l;ef_)_’_ pv’) ' ()

where o, is a reference stress related to the yield stress of the specimen material

at strain e. We will use these estimates for stress and undeformed section length to
produce an estimate for velocity-dependent strain-rate.

Consider an increment A? of the undeformed section that is undeformed
at time ¢, but is deformed at time ¢ + A¢. The velocity of the increment at time ¢ is
v, but at time ¢+ At the velocity is u. This means that the change in kinetic energy
during this period of time is

AKE = -;- pA, ALY ~ % pAAL? = % PAMO? -1, 3)

We assume that all of the available energy goes into deforming the specimen
material and that this work W is given by

W= J(fode)dV = 4,AL fade 4)

where V is the volume of deformed material and ¢ is the longitudinal engineering
strain. The integral in Eqn. (4) can be transformed and approximated using the
mean value theorem and the equation of motion for the undeformed section. The
equation of motion is

plv = o, 5)
which means that
at=lay. ©)
o)

Now,
f ods = [’“ai‘idt [‘ dg pe Edv=@-vow DI ()
o, dt
where v* is a velocity between u and v. Using this equation in Eqn. (4), equating
the result to Eqn. (3), and solving for de/dt(v*) leads to

Al .
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d +

L y=-2 227 ®)

dt 2 o(v* )e(v*)

as an estimate for the strain-rate at the deformation front. If we approximate v* by
(u+v)/2, the average velocity between u and v, then we can see that

4z oy m -0
A VT ©)
or
pU=B) 2 _ .2
28 () = - mp{ 2ew, 7 )} (10)
d a+et 4, 0=8

eq,

where dependence on v* was replaced by dependence on v, with no loss. Equation
(10) is the velocity-dependent strain-rate estimate.

A Taylor test was conducted using an OFHC copper specimen with the
properties shown in Table 1. As described previously (Jones et al. [1997]), the
-dynamic properties determined for this specimen are given in Table 2.

Table 1: OFHC Copper Taylor Specimen Properties

Impact Velocity =212 m/s Initial Length = 0.0314 m
Initial Diameter = 0.00417 m Density = 8910 kg/m’
oo (e = -0.036) = -292.5 MPa oo (¢ = -0.058) = -305.7 MPa

oo (e = -0.112) = -332.2 MPa

Table 2: Dynamic Properties of the Taylor Impact Specimen

e £ B
-0.036 0.0158 0.9434
-0.058 0.0170 0.9125
-0.112 0.0195 0.8480

Equations (2) and (10) were then employed (with the data of Tables 1 and
2) to calculate stresses and strain-rates, respectively, as a function of undeformed
section velocity v. The stress versus strain-rate results are shown in the Fig. below
for the three strain levels. The undeformed section velocity was allowed to vary
between 0 and 212 m/s (initial impact velocity) to create these plots.

For comparison, the Fig. below also shows stress versus strain-rate plots
for the Revised Johnson Cook (RJC) model obtained by Rule and Jones (1998).
The RJC model results were obtained using a hybrid numerical-experimental
technique where the EPIC finite element code was employed to reduce the data
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from 14 Taylor specimens (including the one considered above) using an assumed
form for the stress versus strain-rate function. Thus, the RJC results provide an
independent check of the accuracy of Eqn. (10). 1t is evident from the Fig. below
that there is a very good agreement between the two models with respect to
predicting the strain-rate at which the yicld strength suddenly increases.

w0
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CONCLUSIONS: An efficient technique has been developed to predict the strain
rate behavior of ductile metals subjected to high loading rates. Complete stress
versus strain-rate behavior can now be obtained from the post-test measurement
of a single Taylor impact specimen. The results obtained from the present
formulation for OFHC copper were found to agree well with those obtained
previously from the EPIC finite element code using the RIC model.
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Optimizing Material Strength Constants Numerically
Extracted from Taylor Impact Data

by D. J. Allen, W. K. Rule and S. E. Jones

ABSTRACT—~Advanced deosign requirements have dictated a
need for the mechanical properties of materials at high strain
rates. Mechanical testing for these data poses a significant
problem for experimentalists. High-speed tesling machines
have a limited capability a! rates approaching 10%/s. The split
Hopkinson pressure bar is the most reliable alternative for
rates approaching 10%/s. Plate impact experiments are capa-
ble of generating strain rates of 108/s and higher. The Taylor
impact test occupies a place of particular importance by pro-
viding data at strain rates on the order of 10%/5-10%/s. The
issue at present is extracting the data. This paper provides
a method for obtaining dynamic sirength model material con-
stants from a single Taylorimpact test. A polynomial response
surface is used to describe the volume dilference {error) be-
tween the deformed specimen from the Taylor test and the
results of a computer simulation. The volume dilference can
be minimized using an optimizer, with the result being an op-
timum set of material constants. This method was applied to
the modified Johnson-Cook model for OFHC copper. Starting
from a nominal set of material constants, the iterative process
improved the relative voluma ditference from 23.1 percent lo
4.5 percent. Other starting points were used thatl yieided sim-
ilar results, The material constants were validated by com-
paring numerical results with Taylor tests of cylinders having
varying aspect ratios, calibers and impact velocities.

Introduction

The goal of this study was to develop a methodology to al-
low asingle Taylor impacttest to be used as a simple and cost-
efficient means for obtaining and refining constants for dy-
namic material strength models. The majority of these mod-
els contain several material dependent constants. Normally,
these constants are obtained by performing several compli-
cated and sometimes costly experiments. The methodology
presented here obtains the constants by minimizing the dif-
ference between the displacement results of a Taylor impact
test and a hydrocode simulation af the event, The EPIC hy-
drocode was used for this study.!?

EPIC treats plastic behavior by first assuming that stress
increments are elastic and then correcting for cases where
the equivalent {von Mises) stress & exceeds the local yield
strength of the material oy, as given by the strength model.
The correction simply involves scaling the local stress com-
ponents by the factor omax +/d, thus forcing the stress state to

D. J. Allen is a Graduate Student, W. K. Rule is Assaciate Professorand §. E.
Jones is Professor. Department af Aerospuce Engineering and Mechanics,
University of Alabama, Box 870280, Tuscaloosa. AL 35487-0280.
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stay on the yield surface, Subsequent iterations ensure that
equilibrium is maintained despite the stress corrections.

Johnson-Cook Strength Model

The strength model used in :h:s study was a modified form
of the Johnson-Cook equation®

oman = [A + 8] [ [1 = 7). ()

where ¢ is the equivalent plastic strain and €* = ¢/ép is the
dimensionless plastic strain rate (€p = 1.0s™'). 7" isthe ho-
mologous temperature. A, B, n, C and m are five empirical
material constants.

This mode] was selected because it is widely used and
accepted. It is one of several models available in EPIC.
The form of the model was developed by observing how the
strength of metals vary under different loading conditions, in-
cluding a wide range of strains, strain rates and temperatures,
Previously, test data for calibrating the strength mode! coef-
ficients of different materials were produced using torsion
tests over a range of strain rates, split Hopkinson pressure
bar tests over a range of temperatures and quasi-static and
dynamic uniaxial tension tests,

Many physically based alternatives to the modified
Johnson-Cook strength mode! are available.*-® Strength mod-
eis are continuously evolving in form and complexity.

Taylor Impact Test

With material strength models becoming more complex,
there is a need for simpler and more cost-cfficient ways of
abtaining material constants. One such way is by using the
Taylor impact test. The Taylor i :rnpact test was performed in
the 1940s by Sir Geoffrey Taylor’ for the purpose of predict-
ing the dynamic yield stress of materials subjected to high
strain rates. The test consists of firing a cylinder at a fiat,
rigid target at speeds high enough to develop the strain rates
of interest. His theory used the final deformed shape of the
cylinder todetermine adynamic yield or flow stress of the ma-
terial. Since then, Taylor s anaEyucal theory has been mod-
ified by Lee and Tupper.® Hawkyard® and Jones, Gillis and
Foster. !0

Recently, the Taylor test has also been used to evaluate
material strength models.?-3-!!= 13 The computational results
of hydrocodes using these models can be compared to the
results of a Taylor test to evaluate the effectiveness of the
model's form and the accuracy of its coefficients. This test
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Fig. 1—Schematic drawing of Taylor test equipment

provides the high strains and strain rates necessary to eval-
uate the model independently of the tests used to obtain the
material constants.

Until now. the Taylor test has rarely been used for ob-
taining constants for material strength models. Johnson and
Holmquist'* used the Taylor test to determine constants for
both the Johnson-Cook and Zerilli-Armstrong models. Their
method used only three dimensions from the deformed spec-
imen (length, maximum diameter and an intermediate diam-
eter) and was therefore only able to predict as many as three
constants. The method to be presented here uses the entire
profile and the length of the deformed specimen to determine
the constants. For this reason, this method will theoretically
be able to determine all constants in any given strength model.

The Taylor test setup used for this study is shown in Fig. |
and is discussed in some detail by Allen.! OFHC (oxygen-
free, high-conducting) copper was selected as the material
for the impact specimen. OFHC copper is readily available,
commonly used in high strain rate applications and can be
easily machined into cylinders of the desired length and di-
ameter. The primary specimen for use in the study was 7.87
mm in diameter, with an asgect ratio (length:diameter) of 5:1.
This aspect ratio was chosen because specimens shorter than
this do not usually display the complex curvature in the de-
formation profile that may be needed to uniquely determine
model constants, With longer specimens, the greater mass
can cause difficulties in achieving high velocities without
fracturing the specimens.

The deformed lengths of the Taylor specimens were mea-
sured using calipers. The deformed profiles were measured
using an optical comparitor, which uses a light source to cast
a magnified specimen shadow onto a viewing screen. The
screen is divided into the desired units of measurement and
scaled to the magnification used. Using the opttcal compari-
tor, deformed profiles were measured to within £0.03 mm.

Numerical Model for the Taylor Impact Specimen

A numerical model of a Taylor specimen requires specifi-
cation of the following material properties: density; specific
heat; initial, ambient, melting and absolute zero tempera-
tures; and constants describing the strength model and the
equation of state. The material properties used were ob-
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TABLE 1—NOMINAL MATERIAL PROPERTIES OF OFHC?
COPPER

Density (kg/m’) 8962
Specific heat (J/kg°C) 383.4
Specimen tomperature (°C) 21.1
Meiting temperature (°C) 1083
Modified Johnson-cook model constants

Shear modulus (GPa) 46.3

A (MPa) 89.6

8 (MPa) 291.6

n (dimensionless) 0.310

C (dimensionlaess) 0.025

m (dimensionless) 1.080
Mie-Gruneisen equation of state constants

X, (GPa) 1371

K3 (GPa) . 175.1

Xy (GPa) §64.2

f (dimensionless) 1.960

a. OFHC = oxygen-ree, high-conducting

tained from the material library included in EPIC. For this
study, only the constants for the strength model were mod-
ified. The values of the OFHC copper properties used are
given in Table 1.

The Taylor cylinder was modeled using three-node, tri-
angular, axisymmetric, solid elements. For simplicity, the
target was modeled as a rigid, frictionless surface. This has
been the approach for numerically modeling the Taylor anvil
in the past. It is assumed that the physical target is suffi-
ciently rigid and free of friction to allow this gpproximation
to be made.

Mesh Refinement

A mesh refinement study was performed to determine the
minimum number of nodes required to converge to a solu-
tion. The preprocessor in EPIC automatically generates the
element mesh for an axisymmetric model by having the user
input the number of element rings in the radial direction and
the number of element layers in the longitudinal direction.
The primary Taylor cylinder was modeled six different times
with the number of element rings varying from I to 6. This
gave a broad range of mesh densities, with the number of
nodes varying from 32 to 787. The calculated deformed
shapes produced by each of the six meshes were compared to
measured results for a Taylor cylinder fired at 197 m/s. The
comparison was based on the volume difference that will later
be used to optimize the strength model constants. Because
volume difference was the key index used for assessing the
accuracy of the finite element results, it also provided a good
index for mesh convergence and for determining the end of
the impact event.

The volume difference is the sum of the longitudinal vol-
ume difference and the radial volume difference (which are
based on profile and length discrepancies, respectively) be-
tween the physical test and the finite element model. Before
determining the radial volume difference, the longitudinal di-
mensions of the finite element model were scaled such that
its total length equaled that of the physical specimen. This
was done to ensure that length discrepancies did not affect
the calculation of the radial volume difference. For the phys-
ical specimen, the radius was measured every 0.51 mm along
the entire length using the optical comparitor. The finite el-
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Fig. 2—Typical finite element mesh after impact

ement mode!’s radius at each corresponding position was in-
terpolated from a third-order polynomial fit through the four
nearest profile node positions. For each 0.51-mm slice of the
cylinder, the radial difference between the physical specimen
profile and the finite element model profile forms a quadri-
lateral. The area of the quadrilateral was determined, and the
volume of a ring generated by revolving this area around the
longitudinal axis was calculated. The volume of thisring rep-
resents the volume difference associated with the 0.5[-mm
slice. The sum of the volume differences (always consid-
ered positive) for each of the slices represented the radial
volume difference for the finite element model. When deter-
mining the longitudinal volume difference, it was assumed
that there was essentially no plastic deformation toward the
unimpacted end of the Taylor specimen. Accordingly, the
longitudinal volume difference was given by the length differ-
ence between the measured and numerically modeled Taylor
specimens times the undeformed cross-sectional area.

The results of the mesh refinement study are shown in Ta-
ble 2. It can be seen that the mesh density did not seem to
significantly affect the longitudinal volume difference for the
models studied here. However, the radial volume difference,
and hence the total volume difference, were greatly influ-
enced by the mesh density. As the mesh density increased,
the volume difference decreased until three element rings
were reached, at which point the volume difference became
essentially constant, indicating that the finite element solu-
tion reached convergence. Three element rings were used on
all subsequent meshes. The effect of mesh density on com-
puter runtime is also shown in Table 2. Figure 2 shows a
typical deformed three-ring mesh.

End of Event Test

A Taylor test simulation was run where the geometry data
were output every 10 us, starting at 30 us and ending at {30
us. It was found that both the radial and longitudinal volume
differences become essentially constant at approximately 100
.ps. Although this shows that the event ends at 100 us, for
the remainder of the study. the simulation was allowed to run
to 130 ps to capture any end of event time variances due to
altering the strength model constants.

Determination of Strength Model Constants

The method presented here uses a complete second-order
polynomial to describe how the volume difference varies with

changes in the strength model constants. The dimensionless
polynomial used was of the following torm:

V/Vom  +apey +arxs -k a3es 4 ot b asxs
+ 0gX1.0 b a7.X1X) 4 agx Xy + a9 Xy

4 ajpxaxy + X2y + Ak a3y ()

+ ap4x3xs b opstats + &m.tlz + anxf
]

+ e} + agexf + anoxs,

where V is the volume difference and Vg is the baseline
volume difference. The baseline volume difference is the
volume difference that is obtained if the constants are not
changed from their baseline values. The design variables v,
indicate percentage changes (from baseline) in the strength
model constants, with x|, xa2, X3, Xy and xs corresponding,
respectively, to A, B, n, C and m of eq (1).

Equation (2) describes a p-dimensional response surface
where p is equal to the number of strength model constants
to be determined. Response surfaces are commonly used in
optimization calculations o predict function behavior in the
vicinity of known functional values. A complete second-
order polynomial in p-dimensions requires g coefficients,
where

?
g=2p+ (i—-1). 3

il
For this study using eq (1), 2 = 5 and thus g = 20, but these
vary for models with differing numbers of strength mode!
constants. A second-order polynomial was chosen because
it can represent local minimums within the response surface.
Higher order polynomials would more accurately describe
the response surface but would require a great deal more data

to determine the many additional polynomial coefficients.

To determine a of eq. (2). g linearly independent values
of V/Vp are needed. This required g EPIC runs using dif-
ferent strength mode! constants obtained by applying various
combinations of x; to span the p-dimensional space. Equa-
tion (2} is only valid in the vicinity of the baseline point and
loses accuracy at points farther away. In this study, the varia-
tions on x; used to determine a were initially limited to %10
percent.

Knowing the baseline volume difference Vg and the coeffi-
cients of eq (2). the V/ Vg ratio (and thus V the volume differ-
ence) can be minimized by varying x;. This was conveniently
accomplished using a spreadsheet function (the Solver tool
of Microsoft® Excel®). Of course, other optimization rou-
tines could also be used for this purpose. The set of x, de-
termined by the optimizer serves as the initial point on the
response surface for the next iteration of the solution process.

To start each iteration, the newest volume difference data
point (as selected by the optimizer at the end of the previous
iteration) was incorporated into eq (2) to define anew setof .
One old volume difference data point was discarded so that
only the number of data points defined by eq (3) was used to
determine «. The data point discarded was that farthest from
the current baseline point as determined by the maximum
distance d; determined by the following formula:

p .
di = Z (.(5_‘; bt x;.ne;y)z‘ (4}

=1
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TABLE 2—MESH REFINEMENT STUOY RESULTS

. Longilucinal Approximate
Radial Volume Volume Total Volume | (66 MHz 486)
Number of Number of Difference Ditterence Oiferonce Runtime
Element Rings Nodes (mm?) (mm?) (mm?) (min)

1 32 357 92 449 2
2 103 290 82 372 4
3 214 205 84 289 1
4 365 203 85 2068 25
5 558 197 8s 282 53
(-] 787 192 8s 277 92

where X, aew are the design variable coordinates of the new
baseline point (as determined by the optimizer in the previous
iteration) and x;,; represent the percentage changes of the
Jjth data point used to define the previous response surface.
Retaining the volume difference data points nearest to the
new baseline point provides the best possible description of
the response surface in the direction that the iterative process
is moving. Note that only one new EPIC run is required for
each response surface update.

An algorithm was devised to determine design variable
move constraints for the optimizer. Move constraints pre-
vented the optimizer from extrapolating a solution too far
from the defined response surface. Large extrapolations can
be inaccurate, which can cause the optimization process to di-
verge. This algorithm determined the move constraints based
on how the response surface was initially defined and how
the actual V/ Vj (from an EPIC analysis) compared with the
V/Vp predicted by eq (2).

As stated above, the response surface was initially de-
fined limiting the design variables to changes of =10 percent.
Then. for the first iteration, the design variable changes were
constrained to remain in the range of =20 percent. This rep-
resented a 10-percent extrapolation beyond the data points
used to define the response surface. In subsequent iterations,
the percentage change limits were halved when the percent.
age error in the predicted volume difference (given by eq (2)).
as compared with the results of an actual EPIC calculation,
exceeded the move constraints of that iteration. This scheme
ensured that the response surface was kept valid and allowed
for zooming in on the optimum in a numerically stable and
efficient fashion.

The material constants finally used to produce the small-
est possible volume difference are assumed to be the best
material constants obtainable from the Taylor test.

Test Case 1—Coefficient Optimization Starting
from Nominal Initial Values

Initially. the nominal Johnson-Cook material strength con-
stants provided by the material library within EPIC for OFHC
copper were used to start the optimization process. These
constants were given carlier in Table 1. Although this set
of constants was obtained specifically for this matcrial. the
manufacturing history can cause the material characteristics
of OFHC copper to vary somewhat. These nominal constants
were expected to provide reasonably accurate results when
compared to the Taylor test results. Figure 3 compares the
profile of the EPIC solution obtained using these nominal
constants with the experimental profile of the primary spec-
imen (described previously) launched at 214 m/s. Here, the
EPIC solution can be seen to match the curvature changes
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Fig. 3—Comparison of measured and calculated Taylor spec-
imen profiles using nominal strangth model constants

in the profile of the measured specimen, However, there is
a considerable difference in the overall length, The volume
differences corresponding to these nominal constants were
calculated to be 308 mm?>, 259 mm? and 149 mm? for the to-
wl, radial and longitudinal differences, respectively. To get
a sense of the magnitude of this error, the relative volume
difference can be calculated by dividing the total volume dif-
ference by the final deformed specimen volume of 1765 mm’.
The relative volume difference was 23.1 percent for this ini-
tial model based on nominal values for the material constants.

Following the methodology described above, 20 EPIC
runs were made to initially define the response surface. The
initial array of a was then calculated, and the iterative pro-
cess was performed to minimize V/ Vg using the above design
variable move constraint algorithm. It was necessary to per-
form six iterations to approach a local minimum as indicated
in Table 3. The third iteration produced a volume differ-
ence greater than the preceding iteration. This indicates that
the response surface was inaccurate in the region of interest
for this iteration. The deformed physical specimen and the
EPIC model output using the constants obtained from the
sixth iteration are shown in Fig. 4. The final relative volume
difference was 4.5 percent.

Test Case 2—Coefficient Optimization Starting
from Calibrated Initial Values

To define a starting point independent of the nominal val-
ues described in the previous section. a new set of constants
was calculated to accurately match the results of a quasi-
static tension test of OFHC copper. Known values for the
variables € (0.2-percent offset), €° (= 1.667 E-3) and T° (=
0) were inscrted into the strength model, and then material
constants A and 8 were adjusted proportionally such that the



TABLE 3—ITERATION HISTORY FOR MATERIAL CONSTANTS OPTIMIZATION STARTING FROM NOMINAL VALUES

A 8

Volume Dilforence

Iteration (MPa) (MPa) n c m (mm®)
0 89.6 291.8 0.3100 0.02500 1.0900 408
1 107.6 350.0 0.2480 0.02875 0.8720 152
2 102.4 385.0 0.2232 0.02587 0.7848 100
3 107.5 404.2 0.2120 0.02718 0.8240 103
4 104.9 394.7 0.2176 0.02852 0.8044 8s
5 108.2 389.7 0.2149 0.02685 0.7943 80
3 105.6 392.1 0.2136 0.02702 0.7893 80

Fig. 4—Comparison of measured and calculated Taylor spec-
imen profiles using calibrated strength model constants

yield strength obtained from the tension test (306 MPa) was
matched by eq (1). These values were A=258MPaand B =
840 MPa. It was observed that #, C and m do not change sig-
nificantly for various alloys of the same metal. Accordingly,
these constants were left unchanged from their nominal val-
ues (Table 1). Using these calibrated material constants in
an EPIC run produced an initial relative volume difference
of 29.3 percent.

From this baseline point, V/ V5 was minimized using eight
iterations of the response surface approach. The optimum
had a relative volume difference of 2.8 percent, somewhat
less than that of the first analysis. The optimal coefficients
obtained for this analysis were A = 132 MPa, 8 =430 MPa,
n=0.1786, C = 0.01280 and m = 0.5581.

Averaged Material Constants

[t was initially thought that the two apparently different
sets of optimized constants obtained here might indicate a
uniqueness problem. Ideally, a valid strength model should
produce a single local minimum point in the volume differ-
ence response surface. A test was devised to determine if the
two sets of constants were independent of each other or if
they actually described essentially the same local minimum
on the response surface. It was assumed that if the two sets of
constants represented different local minimum points. then
their mean values would produce a set of constants that would
be meaningless and would yield inaccurate results when used
to simulate the Taylor test. The mean values of the two pre-
viously obtained sets of constants were A= {189 MPa, B =
411.2 MPa, n = 01961, C = 0.01991 and m = 0.6737. These
constants were used for an EPIC run that yielded a relative
volume difference of only 2.3 percent. These averaged con-
stants actually produced more accurate results than the pre-
viously determined sets of constants, Because the mean set

of material constants produced accurate results, it was as-
sumed that the first two sets of constants actually described
the same local minimum on the volume difference response
surface. Apparently, the response surface is relatively flatin
the vicinity of the local minimum.

Test Case 3—Constrained Coefficient Optimization

Ideally, one set of material constants should allow for ac-
curate strength predictions over all possible plastic strains,
strain rates and temperatures. However, comprehensiveness
appears to be too much to ask of simple strength models.
This may not necessarily be a problem, since the material
constants can be fit for various regimes of interest for the
material. '

In the second test case, the initial strength model con-
stants were adjusted to match the quasi-static yield sirength
obtained from a tension test. As the optimization proceeded.
the constants were altered to the point where the strength cal-
culated from the model could no longer reproduce the quasi-
static yield strength. To determine if the constants for the
Johnson-Cook model could be forced to provide for the cor-
rect quasi-static yield strength and still give accurate Taylor
test results, a third optimization run was conducted with A,
B. n and C constrained to change such that the quasi-static
yield stress was always correctly predicted. This was easy
to impose with the spreadsheet function. This third material
constant optimization test case was started from the same set
of constants as that of the second optimization test case,

The final, optimal, relative volume difference for this third
test case was 9.7 percent. The measured and calculated pro-
files are compared in Fig. 5. Although the fit of Fig. 5 was
not as good as those obtained from the first two test cases, the
fit was quite remarkable considering that the constants used
to generate the numerical results are forced to span strain
rates ranging over eight orders of magnitude.

Material Constants Validation

Previously, three sets of material constants were obtained
to simulate a Taylor impact test using the primary OFHC cop-
per cylinder (7.87 mm in diameter with a 5:1 aspect ratio) and
an impact velocity of 214 m/s. These constants were found to
produce reasonably accurate results for this geometry and im-
pact velocity. The accuracy of these material constants was
evaluated by simulating six different Taylor tests for which
experimental data were available. The first two tests used
cylinders having the same diameter and aspect ratio as be-
fore, but with higher and lower impact velocities. The next
two tests used cylinders of the same diameter and approxi-
mately the same impact velocity as before, but having aspect
ratios of 3:1 and 10:1. The final two tests used {2.7 mm and
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TABLE 4—RESULTS OF THE VALIDATION TESTS

Diameter Impact Velocity Relative Volume Dilforance (%)
Test {(mm) Aspect Ratio {nvs) Mean Constanis Physical Constants
1 7.87 L) 234 2. 11.8
2 7.87 s:1 182 3.2 8.8
3 7.87 3:1 210 58 14.3
4 7.87 10:1 197 3.0 8.7
s - 12.7 7.5:1 195 3.9 13.1
6 4.32 7.5:1 21 3.5 10.8

N —

.o

Fig. 5—Comparison of measured and calculated Taylor spec-
imen profiles using constrained strength model constants

4.32 mm diameter cylinders with 7.5:1 aspect ratios. Table
4 lists the characteristics of the six validation tests.

The six validation tests were run using two sets of material
constants for each. The first set of constants was the mean of
the first two optimization test cases (mean constants). These
were used because they represent the most accurate set of
constants obtained. The second set of constants (physical
constants) was the set found from the third test case. This
set was used to determine if material constants with physical
meaning (valid for the quasi-static tension test) could be used
to accurately simulate other impact conditions. The results
of the validation tests are also listed in Table 4.

Although none of the results from the validation tests using
the mean constants proved to be as accurate as the relative
volume error obtained for the primary cylinder, they were
still acceptable. No pattern based on impact velocity, aspect
ratio or caliber was found to imply that the mean constants
yield more accurate results under one set of conditions as
opposed to another. The relative volume differences obtained
from the second and fourth validation tests using the physical
constants were more accurate than the results of the primary
test. However, none of the results obtained with physical
constants were comparable to the accuracy obtained using
the mean constants.

Summary

A new methodology was developed for using the Taylor
impact test to obtain constants for material strength mod-
els. This methodology uses the Taylor specimen’s entire de-
formed geometry and can theoretically be employed to deter-
mine all of the constants of any material strength model. This
is accomplished by using a second-order polynomial to de-
scribe the volume difference between a deformed Taylor test
cylinder and a finite element simulation of the test. This poly-
nomial represents a response surface having design variables
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that are percentage changes in the constants of the strength
model being used. Using a spreadsheet function (such as
the Solver tool of Microsoft® Excel®) or some other opti-
mization package, the volume difference can be minimized
by changing the design variables to yield a more accurate set
of material constants This is repeated in an iterative scheme,
using the newest set of constants as the starting point of each
minimization until the volume difference cannot be further
reduced. Use of the methodology is illustrated by obtain-
ing material constants for a modified Johnson-Cook model
of OFHC copper.
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ABSTRACT

Data from high strength steel Taylor tests is reduced using a one-dimensional model
developed by the authors and a Revised Johnson-Cook strength model introduced earlier by two
of the authors. When applying these methods to recovered specimens, a significant difficulty was
encountered. The very limited deformation zone in the specimens provided such a narrow region
for measurement that there was considerable uncertainty in some of the calculations. A further
difficulty is the very low strain to failure for most of the materials limited the impact velocitics,
thus contributing to the narrow deformation zone. A discussion of some of the measurement
techniques that were utilized is included. The results indicate that rate sensitivity in all of the
materials increases considerably as strain ratcs of 10* /sec are approached.

INTRODUCTION

There are generally two approaches to reducing Taylor impact test data. These are one-
dimensional analyses of post-test specimens (Taylor (1948)) and computational analyses of
specimen geometry (Johnson and Holmquist (1988); Rule and Jones (1998)). The latter approach
generally employs some constitutive model with undetermined constants. The specimen
geometry, either current from high-speed film records or from the recovered specimen, is used to
evaluate the unknown constants in the constitutive relation.

Traditionally, measurements of recovered specimens have been used to estimate the
“dynamic yield strength” of the specimen material. This is useful in some penetration models, but
has limited value to material scientists because it is not associated with a particular strain or
strain-rate. Recently, a one-dimensional theory was presented (Jones et al. (1998)) that estimates
the state of stress with Taylor test data. The principal assumption behind this theory is the
observation that the particle velocity behind the deformation front, u, is proportional to the
undeformed section speed, v. The results of this analysis produced an estimate of the state of
stress at strain-rates in excess of 10* /sec . These estimates agreed fairly well with a modification
of the traditional Johnson-Cook Strength Model given by Rule and Jones (1998) for four
different metals. With the exception of quasi-static compression data, only length and diameter
measurements from 17 caliber Taylor impact specimens were used.

In this paper, the one-dimensional analysis and the Revised Johnson-Cook Strength
Model are applied to several high strength steels. The complication presented by these materials
is very low strain to failure due to limited ductility and high strength. Another complication is
dynamic buckling of some of the lower caliber specimens. This necessitated an increase in the
diameter in some cases. The ultimate purpose of the tests of these materials is to acquire




constitutive data in the high strain rate regime in order to assist in the simulation of hard target
penetration events.

ONE-DIMENSIONAL ANALYSIS
The one-dimensional theory for cstimating the statc of stress at high strain rates was
presented by Jones, ct al (1998). A short summary will be presented here for convenience.
Conscrvation of mass across the plastic wave front is given by

el=v-u. )
The impulse-momentum cquations applicd at the wave front lcads to

ply = o, ()
and

o=(l +e)[0'0 +—':—:-(v-u)2]. (3)

Addition of the current lengths in Figure 1 produces the kinematical equation
h+l+s=L, 4)

which applies to all deformed configurations of the cylindrical specimen. Equations (1-4) are the
basis for the one-dimensional data reduction in this paper. A complete discussion of development
of these equations is contained in Jones, et al (1998). The nomenclature for these equations is:
<0 is the compressive enginccring strain behind the plastic wave front, £ is the undeformed
section length, p is the specimen density (assumed constant after the initial transient), o, <0 is a

reference compressive stress related to the quasi-static yield stress of the specimen material, and
h, £, and s are lengths shown in Figure 1.

The fundamental assumption that allows us to integrate the differential equations is
u = fv, where f is a strain dependent constant. We can now integrate Equation (1) directly and

to use the results in Equation (3). The stress at the plastic wave front then takes the form

o=l +e)[oo + a +eﬂ)2 pv{l. )

The state of stress at a particular compressive strain e can now be estimated with (5) and the
following estimate for strain rate

(6)

where one of the integrals of motion can be used to find £and express it in the form



f;=Eexp{ﬂp(v’ ~v§)}=z ,cxp{‘"ﬂ pv‘}- )

2eo0 2e0
i ¢

In these cquations, ¢ is the undeformed section length at the end of the initial transient period
(sec Jones, et al, 1991) and £, is the undeformed scction length at the end of the event when
v=0. Together, (5) and (6), with (7), comprisc a parametric constitutive relation for the matcrial
in the parameter v. The reference stress o, (e) can be related to the quasi-static yicld stress o, (e)
by o, =(1+e)a,, which is the limit as v — 0 in Equation (5). All that remains is to estimate the
state of stress with Equations (5) and (6) is to determine the parameter f3.

ESTIMATING g

The technique devised by Jones, et al (1998) for estimating B from post-test
measurements, utilized the integral of motion

¢ -gL, ¢ 1- .y
r__1=BL + L + 1-f_1-8s (8
L, e L, L, e e L,
which is a consequence of u = fv. L, is the specimen length at the end of event and s is the
displacement of the undeformed section at the end of the initial transient. This is the equation of
a straight lineinthe ¢, /Ly, L, /L, plane.

For impacts with sufficiently high velocity, the data from recovered specimens can be
used to find the slope and the intercept of this line. The slope m = —(1~ f)/e¢ can be used to find
S . Herein lies the difficulty with high strength steels. For a ductile material, such as copper, the
slope of the line described by Equation (8) is fairly easy to find. Copper Taylor test data from 17
caliber specimens is shown in Figure 2. Notice that L, /L, ranges from 0.68 to 0.83. This means

that the slope of the lines corresponding to the indicated fixed strains can be found without much
uncertainty and minor measurement errors do not significantly affect the result. However, this is
not the case for high strength steels. The range of L, /L, is very narrow. The data presented in

Figure 3 is from six impact tests with Astralloy V®, a high strength steel from which the impact
face of the target is fabricated. Notice that L, /L, ranges from about 0.91 to about 0.94. Now,
there is a premium placed on the accuracy of each data point in the set, because any uncertainty
can influence the slope of the line and ultimately the value of f. These measurements were done

with an optical comparator. Despite the narrow range of the data, there is a very consistent linear
trend.

For each particular strain, the slope of the line can be determined and the corresponding
value of £ can be found. Now, Equation (7) can be used to find £ and the state of stress in the

specimen material can be estimated from the end of the initial transient to the conclusion of the
event with Equations (5) and (6).




THE REVISED JOHNSON-COOK STRENGTH MODEL

The Johnson-Cook (JC) strength model was first proposed in 1983 and has the following
form:

o=(C, +Coe 1+ CyIne fi-T™) ©)

where: o is the cquivalent yield strength, € is the equivalent plastic strain, £ is the
dimensionless equivalent plastic strain rate (made dimensionless by dividing the equivalent
plastic strain rate by a unit plastic strain rate), T" is the homologous temperature, and C;, N, and
M are empirical coefficicnts and exponents.

Many ductile metals display an enormous increasc in yicld stress for strain rates in excess
of 10%s (sce Fig. | of Follansbee and Kocks, 1988, for instance). This observed behavior
provided the motivation for the development of the revised Johnson-Cook (RIC) strength modcl
(1998) which takes the form:

a=(C, wuczg;‘“)[ucJ Ing’ +C4(E—lm—ér—61—]](l—T°M) (10)
s 5

where C4 and Cs are additional empirical coefficients.

The strain rate sensitivity has been enhanced by the term 1/(Cs-In ¢") where Cs is the
natural logarithm of a critical strain rate level. This term tends to infinity as the strain rate
approaches the critical strain rate. Note that this strain rate sensitivity enhancement term
contribution tends toward zero for low strain rates due to the -1/Cs correction term in Equation
(10).

The original JC strength model provides for specifying a maximum value for the yield
strength. However, a limiting value is usually not required for high strain rate simulations since
the sensitivity to strain rate is relatively low (linear logarithmic dependence). However, the RIC
strength model as discussed to this point predicts a physically untenable infinite yield strength as

Ing" approaches Cs. To prevent this unrealistic occurrence the RJIC model simply assumes that
there exists a maximum value that the strain rate sensitivity factor in Equation (10) can attain for
each material which can not be exceeded regardless of the prevailing strain and temperature state.

RESULTS

With a premium placed on the accuracy of measurements, a laser micrometer was used to
determine the specimen profiles and the undeformed section lengths. This device was adopted
because measurements to an accuracy of 5 microns can be achieved. A reference dimension was
established at the undeformed end of the cylinder and used to calibrate the instrument. Each
projectile was then mounted in a custom fabricated holder and placed into the bench micrometer.
The projectile was moved through the laser beam producing an accurate profile of the cylinder.
The profile geometries were used to evaluate the RIC constants (see Rule and Jones, 1998, for
the details) and to determine the undeformed section lengths at the fixed compressive strains of
5%, 8%, 10%, and 15%. These strain levels were arbitrarily selected.
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Three stecls were tested: AF 1410, 4340, and ES-1, an experimental steel of interest to
the Air Force. The very high strength of these steels dictated that the data would occupy a narrow
range on the abscissa of the graph. Notice that the data, although very linear, ranges from a least
value of somcwhat less than 0.93 to slightly greater than 0.97. What complicates these
measurements further is the fact that we have not determined a minimum velocity to assure that
initial transient behavior is complete. For the one-dimensional analysis, this leaves us with only a
few data points becausc most of the specimens fracture or buckle at the higher impact velocities
around 200m/s and show very little deformation at the lowest impact velocitics around 130m/s.
Figures 4-6 display the data from the Taylor cylinder tests. The slopes from these lines are used
to find the values of B from which the calculations for the estimates for the one-dimensional
state of stress are made.

Beforc making the high strain-ratc estimates, we can use the test data to estimate the
quasi-static propertics of the materials. This method was proposed by Jones, et al, 1998, and

utilizes a very simple deformed specimen geometry to provide an additional relationship for [;

¢ b 1-Bl+e
—m e T (11)
L p B e
with which the quasi-static flow stress
1+e)(1-
oy(e)= 43K D) (12)

" 2ebn(e/t,)

can be calculated. When high quality specimens are used, this formula generally produces
excellent results. This has been confirmed by published results on OFHC Copper and Wrought
Iron by Jones, et al (1998). The slopes of the lines in Figure 3 are used to find the values of g for

the indicated strains and the intercepts b are used in Equation (11) to find the estimate for 2/L,.

This is then used in Equation (12) to find the quasi-static stresses for the material. To
demonstrate this process, we are including the reduction of Astralloy-V® steel data originally
published by Jones, et al (1996) with Equations (11) and (12). In this case, the 0.164 caliber
specimens were provided by Astralloy Wear Technology in Birmingham, AL, and were
accurately machined to a tolerance of 5x107*in. Six specimens of ten survived the impact
without failing and the results are shown in Figure 3 and summarized in Table 1. The agreement
with independent compression tests performed with a testing machine and a load cell is
remarkable.

The data from a series if Taylor impact tests on AF 1410, 4340, and ES-1 was reduced
with Equations (11) and (12). The recovered specimens were evaluated at three compressive
strains, 5%, 8%, and 10%. These strains were arbitrarily selected and other strains could easily be
substituted, provided that they are not too large. The quasi-static stress estimates for the three
materials are given in Table 2. Using these estimates, the high strain-rate behavior of the
specimen materials can be estimated with Equations (5) and (6). The results of the calculations
are shown in Figures 7-9. In each case, the stress shows the characteristic increase in rate

hardening in the neighborhood of a strain-rate of 10" /sec.
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Figures 7-9 also display the results of RIC calculations on the same materials. In two
cascs, data from Split-Hopkinson Pressure Bar tests was used. In one case, 4340 steel, the quasi-
static estimates from Equation (12) were used. The only other data used to evaluate the RIC
constants are the profiles of the recovered Taylor cylinders. Hence, there are some discrepancies
in the limits as the strain-rate approaches zero. We belicve that these discrepancics are the result
of uncertaintics in the initial specimen geometry. The quasi-static estimates are the averages for
all the specimens in a particular material group. When measurements of post-test specimens are
made, it is presumed that the initial diameter of the specimens is uniform. The machining of
some of these specimens was not to the strict tolerance that was specified, which was
+5x%10™*in. These specimens were hard steel and difficult to machinc with conventional
equipment. However, an uncertainty of 0.00lin. in a nominal diamcter of 0.164in. is the
equivalent of morc than 1% apparent strain in the specimen. Still, the results are good and the
agreement between the RJC constitutive model and the onc-dimensional model is very
satisfactory.

CONLUSIONS

Data from Taylor tests of some high strength steel penetrator casing materials is reported
in this paper. A typical, deformed specimen is shown in Figure 10. As the reader can sce, the
deformation zone is very slight and not very distinct. For a lower strength material, like OFHC
copper, the deformation profile in the specimen is very pronounced, making measurcment fairly
direct by several procedures,

For the hard steel cylinders in this paper, only the most accurate measuring techniques
could be successfully applied. Even a modest uncertainty in the measuring process can produce
large uncertaintics in the results. This is the reason why the initial state of the specimen is so
critical for the lower caliber specimens. Higher caliber specimens, in the range of 30-50 calibers,
do not reflect the uncertainty in such a profound way. But, the effects of radial inertia are
uncertain. When high quality lower caliber specimens do not fail on impact or dynamically
buckle, the results are generally excellent, as reflected by the Astralloy-V® specimens described
eatlier. A good “rule of thumb” is the correlation that is achieved by the quasi-static estimates
with Equations (11) and (12). When this is good, as it was in the Astralloy-V® case, the results
across the full range of strain-rates are very consistent. There was scatter in the quasi-static
estimates for the materials in this paper, but their averages are very much in range. When all
things are taken into consideration, the results presented in this paper for high strength steels are
very credible.
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Figure 1. Undeformed and idealized deformed specimen geometries.
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Figure 10. Typical deformed high strength steel Taylor specimen.




Table 1. Astralloy quasi-static stross comparison (MPa).

Qs (3.6%) | Qs(5.8%) | Qs(11.2%) | Qs(16.1%)
1-D Model Data -1750 -1850 -1930 -1970
Machine Test Data | -1750 -1840 -1930 -1970

Table 2. Quasi-static stress comparison (MPa).

STRAIN LEVEL
5% 8% 10%
AF1410 -1835 -1960 -1990
4340 HSCM -1440 -1566 -1630
ES-1 -1920 -2140 2250
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Taylor cylinder testing is a uscful method for
obtaining the state of stress at high strain-rates.
The conventional test involves normally
impacting a ductile metal against an
uncompliant target. The recovered specimen is
measured and the constitutive properties of the
material are deduced from the specimen
geomctry.

The test has undergone numerous modifications
and interpretations since it was proposed by G.1.
Taylor [1]. In this short paper, we cannot do
Justice to the many investigators who have
contributed to the advancement of our present
understanding of the test. A more complete list
may be found in other papcers, ¢.g. [2]. Recently
[3], a new method for interpreting Taylor test
data was proposed. This method was applied to
ductile metals for which there are recovered
Taylor specimens. The purpose of this paper is
to demonstrate that the method can also be
applied to “unconventional materials”. By
“unconventional,” we mean those materials for
which a suitable Taylor specimen cannot be
recovered. Such materials are polymers. For
example, the mechanical propertics of a dense
urethane, adiprene-100, are deduced in this
paper. In this case, the recovered specimen is
replaced by a high speed film record of the
impact event. The images of specific frames are
digitized and all of the information, gencrally
available only from a recovered specimen, can
be obtained. In fact, a single quality filin record
is capable of delivering the results of numerous

tests. Thus, as demonstrated in [3], estimates
for constitutive behavior can be achieved using
only measurements of specimen length,
diamcter, and vclocity, The impact test was
performed at Eglin AFB, FL., and the digitized
data was reduced by Dr. Paul J. Maudlin and
Mr. Eric Harstad, Los Alamos National
Laboratory, and shared with the authors.

THEORY

The fundamental selationship for application of
the theory [3] is the linearity between the
dimensionless ratios £=¢/1 and
n=(L~s)/L. Referto Figure 1 for the
definitions of these variables. ‘

§=mn+b )

FIGURE |

Doformed and undefonmed Taylor specimens. L is the original
longth. ¢ is the leagth undeformed soction, s is the
displacement of the undefonmed section.




EIQURE2

A typical digitizod image of tho doformed impact specimen.
The lower body is tho fiducial, s structure with known
dimonsions which gives longitudinal and Iatoral dimensions.

The dimonsionless ratios ¢ and 1 plottod in Figure 3 for a
sucocusion of difftrent timos ranging from 13 4 weo to 29 N
300,

ADIPARNG- 108

Figure 3

§=ut/Lvsn=(L-s)/L for & successlon of times in
.the experiniont. The lincarity botwoon theso variables is quite
Sisti

‘The variables are plottod for constant compressive strains
ranging from 3% to 30%. The results are shown in Figure 3.
The slope m and the intercept b of these lines are related to the
pasticle velocity behind the plastic wave front and the
conditions that oxist at the end of initial transiont behavior (s
reforence [3] ),

The State of Stress at High Strain-Rates
The maximum dynamic stress behind the
deformation front is given by

2
1+e)(]~ 2
,’+.(_..i(__".)_.pvo @

max P

o

J-2

at the corresponding maximum strain-rate

v
b w =l 3

In these equations, o, = o,(e) is the static
stress in the specinicn material at strain o, v, is
the impact velocity of the specimen, gis a
paraincter that can be determined from the
slopes of the lines in Figure 3, (sce reference
{3]), 7 is the undeformed soction length at the
cnd of the initial transient, and ¢ is the uniform
specimen density, Using Equations (2) and (3)
and the measurements taken from the film data,
we can cstimate the state of stress at high strain-
rates. The results arc shown in Figure 4.

K4

i
T
e e o

Sivnin ress (1)

Dynamic stross and strain-rate estimatos using Equations )
and (3).
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One approach to the purification of recycled thermoplastic mixtures is selective
grinding to Induce differences in sizes and shapes between polymers with different
compositions. These mixtures can then be separated using one of several technolo-
gies including conventional sieving or hydrocyclones. Recycled polylviny! chloride)
and polylethylene terephthalate) often are cross-contaminated with each other
since they have overlapping density ranges and are very difficult to separate using
methods such as flotation. Selective grinding followed by physical separation might
be a preferred method for separating such a polymer pair if processing “windows”
for inducing differences in fatlure mechanisms can be found. There is a temperature
range over which PET fails in a ductile mode while PVC fails in a brittle mode for im-
pact grinding experiments. This range Is not accurately predicted by failure mecha-

nism and B-transition temperature diagrams.

INTRODUCTION

lastic recycling has been gaining momentum be-
cause of decreasing landfill space, concerns about
environmental contamination, and increasing costs of
raw materials. Methods for producing high purity re-
cycled materials are important objectives for the com-
modity plastics industry. Simple and economical ap-
proaches to plastics purification are separations based
on differences in physical properties, such as density.
Some polymer pairs have similar density ranges and
cannot be separated by sink-float technologies. One
such pair is poly{viny! chloride} (PVC} and polylethyl-
ene terephthalate) (PET), which often appear together
in mixed chipped plastic sireams from recycied poly-
mer bottles. Several groups have recently reported se-
lective grinding processes for this pair. The selective
grinding product can be separated using conventional
screening, or methods based on differences between
the acceleration of particles such as air cyclones or hy-
drocyclones {1},
Famechon (2) has reported a process for crushing a

blend of PVC and PET particles, resulting in mixtures
with larger PET particles after each operating stage.
An Australian firm {3} has reported an impact grind-
ing process that also accomplishes a size difference.
Streams rich in PVC particles are ground under liquid
nitrogen at a temperature below -100°C, producing
PVC particles less than 500 microns in characteristic
size. A 99% pure PVC product is recovered by screen-
ing separation. These differences in shape and size
are thought to be based on differences in the failure
mechanisms between the two thermoplasties at the
grinding conditions. Plastics failing in the brittle mode
tend to fragment to many particles of smaller size than
plastics failing in the ductile mode. However, predic-
tions of the failure mechanisms for polymers are few,
and are rarely applied to grinding technologies. Engl-
neering a selective grinding process, in which one one
thermoplastic would be comminuted at a rate higher
than another or to a different particle size distribution
than another, will depend on identifying appropriate
grinding conditions, and on modeling the grinding
process.
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Research Approach

In general, the relationships between the grinding

conditions, specifically, temperature and strain rate,
and fallure mechanism are not well-corrclated. The
following sequence of work was used to determine in-
formation needed to develop selective grinding proc-
esses. Fajlure mechanism diagrams based on tensile
and compressive tests were compared to impact test
results over a range of conditions to identify process-
ing “windows" in which selective grinding was possi-
ble. Once differences in fatlure mechanisms between
two polymers were identified, grinding cxperiments
were used to determine a size distribution model for
each thermoplastic. The effects of prucessing cond!-
tions, temperature and impact rate, on the model co-
efficients were determined, and then were used to en-
gineer a selective grinding process. This paper reports
the first part of this scquence: the devclopment of fail-
ure mechanism diagrams and their comparison to fm-
pact failure tests for the two thermoplastics, PVC and
PET.
Post-consumer recycled bottle chips, a likely feed
material for a selective grinding process, have varia-
bility in their homopolymer propertics, bottle produc-
tion conditions, thickness, and thermal history. This
material was used to test the general concept of pre-
dicting selective grinding conditions since it is typical
of that expected in an actual process. This approach
assumes that impact grinding fracture mechanisms
are primarily dependent on homopolymer type.

FAILURE MECHANISM DIAGRAMS
FOR PVC AND PET

The failure mechanism, brittle or ductile, determines
the size and shape of the comminuted particle. Brittle
failure tends to be catastrophic without any indication
of plastic deformation and usually leads to many par-
ticles of small size. Ductile failure is characterized by
ylelding of the material, sometimes resulting in the
appearance of a neck. It leads to long fibrils at the
fallure surface and a few large particles. Although the
glass transition temperature (TP is often used as a ref-
erence point for brittle-ductile failure transitions, it is
not always an accurate predictor. Brittle fracture usu-
ally occurs at temperatures below about 0.8 times the
glass transition temperature (Tp. This rule of thumb
does not apply to the PVC-PET pair since both have
Ty's near 80°C: however, PVC has a brittle tempera-

ture of about ~20°C for low extension rates, while PET
does not have a definite brittlc-ductile transition. In
fact, PET Is known to exhibit ductile behavior at cryo-
genic temperatures under some deformation condi-
tions (4). Other mechanisms for fallure inctude cold
drawing and adiabatic heating (viscous flow): ncither
of these will be considered for developing a sclective
grinding process.

Table ! compares some physical propertics for sev-
eral commodity polymers as well as their tendency for
britte fracture. Factors that promote brittle fracture
are low temperature, high loading (impact) rate, low
molecular weight, high crosslinking, low crystallinity,
high glass transition tempcrature, and low polarity
(4-7). The last flve factors depend on the polymer
composition. Those factors avallable to manipulate
during grinding arc the polymer temperature and the
impact rate.

The brittle-ductile transition temperature of poly-
styrene homo-and copolymers has been studied in
tension (8), compression (9) and fatigue (10). This tran-
sition was found to be temperature and rate depen-
dent. Weaver and Beatty (10) related the p-relaxation
temperature to the brittle-ductile transition tempera-
ture under fatigue failure.

Shape differences between two materials might be
induced by grinding if conditlons were found to frac-
ture one in a ductile mode and the other in a brittle
mode. Size differences should also occur since the size
of progeny particles should depend on the mode of
fracture.

Ahmad and Ashby {11) developed tensile and com-
pressive fallure mechanism diagrams for several ho-
mopolymers. Their method was used here to develop
similar diagrams for PVC and PET. Impact tests and
impact grinding may subject the specimen to both
tensile and compressive forces. The specimen will fail
if either of these failure strengths are exceeded. The
relationships between impact failure, and fajlure under
tension or compression are not clear from the previ-
ous literature. Kausch (12) found that the deformation
mechanism for solid polymers under grinding is com-
pressive ylelding, while the mechanism during impact
loading is elastic compressive and/or tenslle deforma-
tion. Prasher (13) proposed that impact faflure should
be similar to compressive failure since the chief differ-
ence between impact and compression stress is the
strain rate. The strain rates for conventional tensile
and compressive tests are on the order of 1 ¢! or less,

Table 1. Properties of Typical Consumer Waste Thermoplastics (5, 6).

Glass Fracture at
Density Transition Cryogenic Brittle

Resin (glem®) Temp. (C) Temp. (C) Crystallinity Polarity
PP ~0.90-0.91 -20 Fractures <20 High Low
HDPE ~0.94-0.97 -122 Difficult to Fracture ~ =150 High Low
PVC ~1.32-1.40 75 Easy to Fracture ~—20 Low Polar
PET ~1.33-1.42 79 Ditticult to Fracture — Intermediate Polar

PS ~1.04-1.07 100 Fractures ~ 90 Low Nonpolar
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rates for the Izod impact test are about 100 s, and
rates for impact grinding can be 10,000 s°'. Impact
rates are known to affect the brittie-ductile transition
temperature.

Dynamic stress fracture is thought to include four
steps (14). After impact, there is rapid nucleation of
microfractures followed by growth of the fracture nu-
clel. Adjacent microfractures coalesce, and fragments
or spalls then form.

Tensile Failure Diagrams

In ductile fracture, the stress-strain response of the
material is characterized by a drop in the stress prior
to fracture and some necking. The theory of Eyring
provides a reasonable basis for the description of yleld-
ing. The equation for the yleld strength in ductile fail-
ure is

o 22 K [ ) () o

Here k is Boltzmann's constant, T is temperature, v is
the stress activation volume, Hjis the activation ener-
gy. Ris the idcal gas constant, & is the strain rate, and
& 1s the pre-exponential for the strain rate.

In brittle fracture, the stress-strain response of the
material is nearly linear up to the breaking point. The
Griffith criterion then provides a reasonable basis for
the description of brittle fracture. According to Willlams
{7). the stress to cause brittle fracture is given by

T 1/2
U SLITIN L WP
(alN AL

where the subscripts fand y refer to the fracture and
yleld stress, the subscript O refers to values at 0°K, T
is the temperature, T, is the glass transition tempera-
ture, and «,, is the temperature coeflicient of the elas-
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tic modulus {estimated from literature values (15)},
Equation 2 has an obvious temperature dependence
but is also strain-rate dependent through the occur-
rence of the yield stress, o,

A tensile fatlure diagram can now be constructed in
the following way. At various strain rates and temper-
atures, Eqs 1 and 2, respectively, predict ductile and
brittle faflure stresses. For each set of conditions, the
fallure mode having the lower stress will prevall. In
Fyg. 1, tensile fallure strength is plotted vs. tempera-
ture for three different strain rates. Values of all con-
stants correspond to PVC (Tables 2 and 3). At each
strain rate, there is a transition temperature below
which failure is brittle and above which failure is duc-
tile. This temperature appears as the break in slope In
the strain-temperature curve. Table 4 compares pre-
dicted brittle-ductile transition temperatures for ten-
sile faiflure to literature measurements.

The three pairs of transitions temperatures are
noted from Fig. 1 and listed in Table 4. They are then
plotted in Fg. 2, showing log strain versus tempera-
ture. In this strain rate versus temperature space,
they partially map the brittle-to-ductile failure bound-
ary. At low temperatures or high strain rates, brittle
failure occurs; at high temperatures or low rates, duc-
tile. For simplicity the three transition points are con-
nected by line segments to approximate the entire
boundary. The region to the right of this boundary
consists of temperature-strain rate combinations ex-
pected to produce ductile fallure; to the left, brittle
failure.

This procedure is repeated for PET. Tensile failure
strength is plotted versus temperature in Fig. 3 for the
same three strain rates as above. The transition tem-
peratures are tabulated in Table 4 and plotted in Fig.
4 to define the brittle-ductile transition in tempera-
ture-strain rate space. However, from Fig. 2, the tran-

Strain Rate (1/sec)
~01 |
-=-100 Fig. 1. Tensile failure mechanism
-« 10000 diagram for PVC.
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Table 2. Constants for Tonslle Yield Behavior Modol.

Polymer v, (m?) vy (m?) H, (JW/mol) H, (J/mol) 801 (8°") £0q (87)
PVC 3.1 x 10°% 215 X 1077 2.95 x 10° 6.88 x 10* 1.0 X 10% 2.36 % 10°
PET 1.21 x 1009 0.88 x 10°% 1.88 % 108 7.18 x 10* 1.28 x 10% 1.94 X 10"
PVYC data from Bouwens-Crowat at &l (16).
PET data from Foot et al. (17).
Table 3. Constants for Tenslle Brittle Behavior Model. Plasticity

Polymer T,(°K) an o0 (MP8) o,, (MPa) E,(GPa)
PVC 352 0.295* 127° 190° 9.94¢
PET 337 0.295* 2820 369° 10.0°

*Assumod.

*Estimated.
sCalculated trom E = E, - (1 —ap Tt)
[

9IExrapolatod, using data from Polymar Handbook (18).
*Oblainod lrom EDD Database (18).

sition boundary for PVC is added to the plot for PET.
Now there is a region between the two boundaries in
which PET Is expected to fail in a ductile mode and
PVC in a brittle mode. That implies a range of temper-
ature-strain rate conditions over which these two
polymers should fail in different modes and might be
separated as described abgve.

The shape of the potential processing window
shown in Fig. 4 Is interesting. It suggests that the re-
quired process be at a carefully controlled tempera-
ture {+25°C), but that wide latilude is allowed in the
deformation rate. The exact location of the window de-
pends on the accuracy of Egs 1 and 2, and the accom-
panying mechanical property constants of Tables 2
and 3. For example, a 20% increase in the value of the
brittle failure stress at 0°K would decrease the transi-
tion by as much as 75°K for PET or 200°K for PVC (21).
While these curves may not be perfectly correct, they
do suggest a window exists, and they suggest a
regime in which to look for it.

Compressive Fallure Diagrams

In some processing, failure may occur under com-
pression. The saie sort of procedure can be used to
construct compressive fallure diagrams. The compres-
sive failure-mechanism behavior was modeled using
Egs 3 and 4, which are analogous to Egs 1 and 2 for
tensile failure.

R [N v2 As I

Brittle Fracture

o T\I/2
or= oufgit{1 oo

Here, u« is the fractonal difference between compres-
sive and tensile strengths glven by

4)

AT (5)

iuc +a,)

and o, and o, are the compressive and tensile strengths.
The valucs of the parameters used in these equations
are given In Tables 5 and 6. Compressive failure dia-
grams for PVC and PET were constructed in the same
manner as the tensile failure diagrams.

Figure 5 shows the brittle-ductile transitions for both
polymers in compressive fallure. In contrast with Fig.
4 for tensile failure, PET will still exhibit brittle behav-
jor at temperatures where PVC will begin to act in a

PVC
10000
1000 | brittle
‘g ductile
s 100
i Ve
§ 10 1+
1
0.1 t
-200 -100 0 100 200
Temperature (C)

Fig. 2. Brittle-ductile transition for tensile failure: PVC.

Table 4. Brittle-Ductile Transition Temperatures for Tensile Failure.

PVC PET
Girain Rates (sec”) Literature Literature
{:]
Predicted [Vincent (20)] Predicted [Foot (17))
0.1 -48/-23°C -25°C -98/-73°C -80°C
100 2/27°C 0°C -48/-23°C -20°C
10,000 52/77°C —_ 2/27°C —_
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Fig. 3. Tensile failire mechanism
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ductile fashion. However, at any given temperature ty=1/27)) {6)

and strain rate, the compressive strength of PET is
about twice that of PVC so that more energy needs lo
be applied to PET to obtain failure. Also, the brittle-
ductile transitions for compression occur at much
higher temperatures for those for tension. Therefore,
at a given set of impact grinding conditions, the mate-
rial is expected to fail under tension.

IMPACT TRANSITION TEMPERATURE
ESTIMATIONS FROM B-RELAXATION PROCESS

As the temperature of a polymer is lowered, various
molecular motions {or relaxations) occur. The sec-
ondary relaxation, known as the B-relaxation process,
and its corresponding temperature, Ty, have been re-
lated to transitions that are observed in impact behav-
jor with changes in loading rate and temperature
{Foot et al. (17); Yano and Yamaoka {4)]. The B-relax-
ation temperature occurs at the secondary peak below
that of the glass transition temperature, and is associ-
ated with the motion of polymer side-groups. This
process is evaluated by determining the dynamic me-
chanical responses at various temperatures using a
free oscillating torsion pendulum. A method for esti-
mating the brittle-ductile transition using the B-relax-
ation temperature as a function of the time to fatture
and temperature has been presented by Menges and
Boden {22). The time to failure is given as

Table 5. Constants for Compressive Yield Behavior Model.

Polymer u,(MPa)* o,(MPa)® H (J/mol) 5, {871
PVC 55.2 40.7 295X 1058 1.0 x 10%
PET 758 483 1.88 X 10 1.28 X 102

spodem Plastics Encyclopadia (8).

PVC data from Bauwem—&mwet et al {18},
PET data from Foot atal. (17).

where fis the frequency of the test. The time to failure,
to which is the inverse of the strain rate, is related to
the temperature by

AU
t= . (————
to- exp | 3p )
10000
1000 brttle
.g ductile
= 100 PET
2
2 e
i 10
L]
1
a1 : T +
~200 -100 b} 100 200
Temperature (C)

Fig. 4. Brittle-ductile transition for tensile failure: PVC and PET.

Table 6. Constants for Compressive Brittle Behavior Model.

010 (MP3) 0y, (MPa) E,(GPa)

Polymer T (K) o

PVC 352 0205 1270 190° 9,044
PET 337 0.285° 282° 369° 10.08
SAssumed.

°Eatimated.

«Calculated from Eq 3.

dxtrapalated, using data from Palymor Handbook 18}
*QObtained from EDO Database (19).
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10000
britlle
1000
g 100 ducllie
3 PVC
g 10 1
PET
1
01 + +
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Temperaturo )

Fig. 5. Brittle-ductile transition Jor compressive failure: PVC
and PET.

where t, is the pre-exponential factor, AU is the acu-
vation energy. R is the ideal gas constant, and Tis the
reference temperature. Values for Ty and AU are listed
in Table 7. The time constant, &, was calculated for Ty
and a strain rate of 0.160 sec™ (1 Hz). Equation 10
was rearranged to calculate the p-relaxation tempera-
tures for a range of times to failure.

Figure 6 illustrates the brittle-ductile transitions for
PVC and PET as functions of the temperature and
strain rates. This Figure shows a processing window
in which PET will fail in a ductile manner while PVC
will fail in a brittle manner (similar to that predicted
for tensile fallures, Fig. 3). The region of brittle fracture
is to the left of the transition line. The estimates for the
brittle-ductile transitions for PVC are -80 and -35°C
for strain rates typical of tension and Izod testing, re-
spectively, while those for PET were -85 and -60°C.
According to these values, PET will begin to exhibit
ductile behavior at lower temperature than PVC. At a
time to failure of 100 ps, which is comparable to the
time scale for deformation during impact grinding, the
brittle-ductile transition for PVC is estimated to be
about 12°C for PVC and -35°C for PET. These predic-
tions of the brittle-ductile transition were compared to
data from Izod (¢ ~10% s7), impact grinding (& ~10%
s71) and ballistics (& ~105 s°)) tests. These strain rates
bracket the range expected in typical impact grinding
equipment. The experimental methods are described
in the following section.

Table 7. p-Reiaxation Temperature and Activation Energy.

Tpat1Hz AU t,
Material (K) (kJ/mol) {(s)
PVC 218 54.4° 1.46 x 10~
PET 200° 71.5° 3.39 X 107%¢
*Manges (22).
YArmaeniades (23).
Foot (17).

1.0€+00
PET

v.0ee04 | Ve
< duchie
! 1.0€+02
.g

1.0E+00

1.0E.02 + + '

100 -80 [} 50 100
Temperature (C)

Fig. 6. Brittle-ductile transition predicted by f-relaxation tem-
peratwre.

IMPACT TESTING METHODS
Izod Impact
Materials

Post-consumer bottle flakes of PVC and PET were
utilized for these experiments. PET flakes were dried
and then injcction molded at about 260°C into impact
specimens for the Izod impact tests. PVC impact speci-
mens were injection molded at about 185°C from gen-
eral-purpose Geon PVC containing 25% recycled con-
tent. The specimens had a width of 12.7 mm {0.5 in.),
a length of 63.5 mm (2.5 in.), and a thickness of 3.17
mm (0.125 in.).

Equipment

A notch cutter (Testing Machine Inc., Model TMI 22-
05) was used to produce the stress-concentrator inden-
tation on the samples. The samples were impacted on
an Izod impactor (Testing Machines Inc., Model 43-02).
A 10 1b pendulum was used for the PVC samples,
while a 1 1b pendulum was used for the PET samples.
The morphology of fracture surfaces were evaluated
using a JEOL T-330 scanning electron microscope
(SEM) to determine the failure mechanisms of each
specimen.

The impact testing was conducted according to the
ASTM-D256 standard. Each desired test temperature
was obtained by placing a sample in a Nalgene Dewar
containing a heat-transfer medium for 3 min. The
Dewar temperature was adjusted by placing dryiceina
methanol bath below room temperature, or an immer-
sion heater in a water bath above room temperature.

Impact Grinding

Impact grinding experiments were done on chips
from post-consumer bottles of PVC and PET. The
grinder was a Bantam Mikro-Pulverizer (Micron Powder
Systems) impact grinder with carbide-tipped hammers
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on a 12.5 mm radius. The rotation specd could be
varied from 8000 to 14,000 rpm (53 to 83 m/s). Chips
were fed to the mill using an auger system. The tem-
perature of the bottle flakes was varied from -196 to
80°C by using liquid nitrogen, refrigeration or heating
In an oven. The precise temperature of the chips at
the point of impact could not be controlled. However,
a thermocouple in the exit stream from the mill pro-
vided the mill outlet temperature, which was repre-
sentative of the chip temperature. Threc mill outlet
temperatures, 0, 22, and 80°C, were achicved with
the equipment.

High Speed Video

A high speed motlon analyzer system {Kodak
Ektapro 1012 Mouon Analyzer: video imager, macro-
focussing zoom lens, video monitor, VCR and printer}
was used to observe particles in the grinding cham-
ber. A 12-mm-thick transparent acrylic window was
fitted to the grinder. The comminution was recorded
at 1000 - 6000 frames per second (fps) using a 67
mm diameter lens with a macrofocussing zoom.

Taylor Testing
Materials

PET and PVC rods 9.53 mm {0.375 in.} in diameter
were cut to lengths of 38.1 mm (1.5 in.), 57.15 mm
{2.25 in.), and 76.2 mm (3 in.) and used as projectiles.
Samples were tested at room temperature.

Ballistics Testing

The PVC and PET projectiles were accelerated using
a powder charge from a gun at velocities of 300 to 600
m/s toward a massive steel anvil. Velocities were
measured by a light beam method, and could be
changed by altering the amount of powder charge
used. The final lengths and appearances of the sam-
ples were noted. SEM was used to observe the failure
mechanisms of the materials.

Scanning Electron Microscopy

Failure surfaces werc examined using a JEOL scan-
ning electron microscope. Specimens were covered
with gold by sputtering to reduce surface charging.

CHARACTERISTIC STRAIN RATES
OF IMPACT TESTS

Strain rates can be scaled using characteristic ve-
locities and sample dimensions (13). The Izod test has
a well-defined geometry in which the center of the
sample is loaded. Owing to the low strain rate, some
flexing of the beam may occur prior to {racture. In this
case, the strain rate should be related to the sample
dimensions by

g="—5— 8)

where # is the strain rate, D is the depth of the beam,
L is the span of the support points, and v is the velocl-
ty of impact (based on an impact on the middie of a
simply supported beam).

Equation 8 might be applied to the case of a thin
plastic chip being impacted by a hammer in a grind-
ing operation if the particle deforms significantly prior
to fallure. High speed video of single particle breakage
in the hammer mill showed that PVC particles broke
into fragments with little or no apparent flexing.
Usually, these particles fractured within two or three
impacts. PET chips also broke into fragments with lit-
tle or no apparent flexing. However, more than five
hits were required for most PET particles to fragment.
When the residence time in the grinding chamber was
short, many chips left the grinder without being bro-
ken. PET chips often showed internal crazing, which
was consistent with the previously described mecha-
nism for dynamic stress fracture. The primary break-
age mechanism was particle-hammer. Particle-wall
impacts did not seem to result in fracture, and pro-
jected particles back into the hammer path.

The high speed video information and the particle
morphologies after grinding were used to model the
fracture process for an estimate of the strain rate. The
PVC chip dimensions of 7.6 mm diameter and 0.7 mm
thickness meant that most of the area available for
hammer impact was the flat surface (about 85%)
rather than the edge. Chip fracture was probably due
to the movement of the shock wave through the thick-
ness of the particle. The PET chip dimensions of 4.6
mm dlameter and 0.7 mm thickness gave about two-
thirds of the surface area as flat surface. For these
chip geometries, the characteristic strain rate was es-
timated as the velocity of the hammer divided by the
chip thickness.

._ U

E=7 ()
The characteristic strain rates varied from 70,000 to
140,000 s! for the chips and rotation speeds used in
the impact grinding experiments. These estimates
represented maximum values because they assume
that all samples were struck perpendicular to the flat
surface.

The caleulation of characteristic strain rates for
Taylor tests is a matter of much debate (24-27). There
is a wide range of strain rates throughout the sample
during the deformation process. For cases in which
the test produces consistent shapes, strains can be
estimated by the specimen’s final geometry. In our ex-
periments, however, the PVC projectiles often recov-
ered entirely from their deformed shape back to their
initial geometry. The PET projectiles, on the other
hand, often shattered into fragments. However, it was
possible to determine the lengths of the deformed and
undeformed PET specimen, and estimate its total de-
formation. For the case of mushrooming projectiles.
Hawkyard (24) has estimated the total strain in the
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Fig. 7. Izod impact strength for PVC and PET at various tem-
peratures.

sample by relating the kinetic encrgy balance to the
sample's undeformed length. A characteristic strain
rate can be calculated by dividing the projectile veloci-
ty by the original length of the deformed material.

v
ltaformed (10)

Strain rates calculated by Eq 10 for PVC samples
ranged from 6000 to 15,000 s! and for PET samples
ranged from 5000 to 15,000 s-! under the conditions
of our tests. Thesc estimates werc lower bounds since
they did not describe the large strain rates that oc-
curred as the sample began to deform.

g=

COMPARISON OF EXPERIMENTS TO THEORY
Jzod Impact Fallure

Poly(Vinyl Chloride). Strength versus testing temper-
ature is shown in Fig. 7. The amount of energy re-
quired to break a PVC test specimen varies widely
with temperature. At temperatures less than -10°C,
the impact strengths were low and were all less than
27 J/m. Scanning electron photomicrographs of the
fracture surface showed characteristics typical of brit-

240061

BBV ™

Fig. 8. SEM (x 50) of PVC Izod test spectmen impacted at
—40°C.

tle fracture. Figure 8 shows the surface for samples
tested at -40°C. There is a sharp fracture edge, and
no obvious necking—which s consistent with brittle
fracture,

There was a step change in PVC lzod impact
strength over the temperaturc range, 0°C < T'< 20°C.
The impact cnergy incrcased by an order of magni-
tude. Inspection of the samples of PVC specimens
tested above 0°C showed that only partial breaks oc-
curred. Fracture surfaces were whitish in color from
deformation during impact, which Is consistent with a
ductlle fallure mechanism. Scanning clectron photo-
micrographs taken for samples tested at 0, 20, and
80°C all showed ductlle fracture. Figure 9 (20°C) shows
obvious necking. The circular depressions are similar
in size to PVC suspension macroparticles. At tempera-
ture above 20°C, the Izod impact strength is indepen-
dent of temperature and ductile faflure occurs. The
PVC brittle-ductile transition temperature predicted
by the tensile fallure mechanism and the p-relaxation
diagrams for strain rates typical of the Izod test is
confirmed by these experiments.

Poly(Ethylene Terephthalate). The PET impact test
specimens all break via a brittle fracture mechanism
over the temperature range, -~40 to 80°C. Scanning
electron photomicrographs of all fracture surfaces
were quite similar (Fig. 10}, showing no obvious neck-
ing even at high magnification. The tensile failure
mechanism and 8-relaxation diagrams predict a brit-
tle-ductile transition in the range of 48 to -23°C. This
transition was not abserved by our Izod tests.

Impact Grinding

Scanning electron microscopy was used to deter-
mine the type of fracture for each grinding condition.
At room temperature and higher, PVC particles failed
in a ductile manner with obvious signs of plastic
yielding. At a mill outlet temperature of 0°C, the PVC
particles had more distinct crack patterns identifiable
with brittle fracture. The brittle-ductile transition oc-
curred between 0 and 25°C. This was similar to the
transition temperature observed in the Izod test, and

Fig. 9. SEM (x 50) of PVC Izod test specimen impacted at
20°C.

POLYMER ENGINEERING AND SCIENCE, JANUARY 1998, Vol. 38, No. 1

K-8



Janet L. Green, Charles A. Petty, Peter P. Gillis, and Eric A. Grulke

NN Y o
RRRSAT
1R ~ S
San TIHORS 1L -
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it was lower than that predicted by the tensile failure
mechanism diagram. When PVC falled in a brittle
manner, its progeny particles had a lower aspect ratio
compared with the parent particles than for ductile
fatlure samples.

PET particles showed ductile yielding at room tem-
perature and higher. At a mill outlet temperature of
0°C, its fracture surfaces showed characteristics of
both brittle and ductile fracture. Yano and Yamaoka
{4) reported that PET's nodular structure and small
isometric crystallites might increase its ductility by
providing an energy-absorbing structure. Chips which
had been impacted but which had not fragmented
showed a number of internal crazes when examined
optically. These crazes were consistent with the dy-
namic stress fracture mentioned previously.

Taylor Impact Tests

The failure mechanisms of PVC and PET were the
same as observed for Izod impacting at room tempera-
ture. The PVC samples deformed and decreased in
length, while the PET samples shattered. The SEM

Fig. 11. SEM of PVC Taylor test sample impacted at 398 m/s.

photographs in Figs. 11 and 12 depict the yielding of
the PVC material, and the brittle fractured surface of
the PET materfal. The PVC material flowed, as if
stretched. Higher projectile velocities led to adiabatic
heating and decomposition in the PVC samples. The
PET fracture surfaces had blunt edges from stable
crack propagation. No adiabatic heating was obscrved
in these samples,

The adiabatic heating fallure of PVC was not antici-
pated from the failure mechanisin diagrams or the im-
pact grinding studies at apparently higher strain
rates. PET was expected to fall ductilely rather than
brittlely. These results suggest that there are effects of
sample shape on the mechanism for faflure which are
not accounted for.

CONCLUSIONS

Brittle-ductile transition temperatures estimated by
tensile failure mechanism diagrams predicl a process-
ing window of temperatures and strain rates in which
PVC should fail in the brittle mode and PET should
fail in the ductile mode. A similar processing window
is predicted by B-relaxation temperatures. Impact
grinding tests confirm the presence of such a process-
ing window. The brittle-ductile transition temperature
predicted for strain rates typical of the lzod test was
confirmed for PVC but not for PET. The PVC trausi-
tion for impact grinding conditions occurs at lower
temperatures than predicted by the failure mechan-
ism diagrams. The brittle-ductile {ransition of PET
was not clearly observed under impact grinding condi-
tions. Compression failure mechanism diagrams pre-
dict a reversal of the transition lines of the polymer
pair, and do not agree with the impact test results.
Taylor tests at room temperature show adiabatic heat-
ing for PVC and brittle fracture for PET. This paper
has demonstrated that selective impact grinding of
two homopolymers can be predicted from tensle test-
ing and B-relaxation properties. Particle size distribu-
tion differences are reported and analyzed in a related
paper (28).

Fig. 12. SEM of PET Taylor test sample impacted at 369 m/s.
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Testing Machines and Strain Sensors

Jjocl W. House, Air Force Research Laboratory

peter P, Gillis, University of Kentucky

MECHANICAL TESTING MACIHINES have
been commercially available since 1886 (Ref
1) and have evolved from purely mechanical
machines (like the popular “Little Giant” band-
cranked tensile tester of Tinjus Olsen, circa
1900, shown in Tig. 1) 10 more sophisticated
electromechanical und servohydraulic machines
with advanced electronics and microcomput-
ers. Blectronic circuitry snd microprocessors
have increased the reliability of experimental
data, while reducing the time to analyze infor-
mation. This transition has made it possible t©
determine rapidly and with great precision ulti-
mate tensile swrength and elongation, yield
strength, modulus of clasticity. and other mne-
chanical propertics. Current cquipment manufac-
wrers abo offer workstation configurations that
automate mechanical testing.

Conventional test machines for measuring
mechanical properties include tension icsters,
compression testers, or the more versatile uni-
versal testing machine (UTM) (Ref 2). UTMs
have the capability to test material in tension,
compression, or bending. The word universal
refers to the variety of stress states that can be
audicd. UTMs can load material with a single,
contintous (monotonic) pulse or in w cyclic
manner. Other conventional test machines niay
be limited 10 either tensile loading or compres-
sive loading, but not both. These machines
have less versatility than UTM equipment, but
are less expensive to purchase and maintain,
The basic aspects of UTM equipment and test-

“Little-Giam” band-cranked tensile tester of
Tinius Olsen, circa 1900

Fig. 1

ing gencrally apply to tension or compression
testing muchines as well,

This article reviews the current technology
and exumines force application systems, force
measurenent, strain measurement, important
instrument considerntions, gripping of test
specimens, test dingnostics, and the use of com-
puters for gathering and reducing duta. Empha-
sis is placed on UTMs with some separate dis-
cussions of equipment factors for tensile testing
and compression testing. The influence of the
machine stiffness on the test results is ulso de-
seribed, along with a general assessment of test
accuracy, precision, and repeatability of mod-
ern equipment.

Testing Machines

Although there arc many types of test sys-
tems in current use. the Most coMMon are uni-
versal testing machines, which are designed to
test specimens in tension, compression, or
bending. The testing machines ure designed 1o
apply a force to a maierial to detcrmine its
strength and resistance o deformation. Regard-
less of the method of force application, testing
machines are designed to drive a crosshead or
platen at a controlled rate, thus applying a ten-
sile or compressive load 10 a specimen. Such
testing machines measure and indicate the ap-
plicd force in pound-force (1bf), kilogram-force
{kgf). or newtons (N). These customary force
units are related by the following: 1 Ibf =
4448222 N: 1 kgf = 0.80665 N. All current
testing machines are capable of indicating the
applied force in cither Ibf or N (the usc of kgt'is
not reconunended).

The load-applying mechanism may be a hy-
draulic piston and cylinder with an associated
hydraulic power supply, or the load may be ad-
ministered via precision-cut machine screws
driven by the necessary gears, reducers, and
motor to provide a suitable travel speed. In
some Jlight-capacity machines (only a few hun-
dred pounds maximum), the force is applicd
by an air piston and cylinder. Gear-driven sys-

tems obtain load capacitics up to approxi-

mately 600 kN (1.35 x 108160, while hydraulic
systems can obtauin forces up to upproximately
4500 kN (1 x 106 1bf).

Whether the machine is a gear-driven system
or hydraulic system, at some point the test ma-
chine resches & maximum speed for loading the
specimen, Geur driven test machines have a
maximum crosshead speed limited by the speed
of the elcctric motor in combination with the
design of the gear box transmission. Crosshead
speed of hydraulic machines is limited 1o the
capacity of the hydraulic pump to deliver a
steady pressure on the piston of the actuator o
crosshead. Servohydraulic test machines offera
wider range of crosshead speeds; however,
there are continuing advances in the speed con-
trol of screw-driven machines, which con be
just as versatile as, or perhaps more versatile
than, servohydraulic machines.

Conventional gear-driven systems are gener-
ully designed for speeds of about 0.001 10 500
mm/min (4 x 107610 20 in/min), which is suit-
able for quasi-static testing. Servohydraulic
systems are gencrally designed over a wider
range of test speeds, such as:

o | pmw/h test speeds for creep-fatigue, stress-
corrosion, and stress-rupture festing

o | pm/min test speeds for fracture testing of
brittle materials

e 10 ny/s {400 in/s) test speeds for dynamic
testing of components like bumpers or seat
belts

Servohydraulic UTM systems may also be de-
signed for cycle rates from | cycle/day to over
200 cycles/s. Gear-driven systems typically al-
low cycle rates between | cycle/hand 1 cycle/s.

Gear-driven (or screw-driven) machines
are electromechanical devices that use a large
actuator screw threaded through a moving
crosshead (Fig. 2). The screw is turned in either
direction by an electric motor through a gear re-
duction system. The screws are ratated by a
variable-control motor and drive the moveable
crosshead up or down. This motion can load the
specimen in cither tension or compression, de-
pending on how the specimen is to be held and
tested.
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Screw-driven testing  machines currently”
used are of cither u one-, two-, or four-serew
design. To climinate twist in the specimen from
the rotation of the screws in multiple-serew
systems, one screw hus a right-hand thread, and

the other has a lef-hand thread. For alignment
and luteral stability, the screws are supported in
bearings on each end. (n some machines, load-
ing crossheads are guided by columns or
guideways to achicve alignment.

Croashead travel Fixed crosshesd )
limitswitches load coll mounting Adjustable
position upper-limit
stop
- —
R % Extonsion moasurement
[ — ;" 5 . -} onticat encoder
B | S tieperat: e :'l' i {optional)
S e =
Leadscrew .. = L
cover T—H-E== | Limit switch rod
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:u“ L8, "'I Lo Manual
( i positioning
Flaxible _ — rasolver
coupling ... . 7
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Moving e /
crosshead e
'Adiun'able 1
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Dnve _ control
motor - [
& Clutch
ey [~ driver
.; board
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Fig. 2 Components of an electromechanical {screw- driven) testing machine. For the configuration shown, moving
the lower (intermadiate) head upward produces tension in the lower space between the trosshead and the

base
Output from sensor _
Feedback
signal | |t Spocimen
Ertor i | Servo 3
Input | Lomeller | sevoate | iy
programmer Program i Actuato
command

.
Flg- 3 Schematic of a basic servohydrautic, closed-loop testing machine

A runge of crusshead speeds can be achieved
by varying the speed of the electric motor and
by changing the gear ratio. A closed-loop
servodrive system ensures thut the crosshead
moves at u constant speed. The desired or user-
sclected speed and direction information is
compared with a known reference signal, and
thé¢ servomechanism provides positional con-
trol of the moving crosshead to reduce any er-
ror or difference. State-of-the-art systems use
precision optical encoders mounted directly on
pretonded twin bull screws. ‘These types of sys.
tems are capable of measuring crosshead dis.
placement to an accuracy of 0.125% or better
with n resolution of 0.6 pm.

As noted abave, typical screw-driven ma-
chines are designed for speeds of | to 20
mavmin  (0.0394-0.788 in./min) for quasi-
static test applications; however, machines cun
be designed to obtain higher speeds, although
the useful force available for application to the
specimen decreases as the speed ol the cross-
head motion increases. Modern high-speed sys-
tems generally are useful in ranges up to S0
mnv/min (20 in/min) (Rel 3). Nonctheless, top
crosshead speeds of 1250 mm/min (50 in./min)
can be nttained in screw-driven machines, and
servohydraulic machines ‘can be driven up 10
2.5 % 105 mun/min (10% in./min) or higher.

Due to the high forces involved. bearings and
gears require particular attention to reduce fric-
tion and wear. Backlash, which is the free
movement between the mechanical drive com-
ponents, is particularly undesirable. Many in-
struments incorporate antibacklash preloading
so that forces are trunslated evenly through the
lead screw and crosshead. However, when the
crosshead direction is constantly in one direc-
tion, antibacklash devices may be unnccessary.

Servohydraulic machines use a hydraulic
pump and servohydraulic valves that move an
actuator piston (Tig. 3). The actuator piston is
atached to one end of the specimen. The mo-
tion of the actuator piston can be controtled in
both directions to conduct tension, compres-
sion, or cyclic loading tests.

Servohydraulic test systems have the capabil-
ity of testing at rates from as low as 45 x 1o-11
/s (1.8 x 10-? in/s) to 30 m/s (1200 ints) or
more. The uctua) useful rate for any particular
system depends on the size of the actuator, the
flow rating of the servovalve, and the noise
level present in the system elcctronics. A typi-
cal servohydrautic UTM system is shown in

-Fig. 4.

Hydraulic actuators arc available in a wide
variety of force ranges. They are unique in their
ability to economically provide forces of 4450
kN (1,000,000 1bf) or more. Screw-driven ma-
chines are limited in their ability to provide
high forces duc to problems associated with
low machine stiffncss and large and expensive

~ loading screws, which arc ircrcasingly more

difficult to produce as the force rating goes up.

Microprocessors for Testing and Data Re-
duction. Contemporary UTMs are controlled
by microprocessor-based electronics. One class
of controller is based on dedicated micropro-




cossors for test machines (Fig. 4). Dedicated
MICTOPPOCCANOTY Ore designed 1o perform spe-
cific tusks and have displays and input func-
tions that arc limited to those 1asks. The dedi-
cated microprocessor  sends sighals to the
experimental appuratus and reccives informa-
tion from various Sensors. The data received
from sensors ¢an be passcd 10 oscilloscopes OF
computers for display and storage. The experi-
mental results consist of time and voltage infor-
_mation that must be further reduced 10 unalyze
material behavior. Analysis of the dita reguires
the conversion of test results, such as voltage,
1o specific quantities, such as displacement and
lond, based on known conversion factors.

‘I'he second class of controller is the personal
computer (PC) designed with an clectronic in-
rerfuce to the experimental apparatus, and the
appropriate application software. The software
wkes the description of the test to be per-
formed, including specimen geamctry dita, and
estublishes the requisite electronic  signals.
Once the test is underway, the computer con-
wrols the tests and collects, reduces, displays.
and stores the data, The obvious advantage of
the PC-based controlier is reduced time to gen-
erate graphic results, or reports. The other ad-
vantage is the climination of some procedural
errors. or the reduction of the interfacing details
between the operator and the experimental ap-
paratus. Some Sysiems arc designed with both
types of controllers. Having both types of con-
trollers provides maximum flexibility in data
gathering with a minimal amount of time re-
quired for veducing data when conducting stand-
ard cxperiments.

Principles of Operation

The operation of & universal testing machine
san be understood in terms of the main ele-
ments for any Stress analysis, which include
material responsc, specimen gcometry, and
toad or houndary condition.

Matcrial response, or material charactcriza-
tion, is studicd by adopting standards for the
other two  clements. Specimen geometrics,
which are specific for tension, compression, oF

servohydraulic testing machine and load frame
with a dedicated microproccssm-bascd con-

Fig. 4

troller

bending lests, are described in separate sections
at the end of this unticle. This scction brietly de-
scribes lond condition fuctors, such os strain
rate. machine rigidity, and various testing
modes by load control, speed control, strain
control, and strain-rate control.

Strain rate, or the rate ot which a specimen
is deformed, is u key iest varinble that is con-
wolled within prescribed limits, depending on
the type of test heing performed. Table 1 sum-
marizes the gencral strain-rate ranges thut are
requircd for various types of property (ests,
Creep tests requirne low strain rates, while con-
ventional (quasi-stmic)mnsiun and compres-
<ion lests require struin rates between 1073 and
10t sl

A typical mechanical test on metallic materi-
als is performed at o strain rate of approxi-
mately 10-3 57, which yiclds a strain of 0.5 in
500 s, Conventional equipment and techniques
gencrally can he extended to strain rates as high
as 0.1 s~ without difficulty. Tests m higher
strain rates  necessitate additional consider-
ations of machine stiffness and strain measure-.
ment techniques. In terms of machine capabil-
ity, servohydraulic load frames cquipped with
high-capacity valves can be used to generate
strain rates as high as 200 s-1, These tests are
complicated by load and strain measurement
and data acquisition.

If the crosshead specd is 100 high, incrtia cf-
fects can become important in the analysis of
the specimen siress statc. Under conditions of
high crosshead specd, errors in the load cell
output und crosshead position data may become
unacceptably large. A potential cxists to dam-
age load cclls and extensometers under rapid
loading. The damage occurs when the specimen
fractures and the load is instantancously re-
moved from the specimen and the load frame.

AL strain rates greater than 200 s, the re-
quired crosshead speeds exceed the speeds cas-
ily obtained with serew-driven or hydraulic ma-
chines. Speciatized high strain rate methods are
discussed in more detail in the Scction “High
Strain Rate Testing” in this Volume.

Determination of Strain Rates for Quasi-
Static Tension Tests. Strength propertics for
most materials tend 1o increasc at higher rates
of deformation. In order to quantify the effect
of deformation rate on strength and other prop-
erties, a specific definition of strain rate is re-
quircd. During a conventional (quasi-static)
icusion test, for cxample, ASTM E & “Tension
Testing of Metallic Materials™ prescribes an

Table 1 Strain rate ranges for different
tests

Type of test Straln rate range, a1

Creep tests 0108

Pscudostatic tension or 1075 10 107
coOmpression tests

Dynumic tension or 10l 102
compression tests

Impact bar tests involving wave 10210104

propagation effects

Souree: Ref 4
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upper limit of deformation rate as determined
quantitatively during the test by one of the fol-
lowing methods (listed in decrcasing order of
precision): '

o Rate of straining

o Rute of stressing (when loading is below the
proportional limit)

e Rate of crosshead separation during the tests

o Elapscd lime

® Free-ruming crosshead speed

For some materials, the fi rec-running crosshead
speed, which is the least accurate, muy be ade-
quate, while for other materials, one of the re-
mnuining methods with higher precision may be
uccessary in order to obtain test values within
acceptable limits. When loading is below the
proportional limit, the deformation ratc can be
specificd by the “loading rate” units of stress
per unit of time such that: .

6 = kb

where, according to Hooke's law, ais stress, £
is the modulus of elasticity, € is strain, and the
superposed dots denote time derivatives.

ASTM E 8 specifics that the test speed must
be low enough 10 permit accurate determination
of loads and strains. When the rate of stress-
ing is stipuluted, ASTM E 8 requires that it
not excced 690 MPa/min (100 ksi/min). This
corresponds 1o an clastic strain rate of about
5 % 10-5 5! for steel or 15 x 103 57! for alumi-
pum. When the rate of straining is stipulated.
ASTM E 8 prescribes that after the yield point
has been passed. the rate cun be increascd 10
about 1000 x 10-% 5715 presumably, the stress
ratc limitation must be applied until the yicld
point is passed. Lower Jimits are also given in
ASTMERS.

in ASTM standard E 345, “Tension Testing of
Metallic Foil,” the same upper limit on the rate of
stressing is recommended. In addition, a lower
limit of 7 MPw/min (1 ksi/min) is given. ASTM
E 345 further specifies that when the yield
strength is to be determined, the strain rate
must be in the range from approximately 3 X
10-510 15 x 10-3 571,

Inertia Effects. A fundamental difference
between a high strain rate tension test and a
quasi-static tension test is that inertia and wave
propagation ef {ccts are present at high rates. An
analysis of results from a high strain rate test
thus requires consideration of the effect of
stress wave propagation along the length of the
test specimen in order to determine how fast a
uniaxial test can be run to obtain valid stress-
strain data. :

For high loading rates, the strain in the speci-
men may not be uniform. Figure 5 illustrates an
clemental length dxg of a tension test specimen
whose initial cross-sectional area is Ay and
whose initial location is prescribed by the coor-
dinate x. Neglecting gravity, no forces act on this
clement in its initial configuration. After the
1ost has begun, the clement is shown displaced
by a distance u, deformed to new dimensions
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dx and A, and subjectzd to forees Foand # 4
(F. The difference, 4F, between these end-face
Jorces causes the motion of the ¢clement that is
manifested by the displacement, . This motion
is govemed by Newton's second law, foree
cquals mass times aceeleration:

h)

o A 42 (g |
dF = py Ay ‘n( e ] 1 1)
where pyAylyy is the mass of the clement,
Agdlxy i% the volume, p is the deasity of the ma-
terind, and (J2u/dic) is its uceelerntion. Tests
that are conducted very slowly involve ¢x-
tremely small nccelerations. Thus, Eq | shows
thut the variation of force JF along the speci-
men length is negligible.

However, for tests of ncreasingly shorter du-
rations. the acceleration term on the right side of
Eq 1 becomes increasingly significant. This pro-
duces an increasing variation of axial force
along the length of the specimen. As the force
becomes more nonunilotm, S0 must the stress.
Consequently, the strain and strain rate will also
vary with axial position in the specimen. When
these effects become pronounced, the concept of
average values of stress, steain, and steaio rate
become meaningless, and the test results must
be analyzed in terms of the propagation of
waves through the specimen. This is shown in
Table | as beginning near strain rates of 102571,

dxy 'h

x -—u——->1

F+ dF

u—dx—-l
{

F’g' 5 e deformation of an elemental length. dxg,

of a tension test specimen of initial cross-sec-
tional area, A, by a stress wave. The displacement of the
element is u; the differential leogth of the element as o
function of time is dx; the forces acting on the Taces of the
element are given by Fanil F+ df.

{
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Fig_ 6 Osdilloscope record of load cell force versus

time during a dynamic tension test depicting

the phenomenon of ringing. The uncontrolled oscilla-

tions result when the loading rate is near the resonant ire-

au:mcy of the load cell. The scales are arbitrary. Source:
of 5

Iy ar ine-mediate raage of strain ratey (de-
woned e oamie tests in Table 1), an effect
kaow: i ringing” of the load-measuring device
03¢ ey S interpeetation of test data. An exam-
p ¢ ol [y cendition is shown in Fig. 6, which is a
waing ot 1l cell foree versus time during a dy-
e ter o test of a 2024-T4 aluminum speci-
nen Eaicdliion showed thit the oscillations ap-
pient 1 the figure are consistent with vibrations
a the apper imate natural Trequency of the lond
chinee foeihis test (Rel' S, 6).

n many cnachines currently available for
dym e 13 ing, electronic signal processing
it use. o filter out such vibrations, thus mak-
jig e nsiiumentation: records appear much
snosthe tan the netual Joad cell signal,
Howava, there is still o great deal of uncer-
Linty r tre nterpretation of dynamic test data.
Conscquenily, the average valuc of the high-
fequesy v brations associated with the load
cell can e axpected to differ from the foree in
tue soee man. This difference is caused by vi-
trabony i the natural frequency of the test-
i1 tahine, which are so low that the entire
Castocan acer in less than b, of a cyele. Henee,
tiese low-fiequency vibrations usually are im-
fossible to ceteet in a test record, but can pro-
cuce sigriticant errors in the analysis of test re-
sults  Thy ringing frequency for typical load
cells =anges from 2400 to 3600 Hz.

Miich ne Stiffness. The most common mis-
conesption 1elating to strain rate effects is that
the testity machine is much stiffer than the
spee e . Sach an assumption leads to the con-
cept of deformation of the specimen by an es-
rentintly rigid machine. However, for most
tests the arposite is true: the conventional ten-
tile specmen is much stiffer than most testing
machines As shown in Fig. 7, for example, if
crosiheid displacement is defined as the rela-
tive displacement, A. that would occur under
con niors of zero load, then with a specimen
aripped 0 1 testing machine and the driving
mecian s engaged, the crosshead displace-
‘nen: equals the deformation in the gage length
ol the specumen plus elastic deflections in com-
yoneats such as the machine frame, load cell.
arips, and specimen ends. Before yielding, the
rage leneth deformation is a small fraction of
he ceosshend displacement.

2

Aler the onsct of gross plastic yiclding of the
specimen, conditions chunge. During this phuse
of deformation, the load varies sfowly as the
materinl strain hardens, Thus, the clastic de-
Nections in the machine change slowly, and
most of the relative crosshead displacement
produces plastic deformation in the specimen.
Qualitatively, in a test at approximately con-
stant crosshead speed, the initial elastic strain
rate in the specimen will be small, but the spec-
imen strain rate will increase when plastic flow
oceurs.,

Quantitatively, this eftect can be estimated as
follows. Consider a specimen having an initial
cross-sectional nrea Ay and modulus of ¢lastic-
ity £ gripped in a testing machine so that its ax-
jally stressed gage length initially is Ly. (This
discussion is limited to the range of testing
speeds where wave propagation eflects are neg-
ligible. This restriction implies that the load is
uniform throughout the gage leagth of the spec-
imen.) Denote the stiffness of the machine,
grips, and so on, by K and the crosshead dis-
placement rate (nominal crosshead speed) by S.
The ratio $7Ly is sometimes called the nominal
rate of strain, but because it is often substan-
tially different from the rate of strain in the
specimen, the term specific crosshead rate is
preferred (Rel 8).

1.ct londing begin at time ¢ equal to zero. At
any moment thereafter, the displacement of the
crosshead must cqual the elastic deflection of
the machine plus the clastic and plastic deflec-
tions of the specimen. Letting s denote the en-
gineering stress in the specimen, the machine
detlection is then sA /K. It is reasonable 1o as-
sume that Hooke's law adequately describes
the clastic deformation of the specimen at ordi-
nary stress levels, Thus, the elastic strain ¢, is
sIE.

Denoting the average plastic strain in the
specimien by ey, the above displacement bal-
ance can be expressed as:

ter - Ao Iy :
ubdl-.\(—K—-+—E +¢'|,L,, (Eq2)

Differentiating Eq 2 with respect o time and
dividing by L, gives:

C

-+
-

i s
to—= v

+

-+ Ly+A-FK

.
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Fig. 7

{c)

schomatic ilusteating crosshead displacenent and elastic deflection in a tension testing machine. A is the
Jdisplacement of the crosshead relative to the zero load displacement: Ly is the initial gage length of the

specimon; K s the composite stiffness of the grips, loadiag frame, load call, specimen ends, ete.; Fis the force acting
on the specimen. The development of Eq 2 through 12 describes the effects of testing machine stifiness on tensile prop:

erties. Scurces Ref 7

L-b
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The strain rate in the specimen is the sum of the
clustic and plastic strain rates:

dmé, +e..-(-::)+ ép (Cqd)

Using Eq 3 to eliminate the stress rate from kg
4 yiclds:

LY S
( A "’]
éu..:.ﬁ:.:_.-. A (&'s,
L
AoE

Thus. it is scen that the specimen strain rate
usually will differ from the specific crosshead
rate by an amount dependent on the rate of plas-
tic deformation and the relative stiffnesses of
the specimen (Agk/Ly) and the machine, X,
Accounting for Testing Machine Stiffness.
Machine stiffness is the amount of deflection in
the load frame and the grips for each unit of
load applied 1o the specimen. This deflection
not only encompisses elastic deflection of the
load frame, but includes any motion in the grip
mechanisin, o at any interface (threads, etc.) in
the system. These deflections arc substantial

during the initial loading of the specimen, that

is, through the clastic regime. This means that
the initial crosshead speed (specificd by the op-
crator) is not an accurate measure of specimen
displacement (strain). If the strain in the elastic
regime is not accurately known, then extremely
large errors may result in the calculation of
Young's modulus (£, the ratio of stress versus
strain in the elastic regime). In the analysis by
Hockett and Gillis (Ref 9). the machine stiff-
ness K is accounted for in the following equa-
tion:
-1
K= [.S_ - .L._O_]
Ph AOE

where Ly is initial specimen gage length, §is
crosshead speed of the testing machine, Ay is
initial cross-scctional area of the specimen, £,
is specimen load rate (dF/dt = Ags). and E is
Young's modulus of the specimen material.

Rescarch in this arca showed that a signifi-
cant amount of scatter was found in the mea-
surement of machine stiffness. This variability
can be attributed to relatively small differences
in test conditions. For characterization of the
clastic response of a material and for a precise
measure of yield point, the influence of ma-
chine stiffness requires that an extensomceter, or
a bonded strain gage, be used. Afier yielding of
the specimen material, the change of machine
deflection is very small because the load
changes slowly. If the purpose of the experi-
ment is to study large strain behavior, then the
error associated with the use of the crosshead
displacement is small relative to other forms of
experimental uncertaintics.

Control Modes. During a test, control cir-
cuits and servomechanisms monitor and control

(Eq6)

the key experimental conditions, such as force,
specimen deformation, and the position of the
moveable crosshead. These are the key bound-
ary conditions, which are anulyzed 1o provide
mechanical property data. These boundary con-
ditions on the specimen cun also be controlicd
in different ways, such as constunt load control,
constant strain control, and constant crosshead
speed control. Constunt crosshead speed is the
most common method for tension tests.

Constant Luad Rate Testing. With appropri-
ate moxlules on a UTM system, a constant toud
re test can be accomplished easily. In this
configuration, a load-control module allows the
machine with the constant rate of extension (o
function as a constant loud rate device. This is
accomplished by a feedback signal from a Joad
cell, which generates o signal that automati-
cally adjusts to the motion controtler of the
crosshead. Usually, the servomechinism sys-
tem response is particularly critical when mate-
rials arc Joaded through the yield point.

Constant Strain Rate Testing. Commercial
systems have been developed to contro) the ex-
periment based on a constant rate of straining in
the specimen. These systems rely on extensom-
cters measuring the change in gage length 10
provide data on strain as a function of time. The
resulting signal is processed to determine the
current strain rate and is used to adjust the
crosshead displacement rate throughout the
tcst. Again, servomechanisim response time is
particularly critical when materials are tuken
through yicld. :

To maintain & constant average strain rate
during a test, the crosshead speed must be ad-
justed as plastic flow occurs so that the sum
(SKIAQE + ¢;) remains constant. For most me-
tallic matcrials at the beginning of a test, the
plastic strain rate is ostensibly zero, and from
Eq 5 the initial strain rate is:
()

’-o.

9= N
(R Aok
Kiy

where S is the crosshead speed at the begin-
ning of the test. For materials that have a defi-
nite yield, § = 0 at the yield point. Therefore,
from Eq 3 and 4, the yicld point strain rate is:

f = L
"0
wherc §) is the crosshead speed at the yicld
point. Equating these two values of strain rate
shows that the crosshead speed must be re-

duced from its initial value to its yicld-point
value by a factor of:

f:o.=(|+ A“_l‘) (Bq9)
5, \ K

For particular measurcd values of machine
stiffness given in Table 2, this factor for a stand-
ard 12.8 mm (0.505 in.) diameter steel speci-
men is typically greater than 20 and can be as
high as 100. Only for specially designed ma-
chincs will the relative stiffness of the machine

(g7

(Eq &)
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exceed that of the specimen. Even for wirc-like
specimens, the correspondingly delicate grip-
ping arrangement will ensure that the machine
stiffness is less thun that of the specimen. Thus,
lurge changes in crosshead speed usuvally ure
required lo maintain a constunt strain rate from
the beginning of the test through the yield point,

Furthermore, for many materials, the onset
of yiclding is quite rapid, so that this large
change in speed must be accomplished quickly.
Muking the necessary changes in speed gener-
ally requires not only special strain-seasing
cquipment. but also a driving unit that is capa-
blc of extremely fast response. The necd for
fust responsc in the driving system eliminates
the use of screw-driven machines for constant
strain-ratc testing. Scrvohydraulic machines
may be capable of conducting tests at constant
strain rate through the yicld point of a material,

Equation 9 indicates the magnitude of speed
changes required only for tests in which there is
no yield drop. For matcrials having upper und
lower yield points, the direction of crosshead
motion may have to be reversed after initial
yiclding to maintain u constant strain rate. This
reversal may be neccessary, because plastic
strains beyond the upper yicld point can be im-
posed at a strain raic greater than the desired
ratc by recovery of elastic deflections of the
machine as the load decreases. For a descrip-
tion of yickd point phenomena, see the article
“Mcchanical Behavior under Tensile and Com-
pressive Loads” in this Volume.

Another important test feature related to the
speed change capability of the testing machine
is the rate at which the crosshead can accelerate
from zero to the prescribed test speed at the
beginning of the test. For a slow lest this may
not be critical, but for a high-speed test, the
yield point could be passed before the cross-
head achicves full testing speed. Thus, the
crosshead may still be accelerating when it
should be decelerating, and accurate informa-
tion concerning the strain rate will not be ob-
tained. With the advent of closed-loop servo-
hydraulic machines and clectromagnetic shak-
crs, the speed at which the ram (crasshead) re-
sponds is two orders of magnitude greater than
for screw-driven machines. :

Tests at Constant Crosshead Speeds. Machines
with & constant rate of extension are the most
common type of screw-driven testers and are
characterized by a constant rale of crosshead
travel regardiess of applied loads. They permit
testing without speed variations that might alter
test results; this is particularly important when
testing rate-sensitive materials such as poly-
mers, which exhibit differcnt ultimate strengths
and elongations when tested at different speeds.

Table2 Experimental values of testing
machine stiffness

Machine stiffness
kg/mm W/ln. Source
740 41,500 Ref10
460 26,000 Ref i}
1800 100,000 Ref 12
1390-2970 77,900-166,300 Ref 13
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For a gear-driven system, applying the bound-
ary condition is ns simple as engaging the clec-
iric motor with a gear box transmission. Al this
point, the crosshead displacement will be what-
ever speed and direction was selected. More so-
phisticated systems use command signul that
is compared with a feedback signal from a trans-
ducer monitoring the position of the crosshead.
Using this feedbuck circuit, the desired bound-
ary condition can be achicved.

Tension tests usually can be carricd out at &
constant crosshead speed on a conventional
testing machine, provided the machine has an
adequate speed controller and the driving
mechanism is sutficiently powerful to be insen-
sitive to changes in the loading rate. Buecause
special uccessory cquipment is not required,
such tests are relatively simple to perform.
Also, constant crosshead speed tests typically
provide as good & comparison among matcrials
and as adequate a measure of strain-rite sensi-
tivity us constant strain-rate (ests.

Two of the most significant test quantitics
—yield strength and ultimate tensile strength—
frequently can be correlated with initial strain
rate and specific crosshead rate, respectively.
“The strain rate up to the proportional limit cquals
the initial strain rate. Thus, for materials tha
yield sharply. the time-average strain rate from
the beginning of the test 1o yield is only slightly
greater than the initial strain rate:

S-.
.
1+ A"f-

KLy

even though the instantancous strain rate at
yield is the specific crosshead rate:

(3

However, beyond the yield point. the stress rate
is small so that the strain rate remains close to
the specilic crosshead rate (Eq L1). Thus. duc-
tile materials, for which a rather long time will
elapse before reaching ultimate strength, have
a time-average strain rate from the beginning
of the test to ultimate that is only slightly less
than the specific crosskead rate. Also, because
the load rate is zero at ultimate as well as at
yicld, the instantaneous strain rate at ultimate
cquals the specific crosshead rate.

During a test at constant crosshead speed, the
variation of strain ratc from initial to yield-
point values is precisely the inverse of the
crosshead speed change required to maintain a
constant strain rate (Eq 9):

-é-! =1+ 40,?
‘.'n KL,

Conscquently, in an ordinary tension test, the
yield strength and ultimate tensile strength may
~ be determined at two different strain rates.
which can vary by a factor of 20 to 100, de-
pending on machine stiffness. If a yield drop
oceurs, clastic recovery of machine deflections

éy= (Eq 10)

(Eq 1D

(Fq12)

will impose a stinin rate cven greater than the
specific crosshead rute given by Eq 12

A point of interest from the analysis involves
testing of ditfercnt sized specimens at about the
same initial strain rate. Assuming thit these tests
are 1o be made on one machine under conditions
for which K remains substantinlly constant,
the crosshead speed must be adjusted to ensure
that specimens of dilferent lengths, diameters,
or materials will experience the sume initial
strain rate. In the typical case where the spee-
imen is much stiffer than the machine, (1 +
AgE/KLy) in Eq 10 can be approximated sim-
ply by (AyE/KLg), so that the initial steain
rate is approximately &, = SKIAGE. Thus, speci-
mens of various lengths, lested at the same
crosshead  speed,  will  generally experience
nearly the same initinl strain ratc. However,
changing cither the specimen cross section or
material necessitates a corresponding change in
crosshead speed to obtiin the same initial rate.

A change in specimen length has substan-
tially the same effect on both the specific
crosshead rate (S/) and the stiffness ratio of
specimen to machine (AyE/KLg) and, therefore,
hus no net effect. For example, an incrense in
specimen length tends 1o decrease the strain
rate by distributing the crosshead displacement
over the longer length; however, at the same
time, the increase in length reduces the stiffness
of the specimen so that more of the crosshead
displacement goes into deformation of the
specimen and less into deflection of the ma-
chine. These two effects are almost exactly
cqual in magsitude. Thus, no change in initial
strain rate is expected for specimens of differ-
ent lengths tested at the same crosshead speed.

Measuring Load

Prior to the development of load cells, testing
machine manufacturers used several types ol
devices for the measurement of force. Early
systems, some of which are still in use, employ
a graduated balunced beam similar to plat-
form-scale weighing systems. Subscquent sys-
tems have used Bourdon tube hydraulic test
gages, Bourdon tubes with various support and
assist devices, and load cells of several types.
One of the most common load-measuring sys-
tems, prior to the development of load cells,
was the displacement pendulum, which mea-
surcd load by the movement of the balance dis-
placement pendulum. The pendulum measuring
system was used widely, because it is applica-
ble 10 both hydraulic and screw-driven ma-
chines and has a high degree of reliability and
stability. Many machincs of this design are still
in use. and they are still manufactured in Eu-
rope. Indlia, South America, and Asia. Anotber
widely used testing system was the Emery-Tate
oil-pneumatic system, which accurately senses
the hydraulic pressure in a closed, flat capsule.

Load Cells. Current testing machines use strain-
gage load cells and pressure ansducers. Tn a load
cell, strain gages are mounted on precision-

L~6

machined alloy-sicel elements, hermctically scaked
in u case with the necessary electricnd outlets, and
arranged for tensile and/or compressive loading.
The low! cel) can be mounted so thiat the speci-
men is in direet contact, o the cell can be indi-
rectly loaded through the auachine crosshead, -
ble. or columns of the load frame. ‘The loud cell
andthe load celt cireuit are calibrated 10 provide a
specific voltage as an output signal when a cer-
tin force is detected. In pressure transducers,
which are variations of strain-gage Joad cells, the
stroin-gaged member is activated by the hydraulic
pressure of the system.

Strain gages, strain-gage lond cells, und pres-
surc transducers are manufactured to several
degrees of nccuracy: however, when used as
the load-measuring mechanism of a testing mu-
chine, the mechanisms must conform (0 ASTM
E 4, as well as to the manufacturer’s quality
standurds. Load cells are rated by the maximum
force in their operating range, and the deflection
of the load cell must be maintained within the
clastic regime of the maierial from which the
load cell was consteucted. Because the load cell
opcrates within its elastic range. both tensile und
compressive forces can be monitored.

Electronics provide a wide range of signal
processing capability to optimize the resolu-
tion of the output signal (rom the load cell.
Temperature-compensating gages reduce mei-
surement errors from changes in ambient temper-
ature. A prior knowledge of the mechanical prop-
erties of the material being studied is also useful
10 obtain full optimization of these signals.

Within individual load cclls, mechanical stops
can be incorporated to minimize possible dum-
age that could be caused by accidental overloads.
Also, guidance and supports can be included to
prevent the deleterious effects of side loading
and to give desired rigidity and ruggedness. This
is itnportant in tension testing of metals because
of the elastic recoil that can oceur when a stilf
specimen fails.

Calibration of Load-Measuring Devices.
Calibration of load-measuring devices refers to
the procedure of determining the magnitude of
crror in the indicated loads. Only load-indicating
mechanisms that comply with standard calibra-
tion methods (¢.g.. ASTM E 7:h shoukd be used
for the load calibration and verification of uni-
versal testing machines (sce the section “Force
Verification of Universal Testing Machines™ in
this article).

Calibration of load-mcasuring devices for me-
chanical test machines is covered in specifica-
tions of several standards organizations such as:

Specifieation Specilication thtle

ASTME 74

Standurd Practice for Calibration of Foree-
Mensuring lnstruments for Verifying the
Force Indication of Testing Machines

Part 3: Calibration of Force-Praving
Instruments Used for the Verification
of ‘testing Machines

Metallic Materials-- Calibration of Foree-
Proving Instiments Used for the
Verification of Testing Machines

BS EN 10002-3  Calibration of Force-Proving Instruments

Used lor the Verification of Uniaxial

Testing Machines

EN 100023

150 376




To ensure valid Joad verilication, calibration
procedures should be performed by skitled per-
sonne) who arc knowledgeable about testing
machines and related instruments and the
proper use of calibration standards,

Load veritication of load-weighing systems
can be accomplished using methods based on
the use of stumdard weights, stundard weights
and lever halances, and clastic calibration
devices. OF these calibration methods, clastic
-alibration devices have the fewest inherent
problems and are widely used. The two main
types of clastic loud-calibration devices arc
clastic proving rings and strain-gage load cells,
as brictly described below.

The clastic proving ring (Fig. 8a, b) is a
Mawless forped stcel ring that is preciscly ma-
chined 1o a fine finish and closcly maintained
wlerances. This device has a uniform and re-
peatable deflection throughout its loaded range.
Elastic proving rings usually are designed to be
used only in compression, but special rings are
designed to be used in tension or compression.

As the term “elastic device™ implies, the ring
is used well within its clastic range, and the de-
Nection is read by a precisc micrometer.

. Proving rings are uvailable with capacitics

~ranging from 4.5 o over 5000 kN (1000 10
1.2 x 108 Ibf). Their usable range is from 10 1o
100% of load capacity. based on compliance
with the ASTM E 74 verification procedure.

Proving rings vary in weight from about 2kg
(5 Ib) to hundreds of kilograms (or several hun-
dred pounds). They arc portable and casy to

" use. After initial certification, they should be
" recalibrated and recertified at intervals not cx-
ceeding 2 years,

Proving rings arc not load rings. Although
| the two devices are of similar design and con-
‘i struction, only proving rings that use a precise
i
i

micrometer for meusuring deflection can be
used for calibrution. Load rings employ a diul
indicutor to measure deflection and usually do
not comply with the requirements of ASTM 74,

Calibration strain-gage load cells e pre-
ciscly machined high-slloy stecl clements de-
signed 1o have a positive and predetcemined
uniform deflection under lond. The steel loud
cell clement contains one or more reduced sec-
tions. onto which wire or foil strain gages are
attached to form a balanced circuit contuining a
temperaturc-compensating clement.

Strain-gage load cells used for calibration
purposes are cither compression or tension-
compression types and have buili-in capacitics
ranging from about 0.4 to 4000 kN (100 10
1,000,000 Ibf). Their usable range is typically
from 5 to 100% of capacity load, und their accu-
racy is £0.05%, hased on compliance with appli-
cable calibration procedures, such as ASTM ]
74. Figure 9 illustrates a load cell system used to
calibrate 2 UTM. This particular system incor-
porates a digital load indicator unit.,

Comparison of Elastic Calibration De-
vices. The deflection of a proving ring is mea-
sured in divisions that are assigned a value in
Ibf, kgf, or N. The force is then caleulated in
the desired units. Although the deflection of o
joad cell is given numerically and a force valuc
can be assigned with a load cell reading, clec-
wic circuits can provide direct readout in Ibf,
kgf. or N. Thus, certified load cells are more
practical and convenicnt to use and minimize
crrors in calculation.

In small capacities (5 10 20 kN, or 1000 to
5000 1bf), proving rings and load cells arc of
similar size and weight (2 to 5 kg, or 4 10 10 1b).
In lurge capacitics (2000 1o 2700 kN, or
400,000 10 600,000 1bf), load cells are about
onc half the size and weight of proving rings.
Proving rings are a single-piece, self-conmaincd

{e) (b)
Fig g Vrovingrings. (a) Elastic: proving ring with precision micrometer for deile
9 tion oi 120,000 Ibf serew-driven testing machine with a proving ring

wetionfload readout. (b) Load calibra-
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unit. A load cell culibration kit consists of two
parts: the load celd and the display indicutor
(Fig. 9). Although the display indicator is de-
signed to be used with a load cell of any capuc-
ity, it can only be used with lond cells that have
been verificd with it as a system,

Although bath proving rings and load cells
arc portable, the lighter weight and smaller size
of high-capacity loud cells enhance their suit-
ability for general usc. L.oad cclls and their dis-
play indicators requirc a longer setup time:
however, their dircct readout feature reduccs
the overall calibration und reporting time. After
initial cenification, the load cell should be
recalibrated aficr one year and thereafter at in-
tervals not exceeding two years.

Both types of calibration devices are cenified
in accordance with the provisions of calibration
standards, In the United States, devices are cer-
tificd in accordunce with ASTM E 74 and the
verification values determined by the National
Institute of Standards and Technology (NIST).
NIST maintains a 1,000.000 Ibf deadweight culi-
brator that is kept in a temperature- and humidity-
controlled environment. This force-calibrating
machine incorporates twenty 50,000 b stain-
Jess stcel weights, each accurate to within £0.25
ib. This machine, and six others of smaller ca-
pacities, arc used to calibrate elastic calibrating
devices, which in turn are employed to accu-
rately calibrate other testing equipment.

Elastic calibrating devices for verification of
testing machines are calibrated to primary stan-
dards, which are weights. The masses of the
weights used are determined to 0.005% of their
values.

Strain Measurement

Deformation of the specimen can be mea-
sured in scveral ways, depending on the size of

t.oad cell and digital load indicator used to cal-
ibrate a 200,000 1bf hydraulic testing machine

Fig. 9
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specimen, cnvironmental conditions, wnd mea-
surement requirements for accuracy und preci-
sion of anticiputed strain levels. A simple method
is 10 use the velocity of the crosshead while
tracking the load as u function of time, For the
joad and time data pair, the stress in the speci-
men and the amount of deformation, or strain,
can he calculated. When the displacement of
the platen is assumed to be cqual to the speci-
men displacement, an error is introduced by the
fact that the entire lond frame has been de-
flected under the stress state. This effect is re-
lated 1o the concept of machine stiffness, us
previously discussed.

Extensometry. The elongation of a speci-
men during load application can be measured
directly with various types of devices. such
as clip-on extensometers (Fig. 10), dircctly-
mounted strain gages (Fig. 11), and various op-
tical devices. These devices are used exten-
sively und can provide a high degree of defor-
mation- (strain-) measurcment accuracy. Other
more advanced instrumentations, such as laser
interferometry and video cxtensomelers, are
also available.

Various types of extensometers and strain
gages arc described below. Selection of a de-
vice for strain measurcment depends on various
lactors:

® The uscable range and accuracy of the gage

® Techniques for mounting the gage

® Specimen size

e Environmental test conditions

e Clectronic circuit configuration and analysis
for signal processing

The last item should include the calibration of
the extensometer device over its full operating
range. In addition, one challenge of working

Fig. 10

Technology Corporation

with clip-on extensometers is to ensure proper
attachment to the specimen. If the extensom-
cter slips s the specimen deforms, the result-
ing signal will give a falsc reading.

Clip-on extensometers cun be attached 1o u
test specimen to measure clongation or strain s
the load is applicd. This is particularly impor-
wnt for metals and similar materials that ex-
hibit high stiffness. Typicul extensomelters have
fixed gage lengths such as 25 or 50 mm (lor2
in.). They are also classificd by maximun per-
cont elongation so that a typical 25 mm (lin.)
guge Jength unit would have different models
for 10, 50, or 100% maximum strain. Exten-
someters are used to measure nxial stroin in
specimens. There also are transverse strain-
measuring devices that indicate the reduction in
widih or diameter as the specimen is tested.

The two basic types of clip-on extensometers
are lincar variable differential transformer
(LVDT) devices and strain-gage devices. These
two types are described along with a descrip-
tion of carlier dinl-type cxtensometers.

Early extensometers were held to the speci-
men with center points matching the specimen
gage-length punch marks, and elongation was
indicated between the points by a dial indicator.
Becausc of mechanical probleins associated
with these carly devices, most dial extensom-
cters usc knife cdges and leaf-spring pressure for
specimen attachment. An extensometer using a
dial indicator to measure elongation is shown in

‘Fig. 12. The dial indicator usually is marked off

in 0.0025 mm (0.0001 in.) increments and mex-
sures the total extension between the gage
points. This valuc divided by the gage length
gives strain in mm/mm, or in./in,

LVDT extensometers employ an LVDT with
a core, which moves from specimen deforma-
tion and produces an electrical signal propor-
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tional 10 umount of core movement (Fig. 1)),
VDT cxtensometers arc small, light weight,
and casy to use. Knife edges provide an exact
point of contact and are mechanically sct to the
exact guge length. Unless the test report specis
fies total clongation, center punch marks or
scribed lines are not required 1o define the gage
length. ‘They are available with gage lengths
ranging from 10 to 2500 mm (0.4 to 100 in.)
and can be fited with breakaway features (Fig.
14), sheet metal clumps, low-pressure clamping -
arrangements (film clamps, as shown in Fig.
15). and other devices. Thus, they cun be used
on small specimens---such as thread, yarn, and
foil—and on large test specimens—such as re-
inforcing bars, heavy steel plate, and tubing up
to 75 mm (3 in.) in diameter.

Maodifications of the LVDT extensometer
also permit lincar measurements at temperatures
ranging from =75 to 1205 °C (~75 to 2200 °F).
Accurate measurements can also be made in
a vacuum. For standard instruments, the work-
ing tempcrature range is approximately =151
120 °C (-100 1o 250 °F). However, by substi-
tuting an elevated-temperature transformer coil,
the usable range of the instrument can be ex-
tended 10 ~130 to 260 °C (<200 to S00 °F).

Strain-guge extensometers, which use steair”
gages rather than LVDTSs, are also common and
arc lighter in weight and smaller in size. but
strain gages arc somewhat more fragile thar
1.VD'I's. The struin gage vsually is mounted o1
a pivoting beam, which is an integral part of the
extensometer. The beam is deflccted by the
movement of the cxtensomcter knife edg
when the specimen is stressed. The strain gag

Flg. 11 Strain gages mounted directly to a specime




attached to the beam is an clectrically condug-
tive small-sized grid that changes its resistance
when deformed in tension, compression, bend-
ing. or torsion. Thus, strain gages can be used
to supply the information necessary {0 calculate
strain, stress, angular torsion, and pressure.

Struin guges have been improved and refined.
and their use has become widespread. Basic
types include wire pages, foil gages, and capac-
. itive guges. Wire und foil honded resistance
_ strain gages are used for measuring stress and
strain and for calibration of load cells, pressure
transducers. and extensometers. These gages
typically measure 9.5 10 13 mm (*xt0 'y in.) in
width and 13 10 19 mm ('3 10 *, in.) in length
and are adhesively bonded to a metal element
{Fig. 16).

Operation of strain-gage extensomelcrs is
bused on gages that are bonded to a metallic el-
ement and connected 10 a bridge circuit. De-
flection of the clement, duc to specimen strain,
changes the gage's resistance that produces an
output signal from a bridge circuit. This signal
is amplified and processed by signal condition-
ers before being displayed on a digital readout,
chart recorder, or computer. The circuitry in the
strain-measuring system allows multiple ranges
of scnsitivity, so one transducer can be used
over broad ranges. The magnification ratio,
which is the ratio of output to cxtensometer de-
flection, can be as high as 10,000 to 1.

Dial-type extensometer, 50 mm (2 in.) gage

Fig. 12 length

Strain Gages Mounted Directly to the
Test Specimen. For some strain measure-
ments, Mrain gages are mounted on the part be-
ing tested (Fig. 11). When used in this manner,
they differ from extensometers in that they
meusure average unit clongation over nominal
gage length rather than towl clongation he-
iween definite gage points, For some testing
applications, strain gages are used in conjune-
non with extensometers (Fig. 16).

In conventional use, wire or foil strain gages,
when mounted on structures and parts for stress
analysis, are discarded with the tested item.
‘Thus, struin gages are seldom used in produc-
lion testing of standard 1ension specimens. Foil
strain gages currently are the most widely uscd,
duce 1o the case of their attachment.

Averaging Extensometers. Typically exten-
someters arc either nonaveraging or avernging
types. A nonaveraging cxlensonwier has one
fixed nomnovable knife edge or center point
and one movable knife edge or center point on
the same side of the specimen. This arrange-
ment resulls in cxtension measurements that are
taken on one side of the specimen only: such
measurements do not take into account that
elongation may be slightly different on the
other side. :

For most specimens, notably those with ma-
chined rounds or reduced gage length flats,
there is no significant differcnce in elongation
between the two sides. However, for as-cast
specimens, high-modulus materials, some forged
pans, and specimens made from tubing. a dif-
ference in clongation sometimes exists on op-
posite sides of the specimen when subjected to
a tensile Joad. This is duc to part configuration
and/or internal stress. Misalignment of grips
also coniribuics to elongation measurcment

Fig. 13 Averaging LVDT extensomeler (50 mm, or 2
in. gage length) mounted on a threaded ten-
sion specimen )
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variutions in the specimen. Jor these situations,
averaging extcnsomcters are used. Averaging
exicnsometers use  dunl-mcasuring  clements
that measure clongation on both sides of a sam-
ple: the measurements are then averaged (o ob-
tain 8 mean strain, :

Optical Systems, Lascrs und other systems
cun also be used to obtain lincar strain mea-
surements, Optical extensometers are particu-
larly useful with matcrials such as rubber, thin
films, plastics, and other materials where the
weight of a conventional cxtensometer would
distort the workpiece and affect the readings
obtained. In the past, such strain-measuring
systems were expensive, and their principal
use has been primarily in research and devel-
opment work. However, these optical tech-
niques are becoming more accessible for com-
mercial testing machines. For example, bench-
top UTM systems with a laser exicnsometer
are available (Fig. 17). This laser extensom-
cter allows accurate measurement of strain in
thin films, which would not utherwise be prac-
tical by mechanical attachment of extensom-
cter devices. Optical systems also allow non-
contact measurement [rom environmental test
chambers.

Calibration, Classification, and Verifica-
tion of Extensometers. All types of exten-

Fig. 14 Breakaway-type LVDT extensometer (50 mm,
or 2 in. gage length) that can remain on the
specimen through rupture
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someters for materinks - testing must be veri-
fied, clussilicd, and calibrated in nccordance
with applicable standards, Calibration of cx-
ensometers refers 10 the procedure of deter-
mining the magnitude of crror in strain mea-

Fig. 15 Averaging LVDT extensometer (30 mm, or 2

in. gage length) mounted on a 0.127 mm
{0.005 in.) wire specimen. The extensometor is fitted
with a low-pressure clamping arrangemuent tfilm clamps)
and is supportecd by a counterhalance device.

Fatigue test specimen with bonded resistance
strain gages and a 25 mm (1 in.} gage length
extensometer mounted on the reduced section

Fig. 16

surements. Verilication is a calibration 1o ascer-
win whether the errors are within a predeter-
mined range. Verification also implies certifi-
sation that an extensometer meets stated iccn-
rucy requirements, which are defined by classifi-
cations such as those in ASTM L 83 (Fable 3).

Several calibration devices cun be used, in-
cluding an interferometer, calibrated standard
gage blocks and an indicator, and a micrometer
screw. Applicable standurds for extensometer
calibration or verification include:

Spectflenthon thile

Part 3: Veritication of Extensomuien
Lsed in Uniuxiad Testing, Temile

Metathe Matcrials -=Veritication of
Extensometees Used in Uniaxial
“Pesting

Venficution of Extemsometers Used
in Uniaxial Veting

Specifivation avmber
DIN EN 100024

1S0O9813

NS EN 10024

ASTM ERD Standan! Practice for Verilication and
Clussification ol Extensomefen
BS 4o Methos for Calibration s Grading

of Extemometen Sor Testing of

Mutsrinly

Veritication und classification of extensom-
cters are applicable 1o instruments of both the
uveraging and nonaveraging type.

Procedures for the verification and classifica.
tion of extensometers can be found in ASTM E
#3. It cstablishes six clusses of extensometers
(Table 3), which are based on allowuble erron
deviations, as discussed Iater in this article.
This standard also cstablishes a verification
procedure to ascertain compliance of un instru-
ment to a particular classification. In addition.
it stipulates that a certified calibrution appara-
tus must be used for all applied displacements
and that the accuracy of the apparatus must be
five times more precise than allowable classili
cation crrors. Ten displacement readings are re-
quired for verification of a classification.

Class A extensometers, if available, would be
used for determining precise values of the
modulus of elasticity and for precise measure-
ments of permanent set or very slight devia-
tions from Hooke's law. Currently. however
there are no commercially available extensom

Table 3 Classification of extensometer systems

Frror of straln not to excecd the greater oftu):

Feror of guge lengih oot to exceed the greater of:

Classiication Fined eerar, infin. Varinhle error, % of strain Fixed ereoe, In.  Vurlahie error, % of gage keingth
Class A 0.00002 0.1 10.00 0.

Class B-} 0.000] .5 20.0028 0,28

Clays B-2 0.0002 0.5 10.008 +0.8

Class € 0.001 E3] .M *1

Class 1) 0.00 1] 10.01 E4)

Class I [1X] : 3] £0.01 +)

109 Sirsiin of exiennometes system - sntio of applicd extensisn o the gage fength. Source: ASTM 183

Fig. 17 Bench-top UTM with laser extensometer. Courtesy of Tinius Olsen Testing Machine Company, Inc.
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clers manuluctured that are centified to comply
with class A requirements.

Class B-1 extensometers are frequently used
1o determine values of the modulus of clasticity
and 10 measure permanent set or deviations
from Hooke's law. ‘They are also used for deter-
mining values such as the yield stength of me-
tallic materials.

Class B-2 extensometers are used (or deter-
mining the yicld strength of metallic maerials,

Al LVDT and strain-gage extensometers can
comply with cluss B-1 or cluss B-2 require-
ments if their measuring ranges do not exceed
0.5 mm (0.02 in.). Instruments with meusuring
ranges of over 0.5 mm (0.02 in.) can be class ¢
instruments.

Most clectrical differential transformer ex-
tensometers of 500-strain magnification ind
higher can conform to class B-1 requircinents
throughout their measuring range. Exteusom-
cters of Jess than 500-strain magnificution can
comply only with class B-1 requirements in
their Jower (40%) measuring range and e ba-
sically cluss B-2 instruments,

Dial Extensometers. Although all dial instru-
ments usually are considered class C instru-
ments, the majority (up to a gage length of 200
mm. or 8 in.) arc class B-1 and class B-2 in
their initial 40% meusuring range, and class C
throughout the remainder of the range. Dial in-
struments are used universally for determining
yield sirength by the extension-under-load
method and yield strength of 0.1% offset and
greaier.

Class C and D Extensometers. Exiensometers
with a guge length of 610 mm (24 in.) begin in
class C, although their overall measuring range
must be considered as class D.

Gripping Techniques

The use of proper grips and faces for testing
materials in tension is critical in obtaining
meaningful results. ‘Trial and crror often will

solve o particular gripping problem. Tension
testing of most flat or round specimens cun he
accommodated  with wedge-type grips (Fig.
18). Wirc und other forms may require differem
Lrips, such as capstan or saubber types, The
load capacities of grips runge from under 4.3
kgl (10 1bf) 1o 45,000 kgf (100.000 ibf) or
more. ASTM E 8 describes the various types of
gripping devices used to transmit the measurcd
loud applicd by the test muchine to the tension
test specimen.

Screw-action grips, or mechanical grips. are
fow in cost and are available with load capaci-
ties of up to 450 kgf (1000 1bM). This type of
grip. which is normally used for testing fat
specimens, can be equipped with intcrchange-
able grip faces that have a variety of surfaces.
Fuces are adjustable to compensate for different
specimen thicknesses.

Wedge-type grips (Fig. 18) are sell-tighten-
ing and are built with capacities of up to 45,000
kgl (100,000 1bD or niore. Sume units can he
tightencd without aliering the vertical position
of the faces, making it possible to presclect the
exact point at which the specimen will be held.
‘the wedge-action design works  well on
hurd-to-hold specimens and prevents the intro-
duction of large compressive forces that cause
specimen buckling.

Pneumatic-action grips arc available in var-
jous designs with capacities of up to 90 kgf
(200 1b). "This type of grip clamps the speci-
men by lever arms that are actuated by com-
pressed air cylinders built into the grip bodics.
A constant force maintained on the specimen
compensates for decrease of force due to crecp
of the specimen in the grip. Another advantage
of this design is the ability to optimize gripping
force by adjusting the air pressure, which
makes it possible to minimize specimen breaks
at the grip faces,

Buttonhead grips enable the rapid insertion
of threaded-end or mechanical-end specimens.
They can be manually or pneumatically oper-
ated, as required by the type of material or test
conditions.

(2
Fig. 18

diametral extensometer

(b)

Test setup using wedge grips on (a) a flat specimen with axial extensometer and (1) a round specimen with
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Alignment.  Whether  the  specimen ix
threaded into the crossheads, held by grips, or
is in direct contact with platens, the specimen
must be well aligned with the lond cell. Any
misalignment will cause o deviation from uni-
axinl stress in the material studied.

Force Verification of
Universal Testing Machines

The calibration and verification of UTM sys-
tems refer o two different methods that are
not synonymous. Calibration of testing ma-
chines refers to the procedure of determining
the magnitude of error in the indicuted loads.
Verification is o calibration (o uscertain whether
the errors arc within a predetermined range.
Verification also implics cenification that a
machine mects stated uccuracy requirements.
Valid verification requires device calibration
by skilled personnel who arc knowledgeable
about testing machines, reluted instruments,
and the proper use of device calibration stand-
ards (such as ASTM E 74 for load indicators
and ASTM E &3 for extensometer devices). Af-
ter verification is performed, the calibrator or
agency must issuc reports and certificates ar-
testing to compliance of the cquipment with the
verification requirements, including the loading
range(s) for which the system may be used.

Force Verification. For the load verifica-
tion 10 be valid, the weighing system(s) and
associnted instrumentation and data systems
must be verificd annually. In no case should
the time interval between verifications exceed
18 months. Testing systems and their loading
ranges should be verified immediately after re-
location of equipment, aflcr repairs or parts fe-
placement (mechanical or clectric/electronic)
that could affect the accuracy of the load-
measuring system(s), or whenever the accuracy
of indicatcd loads is suspect, regardless of
when the last verification was made.

Force verification standards for mechanical
testing machines include specifications from
various standards organizations such as:

Specificailon title

Metallic Materials—Tensile
Testing—Punt 2: Verification of
the Force Measurements

Part 2: Verification of the Foree-
Measuring System of Tensile
Testing Machines

Materials “'esting Muchines and
Foree Verification Kguipment

Verification of the Force Mcasuring
System of the Tensile Testing
Machine

Standard Practices for Force
Verificativn of Testing Machines

Specifiention number
CN 10002.2

DIN EN 10002-2

BS 1610

BS EN 10002-2

ASTMES4

To comply with ASTM E 4, one or a combi-
nation of the three allowable verification meth-
ods must be used in the determination of the
loading range or multiple loading ranges of the
testing system, These methods are based on the
use of:
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o Swuandurd weights
o Stancard weights and lever balances
e Elastic calibrition devices

For cach loading range, ut least five (prefera-
bly more) verification load levels must be se-
lected. The difference between any 1wo suc-
cessive test loads must not be Jarger than one
third of the difference between the maximum
and minimum test loads. The maximum can be
the full capacity of an individual range. For
example, ncceptable test load levels could be
10, 25. 50, 75, and 100%. or 11}, 20,40, 70, und
100%, of the stated machine range.

Regardless of the load verification mcthod
used at cach of the test levels, the values indi-
cated by the load-measuring system(s) of the
testing machine must be accurate to within
21% of the loads indicated by the calibration
standard. If all five or more of the successive
test load deviations arc within the =1% rc-
quired in ASTM E 4, the loading ranges may be
established and reported 1o include all of the
values. If any deviations are larger than 1%,
the system should be corrected or repaired im-
mediately. For determining accuracy of values
at various test loads (or the deviation from the
indicated load of the standurd), ASTM E 74
specifies the requircd calibration accuracy tol-
crances of the three allowable types of verifica-
tion methods. :

For determining material propesties, the test-
ing machine loads should be as accurate as pos-
sible. In addition, deformations resulting from
load applications should be mecasured as pre-
cisely as possible. This is particularly impor-
tant because the relationship of load to defor-
mation, which may be, for cxumple, cxtension
or compression, is the main factor in determin-
ing material propertics.

As described previousty, load accuracy may
be cnsured by following the ASTM E 4 proce-
dure. In a similar manner, the methads con-
tained in ASTM E 83, if followed precisely.
will ensure that the devices or instruments uscd
for deformation (strain) measurements will op-
crate sutisfactorily.

Manufacturers of testing machines calibrate
before shipping and certify conformation to the
manufacturer’s guarantee of accuracy and any
applicable standards, such as ASTM E 4. Sub-
sequent calibrations can be made by the manu-
facturer or another organization with recog-
nized equipment that is properly maintained
and recertified periodically.

Example: Calibrating a 60,000 Ibf Capac-
ity Testing Machine. A 60.000 Ibf capacity
dial-type UTM of either hydraulic or screw-
driven design will have the following typical
scale ranges:

® 010 60,000 Ibf reading by 50 Ibf divisions
® 0 to 30,000 Ibf reading by 25 Ibf divisions
® 0to 12,000 Ibf reading by 10 Ibf divisions
® 0to 1200 Ibf reading by 1 Ibf divisions

As discussed previously, the ASTM required
accuracy is £1% of the indicated load above

10% of ¢ach scale range. Most manufacturers
produce equipment 10 an accuracy of £0.5% of
the indicated load or £ one division, whichever
is greater.

According to ASTM specifications, the
60,000 Ibf scule range must be within 1% at
60,000 1b( (£600 1b) und at 600X Ibf (£60 Ibf).
In both cases, the increment division is S0 Ibf.
Although the initial calibration by the manufac-
turee is to closer tolerance than ASTM E 4, sub-
sequent recalibeations are usually to the £1%
requirement. In the low range, the machine
must be accurate (£1%) from 120 to 1200 Ibf.
Thus, the machine must be verified from 120 to
60,000 1bt.

If proving rings are used in calibration, a
60,000 Ibf capacity proving ring is usable down
1o # 6000 1bf load level. A 6000 1bf capucity
proving ring is usable down to0 a 600 Ibf lond
tevel, and a 1000 Ibf capacity proving ring is
usable down to a 100 thf load level.

If calibrating load cells are used, a 60,000 Ibt
sapacity load cell is usable down to a 3000 Ibf
load level, a 6000 IbF capacity load cell is us-
able to a 300 1bf load level, and a 600 1bf capac-
ity load cell is usable down to a 120 Ibf load
tevel.

Before use, proving rings and foad cclls must
be removed from their cases and allowed 10 sta-
bilize 1o ambient (surrounding) temperature.
Upon stabilization, either type of unit is placed
on the table of the testing machine. At this
stage, proving rings are ready to operate, but
Joad cells must be connected o an appropriate
power source and again be allowed to stabilize,
generally for 5 to 15 min.

Each system is set to zero, loaded to the full
capacity of the machine or elastic device, then
unloaded to zero for checking. Loading to full
capacity and unloading must be repeated until a
stable zcro is obtained, after which the load
verification readings are made at the sclected
test load levels.

For the highest load runge of 60,000 Ibf,
Joads are applied to the calibrating device from
its minimum lower limit (6000 1bf for proving
rings and 3000 1bf for load cells) to its maxi-
mum 60,000 1bf in a minimum of five steps, or
west load levels, as discussed in the section
“Farce Verification” in this article. In the veri-
fication loading procedure for proving rings, a
wgot-the-load” method usually is used. The test
load is determined. and the nominal load is pre-~
set on the proving ring. The machine load read-
out is read when the nominal load on the prov-
ing ring is achieved. For load cells, a
“sollow-the-load” method can be used, wherein
the load on the display indicator is followed un-
tit the load reaches the nominal load, which is
the presclected load level on the readout of the
testing machine.

In both methods, the load of the testing ma-
chine and the load of the calibration device are
recorded. The error, E, and the percent error,
E,, can be calculated as:

E=A-B

£, =2 B 100
B

(Eg 13)
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where A is the load indicated by the machine
being verified in 1bf, kgl or N and B is the cor-
rect vatue of the applied load (b, kgf, or N), as
determined by the calibration device.

‘This procedure is repeuted until each seale
range of the testing machine has been cali-
brated from minimum to maximum capicity
The necessary reports and certificates are thern,
prepared, with the louding range(s) indicated
clearly as required by ASTM F 4. Figures 8(h
and 9 illustrate UTMs being calibrated witl
clustic proving rings and calibration load cells,

Tensile Testing

Tensile testing requirements are specilied it
various standurds for a wide variety of difteren
materials and products. Tuble 4 lists variow
tensile testing specifications from several stand
ards organizations. These specifications defin
requirements for the test apparatus, test speci
mens, and test procedures.

Standard tensile tests are conducted using
threaded tensile specimen geometry, like th
standard ASTM geometry (Fig. 19) of ASTM
8. To load the specimen in tension, the threade.
specimen is screwed into grips attached to eacl
crosshead. The boundary condition, or load, !
applicd by moving the crossheads away frot
onc another.

For a variety of reasons, it is not always pos
sible to fabricate a specimen as shown in Fiy
19. For thin platc or sheet materials, a flat, «
dog-bone, specimen geometry is used. The dog
bone specimen is held in place by wedg
shaped grips. The holding capacity of the grip
provides a practical limit to the strength of m
terial that & machine can test. Other specime
geometries can be tested, with certain caution:
and formulas for critical dimensions are give
in ASTMES.

Accuracy, Repeatability, and Precision .
Tension Tests. Accuracy and precision of te!
results can only be quantified when knov'
quantities are measured. Onc difficulty of ¢
sessing data is that no agreed-upon “materi,
standard” exists as reference material wit
known properties for strength and elongatic’
Tests of the “standard material” avould reve
the system accuracy, and repeated experimer.
would quantify its precision and repcatability.

A variety of factors influence accuracy, pr
cision, and rcpeatability of test results. Sourc
for errors in tension testing arc mentioned
the appendix of ASTM E 8. Errors can 1
grouped into three broad categories:

o Instrumental errors: These can involve n
chine stiffness, accuracy and resolution -
the load cell output, alignment of the sper
men, gripping of the specimen, and accur:
of the extensometer.

® Testing errors: Thesc can involve initi
measurement of specimen geometry. cle
tronic zeroing, and establishing a prelc
stress level in the specimen,




o Material fuctors: These describe the rela-
tionship between the material intended to be
studicd and that heing tested. For example,
does the material in the specimen represent
the parent material, and is it homogenous?
Other matcrial factors would include speci-
men preparation, specimen geometry, and
matcrial strain-rate sensitivity.

The ASTM commitice for tensile testing re-
ponied on a round robin set of cxperiments to
assess repeatability and to judge precision of
standard quantitics. In this series (sce appendix
of ASTM E 8) six specimens of six materials
were tosted at six different laboratories. The
comparison of measurements within a fabora-
tory and between laboratories is given in Table
5. The data show the highest level of reproduc-
ibility in the strenglh measurcinents: the lowest
reproducibility is found in elongation and re-
duction of arca. Within-laboratory results were
always more repraducible than those between
laboratories.

Compression Testing

Compression tests are conducted to provide
cnginecring data on compressive strength and

compressive fuilure, ‘These data can dilfer sub-
stantinlly from tensile propertics. Data on the
response  of materials o compression  arc
nocded for engincering design, such as loading
concrete structures, or in metal (abrication,
such ns forging and rolling. One advantage of
compression testing is the climination of neck-
ing instubility found in tensile testing of ductile
metals. However, the geometry of compression
specimens can couse buckling instabilities and
fuilure, nd frictional cffects between the speci-
men and the platens can cause burreling. From
a practical poimt of view, compression lesting
can reach the capucity of some machines be-
cuuse the force requirement increascs with ma-
terinl hardening and with the increase in cross-
sectional area of the specimen. This increuse in
arca contributes to the frictional effects as well.

When testing high-strength brittle materinls
to failure, there exists a potentinl hazard from
fragments of the specimen being cjected at high
velocity. Personncl and cquipment should be
approprintcly shiclded.

General Procedures. Various standards for
compression testing are listed in Table 6 nlong
with ASTM E 9. The most comimon specimen
geometry for compression testing is o right cir-
cular cylinder with flat planar ends. ASTME9
identifics three sizes of specimens grouped as
small, medium, and long. These samples differ

Table 4 Tension testing standards for various materials and product forms

Testing Machines and Strain Sensors /N

in the rtio of length to diameter. Other shapes
can he tested, but 1o avoid geometric buckling,
special fixtures are required.

To load the standurd specimen (right circular
cylinder) a puir of platcns attached to the
crosshends mauke contact with the specimen.
‘fhese plutens must be flat, smooth, und paraliel
to anc another. To avoid frictional cffects, the
specimen and platen interfuce is tubricated with
silicon grease. In the case of compression test-
ing. the crossheads move toward onc another.

Compression tests can be performed using
UTM cquipment with or without a subpress, or
with a unit specifically designed for compres-
sion testing. ‘The unit specifically designed for
compression testing muy be portable for such
purposcs as in-the-ficld measurcment of con-
crete compressive-failure strength.  Figure 20
shows n disgram of a subpress. This unit is in-
serted between the crosshead platens of a conven-
tional UTM machine. The subpress eliminates
any lateral Joads when aligned in the UTM.

The boundary condition for compression test-
ing can be established by load rate or with
crosshead speed, such that the specimen de-
forms at a strain rate of 0.005/min as given in
ASTM E 9. The analysis of deformation should
be limited to the region of the test where defor-
mation occurs homogeneously. The test should
also be halted if the load rcaches the capacity
of the load cell as a result of increased cross-
scctional arca of the specimen.

Specifteation mimher Spectficatlon title
ASTMAT70 Standard Specification for Theough-Thicknuss Tension Testing of Steel Plates for Special Applications ' o L
ASTM A 931 Standnrd Test Method for Tension Testing of Wire Ropes and Strand B A \
ASTMB 557 Standard ‘Test Methods of Tension Testing Wrought wid Cast Aluminum- and Magnesium-Alloy 0 T a T
Products r—! I._. s e ___1”/_
ASTMBS5TM  Standard Test Mthods of Tension Testing Wrought and Cast A} and Magacsivm-Alloy I l ‘D I Tc
Products {Metric) IO,
ASTM C 565 Grandard Test Methods for Tension ‘Testing of Carbon and Graphite Mcchanical Materials
ASTMC 1275 Srandard Test Method for Monatonic Tensile Strength Testing of Continuous Fiber-Reinforced Trread diam C x 10
Advanced Ceramics with Solid Rectamgular Cross-Section Speci at Ambicnl Temperatwie throads par inch
ASTMC 1359 Standard Test Method for Monotonic Tensile Sirength Testing of Conti IYiber-Reinforced
Advanced Ceramics with Solid Rectangular Cruss-Section Specimens ut Elevated Temperatures Measurcment
ASTM D 76 Standard Specification for Tensile Testing Machines for Textiles Abhrevintion Mmensh in. mw
ASTMER Standitrd Test Methods for Tension Testing of Metallic Materials G Gage length 24606 62.510.}
ASTM £ 8M standard Test Methods for Tension Testing of Metallic Materials {Metric) D Dimneter 04920 12.5%0.2
ASTME 338 Standard Test Method of Shurp-Notch Tension Testing of High-Strength Shect Materials R Radius of fillet 0.3937 10.0
ASTME 345 Stundard Test Methods of Tension Testing of Metallic Foil A J.ength of reduced 2.953 75
ASTM 602 Standard Method for Sharp-Notch Tension Testing with Cylindrical Specimens section
ASTM E 740 Standard Peactice for Fracture Testing with Swrf. ace-Crack Tension Specimens 1. Approximate overall £.7086 145.0
ASTME 1450 Standard Test Method for Tension Testing of Structural Alloys in Liquid Helium length
ASTMF 1501 Standard Test Mcthod for Tension Testing of Calcium Phosphate Coatings B Length of end section 1378 35.0
ASTM F 182 Standard Test Methods for Tension Testing of Nonmetallic Gasket Materinls C Diameter of end section  0.787 20
ASTMF 19 Standard Test Method for Tension and Vacuum ‘Festing Metallized Ceramic Seals
ASTMF 1147 Stundard Test Method for Tension Testing of Porous Metal Coatings
BS EN 10002 Tensite Testing of Metallic Materials Fig. 19 Standard ASTM geomelry for threaded tensile
BS I8 Method for Tensile Testing of Metals (Including Acrospace Materials) specimens. l')m?ensit.ms for the specimen are
BS 4759 Mothod for Determination of K-Values of a Tensile Testing System taken from ASTM 8M tmetric units), or ASTM £ 8 (English
1BS 3688-1 Tensile Testing units).
RS 3500-6 “Fensile Stress Relaxation Testing
BS 3500-3 Tensile Cseep Testing
BS 3500-1 ‘Tensile Rupture Testing
BS 1687 Mecdium-Sensitivity Tensile Creep Testing - 3 H
BS 1686 Long-Period, High-Scnsitivity, Tensile Creep Testing Table 5 Results of round-robin testing
DIN 53455 “Pensile Testing: Testing of Plastics Coefficlent of yariation, %
DIN 53128 ‘festing of Leather, Tensile Test Property Within laboratory _ Between Inborutory
DIN 50149 ‘T'ensile Test, Testing of Malleable Cast Iron Tensile strength 0.91 130
EN 10002-1 Metallic Matcrials--Tensile Testing-—Part 1: Method of Test at Ambicent Temperature 0';’;'.,5,'.(:, r;:;”"‘ ol 2’ 67 4" 6
150 204 Metallic Miterials—Usinterrupted Uniaxial Creep Testing Intension—Method of Test 0‘,,;,7 ) 'Ied ""c“"’;' 135 2';,
1SO 7R3 Metallic Materials—Tensile Testing at Elevated Temperature .'l" : yicld strengt 297 6. "
1$0 6892 Metallic Materials—Tensile Testing ut Ambient Temperature Flongation in sb - 36
1§ 8 1721 Tensile Testing Machines ) Reduction in area 2.80 4.59
NSKNI3 Testing Methods for Tensile Properties of Plastics (English Version) Source: ASTME S
R
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Table 6 Compression testing standards
for various materials and products forms

Specificntion

awmboer Specification title

ASTM A 230 Stundard Methad of Compression Testing
of Cant Tron (discontinued)

ASTM B85S  Stndund Method for Dismetial
Compression Testing of Cemented
Carbides (discontismed)

ASTMC 1358 Standard Text Method for Monotonic
Compressive Steength Teating of
Continuous Piber-Reinforced Advanced
Ceramics with Solid Rectangular Cross-
Section Specimens at Ambient
Temperature

ASTMEY Standard ‘lest Methnds of Comnpression

‘Fexting of Metallic Mateeials at Room
Temperature

Specification for Compression Testing
Muchines for Concrete

Texting of Masonry, Determination of
Compressive Strength and of Elustic

UBS 1881118

DIN 18854-1

Moctutus

DIN 52188 Testing of Wood; Compression Test Paratlel
W Gram

DIN 52192 Testing of Wood; Compression Test
Perpemdiculur to Grain

DIN 33817 Testing of Rubber and Elastomers

1SO 332 Waoud—Testing in Compression
Perpendicutar to Grain

1SO 4383 Plain Bearings—Compression Testing of
Metallic Bearing Materluls

Nns 70 Testing Mcthods of Stutic Compression for
Packiyge Cushioning Materialy

NSZ!3s Testing Methods of Dynumic Compression

for Package Cushioning Materials

Specimen Geometry. As previously noted,
a right circular cylinder is the standard speci-
men defined in ASTM E 9. Most common in
compression testing is a right circular cylinder
with a length-to-dinmeter ratio in the range of |
to 3. Longer specimens can be tested but failure
from buckling instability will occur.

Mecasuring loads that cause a column of ma-
terial to buckle can be the purpose of the exper-
imeat. Sheet or thin plate material can be tested
to some extent. Specimens must be held in fix-
turcs that constrain the material motion to the
load planc, preventing buckling. This type of
test configuration can provide useful engineer-
ing data for in-scrvice conditions; it cannot
measure material properties beyond a few per-
cent strain.

Specimens of cylindrical shape will barrel as
the deformation becomes large. Barreling is the
influence of frictional effects, between the plat-
ens and the specimen, that changes the stress
state in the material. When barreling oceurs,
the assumption of homogenous stress state
throughout the sample is no longer valid. Lu-
bricants and "Teflon sheet material placed at the
interfaces have been found to reduce this effect.
At large strains, the stress at the interface will
squeeze the lubrication from between the plat-
ens and the specimen, )

Short specimen length makes it difficult to usc
an extensometer on the sample. The short speci-
men length means the gap between the platen

Crosshoad adaptor

B2z 9 ——T-==""— Bal seat adaptor
e~ Bal
Y o} s eeme =~ B0l g00! Aclaptor

Dia-set top

~=s—— Top anvil

__..— Ball and soat
- w Spocimen
=

e e == Cantering washor
and comprassion pad

m wem e Conlering collar

SN Bottom anwit
-W_Z,ZM . -I..—- Dio-set baso
}

H Subpress used during compression testing,
Fig. 20 G AsTM £ 0

faces (through which the armis of an extensoni-
cter must extend) is narrow at the beginning of
the test and will decrease throughout the experi-
ment. Unless the specimen has a length-to-diam-
eter ratio of 3 to | or higher, most ol the defor-
mation data is taken indircetly from the actuator
position. As mentioned above, machine stiffness
ctfeets can produce errors in such data,

Bending Tests

Bending tests require a different specimen
geometry and a different configuration for ap-
plying the load. The typical specimen geometry
is 0 beam with uniform cross section. In three-
point bending, the load is applied at the mid-
span of a simply supported beam. In four-point
bending, equal lowds are applied at equal dis-
tances fromn the simple supports to create a
shear-free central region. Various specifica-
tions are listed in Table 7.
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Table 7  Bend testing standards for
various materials and product forms

Spreification

mumber Specification tlile

ASTM B 593 Stundard Test Methud for Bending Fatigue
“Testing for Copper-Alloy Spring Mutcria

ASTME 290  Suuxlarct Test Method fir Semi-Guaded
Bend Test for Ductility of Mewtlic
Materints

ASTM ERSS  Swndued Test Methods for Bend Testing
of Metallic Flat Muteriuls for Spring
Applications tnvolving Static Londing

ASTM F 1659 Bending and Shear Fatigue Testing of
Calcium Pliosphate Comtings on Solid
Metallic Substrates

ASTM 383 Suundurd Text Method for Static Bend und
Torsion Testing of latrumeduliny Rods,
Stndaed Reconmended Practice

ASTM 384 Standund Practice for Static Read Testing .

ot Nail Plates

S 1639 Methuuts for Bemd Testing of Metals

1Y) Method for ‘Festing Bending Strength and
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ABSTRACT

A one-dimensional analysis of normal penetration into semi-
infinite concrete targets is presented. This analysis is based on a
proposed relationship between the work done by the penctrator during
penetration and the resulting crater volume produced in the target.
The basis for the assumption that such a relationship must exist is the
observation that such relationships have been shown to exist in. metal
on metal impacts. The resulting formula for penetration depth is
extremely simple and is shown to agree with independently reported
experimental results up to impact velocities of 1200m/s. Additionally,
estimates for penetration time and velocity are given.

INTRODUCTION _

In spite of the incredible advances in computer modeling in the
past decade, one~dimensional, engineering models still play a
significant role in complex design environments. The advantage that
these engineering models offer is simplicity. What they sacrifice is
the detail associated with computer solutions. Together, these two
approaches can advance a technical effort at a pace that neither can
pursue independently.

It must be understood that engineering -models are very ofien
based on reasoning that focuses on the primary mechanisms that drive
an event. In order to properly evaluate the assumptions behind the

_development of an engineering model, it is necessary to accept the fact
that simplicity is one of the objectives. Instances in which this kind of
reasoning has led to useful conclusions are too numerous to mention
and everyone has been exposed to engineering models that correlate
well with reality. This thinking is the motivation behind the analysis
presented in this paper.

For more than two centuries (¢.g. Johnson, 1992) the subject of
penetration of various targets by non-deforming penetrators has been
of interest to military designers and engineers. Some very well known
mathematicians and engineers have worked on this problem. For

David M. Jerome

Air Force Research Laboratory
Munitions Directorate

Eglin Air Force Base, Florida 32542

Frank R. Christopher

Alr Force Research Laboratory
Munitions Directorate '

Eglin Air Force Base, Florida 32542

example, Robins, Euler, and Poncelet made early contributions to the
theory of rigid body penetration (see Johnson, 1992, Poncelet, 1829,
Rinchart and Pearson, 1965, and Backman, 1976). Nevertheless,
many technical problems remain and there is considerable activity in
this area today. See for example, Heuze (1990), which is a survey of
the general area of penetration mechanics with particular emphasis on
analytical, numerical, and experimental approaches. However, the list
of contributors is too long to mention in this paper without offending
someone. So, we will not attempt to include a comprehensive list of
references and instead we will concentrate on those that are especially
relevant to our applications.

THEORY

“Penetration of concrete and other geological targets has been
modeled in a number of ways to include a variety of effects.
However, the relationship between crater volume and available
penetrator energy does not scem to have been utilized to any extent.
Yet for metal on metal impacts, there has been some success with such
relationships (e.g., see Murphey, 1987 or Cinnamon, et al. 1992). The
advantage that this has for a non-deforming penetrator is that the
cross-sectional area is constant and approximately equal to the cross-
sectional area of the penetrator. The crater volume V(¢ is equal to the
cross-sectional area A times the current penetration depth Z, i.e.

V,=A.Z )

This situation is described in Figure 1. This relationship ignores the
obvious difference between the geometry of recovered targets (see
Figure 2) and the narrow “wnnel” indicated by Equation (1). The
explanation for this is that the crater geometry at the surface of the
target is the result of other mechanical behavior. These processes ar
mentioned by Forrestal, et al. (1994) within the context of “surface
catering” and the remainder of the penetration path is referred to as the




“tunnel region”. Most likely, the “surface crater” is a region of ejecta
that forms at the surface from the shock at impact and the combined
dvnamic stress state that cnsues and later separates from the main
target. :

° —>

Figure 1. Assumed Crater Geometry for Mode!

Figure 2. Cylindrical Concrete Target Showing Actual
Surface Crater and Tunnel

We will assume that the work done by the penetrator on the
target exclusively goes into formation of the tunnel-like crater
described by Equation (1). We assume further that the change in
energy of the penetrator is approximately proportional to the volume
of the crater formed. This means that

%mvo2 - %mv2 = AV, = A Z [h))
where m is the mass of the penetrator, v is the impact velocity, v is
the current velocity of the penctrator, and A is the constant of

proportionality. Accepting this relationship, it follows that

S}
Am
Aop
where p is the total depth of penetration.
By differentiating Equation (2), we find

)
—mv}

mv=-M, = ‘_'p_' @
which stipulates that the force acting on the penctrator is constant and
equal to the available energy divided by the penetration depth. The
negative sign indicates that the force retards the motion. It is evident
that the force that acts on the penctrator is not constant, but depends
largely on penetrator velocity v. Thus, the interpretation placed on the
right hand side of Equation (4) is that it represents the average force
on the penctrator.
Poncelet (1829) originally proposed that the force on the
penctrator stemmed {rom a velocity-dependent pressure P of the form

P=Av?+B 0}
where A and B are constants (see Rinchart and Pearson, 1965). With
this pressure estimate, the force acting on the penctrator is

®

PA, =(Av2 +B)A, (6)
and the average force on the penetrator over the velocity range is

L fﬁA,,dv = (lAvg +B)A, )

Vo 3

The average force estimate given in Equation (7) is an average over
the velocity range. One question that might be raised is does this
estimate differ from a time average taken aver the event time? Using
the results of this paper and the impulse-momentum equation, where
the time-averaged forcc appears, one can show that these quantities are
identical. By using other estimates for the terminal time, Equation (7)
will be very close to the time-averaged force.

By equating Equation (7) to the magnitude of the right hand side
of Equation (4) and solving for the penetration depth, it follows that

-;— mv?

(%Av% + B)Ao

gives the penetration depth. Notice that Equation (8) is simply 2
work-energy equation with the work done by the resisting force taken
equal to the average force times the distance over which it acts, i.c. the
penetration depth p.

@

PENETRATION INTO CONCRETE
Luk and Forrestal (1987) have carefully characterized the
constants A and B for penetration into concrete. For ogival-nosed
penetrators, A is given by
A =Np, ©

where p, is the density of the target and N is given by
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The dimensionless constant y is the caliber-radius-head (CRH) for the
penctrator nose. The caliber-radius-head is defined by

s
CRH--Z-‘--Q! {11}

where s Is the ogive or circle radius and 2a is the projectile shank
diameter. The constant B is related to dynamic compressive strength
of the target. Specifically,

B=Sf, (12)

where f; is the quasi-static unconfined compressive strength of the

target, and S is a dimensionless constant which is empirically related
to the target unconfined compressive strength, f'e.

EXPERIMENTAL VALIDATION

A series of experiments were reported by Forrestal, et al. (1996)
involving penctration of grout and concrete targets by 4340 steel
projectiles with ogival tips. The targets had unconfined compressive
strengths of 13.5 MPa and 21.6 MPa, and a density of 2000 kg/m3.
The projectiles had caliber-radius-heads of 3.0 and 4.25, which
translates to shape factors N of 0.106 and 0.076, respectively. All
projectiles had a mass of 0.064 kg and a diameter of 12.9 mm. With
these prescribed inputs into Equation (8), the comparison with
experimental data is shown in Figures 3-6. Evidently, Equation (8)
captures the essence of the trends in the data and the comparison is
very favorable.

* i 1 i 1 i i
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VELOCTTY (wime}
= CRH=107%= 115 MPs Equika (3
& CRHE=10,1c= [3.5 MPa, Fomesul, et al. (1996) Data

Figure 3. Data and Model Prediction for 0.064 kg, 12.9 mm
Dia., CRH = 3.0 Projectiie with f ' = 13.5 MPa

OBSERVATIONS
Equation (8) is interesting in that it differs markedly from the

result that is obtained by integrating the equation of motion for the
penctrator using the retarding force from Equation (6). The result of
the integration is

m A
TV (1 + 5 ¥3) 3)
This is Poncelet’s penetration formula (see e.g., Rinehart and Pearson,
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Figure 4. Data and Model Prediction for 0.064 kg, 12.9 mm
Dia., CRH = 4.25 Projectile with f'c = 13.5 MPa
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Figure 5. Data and Model Prediction for 0.064 kg, 12.9 mm
Dia., CRH = 3,0 Projectile with f ¢ = 21.6 MPa
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Figure 6. Data and Mode! Prediction for 0.064 kg, 12.9 mm
Dia., CRH = 4.25 Projectlle with f ‘¢ = 21.6 MPa

1965). It is similar to penetration formulae published by Forrestal, et
al. (1987). However, their contributions toward justifying its use and
characterizing A and B. for concrete and other geological materials
cannot be overstated. The correlation between Equation (13) and the
experimental data is virtually the same as Equation (8) for the same
input information.

One decided difference between Equations (8) and (13) regards
the curvature. Equation (13) is always concave upward with positive
slope, which means that p is always increasing with increasing vo.
However, Equation (8) changes curvature when v, reaches

Additionally, penetration depth is limited by an asymptotic limit as
vg— o (in principle) by

Pmax "';—:' (15)
Unless, the target medium is extremely dense and the mass of the
penetrator very low, the performance limit predicted by Equation (8)
will play no role in actual penctration problems. In principle,
Equation (8) has an asymptotic limit. In practice however, such a
limit may never be attained because at the velocitics necessary to
achieve the limit, the projectile may fail on impact or erode so
significantly that the penetration depth is limited by changes in the
nose shape factor N.

Notice that the penetration depth p, as predicted by Equation (8),
depends on three groupings of physical constants: mvg2/2,
AAgvo2/3, and BA,. It is easy to interpret the role of each of these
and to assign significance according to impact velocity. At low
velocities, the grouping AAgvo2/3 is dominated by the term BA,,.
Thus, we conclude that the effect of tip geometry for the penetrator is

much less significant at low velocitics. This fact is borne out by the
data in Figures 3-6, where there are insignificant differences between
the depths for CRH 3.0 and 4.25 at the lower velocities.

OTHER RESULTS

Equation (8) is not the only product of this theory. Having found
the penctration depth p from Equation (8), we have determined the
right hand side of Equation (4). This means that by additional
integration, we can find Z, v, and the time &.
If we begin with the energy equation, Equation (2), then it is easy to
see that

(16)

which expresses the velocity as a function of position. Observing that
v = dZ/dt, we can separate the variables in Equation (16) and integrate

vay, l-%

again to find
2p [ ’ z ]
twm—f 1= Jl-— !
Vo P 7
This also means that Z can be expressed in terms of t
2
t
Zap{l-(l-zp) ] (18)

Now this result can be used to find the velocity as a function of time
by eliminating Z between Equations (16) and (18). This gives us a
complete description of the motion of the projectile. ;

An example will illustrate the value of the above equations.
Consider a steel penctrator with an ogival tip (CRH = 4.25) and 2
mass of 0.064 kg. For this projectile, N=0.076. Suppose that the
projectile impacts (normally) a 20.32 c¢m thick tar§et at a velocity
1000 m/s. The concrete has a density of 2300 kg/m~ (approximately

143 Ibs/ft3) and an unconfined compressive strength of f; = 51 MPa

(1.95 ksi). We require estimates for the residual velocity of the
projectile and the time for penetration of the target.

It is easy to show, using Equation (8), that p = 0.78 m for the dats
prescribed in this problem. This is the penetration depth for the
projectile described into a semi-infinite target having the density and
strength indicated. Now, p can be used in Equation (16) to find the
velocity of the projectile exiting the target ( residual velocity ) it
860m/s. It is also easy to show that the time for the projectile to
complete penetration is 218 psec, using Equation (16). If we wante¢
to estimate the position of the projectile at any given time during
penetration, then Equation (18) could be used to get that information.

CONCLUSIONS

In this paper, we have presented a very simple theory for
estimating the penetration depth of rigid, ogive-nosed projectiles into
concrete. Corrclation with independently reported experimental dats
with two different projectile nose shapes and two different strengtt
targets shows remarkable agreement. In addition, the analysis raiset
several questions regarding the trends that we may expect in high
velocity penetration data. For certain combinations of target strength
and density, the theory predicts a point of inflection and an asymptotit
limit in the impact velocity/penetration curve. The theory also gives
estimates for residual velocity and time of passage through finite
thickness concrete targets. It remains to be seen whether the dati




trends predicted by the theory will be bome out for higher velocities
or other target media.
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On the optimal nose geometry for a rigid penetrator

S. E. Jones, W. K. Rule, D. M. Jerome, R. T. !(Iug

Abstract A variational formulation for the net force on
the nose of a rigid projectile normally penetrating a
compliant target is given. Frictional effects are negligible
in this formulation. The variational problem is solved and
the result compared to several popular nose geometries.
For blunt tipped projectiles, the optimal geometry can
significantly enhance penctration by reducing the net force
of resistance. For long penctrator noses, the effect has
much less value. The most interesting conclusion is that all
the optimal geometries have blunt tips.

Introduction

Penetration mechanics has a long and rich history. Ana-
lytical modeling of rigid body penetration dates back to
Robins (1742) and Euler (see Euler’s Opera Omnica
(1922)) prior to 1750 (see W. Johnson (1992)). J. Poncelet
(1829) introduced a velocity dependent pressure estimate
and produced an estimate for penctration depth that is still
used today, More recently, Luk and Forrestal {1987) and
others {e.g., Forrestal {1991), Forrestal and Luk (1992),
Forrestal, et al. (1994), Forrestal, et al. (1995), Batra {1987),
or Batra (1988)) have advanced and refined the thinking
on this problem for a number of penetration applications.
Even the cffect of friction was introduced (e.g., Forrestal
(1986) or Batra and Chen (1994)).

. One of the factors emphasized in the recent contribu-
tions is the role played by penetrator nose geometry on
the performance of the penetrator. At higher velocities, the
depth of penetration is considerably influenced by the
geometry of the penetrator nose. 1t naturally leads

to the question as to which nose geometry is optimal from
the perspective of depth of penetration?

The analysis presented in this paper answers this
question strictly from the perspective of Poncelet’s veloc-
ity-dependent pressure. It ignores certain failure mecha-
nisms that may be present in the target and may promote
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penetration, The analysis further assumes that the target is
ideal and that there are no discontinuitics in the pressure,
The effects of friction are also ignored. This question will
be taken up later in another paper. Also ignored are the
conditions at entry of the projectile into the target and any
spall that may be associated with that event.

Theory

Consider an axisymmetric penetrator with shank radius a
and tip length b, as shown in Fig. 1. Consider a pressure p
acting on the nose by interaction with the target with
negligible frictional effects. The motion of the penetrator is
in the negative x-direction. The component of force due to
the pressure on the surface of the penetrator nose resisting
the motion of the penetrator is

dF = 2myp sin 0ds (1)

where 0 is the tangent angle to the surface at point (x, ¥)
and ds is the increment of arc length on thiat surface. The
curve joining the tip (0, 0) an the shank (b, a) is y = y(x).
The arc length increment is

ds = 1+ y2dx @)

where y = dy/dx from the geometry in Fig. 1. We note
that
b4

and combining Eqs. (1)-(3) and integrating over the net
resisting face provided by the 1arget, we find

sin@ =

®3)

(4)

For example, if the pressure on the nose of the pen-
etrator is uniform p = po, then

b
F= f 2myy'pdx.
0

b
F =2npg / yy'dx = na*po (5)
0

If the pressure is not uniform, then the resulting inte-
gration is not so simple. For example, if the pressure is a
function of the component of axial velocity acting normal
to the nose (as proposed by Luk and Forrestal (1987)),
then p is given by

p=Avisin’0+B (6)

where A and B are target dependent physical constants
that will be discussed further and v is the current axial
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Flg. 1. Planar cross-section of the nose of an axisymmetric rod
penctrator, The tip passes through zerout x = 0 und a at x = b,
The remainder of the penctrator is a cylinder of length L

velocity of the penetrator. The pressure can be related to
» = y(x) by Eq. (3) and Eq. (6) becomes

}/2

1 +yl2 (7)

Using this pressure relation in Eq. (4), we find that the net
force F resisting the motion of the penctrator is

—21:f y)/(Av TT?-HS) dx

p = AV +B

3

= 21:sz/ 74 dx + na®B

2402 yy”

= na- ( gl 4_}'lzdx+B)

= na*(ANV? + B) (8)
where.

by .
a2 0 l+}"2 dx (9)

The constant N contains the only etfect due to penetrator
nose geometry.

For example, if the nose of the penetrator is heml-
spherical, then b = a and

y=\/a-(a-x)’ (10)
For this nose geometry, Eq. (9) becomes

2 [ 3 1
N__RT (a—x) dX-—-‘i (11)

Another simple geometry is that of a conical nose. In this
case,

a
y=yx (12)

and

2

a
= e 13
at + b (13)

A more complex, but highly useful nose geometry, is
the ogive. The ogive s a circular arc of radius s tangent to
the shank at x == b and pussing through zero at x = 0
(see Figure 2). This means that
- (b~x)? - (s~ a)

y= (14)

where

a b
2a (13)

Substituting Eq. (14) into Eq. (9) and performing the
tedious integration, we can show thut

Yo ot 4 2,2
N=4as a =2(a +2qbz) (16)
6ats? 3(a? + b?) .
However, Luk and Forrestal (1987) introduced the
notation, s = 2as, where y is a dimensionless constant,
and Eq. (16) becomes
8 -1
ol (1)
24¢/

which is their result.

Some elementary comparisons

It is interesting to compare the values of N obtained from
several simple geometries where integration is exact. Pirst,
let us change to the dimensionless variables z = y/a,

¢ = x/b, and Eq. (9) becomes

1 3
22
= 202 - .

N o /0 T+ 77 d¢ (18)

where 2/ = dz/d¢ and a = a/b.
Consider conical, ogival, and fractional power geome-
tries. The resulting values of N are given below.

YA

(b. 8)

»
X

8-a+y

Y. b-x y

Pig. 2. The ogival nose geometry. The tip passes through zero at
x = 0 and the tangent is zero at x = b, The remainder of the
projectile is a cylinder of length L
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o
N= ia {cone.z = {) (19)
N 223 (2 + 2) *
31+ a’)z

(egivc.z.
=§\/(34 az) —or- (ez )) (20)

N = i—ln(i + 35) {{ractional power,z = \/f)

1

(21)

A comparison of these results is shown in Fig. 3. For

smaller values of o (long penetrator nose) all of the ge-
ometries have comparable values of N and the slight dif-
ferences will only be reflected at high velocities. For a = 1
(short penetrator nose), the fractional power geometry at

N = 0.402 is somewhat better than the other two at
N = 0.50.

Optimal tip geometry

For each fixed nose length b and shank radius g, the value
of N varies. The net force on the penctrator nose (Eq. {8))
is least when the value of N is a minimum, Such a pen-
etrator will achieve maximal penetration depth, assuming
that no changes in the nose geometry or erosion occur,
‘Thus, we arrive at the variational problem of choosing the
optimal path y = y(x) between the tip and the shank that
minimizes the integral

b 3
[
I= L T+77 (22)
where y(0) == 8, y(b) = a.

As indicaled, this is a variational problem (e.g., see
Lanczos (1966), Pars (1962), or Vujanovic and Jones
(1989)). The path that minimizes I satisfies the Euler-La-
grange equation

0.5 P -
— ne . /t
--- Ogive W p
...... Z = 2Z{%6 o L
04T e 72207 (first term Ay
of approximate solution) ’,/ it
---= Optimal solution A
0.3
z
021
<
Py
0.1 s
1{"! 'f
“t-/",f'
0 - .
0 0.2 0.4 « 06 08 1.0

Fig. 3. Comparison of N values as a function of alpha for various
nose shapes

2= 20(8) + &’z (8) + -

3= Y)Y 4 Y (1) =m0 (23)

where y = d’y/dx? and y(0) = 0, y(b) = a. This two-

point boundary value problem is challenging because it is

singular in neighborhood of x = 0 and highly nonlinear.
We can achieve some insight into the solution to Eq.

(23) by changing to dimensionless variables, Let

z=z{§) = y/a and { = x/b. Now, Bq. (23) becomes

z(3 - 22 + 22 (1 + 0?2 =0 (24)

where 2’ = dz/d¢, 2 = d’z/d¢?, and a = a/b. The boun-
dary conditions transform'to z{0) = 0 and z(1) = L.

The dimensionless constant « = a/b is gencrally less
than 1 for the cases that interest us. Consider a regular
perturbation expansion in the parameter o, say

(25)

. where terms of the order of «* have been neglected. Sub-

stituting Eq. (25) into Eq. (24), collecting terms of the
same order of magnitude and equating them to zero leads
to

327y + 2¢ = 0 (26)
(32) — 2028)2) + 3207) + 222, - 23 =0 (27)

Terms of the order of a* and higher have been neglected.
The boundary conditions for z are independent of x and
this infers

2(0) = 0, z(1) =1
21(0) = 2(1) = 0

(28)
(29)

as the boundary conditions for Eqs. (26} and (27). Solving
Eq. (26) subject to Eq. (28) leads to

7 =& R (30)

Substituting this result into Eq. (27) and simplifying gives
us the linear equation

Pﬂ+5£ (31)

to solve for z; sab]ect to the boundary conditions in Eq.
(29). The result is

5L = -126' (é - fé)- (32)

This means that to two terms, the approximate optimal
solution is

gy Zat(d-4). (33)

It is interesting to note that the penetraterhaving this nose
geometry does not have a sharp tip.

Equation (18) can be analytically evaluated using aniy
the first term (z =& ) of Eq. (33). The resultmg approxi-

mate N value is given by
2742 16
In{t+—1}|.
| (+53)]

9¢2  81uxt

N I-5+TF

(34)
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Since only the first term of the approximate solution was
used the N values given by Eq. (34) would be expected to
be accurate for only relatively small values of alpha. This
will be demonstrated in the next section,

Numerical solution to Eq. (24)
A numerical solution for Eq, (24) was obtained by ns-
suming a solution of the following form

z=a){" + a8 + a3 (35)

where a, and n are adjustable parameters which are a
function of alpha. A lcast squares approach was used to
obtain values for these parameters as will now be de-
scribed. For a particular alpha value, Eq. (24) was evalu-
ated (using the assumed function, Eq. (35)) at 20 evenly
spuced & values from 0.05 to 1. These twenty function
values were then squared and summed to produce an ag-
gregate fit error, An optimizer was used to adjust the a,
and n values to minimize the fit error. After optimization,
the coefficients obtained for Eq. (24) produced errors that
were typically on the order of £0.001. Typical optimal
parameter values for various values of alpha are shown in
Table 1, and plotted in Fig. 4. From Fig. 4 it can be clearly
seen that as alpha approaches zero, a; and a; approach
2ero, a3 tends to unity, while n approaches 0.25, This
means that the optimal solution approaches, z = &, the
first term of the approximate optimal solution (Bq. (34)),
as expected.

Nose penetration cfficiency is indicated by a small value
of the parameter N in Eq. (18). N versus alpha for five
different nose shapes are compared in Fig. 3. Closed form
functions for N versus alpha where previously given for
conical, ogival, fractional power (z = ¢!), and first term of
approximate solution (z = &y nose shapes in Egs. (19),
(20) (21) and (34), respectively. To plot the results for the
optimal solution given by Eq. (35) the N integral of Eq.
(18) was evaluated numerically using the trapezoidal rule.
Care was taken to allow for the singularity at 2 = 0 by
small increments in the numerical algorithm
(A¢ == 0.00005) in the vicinity of the singularity. Figure 3
indicates that, as expected, the optimal nose shape had the
lowest N for all alpha values. This figure also shows that
using only one term of the approximate solution (z = &)
produces accurate optimal N predictions for values of al-
pha less than 0.4.

In Fig. 5 the two term approximate solution of Eq. (33)
is compared with the optimal solution of Eq,. (35) for small
and large alpha values. As one would expect, the solutions

Table 1. Typical optimal parameters for the assumed nose shape
function z = a,&" + ;8™ + a, "

Alpha a as as n

0.1 0.0063 ~0.0024 0.9961 0.2499
0.3 0.0791 -0,0999 1.0208 0.2464
0.5 0.3107 ~0.5869 1.2762 0.2300
0.7 0.7007 -1.4191 1.7184 0.2082
0.9 1.1273 -2.2558 2.1285 0.1915
11 1.5066 ~2.9351 2.4286 0.1802

3
-a,
e nz o
"""" ay et
1
[
0
0 1.2
1
.2 .
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.
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Fig. 4. Vuriation of optimal shape parameters a), a3, a), and n as
a function of alpha

are virtually identical for the small alpha case where the
approximate solution is valid. There are significant dif-

ferences between the approximate and the optimal solu-
tions for the large alpha case,

Finally, the shape of a typical 50 caliber bullet and an
optimally shaped penetrator are compared in Pig. 6. It can
be noted that there are significant differences in the
shapes. This is not surprising since the bullet may not have
been designed for depth of penetration. Many low caliber
projectiles are not designed to maximize depth of pene-
tration. Instead, they are designed to enhance mush-
rooming of the projectile and damage to the target.
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Pig. 5. Comparison of optimal numerical solutions with the ap-
proximate solution of Bq. (33) for 2 = 0.1 and 0.9
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Conclusions

In this paper, we have presented an analysis of penetrator
nose geometry that results’ in some interesting conclu-
sions. Using Poncelet’s velocity-squared pressure law, the
net resistive force on the penetrator as a function of nose
geometry was presented. It was clear from the form taken
of the nct force that there was an optimal geometry for
each radius to nose length ratio a. This naturally lead to
a variational problem from which the optimal nose ge-
ometry followed. The solution to this problem is inter-
esting in that it somewhat contradicts our intuition.
Instinctively, we think of a sharp penetrator as having the
most favorable geometry. Indeed, cones and ogives are
very popular noses for cylindrical projectiles. However,
from the perspective of reducing the net force on the
projectile an all together different geometry is predicted
by the analysis. Of course, there may be other mecha-
nisms for target failure or different objectives for pro-
jectiles other than achieving maximum penetration depth
by minimizing the net force on the penetrator. For ex-
ample, Fig. 6 shows a comparison between the nose ge-
ometry of a standard 50 caliber bullet and the optimal
geometry for the same nose length. There is a substantial
difference probably due to the defeat objectives of the
bullet,

Another comparison between conical, ogival, and the
optimal geometry is shown in Fig. 7. The nose length is two
diameters. This corresponds to a = 0.25 and a caliber-ra-
dius-head (CRH, e.g., see Luk and Forrestal (1987)) of
¥ = 4.25 (Eq. (17)). The distinct differences between the
geometries are noted. The value of N for the conical tip is
0.059. For the ogive, N = 0.076 and for the optimal geom-
etry N = 0.049. These differences will be insignificant for
the lower impact velocities and may not matter very much
at very high impact velocities because of the erosion that
takes place during penetration of certain abrasive targets.
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Abstract

In a related paper (Jones ct al, Comput Mcch, 1998:22:413) the problem of maximizing the depth of
penctration by a normally impacting cylindrical projectile by optimizing the nosc gcometry was considered.
These results were accomplished by neglecting any frictional resistance offercd by the target and only
considering the normal pressurc acting against the penctrator nose. The problem of maximizing the
penetration depth achieved by the normal impact of a cylindrical projectile including the cfiects of friction
acting on the penctrator nosc is a much more challenging problem. In this paper, the normal impact and
penetration problem is considered including the effects of pressure-dependent friction. ) 2000 Elscvicr
Scienee Lid. All rights reserved.

{. Introduction

In an carlier paper, Jones ct al. [17] presented the nosc geometry for a normal impacting, rigid
projectile that maximizes penctration depth. This problem was solved by neglecting all forms of
friction that act on the penetrator nose. By assuming that the pressure that acts on the nose of the
penetrator is of Poncelet form [2] (see also [34, p. 15] or [5, pp. 200, 210]), it was shown that
the nose had a fairly simple geometry. In spitc of the simplicity of this result, it is surprising that
the optimal geometry had a blunt nose regardless of the nose length.

For moderate to low impact velocitics there seemed to be little to gain from the optimal
gcometry over most others. However, at very high impact velocitics (say, those in excess of
1000 m/s), substantial differcnces could be noted in penetration depth when compared to other
conventional gcometries. As indicated earlier, the projectile impacts normally and it is assumed

* Corresponding author.
I On leave from the University of Alabama.

0734-743X/00/% - sec front matier .t 2000 Elsevier Science Ltd. All rights reserved.
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that the energy level is high cnough to neglect any of the effects associated with entry into the
target.

There has been much cffort directed toward understanding the various forms that friction can
take (c.g.. [6] or [7]). This is a very complicated problem, especially when high sliding speeds arc
involved (c.g., [8-10]). Very little appears to be known about the friction that acts on bodics during
high velocity penetration. However, cvidence points toward some pressure dependence with
a reduced coeflicient of friction. The simplest form that such friction can take is that which is
proportional to the pressurc, similar to classical Coulomb (riction. Other forms have been
proposed (e.g.. [9]) and these could be incorporated into the analysis prescnted in this paper with
more difliculty. The present cffort utilizes a friction force that is proportional to the pressurc and
this has a substantial cffect on the results. Some uncxpected complexitics make any form of
approximate solution practically impossible. A numerical study of the solutions to the Euler-
Lagrange equation is performed. The results are both interesting and useful.

2. Force of resistance on the projectile

Consider a rigid axisymmetric projectile normally penctrating a semi-infinitc target. The cross-
scction of the tip is shown in Fig. 1. The length of the nosc is b and the radius of the shank of the
projectile is a. For all acceptable nose geometrics y = y(x), y(0) = 0 and y(b) = a. We assume in this
analysis that the cffects of friction are ncgligible beyond the nose at x = b.

The increment of force resisting the motion of the projectile is

dl = 2ny( psin 0 + fcos 0) ds, "

(b, a)

MOTION OF PROJECTILE
-

-
(0. 0) (b0) X

Fig. 1. Cross-scction of the nose of an axisymmetric penctrator. ‘The penctrator is acted upon by a continuous pressurc
p and friction (per unit arca) f. The length of the nosc of the projectile is b and the radius of the shank is a.
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where

ds = ST+ 2 dx (2)

is the increment of arc length on the surface of the nose. From the gcometry in Fig. 1, it is casy to scc
that

y = tan (), (3)
sin ) = —,‘——yﬁ (4)
|4y
and
cos ) = — I (5)
J+y?
Substituting Egs. (2), (4) and (5) into Eq. (1), we find
dlF = 2rp(y’p + /) dx (6)

which can be integrated between x = 0 and b o give the net force F resisting the motion of the
projectile

b
I= 21{[ (yy'p + 3f) dx. M

0

3. Friction on the projectile

There are a number of forms that friction may take. Among the simplest for this problem is
friction proportional to the normal pressurc p. Take the coefficient of friction to be g and
S=np. (8)
As we assumed in our previous paper [1], the pressurc p is of the Poncelet type
p = Av?sin? 0 + B, 9)
where A4 and B are constants, v is the current axial velocity of the projectile, and vsin 0 is the

normal component of axial velocity contributing to the pressure at the surface of the nose (sce [3]).
Now, substituting Egs. (8) and (9) into Eq. (7), we find

bl” 3 22

F o= Zrcj {szy Y R L By + py)] dx, (10)
o 1L+ )

where sin 0 in Eq. (9) has bcen replaced by the right-hand side of Eq. (4).

When p = 0 in Eq. (10), we return to the problem considered in [1] in which the net resistive
force has the form

b 43

F = nAv?| 22 5 dx + na’B (1)
1 +y

0
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and it is casy to see that maximum depth of penctration cun be achieved when the integral [
(12)

by
| = LA = dx
ul -+ y
4 minimum. However, when friction is included it is not so easy 0 scC

at Eq. (10).
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is 1 minimum, because F is
which geometry will optimize the depth of pencetration looking

4. Maximum penctration depth

The cquation of motion of the projectile is
(13)

mbh= — I
— na} (AN + BM),

where m is the projectile mass and

— Oy ‘+y,2 .
(14)

and

o
(15)

0
= a/h, where z = z(£) and & are dimensionlcss variables

In the last two cquations, x = b¢, y = az, &
with z(0) = 0 and z(1) = 1.
Eq. (13) can be simply integrated, which leads to

Becausc N and M are time-independent functions,
(16)

m N
P = 2natan '"(l + BMD‘Z’)’
d the geometry that maximizes P, we must vary z in

where P is the penetration depth. In order to fin
1. Suppose that z = w(&) maximizes P in Eq. (16).

Eqs. (14) and (15) for each fixed value of a and

Consider variations of this path with
z=w+], (17)
£) is any diflcrentiable function with 7(0) = n(1) = 0. Substituting
¢). Further, it is now clear from

hat N = N(¢) and M = M(

where ¢ is a parameter and # = #(
Hence, it follows that dP/de =0 at ¢ = 0.

Eq. (17) into Egs. (14) and (15), we sce t
Eq. (16) that P = P(z) with max P = P(0).
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By differentiating Eq. (16) with respect to &, we find

P —m In 1+AN 2\ (AN/BM)vj dN
de ~ 2ra*AN? BM |+ (AN/BMW} | de

Avd N2 | d
B MU T (AN/BM (24} (18)

‘I'he derivatives dNjde and dM/de can be found by differentiating Eqs. (14) and (15)

dN o W
=2 e —
= j ;;L 7 d:,(ﬂ* )}d& (19)

where
) az"t + pz'?
) =2 T 0
and
dM  2u (! ‘
I’ ?L"d‘i' -

In Egs. (19) and (20), 2’ = dz/dS. Now, substituting Eqgs. (19) and (21) into Eq. (18) and computing
lim, .odP/de =0, lcads to

- . N JN/M N[ o d¢P L 2u N2 1
25{111(& * ""ﬁ_ff) T AN/M _Uo’?[ﬁg - d¢<aw e+ ’1 MET+ AN/M Jo na

! _ AN/M o o 2u. N2 1 B
= L {2""[“’“ + ANIM) = 1 RTm ;‘N/M][ﬁw dé(ﬂw )] TR T mm} ¢ =9,

(22)

where

_ Uoaw'? 4 puw'?

N = 2chw e de (23)
and

i
M=1-+ 2“[ ydé (24)
% Jo

and 4 = Av3/B. Because Eq. (22) must hold for all admissible variations n on the interval 0 < £ < 1
with 7(0) = (1) = 0. it follows that w satisfies

o . N AiN/M ap d[d¢ N2 1
> b“(‘ + "?ﬁ) 1 +7N/A?J \:E}w - d&(ﬁw W TN 25)
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This cquation is the Euler-Lagrange equation for the variational problem described by Eqg. (16). It
is far more complicated than the usual Euler-Lagrange equation because N and M involve
integrals of the dependent variable w from Egs. (23) and (24). Additionally, referring back to the
definition of ¢ in Eq. (20), we can cxpand the derivatives indicated in Eq. (25) to get

op  d o patw — 2aw' — pw'?
Mw o d¢ (1 + a*w'?)?

2w + Gpaw'? — Gaw' — 2p
(1 + a*w'?)’ ' (26)

"

W + ww
where w' = dw/d& and w” = d?w/d&2. This mcans that not only are there integrals of the dependent
variable and its derivative in Eq. (25), but there are also derivatives through the second order. Eq.
(25) is a nonlincar differential-intcgral cquation of extraordinary complexity to be solved subject to
the two-point boundary conditions w(0) = 0 and w(l) = 1. There may be some uscful approxima-
lions to this problem, but in the interests of expedience we will pass up this approach and solve the
problem numerically.

Before turning to the solution of Eg. (25), we should note that it reduces to the Euler-Lagrange
cquation for the frictionless casc [1] when o = 0. When jt - 0, the second term in Eq. (25) vanishes,
while M — | and

N - 222 I—l"—\ﬁ dé (27)
0 | + 12“,12 &
‘This leaves us with the product
) - )N 0p dfop\]|
a l:ln(l +AN) = 1+ 2N || ow  dE\aw' =0 (28)
with
dp  d[0d — 2aw'® L 208w — Gaw’
ow dé(&w’) T (1 4 a?w'?)? Wi (1 + 2w’ 29)

For «® # 0 and N > 0, the first of the two factors in Eq. (28) does not vanish. This leaves only the
second factor to satisfy Eq. (28). Hence, the factor shown in Eq. (29) must equal zero and this is the
Euler-Lagrange cquation presented in [1] for the frictionless case.

5, Numerical solution methodology

A numerical solution for Eq. (25) was obtained by assuming a solution of the following form:
2=, 8 + ay & + ay &Y, (30)

where ¢; and n arc adjustable paramcters which are a function of «, 4, and p. A least-squares
approach was uscd to obtain values for these parameters. For particular a, 1, and p values, Eq. (25)
was cvaluated [using the assumed function, Eq. (30)] at 20 evenly spaced & values from 0.05 to 1.
These 20 function values (which ideally should cqual zcro) were then squared and summed to
producc an aggregate fit error. An optimizer was used to adjust the 4; and n values to minimize the

0-6
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fit error. Values of the N [Eq. (23)] and M [Eq. (24)] integrals for insertion into Eq. (25) were
obtained by a numerical integration scheme also using 20 evenly spaced & values from 0.05to 1.
The optimizer was constrained to seek solutions with z and z’ greater than or cqual to zcro.
Further. the parameter n of Eq. (30) was forced to be positive. These calculations were convenicntly
conducted using a spreadshect computer program.

1t must be noted that the development of Eq. (25) is a nceessary, but not sufficient, condition for
maximum penctration depth. It can cqually apply to minimum penetration depth. In fact, both
maxima and minima arc achieved along the same path for different combinations of the physical
parameters %, 4, and g This will be illustrated in the next section.

6. ‘T'ypical results

Numerical test cases were investigated using the same model parametcrs as reported by
Forrestal et al. [11] for test results involving firing small steel projectiles into semi-infinite grout

7

MU=02 ALPHA =05

[~]

P-BAR

1
1
i —.--CRITICAL LAMBDA = 1.20
i

0 1 10 100
LAMBDA

Fig. 2. Plot of P versus 7 for optimal and ogival nosc shapes. Note that the optimal nose goes blunt (penetration deptl
minimized) for 2 valucs less than 1.39 for this case (¢ = 0.5, = 0.2).
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Fig. 3. Comparison of optimal nosc shapes with the frictionless optimal nose shape of [1]. For the 4 = 1.42 case
penetration depth is maximized and ogival performance is hettered. Penctration depth is minimized for the 4 = 1.36 case
(nosc blunted).

1.0 .~
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Fig. 4. Plots of optimal nose shape for @ = 0.5 and / = 2.0641 (g == 500 m/s) for various values of friction cocflicient p.

targets. Thesc tests involved projcctiles of mass 65 g and diameter 12.9 mm. The grout target force
response cocfficients were 4 = 2.32E3 kg/m? (target density) and B = 281 MPa (corresponding Lo
f! =134 MPaand a dynamic strength multiplier of 21). The numerical results involved selecting
reasonable values of the system parameters o, 4, and p for parametric studics.

Initially, a test case was conducted to determing if the formulation described in this paper indecd
produced optimal penctration results. Onc means of accomplishing this is to comparc the
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Fig. 6. Plots of optimal nose shape for z == 0.5 and A = 18.576 (vg = 1500 m/s) for various values of friction cocllicient s

penetration depths of the optimal nose shape with a well-known effective nose shape — the ogive.
Fig. 2 shows a plot of nondimensional penetration depth (P = 2na® AN/m) of optimal and ogival
penctrators versus 2 fora = 0.5 and p = 0.2. As can be scen from this figure, the optimal penetrator
is clearly more effective for the larger 4 values. However, for A values less than approximately 1.39
(lower-velocity impacts) the nature of the optimal solution changes completely. Instead of maxi-
mizing penetration depth minimization occurs and the optimizer drives the penetrator to a blunt-
ended shape with penctration performance inferior to that of the ogive.
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Fig. 7. Plots of optimal nose shape for a = 0.5 and p = 0.2 for various values of 4. ‘The frictionless casc (j = 0) is shown
for comparison.

Optimized nosc shapes are compared with that of the frictionless case in Fig. 3. Further
optimized nosc shapes are shown in Fig. 4 [a=0.54=20641 (vo = 500 m/s)], Fig. 5
[« = 0.5, 4 = 8.2562 (v5 = 1000 m/s)], and Fig. 6 [0 = 05,4 = 18.576 (vy = 1500 m/s)] for various
friction cocflicient u levels. Note that at the higher impact velocities (Figs. 5 and 6) blunting did not
occur even at very high friction levels.

Fig. 7 shows plots of optimal nose shape (¢ = 0.5, pt = 0.2) for various values of 2. The frictionless
case (j = 0) is shown in this figure for comparison. Notc that at low impact velocities (small 2)
blunting occurs (penetration depth minimized) and that at high impact velocities the optimal shapc
closely rescmbles that of the frictionlcss casc.

Critical levels of u at which blunting occurs are plotted as a function of 4 for various values of
x in Fig. 8. This figurc clearly shows that unrealistically large friction coefficients are nccessary to
cause a blunt penetrator solution at the higher impact velocitics.

Finally, Fig. 9 comparcs optimal and ogival nose penetration performance as a function of A for
various values of a. In this figurc optimal nose results were not plotted for those values of A where
blunting occurred.

7. Conclusions

In this paper, we have presented a variational analysis of normal penetration into scmi-infinite
targets including the effects of sliding friction on the tip of the penctrator. The choice of friction law
for this paper was onc of the simplest. However, the choice of friction may be simple, but its effect
on the optimization problem is far from simple. Eq. (25) is a nonlinear differential-integral cquation
of staggering proportions and any form of analytical solution is practically impossible. The most

0-10
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Fig. 8. Plots of the critical p for blunting versus 7 for various values of «.

expedient approach to solving the problem was to employ a weighted residual technique involving
a trial solution that contained powers of the independent variable and four frec constants chosen
by an optimizer to minimize the residual error. This technique produced very satisfactory results
when the combination of physical constants o, 4, and g dictated a maximum for the variational
integral. Except in the neighborhood of the transition to a minimum (conjugate point), the solution
was stable and converged rapidly. After the transition to a minimum, the geometry predicted for
the penetrator tip was as closc to blunt-ended as possible (sec Fig. 3). This situation in the
variational calculus is not uncommon and is usually dctected by examining the sign of the second
variation. However, in this instance, that approach is practically impossible due to the severc
complexity of the sccond variation.

The presence of friction alters the geometry for optimal performance at lower impact velocities
by sharpening the nose of the projcctile. The more friction that is present, the sharper the nosc
required to achieve maximum depth (of course, this assumes that no erosion is possiblc and the
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Fig. 9. Plots of P versus 2 for optimal and ogival nosc shapes for various values of 2. Notc that the optimal plots were
stopped at the lower levels of 4 where blunting occurred.

nose does not fail). However, for higher impact velocities, this sharpening of the nose only occurs
for more friction than is reasonable to cxpect in these problems. For modest friction, the optimal
nosc gecometry is very close to that predicted in the frictionless case. This is very good news indeed.
Actual friction levels arc extremely diflicult to assess, making this analysis awkward to usc in the
design of a penetrator. This analysis does, however, provide us with qualitative insight into the
penetration process and the role that friction plays for high- and low-velocity projectiles.

Thesc conclusions should be verificd by using an alternative friction law. This is the direction
that future efforts in this area-will take.
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ABSTRACT

In related papers, the problem of maximizing the depth of
penetration by a normally impacting cylindrical projectiie by
optimizing the nose geometry was considered. In Jones, et al. (1998a),
results were accomplished by neglecting any frictional resistance
offered by the target and only considering the normal pressure acting
against the penetrator nose. The effects of pressure-dependent friction
were treated by Jones and Rule (1999). Here, the formulation
presented in Jones and Rule (1999) is modified to treat the frictional
force as & constant that is intended to represent the shear strength of
the target. The results of parametric studies are presented to
demonstrate system behavior. Also, experimental data was used with
the modc! to determine the shear strength of a concrete target.

¢
INTRODUCTION

In two carlicr papers Jones, ct al. (1998) and Jones and Rule
{1599), the authors investigated the geometry of the nose of a rigid
penetrator acted upon by a velocity-squared pressure. This was first
done in the absence of friction and later in the presence of a pressure-
dependent friction. The results were very intercsting. Using friction
proportional to the, pressure, it was noted that the tip of the optimal
nose geometry sharpened at lower impact velocities. At higher impact
velocities, friction had Jess influence and the nose geometry returned
to the zoro friction case, unless the friction coefficient was very large.

One thing is very clear. There is not very much known sbout
friction at high sliding speeds (.g., see Bowden and Tabor {1964).0r
Kragelskii (1965)). Much of the work that has been reported is at
lower speeds or pressures than those encountered during 8 penctration
event. In view of this, we decided that it was prudent to repeat the
analysis presented in Jones and Rule (1999) using an siternative
friction law 1o determine what effect this had on the results.

S.E.Jones
Senior Scientist, U. S. Air Force Research

Laboratory, Munitions Directorate, Eglin AFB,

FL (on leave from the University of Alabama)

THEQORY

The problem considered is similar to that recently presented by
the authors (1999). A rigid axisymmetric projectile normally impacts a
semi-infinite target. The cross-scction of the nose is shown in Fig. 1.
The length of the nose is b and the radius of the shank of the projectile
s a. For all acceptable geometries, the surface of the nose is given by
y=y(x) with y(0)=0 and y(b}=a. We assume that the effects of friction
are negligible beyond the nose at x=b. As shown in jones and Rule
(1999), the net force F resisting the motion of the projectile is given

by

b
F=2x [(wp+ o i )
0

where p is the pressure and f'is the friction acting on the nose of the
projectile. In the previous analysis, f was taken to be proportional to
the pressure p. In this paper, we take /=7 , a constant, possibly equal
to the shear strength of the target. As we did in the previous paper on
this subject, we take the pressure p to be of the Poncelet form

p=Avisin?6+B @

where 4 and B are constants, v is the current velocity of the projectile,
vsin@ is the normal component of the axial velocity contributing to
the pressure at the nose, and & is the tangent angle at the surface of
the nose (see Fig. 1). Now using Eq. (2) in Eq. (1) and the fact that

sinf=y'/ JH y‘z , we find that the resisting force on the projectile
has the form




b o3 L
F = 2rAv? I-Z’-’-—z-dx«o-znj)dumzﬂ o)
ity -0

which can be written as

Fa mz(Asz +ua) (0]
where
Lo
N=2a? |—Zomds ®
°l+a 2
and
2 1
M=l+-;r zd§ . ©)
0

In these equations, x= b , y=az, a=alb, y=t/B,and z=2(3)
and & arc dimensionless variables with 2(0)=0 and z(1)=1. Results
similar to Eqs. (4)<(6) were first presented by Luk and Forrestal
(1989) for spherical and ogival nose projectiles.

Now, using the force from Eq. (4), the cquation of motion for the
projectile becomes

nn‘r--mz(Asz +BM). )

This equation can be integrated to find the depth of penetration P of
the projectile '

m AN 2
P= 2,"241\( ll{l*‘mvo] (8)

because M and N are independent of time. In the last cquation, m is ‘

the mass of the projectile and V, is the impact speed.

OPTIMAL NOSE GEOMETRY

Equation (8) is difficult to usc to optimize the nose geometry
because M and N both depend on the noss profile y=y(x). However,
the conventional approach used in the calculus of variations (¢.g., se¢
Lanczos (1996), Pars (1962), or Vujanovic and Jones (1989)) is
adequate to find the optimal geometry to maximize the penctration
depth, P. In this context, suppose that z=w(&) is the profile that

maximizes the penetration depth. Consider continuous variations of
this path 7= 7(£) with 7(0)=n(1)=0 and

ZsWHEN )

where £ is a parameter. If we substitute Eq. (9) into Eq. (8) (this
means that z in Eqs. (5) and (6) is modified by the substitution), then it

is clear that Pw P(¢). It Is further clear that P(0) Is 8 local extreme
for the functlon P. Henee, it follows that dP/d& =0 &t &+0. By
differentiating Eq. (8) with respectto &, we find .

AN

@ )t |

ds ' 2mPAN? "{“BM v&) 1+ 3N.8 19

BM a0

__m {A\%Nz | dM

mzANzt B pM2%,,AN 2 ds
I+BMV3

The derivatives of N and M with respect to & can be found by
differentiating Eqs. (5) and (6). These differentiations lead to

1
oo _d (2
ds 2 6‘[& dg(a:')]"“ an

where
3
2
a 12
1+a%2? 12)
and
dd 2 !
— Y — . 13
= arb"ﬂdé (13

In Eqs. (1) and (12), 2'=dz/dg . Now, if we substitute Egs. (1
and (13) into Eq. (10), take the limit a3 &~—»0, and manipulate t
integrals, we can show that '

AN ,
oA (AN B [2_4, zé_]
fp= ”["BM“} e d:(W) L

l+-§=§V‘
jes(m o
N3 T e
BM

for all admissible variations. In this equation, N and M are
limits in Eqs. (5) and (6) as 60, which means that = is sin.
replaced by w in these cquations. .

Now, if the integral in Eq. (14) equals zero for all admisse
variations, then the integrand must be equal to zero. This leads 1
extremely complicated Euler-Lagrange Equation for the determina
of w=w(&) subject to the conditions w(0)=0 and w()=1.1
equation is




-2
WA {‘A_f_] 12y
B M AN 7 &
Al
A
Aedroa o |28 _4d (2
2 :{3 A ) |2 de(w]]
§4 A e
M (1s)

where N and M involve integrals of functions of w and w' and

A= Avé / B is s dimensionless parameter. This means that Eq. (15) is

a nonlinear difforential-intcgral equation with derivatives of the
second order and integrals with fixed limits. Finding a solution to this
equation is indecd a challenge. We will not attempt to find any form
of approximate analytical solution and instead concentrate on & high
accuracy numerical approximation,

NUMERICAL SOLUTION
A numerical solution for Eq. (15) was obtained by assuming a
solution of ‘the following form

. 2=a)g" +apf " +aye ™" : @16)
where a; and n are adjustable parameters which are s function of @, 2,
and ¥ . A least squares approach was used to obtain values for these
parameters. For particular @, A, and ¥ values, Eq. (15) was evaluated
[using the assumed function, Eq. (16)] at 20 evenly spaced € values
from 0.05 to 1. These twenty function values (which ideally should
equal zero) were then squared and summed to produce an aggregate fit
error. An optimizer was used to adjust the aj and n values to minimize

the fit error. Values of the N and M integrals for insertion into Eq.
(15} were obtained by a numerical integration scheme also using 20
evenly spaced & values from 0,05 to 1. The optimizer was constrained
to seek solutions with z and Z' greater than or equal to zero. Further,
the parameter n of Eq. {16) was forced to be positive. These
calculations were conveniently conducted using a spreadsheet
computer program.

It must be noted that the development of Eq. (15) is & necessary,
but not sufficient, condition for maximum penetration depth. It can
equally apply to minimum penetration depth. In fact, both maxima and
minima are achieved along the same path for different combinations of

the physical parameters a, 4, and ¥ . This will be illustrated in the
next section.

TYPICAL RESULTS

Numerical test cases were investigated using the same model
parameters as feported by Forrestal, et al (1996) for test results
involving firing small sicel projectiles into semi-infinite grout targets.
These tests involved projectiles of mass 63 g and diameter 12.9 mm.
The grout target force response coefficients were A = 2.32E3 kg/m3
{target density) and B = 281 MPa (corresponding to /' = 13.4 MPa
and an S multiplier of 21, B= /). The numerical results involved
selecting reasonable values of the system parameters a, A, and y for
parametric studies.

Initially a test case was conducted 1o determine if the formulation
described in this paper indeed produced optimal penctration results.
One means of accomplishing this is to compare the penctration depths
of the optimal nose shape with a well known effective nose shape - the
ogive. Fig. 2 shows a plot of nondimensional penetration depth
(P= 2m2/l}’/m ) of optimal and oglval penetrators versus A for « =
0.5 and y w 0.2, As can be seen from this figure, the optimal
penstrator is clearly more effective for the larger A values. However,
for A values less than approximately 1,83 (lower velocity impacts) the
nature of the optimal solution changes completely. Instead of
maximizing penetration depth minimization occurs and the optimizer
drives the penctrator to 2 blunt-ended shape with penewation
performance inferior to that of the ogive.

Optimized nosc shapes are compared with that of the frictionless
case in Fig. 3. Further optimized nose shapes are shown in Fig. 4 [a =
0.5, A = 8.2562 (vg = 1000 m/s)] for various friction coefficient ¥
jevels, Note that blunting occurred at the highest friction level,

Figure 5 shows plots of optimal nose shape (@ = 0.5, y = 0.2) for
various values of A. The frictionless case (¥ = 0) is shown in this
figure for comparison. Note that at the lowest impact velocity shown
(small A) blunting occurs (penctration depth minimized) and that at
the higher impact velocity the optimal shape closely resembles that of
the frictionless case.

EVALUATION OF THE SHEAR STRENGTH OF A
CONCRETE TARGET

Recently, Frew et al. (1998) published results for ogive-nose stecl
rods impacting concrete targets at velocities ranging from 442 to 1165
m/s. The data of Table 1 of Frew et al. (1998) was used with the
present model to back-out an effective target shear strength, . A least
squares approach was used to adjust T to minimize the difference
between measured and calculated concrete target penetration data, The
model parameters used are lisicsd, in Table 1.




Table 1 Modol parametors used for comparison with the
data of Frew et al. (1998)

1.015E-02 m
3.370E-02 m
0478 kg
2320 kg/m3
484.7 MPa (Dynamic Strength Factor =
S= 8.3 from Frew, ct al. (1998))

>3 o

The best fit value obtained was t = 4,93 MPa (y = 1.018E-
2) which amounts to 8.4% of the reported f¢ = 58.4 MPa of the
concreto. Measured and calculated results are compared In Fig. 6.

CONCLUSIONS

In this paper, we have presented a variational analysis of normal
penetration into scmi-infinite targets including the cffects of constant
friction on the tip of the penctrator. The choice of friction law for this
paper was one of the simplest. However, the choice of friction may be
simple, but its effect on the optimization problem is far from simple.
Eq. (15) is a nonlinear differential-integral equation of staggering
proportions and any form of analytical solution is practically
impossible. The most expedient approach to solving the problem was
1o employ a weighted residual technique involving a trial solution that
contained powers of the independent variable and four frec constants
chosen by an optimizer to minimize the residual error. This technique
produced very satisfactory results when the combination of physical
constants &, A, and y dictated a maximum for the veriational
integral, Except in the neighborhood of the transition to a minimum
(conjugate point), the solution was stable and converged rapidly. After
the transition to a minimum, the geometry predicted for the penetrator
nose was as close to blunt-ended as possible (sce Fig. 3). This
situation in the variational calculus is not uncommon and is usually
detected by examining the sign of the second variation. However, in
this instance, that approach is practically impossible duc to the severe
complexity of the second variation. .
* The presence of friction alters the geometry for optimal
performance at lower impact velocities by sharpening the nose of the
projectile. The more friction that is present, the sharper the nose
required to achieve maximum depth (of course, this assumes that no
crosion is possible and the nose does not fail). However, for higher
impact velocities, this sharpening of the nose only occurs for more
friction than is reasonable to expect in these problems. For modest
friction, the optimal nose geometry is very close to that predicted in
the frictionless case. This is very useful conclusion indeed. Actual
friction levels are extremely difficult to assess, making this analysis
awkward to use in the design of a penectrator. This analysis docs,
however, provide us with qualitative insight into the penctration
process and the role that friction plays for high and low velocity
projectiles.
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Figure 1. Cross-section of the nose of an axisymmetric
penetrator. The penetrator Is acted upon by a continuous
pressure p and friction (per unit area) f. The length of the
nose of the projectile Is b and the radius of the shank Is a.
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Abstract. Analytical models of the penctration process focus on estimating depth of penctration based on
target density, target strength (sometimes associated with the unconfined compressive strength of the target
for geological targeis), the areal density of the penetrator (W/A), and the impact velocity. In this paper, an
expression for work is used in conjunction with thermodynamic considerations to devise a simple estimate
for mass lost by a high velocity projectile during the penciration process. The result shows that the mass loss
is directly proportional 1o the tunnel length and the target shear strength. The constant of proportionality is
not easy 1o deduce, however, in that it contains an unusual factor from the work analysis. A method for

estimating target shear under high pressure from penetration experiments is introduced.

INTRODUCTION

Rigid body peneiration of geological targets has

" been explored by many authors [1,2]. Mass loss
from these penetrators has been reported {3}, but no
theory 1o account for the loss has been proposed.
The purpose of this paper is to report a simple one-
dimensional estimate for mass loss that successfully
correlates the results of a number of experiments.

AN ESTIMATE FOR THE WORK DONE BY
SHEAR

We use the term ‘rigid’ in the context a penetrator
that neither mushrooms nor experiences significant
mass loss. In such cases, the contribution to the
motion of the body due to inertial change is
assumed 10 be minimal,

Estimates for the work done by all of the forces
acting on the nose of the projectile along the tunnel
Path can be made using a one-dimensional

penctration model. Consider an axisymmetric
projectile normally striking and rectilinearly
penetrating a semi-infinite target. The nose of the
projectile, acted upon by normal and shear stress, is
described in Figure 1. Following [1], we take the
normal pressure p acting on the nose of the
projectile to have the form

p=p§sin26uz+k )]

where P, is the target density (assumed to be

constant), & is the tangent angle 1o the surface of

the nose, v is the current velocity of the projectile,
and R is the dynamic compressive target strength
under high confining pressure.

We will take the target shear strength to be of the
Mohr-Coulomb  type. This has been very
successfully employed in applications involving

geological targets [2]. In this context, 7 has the
form
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Figure 1. Cross section of projectile nose.

where (2 and T, are constants.

Under these conditions, the equation of
motion of the projectile is

mi = -ma2|p, v + R+ M)+ 1M | )

where m is the mass of the projectile and a is the
radius of the shank. The constants N and M are
dimensionless nose shape factors defined by

+
N== ‘y-z-—-@;-dx @
a- 0 14y
and
M=-—2-; ydx &)
a"_o

where y=y(x) is the continuous path with
nonncgative slope from the tip of the nose to the
shank defined in Figure 1 ([4]). Although mass is
lost from the nose of the projectile, which changes
the shape of the nose, we will treat N and M in (4)
and (5) as approximately constant in this paper.

Integrals for (3) arc casy to obtain and one
of them rclates position, g, in the target to the curren
velocity, v. This relationship takes the form

=

m [p,Nv§+R(l+pM)+roM
n (6)

wmlp,N | pyNvE+R(1+puM)+ToM

The work done by the tangentinl forces
acting at the surface of the nose is given by

W, =m’J:(#p,Nuvz +URM + oM Yz (7)

where N = Ng+ 4N, . The definitions of N, and

N, come from (4). We can transform the integral in

(7) and evaluate it. This will only be done for one
case, & =0, and the result is

W, = m’1oMz (8)

where the velocity v has been algebraically
eliminated in favor of the penetration depth z. This
expression will be combined with the results of the
next section to produce an estimate for mass loss by
the projectile.

To estimate target shear we find the work
done by the tangential forces, we must find a way to
estimate 4 and T,. The pressures and rates

involved in the penetration process presently
prectude the possibility of accomplishing this with
any simple laboratory test. Penctration tests have
often been used for this purpose because the
appropriate pressures and rates are obviously
achieved and penetration depths are casy (0
measure. A direct approach to the problem is to use
(6) 10 correlate the post-test data. At the conclusion
of penetration v=0 and (6) becomes

Z=—D s piNvy ©
2m’p, N R(1+puM )+7oM

where Z is the total depth of penetration.
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With test data from a series of penctration
experiments, we can look for the best fit by varying
R. {4 .and T,. However, the physical parameters R

and T, only appear in (9) as a sum and cannot be
separated uniess more than one ogive is used, which
gives us two different values of M. If penctration
data for two different ogive-nose projectiles of the
same stecl into the same target material can be
found. then R and 7, can be determined as the

solution of a pair of similtaneous linear equations. A
series of high velocity penctration tests were
performed at Eglin AFB, FL (S]. The projectiles
were hard 4340 steel with 3.0 and 4.25 CRH ogive
noses. The targets were aged concrete. R=737MPa,
To=13.8mpa, and 4 = 0.0 gives the best fit 1o the
data. The shear strength is only 1.87% of the normal
compressive target sirength.

The mass loss is calculated based on
thermodynamic consideratios, Steel penetrators
impacting geological targets “wear” by melting. The
mehied material flows backward over the penetrator
coating it with rapidly solidified material. A brief
heat flux from the liquid steel transforms a thin layer
on the surface 10 austenite and, upon cooling, to
untempered martensite. The Peclet Number [6],
Pe=VL.[/h, where V is the velocity of the

penetrator, L. is a characteristic length, and A is the

thermal diffusivity of the penetrator, is on the order
of 10™ for the penetration events. Thus, the heat
shared by the target due to frictional heating is less
than one part in a thousand. We will assume that all
of the heat generated is accepted by the penetrator.
The mechanical work done by the forces
acting on the nose of the projectile was estimated,

As work is done by friction (shear) acting on the

surface of the penetrator nose, heat is generated. The
relationship between the heat generated O and the
work done by shear W, is given by '

W, =kQ (10)

where k=4.18 joules/calorie is the mechanical
equivalent of hear (7).

The first law of thermodynamics defines the
relationship between heat and other thermodynamic

state variables. The heat capacity of metals is only
weakly dependent on pressure below 10 GPa [7)
which is well below the pressure levels at the
penctrator/target interface as estimated by either
analytical models [1] or continuum code
calculations [8}. Also, in this pressure regime, the
solid-solid and solid-liquid phase trunsitions in stecl
have little pressure dependence (9], The path
dependence in the integration is for the most part
reflected by the temperature dependence in the heat
capacity. Therefore, the enthalpy is cvaluated in the
integration to assess the end state assuming no
change in pressure. This means that |

dH = pAVe,dT = dQ (am

where H is the enthalpy, T is the temperature, €, is

the heat capacity, 0 is the penetrator density, and
AV is the volume of the heat affected zone.

The change in enthalpy is estimated directly from
heat capacities and the latent heats for the three
allotropic phase transitions expericnced by iron
during melting. The temperature dependence in the
heat capacity and enthalpy of the phase transitions
are available from several sources [10]. When this
data is used to perform the integration in (11), we
can show that k[C,dt=1032J/g. The calculated
change in enthalpy is then combined with the work
done by tangential forces in the penetration process

to arrive at an estimate for the mass loss of the
penetrator due to heating, Am , given below

Am= = .
kJCpdT  k[C,dT

(12)

Equation (8) was used to estimate the mechanical
work. Equation (12) indicates that the mass loss due
to surface heating is directly proportional to the
tunnel length z the cross-sectional area of the

projectile 7, and the target shear strength 7,.

This result also indicates that increment of mass loss
Am is inversely proportional to the heat required to
melt the steel,




RESULTS
As mentioned carlicr, for these targets 7o =138

MPa. Figure 2 shows the estimated mass loss for
65g, CRH=3.0 and 4.25 ogive-nose projectiles
against aged concrete targets. At this point, only on¢
CRH=4.25 projectile has becn recovered and
weighed. The mass loss was 2.1g, which agrees very
well with the cstimate.
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Figure 2. Predicted mass loss versus penctration depth based on
tests by Wilson and Christopher, {5

Another source of mass loss data is contained in
(3]. Figure 3 gives comparisons between experiment
and (12) for two different cuses. The “small”
projectiles were 478g, 20.1mm diameter, hard 4340
and AerMet 100 stec! projectiles. The “large”
projectiles were 1.62kg, 30.5mm diameter, AerMet
100 steel. The targets were high strength concrete

( . =58.4MPa). All of the projectiles had CRH=3.0

ogive noses. The impact velocities ranged from
442m/s to 1225m/s and the mass losses were
reported.. Because only one nosc shape was used,
we could not estimate the target shear strength using
the method employed for the Eglin targets discussed
earlier. In order to make the estimate, we took the
same fraction of normal dynamic strength (1.87%)
as concluded earlier for the Eglin targets. In this
case, Ty= 8.22 MPa. The agrecment between (12)
and the experiments is very good.

The target shear characteristics have been

estimated from a series of high velocity penetration
tests performed at Eglin AFB, FL (5].
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Figure 3. Comparison of colculsted and measured (Frew ctal.,
(3]) mass loss versus penetration depth.

CONCLUSIONS

In this paper, we have presented an analytical
estimate for mass loss from high velocity projectiles
due to surface melting. A method for estimating the
target shear stress is introduced and applicd to a set
of penctration experiments at Eglin AFB. The
results correlate very well to cxperimental mass loss
measurements from recovered projectiles.
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ABSTRACT

Anatytical models of the penctration process focus on cstimating depth of penctration based on target density,
target strength (sometimes associated with the unconfined compressive strength of the target for geological
targets), the arcal density of the penctrator (W/A), and the impact velocity. In this paper, an cxpression for
work is used in conjunction with thermodynamic considerations to devisc a simple cstimate for mass lost by a
high velocity projectilc during the penctration process. The result shows that the mass loss is directly
proportional to the tunncl length and the target shear strength. The constant of proportionality is not easy to

.

deduce, however, in that it contains an unusual factor from the work analysis. A method for estimating target
shear under high pressure (rom penetration experiments is introduced.

INTRODUCTION

Traditionally, researchers interested in the terminal ballistics of rigid bodies have tried to
connect depth of penetration to target density, target strength, weight per unit of cross-sectional
area, and impact velocity. Absent are any references to penetrator strength, toughness, hardness,
or resistance to wear. The first two, strength and toughness, are accounted for by assuming that
the projectile has sufficient strength and toughness to remain a rigid body, though dynamically
these quantities remain guesses. Hardness and resistance to wear have not been considered,
despite the fact that carefully chosen nose geometries change as wear occurs. However, these
parameters must somehow be included now because higher impact velocities are now producing
longer tunnels that are promoting substantial wear. This is additionally significant because early
wear may establish asymmetry in the nose that can result in unstable motion of the projectile. This

has been observed in sub-scale tests of ogive-nose steel projectiles (Wilson and Christopher,
1997). ‘

In this paper, we introduce a simple estimate for mass loss in steel penetrators. This
estimate is based on surface melting of the nose of the projectile which we regard as the primary
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cause of wear. Surface melting of the nose blunts the projectile which increases the nose factor.
This, in turn, degrades the performance of the penetrator. Based on clementary thermodynamic
considerations, a onc-dimensional estimate for mass loss from high speed steel projectiles is
presented. It is shown that mass loss is dircctly proportional to the target shear strength and

inversely proportional to the energy required to melt the steel. An additional fallout of this work is

a practical estimate for dynamic target shear under high pressure.
MOTION OF THE PROJECTILE

Consider the normal impact of an axisymmetric rigid rod projectile. A cross-section of the
nose of the projectile is shown in Figure 1. Even if some other form of symmetry exists, this
rectangular coordinate system attached to the nose is adequate to perform the analysis in this
paper. For those nose gcometrics that arc admissible to this study, the tip passes through zero at
=0 and must join with the shank of radiug a at x=b. Additionally, all admissible paths between
=0 and x=b are continuous with nonncgative slope. A more detailed discussion of this nose
geometry is given in Jones, et al (1998) or Jones and Rule (1999).

Assume that pressure sensitive friction per unit area f of the form
S=mpr, Q)

acts on the nose of the projectile, where 4 and 7, are constants and p is the normal pressure

acting on the nose. This form for the friction has proved to be very useful in the study of the
penetration of geological targets (e.g., Forrestal, et al, 1981). Now, the axial force, F, resisting
the motion of the projectile has the form

F = [(psind + f cosO)dA 2)

where 4 is the surface area of the projectile nose and @ is the tangent angle to the surface of the
nose. We take the pressure p to have the form

p=p,sin’0v? +R (3)
where p, is the target density, R is the dynamic, compressive target strength under high confining

pressure, and v is the axial velocity of the projectile. This form of velocity dependent pressure has
been suggested by cavity expansion methods (e.g., Luk and Forrestal, 1987).

For a given nose shape y=y(x), sinf=y"/ \/l+ y'* and cosf= 1/,/ 14 y'* . The integral
in Equation (2) can be arranged for the pressure distribution given in Equation (3) and the result is

F = ma*(p,Nv? + R(1+ M) +7,M ) @)



where

2 yv‘j +,Uy'2
N =—=-| y=—-o—dx 5
at j:y 14y ©)
and
2
== [ ©)

For any given continuous nose shape, the integrals in Equations (5) and (6) can be evaluated and
are constants. Note that the definition of the constant M has been changed from that which was
given carlicr by Jones and Rule (1999). This constant basically represents the dimensionless
longitudinal cross-sectional area of the penetrator nose.

Using the force in Equation (4) and ignoring any mass loss for this application, the
equation of motion of the rigid projectile is given by

mv = —ma* (p‘.sz +R(1+ uM) + IQM). N

This equation may be easily integrated to produce the relationship

z

2
m lé,}{Jr)i,i\r’vﬁ +R(i+,uM)+z'oM}. )

Tomtp N\ pNvE+R(L+uM)+ oM

In Equations (7) and (8), m is the mass of the projectile, z is the current depth of penetration, v is
the current velocity of the projectile, and v, is the impact velocity. The constant of integration has

been evaluated with the initial condition z = 0 when v = v,. At the end of the event, v= 0 and the
total depth of penetration Z can be found

Z

2
" PN . )
2ma’ p,N R(l+ uM)+ 7, M

When 7, =z =0, we recover the classic rigid body penetration equation (e.g., see Luk and
Forrestal, 1987).

Another independent integral of motion involving the time of penetration ¢ can also be
found by direct separation of the variables of Equation (7). This integral takes the form




r

N - WY -
P [ ] tan ™! L vo |- tan ! ol v (| (10)
N V R(L+ b)) + 7y M RQU+ M) + T M RO+ M) + 5 M

where the constant of integration was evaluated with the initial condition /=0 when v =v,.

When Equation (10) is carricd to the end of the event, an estimate for the terminal time 7'can be
found

7 m P,N -1 P,N
7= ¢ . 1
mzp,N\[R(l+;M)+toM an UR(H,M)MOM%J ()

Equations (8) and (10) are the only independent intcgrals of motion of Equation (7). What
complicates their use, is the fact that R and 7, arc not independent for the same nose shape.

These two stresses are combined in the sum R(1+ uM) +7,M wherever they appear in Equations

(8)-(11).

ESTIMATES FOR R, 7,, AND 4

There are several strategies for using combinations of Equations (8)-(11) to find the
combination of compressive target strength under high confining pressure R, shear strength under
high confining pressure7, , and the friction cocfficient s . Certainly, the most attractive would be

to have measured values for the penetration depths and the terminal times. However, we rarely
have reliable estimates for the terminal time. Finite thickness targets could be used in connection
with Equations (8) and (10). However, the front crater and rear spall regions may occupy a large
percentage of the tunnel, unless the target is very thick. The results presented in the previous
section only apply when the tunnel is the dominant penetration mode.

This leaves us with Equation (9) as the only viable option. Suppose that we have test data
from a series of n penetration experiments into semi-infinite targets of the same material with
sufficiently high impact velocities that the tunnels are very long relative to the crater region at the
surface of the target. Let the impact velocities for these tests be v, (i =1,2,..,n) and the

measured penetration depths for these testsbe Z, (i=1.2,...,n), respectively. Let us further

assume that the impact velocities are sufficiently high to produce strain-rates in the target material
that are high enough that the strength does not vary significantly between the tests. In all respects,
we assume that the projectiles and targets are identical. This means that Equation (9) can be used

to find

2
2, =——tn 1+ PV
2m’p,N RO+ uM)+ 7t M

(12)



where i = 1,2,...,n These equations arc a system of nonlinear, transcendental cquations for
R(1+ pM)+7,M and . They arc complicated by the fact that N also depends on u, as
observed in Equation (5). If we take any pair of data points, say the i - th and the j—th, and
combine them, we can eliminate the dependence on 7, . This leaves us with a single cquation in
which the only unknown is . This equation is given below

2 -
m

{Zmzp,NZj}
exps - I -1

(13)
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—

Although equation (13) is transcendental in 4, but can still be solved fairly casily.

Equations (12) and (13) apply to any nose shape. Later in this paper, N and M will be
given for some of the common shapes. But, this does not answer the question of how to separate

R and 7,. To do this, we make the observation that regardless of the shape of the nose, these

quantities should remain the same. If we have penetration data for two distinct nose shapes into
the same target, then M (and N) will be different for these two projectiles. This means that we can
take the results of the best fits to the data in Equation (12) and have two linear equations in two
unknowns from which to determine R and 7, .

PENETRATION INTO CONCRETE

A series of penetration experiments involving hard steel penetrators normally impacted
into hardened concrete targets were performed at Eglin AFB, FL (Wilson and Christopher, 1997).
The targets contained large aggregate limestone and had an unconfined compressive strength of
51 MPa (Jerome, 1998). The projectiles were ogive-nose cylindrical rods 12.7mm in diameter
with a mass of 65 g. Two different ogives were used. They were of Caliber Radius Head (CRH)
3.0 and 4.25. Each class of projectile was impacted at increasing velocity until failure of the
projectile occurred. The data from these experiments were shared with us by the project engineers
(Wilson and Christopher, 1997) and are summarized in Tables 1 and 2. When the data from
Tables 1 and 2 is used in a least squares fit to Equation (12), it follows that 4 =0. This conclusion

may be verified by taking any pair of data points within each data set and applying Equation (13).




Table 1. Observed penetration depths of 4.25 CRH hard 4340 ( R,=45) steel penctrators (m=

0.065 kg, a = 6.46 mm) into concrete targets (f! = 51 MPa, p = 2336kg/m containing large
limestone aggregates [Wilson and Christopher, 1997).

Eglin Impact Observed

Experiment Velocity v, Penetration
Number (m/s) Depth (m)

17 1431 0.528

20 1213 0.392

22 1636 0.665

24 1202 0.386

25 758 0.162

26 688 0.134

27 975 0.262

Table 2. Observed penetration depths of 3.0 CRH hard 4340 ( R,=45) steel penetrators (m =

0.065 kg, a = 6.46 mm) into concrete targets (f. == 51 MPa, p = 2336 kg/m’) containing large
limestone aggregates [Wilson and Christopher, 1997].

Eglin Impact Observed
Experiment Velocity v, Penetration
Number (m/s) Depth (m)
16 1505 0.548
33 1051 0.293
34 856 0.201

The least squares fit for the data in Tables 1 and 2 described above produced the
parameter estimates R =737 MPa and t, = 13.8 MPa. These strengths come from the solution of

the similtaneous linear equations R +5.3997, = 811.51MPa and R+4.5027, = 799.13MPa.
Measured and calculated penetration depths are compared in Fig. 2. The agreement is excellent.

For the purpose of illustration, plots of penetration depth versus impact velocity, and penetration
depth versus time for this system are included in Figures 3 and 4, respectively. The agreement
with the observed penetration depths in Figure 3 is very good, with very slight deviations noted

only for the highest impact velocities.



Test ID a(m) b (m) Mass (kg) | Observed
shank radius| nose length Penetration

Depth (m)

1-0354 1.0156-02 | 3.370E-02 | 4.780E-01 | 2.870E-Ol

1-0355 1.015E-02 | 3.370E-02 | 4.780E-01 | 4.910E-01

1-0356 1.01SE-02 | 3.370E-02 | 4.780E-01 | 8.400E-01
1-0357 1.01SE-02 | 3.370E-02 | 4.780E-01 | 1.300E+00
1-0358 1.015E-02 | 3.370E-02 | 4.780E-01 | 1.590E+00

1-0390 1.015E-02 | 3.370E-02 | 4.780E-01 | 7.300E-Ol
1-0391 1.015E-02 | 3.370E-02 | 4.780E-01 | 1.160E+00
1-0392 1.015E-02 | 3.370E-02 | 4.780E-01 | 1.460E+00

LROD95-1 | 1.525E-02 | 5.050E-02 | 1.620E+00 | 4.600E-Ol

LROD95-2 | 1.525E-02 | 5.050E-02 | 1.620E+00 | 7.900E-Ol
LROD95-3 | 1.525E-02 | 5.050E-02 | 1.620E+00 | 1.230E+00
LROD96-0 | 1.525E-02 | 5.050E-02 | 1.620E+00 | 1.950E+00
LROD95-4 | 1.525E-02 | 5.050E-02 | 1.620E+00 | 1.960E+00
LROD95-6 | 1.525E-02 | 5.050E-02 | 1.620E+00 | 2.670E-+00
LROD96-1 | 1.525E-02 | 5.050E-02 | 1.620E+00 | 1.960E+00
LROD96-4 | 1.525E-02 | 5.0S0E-02 | 1620E+00 | 2.830E+00

Table 3. Obscrved penetration depths of 3.0 CRH steel penetrators into concrete (fo' = 58.4 MPa,
p = 2320 kg/m’) targets [Frew et al., 1998].

An additional set of impact data reported by Frew et al. (1998) was also considered, see
Table 3. A plot of observed versus calculated penetration depths for this data set with parameters
R+Mc,= 478 MPa and p. = 0 (obtained from a least squares fit as before) is shown in Figure 5.
Figure 5 shows that the agreement between observed and calculated penetration depths is
excellent in this case. It is interesting that again y was forced to zero by the least squares fit. ©
could not be separated from R in this data set since there is only one CRH in this case. Thus, the
quantity R+Mr,= 478 MPa obtained for this case is actually an estimate for the dynamic,

compressive target strength under the influence of high confining pressure. This target strength
obviously compares very well with that obtained by Frew et al. (1998) for this data set, which was

485 Mpa, because their equation and Equation (9) are virtually the same when the shear combines
in this manner.

WORK DONE BY THE TANGENTIAL FORCES

We are now in a position to find an expression for the work done by the tangential

components of force in bringing the projectile to rest. The tangential components of force consist
of

F, = (p, Ny* + pRM +7oM ) (14)




where N = N, + uN,. The work done by this force, W,, is given by
W, =na* [lup Niv? + pRM + roM )dz (15)

where the integration is taken along the rectilincar tunnel length z Using the equation of motion
of the projectile, Equation (7), we can transform the integral in Equation (15) to

W = m“-vo(,up,N,v2 + URM + 1,M )vdv 16)
TN o v+ R(1+ pM) + ToM

which can be intcgrated to give

_ 2
W, = pmN, (vg_v2)+ m{yR(MN, N,2)+10MN0] o p,Nvg + R+ M)+ M | an
2N 2p,N p, Nv* + R(1+ uM) + 7, M

This equation expresses the work done in terms of the current velocity, v. Work is usually
expressed in terms of distance, or arc length, along the trajectory. It is not difficult to find such a
relationship. We can use the integral given in Equation (8) to eliminate the velocity in terms of the

distance z. This will only be done for one case, because the results are particularly interesting.
When 4 =0, Equation (17) becomes

2
W, = mryM n p,Novg +R+7 M (18)
20Ny | p,Nov* + R+ 7 M
and Equation (8) becomes
2
s 2m n p,Novg +R+7 M . (19)
2ma’p, Ny | pNov® + R+1,M
By climinating the velocity between these two equations, we find
W, = ma’roMz (20)

is the work done by the pressure independent target shear force acting on the projectile. This is a
particularly simple result. It shows that the work done by shear is proportional to the cross-
sectional area of the shank of the projectile, the normalized cross-sectional area of the nose, and
the penetration depth. However, in spite of its simplicity, this result is not easy to anticipate
because it involves the constant M.



It is interesting to compare the work done by shcar to the total work done by all of the
forces in bringing the projectile to rest. The total work done is equal to the available energy,

mv? /2, which means that 27’ 7,MZ /mv? is the fraction of work done by shear. For the Eglin
experiments (Tables | and 2), 7,=13.8 MPa. The highest impact velocity in the data set is v, =

1636 m/s for a CRH = 4.25 ogive nose projectile. In this case, M = 5.399, m = 65g, a = 6.46mm,
and Z = 0.665m. With this data, we can sec that the fraction of work done by shear is only 7.5%

of the total work. While this is small, it is very significant to problems involving projcctile heating
and erosion. This topic will be discussed now.

THERMODYNAMIC CONSIDERATIONS

The process driving the mass loss during the penetration process has been attributed to
friction and shear by various investigators. The microscopic analysis of recovered penetrators
serves as clear evidence of the thermal effccts of these processes. For high velocity penetration
problems, the heat generated by tangential forces between the penctrator and the stationary target
goes into heating the surface of the penetrator. This fact is fairly easy to establish. The Peclet
Number is a dimensionless heat transfer grouping that governs the heat partitioned between
sliding bodies (e.g., Cowan and Winer, 1998). For our purpose, the Peclet Number, Pe, is defined
by Pe=VL,/h , where V is the velocity of the penetrator, L, is a characteristic length, and h is the
thermal diffusivity of the penetrator. For a steel penetrator, /= 0.127 x 10~ m?* /sec. For
example, take the velocity of the projectile F=1000 m/sec and the characteristic length to be a
penetrator nose length, say 2x 10~ m. In this case, Pe = 1.57x 10°. For such an event, the heat
partition factor is smaller than 10", indicating that less than one part in a thousand of the heat
generated is shared by the target. Even for substantially larger characteristic lengths, the Peclef

Numbers are still very large. Thus, we may ignore the target and assume that all of the heat
generated by frictional heating is accepted by the penetrator.

In the previous section, the mechanical work done by the forces acting on the nose of the
projectile was estimated. As work is done by friction (shear) acting on the surface of the

penetrator nose, heat is generated. The relationship between the heat generated O and the work
done by the tangential forces ¥, is given by

Q=kW, 1)
where k=4.18 calories/joule is the mechanical equivalent of heat (e.g., see Zemansky, 1968).

The first law of thermodynamics defines the relationship between heat and other
thermodynamic state variables,

du = dQ —dW (22)

where the inexact differentials in#(Q and dW indicate path dependent functions. The standard
thermodynamic functions: internal energy, enthalpy, Gibb’s free energy, and Helmoltz free energy




provide a means to sclect the most suitable integration path to calculate the end state which
results from the addition of the heat. The heat capacity of metals is only weakly dependent on
pressure below 10 Gpa (Zemansky, 1968) which is well below the pressure levels at the
penetrator/target interface as cstimated by cither analytical models (e.g., Luk and Forrestal, 1987)
or continuum code calculations (e.g, Sohnson and Holmaquist, 1992). Also, in this pressure regime,
the solid-solid and solid-liquid phase transitions in steel have little pressure dependence (e.g.,
Leslic, 1981). The path dependence in the intcgration is for the most part reflected by the
temperature dependence in the heat capacity. Thereforc, the enthalpy is uscd to do the integration
to assess the end state assuming dp=0. This means that

dH = pAVe,dT = dQ . (23)

where H is the enthalpy, AV is the volume of the heat affected zone, p is the penetrator density,
and c, is the temperature dependent heat capacity of the penctrator material. Equation (23) can

now be integrated to produce an estimate for (). This result is

0= pAV j ¢, dT (24)
T

where the integration is taken from the ambient temperature to the melt temperature. A complete
discussion of the evaluation of the integral in Equation (24) is given in the next section. For the
moment, Equations (21) and (24) can be combined to arrive at the estimate for mass loss from the
penetrator due to surface heating, Am , given below

oAV = Am=—P— (25)
kJ'c p41
T
When this equation is combined with Equation (20), we get
mtt Mz
== 0 - (26)
kIc 24T
T

which indicates that the mass loss due to surface heating when u = 0 is directly proportional to
the tunnel length z, the cross-sectional area of the projectile 7m” , and the target shear strength 7, .

This result appeared earlier in Foster, et al, 1999. This result also indicates that increment of mass
loss Am is inversely proportional to the heat required to melt the steel.

EVALUATION OF HEAT REQUIRED TO MELT

The heat required for melting the steel penetrator can be found once the integral in
Equation (24) has been evaluated. In this paper, we approximate the properties of the steel
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penctrator by the properties of its major constituent, iron. In this case, the temperature-dependent
heat capacity ¢, takes the form

¢, =C, +C,T (cal/gram-K') - (27)

where the constants C, and C, are given in Table 4 (see Kubaschewski and Evans, 1958). In

Equation (27), K indicates tempcerature in degrees Kelvin. Iron goes through three distinct phases
prior to melting. The first phase is the ferrite or & -phase. The second is the austenitic or y -

phase. The last phase is called the & -phasc. Table 4 gives the values of C, and C, during each of
these three phases and the temperature range for each phasc (Kubaschewski and Evans, 1958).

Now, using Equation (27), we can evaluate the integral in Equation (24) and get
R S Ts o T .
_T[ cpdl' = [ e, dl + AH, + j'?ycprd}’ +AH s + [ e, dT +AH, (28)

where 7, is the ambient temperature, 7, is the temperature of transition from ferrite to austenite,
T, is the temperature of transition from austenite to & -phase, and 7,, is the melt temperature of
iron. In Equation (28), AH,, AH;, AH are the latent heats required for each of the three phase

changes experienced by iron during heating through the melting point. The heat capacities in the
integrands of the integrals in Equation (28) apply in the temperature range indicated by the limits
ofintegration. The latent heats of transformation for iron are taken to be AH,=2.87 cal/gram,

AH ;=3 .60 cal/gram, and AH  =58.98 cal/gram (see Kubaschewski and Evans, 1958 and
Kubaschewski and Alcock, 1979).

Table 4. Heat Capacity Coefficients

C,(cal/gram | C, (cal/gram- K’ T(K)
.K) )
o -phase 7.49%x1072 1.06x107* 273 <T <1185
y -phase 3.30x1072 8.35x107° 1185«<7 <1674
S -phase 1.88%x107! 0.00 1674 <T <1812

With the information provided in the previous paragraph, we can use Equation (28) to
evaluate the heat capacity integral in Equation (27). After perfectly straightforward integrations

and additions, we find that f ¢,dT =302.58 cal/gram. This means that kfc LA =1264.78
T T




J/gram for iron. This number will be used in the denominator of Equation (26) to estimate mass
loss in steel penetrators.

RESULTS

As indicated, mass loss can be estimated by Equation (26) using the heat required to melt
iron given in the previous section. This will be accomplished for the experiments into concrete
reported inTables 1-3. Although there is mass losss and wear on the noso of the projectiles,we
will use the value of M in Equation (6) for the initial ogive in this application.

In the first case, experimental data for two different ogives was provided by Wilson and
Christopher, 1997 (Tables 1 and 2). This cnables us to find 7,. In this case, 4 = 0 and Equation

(26) applies. The estimated mass loss for the two different ogives is shown in Figure 6.
Unfortunately, only onc of the penetrators has been removed from the target and weighed.
However, the single data point shows very good agreement with the estimate. It must be pointed
out that there is much uncertainty in experimental determinations of mass loss from the nose of a
penetrator. Simply weighing the projectile usually underestimates the mass loss because molten
penetrator material is reattached to the shank (see Toness, et al, 1999).

The second set of penetration data (Table 3) from Frew, et al, 1998, is for 3.0 CRH ogive
nose projectiles. The estimate for 7, is based on the same fraction of R that was found for the

previous data set. The mass loss estimates are shown in Figure 7 for two different classes of
penetrators. The ‘small” penetrators have a mass of 0.478kg and the “large” penetrators have a
mass of 1.62kg. The target material is the same. The agreement between Equation (26) and the
experiments is good considering the nature of penetration testing. The agreement is excellent at
the lowest impact velocity where the tunnel is shortest. This is expected because mass loss and
wear are the least there. Obviously, we have used data to characterize the target and the
penetrator that is influenced by mass losss and wear. It is evident that the more mass loss and
wear that occurs, the greater this influence should be.

METALLURGICAL OBSERVATIONS

In this section, we present the metallurgical observations that support the case for wear by
surface melting of the nose. As indicated in the introduction of this paper, the analysis of
experiments performed by WES of hard 4340 steel penetrators into weathered granite was the
seed for the theory. For this reason, it is appropriate to present the supporting metallurgy in terms
of the recovered penetrators from these experiments. Further details are contained in Toness, et
al, 1999. In this context, the questions that must be answered are; 1) How much wear took place?
2) How much metal is removed? and 3) What is the wear mechanism? Each of these questions
will be addressed separately in the paragraphs that follow.

First, let us address the question of how much wear took place. The parameters for two of
the six experiments performed are given in Table 5. At first glance, it appears that very little wear

took place. For example, the greatest weight lost, 2.29 Ibs, is a mere 2%, more or less, of its gross
weight. However, this grossly understates the wear process. When the 54.5kg penetrator hits the
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rock, it carries from 5.2 to 23.5 megajoules of energy with it. Only approximately 10% of the
work done by this energy is devoted to shear. Neverthcless, the rate of metal removal from the
nose is respectably large (see Table 2). Compare this with what the American Society for Metals,
International (ASM) calls “high removal rate machining” which achieves removal rates of
370in’ / min (for steel this is 104 lbs/min, sce ASM Metals Handbook, Vol 16, Machining,

p. 607). Thus, the wear process can be characterized as high cnergy, high rate. The resulting
surface of the nose of the penetrator is very smooth and true to its original form, as illustrated in
Figure 8. The smooth horizontal surface is the result of the high encrgy, high ratc penctration
wear. The rough vertical surface is saw cut.

Table 5. Material Loss From Two 4340 Stecl Penctrators

Penetrator Penctration Lbs Lost Lbs/scc Lbs/minute
Time (sec)

A 1.12x10°? 2.29 204 12,267

D 8x1073 0.57 70 4,226

We will now address the questions of what is the wear mechanism and how much metal is
removed. Pressures and velocities are such that the nose is melted. This is evident from the
scabrous deposits on the shank of the projectile, see Figure 9. The small humps in the surface are
a cast of the cavity in which the projectile came to rest. It is difficult to estimate the amount of re-
deposited material. It is unevenly distributed both in location and thickness and, in addition, the
re-deposited metal contains inclusions of geological materials.

Microstructural observations of surface layers of nose material indicate that the material
had been heated to the austenite transformation temperature. This transformed layer is shown in
Figure 10. This layer in the austenitic state is very plastic and is easily removed by abrasion. This
removal process further raises the temperature to the melting point and the melted material flows
backward onto the shank. Alternatively, the thin layers could be melted directly and the molten
material wiped backward. Extensive metallurgical observations provided no evidence of shear
banding or other indications of deformation of the nose.

The melted material forms layers on the shank. The heat from the melted material and
friction raises the temperature of a thin layer on the surface of the shank to past that required for
the formation of austenite. Thus, the shanks have three layers: melt, heat effected zone (HAZ),
and bulk material. Microhardness measurements converted to Rockwell C (R,.) are as follows:

melt- R, =49.5, HAZ- R, =56.1, bulk R.=40.4. A sample cut from the shank and polished through
the surface reveals sufficient melt and HAZ surfaces for X-ray diffraction analysis. The results
indicate that the structures are all ferrite with no retained austenite. Analysis of x-ray diffraction
peaks in the transverse direction across the surface show a distinct broadening of the peaks in the
melt and HAZ, indicating the presence of untempered martensite. The diffracting particle size was
determined to be 11.1nm. The cooling rate associated with this particle size is greater than




1000C/scc (sce Weins, et al, 1999). Thisis a reasonable estimate of the cooling rate experienced
by a hot projectile cntering into and stopping in ambient temperaturc granite

CONCLUSIONS

In this paper, we have presented a simple one-dimensional estimate for mass loss from a
high-speed steel projectile. Required for its use is an estimate for dynamic target shear stress
under very high pressurc. A method for estimating this stress is included in the paper. Another
constant that is required is related to the longitudinal cross-sectional area of the ogival nose. A
complete discussion of this constant is given in the Appendix of this paper.

The agrcement between the one-dimensional theory and experimental observations is
reasonable, considering the naturc and reproducibility of penctration experiments and some of the
fundamental assumptions in the development. Some of the shortcomings of this analysis are the
subject of future work and work in progress. Because these arc important considerations, we will
mention a few of them. Penetrator wear is a time-dependent process. As mass is lost from the
nose, the penetrator is bluntcd and the nose factor N increases. This can have a considerable
intluence on high-speed penetration. Because mass is primarily lost from the nose, even modest
projectile mass loss can result in fairly substantial change in the nosec. If regular wear is assumed,
some of these changes can be modeled and a simple strategy for blunting and longitudinal arca
change in the nose produced. These topics will be addressed in future work.
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Figure 2. Plot of measured versus calculated penetration depths obtained by applying Equation (9)
1o the data of Tables 1 and 2 with the parameters R = 737 MPa, t, = 13.8 MPa, and p = 0.0. The

parameters were obtained by a least squares fitting process.
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Figure 8. Micrograph of the surface of a 4340 penetrator. This longitudinal section shows the
nonetched HAZ (heat affected zone) formed by friction along the horizontal surface at the
bottom. The rougher edge rising at about 1 o’clock is a saw cut surface. (50x)
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Figure 9. Nosc of a 4340 penctrator showing HAZ and melted material, captured in solidified
rock. (400x)

Figure 10. Cast of molten steel on the shank of a 4340 penetrator. Also visible is the non-staining
HAZ. (heat affected zone). (53x)
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APPENDIX

In this appendix, the integrals in Equations (5) and (6) are cvaluated for some common
and useful nosc geometries. This enables us to easily employ the results in the previous section.

The Conical Nose

There is a particular nose geometry that offers considerable simplification. In terms of the
geometry noted in Figure 1, the conical nose has the equation

a

y=g¥ (A-1)

By substituting Equation (A-1) into equations (5) and (6), we find

2

a a
= + A-2
et M lra? (A2
and
Mm=1. (A-3)
a
The Ogive Nose

Much of the penetration data that has been reported is for ogive-nose projectiles. This
nose geometry is very significant. In this section, we detail the technique presented in the previous
section for conical-nose projectiles with the ogive-nose. The results will certainly lack the
simplicity of the conical-nose projectile, but are nevertheless very useful.

The ogival geometry is shown in Figure 6. It is easy to see that the equation for the ogive
is given by

y=1,sz-(b~x I _(s-a) (A-4)

where s is the radius of the ogive. The ogive is a circular arc of radius s tangent to the shank at
x=b. In terms of the notation in Figure A-1, the ogive radius is given by

a’ +b?
2a

s=

(A-5)

This means that the Caliber Radius Head (CRH) (e.g., see Luk and Forrestal, 1987), v =s/2a,
can be expressed as
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_a*+b 1+a?
4q* 40’

(A-6)

where a = a/b is the dimensionless nose ratio (see Jones, et al. 1998).

The obstacle to Equation (A-4), in Equations (5) and (6), is the evaluation of the integrals.
After some very tedious manipulations, we can show that

2, 2 2.2 2 2,3 -a?
N=2a: (e +2}+ﬂ\:{l+a ) sin"( 2&2)+§~a (1-a7) 4(1-a”) ] (A-7)

+a?)? 162t 1val) 8 a(+ad)? all+a®)?
and
(+a?)? . _i[ 2a ) 1-a?
M = ~——sin - . A-8
4q* 1+a? 2a° (A-8)

These equations have been presented in a different form by Luk and Forrestal, 1989. They are
included here for convenience.

Equations (A-7) and (A-8) are fairly complicated. However, there is one shape for which
they reduce to something particularly simple. The spherical (hemispherical) nose is a degenerate
case of the ogive for which the ogive radius is equal to the shank radius and the center of

curvature moves to the axis of the specimen. In this case, @ =1 and Equations (A-7) and (A-8)
become

1 #p
N==+— A-9
>+ % (A-9)
and
M:i’;-. (A-10)
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Figure A-1. Cross section of projectile with ogive nose
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NORMAL PENETRATION OF SEMI-INFINITE TARGETS BY OGIVE-NOSE PROJECTILES,
INCLUDING THE EFFECTS OF BLUNTING AND EROSION

8. E. Jones
University of Alabama
Tuscaloosa, AL 35487-0280

D. M. Jerome
Armament Directorate, Air Force Research
Laboratory
Eglin Air Force Base, FL 32542

ABSTRACT

Analytical modecling of high velocity penctration by rigid
projectiles bus generally ignored modest erosion with reasonable
success. Mowever, cven modest mass loss from u high velocity
penetrator can result in faitly significant change in performance due to
blunting and volume change in the nose. Recent observations ol mass
loss in high velocity stecl projectiles has lead to the conclusion that
surface melting of the nose is the primary contributor to the total mass
loss. This has motivated the formulation of a one-dimensional
mathematical mode! to explain this process. This mode! uses data from
post-test measurements of penetration tests, but neglects the time-
dependent changes in the nose geometry produced by crosion.

This paper is devoted to a onc-dimensional analysis of
penetration that includes the effects of blunting and erosion. These
effects arc important becausc the nose factor can increase significantly
for very little mass loss from the penctrator nose. The nose usually
contains a small fraction of the total mass and small changes in total
mass result in fairly large changes in the nosc mass. Thesc eflects and
their impact on penetration performance arc investigated. Especially
interesting is the impact that they have on the mechanical properties of
the target material when the one-dimensional mathematical model is
used to deduce these properties from penctration data. The results
confirm that mass loss and blunting are important considerations in
high velocity penctration analysis,

INTRODUCTION

Analytical modeling of high velocity penetration by rigid
projectiles has generally ignored modest erosion with reasonable
success. However, the direction taken by some important hard target
weapons programs has demanded substantial increases in impact
velocity. Under these conditions, mass loss and blunting in recovered
projectiles has been observed. Under some circumstances, this has lead
to substantial reduction in performance at the higher velocities.
Mathematical models that ignore blunting and erosion have failed to

Q. Toness
Armament Directorate, Air Force Research
Laboratory
Eglin Alr Force Base, FL 32542

William K. Rule
Adjunct Professor of Mechanical Engineering
Boise State University
Boise, 1D 83725

produce reasonable correlations with cxperimental obscrvations. This
has lead to recent investigations where the effects of surface melting
and wear have been used to explain the loss of peneteator performance
(c.g., see Toster, et al. [1], Jones, et al. (2], and Beissel and Johnson
3D

In order to correlate wear and penetrator mass loss with
penctrator performance, & new onc-dimensional penctration model is
proposed in this paper. This model includes the cffects of time-
dependent mass loss and blunting (incrcases in the nosc factor).
Naturally, this complicates the analysis and an explicit solution is no
longer possible. The equation of motion is nonlinear with time-
dependent coeflicients. The solution to this cquation is shown to be
implicit when the time-dependent cocfficients are expressed in terms
of the penctration depth. A blunting parameter is introduced and a
simple crosion schedule is used to reduce the nose length in the
penctrator. A two-parameter solution is shown to produce substantial
agreement with experimental results,

AN ERODING AND BLUNTING PROJECTILE MODEL
Consider an ogival nose rod projectilc impacting a semi-infinite
target, as shown in Figure 1. The projectile is acted upon by a net
tesistive force F at time ¢ and has velocity v directed to the left. At
some later time 7+ Af, the projectile has lost an increment of mass
Am and has a new velocity v+ Av. An intcral force i acts

between the main body of the projectile and the mass increment. The
mass increment is moving with velocity ». The change in lincar
momentum between time ¢ and time £ + A¢ is equal to the impulse of
the forces ncting on the system, which ieads us to

mAv+Am{v~-u) =1=FAt {1




where the linear impulse integral, /, hus been cvaluated using the mean
value theorem. The force F = F(E) is cvaluated ot an intermedinte

time &, where { <§"<l + At . Tuking the limit as Ar -0, we find
the equation of motion of the projectile

mv+m(v-u)=F )
This equation, which accounts for the mass loss during penctration,
was presented earlicr by Jones, ct al {4] and uscd in connection with
projectile motion in which mass loss and mushrooming occurs. In the
present context, mass loss will be permitted, but mushrooming of the
nose will not. Blunting of the ogival nose will be uccounted for in the
time-dependent description of the force F. In general, we will assume
that mass loss occurs at the nose and is the result of surface mclting
(Foster, et al. [1]). Thus, it is approprinte to assume (it u = 0
because the melted projectile material will be stripped from the nose
by the longitudinally stationary target.

THE FORCE F
‘Fhe pressure P acting on the surface of the nose of the projectile
is assumed to have velocity-squared dependence and have the form
pP=y?sin?0+R )
where ¥ is a constant with the dimension of density, v is the current
speed of the penctrator, R is n constant with the dimcnsion strength,
and O is the local tangent angle of the nose. The pressure in Equation
(3) is of the Poncelet type. Cavity expansion methods suggest that
y=p,, where p, is thc mass density of the target (c.g., scc Luk and
Forrestal |S]). This is not the only interpretation for y . For example,

the croding penctrating rod mode! of Tatc [6,7} employs the Modified
Bernoulli Fquation and rigid body penetration in this theory is a
limiting case. The pressure acting on the facc of the rod penctrator is
also of the Poncelet type, but in this case, ¥ = p/2..

Assume that friction £ acts on the surface of the nose of the
projectile. This frictional resistance acts tangent to the surface and has

the units of force per unit area (sec Figure 2). Integrating over the
surface of the nose leads to

F=2n fyy'de +2n fyfdx . 4)

Before proceeding further, we should mention the [riction
force that we will cmploy for this analysis. High specd friction is a
subject that has very little history, in spite of the fact that references
dating as carly as 1785 can be found. However, Kragelskii [8] reports
the results of scveral carly investigations and some trends can be
noted. Pressure dependence at low velocities serves to incrcase the
maximum sliding friction attainable. As the velocity increases, friction
the friction decreases and appears to approach an asymptotic limit, as
shown in Figurc 3. The results reported by the early investigators,
indicate that this asymptotic limit is approached for velocities that arc
much lower than those experienced in high speed penctration
problems. With these observations, it is appropriate for a
fundamentally onc-dimensional analysis to assume that the friction

-with time. This means that the equation of

acting on the nosc of the penctrator is constant. This friction will be
denoted by fo .

I nosc of the projectife is assumed to be ogival. The ogival
geometry is shown in Figure 4. Now, integrating over the surface of
the ogive, we find that the component of force resisting the motion of
the projectile is

F =1ta2(7Nv2 +R+ foM) (&)
where
2 y-J
N iy y-—-—-—z-dx - (6)
a 1+y'
and
M =—22- I:ydr. )
a

In gencral, the cocflicients N and M in Equations (6) and (7) arc time-
dependent. From Figure 4, we can find the equation for the ogive

y=y$2-(b-x)? -(5-a). ®)
In this equation, S is the ogive radius, b is the nose length, and a is the
radius of the shank of the penetrator. These quantitics are all related to
the nose ratio o =a/b and the shank radius a through the ogive

geometry in ligure 2. It is-casy to show that S=a(l+ o? ) 2a2.

Evaluation of the integrals in Equations (6) and (7) is fairly
tedious when Bquation (8) is used. However, afler many
manipulations, we can show that

2 2
L @) ®
I(1+a”)
and
242 2
M=(l+a4) sin"[ 2012)__1 0; . (10)
4o l+a 20

These results have been presented in a slightly different form by Luk
and Forrestal [9]. In the analysis that follows, both of these quantities
will be time dependent because &, the nose ratio, will be changing
motion for the projectile,
Equation (2), is not only nonlincar, but has time-dependent
coefficients, m, N, M.

‘MOTION OF THE PROJECTILE

s-2

Combining the results of the previous sections and the
observation that u = 0, we get

mﬁ+rhv=—ua2(va2+R+foM) (1)




as the equation of motion for the projectile. This differential cquation
appenrs to be complicated, but can be casily integrated. Let v=d/m

and now ¢ satisfics

é*mzm‘zmthzn{n% ]:a. (12)

However, the change of varinbles

c_db . db ¢ db
P e T A e 13
¢ dz z=v dz mdz 13
permits us to writc Equation (12) in the form
-d—;--i-hazym‘ll\fw-t- Znasze[w{g— ]: 0 (14

where w=¢2. This cquation is lincar and may be casily integrated
after multiplying by the integrating factor

E= exp{hazy .E m"lNdz} . The result is

$ = E"{vg-m% -2na’R j:m[w—;i M]Ea’z}. (15)
where my =m(0) and ¢ (0) = mgvg (v(0)=vg) were used to

evaluate the constant of integration. Now, reverting to the original
dependent variable, we see that

vi=m2g" [vgmg -2na’R Em[i + -[k?- M}Edz:l (16)

is an integral of motion of Equation (11). This integral can be used to
find the maximum penetration depth achicved by the projectile, z=Z.
Maximum penetration occurs when v=0, which means that

z fo m}vi
1+22M Edz = ——— 17
fn{ * R 2p an

2na

is the equation that determines Z.

Equation (17) is generally nonlincar and implicit in Z. As such, it
is difficult to find Z as a function of the parameters in the problem.
However, there is a simple example that can be used to test Equation
(17). Supposc that m, M, and N arc all constants, say m =mg,

M =My, and N = Ny. Then, all of the intcgrals in Equation (17)
can be directly cvaluated and it is ensy to show that

2
7 mo__ pdis Noyvo

] . (18)
2
2ma"yNo R{H—-—";‘: Mo]

This is the estimute for penetration depth introduced by Jones, et al.
{10] and used to estimate R and f from penctration data. When
Jo =0, Equation (18) reduces to the classic rigld body penetration
estimate obtained by cavity expansion methods, e.g., Luk and Forrestal

[5}.

A sccond integral of motion can now be found from Equation
(16)

|
v=%=m4£ 2Jv§m% -2na2R£m{i -&—{% M]Edz (19)

by separation of variables. The result is

myEdz

= £ 20)
Jt%m% -2ma®R ga{n{é’- M]Edz

and this naturally leads to the estimate for terminal time, £ Iz

mw/lTIa’z

ty =f L)
J;{%m% —2na®R Kv{l-s-f—:g M]Edz

Now, all that remuins to use these results is to find suitable z-
dependent estimates for m, M, and N. This issuc will be addressed in
the next section.

ANALYSIS OF CHANGE IN OGIVAL PENETRATOR NOSES

Bascd on some earlier reasoning (Foster, ct al. [1]), mass is lost
from the surface of the nosc through surface heating due to interaction
with the target. Mass loss duc to surface melting has been discussed by
Foster, et al. [1] and Jones, et al. [10]. For ogive-nose projectiles N
and M arc expressed in terns of the nose ratio o = alb in Equations
(9) and (10). The mass in the nose can aiso be expressed in terms of
. For an ogive, the volume of the solid nose, expressed in the
nomenclature of Figure 2, is given by

V=1tfy2a'x

2, 4.4 2 2,2 - @
=m3[3+2a +3ot -ad+ad) sin"[ 2@2)}

I+a

120° 8a®




This means that the mass of the projectile material contained in
the nosc is m,, =pV , where p is the mass density of the projectile
material. Notice that the mass of the nose is dircctly a function of the
nose ratio o

Mass loss in high speed penctrators is largely duc o surlace
melting of the nose (Foster, et al. {1] and Joncs, ct at. [10]). For this
rcason, it is safc to ussume that the shank radius o remains constant.
This mcans that the time-dependence in my, s approximately
restricted to changes in the nose length b=b(t). ‘This observation
allows us to cstimate the rate of mass loss in the nose by differcntiating
Equation (23)

W, =pV
| 2 a2 2 @
- npa? 3+(: _(3-a )(;-HX )sin"( 2a2] (23)
2a 4a l+a

Evidently, 1, <0 becuuse b<0. For any prescribed crosion
schedule, we can find the rate of change in the nosc length from
Equation (23) and the time-dcpendent nosc length b=b(t) Irom
Equation (22). Howcver, penetration depth is time-dependent, which
means that b is implicitly depth-dependent. Suppose that the initinl
length of the nosc is b = by and crosion takes the nose length to a

final length of b 7 - Suppose that this process is roughly lincar in the
depth, which mcans that

b=bo-(bo—bf)—;—. 24)

This is the simplest approximation to shortening of the nose. There are
others, some of which are more complicated. These will be considered
in later reports.

For the moment, Equation (24) allows us to express 0= alb
approximately as a function of z. This means that N, M, and m can all
be expressed in terms of z by Equations (6), (7), and (22). ‘The mass of
the projectile, m, can be written as the sum of m,, and thc mass of the
material in the shank, which is assumed to remain constant, so that any
erosion only affects m,, .As indicated, we can use Equation (24) to

express & in terms of z

(25)

where . = a/by is the initiul nose ratio and A=1-by /by isa

dimensionlcss blunting parametcr expressing the change in nosc
length. If no blunting occurs, then A = 0. For significant blunting,

A isclose to 1. However, A is always between 0 and 1.

Each of the functions of & that express the time-dependence of
N, M, and m is very complicated when fiquation (25) is used. In spite
of the simplicity of Equation (25), Fquations (6), (7), and (22) are
gencrally too difficult to perform the operations required by the theory.
However, in this case some of the analysis can continuce if a few more

assumptions that apply to high velocity penctration arc made. Small
changes in m and M do not significantly influence pencetration results.
So, we will neglect changes In these quantitics and treat them as

constants mg and Mg, their initial values. This cnables us lo
evaluate the integeal in

E= cxp{21tazy J:m"Ndz}

. (26)
2 2 2
xplzna y #2022 +a?) dz}

my 3+ (7.2)2

After some ledious manipulations, we can show that

2 2 2 T
I2a (2+a )'z=za° 7z 1
3(['0'(!2) k)N G(Z)_'_(\_xi)z l'l'(!%
z
I-A-=-
+£ tan™! -l—z— —tan”! 22 . 27)
.k g aq

For a penctrator with no blunting, A = 0. To recover this limiting case
from Equation (27), we compuc the limit as A ~>» 0 and we can show
that the right hand side of Equation 27 tends to

2a3 2+ a% )z/3(1+ ct(z,)2 as it should. Now, we can use this result

in Equation (26) and then substitutc the result into Equation (17) to
find Z for a specific erosion situation. If no erosion occurs, or the
effect of blunting can be neglected, the right hand side of Equation
(26) is replaced by the limit as A—0.

EXPERIMENTS

A scries of penetration experiments were performed on the test
range at Eglin AFB, FL. ‘These 50-caliber depth of penctration
experiments were conducted with stecl projectiles striking grout and
concrete targets at 800-1800 m/scc (2624-5904 ft/scc). The targets
had nominal unconfined compressive strength of 56.3 MPa (8160 psi),
and a mass density of 2300 kg/m’® (143 Ib/f). The projectiles were
fabricated from scveral diffcrent types of high strength steel atloys,
which ranged in yield strength from 1.24-1.76 GPa (180-255 ksi). All
projectites were machined with a 3.0 caliber-radius-head tangent ogive
nose, a shank diamcter of 12.7 mm (0.5 in), and length-to-diameter

ratio of 7.0. The projectites had a mass of 65g (0.143 1b), and also
contained an internal cavity. Depths of penetration were recorded,
which incrcased as striking velocity increased. An innovative
projectile recovery technique was developed in order to study the in-
situ projectile trajectorics. This technique utilizes a fluorescent dye-
impregnated two-part cpoxy to stabilize the penetration channel and
surrounding crack systems. Large diameter (25.4 cm/10.0 in) cores -
including the impact crater, penetration channel, and projectilc were
removed from the target, allowing the sectioning, visualization, and
analysis of the in-situ trajectories. Subsequent projectilc recovery
revealed moderate nosc crosion and blunting, and mass losses up to




8% of the total projectile mass. An 8% mnss loss can be vy
significant if the volume of the nosc is only a small feaction of the tetal .

volume of the projectile itsell.

RESULTS _ .
For cach sct of experimental data, the blunting parameter is

evaluated and a best fit to the experimental data is achieved by varping
Rand fp. The results of these corrclations are given in Figures 3-10.

The most effective pencirator, Experimental Steel 2 (Figure S), husthe
minimum frictional cocMicient fp =6.69 MPa. The pencirator that

performed worst, 4340 Stecl (Figure 10), had the highest value of ‘

Jo=11.6 MPa. All of the other materinls were somewhere between,

The values of R also varied from material to materia), but not as much
on a percentage basis. The range in R valucs is from 446 MPa:le 625
MPa..

CONCLUSIONS

The correlation between the theory and the cxperimentally
mensured penetration depths is excellent as expected because the
paramoters R and fp were chosen to minimize the error. Neverthaless,

important trends may be noted. The best performing projectile mmtterial
was that for which the [riction between target and the projectile: mose
was least, This corrclation is consistent with mass loss observatiions.
Instinctively, we would think that R would rcmain constant fer the
different penctrator wmaterials because the normal pressure om the
projectilcs should be a target property, rather than a target/pencitrator
property.

There were several assumptions made to simplify the analysiis that
could account for the discrepancics. A more accurate friction law that
reflects the velocity-dependence along the profile of the nose could
account for the differcnce. Also, the assumption scgarding the
shortening of the nose in Equation (24) may be too crudc. bm any
event, there arc several points to address in future work.
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Figure 1. An ogive-nose projectile impacts a target. Attime
t, the projectile has mass m and velocity v at a depth of
penetration z. Attime t + At, the projectile has lost an
increment of mass Am. The mass Increment Am has
velocity u, while the projectile has velocity v + Av and the
depth is z + Az,
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Figure 2. Pressure P and friction f acting on the surface of
the nose of an axisymmetric projectile during penetration,
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Figure 3. Typical sliding friction/velocity proflles. The shape
of these curves deponds on tho materials in contact and
the normal pressure. But, they all share one thing in
common in the asymptotic limit.
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Flgure 4. The ogival nose geometry. The tip passes through
2ero at x=0 and the tangent is zero at x=b., The remainder of
the projectile is a cylinder of length L.
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ABSTRACT

A new one-dimensional analysis of long-rod penetration of
semi-infinite targets is presented. Models in this field attempt to
accurately describe the penctration process of a uniform len%smd into
a uniform semi-infinitc target. This one-tdimensional analysis predicts
profile hole diameters and penetration depths over a wide range of
material combinations and extends the previous analyses in this arca
to include hypervelocity impacts. This approach utilizes values of
material dynamic yield strengths, known impact conditions, and the
well-established crater volume/kinetic energy relationship to predict
crater hole characteristics over an impact velocity rangcof 1106

LIST OF SYMBOLS AND ABBREVIATIONS o
8 slope of the crater volume/kinetic energy relationship
A cross-sectional area of the mushroom of the rigid-plastic

ctrator
A initial cross-scctional arcs of the undeformed penetrator
cross-sectional area of the penetrator at impact
cross-sectional area of the penctrator at steady state

intercept of the crater volume/kinztic energy relationship
original diameter of the undeformed penetrator
engineering strain in the mushroom of the penetrator

e . enginecring strain in the mushroom at impact

¢y engincering strain in the mushroom at steady state
Eq kinetic energy of the penctrator at jmpact
? current undeformed section length

L original length of the undeformed penetrator
Pa pressure on the axis of the penctrator tip

py  pressureon the axis of the penetrator tip at impact
Py pressure on the axis of the penetrator tip at steady state

QUW-?cgb

kmvs. The analysis presented here includes an initial transient phase
and modifics previous estimates for pressure on the penetrator tip at
steady state. The average pressurc at stesder statc was found tobe

constant value over the range of impact ve

ocities for a particular shot

combination. The specific value for the average pressurc was found to

be a dircct function of

¢t strength. The resulting equations retain

computational simplicity by remainin eampi:tcl{' algebraic in nature.
Correlation with a majority of the re ity available experimental data
is given. The results are very reasonable for a one-dimensional model.

Py

o]
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AT A
~

average pressuse on the penetrator tip
average pressure on the penetrator tip at impact

average pressure on the penetrator tip at steady state

average pressurc on the penetrator tip at steady state,
independent of vq

radial distance from the axis of the peastrator
oripinal undeformed penetrator rod radius
dynamic yicld strength of target

current penetration velocity

penetration velocity at impact

current velogity of the undeformed section
impact velocity

crater volume of the recovered target
dynamic yield strength of penctrator

penetration depth
peneteator density

ratic of target density to penetrator density




INTRODUCTION
Tate (1967) and slmultancousx Alekseevskil 1(1966?.
rnbllshed a onc-dimensional theory for the penetration of semi-
nfinite targets by long rods. Tato (1969) later published a second
paper. These papers form the basis upon which the accepted theory
of one-dimensional rod ponetration rests. This theory attempts to
accurately describe the penetration process of a uniform long rod
into a uniform semi-infinite construct of target. A prediction of the
resulting penctration hole characteristics avallable from this
analysis. By comparing the theoretical predictions to experimental
data, we can evaluate the accuracy of thesé onc-dimensional models.

Jones, ot al. Sl987) modificd the equations of motion for
the undeformed rod section by cmploying a balance of linear impulse
and momentum. In subsequent papers, Wilson, et al (1989) and
Gillis, et al (1989) offered some improvements and better agreement
between the theory and experimental data was observed. However,
this approach relied upon post-test measurements for estimates of the
englnecring strain in the mushroom of the penetrator tip. The strain
was assumed to be constant throughout the process and equal to that
measured from the profile hole diameter. By using the modified
Bemoulli Equation proposed by Tate, the pressure, penctration
velocity, and undeformed section velocity were coupled with the
modified equation of motion and an cquation for the conservation of
mass passing from the undeformed section of the penetrator. This
system was integrated and the resulting predictions for penetration
depth were compared to experimentally observed values from the
recovered targets, The penetrator and target dynamic yield strcng\hs
were taken to be constant during the event and estimated from
laboratory values for yield strengths at the highest available strain-
rates.

These results were satisfying and showed promise, but
based analysis of keg parameters on post-experiment measurement.
Kerber, e al. (1990) utilized a well-established crater volume -
kinetic energy relationship, e.g. Murphy (1987), to remove some of
the dependence on post-test measurements. The aim was to produce
engineering strain as a by-product of the solution of the model.
However, because the penetration process was treated as being
dominated by the steady state, the results did not correlate well over
a large range of impact velocities and rod lengths. The correlations
with experiments were satisfactory for longer rods and higher impact
velocitics where steady state penetration can be presumed to
dominate the event. The initial and terminal transients were
neglected in this and previous analysis. The initial transient would
appear to become more important in shorter rods and lower impact
velocities.

Cinnamon, et al. 519923,b) reported a significant increase
in accuracy by incorporating an initial transient phase to the

enetration process, is analysis was based on observations by

avid, et al, (1990), Glilis, et al. (1990), and Jones, et al. (1991).
This latest aplproac yielded good accuracy for a one-dimensional
mode! in the 1 to 3 knv/s velocity range. The results depended only
on ghysical parameters determined beforc testing and the well-
established crater volume/kinetic energy relatfonship. The terminat
transicnt was neglected in this modél. The resulting equations were
completely algebraic in nature. Of some concem in this approach
was that the trends in the predicted penetration depth curves were
tending toward significantly high values for impact velocitics above
I km/s. When experimental data for 3 - 6 km/s were cvalvated, the
model's accuracy indeed deteriorated. In examining the model, it
became obvious that the predictions of pressure available from the
modified Bemoulli Equation were simply too high. In fact, the
correlation discovered by Cinnamon, et al. (1992a,b), indicated that
the pressure profile could be successfully modified in such a way that
the average pressure at steady-state predicted by the Bemoulli
Equation was reduced by a specific factor (which depended
exclusively on target strength) to match experimental penetration
depths. ¢ parabolic nature in which the modified Bemoulli
Equation predicts the interface pressure at steady state as impact
velocity increases was somewhat minimized by this technique.

In Jones, et al. (1993), the pressure distribution on the
penetrator tip was modified to attempt to coryect for the deteriorating
results above 2.5 km/s. With a judicious cholce of two
dimensionless parameters, slight improvement was observed,
However, a physical relationship between these parameters and the
model was not discovered. The pressures predicted by the modified
Bemoulll Equation were once again reduced to achicve acceptable
results. However, this new pressure distribution contained the same
parabolic component as the psvious approach.

In this paper, several approaches to the cholce of pressure
at steady state were evaluated. It became clear that past successful
solution forms for the pressure distribution were thosc that cancelled
out the parabolic nature of the modificd Bernoulli Equation. As a
consequence, when the average pressure at steady state is taken to be
a particular value for a specific material combination over all impact
veloclties and directly related to target strength, a sig\lﬂcam increase
in model accuracy resulted. The model was successfully extended :r
to 6 km/s. This paper includes results reflecting analysis of all
readily available experimental data in this field of research, a great
majority of which has been compiled by Anderson, et al. (1992).

THEORY

The general concepts of the rod penetration process are
detailed in Figure 1. The undoformed penetrator Is a cylinder of
known length and diameter, which impacts the target at a nominal
normal incidence at a known velocity, The penctrator enters the:
target and experiences mushrooming in the tip. When the cvent has
concluded a crater with a measurable diameter and depth remains.
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Figore 1. Schematic of Rod and Penetration Process.
(a) undeformed rod of length L and initial cross-sectional area
A} Theshaded portion will be lost to erosion. (b) penetration

event. £ is the undeformed section length and z is the
penetration depth.

Primary Governin .E ations
Jones, et E' (1987) proposed a modification to the

ﬂuation of motion of the undeformed section of a rod penetrator.
is equation is

-P

£V+£(V—u)=m

)



where {is the undeformed scction length, v is the current
undeformed section velocity, u is the penetration velocity, P is the
sverage pressure on the penetrator tip, P is the penctrator density,
and ¢ is the en&l:ecrln strain in the penetrator mushroom. The
details behind development of this equation are contained in
Jones, et al (1987).

Wilson, e al. (1989) addcd another koy equation to the
analysis. The conservation of mass across the plastic interface
between the mushroom and the undeformed section of the penetrator
was given in the form

el=v-u (7))

The penctrator is assumed to be rigid-plastic during the cvent. In
both {1} and {2), dots over the symbols represent differentiation with
respect to time. The engineering strain in the mushroom is
compressive and therefore negative, The current value of the
engineering strain in the mushroom is defined to be

A
e=—t— 6))
A

where Aj Is the initial cross-sectional area of the undeformed
penetrator and A is the current cross-sectional area of the mushroom.

Pravious Pressure Analysis
average pressure on the penetrator tip, P, can be varied

by considering various pressure profiles. In Jones, et al (1987) and
Wilson, et al (1989), the pressure was assumed to be uniform across
the mushroom face. The intensity of the pressurc was assumed to be
the solution of the modificd Bernoulli cquation. This cquation, from
Tate (1967, 1969) and Alekscevskii (1966), is applied at steady state
and relates pressure on the axis of the specimen at the penetrator tip,
Pa, to the undcformed section speed v, the penctration velocity u, and
material properties of the target and penctrator. The modified
Bemoulli equation is

p.=%pzpﬁz+&=%p(v-n)’+¥p @

where Ry and Yp are dynamic yield strengths of the target and

penctrator at suitably high strain rates respectively, and ff is the
ratio of the target to penetrator density.

Gillis, 21 al. (1990) suggested that the uniform pressure
profile was not realistic and proposed a parabolic form, which was
symmetric about the axis of the spocimen and zero on the edge of the
mushroom. In this case, the pressurc p had the form

!
P=P, (I*E; ©)]

where pa is the current pressure on the rod axis, R is the original rod
radius, and r is the radial distance from the axis. The factor (1+¢) in
the denominator of the pressure term in 183) forces the pressure to act
over the deformed mushroom face with area A, even though (5)
refers to the original rod configuration.

The average pressure P can be computed, in general, by

1
P=-— ipdA
A, A_EP § (6)

Wiien P was calculated for (8), the result was P . The predictions

for penctration depths were somewhat improved over the previously
assumed uniform pressure distribution. The results still suffered
from ignoring the initial and final transients in the penctration event,
This parsbolic pressure distribution effectively reduced the parabolic
nature of (4) by a factor of two. Although this improved the model
by reducing the effect of {4), the addition of at lcast an inltial
transient seemed warranted.

in Cinnamon, ef al. {1992a,b), the pressure distribution was
generalized to the form

p=p, —-i;) ™
which made the average pressure term become
P,
= g).
(n+1) ®

This now pressurc distribution was successfully employed
with an Initial transient phase to corrclate to a large number of
experimental cases. The pressurc exponent n was ound to be &
direct function of target strength.  Although this approach Fmvideé
improved results over previous approaches, the analysis couid not be
suceessfully extended beyond 3 knvs. .

Jones, ef al. (1993) attempted to comrect the problem by
}s’dagit:;g af uniform component to the pressure profile. The distribution

¢ iorm

2
T
F=§+(P."Q)(1-E; " ©)
and the average pressure became
_mq P

T+ @+ a0

This new pressure profile improved results slightly and cxtended
them into the hypervelocity range (3 - 6 km/s). However, q and n
were not successfully corrciated to any physical parameters.

In this paper, another approach to the determination of the
average pressure will be explored and 2 successful correlation to
target strength will be presented. In addition, the widest possible
body of available data will be used in the correlation.

Transient Penetration gnai¥sis . .
n cinnamon, ef al. 2a,b), an initial transient phase of

penciration was added to the model. The transient phase is
characterized by impact shock effects and complete mushroom
growth which occurs between impact and the beginning of steady
state penetration. We assume that the penetrator impacts the target at
2 known velocity, vq, of sufficient magnitude (i.e. vo > 1 km/s) such
that the undeformed scction cannot sustain any appreciable

deceleration (ie. V= 0) during the initial transient. This means

-




that v = vg throughout the transient or mushroomig phase of
eiratlon, During the Initisl transient, the mushroom develops
a cross-sectional aren AQ at impact 10 Aq, when steady state
begins. The mushroom retains an arca of A) throughout the steady
siate portion of the penctration process until the end of the event.
Ravid, e al. (1990) reported that there was little change In
penctration velocity u during the shock/impact stage of the initlal
transicnt phase. Motivated by this observation, we assumed that the
penctration velocity was approximately constant (l.e. u = up)
throughout the initial transient. Hence, (1) becomes

. -P

L(vy—-u n

( 0 o)’p( +e) an
and (2) is modified to

el=v,-u, (12)

These two equations, (11) and (12), govem the mushrooming of the
rod during the Initial transient phase of the penctration event - which
precedes the swad{vstate. Al impact, the enginccring straln in the
mushroom s ¢g. When steady sate is reached, the strain becomes
e].

By climinating £ between (11) and (12) and solving for ¢,
we arrive at an expression for the enginecring strain.

v o \?
o= (Vo =U,) )

P
(v =up) +—
0 ~Ho) + T

This relationship provides us with an explicit formula for the strain
in the mushroom as it develops during the transient phase. This
equation governs the behavior until the beginning of the stcady state
penetration phase. The pressure on the axis, ra. is changing rapidly
during mushroom formation. It has a large value, pg, 8t impactanda
reduced value, py, at stcady state.

When steady state is reached, we assume that the modificd
Bemoulli Equation, (4), is valid. At the transition point between the
transient and steady state portions of the ovent, (4) can be expressed
as

1 1
P =‘2‘¥’~2p'~102 +R, =EP(V0 ~u,)’ +Y,
(14)

and (13) can be written as
2
_ ~ (Vo —Uy)

| =
P

(Vo ““o)2 +—

P

(15}

where Py Is the average pressure on the penctrator tip at the
beginning of steady state.
Equation (14) can then be used to solve for ug in terms of

the known quantitics vp, P, }Lz , Ry, and Yp. The remaining
variable in the system of equations is Py. The determination of Py is
the primary focus of this paper.

The penetration veloclty up can be found algebraicall
from (14). The three primary cascs lroo outlined below, ’ 4
For equal penctrator and target dynamic yield strength (l.c.

Re Yp) and cqual densities (Le. p2 = 1), ug reduces 1o
u, = 1-v‘, (16)
2

For unequal penetrator and target dynamic yleld strength
(le. Ry # Yp)and equal densities (l.c. p' = 1), ug becomes

_pve +2(Y,-R))
2pV,

a”n

Ug
In the general case, ug is given by

-V, 1
2 + L -
pi=1 pu' -1

Uy =
| !
2
[p’ Vo =2p (0’ =R, -Y, -2P vo’)]
(18)

In cach of thesc cases, then, up can be determined
algebraically from known matcrial propertics and impact conditions.
This leaves ¢ in (15) as a function of known parameters and the
averago pressure on the penetrator tip at steady state.

lmpact Co?gjglonc
c model outlined above also provides some information

about conditions at impact. The n on impact eg can be
calculated from (13) if we know the avernge pressurc on the
penetrator tip at impact, Pg.

2
eo =__.LY.2.._‘.1.9)-—- (19)

(Vo =ug)? +—=
0 0 p

The impact pressure can be estimated from elementary shock
physics, using

Po =P UMYy (20)

where ug is the shock speed in the target. Values for ug as a function
of ug can be found in shock Hugoniot tables, e.g. [16]. Calculation
of P from a known value of pg can typically be accomplished using
the same approach as the calculation of Py from pg.

Cratering Agg]%sis
e mathematical modet for the behavior of the penctrator

is a rigid-plastic, Instantancously croding rod model. As a result, the
penetrator enters the target with some impact engincering strain e
that expands to €] during the transient. The impact pressure pg is
usually very high relative to the steady state pressure pj. Although



this pressure decreases rapidiy éuringcmushmom formation in the
mmfem phase, the values for p? can be significant. The mushroom
diameter grows from the time of impact through the transicnt phase,
and ccases at the beginning of the sieady state portion of the event.
The shock/impact stage takes place in & period of a few microseconds
(Ravid, ct a1 (1990)).

The instantancous erosion assumption prevents the model
from uccounting for any additionul erosion of the target - which
occurs in acwal ice. There Is typically appreciable change in
target geomctry due to pencrator and targel mnterial e{c:uon from
the craer. As a consequence, the recovered targets will appear to
have more cylindrical-type craters than the sl would predict.
Figure 2 illustrates the crater predicted by the mathematical model,
and Figure 3 indicates how the actual geometry frequently appears.

%Eimmg penciration depths from the above model is

made possible through the usc of a somewhat empirical approach.
For s number of years, researchers have observed 2 significant
correlation between crater volume in the recovered targets and
img:‘ct kinetic energy. 6.8 MurPh)r (1987). This relationship appears
to be lincar for impact cases of sufficient, but not excessively, high
energy and can be expressed in the form

V,=aE,+b @

where V is the crater volume, Eg is the impact kinetic encrgy and is

1 2 , .
qu ~ » BN variables regression
al 10 ZpAiLVG d the varisbles a and b are regressi

constants determined from the available experimental data.  The
linear fit is performed for each shot combination.

cse crater volume/kinetic energy relationships are
computed from data points for a particular shot combination. The
reliability of the linear fit is, of course, a function of the number of
data points available. Since most experimental tests are quits
zxﬁmsive. frequently the data is sparse and/or somewhat scattered.
When the linear fit predicts cratering at zero impact kinetic energy,
o in some other way reflects erroncous trends, the uscfulness of the

& .

Figure 2. Idealized Crater Geometry
Ag and A} sre the cross-sectional areas at impact and at steady
state respectively. z is the penetration depth.

T-5

particular case is significantly reduced. This phenomenon is
typically avoided by a sufficient number of experimental points. The
accuracy of the penctration prediction ix extremely dependent on the
mch ‘ volume/kinetic enorgy relntionship mrived at using this
technique.

. —

Figure 3. Actual Crater Geomelry
A1 s the observed crater cross-sectional area. The crater is
assumed eylindrical with sititude 2.

de adopting the cylindrical approximation for the crater

geometry discussed above, we can generate redictions for the

penciration depths. Because of the cjection of material from the

gram, the cross-sectional area of the recovered target hole, Ay, will
e

. @
' +ey)
The crater volume can be expressed as
V.=Az (23

where z is the penetration depth, The penetration depth can be
predicted by spplying the crater volume/kinetic energy relationship
to V. From (21) and (23), zis given by

1 1
z=‘£—&:(l+e:,)\"c =~A-;-(i+e;)(aEa +b)

@4

Thus, the penetration depth can be expressed as an algebraic function
of known material propertics and impact conditions, and 85 a
function of the average pressure on the penetrator tip at steady state.

CURRENT PRESSURE PROFILE ANALYSIS

In the previous work outlined above, it was noted that onc
of the primary difficulties in achieving good predictions for the crater
characteristics was the manner in which the modified Bernoulli




Equation (4) predicted prossure as a function of u ahd v. The

lic nature of (4) tended to over-predict penctration de ths for
tho higher velocity cases (3« 6 km/xz. ter successes, particularly
in the intermediate velocity range (1 = 3 kmv/s), were the result of
pressure disiributions that tended to reduce the effect of (4). In this
paper, additional pressure distribution analysis is performed to
address this problem,

Previous Eﬁo&ggvg Q!thgﬂgm
obvious dcparture point for the attempt to improve the

one-dimensional analysis and extend it into the hypervelocity range
was 10 begin with the previous pressure distributions. A great body
of additional experimental data became available in Anderson,ct al
(1992) that expanded the range of materials, greatly increascd the
number of shot combinations accessible for analysis, and provided
data In the hyperveloci!{ range. The pressure profiles detailed in (7)
and (9) were examined for possible application in these new cases.
The distribution in (7) was unabie to compensate for the
arabolic nature of (4) while maintaining accuracy in the
ntermediate velocity ranges if n was considered a constant as it was
in Cinnamon, et al {1992a,b). Ancm;lns to model n as a function of
material propertics or impact conditions were not successful. In
general, It was observed that n necded to increase with impact
velocity to_essentially cancel the effects of the modified Bernoulli
Equation. The distribution in (9) followed the same trend. Although
the results improved, the net effect was to choose n and q to counter
the dramatic pressure increase dictated by equation (4).

New Pressure Distribution .
0 attemnpt to find a solution to this dilemma, & new, more

general, pressure distribution was proposed. The pressure profile
takes the form

p=q+(p, —q)(l—(%)“‘)'

This profile is a more complex and versatile one. A great deal of
additional control over the shape of the pressure distribution was
provided by (25). The average pressure then is given by

(29)

1"(;2;)1"0 +1)

P=q+2(p,-9 (26)

mI'(1+—"'-’-+n)
m

where I is the well known mathematical gamma function.

As a significant number of cases were examined, it became
increasingly clear that in order to achieve the desired trends in the
theoretical penetration curves, n and m were chosen in such a way as
to essentially eliminate the effect of the second term in (26). Thatis,
an average pressure comprised of a single value, g, which was
unvarying over the range of impact velocities, achieved the best
results, This discovery matched our previous experience with (7)
and (9). Apparently, the magnitude and trends in the pressures
predicted by the modified Bemoulli Equation were not leading to
acceptable results. All previous successes were based on choices that
reduced or eliminated the contribution of the velocity dependent
axial pressure in (4) to the valuc of Pj.

avised Averaqe Pressure Approach
With %e rcsuits Kescnha above, another approach was

required. 1t became clear that the previous calculation of the average

pressure at sicady state, Py, was not acceptable. To simplify the
Inmlyr:‘{s. the connection of l’| 10 a particular pressure distribution is
gnored.

" The problem is further simplified by the fact that the
desired wends in the penotration depths result from a constant value
for P| over the entire velocity range.

This spproach does not imply that the pressure
distributions have the same shnre for differing velocities, or that py
Is cquivalent for all velocities, simply that the value of P) is constant
for s particular shot combination over all impact velocities.

RESULTS

When P| was assumed to be some constant average
pressure on the penetrator tip independent of vq, defined here to
Q. for all impact vclocities in a perticular shot combination, the
results of this model improved tremendously. The penctration depth
theoretical curves adopted the-trends present in the experimental data
(l.e. penotration depths leveling off as velocity incrcases toward 6
kmlaf.mln addition, the values for Q that yiclded the best results
correlated strongly to tasget strength.

In order to establish the most credible and most comﬂetc
corvelation possible, all availablo data were employed. [
consequence, this paper includes a large number of representative
figures. In order for this mco7' to be applied effectively,
experimental data scts must have ncluded cratcr diameters. A
number of the cases in Anderson, et al (1992) did not provide this
information. In addition, a minimum of two data points was « uired
to construct the crater-volume/kinetic energy re ationship. Hence,
some other cases could not be evaluated, With those limitations in
mind, the author applicd ail readily available cases to this model and
reports the results.

Table 1 summarizes all the cases and provides essential
data about each shot combination. The figure numbers referred to
can be found in this paper. The figures shown are representative of
the entire body of data. One figure number is assigned to each shot
combination shown. The crater volume/kinetic ener relationship
used to generate the penetration depths appears in Table 2. In some
cases (as indicated in Table 2), the relationship was modified by
removing certain data points that appear erroneous or that skewed the
general trend.  When these points aro removed, the relationship
changes - which modifies the resulting penetration curve. Of course
this does not aiter the strain curve in any way. The entire data set,
with both modified and unmodified curves for all cases, appears in
Cinnamon (1992 a,b).

The figures show theoretical curves superimposed on
discrete experimental points, The upper curve in the strain vs,
impact velocity ﬂtﬁurcs represents the estimate for eg.

When these cases were evaluated, a certain value for Q
could be chosen to match the experimental data. This Q was found
to strongly correlate to target strength. Table 3 reports each of the
different tavrlgcls present in the data and their corresponding Q value.

ith this information, it was immediatcly evident that
some swrong relationship existed between Q and tar'get strength.
Figure 4 depicts the values for Q chosen to allow the model to
predict penetration depths and crater diameters accurately against Ry.
A curve is fit through the data to both illustrate the correlation and
provide a functional relationship between Qand Ry Thebestfitis

Q = 3-8 (1 __e(—0.0M” R|)) - 0.8

With Q as a direct function of target strength, this one-
dimensional penetration model can be expressed in terms of known
material properties and impact conditions. The crater volume/kinetic
energy curve is still needed to allow for the calculation of penetration
depths, however.

@n



To place this revised mode! into context with regard to illustrate the comparative results between these three different

those used previously, Figures 5 and 6 arc presented. These ﬁéurcs approaches 1o the calculation of the sverage pressurc at steady siate.
Table 1. Experimental Data Summary
Fig. Pencetrator Y L Target Ry 2 Ref.
Pl P L wp
D
’ ovpe) | KB | (mm) ™Pn) | g
m’ —

7 Alum Alloy | 200 2700 53.5
TIO0-UAl 50 2720 Y525

2024-T3 Al (YA ZTI0 525

~7075-16 Al SO0 | 2804 | 9.523
CTOTS St | 600 | 7600 9525

et
<

Lead 700 ] 11200 T™E
TT00-0 Al 250 2720 CHiL&Genr. |
TTO0-0 AT 301 2120 CRnst.&Gehr. |
TIOO-OAT | 230 | 2720 “CRSLEGEN. |
TIO-UAT 250 TTI0 | CRisLAGerr.

4 Sofl 4340 1263 7850 L T024-T3 Al 300 Z770 Wilson, et 8l

707516 Al 00 7808 | 3.0 TIETEAT | a00 | 2770 | Wison, ctal |

Herd 4330 | 1846 7850 IS T075-T6 Al 500 | 2804 “Wilson, etal

SoR 4330 | 1263 T830 3.1 707516 Al 500 Z T Wison, el & |

“7075-16 Al 500 2803 I T075-16 Al &00 IR0% T Wilson, etal |
TT00-0U AT 2350 2720 9525 CI0TS 5L 00 | 600 | i3 ;

2053-TT Al [ ITI0 | 9.5308 TTOTS St 500 T600 TRISL&Genr. |

TO7T5-16 Al 00 2808 | U.025 TI0I5 St 500 ChrsL&Gent. |

CI0IS St oUU 7600 G525 LiVio ot o Te0U | CRIGL&EGENT.

MUNWMUNM&WWWWMUMUMWWWU

%330 Steel 1600 7810 08,98 “BUI-T031 Al | OO TTI0 | LukEPiekaiowski |
TIOO AT | 250 | 2720 0525 ZOILTIAT (Y] ITT0 ChsL&Genr. |
TIO0-0 AT 250 7720 525 304 SULSL 75 T00 | CRrsLEGERr.
202413 Al 573 2710 9.555 2023-T71 Al 573 TTT0 | Chrst&Genr.
20-TT AT (Y] 2770 U525 304 St.oL. (i) ToU0 ChisL&Gent.

(o [ R 00 TR0 9,325 202513 Al (YA 770 T ;
TI0IS St 00 Te00 | 9.525 304 St.oL LYE) 7900 ThRisL&EGERt. |
£ JOTSLEG YA TO00 | 9.525 JOIE-T3 Al (Y] 2770 CHsLEGent. |
J03SUSL (YA 7900 9325 304 St 573 TG00 | ChrsLe&cGent.
CITOWT T200 7850 25 1] ST TES0 FoRler, el al |
10 TITOWT 1200 7850 43 10 S37 790 7850 Hohler, etal
CIIOW] T200 | 7850 bL ] W1 S8/ T30 7850 Hoher, el |
TII0WT T200 7850 25 TU SZ 850 7850 “Hohler, etal |
CITOWT T200 7850 %3 0 ST 850 | 7850 |  Hohler, elal |
CITOWT T200 7850 33 T0 S2 B30 7850 HoRler, etal |
1 DI7 7500 | 17000 28 L Y 3 7850 HoRfer, e1al |
DI7 2500 T7000 (2] 10 gLy B30 7830 HoRler, eval |
CITOW2Z TI00 7850 38 1) HZBA TS0 7850 | Hohkn el
Marag St TO00 7850 38 10 HzB A 850 7850 “Hohler, et al |
Marag St_ TOU0 7850 1% i HzB.A E50 TS50 | Homer, cial |
ISCrRIMC 2200 7850 34 10 H2B A 850 7850 Hohler, et &l |
Elmet 2000 13500 3% 10 “HZBA B0 7850 Fohter, el

DI7K 2300 T7300 38 10 Hz2B A 850 7850 Hohler, et al
DI7 7500 | 17000 38 (] HzBA 330 7850 Hohler, eal
W 500 | 19300 (1) 10 HZBA 850 7850 “Fohler, et &l |
Vi) 7500 | 15500 38 10 HZB,A B0 7850 | Honer, ga
WoT | 2900 17000 R4 10 HzZBE A~ B30 7850 Honler, etal |
D18 500 | 18000 | 98 10 HzB,A 350 7830 Hohter, eral |
HOIT 000 | 14500 3% 10 HzBE A B350 7850 Hoher, etal
DI7%6 Z000 T7600 1.7 10 HzEB,A B30 TES0 | Homgr,ela@
DI7.6 2000 | 17600 55 10 HZBA %50 | 7830 Hohter, et al |
12 Steel 1600 7850 58 1 10 HzBA E50 7850 “HoRfer, efal
D17 2500 | 17000 1% 70 HzZB.A 850 7850 HoRler,cial |
D18.5 2500 18500 58 10 HzB,A 850 7850 Hohler, etal |
“HOTT Z000 14500 B3 10 HzB A 50 7830 “Fohler, etal |
He0T TG00 | 13500 50 10 HZBA 850 7850 “Hotler, etal |




TG0T TS0 | 13500 38 0T HHA S0 ] 7850 Rme x
H701 T30 | 13300 [2Y) 10 TZBA B350 7830 TIoRIET, o
701 T30 | 13500 38 10 TZB.A §50 7830 T A
DI78 TR0 | 17600 TOTS | 17.3 " 7930 iler,
DI85 000 T TO73 2] ~H.A §30 7830 .
DI7.6 0001 17800 | 1I0.25 | 225 . S0 7830 [ Hohr, ot |
D175 000 77600 | 1358 | 32 TzZB A ¥ TR TShTer, 1Al |
13 D175 000|178 | 1632 | 32 Hz0,A ¥50 | 7850 T,
Hard 4340 1826 830 (2] () RHA T 7850 s OXp.
—~OTFHC Cu 300 [3Y [ RNA TR0 7850 Twnamon, ¢
Tantalum SUU T6800 o0 [ REA TU00 7950 Tlanamon, et al |
Hard 4330 | 1820 7830 U525 T3 KHA T000 T8350 Clanamon, etal |
Kenn W10 2300 [ 17300 1338 23 RAA TO0U 7830 L1107
Kenn WIU 2300 T7300° | 12175 | 43 RAX TO00 78350 ~STlsby
D17 2500 | 17000 78 T0 W8 TOU0 7850 TIohTer, otal |
U-33TY 7000 | 18600 | 205.7 20 RIA T000 7830 Keels, o
WIZS 2500 | 171350 TS T0 Ger RHA 100U TES0 | Wilkiiis, otal |
Kean WTU0 T300 | V7200 30 10 Ger KA TOOU RS0 | Wikins, etal
1€ Teledy X27 2500 T7330 | 78.74 10 KHA TOU0 T80 1 Wooliey, ot ol |
] CTIOW] T 7830 pig 10 Ger Amm St TIW 7830 1151000
- CTTOWT 1200 7850 LX] 10 GerAnm ot | [100 TR0 | VIohler, etal |
TTIOWT T200 7850 bL) T0 Ger Amm St TI00 78350 TIhler, etal |
DT7 500 | 17000 78 10 Ger T 7850 TIoRTer, elal |
DI7 2500 { 17000 %0 10 GerAmot | 1TWU 7850 NG
D17.6 200U 17600 17.4 K} Ger St 1200 71850 TToRTer, ot al
D76 2000 | 17600 9 3 Ger St T200 T830 T,
[2) KA J000 17000 LY} 10 Ger St T2 78350 ~Hohler, ot al
SoRt 4330 | 1203 7850 .5 3 So T80 | Wilion, e(al
[ T075-TG Al 600 808 | 3175 ) Sofi 4340 1263 7850 Wilson, etal |
7 Hard 4330 1826 7850 3T 3 Solt 3340 1263 7830 n,
X2Z1C 500 | 17650 AN TO | 4340 Steel T500 | T8I0 | Tuk&Plekutowskl |
Teledy X27C | 4500 | 17400 3D T0 3330 Steel T600 7810 Mora& Anderson |
Teledy X2Z7C | 2300 | [7400 815 I3 3330 Steel T600 TR0 [ Moins&Anderson |
Hard 4340 1826 7850 533 10 Hard 4340 113 7830 f, ¢
Hard 3340 1826 7830 %7.03 7.5 Hard 4330 | 1820 785U “Wilson, etal |
Hard 4330 1878 7850 %7.63 ] Hard 3340 1826 78350 “Wilgon, etal |
Y Hard 4340 1326 7850 IS 3 Hurd 4330 18256 7830 Wilson, etal |
Hard 4340 1825 7850 63.3 ) Hard 3340 | 7850 ~Wilson, eial |
TTard 4340 1826 7850 3.7 3133 Hard 4330 1826 7850 oM, ©
Hard 4340 1825 7850 3173 13 Hard 4340 1826 7850 Wigon, etal
SoIT 3330 12563 7850 3175 T Hard 4340 1825 7850 s0n, o0
OFHCTCu 300 §900 0 [ Hard 43 1825 7850 Cinnaamon, clal |
Tantalum 500 16600 o0 0 Hard 4340 1826 7850 Tinnamon, ¢
20 DT7 7300 ) 17000 28 T0 DY7 7500~ | 17000 eT, ¢

Tabie 2. Crater Volume/Kinetic Energy
Relationship Used in Figures

Mg R [ b Modilied?
Y IR233 [-1400 | Y
02053 | -3345 | N
TOI016 | -240 N
10 U.39881 | -850 Y
1 U.T3%8T | -29% Y
U.T7TI09 | -338 N
0.90937 | -I9938 | N
14 US0T25 [-5403 | Y
T3 U22331 |94 Y
16 U.12627 | =704 N
030299 | -884 | N
[ U39TA7 | -2525 | N
] 022845 (=730 | N
] 02255 <190 | N
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Table 3. Correlation of Q to Target Strcngt'h

srget Q
Materiai (1] %GP:}
TI0G-O Al 250 2

T4 Al 00 U6
TO73-TE Al 00 TS
i, 00 T.05
T G051-1631 Al | 600 0%
TOTA-T3 Al LXE] T3
304 5L, St (YA T3
S037 750 TA
T SUZ 411 17
"HZ0,A B30 1.7
'RHA TOUO 2.2
"WE TO00 2.2
(Ger RAA TOOU 7.2
Ger Anm St TIO0 T.275
Ger 51 T200 7.35
Solt 3340 1287 2.3
FI30 Sieel 1600 75
THard 4340 1876 7.0
D17 2500 79

It is clear from the comparative figures (i.e. 5 & 6) that
each subsequent theory Jowered the average pressure in such a way
as 1o lower the penctration and strain curves. This particular case
that appears in Figures 5 and 6 was chosen for its higher velocity
data and its presentation in Jones, et 8l (1993).
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Figure 4. Average Pressure vs, Target Strength
Q is the average pressure.
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(a) indicates results from [Cinnamon, et al (1992a,b).
(b} indicates results from Jones, et al (1993}. (¢} indicates
current model
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CONCLUSION .
in this tuper. a new one-dimensionsl model for the
tration of semi-infinlte targets by long rods was developed. lts
m was the revision of the previous techniques employed to
calculate the avernge pressure a1 steady state. The modified
Bemoulll Equation appears 1o result In values for Py that are simply
100 high for the im{nct cascs in the hypervelocity rmgﬁd

By correlating a new approach 1o » great body of daia, it
was discovered that a single value for the avg:gc pressurc on the
peneirator tip at steady state, Q, could successfully esent the

ssure at stcady state over the impact velocity range of | to 6 km/s.
glr:ls formulation for Q allowed the model 1o improve its accuracy
and i1s wends at higher velocities. In addition, this value Q was
shown to have & strong correlation to target strength. This approach
has resulied in a completely algebraic solution that relies only on
known test parameters and the well-ostablished crater volume/kinetic
energy relationship.

Future work will involve an effort to revise or replace the
modifled Bernoulll Equation's estimate for pressure at steady state.
Additional analysis also needs 10 be conducted 10 ascertain the form
of the pressurc distribution that leads 10 a constant Q over all impact
velocities.

The aim of this paper was 1o extend the one-dimensional
penewration analysis into the hypervelocity range. The resulting
model offers reasonable accuracy for a onc-dimensional description
of the penctration cvent.
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CONCLUSION .

In this rnpet. s new onc-dimensional model for the

tration of semi-infinite targets by long rods was developed. Its

is was the revision of the previous techniques employed to

calculate the avernge pressure st sicady state. The modified

Bemoulll Equation appears to result in values for 'y that are simply
100 high for the impact cascs in the hypervelocity ranﬁ.

By comrclating a new approach 10 a great body of data, it
was discovered that a single value for the average pressurc on the
penetrator tip at steady staie, Q, could succ ully represent the

ssure ot sicady state over the impact velocity range of | 10 6 knvs.

is formulation for Q allowed the model to improve its accuracy
and its trends at higher velocities. In addition, this value Q was
shown to have a swrong correlation to target strength.  This approach
has resulied in a completely algebraic solution that relics only on
known 1est parametcrs and the well-astablished crater volume/kinetic
energy relationship.

Future work will involve an effort to revise or replace the
modificd Bernoulli Equation's estimate for pressure at steady state.
Additional analysis also needs to be conducted to ascertain the form
of the pressurc distribution that leads 10 a constant Q over all impact
velocities.

The aim of this paper was 1o extend the onc-dimensional
penetration analysis into the hypervelocity range. The resulting
model offers reasonable accuracy for a onc-dimensional description
of the penctration event.
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