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Optimal vs. Heuristic Assignment of Cooperative Autonomous 
Unmanned Air Vehicles 

Steven Rasmussen' 
Veridian Inc., Wright-Patterson AFB, Ohio 

Phillip Chandler^ Jason W. Mitchell^Corey Schumacher^ Andrew Sparks^ 
Flight Control Division, Air Force Research Laboratory 

Wright-Patterson AFB, Ohio 

ABSTRACT 

This paper describes investigation of algorithms that 
generate vehicle and task assignments for autonomous 
UAVs in cooperative missions. In previous work many 
algorithms have been examined to solve the problem of 
assignment of autonomous UAVs to tasks based on 
their ability to perform those tasks. Because of the 
complexity of this problem, these algorithms have been 
based on heuristic solutions to the problem. This work 
presents details of an  algorithm that produces  the 
optimal assignment of UAVs for a given scenario. A set 
of sample scenarios is used to explain the cooperative 
control assignment problem and how it changes as 
complexity   increases.   Three   requirements   for   an 
optimal to solution to the assignment of UAVs, in a 
given scenario, are task coordination, task precedence, 
and  flyable  trajectories.  The requirements  and  the 
motivation behind them are explained. An assignment 
tree   generation   algorithm   is   described.   This   tree 
generation algorithm produces the optimal assignment 
of UAVs given a particular scenario. This algorithm is 
used to produce optimal solutions to the assignment 
problem which are use to measure the effectiveness of 
heuristic based cooperative assignment algorithms. 

INTRODUCTION 

Advances in technology have made it possible 
to field autonomous unmanned air vehicles (UAVs) that 
can be deployed in teams to accomplish important 
missions such as suppression of enemy air defenses and 
persistent area dominance. While it is technically 
possible to field these types of systems, work is needed 
to develop strategies/algorithms to allow these UAVs to 
optimize the use of their combined resources to help 
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them accomplish their mission. One promising strategy 
is to allow the UAVs to cooperate with each other in 
planning and execution of-the mission. 

Major portions of proposed missions can be 
preplanned, but due to limited information about the 
enemy positions and assets in the battlefield area, the 
UAVs will have to react to changes in the perceived 
enemy state during the execution of the mission plan. If 
the UAVs are able to cooperate with each other, they 
will be able to optimize the use of their combined 
resources to accomplish the goals of their mission. 
While cooperation of this kind is desirable, it can be 
very complicated to implement. 

To facilitate the study of cooperation among 
UAVs, three representative scenarios, see Figure 1, 
were developed that incorporate the major challenges of 
implementing cooperative control algorithms. The 
scenarios are useful for understanding the basic 
problem and how it changes as complexity is added. 
The scenarios highlight the main requirements of the 
cooperation problem. These requirements are 
assignment coordination, task precedence, and flyable 
trajectojries. The scenario and cooperation requirements 
will be described in the next section. 

Many different candidate cooperative control 
algorithms have been developed, implemented, and 
simulated.'•^■'•^•*'^' But, due to the complexity of this 
problem, all of these algorithms have been based on 
heuristic solutions to tiie problem. In order to judge the 
effectiveness of these algorithms it is desirable to 
compare  them  against  an  algorithm  that produces 
optimal solutions to the given Assignment problems. In 
section 3 an algorithm is (described that produces 
optimal solutions to the assignment problem based on 
piecewise optimal trajectories. iThis algorithm generates 
a tree of feasible assignments and then chooses the 
optimal assignment. During generation of the tree all of 
the requirements are met, but since generation of the 
tree requires an enumeration of all of the feasible 
assignments,   direct   use   of this   approach   is  only 
reasonable for relatively low dimensional scenarios. 

The  available  heuristic  cooperative control 
algorithms were compared to the optimal solution to 
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RjAV #1. 

Tai-get #1 

Scenario 1 

UAV#t 

UAV#2       Target #1 

Figure 1 Representative scenarios, 
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results are described in section 4. 

THE ASSIGNMENT PROBLEM 
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three --^0^^^: ^So perform three ^^^^^ 
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is verified alive after an attack or he^ >^ a P        ^^^^ 
need   for   multiple   attacks-   This   "le^^^^^  ^^^^.^^ 
coordination must be enforced '« any J^        ^^^.^^^ 
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use of the UAVs the a2':J^g^?lAV cannot fly a 
flyable, i.e. an^^%^f J^^ T^' if the trajectories 
trajectory with a^90-de^e. ^um^^^ *^ ^^"^"^ ^"' 
assigned to UAV  are uu      j    pp-ooerative mission 
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OPTIMAL SOLUTION 

TO understand the need for an optimal^^ufio^^^^^^^^^^ 
cooperative   assignment  problem,  a  tree  g 
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program, described later, was used to generate the 
probability distribution of assignment costs for a 3- 
UAV, 2-target scenario, see Figure 2. A different 
method for constructing costs was noted by Fowler^. 
The cost used in this study is the total distance traveled 
by all of the vehicles while prosecuting the targets. In 
the figure, the height of the bars represents the 
percentage of feasible assignments contained in the 
range of the bar. The range of the bars has been 
normalized to the optimal assigrunent. Therefore, in 
Figure 2, the optimal cost is one and other trajectory 
costs are indicated as a factor relative to the optimal. A 
dashed line represents the mean cost and dashed-dot 
lines represent one standard deviation away from the 
mean. For the case show'n in Figure 2, the optimal cost 
is 66,622 feet, the maximum cost is 166,695 feet, and, 
the mean cost is 105,672 feet. The cost of the worst 
assignment possible is about 2.5 times more than the 
cost of the optimal assignment. The mean cost is about 
1.5 times more the optimal and the optimal cost is 
outside of the standard deviation range. This indicates 
that using an algorithm that finds an assignment that is 
close to the optimal can lead to a significant 
performance increase over an algorithm that is based on 
a random choice from this distribution. 

In order to arrive at an optimal solution to 
assigning UAVs in a cooperative mission, a tree 
approach was taken. Since the total number of 
assignment permutations is given by 

N^ = m°o\ (1) 

where m is the number of vehicles, and o is the number 
of tasks, enumeration of all of the possible assignments 
is only possible for very small assignment problems. As 
shown in the plot in Figure 3, the number of 
perturbations for 4 UAVs and 9 tasks, (3 targets), is 
0(10'°). Building a tree from all of the assignment 
perturbations possible enforces the task coordination 
requirement, but does not enforce precedence or flyable 
trajectories. In order to reduce the number of 
assignment choices that must be calculated, the 
precedence requirement is enforced. 

One method for generating UAV to task 
assignments is to build a tree of all the possible 
permutations of UAV to target assignments, as 
illusfrated for scenario 1 in Figure 4. The tree structure 
enforces Task Coordination between the UAVs, but it 
does not enforce the Flyable Trajectories or Task 
Precedence requirements. When the Task Precedence 
requirement is applied to the tree the number of 
possible assignments is reduced from 48 to 8 as 
indicated in Figure 4 by the faded entries. Applying the 
Flyable Trajectories requirement to the tree can also 
reduce the possible assigimients if the UAVs cannot 
find trajectories that maintain the task precedence. It is 
important to note that although scenario 1 contains only 
two UAVs and one target, the number of assignment 
permutations is relatively large, i.e. 48. The addition of 
one extra UAV in scenario 2 raises the total number of 
permutations to 162 and, as shown in Figure 5, the 
number of feasible assignments to 18. Scenario 3 adds 
an extra target, which increases the possible 

DMbJJtIco or FtuUa Aastgnrmni* for 3 vthkiii, 2 T>;B*<> {TargftStabii^ If. .^.3ir^.K.<-' 

i'-»'Ul 

Figure 2 Probability distribution of assignment costs. 
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Figure 3 Permutations of assignments. 

Figure 4 All possible assignment permutations for scenario #1. 
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assignments to 524880 and the feasible assignments to 
13178. Figure 6 shows a partial plot of the feasible tree 
for scenario 3. 

The nodes in the tree represent tasks that need 
to be accomplished and the arcs link nodes that can be 
aggregated into an assignment. Each node and arc has 
an associated vehicle ID, vehicle's previous task ID, a 
task type, and a target ID. The nodes also have a time of 
task completion and the arcs have an associated cost. In 
Figure 5, the cost of each node is labeled byw, where / is 
the vehicle TD,j is the vehicle state ID, k is the task ID, 
and / is the target ID. Likewise, the time of task 
accomplishment at each node is labeled, tyt;. The tree is 
constructed using the following procedure: 

1. Nodes, and their associated costs and 
times, are added to represent each vehicle 
accomplishing the next task required by 
each target. 

2. For each of the nodes, 
• The task that was accomplished at the 

previous node is removed from the 
target's task list. 

• The target's task prerequisite time is 
updated. 

• A subset of nodes are added that 
represent each living vehicle 
accomplishing the next task required 
by each target. The nodes are only 
added     if     the     time     of    task 

accomplishment is after the target's 
task prerequisite time. 

3.    Step 2 is repeated until all tasks have been 
assigned or until there are no vehicles 
alive. 

Once the tree is constructed, the number of nodes at the 
end of the branches of the tree represents the number of 
feasible assignments. Beginning at one the end nodes 
and traversing the tree back to a starting node can 
obtain the actual vehicle/task assignments. The total 
cost of each assignment is obtained by summing the 
cost of the arcs. The costs can be calculated by 
assuming straight-line segments between the targets and 
the vehicles or based on flyable trajectories. In either 
case, if the vehicle is calculated to arrives at a target 
before the prerequisite task time, a path lengthen 
algorithm can be used to adjust the vehicles arrival 
time. With path lengthening it is possible to lower the 
total cost of assignments and reduce the total time 
needed to prosecute the targets. 

This algorithm was implemented in a program 
written in C++. The program is capable of using either 
straight-line segments as trajectories or it can calculate 
optimal trajectories between points. When using 
optimal trajectories, the program can return the 
waypoints necessary for the UAVs to implement the 
optimal assignment. The program is capable of path 
lengthening. When straight-line trajectories are used, 
the path-lengthening algorithm simply returns the 
distance required by the target's task prerequisite time. 

•i,, ^ - cost for vehicle i 
starting a point /to perfonn 
task k on target j 

Cy- vehicle i classifies target j 
Ay- vehicle i attacks target j 
Vy - vehicle i verifies target j 

Has^i]) 

^^imv^uinv^Mtni^ J 
!{...)-time of task completion 

Figure 5 Feasible assignments only for scenario #2. 
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c t ^ 

Figure 6 Sample of feasible assignments for scenario #3. 

COMPARISON OF HEURISTIC ALGORITHMS 
TO OPTIMAL 

In order to compare the heuristic algorithms to the 
optimal algorithm an experiment was constructed using 
the MultiUAV simulation^. The simulation was set up 
to have 3 vehicles and 2 targets, i.e. scenario 3. For 
each simulation run the vehicle started at the same 
location and searched a given area with a given search 
pattern. At the beginning of each simulation run the 
position and heading of each target was selected using 
random   draws   from   a   uniform   distribution.   The 
simulation   was   run   100   times   for  each   heuristic 
assignment    algorithm.    The    heuristic    assignment 
algorithms   used   in   the   study   were   the   Iterative 
Capacitated   Transhipment'   and   Relative   Benefits^ 
algorithms. During the simulation runs the state of the 
vehicles   and   targets   were   saved   each   time   the 
assignment algorithms were called. Based on this saved 
data, an optimal assignment was generated for each 
heuristic assignment. Figure 7 shows a sample of the 
trajectories   generated   by   the  Iterative  Capacitated 
Transhipment algorithm, on the left, and the optimal 
assignment, on the right. This is one of the worst cases, 
but   it   clearly   shows   how   the   choice   of  single 

assignments  in  an   iterative  algorithm  can  lead  to 
suboptimal results. 

In order to compare the algorithms the costs 
were compared. The cost was defined as the total 
distance travel by all of the vehicles while prosecuting 
the targets. For this 3-vehicle, 2-target scenario, the two 
heuristic algorithms produced the same assignments. 
These assignments were compared to the optimal 
assignment by subtracting the optimal from them and 
then dividing by the optimal cost, i.e. 

(heuristic cost - optimal cost)/optimal cost 
A plot of the distribution of the normalized difference 
in costs is shown in Figure 8. From the distribution it 
can been seen that about 40% of the heuristic 
assignments were within 10% of the optimal and about 
24% of the heuristic assignments were more than 50% 
longer that the optimal. The mean heuristic assignment 
cost was about 23% more th&n the optimal. Figure 9 
shows a cumulative average of the normalized 
difference versus the number of case considered. This 
figure shows that after about 30 cases the cumulative 
average settles to about 23%. 
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Figure 7 Sample of trajectories generated by the heuristic algorithm and the optimal algorithm. 
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Figure 8 Comparison of Heuristic Algorithm to Optimal Algorithm. 
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Figure 9 Cumulative Comparison of Heuristic Algorithm to Optimal Algorithm. 

CONCLUSION 

This work is intended to fill a gap in the development 
of cooperative control algorithms. At this point in time, 
many heuristic algorithms have been developed for 
cooperative control, but the only method to rate their 
performance is to compare them against themselves. As 
shown the in the plot of the assignment probability 
density. Figure 2, there is a significant difference in the 
costs of assignments near the optimal and those near the 
mean of the distribution. This indicates that it is 
important to understand where the assignment solutions 
of heuristic algorithms fall in the distribution. 

From the comparison of heuristic algorithms to 
the optimal algorithm, we have shown that for the given 
scenarios the heuristic algorithms performed well. For 
example, the solid vertical line in Figure 2 represents 
the cost produced by the heuristic algorithms for the 
given scenario. While the cost of heuristic solution was 
about 25% more than the optimal, it was closer to the 
optimal than the nearest standard deviation from the 
mean. Of course to know how good or bad the heuristic 
algorithm is one must have more information about the 
mission, i.e. moving targets may require quick 
prosecution, vehicles may not have enough fuel to 
cover long distances, etc. These comparisons make it 
possible to make trades such as processing time of the 
algorithm to the needed optimality. 

As we have shown, the tree algorithm can be 
used to compute optimal solutions, but it can only do 
this for relatively low numbers of vehicles and targets. 
Even for these low numbers the processing time 
involved in computing the optimal assignments 
precludes using the tree algorithm on a real-time 
system. Logically there are two directions that can be 
pursued with this algorithm: (1) use the algorithm to 
compute optimal assignments to act as baseline cases 
(2) mQdify the algorithm to integrate it with a real-time 
system. The tree generation algorithm is very amenable 
to parallelization. This makes it possible to implement 
it on fast multiprocessor computers. This will make it 
possible to compute optimal assignment for sets of 
benchmark cases. These cases can then be used to 
compare candidate assignment algorithms. Changes to 
the tree algorithm can be made to find assignment 
solutions for larger dimensional problems in a short 
enough time to make it possible to implement these 
algorithms on real systems, ^ne method to do this is to 
use a dynamic programming solution. Since there are 
many fast ways to obtain a candidate assignment 
solution, the dynamic programming approach could be 
seeded with an assignment solution. The algorithm can 
then be used to produce assignments that monotonically 
improve as processing time proceeds. In this manner 
either an optimal solution can be found or if there is not 
enough time for the optimal solution, then the seed 
assignment solution can be improved. 
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