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Abstract - BIONsTM are individually addressable, single 
channel electrical stimulators that can be injected into one 
or more muscles through a 12-gauge hypodermic needle.  
They receive power and command signals from an 
externally worn RF transmission coil.  Two clinical trials 
are underway to determine their safety and efficacy for 
strengthening atrophic muscles associated with stroke (7 
patients accrued; 6 implanted) and chronic osteoarthritis 
of the knee (5 patients accrued; 3 implanted).  In both 
studies, BIONs have proven easy for the clinician to 
implant and for the patients to use.  Thresholds for 
recruitment of muscle contractions have remained stable 
and no adverse effects have been reported.  Patients 
generally like the stimulation and most have elected to 
continue stimulation after the prescribed study period.  
Stimulation at low frequencies for a total of about 1 
hour/day has produced demonstrable reversals of muscle 
atrophy as measured by imaging.  In patients with 
radiological subluxation of the shoulder, the subluxation 
has been reduced.  Preliminary indications suggest also 
that chronic pain has been reduced and locomotor 
function has improved in patients with knee osteoarthritis.  
Extensions of these studies to broader categories of 
patients and clinical problems are underway. 
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I. INTRODUCTION 
Therapeutic electrical stimulation is an efficacious 

tool to strengthen paralyzed or paretic muscles.  
However, such methods are not adopted routinely for 
the treatment of most patients because of limitations in 
the available technology.  Clinical instrumentation for 
transcutaneous electrical stimulation is readily available 
but it requires careful placement of electrodes and 
adjustment of stimulation intensity for each treatment 
session.  It also tends to generate unpleasant cutaneous 
sensations at intensities sufficient to recruit underlying 
muscles.  Percutaneous intramuscular wires are useful 
for research but pose unacceptable risks of dislodgment, 
infection and breakage for general or long-term use.  
Fully implanted multichannel electrical stimulators are 
expensive and require surgical procedures that are 
unacceptable for many elderly or chronically ill 
patients.  

The recent introduction of radio-frequency 
controlled, injectable microstimulators has provided a 
novel method to deliver electrical stimulation in a way 

that circumvents some of the problems associated with 
conventional stimulation systems.  The device we have 
developed (named BIONTM for BIOnic Neuron) is a self-
contained, hermetically sealed, single-channel electrical 
stimulator (2 mm diameter x 16 mm long) that can be 
injected into a muscle through a 12-gauge hypodermic 
needle.  Power and digital command signals are transmitted 
across the skin to one or more BIONs by inductive 
coupling of a 2 MHz AM carrier from an externally worn 
coil.  Each BION has its own digital address and responds 
to a command by generating a monophasic, capacitively-
coupled stimulus pulse with regulated current (0-30 mA in 
2 ranges of 16 steps each) and pulse width (2 - 514 µs in 
512 linear steps).  The extensive technology development 
and preclinical testing in vitro and in acute and chronic 
animals have been described elsewhere [1], [2], [3].  In this 
communication, we describe the early results of two 
clinical trials in which electrical stimulation of weakened 
muscles has been used to improve the functional 
capabilities and decrease the pain associated with shoulder 
and knee joint pathologies. 
 

II. TREATMENT OF SHOULDER SUBLUXATION 
Shoulder subluxation is a common complication of 

stroke because the weight of the pendant unsupported arm 
exerts chronic traction that pulls the head of the humerus 
out of the shallow glenoid fossa.  Previous studies using 
transcutaneous or percutaneous stimulation have suggested 
that electrical stimulation of shoulder muscles can be 
efficacious in reducing the degree of shoulder subluxation 
in stroke survivors.  In this randomized two-arm study, 
subjects were entered into the trial within eight weeks after 
a stroke that had resulted in hemiparesis, followed by 
unilateral shoulder subluxation.  Subjects were required to 
have no other electronic implants, to not have severe 
hemineglect, to be medically stable, and to be mentally 
capable of carrying out the therapy independently.  This 
report describes results in six subjects who have completed 
the trial; an additional subject has been implanted with 
BIONs but is still in early stages of therapy.  In this trial, 
subjects in the experimental group (n = 3) were implanted 
with two BIONs in deltoid and supraspinatus muscles, 
respectively.  These devices were used to stimulate 
muscles using trains of 5 pulses/sec (10 sec on, 5 sec off) 
for 1-1.5 hours per day (3 20-30 minute blocks) for six 
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weeks.  Relatively low frequency stimulus trains (5pps) 
were employed, as suggested by studies of the 
stimulation parameters required to prevent disuse 
atrophy in a rat model [4].  Typically the stimulation 
program began with relatively short (10 minute) 
stimulation periods, 3 times a day, at strengths 
sufficient to produce only modest contractions.  The 
period of stimulation was gradually increased to 
approximately 30 minutes (3 times a day), and the 
strength of the contraction was increased to produce 
strong contractions within the tolerance of the subject.  
Following this six-week tratment period, stimulation 
was discontinued for the next six weeks to determine 
whether subluxation would recur.  At the end of the 
trial, subjects were allowed the choice of reinitiating 
stimulation if they wished.  Subjects in the control 
group were not implanted initially with devices but 
were offered the opportunity to have implanted devices 
at the end of six weeks of observation under 
conventional treatment for subluxed shoulder.  Two of 
three control subjects elected to have device 
implantations at the end of the control period.  The 
protocol used to treat and assess these late-entering 
subjects was the same as that for experimental subjects.   

In all subjects shoulder subluxation was the primary 
outcome variable and was assessed by measuring 
vertical displacement of the humeral head out of the 
glenoid fossa from x-rays (450 oblique AP). Several 
secondary outcome measures were also assessed.  
Thicknesses of both stimulated and matched contro-
lateral muscles were measured by ultrasound at two 
points along the width of each muscle.  These points 
were marked by small tattoo dots at the initial 
ultrasound session so that the same sites could be 
measured from one observation to another.  In addition, 
the active and passive range of motion, force, shoulder 
pain (as measured using a visual analogue scale) and 
arm function were measured. 

Results are currently available for six subjects who 
have completed therapy with BIONs.  None of the 
patients experienced problems with the implantation or 
daily use of the devices.  The patients tolerated the 10-
20 minute implantation procedure well, and showed no 
evidence of discomfort or inflammation.  All subjects in 
which both deltoid and supraspinatus were stimulated 
achieved similar subluxation reduction, regardless of 
whether they were admitted initially to the experimental 
or control group (Fig. 1).    

Results in one patient with only deltoid stimulation 
were different.  This patient began the trial with less 
subluxation than the other subjects and the degree of his 
subluxation did not change appreciably.   

Subjects generally showed a thickening of 
stimulated muscles over the six weeks of stimulation, 
although the ultrasound measures showed some 
variability that was thought in part to reflect difficulties 
of imaging exactly the same region from one 
examination to another; this is believed to be due to the 
difficulty of obtaining a well-controlled angle between 
the muscle surface and the ultrasound probe.  After the 
six-week stimulation period the gain in muscle 
thickness tended to remain.  In contrast, in patients 

without electrical stimulation, muscles typically became 
thinner (Fig.  2). 

Thresholds for muscle stimulation (measured as charge, 
the product of current and pulse width) were recorded over 
time to gauge whether devices were moving or becoming 
excessively encapsulated.  Implants that were in place for 
more than 180 days prior to final testing (range: 181-539 
days) had thresholds at least as low as those measured 
during the first 30 days after implantation (Fig. 3). 

Fig. 1: Subluxation index (Dv = vertical displacement of the humeral head 
in the glenoid capsule) of subjects receiving stimulation for 6 weeks with 
a following 6 weeks off stimulation. 

Fig. 2: Relative change in muscle thickness over time. 
 
 

 
Fig. 3: Stimulation Thresholds (as charge) over time after implantation for 
each BION. 
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III. TREATMENT OF KNEE OSTEOARTHRITIS 
Chronic knee osteoarthritis is a common problem of the 
senior population, manifested by pain, swelling, and 
diminished range of articular movement and function.  
Pain leads to decreased physical activity resulting in 
disuse atrophy, particular of the quadriceps muscles that 
normally protect the knee joint from further damage [5]. 
Exercises to strengthen the muscles are known to be 
effective [6] but compliance is often limited.  In this 
trial, we used electrical stimulation applied by a single 
BION implanted near the common femoral nerve to 
exercise all of the heads of the quadriceps at high levels 
of recruitment but a low frequency to avoid excessive 
stress on the knee.  To date, 5 patients have been 
enrolled in the study, with 3 having completed the 24 
week course.  Each patient is assessed before and after a 
12-week control period to assure stability of their 
chronic condition, and again after 6 and 12 weeks of 
daily stimulation.  The prestimulus control period 
provides the comparison values for each patient.  Each 
subject is treated with 2-3 stimulation sessions of 10-30 
minutes each day.  Stimulation parameters are tailored 
to each patient and progress in intensity and duration as 
the patients build muscle strength and fatigue 
resistance.  Generally, relatively low frequencies are 
used (5 – 13 pulses/sec) with an ON:OFF cycle of 2-
5:1-3 secs.  Primary outcome measures include 
WOMAC (Western Ontario McMaster Osteoarthritis 
Index) score and Knee Function scores (include pain 
and function values).  Secondary outcome measures 
include muscle thickness (measured with MRI). 
 All patients found the sensation associated with 
muscle stimulation to be agreeable.  There were no 
adverse events or complications related to the implants 
or exercise treatment.  Threshold for eliciting muscle 
contractions remained stable over time (Fig. 3).  
WOMAC scores were significant lower (p < 0.05) at the 
end of the 12-week stimulation period than at the 
beginning, indicating better function and lower pain 
levels in the subjects (Fig. 4).   
 The Knee Society Pain score increased significantly 
(p < 0.05) from pre-stimulation values at the 12-week 
point, indicating more pain-free movement.  A similar 
trend in Knee Function was not statistically significant 
(Fig. 4).  Muscle thickness of subjects 1 and 2 showed 
an increase when data from before stimulation therapy 
and after 12 weeks of stimulation were compared (Fig. 
5).  Muscle thickness data from subject 3 had not been 
processed at the time of writing. 
 
 
 
 
 
 
 

Fig. 4: Primary outcome measures in knee osteoarthritis study (N=3) 

Fig. 5: Rectus Femorus Thickness (from MR scans) 

IV. STABILITY AND EASE-OF-USE 
Most subjects found the application of their treatment to be 
simple and convenient.  In one patient continuing therapy 
after completion of the study, we found that one session of 
15 minutes per day was sufficient to maintain good 
alignment of his shoulder.  This subject also found that one 
longer session each day fit better in his lifestyle than two 
shorter sessions.   
 The external controller for the BIONs (called a 
Personal TrainerTM) tracks its actual daily usage by the 
patient; this information is available to the clinician at each 
follow-up visit.  So far in the shoulder subluxation trials, 
compliance was only problematic in one subject who had 
short-term memory problems.  This subject has withdrawn 
from the trial:  his subluxation has not been reduced. 
 A common concern with implanted devices has been 
the possibility that devices might migrate with time.  In 
previous animal experiments of up to 13 months, there was 
no evidence of migration and the BIONs appeared to be 
well-anchored within the muscles by a matrix of 
endomysial connective tissue around the neck of the 
electrodes at both ends of the devices.  Results in these 
subjects also suggested that little if any migration had 
occurred.  X-rays showed that devices continued to be 
found in comparable locations over time.  As well, 
thresholds in all subjects for both studies were stable up to 
almost 1.5 year after implantation, indicating that there is 
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no change in either the location of the devices or level 
of foreign body reaction around each device. 

V. DISCUSSION 
This preliminary evidence suggests that stimulation 

with injected BIONs is a useful and well-tolerated 
approach to exercising paralyzed muscles in stroke 
patients.  The reduction of subluxation and the 
improvement in muscle size and strength is consistent 
with prior studies in which TES was applied to 
paralyzed shoulders via skin surface electrodes [7],[8].  
Those studies, however, used much longer stimulation 
sessions (2-8h/d vs. ~1h/d) and higher frequencies of 
stimulation (10-20pps vs. 5pps).  The present results are 
consistent with the results of a study of BIONs in an 
animal model of disuse atrophy [4], but more 
information is needed regarding optimal therapeutic 
parameters in humans.  Present results lead us to be 
optimistic about the usefulness of even modest periods 
of electrical stimulation. 
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