
Abstract- Technical considerations related to the manual 
detection of muscles boundaries from magnetic resonance 
images (MRI) are evaluated. Two commercial image processing 
software programs were used by two operators to obtain 
measurements on MRI from a phantom and from muscles of the  
upper limb and trunk. Optimization of MRI acquisition 
sequences, image resolution, image contrast, and sub-sampling 
effect were also experimented. No significant intra- and inter-
operator variation was observed and results obtained from both 
softwares were similar. Generally, sub-millimetric slice 
thickness offers better definition but lower contrast than thicker 
slices. Differences in estimated length, surface and volume of 
upper limb and back muscles were small for slice thickness 
varying between 1.5 and 4 mm. Accuracy of manual 
segmentation of muscles with MRI was found more dependant 
on the contrast than on the human factors.  

 
I. INTRODUCTION 

 
For the study of soft tissue such as muscles, radiographs and 
MRI scans are the main imaging modalities [3]. In most 
cases, plain radiographs remain the initial evaluation-imaging 
mainstay, followed by MRI. Muscle has a higher mobility of 
water protons than subcutaneous fat and bone marrow and 
shows significantly higher diffusion values [1]. With thin 
sections (1.5-2 mm) and appropriate pulse sequencing, a good   
contrast between bone, cartilage and joint fluid can be 
obtained [4]. Contrast agent can be used to enhance image 
quality but the procedure thus becomes invasive. In the 
evaluation of spinal trauma, MRI has a complementary role 
with computed tomography as it excels at the evaluation of 
deformities and neoplasms [2]. However, when information 
on muscles is considered, their individual boundaries are 
difficult to identify. That prevents the collection of reliable 
measurements for clinical or research purposes. This problem 
could be alleviated with a sequence providing well-contrasted 
images with a good resolution. Some image processing 
techniques could also help. For instance, information 
obtained on the contour of a muscle in one plane can be 
combined to the information obtained in other views to 
produce more reliable segmentation [5]. 
 
With this multi-plane segmentation approach, various 
measurements were done and a MRI acquisition was  carried 
out to  find out a good compromise between resolution, 
contrast, and acquisition time for muscle MRI. 
 

 II. METHODOLOGY 
 
1) Segmentation accuracy: A generic MRI phantom 
consisting of a plexiglass cylinder (φ= 187 mm, 60 mm thick) 
was used. As illustrated in Fig. 1, it contains 55 holes, the 
diameters of which vary from column 11 (11.1, 11.2, 11.3, 

11.4, 11.5 mm) to column 1 (1.1, 1.2, 1.3, 1.4, 1.5 mm). T1-
weighted spin-echo images were obtained and contrast 
threshold between holes and plexiglass was set at 1100 (0= 
black, 4095=white). Pixel intensities ≤1100 were thus 
associated with the holes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Generic MRI phantom (M 222 FL, Siemens). Hole diameter ranges 
from 11.5 mm down to 1.1 mm. 

 
2) Performance of image processing softwares: Two 
commercial softwares (Amira® 2.2 and SliceOmatic® 4.2) 
were used for the manual segmentation of MRI obtained with 
the phantom as well as images of the upper limb and the 
trunk of normal subjects. Ease and duration of the 
segmentation process, accepted read and write image formats,  
and surface statistics of both packages were compared. 
3) Inter- and intra-operator variations: MRI of a deltoid 
muscle of a normal subject obtained under conditions similar 
to those of the phantom were used. Manual segmentation of 
the muscle was performed three times by two operators (O1, 
O2) well experienced with each software.  
4) MRI acquisition sequences: To identify the sequence 
offering the best compromise between resolution, contrast 
and duration for muscles segmentation, 9 different T1- and 
T2-weighted spin-echo sequences with various slice thickness 
were experienced for imaging the trunk of a healthy subject.  
5) Sub-sampling: To assess the influence of slice thickness on 
volume estimation accuracy, images of the upper limb and of 
the trunk were sub-sampled at ratios of 2, 3, 4, 5, 6, 7, before 
manual segmentation. 
 

III. RESULTS 
 

A.  Segmentation accuracy with the phantom 
 
 An axial slice of the phantom obtained with a field of view 
(FOV) similar to clinical experiences (pixel of 1.41x1.41 
mm) is illustrated in Fig. 2.  
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Fig. 2.  Image of the phantom  (inverted color map,  TR=500 ms. TI=0, 
TE=14 ms). Pixel dimensions are 1.41x1.41 mm. Slice thickness was 1 mm. 
 
 

Contour of the phantom is jagged (left enlarged portion) 
and with this pixel size, spatial resolution is ≈2 mm (top right 
enlarged portion). Images of the holes were not circular but 
elliptic. Taking mean values of their small and large axes, 
measurement error on diameters ranged from 18% (11 mm 
holes) up to -44% (3 mm holes) as can be seen in Fig. 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. A: Experimentally measured vs nominal hole diameter (dash-dotted 

line). B: estimated error on the holes diameter. 
 

B. Characteristics of image processing softwares used 
 
   The two packages operate differently. While Amira is a 
multi-windows program, the other one is single window 
based. SliceOmatic provides more measurement tools (ruler, 
caliper, protractor, surface and perimeter of any region of 

interest (ROI)) and more statistics on the segmented areas 
than Amira. 3D reconstruction module of Amira offers the 
most contrasted views as a result of active contour capability 
during segmentation process. SliceOmatic smoothing module 
is more elaborated. 

 
C. Inter- intra-operator variations 
 
    Images of deltoid muscle were segmented 3 times by each 
operator. Segmentation time was 78±6 min for O1 and 69±31 
min for O2 with SliceOmatic, but only 43±10 (O1) and 46±3 
(O2) min with Amira. Lower values were obtained with 
Amira because it offers active contour detection that greatly 
reduces segmentation time. Measurement of length, surface 
and volume obtained from segmented muscles were quite 
similar with both softwares. O1 had a slight tendency to 
under-evaluate the volume of the muscles compared to O2 
(Fig. 4). 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Correlation between surface measurements obtained by both operators 
with SliceOmatic. 

 
 

D. Optimal MRI acquisition sequence 
 
 Greater contrast was obtained with large slice thickness 
than with sub-millimetric ones. The best resolution was found 
for slice thickness of 1 mm but contrast was smaller than in 3 
mm slices. Among the 9 sequences tested, the best 
compromise between trunk images acquisition time, 
resolution and contrast were obtained with the following 
parameters: TR 595 ms, TI: 0 s, TE: 14 ms, matrix 256x256, 
slice thickness 4 mm. 
 
E. Sub-sampling effect  
 
    As long as slice thickness remain <4 mm, no major 
difference in the estimated volume of the erector spinae (ES) 
muscles was observed (Fig. 5A).  When muscles of the upper 
limb were sub-sampled, similar results were obtained up to 7 
mm (Fig. 5B).  
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Fig. 5. Effect of sub-sampling ratio varying from 2 to 7. A: original 
images of the trunk were 1 mm thick. (R: right, L: left). B: thickness of 

original upper limb images was 1.5 mm. 
 

 
                                          IV. DISCUSSION 

 
    Measurement errors are associated with the ratio of the 
pixel size relative to the dimension of the measured 
structures. As lower ratios ensure more accurate 
measurements, FOV must be kept as small as possible.  
 
    While well-contrasted images are easy to segment, good 
resolution is required for accurate measurements. A best 
compromise between resolution (which affects acquisition 
time) and contrast is to be found. Sub-millimetric slice 
thickness offers a very good resolution but images are blurred 
and the acquisition time is long and may cause motion 
artifacts. In our case, the best compromise between contrast, 
and resolution was found for slice thickness varying between 
≈1.5 and 4 mm.  
 
    Sub-sampling results indicate that slice thickness is to be 
linked to how importantly dimension of the muscles under 
study is changing in the plane of the image. Since the contour 
of the deltoid and biceps brachii muscles varies more than 
brachialis, fewer slices have to be taken for accurate 
measurements of the brachialis than for the two other 
muscles. Constant cross-sections are thus insensitive to slice 
thickness while small slice thickness is more appropriated to 
small anatomical structures. An optimal sub-milimetric slice 
thickness implies a long acquisition time during which the 
subject has to remain immobile. This could be possible for a 
short acquisition time when the volume of interest is very 
small. 

 
Various commercial image processing softwares such as 

Volview®, 3D-Doctor®, AnalyzePC®, etc. have been 
evaluated. The particularity of SliceOmatic is direct biometry 
with electronic calipers while Amira has active contour 
segmentation capability. With both software programs used, 
segmentation can be done automatically by setting thresholds. 
This method can be applied for the detection of skin 
boundaries and the study of subcutaneous fat distribution. It 
is not appropriated for muscle segmentation where no clear 
threshold exists to detect the boundaries between muscles. 
Manual segmentation thus appears to be more appropriate for 
personalized biometry measurements where boundaries 
between muscles have to be identified with confidence.  
 

  Manual segmentation is usually carried out by an expert. 
However, by combining contours obtained from many planes, 
satisfactory results can be obtained with non-expert operators 
[5]. Initially, the use of an atlas was required but this need 
vanished quite rapidly as the operator gained experience. 
With the advent of newer MRI system, better image 
resolution and contrast can be expected. Manual 
segmentation procedures will then be easier. 
 
                                               V. CONCLUSION 
 
   The most important factor for manual segmentation is 
contrast between muscles. It was found optimal with slice 
thickness ≥1.5 mm. Development of a contrast agent to 
enhance boundaries between muscles could eventually lead to 
the use of automatic segmentation algorithms. 
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