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CHAIRMEN'S WELCOME 

Dear Colleagues - 

We are happy to open MMET*02 in Kiev, over-a-thousand years old capital of 
the eleven years old independent Ukraine. The venue of the conference, this time, is the 
largest technical university of Ukraine, NTUU-KPI, or Kyivska Politekhnika. 

As with the previous MMET conferences held in 1990-2000, we have tried to 
follow our several basic traditions. One of them is the idea that a cross-fertilization of 
mathematicians and microwave engineers is a natural necessity that should be promoted 
by all means. There are many other meetings covering only applied mathematics or 
computing and only microwaves or physics. MMET is a unique combination of the 
both. Therefore the technical program is a mixture of fundamental mathematical studies 
into boundary-value problems of wave scattering and studies into applications and 
implementations of various analysis methods. Another eternal idea is that interaction 
with the Western science has always been and still is very important for Ukrainians, 
Russians, Belarussians, Georgians, and other Eastern Europeans. Therefore we intended 
to attract as many as possible keynote speakers from the West Europe, America and 
Japan, from one hand, and good contributed papers from the East Europe, from the 
other hand. At the same time we still believe that having two working languages and 
massive poster sessions, as done sometimes, is a wrong way of international conference 
organization in our conditions. Instead, MMET gives one a chance to train in writing 
and presenting a paper in the major international science language, which is English. 
Still another traditional idea is to help young scientists from low-income regions come 
and participate, even if they travel from very far away. Humiliation of a 50-Euro a 
month salary of a scientist should be neutralized, at least once in two years, by an 
opportunity to join the holiday of MMET. 

This year the Technical Program Committee had invited 28 papers and accepted 
148 contributed ones, out of 161 submitted. We enjoyed working with all the members 
of Local Organizing Committee and Technical Program Committee. We are extremely 
thankful to the staff and executives of the Department of Radio Engineering and the 
Scientific Library of NTUU-KPI. All of us should kindly thank the editing group that 
prepared the conference proceedings and supported the Website of MMET*02. The 
generosity of the conference sponsors is greatly appreciated. 

We thank everybody of participants who have come to Kiev this September 
despite many other professional commitments. We hope to see you at the future 
conferences in Ukraine. 

Eldar I. Veliev and Alexander I. Nosich 

It looks like MMET*02 has quite a nice program. Congratulations! Best wishes with the 
conference. 

W. Ross Stone 
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ABSTRACT 

This paper presents the results of analytical study and numerical simulation as well as discusses 
various microwave applications of artificial periodic substrate photonic bandgap (PBG) circuits. 
The configurations considered are planar microstrip and coplanar line circuits on the high- 
density dielectric substrate containing finite-periodic groups of air blocks underneath the lines. 
Transmission matrix method has been applied for analyzing the transmission/reflection 
characteristics of the circuits and obtaining the stopband and passband conditions. Simulation 
results illustrating applications of PBG circuits as microwave bandpass filters and harmonic 
tuning elements are presented. The configurations discussed here provide certain advantages 
and promising solutions in the design of novel integrated antennas and adaptive arrays for the 
next-generation mobile communication systems. 

INTRODUCTION 

The 1990's have introduced an additional terminology into the field of electromagnetics and 
microwave engineering, namely photonic bandgap (PBG). It originally appeared in optics study 
where the phenomena of optical propagation through periodic structures were considered [1]. 
PBG is an effect when the propagation of EM waves of certain frequency bands is forbidden 
along specified direction in a periodic environment. The frequency response of PBG structures 
is scalable within wide frequency band and, as a result, various PBG configurations have been 
proposed and investigated Among them are planar patch antennas on periodic substrates to 
increase radiation efficiency and eliminate surface wave excitation [2], design of broadband 
power amplifiers [3], and waveguide band pass and low pass filters [4] 

In microwave community, PBG is referred to as filter stopband long studied in periodic 
microwave circuits. Recently, the terminology of electromagnetic bandgap dealing with the 
same effect of constructive and destructive wave interference within the periodic structure has 
been used [5]. As confusing as it may seem, the uses of PBG or microwave PBG terminology 
can be justified taking into account its current vide spread in various microwave and antenna 
applications. There have been several attempts to utilize PBG structures in planar transmission 
lines technology, mostly by etching a periodic pattern of circles or holes in the ground plane 
along the microstrip. In this study, we analyze an alternative PBG periodic substrate for 
microstrip and coplanar lines, which can be effectively integrated with modern MMIC circuitry 
and manufactured using micromachining technology. The structure under consideration is a 
grounded dielectric layer with rectangular periodic air holes underneath the transmission lines as 
depicted in Fig. 1. The numerical results presented here correspond to the alumina (eps=10.5) 
high-density dielectric substrate. It has been shown that this configuration is an attractive 
candidate for integrated antenna filters used in active antenna design for next-generation mobile 
communication systems [6]. First, transmission matrix method is used to analytically obtain the 
stopband/passband conditions of the periodic substrate circuits. Next, numerical results of S- 
parameters illustrating filter characteristics of microstrip and coplanar lines PBG circuits are 
presented. 
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Fig.l. The geometry of microstrip and coplanar lines periodic substrate PBG circuits. 

TRANSMISSION MATRIX ANALYSIS OF PBG CIRCUITS 

The initial design of PBG circuits can be based on the Bragg condition expressed as 

ßZ*7T, (1) 

where ß is the phase constant in the direction of periodicity L. Calculation of phase constant 
yields the formula for the central stopband frequency but it should be noted that the other 
important design parameters of a PBG substrate structure, such as stopband width and passband 
frequencies, would only be obtained from full-wave EM simulation of an actual periodic 
configuration. Transmission matrix method may provide analytical conditions of stopband and 
passband, which are quite useful in microwave circuit design. In applying transmission matrix 
approach, scattering parameters of a two-port network can be determined by defining its 
transmission matrix, also referred to as ABCD matrix, relating the voltages and currents at the 
input and output 

[F,] = 
A    B 

C   D (2) 

The reflection and transmission coefficients can be calculated through ABCD-parameters by 
using S-parameter conversions, which are readily available from the literature [7] 

5,2 - 

A+B-C-D 
A+B+C+D 
2{AD-BC) 

A+B+C+D 

(3) 

(4) 
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c    = 
2  (5) 

21     A + B + C + D 
-A + B-C + D (6) 

22      A + B + C + D 

In case of lossless network, the condition of symmetry of a transmission line is 

K\=K\ w 
and substituting (3), (6) into (7) yields the relation of ABCD-parameters for symmetrical circuit 

A = D («) 

Reciprocity condition in case of equal impedance input and output ports is expressed by 

K l-K I (9) 

which, by using (4), (5), yields reciprocity criterion it terms of transmission matrix parameters 

AD = \ + BC (10) 

Now consider how these formulas can be used in practical applications. In microwave filter 
design, the condition of passband, equivalent to full transmission, is given by 

|Sn| = 0 01) 

Therefore, from (3) we have 

A + B = C + D (12) 

while for symmetrical circuits the condition of passband is simplified by (8) as 

B = C (13) 

Similarly, the condition of stopband corresponding to total reflection is analytically 

expressed by 

\Sn\ = l (14) 

and from (3) we have 

C + D = 0 (15) 

Now let's consider a PBG circuit as a microstrip line on a finite length periodic substrate. The 
results of 3-D EM simulation of this structure show that in order to realize proper PBG 
operation the transverse dimension of air blocks b should be a few times that of a microstrip, 
with optimal value being (5 4- 6)w. Therefore, without substantial loss of accuracy, we can 
approximate actual geometry of the circuit as a periodic set of microstrip line over uniform air- 
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filled substrate of length a and that on the conventional substrate of length /. Thus, for the 
structure depicted on Fig.2, the total voltage-current transmission matrix is defined as 

[F,]=[FY (16) 

where [F\ is the matrix of one period and JVis the number of periods. Formula (16) implies 

that we consider a periodic circuit of length NL made of N two-port elements. For one period 
of structure shown in Fig.2, its voltage-current transmission matrix is represented as follows 

IE 
N 

■•«.VT"  ■■      , '' j1 
: -_r '• m 

z,     ; Zo 

[F,]  : [F0] 

Fig. 2. Transmission matrix representation of artificial periodic substrate microstrip circuit. 

M=[^M, (i7) 
where [F^ is the matrix of microstrip line of length a over air block while [F0] is that of 

conventional line of length / on dielectric substrate. As is well known, transmission matrix of a 
two-port circuit can be defined in terms of line impedance and phase length as follows 

fa]= 

with 9, = 
2%a 

» 9o 

If.]- 

2nl 

cos 8,       jZx sin 9, 

y'Z,"1 sin 9,      cos 9, 

cos 90       jZ0 sin 90 

(18) 

(19) 

X. 

yZ0'sin90      cos90 

and Z,, Z0 being the characteristic impedance of the line over air 

block and substrate, respectively. Therefore, voltage-current transmission matrix (17) becomes 

IF]- 
(cos9, cos90 -Csin9, sin90)        ;'Z0(cos9, sin90 +Csin9, cos80) 

yZo'CcosG, sin90 +C"1 sin9, cos90)     (cos9, cos90 -C"1 sin9, sin90) 
(20) 

where C = Z{Z0 . Next, S-parameters of the entire periodic circuit can be defined through 

A,B,C,D parameters of the total transmission matrix (16) by matrix multiplication. A simple yet 
interesting illustration of the above analysis can be obtained by considering the microstrip over 
single air block, i.e. length a circuit. This is a symmetrical two-port structure whose voltage- 
current transmission matrix is given by (18). Condition (8) is satisfied so that passband 
condition (13) leads to 

sin^—= G (21) 

which shows that there exist a fundamental solution at zero frequency and the discrete set of 
solutions for 
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a = n—, « = (1,2,3,...) 

25 

(22) 

It means that relatively long, of the order of few centimeters, single air block in the microstrrp 
substrate can cause no reflection for the mode propagating along the line. In attempting to 
obtain stopband condition of single-element microstrip circuit, one obtains the following 

equation 
ytanB^-Z, (23) 

which has no physical solution so that stopband cannot be produced. These results are illustrated 
on Fig 3 showing calculated S-parameters of microstrip line over single air block of length 15 
mm. Similar results have been obtained for the coplanar line over single air block. 

10 15 20 

Fiequency,GHz 

30 

Fig. 3. Calculated S-parameters of microstrip line over single air block of length 15 mm. 

NUMERICAL STUDY OF STOPBAND/PASSBAND CHARACTERISTICS 

The microstrip and coplanar PBG circuits of various geometries have been numerically 
investigated towards their filter applications in integrated amplifiers and array antenna systems. 
Both microstrip and coplanar circuits display similar PBG characteristics with the difference 
being the stopband and passband frequency shift of about 2 GHz for the same artificial periodic 

substrates. 

5 10 15 

Frequency, (GHz) 

Fig. 4. Reflection coefficients of PBG microstrip circuits with different number of elements 
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An important result is presented in Fig. 4 showing calculated reflection coefficients of 
microstrip PBG circuits with varying number of elements with parameters a=6.0mm, b=2.5mm, 
I =Q Smm it ;<= cppn that the number of passbands equals the number of circuit elements and 
their locations change as the number of elements increases while the location of stopband 
remains practically the same. The circuits considered are able to produce extremely wide (of the 
order of 15-20 GHz) stopband while requiring fewer elements than conventional PBG 
configurations. Fig. 5 shows simulation results of the 5-element circuit optimized as an output 
filter of the 5 GHz class-F operation MM1C amplifier. More numerical results on the stopband 

200 

FiEquency, GHz) 
5 10 

Frequency, GHz) 

Fig. 5. Reflected wave phase and S-parameters of 5-element microstrip PBG circuit, L=7.0mm, a=4.5mm 

harmonics control and phase shifter applications of the circuits considered will be presented at 
the Conference. 

CONCLUSIONS 

Detailed study and some numerical results of the planar artificial periodic substrate PBG circuits 
have been presented. The advantages of the proposed configurations in the design of integrated 
filters for active antenna systems have been discussed. An ongoing study of novel microwave 
devices incorporating multi-layer periodic PBG structures is currently being continued. 
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ABSTRACT 

Utilizing Maxwell's equations in diagonalized form we outline a procedure for the 
construction of universal functions for accelerating the method of moments compu- 
tations. It is shown that the universal functions are coordinate-free, material-, and 
frequency independent. The procedure for the construction of universal functions 
automatically regularizes the involved integrals in the near- as well as the far field. 

INTRODUCTION 

Recently we formulated a conjecture stating that linear PDEs in mathematical 
physics are diagonalizable [1]. In particular we demonstrated the existence of di- 
agonalized forms for the Maxwell's equations in isotropic, anisotropic, and general 
bi-anisotropic media. Diagonalized forms transform into eigenequations using the 
Fourier transformation. The associated eigenpairs serve as building blocks for the 
construction of Green's functions in the spectral (k) domain. In [2] we demonstrated 
that the k ->■ oo asymptotics of the eigenpairs can be used to construct real-space 
near-field asymptotics of the Green's functions simply by inspection. In [3] it is 
shown that the underlying ideas can be used to construct universal functions for 
accelerating the method of moments computations [4]. In this contribution, restrict- 
ing our discussion to the simplest cases possible, our attempt is to communicate 
the key steps in our procedure for the construction of universal functions. 

DERIVATION OF GREEN'S FUNCTIONS IN THE REAL SPACE 

Consider a unit point charge in the free space located at the point (x',y',z'): V-D = 
6(x—x') 5(y-y') 5(z-z'). Using D = e0E, which relates the dielectric displacement 
D and the electric field E, and E = —VG which defines the scalar potential function 
G = G(x,y,z | x', y', z') we obtain the Poisson equation for the infinite domain 
Green's funciton G 

V • VG = -—8{x - x')5{y - y')6{z - z'). (1) 

JThe author is also affiliated with Arizona State University, Mathematics and Statistics Dept. 
Arizona, USA, and Helsinki Univesrity of Technology, Materials Physics Lab., Espoo, Finland. 
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The symmetry of the problem suggests the form G = C/r, with r being the 
distance between the source and the observation point (x,y,z), and C a constant. 
To determine C integrate both sides of (1) over the volume of a sphere of radius 77 
and the center (x\ y', z'), and let 77 approach zero (see e.g. [5]): lim7)_>0+ Jv dVV ■ 
VG = -l/e0. Applying Gauss' divergence theorem to the resulting integral we 
obtain lim7)_>0+ fsv 

d$ ™ ' ^G = limr/->o+ §sn dS dG/dr = lim7?_>0+ 4irr)2 C(-l) 
I/772 = -C4TT, leading to C = l/(47re0), and thus to G = l/(4ir£0r). This is a 
symmetric representation in terms of x - x', y - y', and z — z' (see (5a)). 

3D SPECTRAL DECOMPOSITION 

In 3D spectral doamin (1) results in G{kx,k2,kz) = e~ikxX' e-^' e'jk3Z' / [e0 (kf 
+ k\ + k\)], from which we obtain the integral representation in (2), which is again 
symmetric in terms otx-x',y-y', and z- z'. 

G{x-x',y y', z - z') 
00   00   00 

/// 
—00 —00 —00 

dki dk2 dkz e
jk^x-x^ejk2{y-y'kjk3{z~z'^ 

~27^T^T     e0{k\ + kl + kl)     ' (2) 

DIAGONALIZED FORMS: 2D SPECTRAL DECOMPOSITION 

In [1] we have shown that (1) can be diagonalized: 

0 

£o( 
a2 £0 

9n + £)   0 

xU{z' - z) 
d_ 
dz 

G 
D3 

+ G 
D3 

S{z - z') - 

G 

> 

> 

H{z - z') 4 

j 

G " 
D3 

0            -^ 

(f + f)   o° V "IX                Oyy  1 

< 

H(z' - z) 

G ' 
D3 

< 

6{z' -z)- 
8(x 

0 
- x')6(y - y') _ 

G 
D3 

(3) 

6(z - z'). 

%{■) stands for the Heaviside's step function. Here, we arbitrarily have diago- 
nalized with respect to the 2- coordiante. The symbols > and < signify the regions 
z > z' and z < z', respectively. Note that the terms associated with %{z - z') 
and y,(z' - z) are equivalent to the Laplace equation in the respective regions. The 
terms associated with the Dirac's delta function constitute the "interface condi- 
tions" . A 2D Fourier transformation projects (3) onto an algebraic eigenform with 

the eigenpairs ±y/k2 + k2 <=» A, ^k\ + k2
2\ . Using (3), G< oc Ge^v'*?^*'-*! 

and -e0 dG>/dz + e0 dG</dz = 6{x - x') 5(y - y'), which satisfy the "interface 
conditions", we obtain G = 1/ (2e0 ^Jk2 + k%), and thus 
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G(X-*,v-i/tz-z)=] i^ ^m%     ■ () 

-oo —oo u V    L A 

In conclusion we have established the following equivalent representations: 

I 1 (5a) 
r     y/(x - x'f + (y- y')2 + {z- z'f 

-win *"**»—w^wTki—    (sb) 
—oo —oo —oo 

00    °° pjfci(x-x')pjA:2(2/-!/')p-\A!+^flz-^l 
i.  /   / ,fticft/

e",'e  "  ■ . (5c) 

Comments: (i) Obviously, the representation (5c) is not symmetric with 
respect to x - x', y - y', and z - z'. There are indeed this type of representations 
which we will use to construct universal functions. The representation (5c) offers 
great flexibility in designing formula: Consider the points (a:', y', x') and {x, y, z) and 
draw the following picture. Assume a sphere with radius r. Let the center of the 
sphere coincide with the source point. Then the sphere inhabits the observation 
point on its surface. So far we have not specified any coordinate system. Obviously 
there are infinitely many choices for a cartesian coordinate system with the center 
of the sphere being its origin. Each of these coordiante systems partitions r into 
the corresponding set of x - x', y - y', and z - z'. However, in view of (5c) x - x' 
and y - y' determine the oscillation rates of our integral, while z - z' dictates its 
decaying behavior. By selecting a specific "local" coordinate system we have the 
flexibility to manipulate the oscillatory- and decaying properties of our integrals. 
In particular, we may select a coordinate system such that both the source- and 
observation points lie either on the x- axis, y-axis, or the z-axis, resulting in 
ID purely oscillating or decaying integrals. The key for these considerations is the 
diagonalized form in (3). (ii) These ideas are not restricted to the static fields in 
the free space. Similar integral representations can be obtained for the Green's 
function associated with the scalar Helmholz equation, i.e. ejk°r/r. Thereform, 
integral representations for the dyadic Green's functions in isotropic media can be 
obtained simply by inspection, (iii) In [1] we have presented a simple recipe for the 
diagonalization of Maxwell's equations in general bianisotropic media, which allows 
the construction of similar integrals for the Green's functions in general complex 
media. 

ELECTRODYNAMIC FIELD DISTRIBUTIONS 

In the following sections we describe the construction of universal functions by 
considering a simple example: Let Gn(r- r') be the x- component of the electric 
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field as the response to an electric current element oriented in the x— direction. 
Consider the "asymmetric" representation (see e.g. [1]) 

G„(f-f')=   f   f ^^^^A-e-^-V*^-*V*^'>, (6) 
J    J    Z7T  Z7T zeoj      X 

with 

x=i y/k% + k£-epJ*; k2 + k2- efiuj2 > 0, 

[ -jye/Jio2 - k2 - k2;       eßuj2 - /cf - k\ > 0. 

UNIVERSAL FUNCTIONS 

Assume we already have discretized a continuous boundary value problem of inter- 
est. Consider two parallel square-shaped metallic elements (mth and nth elements). 
We wish to calculate amn, the interaction of these elements related to Gn. To this 
end we utilize the Method of Moments [4] and consider the basis- bn(x,y,z) and 
the testing function wm(x,y, z). Here, bn(x,y,z) = Pn(x,y)5(z - zn) with Pn(x,y) 
being a rectangular window function with its support extending from xb

n to xe
n in 

x-direction, and from yb
n to y„ in y-direction, and 5(z - zn) being a delta function. 

Similarly we can define wm(x,y,z) = Pm(x,y)S(z - zm). amn is then given by 

amn= I '" I dx'dy'dz'dxdydzbn(x', y', z')wm(x, y, z)Gu(x - x',y - y', z - z') 

J  °r dki dk2   1   k2 - X2 

J       J        OTT     OTT   Or,.,!^]^ 
-OO —00 

p~*\zm ~Zn\ 

2TT 2TT 2eu) kfk^X 

x Ljki(xe
m-xe

n) _ gjMi^-z«) _ ejki(xe
m-xb

n) + ejkl{xb
rn-xb

n)'\ 

x L?MJ4-I£) _ ejk2(y
b

m-yfl) _ ejk2{ye
m-yh

n) + ejk2(y
b

n-yb
l)'] /g\ 

REGULARIZATION AT {kuk2) = (0,0) 

The terms in the square brackets in (8) collectively guarantee that the integrand 
is regular at {k1,k2) = (0,0). However, the construction of our universal func- 
tion requires the separation of these terms, with individual terms being singular 
at the origin. To remedy this difficulty we realize that the replacement of the 
exponential functions eJ'fcl2() by 1 - ejkl'2<>') leaves (8) unchanged. Note also that 
{k2 - X2)/(Xk2k2)exp(-X\zm - zn\) is even in both kx and k2. Therefore, we have 

KIEV, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



MMET*02 PROCEEDINGS 

an 
2lT2SU) 

oo oo , 2        \ 2 

0   0 

x {[1 - cosh(xe
m - <)] [1 - cosfc2(j/^ - ye

n)} =F 15 terms } 
OO  00 

'—o— / / dkxdk2 

0       °? ? 4-2 _ \2 

A 
0    0 

Jfe? ^2 
q= 15 terms 

31 

(9a) 

(9b) 

(9b) can now be separated into sixteen integrals without any concerns. 

SCALING OUT THE FREQUENCY DEPENDENCE 

By introducing the "slownesses" h = h/co, k2 = k2/ui, and Ä = A/w, and the 
"velocities" x = cox, and y = coy, we introduce the function A(x,y, z): 

r2r, ,2 

-A(x, y,z) = I I dkidki — 
o  o 

B - A2 
-X|i sin2(fcix) 

[     M     J 
' sin2 (k2y) 

k2 

,    (io) 

X = \j~k\ + k%-efji for ~k\ + ~k\ - ELL > 0, and an adequate definition for k\ + 
jfc| - e/i < 0. (9b) and (10) show that amn can be calculated by sampling A(x, y, z) 
at sixteen points, and appropriately adding and subtracting the sampled data. 

SCALING OUT THE MATERIAL PAMATERS 

Define the characteristic "slowness" sc by e\i = l/v2
c = s2. Introducing kx = h/sc, 

k2 = k2/sc, X = X/sc, x = scx, and y = scy, we obtain 

f  1-fci 
J7n(l, y,z) = j j dkdk—r^e-W 

n    n A 0    0 

sin2(^i^) 
^2 

.   *1 

sin2(fc2?/) 
c2 
/Co 

(11) 

^2        -2 c2 

with 7r2ew2sc/2 Au(:r,y,l) = £/n(z,i/,jz). Here, A = \J kl + k2 - 1 for kx + 
-2 c2        -2 „    Ä    „ 
jfc2 > 1, and an adequate definition for kx + k2 < 1. Uu(x,y,z) is our Universal 
Function. 

REGULARIZATION AT k -> oo 

In cylindrical coordinates ( ^ = kcos9, k2 = fcsinfl ) it is easily seen that 
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*-f0° (   Ä^Ä 
e

fc(1-\Az?) 

fc->00 

1 1 

_fc  L       k 

cos20sin20  /l - ^     sin20   /]_ _ i 

g(fc,i/fc|cos2e,sin2e,|!|)=Q(fe,i/fc) 

xe-*|i|     ==>     P(l/fc|cos2ö,sin2ö>|!|)e-*||l='P(l/fc)e-*l|l. (12) 

The asymptotic expansion V(l/k) is a polynomial in 1/A;, with coefficients in- 
volving integer powers of I and cos20 and sin20. We obtain 

-2-2   T/2  1 ~ ~2       o ~ " ~ 
rr  ,z t :.     xy    r f      f k(l - k cos26) .   2{kcos9x\ .   0{ksm9y\    \,-.. 
Un{x,y,z) = — J J d9dk-± -z ^sinc2f—-—Jsinc2( -Je-

A|z| 

regularized at k — 0 
;2-J  T/2OO ~ „ ; 

^f / jd9dk{Q(k, l/k) - V(l/k)} e-^sinc2(^)sinc2(^ 

;2a2   T/2 oo 

4 
o    1 

virtually band limited 

/7^l{p(l/I)}e-^lsinc2(^)sinc2(^t). (13) 

 -v» » ' ■  ■— 

can be calculated "simply-by-inspection" 

With reference to (13) we have constructed a function associated with the 
Green's function Gu(x - x',y-y',z- z') which possesses the desired properties. 
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PROPAGATION OF ELECTROMAGNETIC WAVES IN OPEN 
CYLINDRICAL WAVEGUIDES WITH NONLINEAR MEDIA 

Yuriy G. Smimov, Svetlana N. Ivleeva 
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This paper deals with the problem of propagation of electromagnetic waves in 

cylindrical dielectric waveguide W :={x:x2 + xj <R2} [1]. The waveguide is 
regular to z direction. The dielectric permittivity outside of the waveguide is constant, 
i.e. Sj = const. The dielectric permittivity of waveguide has nonlinear dependence on 

electric fields by Kerr's law [2]: 
i i-i2 £2 =s/ + af\E\   5 

where E denotes the electric field in waveguide. Assume that üf and 8y are real 

positive   constants.   Electromagnetic   fields   E,   H   satisfies   Maxwell   equations, 
transmission conditions of continuity of the tangent components on the jump of medium 
and radiation conditions on the infinity. 
For solving the problem the cylindrical system of coordinates ( p ,(p, z) in used. 

The  first  case  (problem  PI)   assumes  that   E = {0;E(p;0},   H = {//(p;0;H2}- 

Maxwell's equations are reduced to its specific form: 

^- = miiHp (1) 
dz 

1  d 
{pE^) = m\iHz (2) 

pdL 

1 aw 
■ = 0 (3) 

P 

1 ffl. 

P  dq> 

= -m^Ey (4) 
dH      dH 

dz       dp 

\dHp 

p acp 
= 0 (5) 

We will find the solutions of the problem with harmonic dependence on z-coordinate: 

E„ ( p, z) = u( p )e'J z. Then we obtain the equation 

(-(p w)7+(©V -y 2)u = 0. (6) 
P 
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Taking into account that E = 8j inside the waveguide, we have: 

(-(pu)'y+k?u = 0, 
P 

1 1 ~9 
w"+—w' -u + kfu = 0, (7) 

P       P 
where 

kf =co281^i-y
2. 

Outside the waveguide, where 8 =82=8 /• + a f\E\ , we have: 

(— (piiyy+kju + aI u I2 u = 0, 
P J 

where« = co2üj-\i, kj = CO2e^-y2,or, in another form, 

11-9 9 
"'    -'     ju + kfU + a\uf u = 0. M"+ —«'— 

P P 
For real function u(p) 

11-9 i 
u"+—u' Tu + kfU + a\u\ =0. (8) 

P       p 
The transmission conditions are   [E(p]p=R=0,   [Hz]p=R=0,  which  leads to 

conditions [u]p=R = 0, [w']p=/? = 0. In this case the spectral parameter is y . 

Consider   the   second   case   (problem   P2):   E = {0;0;£z},   H = {Hp;Hlp;0}. 

Maxwell's equations are reduced to ones: 

1 dE z=m\iHp (9) 
P 5(p 

dE7 
-y^ = /CO|H//(p (10) 

" P    
=0 01) oz 

dH 

8z   = ° (12) 

1  a 1 dH0 
-—(pH ) r-^ = -/coe£_ (13) 
p öp       v      p  dtp 
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We will find the solutions of the problem in the form £z(p,(p) = eW(pu(p), where n 

is real. 
We have the equation in outside of the waveguide 

U"+-U,+(Ä;1
2-^T)D=0, (14) 

P P 

For real U ( p ) inside of the waveguide we obtain the equation 

1 2 

v"+±-v'+(k2
f --^u +av3 = 0, (15) 

P P 

k2f =(£>2Zf\i,    a=(ö2cif\x.    The   transmission   conditions   are   [Ez]p=R=Q, 

[Hy]p=R=0, which leads to conditions [l)]p=J? =0, [U\=R =0. In this case the 

spectral parameter is n. 
Both cases are reduced to the equations of the following type: 

y<+y_"y + Kly = 0, (16) 
P     P 

y"+^ - ^ j + K2y + ay2 = 0, (17) 
P     P 

where J = w or y =V , K - k or K = k, n = \ in first case. The equation (16) is the 

Bessel's one. Taking into account radiation conditions, it has solution: 

y = CxH\X\K9\ (18) 

where Q is constant and H\ ' is Hankel function. Note, that if the real part of K is 

equal to 0 then 
y = ClKl(\K\p), (19) 

where K is real Macdonald function. 
The linear equation could be rewritten as 

7 2 

dp1     dp p 
The function 

G(P,P0):=^:¥^(^(^P0)<(^)-^(^)^(^P0)))P<P0^^ 2Jn(kR) 
(21) 
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-   Jn(kR) 
(22) 

is Green's function for boundary value problem 

LG = -8(p-po), 

G\p=0 = G'\p=R = 0;n>0(0<p0<R). 

We have second Green's formula: 

^(vLu-uLv)dp = fi(u(pu'y-u(pv,ydp=R(u'(R)o(R)-u,(R)u(R)) 

(23) 

Consider equation 

Lu + aB{u) = 0,B(u)=pu3. (24) 
Using (23) we have (u := G) 

f(GLu - uLG)dp = R(u'(R - 0')G(R, p0) - G'(R, po)u(R - 0)) = Ru'(R - 0)G(R, p0) 

(25) 
or, another, 

J^ (GLu - uLG)dp =~a^ GB(u)dp +u(p0). (26) 

We obtain 

u(pQ) = a£G(p,p0)pu2(p)dp + Ru'(R-0)G(R,p0),p0<R.(27) 

Dispersion relations (from u{R - 0) = u{R + 0), u' (R-0) = w' (R + 0)) 

u{R + 0) = a § G{ p, R)pu 3 (p )dp + Ru' (R + 0)G(R, R) (28) 

Theorem 1. 
If for a certain A>0, A does not depend on a, 

a<A (29) 
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then (24) has unique solution and this solution is continuous function. 
There is iteration procedure in order to find approximate solution un : 

u 0 =0,MM+I =aj^ G(p,p0)pundp+f, (30) 

which converges uniformly to solution u of (24). 
It follows from (28) and (19) that 

ClKl(\k\R) = ClK'l(\k\R)\k\RG(R,R) = a$G(p,R)pu3(p)dp 

or 
f(y) = aF(y), 

where 
f(y) = ClKl(\k\R)-ClKl(\k\R)\k\RG(R,R), (31) 

rR F(y)=£G(p,R)pu"(p)dp. 

Theorem 2. 
There exist e1,6y(8y>81),a>0 and eigenvalue 

Y0,C0
2

£I(I<YQ >C028y)i   such that problem PI  has non-trivial soliton-type 

solution. 
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HYBRID NUMERICAL-ASYMPTOTIC METHOD FOR THE 
CALCULATION OF THE COUPLING BETWEEN ELEMENTS 

OF A CONFORMAL MICROSTRIP PATCH ARRAY 

Frederic Molinet 
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fredericmolinet@magic.fr 

ABSTRACT 

Efficient asymptotic solutions have been developed for the calculation of the self and 
mutual coupling between patches on a curved 2D surface with variable curvature. For 
the calculation of the mutual coupling the approach is based on a local circular 
cylindrical approximation of the surface and on an asymptotic evaluation of the exact 
dyadic Green's function for a substrate on a circular cylinder. For the calculation of the 
self-coupling of a patch the curvature of the substrate is neglected and the 
corresponding Green's function is replaced by the Green's function of a planar layer. 
The Sommerfeld integrals are calculated by using the Discrete Complex Image Method 
after having extracted the surface wave contributions. The dyadic Green's function 
based on the two approaches is introduced in the mixed potentials electric field integral 
equation which is solved by using the RWG (Rao, Wilton, Glisson) triangular basis 
functions. 

INTRODUCTION 

We consider a large conformal array of patch elements (several tens to several hundreds 
of elements) on a two dimensional convex surface with variable curvature R. We 
suppose that R is large compared to the wavelength (kR » 1). The substrate is 
composed of a single layer of dielectric material. The feeding system is a voltage delta- 
gap on the patch, hence only current elements tangent to the air dielectric interface have 
to be considered. Owing to the large dimensions of the array, the coupling and radiation 
problems cannot be solved by the usual numerical techniques. Our approach consists in 
determining by analytical procedures the dyadic Green's function of the region exterior 
to the array, verifying the boundary conditions on the air-dielectric interface, and the 
radiation condition at infinity. In fact it is only necessary to calculate this Green's 
function along the air-dielectric interface for the coupling between patches and at 
infinity for the radiation of the elementary patches. A classical procedure consists in 
applying the Uniform Theory of Diffraction (UTD) for the coupling between patches. 
However, this method encounters several difficulties. It is not valid when the source and 
the observation point become close to each other, typically d < 1/5 and can therefore not 
be applied for the calculation of the self-coupling terms in the impedance matrix. 
Moreover, for larger distances between the source and the observation points, the 
method brakes generally down when the radius of curvature of the geodesic path 
between these points becomes large. In the paraxial region where the geodesic tends to a 
generatrix of the cylindrical surface, new asymptotic solutions have to be developed. In 
order to circonvent these difficulties, we have introduced a new approach for the 
calculation of the self coupling terms by neglecting the curvature of the substrate. The 
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corresponding dyadic Green's function is replaced by that of a planar layer and the 
Sommerfeld integrals are calculated by using the Discrete Complex Image Method 
(DCIM) after having extracted the quasi-static and the surface wave contributions. The 
planer layer approximation has been justified by measuring the reflection coefficient of 
a single patch on cylinders with different radii of curvature and on a flat substrate. A 
difference of less than 1% has been observed between the resonance values of the 
reflection coefficient for a flat substrate and a cylindrical substrate of radius R = 200 
mm. For the coupling problem between different patches, we have improved the UTD 
approach by using more accurate asymptotic expansions for the Hankel functions. In the 
paraxial region, the curvature of the substrate has been neglected and the Green's 
function for a planar layer has been used. 

FORMULATION OF THE PROBLEM 
- Self-coupling of a patch 

We present only shortly the Discrete Complex Image Method which is well 
documented in ref. [1, 2]. The Sommerfeld integrals are of the form (time dependence 

e-"*): 

/=]^P4^)^ (1) 

In order to apply the Sommerfeld identity, the main difficulty is the decomposition of 
the function F,(^) in a sum of exponentials of the type : 

^)=Io,e-'"W (2) 
n=l 

where a„and bn are complex numbers. We must therefore regularise Fx(t) by 

removing its poles and then extract the behaviour of the function when % -»<x>. An 
efficient method for decomposing the remaining integral in a sum of exponentials is the 
Matrix of Pencil Method [3]. The complex images are independent of the position of the 
observation point and hence are calculated only once. The accuracy of the method can 
be controlled and fixes the number of complex images. About ten images are necessary 
for getting en accuracy of order 10"6. 
- Mutual coupling between patches 
The field radiated by an electric Hertzian dipole located on a coated circular cylinder, 

tangent to the air-dielectric interface, is given by formulas (3) where We2 and W^ are 
the electric and magnetic cylindrical mode potentials. Applying the boundary conditions 
(4) on the air (medium 2) - dielectric (medium 1) interface, we get the expressions (5) 
of these potentials where the different terms are defined in (6), (7), (8) and (9). 
Watson's transformation is then applied in the usual way to the normal modes series, 
leading to an integral over the continuous complex variable v . The main difficulty 
consists in the calculation of this integral together with the Fourier transform integral 
over the wave number kz. Different approaches have been applied in the literature for 
the computation of these integrals [4]. Since we have conciliated accuracy and low 
PCU time, we have evaluated the Fourier transform integral by the steepest descent 
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method. However, in order that this procedure applied to the potentials give correct 
results for the fields which involve second order derivatives of the potentials, the 
asymptotic evaluation of the v -integral must be very accurate. We have therefore 
adapted a residue series integration of the v -integral despite the difficulties related to 
the determination of the poles. The latter have been overcome by starting from the 
values of the poles on a perfectly conducting surface and following the latter by 
augmenting stepwise the thickness of the layer. At each step, the poles are determined 
using Davidenko's method [5]. With this procedure, 20 to 30 poles can be easily 
calculated. However, the method is sensitive to the radius of curvature of the geodesic 
joining the source to the observation point. For radii of curvature verifying 
10<W?<50, Watson's asymptotic approximation of the Hankel functions 
H^\kpbjg\\e good results. For large radii of curvature kR >200 Debye's asymptotic 
approximation must be used. In this case the search for poles is accelerated by starting 
with the values corresponding to a flat substrate. For intermediate values of the 
curvature Olver's uniform asymptotic expansion is adequate. In our algorithm, Olver's 
uniform asymptotic expansion has been used throughout together with a test giving the 
appropriate starting values for the searching of the poles. 

£;=-Vx(f^,)+-l-VxVx(z^„)=zxVVF(;/+ — 
;we, yö)E, 

( <* 
— V^-zA^ 

H,^ =-Vx(zVFffi/) + -^VxVx(z^,) = -zxVVFffl, +-J_f|-VTe, -zA*Fe,l 
./rau, you, VOz ) 

(3) 

*„2(P.<M) = 

px£,=0,p=a    px^-i^o] 

px\H--H.)=j\      ...       x 

:•->»(♦-♦■)  liu „-JU      a» \Kp2P) 1 
4n2b 

1 

\dk,i 

1    2    p| k   k 

Hn)ThAn)-f:\ 

/C i K 

**    Pi 

,/v2 

V* 
r2'M 

TC2(P,<M)=- 
4n2b 

„MM') \dk2e-jk': 

J. kl 
(„\ 

\oj 

Pi P2 

k.k2    ^%b)-^{nr2(n)^ 
Pl      Pi P2 

n     K ~k 

+ J„-k    Pl 

(4) 

(5) 

b"' KM *-^
2,M 

r:(n)=H^(kpb)-A\(n)H^kJ      ,   n(n)=H^{kpb)-K\{n)H^{kpb) 

^{n)=H^{kpb)-K\(n)H%pb) (6) 

Pi K, T~ Pl     m 

(7) 
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fc = 
J n 

nk. 

K, 
[»«%>)] 

P2 y 

a„ = "!?yM 

(8) 

(9) 

r.-tfM^-a.^M a„ = 

On a circular cylinder the poles depend only on one geometrical parameter : the angle 
between the geodesic and the generatrixes. When the radius of curvature of the substrate 
is variable, a local cylindrical approximation is used. In this case the poles depend also 
on the position along the geodesic curve and have therefore to be calculated at a set of 
points along this curve. 

NUMERICAL RESULTS 

The accuracy of the method has been tested on a coated circular cylinder by comparing 
the results for the self and mutual coupling between patches with results available in the 
literature. In addition the radiation patterns of a single patch and of an array of seven 
patches have been computed. 

CONCLUSION 

In its present state of development, the hybrid UTD-DCIM/MoM code can handle an 
array of about 50 patches on a workstation. For larger conformal arrays, the matrix 
inversion algorithm in our MoM code has to be replaced by a fast multilevel iterative 
solver. This will extend the possibilities of the code to several hundreds of elements. 
Other future developments are : improvement of the formulas for the paraxial region by 
taking into account the curvature of the substrate, more realistic feeding systems, 
multilayer substrate and array truncation effects. 
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ABSTRACT 

Dielectric gratings with a piecewise constant surface profile are designed as beam split- 
ters and star couplers. In each design problem, the diffraction efficiencies are used to 
formulate a target function, which has to be optimized. A rigorous grating theory is em- 
ployed to compute the target function efficiently for each real-valued parameter vector 
comprising the design variables of the grating. Due to the multi-modal behavior of the 
target functions, an evolution strategy (ES) is applied as optimization technique. The 
numerical design examples demonstrate the usefulness of the proposed approach. 

INTRODUCTION 

This work is concerned with the design of dielectric transmission gratings that act as beam 
splitters and star couplers. The design of gratings, in general, involves finding the values 
of the relevant parameters, which ensure that the structure performs in accordance with 
specified design criteria. The particular designs described here, are casted as optimiza- 
tion problems with inequality constraints, in which no gradient information on the target 
functions is available. Therefore, classical optimization techniques strictly deterministic 
in nature, e.g. gradient-based and Newton-type methods, seem inappropriate. Further, 
the target functions are expected to exhibit multi-modal behavior, as this holds true for 
most optimization problems involving electromagnetic wave phenomena. Following [1], 
these problems should be tackled by using stochastic optimization techniques. Exam- 
ples of these techniques are ESs, genetic algorithms, and simulated annealing. On many 
occasions these techniques have proven to be very useful tools for electromagnetic op- 
timization problems, even if non-differentiable and/or highly nonlinear target functions 
are involved. Furthermore, these techniques are ideal candidates for global optimization, 
since, when compared to'their deterministic counterparts, stochastic methods are less 
likely to get stuck in weak local minima. 
In this paper, we apply an ES to our optimization problems. Besides the aforementioned, 
this choice was suggested by the ability of ESs to easily handle inequality constraints and 
by its favorable convergence properties. The most expensive part during the optimization 
process are the target function evaluations. Each evaluation requires the solution of the 
grating diffraction problem, for which we use a modified version of the rigorous differen- 
tial method described in [2]. Before we start to describe the applied ES, we first outline 
the analysis method, that is used to solve the diffraction problem. In the last section, we 
present numerical results for beam splitters and star couplers designed with our code. 
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ANALYSIS METHOD 

In this section, Maxwell's equations will be reformulated as a first-order system of differ- 
ential equations. First we consider the case of TM-polarization, so that field components 
Ez, Dz, Hx and Hy are only involved in the diffraction problem. To start with the ana- 
lysis, the periodic relative permittivity er(x) of a single layer, e.g. region 2 in Fig. 1 a), is 
expanded into a Fourier series: 

er(x)=lim     £   eme-^, em = j / £r(*)e+^ dr. (1) 
M->oom^M LJQ 

An incident homogeneous plane wave with wave number vector k = k0[- sin ipl, cos ip1} , 
K = uoy/ß^ = 27r/A0, on such a periodic structure generates a total field that is pseudo- 
periodic, i.e., it satisfies the Floquet theorem. The electric displacement Dz for instance 
is given through the following modified Fourier expansion: 

M i  h . 
r>,(z,l,) =   lim    £   DZm(y)e-^,        DZm(y) = -     Dz(x,y)e+^ dx,    (2) 

M—»oo       —'  , Li J 
m=-M 0 

where am = m^f - k0 sin ip*. If we substitute the expansions for Dz, Ez, and er from (1) 
into the constitutive law Dz = e0erEz, it can be derived, that the multiplication between 
the permittivity and the electric field leads to a discrete convolution of the corresponding 
Fourier coefficients, i.e. DZm{y) = em* EZm{y). As is usually done in signal processing, 
we rewrite this convolution equivalently as a Toeplitz-matrix vector product: 

Vz = eM2£z, (3) 

with vectors (Vz)m := DZm, (8z)m := EZm and refraction matrix (Af2)mn ■= ^m-n- 
In the next step, we substitute the field and permittivity expansions into Maxwell's equa- 
tions, which simplify for TM-polarization, and utilize the property, that the basis func- 
tions exp(-jamx) are linearly independent. Defining vectors Hx, Hy consistent with £z, 
Vz in (3) and a diagonal matrix [a] := diag([..., ct_i, a0, «I, • • •]) yields: 

-j[a}Hy - —Hx = jto0Vz,     —£z = -juü0HoHx,    j[a]Sz = -jujoji0Hy.     (4) 

Eliminating vectors Vz and Hy in (3) and (4), we obtain a first-order system of differential 
equations, that bears close resemblance to the differential equations describing the volt- 
ages and currents on a multiconductor transmission line. To make this point clearer, we 
introduce inductance and capacitance matrices L and C and voltage and current vectors 
U and I: 

L = AVL,        C = e0 (M
2 - (H//c0)

2) ,        U = £z,        I = HX. (5) 

For TE-polarization, the procedure described above is also applicable [3]. In any case, 
the following infinite system of differential equations has to be solved: 

Au(y) = -jUoL Ifo),        ^l(y) = -ju„C U(y). (6) 
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Figure 1: a) Grating with a single periodic layer. Also shown is the geometrical construc- 
tion of the propagation directions of the spatial harmonics, b) One period of a dielectric 
grating with a piecewise constant surface profile. 

The matrix exponential allows an analytical solution to this system: 

U(y) = e-^
vU+ + e^U_,        I(y) = Y0 [e~^U+ - e'^U. (7) 

where [7] = jui0\/LC and Y0 = L-1\/LC are the propagation constant and the charac- 
teristic admittance, respectively. Further analogues known from transmission line theory 
are readily defined, as for instance reflection and transmission coefficients. All these 
analogues become infinite matrices, which have to be truncated in a numerical imple- 
mentation. 
The solutions in (7) essentially consist of two sets of propagating diffraction orders or 
spatial harmonics. One set having wave vector components in +t/-direction, the other in 
-y-direction. In addition to the propagating orders, evanescent waves exist as well. 
To solve the diffraction problem of a grating with a piecewise constant surface profile 
as shown in Fig. 1 b), vectors U+, I+, U_ and I_ need to be determined uniquely in 
each layer from the boundary conditions, which require the continuity of the tangential 
magnetic and electric field components at the discontinuities on one hand, and the out- 
going wave conditions in the two semi-infinite regions that surround the grating on the 
other hand. Substitution of characteristic admittance, reflection and transmission matrices 
into the system of equations that results from the boundary conditions, leads to a robust 
R-matrix propagation algorithm, that is applicable to thick gratings. 
Finally, we define the efficiencies of the ra-th reflected and transmitted waves: 

\en)m — e
m.n :~~ \en)m — £ m,n Re {£#/£•}' (8) 

where Ul
n, Pn are the field amplitudes of the n-th incident plane wave. The efficiencies 

are of significance in grating analysis and will be required to define the target functions 
in the optimal design problems. Due to energy conservation, the sum of all efficiencies 
has to equal unity. This property, generally called energy balance criterion [2], provides 
a test on the soundness of the computer implementation. 
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OPTIMIZATION METHOD:   EVOLUTION STRATEGIES 

In the optimal design problems, we applied a multi-membered (// + A)-ES [4], which 
basically works as follows. A set of \i arbitrarily chosen individuals a{ is grouped together 
to form an initial population, i.e. P(0) := {^(0),... ,aM(0)}. Each individual of the 
population is evaluated by assigning some form of fitness value <$>{a0)) to it. As a next 
step, the individuals of population P(0) are manipulated by genetic operators, especially 
recombination and mutation operators. The A descendants are evaluated and undergo 
together with the LI parents a fitness-based selection process afterwards to form the next 
generation, i.e. population P(l). The cycle of reproduction that has emerged P(l), is now 
applied to P(l) and generates a population P(2) of higher or at least equal quality. The 
reproduction cycle is traversed as long until some termination condition Q(P) is satisfied. 
The description given so far can be directly translated into an algorithmic outline, in 
which t denotes the generation counter. 

Algorithm Outline of a (LI + A)-Evolution Strategy 

t:=0 
initialize:     P(0) := {^(0),..., 5^(0)} 
evaluate:     P(0) : {$(^(0)),..., $(^(0))} 
do 

if (Q(P(i))==.TRUE.) then EXIT 
recombine:    a'k{t) := r{P(t))    Vfc G {1,..., A} 
mutate:    a'k\t) := m{TTi}(äk(t))    Vfc G {1,..., A} 
evaluate:    P"(t) := {a'/(t),..., a'{(t)} : {$(<'(*)), • • •, $(W))} 
select:    P(t + 1) := sifi+x)(P(t) U P"(t)) 
t:=t + l 

end do 

An individual a consists of an object vector x comprising all design variables, e.g. : 

x = [<p\\0,L,h,hu
1,h%,...,hihi...,xu

1,x
u

2,...,xixi...}, (9) 

and a strategic vector a, i.e. an individual a = (x, a). Mutations, denoted by mutation 
operator m{TjT'}, are realized by replacing x with x', i.e. 

x\ = xt + a'MO, 1),        a\ = a exp(r'AT(0,1) + r^(0,1)), (10) 

where JV(0,1) denotes a realization of a normally distributed one-dimensional random 
variable having an expectation of zero and a standard deviation of one, while Ni(0,1) 
indicates that the random variable is sampled anew for each possible value of the counter 
i. Parameters r and r' are set to 0.71iV-a25 and 0.71iV°-5, respectively, when iVx is the 
number of design variables. The set of inequalities among design variables xf and xd

u is 
assumed as a part of the optimization problem. If the offspring x' does not satisfy all con- 
straints, it is disqualified and not placed in a new population. If the rate of occurrence of 
such illegal offspring is high, the ES adjusts its strategy parameters, i.e. the corresponding 
components of a are decreased. 
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With the help of specified efficiency vectors e^ and e£, we formulate a target function / 
dependent on the design parameters only. Therefore, it seems advisable to simply define 
the fitness ot an individual as: 

*(3) := f{x) = £ ||e< - <(f)||2 + £ ||e; - <(£)|j 2' (H) 

Recombination is always used in ESs for the creation of all offspring individuals. Differ- 
ent recombination operators exist. In our implementation, we used an panmictic general- 
ized intermediate recombination operator r defined as follows: 

a'i = as,i + Xiiar^i ~ ast,i) (12) 

The indices S and T denote two parent individuals selected at random from the popula- 
tion. The index i in T{ indicates T to be sampled anew for each value of i. Xi £ [0,1] is a 
uniform random variable, sampled anew for each possible value of the counter i. 
Finally, selection operator s^+x) selects the \i best individuals out of the union of parents 
and offsprings to form the next parent generation. 

OPTIMAL DESIGN PROBLEMS 

In all optimizations, an (15+100)-ES has been applied with a number of standard devia- 
tions equal to the number of design variables, i.e. A^. The designed transmission gratings 
were supposed to consist of teflon with a relative permittivity of 2.06 surrounded by air 
and M was set to 20, so that all truncated matrices had the size 41 x 41. In each run, the 
energy balance criterion was satisfied within a tolerance of « 10-15. 

a)-l« 
Of 

A 1' 
b) 

0' 

Figure 2: Transmission grating as a) 1 -to-3 beam splitter at normal incidence and b) as 
4-to-4 star coupler at Bragg incidence. Mirror images of order 0* and V are omitted. , 

As design examples, we consider beam splitters and star couplers [5]. The operating 
principle of these diffractive elements are illustrated in Fig. 2 by means of an l-to-3 
splitter and a 4-to-4 coupler. For the former, we ideally set e^i0 = 33.3%, m € W = 
{-1,0, +1}, whereas for the latter, we require that e^0 = e^a = 25%, m G W = 
{0,1, 2, 3}. All other efficiencies in e' and er are set to zero, respectively. Thus fitness 
function $(a) in (11) is completely defined. 
We exclusively use left-right symmetric profiles, so that the optimization is simplified. 
The diffraction patterns at the angles of incidence ^n and -ip^ therefore become mirror 
images. Hence, if an odd number of signal orders iVs is desired, we choose normal 
incidence, otherwise, for an even number, we choose Bragg incidence. The period length 
L was set to ^y^A0. This avoids, that power is lost into unwanted diffraction orders. 
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To characterize the quality of the designed transmission gratings, the diffraction efficiency 
Vn ■= Emew em,n inside a window W and the reconstruction error Sn := ||e£ - ej^ is 
used. Other figures of interest are the number of grooves on the bottom and upper side of 
the grating, i.e. Gd/u, the minimum feature sizes xdj£n := mmi^j{\xd

i
/u - xfu\} and the 

maximum heights hf[^x := maxi{\hd/u\}. 

Table 1: Numerical results for beam splitters and star couplers. 
Beam Splitter Star Coupler 

1/2 1/3 1/4* 1/5 1/6 1/7 3/3 4/4* 5/5* 6/6* 

Nx 3 3 4 5 7 7 3 4 6 7 
Qd/Gu 11- 1/- 2/2 1/1 2/2 2/2 1/- 2/2 3/3 4/4 

L/Xo 1.500 2.000 2.500 3.000 3.500 4.000 2.000 2.500 3.000 3.500 

''"max/*o 
h/X0 

"■max/ *o 

1.642 
1.262 

0.718 
0.403 

1.322 
0.346 
1.322 

1.103 
0.575 
0.456 

0.974 
0.728 
0.157 

0.884 
1.767 
0.258 

1.394 
1.448 

1.287 
0.364 
1.287 

1.283 
0.671 
1.283 

1.328 
1.247 
1.328 

Ad/X0 

Au/A0 

0.746 0.722 0.214 
0.214 

1.458 
1.277 

0.419 
0.240 

0.548 
0.596 

0.264 0.222 
0.222 

0.113 
0.113 

0.264 
0.264 

<PlQ(°) 
vi(°) 
An 

19.47 0.00 11.54 0.00 8.21 0.00 30.00 
0.00 

36.87 
11.54 

41.81 
19.47 
0.00 

45.58 
25.38 
8.21 

99.93 99.71 98.65 99.47 98.20 99.64 98.18 
99.06 

98.40 
98.58 

95.45 
92.63 
95.40 

94.97 
96.11 
94.52 

s0{%) 
Si(%) 
<J2(%) 

0.03 0.10 0.21 0.12 0.48 0.05 1.20 
0.39 

0.88 
0.88 

1.54 
3.06 
1.21 

2.59 
2.61 
2.28 

* Grating has up-down symmetry. 

The optimization results achieved are summarized in Tab. 1 and demonstrate, that ESs are 
a very powerful tool for designing gratings. The beam splitter and star coupler designs 
have efficiencies of at least 98.20% and 92.63% with a reconstruction error of less than 
0.48% and 3.06%, respectively. 
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ABSTRACT 

An efficient technique based on the extension of the Banded Matrix Iterative Ap- 
proach (BMIA) to a not canonical grid by using the Adaptive Integral Method 
(AIM) is presented for the analysis of stacked patch antennas of large dimensions. 
The patches can have arbitrary shape and orientation and are modeled by means of 
triangular elements. 

INTRODUCTION 

The analysis of large-scale complex patch antennas by using method of moments 
(MoM) usually requires large computational resources in terms both of dynamic 
memory and computation time. Especially for an optimization process, where many 
slightly different structures have to be analysed, availability of an efficient numerical 
method is desirable. Similar problems arise in a Monte-Carlo analysis of the scat- 
tering from large rough surfaces. In this kind of study the scattered field intensity 
is averaged over more of one hundred of typical realizations of the assumed scenery 
built in conformity with its statistical behavior. Obviously, it is very important 
to minimize the computation time for the analysis of each realization and several 
techniques have been developed for the fast computation of deterministic profile 
scattering. These techniques are based on the modification of the classical method 
of moments (MoM) to allow a fast evaluation of the reaction integral and, when 
an iterative solver is used, a fast matrix vector multiplication.   Examples include 
the adaptive integral method (AIM) [1], the fast multipole method (FMM) [2], the 
matrix decomposition algorithm (MDA) [3], and the banded matrix iterative ap- 
proach/canonical grid method (BMIA/CAG) [4], [5]. Specifically, the BMIA/CAG 
method is one of the most efficient when applied to the studying of rough surfaces. 
As a matter of fact, the statistical description of a rough surface allows the use of a 
regular grid. 

The aim of this paper is to show that the last method, when opportunely modi- 
fied, can be profitably employed for the analysis of large-scale stacked patch anten- 
nas. In particular, the necessity to describe patches of arbitrary shape and size in 
a regular grid is considered by introducing a set of auxiliary basis functions based 
on a multipole expansion as in the AIM [1]. Furthermore, special attention has 
been addressed to the presence of a ground plane, placed below the patches, which 
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reduces the number of terms we need to evaluate. 
In order to simplify the formulation, the antennas analysed in the following 

are supposed characterized by a substrate of dielectric relative permittivity very 
close to unity, similar to those usually employed by GSM systems having space and 
frequency diversity and/or in a GPS system mounted on satellites. This hypothesis 
allows the analysis of patches in free space by using in the procedure an expansion 
of the free space Green function. The method, however, can be easily extended to 
dielectric stratified structure with a little effort when discrete complex image method 
(DCIM) is employed [6], at least when substrates having low relative permittivity 
are employed. In fact, the BMIA procedure requires the analytic evaluation of some 
^-derivatives of the Green's function and this can easily made when, as in DCIM, are 
used closed-form expressions where only complex coefficients have to be evaluated 

numerically. 

FORMULATION 

The general structure sketched in Fig. 1 can be considered a quasi-planar metallic 
structure located over an infinite ground plane having a height profile z = f{x,y). 

1 .1 mm  3.3mm  7 . 1 mm 
I 1 1 1 

5 .4 mm 

5.2 

5.4 mm 

ground plane 5.68mm 

Fig. 1 - Geometry of the problem. 

Let Js be the surface current density induced on it by an incident field El and Es 

the electric scattered field. The latter can be computed from the surface currents 
by Es = -ju)Ä- V0, with the magnetic vector potential A and the scalar potential 
4> defined as 

0(f). 
j_ 
4.7T 

-J>Js(f') 
V • Js{f')/tue 

G(r,r')dS', (1) 

where G(f,f') = exp(-jkR)/R, and R = \f-f'\.   By enforcing the boundary 

condition n x (&■ + Es) = 0 on S, we can derive an integrodifferential equation for 
—* 
Js obtaining 

nxE1 n x (jLüÄ+V(j)\ (2) 
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Equations (1) and (2) represent the so-called electric field integral equation (EFIE). 
For numerical solution of the pertinent integral equation the surface S is discretized 
into small triangular patches, and the unknown current Js is expanded using a suit- 
able set of basis functions jn(r) (e.g., Rao-Wilton-Glisson (RWG) basis functions 
defined by Rao et al. [7]). That is Js(f) = Yln=i^njn(^), where In are unknown 
coefficients. Then, a method of moments is applied to obtain a linear system of 
equations, ZI = V. In classical BMIA the computational efficiency is achieved 
defining a distance r^ which separates two regions: a near-interaction region and 
a weak-interaction region. Then, one can write the matrix Z as superimposition 
of a strong matrix Xs and a weak-interaction matrix Zw (i.e. Z = Zs + Zw). 
The elements of V are related to weighting and base functions having distances 
dxy = yf{x — x')2 + (y — y')2 < r^. In the weak-interaction region we consider 
h = \z — z'\ — \f(x,y) — f(x',y')\ <C dxy. So we can approximate the Green's func- 
tion by using M terms of the relevant Taylor series with respect to the height h, 
resulting 

M 

G{dxy: h)^^ am{dxy) exp(-jkdxy) h
2m , (3) 

m=0 

where a0 = l/dxy, ax = -(1 + jkdxy)/2dly, a2 = (3 + 3jkdxy - k2d2
xy)/8d5

xy, .... As 
a consequence, the weak-term of the eq. (1) can be written as 

-3HJa{x ,y ,z) 
^ 4TT JJ C 
m=0 J J    " 

V-Js(x',y',z')/uje. 
am{dxy) exp(-jkdxy) [z - z'fm dS'.      (4) 

Therefore, by assuming the Galerkin discretization scheme, each element of the 
weak-interaction matrix T,w can be expressed as linear combination of four elements 
of the form 

Ztj^Y.lj   R™(z)  ?(x,y,z) [[  Am(x-x'}y-y')Qm(z')   °(x\y',z') dS'dS. 
m.=Q^   S JJ   S 

(5) 

where a = x.y.z.cp, f is the pertinent base or weighting function and M = 
(A/ + l)2 - 1. 

When the method is applied for evaluating the backscattering from a rough 
terrain, since the statistical description of the terrain surface allows the use of a 
regular grid, it is convenient to project the integration domain on the x, y plane as 
in [4]. So, each term (5) takes a two-dimensional convolution form and can efficiently 
be evaluated by means of a two-dimensional FFT. This formulation, however, cannot 
be directly applied to the analysis of patch antennas structures, either it requires a 
regular grid for describing the structure or it does not allow the use of basis functions 
set along the z direction. 

One can overcome this problem replacing the original basis and weighting current 
distribution multiplied by Pm{z) = Qm{z) or Pm(z) = Rm(z) with an approximately 
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equivalent set of pointlike currents. The two current distributions are equivalent in 
the sense that they generate almost identical fields in the weak-interaction region. 
We choose the pointlike current elements located at nodes of a regular Cartesian 
two-dimensional grid, parallel to the x,y plane. Both basis and weighting functions 
are approximated as linear combination of Dirac delta functions, thus 

Pm(z)  Z{x,y,z)*irK?8{x-xi)6(y-yi)6(z-zc), (6) 
i=0 

with (xi,yi) e Cn, where Cn is the set of L + 1 grid nodes closest to the center 
(xc, yc, zc) of the basis or weghting function support. 

However, differently from the classical AIM, since we require that pointlike cur- 
rent elements are bound only to be belong to a regular Cartesian two-dimensional 
grid having Ng nodes, we enforce the equality 

pm(z) a
n(x,y,z)(x-xcr(y-yc)m2ds = Y,K?&~**)mlfo-yJm2, 

2=0 

for 0 < mi,m2 < L.   (7) 

By inserting (6) in eq. (5) we can easily recognize that for the weak-interaction 

matrix we can write 

M 
zw*=£     E    ^AjmAmAgmHQJ, (8) 

m=0 a=x,y,z,<f> 

where Am = {Am{xl - Xj,y{ - %■)}, Ha joins the basis (weighting) functions to 
the unknowns vector I = {In} and Ag$ = {A"f }, where Pm(z) = Qm(z) or 
Pm(z) = Rm(z) are considered. 

It is worth noting that matrix Am is a block Toeplitz matrix, while matrices Ha 

and Af'$ are extremely sparse (few valued elements per row). 
While the V matrix is a full matrix with 0(N2) elements and usually can not 

be stored for large-scale problems, we have now to store only O (4Ng) elements 
for each matrix Am, and some others matrices that need the overall storage of 
O (4(L + l)Ng) elements, where Ng is the number of nodes on the regular two- 
dimensional grid. Furthermore, when the conjugate gradient (CG) method is used to 
solve the matrix equation ZI = V, the ZWI product can be conveniently evaluated 
by performing, for each term m, first the product A£mHaI (pre-multiplication), 

then the product Am • (A^mHa I) by means of two 2D-FFTs, since Am is a block 

Toeplitz matrix. Finally, the product Mf lR(m) • (Am A JmHQ I) can be performed 
(post-multiplication). The latter scheme allows to evaluate the ZWI product by 

using O (N9  8(2M + 1) log(4A9) + 6(M + l)2 ) operations instead of O (N2). 

Furthermore, when we consider the presence in the structure of a ground plane 
some simplifications arise. As a matter of fact, by applying the image principle we 
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locate image sources symmetrically with respect to the ground plane, assumed on 
2 = 0. This can be taken into account direclty by the Ha matrices. However, since 
in eq. (5) the term Qm{z') is proportional to (2/)m-1-(L%/™-i) ^ jt is easy to see that 
when an even power of the source position function z' is considered the presence 
of an image source leads to annihilate the contribution to the field given by the x 
and y components of the current density, and by its divergence. In a similar way, 
contribution given by the z component is annihilated in terms Qm{z') having an 
odd power of z'. Therefore, when for example M = 2 (i.e. M = 8) one only have to 
evaluate 18 instead of 40 2D-FFTs for each product 1>WI. 

NUMERICAL RESULTS 

The convergence of the method has been tested by comparing the results obtained 
with those given by a standard MoM. First, we have analysed the array sketched in 
Fig. 1 made up of 6 x 6 stacked patches. Fig. 2a shows the input impedance at the 
central element of the array evaluated with both the standard MoM procedure and 
the proposed one. The curves are almost indistinguishable. 

xlO" 

3 z 
23        24        25        26        27 

frequency (GHz) 
28 5000       10000      15000 

Number of unknowns 
20000 

(a) (b) 
Fig. 2 - (a) Real and imaginary part of the input impedance of the central element of the 
array sketched in Fig. 1 (6777 unknowns, hmax/rd = 0.082); (b) Number of multiplications 
required for each (Zs + ZW)I product by MoM, FFM and BMIA/AIM method versus the 
number of unknowns (M = 2). 

Fig. 2b shows that the proposed method is profitable, when compared with the 
FMM, for the analysis of structures that require more than 4000 unknowns. Only 
first three terms of the Green's function Taylor series (i.e. M = 2) have been 
considered. 

Furthermore, Table I shows the computation time (on a Pentium III lGhz) and 
the dynamic memory required for the analysis of an array of resonant dipoles printed 
on the PGB structure of the type of that sketched in Fig. 3. 

Results relating to more complex structures will also be presented at conference 
time. 
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Dimen- 
sions 

2Ax 2A 
3A x 3A 
4A x 4A 

Unk- 
nowns 

5193 
11765 
17774 

CPU-time per 
iteration (sec) 

MoM 
9.4 

49.2 

FMM 
4.7 
15.9 
39.0 

BMIA 
1.5 
3.9 
6.6 

53 

Input impedance £1 
(frequency^ 26 GHz) 

MoM 
144.1+ j'30.54 
99.78- J25.01 

Table I 

FMM 
144.2 + J30.41 
99.83-J25.02 
85.97 -j'24.51 

BMIA 
143.9 +J29.19 
99.46-j25.77 
85.89 - J25.07 

0.6 

i 0.25 

\ \ 1 

\ \ 
]   1.6 

\ \ 
0.63 0.63 0.63 

2.04 

Fig. 3 - Resonant dipole printed on a PGB structure (dimensions are expressed in mil- 

limetres) . 
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ABSTRACT 

The three paradigms of the evolutionary algorithms, namely, Genetic Algorithms, 
Evolution Strategies and Evolutionary Programming, are briefly reviewed, and the 
applications of the latter to optimizations of continuous as well as mixed parameter 
electromagnetic problems are discussed in details. Examples presented include 
optimizations of corrugated horn antennas, array of multi-layered stacked microstrip 
patch elements, and synthesis of multi-layered dielectric filters. 

INTRODUCTION 

In optimization and synthesis of antenna and microwave structures, one typically deals 
with objective functions that are highly non-linear and have a large number of 
optimization parameters. In addition for many electromagnetic problems, the objective 
functions manifest epistatic behavior due to strong mutual coupling and other 
propagation effects, requiring a simultaneous optimization of the design parameters. 
Also, most complex electromagnetic systems have to be numerically modeled, resulting 
in objective functions that have no readily available derivatives. For such problems the 
evolutionary computational techniques can yield robust globally optimized solutions 
that otherwise are not possible using traditional gradient-based local-search 
optimization methods. These probabilistic techniques, collectively known as 
Evolutionary Algorithms (EAs), try to emulate, in one way or the other, the Darwinian 
model of natural evolution on a computer. Even though there are many branches of 
EA's, one can in general identify three main trends in the literature: Evolutionary 
Programming (EP)[1], Evolution Strategies (ES)[2] and Genetic Algorithms (GAs)[3]. 
All these algorithms are multi-agent stochastic search methods that incorporate random 
variation and selection. They all operate on a population of candidate solutions and rely 
on a set of variation operators to generate new offspring population. Selection is then 
used to probabilistically advance better solutions to the next generation and eliminate 
less-fit solution according to the objective function being optimized. Of the three 
paradigms of EAs, GAs are well-known to the electromagnetic community and have 
been extensively used in optimization of antenna and microwave structures[4-6], 
whereas the application of EP in electromagnetics appeared more recently [7,8]. The 
most significant difference among the aforementioned branches of EAs is the choice of 
variation operator. In GAs the variation operator is a combination of crossover and 
mutation with the former being the main mechanism of change, whereas in ES both 
recombination and mutation are used with the latter being the dominant operator. In EP, 
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however, mutation is the only variation operator used and therefore the evolution 
process is asexual by nature. In addition, the selection of the crossover and mutation 
probabilities in GAs is rather arbitrary and they are not adapted during evolution. On 
the other hand, the selection of the initial values for the so-called strategy parameters for 
EP and ES are well defined and efficient adaptive and self-adaptive techniques exist for 
adapting these parameters during evolution. Mutation-based reproduction process in EP 
can provide a versatile tool in design of the problem specific operators and facilitate 
easy integration with available apriori knowledge about the problem. It is also 
noteworthy that unlike conventional GAs, which require the continuous design 
parameters to be coded and represented as binary strings, EP and ES can both directly 
work with the continuous, discrete or mixed parameters. 
Since the applications of GAs in electromagnetics have been detailed in a recent book 
[6] as well as in many journal and conference papers (see [6] for a detailed 
bibliography), in this paper we concentrate on some recent advances in EP and its 
applications in various constrained antenna and microwave design problems. 

META-EP FOR CONTINUOUS PARAMETER OPTIMIZATION 

The EP algorithm with self-adaptive mutation operator for global optimization of an n- 
dimensional objective function §(x),x =[x(i\x(2) *(«)] consists of five basic steps: 
initialization, fitness evaluation, mutation, tournament and selection. Here we 
concentrate on the mutation step; the details on the other steps can be found in [1,8]. 
Design of efficient mutation operators is presently an ongoing topic of research in 
evolutionary computation. Here we present two algorithms, which use different 
mutation operators in the evolution process. First let us assume an initial population of 
u individuals is formed through a uniform random or a biased distribution. Each 
individual is taken as a pair of real-valued vectors, ft, r\), \fi e{7,....|a}, where 
xj =^iQ),x;(2),...xi(n)] and rj,. are the n-dimensional solution and its corresponding strategy 
parameter (variance) vectors, respectively. In EP with Gaussian mutation operator 
(GMO), each parent (*,., %) creates a single offspring (*/, \') by: 

V(/> - w/v/>",«o ;   n'</> - TIC/)« 
[< «*» + 'moM     (i) 

for j = 0,1,2,....n, where x(j) and t](j) are the jth components of the solution vector and 
the variance vector, respectively. N(0,1) denotes a one-dimensional random variable 
with a Gaussian distribution of mean zero and standard deviation one. Nj(0,l) indicates 
that the random variable is generated anew for each value of j. The scale factors x and T' 

are commonly set to Cßfi}' and (jjij1, respectively, where n is the dimension of the 

search space. Self-adaptive mechanism of the second equation in (1), borrowed from 
ES, enables the meta-EP to evolve its own variance parameters during the search, 
exploiting an implicit link between internal model and good fitness values. In EP with 
Cauchy mutation operator (CMO), the offsprings are still generated according to (1), 
but with a Cauchy mutation replacing the Gaussian mutation in the first equation, i.e., 

x, 'U) = x, (j) + fi~U) Cj(0, l) (2) 
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where C(0,1) is a random variable with a Cauchy distribution operator centered at the 
origin and with the scale parameter t = 1. After the offspring's population is formed, a 
lournameni/seiection process is performed in which a pair-wise comparison with respect 
to the fitness values over the union of parents and offspring populations is conducted. 
For each individual ät in the union, k e {;,.... 2 p.}, q opponents are chosen at random with 

equal probability from the total membership 2u. of the union. For each comparison, if 
the individual fitness is no greater than the opponent's, it receives a "win". The best 
individual is guaranteed a maximum 'win' score of q and its survival to the next 
generation. We note that this tournament process differs from the one in conventional 
GAs and ES and is 'elitist' in nature. The u individuals out of the union of 
(x„ iiM*/, rj,'A v' e{/,.... 2 n}, with the most "win" score are then selected to be the 
parents of the next generation. 
For multi-modal functions with many local optima CMO outperforms GMO. To 
demonstrate this, we consider the n-dimensional Ackley function [2]: 

/„(*)=-20exp 
l"i=i     J 

-exp 
(l " A 

— Vcos(2/r;t,.) + 20+e (3) 

This function has a global minimum at 0 and a total of about (2a+l)n in the range [-a , 
a]. We have applied EP algorithms in the range [-5, 5] to the above function when n = 
20. The population size and the number of opponents were set to u = 50 and q = 10, 
respectively. Figures 1 and 2 show the function-value trajectory of the best population 
member over 100 trials and the corresponding histogram, respectively. We note that the 
very large number of local minima, which in this case is about ll20, would trap any 
gradient-based, hill climbing method. 

V ■— EP-Cauchy 
 EP-Gaussian 

Kx  
\ 

V^_ 

100 

0   200  »00  600  600  1000 1200 1400 1600 1800 2000 

Generations 
Fig. 1: Convergence rate of the best solution member 

Fitness-Value 

Fig. 2: Histogram for Gaussian and Cauchy mutations 

Examples of Continuous Parameter Optimizations using EP 

We present two examples on application of EP-GMO to antenna problems. Examples of 
electromagnetic optimizations using EP-CMO and EP with a hybrid Cauchy-Gaussian 
mutation are given in [9] and [10], respectively. The first example is that of the pattern 
optimization of a corrugated conical horn. For optimization purposes the N-section 
corrugated horn in Figure 1 is mathematically represented as a vector of length n = 2N: 
X = [rt,r2, rv ;d],d2,....,dN]Twhere n and di are radius and length of the i-th corrugated 
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segment, respectively. For the minimization of the difference between the E- and the H- 
plane co-polar patterns, we construct the fitness function as 

1      mo |n 

^)=TrZB^'°o)-^'90°fl+v,;(S'>-^ ■) 
(4) 

where E(9, 4) is the normalized co-polar pattern in dB obtained by using a mode 
matching technique. Me in the first term is the number of elevation angles, 9, sampled 
in the interval [0, emax], in which we require a near circularly symmetric pattern. The 
last term penalizes, with a weighting factor w, all the solutions that violate the 
constraint, s,, <Snnl, on the return loss. As an example, a 45-segment corrugated horn 

opt 

Original Horn 

Optimized Horrj 

Figure 3. Geometry of corrugated horn 
before optimization 

Figure 4: Difference between E- and Bi- 
plane Patterns in dB versus Theta. 

7        7.5        8        8.5        9        9.5 
Figure 5. Input Sit as a function of 
frequency for the optimized horn 

Figure 6. Geometry of corrugated horn 
after optimization 

was optimized with a total of 90 optimization parameters at f = 8GHz [11]. The 
geometry of the initial structure, before optimization, is shown in Figure 1. The 
population size and the number of opponents in the tournament selection were set to [i = 
10 and q = 4, respectively. The radii and lengths of the sections were randomly 
initialized around those of the initial structure. The strategy parameters were initialized 
to (xmax-xmin)/6 and kept above a lower bound of 10"4 during the self-adaptations in (1). 
The optimization was performed subject to the constraint on the return loss (< -40 dB), 
and with Me = 60, corresponding to a near circular symmetric pattern up to 0 = 60°. 
Figure 3 show the difference between E- and H-plane patterns after 200 generations of 
EP. Figure 5 shows the return loss versus frequency for the optimized horn. The 
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optimization has resulted in a return loss of about -50 dB and an almost perfect 
circularly symmetric pattern at the design frequency. The geometry of the final 
optimized structure is shown in Figure 6. 
In the second example, a proximity-fed 
Yagi-like   array   of   stacked   patches 
printed   in   a   multi-layered   medium    *■■> 
(Figure 7) is optimized for high gain at    £ = 
31  GHz. The structure is numerically    E" 
modeled using a mixed potential integral 

d, 

d. 

Figure 7 

equation [12]. The dielectric constants of layers are set fixed as sri = £a = 
2.2, £r3 = 1 and sr4 = 4.5 with di = A2 = 0.254 mm. All the remaining design parameters 
are optimized subject to a VSWR < 2 bandwidth constraint of 1 GHz. Figure 12 shows 
the gain and return loss for this case. The Su obtained from the commercial code IE3D 
is also included for comparison. Gain of better than 14 dBi with a radiation efficiency of 
93% is obtained. The corresponding best fitness-value trajectory is shown in Figure 9. 

28  28 5  29  29.5  30  30 5  31  31.5  32  32 5  33  33 5  34 

Figure 8. Gain and S11 versus frequency 

50      100      150      200      2M      3QO      350 

Figure 9. Fitness trajectory of the fittest solution 

EP WITH A MIXED-PARAMETER MUTATION OPERATOR 

In practical design of many antennas, microwave and electromagnetic systems, one has 
to deal with objective functions that include both discrete and continuous optimization 
parameters. For example in frequency response optimization of multilayer filter 
structure in Figure 10, it is desirable to optimally select from a wide range of commonly 
available materials with various permittivity, permeability and loss tangent. In such an 
optimization, the compositions of dielectric layers require a discrete parameter 
representation, while the thickness of each layer requires a continuous representation. 
Here we present an implementation of EP with a mixed continuous-discrete parameter 
representation. The mixed parameter EP (MEP) algorithm differs from the standard 
implementation of EP only in the mutation step. Let us consider an n-dimensional 
objective function 

ftx,y), x =|x(i),x(2) jrU], y=[>(,,,H),}>(,m2),....>>(«)] (5) 

where x and y are the m continuous and n-m discrete (or integer) optimization 
parameters. In our implementation of MEP for global optimization of $x,y) we first 
form an initial population of \x individuals, where each individual is considered to be a 
quartet    of    vectors,    (x,,y,;ij ,\), Vi e{l,....//}    wherein    ^ =^(0.^(2),...j^w]    and 
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y. =[^0*0,^(2),...#(«)], are the continuous and discrete parameter solution vectors, and r\ 

and 4 are their corresponding strategy parameter vectors, respectively. The mixed 
parameter EP in now implemented by generating a single offspring (Sf, yj; lj\ 4) from 

each parent (x,, y,; ^, Ä) according to: 

A,.\k) = Ai(k) + a;(k)l<!k(0,l) 

x,'(j) =^,0') + »7/(/)N/0)l) (6) 

;,/(*) = Ps[4'(*)] (7) 

for j = 0,l,2,...,m and k = m+l,m+2,...,n ; xt(j ),and T]l(j) are the j-th components of the 
3^ and r\ vectors, and yi(k ), and X{k) are the k-th components of the y and \ vectors 

respectively. Ps(A,) is a discrete random number with a Poisson distribution operator 
with a mean of X. The standard deviation a; in (7) can be either set to a constant or log- 
normally regenerated similar to that of r\i in the first equation in (6). 

Application of MEP to Optimization of Dielectric Filters 

Figure 10 shows a filter structure consisting of 
N dielectric layers. The objective is to 
synthesize the filter for a given frequency 
response at a given incident angle, by 
optimizing the thickness of each layer and at 
the same time optimally selecting its dielectric 
constant from a given pool of M commonly 
available materials. To apply the mixed- 
parameter EP we first index each dielectric 
constant with a discrete value from 1 to M. The structure is then represented as a vector 
consisting of the thickness of each layer, d(i), and an integer variable, y(i) representing 
the dielectric constant of each layer, x = [d(\), d(2),...,d(N), y{\), r(2),...,y(NJf. For a band- 
pass filter we construct the fitness function as, 

Figure 10 

F(X) = «X RTAx>f„) *™(^/„) ' ßL \^TE(X fs )| + \TTU(X, fs )|]f 5>m(j) (8) 

where TJE.TM =| 1-\RTE,TM\
2

\, and RTE and RTM are the reflection coefficients 
corresponding to TE and TM waves, respectively, obtained from an equivalent multi- 
section transmission line of the filter structure. The first and second sums in (5) 
correspond to the band-pass and band-stop frequencies, respectively; a are ß are weight 
factors chosen to shape response of the filter. Pm , m = 1,2,.. are the penalty criteria for 
violating a set of constraints, e.g. maximum allowable thickness of the structure, 
dielectric loss efficiency, etc. A similar fitness function can also be constructed for other 
filter types, i.e., low-pass filter, high-pass filter, etc. To demonstrate the MEP technique, 
two filters, a 7-layer band-pass and a 5-layer low-pass, were optimized at an incident 
angle of 45° for millimeter-wave frequency responses. A database of M=15 dielectric 
constants, sr, were formed from those commercially available with values ranging from 
1.01 to 10.2. Order of these values was randomly shuffled before indexing them with 
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discrete values from  1  to  15 as was outlined 
above. The MEP parameters were set to u = 50 
and q = 10. Standard deviations a, in (7) were not 
adapted and set a constant value of 0.5. For the 
band-pass case, the optimization was performed 
subject to the constraints of: i) RTE and RTM less 
than -15 dB in the band-pass region, and ii) total 
thickness of the structure less than 3 cm. Desired 
cutoff frequencies for these designs were 31 GHz 
for the low-pass case, and 27 and 32 GHz for the 
band-pass  case.  The  reflection  coefficients  as 
functions of frequency, after 250 generations of MEP, are shown in Fig. 11 and 12. 
Figure 13 shows the fitness trajectory of best population member averaged over 45 
trials for the low-pass filter. Optimization using the MEP algorithm without the Poisson 

Figure 11: Band pass filter 

Mixed EP j 
Mixed EP without pdssrnd ; 

$ 
MEP without 
Poisson operator 

MEP 

26        27 28 29 30 31   "    32 33 

Figure 12: Low pass filter 
0 50        100       150      200       250      300      350      400       450      500 

Figure 13: Fittest member averaged over 45 trials 

operator in (7), but with a uniform random mutation for the discrete parameters, is 
included for comparison. 
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ABSTRACT. 
Since 1985, the K.U.Leuven has been involved in the analysis of general planar antennas. In 
1993, a strategy was developed in order to incorporate the work done in a framework called 
MAGMAS (Model for the Analysis of General Multilayered Antenna Structures). Essential is 
the fact that MAGMAS uses a multi-level approach. In our view this is crucial in order to reach 
the ultimate goal: an accurate, interactive, one-pass CAD tool to design planar and quasi-planar 
antennas. Antenna examples are given, illustrating the physical structures that can be analyzed 
with the framework. 

INTRODUCTION 
In recent years, the EM (ElectroMagnetic) analysis and design of devices (antennas, 
circuits, boards, ...) is performed more and more in a "rigorous" manner. The basic line 
of reasoning is always the same. Maxwell's equations are manipulated into matrix 
equations, using a differential or an integral equation approach. The solution of this set 
of matrix equations yields an approximation of the solution of the original problem. In 
most practical devices, the number of unknowns rapidly becomes too large to be solved 
in an acceptable time. In this paper, it is discussed how the framework developed at 
K.U.Leuven tries to cope with the problem. The core techniques used are examined in 
relation to their position within the framework. One of them is the Expansion Wave 
Concept (EWC). This concept was first developed to reduce the number of unknowns in 
problems involving layer structures. The direct goal of this paper is not to explain in full 
detail the working mechanism of each numerical technique. This can be found in the 
references given. The direct goal is to illustrate the use of hierarchy and modularity. 

MODULARITY AND HIERARCHY 
A study of the range of commercial CAD packages for the analysis and design of 
electromagnetic structures (HP-momentum, Ensemble, IE3D, SAPHIR, HP-HFSS, 
Ansoft HFSS, EMPIRE, MAFIA, Sonnet em, ...) points out that most of these packages 
are based on a single numerical technique (Method of Moments (MoM), Finite 
Elements (FE), Finite Difference Time Domain (FDTD), ...). The consequence is that 
they can handle only "small" structures. The size of "small" strongly depends on the 
computer power being used. In practice, one can say that with the workstations or PCs 
of today these software packages are able to handle a single component or an assembly 
of a few components. They are by no means ready to handle complete systems or 
"large" structures. However, due to the accuracy of designing using a full-wave 
approach, there is a clear trend towards the use of EM CAD software for sub- 
assemblies. Industry already is looking at the future and a lot of requests for EM 
software able to handle complete systems are being investigated. The steady increase of 
computer power is certainly a factor. However, in my view the current trend in the EM 
modeling community, using modularity and hierarchy, will prove to be a crucial factor 
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in order to reach the ultimate goal: the full-wave analysis of complete systems. 
The only way to reach the goal of analyzing and designing complete systems is to use 
moduldi'ii.y and hierarchy. A scheme to analyze a 2.5D system in a multi-layer 
environment is illustrated in Fig. 1. Devices like planar antenna arrays, planar circuits, 
PCBs, etc. can be described in this way. Although designers indeed tend to follow this 
modular scheme while thinking about the structure, a look at the analysis engines of 
most of the commercial CAD packages today reveals that they treat the complete 
system as a single physical entity, using the same numerical technique throughout. In a 
large planar antenna array for example, the coupling between two elements far apart is 
described with the same number of unknowns as the coupling within the elements 
themselves. This is a waste of computer power. The coupling between two elements far 
apart can be described with much less unknowns. How to implement this in a practical 
procedure? 

3-LEVEL FRAMEWORK BASED ON THE EXPANSION WAVE CONCEPT 
This model was developed to analyze medium-sized and large arrays of antenna 
elements. The key idea is to use the characteristic waves of the layer structure (surface 
and space wave) to describe mutual coupling. First, coupling between the components is 
solved at the element type level with a MoM. This means that each so-called "element 
type" is solved in ca. the same way as done in commercial software. The calculation 
time is depending on size and complexity of the element type. Note that only the 
element types have to be solved, and not each element separately. Coupling between the 
elements is described with expansion waves. Each element has a number of "outgoing 
waves" generated by the element, and a number of "incoming waves", incident on the 
element and generated by the rest of the structure. The number of waves per element 
depends on the layer structure and the lateral size of the element type under 
consideration, not on its internal complexity. It is typically at least an order of 
magnitude smaller than the number of unknowns in the MoM used to solve the internal 
coupling. The concept also allows to describe interactions with the edge of the layer 
structure (finite layer structures can be solved) and periodic interactions in infinite 
arrays. As example an 11x11 array of a complex aperture type radiating element, 
embedded within a layer structure involving 7 layers is considered. The number of 
unknowns used to solve the internal element coupling is 720. This means that the 
commercial software packages would have to solve a system of 87120 unknowns (=121 
elements x 720 unknowns per element), involving a full matrix. The expansion wave 
concept only uses in total 48 unknowns per element. The calculation time was about 3 
hours per frequency point on an HP 9000/780 160 MHz 512 MB RAM workstation. 
The inversion at the array level took 1.5 hours. Extrapolation yields an inversion time at 
the array level 153 times larger for traditional techniques. 

3-LEVEL FRAMEWORK BASED ON TRANSMISSION LINES AND 
EQUIVALENT DIPOLES 
This method was developed to analyze coupling, for example in antenna feeding 
circuits, in reasonable calculation times. This is not possible with traditional circuit 
simulators, where coupling is not modeled. Using traditional full wave solvers, coupling 
is included, but calculation times rapidly become prohibitive. 
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Fig. 1. Hierarchical scheme for 2.5D antenna in multilayer. The planar structure consists of elements of 
several types, each consisting of several components. Elements may be connected through transmission 
lines (microstrip or strip line, coplanar waveguide, ...). The structure is solved at three levels. First the 
internal coupling within the element types is described by solving the component integral equations. 
Second coupling between the elements is described using Expansion Waves. Third the elements are 
linked through the transmission lines (= links), assuming the fundamental modes only on these links. This 
means that no mutual coupling with these links is taken into account. The calculation time is far less than 
with commercial CAD packages. 

CQ 

U 

Frequency [GHz] 

Fig. 2. Left: two stacked circular apertures in two conducting plates fed by strip line. Right: calculated 
gain of a lxl, 3x3, 5x5, 7x7, 9x9, 11x11 array of this element type. Gain calculated without mutual 
coupling is given as a reference. The oscillation is at the frequency where the distance between 
elements is one wavelength. 
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analyzed with techniques developed especially for the interaction considered. 
The module for the calculation of mutual coupling between transmission lines ([3] and 
[4j) is developed starting fiom the general MoM. Only first order coupling is taken into 
account: the radiation effect of the induced currents is neglected. The calculations are 
speeded up for coupling between lines by assuming that all lines are terminated in their 
characteristic impedances and using the travelling current waves on these matched lines. 
The current on the observation line can then be calculated by convolving the incident 
field on this line with its "impulse response". The impulse response is the current on an 
infinitely long line when a spatial Dirac impulse is applied in the middle. This results in 
a much faster method because no matrix inversion has to be performed. Full details can 
be found in [3] and [4]. 
For the calculation of mutual coupling between discontinuities [5], the discontinuities 
must be small compared to the wavelength and compared to the distance between them. 
For most circuits these assumptions are valid. Under these circumstances the 
discontinuity radiation behavior can be accurately modeled by using adequately placed 
dipoles. This method uses far less unknowns than the MoM. If the distances between 
the discontinuities become smaller or they become bigger, then the accuracy can be 
improved by using more dipoles. The position of the dipoles and their excitation are 
determined by an optimization procedure that matches the combined radiation pattern of 
the dipoles to that of the discontinuity. The data about the discontinuity's S-parameters, 
dipole excitations and positions are stored in a library file. These files are used when the 
circuit itself is calculated. This module also only takes first order coupling into account 
(scattering of EM fields at the dipoles is ignored). Full details can be found in [5]. 
Larger structures are treated using the MoM. This works with currents and fields. For 
circuits, where one is interested in the relations between incoming and outgoing waves 
on the feeding lines, deembedding (such as in [7]) is therefore required. In [6], the 
MoM is altered in such a way that incoming and outgoing waves at the structure's ports 
are extra unknowns in the coupling matrix. This makes it possible to insert the MoM 
coupling matrix directly into the circuit simulation (along with lines and 
discontinuities), thereby providing a close integration between the classical MoM, the 
new modules and the S-parameter circuit simulator. The excitations of the structure's 
feeding lines are chosen in such a way that they generate incident waves on these lines. 
The feeding line's self-coupling matrix is modified so that the line appears to be 
matched. These modifications make it possible to get S-parameters immediately after 
inverting the structure's Z-matrix, without needing deembedding [6]. The example is a 
2x2 edge-fed, dual polarisation, patch array that is shown in figure 3. The patches 
resonate at 7.2 GHz and have an impedance of about 100 Ohm there. The characteristic 
impedance of all lines is 100 Ohm. This results in an input impedance of 50 Ohms at the 
inputs (the line sections between port and T-junctions are a multiple of a half 
wavelength at 7.2 GHz). The substrate has a thickness of 1.575 mm and a relative 
permitivity of 2.2. The port 2 T-junction should be offset by % wavelength up or down 
(see figure 3) for normal operation (horizontal polarisation when fed at port 1 and 
vertical when fed at port 2) to avoid the vertically polarised patches being fed 180 
degrees out of phase. This offset is not present here in order to increase coupling 
between both ports, because we want to demonstrate the validity of the new analysis 
method for large rather tightly coupled structures. The patches of the structure are 
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meshed with 24 x 31 segments. The dense mesh is needed to accurately model the 
incisions. The lines have 3 segments across their width. 
The structure was calculated using the MoM (needing 663 MByte and 41 minutes and 
26 seconds per frequency point on a Hp J-5000, 445 MHz workstation). This result was 
compared to the result of the new method, using 32 dipoles on the patch (many dipoles 
needed here because the patches are not small compared to the wavelength and very 
close to lines and bent) and 6 dipoles for the bent. The new method only needs about 
100 KByte and 8 seconds. The calculation times given do not include the time needed to 
calculate the Green's functions. The structure is calculated for L=6.43 mm (as shown in 
figure 3, results in figure 4 at the left) and for L=4.43 mm (figure 4 at the right). 

^j Fig. 3. 2 x 2, dual polarization, 
fa.*« un     ..t\         Hi mm            edge-fed array of patch antennas. In 

,    .          *■"%,'-1         '!"- the position shown above L = 6.43 
'               I1--*-    i-       k mm.     Arrows     indicate     parts 

Port 1 13.43 nun 

rf*8 

I 
* L i 
[: 

£ 

•1 
i 

31.05 mm I „ I Port 2 
movement when L is made smaller. 

15 mm 

13.37 min •"■    ,   
biu?' '■ '    .   24.93 linn ■  ' 

I d I       34.63 mm <> _lj 

CONCLUSIONS 
In this paper the modular approach followed within MAGMAS has been explained, 
illustrating how to use modularity and hierarchy in analysis engines. Modularity and 
hierarchy will prove to be essential in the search for engines able to cope with larger 
and larger problems. The key feature is to address each problem at its own level of 
complexity. The expansion wave concept and the dipole model are examples of this. 
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ABSTRACT 

We study the self-action of an amplitude-modulated beam in a two-level saturable 
absorbing medium. We also consider the radial quadratic dependence of the linear 
refraction index to apply the results to doped waveguides. As the modulation period 
approaches the relaxation times, the medium response is no more instantaneous, so that 
one should solve the full set of Maxwell-Bloch equations. We propose a second-order 
scheme with the Gauss-Laguerre transformation of the transverse field pattern. A 
simplified approach based on the synchronous interaction approximation is used for thin 
layers. We analyze the transient behavior of the medium response and its manifestation 
in the modulation of the beam diffracting after a thin saturable absorber. Nonlinear 
distortions of the modulation signal passed through a doped waveguide appeared to be 
unexpectedly small compared with those of the local polarization and population 
difference. 

INTRODUCTION 

Near-resonance self-focusing and self-aperturing of a CW laser beam in saturable 
absorbing medium has been a subject of a number of theoretical and experimental 
studies [1-4]. In laser spectroscopy CW beams are typically modulated in amplitude or 
frequency. If the period of modulation is large compared with the atomic relaxation 
times, the medium response, obviously, follows the variation of the field adiabatically, 
so that at each instant of time the CW saturation theory holds. In this case the medium 
may be described by means of a nonlinear susceptibility [2,3]. When the period of 
modulation approaches the relaxation times, one can expect transient behavior of the 
medium. Experimental manifestations of non-stationary near resonant self-focusing of 
frequency-modulated beams have been reported [5] for inhomogeneously broadened 
absorption lines in molecular gases. Obviously, in homogeneously broadened systems 
the non-stationary response of the medium should affect the transmitted beam in a 
similar way. To describe fast modulation the simple nonlinear susceptibility approach is 
no more valid, and the time-dependent Maxwell-Bloch equations should be solved 
simultaneously. The schemes developed for short pulses (see, e.g., [6-8]) and based on 
the field limitation both in space and in time are not convenient for periodically 
modulated fields. 
The goal of the present paper is to develop appropriate computational schemes and to 
study numerically the influence of the transient response of the medium on the 
transmission of modulated beam through an initially homogeneous saturable absorbing 
medium or a gradient waveguide doped with saturable absorbers. We start from 
formulating the general equations and the scheme of their numerical solution. For thin 
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layers the approximation of simultaneous interaction is presented. The numerical study 
starts from a simplified model, in which the initially Gaussian beam is passed through a 
thin layer of the absorbing medium and then propagates through free space. The 
thickness of the absorber is considered to be small compared to the diffraction length, so 
that the diffraction in the medium is negligible. It takes place in free space leading to 
redistribution of the light intensity across the beam. Moreover, in case when both the 
diffraction length and the medium thickness are small compared to the wavelength of 
modulation, the variations of the field envelope function may be considered as 
simultaneous in the whole volume under study. Our estimates show the possibility of 
such conditions in real experiments with atomic vapor absorbing cells. 
The full numerical scheme is applied to the model of a doped gradient waveguide, 
namely, an ensemble of two-level absorbers embedded in a transparent medium having 
a parabolic profile of the refraction index. The distribution of absorbing centers is 
homogeneous. We account for the saturation effect in the two-level absorbers, while the 
refraction in the transparent medium is linear. We study the output field at different 
modulation frequencies. Most of attention is paid to the transmission of the modulation 
signal. It is demonstrated that the nonlinear distortions of the output field are much 
smaller than those in the local response. The amplitude of transmitted modulation is 
minimal at frequencies close to the relaxation rate of the absorbers. 

THEORY 

Within the framework of scalar paraxial optics the system is described by normalized 
Maxwell-Bloch equations 

®L + }_dE\ + viE_v7   *E = gp (1) 

dz    c dt ) 

f; 
2/ 

^ = _rb_1 + /(£- />_£/>')] (2) 
dt L v 

— = -(r + /A)--rD£, (3) 
dt 2 

where g is the unit length absorption, y,T are the population and polarization decay 

rates, respectively, D(z,r±,t)is the population difference normalized to its non- 

saturated value, P(z,r±,t) is the slow-varying amplitude of the polarization, A is the 
detuning of the carrier frequency of the field from the atomic transition frequency, v is 
the parameter of the waveguide. For non-waveguide medium it is zero. The unit field 
amplitude corresponds to CW saturation with D = 0.5. Eqs. (l)-(3) should be solved 
under the initial conditions 

E(z = 0,r1,t) = E°{r1,t}, E(z,rx,t = 0) = 0; D(z,r±,t = 0) = \; P(z,fx,t = 0) = 0. 
To solve Eqs. (l)-(3) we propose a second-order scheme making use of the 
decomposition of the transverse field pattern in terms of Gauss-Laguerre modes [8]. 
These modes are taken to be the eigenmodes of the empty linear waveguide when 
v * 0. Otherwise the mode beam parameter should be related to that of the initial beam. 
We introduce the discrete grid with the nodes /„ =nhlc,zk =kh,p, is the /-th radial 
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node i=0     L  <p  = —^— is the /-th azimuthal node, j = 0,...,2M ;l = 0,..,L is the 

number of radial nodes of the Gauss-Laguerre mode, m = -M,...,M is the number of 
azimuthal nodes. In these notations the numerical algorithm may be presented as 
follows. 
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■ Q+2 t+1 /,m ~ Q+l,t,/,w   _ A       Q + 2,t+l,/,m + ^n+l,t,/,i»    , 'n+2,*+l,/,ffi + ^n + 2,k,l,m /j(y> 
i - ö/m 2 g 4 

^n+2,k,l,m ~* ^n+2,k,ij • ' ^       ' 

The steps (4) and (5) are the direct Gauss-Laguerre transformations. The steps (7), (9) 
and (11) are the inverse Gauss-Laguerre transformations. The step (8) yields a set of 
two linear equations with respect to the pair of variables {D„+2XU,P„+2XiJ.} ■ 

For propagation distances small compared with the modulation wavelength we 
use the approximation in which the field changes in time synchronously at any z. Then 
the Bloch equations (2), (3) can be solved separately in each layer Az. For rough 
estimations at short traces one may also omit the diffraction terms in Eq. (1). We apply 
this model to non-waveguide media, so that v = 0. This yields the following scheme 

E(zn+i,r1,t) = E(zn,f1,t)-i^P(zn,f1,t)Az (12) 

This approximation is, particularly, helpful to distinguish between the contributions to 
the output field from the local transient behavior of the medium and from the essentially 
wave nonlinear phenomena. 

NUMERICAL SIMULATIONS 

3.1. Thin nonlinear absorber. Local response is expected to manifest itself in almost 
unchanged way in a thin nonlinear absorber. Consider an initially Gaussian beam whose 
amplitude is harmonically modulated in time 

E(0,r,t) = (E0-E]cosnt)exp(-r2/w)   , (13) 

where EQ, E\ are real constants, Q is the modulation frequency, r = \r±\ in the axially 

symmetric system. We start from the numerical solution of the Bloch equations (2), (3). 
We take here =T=1, v=0 , w = \ . When the frequency of modulation is much smaller 
than 1, the medium response follows the variations of the field amplitude adiabatically. 
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Considerable changes arise when Q approaches 1. At very high frequencies the inertial 
medium is smoothing the fast oscillations of the field. Fig. 1 illustrates the effect of 
siiong saturating field (curve 1) at Q=2 and A=0. The medium response demonstrates 
transient behavior followed by periodic oscillations. The population difference 
oscillations (curve 2) are significantly delayed with respect to the field modulation. The 
population inversion £><0 takes place in the vicinity of each maximal value of the field 
amplitude. Note that in the adiabatic regime the minimal value of D is zero. The 
imaginary part of P demonstrates strongly anharmonic periodic oscillations, which is 
typical for high amplitudes of modulation E\ ~£o- These oscillations are also shifted 
with respect to the modulation. 

D, ImP, E Intensity 

Fig. 1. Time dependence of the field 
amplitude E (1), the difference of 
populations D (2), and the 
imaginary part of the polarization P 
(3) for the case of exact resonance 
A=0. £0=4., £i=3., Q=2., r=0.5. 

Fig. 2. The dependence of input (grey 
curve) and output (black curve) field 
intensity on time at r =0.5; A=0, EQ=4., 

£i=3.,fi=2.,r=1.5. 

In the simplest case when the medium is optically thin, so that the difference between 
the input and output field is small enough, one can make use of the single-step scheme 
(4). Obviously, in this case the manifestations of the non-stationary response of the 
medium in the output field intensity are expected to be small, however they are 
detectable, as seen in Fig. 2. The output field intensity oscillation (black curve) is 
anharmonic and slightly delayed with respect to the harmonic modulation of the input 
field (grey curve). 
Note that we consider the exact resonance self-action for which the real part of the 
polarization and thus the lens effect is zero in the purely absorbing layer. However, the 
absorption in the case considered is strongly nonlinear, since the maximal amplitude of 
the field in the beam is four times the saturation value. Therefore, the output intensity 
distribution is different from Gaussian; namely, the absorption is very small in the 
middle of the beam and very large in the off-axis region, where the field is weak. This is 
expected to cause the diffraction "self-focusing" [1,2] in the far zone. Consider the free 
propagation of the beam passed through the absorbing layer. The beam transverse 
profile is no more self-similar when moving along z-axis, and it is of interest to study 
the time modulation of the intensity depending on the position of a detector. It is 
remarkable that at different points this dependence may be very different, although in 
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the input field the law of the amplitude modulation is the same all over the beam cross 
section. 

£ 

1.T5 

1.5 

1.25 

1 

0.75 •  A 
0.5 

■   \ 

o.ts ■i 
to 40                           6 0 

(b) z=0.3 
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A              A              A 

1.25 A A   A   A 
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0.25 

40 £0 
(c)z=0.6 (d)z=l. 

Fig. 3. Time dependence of the field intensity at r=0.5 and various distances z of free 
propagation after passing the thin nonlinear absorber. A=0, E0=4., E\=3., Q =2., T=l .5. 

3.2. Doped waveguide: full calculation: Now we remove the thin layer limitation and 
consider a doped waveguide, v*0 , by means of the general scheme (4)-(ll). The 
incident field (13) is taken to be the linear waveguide fundamental mode with the beam 
radius w fitting the parameter v in Eq. (1). We calculated the output field distribution at 
a given length z=d as a function of time. At moderate levels of saturation the variations 
of the beam spot size and wave front curvature due to the resonant self-action in the 
waveguide appeared to be small. Here we focus our attention at the intensity modulation 
transmission to the output field. As follows from the preliminary calculations of the 
local response, one may expect significant distortion of the output field modulation 
under strong saturation conditions. It is an integral effect to which both the local 
delayed saturation and the non-stationary wave beam self-action contribute. To estimate 
this integral effect we calculated the output-to-input ratio of maximal intensities 
characterizing the transmission of the modulation signal versus the frequency of 
modulation (Fig. 4). 
Fig. 5 illustrates the mechanism of the frequency dependence of the modulation 
transmission ratio. The time behavior of the field and the medium response are shown 
under the same conditions as in Fig. 4 at three different modulation frequencies. It is 
clearly seen that the time behavior of the medium response is drastically sensitive to the 
modulation frequency variations in the vicinity of the typical relaxation rate values. In 
this connection one might expect strong distortions of the modulation signal carried by a 
self-acting beam passing through a saturable absorber. However, even for high 
saturation our simulations revealed only a slight time delay of the output intensity with 
respect to the input one. The anharmonicity of the output signal remains negligible and 
the amplitude ratio varies between 80 and 90%. 
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Figure 4. The output-to-input intensity amplitude ratio versus the modulation frequency. 
The input field is £(0,0,0 = 4(1- cos Of), A = 0  , z = 4, r = T = \, g = ]. 
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ABSTRACT 

Certain fundamental mathematical properties of Hallen's equation with the approximate 
kernel are discussed. Three cases are considered: (1) The delta-function generator, (2) 
the case of plane-wave incidence, and (3) the case of the frill generator. For a particular 
moment-method procedure (Galerkin's method with pulse functions), the consequences 
to the numerical solutions are examined. Generalizations to other numerical methods 
with subsectional basis functions are mentioned. Many of the results in this paper come 
from studying the simpler problem of the antenna of infinite length analytically and 
applying the understanding thus obtained to the case of the finite antenna. 

INTRODUCTION 

The simplest type of wire antenna or scatterer is the straight cylindrical dipole of length 
2h and radius a. The integral equation satisfied by the current distribution on this 
antenna is usually referred to as Hallen's equation (HE). There are two choices of 
kernel, the exact and the approximate or reduced kernel. The approximate kernel is the 
focus of this paper. 

Extensions of HE, or of the corresponding integro-differential equation of the 
Pocklington type (PE), apply to complicated, "real-life" structures such as curved wire 
antennas and arrays of wire antennas. Such equations are usually dealt with by moment 
methods. Therefore, it is important to thoroughly understand the difficulties associated 
with the application of moment methods to HE/PE. (It is true that blind application of 
numerical methods can often give good results; at the very least, a thorough 
understanding of the difficulties helps one trust—or distrust—one's results). It is 
especially important to know the types of error that can occur, as well as the reason for 
the errors. 

Both HE and PE have been around for many, many years; they have been dealt with by 
moment methods since the mid-sixties. Nonetheless, for the case of the approximate 
kernel, and for subsectional basis functions, an in-depth study of the difficulties was 
only performed recently [1]. In [1], the antenna is center-driven by a delta-function 
generator. The underlying reason for the most important difficulties is the fact that, with 
the delta-function generator, neither HE nor PE has a solution, something which is 
frequently not mentioned in recent textbooks. In [2], the case of plane-wave incidence 
(receiving antenna) is considered. It is shown in [2] that HE/PE are, once again, 
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nonsolvable when the approximate kernel is used, and the difficulties resulting from this 
nonsolvability are discussed. 

In the present paper, the results of [1] and [2] are summarized, and some new 
extensions to the case of the frill generator (which is generally considered to be a more 
precise feed than the delta-function generator) are outlined. The study of the finite- 
length antenna is helped by an analytical study of the antenna of infinite length. 

INTEGRAL EQUATION AND NUMERICAL METHOD 

Hallen's equation (HE) for the current I(z) on an antenna of length 2h is 
h 

JKap(z-zy(z')dz'=r(z),       -h<z<h. (1) 
-h 

The RHS is (1) r(z) = rd(z) = [/K/(2q0)]sink \ z \ +Ccoskz, for the case of the delta- 

function generator; (2) r(z) = rr{z) = [iV/(2c,0)] + C cos kz, for the case of the receiving 

antenna, (3) r(z) = r{ (z) ~{\lk)\gf (t) sin k(z -t) + C cos kz, where 

ikV 
gf(z) = 

2c, 0 \n(bl a) 

exp(/Wz2 + a2)    exp(z'Wz2 +b2) 

7777       jz2+b2 (2) 

for the case of the frill generator. V is the driving voltage, q0 = 376.73 Ohms, C is a 

constant to be determined from the condition I(±h) = 0, and k is the free-space 
wavenumber. For the case (3) of the frill-generator, the above HE can be deduced from 
the PE provided in [3, pg. 394]; the RHS of PE is g/z). In (2), a (b) is the inner (outer) 
radius of the feeding coaxial transmission line. 

The approximate kernel Kap (z) given by 

1   exp(iky[z2+ a2) ,~ 
Kap (Z) = 7 /   ,  > V> 

4K       *Jz
2+a2 

where a is the antenna radius. As opposed to Kap (z), the so-called exact kernel Kex(z) 
[1] is logarithmically singular at z=0. 

Our numerical method is Galerkin's method with pulse functions, as described in detail 
in [1]. There are  2N + 1   pulse basis functions u„(z), each of width  z0, so that 

(2JV + l)z0 = 2h. For n= 0, the basis function u0(z) is centered at the driving point z= 0. 

DELTA-FUNCTION GENERATOR: NONSOLVABILITY 

Suppose that the delta-function generator is used together with the approximate kernel. 
Under mild admissibility conditions on I(z), one can pass a derivative inside the integral 
on the LHS of (1), and then set z = 0. Therefore, the LHS of (1) is differentiable at 
z = 0. On the other hand, because of the absolute value sign, the RHS rd (z) is not 

differentiable at z = 0. This argument shows that, for the delta-function generator, the 
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integral equation does not have a solution when the approximate kernel is used. 
Physically, this equation requires a line current located on the z-axis to maintain a field 
with a delta-function behavior at p = a, z = 0, and this is not possible. 

This nonsolvability was known as far back as 1952 [4], but is frequently not mentioned 
in recent textbooks. The nonsolvability naturally gives rise to the following two 
questions: (1) What does one obtain if one applies a numerical method involving a large 
number of basis functions? (2) Under what conditions are numerical solutions obtained 
with the two kernels similar, and in what sense? We address these questions in what 
follows. 

DELTA-FUNCTION GENERATOR: INFINITE ANTENNA 

We refer, still, to the case of the delta-function generator. Much understanding is 
obtained if the numerical method is applied to the antenna of infinite length, in which 
h = oo. Here, we are dividing the entire real axis into segments of length z0, where kz0 

is small. The full procedure is described in [1]. Briefly, the method yields a (doubly) 
infinite Toeplitz system of algebraic equations in which z0 appears as a parameter. The 

infinite system is solved exactly for nonzero z0. Then, the exact solution is developed 

asymptotically for the case where zQ is small or, more precisely, when zQ is much 

smaller than the radius a. The final asymptotic formula for the "numerical solution" /„ 
turns out to be 

-iV   7t     ,      z, fe0,P-(-l)"exp 
f     \ an 

32V2    °\ a [q0 ) 
1 

cosh 
K z0    ^ 
 -n 
2 a 

zn « a. (4) 

This formula reveals that, for sufficiently small pulse width, the numerical method 
yields an exponentially large, purely imaginary "driving-point admittance" and a large, 
purely imaginary, rapidly oscillating "current," at least for points on the antenna not too 
far from the driving point. 

On the other hand, the numerical method yields a finite real part Re {/„/F} of the current. 
Furthermore, this real part is close to the corresponding quantity when the exact kernel 
is used. These facts are shown analytically in [1]. 

DELTA-FUNCTION GENERATOR: FINITE ANTENNA 

Let us now return to the antenna of finite length, still driven by a delta-function 
generator. We assume that the approximate kernel is used with z0 «a. Here, this 
condition is the same as N»h/a. In light of the analytical results for the infinite 
antenna, it is logical to expect that the real part Re {/„/V} of the numerical solution is 
close to that obtained with the exact kernel. On the other hand, near the driving point, 
the values lm{I„fV} are large and oscillate rapidly. In fact, the values Im{/„/V} are very 
closely approximated by the corresponding values for the case of the infinite antenna 
and the asymptotic formula (4). 
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The above assertions have been verified by extensive numerical calculations. An 
interesting corollary is that the initial values of Im{/„/V} are independent of the length h 
of the antenna, ihcy depend only on a and ZQ. Numerical calculations also reveal another 
feature when z0 «a, an oscillatory behavior near the endpoints z=±h (or n=±N). 

These last oscillations occur both in Re{/„/V} and in Im{/„/V}. 

The oscillations near the driving point/endpoints are the main consequences of the 
nonsohability of the integral equation; the important parameter is h/a. The analytical 
study is useful because analytical predictions are free of roundoff errors, to which—as is 
typical in Fredholm integral equations of the first kind—the numerical solutions are 
highly susceptible. Roundoff error/matrix ill-conditioning is a separate but also 
important effect. 

We have extended [1] the above conclusions to a number of other numerical methods, 
as well as to numerical methods applied to Pocklington's equation. 

FINITE RECEIVING ANTENNA 

We now turn to the case of the finite receiving antenna. It is natural to inquire whether 
the integral equation has a solution. The nonsolvability argument given above does not 
apply because rr(z) is differentiable at z=0. Nonetheless, the integral equation is once 
again nonsolvable. The relevant argument of [2] proceeds, in summary, as follows. 

Assume that a continuous functionI(z') satisfies the integral equation (1). Both the 
LHS and the RHS are initially defined for real z between -h and h, and are equal for 
those values of z. Now think of z as a complex variable and consider values of z not 
lying on the line segment -h<z<h. Obviously, the RHS rr(z) is an analytic function of 
z. As a consequence of the continuity of I(z) and the analyticity of the approximate 
kernel Kap (z), we have shown [2] that the LHS is also an analytic function of z. We are 
thus considering the analytic continuations (to complex values of z) of the two sides of 
the equation. 

Take, in particular z to be large. For any I(z'), the LHS of (1) oscillates and decays 
like 1/z for large z (or faster, if the coefficient of 1/z happens to vanish). For any choice 
of C, however, the RHS of (1) cannot decay like 1/z. Since the two functions defined 
for real z between -h and h have analytic continuations which are not the same, they 
themselves cannot be the same. This is because analytic continuation is unique. This 
contradiction shows that the integral equation for the finite receiving antenna has no 
(continuous, at least) solution. It is stressed that this nonsolvability argument does not 
apply when the exact kernel is used because that kernel is singular. 

Numerical calculations show that the main consequence of this nonsolvability is the 
appearance of oscillations near the endpoints z=±h (or n-±N). These oscillations occur, 
once again, when N»h/a. This time, there are no oscillations near the center z=0 of 
the antenna. 
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THE CASE OF THE FRILL GENERATOR 

When the antenna is center-driven by a frill generator, the situation turns out to be quite 
different from the case of the delta-function generator. For the case of the frill generator 
and for the approximate kernel, we have shown that 

1. For the infinite antenna, both HE and PE are solvable. (In contrast to the delta- 
function generator case, where HE and PE are nonsolvable). In fact, the solution can be 
determined explicitly by applying a spatial (in z) Fourier transformation. This works 
because the integral on the LHS is a convolution: One easily ends up with an integral 
representation of the solution. The key point is that one ends up with a convergent 
integral. (This should be contrasted to the case [1] of the delta-function generator, where 
the corresponding integral diverges). 

2. For the infinite antenna, we can apply Galerkin's method with pulse basis functions 
to HE. We have shown analytically that the numerical solution thus obtained converges 
to the true solution in the limit of pulse basis functions of zero width. 

3. For the finite antenna, in contrast to the case of infinite length, HE and PE are 
nonsolvable. The argument here proceeds from PE as follows: As in the case of the 
receiving antenna, the LHS of the integral equation is an analytic function of z. 
However, the RHS g/z) is nonanalytic when z=±ib. (Specifically, these two points of 
non-analyticity are branch points). This contradiction demonstrates nonsolvability of 
PE, and nonsolvability of HE follows immediately. 

With the approximate kernel, the LHS of the PE is (apart from a multiplicative constant) 
the z-component of the electric field on the cylindrical surface p=a, \z\<h; the source 
maintaining this field is a line source I(z), located on the z-axis between -h and h. Our 
nonsolvability result states that no line source I(z) can maintain a field equal to the 
specific g/z). This result is by no means peculiar because, on a cylindrical observation 
surface, a line source cannot maintain an arbitrary field. To clarify this point further, we 
briefly discuss some similarities to the classical synthesis problem (SP) in which one 
seeks a line source maintaining a prescribed radiation field: This SP is governed by an 
integral equation [5], but the observation surface is a spherical surface at infinity, not a 
cylindrical surface at finite distance. In order to have a solvable SP, one cannot 
arbitrarily specify the radiation field and in fact, the class of "realizable" radiation 
patterns is a rather narrow one [5]. (A given pattern—function of the complex variable 
sinO , where 9 is the observation angle—is realizable if and only if it is an "entire 
function of exponential type" [5,6]). Like the nonsolvability result of the present paper, 
the above result for the SP: (1) is based on the theory of functions of a complex 
variable; (2) has as a key hypothesis the finite extent of the line source. Therefore, the 
integral equation of an arbitrary SP is likely to be nonsolvable, as are the integral 
equations herein. 

In the literature, one finds many integral equations that use the approximate kernel. By 
now, it should be clear that "most" of them are nonsolvable. The aforementioned 
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solvable integral equations for an infinite antenna driven by a frill generator are 
therefore exceptional. 

4. If we apply Galerkin's method with pulse basis functions to the finite antenna, it is 
logical to expect that, near the driving point, the numerical solutions should resemble 
those of the infinite antenna. In particular, one should not expect oscillations near the 
driving point. We have verified this by extensive numerical calculations. 

5. In contrast, one should expect that the numerical solutions oscillate near the 
endpoints of the antenna. We have verified this numerically. The oscillating values 
occur, once again, when z0 « a; furthermore, these oscillating values are numerically 

close to the corresponding values for the case of the delta-function generator. 

CONCLUSION 

In summary, the solvability/nonsolvability of some fundamental integral equations for 
straight wire antennas with the approximate kernel were discussed. It was found that 
"most" such integral equations are nonsolvable. (The integral equation for an infinite 
antenna center-driven by a frill generator is an instructive exception to this rule.) When 
subsectional basis functions are used in moment methods for finite antennas, the main 
consequence of this nonsolvability is the appearance of rapid oscillations, both in the 
real and the imaginary parts of the solution, near the endpoints of the antenna. For the 
case of the delta-function generator, the imaginary part also oscillates rapidly near the 
driving-point (center) of the antenna. Numerically, these last oscillating values are very 
close to those for the case of the infinite antenna; these are (perhaps surprisingly) 
exponentially large in N. All oscillations occur when z0 «a, or N»h/a. 

We stress that all oscillations discussed herein are not due to roundoff error. As a 
consequence, they do not depend on the particular hardware and software used, and they 
cannot be overcome by using more powerful computers. Roundoff error is also 
important; but it is a separate and in a sense secondary effect (Even in the case of 
roundoff error, the important parameter is h/a.) 
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ABSTRACT 

The theory and methods to solve some classes of the nonlinear inverse problems arising 
in the process of synthesis of the radiating systems are stated. The requirements to the 
amplitude radiation pattern and restrictions on the distribution of the extrinsic 
electromagnetic fields excitation sources in the variational statements of problems are 
prescribed. Investigation of the structure and properties of solutions for the nonlinear 
integral equations, which are the Euler equations of the corresponding functionals, is 
based on the methods of nonlinear analysis. The iterative processes for the numerical 
determination of solutions are constructed and substantiated. The results of analytical 
and numerical investigations of the synthesis problems for various types of the antenna 
arrays, as well as the synthesis problem of the hybrid antenna systems are presented. 

INTRODUCTION 

In the first part of paper, the problems of the amplitude-phase and phase synthesis of the 
antenna arrays (AAs) according to the prescribed amplitude radiation pattern (RP) with 
due regard for the mutual coupling of radiators are considered. The absence of 
requirements to the phase RP is used as an additional possibility to improve the 
approximation quality of modules of the given and synthesized RP, but the 
incompleteness of initial data in the condition of problem generates a class of nonlinear 
essentially ill-posed problems. In this connection, the AAs mathematical models of the 
various degree of accuracy, allowing to take into account the mutual coupling of 
radiators, are used. The theorems of existence of the quasi-solutions in the appropriate 
spaces are proved. 
It is shown that the non-uniqueness and branching of the solutions appear for the 
considered problems. This branching depends on properties of the prescribed amplitude 
RP, geometry and basic parameters of the considered array. The methods of nonlinear 
functional analysis allowing to locate the branching solutions are applied for 
investigation of solutions and determination of their number and qualitative 
characteristics. Such approach to considerable extent simplifies determination of the 
optimal solutions using the numerical methods. The iterative processes for the 
numerical solving the corresponding non-linear equations are constructed. The theorems 
of convergence and relaxation are proved. 
In the second part of paper, the nonlinear synthesis problems of the hybrid mirror and 
lens antennas, as well as the synthesis on their basis of the contour RPs of the fixed and 
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changeable form are considered. The idea of synthesis of the partial beams having in a 
cross section the rectangular or triangular form is offered as a basis of approach to 
synthesis ilic RF of the changeable form. It allows to synthesize the contour RP 
without the critical zones. 

SYNTHESIS OF ANTENNA ARRAYS ACCORDING TO THE PRESCRIBED 
AMPLITUDE RP WITH DUE REGARD FOR THE MUTUAL COUPLING OF 
RADIATORS 

The asymptotic of solution of the electromagnetic (EM) field excitation problem in the 
unlimited homogeneous isotropic space (with dielectric permittivity £ and magnetic 
permeability u) by the extrinsic EM sources, that are localized in some area V c R3 

and have the time-harmonic dependence e"0' (co is the circular frequency), in the 
spherical coordinate system at r -> oo, is given in [7, 8] 

-ikr 

E(r, &, cp) = -/COM — { 0, A (0, <p), /„ (», <p)} , 

-ikr 

H(r,S,<p) = ik-—{0,f^,y)-fa{$,<p)}, (1) 
4nr 

where E, and H are the vectors of complex amplitudes of intensity of the electrical 
and magnetic fields, fs   , fv are the components of the vector RP. 

Abstracting from specific type of radiating system, we present the functions fs   and / 

in the formulas (1) using the linear operator A = {Aä, A^}: 

f = AI,  {fv=AJ,    v = S,q>). (2) 

This operator acts from some complex Hilbertian space H,, to which the functions of 

distribution of currents (fields) I belong, into the complex space C}2) = C[Q]© C[Q] of 

vector-valued continuous functions on the compact Q. e !R2 (or U e D&1). This space has 
the scalar product and norm, and it includes a set of the realized RPs. The form and 
properties of the operators Av depend on a type and geometry of radiating system. In 

particular, one notes that the operator A for the considered types of the radiating 
systems is the fully continuous one. 
In the simplest case, the synthesis problem of radiating system according to the 
prescribed amplitude RP can be formulated as a problem to determine the solution of 
nonlinear operator equation [1] 

\AI\^{\AJ\2+\AVI\2)V1 = F, (3) 

where F = (F8
2
 + F2 J'2 is the amplitude RP given in the area Öe R2 (or Qe B&1). If 

F does not belong to area of values of the operator \AI\, the problem (3) is essentially 
incorrect [35]. In this case, all three classical conditions of correctness by Adhamar, 
namely existence and uniqueness of solution, as well as the continuous dependence of 
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solution on change of the initial data, cannot satisfy. Therefore the problems of search 
of the quasi-solutions that satisfy the certain criteria are considered for the equation (3). 
A key role in the process of solution of the synthesis problems represents the solution of 
the analysis problem. The mathematical models of arrays of the various rigor and 
accordingly exactness are used to solve the analysis problems of array [5, 36]. 
General methods of solution of the synthesis problems are developed most fully for the 
case, when the RP of array satisfies the theorem of multiplication of the RPs. Such 
mathematical model of array allows to take into account the mutual coupling of 
radiators only in the first approximation. The more exact mathematical models of arrays 
are based on the strong electrodynamic statements of the analysis problems, which are 
reduced to the solution of the electrodynamic boundary problems. For such problems 
the number of boundary surfaces coincides with the radiator number of array [6, 17]. 
As a rule, the type and configuration of radiators, their number, the geometry of array, 
as well as the character of an environment are taken into account in the process of 
statement and solution of the analysis problems. 
The method of the integral equations is one of the most universal and adequate for the 
practical analysis problems of arrays. In particular, the integral equations with respect to 
the electrical currents J'n(P) on 2N + 1 surfaces S„ of ideally conducting radiators 

which are placed in homogeneous isotropic space, can be written by the reason of the 

boundary condition Ex = 0 as [5] 

[[«mx(graddiv+Ä;2)£ \je
n(P)G(QtP)ds„] *nm] = -i<oe[[nm xE™(Pm)]xnm], 

(m = -N + N) (4) 

where nm is the normal vector to the surface of the m -th radiator, G(Q,P) is the Green 

function, Ec
m
m(PJ is the extrinsic electrical field. The equation system (4) can be 

written as system of the linear integral equations of first kind 

£  \K (Q'n )Knm (Qn, Q'm )dsn = EZ (&,)   On = -N + N), (5) 
n=-N s 

where Knm (jQ„ ,Q'J is matrix kernel, EZ (Qm) is the tangential component of a vector 

EZiQm) on a surface of m -th radiator. It is known [35], that the integral equations of 

first kind have an unstable solution. However, the kernel of the Green function type, 
having singularity at Q„ -> Qm, allows to construct stable algorithms for the numerical 

search of solutions of the integral equation (5)1 using the regularization methods [35]. 
We write system (5) in the operator form as 

BJe=Ecm. (6) 

Here B is the linear matrix-integral operator carrying out a continuous one-to-one 
transformation from the metric space Hd into the metric space HE . 

1 Note that the self-regularization method for solving the integral equation systems, that have 
the logarithmic singularity in the kernel, was proposed by Tikhonov and Dmitriev in [36] 
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If in space Hj is allocated a compact class of the solutions coy c Hj, on which the 

problem BJe -Ecm is correct, that is the operator B~l is continuous on an image 
B((Oj) c HE, then the solution of system (6) can be presented by Je = B~xEcm. 

Using this expression and the equality (2), we receive obvious dependence of the RP of 
array on the extrinsic sources [29, 30] 

f = AB-lEcm,   (fv=AvZ~'U     v = a,<p), (7) 

which allows to consider the synthesis problems of arrays taking into account the 
mutual coupling of their elements, in the case when Ecm e B((Oj) c H,... 

We assume that prescribed amplitude RP is given as a finite function F e C|2) with the 

compact carrier fie R2 (or Q. e IR1). The synthesis problem of arrays we formulate as a 
problem of search of such distribution of the extrinsic electrical field on surfaces of 
radiators Ecm = {Ec_mN,E™+v...,E™}, which would minimize the smoothing functional 

°,(U)=\\Fä-\AdZ~lE 1 rrcm i||2 + \\F-\AmZ-lE 1 T?cm i||2 
:lC(2> 

(G) 

+a\\E cm ||2 
(8) 

in the Hilbertian space HE =L2(v)® L2(v)®...® L2(v). 
Differentiating the functional (8) by Gateaux and using the condition of the functional 
extremum, we receive the equation concerning the vector Ecm 

a ■ Ecm = -B'~lA;AsB-lEcm - 5*"'A;AVB''Ecm + 

+ 5*~1^(VUB"»5"r" )+B'']A;[Flfe""sA^'EC") (9) 

on the basis of necessary condition of the functional extremum. In (9), B is the operator 
obtained from B by means of regularization. 

If the zero set of the operator AB~X consists only of a zero element, then assuming in 

(9) fs.v = A,^'iECm and acting on both parts of equality (9) by the operators ABB~\ 

and A^B'*, we receive equivalent to (9) equations 

a 
\.hj 
r . -a 

A^B'-'A;  AdB-ir'A;)(f^ 
S-i 5*-' 

+ 

KA^B* Al    A^B'Al; 
■ID'"

1
  A*        A   n-lS-"1  A*\f 

A 
+ 

\J&; 

AäB->B' A;  ASB-*B*- A; 

KAJ-]B'-'A;   A^B'-'A'^ F eimf° 
(10) 

with respect to the components of the synthesized RP. The equation (9) and (10) are the 
nonlinear operator equations of the Hammerstein type. 
The theorems of existence of at least one points of an absolute minimum of the 
functional (8) in the Hilbertian space HE are proved in [3, 20, 24, 34]. Since the 
functional (8) is growing and has m- property, then it follows from the existence 
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theorem that the equation (9) in the space HE, and equation (10) in the space C(
(g 

accordingly have at least one solution. 
The equation (9) and (10) are the basic equations of synthesis for various types of 
radiating systems according to the prescribed amplitude RP. Their expanded form 
depends on the type of radiators and geometry of array [2, 9, 29, 30, 32]. 
The methods of the solutions branching theory of the nonlinear equations [37] are used 
for investigation of the number of the  equation (10)  solutions  and  qualitative 
characteristics of them. 
The use of methods of the nonlinear analysis allows to determine the number and 
qualitative characteristics of the solution of (10) for a series of specific types of the 
antenna arrays. These characteristics depend on the prescribed amplitude RP and 
geometry of array [11, 12, 19, 21, 22, 23]. The general structure of the investigated 
solutions is established. It allows to locate the existing solutions and thus to a 
considerable extent to simplify their numerical determination. 
The properties of solutions of the equation (10) for linear array consisting of thin 
cylindrical radiators  [10],  linear array  consisting  of conic  spiral  radiators   [30], 
microstrip array consisting of rectangular radiators   [32, 33], and waveguide array [2] 
(two-dimensional problem) are investigated. 
The iterative processes for numerical determination of solutions are constructed. The 
implicit scheme of the method of successive approximation is used in such processes [1, 
24, 25]. In particular, the iterative process to solve the equation system (10) has the 
form 

/   r(n+\) \ f 

a 
J (p 

(«+!) 
+ 

?*"'   A* \ AaB~lB* A;   A&B~
1
B* A, 

AJ-
]
B*~'A:   AJ-'B^A: 

( /•(«+!) A A 

-i S*" 

<py 

A>B-lB'-Al     AdB-lB*-'A^ 

KA^B*-'A;   A^B-^AIJ 

F9e'
arg/£ 

f J (p 

(-0 \ 

(n+1) 

F e 'arg/v
l" 

(11) 

where n is the number of iteration. In essence, the corresponding to (10) linear system 
of equations is solved in each step of iteration. The results of investigation of the 
solution properties of (10) by the methods of branching theory are used in the process of 
choice of the initial approximation. The theorems of convergence and relaxation 
properties of (11) relatively of the functional (8) are proved. 
The phase synthesis problems of arrays are considered with due regard for the mutual 
coupling of radiators, which are excited by the concentrated electromotive power [10]. 
The amplitude RP and amplitude distribution of extrinsic potentials are prescribed in 
this case; the phase distribution of extrinsic potentials is sought for. The synthesis 
results of microstrip array and array consisting of linear half-wave vibrators are 
presented. 
The computing experiments show that freedom of choice of the phase RP allows (at the 
certain values of geometrical parameters of array) to decrease on 40 % the value of 
functional aF   in comparison with the solutions belonging to a class of the in-phase 

RPs [9]. As a result of calculations, it is established that the relative error of 
mathematical models of arrays, which do not take into account the mutual coupling of 
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radiators, in comparison with mathematical models of arrays taking into account such 
coupling, is approximately 10% in the region of sidelobes. 

SYNTHESIS OF THE MULTI-BEAM AND CONTOUR RADIATION 
PATTERNS USING THE HYBRID ANTENNA SYSTEMS 

The use of approach proposed above for the synthesis problems of the hybrid antenna 
systems is considered. At the beginning, a generalized problem of synthesis of one- 
reflector antenna consisting of some radiator and a cut of the ideally conducting 
reflector of the parabolic form is proposed. In this case we find such RP of the radiating 
element and such form of the reflector cut, which form the amplitude RP which would 
be maximally close (in the mean-square approximation) to the required one. The 
functional like (8) with the account of the additional restrictions on the electromagnetic 
field in the reflector surface and on the form of cut from it is used as the optimization 
criterion of the form of reflector cut and the induced currents on it. The minimization 
problem of the constructed functional is reduced to solving the appropriate set of the 
Euler equations. If the amplitude RP should have a special form (quadrate, triangle etc.), 
the optimization of the form of cut is an additional possibility, which can improve the 
effectiveness of synthesis in ranges 50 % in a comparison with the non-optimized 
antenna [4, 26, 27]. 
The synthesis problem of the hybrid reflector antenna consisting of non-symmetric 
ideally conducting reflector and radiating array is considered too. The synthesis problem 
is solved as the problem of determination of such amplitude-phase distribution 
J = {JX, J2, ... JN), (N is the quantity of radiators) in the radiating array, which 

minimizes the functional (8). As the result, we obtain a set of equations with respect to 
the optimal currents or nonlinear equation for the synthesized RP. Such approach can be 
applied to a wide class of antennas of this type, and the numerical algorithm of solving 
the problem does not superimpose any restrictions on the placement of elements of the 
radiating array. It can be both the flat and the conformal arrays. In particular, their phase 
centers can be taken out from the focal plane of reflector [13, 28]. 
The hybrid lens antenna consisting of TEM-lens of the Rotman type and radiating array 
[18] is investigated. The synthesis problem of multi-beam system is considered in 
various statements, in particular, the synthesis problem of not only the summary RP, but 
also the partial one is considered. In the last case, we obtain an optimal partial RP, 
which has in its cross-section the rectangular or triangular form. It allows to obtain a 
contour RP without critical zones in the region of upkeep. We also note that using the 
obtained partial RP of the special form, we can form some contour RP by simple 
inclusion-expelling of active elements of the radiating array [4, 31]. 
The synthesis problems of contour RP on the basis of hybrid mirror antenna with a flat 
radiating array, which radiates some area of a terrestrial surface (region of upkeep) [14, 
15, 16] is considered too. 
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CONCLUSION 

1. The stated on the operator basic the methods of solution of the non-linear 
inverse problems allow to solve the synthesis problem for antenna systems using the 
various on accuracy mathematical models of the radiating systems. To solve the 
synthesis problem of the specific antenna or antenna array, it is necessary to determine 

the operators A and A* accordingly, and to obtain extended form of the equations (9) 
and (10). 

2. The existence of various structure solutions of the synthesis problem, that 
form the same amplitude RPs (or close amplitude RPs), presents the possibility to 
choose such solution which has more simple technical realization for the practical 
applications. 

3. The stated synthesis problems of the considered arrays with due regard for the 
mutual coupling of radiators can be simply generalized for the synthesis problem of 
arrays of other types. Thus, the presence of the stable and effective methods to solve the 
direct (analysis) problem, that is determination of the operator A, plays a key role. 

4. Optimization of the aperture form (form of the mirror cut) gives an additional 
possibility to improve the quality of approximation of the modulus of the prescribed and 
synthesized RPs. The use of this approach allows to synthesize the contour RPs of the 
fixed and variable form without a critical zone. 
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ABSTRACT 
The Wiener-Hopf technique for studying diffraction problems involving wedge shaped 
region is here addressed. 

INTRODUCTION 

Fifty years ago Malyuzhinets solved the diffraction by a wedge, of known surface 
impedances, problem, by using an original and very important method based on a 
Sommerfeld representation of the involved fields [1], This method is very popular since 
it is usually preferred to the more effective Wiener-Hopf technique for studying fields 
and waves in wedge shaped regions. The main reason of this preference is the common 
belief that the Wiener-Hopf technique do apply only for some values of the wedge 
aperture angle. This author always felt not satisfied for this limited use of the W-H 
technique dealing with wedge problems. In fact, in some recent works [2-4] he started 
showing that the diffraction due to an impenetrable wedge having arbitrary aperture 
angle always leads to a standard Wiener-Hopf matrix factorization. The aim of this 
paper is to report some of these results in order to deeply investigate this problem. 

fig la impenetrable wedge with arbitrary aperture 
angle 

fig. lb 
penetrable wedge with arbitrary aperture angle 

Isorefractive case: 5 \L = E2^2 

The Wiener-Hopf technique for wedge problems stands on the introduction of the 
following Laplace transforms of the tangential to the wedge surface field components 
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Mn,<P)=  f £:(P.<P^PrfP-  7z+(^<P) = f//.(P.CP^^P (1) 

Kp+(n,q>)= f £p(p,cp)^pc/p, 7p+(Ti,q>)= f//p(p,cp)e^p
ö?p (2) 

Without loosing generality we assume the z dependency, specified by the eJa,,: factor, 
here omitted. As it has been showed in [3], the following eight equations hold: 

2 2 
T CX   TI T CL    m 

^+(T1,0)T-2-/P+(T1,0)T^/..+ (I1,0) = -« K„(-m,±<I>)q:-2-/p+(-»i,±<D)±-2—/..(-»i.id)) 
we coe coe coe    " 

(3a) 
"" ,1 r,   ,     ~. . "»'H „   ,   -. ,   ,      . _ . t I „   ,      . __a„m. $ /5i (n ,0) ± — F   (-r, ,0) ± Ks+ (Ti ,0) = -« /„ (-IH,±<J>) ± -5- F   (-m,±<D) + -^— F.+ (-w,±<D) 
co(i co|a co^i co n 

2 2 

±lj    K„(^,,±jr) + —/p+(-n,±7r)-^/I+H,±7t) = « KI+(-/H,±0) + —/   (-/w+O)- —/rt(-m+cJ>) 
coe coe coe coe 

(3b) 
2 2 

±^/..+ (-Ti,±7t)-—Kp+H,±7t)+^-Fr+(-Ti,±7r) = ±«/.+ (-W,±cD)-—Fp+(-w,±d>)+—K.t(-w,±d>) 
co(a co|i con con* 

where:t„=^2-ao ' Im^ J < 0,£ = £(r|) = Jx] -r\2 with the branch c^(0)=xo, 
m = w(ri) = -r| cos<£> + \ sin<t>, « = n(r]) = -£,cos<I>-T|sincI) (4) 
The functional equations (3) show the connection between the Laplace transforms of the 
tangential components of E and H evaluated on the four particular directions cp = 0, 
cp = +7t , cp = <£> and cp = -d>. They have been obtained by the use of a complex 
procedure [3], based on the introduction of oblique Cartesian coordinates. These 
equations are the necessary starting point for the deduction of the W-H equations for 
wedge shaped regions. 

GENERALIZED WIENER-HOPF EQUATIONS FOR IMPENETRABLE 
WEDGES 

Fig.l shows the considered problem. A plane wave with skew incidence n( excites an 
impenetrable wedge where, on the boundaries cp = <D and cp = -<J>, linear conditions are 
defined on the tangential components of the electromagnetic field. The longitudinal 
field components of the plane wave are so defined by: 

where E0 and H0 are known quantities, S„ is the angle between the nt and z and 

T0 =&sind„ , an =&cos9„. 

In order to give an example of how the factorization method works dealing with wedge 
problems, let us consider the Malyuzhinets problem, where the incident plane wave is 
not oblique (ct0 =0) and isotropic impedances Za and Zh are defined on the two 

wedge surfaces <p = cp and cp = -0>. In this particular case the four equations (3a) 
reduce to two decoupled systems of order two. By considering, just as an example, the 
E-polarization case, we have: 
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where GO(TI) = 

e(r\)     -e(n) 

-ACn) -ACn) 

e(n) = — 

89 

(6) 

CO (J. 

,F+(T!) 

:»A(TI) = - 

^(T1.0) 

/P+(T1,0) 
Y+(-m) = 

/p+(-m,-G>) 

"a.*  = 

cou 

—                      ^                   fj" 
It is important to  observe that the mapping  r\ =r\(r\) = ^0 cos[— [arccos[ ]] 

yields:»? = -r)(-ff). This reduces the equations (6) to the following classical Wiener- 

Hopf system in the ff - plane [3,4]: 

G0(fT))F+(fT>y+(-fr) (7) 

where the notation   X(j\) = X(r\ (ff)) have been used for all the involved functions. 

R. ,n 
Introducing  F (ff) = F_d(ff) + F_8 (ff), where  F_g(n) = ^-^, 0io = -*cos(^-q>0), 

Tl -"Ho Q 

i?fl   depends on the faces that are illuminated) is the known geometrical optics 

contribution, the W-H technique provides the solution: 

R. 
F+ (ff)) = Go:(ff))Gol(ff0)=-^ 

the 

(8) 

factorized      matrices      of where       G0+(n))       and       G0_(n)       are 

G<t(fD) = G(I,_(fr)G0+(fD). 
If Za = Zb = 0 ( PEC wedge case ) we only need the scalar factorization, that can be 

accomplished by using standard techniques [3,4]. For example, dealing with the 

functions % = ^x] -r|2 and n = -L, cosO -r\ sincD defined in (4), we obtained: 

On the contrary, if Za and Zb are not vanishing, the kernel G9 (n) is a matrix of order 

two. Even though the two-order matrices generally cannot be factorized in a closed 
form, nevertheless for the Malhiuzinets problem we obtained an explicit factorization by 
the use of the following procedure. First we rewrite G^ (ff) in the form: 

G9m = 
{Za~Zby,n 

2ZaZb(n + naln + nb) 

1     1" 

1   -1 

"1        0 

o £^ 
^-(rf) 

"1    a 

b    1 

0 1 
Jco u. 

0   X   P 

MTT) 

l   o 
o   -1 

(10) 
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where:a = /(l1)£^, b^f^^M, /( )a m + m . 

Eq. (10) reduces the matrix factorization of G^fT) to that   of the central matrix 

1    a 

b    1 
"2/—\ _!/;., —\    *i ±:„   « _    0>H 

Ä~e(rr) . Since £,_2 (r|) = -(& +r\), the ratio -j- = -2,_^  is a rational function of r\ . It 

follows that the matrix 
1    a 

b    1 

well known method [5,7]. It yields 

is a Daniele-Khrapkov matrix that can be factorized by a 

1    a 

b    1 

1    a 

b    1 

1    a 

b    1 where the minus and plus factorized matrices are given 
by: 

1    a 

b    1 = VOf) 
cosh -log[-A] 

2        Z„ 

*-m»nh 

cosh 

f- (n) 

TtöH 
-log[-A] 
2 Z. 

— sinh 

cosh 

-log[-A] 
2        Z „ J 

-log[-^-] 
2 Z„ 

tM%An) Äinh Jco U _        - 

^ 

sinh 
CD u 

Joo u _       - 
cosh ■V/öH* 

'-(fm-(TT) 

1  fl 
6  1 VfTcT) 

cosh 

C"- (T) 

V^ir 
'♦(rTÄ-Cn) Of)' 

(11) 

sinh 
^/colT 

/+(tTÄ-(fD 

VWI^ 
sinh cosh A/«7 

'+(TO-<rD 

The factorization of the scalar function: 

s(n) = i-/2(n): 4Z0Z/;     „ + „.„ + „4 

and the decomposition of the scalar function: 

can be accomplished without any difficulty through the Cauchy decomposition. In order 
to achieve this purpose it is convenient to introduce the  w - plane  defined by 

ff = -x 0 cos w . 

KIEV, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



MMET*02 PROCEEDINGS 

In this plane we obtained [3]: 

91 

n + n ■ajb 

n 
i r   ♦  r sin0^  l sinhw 

Uff) 
log[ 

t]=-itcosw 

Ti =-icosn' 

7t 

2_ 

7t 

. , ,G>    i coshw-cosw 
sinh[— u] 

K 

-du (12a) 

arctan[ Sin^    ]-arctan[-  S^ 
<D 

sinh[— u] 
K 

sinh[— u] 
n 

sinh — 
-du 

cosh u - cos w 

(12b) 

with nah = £sin3aA = fccosSfl>4 , 9 
71 

a.A -d a,* " 

Note that g_(ff) and g+(n.) behave as constants for r] -»<». In addition, taking into 

account that r\ »if*'* , it follows that f+(rf) = Q[     ,_0/  ]. Since the argument of the 

hyperbolic functions in eq. (11) is constant, or vanishing for ff-»a>, it yields the 

algebraic behavior of both the factorized matrices. The factorization of   G0 (if) is 
completed since E, and n have been factorized by the use of eq. (9). 
It is worth to observe that the integrals in eq. (12) involve the Malyuzhinets function 
W0 (w). In fact a cumbersome evaluation procedure shows that [3]: 

n + n„b = %(W + 0+\^(w + <I>-C,J%(w-0+\J^w-#-\4) 
r|=-Acos«' 

5-0l) n + na 

1 

n=-£cos»'       Sill 

-log 
%(w-o-^)%(w-o+^)y$(>v+a)-y%(w+«D+&a) 

where r| = -x0 cos w,    w = —w . These expressions allow to verify that the obtained 
K 

Wiener-Hopf solution agrees completely with the Malyuzhinets solution [1]. 

CONCLUSIONS 

This paper shows that the wedge problems solved by the Sommerfeld-Malyuzhintes 
method can be successfully solved also by the classical Wiener-Hopf technique. 
However there are practical and theoretical differences between the two methods. For 
instance the Sommerfeld- Maliuyzhinets approach requires the solution of a set of 
difference equations, whereas the Wiener-Hopf technique involves decomposition- 
factorization problems. Even though it seems that the two methods have the same 
capability for solving wedge problems, it should be observed however that the extension 
of the W-H technique even to arbitrary angular regions definitively establishes this last 
method as the most general and effective method for solving field problems involving 
geometrical discontinuities. The young researchers interested to diffraction problems 
should invest major time for studying this fascinating technique. To this author's 
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opinion the superiority of Wiener-Hopf approach with respect to the Sommerfeld- 
Malhyuzinets one is more evident when no closed form solutions are possible, and 
approximated techniques become necessary. In fact, approximated factorizations face 
these problems better than approximated difference equations solutions [6]. 
Even though some penetrable wedges (fig.lb), as the isorefractive ones for example, 
can be solved with the factorization method [3], an important question is if there is the 
possibility to face with the Wiener-Hopf technique arbitrary penetrable wedge 
diffraction problems. Using different media in the different angular regions, it yields a 
set of functional equations that can be classified as modified generalized W-H equations 
[8]. The same occurs when we are dealing with anisotropic or general linear media in 
angular regions. Up to now this author was not able to obtain a closed form solutions for 
these fundamental problems. However effective approximated solutions seem to be 
possible. These will be discussed in another work. 
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ABSTRACT 

Printed-circuit transmission lines used in microwave and millimeter-wave integrated 
circuits can exhibit several new propagation phenomena. They have relevance to leaky 
modes in integrated circuits that leak power in the form of the surface wave and/or the 
space wave, and they influence significantly the circuit behavior. In this paper, we will 
explain first why and when these transmission lines can become leaky, and then present 
some important phenomena discovered recently. 

INTRODUCTION 

Leakage phenomena in printed-circuit transmission lines have been recognized only for 
the last 10 or 12 years [1][2]. Many people do not understand the nature of leaky 
waves because they have mathematically improper one that their fields increase 
transversely away from the leaky guiding structure. So these people wonder if leaky 
waves are actually physical and measurable. It may be easily shown, however, that the 
leaky wave is defined only within a sector of space at a finite distance from the source, 
and that the wave never reaches transverse infinity. As a result, the leaky wave is 
certainly physical and measurable within its region of validity, and in fact its near-field 
properties really ruin the circuit performance [3] in the form of power loss, crosstalk 
between neighboring portions of the circuit, and various undesired package effects. So 
we must know when leakage can occurs and how to avoid it, or, in applications based 
on leakage, how to control it. 

In this paper, we present the dispersion behaviors of two types of leaky modes: one is 
the surface-wave leaky mode that leaks power in the form of a surface wave on the 
surrounding substrate, and the other is the space-wave leaky mode that leaks power in 
the form of a space wave radiating into space as well as a surface wave. Then we will 
explain why and when these transmission lines can become leaky, and summarize the 
principal properties of these leaky modes. After that, some of new propagation 
phenomena relevant to leaky waves are briefly explained. 
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LEAKY MODE IN SURFACE-WAVE FORM 

The basic cause of the leakage can be 
understood quite simply and is explained. In 
Fig. 1 we see the bird-eye view of a metal strip 
on air-dielectric interface, where this strip can 
represent the strip of microstrip line, or one of a 
pair of coplanar strips, or whatever. Let us 
assume that leakage power is leaking away at an 
angle 8 with respect to the transmission-line 
axis z, as seen in figure. The dominant mode 
has the phase constant ß, and the wavenumber 
of the surface wave on surrounding substrate 
relevant to power leakage is ks. From the 
figure, we can find an approximate relation 
between the wavenumbers and the leakage angle 
0 as follows. 

cos9 = ß/£s (1) 

This simple expression is a very good 
approximation, and is helpful in understanding 
the basic physics of leakage. From (1) we can 
see that, for real-power leakage at an angle 0, we 
must have the relation ß<£s or, dividing by ko 

ß/As < ks/k0 (2) 

Fig. 1. Metal strip and the wavenumbers' relation. 

1.6 

This relation (2) is the simple condition that 
must be satisfied for leakage to occur [2]. If 
this condition is satisfied for two surface waves 
on surrounding substrate, the leaky mode, of 
course, leaks power in the form of two surface 
waves at the same time, though at different 
angles. 

1.4 

1.2 

n   M' m dM  "' M 

U 
W h=0 25,d}r=025,E~2.25 

improper real 

proper real y\^ 
_(boundl/ 

s^hfA. mode 

LM- modcX'^ 

/   i*i h,-/ 4J 
:4, 

TM{) on mm_mm /nix on   

1 
0.1      0.2      0.3      0.4      0.5      0.6 

hIK 

Fig. 2. Normalized phase and leakage constants 
for the conductor-backed coplanar strips 
for w/h = 0.25 and d/h = 0.25. 

A typical example of the dispersion behavior for conductor backed coplanar strips 
(CPS) is shown in Fig.2, which is obtained by the spectral domain method. The 
structure is shown in the inset ofthat figure. The dispersion behavior of the normalized 
phase constant ß/&o and leakage constant a/ko as a function of normalized frequency 
h/Xo is shown in Fig. 2, where h is the substrate thickness and w/h = d/h = 0.25, er = 2.25 
are selected. The plot indicated as proper real in Fig. 2 means the bound mode that 
ends at frequency f„\. This bound-mode solution is obtained by selecting the 
integration path along the real axis as shown in Fig. 3. The spectral gap appears 
between the frequencies fcx\ and/cr2 as seen, and the nonphysical improper-real solution 
is continuously connected to the bound solution, and then turns back to low frequencies. 
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The plots indicated by LMj and LM2 show 
the  surface-wave  leaky  modes that leak 
power by the TM0 surface wave and by both 
TMo and TEi surface waves, respectively. 
For the calculation of LMi mode, we should 
select the path of integration so that it 
surrounds only the TM0 surface-wave pole 
as shown in Fig. 4(a).   For LM2 mode, we 
should select the integration path as shown 
in Fig. 4(b), where it surrounds both the 
TMo and TEi surface-wave poles.    As the 
frequency  is  increased  from  the  critical 
frequency /<&, the dispersion curve for LMi 
eventually crosses the dispersion curve for 
the TEi surface wave at the frequency /cr3, 
and then above this frequency the LMi 
mode is nonphysical.   While the LM2 leaky 
mode is physical above the frequency fct4 at 
which the dispersion curve for LM2 crosses 
the dispersion one for the TEi surface wave, 
so that the LM2 leaky mode is nonphysical 
below the frequency fct4-    The transition 
between these two leaky solutions results in 
a new type of the spectral gap. 

Im(J<x) 

o Re<hc) 

Fig. 3. The path of integration in SDM for the 
bound mode (proper-real solution). 

Imifo) 

Reih,) 

(a) LMi mode 

Imfc) 

Reihe) 

(b) LM2 mode 

Fig. 4. The paths of integration for LM, (a) and 
LM2 (b) leaky modes. 

Until recently, everyone thought that when 
the relative dimensions of the cross section 
of transmission lines are changed, the only 
effects are to modify the behaviors of the 
propagation wavenumber. We now know 
that this assumption is incorrect. It was 
found that, when the strip widths of 
conductor-backed coplanar strips are 
changed, there can exist a frequency range 
within which the bound and leaky modes can propagate simultaneously, and that the 
spectral gap then disappears. This effect is found to be quite general, applying to many 
different lines. A typical example for conductor-backed coplanar strips is shown m 
Fig. 5, when the strip width is changed from w/h = 0.25 of Fig. 2 to 0.60. The 
dispersion behavior is now seen to be dramatically different from that in Fig. 2, with the 
bound and leaky modes propagating simultaneously over a very wide frequency range. 
Since the bound and leaky modes have very similar current distributions on the strips, a 
circuit designer may need to keep this point in mind. In this case, the dispersion curve 
of the LM2 mode is omitted because it does not change so much for the strip widths. 
Instead, another leaky mode that is obtained from the same integral path for the LMi 
mode is indicated in Fig. 5.   This leaky mode that has been called "leaky surface-wave- 
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Fig. 5. Normalized phase and leakage constants as a 
function of the normalized frequency h/X0, 
when wlh is selected as 0.6. 

Fig. 6. Normalized phase and leakage constants as 
a function of the normalized frequency 
h/X0, when wlh is selected as 0.825. 

Imlkc) 
O branch point 

pole 

branch cut     

like (SWL) mode." appears just above the TEi surface-wave curve shown by the dot- 
broken curve, and its feature resembles, in the field structure, the TEi surface wave on a 
grounded-dielectric layer, but the power leakage 
occurs in the form of the TMo surface wave. 
Fig. 6 shows the dispersion behaviors when the 
strip width wlh is changed from 0.60 to 0.825, 
keeping the slot width dlh = 0.25. Then the 
mode coupling occurs between the standard 
LM| leaky mode and the leaky SWL mode as 
shown in Fig. 6, accordingly, the conversion of 
the dispersion curves occurs. The coupling 
effect shown in Fig. 6 is seen to be sharp and the 
behavior is of the classical "directional coupler" 
co-flow type. 

LEAKY MODE IN SPACE-WAVE FORM 

Recently, the space-wave leaky mode becomes     Fig'r The paths of integration for LM, leaky 
...        .... , mode and for LMT leaky mode. 

a tempting subject in pnnted-circuit technology 

Re(&) 
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space-wave leaky 

surface-wave leaky 

in connection with leaky-wave planar 
antennas. The space-wave leaky mode 
becomes physical in the region in which 
radiation of the space wave and leakage of 
the surface wave occur simultaneously, so 
that its complex-propagation constant is 
obtained by taking the path of integration 
shown in Fig. 7, where a part in the path of 
integration shown by the broken curve 
runs on the improper Riemann sheet, on 
which the imaginary part of the complex 
wavenumber normal to the dielectric-air 
interface is positive. 

The radiation condition into space wave is 
given, in good approximation, by fa > 
ß. On the other hand, the relation fa > fa is 
always held, so that the leakage condition 
into surface wave fa > ß is always satisfied 
by the space-wave leaky mode. Fig. 8 
shows the normalized phase and leakage 
constants for the strip width wlh= 2.0. 
The other dimensions and sr are shown in 
the figure. The solid curve indicated as 
"bound" is the bound dominant mode, 
while the bold-solid curve indicated as 
"space-wave leaky" means the space-wave 
leaky mode. For this strip width, the 
space-wave  leaky mode takes the  ß/&o 
value smaller than unity between the critical frequencies fa\ and/CT2, so this leaky mode 
is physical only in this limited frequency range. Thus we notice that the physical- 
space-wave leaky mode can propagate simultaneously with the bound dominant mode 
that is, of course, physical. Also, we have one more leaky-mode solution at rather 
high frequencies in Fig. 8. It is the surface-wave-leaky-mode solution shown by the 
dot-broken curve indicated as "surface-wave leaky." Since it is physical only above a 
critical frequency /cr3, the surface-wave leaky mode propagate simultaneously with the 
bound dominant mode in the frequency range f>fCT3. In this case, two different kinds 
of the simultaneous-propagation range overlap between/cr3 <f<Ui, though the overlap 
width is narrow as shown in Fig. 8. Then, in this overlap range, we can see the 
simultaneous-propagation effect of the different three kinds of the physical mode, the 
bound dominant mode, the surface-wave leaky mode and the space-wave leaky mode. 

We have the circle area in Fig. 8. In this area, there is some fine structure of the 
dispersion behavior, and the space-wave leaky mode is not shown correctly there. Such 
fine structure is caused by the mode coupling between the space-wave leaky modes 
discussed above.   Fig. 9 shows one example of the results obtained for w/h = 1.80,1.90 

Fig. 8 

0.18 

Normalized phase and leakage constants as a 
function of the normalized frequency h/X0, when 
w/h is selected as 2.0. 
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Fig. 9.     Fine structures of the dispersion behavior in the   Fig. 10.    Mode-coupling effect between two space-wave 
circle area of Fig. 8. leaky modes. 

and 2.00, keeping (2ve + d)lh = 4.25. The mode-coupling effect between two leaky 
modes (complex modes) occurs only when both ß/£o and a/ko values become identical 
or mutually take close values, and the curve of wlh = 1.90 in Fig. 9 seems to be the 
situation immediately before the mode coupling. So, we further calculated for the wlh 
= 1.88, 1.90 and 1.92, and the results are shown in Fig. 10, in which the coupling effect 
does not occur for the case of wlh - 1.88, but it occurs for wlh = 1.90 and 1.92. Such a 
coupling effect makes the dispersion behavior of the new leaky mode very difficult. 
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The mode-matching technique (MMT) was and still is the most powerful tool for the 
analysis, design and optimization of microwave devices - among other methods of 
computational electromagnetics. Simple and clear, it was devised in the early period of 
microwave research and provided solutions of many boundary value problems in the analysis of 
waveguides and gratings. MMT is credited for three important features: relative versatility 
(within a wide class of geometries), good convergence, and high accuracy. MMT does not loose 
its positions even now with a wide expansion of the grid methods, being superior in the 
calculation speed and accuracy and providing fast solutions of very complicated minimax 
problems. Perhaps a single demerit of MMT is necessity of an individual consideration of each 
new problem. Moreover, certain experience of designer is needed in analytical treatment of the 
boundary-value problems. So far there were no MMT-based tools good for arbitrary geometries 
at least in a certain class. Therefore solving a realistic problem requires not only computer time 
but also much greater human time for development of MMT algorithm and corresponding code. 

In this paper, we present milestones of GMMT - a new generalized approach to 
implementation of MMT. Firstly, generalization consists in consideration of problems with 
"unpredetermined" topology and geometry. We imply arbitrary configurations within certain 
wide class of coordinate boundaries. Secondly, generalization implies automatic generation of 
all required structural data for building a corresponding set of the MMT matrix operators. 
Thirdly, fine structure of any specified geometry is taken into account: longitudinal and 
transversal symmetry of device; symmetry of excitation; symmetry of separate complicated 
waveguide sections and their parts arising at dividing into the domains with perfectly electric 
(magnetic) walls in the planes of symmetry; connectivity of the waveguide cross-sections, 
symmetry of the plane junctions of separate waveguides, etc. Finally, implementation of a 
unified criterion for the accuracy control both in algorithms of full modal bases building and in 
procedures of automatic electromagnetic assembling by S-matrix technique can be considered 
as a generalization. Within the framework of a general idea of MMT one can distinguish two 
ways of analytical treatment. The widespread one is simple, conventional and has been used 
starting from the 60's. It is based on intermediate matching of the fields of separate subdomains 
on common apertures. Besides of a necessity to support required ratios between the numbers of 
the field space harmonics (Mittra's rule), this way requires sometimes implementation of a zero- 
length virtual subdomain if a common boundary cannot not be treated as a "small" subdomain 
aperture within a "large" one. Another way of field matching is based on introduction of 
unknown electrical fields on subdomain common apertures. Here, besides of reduction of the 
number of unknowns there is an essential advantage of using special expansion bases. They can 
take into account all types of the field behavior near the rims of coupling apertures: rectangular 
or sharp edges, electrical or magnetic walls, etc. These algorithms have shown very good 
convergence on a range of particular configurations in the 80's and are popular again. 

We have used GMMT approach to develop an automatic electromagnetic solver used in 
several practical designs of ridged waveguide evanescent mode filters, combined bandpass 
filters, lowpass waffle-iron filters, magic-tee based on double-ridged waveguides, low-pass- 
filters on the multilayer circuits, etc. GMMT solver is the main part of the AutoCAD based 
commercial solver (MWD) for analysis and design of complicated microwave circuits. 
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THE CONCEPT OF WAVES : THEORY AND APPLICATIONS IN 
ELECTRONIC PROBLEMS 

BAUDRAND Henri *, WANE Sidina *, BAJON Damienne" 

* ENSEEIHT2 Rue C.Camichel 31000 Toulouse France 
" SUPAERO 10 Av. E. Belin 31400 Toulouse France 

INTRODUCTION 

The fundamental quantities which describe the electronic -low or high frequencies- 
devices are electric and magnetic fields, or after integration, currents and voltages when 
their definition are possible pertinent. 
The introduction of waves amplitude (or more simply, waves) replied firstly to the 
necessity of finding eigenvectors in propagation phenomena - in TEM-lines or 
waveguides - (see for instance [1]). This change of basis permitted to define a scattering 
matrix. The scattering matrix presents two important advantages : First, the scattering 
matrix of an arbitrary device does always exist (it is not the case for impedance or 
admittance matrix). Second, for passive devices, the scattering matrix is bounded and 
unitary in the case of lossless devices). 
This first point is well known, however, its consequences in numerical methods are not 
yet entirely exploited: The relations between electric and magnetic fields give Finite 
elements method (F.E.M.), Finite difference in time domain (F.D.T.D), Electric Field 
Integral Equation (E.F.I.E.), Magnetic Field Integral Equation (M.F.I.E.) etc. What is 
now the position of wave-based formulations in numerical methods and why may it be 
interesting to investigate on how to take advantage of them ? In the following an 
overview on wave-based formulation approach is presented. Recent implementations of 
the Wave Concept Iterative Procedure (W.C.P.I [2]) in an integral form is presented 
through different applications. The wave concept based formulation, here presented, in 
circumventing the inversion of an integral operator, required in the moment (MoM) 
approach to compute the scattering parameters, uses an iterative procedure involving 
planar exciting sources. Since potentially the S-parameters can be directly obtained 
from the incident and reflected waves, the computation of the impedance (or 
admittance) matrix responsible of singularities in the MoM. 

DEFINITION OF WAVES. FINITE DIFFERENCE FORMULATION AND 
ITERATIVE PROCEDURE. 

Since the waves in a line are defined as a linear combination of longitudinal current and 
voltage existing on a transverse section of the line, in a non -TEM mode, the amplitude 
of the waves may be defined at each point of the transverse section by an adequate 
combination of electric and magnetic fields. 
In the general case of non-guided waves, the transverse section will be replaced by an 
arbitrary surface S, which will divide the space into two parts, the waves being defined 
in a half-space characterised with an unitary vector n orthogonal to S. For evident 
reasons of mathematical coherence (Electric and Magnetic Fields don't have the same 
tensorial character) the waves are defined as : 
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A(x,y) = —==(ET(x,y) + Z0H(x,y) A «) 
2JZ o (1) 

5(x,j0 = —7=(Er (x, j;) - Z0H(x, y) A «) 
2#o 

x,y are coordinates running on S, ET is the tangential electric field and H is the Magnetic 
field. A, B are two components functions of x,y. Z0 is an arbitrary normalizing 
impedance. 

The use of tangential fields on a surface and their relations, as the concept of half-space 
is common in Spectral Domain Approach (S.D.A.) [3] and in the equivalent schemes for 
the resolution of electromagnetic problems by integral Methods [4]. 
The formulation of TLM Method with waves was shown by P.Russer [5] : the 
condensed node is nothing else than the scattering matrix of a little cube, treated by a 
finite difference scheme. The Integral Method applied to a wave formulation has the 
following properties : 

- there is no need of   trial functions on sub-domain   (as in S.D.A.) 
because of the existence of scattering operator for any obstacles. 

- the quality of the scattering operator, which is bounded,   permits the 
use of an iterative procedure that always converges [2]. 
Let's consider a circuit defined on a surface S. At each point of this circuit, one can 
define boundary conditions in term of waves as: 

B=SA+B0 (2) 
where S represents a Scattering Operator Matrix. 
The External relations are written as: 

A = f B (3) 
B o being localised source on S. 
These two relations give a natural iterative procedure : relation (2) is firstly used with B 
= Bo in the spectral domain whereas equation (2) allows, in spatial domain, to 
determine B, relation (2) being recalled for a second iteration, and so on. This approach 
is quite similar to the one used in the Harmonic Balance method [6] which splits a 
circuit into linear and non-linear parts while W.C.I.P splits, in the integral equation 
surface conditions (2) and homogeneous embedding half-spaces conditions (3). In this 
last method the time domain is the counterpart of the spatial domain, and the harmonic 
domain stands for the spectral (or modal) domain. It has to be noticed that the reflection 
operator in (3) has a diagonal representation in the spectral domain when homogeneous 
spaces are considered. 

APPLICATIONS 

From some years ago numerous applications of W.C.I.P. have been developed: Planar 
active circuits [7], antennas [8], and filters [9]. The use of spherical geometry was also 
applied to radiating elements [10]. In addition to their flexibility to handle complex 
geometry, the integral operators take advantage of both the spectral and spatial domain, 
the toggling between the two domains using an optimized Fast Mode Transform (FMT). 
On the other hand, inhomogeneous buried diffusions with arbitrary patterned doping 
profiles    inserted    to reduce substrate-epitaxial coupling noise  [11] in BiCMOS 
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structures (Fig.l), have been investigated from a full-wave analysis based on a new 
original hybrid method combining the integral wave concept based formulation to a 
local spa«.c fiiiitc-uifferenv;e approach applied to the transverse operator . The boundary 
conditions at the level of the inhomogeneous layers are expressed in terms of incident 
and reflected waves via the Transverse Operator Method (T.O.M) in a differential form. 
To improve the time delay computations with the wave concept based formulation, a 
multiscale approach, can allow an optimum number of iterations to be chosen in 
reference to the discretising cells size considered for the description of a given circuit. 
Fig.2 shows the Convergence of the input admittance imaginary part against the 
number of iterations in the case of a simple interconnect circuit for different values of 
the scale parameter k0a (a being the circuit dimension, and k0 the vacuum wave-number) 
. As the number of iterations increases when the scale parameter grows, a change in the 
describing cell size resulting in refined meshing gives the possibility to reduce the 
number of iterations. 

I    J 
(1,2,3) EE3 Oxide layer(ef= 4.5) 

(4) □ BP and Epi layerf aHr= 300 S/m) 

(4) OB EpWayerfo„,=200 S/m) 

(5) mni Depleted layerfo»//,) 

P' Si substrate 
p (in Cl - cm) 

Fig. 1. Typical BiCMOS structure with buried diffusions (b) - Overview of the buried diffusions 
with different doping profiles (a) . 
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Fig.2 - Convergence of the input admittance imaginary part against the number of iterations in 
the case of a simple interconnect circuit for different values of the scale parameter (koa=0.6 

Frequency (GHz) 
1,2       1.2       1.3        1.3       1.3       1.3       1.3       1.3       1.3 

|Sii|    -12 
(dB) 

Sn. M+1 
Sii, M pixels + Zs for 50 % 
Sn, M pixels + Zs for 75 % 
Sii measurements 

Planar     J 
Exciting source 

Fig.3 - Application ofnon uniform meshing to planar antenna. Confrontation of the simulated 
insertion parameter and the measured one with and without macro-pixels against frequency. 
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CONCLUSION 

It has beer, shown that, beyond any numerical analysis considerations, integral equations 
in terms of waves have natural capabitilies to be solved using an iterative procedure. The 
wave based formulation handles scattering and reflection operators which are always 
bounded for physical reasons. In multi-layered structures, the limitation to homogeneous 
layers stack is overcomed owing to the wave-based formulation. To improve the 
computation time for the analysis of complex circuits, a non uniform meshing has been 
introduced (use of macro-pixels, Fig.3). Future investigations concerning multi-scale 
approaches are understudy. 
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ABSTRACT 
An analytical approach for the study of microwave devices and antennas printed on anisotropic 
substrates is presented. This is based on the geometrical optics approach in conjunction with a 
reflection coefficient established through a Wiener-Hopf solution of the corresponding 
canonical problem. A parallel plane waveguide with a semi-infinite upper conductor and loaded 
with a plasma magnetized parallel to the edge of the truncated plane conductor is considered. 
The scattering problem of the dominant extra-ordinary TEM wave normally incident up on the 
edge of the truncated conductor is formulated in the Fourier transformed domain and solved 
using a Wiener-Hopf technique. 

INTRODUCTION 
The introduction of anisotropic substrates constitutes a research challenge in the 
electromagnetic field, particularly when an analytical approach is employed. Even when 
numerical techniques are used, the study of microwave structures printed on substrates with a 
generalized anisotropy still constitutes a difficult problem with a lot of unresolved issues. 
However, the anisotropy could be an important parameter either in the case when this is an 
inherent property of the material (e.g. sapphire and quartz) or an artificially caused (e.g. 
Epsilarh-10) during the fabrication process. The most general anisotropy occurs when ferrite or 
plasma materials are subject to constant magnetic field of an arbitrary direction, which are then 
described by full tensor permeability (jlr) and permittivity (er) respectively. These tensor 
constitutive parameters depend on the biasing magnetic field and the operating frequency. This 
dependence enables their dynamic control through the DC current of an electromagnet used to 
generate the biasing magnetic field. Recently, the exploitation of the exceptional features 
offered by magnetized ferrites in printed microwave devices and antennas has received a 
considerable effort. Wideband electronic tuning, beam steering and possible surface wave and 
RCS reduction are some of the widely known features. Magnetized plasmas behave as the dual 
of magnetized ferrites but still offering the same features, it could thus be more suitable for 
some geometries. However, there was only a minor effort in the exploitation of its properties in 
printed antennas and microwave circuits, while there was a considerable effort in the study of 
antennas embedded in a magnetized plasma in their operating environment (mostly for satellite 
and nuclear fusion applications). This lack may due to the difficulties in generating and 
controlling ionized gas plasma. However, the evolution in the electronic solid state technology 
(currently at cryogenic temperatures) may stimulate its introduction in printed microwave 
structures and antennas. Some recent publications based on numerical techniques [1-3] are 
directed toward these applications. 
Analytical studies and especially the Wiener-Hopf technique offer a clear physical insight into 
the problem enabling an integral exploitation of the structure properties. This is of primary 
importance, even though its application concerns only simple geometrical structures. Since, the 
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extracted properties can be extended to more complicated structures of practical use which can 
then be simulated numerical. 
Concerning the ur.iaxially arsisotropic substrate, El-Sherbiny [4, 5] has directly applied the 
Wiener-Hopf technique for the study of microstrip-lines and fin-lines. In our previous works, 
e.g. [6-8] we have indirectly applied the Wiener-Hopf for the study of wide microstrip lines as 
well as rectangular and triangular patch antennas printed on uniaxial dielectric substrate. This is 
based on the solution of the canonical problem of the scattering of a TEM wave obliquely 
incident upon the edge of a semi-infinite plane conductor printed on a grounded uniaxial 
substrate (this structure can be considered as a dielectric loaded parallel plane waveguide with a 
truncated upper conductor). A reflection coefficient is established from this analysis which is in 
turn combined with a geometrical optics approach and a transverse resonance condition in order 
to study the printed lines or antennas. Moreover, the physical insight offered by the solution of 
the canonical problem is by itself of particular significance. 
Our present research effort is directed toward the study of wide microstrip lines and patch 
antennas printed on magnetized ferrite or magnetized plasma substrates. The first step again 
concerns the solution of the corresponding canonical problem, as described above. 
Unfortunately, when an obliquely incident TEM wave is considered, the formulation yields two 
Wiener-Hopf equations coupled in a very complicated manner. Up to now we were not able to 
decouple or solve this system, even though we have studied all the available literature on the 
coupled Wiener-Hopf equations. However, we found out that there are certain simpler cases of 
specific orientations of DC magnetization for which the Wiener-Hopf equations for the electric 
and magnetic field are inherently decoupled. This is exactly the subject on which our present 
research effort is focused. A case of particular practical importance is the infinitely extending 
parallel plane waveguide loaded with a ferrite or plasma layer which is magnetized parallel to 
the edge of its truncated upper conductor. Considering a normally incident TEM wave on this 
edge and formulating the scattering field yields two decoupled Wiener-Hopf equations. This 
was first observed by Johansen [9], who studied the scattering, by the end of a semi-infinite 
parallel plane waveguide loaded with magnetized plasma. Furthermore, the normal incidence is 
very useful in the study of rectangular patch antennas. Considering the patch to be probe-fed 
and studying any arbitrary TEM wave emanating from the probe, it can be proved (e.g. [6]) that 
at the antenna resonance (the desired operating condition) the dominant TEM mode incidents 
almost normally at the patch radiating edge. 
Furthermore, it must be noted that in a parallel plane waveguide loaded with ferrite the 
dominant TEM mode is the ordinary one, since the extraordinary TEM mode has an electric 
field component parallel to the two metallic planes. In contrary, in the magnetized plasma case 
this occurs vice-versa and the extra-ordinary TEM mode becomes dominant. From this 
observation one may conclude that is more convenient to exploit the dynamic zr control in 
patch antennas printed-placed on magnetized (solid state) plasma. Summarizing, this 
presentation will first review our established procedure for the Wiener-Hopf analysis of 
structures printed on uniaxial substrate, while we will then focus on our recent work on the 
study of the canonical problem in the magnetized plasma case. 

GEOMETRICAL OPTICS TECHNIQUE 
In order to explain the need for the solution of the canonical problem described below; consider 
the probe-fed microstrip line shown in Fig.l. According to the geometrical optics technique the 
field emanating from the probe can be expressed as a sum (or integral in general) of rays (TEM- 
waves) propagating at any possible direction around the probe. These rays are successively 
reflected at the two edges (apertures) defined by the ends of the microstrip line, becoming 
parallel after two reflections. Only those rays having an angle of incidence (propagation 
constant) such that the parallel ones are in phase, thus interacting in a constructive manner, are 
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propagating. All the other rays interact in a destructive manner and they vanish at a small 
distance from the probe. In other words the propagation constant of the line is defined based on 
a transverse resonance condition. The rectangular patch antenna as well as some triangular ones 
(the 450-450-90°, 600-600-60° and 300-60°-90°) can be analyzed in a quite similar way. In any 
one of these cases the complex reflection coefficient of an obliquely incident ray at the aperture 
formed by the edge of a printed line or antenna must be known. 
If this edge could be considered "isolated", namely by ignoring the mutual coupling between the 
different edges of the printed structure, then the desired reflection coefficient could be obtained 
from the solution of the corresponding canonical problem. This approximation seems to be 
reasonable for wide microstrip lines and any patch antenna that could be analyzed using the 
geometrical optics technique. This is based on the fact that printed antennas are operating 
around their resonance, thus they have fairly large resonant dimensions (comparable to Xg/2). 
Obviously, this technique cannot be used for the study of printed dipoles, due to their small 
transverse dimension. It is worth to recall here that strong coupling between printed 
components occurs only when their distance is comparable to the substrates thickness (d), while 
at a distance greater than 3 to 4 times d the coupling can be practically ignored. It is that 
expected that the geometrical optics technique is best suited for relatively thin dielectric 
substrates (this is the usual practice) and in any case its thickness must be well below a quarter 
wavelength. 

Fig.l. Ray analysis under a probe fed microstrip line with a superstrate. 

Details concerning the evaluation of the field under the patch for both the propagating and the 
evanescent modes as well as the establishment of the transverse resonance technique can be 
found in our previous works, [6-8]. 
Starting from the probe-fed microstrip line of widths, as in Fig.l, a rectangular patch antenna 
can be obtained by cutting the line at two edges at a distance-h between them. The reflection 
coefficient established by the Wiener-Hopf technique is used in any one of the occurring 
reflections. The propagation constant and the excited modes are defined in exactly the same 
manner as for the microstrip line. The resulting field propagating along the line is reflected 
back and forth between the two edges at x=±h/2. Once again when the parallel rays between 
these successive reflections are in-phase or have phase difference q.27t, with q=l,2,..., then the 
field under the patch becomes maximum 
It is important to note that at the antenna resonant condition the dominant mode field (ray) 
incidents almost normally at the radiating edge. Moreover, the above technique applies with an 
acceptable accuracy when any one (or more) of the patch antenna edge is short-circuited to the 
ground plane. At this edge a perfect reflection is approximately assumed. 
The remaining of this article will be focused on the canonical problem when a magnetized 
plasma substrate is considered. 
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FORMULATION OF THE CANONICAL PROBLEM 
The geometry to be studied is shown in Fig.2. Basically it consists of a parallel plane 
wavemiiHp lnarlpH with magnetized plasma, where the lower conductors (ground plane) and the 
plasma substrate are assumed extending to infinity while a semi-infinite (truncated z<0) upper 
conductor is considered. The biasing constant magnetic field (Hdc) is assumed parallel to the 

two planes and parallel to the edge (y-axis, Hdc= H0y). The extra-ordinary TEM wave 

(possibly emanating from a probe feed) propagating along the z -axis (transverse to H dc) is 

considered to be incident normally on the edge defined by the truncated upper conductor. Time 
harmonic fields (e1"") and a >.-space spectrum Fourier transform pair in the z-direction are 
considered (in the form d    ) 

i$i 

Incident TEM-wave 
H', ?- *   ^ 02" 

HDC 

Magnetized plasma 

£r 
/////////////////////////////////// 

Fig.2. A TEM wave incident upon the edge defined by the truncate upper conductor of a parallel plane 
waveguide loaded with magnetic plasma. 

This assumption results in a simplification of the wave equation by substituting d/dy = -jko?.. 

Since the excited extra-ordinary TEM wave propagating in the parallel plane region (z<0) is 
assumed to be incident normally on the edge z=0, there will be no variation of the scattered field 
in the also infinitely extending y-direction. This in turn results to a further simplification of 

d/dy=0. Moreover, the magnetized plasma (H DC = H 0y) relative permeability tensor is given 

in [9] as: 
£
H        0     jerl 

Er= 0 £,., 0 

Where 

and 

-/£,-2 

Q2 

0 
(I) 

R-l 

Q-R: 
£r2  = 

R 

QQ2 R2) 
,er3=l- 

£V 

Q=co/(op. R=coc/cop, cop
2=Ne2/mv.<„ (0c=-efioHr/m. 

The plasma frequency is symbolized as w,,and its gyromagnetic frequency as coc also, e and m 
are the charge and the mass of an electron and e0. u„ are the free space permittivity and 
permeability. With the above considerations, the wave equation for the scattered magnetic field 
in the ^-domain ( H =) for the plasma region can be written as: 

&X £,., 
(2) 

Where ko=(£>^J}j.o£o the free space wavenumber and cril=Er,
2-Er2\ 

The general solution of (2) in the plasma region - a< x< a takes the form: 

fi; = Bp(X)cosh(k0upx) + Cp(k)sirih(k0upx) (3) 
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where up = j'X2 -erq/erl and Re(up)>0. 

The transverse field components can also be expressed in the transformed domain as: 

z-i;^-'?^   ^-J^^-'f^1     (4) 

where C,0 = ^[ijz0 = (120rt)Q the free sPace characteristic impedance. 

The remaining field components vanish (Es
y = H ° = H s

z = 0) due to the assumption d/dy =0. 

The general solution for the air region can be obtained by substituting in equations (2)-(4) its 
characteristics (srl = er3 = l,sr2 = 0). However, this solution must also obey the radiation 

condition at infinity, so for the air region x> a, we have: 

HI = Ap(X)■ eKuAx-a) with u0 = <Jk2-l and Re fc0) > 0 (5a) 

1      off* 
and E:=t,0\-Hl E°X=- -*■ (5b) y jos0    ox 

The quantities AP(X), BP(X) and CP(X) involved in the above equations are arbitrary spectral 
functions to be estimated from the application of the boundary conditions. The incident extra- 
ordinary TEM wave propagating in the parallel-plane region toward the positive z-direction is 
given by Johansen, [9] as: 

H'y=exp{koerlx/^-jk0j^z}     and       E'x =&0/J^)-H'y (6) 

where a unit amplitude is assumed for H'y just for convenience. The scattering on the edge will 

excite a reflected TEM wave along with higher order modes, which will in turn vanish at a 
relatively small distance from the edge, provided that the plasma-substrate thickness is small 
enough (in order for these modes to be below cut-off). The reflected TEM wave propagating in 
the negative z-direction can be expressed as: 

Hr
y=rTEM-exp{-k0£r2-x/^ + jk0^z}    and     Er

x =K0/ y[e^)- Hr
y        (7) 

Where TTEM is the complex reflection coefficient to be sought from the study of the scattering 
at the edge, using Wiener-Hopf technique. The Jone's method is employed for convenience 
reasons, [10-11], namely the wave equation solution and the application of the boundary 
conditions are carried out in the transformed X-domain. Specifically, the scattered tangential 

electric field Ü^must vanish on the metallic ground plane (x=-a) and preserve its continuity at 
the plasma-air interface atx = a. Note that the corresponding tangential component of the 

incident field is identically zero(.E! = Er. = Oj. Also the tangential electric field must vanish on 

the truncated upper conductor(x = a, z < 0): 

El (x = a\z < 0) = /+ (z) = JC0 (+ u0Ap (A)«"^ = 0 (8) 

In order to satisfy (8), we are looking for a function which must be identically zero for z<0 and 

with a-value/+(z)^0 to be defined for z>0. This may result from the inverse Fourier 

transform of a "positive" spectral function R+(X) = u0Ap(X) analytic in the upper X half- 

plane. Using the two previously described boundary conditions the two spectral functions 

BAX) and CAX) are also expressed in terms ofR+(X). The dependence of the scattered 

field from the incident extra-ordinary TEM wave (excitation) can be obtained either by applying 
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the continuity of the total normal electric flux density Dx lot, or the continuity of the total 

tangential magnetic field Hv tol at the plasma-air interface [x — a, z > 0). At this point we 

assume that the incident field propagates un-attenuated in the region z > 0, or that it exists in 

the area(| x\<a,-<x> < z <+<x>). This is a usual assumption of the Wiener-Hopf technique, e.g. 

[11, p.l 26], since it simplifies the problem while its contribution can be evaluated and 
subtracted latter from the corresponding residue of the propagating field. Imposing in turn the 

latter boundary condition for H lot = Hy + H' , yields: 

L(\) = Hl(x = a\\)-ns
y(x = a-,k)-H'y(x = a~,\) = 0 valid for z>0 (9) 

Taking the inverse Fourier transform and requiring the integral to be identically zero for 

z > Oand to have a non-zero value for z < 0, we may define the spectral function Z_ (A) as a 

"negative" one. Namely, a function analytic in the lower A-half-plane. The combination of the 
above expressions yields a Wiener-Hopf equation of the form: 

Q(X)R+(X) = L_(X)-]+(X) (10) 

1     ter2+erl-u -coth(k0u a) 
Where QA  =-4- /    V ° p  J (11) 

and ]+(X) = -jexp^k0sr2a/^yi[27v^X-yfE^^ (12) 

The spectral function j+ (A) represents the Fourier transform of a fictitious current density that 

could be induced on [x = a, z > 0) if a conductor would be placed there. The remaining of the 

analysis involves the factorization of the kernel  ß(A)   into a product of   "positive" and 

"negative" function Q(X) = Q+ (A)-(2_(A) and in turn the evaluation of R+(X} . This enables 

the evaluation of the scattered field, the TEM wave reflection coefficient and in extension the 
radiated sky-wave field. The Kernel Q(k) involves a branch cut at u0=0 or at A.=±l, thus the 
factorization cannot be carried out in a closed form. An appropriate factorization formula is 
given by Mittra and Lee, [11, p.l 16-119] and this is the one employed herein. In order to get 
purely analytical results an equivalent closed geometry is considered. For this purpose an 
infinitely extending plane conductor placed parallel to the structure of Fig.2 and at a distance (d) 
is assumed, the above analysis is then repeated for this closed (shielded) geometry to yield a 
meromorphic Kernel function QC(X) of the form : 

1 Xer2+srlupcoth(2k0upa) 
vcW-—-—7v, —A—z^+ ö  O3) 

u0tanh[k0u0(d-a)] \ ~zv\ 

This was then factorized in the form of highly convergent infinite products according to Noble 
[10] and Mittra and Lee [11]. These expressions are similar to those of Janaswamy, [12]. In 
order to get the factorized expressions for the actual grounded geometry we take the limit when 
the distance of the shield tends to infinity (d->co). We are currently evaluating-comparing the 
results of the two factorization approaches. More details along with the further process will be 
presented during the symposium. It must also be noted that following a similar approach and 
exploiting the remaining boundary conditions a Wiener-Hopf equation involving the induced 
change density, can be obtained. 
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CONCLUSIONS 
An analytical study of microwave devices and antennas printed on anisotropic substrates is first 
reviewed. Its establishment based on the geometrical optics and a Wiener-Hopf type analysis is 
then summarized. In particular a geometry of a parallel plane waveguide, loaded with a 
magnetized plasma with a semi-infinite upper conductor is considered. The scattering of the 
dominant extra-ordinary TEM-wave normally incident upon the edge defined by the truncated 
upper conductor is treated analytically. A Wiener-Hopf equation is obtained factorized and 
solved. The equivalent shielded geometry is also treated in order to get the final expressions in 
closed form. 
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ABSTRACT 

A new approach to the theory of complex rays is proposed. It is shown that the 
Minkowski space is more appropriate for describing these rays than the usual Euclidian 
spaces. Some illustrative examples are represented. 

INTRODUCTION 

Despite remarkable progress in computitional technics and numerical methods used in 
electromagnetic theory, the ray method remains one of the powerful methods of the 
applied and theoretical electromagnetic theory due to its simplicity and informativity. In 
this approximation wave field is written in the form of locally plane wave 

u = Aeiks (1) 

where A = A(r) is amplitude and S = S(r) is eikonal which determines the phase 
structure of the field. These functions usually are slowly variable functions of their 
arguments, k is a large number, so function kS(r) can take large values. (1) usually is 
considered as a leading term in the asymtotic expansion called ray expansion or WKB 
ansatz of the solution u{r) to the Helmholtz equation. In homogenious medium 

function S(r) satisfies eikonal equation (4). In our days there exist many excellent 
books and articles describing fundaments of the ray theory and their various 
applications. If for real rays (i.e. real solutions of the eikonal equations) the geometry of 
the problem is very clear and character of arising problems are mainly analitical, in the 
case of complex rays (i.e. complex solutions of the eikonal equations) many difficulties 
are connected with the geometrical representation of complex rays, since it is not 
possible geometrically to draw complex rays in two or three dimensional spaces. 
Usually complex rays are thought as an analytical continuation of the real rays ([1,2]). 
However, this procedure requires analyticity of initial functions for Helmholtz equation 
and other involved ray parametres and immediately fails if the boundary or the 
boundary datas are not analytic. We think instead of the complexfication of the 
coordinates (i.e. instead of the theory of the functions of complex variables) it will be 
more reasonable to complexficate the distances, i.e. consider the rays in the 
pseudeuclidian spaces. The aim of this paper is to describe a new approach to the real 
and complex rays. We will show that the three dimensional Minkowski space is more 
appropriate for geometrization both real and complex rays than usual Euclidian spaces 
and visually there is no difference between real and complex rays in this space: complex 
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rays are rays inside the light cone and real rays are rays outside of the light cone. At 
each point real and complex are orthogonal in the sense of the Minkowski metrics. For 
example a Gaussian beam of the "waist" R simple is a bundle of paraxial normals to the 

pseudesphere with center at origin and radius iR in R 2 

MAPPINGS BETWEEN INITIAL AND TERMINAL PLANES GENERATED BY 
OPTICAL FIELDS 

Consider standard Helmholtz equation 

Au + k2u = 0 (2) 

Assume that we are seeking solution (2) under rapidly oscillating initial condition which 
is given on the some domain D of the plane z = 0 as 

u(x,y,0)=A0(x,y)e jkq>(x,y) (3) 

where  A0{x,y) is amplitude,<p(x,y) = S(x,y,0) and S(x,y,z) the solution of the 

eikonal equation 
V25 = l (4) 

Can easily be shown that the corresponding ray solution is 
z 

^=x + a(px,       T]=y + aq>y, a =■ (5) 

Eqs. (5) represent rays that start at (x,y) and end at (£,r|), so (5) can be considered as a 

mapping between (x,y) and (^,r|) planes (for fixed z). 

Fig.l. Mapping between initial and end planes 

To each point on the ray described by (5) we can assign at least three triple coordinates: 
cartesian coordinates (^,ri,z), ray coordinates {x,y,o) (or fejl,a)) and coordinates 

(x,y,z) geometrical meaning which we will indicate below. Excluding a from (5) we 

get mapping £ =$(x,y\r\ =t\=T\(x,y) between fe,r\) and (x,y) planes: 
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s=*+i====f    * = y+ ,   z% =r (6) 

In the terms of mapping (6) the energy conversation law in a small tube can be written 
as 

d^dr]    ÖZ, dr\ =± A2o(x,y) 

dx dy    dy dx       A2(^,r\,z) 

where Afe,r\,z)\s the amplitude of the field on the plane (E,,r|,z) 

CAUSTICS AND GEOMETRICAL MEANING OF (5) 

Since on caustics ray tube vanishes then left side hand of (7) also vanishes: 

^.aIL_ölörL = 0 (8) 
dx dy    dy dx 

Calculating partial derivatives in (6) and substituting into (8) provides 

, , Jl-*P,,2)p„ +Tt?xV>WXy +(l-<P/K.v ,    2   <P,„cpyr-cp2^      n ,m 1 + 2  =  + 2     -; \T = 0 (9) 
(l-(p2, -(p%)Vl-(p2, -q>% (l — cp2^ -cp2

rJ 
Eq. (10) can be interpreted in two ways. First, for given (p(x, v)we can solve (9) for z to 

find two sheets z, 2 = z]2(x,v)of the caustic surfaces in the coordinates (x,y,z). 

Substituting z,(x, v) into (6) we get parametrical equations of the caustics in the 

(&,r\,z) coordinates. Second, if z = z(x, v) is known, then substituting it into Eq. (9) we 

obtain a differential equation for determining cp(x, v), for which caustic is z = z(x, v) 
In order to understand the geometric nature of Eq. (9) we introduce the three 
dimensional pseudoeuclidian space R*2, which is the three-dimensional analog of the 
well known four-dimensional Minkowski space of the special theory of relativity. In 
this space the length of a vector Iwl = (£,,T|,^) is defined as 

'-'2        - 2      e 2      „2 PI = C -r-V (10) 
The geometrical place of the points where (10) vanishes is a, so called, "light cone". 
Vectors inside of the light cone have positive length, and vectors outside of the light 
cone have imaginary length. The unit normal to the surface C, = (p(£,,r|) in R32 is 

<P§ % 1 
n = (11) 

-y/l-cp2^ -cp2
n   V

1-(P25 -<P2i   V1 _<P2^ _(P2i 

For the "space-like" surfaces, l-(p2^ -(p2
n > 0, w has positive length and for "time- 

like" surfaces , 1 -cp2^ -<p2
n < 0, n has imaginary length. Now let us rewrite Eqs. (5) ;cs , l — ip  4 — ij; 

in the form 

e Z(Px Z(Pj 
^=x + -r===T Tl=>; + - 

^/l-(p,2-(pv
2 ^/l-cp2,-^ 2 
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£ =o +(p(x^) = (p(x^)+   .       * (12) 
VI-9 \ -q> i 

where £ =a + cp(x, v) is total phase, or 

( 9, <PJ (13) 

^1-9^-9% V1-^ -9% V!-9--9^ 

Eq. (13) persists to assume that <p(x,j>)is a wave front in R\ and (13) (or the same (5)) 

is no other than normal mapping for the surface y(x,y) in R\, that is rays for the 

problem (2)-{3) exactly are normals to y{x,y)'m R3i, that is the ray is real if it lies 

inside the light cone (1 -q>\ -q>\ > 0) and it is complex if it lies outside the light cone 

(1 -y\ -<p2„ <0). The case 1-tp2^ -<p y= Orequires a special study. The set of points 

in (x,y) plane, where 1 -(p2* -9 y = 0 we call Stokes line of the problem (2)-(3). Note 

that according to (13) the coordinates (x,y,z) mentioned above, are ray coordinates for 

wave front <p(x,y) inR\. At the focal points of y(x,y) the jacobian of (13) vanishes: 

0fe,Ti.O = 0 (14) 
d(x,y,z) 

or after calculating partial derivatives in (12) 

1|_(l-9y2K+29,9,9„+(l-9/kr , _2  9^-9^   _Q (15) 

(l-(p2x-92yWl-92--9% (l-(p2,-9%)2 

which exactly is Eq. (9). This persists to assume that (15) is a characteristic equation for 

9 fay) in R32 and its roots z, = —, r are radii of curvature of y(x,y)'m the metrics 

(10). Eq. (9) can be written also as 

t[  Jl-9/K +29,9,9,, +(l-9,2 )?„   |   .2    Wyy-V2»     _(V-lX^-l)(16) 

(l-cp2,-9%Wl-9^-9% (l-92^-9%)2 RiRi 
which is an analog of the formula for wave fronts in Euclidian space. 

GAUSSIAN BEAMS 

The Gaussian beam is usually thought of as a beam with a complex source. In such an 
interpretation the ray structure of Gaussian beams remains unclear. We show that in the 
above proposed approach the Gaussian beam possesses a simple ray structure. Consider 
problem (2)-(3) taking 

y{x,y) = -Jx2+y2-R2 (17) 
Then 

Vl-92*-9%=   /2   tR2       2 (I«) 
Jx2+y2-R2 
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that is cp (*,>•) is a time-like surface and normals lie outside of the light cone, that is the 
corresponding rays are complex. The mapping (12) takes form 

^=* i\=y V^ 
V iR 

C, = -Jx2+y2-R2 + zyjx2 +y2-R2 

iR 
Excluding x and y in (19) we get phase function in the form 

(19) 

(20) 

Rewritteng (17) in the form 

C-x2-y2=-R2 (21) 
we see that initial phase function is no other than a sphere with an imaginary radius 
z7?in the space R\. Since normals are orthogonal to this surface ( in the sense of 
metrics (10)) then rays under question are simple radii of the sphere (21). For paraxial 
rays 

; 2  z-iR 
(22) 

Substituting (22) into the fundamental solution of the Helmholtz equation e'K /C, we get 

,'*(--'■«) (: 
U «• 

■iR 
exp 

2   z-iR 

2\ 
(23) 

since for paraxial rays and sufficiently large z ,C, can be replaced by z - iR. In (23) we 
recognize the standard Gaussian beam with "waist" R 

FIELDS BEYOND CAUSTICS 

Since caustics are envelopes of real ray families and since complex rays are orthogonal 
to real rays (in R23 sense) then complex rays also are orthogonal to caustics , that is 
they are normals to caustic surfaces. So it might be expected that complex rays 
penetrate into the region beyond caustics and possess definite directions. We illustrate 
this on the standard example of circular caustics throughly studied before [2-4]. For 
simplicity we consider the two dimesional case. Setting 

<p(x) = cos ■Vx2-1 (JC>1) 

in (2)-(3), and having 
vA/ 

l-q> a >0 

we see that (24) is a space-like. Mapping (12) becomes as 

Q =cos ■1, 4 = x - ZVA 

Excluding x we get phase function in the form 

47^ 1 + zx 
\xj 

(24) 

(25) 

(26) 
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Cfe,z) = tan- + COS" 

v?^ -^ 
2+z2-l (27) 

Equation for caustics are: in (x,z)coordinates z = x~Wx2 -1, in (§,z) coordinates 

^2 + z2 =1 and £ = cos"1 E, in (£,£ ) coordinates. Since real rays are tangent to caustics 
then the complex phase is pure imaginary on the caustics. The value of the complex 
phase on the caustics is 

\     i A 

cp(x) = / cosh" T 
yxj 

(x<l) (28) 

The unite normal to this surface is (-j-\/l-x2 ,x), then the corresponding mapping 

determined as 

is 

H, =x-ziijl-x2, C, -i cosh" 
fi\ 

\xj 
-vr: + ZX 

Excluding x again as above for complex phase function beyond caaustics we get 
f r \ \ 

1 
Cfe,z) = tan-1 

fz^ 

A 
+ i 

vs; 
cosh -i 

.V^7 ■V*1* 
2-z2 

(29) 

(30) 

y 

LINEAR PHASE 

Now let (p(x,.y)= ax+ 6y + c  where a,b,c  are constant or depend on some outer 

parameter. Then l-(p2;<-(p%=l-a2-Z)2 and mapping (12) becomes as 
za zb z 

^=x + ~i 5—r' Vi-a2-^2 

Excluding x, y we get 

r\=y + 
J\-a2-b 

C, = ax + by + c + - (31) 
4\-a2 -b2 

^(^,ri,z) = a^+ZjTi+c + zVl-a2-*2 (32) 
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ABSTRACT 

This paper is intended to propose an efficient numerical method called Method 
of fictitious charges for solving a large class of annex problems which appear in the 
theory of homogenization of dielectric (lossless or not) materials. In the second step, 
we prove rigorously the convergence of the proposed algorithm. Finally, we give 
some examples in order to show the capabilities of our method. 

INTRODUCTION 

At an atomic scale, matter behaves as if it were essentially heterogeneous, but daily ex- 
periments show it rather homogeneous. This property is one of salient feature of matter : 
microscopic heterogeneity can lead to mesoscopic homogeneity. At first sight, one can 
say that there are two kinds of inhomogeneities : the first ones of a periodic type (such 
as crystals) and the others of a random type (such as amorphous glass). In this paper, 
we only deal with periodic structures namely photonic crystals (P.C.). We address the 
problem of the low-frequency behavior of these structures, i.e. the homogenization the- 
ory of the Maxwell system. In the rigorous approach [1, 2, 3] to homogenization, which 
is currently used in Mechanics, Electrostatics or Magnetostatics [4], one performs an 
asymptotic analysis in which the period over wavelength ratio tends to zero, and hence 
the number of scatterers tends to infinity. The domain containing the scatterers and the 
wavelength are kept fixed. The effective permittivity tensor is then defined in terms of 
solutions of partial differential equations (the annex problems). The aim of this work is 
to propose a new numerical method for solving these so-called annex problems 
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Figure 1: For the sake of simplicity, we only draw the homogenized process in the 2-D 
case. The fixed set üf with two "scaffolding" f^ and Q^ (with 77 < 77') are plotted. 

SET UP OF THE PROBLEM 

From now on, assuming a time dependence in e~tut, we will deal with time harmonic 
Maxwell equations. We consider a cartesian coordinates system of axes (0,X]_,Xi,x3) 
with origin O. We consider a collection of identical scatterers which are displayed at the 
center of a square mesh of a grid covering a fixed area Q/. The side of mesh Cn is equal 
to 77. We define a "scaffolding" Qn of Q,f in the following manner : Qv is defined as 
the greatest (in the set theoretical meaning) union of boxes of size 77 which are entirely 
contained in Q/ and whose fineness in controlled by 77. More precisely, the finer the 
scaffolding (the smaller the 77), the better the imitation (cf. figure 1). Obviously, as we 
wish to "build up" Q,f, the number Nv of cells depends upon 77, since it corresponds to the 
following equivalence. 

_  meas(^) _  meas(fy) 
1V" ~        77<*        "        77" K } 

where d corresponds to the dimension of our problem and meas(fi) denotes the measure 
of Q, (namely meas(Q) denotes the volume of Q when d = 3 and denotes the area of Q, 
when d = 2). 

For each grid (i.e. for each 77) it is possible to define an electromagnetic field F,, = 
(Er,, a,,) corresponding to the field diffracted by Nv scatterers when they are illuminated 
by the field F; = (Ej, Hj). In [1] the authors demonstrated that the field F,, does converge 
(in a sense defined in the quoted article) to a field Fhom (homogenizedfield) when 77 tends 
to zero. This field Fhom is the field diffracted by a homogeneous material filling entirely 
the set flf. The characterization of the electromagnetic properties of the homogeneous 
material depends strongly on the dimension of the problem and the polarization of the 
incident field as is schown in the following section. 
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THEORETICAL RESULTS 

3.1 2D-case (T.E.) 

When 77 tends to zero, the collection of cylindrical scatterers can be replaced by a homo- 
geneous isotropic cylinder of section Vtf with a permittivity ehom equal to: ehom = {e)Y, 
where (e)Y denotes the average of £ in the cell Y with Y =]0, l]2 (i.e. jY e(yu y2) dyidy2). 

3.2 2D-case (T.M.) 

Let us denote H^^Y) the first Sobolev space of functions on Y =]0, l]2 which have 
the same trace on the opposite side on Y of null mean value. When r\ tends to zero, the 
collection of cylindrical scatterers can be replaced by a homogeneous anisotropic cylinder 
of section £1/ with a permittivity ehorn equals to: 

ei» = <^1(W-W0>y    , (2) 

where V = (V/,^'), and V- is the unique solution with null mean of the following 
electrostatic problem {Kj): 

(ÄJ) :      divO-^VCV; - %))) = 0 , j e {1,2} (3) 

and where VV denotes the jacobian matrix of V. 

3.3 3D-case 

In this section, we denote Y =]0, l]3. When r\ tends to zero, the collection of scatterers can 
be replaced by a homogeneous anisotropic material filling^the set tif with a permittivity 
matrix Ehom equals to: / 

ehorn = (e(Id-VV))Y~ (4) 

where V = (Vi, V2>^3) is the unique solution in H^^Y) of the following electrostatic 
problem (Kj) : 

(Kj) :      div(er(V(^ - %))) = 0 , j G {1,2, 3} (5) 

PRACTICAL APPLICATIONS 

In most applications, one has just to consider a two valued piecewise constant permittivity 
in the unit cell Y and more precisely, the relative permittivity yields e2 in what one usually 
calls the scatterer S and ex elsewhere. Consequently, the problem we are dealing with is 
only defined by two complex numbers £1 and e2 and the shape of the scatterers T(in other 
words, the scatterers lie in the volume area, support of the above function). It is therefore 
easy to show [5] that, in this case, the resolution of the annex problems Kj introduced 
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in the fundamental theorem amounts to find the functions V, solutions of the following 
system where derivatives are taken in the usual sense : 

AVi =   0    ,inF\T 
[eDnVi\r   =   -[e]rni (6) 

. Mr =   ° 
with 

e = \ £l'r   'in o1 (?) [ e2,r   , in fi2 

and where [/]r denotes the jump of / across the boundary T i.e. the difference between 
the outer and the inner trace of / in T , and nh i E {1,2,3}, denotes the projection on 
the axis x$ of the outer normal of V (m = n ■ Xj). 

THE METHOD OF FICTITIOUS CHARGES AS APPLIED TO THE ANNEX 

PROBLEM 

For the sake of simplicity, we are only dealing with the 2£>-case. But it is worth noting 
that the methodology described below can be easily extended to the 3Z)-case. 

5.1    The spaces V, Vi and V2 

It is convenient to introduce the following notations: 

^=(_e;X),^=(£2X)-^o=([£]°n,).  oo 
With this notations our problem is reduced to find the columns Wi or W2, the column Wo 
being known, such that: W0 = Wi + W2 . 

We thus consider the space V = L2(r) x L2(T) of pairs of functions $ = f 

defined on T. The space V is a Hilbert space for the following inner product: 

($l5 $2)v =  I fafo dl + I fafodl (9) 

We will now define two subspaces of V, the spaces Vi and V2. The space Vj is defined as 
the subspace of V of columns $ verifying the following property : 

The functions 4> and ip are such that there is a regular Y-periodic harmonic 
function / defined on Qj (i.e. A/ = 0) such that <j> = f\T and IJJ = 8jDnf\T. 

Consequently, Vi can be said to be associated with the field in Ox whereas V2 is associated 
with the field in tt2- Returning now to the columns W0, W\ and W2, it is clear that W0 is in 
V, Wi is in Vi and W2 is in V2. Besides W0 being given in H^(Y), Wx and W2 are unique 
(the solution of system (6) is unique !) and therefore the decomposition W0 = Wx + W2 

is unique. 
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5.2   The solution of the annex problem 

The problem is iiuw to find Lhe column Wi (or the column W2) such as W0 = W\ + W2 , 
with a known column W0- In order to find this column W\ there is a general procedure 
based on looking for total families in Vi and V2 and on the use of least squares method 
[7, 8, 9]. Let us assume that we know, in each vector space Vj (j 6 {1,2}) a total family 
{Wj>n}. This means that each vector Wj in V, is the limit of a linear combination of the 
Wj>n. Then, if the complex numbers {cJ>n} are so that 

lim    \\W0-(Wl
N + W»)\\v = 01    with    W» = J2cjtn(N)Wjtn       (10) 

71=1 

then 
lim    11^-^)1^ = 0. (11) 

N—>-+oo        J 

In practice, for evident reasons linked with numerical calculation, we consider spaces V^ 
of finite dimension N instead of spaces Vj. The spaces V^ are generated by N columns 
W^. By and large, there are no column W? which belongs to Vf such that the norm 
11 Wo _ (Wf+W^) | |v is null. The problem is therefore for fixed N to find the coefficients 
Cj>n(N) which minimize the positive real A/v defined as follows: 

AN = \\W0-(W1
N + W2

N)\\V. (12) 

Having found the coefficients CjtTl(N) which minimize AN, we obtain the approximation 
Wj* of Wj with: 

N 

wy^E^-M^.»- (i3) 
n=l 

The method which has just been described converges in the following sense: 

• limN_^+0C KN = 0    ,     with    AN = \\W0-{W1
N+ W?)\\V 

• lim^+oc A
j

N = 0    ,     with    Äj
N = \\Wj-W]

N\\v   . 

In summary, we have shown that Wj1 is a good approximation of Wj. 

5.3    One example of total family in Vi and V2 

We consider two sufficient regular curves (curves of class C°°(M) ji and 72). The curve 
71 (resp. 72) must be in Q,2 (resp. S7r) so that they lie on either side and "all along" the 
boundary F. We can prove the following theorem : 

Theorem 5.1 Let us consider a dense and countable set of points Pjtk of coordinates 
xj,k = (xj,k, Vj,k) on 7J. Denoting V^k the unique solution in HQ^Y) of the equation: 

&Vj,k(x) = E 5(x ~ xJ'fc _ m) _ !    - with x = (x, y) and m = (mum2)      (14) 
mez2 
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and denoting by Wj>k the column defined on T (Class C2), as follows 

»fc-LÄ i o5) 

then the family {Wj^ken is a total family in Vj. 
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ABSTRACT 
We consider the long-wavelength limit for two-dimensional photonic crystals - periodic 
arrangement of dielectric rods with dielectric constant eö embedded in a dielectric 

background (sA). Using the Fourier expansion method in the low-frequency limit we 

develop an effective medium theory and give a rigorous proof that, in this limit, a 
periodic medium behaves like a homogeneous one. We derive compact analytical 
formulas for the effective dielectric constants of a 2D photonic crystal. These formulas 
are very general, namely the Bravais lattice, the cross-sectional form of cylinders, their 
filling fractions and the dielectric constants are all arbitrary. So is the direction of 
propagation of the Bloch wave ~ out-of-plane in general, with special attention paid to 
the limiting case of high dielectric contrast between the constituents of the photonic 
crystal. 

INTRODUCTION 

Photonic crystals (PC) are artificial semiconductor structures widely used in low-power 
micro-lasers, fiber optics communications, near-infrared devices and other 
optoelectronic applications [1]. Fabricated from two different dielectrics, arranged 
periodically in space, PC may possess a band-gap, i.e. a region of frequencies where 
electromagnetic signal cannot propagate due to destructive interference. 
Electromagnetic modes with frequencies above and below the band gap in a PC behave 
similar to electrons and holes in a semiconductor. This allows to manipulate the optical 
signal in a way comparable to that of the carriers of current into sophisticated electronic 
devices. The materials of the PC are high-quality dielectrics [1] possibly with a metallic 
fraction [2]. It is clear that these artificial periodic composites can be also employed in 
the region of linear dispersion, i.e. for the frequencies well below the gap. Here the PC's 
can be used as traditional optical elements, like prisms, lenses, and polarizers [3]. The 
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advantage of the PC's in comparison to natural optical materials (e.g. quartz) is that the 
properties of the artificial structure may be specially designed and possess such 
properties (e.g. large optical anisotropy) that do not exist for natural crystals. 

In this paper we develop an effective medium theory for 2D photonic crystals. We have 
found that in the long-wavelength limit, when the wavelength of the propagating wave 
is much larger than the lattice constant of the PC, the periodic structure can be replaced 
by a homogeneous medium. We also calculate explicitly the dielectric characteristics of 
this effective medium. This homogenization procedure can be applied to a 2D PC with 
arbitrary Bravias lattice, cross-section of the rods, and constituent materials. 

Photon transport through a PC is characterized by dispersion law, a> =<an(k), where co 

is the frequency, k is the Bloch vector of photon, and n = 1,2,... is the band index. 
Calculation of the band structure requires application of different numerical methods, 
however the most popular and universal one is the method of plane waves [4]. In what 
follows we apply the method of plane waves to calculate the limit 

fyfccV 
sefr = lim —   , (1) 

which by its definition gives the effective dielectric constant of a PC. 

WAVE EQUATION 

The 2D periodic structure of dielectric cylinders supports propagation of two uncoupled 
modes with either ^-polarization (vector E is parallel to the rods) or //-polarization 
(vector H is parallel to the rods). The electric field of the £-mode is tangential to the 
cylinders. Due to the boundary conditions it is continuous across the structure. In this 
geometry the effective dielectric constant is known to be the space-average dielectric 
constant [5] 

, E 4 =£- = /ea+(l-/K- (2) 

Here / is the filling fraction of the component a. This result is valid not only for 
periodic systems, but also for any inhomogeneous dielectrics with dielectric constant 
that is independent of the coordinate parallel to the cylinders (coordinate z). 

The wave equation for the monochromatic wave with vector H = (0, 0, Hz) oriented 
along the cylinders has the following form, 

V,.(T!(F)V,/O+^//Z=0. (3) 
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Here V, is the two-dimensional gradient in the x-vplane and r\(r) = l/e(7) is the 

inverse dielectric constant. Being a periodic function it can be expanded in a Fourier 
series 

r\ (F) = —— = £ n (G)exp(zG • r) (4) 

over the reciprocal lattice vectors G. In a periodic system the solution of the wave 
equation is represented in a form of a Bloch wave, 

^(0 = ZMG)exp[/(*+G)-r]. (5) 
a 

Substituting Eqs. (4) and (5) into (3) we obtain a standard eigenvalue problem, 

Jj\ (Ö-G')(^ + G).(^ + G'K(G') = ^^(G) 

HOMOGENIZED SOLUTION OF THE WAVE EQUATION 

(6) 

In the long-wavelength limit the Bloch wave (5) approaches the solution for 
homogeneous media, i.e. a plane wave. In the Fourier series (5) the plane-wave solution 
is given by the term with G = 0. All other terms vanish when k -> 0. To calculate the 

limit (1) we expand Eq. (6) in powers of k taking into account that h. (G) -> 0 and 

K (°) = K = comt ■ In the zero approximation, substituting co = k = 0 in Eq. (6), we 

obtain a set of homogeneous equations  ^ (G-G')G-G'hll(G') = 0. It has only a 
G"*0 

trivial solution, hk(G *0) = 0, that can be considered as a proof of the conjecture 

K=o(G ^ 0) = 0. To calculate the term h0 we consider Eq. (6) for G = 0 and keep the 

k2 -terms in both parts. This gives 

K-^r,Zv(-ö')^MG')=h0 
(7*0 

(7) 

Since h0 is finite when k -^ 0, the non-zero harmonics vanish linearly with k.   For 

these harmonics (with G * 0) we keep the linear terms in Eq. (6) and obtain 

2> (G-G')G-Gfhk(G') + k-Gr\(G)h0=0. (8) 
G"*0 

Substituting h0 from Eq. (7) into Eq. (8) we get a homogenized set of equations for 

ht(G*0) 
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2{AI1 (G-G')G-G' + n-Gri-G'r](GM-G')}hk(G') = 0, (9) 
GVO 

where n-klk is the unit vector in the direction of propagation and A = £~j -ff. The 
effective dielectric constant is calculated from the condition that a homogeneous set (9) 
has a non-trivial solution. Although the corresponding determinant is of the infinite 
order, it is easy to demonstrate that the solution for £e#is unique. By multiplying Eq. 

(9) from the right by the matrix [q {G-G')G-G'\ , we got a standard eigenvalue 
problem 

JjB(ö,G')hk(G') = Ahk(G), (10) 
G'*0 

B(p,G')=-n-Gv(G)Ytn-G,'r)(-G')[\ {G"-G')G"■ G']X . 
G"*0 

The matrix B[G,G'J is written in a multiplicative form, B\p,G'J= a(G)b(G'), i.e. it is a 
projection operator. It has a single eigenvalue. Due to the multiplicative property of the 
matrixB\G,G') all the eigenvectors may be represented in the form hk(G) = Ca(G), 
where C = const. Substituting these eigenvectors into Eq. (10) we get the eigenvalue 

A = J^a(G)b(G) = TrB(ö,ÖJ. (11) 
GVO 

Now the effective dielectric constant eeff - 1/(A +ff)is written as follows [6,7], 

zeff(n) = \k- ^n-Gn-G^(GM-G')[] iß'-G)G-G'Y\. (12) 
G.GVO 

It depends on the direction of the wave vector and on the microstructure of the unit cell. 
It is worth to note that the theory of homogenization of periodic composites has been 
developed in many mathematical papers (see, e.g. [8]), however, to the best of our 
knowledge, no explicit formulas for the effective parameters have been obtained. The 
effective dielectric constant for 3D photonic crystals was calculated in Ref. [9], but 
since the polarization of the eigenmodes cannot be calculated analytically, the final 
formula for eeff does not have such a compact and explicit form as Eq. (12). 

SYMMETRY 

The angular dependence of s eff (n) in the x - y plane is given by a quadratic form 

^7 = (iT-4jcos2(p+(if-A  )sin2(p-4 sin2(p, (13) 
eeJf(n)    "    —'-  T    -    -»"'       T      » 
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A* = \ I (G,Gk' +GkGi\(GM-G')[\ (G-G')G-G'W   i,k = x,y, 

which is obtained from Eq. (12) by substitution h = (cos(p,sincp). Eq. (13) is the 

equation of an ellipse in polar coordinates (£t^
/2((p),(p). The semiaxes of the ellipse 

give two principal values (£,,£2) of the dielectric tensor ejk of a 2D photonic crystal. 

The third principal value e3 =s" corresponds to the axis of the index ellipsoid the z- 

direction. In the general cases 2D photonic crystal is biaxial, s, * e2. If the unit cell 
possesses a third- or higher-order rotational symmetry with respect to axis z, then the 
PC is uniaxial, s, =s2. Unlike 3D crystals, a 2D PC cannot be isotropic due to its 

uniformity along the axis z . 

PHOTONIC CRYSTAL WITH PERFECTLY CONDUCTING CYLINDERS 

Eq. (12) is very useful for numerical calculations. It gives high accuracy with moderate 
numerical efforts. Examples of calculations for uniaxial and biaxial PC's can be found 
in Refs. [6,7]. The accuracy of the results is checked with Keller's theorem [10]. It is 
valid for conjugate structures, where the materials a and b are interchanged, and it 
states that 

81(s0,8,)£2(sA,£0) = e2(ea,8fc)£1(£/,,e0)=saEÄ . (14) 

There is a limiting case of perfectly conducting cylinders (ea =oo) when Keller's 

theorem cannot be used. Although this case can be hardly realized experimentally, it is 
frequently used in theoretical studies. It turns out that this case allows to obtain rigorous 
mathematical results for the band structure for some particular lattices [11]. The 
effective dielectric constant for a square lattice with circular cylinders was calculated in 
Ref. [12] using a pure electrostatic approach and in Ref. [13] by taking numerically the 
long-wavelength limit (1). The results obtained are in disagreement with each other. The 

band-structure  calculations  give  the  result  that  is   -yjl-f   times   less  than  the 

electrostatics result. Later on this factor was justified analytically in Ref. [14]. In Refs. 
[13,14] the disagreement between the electrostatics and electrodynamics has been 
attributed to the fact that the limits k -> 0 and sfl -> oo do not commute. However Eq. 

(12) gives for  £„=°o   numerical results that are in a complete agreement with 

electrostatics [15]. Thus we may conclude that Electrostatics is still the long-wavelength 
limit of Electrodynamics even for the case of ideal conductors. Apparently, the 
approach [13,14] based on the boundary-condition method fails for infinite periodic 2D 
structures. In our approach the boundary conditions are not used explicitly and the 
medium is considered as a continuous one. It is not clear yet why the boundary- 
conditions method fails for PC with perfectly conducting inclusions. This problem 
requires further study. 
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1.4 

129 

We have checked Eq. 
(12) for a PC of 
perfectly conducting 
cylinders in the case 
/ « 1. This limit was 

thoroughly studied 
[16] using 
electrostatics and the 
&eff was calculated in 

quadratic 
approximation, 

+ 2J44989676/2. 

0.00 0.02 0.04 0.06 0.08 
Filling fraction 

0.10 0.12 0.14 In figure we plot this 
parabolic  dependence 
(upper  line)  together 

with the data obtained from Eq. (12) for sfl -> oo (lower line). Again one can see very 

good agreement between our exact results and the perturbative ones of Ref. [16]. 
This work was supported by CONACyT (Mexico), grants Nos. 32191-E and 33808-E. 
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ABSTRACT 

Some approximated factorization techniques related to wedge problems have here 
addressed. 

INTRODUCTION 

In some previous works [1-3] the Wiener-Hopf technique has been extended so far in 
order to effectively deal with wedge problems and it has been compared with the 
popular Sommerfeld- Maliuyzhinets method [4]. The two different approaches turn the 
diffraction problems, due to the presence of a wedge, into the solution of a set of 
difference equations (Sommerfeld- Maliuyzhinets) or into decomposition-factorization 
problems (Wiener-Hopf technique) respectively. 
The matrix factorization and the solution of a difference equations set of general order 
are two very difficult mathematical problems that appear definitively far one from the 
other. On the contrary, according to the authors opinion, the theoretical difficulties that 
one has to face in order to solve these problems are exactly the same, and they arise 
from the necessity of decoupling, on one side, the systems of generalized W-H 
equations and, on the other, the systems of difference finite equation of first order. 
For what concerns the latter, even if they are ambiguous, the difference equations may 
be solved apparently by simpler technique with respect to those required for factorize or 
decompose matrix functions. However, the theory of the factorization is better 
mathematically founded in comparison of the theory of the difference equations. This 
aspect is particularly important when no closed form solutions of the difference 
equations are available or even possible, and approximated techniques become 
necessary to overcome the problem. According to the opinion of the authors, 
approximated factorizations face these problems in a more suitable and effective way. 
The aim of this paper is to investigate this class of approximated techniques. 
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GENERALIZED WIENER-HOPF EQUATIONS FOR IMPENETRABLE 
WEDGES 

By applying the arbitrary linear impedance conditions on the two faces of the wedge 
cp = O and cp = -O, and by using the same notations of the companion paper [5], 
algebraic manipulations on the equations (3 a) yield the generalized Wiener-Hopf 
equation [1]: 

Go0l)F+(r,) = F(m) 

where: n = *\%2
0-m2 , \ = *\x20-v\2 , Rx(m) = 

(1) 

\-n 
2Pg(rn) 

A2
a(m) 

\-n 2
P2{m) 

A2
b(m) 

Go0l) = *,M~ 
Aa(m) 

0 U-n 

0 

Pb(m) 
u 
-u 

Ab(m) 

(2) 

F+(r\) = 

/2+0l,0) 

-^-/P+(TI,O)-^!1/I+(TI,O) 
COS 008 

-^^D+(-n,o)+—rz+(n,o) 
CO [i CO |J. 

F.{m)-- 

a„ m 
^-/p+(-m, OH-2—/„(-«,<&) 
COE 

2 

ooe 
T " ct in 
-^Vp+(-m,<l>) F2+(-m,0) 
co |a co p. 

ll/  (-OT,-o)-^^/i+(-m-a,) 
cos cos 

2 

-^- Fp+ (-m -O) + ^- Fz+ (-in -0>) 
co n co (a 

(3) 
U is the identity matrix of order two and Pab  and AaÄare the matrix and scalar 

polynomials of m, not reported here, respectively. In the following some exact 
factorization and a general technique of approximated factorization will be considered. 

SOME EXACT FACTORIZATIONS 

Equations (1) remarkably simplify dealing with the half-plane case <E>=7t , the two 

half-plane junction (O = —), and when right wedges are present. In fact, in these cases, 

we are concerning with classical W-H equations [1], where the matrix kernels does 
commute with a polynomial matrix. These matrices can be explicitly factorized by using 
the procedure reported in [4]. However, the plane wave with at skew incidence 
(a0 ^ 0) excitation is very cumbersome to deal with and it still constitutes matter of 

mathematical further analysis [5]. This specific topic is beyond the scope of this work, 
and it will not be pursued on in this context. 
It is remarkable that even in presence of wedges having an arbitrary aperture angle 
equations (1) can be reduced to a classical W-H equations in the r\ - plane by using the 
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_ On 
mapping    [1,3]    t) =r|(r|) = -x„cos[—[arccos[—-]].    In   particular,   the   explicit 

n x„ 

factorization for G(t(ri)have been provided for the PEC case and for and the 
Malyuzhinets problem [1-3]. 
In order to investigate the real possibility to obtain closed form exact solutions dealing 
with plane waves and skew incidence (a„ * 0), algebraic manipulations allow to 

rewrite the generalized W-H equation in the following form: 

0   U     —ft+n+     0 

0 0 4- 
\-f     v 

F.(r\) = R(m)F_(m) (4) 

where £,± and n± are given by eq.s (9) of [3] and: 

/ = 
1 Ph(m)     Pg(m) 

AA(w)    Aa(/w) 

-lr 

2t/-n(W+:W) 
Aa(m)    Ah(m) 

R(m) = r(m) 
U   -U 

U     U 
Ä,(i»).(5) 

Being R{m) a rational matrix, for what concerns m, the factorization problem has been 

1 // 
reduced   to   that   of  the   central   matrix   M = f .   Furthermore,   since 

1 

*>- 
/t/]"'=C20T) = l 

(if>+n) is a rational function of r\ , M  differs from 

Daniele-Khrapkov matrices [8] only for the fact that f is not a scalar but a matrix of 
order two. Unfortunately, the factorization of this class of matrices can be accomplished 
in a closed form only when f has some particular forms. For instance when / = d is a 
diagonal matrix (or more generally a Jordan matrix), we obtain: 

M¥=[V^-rf2]Texp[U-lo£ 
U + d 
U-d 

® 
0    1 

€  o 
(10) 

where [...]T means multiplicative decomposition and {...}T additive decomposition in 
the ff - plane . The decomposition equations can be obtained by the Cauchy formula. 
In order to achieve this result, it is convenient to introduce the angular complex planes 
w and w so suitably defined: 

r| = -xa cosvv, r\ =-^0cosw ,   w = —w 
n (11) 

that yield: % =-xosinw,  m =x„ cos(w + 0),  n =x0 sin(w + 0). 

With     these     new variables      wandw,     and     the     known     function 

X(r\) = X(f\) = X+ (TJ) + X_(m) = X+ (ff) + X_(ff), an   algebraic manipulation of the 
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Cauchy   formula      yields   the   following   expression   of  the   decomposed plus 

J+(rT) = X+(T!)[3]: 

—                1    r°   A
              ,                    x-,       sinhw     '        v~>    Rt /10, 

X+(r\) = —~ I   ^~K +Ju)-X{-Ti -ju)]—r =du + 2l^=r (12) 
7i y J-°° cosh u- cos w ;i 7r\ -r\, 

sinhw ,     v-<   R, 1    r°   " *, . ■,-.        sinhw j     v-i 
*+ (n) = —: I W-71 + ■/") ~ X(_TC" -^ ^T-^ + 2- 

J cosh M- cos—w '     " 

(13) 
where X(w) = X(-x0 cosw) and i?, represent the residue of X(T\ ) in the poles rj,. in 

the half plane Im[ff] < 0 located. 

APPROXIMATE FACTORIZATION 

In general, the f matrix of order two previously defined, presents a skew diagonal part 
that prevents the use of exact factorization formulae. In these cases an efficient 
approximated factorization can be obtained by using the rational (or Pade) approximants 
for the entries of the involved matrices. In general, we can approximate the matrix M 
with the rational matrices M  by introducing Pade approximants of their entries. Let us 

introduce 8   =M -M   as the approximation error. By introducing then the rational 

factorized matrices M+ and M_ of M = M_M+, the question is: 

"Do the rational matrices M+ and M_ approximate the exact factorized matrices M+ 

and M_ ofM = M_MJ" 
In order to answer to this question let us introduce the matrices A± suitably defined as 

the differences: A_ = M_ - M_, A+=M+-M+. From: M = (M_ + A_ )(M+ + A+) we 

have:M_A+ +A_M+ +A_A+ =s . Now it is possible to see that the pseudo Wiener- 

Hopf equation: M_A++ A_M++ A_A+= 0 presents only the solution A_=0 and 

A+ = 0. In fact, this equation can be 

rewritten:(A_r'f A+(A+)"'+(A_)"1A_f+(A+)-
1+1 = 0 or 

(A_ylY_+Y+(A+y
] +1 = 0 

Looking at the first term, that is a plus (bounded) function, and at the second term, that 
is a minus (bounded) function, this equation cannot be satisfied for not vanishing A± 

since Y_ and Y+ are rational and A± is not rational. If the error s in the Pade 

approximants M is vanishing, it means that actually M+ and M_ approximate the 

exact factorized matrices M+ and M_. 
There are many possibilities to approximate arbitrary matrices with rational matrices. 
For instance impenetrable wedges require the factorization of matrices having the 
following form: 
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M = 
1 f (14) 

Since every matrix is similar to a Jordan matrix d: / = SdS^ , we can rewrite: 

m = 
S    0 

0   S 

1 

%-d 1 

S"1       0 

0     SA 
(15) 

As we showed in the previous section, the central matrix can be factorized in a closed 
form. A Pade approximant of the matrix S in the ff - plane 

S = - + e 
A 

where P and A are rational, yields the following approximate equation 

W+{x\)FM) = WM)R(rn)FSm) 

(16) 

(17) 

where the W_ (r\)  and W+ (r\)  matrices, regular in the half planes Im[r| ] < 0 and 
Im[ff] > 0 respectively, are given by: 

W+(f[) = 

W_(iD = 

' 1 ±f Pa        0 \,  »+ 0 

0    Pa 
J + 

0 "+ 

1 
-] 

Pa        0 

1 
0 

1   -/ 
*>- 

\-n. 
o    P. 0 

1 

(18) 

R(m) (19) 

with Pa being the adjoint matrix of P . 

We take into account the plane wave source by introducing: F (ff) = F_d (ff) + F_g (ff), 
— ,_        R _ % 

where   F_K (r\) = _  "_ ,   (t|0 = -ä:COS(—cpj)   is   the   known   geometrical   optics 
ri -r)0 O 

contribution. In addition, the rational function R(m) induces poles in the half plane 

lm[ff]<0. Let's indicate them with ff)   ,  i = \,..,Nm. We can rewrite (17) in the 
following form: 

— R(m 1#      N»     C fi> N-    C 
K <J\))F. m-W. (ffJ-i-^-£-h_ = W_ m)R{rn)F_ (if))-»! (f^)/?(„„)-^-£-^_ = yft) 

where C, is the residue of W_(j\)R(m)F_(m) in ff" = ff). 

Taking into account that m,r\ «ff <t"K as ff -» <x>, we can ascertain that the vector w(ff) 
is an entire function having algebraic behavior as ff -»oo: it means that it is a 
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polynomial of the ff variable. The degree of the entries of w(ff) depends on the degree 

of the entries of Pa and R(m). The coefficients of the polynomial w(ff) must be 

evaluated by imposing the regularity of F_(ff) and F+(ff) in the half planes Im[ff] < 0 
and Im[ff] > 0 respectively. 
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ABSTRACT 

The paper describes a numerical procedure, called diakoptics, that allows one to solve 
for sub-domains of a large structure in a rigorous manner. Hence, one can optimize such 
a sub-domain during subsequent simulations without meshing the whole structure. In 
addition, the technique is naturally well suited for Transmission-Line Matrix (TLM) 
computations. Although diakoptics is very demanding in terms of computer cost for 
three-dimensional (3D) cases, various accelerating procedure can substantially reduce 
the memory and CPU time requirement. Some of these techniques are briefly described 
and discussed. Finally, examples of applications will be presented at the conference. 

INTRODUCTION 

In many applications for which radiation and coupling phenomena cannot be neglected, 
solutions require the solution of Maxwell's field equations. Numerous numerical 
methods have been proposed to solve these equations in a most rigorous way. They all 
have their advantages and drawbacks and the choice of one of them depends mainly on 
the application. For instance, the Finite Difference Time Domain (FDTD) [1] or 
Transmission-Line Matrix (TLM) [2] methods are well suited for complex geometry 
and their efficiency for analyzing antenna systems, guiding structures and even indoor 
propagation. In addition, these methods, which are typically time-domain methods, 
allow a wideband characterization and can easily handle non-linear problems. However, 
these methods (called volumic methods) are costly in terms of memory and CPU 
requirement. In particular, they cannot sustain the analysis of large (multi-wavelength) 
structures as other volumic approaches (e.g. Finite Element Method). Furthermore, in 
many applications electromagnetic modeling is the only approach to design and 
optimize a structure. Even if the structure is relatively small, optimization or Computer 
Aided Design (CAD) procedures cannot be directly applied using full-wave analyses. 
Therefore, much effort has been done to decrease their computer cost. When geometric 
or electromagnetic parameters of a small portion of a large problem are supposed to be 
modified several times (e.g. for optimization), subsequent simulations constitute a 
lengthy process. As a result, it may not be possible to reach an optimized solution over a 
reasonable period of time. However, if one can solve only for the subvolume under 
investigation without meshing the rest of the structure, then an optimization procedure 
becomes feasible. 
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BASIC ALGORITHM 

The basic (unloaded) cubic SCN-TLM cell illustrated in fig. 1, can be seen as a six-arm 
device, each consisting of two orthogonal transmission-line with voltage that can be 
associated to local plane wave. 

Fig. 1. SCN-TLM after 

Fields at the center of the cell can be shown as a linear combination of the incident 
voltages on the arms. Suppose that some incident voltage (due to some source) impinges 
on the node. A scattering process will then occur, producing reflected voltage at all 
arms. Hence, the TLM cell corresponds to a 12-port device with scattering matrix 
defined by: 

[v]L+i = [s] o [vi (i) 

where [V^ and [v£+1 is the vector of incident and reflected voltages at all node arms, 
respectively, and k the time index. The next step is to transfer reflected voltages to the 
neighboring cells at time (k+l)At. Thus, they become new incident voltages for the next 
time iteration. Note that unlike FDTD, the TLM scheme does not explicitly solve 
Maxwell's equations but simulate propagation mechanism by means of local waves. 
Thus, the TLM process can be seen as a discretized version of Huygens' principle [3]. 

The presence of material and/or parallelepiped cell is accounted for by adding stubs to 
the basic twelve-port illustrated in Fig. 1. Thus, a completely loaded SCN includes 
eighteen ports, losses being included in the matrix [S] components. Unlike FDTD, the 
connection between nodes in different media or size (irregular mesh) is trivial for SCN- 
TLM. The scattering matrix for the general case can be rigorously established by using 
Maxwell's equations in integral form [4]. New TLM nodes have been proposed to 
remove stub requirement and, thus, reducing the number of voltages. This is done by 
setting arm impedances at values different from Z0 (vacuum intrinsic impedance). 
Different combinations lead to the Hybrid (HSCN) [5] and Super (SSCN) [6] condensed 
node that uses only fifteen and twelve voltages in the general case, respectively. It 
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should be stressed that the TLM algorithm provides some more information as 
compared to Yee's: The six field components at the same time and location (center of 

II) äic computed from the incident voltages. tu _ „_11\ 

DIAKOPTICS 

Diakoptics was first used by Kron [7] for solving power networks. Johns transposed the 
procedure for TLM computations [8]. The diakoptiks procedure consists of splittig a 
structure into sub-domains and solving for sub-domains only, yet in a rigourous way. 
The procedure is illustrated in Fig. 2. Domains are separated by adjacent boundaries 
called "Johns' boundary". Thus, every time and space response of subdomains "seen" 
through John's boundary are stored in a three-dimensional matrix called "Johns' matrix" 
(Fig. 3). This matrix is generated in the following manner: To every arm (which 
includes two orthogonal lines) adjacent to this boundary, one successively injects a 
Dirac function (say at line n). Then, one stores the corresponding response at all arm 

Sub volume only 

7 
Johns boundary 

Sub volume 

Original problem with 
sub volume to be 

optimized 

Sub volume removed 

Sub volume removed, 
remaining volume 
computed through 
Johns' boundary 

Subsequent 
computations of the 
sub volume. Johns' 

boundary accounts for 
the outside volume. 

Fig 2. Illustration of the diakoptic principle. 

lines (say line m) including the one to which the impulse is injected (m = n). Note that 
a Johns' boundary consists of a line and surface in the 2D and 3D case, respectively. 
The process has, generally, to be repeated N times where N is the number of adjacent 
lines to the boundary. Note that the reflected voltages should not be reflected back to the 
TLM grid. This requires an absorbing condition on the boundary. However, this type of 
ABC is trivial in TLM as it consists of terminating the TLM lines by Z0 (the free-space 
intrinsic impedance) which is straightforward in TLM simulations. 

For subsequent simulations of the fixed sub domain illustrated in fig. 2, the TLM 
network is terminated by the Johns' boundary (fig. 3). Any impulse coming from 
adjacent arm line and impinging on that boundary will trigger the relevant response 
(reflected voltage sample g(m,n,k)) at each adjacent line, which was previously stored 
in the Johns' matrix. Thus, the reflected voltage at line m and time kAt is given by the 
following space-time discrete convolution: 

N     K 

II 
n = !k'=0 

Vr(m, k) - Vs(m, k) + X E g(m, n, k) Vj(n, k - k') (2) 
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Note, that the contribution from sources Vs that may be contained in the fixed structure 
are included in (2). 

ACCELERATING PROCEDURES 

At this stage, one can notice that the initial step of diakoptics is generally heavy in terms 
of computational cost, as it requires the storage of N2K samples. As a result, diakoptics 
can easily exhaust the computational resources. Even if the Johns' boundary involves a 
relatively small number of branches, the number of time samples can be large in 
presence of resonances. However, when the fixed substructure has losses (e.g. radiation) 
responses decay rapidly. Consequently, even with a larger number of nodes adjacent to 
the boundary, diakoptics is still feasible if an accelerating procedure can be used for the 
convolution products. 

Johns Bounda 

TLM meshed 
volume 

line n 

linem 

Sub volume 

N time sequences are 
stored(n, m = l,N) 

g(N, 

Source  g(n 
line 
index 

g(N,1,K)— g(N,m,K}  g(N,N,K) 

g(n,N,K) 

g(i,N,K). 

t(n;N-0) B(i,H,kL index 
Time 

g(1,1,0) g(1,m,0)  g(1,N,0) 

Response line index—* m 

Johns Boundary 

Outside 
volume 

line m 

I 
Numerical Green's 

function of the outside 
volume 

Reflected 
voltage on line n 

from Jonhs' 
boundary Outside volume   sources 

Vr(m, k) =        Vs(m, k) 

+ XXg(m,n,k)Vi(n,k-k') 
n = lk' = 0 

Space-time convolution product 

TLM meshed 
sub-volume 

Fig. 3. TLM procedure for diakoptics. 

- Laguerre polynomials 
The idea is to approximate impulse responses to be stored in the Johns matrix by a 
series of basis functions. For instance, one can write the sequences stored in the Johns' 
matrix as 
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g(m,n,k) = £a;?'nLp(m,n,k) (3) 

where Lp(m,n,k) are Laguerre polynomials of order p and a™'" the attached series 

coefficients. One can show   that (3) can be transformed in the following recursive 
expression [9]: 

Vr(m, k) = Vs(m, k) + X E apinyP(m, n, k) (4) 
n=lp = l 

in which: 

y,(m,n, k) = ^.(m,n, k -1) + ^l-(^n)V(n, k) (5) 

yp(m,n,k) = xp(k) - ^mnxp(m,n,k + 1) (6) 

where p = 2, 3...P and £,m'n is an optimization parameter that minimizes the required 
number of polynomials for the approximation of the sequence stored with index (m,n) in 
the Johns matrix. Thus, instead of storing N2K samples in the Johns matrix, one has to 
store only 2NP coefficients. In addition, the recursive form (4) accelerates the 
convolution computation that normally requires N2K2 operations. As a result, a drastic 
storage reduction and one order of magnitude CPU time reduction can be obtained [9]. 
This gain in computer efficiency depends on the problem but can be much higher. 

- Matrix Pencil 
Unfortunately, Laguerre polynomial approximation yields a very poor convergence 
when Johns matrix responses have some strong oscillatory behavior (resonance effects). 
A more efficient approach is to approximate the impulse responses by complex 
exponential whose parameters are computed by the "matrix pencil" (MP) method [10]. 
The technique consists in finding the best estimate of g(m, n, k) from a sequence y(k) 
affected by some noise n(k): 

y(k) = g(m, n, k) + n(k) = £ R/p k + «(k) (7) 
p=i 

where Rp are the complex amplitudes (residues), sp= -ap +y'cop the complex frequency 
and P the decomposition order. Unlike Laguerre decomposition, MP technique allows a 
very good approximation for most type of response behaviour. Some prediction can be 
also achieved with MP technique as from few samples, excellent signal prediction can 
be obtained [10]. In addition, MP allows recursive form of convolutions, therefore, 
keeping the same advantage as for Laguerre decomposition. For instance, (2) can be 
written as [10]: 

Vr(m,k + 1) = Vs(m,k +1) + Ck + £ £[RPe
ip(k+'V(n,k +1)1      (8) 

n=l  p=I 
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Ck = Z   L DV     V(n,k-k) 
n=l    p = l k'=0 

CONCLUSION AND FUTURE WORK 
The basic principle of the TLM method was presented. The salient feature of the 
technique is its natural match for segmentation procedure namely, diakoptics. It was 
shown that TLM via diakoptic procedure can be t a potential tool for direct optimisation 
of structures in a most rigorous way. However, the basic procedure is a lengthy process 
and may not be suitable for CAD tools. Consequently, accelerating procedures such as 
Laguerre polynomials and Matrix Pencil ware presented to drastically decrease the 
computer cost in terms of both memory storage and CPU time. 

However, the process to generate the Johns matrix which has to be performed once 
before optimisation still takes some exhaustive CPU time. Some work on filtering 
techniques, such as Moment Expansion [10, 11] is currently carried on. Also, some 
predicting property of the MP method is being investigated. 
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ABSTRACT 

A brief mathematical characterization and resulting physical interpretation of EM 
waves propagation in anisotropic wa.veguides is presented. It is ba.sed on spectral 
and functional analysis of the operator a.cting in a suitably chosen Hubert space. 
Ana.lyt.ical form of this operator is derived from Maxwell's equations reduced to 
the eigenproblem for unknown transversal magnetic field components of the guided 
mode and its propagation constant. Numerica.l examples demonstrating analyzed 
features of the guided modes will be shown. A new convenient normalization of 
physical parameters of anisotropic wa.veguides with nonaligned optical axes is also 
proposed. 

INTRODUCTION 

Anisotropic dielectric wa.veguides possess several interesting propagation proper- 
ties and are of great practical interest. Their potential role in various optical and 
microwave devices cannot be overrated. For example, strong selectivity to linearly 
polarized light makes anisotropic waveguides very useful as components of coherent 
optica.1 fiber systems, fiber gyroscopes, birefringent directional couplers and fiber 
sensors. 

Yet. theoretical analysis of anisotropic waveguides encounters substantial mathe- 
matical difficulties because of the complicated form of the equations involved. Exact 
analytical solution is known only for the case of uniaxia.l circular step-index fiber [1]. 
Among available approximate methods, those described in [2]-[6] are worth noticing, 
despite of their often strongly restricted range of application. 

Tn this paper, rigorously formulating the propagation problem for transversally 
inhomogeneous structure and harmonic time dependence we arrive a.t a. set. of two 
coupled second order partial differential equations of elliptic type that, form the 
eigenproblem with the transversal magnetic field components of the mode field and 
the propagation constant being unknown. The eigensolutions are then evaluated nu- 
merically by the Iterative Spectral Decomposition Method1 providing demonstrative 
numerical examples of anisotropic wa.veguides. 

'The ISDM is a highly effective method [7], which has been successfully employed to the analysis 
of isotropic open dielectric waveguides [8] [13] and of microwave shielded inhomogeneously filled 
dielectric structures [14]. 
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FORMULATION OF THE PROBLEM 

In this section we formulate the propagation eigenproblem with the eigenvalue 
being the square of the propagation constant and with the eigenvector being the 
transverse magnetic field of the mode in an anisotropic open dielectric waveguide. 
This eigenproblem is equivalent to the set of Maxwell's equations under the fol- 
lowing assumptions: harmonic time-dependence is e-"^, the guiding structure is 
source-free, homogeneous along the direction of propagation X3 and it is electrically 
anisotropic, meaning that 

jj, = LL0, D = t0£ E, 

where //0, e0 — permeability and permittivity of vacuum, respectively, D — electric 
displacement, E — electric field, £ — relative permittivity tensor. 

From the above assumptions it follows that 

£ = {C«},-,i=l,2,3 QX 

dj : IR2 9 x = (x1,x2) —> C 

is a positive definite hermitian matrix with the elements e,-j  =  6ij(xi,x2) being 
complex functions of the cross-sectional plane of the waveguide. 

In this paper we restrict ourselves to the case of anisotropic waveguides in which 
one of the principal axes, let us say axis o3, coincides with the direction of propaga- 
tion X3. Then, the permittivity tensor (1) takes the form: 

£(x) = 

en   e12     0 

0      0     e33 J 

x = (xi,a;2)elR2 (2) 

It is possible (and it appears to be advantageous) to formulate the propagation 
eigenproblem in terms of the transversal magnetic field h± components only: 

h_i_ = [h1(x1,x2),h2(xl,x2)] 

where the total magnetic field has the form: 

H(xux2,x3) = [h1(xux2),h2(xux2),h3(x1,x2)}e^ßx:3~u,t\ 

and ß is the propagation constant of the mode.   Using hj_ we reduce Maxwell's 
equations to the following equivalent eigenproblem: 

(T-/?2)/u=0, (3) 
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with the operator T of the form: 

ThL=   S7lkL+k2 £22    ~ ^12 

—Ci2   Cll 
/>! 

+ -T 
c33 

^22    — Cl2 

—Cl2    ell 

{VX633X(V1 xh±)} 
(4) 

+ - 
£33 

£33 — ^22 e12 

€l2 ^33 — ^11 
{Vx x (Vx x h±)} 

=   T, hx + T2 hL + T3 hL + T4 /?•! 

Here /r2 = w2/t0eo and the operator V± = [£- £-). 
It is worth noticing that, since the region is source free a.nd \i — const, the mode 

field h.± is a vector function that is continuous in the cross-sectional plane of the 
waveguide regardless of the discontinuities of the permittivity tensor elements c8j(:r). 
In general, regularity of the solution hx depends strongly on the smoothness of the 
permittivity tensor £. 

PHYSICAL INTERPRETATION OF THE OPERATOR T 

The components of the operator T can readily be interpreted physically. The 
first term T\ in (4) represents plane waves in the Isotropie homogeneous medium 
(the cladding of the waveguide). The second term T2 encodes the way in which 
the transversal magnetic field components hy a.nd h2 see particular refractive index 
profiles and determines the guiding properties of the structure. The third term T3 
corresponds to electrodynamics! coupling2 of the mode transversal fields in that part 
of the waveguide cross-section, in which Ve33 ^ 0. The fourth term T4 describes 
the influence of relative differences of the permittivity in the directions of principal 
axes. 

The matrices in (4) can be diagona.lized, provided that the directions of the 
principal axes are fixed in the whole cross-sectional plane of the waveguide and that 
€jj(x) G IR. Then, in the structures possessing the two mutually orthogonal axes of 
symmetry X\, X2 coinciding with the transversal principal axes ou o2, the modes 
can be conveniently classified without loss of their pola.riza.tion properties by making 
use of so called SA cla.ssifica.tion [15]. The modes in the structures with rectangular 
symmetry split into four operator T-invariant, subgroups denoted as: SA, AS, SS 
and A A. The first letter encodes the symmetry (or antisymmetry) of the mode 
vector field h.± with respect to the axis Xu while the second letter — with respect 
to the axis X2. 

If the structure is isotropic (en = e22 = £33 = e), then the fourth term in (4) 
vanishes T4 = 0, and the two first matrices trivialize to the form el, where / is 

2This can  be explained  thoroughly after examining the form of the  adjoint, operator T* 
(r-.f. [10], [11]). 
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the identity matrix. However, the problem still remains an essentially vectorial one, 
because of the third term T3 in (4). 

Under the weak anisotropy and the weak guidance assumptions the eigenprob- 
lem (3) can be uncoupled into two scalar wave equations with different refractive 
index profiles by neglecting the third and the fourth terms in (4). 

NORMALIZATION OF THE PHYSICAL PARAMETERS 

The directions of the principal axes ou o2 in the anisotropic dielectric wave- 
guides met in practice are often the functions of the waveguide cross-section. How- 
ever, in this short paper, in order to simplify subsequent formulas, we assume 
in (2) that e,j(x) G IR, that principal axes are fixed and coincide with the Carte- 
sian coordinate system axes. The tensor (2) reduces then to a diagonal matrix 
S(x) = dia,g{e1(x),e2(x),e3(x)} with a(x) being the permittivity profiles along the 
principal axes. 

Without loss of generality of the guiding structures used in practice we can assume 
that the anisotropy is local in the sense that 

3RA>0    Vx : \x\ = (xl + x2
2)

1/2 > RA ti(x) = eclß = const (5) 

for i = 1,2,3. Condition (5) means that the structure is isotropic outside a suitably 
chosen circle with the radius RA. Thus, each of the three relative permittivity 
functions e; can be written in the following form: 

ti{x),= tciß + { (ec0,i - td,i) Si(x) + (cciti - ec;,3) } X{x-.\x\<RA} (6) 

with the constant eco,i,ec/,« G IR such that eco,t- > edii > 0 for i = 1,2,3, where 
eC0!i — maximal* value of the i—th permittivity function attained in the cores of the 
waveguide, td,i — the z'-th permittivity of the cladding, x — characteristic function 
of the circle with the radius RA, and Si(x) — the i-ih normalized refractive index 
profile defined on the cross-sectiön S of the cores of the waveguide such that: 

supp(s,-) = S C {x : \x\ < RA] 

sup Si (a:) = 1, inf s3(x) > —  
3.e|R2 XGR

2 £
CO,3 — Ccl,3 

Here supp(si) denotes the support of the function S{. 
We express nondimensional standard parameters V, S, B, used in the theory of 

dielectric waveguides, by the longitudinal permittivity £3: 

— normalized frequency V 

V = kr(eco,3-ecl,3)1/2 (8) 

— profile height S 

2ec;j3 

r _   Ceo,3        £d,3 /Q\ 

— normalized propagation constant B 

e = . ,f -kH^. (io) 
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Figure 1: Illustration of the parameters introduced; the refractive index 
profiles of a uniaxial circular waveguide with the core radius r and with the 
anisotropy radius R^. The profiles are such that: ti(x) > e2(x) — (3{x)- 

where r is a characteristic dimension of the waveguide. For example, in the circular 
waveguide we set r = 1/2 diam(supp(.s2)) = {the core radius}. 

We introduce the anisotropy coefficients «,-,,,;, aciti of the cores and of the cladding, 
respectively, defined as: 

dco.i = 
Ceo,3 — (ct,3 

aci. 
(cl.i — Q/,3 

(co,3 — Ce/,3 
1,2. (Hi 

These coefficients are normalized with respect to the profile height 5.   By defining 
the functions: 

A,(x) = {(1 + a-co,, - aci,i)fii(x) + acu}x>:M<fi,0       * = M (12) 

we can express a from (6) in the following form: 

Ci(x) = cc(,3 + (cCOi3 - cdß)Ai{x)        i = 1,2 (13) 

The physical parameters just introduced are illustrated in the Fig. 1. 
In terms of the parameters defined above our eigenproblem (3) takes the form (in 

the coordinate system .YiA'2 with the unit distance equal r from (8)): 

A/,,  + V*A2hy +     2S h + A2 as. 
(^ + .s3)2a,-2 

G{huh2) 

2S  + A3 

Ah-2   +   V'2/!^ 

a *2 
■G{huh2) - V2Bh! = 0 

L + Ai   8s3 

(14) 

2« 

(£ + *3)2ö*i 
-^-G(huh2) 

h + Ai' d 

2,5 + .s3 I dxi 
G(huh2) - V2Bh2 = 0 
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MATHEMATICAL PROPERTIES OF THE OPERATOR T 

Spectral properties of the propagation operator strongly depend not only on the 
formulation of its analytical form, but also on the choice of its domain of definition. 
Since we are interested in guided modes that decay exponentially as \x\ -4 oo, we 
analyze the operator T corresponding to the propagation eigenproblem (3) in the 
Hilbert space U = L2(R2) ® C2 of square integrable complex valued vector functions 
defined on the cross-sectional plane R2 of the waveguide. Space U is equipped with 
the scalar product: 

(u , w)n = (uXl , wXl)2 + {uX2 , wX2)2 

u = [uXl, uX3],     w = [wXl ,wX2], (uXj , wXj) 2 = J^2 uXj wX] dx 

where j = 1,2, and      denotes a complex conjugate. 
The operator T has the analytical form (4) with the assumptions about the per- 

mittivity tensor and the other parameters further specified in the preceding section 
(c.f. (5)-(7)). We define the domain of T as: 

D(T) = D{1) <g> C2, (15) 

where D(l) is the domain of Laplacian in IR : 

D(l) = {u £ L2(R2) :    Aw € L2(R2) in the distribution sense} (16) 

In fact, D(l) = H2(R2) - the second Sobolev space. With this domain the Laplace 
operator lu = Au is selfadjoint in L2(IR ). 

We have proved in [10] that the operator T with the domain D(T) defined in (15) 
is a densely defined and closed operator in 7i, provided that the permittivity profile 
functions s{ from (6), (7) are such that s,- € H2(E2) for i = 1,2,3. This assumption 
permits us to analyze the problem in the Hilbert space H of square integrable vector 
functions and to assimilate the conditions on the core-cladding boundary into the 
field equations. 

Now we briefly characterize properties of T using the decomposition defined in (4). 
From (16) it follows that operator Tx + k2edt3 with the domain D(T) defined in (15) 
is selfadjoint in H. Moreover it is semibounded, with the upper bound Pew- 
its spectrum is purely continuous and consists of the negative real semiaxis (the 
spectrum of Laplacian) shifted by k2eci,3- It corresponds to the plane waves in an 
isotropic homogeneous medium with permittivity ec/)3. 

Considering the operator T defined in (4), (15) as the T2 + T3 + T4 perturbation 
of selfadjoint Tx appeared to be very useful in determining spectral properties of T. 
The crucial observations here proved so far by the author [9], [10] are the following. 
Operators T2 and T3 are Tx-compact, meaning that for i = 2,3, D(Ti) D D(Ti) 
and Ti(Ti — p)"1 is a compact operator for all p outside the spectrum cr(Ti) of 
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the operator T\. Ti-compactness of the operator T4 defined in L2([R2) ® C2 (case 
of an anisotropic open waveguide) remains an open problem. So far, the author 
MiLLctideu iu prove that T,\ is T\- bounded with the relative bound 6=1. The 
methods used in the proofs of Tj compactness of T2 and T3 cannot be directly 
applied, since the terms with second derivatives occur in T4. However, author 
proved Tj-compactness of T4 in L2(P) ® C2 where P is a large circle containing the 
support S of the permittivity profiles (case of an anisotropic shielded waveguide). 

Many important spectral properties of T can be inferred from the above facts. 
In particular, When T\ is perturbed by T2 + T3 + T4, only the discrete part of 
cr(Ti) can be modified, since the essential spectrum of the operator does not change 
under a relatively compact (bounded) perturbation. Hence eigenvalues may appear 
in cr(T). The)' correspond to the modes of the waveguide. In fact, there is always at 
least one eigenvalue ß2 € [fc2Cc/,3,maxI=li2t3(/c2eCOit)] (that of the fundamental HEU 

mode), which can be concluded from the assumptions (6), (7) imposed on the per- 
mittivity functions. In particular, these assumptions imply that T2 is bounded and 
positively defined. The operators X3 and T4 are neither bounded nor symmetric. 
Hence T is not selfadjoint. Thus, complex modes with fields decaying exponentially 
outside the waveguide cores may exist. Moreover, both T3 and T4 couple (each in 
a different way) transversal components of the mode field making the eigenproblem 
truly vectorial one. Multiplicity of the spectrum <r(T) essentially depends on the 
properties of T3 and T4. Namely the shape asymmetry of the permittivity profile 
supports and the magnitude of the anisotropy introduced are responsible for re- 
moving the degeneracy of the eigenvalues of T for circular waveguide. Hence, the 
design of an anisotropic waveguide strongly selective to linearly polarized light is 
possible. Several numerical examples of such guiding structures will be presented 
on the lecture. 

/ 
/     / 

CD 

I.U - 

0.8 - 1 
I                          H 

' rVr                                        ! 
0.6 ■ 

0.4 - xf 
0.2 - 

/   /^ 

0.0 /, / 

a) b) 

Figure 2:   Dispersion curves of fundamental modes in circular uniaxial a) 
and biaxial b) fibers with parameters: S = 0.001, R.\ = 5r and: 
a) ö,-o.i = -0.3, flcU = -0.3, aco;2 = ac/,2 = 0, 
b) cicoj - -0.5, ac,j = -0.5, aC(,t2 = -0.2, ac,|2 = -0.2. 
The dominant component of h±_ is hi for the mode SAX (.Yrsymmetric, X2- 
antisymmetric) and h2 for the mode AS\ (A'i-antisymmetric, A2-symmetric). 
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INFINITE-SHEET BRANCHING OF THE HABITAT OF THE 
NATURAL FREQUENCIES OF OPEN RESONATORS AS A 

RESULT OF ADMISSION OF INFINITE BOUNDARIES 

Alexander I. Nosich 

IRENASU, Ul. Proskury 12, Kharkov 61085, Ukraine. E-mail: alex@emt.kharkov.ua 

We consider several eigenvalue problems for the Helmholtz and Maxwell equations, where 
the fields are assumed time-harmonic, i.e. ~ e'lkcl, and the normalized frequency k is 
eigenparameter: localized 2D and 3D dielectric resonators (DR) in free space (1), in PEC-wall 
waveguide (2), and in stratified dielectric medium (3), localized 3D DR in free space (4), in 
PEC-wall waveguide or stratified medium (5), and near a fiber (6). 

These problems are about the time-harmonic electromagnetic fields in and out of bounded 
penetrable objects placed in unbounded host medium. Their correct statement needs certain 
condition imposed on the field behavior at infinity. Such a condition, in each case, follows from 
the behavior of the corresponding Green's function analytically continued from the real values 
of k to the complex domain. Here, the real-fc Green's function satisfies, each time, the Principle 
of Radiation in the form of corresponding radiation condition. Thus, in (1) this is the 
Sommerfeld condition [1], in (2) this is the Sveshnikov condition [2], and in (3) this is the 
condition established in [3]. Different arrangement of "infinity", in each 2D case, entails 
different shape of the Green's function. As a result, the domains of their analytic continuation to 
complex k are also different. In (1) this is the Riemann surface (RS) of Ln k, in (2) this is RS of 
£„ iT(k2-(-Kn/dff7, where d is the waveguide-wall separation, and in (3) this is RS of 
Lnk+1„ (FflS-k,,2)12, where k„ are the real-valued critical frequencies of the guided-wave modes 
of the stratified medium - if they exist. The complex-/: conditions at infinity that inherit all the 
features of real-A: radiation conditions and reduce to them at the real axis of the principal sheet 
of corresponding RS, are called Reichard's conditions [4]. In each case, as one can show by 
using the Poynting theorem, if dielectric permittivity e has zero or positive imaginary part (i.e., 
the object is passive), then the ^-eigenvalues can be only complex-valued and have negative 
imaginary parts. The corresponding eigenfunctions, or modal fields, are destined to decay in 
time but grow up in space away from DR. Therefore these problems are the generalized 
eigenvalue problems, to distinguish them from classical eigenvalue problems. For the 3D 
problems, instead of Sommerfeld's condition, the real-& case of (4) needs so-called Silber- 
Muller radiation condition [5,6] that eliminates radial components far from DR. In the case of 
(5) and (6), the real-fc radiation conditions are vector analogies of the 2D ones; for (6) it was 
established in [3]. Important is that the fiber modes may carry the power in backward direction 
that must be accounted for in the radiation condition [3]. The domain of analytic continuation of 
the Green's function in k in the case (4) is just a complex plane. However, as soon as the host 
medium contains infinite regular boundaries, e.g. a stratification or a fiber, then this domain 
turns to a composition of logarithmic sheets of the LnQc^-k2) type, with the branch points of RS 
located at the critical frequencies of the guided modes. 

Realistic objects are always 3D and finite, hence the habitat of their kx is just the complex 
plane (good). Infinite-sheet branching of the domain of continuation of the field function in k is 
always the price paid for introducing some geometrical infinity. Firstly, neglecting the finite 
length when switching from the free-space 3-D to the free-space 2-D models leads to the Lnk 
branching (bad). Secondly, admission of infinite boundaries in the host medium, either PEC 
ones or penetrable flat and curved ones, leads to additional £„ ^(tf-k2)12 or ^„-^LnQj-k2) 
branching in the 2-D and 3-D models, respectively (ugly). All the eigenvalues, ks, "live" on a 
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corresponding RS - this is their natural habitat. Based on the theory of integral equations and 
operator-valued functions [7], one can verify that each of ks is a piece-wise analytic function of 
geometry and material parameters. Analyticity can be violated only if two eigenvalues coalesce. 
They are only of finite multiplicity and may appear or disappear only at branching points and at 
infinity on RS. In the real-it scattering problems, the field characteristics display the frequency 
dependences, which are sharply broken at the critical frequencies kn (at branch points). This is 
because their derivatives in frequency contain square-root singularities there. An old example of 
this effect is the Wood's anomalies in the scattering from infinite-periodic diffraction gratings. 
Here, elementary cell of the grating can be viewed as a discontinuity in so-called Floquet virtual 
waveguide with PEC walls, therefore the branching in k has the same features as in the 
waveguide scattering. 

Finally, we discuss the effect of lasing. From the viewpoint of mathematical modeling 
based on the so-called cold model of VCSEL, the lasing is the existence of at least one real- 
valued natural frequency of an inhomogeneous open DR. This may happen provided that there 
is a sub-domain, inside DR, that is filled in with an active material characterized by gain 
(equivalent^, negative imaginary part of 8). As we have seen, each complex-valued natural 
frequency ks of a passive open DR is analytic function of £, and hence a continuous function of 
its imaginary part, y. If the latter is varied, each natural frequency migrates on the corresponding 
RS, and if it takes negative values, the frequencies are allowed to migrate across the real axis of 
the'principal sheet of RS into the upper halfplane. Purely real value of every ks may take place 
only at a specific value of the gain, y,. Therefore, the Lasing Eigenvalue Problem can be 
formulated as a homogeneous boundary-value problem with appropriate boundary and radiation 
conditions adapted to the host medium. It is necessary to find eigenpairs of real-valued 
normalized frequency ks and gain ys that generate non-zero solutions, i.e. vector (in 3-D) or 
scalar (in 2-D) field functions of the lasing modes. 

Here, as we have seen above, admission of infinite boundaries in the host medium brings 
infinite number of branch points located at the real £-axis of the principal sheet of RS. The 
natural frequencies may appear or disappear only at the boundary of the domain of solution 
analyticity in k, i.e. at the infinity and at the branch points k„. Therefore, searching for 
eigenvalues and tracing their trajectories with the loss/gain variation may potentially hit a 
situation that ks coalesces with k„ and then either migrates further on the principal sheet (good) 
or goes to the other, "non-physical", sheet of RS (bad) or even disappears at all (ugly). Such a 
"swallowing up by the earth" of a lasing mode is of course an exotic thing and tells only about 
the defect of the model used. 
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ABSTRACT 

Two diffraction problems involving two-dimensional cavities formed by a semi-infinite 
parallel-plate waveguide and by a finite parallel-plate waveguide are rigorously 
analyzed for the plane wave incidence using the Wiener-Hopf technique. It is shown 
that the solution for the semi-infinite case is valid for arbitrary cavity dimensions, 
whereas the solution for the finite case is valid for the cavity depth large compared with 
the wavelength. Illustrative numerical examples on the radar cross section (RCS) are 
presented, and the far field backscattering characteristics are compared between these 
two cavities. 

INTRODUCTION 

The analysis of electromagnetic scattering from open-ended metallic waveguide cavities 
has received much attention recently in connection with the prediction and reduction of 
the radar cross section (RCS) of a target [1-3]. This problem serves as a simple model of 
duct structures such as jet engine intakes of aircrafts and cracks occurring on surfaces of 
general complicated bodies. There have been a number of investigations on the 
scattering by two-dimensional (2-D) and three-dimensional (3-D) cavities of various 
shapes based on high-frequency techniques and numerical methods. It appears, 
however, that the solutions obtained by these methods are not uniformly valid for 
arbitrary cavity dimensions. 

The Wiener-Hopf technique is known as a powerful, rigorous approach for solving 
diffraction problems associated with canonical geometries. In the previous papers [4-7], 
we have considered two different parallel-plate waveguide cavities with material 
loading, and carried out a rigorous RCS analysis using the Wiener-Hopf technique. As a 
result, it has been shown that our final solutions provide accurate, reliable results over a 
broad frequency range. We have also verified that, for large cavities, the absorbing layer 
loading inside the cavities results in significant RCS reduction. The results of our recent 
studies on the cavity RCS are summarized in detail in [8]. 

This paper is in continuation with our recent research on the cavity RCS. We shall 
consider two canonical, 2-D parallel-plate waveguide cavities with material loading, and 
carry out a comparative RCS study of these cavities. The first geometry (referred to as 
Cavity I) is a cavity formed by a semi-infinite parallel-plate waveguide with an interior 
planar termination, where three different material layers are coated on the surface of the 
terminated plate. The second geometry (referred to as Cavity II) is a cavity formed by a 
finite parallel-plate waveguide with a planar termination at the aperture of the 
waveguide, where the same material layers as in Cavity I are coated on the surface of 
the terminated plate. It is noted that geometries of interior regions of the two cavities are 
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exactly the same as each other. The exterior features are, however, totally different since 
Cavity I has two parallel semi-infinite plates, being joined to its outer right-angled 
corners. The analysis of the diffraction problems involving Cavity I and Cavity II has 
been carried out using the Wiener-Hopf technique in [6, 7] and [4, 5], respectively. The 
purpose of this paper is to compare the solutions for Cavity I and Cavity II and 
investigate the effect of geometrical differences of the two cavities on the far field 
scattering characteristics. Both E and H polarizations are treated. 

The time factor is assumed to be exp(-zcor) and suppressed throughout this paper. 

(b)Cavity II. 
(a) Cavity I. 

Fig.l. Geometry of the cavities. 

SUMMARY OF THE WIENER-HOPF ANALYSIS 

Cavity I: Cavity Formed by a Semi-Infinite Parallel-Plate Waveguide [6, 7] 

We first consider the plane wave diffraction by Cavity I. As mentioned above, Cavity I 
is formed by a semi-infinite parallel-plate waveguide with an interior planar 
termination.     The     problem     geometry     is     shown     in     Fig.      1(a),     where 
-oo< -dx < —d2 < -d} < -d4 < 0, and the upper and lower plates at x = ±b and the endplate at 
z = -dx are infinitely thin and perfectly conducting. The material layers 
I (-dx <z<-d2), II {-d2 <z<-d}), and III (-c?3 <z<-d4) inside the waveguide are 
characterized by the relative permittivity and permeability (em,\im) for m = 1,2, and 3, 
respectively. Let the total field <)>' be defined by§'(x,z) = §'(x,z) 
+())(x,z),where(|)'(x,z)= exp[-/£(xsin60 + zcos90)] is the incident field of E or H 
polarization for 0<90 <n 12 with k[=a>(p.Qeoy

2] being the free-space wavenumber. The 
term ^>(x,z) is the unknown scattered field and satisfies the 2-D Helmholtz equation. As 
usual in the Wiener-Hopf analysis, we assume that the vacuum is slightly lossy as in 
k = kt+ik2 with 0<k2 < kr The solution for real k is obtained by letting k2 -*+0at the 
end of analysis. Referring to the geometrical classification proposed in [9], Cavity I 
belongs to a class of the modified Wiener-Hopf geometry of the second kind. 

Introducing the Fourier transform for the scattered field and applying boundary 
conditions in the transform domain, the problem is formulated in terms of the modified 
Wiener-Hopf equations of the second kind [9], which are solved exactly in a formal 
sense via the factorization and decomposition procedure. It should be noted, however, 
that the formal solution involves infinite series with unknown coefficients. Applying a 
rigorous asymptotics with the aid of the edge condition, approximate expressions of the 
infinite series are derived leading to an efficient approximate solution of the Wiener- 
Hopf equations. The approximate solution involves numerical inversion of matrix 
equations. The results are uniformly valid for arbitrary cavity dimensions. The scattered 
filed in the real space is evaluated asymptotically by taking the inverse Fourier 
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transform and applying the saddle point method. 

Cavity II: Cavity Formed by a Finite Parallel-Plate Waveguide [4,5] 

We now consider the diffraction problem for Cavity II, which is formed by a finite 
parallel-plate waveguide with a planar termination at the aperture. The geometry of the 
cavity is shown in Fig. 1(b), where <j>' is the incident field of £ or //polarization, where 
-L<Dt <D2<D3 < L, and the cavity plates are perfectly conducting and of zero 
thickness. The material layers I (-L < z < Z),), II (£>, < z < D2), and III (£>2 < z < D3) inside 
the cavity are characterized by the relative permittivity/permeability (zrm,nrm) for m = 
1, 2, and 3, respectively. Comparing Cavity I and Cavity II, it is seen that the interior 
cavity geometries are exactly the same as each other. 

Taking the Fourier transform of the Helmloltz equation and solving the resultant 
transformed wave equations, we may derive a scattered field expression in the Fourier 
transform domain. We apply boundary conditions to the scattered field representation in 
the transform domain. It should be noted that the cavity is now formed by a finite 
parallel-plate waveguide and hence, the problem is formulated in terms of the modified 
Wiener-Hopf equations of the third kind [9]. This is the essential difference in the 
structure of the Wiener-Hopf equations. The Wiener-Hopf equations are solved exactly 
in a formal sense via the factorization and decomposition procedure as in the case of 
Cavity I leading to a formal solution. Due to the geometrical differences between Cavity 
I and Cavity II, the structure of the formal solution for Cavity II is totally different from 
that for Cavity I. The solution now involves branch-cut integrals with unknown 
integrands as well as infinite series with unknown coefficients. Assuming that the cavity 
depth 21 is large compared with the wavelength, we can derive high-frequency 
asymptotic expansions of the branch-cut integrals. As for the infinite series contained in 
the formal solution, we apply the edge condition to obtain their approximate 
expressions. This procedure leads to an approximate solution of the Wiener-Hopf 
equations, which is valid for the cavity depth large compared with wavelength. As in 
Cavity I, the solution involves numerical inversion of matrix equations. The scattered 
field in the real space is derived by taking the Fourier inverse and applying the saddle 
point method. 

NUMERICAL RESULTS AND DISCUSSION 

We shall now show representative numerical examples of the RCS for both E and H 
polarizations to discuss the far field backscattering characteristics of the cavities. In 
particular, the effect of geometrical differences of the two cavities on the scattered far 
field is investigated. The RCS per unit length is defined by a = limpH>0O(27tp|<j>/(|>' n, 
where the cylindrical coordinate (p,0) has been introduced as in x = psin0, z = pcos0 
fOr  -71 <0 <TC. 

Figures 2(a-c) and 2(d-f) show numerical results of the normalized monostatic RCS 
a IX [dB] as a function of incidence angle 0O for £ and H polarizations, respectively, 
where X is the free-space wavelength. In numerical computation, cavity dimensions 
have been taken as kb = 3.14, 15.7, 31.4 with dJ2b = Llb = \.Q. As an example of 
existing three-layer materials, we have chosen Emerson & Cuming AN-73 [1], where 
the material constants are srl = 3.4 + /10.0, er2 = 1.6 + /0.9, er3 =l.4 + /0.35, |ar] =\ir2 = \xr3 =1.0, 
and the thickness of each layer is such that 
dl-d2=d2-d3=d3-d4 = D, + Z, = Z)2 - Z), = Z)3 - D, (= / / 3) (see Fig. 1). The total thickness 
of the three-layer material is taken as kt = 2.08. 

It is seen from the figure that, the RCS curves for Cavity I and Cavity II with kb = 
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3.14 and E polarization (Fig. 2(a)) show close features for 0° <0O < 55°, whereas in all the 
other examples, there are some differences on the backscattering characteristics between 
the two cavities. These differences are clearly observed in the //-polarized case, since 
the RCS curves for Cavity II oscillate rapidly in comparison to those for Cavity I. This 
oscillation for Cavity II is due to the fact that the multiple diffraction occurs between 
the leading edges at the aperture and the outer edges of the right-angled back corners. 

CONCLUSIONS 

In this paper, we have carried out a rigorous Wiener-Hopf analysis of the plane wave 
diffraction by two different cavities with three-layer material loading, formed by a semi- 
infinite parallel-plate waveguide (Cavity I) and by a finite parallel-plate waveguide 
(Cavity II). We have presented numerical examples of the monostatic RCS to discuss 
the far field backscattering characteristics of the cavities. Comparing the RCS results 
between Cavity I and Cavity II, some differences on the backscattering characteristics 
have been observed. It is therefore confirmed that the backscattering from these cavities 
is affected not only by the interior irradiation but also by the diffraction by the outer 
edges. 
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Fig. 2. Monostatic RCS versus incidence angle for d]/2b = L/b = l.0.  : Cavity I,  rCavity II. 

The three-layer material inside the two cavities is Emerson & Cuming AN-73 with kt = 2.08. 
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INHOMOGENEOUS CHAIN OF TRANSPARENT 
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ABSTRACT 
We investigate the resonance and guiding properties of a chain of inhomogeneous transparent 
obstacles. Pass and stop bands are studied. Approximate expressions for the first wave- 
guiding frequencies and phase velocities of the wave-guiding modes in a transparent periodic 
structure consisting of two different media (chain of transparent obstacles) are found. It is 
shown that the length of a guided wave in a chain of transparent obstacles can exceed 
considerably the transparent obstacle sizes. The phase velocity of a guided wave can be 
smaller than wave velocities in both media in the event that the interaction between 
neighbouring transparent obstacles is taken into account. The influence of inhomogeneity of 
transparent obstacle sizes on the first wave-guiding frequencies of a chain of transparent 
obstacles is investigated. The resonance phenomena in periodical non-homogeneous chains of 
transparent obstacles for sources localized or distributed in space are investigated. As a result 
of the analysis, new physical phenomena are reported: 1. Resonance growth of amplitude in 
the neighbourhood of a source, and 2. Travelling wave resonance. Conditions of realization of 
the mentioned phenomena are obtained. It is shown that resonance growth of the oscillation 
amplitude in the neighbourhood of a source takes place for a discrete set of frequencies for 
which group velocity of waves is equal to zero. The travelling-wave resonance growth of 
amplitude takes place in the case of the sources of oscillations periodically distributed in 
space and has the same phase shift in time and space as a guided eigenwave. Similar 
phenomena are used for acceleration of particles in synchrophasotrons. This study has 
numerous applications in various areas of mechanics, physics and engineering. 

INTRODUCTION 

In [1-2] and [3] the propagation of waves in a non- 
homogeneous medium with a periodic structure was 
investigated. Suppose that periodic structure consists 

fe- 

£- 

of two materials: Ml = [p^\cl,pl\ and 

Ml - |/r2), c2, p2}. Let in the medium MX a layer 
of the medium Ml with the width D (single 
obstacle, ) is embedded. Everywhere in this paper a 
spatial variable is non-dimensional due to 
normalization to some characteristic length. These relations look like 

p® + X2pM = oJxl > D/l;       p® + X\ V2) = Ojjcl < D/l; 

^<H>K- 
Fig. 1. One and two obstacle systems. 

p(D=pi2)^)=p(2)U D/l; (1) 

p^1' = ax exp(ikx),x > D/l;     p^2' = a2 exp(- ifac),x < D/l. 
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The notations X = co/c,, K = c, /c2 are hereinafter used. The free obstacle oscillations are 

determined by a set A* = yCk ,k = 0,1,2,...} of complex values of parameter X for which there 

exist nontrivial solutions of the problem (1). Further X\ will be named a scattering frequency 

of corresponding problem. With the aid of straightforward derivations it is possible to verify 
that the scattering frequencies of the problem (1) look like 

X\ =—\kn +/ln 
KD 

(K+X)' 
k = 0,1,2,... (2) 

.(K-X). 

It is necessary to note that the scattering frequencies of problem (1) continuously depend on 
parameter x in the intervals 0<X<K,K<X<OO. The physical sense of real and imaginary 
parts of the scattering frequencies is obvious enough [1], c,Re(^) being the eigenfrequency. 

The damping in time at a fixed point of space is given by the expression 
p(x,f) = const(x)exp[-/cIIm(^)] for the corresponding mode of scattering oscillations. 

Scattering frequencies of problem (1) at x H>0 tend to the eigenvalues of the Neumann 
problem in the domain -D/2<x<D/2. This property is similar to the scattering 
frequencies of a Heimholte resonator with the radius of the "throat" being a small parameter 
[1]. Singularity of the Helmholte resonators is the existence of the scattering frequencies and 
corresponding scattering oscillations with wavelengths considerably exceeding geometrical 
size of the resonator, or so-called Heimholte modes [2]. Such a mode has the scattering 
frequency >^(x), so that lim[A.*(x) =0 and Re\X"0 (x)] = 0. This entails the existence of 

eigenoscillation, which corresponds to X.|(x). From (2), for the scattering frequencies of the 
problem (1) it follows that in the case of a single obstacle there are no eigenoscillations of the 
Helmholte mode type, at least within the framework of one-dimensional theory. 
Essentially different property has the structure consisting of two transparent obstacles of gas ( 
, a). As a result of transparent obstacles interaction there exist oscillations of the Helmholte 
mode type. Free acoustic oscillations near transparent obstacles are charactrerized by the 
relations similar to (1). With the aid of representation of solution as a travelling wave, 
determination of the scattering frequencies is reduced to a search for zeros of certain analytic 
function. Evaluation of the scattering frequency, X"0{c,D,H), that is close to 0 as x ^0 

allows to find eigenoscillation near the two transparent obstacles of the Helmholte mode type: 

^ I U  2 .A...2H 

^^H)'^7ihMr^1+lh^+^ 
Here,D is the transparent obstacle diameter and His the distance between transparent 
obstacles. This estimation allows to state that the frequency characteristic of oscillations of an 
ensemble of transparent obstacles essentially differs from the performance of one-obstacle 
oscillations. The presence of neighbouring transparent obstacles causes appearance of low- 
frequency eigenoscillations of ensemble, the wavelength of these oscillations can exceed 
linear size of ensemble. 
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MONO-DISPERSIBLE CHAIN OF TRANSPARENT OBSTACLES 

Mz ^ 

<r ■> 

Fig. 2. Chain of mono-dispersible bubbles. 

Suppose now that the length (linear 
concentration) of a layer of material 
Ml is equal to kx, and the length of a 
layer    of    material    M2    (linear 
concentration  of material   M2)   is 
equal to  k2   (dimensionless transparent obstacle diameter), so that  kx + k2 = 1   is the 
dimensionless spatial period of the chain (Fig. 2). The oscillations in the fundamental cell of 
chain are described with relations 

p® + X2p{l) = 0,for\x\ <kx/2;pM + X2
K V2) = OJork,/2<x<l-kx/2 

pU(kj2) = pM(kj2);< rffe/2) = rf)(*1/2)S (3) 
p^-kj2]oxV^) = p^l-kj2)^\-kj2) = p?(l-kj2). 

Further problem (3) will be called problem MBCfe) about a chain of homogeneous (mono- 
dispersible) transparent obstacles. The general solution of the wave equation in the 
fundamental cell is pl=a1exp(iXx)+blexp(-iXx),p2=a2exp(iXKx)+b2exp(-iXKx). In 

view of this, expressions (3) are equivalent to a set of equations A(X)Y = 0 for the unknown 

vector (ax,bx,a2,b2) = Y. The matrix A(X) has the following form: 

exp(iXkl/2) exp(-iXkx/2) -exp(iXKkx/2) -Qxp(-iXKkj2) 

x exp(/A,&,/2) -xexp(-iXkx/2) -Kexp^XK^j^j K.exp(-iXKkj2) 

exp[/(-U,/2 + 0] exp[i(Xkx/2 + Z,)] -exp[iXK.(l-kx/2)] - exp[- IXK (l - kx /2)J 

x exp[/(- Xkx /2 + %)] -x exp[i{Xkl /2 + £,)] - K exp[&K (l - kx /2)j K exp[- IXK (l - kx /2)] 

0.1 Cph 

0.09 
C h phase velocity 

§  wave number 
0.08 k=0.99 

0.07 
~~-^-^          r=0.001 

^\K=1W330 
0.06 ^V 
0.05 X 

0       0.5       1        1.5       2       2.5       3    g 

Fig. 3. The phase velocity of the 
creeping mode Cph as a function of 

the wavenumber £, for an air/water 
mixture (air bubbles in water). Linear 
concentration of water is k=0.99. 

Nontrivial solution of the set of equations (3) 
exists if det[A(x)] = 0. 
Creeping mode. As wave-guiding frequencies of the 
problem MBC{t,) continuously depend on x , and 

X0 = 0 is an eigenfrequency of the limiting problem 

(3) at x = 0, for small x there exists an 
eigenfrequency  X*0(z) of problem MBCfe) such 

thatx;(x)   T^°  >0. 

This eigenvalue corresponds to the lowest wave- 
guiding frequency of a mono-dispersible chain of 
transparent obstacles. Further a wave-guiding mode 
corresponding to the lowest wave-guiding frequency 
will be called a creeping mode. It is necessary to note 
that the length of this wave considerably exceeds the 

size of transparent obstacles. It is possible to derive the following approximate expression for 
the wave-guiding frequency of the creeping mode: 
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2T 1 - cos(S,) 

Fig. 4. Wave-guiding frequencies as a 
function of linear concentration k of 
water with air bubbles. 

-K * Jfr* + \K * -2cK2+x2)fc,+TK
2 (4) 

For small values of x , a simplified formula 

\ (c ,0 = ^2t [l - cosfe )]/K 
2&, (l - Jfc,) is valid. 

It is necessary to note that the wave-guiding 
frequency of a creeping mode essentially depends on 
the linear concentration k = kx. It is also necessary to 
note that for k = 05 there exists a global minimum 
of wave-guiding frequency as a function of linear 
concentration. The phase shift condition allows 
presenting any solution of the MBCi^) problem as 

p(x)=w(x)exp(iZpc), where w(x)=w(x + \) is a 
periodic function. This representation allows 
considering £, as the wavenumber of a guided mode. 

The curves characterizing phase velocity of a guided mode of a mono-dispersible transparent 
obstacle chain (air obstacles in water with linear water concentration k = 0.99) corresponding 
to a creeping mode are shown in Fig. 3. It is necessary to make a note that the phase velocity 
of a wave-guiding mode in a chain of transparent obstacles can be smaller than velocities of 
waves in the transparent obstacle medium and in the background medium. 

As it is possible to see from Fig. 3 and to calculate 
with the aid of (4), phase velocity of a creeping mode is 40 
times smaller than velocity of wave in air. This example 
confirms a necessity of registration of non-homogeneities 
(even with small concentration) when studying the 
propagation of waves in inhomogeneous regular media. 

Acoustical and optical modes. Alongside with a 
creeping mode a chain of transparent obstacles has higher 
order wave-guiding modes. The number of these modes is 
infinite. As the wave-guiding frequencies continuously 
depend on T , for small values of this parameter it is 
possible to find that wave-guiding frequencies are localized 
in the neighbourhoods of corresponding eigenfrequencies of 
the Dirichlet problem in the domain Ml and the Neumann 
one in the domain M2. (in view of wave velocities). 

The wave-guiding frequencies of problem MBC(K), 

as a function of linear concentration of water, are shown in 
Fig. 4. The calculations were carried out for water and air: 

Fig. 5. Dispersion curves for 
the 2nd and 3d wave-guiding 
modes, k =0.99, in water/air. 

= 1400,c2=330: K =1400/330, T =0.001, * = *,, c, 

and E, = 7i . In the dispersion curves for the 2nd (acoustical) and the 3d (optical) wave-guiding 
modes are shown (the creeping mode is considered as the first one) in a chain of transparent 
obstacles in water of the same parameters as before. As dimensionless length of obstacle is 
equal to 0.01 that first wave-guiding frequency will be close to an eigenfrequency of the 
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Dirichlet problem for the Laplacian in the interval [0,0.99], which is close to one of the 
numbers nn , « = 0,1,.... This is also confirmed by computations. The intervals of the 
variation of dispersion curve on the ordinate axis determine frequency passbands for the 
chains of transparent obstacles. 

CHAIN OF POLY-DISPERSIBLE TRANSPARENT OBSTACLES 

In natural conditions, mono-dispersible 
structures   are   met   seldom   enough,        if "'    >K    2 >K 33l 

k, K k. 

therefore it is interesting to investigate        ^ ! ^ 
propagation of acoustic waves in the     pig. 6. Fundamental cell of the chain of poly- 
chains  of poly-dispersible  transparent     dispersible   bubbles   (inhomogeneous   chain   of 
obstacles. The elementary example is a    bubbles). Water is shown by grey, 
periodic    chain   with   two    different 
transparent obstacles in the fundamental cell. Suppose that the fundamental cell of an 
inhomogeneous chain of transparent obstacles has the length 1 (in dimensionless variables) 
and contains two layers of medium 1 (water) with the sizes kx and k3, &, + k3 = k, and 

distances between them (air transparent obstacles) k2 and k4 (Fig. 6). In the fundamental cell 
of the chain, guided modes of the chain are characterized with the same relations as (3), which 
are equivalent to a system of eight equations for eight unknowns, A(x)X = 0. The matrix 

A(X) is built in the same manner as for a chain of mono-dispersible transparent obstacles 
with the necessary modifications. The lowest wave-guiding frequency of a chain of poly- 
dispersible transparent obstacles (creeping mode), for small x , is given by 

r        v_  I 2x[l-cos(£,)J 
Xo[^ ,x)~ik(\-ky +^)+[(\-k)2K2

+k2} (5) 

One can see that there is a minimum of frequency as a function of concentration k, achieved 
at k = 0.5. It is necessary to make very useful and important 

Note. The lowest wave-guiding frequency of a chain of poly-dispersible transparent 
obstacles, for small x , does not depend on their sizes and is determined only by the average 
concentration. It means that the poly-dispersibility of the transparent obstacles in a chain is 
not essential for a creeping mode. Phase velocity of the creeping mode can be smaller than 
velocities of waves in the transparent obstacle medium and in the background medium. 

Long wave approximation. It is useful to consider asymptotic behaviour of wave- 
guiding frequency and phase velocity of a creeping mode provided that the wavelength is 
much greater than the spatial period of a chain of transparent obstacles. For the length L of 
an acoustic wave of the wave-guiding mode (creeping mode), the expression L = 2K/L, is 
valid.   For   large   wavelength   values   (if   5 «0),   expression   (5)   will   reduce   to 

X0{^,k,T) = ^^/ylk(l-klx2 +K2)+[(l-k)2K2 +k2[ . The phase velocity, cjjfe,*,*), 

of the propagation of a long wave of the creeping mode, for small x , is given by the 

expression C%,*,x) = VT/|KV*(l- *)]= feKljx/k(l-k) 
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RESONANCE PHENOMENA 

In spite of the fact that the domain of oscillations is unbounded, resonance phenomena for 
localized and periodically distributed sources of oscillations can occur. 

Localized resonance phenomenon. If the group velocity for a wave-guiding frequency 
Xt and some wave number ^. is equal to zero, then the velocity of energy propagation 

through the chain of transparent obstacles from a source with frequency A,, is also equal to 
zero. It means that the resonance phenomena caused by the energy localisation in the 
oscillation source neighbourhood can arise. 

Travelling resonance phenomena. Assume that every fundamental cell of the 
transparent obstacle chain contains an oscillation source and the space period of the sources 
distribution is the same as for the chain (equal to 1 in dimensionless variables). Assume also 
that the sources of oscillations have the same space phase shift ^ as the wavenumber of some 
guided wave and also have the frequency of oscillations equal to the corresponding guiding 
frequency X. (£,). In this case a resonance growth of amplitude of forced oscillations will 

move through the chain of transparent obstacles with the phase velocity of the wave-guiding 
mode. Similar phenomenon is used for acceleration of particles in a synchrophasotron. 

SUMMARY 

The interaction of oscillations of neighbouring transparent obstacles essentially changes their 
wave-guiding and resonance properties and causes a series of low-frequency wave-guiding 
modes of the chains of transparent obstacles. One must take into account the low-frequency 
eigenoscillations due to interaction of the neighbouring transparent obstacles in the chain 
when studying the propagation of initial perturbation and the response of the chain to the 
forced oscillations. It has been shown that the poly-dispersibility of the transparent obstacles 
does not render essential influence on low-frequency wave-guiding oscillation of the chain. It 
has been proven that the lowest wave-guiding frequency of oscillations is determined by 
linear concentration of transparent obstacles. 
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ABSTRACT 

Wavelets are well-known to accelerate the simulation of planar microwave circuits. In 
this paper computational savings in both CPU time and memory are discussed that can 
be achieved by properly implementing a Wavelet base for the analysis of complex 
microstrip circuits. The choice of a suitable grid is discussed for two examples. 

INTRODUCTION 

Method of Moments Galerkin schemes [1] take advantage of Wavelets as basis and 
testing functions. This is because Wavelets lead to sparsely populated system matrices. 
This advantage is particularly pronounced for structures of medium size and complex 
shape [2, 3]. On the other hand, adapted grids allow to alleviate the computational 
burden because the number of cells can be substantially reduced [4]. So far, only 
generic examples were considered. It is the purpose of this paper to extend these 
investigations to circuits of complex topology, better suited for the implementation of 
Wavelets. Typical structures that meet the requirements are filters. Both a hairpin and 
an edge coupled filter, emphasizing different aspects in terms of grid definition, will 
thus be investigated in the following. The computational savings due to the properties of 
Wavelets are pointed out. Some aspects regarding the implementation of the grids are 
discussed. 

MOMENT METHOD WAVELET GALERKIN SCHEME 

The Method of Moments (MoM) is a well known technique to solve the electric field 
integral equations (EFIE) commonly used to describe planar microwave circuits. The 
unknown current distribution is expanded in a series of basis functions. After 
introducing a set of testing functions and an inner product, the EFIE can be transformed 
into a system of linear equations. An entry gy of the system matrix is calculated from 

glJ =-ja n \\\\biM(x,y)Gl{x,y,x\y)tl^x\y)dx<dy<kdy+ 0) 
s   S' 

cos J
s
JJ

sf      du ov 

GJ^ and Gvare the Greens functions of the magnetic vector and the scalar potential, 

respectively, and s and [i are the material properties of the substrate material. They'-th 
basis and i-th testing function directed in (u / v) e (x, y) direction is represented by 
biiU(x,y) and tiiV(x',y'), respectively. In contrast to the observation point the coordinates 
of the source point are primed. The Galerkin scheme implemented here implies /, = bt. 
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The basis functions within this work are Wavelets. In the direction of current flow 
are Chui-Wang-Wavelets [5] constructed from piecewise linear cardinal B-splines 
order). On bounded intervals additional boundary functions are needed [6]. In 
perpendicular direction piecewise constant (Haar-)Wavelets are used [7]. These 
types of functions build the two dimensional basis functions shown in Fig. 1. 

they 
(2nd 

the 
two 

(b) (c) 
1. Set of Wavelet Basis functions. 

Wavelets set up a multiresolutional basis defined across increasingly fine grids. The 
rooftop function in Fig. 1(a) exists only on the coarsest level and is called scaling 
function. On all finer levels the basis functions comprise Wavelets in one (Fig. 1(b), (c)) 
or in both directions (Fig. 1(d)). Wavelets ®(x) constructed from cardinal B-splines of 
order n have n vanishing moments, an essential property in the MoM: 

(2) 
J<D(%) xp dx = 0,   0<p<n-l. 

-co 

When regarding a Wavelet basis function as an abstract current element its far field is 
very low. It is thus a poor radiator [8] and, because of reciprocity, a poor receiver as 
well. Thus, the far field coupling of two Wavelet basis functions on the circuit is very 
low. The entries of the system matrix g,y(cf. Eq. (1)) describe the coupling between the 
basis functions. Wavelets being far enough apart have low coupling corresponding to a 
negligibly small gy. The system matrix is thus sparsely populated showing a typical 
band structure. For these band matrices suitable solvers exist, such as the conjugate 
residues in its stabilized form [9], that allow a fast solution of the thinned matrix. An 
important aspect when using Wavelets within a Galerkin scheme is that the matrix 
structure can be predicted before being calculated. This is because the integral operator 
in eq. (1) is of Calderön-Zygmund-type for which an upper limit can easily be estimated 
[10]. A simple thresholding procedure yields the relevant matrix entries. The number of 
time-consuming four-fold integrals (Eq. (1)) is thus reduced, leading to considerable 
savings in CPU time. In addition, the matrix sparsity saves substantial memory. 

NUMERICAL EXAMPLES 

To be implemented Wavelets require a given number of knots, i. e. a minimum circuit 
size. At the coarsest level the scaling functions still have to fulfil the Nyquist rate when 
sampling the Greens functions, thus setting an upper useful limit to circuit dimension. 
Hence, Wavelet schemes are best suited for complex structures of medium size [2]. Two 
suitable examples shown in Fig. 2 are investigated in the following. 
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1.52 mm 

32x2 cells.. 

64 x 2 cells 

(a) (b) 
Fig. 2. Geometry of the (a) hairpin and (b) edge coupled filter. 

Hairpin Filter Fig. 2(a) depicts the geometry of a microstrip hairpin filter. It consists of 
six coupled lines connected by uniform lines and mitered bends. Various grid 
configurations were investigated. In a first step grids adapted to the estimated current 
distribution on the circuit, e.g. the typical bathtub function for the transverse 
distribution of the longitudinal current on a uniform microstrip line [4], were tested. In 
transverse direction four cells were used and compared to the simpler case with only 
two cells. The latter represents a significantly lower computational burden and turns out 
to be sufficiently accurate. In particular, it is still able to describe the expected 
asymmetrical current distribution on the coupled lines. In principle one Haar-Wavelet 
level can be set-up although this was not done in the present context for sake of 
algorithm simplicity. 

50 55 60 65 

matrix sparsity > 

(c) 
Fig. 3. Current distribution on the hairpin filter (a) with and (b) without compression; 

(c) relative error in IS21I versus matrix sparsity. 
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The coupled (uniform) lines were discretized using 16x2 (8x2) uniform cells. In 
longitudinal direction, two (one) finer Wavelet levels besides the scaling function level 
were implemented, here. The bends in Fig. 2(a) are discretized by 4 x 4 cells. This is 
sufficient to render the change of direction of current flow. However, the grids are 
refined at the edges of the connecting lines to accomodate the current singularity at the 
inner corner of the bend. This discretization yields a total number of 1,330 unknown 
current coefficients. 

The calculated current distribution on the hairpin filter with no Wavelet compression 
applied is depicted in Fig. 3(a). The peaks appearing at the inner corners of the bends 
result from the field singularity there. The apparent discontinuity of the current here is 
due to the mismatch between the different coarse grids. Nevertheless, the integrated 
current is continuous. Fig. 3(c) shows the relative error in JS211 versus matrix sparsity. 
This graph was calculated by successively increasing the a priori threshold. Up to a 
sparsity of approximately 70.7 % the error remains below 4.2 %, above that value it 
increases rapidly. This is illustrated by the corresponding current distributions without 
and at maximum allowable compression in Figs. 3(a) and (b), respectively. The 
distortion is clearly seen. Still, the extraction of the scattering parameters from the 
fundamental mode current distribution yields satisfactory results even at this high 
sparsity. 

BOO    I- 

0   200  too  eoo  600  1000 1200 

(a) (b) 
Fig. 4. Complete system matrix and zoom into upper right corner. 

The corresponding sparse system matrix is depicted in Fig. 4(a). The completely filled 
partial matrix in the lower left corner contains all reactions involving two scaling 
functions. Its relative size can be reduced by implementing all possible Wavelet levels 
(see above). The remainder of the matrix is very sparsely populated. Only a few bands, 
such as around the main diagonal, contribute. These reactions involve overlapping and 
neighboring basis functions. The latter can be located on different parts of the filter, 
e. g. on coupled lines. The lower right and upper left corner of the matrix contain 
reactions of a Wavelet and a scaling function. Their sparsity demonstrates the good 
decorrelation properties of the Wavelets. This is even more pronounced in the upper 
right corner shown in more detail in Fig. 4(b). Only Wavelets react here. Subcircuits 
within the filter, for instance individual lines or bends, are represented by submatrices. 
For illustration, some of these are delimited by gray lines in the Figure. Their emptiness 
demonstrates the very low coupling at Wavelet level. 
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Tab. 1. Time required to fill and invert the system matrix 
Filling ratio 

100 % 

29.2 % 

Filling of matrix 
3517s 

2121s 

3.66 s (conj. res., stab.) 
9.32 s (Gauß)  
0.72 s 

The computational performance obtained on a Compaq ES 45 computer is shown in 
Tab. 1. The time required to fill the system matrix can be reduced by 39.7 %. The 
inversion of the system matrix can be accelerated from 3.66 s to 0.72 s. For comparison 
the table includes the inversion time for a Gaussian algorithm which would be needed in 
conjunction with classical basis functions. 

5- 

50 60 70 80        %        90 

matrix sparsity —> 

(a) (b) 

Fig. 5. (a)T<elative error in |S2i| and (b) matrix structure for the edge coupled filter. 

Edge Coupled Filter The second example shown in Fig. 2(b) is similar to the hairpin 
filter except that it has only straight sections, i. e. no bends. The number of lines and 
their dimensions are, thus, unchanged. This essentially holds for the discretization, as 
well. However, as all lines have the same width and there are no discontinuities, such as 
bends or steps, a completely uniform grid can be set-up, here. The resulting high 
symmetry significantly accelerates matrix filling. The connecting (inner coupled) lines 
are discretized by 64 x 2 (32 x 2) cells. On the 64 (32) cells in direction of current flow 
four (three) Wavelet-levels and the scaling function level are set-up. The total number 
of unknowns is 850, including 98 scaling functions. Hence, 9,604 reactions involve only 
scaling functions which corresponds to 1.3 % of the matrix entries. This limits the 
matrix sparsity to a theoretical value of 98.7 %. Thus, with nearly the same number of 
unknowns as in the previous example the system matrix of the edge coupled filter 
should be much more compressible. This is confirmed by Fig. 5(a) which shows that the 
relative error of IS21I remains below 2.5 % for a matrix sparsity of up to 88.5 %. The 
corresponding matrix structure is depicted in Fig. 5(b). The significant matrix entries are 
strongly localized in the lower left corner of the matrix. Again, the coupling of the 
different microstrip lines mainly takes place at scaling function level. Apart from the 
main diagonal of the matrix only few significant elements appear. They are within a 
narrow band and describe reactions of Wavelets located on adjacent microstrip lines. 
These reactions are located in the upper right corner of the matrix. The sparsity in 
conjunction with the distinct symmetry of the filter leads to low CPU time: 68 s for 
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filling and 0.12 s for inversion instead of 132 s and 1.4 s, respectively, without 
sparsification. One reason for the high compressibility is the increased number of 
Wavelet levels. The second one is the larger average distance between two basis 
functions and the resulting low coupling. The high achievable compression justifies the 
choice of the grid in this more generic case. 

CONCLUSION 

A hairpin filter and an edge coupled filter were investigated via a Wavelet Galerkin 
scheme. The size and complexity of these structures are well suited for a Wavelet 
analysis. Matrix sparsities of 70.7 % and 88.5 %, respectively, could be achieved by 
properly selecting the grids. The presented results confirm the typical coupling behavior 
of Wavelet basis functions. 
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ABSTRACT 

We consider volume singular integral equations which describe the problems of 
electromagnetic scattering from three-dimensional anisotropic media characterized by 
permittivity and permeability. We performed a detailed analysis of these equations and 
corresponding scattering problems, including nonclassical ones. We consider the 
equivalence of the boundary value problems for the Maxwell equations and the singular 
integral equations and formulate the corresponding theorem. We obtain the necessary 
and sufficient conditions that provide the fulfillment of the Noether property of the 
operator and sufficient conditions for the Fredholm property. We prove the existence 
and uniqueness theorems for a very wide family scattering problems. 

INTRODUCTION 

In this paper we consider the scattering of electromagnetic waves from three- 
dimensional anisotropic media characterized by complex permittivity and permeability. 
Such problems are great importance in many theoretical and applied fields of science 
and technology. From the mathematical viewpoint, correct formulations of the problem 
and analysis of its solvability and uniqueness of solution constitute the most significant 
topics. For many scattering problems, the existence and uniqueness of solution are 
proved by reducing to Fredholm integral equations of the second kind. The most 
complete analysis of such problems is presented in classical monograph [1] where two 
families of problems are considered: the scatterer is characterized by (i) a scalar 
permittivity function which is differentiable everywhere, including the interfaces or (ii) 
the medium has a constant scalar permittivity (the boundary of the scatterer is a smooth 
surface). Many important scattering problems do not belong to these families,for 
example, in the case of anisotropic structures, media with variable permittivity and 
permeability that are discontinuous on the boundary, and so on. However, in the general 
formulation, a reduction of the scattering problems to Fredholm integral equations was 
unsuccessful, and during a long period this circumstance hampered their detailed study. 
Today, the most complete description of the considered family of scattering problems 
are performed in terms of volume singular integral equations with respect to the 
electromagnetic field vectors in the domain occupied by the inhomogeneity. These 
equations enable one to simulate inhomogeneous and anisotropic media in a rather 
simple manner. In addition, they can be used for investigating various practically 
important scattering problems when the classical setting (a boundary value problem for 
the Maxwell equations) is either impossible or very difficult. Note, in particular, the 
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scattering in structures with sharp edges, for example, when the body has the form of a 
homogeneous dielectric parallelepiped. However, these equations do not belong to the 
classical Frcdhclrn equations, which may explain the delay in their studies. Using the 
theory of multidimensional singular integral equations [2] we performed a detailed 
analysis of these equations and corresponding scattering problems, including 
nonclassical ones [4-9]. In this paper we present basic results of the constructed theory. 

INTEGRAL EQUATIONS AND SCATTERING PROBLEMS 

Consider the following family of problems of electromagnetics. Assume that a medium 
filling a domain Q bounded by surface S is characterized by the permittivity, e, and 
permeability, |i dyads, and their components are functions of coordinates. Outside 
domain Q, the parameters of the medium are constant and the medium is isotropic, i.e., 

£ =£0= const and u = u0 = const. It is necessary to determine the electromagnetic 

field excited in the medium by an external field with the time dependence exp(-/co/); 

the field may be excited both by a plane wave and extraneous currents JI; and jH. Let 

us present the corresponding mathematical formulation: find vector-functions E and 

H that satisfy the Maxwell equations 
rot// = -i(o£E + ji;, 

limr(——-/&0\|/) = 0, 

rot E = ia>(\. H - j H (l) 

everywhere except maybe S, the continuity of the tangential field components on S, 
and the radiation condition at infinity 

£0=cö7*^iv (2) 

Here Ime0 >0, Imu0 >0, and ImA:0 >0. 

If the electromagnetic field is excited by plane wave (f °,7/°)> then scattered field 

(Es, Hs), where £S = E - f° and Jjs = H - //°, must satisfy radiation conditions (2). 
Using the polarizattion currents and known formulas for the vector potentials, one can 

obtain two coupled volume singular integral equations with respect to fields E and H 

E(x) = E\X) -i^- I)E(x) + kl J[^_ I]E(y)G(r)dy 
3        Sf 

+ 

+v.p.\\[^-i]E(y),grad 
t)\     Eo 

grad G{r) dy + +/cou0 j [—-/]//(y),gra</ G(r)dy,   (3) 

I[M-/]7/(x) + ^f[i^-n^ 
3    u0 J    Ho 

H{x) = Jj\x)-L[l^±l-i]H(x) + k^[^^-I]H(y)G(r)dy + 

Kim; UKHAIM;. IX-TII INTERNATIONAL CONIT.RF.NCK ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



MMET* 02 PROCEEDINGS !71 

G(r)dy, (4) £(»    hTT [^--I]E(y),grad 
£o 

- - /]#(», grad grad G(r) dy —HBE0 J 
) Q ■ 

Here £°(x), #°(x) is either the field of the incident plane wave or the field generated 

by extraneous currents j°E and j°H in the homogeneous space with parameters s0 and 

|i0; v.p. J denotes a singular integral, for which an infinietly small ball occupying the 

vicinity of the point x=y is extracted from the domain of integration; (*,*) and [*,*] 
denote the inner and vector products of three-dimensional vectors; G is the Green 
function of the Helmholtz equation, 

expQV) 
(jr= — 9 

4K r 
and r=\x-y\ is the distance between points x and y. 
We will consider equations (3) and (4) as a system of integral equations with respect to 
functions E and H in a domain Q. The electromagnetic field outside Q is represented 

through the values of E and H in this domain by formulas (3) and (4), where, 
obviously, singular integrals should be considered as proper ones. 
Consider the equivalence of Maxwell equations (1) and system of integral equations 
(3)_(4). We will assume that the electromagnetic field satisfies the Maxwell equations 
in the usual sense, i.e., pointwise, except maybe surface S on which the conditions of 
continuity of the tangential field components are imposed. Such solutions of the initial 
problem will be called classical solutions. Let us specify first jhe minimum possible 

smoothness of the electromagnetic field. Inside domain Q, rotE and rotH are well- 

defined operations for vector-functions E and H. Therefore, one may assume that E 
and H are at least differentiable functions of coordinates. However, this is not exactly 
true. Using the definition of rotation based on the Stokes formula, one can show that 
vector-function A(x) for which rot A is a well-defined operation can be represented as 

A{x) = 4)(x) + gradq>(x), 

where ^0(x) H cp(x) are differentiable functions of coordinatrs. Thus, the set of vector- 

functions that meet the conditions of existance of the classical solution to the scattering 
problem is wider than the set of differentiable functions. We have proved the following 
equivalence theorem. 
Theorem I. Assume that the given permittivity and permeability dyads s and ji differ 

from constant dyads ej and \ij only in a finite domain Q bounded by regular 

surface S. In Q, the components of £ and ft. are Holder-continuous functions. Then 
any solution of system of integral equations (3) and (4) which is Holder-continuous in 
Q is a classical solution of the initial problem; i.e., it satisfies the Maxwell equations, 
the condition of continuity of the tangential field components on S, and the radiation 
condition. Conversely, any solution satisfying (1), (2) and the condition of continuity of 
the tangential field components on S is a solution of (3) and (4). 
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Let us consider the properties of system singular integral equations (3) and (4). First, we 
have to specify appropriate functional spaces. Generally speaking, one can choose 
different spaces, and the choice governs the results of analysis. It is reasonable to apply 
the following criterion: functional spaces must be sufficiently wide, providing the 
consideration of all physically admissible solutions; however, the space should not be 
too wide, because in this case the uniqueness may be violated due to the presence of 
solutions that have no physical meaning. The Poynting theorem, which is one of the 
most general statements in electromagnetics, guarantess the conservation of energy. 
This theorem employs integrals involving squared magnitudes of fields. Therefore, one 
may assume that the space of square integrable vector-functions i2(Q) is the most 

appropriate from the physical viewpoint as applied to the analysis of system of integral 
equations (3) and (4). 
Equations (3) and (4) can be classified as multidimensional singular integral equations, 
they are studied insufficiently as compared with Fredholm equations. Therefore, below, 
we impose several restrictions caused by this circumstance. We have constructed 
explicitely the matrix symbol of the singular operator produced by (3) and (4) and 
proved the following statement. 
Theorem 2. Assume that given dyads e(x) and £(x) are continuous everywhere in Rl. 
Then the operator of system (3) and (4) is a Noether operator in 12(Q) if and only if the 

condition 

(e(xjn,n)*0,   (£(x)«,«) *0, (5) 

is satisfied, where n is an arbitrary nonzero vector with real components and x e Q. 
Note that when the scattering from an isotropic medium is considered, conditions (5) 
take the form 

e(x)*0,    u(x)*0. 

Theorem 2 shows that when conditions (5) are violated, the considered operators fail to 
be the Noether operators; in this case, the domain of images is not closed and the 
corresponding operator equations are not correctly solvable. In an isotropic medium, 
plasma resonances may occur when the permittivity vanishes. For anisotropic plasma, 
one can show that when condition (5) is not valid, plasma resonances also exist. 
Naturally, the question arises why the physical problem fails to be correct when 
conditions (5) are violated. One may assume that in these cases a transition from the 
nonstationary Maxwell equations to stationary equations cannot be justified because the 
medium contains the points at which the onset of time-harmonic oscillations 
substantially depends on initial conditions. 
One may consider the singular integral operator of system (3) and (4) as a 
pseudodifferential operator. The condition that the matrix symbol is invertible means 
that the operator is elliptic. Consider the agreement of this condition with the local 
ellipticity of Maxwell equations (1). It can be shown that if dyads e(x) and (i(x) are 
twice differentiable functions of coordinates in the whole space and conditions (5) are 
valid, then the Maxwell equations are transformed to a system of differential equations 
with an elliptic operator. Note that conditions that provide the ellipticity of the Maxwell 
equations and the singular integral operator in (3) and (4) coincide; however, for the 
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case of differential equations, a greater smoothness of material parameters is required. 
Using the Fredholm conditions for system of singular integral equations [2] and 
properties of the matrix symbol of operator produced by (3) and (4), we prove the 
following statement. _ 
Theorem 3. The operator of system of (3) and (4) is a Fredholm operator in i2(Q) if 

the conditions of Theorem 2 are satisfied and 
lm(e(x)n,n)>0, 

lm(ß(x)n,ri)>0, (6) 

where n is an arbitrary nonzero vector and xeQ. 
For an isotropic medium, conditions (6) reduce to 

lms(x)>0,   lm|a(x)>0. 

Conditions (6) are satisfied for the overwhelming majority of actual physical media. 
The physical meaning of these conditions can be formulated as follows: the matter in 
domain Q cannot generate electromagnetic energy. 
The following assertion was proved with the use of the theorem on the smoothness of 
singular integrals [2]. 
Theorem 4. Let the components of given dyads e(x) and fl(x) be Holder-continuous 

functions everywhere in R3 and satisfy conditions (5). Assume that the electromagnetic 

field is excited either by a plane wave or by Holder-continuous currents jE and JH 

localized in a finite spatial domain. Then any solution to (4) and (5) belonging to f2{Q) 

satisfies the Maxwell equations (1) and the radiation condition (2). 
Using Theorems 2-A, integral relationships of the Poynting theorem, and the results of 
the theory of pseudodifferentional operators [3], one can prove the existence and 
uniqueness of the classical solution to the scattering problem. 
Theorem 5. Let dyads e(x) and jl(x) be Holder-continuous functions everywhere in 

R3 satisfying conditions (5) and (6) and the source of electromagnetic field obey the 
conditions of Theorem 4. Assume that one of the two conditions is met: (i) at least one 
of the inequalities in (6) is strict; (ii) s(x)  and fi(x) are three times continuously 

differentiable functions of coordinates in R3. Then there exists the unique solution to 
the Maxwell equations (1) that satisfies the radiation condition (2). 
According to the physical meaning of condition (i), the medium in domain Q is lossy; 
however, loss may be arbitrarily small. Condition (ii) can be satisfied for a lossless 
medium; in that case, the smoothness of dyads s(x) and ji(x) should be increased. 
Now, let us formulate the theorem concerning the existence and uniqueness of the 
solution to singular integral equations (3) and (4). 
Theorem 6. Let dyads e(x) and |i(x) satisfy the conditions of Theorem 5. Then there 
exists the unique solution of singular integral equations (3) and (4) in f2{Q) for 

arbitrary   (£°,^°)e£2(0.   If the source  of the  electromagnetic field obeys the 

conditions of Theorem 4, then this solution is the classical solution to the scattering 
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problem; i.e., it satisfies Maxwell equations pointwise. 
Consider system of integral equations (3) and (4) imposing minimal restrictions on 
dyads a (x) and jl(x), namely, assume that their components are bounded functions of 
coordinates in domain Q. Using the conditions that ensure the convergence of the 
minimal residual method, we have proved the following statement. 
Theorem 7. Assume that dyads e(x) and fi(x) are bounded functions in domain Q 

A A 

and Hermitian dyads (e -£*-2/Im£0/)/(2i) and (fi-|i -2/Imu0/)/(2/) are positive 

definite at each point of Q. Then there exists the unique solution to (3) and (4) in 

UQ)- 
In the isotropic case, the conditions of the theorem mean that 

Ime(x)>Im£0,   Imu(x)>Imu0 

Theorem 7 does not require the smoothness of e(x) and (I(x). Obviously, it is assumed 
that in this case, the solutions satisfy the Maxwell equations in Q in the sence of 
distributions. This theorem specifies the conditions that guarantee the unique solvability 
for a very wide family of scattering problems, including the classical scattering 
problems (see the beginning of this paper) and nonclassical scattering problems when 
material parameters have discontinuities on surfaces with breaks (for example, when the 
body has the form of a homogeneous dielectric parallelepiped) or are continuous 
functions of coordinates that do not possess any smoothness. 
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ABSTRACT 

An overview of the electromagnetic properties of complex media and metamaterials, 
particularly metamaterials with negative real permittivity and permeability, will be 
given and various ideas for potential applications of these materials will be presented. 

MOTIVATION AND CONCEPT 

The trends in the use of wireless PCS and mobile services, multimedia wireless 
networking, distributed sensing, and the Internet have increased the needs and 
challenges in innovation of multifunctional antennas and apertures, specialized 
materials, smart skins and devices, and other novel elements and components in 
transmission and reception of information, and signal transduction over various bands of 
electromagnetic spectrum. Among many elements contributing to performance 
enhancement of these subsystems, electromagnetic materials play a particularly 
important role. Study of complex and novel electromagnetic materials and surfaces has 
now gained considerable interest in part due to the possibility for micro- and 
nanofabrication of engineered materials, known also as metamaterials, exhibiting new, 
physically realizable properties not readily available in natural materials, especially in 
regards to scattering, radiation, and guidance of EM waves. These engineered 
metamaterials will offer creative solutions in the design of future EM devices such as 
multifunctional antennas and embedded sensors suitable for various applications in 
wireless, RF and optical systems. 

In the past two decades, we have been conducting research on theoretical analysis and 
electromagnetic modelling of wave interaction with complex "unusual" EM materials. 
(For a sample of our work, see [1]-[13]) These media, which can in principle be 
conceptualized by embedding constituents/inclusions with novel geometrical shapes and 
forms in some host media or host surfaces, possess exciting electromagnetic properties 
and response functions with new applications in the design of devices and components. 
In our theoretical work, we have introduced and studied novel ideas for some exotic 
complex electromagnetic media, such as chiral media for microwave regimes (see e.g., 
[l]-[9]), local and non-local omega media [10], [11], wire media [12], [13], and some 
concepts for high-impedance ground planes (HIGP).   We have also been interested in 
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exploring exciting potential applications of metamaterials with negative refractive 
index, in wireless components and elements. 

The study of electromagnetic properties of complex media has been the subject of 
research interests for many research groups in the past several decades [13]-[27]. 
Various types of electromagnetic complex media, such as chiral materials, omega 
media, bianisotropic media, local and nonlocal media to name a few, have been studied. 
Recently, the idea of complex materials in which both permittivity and permeability 
possess negative real values at certain frequencies has received considerable attention 
[28]-[43]. In 1968, Veselago theoretically investigated plane wave propagation in a 
material whose permittivity and permeability were assumed to be simultaneously 
negative [33]. His theoretical study showed that for a monochromatic uniform plane 
wave in such a medium the direction of the Poynting vector is antiparallel to the 
direction of phase velocity, contrary to the case of plane wave propagation in 
conventional simple media. Recently, Smith et al. constructed such a composite 
medium for the microwave regime, and demonstrated experimentally the presence of 
anomalous refraction in this medium [28], [29], [31], [32]. It is also worth noting that 
previous theoretical study of electromagnetic wave interaction with omega media 
reveals the possibility of having negative permittivity and permeability in omega media 
for certain range of frequencies [11]. For metamaterials with negative permittivity and 
permeability, several names and terminologies have been suggested, such as "left- 
handed" media [28]-[33], media with negative refractive index [28]-[32], "backward 
media" (BW media) [34], "double negative (DNG)" metamaterials [35], "negative- 
index media (NIM) [42], to name a few. 

The anomalous refraction at the boundary between such a medium and a conventional 
medium, and the fact that for a time-harmonic monochromatic plane wave the direction 
of the Poynting vector is antiparallel to the direction of phase velocity, can lead to 
exciting features that can be advantageous in design of novel devices and components. 
For instance, we have shown theoretically that a slab of metamaterial having negative 
permittivity and permeability can function as a phase compensator/conjugator [38]. 
Such a conceptual structure is sketched in Fig. 1. A two-layer structure formed by a 
lossless metamaterial with negative permittivity and permeability (a "double-negative 
(DNG) medium) and a conventional lossless dielectric material with positive 
permittitvity and permeability (which can be termed as a "double-positive (DPS)" 
medium) is shown in Fig. 1. In the DPS layer, the direction of Poynting vector (Si) is 
parallel with the direction of phase velocity or wave vector (k\), whereas in the DNG 
layer these two directions are antiparallel. The DNG layer can play the role of a phase 
compensator. With proper choice of the ratio of d\ and dj, not the sum of of dj and d2, 
one can have the phase of the wave at the left (entrance) interface to be the same as the 
phase at the right (exit) interface, essentially with no constraint on the total thickness of 
the structure [38]. 

As another potential application of this material, we recently introduced the idea of 
compact subwavelength cavity resonators in which a combination of a slab of 
conventional material and a slab of metamaterial with negative permittivity and 
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permeability is inserted [38]. Figure 2 shows the geometry of the problem for such a 
one-dimensional (1-D) cavity resonator. Our analysis, described in [38], has shown that 
when the cavity is filled with two layers of materials; the first layer assumed to be a 
lossless conventional material, and the second layer is taken to be the metamaterial with 
negative permittivity and permeability, the non-trivial one-dimensional solutions for 
such a cavity, in principle, depend on the ratio of thicknesses of the two layers, not the 

So 

di d2 

o>0 

warn 

s< o 
u< 0. 

:miG$ 

Fig. 1. Sketch of a two-layer structure as a phase compensator. This paired structure is 
conceptually formed by a lossless metamaterial with negative permittivity and permeability 
(a "double-negative (DNG) medium) and a conventional lossless dielectric material with 
positive permittitvity and permeability (a "double-positive (DPS)" medium). 

di       d2 

a>0 *a<[0.-. 

H2< 0. 

Fig. 2. An idea for a compact, sub-wavelength, thin cavity resonator using a paired DPS-DNG layers 
shown in Fig. 1. The two-layer structure is sandwiched between the two reflectors. Our analysis in [38] 
shows that with the proper choice of ratio of d\ over d2, one can have a resonant cavity in which the ratio 

of d\ and d2 is the main constraint, not the sum of thicknesses, d\+d2 
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sum of thicknesses. In other words, the cavity can conceptually be thin and can still be 
resonant, as long as the ratio of thicknesses is satisfied the special dispersion relation. 
This can, in principle, provide possibility for having sub-wavelength, thin, compact 
cavity resonators. Such sub-wavelength cavity resonators can lead to very interesting 
designs for various compact, sub-wavelength devices and components. 

The problems of radiation, scattering, and guidance of electromagnetic waves in 
metamaterials with negative permittivity and permeability, and in media in which the 
combined paired layers of such media together with the conventional media are present, 
can possess very interesting features leading to various ideas for future potential 
applications. We have introduced various conceptual ideas for applications of these 
materials. In this talk, we will first present a brief overview of electromagnetic 
properties of complex media and metamaterials, particularly the media with negative 
permittivity and permeability, and we will then discuss some of our ideas for potential 
applications of these interesting materials. 
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ABSTRACT 

The simultaneous solution of the equations of near-field thermal emission formation and 
thermal conductivity has been obtained and the expression related the temperature 
profile of half-space with the measured thermal radio emission (effective brightness 
temperature) have been obtained. Example of its application in the process of water 
surface heating the water is presented. 

EVOLUTION EQUATION AND RELATED INVERSE PROBLEMS 

In the paper [1], on the basis of the simultaneous solution of the equations of radiation 
transfer and thermal conductivity, the expressions connecting the temperature profile 
and heat flux dynamics of half-space with the brightness temperature of its thermal 
radio emission have been obtained. Using these expressions, various methods of 
radiometry monitoring of the temperature and heat dynamics of water, soils and 
atmosphere have been developed. 
In the case of measurements of the thermal radio emission in the near-field range the 
formation of the received emission is different. This difference is related to a specific 
character of the distribution of the quasistationary field component near a radiating 
surface. The effective depth of the received emission formation appears to be less than 
the skin-layer depth and depends on the size of the receiver antenna D and its height 
above the medium surface, h. This dependence has been obtained from measurements of 
the emission of a temperature stratified water medium using a specially developed 
electrically small antenna [2]. It could be considered as a new source of information 
about the depth temperature distribution [3]. According to [2], the effective brightness 
temperature TB of the emission received at h > 0 above the homogeneous half-space 
z < 0 can be written as: 

TB(D,h) = [j(z)[\\d2KF{K, D,h)e^}= 

(1) 
j\d2KF](K,D)eHK)z + \\d2KF2(K,D,h)er(K): = f T& J-00 

K<k„ K>ka 

dz 

where T(z) is the temperature depth profile, F, F\, F2, yi, yi are functions determined in 
[3]. One can see that the received signal can be expressed in (1) as a sum of the wave 
(the first term) and the quasistationary (the second term) components. The temperature 

1 This work is supported by Russian Foundation for Basic Research, grant No. 01-02-16432. 
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profile T{z,t) in a medium can be also expressed as the solution of the thermal 
conductivity equation. In the absence of sources at the boundary condition T(0,0 = T0(0 
the temperature profile is determined as 

T(z,t) = f T0(T) 
J-co ^Am {t-t) 

exp(- 
Aa2(t^x) 

)dx, (2) 

where a2 is the thermal diffusivity coefficient. At the boundary condition dT(0,t)/dz = 
-(l/£)Jo(0 the corresponding solution is 

T(z,t)=[j0(x) 
-1 

r— exp(-   - 
kJnit-T) Aa2(t-x) 

exp(- )dx. (3) 

where J0(t) is the heat flux through surface z = 0 and k is the thermal conductivity 
coefficient. Substituting (2) and (3) into (1) in the same way as it was done in [1] for 
far-field measurements and carrying out the necessary transformations, we have the 
evolution equations for measured effective radiobrightness: 

TH{t)=[drT0{r)\\d2K{F{K,D)[    ya     -{yaferfciya-JF^ry^^]},    (4) 
7t(t - r) 

Tfi(t) = -ldTJ0(T)jjd2K[F(K,D)(ya21 k)erfc{ya4T^)e^f^] (5) 

These equations can be used to solve correspondence inverse problems, i.e. to obtain 
boundary conditions To(t) and ./o(0 using measurements of TB(0- It is possible to obtain 
an exact solution of (4) and (5), and, hence, an exact solution of the problem of 
temperature profile retrieval as it was done for the case of far-field measurements [1]. 
However, there is a more straightforward way to solve this inverse problem. It is 
possible to use the mean value theorem and the condition of the unity normalization of 
the kernel to obtain from (1) the same equation as for far-field measurements: 

TH(D,h)= f T(z)r(D,h)erW,):dz, (6) 

where f (D, h) is related with the value of the effective depth of the received near-field 

thermal emission introduced in [2,3] as dcff{D,h) = \lf. So, using the result obtained 

in [1], we have the expression for the subsurface temperature profile: 

nzj)=ljR{T)e-[z /4a (/-r)] 
1 (      z n -(-■■,- -\)-z 
Y 2a2(t-T) 

dx 

Am2{t-xy 
(7) 
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NEAR-FIELD RADIOMETRY OF WATER TEMPERATURE DYNAMICS 

In this study we present our results on retrieval of a water subsurface temperature 
profile using the contact (h = 0) measured dependence TB(f) at the antenna size 
D= 1 cm in (7) in the process of water surface heating (with the help of a wire heater) 
described in [3]. The results of radiobrightness measurements (for two different 
antennas with the sizes D = 1 cm and D = 4 cm) are shown in Fig.l along with contact 
measured temperature dynamics at the five different depth levels. In Fig.4 one can see 
that the results of the temperature profiles retrieval are in a good agreement with the 
contact measured profiles. It is possible to see in Fig.l the dependence of the 
radiobrightness on the size of antenna, which is related to the near-field effect, and this 
dependence is also used [2,3] for temperature profile retrieval. It should be mentioned 
that the value of D in (1) is determined in practice by the measured value of den, so the 
more simple equation (6) could be used instead of (1) in any of possible applications. 
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Fig.l. Measurements of the brightness temperature Fl§'2- Proflles T& retrieved 'n ^'interval 10 
dynamics  -  solid   lines;   contact  measurements minutes  by  measurements  of Tb(t,D=l   cm)  - 
temperature dynamics at different levels inside the J^J™f; profileS T(z) measured b^ contact 

water - dashed lines. thermometer. 

CONCLUSION 

Expressions are derived that relate the half-space temperature profile and the heat flux 
with the brightness temperature evolution for the case of near-field measurements. This 
approach gives a possibility to retrieve subsurface temperature profiles by measured 
dynamics of the radiobrightness in the same way as by the far-field radiometry 
measurements. 
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TIME-DOMAIN ELECTROMAGNETIC FIELDS IN A 
RESONATOR WITH DISPERSIVE MEDIUM. 

M. S. Antyufeyeva, O. A. Tretyakov. 

Kharkov National University, 4 Svobody sq., Kharkov, 61077, Ukraine. 
E-mail: Maria.S.Antyufeyeva@univer.kharkov.ua. 

ABSTRACT 

The time domain electromagnetic field evolution in the cavity filled with a 
homogeneous stationary but dispersive medium is investigated using the Evolutionary 
Approach to Electromagnetics. The kernel of the constitutive relation integral part is 
chosen as the double-exponential function for dispersive medium description. The 
solutions for the free and forced oscillations are obtained in analytical form. 

INTRODUCTION 

Recently, great attention has been paid to the questions which are concerned with 
nonstationary, dispersive, heterogeneous nonlinear, media. One of the approaches, 
allowing to consider such problems, is Evolutionary Approach to Electromagnetics 
which is proposed in [1], [2]. Its advantage lies in the separation of spatial and 
temporary parts of the problem. In the frames of the evolutionary approach, the 
electromagnetic field strengths are presented in the form of expansions on eigen vectors 
of the self-adjoint operator, which is separated from Maxwell equations and includes 
corresponding boundary conditions. For the cavity with singly connected closed 
surface, decompositions of electromagnetic field strength are as follows 

°C CO CO cc 

£(r,0 = X^(0E„(r)-E«a(0V0)a(r),/f(r,/) = X^(0Hn(r)-£iß(/)VTß(r).(l) 
"=1 o=l n=\ ß=l 

Eigen vectors for the solenoidal part of the problem E„(r), H„(r) and the irrotational 

part of the problem <E>a(r), ^p(r) satisfy corresponding boundary eigenvalue problem 

for Laplasian 

fro/H„(r) = -ik,,e0E„(r),    (n0 • H„(r)^ = 0 

{ro/En(r) = z*„u0H„(r),    [n0 xE„(r)]   = 0 ' 

(A + T!2)<Da(r),   <Da(r)|   =0; (A + vj|)¥p(r),   -^-»Fp(r) 
on0 

= 0. 
s 

Evolution equations for electromagnetic field oscillations in the cavity filled with a 
dispersive medium. 

Evolution equations with initial conditions for arbitrary medium are obtained by 
projection Maxwell equations onto the sets of eigen vectors 

jen(t) + iknh,,{t) = -m-l; (^hE) + J(EH)\K(r)dV,     e„(t)l0 = e°;     (2) dt "   '      " "w      Jnyj   V 
v dt 
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d *      -       >h'~    X-(^-M{H)\-Kir)dV jjK(t) + iknen(t) = -jh„(t) 
at V>\dt j 

d_ 

dt 
a« (0 = < (0 " h (^TP& + J&^ ] • V< (r)dV 

V J\ dt dt 

jtb,(t) = -4(t)-Uj-M(H)jv%(r)dV, 

187 

K(t^=Kl    (3) 

fl«(0L=«a°;   (4) 

¥»L=bl   (5) 

The cavity filling is the nonmagnetic (u=l) dispersive medium with dissipation, which 
is specified by the following material constitutive relations 

00 

P(E) = ^%o\Xe^)E(r,t-x)dx,   M(H) = H(r,t),   J(E,H) = oE(r,t). 
o 

Xe(t) is the susceptibility function, which is defined by the double-exponential function 

%e(x) = y(e'pyx -e~lm) and satisfies 8-function properties when p = ~^ and y->co. 

With this determination of medium conditions, evolutionary equations are transformed 
into the following form 

d —en{t) +—e„[t) + iK„nH(i) = -j„{i)-j,0\xew— 
dt F- - «' 

d_ 

dt 

^W-CöVILM^*. 

-e„(0+-«.(0+*A(')=-y:(0-x.]x.W^4-^dc- 

:^(0 + ^c(,(0 = -7»(0 

<fr 

e„(OL=e°;     (6) 

^(0L=^°;  (7) 

«.(0L=*°;   (8) 

|-^(0 = -/J(0; voL=*?- (9) 

The evolutionary equation system has analytical solutions, which are obtained by the 
successive approximations method. 

ANALYTICAL SOLUTIONS FOR FREE AND FORCED OSCILLATIONS IN A 
CAVITY 

If the impressed forces for irrotational modes are absent, then corresponding expansion 
coefficients are easily found as 

bp (t) = Z>p = const, 

and 

«a(0 = «aeXP 
a 

s 1-Xo 
y\q-p) 

o V O?y-a/£0)(tfY-a/e0) 

For finding the solenoidal part of the field the evolutionary equations (6), (7) have been 
solved simultaneously in the following form 

\K(?)j 

= e~p' 
e®cos(ot-ih®sm(ot 

\h® cosmt - ie\ sin oof 
-J< ,-p(W) 

fiiOcos^t-O-ykOsmatt-t') 

[jh
n (T) cosa(t - 0 - ije„ (/') sine** -1') 

dt'- 
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den{t'-x) 
X0cosco(f-/')j"xeOO 

o 
/      ,s f    , x de At'-x) , 

-/XQsinco(/-/')Jxe(x)    "V       }dx 

dt' 
*', 

where p = -—, to = Jk] - p2 . 

For the free oscillations with nonzero initial condition e°, unknown time coefficients 
are found in terms of elementary functions 

en (t) = e°n exp[- (p + 8,cosin £)/]cos[(l - 8, cos^)co t] 

hn{t) = -iele 0   -p/ sinco? +—(l —5, cos£, 
-8.cofsinl;   . 

sin[(l-8,cos^)co/-£,-^]-sin[cor-^-^] 

For forced field determination, functions of impressed forces are chosen as jh
n (0 - 0, 

but fn(t) = Jn cosQ/, and co-Q = Aco is much less then co or Q. The expansion time 

coefficients in this case can be written in the following form 
_ Jn       sin(f2?-<p-ij/) 

e„(0 
2R^j]-32cos((? + e) + 82

2 

J'      -(p+5.cosing r  e        ' 
2R 

{sin[(l -8, cos^)to? -(p]+ 82 sin[(l -5, cos^)cor - 2cp-G]}, 

*"=& 
COS (Qt-<p)-e p'cos(cor 

\   82 (COS(Q; - 2(p - v|/ - 9) - e pl cos(co? - 2<p - \|/ - 8)) 

^l-82cos((p + G) + 82 

+ ^^^P'(]-5icos4"5,ra'SinHcos[(l-8,cos^-cp-^c] + 2#G 

+ 52cos[(l-8,cos^)cor-2(p-G-^-(;])-cos(co/-(p-^-(;)-82cos(a)r-2(p-G-£,-(;) } 
where the coefficients F,   G,   8,,   82,   !;,   9,   £ depend on parameter y. 

In the course of decision the value ranges of x0 and y are determined, for which the 
obtained solutions are valid. 
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ENERGY TRANSFORMATION OF A TRANSIENT WAVE ON 
RADIATING APERTURE 

Alexander N. Dumin, Victor A. Katrich 
Kharkov National University, Svobody Sq.4., Kharkov, 61077, Ukraine, 

e-mail: Alexander.N.Dumin@univer.kharkov.ua 

ABSTRACT 
Energy transformation of a transient TEM-wave in coaxial waveguide into energy of 
reflected and radiated waves on coaxial aperture is investigated. The radiation problem 
is solved by means of Modal Basis Method in time domain. The analytical expressions 
for amplitudes of fields radiated into free space and reflected inside the waveguide are 
obtained for step-wise time dependence of amplitude of exciting TEM-wave. 
Time dependencies of instant power of the electromagnetic waves in waveguide and 
free space are obtained. The analysis of the influence of the problem geometry and 
exciting signal parameters on effectiveness of radiation is carried out. 

INTRODUCTION 
The Modal Basis Method is a variety of Method of Incomplete Separation of Variables. 
It permits to transform the transient three-dimensional electromagnetic radiation 
problem into one-dimensional problem for two independent evolutionary equations of 
Klein-Gordon type describing propagation TE- and TM-waves in free space [1]. 
Utilizing the separation of variables method for Klein-Gordon equation on the base of 
group theory [2], one can get a general solution of these equations without employing 
Fourier transform. 
The purpose of this work is to investigate the transformation of the energy of the 
incident wave of arbitrary time dependence on the radiating aperture on the base of the 
solution of the problem for stepwise time dependence of the incident wave [3]. 

THE STATEMENT OF THE PROBLEM 
Incident TEM-wave with step-wise time dependence and unit stream of power density 
propagates in the semi-infinite coaxial waveguide with inner radius b and outer radius a. 
On the open end of the waveguide with infinite flange in z = 0 the wave will be 

partially reflected, radiated and converted into the 
other modes of the coaxial waveguide (see Figure 

1). 
The electromagnetic field in the waveguide can 
be represented as an infinite sum of modes. Also 
the field in free halfspace is presented in terms of 
the Modal Basis [1]. Using general solution of 
Klein-Gordon equation [2] and mode matching 
technique analytical expressions for the radiated 
field and the field of reflected TEM-wave in the 
coaxial waveguide are obtained. The solution of 
the problem for the case of arbitrary time 
dependence one can receive by Duhamel's 

Fig. 1. Problem geometry. integral because of the problem linearity. 
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ANALYTICAL SOLUTION. 

Modal representation of the E-field in free halfspace gives the following general 
expressions [1]: 

H = \dl[z0 x Vf (P,9^)]E0|-B(Z,/^); 
dt 

£ = -{^Vf(p,^)-i?(z,^); 

E. =-K2üf£,())s(p,(p;^)5(z,r;E,), where <)>*' = J0(E,p)/v^ because of the axial symmetry 
o 

of the problem, J„,(-) - Bessel function of the first kind, B{z,t;^) is the evolutionary 

coefficient, which has the form [3] 

D = c[x0^2{cr -b2j/\n(a/b). Thus using mode matching technique one can derive the 

time dependence of reflected TEM-wave 

i   "f,toW0» 
A(ct) = - K ■{l-JQfat)-J2fyt)}. 

In a/ft'   J % 

The amplitudes of all components of radiated field and field inside waveguide and, 
consequently, energy parameters of field for arbitrary time dependence of exciting 
TEM-wave can be calculated by Duhamel's integral. 

NUMERICAL SIMULATION 
For the numerical simulation we use the same size of aperture as in [3], namely, 
a = 33.5 mm. 
a) Step signal simulation. The duration of the transient process on aperture is equal to 
2a/c because we do not take into account currents on flange. So the power of reflected 

TEM-wave must be equal to the power of incident wave after 2a/c, It is clearly seen 
from Figure 2 where the time dependence of reflected TEM-wave power is depicted. 

0,00      0,01      0,02      0,03      0,04      0,05      0,06      0,07 

Time (et), m 

Fig.2. Power of reflected TEM-wave. 

0,00     0,01      0,02     0,03     0,04     0,05     0,06     0,07 

Time (et), m 

Fig. 3. Power of E-waves in waveguide 
and in free halfspace. 

Other part of the incident wave power is transformed into the power of E-waves in 
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waveguide and free halfspace that is shown in Fig.3. Time dependence of the power of 
first seven E-modes in waveguide is depicted in Fig. 4 for b = 0.03a. To check the law 
of energy conservation we calculate the radiated energy and energy of electrostatic field 
in free halfspace and obtain, that 11% of pulse energy is converted into propagating E- 
wave in free halfspace, 16% is transformed in E-wave in waveguide and 73% of the 
energy is in electrostatic field in free halfspace. The spatial distribution of electrostatic 
field energy density is shown in Fig.5. It is seen that electrostatic field and its energy are 
concentrated near internal conductor and outer waveguide wall. 

0,00 0,01 0,02 0,03 0,04 0,05 

Time (et), m 

Fig.4. Power of first seven E-modes in 
waveguide (b = 0.03a). 
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Fig. 5. Spatial distribution of 
electrostatic field energy density. 

b) Arbitrary signal simulation. 
The     same     energy     characteristics     are 
calculated for typical form of exciting pulse 
[3].   For  this  case  the  transformation  of 
incident    wave    energy    in    E-waves    in 
waveguide   and   free   halfspace   is   more 
effective that is shown in Fig.6. where the 
relation between transformed into E-waves 
energy and energy of incident pulse for step- 
wise pulse and arbitrary 1.2 ns pulse as well 
as different b/a is depicted. 

Fig. 6. Relation between transformed into 
E-waves energy and energy of incident 
pulse for step-wise pulse and arbitrary 
1.2 ns pulse. 

CONCLUSIONS 
The energy transformation of transient TEM- 
wave on an open end of coaxial waveguide 
has been studied. The law of energy 
conservation for this problem has been 
verified. 

REFERENCES 
[1] A.N. Dumin, O.A. Tretyakov, "Radiation of Arbitrary Signals by Plane Disk", Conf. Proc. 

MMET'96, Lviv, Ukraine, pp. 248-251. 
[2] W. Miller. Symmetry and Separation of Variables. London, Addison-Wesley Publishing 

Company, 1977. 
[3] A.N. Dumin, V.A. Katrich, S.N. Pivnenko, O.A. Tretyakov, " Comparative Analysis of 

Approximate and Exact Solutions of Transient Wave Radiation Problem ", Conf. Proc. 
MMET'2000, Kharkov, Ukraine, pp. 125-127. 

KIEV, UKIWNE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



192 MMET*02 PROCEEDINGS 

EXCITATION OF A SLOTTED BICONE BY AN IMPULSE 
MAGNETIC DIPOLE 

Vladimir A. Doroshenko, 

Kharkov National University of Radioelectronics 
14, Lenin av., Kharkov, 61166, Ukraine 

ABSTRACT 

An analytical-numerical method for solving three-dimensional electrodynamics 
boundary problems with unclosed perfectly conducting bicone geometries is proposed. 
The method is based on using the Laplace transform, the Kontorovich- Lebedev 
transforms and the dual series regularization approach. For the alone slotted cone 
excited by an impulse dipole the analytical solution is derived. 

INTRODUCTION 

Modern practical systems those use pulses require wideband or ultrawideband antennas 
those can radiate and receive temporally specific wideband or ultrawideband pulses. 
Cones and bicones are models of wideband or ultrawideband antennas. For successful 
theoretical studying any physical process one should find it's appropriate mathematical 
model and solve the corresponding mathematical problem. The present paper is devoted 
to investigation of the model problem of exciting the bicone with periodical longitudinal 
slots by a magnetic radial dipole provided that the dipole field varies arbitrarily in time. 

STATEMENT OF THE PROBLEM AND SOLUTION METHOD 

The bicone structure  Z  under consideration consists of two semi-infinite circular 
perfectly conducting thin conesE,and  S2  with  N 

periodical   longitudinal   slots(I = I, ul2).   Cones 
have the common vertex (the center of the bicone 
surface) and axis that coincides with the OZ -axis of 
the Cartesian coordinate system (Fig. 1). We introduce 
a spherical coordinate system r,0,<p with the origin 
at the bicone center. In this coordinate system the 
cones S,and I, are defined by the equations 6 = y] 

and   6 = y2.   Furthermore,   we   use  the   following 

notation:   dK   is the slot width of the  cone   ZK, 

K = 1,2, / = In/N is the structure period. The bicone 
is excited by the magnetic radial dipole that is placed 
at the point M0 (r0,60,<p0) with the moment fhd (r,t): 

md(r,t) = erMd-S(r-r0)-f(t-t0), \er\ = \, 

S[t)-delta-function; M(l, /(/) are given and 

f(t-t0) = 0,t<t0. 

Fig. 1. Bicone structure 
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The vectors E(r,t) and H(f,t) of the desired electromagnetic field satisfy the 

Maxwell equations system with the initial conditions, the boundary conditions on the 
bicone I (the tangent component of the electric field vector vanishes on E), the 
condition of finite stored energy. The above mentioned conditions guarantee the 
uniqueness of the time-domain problem solution. The interaction of the incident field 
(the dipole field) with S results in a surface current, which in turn generates a scattered 
electromagnetic fields those are fully characterized by the scalar Debbie potential 
v,(r,f). This one satisfies the wave equation with conditions those guarantee the 

uniqueness of the second boundary problem of mathematical physics [1]. By virtue of 
the Laplace transform 

+00 

v;=v;(f,r0,t0)= \vx(r,r0,t,hYs'dt 0) 
o 

one can reduce the time-domain problem to the frequency-domain boundary problem 
for v,v. The algorithm for solving the last one with cone geometry employs the 
Kontorovich-Lebedev transform with respect to the coordinate r [2] 

v;(r,0^) = y(r,e,<p)^Xir, (2) 
o Vr 

vf {r,e,<p) = ^r\TshnTv[ ^p-dz, (3) 

and the dual series regularization approach [3,2], KiT(qr) is the Macdonald function. 

Converting vf (l)-(3) [4,2] leads to the following representation for v, (f,t) 

^,0* f H)-^7^^-iwIij_   (oM )x 
lV     '       4rr0

2 ,tV    ' I r (1/2 + m + IT) dy2 

xP^2+iI{-^sdo)Unn(0,<p)-OIT{t-to)dT, 

+00 

Z«Mi,Ä(cosöy^+-^,o<ö<r1 
«=-00 

f\ß,mP^+l(cos0) + ^nnP:;Z(-cos0)Y"'+"^^ <0<n 
/7=-00 

+ 00 

n=-oo 

2    2 2 2 

M'-'o)=   Irt-to -zf-M2+Mx{z))dz, chX{z)=aZ  ~"r  ~
r° , a = \/4^, 

U„ = 

where T(z)  is gamma-function,  P"y2+iT(y)  is the Legendre function,  TJ(X) is the 

Heaviside function,  e  and p  are electric and magnetic permittivity of the media 

respectively,   unknown   coefficients   amn,ßnm,£mn,£mn   satisfy   two   coupled linear 

algebraic equations systems, b is given. 
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ANALYTICAL SOLUTION 
Let the source be the 8- impulse magnetic radial dipole, i.e. f(t-t0) = S(t-t0). Then 

and 

f-   \        ab    ( r + rA^/  ,\>» ,ml   ,     r(\/2-m + ir) 

x^p'^(^ri)u,,,{e,<p)r;l2„(-coSea)p,l2„(chx{i-i0))dz. 
ay 2 

For alone semi-transparent cone I, (the bicone £ becomes the cone £,), when the 

= Q>0 limit lim 
</,//->0 

1,    .   ndx  In sin- 
N 2/ _ 

exists, the potential v, (F,/) has the following form 

/-   x       abQ   ( r + r^Ä.   ,,„„„<, "f   ,     r(l/2-/H + /r) ^W™5^) 

2"i    I 2   J„,_ J r(l/2 + W + ,r)jL^     1-cosyA 
dyi 

x/^-cosfl,)   ^    w   ;-P,/2+,r(c^(/-r0))^r,        y,<6<K 

(,„)_/    v»i    c"/z;rr    r(l/2 + /r + w) 

Wr, r(l/2 + /r-m)   i-^l«»,,).^!.«,,,)' 

CONCLUSIONS 

The method for solving the time-domain electrodynamics boundary problem with the 
unclosed bicone geometry is proposed. The main idea of it is to reduce the original 
problem to the frequency-time problem and to convert the solution of the last one. The 
analytical solution is obtained for alone slotted cone that is excited by the 8- pulse 
magnetic radial dipole. 
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ABSTRACT 

The paper presents a novel design of a Ku-band (10,95...14,5 GHz) planar multilayered 
microstrip antenna using aperture-coupled stacked patch radiating elements with dual 
polarization capability. Frequency bandwidth of up to 26% (VSWR<2:1) and level of 
cross-polarization better than -30 dB have been achieved in both E- and H-planes of 
radiation pattern for the two orthogonal linear polarizations. Numerical results obtained 
by FDTD computer simulations are compared with experimentally determined 
characteristics of a manufactured antenna. 

INTRODUCTION 

Future mobile satellite telecommunication systems are expected to require wide-band 
planar phased antenna arrays with dual polarization capability. The challenging trend is 
to increase the potential data rate of communication links due to both fully using a 
broadband frequency range and polarization diversity. Many efforts have been 
dedicated by researchers to the creation of broadband low profile antenna arrays during 
the last two decades. However, at present it is considered to be very difficult to realize 
both requirements of wide frequency band and dual linear polarization capability with a 
bandwidth of above 10% and a level of cross-polarization below -30 dB in planar 
arrays. 

DESIGN OF ANTENNA SUBARRAY 

The basic design of the proposed novel multilayered dual-polarized antenna is 
explained according to Fig. 1. The integrated antenna system consists of two stacked 
aperture-coupled radiating elements and a microstrip feeding network, combining this 
radiators in terms of a two-element antenna subarray. The spacing between elements 
was chosen to be equal of 0,8 of wavelength at the center of the frequency range (12,7 
GHz). The stacked antenna structure is manufactured by using four low-loss dielectric 
layers with different thicknesses and dielectric constants. Each layer was separately 
manufactured, parameters of them are given in Table. 1. 
The composite sandwich structure assembly is situated quarter of a wavelength above 
the metallic screen at bottom side to suppress backward radiation. This distance is 
provided by special plastic holders that additionally contain rectangular plastic frames 
for making the whole assembly mechanically strong. 
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Port 2 
(Horizontal Polarization) 

b) 
Fig. 1. Geometry of proposed dual-liearly polarized multilayer microstrip 

antenna, a) Perspective view, b) Top schematic view. 

Table 1. Parameters of Layers 

Laye 
r 

Substrate 
Thickne 

ss 

£r Loss 
tangent 

A Duroid 5880 0,508 
mm 

2,2 0,0009 

B Duroid 5880 0,765 
mm 

2,2 0,0009 

C Rohacell51 
IG 

2,5 mm 1,07 0.001 

D Duroid 5880 0,25 mm 2,2 0,0009 

PREDICTED AND MEASURED CHARACTERISTICS 

For the numerical analysis of the multilayered microstrip planar structure we choose the 
FDTD method, originally proposed in [1]. This method was also used for the multi- 
parameter numerical optimization of the antenna structure geometry and its feeding 
network. Theoretical and experimental (measured using a network analyzer HP8722C) 
results of VSWR for horizontal and vertical polarization channels in the frequency 
range 10,5... 15,5 GHz are represented in Fig. 2. In Fig. 3, 4 measured and simulated 
far-zone radiation patterns for both polarization channels at the center frequency (12,7 
GHz) are presented, proving good dual linearly polarized performance with level of 
cross-polar radiation better than -30dB. 

REFERENCES 

[1]. K.S. Yee, „Numerical solution of initial boundary value problems involving 
Maxwellrs equations in isotropic media", IEEE Tram. Antenn. Propagat., vol. AP-14. 
pp.302-307, Mar. 1966. 
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Fig. 4. vertical polarization channel at 12,7 GHz: left YZ-plane; right XZ-plane. 
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ABSTRACT 

Volterra integral equations in time domain for electromagnetic fields in longitudinal 
uniform dielectric waveguides with time-varying media in a core are obtained. For a 
time jump of the core permittivity resolvent operators are constructed and appearing 
new features in the transients in comparison with an unbounded space is shown. 

INTRODUCTION 

A problem of solving the Maxwell's equations becomes especially complex when a 
medium is not only inhomogeneous but a time-varying one also. Such a situation can be 
met with a propagation of electromagnetic signals in dielectric or semiconductor 
waveguides. For solving such electromagnetic problems time-domain techniques are in 
demand and some kind of it have received increased attention in the literature. But most 
of these techniques are oriented onto numerical calculations only that make difficult an 
analysis of the phenomena. In this paper an integral equations techniques in time 
domain is elaborated that allows to take into account in one manner a complex 
combination of boundary and initial conditions with medium parameters changing in 
time. 

INTEGRAL EQUATIONS 

We consider a longitudinal uniform waveguide formed by a core medium and a 
background cladding medium. If s,., a,, are the operators for the medium inside the 

waveguide, e is the relative permittivity and a is the conductivity of the medium 
outside the waveguide then integral equations for the lateral components of the 
magnetic field satisfy the Volterra integral equation 

Fß-^ )dr+V('f \(«VvVo2^-x')Va('-''> i J        J        v 
-co     x-v(r-t') (j) 

B± 

xi—drx(er-e)dr+ii0x(ör-a)dryB1dx' 

where the characteristic function % equals unity inside the waveguide and zero outside 

of it, c is the light velocity in vacuum, v = c/Vs is the wave phase velocity in the 
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cladding (background),  /0  is the modified Bessel function,  a=—-— takes into 

account the dissipation of the cladding and x is a longitudinal coordinate. Similar form 
has the equation for the electric field 

t       x+v(t-t')   

El=F£_if^.   j   jo(°VvVo2-(*-*')Va('-',) 
'-oo      x-v(t-f) (2) 

1   .2 xj— dpt'x(sr-£) + \xQyidr(dr -<J) E±^' 

The free terms of these equations 
t      x+v(t-t') .  

VB=-- \dt<      \     dx'I0(-Jv2(t-t>)2-(x-x')2) 
'-oo      x-v(t-t') (3) 

xe-a(r-r')LiiVi5i_ 
el= -5rs + no(ö-a) 

Vc 
V1£1 

?       x+v(t-t') .  

¥E=-- Idt'     f    /0(-VvVo2-(x-x')2) 
2 v 

-00        X-v(t-t') 

xe-a(-t~t')\dvV1El+\ehdt<V1Bl~])dx' 

(4) 

are defined in the region of the core of the waveguide as well as out of it and they are 
known if the longitudinal components of the fields are known. It is worth noting that the 
expressions (1), (2) are the integral equations for the lateral components only inside the 
waveguide, where% = l. Outside of the waveguide, the lateral components are simply 
equal to the free terms,B± = ¥B ,E± = F£. In both cases the problem is a vector ID one 

in the time domain. 
To obtain the integral equations for the longitudinal components we will 

consider further a planar waveguide that allows in further comparatively simply to 
reveal the main features of the transient phenomena. In this case the problem can be 
made the 2D one and the Volterra integral equations for the longitudinal components 
take the self-consistent form: 

00      b    , a(t_n coshjapit-Q2-^-^f) 
I     14,1 I     WvV       I L* 1 ' = 

271 
Bx = B^ -— j dV fdx'jdy'e 

xQ(t-t 

' —00 —00 0 ^/vV 11\2    I 112 
■O -lr±-r± I (5) 

ii-Ü^i) J-^A-D + noCSr-o) \dt.Bl(t',r') 
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X 
271 -i     -i     0 ' ^(/-O^lri-rj.'!2 (6) 

xe(/-/'-lri-ri'l)|-^a2/.(^L-i)+n0a/,(pr-q)U(/-,r') 

where 8 is the Heaviside unit function and r_j_ = (x, v). The functions Bf ' and Ef ' 

are the solutions to the homogeneous equation, that is the field that can exist in the 
background in the absence of the core (the primary or initial fields). The problem for the 
longitudinal components is a scalar 2D or 3D one in time domain. 

The equations (5), (6), as well as the correspondent ones for the lateral 
components (1), (2), are proper integral equations only with respect to unknown fields 
in the core. Outside the core these expressions are quadrature formulas for calculation 
of the field in the cladding via the field in the core. 

The initial problem for the field in the waveguide can be solved exactly in the 
case of the 2D model of the waveguide when the core medium permittivity changes 
abruptly in time. In this case the expression for the resolvent of the integral equation for 
the longitudinal field is determined by the expression 

(xi,x)=^^e(/)e(i-/){^o(/-r,|,-/|)+ \ /       e2 2v2 
K 

(7) 

+ ^Wk(t-t\(k-jk)b + y-(-\)^y')+^Wk(t-t\(k + jk)b-y + (-\)^y')\ 
k=\ k=\ 

Here, two indexes denote regions of various influences of the waveguide walls on the 

field after the medium parameters change, the symbol jk = (l -(-1)   1/2 is introduced 

and the operator-functions are determined by the formulae 

H-iK
2m     (p2(/?) v2<p(p) + vq>2(/>) 

where cp/(p) = \jp" + Q/   , O.J = VjT, v2 = c I yje^ ■ 
The constructed resolvent allows calculation of the transformation of the initial 

eigenwave  Bf' =e'^l~ x^cosKj(_y-A/2) that existed in the waveguide until the 

moment when the permittivity in the waveguide core jumped. The field on the early 
stage of the transient when there is no influence of the waveguide walls consists of two 
waves with a new frequency v2co/vi but the remained spatial structure. Later, two new 

kinds of the waves appear. The waves with a frequency of the initial field but the new 
lateral wavenumber   K2   and the waves with the new frequency but the lateral 

wavenumber the same as the initial wave had. The both pairs of the frequency and the 
wavenumber satisfy the same dispersion equation. Besides of these waves there is a 
continuous spectrum of waves. 
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ABSTRACT 

The procedure of calculation of photonic Green's functions by using the finite- 
difference time-domain method is presented. The main steps of this procedure are 
considered and basic expressions are derived. By using these expressions the discrete 
forms of Green's functions can be derived and applied to solve the problems of 
electromagnetic wave scattering and propagation in periodical structures like photonic 
crystals. The discrete Green's functions can be also used to act as absorbing and 
dispersive boundary conditions. All these features are shown by the example of 
electromagnetic field propagation in the two-dimensional photonic crystal with defects. 

INTRODUCTION 

At present, Green's functions play a central role in the theoretical investigations of 
photonic crystal (PC) structures. Apart from the fact that Green's functions represent 
the power mathematical tool, they are the most useful for PC calculations in the view of 
description of local densities of states (DOS). They are also easily to apply within the 
main body of all time-domain methods. 
In this paper we present the finite-difference time-domain (FDTD) method for photonic 
Green's functions for light propagation in periodical structures like PC's. This method 
is based on the classical FDTD method, proposed by Yee [1]. We choose just this 
method because of its popularity among the methods for PC's calculation [2]. 
We apply this FDTD method and present results of calculation for a number of PC 
structures. These structures are one-dimensional metal-dielectric multilayer and two- 
dimensional periodical structures of dielectric (metal) rods, which have applications to 
the design of waveguides, antennas, splitters and cavities (especially PC laser cavities). 

FOURIER TRANSFORM 

In order to convert results of the FDTD calculation into frequency domain we use the 
fast Fourier transform FDTD (FFT FDTD) method [3]. But firstly, we have to make 
some preliminary steps. It is desirable to eliminate the zero frequency. It may be done 
by subtracting off the static part from the time depended fields. We also must guarantee 
the accuracy of solution of Maxwell's equations when we replace the Fourier transform 
integral to discrete sum. It may be done by adding a small positive, imaginary part 8 to 
the frequency. Mathematically, the result of these preliminary steps can be written as: 

\f{t)exp(i(Dt)dt ■=> y f(nöt)exp i(co + iö] n±- öt (1) 
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The size of imaginary part ö is determined by the total time interval over which the 
fields are integrated. And the final term in the sum must tend to zero. The latest fact is 
net important in the case of the simple FDTD method, but it is very important for 
accurate Green's functions FDTD method. 
In addition, because of the choices we have to make a correction in (1): it is necessary 
to include a half time step offset, minus for the E-field and plus for H. 

THE GREEN'S FUNCTIONS ON THE FDTD MESH 

Without going into the fundamentals of the FDTD method on account of its prevalence, 
we shall begin from the Green's functions on the FDTD mesh. As is well known [4] the 
Green's function G(r,r') is generally a two-point function, which depends on r and 

But taking into account that the FDTD method operates on space coordinates and time 
(or frequency - in the case of finite-difference frequency-domain (FDFD) method) this 
function will be three-point. In order to obtain the one-dimensional Green's function on 
the FDTD mesh (we purposely do not enter subscripts in our calculation for this case) 
we shall write the Maxwell's equations as (2). 

M 
E 

H 
= coP 

E 

H 

where M = 
0       /Vx 

-iVx      0 
and P = 

0 

0 

Wo 

(2) 

. Generally, £ and /u depend on r 

and therefore they can be written as e(r) and /u(r) correspondingly to more fully 
describe the nonlinear nature of effects, which are modeled. 
From equations (2) and (3) we can now define the six vectors, which are the main 
elements of the FDTD algorithm (their final values are the primitive integrals). They 
are: 

" E„ 
F = 

H„ 
(3) 

By using equation (3), we can write down the expression for a Green's function in the 
frequency domain on the finite-difference mesh. So we derive equation (4). 

8{r - r') 

(ü)-P'
]
M) 

G{co,r,r') = (4) 

In order to pass on into time-domain and obtain the Green's function we can use the 
Fourier transform. 

•   f,,nc' 
G(t, r, r) = —     G{co, r, /*') e\p(-io)t)da> 

Irr  «I-1» In 
(5) 

Then we can make the final step in our operations and obtain the expression for the 
discrete one-dimensional Green's function. 
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i--P~lM 

Similar procedures must be implemented to obtain the two- and the three-dimensional 
expressions to use in the full numerical modeling. 

RESULTS 

In  order to  demonstrate  the  FDTD  method  with     L/".iv   .  ~~m
r".:u 

discrete   Green's   functions  we  have  modeled  the     p; ■"." ■'" ;.-'' .   J.. 
process of the light propagation through the two-     |^-*^v-::-JK »;::-,.- 
dimensional  periodical  structure  of dielectric  rods     I       ^gg    |^_  . 
(two-dimensional PC). The results of this modeling     g^..'^:'      .'"%.'. "" 
after 1000 steps in time are presented in Fig. 1. The     Ib^^S. .;,,.■  :  ■%■." 
periodical structure is excited by a simple harmonic     fjiy"\   ^ 'r'..%\ ~".: ■ 
point source, which is situated at the left in Fig. 1     *'■*""       ...-»-... 
(white point). The discrete Green's functions here act Fig.l 
both  as  the  tool  to  define  the  characteristics  of 
electromagnetic wave and as the absorbing boundary conditions (like Berenger's PML 
[5]) to limit the calculation space for the algorithm of the FDTD method. In addition, 
using the Green's functions we can obtain more accurate numerical results and test 
these results analytically [4]. 

CONCLUSION 

Thus, we have applied the FDTD method to calculate the Green's functions in a simple 
and straightforward way. From the Green's functions a whole range of other physical 
quantities can be found such as local DOS and electromagnetic field distribution in the 
PC's. In addition, the Green's functions can be act as the well absorbent boundary 
conditions for the FDTD method. 
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ABSTRACT 

A complexity of electromagnetic signals transformed by a short sequence of cycles of 
medium parameters time changing is investigated. Dependence of the complexity on the 
modulation parameters is considered and a difference between forward and backward 
waves that are inevitable result of the medium time changing is shown. 

INTRODUCTION 

Interactions between electromagnetic pulses and semiconductor active media in 
waveguides are of significant importance in optical communication technology and 
time-domain techniques, for solving such electromagnetic problems have received 
increased attention in the literature recently. Parametric phenomena in active media are 
especially important in optoelectronic systems as they allow controlling of 
electromagnetic signals by the temporal adjustment of the medium parameters. It is 
known that a single abrupt change of medium parameters leads to changing of a pulse 
shape [1-3]. The complexity of the phenomenon arises when only a few cycles of the 
modulation are considered that happens in ultrafast optics. In this paper a change of the 
complexity of the initial electromagnetic pulse E$(t,x) with a number of modulation 

cycles is considered. In the modulation cycles the permittivity receives constant 
magnitude        e,        on       the       disturbance       intervals       of       the       cycles 

(n-\)T <t <T\+(n- 1)7\ n = l,...,N and the permittivity has constant magnitude s 

on the quiescence intervals of the cycles Tx + {n - \)T < t < nT, n = \,...,N . Here, T is 

the duration of the cycle of the parame-ters change, Tx is the duration of the disturbance 

interval of each cycle. 

TRANSFORMATION OF THE PULSE AND ITS COMPLEXITY 

Investigation of the pulse transformation is based on the Volterra integral equation 
method, which allows considering problems with arbitrary primary signal [4]. If the 
initial field has the form EQ(t,x) = f(x-vt) then the transformed field is described by 

the following expressions: on the disturbance interval of the n-th cycle,  n > 1   - 
E„ (/, x) = Ej+) (t - x I v,) + £„<"> (t + x I v,), where 
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E„M(t-x/vl) = 

205 

_ a 

En
(-\t + xlvx) = 

{a + \)F^ £^- - (a - \){n - \)T) + (a-l)/£> (-i-^- - (a +1)(« - l)r) 
a fl 

(9) 

(fl-l)F^(- 
(+) t       t + X/Vy    _fnJ_-lV„_U'n + fn + UFH (

t + X/Vl    + (a _ !)(„ _ 1)r) - (fl+ !)(«-1)7-) +(a+ l)F„l-'(- 

on the quiescent interval of the w-th cycle F„ (t, x) = Fn
i+) (t-x/v) + F„(_) (t + x/v), 

where 
F^(t-x/v) = F0(t-x/v)- 

1    «-I 

(fl + 1)^(:)(fz^+^il(,r + 7;))-C1
)(^^+—«0 

-(a-l)|C!(- 

F„(+)(f + Jc/v) = 

t-xlv    a + \ 

a 
+—(kT + Tl))-EH\(- 

t-xlv    a + \ 
■ + - 

a 

kT) 
a 

(10) 

_1    n-\ 

2a1 ^ k=0 
(«-I) ^:{( ±^ + £±V + 7;))-2£}(- t + x/v    a + l7rrA 

 + kT)\ 
a a 

'' + */v+£zV + 2;))_2&)(. t + xh + a-\       \ 

[ a a a a 

In order to estimate how complex the transformed signals are we calculated the 'finite 
statistical complexity' measure of the signals [5, 6]. This approach of estimating the 
complexity of dynamical process rests on such well-known theories as Kolmogorov- 
Chaitin algorithmic complexity and Shannon entropy. This measure of complexity 

a=1.5 N=5 NT=8 T,=0.5T quiescence 
■»1.5 N=5 NT=8 T «0.5T quiMtwnc« f_ 

Fig. 1. Transformation of the pulse on the quiescent interval when the medium change 

beginning coincides with the beginning of the pulse, a = yjs I8, . 

shows how much information is stored in the signal.    It also indicates how much 
information is needed to predict the next value of the signal if we know all the values up 
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to some moment in time. The algorithm of computing the finite statistical complexity 
follows the method described in [7]. 
Dependence a biyimi shape and its complexity on the number of modulation cycled is 
shown in Fig.  1, 2. The complexity increases with the number of partitions and 
asymptotical behaviour at infinite number of partitions has a binary logarithm character 
[8]. 

■ I 
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Fig. 2. Transformation of the pulse on the disturbed interval when the medium change 
beginning coincides with the pulse maximum. 

CONCLUSION 

Investigations show a strong transformation of the electromagnetic signal by only a 
short sequence of modulation cycles. Overall the complexity of the signals increases 
with the number of cycles. However, in those cases when the signals get narrower 
keeping their shape the complexity may decrease. The backward signals can be either 
more complex than the forward ones or less complex. 
In many cases the calculated complexity allows to quantitatively estimate the relative 
informational contents of the signals. This is especially true in the situations when it is 
impossible to judge by eye either when the signals have simple and very similar shape 
or they are too complex to compare. 
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ABSTRACT 
Investigations of an electromagnetic field in plasma resonator that appears in a 
waveguide at some moment of time is implemented using the Volterra integral equation 
approach. 

INTRODUCTION 
Time domain techniques for solving the electromagnetic problems have attracted 
increased attention in recent years. Some differential methods as well as integral ones 
for solving time domain problems are used. Here we use the Volterra integral equation 
approach for revealing physical features of electromagnetic oscillations in time varying 
plasma resonator. We consider a plate-parallel waveguide with perfectly conducting 
plates. At zero moment of time, homogeneous time-varying cold plasma appears inside 
a cylinder of some finite radius. The cylinder is perpendicular to waveguide walls and is 
co-axial with the source current that may have an arbitrary time dependence. The 
schematic diagram of the phenomenon is presented in Fig.l. 

Fig.l 
The electromagnetic field in time domain inside the cylinder as well as outside of it is 
determined by the integral equation that can be represented in an operator form in 
cylindrical coordinates 

/      PO 2%     b t' 
E = E0+KE , K = ®-] \dt' jp'dp' \dq>'\dz'-G-<i)2e \dt\t'-t")®E'{t",p') (1) 

0      0 0      0 0 

where Eg is the initial field of the line emitter before plasma appearance, E is the 

transformed field caused by a medium time change. The integral operator K contains of 
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the Green's function that satisfies the boundary conditions on the waveguide walls [2] 
and medium operator that corresponds to the case of a plasma density coe changing from 

zero moment of time,  pQ is the radius of cylinder, matrix  <D  takes into account 

transformation   of Cartesian   vector  components   into   the   cylindrical   system  of 
coordinates. 
Let us consider the excitation of the waveguide by step-harmonic current 

] = --^-emc'0(t-t())e- , where tg is the moment of switching on the emitter. The 
P 

initial field created by this source is a lowest-order transient waveguide mode, whose 
field does not depend on lateral coordinate z [3].  The frequency representation of the 
initial field has a form 

F(E0)=^-e:-e-^.K0(vp) -<ac 

mc-cos(<flcf0)+/fflsin((Pc/o) < _j^     ^ 
 - + cos\a>cr0) 

COc -03 

where v = —, c is a light velocity in vacuum, b is a distance between the waveguide 
c 

plates, Kg is modified Bessel function. It is the running wave that has the frequency 
oo 

coc and the spectrum is shown in Fig.2 by dash line. Notation F(E) -  \E(t)e~mdt -IVSt 

-oo 

means the Fourier transform. 

THE TRASFORMED FIELD INSIDE A PLASMA RESONATOR. 
To obtain the transformed field inside the resonator it is necessary to find the solution of 
the integral equation (1). In time domain, it is the Volterra integral equation of the 
second kind and its solution can be built by the resolvent method [1] 

E'm = ^0 + ^0 (2) 
The resolvent must satisfy the operator equation 

R-KR = K, (3) 
where K is the integral operator of (1). It is convenient to solve this equation in form of 
Fourier-Hankel-Laplace transform. The exact and explicit expression for the resolvent 
operator of the integral equation has been derived for the case when the plasma density 
changes in time abruptly [4]. 
The resolvent operator can be cast into sum of two terms. One of them corresponds to 
the problem, when the whole waveguide (po = °o) is filled with homogeneous plasma 

at zero moment of time. The second term takes a place only in the case of the finite 
radius of plasma cylinder and is caused by the presence of the cylinder boundaiy. The 
plasma appearance in the whole waveguide yields the composition of fields with 
frequencies of the current coc and of the plasma toe. The frequency representation of 

this field has a form 

F(£)=^Ve-/(*o.K0(pw) 
c2 

©c-cos(ac/0)+/©sin(©cf0)        ,       v 
 —— + cos(oVo) c 2        2 coc -co 
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where u = 4 - . The spectrum is shown in Fig.2 by solid line. 

1,0 1,5 
Frequai<y 

Fig.2 
The frequency spectrum of the initial field (dash line), and the transformed field (plasma waveguide). 

CO .©el 
Here we used the dimensionless values: -— is dimensionless frequency (horizontal axis),  —. 

C0C ©c      2 

If the plasma appears only inside a cylinder of a finite radius then the frequency 
representation is described by the expression 

F(Ein) = 
2nb _ 
—re, -e 

-mtQ -co, 
cor • cosl i(mcfo)+i«psin(a>cfo) + cos((pgfo) 

a>„ -co 
> x 

uKx (up0)K0 (vp0) - vK0 (»Po)^i(vpo) 
-I0(PU) + KQ(PU)  >. 

{   «A(
W
PO)^O(

V
PO) 

+
 
V
^I(

V
PO)

/
O(

M
PO) J 

The lateral walls add new frequencies determined by the radius of the cylinder. 
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ABSTRACT 

Gain-phase distributions of an electromagnetic field and the radiation patterns horn 
antenna for planar tasks, horn antenna in a combination to the various close located 
objects are submitted. The problem was solved in time area, then by means of Fourier 
transformation was translated in frequency. The task solution in time area allows to 
analyze objects with the sizes 500x500 wave-length with step of digitization of 1/20 
wave-length (100 million units of a grid) on the personal computer with operative 
memory 2Gb. The example of the analysis of distortions of the radiation patterns by the 
phased array obstacles and objects is given. 

INTRODUCTION 

For 2D the electromagnetic analysis of tasks of dispersion in time area effective 
procedures and programs were developed [1,2]. At research of antennas and objects the 
classical characteristics describing their properties, radiation patterns or the scattering 
graph are. Such characteristics describe objects in stationary modes, i.e. in frequency 
areas. Therefore it is necessary, preliminary having solved a task in time area, then, 
using Fourier transformation to translate it in frequency area and to find gain-phase 
distribution of fields from which by means of the equivalence theorem and Grin's 
function it is possible to calculate the radiation patterns of all system as a whole.. 

WAVEGUIDE HORN 

The similar research was by us carried out with the help of a program complex Tamic 
Planar Rt-H Analyzer [3] for 2D of a task waveguide of a horn represented on fig.l on 
frequency 10 GHz. 
In a fig. 2, 3 the designed amplitude distributions of an electrical field, perpendicular 
planes of figure and diagrams, appropriate to them, of an orientation are represented at 
the following meanings of permittivity of the cylinder: e = 0(Fig.2), s = -1 (Fig.3). 

ANTENNAS ARRAY 

Similarly with use of a program complex Tamic Planar Rt-H Analyzer the influence on 
the radiation patterns by the antennas array close located metal and dielectric of objects 
was investigated. Considered antennas array consists of 5 elements, with amplitude 
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distribution cosines on a pedestal, and the phase distribution is those, that the main 
maximum is directed under 18 degrees. Length of a array makes 2.5 lengths of a wave. 
The radiation patterns by the antennas array_i_s_shown by ^continuous line on fig.5. 

Fig.l Geometry of H - plane waveguide horn with the dielectric cylinder. 
A Pattern (IE 

a) 

J 

b) 
-ISO    -144   -108 36        0        36        '2      10S     144 

Angle decree 

Fig.2 a)-amplitude distribution, b)-radiation patterns for e = 0. 
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Fig.3 a)-amplitude distribution, b)-radiation patterns for E--\. 

KIEV, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



212 MMET*02 PROCEEDINGS 

'   . /y//^v '' 

—=-=1 

Fig.4 amplitude distribution a) antennas array with metal body's, b) antennas array with metal 
and dielectric body's. 

' p..nan .if- 

ios Tfiisff 
b) 

-IS"'     III     I" ins    in    ir.i 
M~> 

Fig.5 Change radiation patterns of antennas array for geometry with a) metal body's b) metal 
and dielectric body's. 

On fig.4 a) the distribution of amplitude of an electrical field is shown, if near to the 
antennas array locates metal objects. The metal objects are a cut of the mirror antennas 
with tracts and support for other antennas. The size of analyzed area makes 98.735 on 
76.52 of lengths of waves. The analysis was carried out with a step of a grid of 1/16.2 
lengths of a wave. The grid is consisting of 1'989'684 of nodes. On fig.5 a) the radiation 
patterns by the antennas array with metal objects by a dashed line is represented. On 
fig.4 b) the distribution of amplitude of an electrical field is shown, if on a metal 
support is present in addition dielectric protection. On fig.5 b) the radiation patterns by 
the antennas array with dielectric protection by a dashed line is represented. 

REFERENCES 

[1 ]. Klimov C.N., Sestroretzkiy B. V. II Journal of communications technology and electronics. 
Vol.46, 2001, N 1, p. 24. 

[2]. Klimov C.N., Sestroretzkiy B. V. II Journal of communications technology and electronics. 
Vol.46, 2001, N 4, p.359. 

[3]. Klimov C.N., Sestroretzkiy B. V. II Journal of communications technology and electronics. 
Vol. 46,2001,N3,p.247. 

A'//:'r, UKRAINE., IX-TH INTERNATIONAL CONIERENCE ON MATHEMATICAL METHODS IN ELECTROMAONETIC THEORY 



MMET* 02 PROCEEDINGS 213 

ELECTROMAGNETIC SIGNALS IN A WAVEGUIDE FILLED 
WITH AN INHOMOGENEOUS TIME-VARIANT MEDIUM 

A.Yu. Butrym, 0 A. Tretyakov 

Karazin Kharkov National University, 4 Svobody sq., Kharkov, Ukraine 
e-mail: Alexander.Yu.Butrym@univer.kharkov.ua 

The problem of arbitrary signal propagation in inhomogeneously filled waveguides (with 
factorized permittivity and permeability £ = sx{x,y)-£^z,t)) is solved by partial separation of 

variables in the Time Domain (the Evolutionary Waveguide Equations Approach [1-2]). We 
introduce two self-adjoined operators containing £±,jux and transversal derivatives and then 
the electromagnetic field is expanded into series on eigenmodes of these operators with 
dependent on z and / modal coefficients sought for. Such an approach allows to consider time- 
variant and nonlinear media as well. Assuming time-harmonic signal one can use this technique 
to find dispersion characteristic of the waveguide without any need to solve the boundary 
problem for every frequency [3-4] (lossy media can be treated in this way without extra 
difficulties). After some generalization this approach can be applied to fiber optics (dielectric 
waveguides). 

PROBLEM STATEMENT 
We consider a waveguide with closed singly connected cross-section of PEC surface and loaded 
with a medium for which e = e1(x,y)-eii(z,t), ju = ji±(x,y)■ ^(z,t), a = cr(r,t). After 

expressing H, and E, in terms of transverse components H and E: 

dz(MHz) = -Vr<uH d,(jUoMH:) = [V,xz0]-E 

dz {sE: ) = -VrsE + ±p   d, (e0£Ez) = [z0 x V, ] • H - jz 

we can exclude them from the Maxwell's equations. It yields (in operator form): 

^^{d^E + d^Hxz^ + ^d^ 

-8,^ {d,£t£±[z0 xE] + dzH} -3,^[z0 x j] 

$dA{d,i[z0xE] + d,fitH} + -j:[yi±pxz0] 

where X = co\(E,H) is a 4-dimensinal vector sought, j = j0+ja is a sum of given currents 
and conductivity currents. We have introduced here the following operators: 

(1) 

wHx = 

WEX = 

(2) 

WHX 

WKX = 

-V.-kF.-Mi r T7\ 

yHj j 

.V 17 A 

JKHJ 

'Kx^-HV,-/^ 
V,-Hz0xV,]-i< 

0 [z0 x 

,V,>xV(]. 0 

0 V,^[V,xz0] 

These operators are self-adjoined in the Hubert space L\(S,q) with an inner product: 

(Xl,X2) = i,ls(£±E]-E2+MlHrH2)dS;       2{Xl,X2) = (E],E2)e+{Hl,H2)h 

(Ex,E2)^\\s£LEx.E2dS,       {H„H2)h=i\s^H,-H2dS. 

V,^[V,xz0]-# 

V^V^xzJV,-^ 

(3) 

(4) 
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MODAL BASIS 
Due to the self-adjointness of the introduced operators we can set the eigenvalue boundary 
problems for these operators and state that the eigenvectors obtained are orthogonal: 

W,-,Ym=pJm,   Ym=co\(E'm,H'm);   (¥„„¥„,,) = Smm,; 

wHzn=qilzn, Z„=CO1(E;,//;), (z,„z,)=sn,. 
It can be proved that WHZn =0 = W,Ym,U. {Zn}akerWfl, {YJ czkcrWl;, (Y„„Zn) = 0. 

Let us denote the value space of Wj: by = {Zn} (it corresponds to TM or E-waves for the 

case of hollow waveguide) and similarly we denote the value space of WH  by      ={^,} (it 

corresponds to TE or H-waves for the case of hollow waveguide). It turned out that for the 
singly-connected cross-section these two eigenmodes sets originate a basis in the solution space: 

L\{S,q)= © -{Ym}yj{Zn}. Therefore we can expand the fields sought in series on this 

basis, it yields: 

X=YjA'm(z,t)Ym+^A:(zj)Zn,   or "^ ^ (6) 

ssr :;:r H=z /*;, (z, OK+z /*>, OK. 
m=l n-\ 

The boundary eigenvalue problems (5) can be rewritten in a vector form: 

It admits introducing scalar potentials in the following way: 

K^X„ {v,-iv,ci>;,,+/vvF;„=o ^ni,=o 

(?) 

(8) 

(9) 

EVOLUTIONARY EQUATIONS 
Projecting (2) on the basis obtained yields a system of governing equations for the modal 
amplitudes which are obtained as partial differential equations with 3, and <9. derivatives: i.e. 

they are the Evolutionary Equations (EE). We introduce the following notation for coupling 
coefficients and sums in EE describing intermodal transformation: 

L ■ = j- j,z0 • \Em x //„,,]dS;    Kmm, = ± |v£±M±z0.[Em x H,„ ]dS (10) 

Z^„,;m=Z<A,,,+ZÄ,, Z^^=Z^w+Z^^ - öD 
'"',"'    "        " m' n' ni'.n'    ii " m' n' 

In this notation the EE look like: 

d:vp,£/m +^A Z JV i ,„, -/yX = y:; dAd,»tt+d:£ld: X ^„ - w; = r4- 
m'.n'    "'       " m' ri    »'     "' 

(12) 

where the RHS express via currents and charges (both given and conductivity ones): 
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Y2=-dz^y-E'mdS; Fr4t(V,tp)'[vff;]iS. 

The coupling coefficients can be expressed via scalar potentials in a convenient form: 

LmJpm =LmJPm, =i[sM,X^dS    Lm,/q,=Ln,Jqn ^ie.XT.dS 
Kmm./Pm.=Km,JPm =HsMl®'mVm>dS    Km,lqn=Kn,Jq„, ^eJb'^dS 

SOME CONCLUSIONS 
1) The basis vector eigenfunctions (7) don't correspond to any of modes used in the Frequency 
Domain methods such as [3-4]. It can be easily checked on the simplest case of rectangular 

waveguide with slab. For this case after separating one variable: Dx^'nm = -K^'nm , we obtain 

a fourth-order equation for every partial domain: 

D4vF'   -2K
2
D

2X
¥'   +(K

A
-£ D

2
 )¥'   = 0 with 4 boundary conditions on the interface: 

*-^y x nm n•     y      nm      \"-n       ^ifnmj      run J 

VF'   , D ¥'   , D2x¥'   , -
L
(K

2
D,-DI)

X
¥'    should be continuous. nm '       y     nm '       y      nm '   e± \    n     y y J      nm 

2) It can be shown that for the case £±Ju± = const the equality O = *F holds and all the non- 

diagonal coupling coefficients vanish. It means that we have a single mode propagation case, 
i.e. the transversal configuration of the field remains the same while propagating along 
waveguide for arbitrary time dependence of the signal. 
3) The method was verified on the harmonic signal propagation problem. Assuming harmonic 
dependence Qxp(icot-ißz) of modal coefficients we obtain a SLAE instead of differential 

EE. (<?n = 1 = ju{] should be assumed): 

-co2s0pü X e'iKm,  + coßMl,h'm + PX = 0; "»V. X J K    + coße/„ + q„K = 0; 

coßeß'm -ß
2^ % L    - pX = 0; coßpX ~ ß2 Z J Z»>'„" *»< = °" 

m\ri    «'        "' m\ri    »'     " 

To obtain dispersion characteristics for the waveguide one have to solve this homogeneous 
system. Note that dispersion equation is a polynomial for any s±, its roots can be found easily 

with well-known techniques. It can be an alternative to methods [3,4] 
4) Taking conductivity cr(x,y) into consideration gives sums in RHS of (15) due to integrals 
from expansion series in (13). It doesn't complicate the problem. 
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ACCURATE "ABSORBING" CONDITIONS FOR 
NONSINUSOIDAL PROBLEMS OF DIFFRACTION FOR 

COMPACT OBJECTS 
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In the time domain the use of versatile finite-difference algorithms [1] allows one to 
solve efficiently the problems of analysis and model synthesis providing the following 
principle requirements are fulfilled. First, the analysis domain for the relevant original 
open boundary value problems should be restricted by exact "absorbing" conditions, 
which do not distort the physical processes simulated mathematically. Second, all 
mathematical constructions should be adequate for discretizing the problems (equations 
and all conditions) in rectangular coordinates with optimal and equal approximation 
error [2]. 
The paper reviews work on algorithmization of initial boundary value problems in the 
theory of periodic, waveguide; specifically, the case in point is simulation of transient 
processes in pulse radiators. In this paper we give formulations of the initial boundary 
value problems and basic results for class of antennas with gratings as dispersing 
elements. 
The initial boundary value problem 

( \d2        i v d       d2      d2 

U(g,t)=F(g,t\ 

(1) 

8r 'dt      8z2    dy2 

/>0,    g = Meß=Ä2, 

c/(g,/)L =<p(g), iu^A   =vB 
Ö' 1=0 

U{gj)=E^   l//v=-LA£t>   Aff.=_LA£r,   E=E.=Hx=0 
dt r\0 dz   '      dt    "    T|0 dy 

describes the radiation, propagation, and scattering processes of nonsinusoidal  E- 
polarized waves in the space R2 ={g = {y,z}:\y\ <oo,\z\ < oo}. The inhomogeneities are 

given by the real finite functions a(g) = a0(g)r)o and e(g) (a0(g) is the specific 

conductivity, r|0 =(u0/£0) is the impedance of a free space, and e(g) is the relative 

permittivity). The time, t, in (1) has the dimensionality of length; it is the product of the 
actual time by the propagation velocity of the excitation in free space. 
Let us assume that the functions F, cp, v|/, a , and £ -1 are finite in Q and that their 

supports belong to domain Q, ={geQ:LA < y < I3; L2 < y < Z,} for all times 

considered (0<t<T). Then, above (below, to the right, to the left) the virtual 
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boundary z = Lx (z = L2, y = L3, y = I4) there are no sources and scatterers. Therefore 

in the domain ,Q = Q\~QL the function U corresponds to the outgoing wave, crossing 

the relevant boundary in one direction only, and satisfies the homogeneous problem (1) 
with 6-l=o=0. This fact makes possible to state (for each boundary) the radiation 
conditions for U, resulting immediately from (1), and then to use these conditions 
when narrowing the analysis domain down to half-space in problem (1). Using four 
conditions simultaneously and solving exactly the problem of corner points arising 
therewith (points of intersection of the lines z = Lx and y = Z3, and y = L3, z = Lx and 

y = LA, z = L2 and y = L4), we are led to the rectangular analysis domain QL. As 

result, we have 

dt    dz 
u[g<,)=i"\EM^^, z = ■ 

7t   o dt \u 
52F,(g,f,(p)    dWx(g,t,<y) 

dt2 8y2 

Wx (g,t,y) = Vx (g,t,q*)cos2 9 + U(g,i) 

dV,{g,t,<$>) 

dt p;fe.'><p)L = 0> (2) 
r=0 

d  , d 
— + COSCD  
dt ^ 8y 

z = ■ 

8   -4-                  8 — ±COS(D  
dt dz 

z = 

„, f        \    2cos(p,t/
f

2 sin2y ^'k'-'W*, 
n      o cos 9 + sin 9 cos 9        dt 

*/2 2 71/ L C0S(P  r 

71 n 

sin2 y dWx(g,t,y) 

0 cos2 (p +sin2(pcos2(p dt 
sin2 dy, 

l+± 
dt    dy 

d2V2{g,t,<p)    dW2{g,t,<$>) 

TTl   A    2K/}dV2(g,t,q>) .  2 jh 
dt 

dt' dz7 
= 0, 

dV2(g,t,<p) 

dt ^b.'.<pL=0' 
(=0 

W2{g,t,<p) = V2(g,t,(p)cos2 y +U(g,t) 

(3) 

(4) 

"Absorbing" conditions (2)-(4) are exact. When supplementing (1) by them, the class of 
correctness of the problem remains as before and the solution is not distorted. These 
conditions are local, the corresponding boundary, L, is piecewise coordinate one. 
Therefore the conditions discretization (2)-(4) and the incorporation of them into a 
standard finite-difference scheme is carried out in the framework of ordinary operations 
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[3]; their realization (solution of internal difference problems for the functions V] and 
V2) does not require considerable additional computer resources. The resulting 
algorithms retain the efficiency of classical ones for closed problems in the rectangular 
grid. Replacing the polar grid with the rectangular one reduces the computation time by 
an order and over. 
Examples of numerical implementation of algorithms based on the solution of equations 
(1 )-(4) are presented in Figure 1. 
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MODELING OF VIDEOPULSE SCATTERING BY 
PLANE LAYERED DIELECTRIC STRUCTURES IN THE PRESENCE 

OF ERRORS 

Olexander O. Puzanov 
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12 Proscura St., Kharkiv, 61085 Ukraine, 

e-mail: puzanov@ire.kharkov.ua 

It has been shown that existing experimental data on electric properties of media prove 
to be unsuitable for computation of fields of videopulse scattering by ground structures of 
large depth. Conditions of the "false" reflection emergence have been analyzed. 

Experimental data on frequency dependences of relative permittivity zr{f) and 
specific conductivity a(/) prove often to be unsuitable for calculations of fields of 
nonsinusoidal radio wave scattering by ground structures. It is conditioned by violation of the 
interrelation between real and imaginary parts of complex permittivity. As it is known, this 
interrelation is established by Kramers-Kronig depressive relationships based on the causality 
principle [1-3]. The violation of this principle causes "false" reflections prior to information 
responses. 

In view of what was told it is of interest to estimate the influence of distortions of 
frequency dependences of electric characteristics of a medium on calculation results. For that 
we will choose the Debye formula as a precise model of complex permittivity 
e = e0er - its lat. Introducing the distortion in the precise model of s , by which we will 

describe electric properties of a homogeneous layer, we will analyze calculation results of the 
reflected electric field. Suppose the incident pulse with duration of 10 ns has the Gaussian 
time dependence. We form the layer of fresh water and a lower half-space (also 
homogeneous), bordering on the layer, of a material with permittivity er3 = 5.2 and specific 

conductivity a3 = 2 • 10~3 Sim/m for all frequencies. Analyze cases when the thickness d2 of 

the water layer is 2 m, 5.5 m and 10 m. Let the height of the point of sight be z„=2 m, and the 
angle of incidence be 0 i,,c = 0°. Considering the structure of homogeneous areas one can 
isolate the "false" pulse effect itself by eliminating the influence of other reflections in an 
inhomogeneous dielectric. 

According to Debye 

1 + [COT(0)J 1 + [COT(0)J 

where s'(°o) is the value of relative permittivity with co ->co, sr(0, 0) is the value of 
relative permittivity with co -> 0, co  — is the angular frequency [rad/s], 0 — is the 
temperature [°C], x(0) — is the relaxation time of molecules [s], s0 = 8.85 10"12 [F/m] 

— is the vacuum permittivity. For fresh water sr (co) » 4.9, and the temperature dependences 
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10     /MHz'0 

of molecule relaxation time x(0) and the value £r(0, 0) are represented by the following 
empirical equations: 

T(0) = 1.111-1O~
IO
-3.824-1O"

,2
0 + 6.938-1O~'

4
0

2
-5.O96-1O~

16
0

3
, 

er(O,0) = 88.045-0.4150 +6.295-10 402 +1.075-10 50J. 

The curves for s''(/) and a (/) with 0=10 °C calculated using the equations (1) are 
shown in Fig. 1 by heavy lines. 

We form distortions for the 
plotted dependence of a(/) by a 

set of functions av(/) (i, = +0.5, 

+1,+1.5), which we will define by 

the expression \g<3s{f) = s+\g<3{f). 

When 5=0 the distortions are absent 
and   av(/)=a(/).   The   functions 

os{f) (see Fig. 1) are plotted by 

thin lines. We will leave the 
dependence of er(f) without any 
alteration. 

Illustrate the transient process 
transformation in the time domain 
conditioned by variations of the 
argument s by giving an example of 
calculation for the water layer of a 

thickness of 5.5 m (Fig. 2 and Fig. 3). It is possible to see that depending on the upward or 
downward distortion of the dependence of a (/) the "false" reflection effect is shown in 
different sections of the transient time dependence. So, the downward distortion (s<0) of the 
function a (/) causes the "false" reflection of negative polarity directly before the response 
from a lower boundary of the water layer. At the upward distortion (s>0) of the function 
a (/) the "false" reflection emerges in another representative place of the transient process 
and it is observed prior to the pulse from an upper water boundary. However now the ratio of 
the "false" pulse amplitude to the basic pulse amplitude is much less than in the previous case. 
At rather small distortions of the function a(f) (with s= ±0.5, when CTV(/) = 10*' 2

G(/)) 

the "false" reflection pulses do not emerge. Variations of the duration and amplitude of the 
pulse from the lower boundary is only observed. 

The amplitude As
s of reflections from the upper water boundary is weakly sensitive to 

distortions of the function a (/) and can increase approximately by 7%, what is characteristic 
of any thickness of the water layer (with s= 1.5). A similar increase is conditioned by the 
growth of the reflection of lower frequencies from the upper boundary of a conductive 
dielectric with increasing its specific conductivity. The amplitude ÄH of reflections from the 
lower boundary is very sensitive to distortions. In comparison with the case when distortions 
are absent (s=0) it can increase by 292 % with s=-1.5 and d2=T0 m, or be diminished by 87.4 
% with s= 1.5 and d2=\0 m. 
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Fig.l. Dependences on the frequency of relative permittivity and 
specific conductivity (with s=0, heavy line) of fresh water at 10°C. 
calculated on the base of the Debye formula (1) and a set of functions 
as(f) (s=±0.5.±1.±l.5). 
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When s<0 and s= 0.5 the "false" pulses do not arise before reflections from the upper 
boundary, and when s= 1 these pulses appear. But their amplitude is rather small even for 

superior distortions. It can be only 2.49% of the basic reflection amplitude A^ (s= 1.5, d2=5.5 

m). At the same time the "false" pulses prior to reflections from the lower boundary are 
absent when s=0, and at negative values of s they can increase in amplitude up to 26.6% of 

the main reflection amplitude A^ (5=-1.5, d2=\Q m). One should notice the fact that the more 

the thickness d2 of the layer the more the value of the ratio of the "false" reflection amplitude 
from the lower boundary to the main pulse amplitude. 

It is important to note that one cannot confuse the "false" reflection effect with signal 
distortion phenomena in the environment with dispersion. As it was shown above, the "false" 
pulses can also arise before a pulse reflected from the upper boundary of the dielectric layer 
bordering on air. 

s=1.5 

.--/True moment of beginning the reflection from lower layer boundary 
'    L        -j—0.5 

350 400 450 500 550 600 650 

Fig.2. Dependences on time of a pulse reflected from the layer lower boundary at various distortions of 
frequency dependences of specific conductivity. The level of distortion is defined by values of the 

parameter s=±l .5, ±1, ±0.5,0 (the water layer thickness is 5.5 m). 

20      40  0      20      40 0 20 20      40  0 

Fig.3 Dependences on time of a pulse reflected from the water upper boundary at various distortions of 
the frequency dependence of specific conductivity. 
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ABSTRACT - In this paper the terminated two-wire transmission line in air 
illuminated by continuous electromagnetic plane wave and the differential mode 
current flow over terminated elements measured by using monitoring current probe 
which is un susceptible with external field. The analytical solutions was obtained by 
using the earlier investigated the derivation of the two wire transmission line equation 
from Maxwell's equation. The comparison of measurement results with analytical 
results is represented. 

INTRODUCTION: The effects of external electromagnetic fields on the conductors 
in the victim systems can be analyzed by using transmission line theory. The response 
of transmission line is illuminated by external electromagnetic fields has been reported 
by various investigators [l]-[4]. Taylor et al. [1] obtained firstly the analytical 
frequency domain solution for two-conductor line illuminated by electromagnetic field 
and later more convenient form by Smith [2]. 

In this paper, we measured differential mode current flows in terminating impedances 
at two-wire transmission line by using unsusceptible monitoring current probe. The 
current probe, which is used in the experiment, is commercial available probe but it is 
investigated by increasing susceptible level against external electromagnetic fields and 
it could be convenient for this kind of measurement. Transmission line model approach 
is used as a coupling model. In order to obtain analytical results, Smith's formulation is 
used. It is somewhat simple and easy to interpret physically and compact form of the 
complete solution for the transmission line mode currents in the terminations of two- 
wire transmission line illuminated by external electromagnetic fields [2]-[3]. 

MEASUREMENT OF CURRENT IN FREQUENCY DOMAIN: The model 
transmission line that used in the experiment is prepared with two-copper wires. The 
model transmission line is suspended in space in the chamber and illuminated by 
electromagnetic field between the frequency 200 - 1000 MHz. The line is terminated 
(loaded) with characteristic impedances at the both ends. The measurement was carried 
out in a fully anechoic chamber. The photograph of test setup is seen in figure 1. 
Before start the differential current measurement, the reference measurement was 
carried out. 
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in   -Sue' .-. - 
Figure 1 The photograph of test setup. 

The measurement results are illustrated 
graphically in Figure 2 to 7. Figure 2 - 4 
explain that the electric field of incident 
parallel to conductors and vertical to 
terminations case (case 1). Figure 5-7 
explain that the electric field of incident 
vertical to conductors and parallel to 
terminations (case 2). The model line 
illuminated with under the broadside 
position (see in figure 3) and same 
condition of incident and polarization. 
In the figures of measurement results, 
curve one shows analytical result and 
curve two shows measured result. 
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Figure 2 The comparison of measured 
differential current with spectrum of magnitude 
of the normalized current at the Z2 termination. 
(Z| = Z2 = 430 ohm in the case 1) 
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Figure 3 The comparison of measured 
differential current with spectrum of magnitude 
of the normalized current at the Z2 termination. 
(Z| = 430 Q., Z2 = short circuit in the case 1) 
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Figure 4 The comparison of measured 
differential current with spectrum of magnitude 
of the normalized current at the Z2 termination. 
(Z[ = Z2 = open circuit in the case 1) 
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Figure 5 The comparison of measured 
differential current with spectrum of magnitude 
of the normalized current at the Z2 termination. 
(Zi = Z2 = 430 ohm in the case 2) 
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s = 1 m ' 
, [p = 0 1m   __ _ __ l_ 

a = 1 7 mm 
Z1 = Z2 = short circuit 
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Frequency (Hz) 

Figure 6 The comparison of measured 
differential current with spectrum of magnitude 
of the normalized current at the Z2 termination. 
(Z| = Z2 = short circuit in the case 2) 

CONCLUSION: All figures represent 
that the measurement results similar 
with the analytical result except Z\ = Z2 
= short circuit case in terms of 
resonance and minimum points of 
frequency in spectrum of magnitude of 
the current. In the practice In the 
resonance case the magnitude of current 
goes infinite (see in figures 4,5). A 
number of conclusions can be drawn 
from the measurement results: 

1. In experiment the frequency response 
of the characteristic impedances of 
transmission line is not fix. So that, 
changing of impedance bring to slightly 
shift in frequency of minimum points. 
2. In the figures minimum another call 
nulls points which crossing zero point 
of current means that there is no field to 
transmission line coupling in that 
frequency. 
3. If the transmission line is terminated 
(at least one side) with similar 
characteristic impedance of line 
(matched case) no resonance is appear 
(see figure 2, 5) [5]. 
4. If the transmission line terminated at 
both side with high or low impedance 
(open and short circuit case) resonance 

occur in discrete frequency (see in 
figures 5,6). 
5. The frequency of resonance and 
minimum points dependence on the 
length of transmission line and 
termination impedance. 
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ABSTRACT 
With a method of synthesis of optic fibers [1] a profile of a refractive index in cross- section of 
a single-mode fiber with a non-zero displaced dispersion of a wavelength band at 1,55 - 1,625 
|ik, increased frequency band of a single-mode regime and increased effective area is obtained. 

INTRODUCTION 
Using the synthesis method based on the solution of a inverse scattering problem in non- 
relativistic quantum mechanics the profile of a refractive index in a cross section for a single 
mode gradient-type optical fiber with a reduced non-zero dispersion in a wide range of 
wavelength is obtained (1,55 - 1,625 u.m). The synthesized fiber has a smooth curve describing 
the dependence of dispersion due to a wave length in diapason of 1310 nm, 1420 nm and 1665 
nm. The small slope of the curve means that a minimum value of a dispersion is sufficient for 
compensation of a non-linear effect of interfusing of four waves. It helps to increase the 
capacity of a transmission system and allows to minimize the expenditures to compensate the 
dispersions. 
Applying a synthesized fiber in a high-speed transmission lines allows to increase the lengths of 
transmission sections (DWDM), which do not contain regeneration devices or signal 
amplificators. Due to a broad band of wave lengths it is possible to apply cheaper lasers, 
multiplexers, demultiplexers and other devices for transmission lines with a wave compression 
(DWDM) and, therefore, to reduce the cost of transmission systems. 

METHOD OF SYNTHESIS 
The propagation of electromagnetic waves, the core of which has a gradient reflation index, for 
the linear-polarized modes in a normalized view is described with an equation 

dR! 
+ 

v R 
<D(R) = 0, 0) 

where u2 =a2(n2k2-ß2) is a normalized propagation coefficient; v =akni2A is a 

normalized frequency; a is a radius of a core; ß is a longitudinal propagation coefficient; 

A = (n2 -n2)(2n2) ; n, is a maximum value of refractive index in a core; n2 is a value of 

refractive index in a cladding; 1 = 0,1,2,... is an azimuthally mode index; k = ra^/e^ is a wave 

number in free space; co is an angular frequency; e0 and u.0 are dielectric and magnetic 
permeabilities of free space accordingly; gi(R) is an obscure function of a profile of refractive 
index; R is a dimensionless radial coordinate; O(R) is a proportional to cross-sectional 
amounting fields function, which contents to boundary conditions. 

*(Rl      =0,*(R)      = const, *(R)     ,-«(R)     0> *%ß        =«%& v    An-*0 '      v    '1D-»OO ' v    /p=a+0 v    'lp=a-0'       4D AT) 1p->0 '      V    Ap-*o '        V    /ip=a+0 ^    '!p=a-0'      jn AT) 
"x p=a+0 

(2) 
p=a-0 

Snapping the frequency k and considering the problem for a specific azimuth index 1 results in 
receipt of a clone of the inverse scattering problem of a non-relativistic quantum mechanics. 
Therefore for synthesis SOF the mathematical methods of the solution of a inverse scattering 
problem a non-relativistic quantum mechanics will be used [2]. Gradient of refractive index in 
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cross section SOF and the cumulative distribution function of a fields of a mode, are determined 
on a known field pattern of a mode in SOF with a stepwise profile of refractive index [1]. The 
equation describing the properties of electromagnetic waves in such light guide is as follows 

dV(R) 
dir gn(R)+v ' 

\ v R 
d>,(R) = 0. 

Oi(R) - function proportional to a cross-sectional component of electrical fields; go(R) is a 
function of a profile of refractive index in stepwise guide 

g„(R) = 0,Re(0,l),go(R)=l,R>l. 
The boundary condition is similarly to the equation (2). 
Determination of a profile law of a dielectric permeability in a cross-section of synthesized SOF 
due to the method [1] is reduced to the solution of an integral Helfand-Levitan equation 

R 

K(R, t) = - JK(R, y)G(y, t)dy - G(R, t) = 0,  (0 < y < t). (3) 
0 

The core G(R,f) is entered with the help of an integral Stiltyess, where the integrating is carried 
out on change of spectrum functions of equations described wave processes in the initial ^i(p) 
and and synthesized ^(p) SOF 

0, 0<v2<p, 

B5(p-p0)-CS(p-Pi)    , pe(o,v2) 
0, p<0 

dE(p)-<Hj(p) = 

where p is a spectral parameter, to be bound up with propagation coefficients by a ratio p = u", 

S(p-Pi) - Dirac delta-function; C = 

CO 

K(R>P> 
-1 

is a normalized coefficient. Here B is a 

normalized coefficient, it is subject to definition. In a considered case the equation (3) has the 
singular core, therefore its solution K(R,t) can be obtained in an analytical view. The law of 
change of refractive index in cross section of synthesized SOF is determined under the formula 

gl(R) = g0(R) + 2-£-K(R,R) (4) 
uK. 

The function O(R) is calculated with the help of Povzner-Levitan transformation operator [1] 

<D(R) = <D,(R) l + Bjo^tJdt (5) 

Normalized coefficient B, included in equations (4), (5) can be found from a ratio [3] 
-i-i 

vgrvph = °2 • }R#2(R)dR •   JR<l>2(R)n2(R)dR 

which describes the distribution of an electromagnetic field in cross section of a fiber with 
phase velocity Vph and group velocity Vgr of a distributing mode, c is velocity of light. 

NUMERICAL CALCULATIONS 
The obtained profile of refractive index in cross section of a SOF with a displaced dispersion in 
an effective range of frequencies is 1,55 - 1,625 mkm is shown in fig.l. The initial data for 
synthesis are: V = 3,2, V,.r =0,685, Vpi, = 0,6925. Synthesized SOF has the same depth as the 
initial SOF with a stepwise profile of refractive index, for which two modes propagate on given 
frequency V= 3,2. 
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To check the accuracy of a synthesis method it was done the numerical experiment connected 
with a calculation of dispersion curves for synthesized SOF (fig. 2). The basic mode LP0i is 
given. The dotted line indicates a dispersion curve of an initial stepwise SOF. The circle marks 
a cut-off frequency of a following mode both in the synthesized and in the initial SOF 
accordingly. It is shown that the frequency band of an obtained SOF is wide than the band for 
the initial SOF with a stepwise profile of refractive index. The distributing field of propagated 
mode in order to frequency is shown in a fig. 3. 
Figure 4 illustrates the curve of relation of a chromatic dispersion M [pc/(km nm)] in 
synthesized SOF due to a wavelength. Synthesized SOF has a non-zero displaced dispersion in a 
wave band A. = 1,55; 1= 1,625 mkm. Curves for a material dispersion MCMD, profile dispersion 
MCPD and wave guide dispersion Mw of the synthesized SOF are also plotted 

N(R)r— 1 B(V> 

0.0 0.6 1.0 1.6 2.0 2.6 R 

Fig. 1 Profile of a refraction index for synthesized 
SOF. The dotted line indicates shows the 

refraction index in a cladding. 
F(r),  

Fig.2 Dispersion curves for 
synthesized SOF. 
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Fig.3 The distributing field of propagated mode for Fig.4. Dependence of chromatic dispersion 
synthesized SOF. M, [ps/(km nm)] in synthesized SOF due to 

wavelength. 
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ABSTRACT 

The eigenvalue problem for guided modes of an integrated optical guide is reduced to a 
strongly-singular domain integral equation. It is proved that the operator of the domain integral 
equation is a Fredholm operator with zero index. It is also proved that the spectrum of the 
original problem can only be a set of isolated points. 

INTRODUCTION 

In this work we study the natural modes of an optical fiber integrated into a three-layer planar 
medium, which is representative of typical optical circuits. In the absence of a planar 
background, the basic properties of optical fibers are described in [1]. More recently, rigorous 
mathematical methods have been applied to the analysis of the modes of optical fibers, see, e.g., 
[2]-[4]. For the integrated optical guide, rigorous mathematical analysis has been presented for 
the guided modes in [5]-[7]. Due to the complexity of the integrated optical structure, domain 
integral equations utilizing appropriate Green's functions (to account for the background media) 
are a popular practical approach for computing the natural fiber modes [8]-[10]. In this work a 
rigorous mathematical analysis of the guided modes of an integrated optical fiber is presented 
based upon a strongly-singular domain integral equation. 

STATEMENT OF THE PROBLEM 

Fig.l. An integrated optical guide. 

We consider the guided modes of the integrated optical guide (see Fig. 1). Let the three- 
dimensional space be occupied by an isotropic source-free medium, and let the refractive index 
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be prescribed as a positive real-valued function n = n{xx,x2) independent of the longitudinal 

coordinate x3. We assume that there exists a bounded domain Q on the plane 

/?2={(x1,x2):-oo<x1,x2<oo} suchthat n = nx(x2), x = (x1;x2) eQx = R2 \0, where 

nx{x2) depends only on the x2 variable. It is a piecewise-constant function represents the 

refractive index of so-called associated planar waveguide. For simplicity, we take 

nx (x2) = {«, if x2 > d, n2 if 0 < x2 < d, «3 if x2 < 0} . We assume without loss of generality 

that n2>ni>nv Denote by n+ the maximum of the function n in the domain Q. We assume 

that O e Q2 = {(x,, x2): -a> < x, < oo, 0 < x2 < d] , n+ > n2, and also that function n  is a 

continuous function in Q2, i.e., that the guide does not have a sharp boundary. 
The modal problem can be formulated as a vector eigenvalue problem for the set of differential 
equations (we use notations [2] for differential operators) 

Rotp E = KS>H0H,   Rotp H = -/cos0«
2E. 0) 

Here e0, fi0 are the free-space dielectric and magnetic constants, respectively. We consider the 

propagation constant ß  as an unknown complex parameter and radian frequency co > 0 as a 

given parameter. We seek non-zero solutions [E,H] of set (1) in the space [L2 yR2 )] . 

Denote by   A(1)   the sheet of the Riemann surface of the function  ^k2n] -ß2 , where 

k2 =co2£0n0, which is specified by the condition Im^n] -ß2 >0. Denote by ßy the 

propagation constants of TE and TM modes of the associated planar waveguide [1]. It is well 
known that there exist no more than a finite number of values ß7. All of the values ß7 belong 

to domain { ß e A(,) : Im ß = 0, kn3 < |ß | < kn2} . In a similar way to [7] we can see that the 

domain    D = {ß e A(1) : Reß = 0}lj{ß e A(,) : Imß = 0, |ß| <y } ,   where   y=maxßy, 

corresponds to the continuum of propagation constants of radiation modes that do not belong to 

(L2 (R
2
 )) . Therefore we do not investigate the values ßeD. 

Definition 1. A nonzero vector [E, H] e (L2 [R
2
 ))   is referred to as an eigenvector of problem 

(1) corresponding to an eigenvalue  ß € A = A(1) \ D if relation (1) is valid. The set of all 

eigenvalues of problem (1) is called the spectrum of this problem. 

MAIN RESULTS 

Theorem 1. The set {ß e A(1) : Im ß = 0, |ß| > kn+} is free of the eigenvalues of problem (1). 

This theorem was proved in [1] for the case n2 = rc3 = nx. For the general case the proof is 

analogous. 
If [E,H] is an eigenvector of problem (1) corresponding to an eigenvalue ß e A, then 

E(x) = (k2nl +Gradp Divp )\ j(n2(y)-nl)G^;x,y)E(y)dy, (2) 
"oo n 
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H(x) = -äDE0Rotp \{n\y)-nl)G($;x,y)E(y)dy,   x£ÖXl2, (3) 
n 

where function G   is the well known tensor Green function [9]. For any (xj)efi    the 

function G  is analytic for ß e A. Passing the operator Gradp Divp  under the integral in 

relation (2), and using the differentiation rule [11] for weakly singular integrals we obtain a 
nonlinear spectral problem for a strongly-singular domain integral equation 

A($ )E = 0, x e Q;    A: (L2 (Q)f -» (L2 (Q)f . (4) 

Theorem 2. For all ß e A the operator A(fi) is Fredholm with zero index. 

This theorem is proved by general results of the theory of singular integral operators. 

Definition 2. A nonzero vector E € (L2 (J^)) is called an eigenvector of the operator-valued 

function A(fi) corresponding to an eigenvalue ß eA if relation (4) is valid. 

Theorem 3. Suppose [E,H] 6 (Z,2 (R
2 ])   is an eigenvector of the problem (I) corresponding 

to an eigenvalue   ß eA.  Then  E e (/_,, (Q)J    is the eigenvector of the operator-valued 

function   A(§)   corresponding to the same eigenvalue   ß.  Suppose   Ee(/_,2(n)j is an 

eigenvector of the operator-valued function A($) corresponding to an eigenvalue ß eA and 

also let vector [E, H] is defined by (3), (4) on R2 Then [E, H] e (l2 (R
2
 ))   and [E, H] is the 

eigenvector of the problem (1) corresponding to the same eigenvalue ß . 
This theorem is proved by direct calculations. 
Theorem 4. The spectrum of problem (1) can be only a set of isolated points on A. 
This theorem is followed from theorems 1-3 and general results of the theory of operator-valued 
functions [12]. 
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ABSTRACT c .    ,       ,   .„       ... 
The normal facet full vector problem is accurately solved for a vector circular optical fibre with 
a high efficient algorithm. The Free Space Radiation Mode (FSRM) method is used to 
investigate the facet reflectivity for a set of incident modes having all six components of 
electromagnetic field dependent on all three spatial coordinates. The analysis yields a simple 
integral for the reflection coefficient for each mode, which makes calculations fast and reliable. 
Vector results for the reflectivity of the fundamental EH„ mode are compared with the scalar 
ones showing significant quantitative differences between them (<40 dB). 

INTRODUCTION 
Accurate controlling and prediction of end facets reflectivities is significant for designing 
semiconductor travelling wave amplifiers, modern lasers and grating systems [1]. The most 
common requirement of such a design is low facet reflectivitiy in combination with additional 
requirements for the waveband and polarisation characteristics. Very low facet reflectivities are 
most commonly achieved using layered antifreflection coatings (AR) or angling the facet [2], 

The problem of design and optimisation of optical waveguide facets is now well elaborated for 
rectangular waveguides [4], [5], including scalar as well as vector analysis [6]. Optical fibre 
facets were modelled in scalar approximation considering only guided mode diffraction at the 
end of fibres [7], [8]. Although scalar approximation gives accurate results for the case of 
weakly guiding waveguides, the vector analysis is significant in polarisation-sensitive devices, 
as shown in [6] for a rectangular waveguide. Numerical methods directly applied to vector fibre 
facets lead to a high computation time, as well as losses of the result reliability. In this paper we 
present a full vectorial semi-analytical analysis of circular fibre facet reflectivity. The most 
general case of all six field components dependable on all three spatial co-ordinates for the 
guided modes is considered. The radiation field is approximated by assuming that it propagates 
in a region with a uniform refractive index, an approximation well suited for small refractive 
index difference in the transverse direction [9]. Numerical results are validated by their 
comparing with FSRM results for scalar analysis revealing lower reflectivity for vector coated 
facet. 

TTTFORY 
We consider a circular fibre incident on a normal plane at z=0. Fig.l illustrates the side view of 
the structure and the adopted notations. The fibre core radius is equal to p and the refractive 
indices of the core and the cladding are ncore and ndad respectively. The cladding is taken to be 
infinite, as its diameter is usually much greater than that of the core. As mentioned above, we 
assume small transverse variation of refractive index in the fibre, typically less than 10%. 

a) 

llclad 

nclad 

7K 
V 

242-1 -n^ 

Fig. 1. The fibre facet geometry and accepted notations 
To make the analysis more general, we consider all six field components. All guided modes 
supported by the fibre are rigorously included in theory. Besides the finite number of the guided 
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modes, the fibre supports a continuous spectrum of radiation modes, which play a significant 
role in a presence of longitudinal discontinuities. The radiation field of the fibre is difficult to 
include into theory exactly. According to the FSRM approach, the small transverse refractive 
index step allows to interpret the radiation field as the radiation spectrum in a homogeneous 
medium. Such an approximation allows formulation of a semi-analytical solution of the vector 
problem, providing a good compromise between the description accuracy and the model 
simplicity. 
The longitudinal field components of the modes (i.e., Ez, Hz), in cylindrical co-ordinates are 
proportional to a product of a cylindrical function with respect to the radial co-ordinate and 
sinwcpor cos«9 , where (p is an angular co-ordinate and n is the mode number [10]. The 
transverse field components of these modes (i.e., Er|(p, Hr(p), can be expressed similarly, but as a 
combination of cylindrical functions of different orders instead of just one function in the case 
of longitudinal components. To make analytical integration of Fourier transform of the modes 
possible, the transverse Cartesian components of the guided modes (i.e., Ex,y, Hxy) in 
dependence on cylindrical co-ordinates will be considered, expressed in terms of longitudinal 
components. 
The fibre supports a finite number of guided modes and a spectrum of the radiation field. The 
total electric and magnetic fields in the fibre (for z < 0) can be expressed as 

£(r,cp,z) =X E;(r^)e-Jt-x+ft RJE; (r,q> )e*JP-: +Er(r,q>,z), (1) 
n = \ n=l 

and //(r,cp,z) =£ //,/ (r,cp )e'J^: +£ RnHn~ (r,cp )e+jK : +//r(r,<p,z), (2) 
« = l 11 = 1 

where hr, tir (r,t>,z) is the radiation field in the fibre, propagating away from the facet. The 
superscripts + and - indicate forward and backward going fields with respect to z-axis direction, 
respectively, and p„ and A„are the propagation constant and the reflectivity of the 
corresponding guided mode, respectively. The radiation field in the fibre assumed to propagate 
in a uniform half-space with a refractive index can be expressed as 

Er(r,q>,z)=jqdq jdQ e1'*0^ er(^,e)e'^VV-' (3) 
0 0 

co 2 re 

and       Hr (r,<p, z) = jq dq JVo e'rcoM0 <p) h, (q,Q) «W"^ W -' ? (4) 

o o 
where e (q,Q) and h (q,Q) are Fourier transformed fields and q and 9 are Fourier. 

The forward going radiation field (for z > 0), Ef,H f (r,9, z) is exactly described by a similar 

representation to (3,4) but with the propagation constant equal to y(q,Q) = Jnf
2 k0

2 -q2 . 

Applying the boundary conditions at z=0 yields the following system of equations: 

£ £,>,(p) + £ £ä r (r,(P) + £/.(r,(P,z) 
.» = 1 n = \     »i = I 

A' A'      M 

x-^l :=0 = [Ef(r,y,z)]xz\ __=o,    (5) 

xfl .-=o AtywMw2)]xf| ^o,    (6) E^>,<P)+IZU4^)+^».<Rz) 
.«=1 11=]   m=\ 

where the magnetic component of the radiation field is expressed after the electric one using the 
admittance operators Yr and Yf of the correspondent media, which are 2x2 matrices with the 
elements being differential operators or combinations of elementary functions in spatial or 
Fourier representations, respectively. 
With the view to simplify the analysis, 2D Fourier transform is applied to all field components 
in equations (5,6). In order to solve the system (4)-(5) for the modal reflectivities Rn, the 
radiation field can be expressed as 

KIEV. UKRAINE. IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



MMET*02 PROCEEDINGS 

eMfi ) = (Yf ~Yr Y \t (K (9,0 ) - Yf en
+ (qft ) }f £ i?„ (v(g,6 )- 7, e/ (g,0 )) 

The modes orthogonality condition 
2JI 

jW? JdB [ er(q# ) x (^-(«,9 ))* + (hnm-(qß ))* x ^fo,9 )]• z = 0 

235 

(7) 

(8) 
o o 
results in the algebraic system of equations for the guided modes reflectivities. The Fourier 
transforms of the guided modes used in (7) and (8) are found analytically for any order of the 
modes, after which the integral over 9 can be solved exactly. 

CALCULATION RESULTS 

The results for fibre reflectivity are 
for fundamental EHU mode incident 
on the facet coated with a quarter- 
wavelength layer are shown in Fig.2. 
The fibre parameters are ncore = 
1.4516, nclad= 1.4473, and 2p=8.7 p.m. 
The solid line represents the vector 
results and the dash line stands for 
scalar analysis. The difference 
between the vector and the scalar 
results is within the limits expected 
from Fresnel formula 

|ß_-ßj. 
—1 r- 

1.4 1.5 1.6 

wavelength, rrkm 
\R -R 

2ß„ 
Fig.2. Power reflectivity for a quarter wavelength coating on a fibre with ncore=1.4516, 
nclad=1.4473, and diameter=8.7, for vector (solid line) and scalar (dashed line) 
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INTRODUCTION 

Femtosecond  O10~15.v)  pulse  laser  systems  open  new applications  of ultrafast 
processes investigation in physics, engineering, chemistry, biology and medicine. 
Short - pulse generation has advanced to a degree where the bandwidth of standard 
Bragg mirrors limits the pulse width of ultrashort pulsed lasers [1]. 

In work [2] the double-chirped mirrors (DCM) are used for producing the sub - 10 fs 
pulses (Fig. 1). Physically the dispersion management with chirped mirrors can be 
explained as follows. Quasi-monochromatic wave-packets carried at different 
wavelengths penetrate to different depth before being reflected (Fig. 2), as a 
consequence of a modulation of the multilayer period across the layer stack. The 
increasing multilayer period with increasing distance from the mirror surface implies 
that radiation with increasing wavelength has to penetrate deeper before being reflected 
and experiences a longer delay. The result is a group delay that increases with 
increasing wavelength, giving rise to negative GDD. The further reduction of duration 
of the pulse is possible at reduction of the Bragg grating optical thickness. [3] 

M1      Ti:S     M2^, 
A 

oc 

id 
M4 

Fig. I. Kerr-Lens Mode-Locked Mirror- 
Dispersion-Controlled Ti:Sapphire Oscillator. 

Double chirped mirrors (M1-M4) were 
employed as a means of dispersion control, OC- 

output cavity. 

Fig. 2. Dispersion management with 
chirped mirrors 
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In papers [4, 5] the analytical design and theory of DCM are present. But in these works ^ 
only thickness for high refractive index layers is changed. Further decrease of pulse v 

duration is possible by decreasing of optical path of Bragg mirror. In this paper we 
investigate the dispersion characteristics of chirped mirrors (CM) with change both high 
and low refractive index layers with different chirping order. 

THEORY 
In our case we use a structure like [1]. Grating materials are Ti02 with refractive index 

nh = 2.5 and Si02 with nx = 1.5 The Bragg wavelength XB = 800 nm. 
For investigation we use the exact calculation of the transfer matrix M [5]: 

^KM(o,4A^ 
B(0) B(L\ VM21 M22j 

A{L) 
(i) 

where L is the length of the medium expressed by the number of layer pairs, A and B are 
the right - and leftward travelling waves respectively. 
Transfer matrix Mis the product of matrices for each period of layer 

JV-1 

M{0,L)=f[M{A„„A„J, 

M(Am > A,»+l ) = Tl,m • Su ■ Th,m • Sd > 

(2) 

(3) 

where A/H - high +low refraction index layer period, Thm and Tljn - propagation wave 

matrices for high and low refraction index layer respectively, Su H Sd - normalized up 

and down Fresnel matrices respectively. 

T"   = 1h,m 

VK" o 

5 ..=■ 

0      el%J< f 
rnh+nt    n,-nh^ 

T    = 1l,m 
0 

0 

"    2j^{n,-nh    nh+nt 
Sd = 

i J 2jn~ni 

nh+n,    nh-n, v (4) 

nh-nt    n„+n ■U 

♦*. =knhd„m,t>lm =kn,d,„, dKm ={mlNf"kRl(4nnh),   d,m ={mlN)°*K^™,)> 

(5) 
where k is the wavevector;^ „,,§, ,„,,dlhm,dL„, are phase and thickness of high and low 

refraction index layer for m - period respectively, N- number of chirped layer periods, 
och is the chirping order. 
The complex reflectivity rm of the periodic structure for the wave incident from the left 

side is given by 

' m (6) 
5(0)    M„ 

where R and <D are the amplitude and phase of the reflectivity, respectively. 
The group delay GD of the chirped mirror is generally given by GD(CO) = -5<D/öCö, 

where  co is the optical frequency. The group delay dispersion GDD is given by 
GDD((o) = dGD((x))/d(o. 
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CALCULATION RESULTS 

In our case the structure consists of 25 layers. First 12 layers are chirped with 

dh =(k/\2)°ch\B/(4nnh),   d\ ={kl\2)°ch XB /(47m/), where   och   is the chirping 

order. Next 13 layers compose the quarter-wave section with fixed Bragg wavelength. 
It is necessary to obtain high reflectance over a wavelength range as broad as possible. 
Fig. 3 shows the dependence of GD and GDD from the optical wavelength at various 
meanings oc/7.   For the second - and third - order CM at the Bragg wavelength GDD 

equals zero and for fourth - order CM we have a negative and slightly constant GDD 
with an absolute value 16.7 fs 

45 100 

so - 

700      750     800     850     900 
Wavelength, nm 

950 

.50 a 

-too 
700 

 T" i  ' i n 

•* •.   A 
•^                         -**^\            *   _ 

* ,       • 

750      800      850      900 
Wavelength, nm 

b) 

950 

Fig. 3. Group delay (a) and group delay dispersion (b) versus optical wavelength at 
various meanings och .Dotted line: ot/,=l, Dashed line: odl =2, Dash-dotted line: och=3, 

Solid line: och =4 Dash-two-dotted line: odl=5 

CONCLUSIONS 
The chirping mirrors with chirping both high and low refractive index layers are 
investigated using the transfer matrix method. The results show the negative and 
slightly constant group delay dispersion with an absolute value 16.7 fs2 at the Bragg 
wavelength for the fourth - order chirping mirrors. These results allow further 
investigating the light propagation in asymmetrical periodical structures and pulse 
reflection from new type of mirrors. 
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ABSTRACT 

Propagation of radiation field excited on a step-like discontinuity of dielectric slab 
waveguide is considered by using two different techniques: the Finite-Difference Beam 
Propagation Method and the Green's Function Method. Comparison of these techniques 
enables to evaluate approximations used in the FD-BPM as well as the truncation errors 
and influence of interface conditions. 

INTRODUCTION 

If radiation propagating along a waveguide axis occurs to be mismatched with modal 
field over some cross-section, spatial transient process being a result of light scattering 
from the irregularity occurs in longitudinally segmented devices: the radiation field 
excited at a step-like discontinuity by the incoming field leaks out of the fiber leaving 
merely the guided part of the total field behind [1,2]. 
The general approach to the diffraction problem solution based on the integral equations 
formalism and applied to the non-uniform part of the dielectric waveguide is presented 
in [3]. To solve the system of integral equations, the Galerkin method was applied that 
needs large computational time [4]. Another technique based on an iteration of the 
surface mode amplitudes was found to be more efficient. The method was used to 
calculate and analyse different types of discontinuities in planar dielectric waveguides 
[5].  Scattering from inhomogeneities immersed inside a dielectric slab waveguide was 
investigated analytically by solving initially a separate boundary-value problem to 
obtain a Green's function and then developing a procedure to solve a set of coupled 
equations for expansion coefficients of fields inside the inhomogeneity [6]. 
An alternative approach is to work with the total electric field. The most commonly 
used numerical method to solve the scalar wave equation is the Beam Propagation 
Method (BPM) [7] based conventionally on the Fast Fourier Transform (FFT-BPM). An 
alternate numerical scheme to solve the wave equation is to x 

use a finite-difference approximation [8]. Following the 
Finite-Difference Beam Propagation Method (FD-BPM), 
the  wave  equation  is  replaced  by  a  finite-difference 
scheme.   Comparative   analysis   of the   radiation   field 
modelling by the FFT-BPM and the FD-BPM is presented 
in particular, in [9]. 
In this paper, we present an example of modelling of the 

"cl 

-+"„—R 

Ri 

dir 

R, 
"cl 

radiation field propagation in a slab waveguide using the p.   . 
Green's Function Method (GFM) and the FD-BPM. lg- 
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Instead of Gaussian beam excitation [9], we consider here a step-like discontinuity 
(Fig. 1) consisting of two regular segments of slab waveguides with identical refractive 
index distributions and different core widths. 

DESCRIPTION OF THE   TECHNIQUES 
Total field propagation through the step-like discontinuity can be simulated by the FD- 
BPM via solution of the paraxial wave equation: 

2/ß —+ -5- + X 
dz    fix 

E(x,z) = 0 (1) 

for the slowly varying amplitude of the electrical field E(x,z)   with  the   longitudinal 
propagation constant ß. Here z and x are longitudinal and transverse co-ordinates, 
respectively. The susceptibility is denoted by x-   Transverse distribution of the initial 
field is taken as: 

[   cos(u,x/d,)/cos(u,),x<d, 
E(x,0) = A\ '      "       y u        ' (2) 

[exp(-wlx/ dx) / exp(-w,), x > d] 

that corresponds to the TE modal field of the first waveguide (w/ and wi are transverse 
wavenumbers). This field in general is assumed to be unmatched with the TE modal 
field of the second waveguide {d& d2) that results in effective leakage of the power on 
the discontinuity. 

This implementation of the FD-BPM enables to consider only the forward-travelling 
waves that is a reason to use the same approximation in the GFM. Following this 
technique, field distribution at any point z can be expressed by the integral: 

a „ „ 5 E(x,z) =  jdx' E(x\0)-—T(x,z | x',z')-r(x,z | x',z')—E(x',0) 
dz' dz' 

(3) 

where the Green's function T(x,z\x',z') is constructed so that it is zero on the interface 
z= 0: Y(x,z\x \z ')=G(x,z\x \z ')-G(x,-z\x \z'). Using the Fourier transform with respect to 
the z coordinate, we can obtain the following integral to be evaluated: 

E(x,z) = -i jß</ß }^,£(x',0)G(x^|x,,ß)exp(-/ßz') (4) 

With an assumed time dependence exp(-mt), the field of point sources in the core 
(region R2) satisfies the non-homogeneous wave equation: 

W 
dx 2

+W2 GU) =d(x-xr)exp(i$z)/(2n) 

and consists of a superposition of homogeneous and non-homogeneous solutions: 
Gl2) =a2cos(u2x) + b2sm(u2x) + iexp(ißz-iu2 |X-X'|)/(4TTW2) 

where u2 = d2^jk
2nl,-ß2 . In the claddings (regions R]? R3), the field satisfies the 

equation: 
dx1 

■w. 
;(D,(3) 

and can be written in the form: 

G0) =ble\p(-w2x)    and    G<3) = a, exp(w2x) 

with w2 =d2J$2-k2n2
l . 

(5) 

(6) 

wave 

(7) 

(8) 
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The unknown coefficients bu  a2,  b2,  a3 can be obtained by using the boundary 
conditions on the surfaces x=±l (coordinates are normalised to d2). Finally, the Green's 
function in the core region is found to be: 

G(2) = i exp(/ß z -iu2\x-x'\) 1(2% u2) - 
f       ... A 

-exp(z'ßz-/w2) 
f —f.. „^„„„^. ^ „w„ v'^w,, vA  ^ .w2      cos(u2x')cos(u2x)  i ; sin(t/2x')sin(M2x) 

V        U2 J 

+ i- 
fA>   nr\Q ti   — ii   cm it 

(9) 
/(4TI) 

w2 cos u2 - u2 sin u2      w2 sm u2 + u2 cos u2 J 

Roots of the denominators in (9) determine the wavenumbers of the TE guided modes 
of the slab waveguide and are located inside the interval:   k2n2

c, < ß2 < k2n2
0. 

Accuracy of the FD-BPM is well known to depend first, on the order of the 
transverse derivatives approximation [10] with special attention to interface conditions 
[11] and secondly, on parameters of a computational grid applied. A common way to 
evaluate the accuracy is to estimate numerical attenuation of the solution when the 
waveguide is assumed to be excited numerically by its proper modal field. If E(x',0) 
corresponds to transverse distribution of the TE mode field given by (2), the second 
item of the sum in the lower part of (9) is zero and after some algebra one obtains: 

E(x,z) = Aexp(ißz)cos —w,* lcos(u^) + ^{x,z) (10) 
ydx    ) 

with ¥{x,z)= 1 dß ^(ß)exP(^)C0SM_  ifdj=d2  (matched excitation), F®0)=0 when 
-oo        w2 cos u2 — u2 sin u2 

ß    coincides with a root of the denominator ß0   resulting in {¥(x,z) = 0. If d,± d2 

(unmatched excitation),{¥(x,z)^0  because of the guided mode poles. In order to 
calculate integrals in (10), an appropriate numerical technique should be used [6,12]. 

CONCLUSIONS 
Two different techniques are applied to solve the same problem of radiation field 
propagation in a slab waveguide with a sharp discontinuity. In spite of the GFM is 
relatively complicated it is free from the truncation errors and errors of interface 
conditions modelling and can be used to evaluate these errors generated by the FD-BPM 
as well as feasibility of the paraxial approximation used by the FD-BPM. 
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ABSTRACT 
The periodic dielectric layered structure is considered in the case when at the interface 
between layers with high and low value of refractive index the full internal reflection 
takes place. The possibility of using of the coupled oscillation model (circuit model) for 
the description of the layered structure is shown. The considered model gives the 
possibility to make an approximate analysis of various multilayered structures and 
develop new multilayer films. 

INTRODUCTION 

The methods of tuning of slow-wave structures, based on inhomogeneous disk-loaded 
waveguides, using the special cavity stacks was developed [1]. Such methods based on 
the various cavity stacks allow not only to tune the resonant structures, but to synthesize 
new regular non-periodic systems, which transmit RF power at the working frequency. 
These methods of tuning are the most effective in the case, when every resonator of the 
structure strongly interacts only with adjoining cells. The mathematical model of tuning 
procedure is based on the method of coupled oscillators. To use the developed method 
for creating new inhomogeneous multi-layered structures, it is necessary to have the 
similar method for calculation of layered structure characteristics. In this paper we 
represent a new method for description the characteristics of periodic dielectric 
structure. 

EIGEN OSCILLATIONS OF THE DIELECTRIC LAYER 
We consider the propagation of a TM polarized wave in periodic dielectric structure. 
The structure period consists of two layers with refractive index w, and n2, layer 
thickness d\ and d2, correspondingly. Electromagnetic fields in the layers with high 
value of refractive index («,) we expand into Fourier-series with the set of functions, 
which have been obtained from the boundary problem with zero boundary conditions 
for the tangential component of the electric field (£,(,f' (0) = E^ (</,) = 0): 

E^ = T^E^(Z)- (U) 
»i=0 

"/*,=i*<*,"<*,(2). (i.2) 
»1=0 

The eigen functions are as follows: 

E(
m
k)=sm(hJz-kD)); {2A) 

a) 

;Ä_'°—•--    —' (2.2) //<*>= ^.cos(U*-*D)), 
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where com = — 
n 

f        \ 
K 
— m + k]   are the resonant frequencies of the layer,   hm = — w > 

m = 0, 1, 2 ... , k_L is the transverse component of the wave vector, D - d\ + d2 is the 
structure period, k is the number of the structure period. 
As the eigen functions determine some resonant frequencies of the layer, some 
oscillator may be put in accordance with each function. So, the infinite number of 
oscillators correspond to each layer. Coefficients AJ"\ B^ in eqs. (1.1, 1.2) can be 
found from the problem of layer excitation by surface electric fields. Electromagnetic 
field in the layer with low refractive index we represent as superposition of two waves. 

MODEL OF COUPLED OSCILLATORS IN THE THEORY OF LAYERED 
DIELECTRIC 
We choose one oscillator in each layer with high value of refractive index as a basic. 
Let's suppose that at the interface between layers with high and low (second layer) 
value of refractive index the full internal reflection takes place. The parameters of the 
second layer determine the coupling between the oscillators. With the help of the 
method of excitation of volumes by surface fields we obtain the set of coupled 
equations for the amplitudes of basic oscillators. These equations have the following 
form: 

i/4*,24-l)"Sl-a,-a2)  P        (-D~2nfdl 
where t,-,^      ((%mf + ^^      ' " " 1-jT2 ((nrnf+ *»*?&' 

~ ^    (or, +a2)
2-V?-s\ «i2cos(Vi) 

P = ß+(-0Nß'-i.    with     Q = ^    ^       K     °-M^T 

= «|cos(V2_)    s =       nt _     s  = _Ä or =a   i 2n*dl  
tt2     722sin(V2)'   Sl     Ä,sin(V,)'    '     h2sin(h2d2)'     '       *    (%m)2 -{hxd,f ' 

,}=sl+ ±p^, h =  \^nt -kl,h2= l^n\ -k\.M that, \p\ < 1. 

The left part of equation (3) coincide the harmonic oscillator equation (com is the 
resonant frequency, Bm

ß) is the amplitude of the oscillation). The number of the 
components at the right part of equation (3) depends upon the degree of coupling 
between the oscillators. For "paired coupling" equation (3) will have the form: 

^2-(Di)BW=5>i(T1+2^ + (5i*-1>+5r)k(^+'lPr+^2) W 
For "cross-cavity coupling" equation (3) will have the following form: 

(co2-co2>^=5>2(q+2^)+(i?r)+5r)}o2(^^+^2)+ 

+ (5i*-2>+Bi*+2)>»iW+lP2 + ^3) >     <5) 

Dependence of dimensionless frequency (co/a>o) versus the phase shift per period (<|>) 
inside the first passband of layered structure (m = 0) is shown on fig. 1. We compare the 
dispersion characteristics obtained from the equations for "paired coupling" (eq. 4) and 
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cross-cavity coupling" (eq. 5) with real dispersion curve of periodic dielectric structure 
for several values of the thickness of second layer. Results are given in Table 1. 
One can see, that for sufficiently thick second layer the model of coupled oscillators can 
be used for description the layered structure. 
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Fig. 1. Dispersion curve of periodic dielectric structure with dx=XQl «, (solid line), 

dispersion curve from eq. 4 (dashed line), dispersion curve from eq. 5 (*) for the 
following values of second layer thickness: a) d2 = X018i?2; b) d2 = X0 16n2; 

c) d2=X0/ An2 ;d) d2=X0f 2n2, X0 = 632.8 run. 

Table 1. Maximum deviation of § determined from eqs. 4, 5 from the real value inside 
the first passband (m = 0) of periodic dielectric structure for different values of second 
layer thickness; d{ - X0 I»,, X0 = 632.8 nm. 

d\ =K/n\ d2 = X0l%n2 d2 = X0 16n2 d2 =X0/4n2 d2 = X012n2 

"pared 
coupling" 25.25° 22.7° 18.02° 3.81° 

"cross-element 
coupling" 10.56° 7.86° 4.22° 0.06° 
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INHOMOGENEOUS DIELECTRIC WAVEGUIDE: A NEW 
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ABSTRACT 
In this article we proposed a new approach towards realization of the stratification method for 
analysis of electrodynamic characteristics of radial inhomogeneous dielectric waveguide. We 
also used exact solutions of the wave equations. 

INTRODUCTION 
The analysis of characteristics of a light-guide is based on a solution of a boundary 
value problem for wave equations, the latter ones resulting from the Maxwell equations. 
Among the other approximate methods of its solution, the method of stratification has a 
number of advantages. The traditional realization of the algorithm for exact wave 
equations is linked to the solution of a badly conditioned system of the high order linear 
algebraic equations [1], and becomes complicated because of the large volume of 
calculations. The approach offered hereby solves this problem. 

Exact equations for propagated waves in radial inhomogeneous dielectric waveguide 
Let electromagnetic field in a dielectric light-guide with round cross section, which is 
regular along an axis, vary according to the principle: E = {Er, E%, Ez) exp[-/((Df-ßz - 
v0)], H = (Hr, H6, Hz) exp[-/(G>H3z - v9)], where co is an angular frequency, ß is a 
longitudinal mode propagation constant, v = 0, 1... is an azimuth mode number. The 
components of amplitudes depend on radial coordinate r. 
The system of coupled differential equations regarding longitudinal components Ez, Hz 

electrical and magnetic field describe the wave processes in optical fiber with arbitrary 

radial allocation of a core permittivity s(r) 

d2     1 d —T + + 
dr      r dr 

f 2\ 

V r  J 

H0CDSo 

K        dr 

dHz _    /vßcosa E, 

K 
(1) 

d2     1 d 
 2- + + 
dr      r dr 

r        v2^ 
K2-VT 

v r  J 

ß2sQ dE^ _ /vßno006fl  Hz 

8„K
2
   dr K2S„ 

(2) 

which corresponds to the boundary conditions at core/cladding boundary r = a. The 
boundary conditions express equality on boundary of component fields Ez, Hz, EQ, HQ, 

where 

K (r) 

vß ,, dH, 
^Ez+i(Oix0-^ 
r dr 

Ha =  .2 

1 

K\r) 

vß TT     .      dE, 
dr 

and K (r)=üo noEa-ß and sa=8o£(>) is the absolute permittivity in a core region. 
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THE METHOD OF STRATIFICATION OF AN APPROXIMATE SOLUTION 
OF WAVE EQUATIONS 
Stratification method [2] consists of approximation of an actual light-guide comprising 
gradiental core, with the multi-layered structure with N of cylindrical strata; the cover 
equals stratum (N + 1). The permittivity s,= (nj) of the /-stratum, where/ = 1, 2, ... 
N+\, is constant, and its value and thickness of a stratum Pj—rja are chosen in such a 
way that it is convenient to approximate an actual refractive index profile (RIP) («/ - 
refractive index). 
Within the boundaries of the j-stratum, (1) and (2) are the Bessel equations of v-order, 
and they are linked by the boundary conditions. Therefore, allocation of longitudinal 
components within the fields in j-stratum (J = 2,3 ... N) can be described by the linear 
combination of cylindrical functions 

EZJ = i[AjZU\Kj\p) + ß,Z2v(|K»], Hzj = ^JIM[CJZ]V(\KJ\P) + Z)7Z2V(|K»], (3) 
and the field in the first sphere and covering - with the help of the following 
expressions: 

H. = ziv(lK, IP) 
iA 

V£o/|-loCi 

E. 

H. 
,N+] 

,AM 
= Kv(Wp) 

iB ,v+i 

yje0/\iQDN^ 
(4) 

Where K
2

,- = ü2
(E,k2-^2), W2 = a2 (ß2 - E,V+ IA

2
) > 0, k=(alc is the wave number in a free 

space, and Z]v. Ziv - Bessel functions of v-order, belonging to the 1st and 2nd types 
respectively. Depending on whether the cross-wave number Ky in the relevant stratum 
appears to be real or imaginary one, cylindrical functions are rendered as usual 
cylindrical functions ,/v, Yv and as modified - 7V, Ky. 
Considering (3) and (4), the boundary conditions when p = p, between the j-stratum and 
(/' + 1) stratum of a core, and with N = 1 on the boundary of a core /clading gain the 
following aspect 

MM 
D, 

= A/>,) c'4' 

Vi 
B 

->l 

D 
/->■! 

K(PN) 
BK 

cN 
= KV(W) AM 

-^aB^/W'-kaKL},^ 
-nl+]kaK^+]-^aD,JW2 

,(5) 

where K=KV (W)/(KV(W)W), a Mp(Pi) (p =j,j+\ ) - matrix 
Zlv(P./K) Z2lv(p/K   ■) 0 

o 0 ZU{9JKP) 

vßaZlv(P/K/;)       vßaZ^pJi^j)      kaZlv (p/K/;|) 

P/K/> PJ
K
I \K„\S'gn(K2

P) 
MP(PJ) = 

Z2v(P.;!Kp) 

kaZ2v (Pj KP ) 

KpSign(K2
p) 

n2
pkaZH, (p^Kp)    n2

pkaZ2j (p,■ KJ)    vßflZ,v(p/K, )    vßaZ2v(PjJK;,) 

\Kp\Sign(K2
p) \K p\Sign(K2

p) PjK2
p PjK

2
p 

In which for the 1 -st stratum (/' = 1, p = 1) it is necessary to consider all the components 
of the 2 and 4-th columns zero. In the matrix of coefficients for allocation of fields it is 
necessary to consider B\= D\=0. 
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Within the traditional implementation of the method of stratification of realization of 
boundary conditions, (5) leads to homogeneous system AN of the linear algebraic 
equations with regard to AN of unknown coefficients in allocation of fields (3), (4). The 
requirement for existence of the nonzero solution for this system displays dispersion 
relation (secular equation) det S(k, ß) = 0, where S is matrix of coefficients of a system. 
For the calculated value of the radical ß 
of a secular equation (k - fixed value), the distribution coefficients of the fields can be 
determined from heterogeneous system 4JV-1 of the equations. With the known 
allocation of the fields, it is possible to make calculations concerning other 
electrodynamic characteristics of a light-guide. Not only is such an approach time- 
consuming and complicated, but also it might lead to the unreliable outcomes as a result 
of a poor conditionality in the systems of high order [1]. 

REALIZATION OF THE STRATIFICATION METHOD ON THE BASIS OF 
TRANSMISSION MATRIXES 
Below we suggest the method that helps to eliminate the indicated complications. It is 
based on deriving transmission between the neighboring strata at the expense of 
analytical transformations of compact expression for a matrix. It allows obtaining a 
secular equation of a light-guide in a full-scale shape, which is convenient for the 
analysis. 
Let us express from (5) the matrix of coefficients in j+ 1-th stratum, using the 
coefficients in j-th stratum 

XM = T{pJ)XJ,        T(Pj) = [MJ+l(pj))-l-Mj(Pj),     j=l,2,...N-l, (6) 
where Xj is matrix-column of coefficients for allocation of the field (3) in/-th stratum. 
We shall name T(pj) a matrix of transmission from; to (j+1) stratum of a core. 
After volumetric analytical transformations (with the multiple usage of the value of 
Wronskian for cylindrical functions [1]), T(pj) gains its visual aspect 

T{?,) = 

mn.iU) mn iU)      fnU)ln)+,      UU)ln)* 

-mu2(j)    -W21.2C/)    -fnU)ln)+x    -fnU)ln)+i 

fnU) /22O') mnAJ) "»22.10') 

-fnU)       -/21O') -™. .,.0') -W2U0") 

(7) 

where mrs,,(/') = p,JK/ + \\ej+ ^(p/hcyl) ZSV(PJ\KJ + I|) - nx(j)Zsv(pj\Kj + ID^VVCR/KI)]; 

fjj) = vß/fey + i(l- Kj+i^K^Z^pylKyDZ^pjlKy+il); x(j)=yjyj+,; r, s = 1,2; 

e,+iH 
71/2,    ifKj+1>0, 

-1,      ifK;+1<0; 
T| = 

e,-/e7+1! 

if f = l, 

if i = 2: yP=\ 
1,      ifK^O, 

-1,   if K
2
<0, 

Sequentially satisfying boundary conditions (5) (starting from the interior boundary p = 
pi stratum of a core), we shall express a matrix of coefficients of N stratum through the 
matrix of the relevant coefficients of the 1st stratum. Let us replace the obtained matrix 
to the left part of the boundary condition (5), with N = 1. In the outcome we shall 
receive a homogeneous system comprising 4 linear algebraic equations regarding 
quantities A\, C\, BN+I, DN+I ■ 
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MN(pK)T = KV(W) 
DK 

■kaKDNt\IW 

IW 

T=TN. i (pjv. I ) TN.2(pn-2)... T\ (p i ),(8) 
-vßaß^/W2 

_-n];^kaKBK^IW-v$aDN. 

where T shall be named as matrix of transmission from the 1-st to N stratum of a core. 
The matrix of transmission (7) with e; ->• £,+ / is transformed into the unitary matrix., 
which ensures the correctness obtained with the  method of stratification of an 
approximate solution with the large N, as well as possibility of the analysis of a single- 
stage light-guide (/V=l) on the basis of the common algorithm. 
The requirement for existence of the non-zero set of equations (8) leads to the 
dispersion relation in its full-scale aspect, which can be fixed in a way convenient for 
our analysis 

FTE(V, B, V)FW(V, B, V)W
(NA)

F,(V, B)+V
2
F2(V, B, V)+V

N
F3(V, B, V)=0, (9) 

where B and V- phase parameter of a light-guide and normalized frequency: 

B = {fki-zcl)l{zmix-zcl\ V=ah]Emax-eci >0,5e[0;l]. 
Because of the fact that the dependence of all functions within the number (9) on v is 
polynomial, with v =0 number (9) disintegrates into dispersion equations for TE- and 
TH- waves: FTE (V, B, 0) =0 and Fm (V, B, 0) =0. In case v*0, (9) is a secular equation 
for the hybrid modes EH and HE, while with v=l - for the basic mode HEn. With B->0 
for light-guides with the negative value of volume RIP [3], the third item in the left- 
hand part (9) is dominating, and equation F2(V, B, 1)=0 provides good approximation 
for calculation of the non-zero frequency of intercepting of the basic mode (while 
applying the methods different from the one mentioned above, the procedure presents 
essential difficulties). 
With calculated on fixed frequency V of a value of radical B of the equation (9), we can 
determine the relative values of coefficients on the basis of 3 random equations of a 
system (8). Afterwards, according to the formula (6), distribution coefficients of the 
fields can be calculated, starting from the 2nd stratum and finishing with N. 
CONCLUSION 
The offered approach to realization of the stratification method on the basis of the 
obtained full-scale expression for a matrix of transmission eliminates the problem of 
solution of the poorly stipulated set of equations of the high order. This problem used to 
be major part of the traditional approach. The secular equation that we obtained with the 
use of a transmission matrix, displays itself as being convenient for the analysis and 
calculation of a dispersion characteristics of modes of a light-guide. It allows for 
essential reducing of the volume of calculations dealing with the problems of analysis of 
light-guides with the composite RIP. 
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ABSTRACT 
An approach for solving the problem of electromagnetic wave diffraction by an array of 
complex shape microstrip reflectors is proposed. The approach employs basis function 
taking into account the edge condition in all the points of complex shape microstrip 
reflectors except the corner ones. Several numerical results for polygon-shape 
microstrip reflector arrays are presented. 

INTRODUCTION 

At present microstrip reflector arrays are widely used to implement low-cost and low 
size antennas. Such arrays consist of a planar array of microstrip patches on a dielectric 
substrate. Usually the patches are of simple shape (rectangular or disk-like) [1]. Using 
the patches of complex shape can decrease size of the array and increase bandwidth. 
Fundamental problem for the arrays is the diffraction of electromagnetic wave by an 
array of complex shape microstrip reflectors. There are several papers employing FDTD 
or FEM technique to solve the problem. However, these techniques require significant 

b ä'-ei 

Fig. 1. Array of complex shape microstrip reflectors on dielectric layer (a), the same 
one with ground plane (b). 

computational resources. The paper presents a fast method to solve the problem of 
electromagnetic wave diffraction by an array of complex shape microstrip reflectors 
placed on multilayered dielectric substrate. 
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FORMULATION 

Structures to be considered are shown in Fig. 1. Microstrip patches are supposed to be 
infinitely thin and perfectly conducting. Structure under consideration is excited by TM 

-polarized plane wave with electric field strength E ; the proposed scheme, however, 
also is appropriate to TE-polarized excitation with minimal modifications. 
Electromagnetic fields are expressed in the terms of electrical and magnetic Hertz 
vectors, which have only y-directed component. Having satisfied boundary conditions 
at the boundaries of dielectric layers and the plane y = b, the problem is reduced to 
following integral equations [2]: 

-grad JJG(X',z')gm{x-x',z -z')ds' - \p(x',z')ge{x-x',z-z')ds' = ikf"*- 

where   S  means   surface   of  microstrip   reflector,    J(x,z)   -   current   density, 
dJx   BJ. 

CT -   - ■■' + - " - quantity proportional to charge density, g m^e are written employing 

Floquet's theorem for the case of infinite array as follows: 

gmA
X>Z)=    ,     ,     X     HfmAPmn   ) ™P Mtt « X+ ß nZ)] , x    z m=-co «=-oo 

where /„(p) = [l/cpm(pK*2 /9e(p)]/p2, /e(p) = ^ /<Pe(p), 9..» are the 

known functions depending only on frequency, number of dielectric layers and their 

parameters   and   pL=a«+P«.   When   p-> 009^ «(e, +82)/p, <pe ~k2j(2p), 

^1,2 are the permittivities of dielectric layers that contain the patch. To solve the 

integral equations, the Galerkin method has been employed. In order to obtain efficient 
solution the basis functions taking into account the edge condition in all the points of 
complex shape microstrip reflectors except the corner ones: 

1 („     „(„\\ 

°<*-*>=„.\,  Y.S..J,   *7,!ir)H(; Vis,..» ,..(*,*). l(z)L j,i» = 0 l(z) \ *-• J      j,m = 0 

where Tm(x) are the weighted Chebyshev polynomials of the 1st kmd,Sjm are unknown 

coefficients,a(z)4/ + (z) + /"(z)]/2, /(z) = [/ + (z)-/"(z)J/2.    Expressions    for   the 

current components are more complicated and can be found in [2]. Functions / + (z) 

and  l'(z) denote upper and lower boundaries of the patch. In turn vertical lines 
\z\=L are left and right boundaries of it, moreover these vertical lines can be even of 
zero length. Transition to the coordinates 

x = a{L cos r) + l(L cos r) cos t, z = L COS r 
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Fig.2. Normalized power scattered into the upper half-space by arrays without ground 
plane (a). Phase of electric field strength scattered by arrays with ground plane (b). 
Parameters of the arrays: dashed curve (a) or «(b) - li = 1.2mm, 12 = 1mm; solid (a) or 
x(b) - li = 1mm, 12 = 1mm; dotted (a) or 0(b) - li = 1mm, 12 = 1.2mm and s2 = 9.8, b2 = 
0.5mm, L=5mm,dx = 3mm, dz= 11mm, incidence angle is 45°. 

helps decrease computational requirements for surface integrals calculations. 
In addition there we have improved solution convergence by means of extracting the 
singular part of the integral equations kernel and transforming slowly convergent series 
into fast convergent ones. As the result a low-order system of linear algebraic equations 
has been obtained. The order of the system is shown not to exceed 10 and 
corresponding solution error is shown not to exceed 0.1 per cent. 

NUMERICAL RESULTS AND CONCLUSION 

Following the presented above method a computer program to study diffraction of 
electromagnetic wave by a two-dimensional array of complex-shape microstrip 
reflectors has been developed. By using this computer program we obtained numerical 
results shown in Fig. 2. Minima in Fig 2.a correspond to the first resonance (almost 
complete "blindness" effect) and surface waves excited in dielectric substrate. Fig. 2.b 
shows phase characteristics and one can see that the array of patches with narrowing in 
the center has got lower resonance in comparison with the others. This effect can be 
explained by the appearance of additional capacitance in narrowed patches. 
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ABSTRACT 
Calculations of several cases for rectangular microstrip patch antennas using more 
accurate cavity model have been compared with the conventional cavity calculations, 
expressions generated by curve fitting to full wave solutions and method of moments. 
Calculated as well as experimental values have been studied for different thickness, 
patch sizes and substrate materials with different permitivities and losses. 

INTRODUCTION 

During the past twenty years, microstrip patch antennas experienced a great gain in 
popularity. They are well known for their highly desirable physical characteristics such 
as low profile, lightweight, low cost, ruggedness, and conformability. Numerous 
researchers have investigated their basic characteristics and extensive efforts have also 
been devoted to the design of "frequency agile," "polarization agile," or dual-band patch 
antennas. Although patch antennas appear simple and are easy to fabricate, obtaining 
electromagnetic fields, which satisfy all the boundary conditions, is a complicated task. 
For this reason, simplified approaches such as the transmission line model and the 
cavity model have been developed. The cavity model is particularly popular [1] - [3]. 
The basic idea of the cavity model is to treat the region between the patch and ground 
plane as a resonant leaky cavity. The simplified approaches allow the analysis as well as 
the design of rectangular microstrip patch antennas but the accuracy of those formulas is 
rather low. On the other hand, the more accurate full-wave analysis [3], [9] cannot be 
used for design because it is very time consuming. Therefore, new simple computer- 
aided design formulas for the rectangular microstrip patch antennas have been 
developed [4] (MSANCAD program), which use the cavity model but the more accurate 
models for open-end effect of microstrip lines and the effective permitivity are used. 

One of the common methods of feeding a patch antenna is by means of a coaxial probe. 
The basic configuration is shown in Fig. 1, where a single metallic rectangular patch is 
printed on a grounded substrate. The patch is of length B, width A and substrate 
thickness h. The dielectric substrate has a relative permitivity sr. The feed-point 
coordinates of coaxial probe are x0 = All and y0 =L. In this case, the linear polarization 
is radiated and the dominant mode is TMio. 

COMPARISON OF CAD FORMULAS AND EXPERIMENTS 

The various rectangular patches have been calculated using MSANCAD program [4]. 
The results have been compared with the conventional cavity calculations using 
program MSANT [5], expressions generated by curve fitting to full wave solution 
(program PATCHD [6]) and method of moments (MoM) as well as experimental 
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values. A variety of different substrate thickness and patch sizes with various widths to 
length ratios and permitivities have been considered. Some of the comparison results 
have been already published ([4], [7] and [8]) and, therefore, they are not repeated here. 

-*2,f 

h 

Fig. 1. Rectangular patch antenna fed by a coaxial probe 

To perform the detailed comparison, several samples of patch antennas with various 
substrates have been completed [9]. In Fig. 2 and 3, the input impedance of antenna 1 
and 2 are given. Antenna 1 uses the AR 600 substrate with measured sr = 6.45 and 
tg 5 = 64xl0"4 (the producer declares values of sr = 6.0 ± 0.5 and tg 8 = 35xl0"4). The 
substrate dimensions are 90x90 mm. The patch dimensions are A = B = 68 mm. The 
50Q connector is placed at L = 25 mm, p = 0.6 mm. Antenna 2 uses the rather loss 
substrate with measured sr = 4.24 and tg 5 = 266x10"4. The substrate dimensions are 
200x140 mm. The patch dimensions are A = 100 mm and B = 80 mm. The 50Q 
connector is placed at L = 5 mm, p = 0.6 mm. 
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Fig. 2. Input resistance and reactance of probe-fed rectangular patch (antenna 1) 

The input impedance has been measured using vector analyzer. The measured values 
have been corrected by means of directional coupler parameters. The MoM with two- 
dimensional model of coaxial probe feeding is employed. The input impedance is 
calculated using surface currents. It can be seen that the calculations and measured 
values are in agreement. 
CONCLUSIONS 
Various simple CAD formulas for a rectangular patch antenna have been presented (see 
[1] to [4]). The method [4] (code MSANCAD) uses the cavity model with the more 
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accurate models for open-end effect of microstrip lines and the effective permitivity. 
That allows increasing accuracy and reliability. Because of the relative simplicity of the 
model [4], the analysis as well as the design of rectangular microstrip patch antennas 
can be performed. Published comparisons ([4], [7] and [8]) are not repeated here. 
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Fig. 3. Input resistance and reactance of probe-fed rectangular patch (antenna 2) 
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The MSANCAD [4] calculations have been compared with MSANT [5] and PATCHD 
[6] (resonant resistances are only calculated), the input impedance measurements and 
MoM computations (MoM 20 and MoM 25 use L - 20 and 25 mm, respectively). The 
differences between measurement and MSANCAD, PATCHD, MSAMT and MoM 
resonant frequencies are about 1%. Considering the impedance input characteristics 
bigger differences can be observed (the MSANT resonant resistance is 218 Q for 
antenna 2 and it is not shown). 
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ABSTRACT We derive a line integral representation of the physical optics (PO) 
scattered far field that yields the exact same result as the conventional surface radiation 
integral-This representation applies to a perfectly electrically conducting plane scatterer 
illuminated by electric or magnetic Hertzian dipoles. 

1. INTRODUCTION 
Various line integral representations of the PO scattered field were reported in the 
literature (see [l]-[2] and previous works referenced therein). In [l]-[2] a line integral 
representation of the electric and magnetic PO field for arbitrary observation points 
scattered from a perfectly electrically conducting (PEC) planar plate illuminated by an 
electric as well as a magnetic Hertzian dipole (HD) was reported. In many applications 
it is sufficient to know the PO scattered far field. The expressions in [l]-[2] hold also 
for the case of a far-field observation point but are numerically inconvenient in this 
case, since they contain terms which do not contribute to the far field, and since they are 
subject to inaccuracies resulting from the use of a large but finite observation distance. 
In this paper we derive a line integral representation of the PO scattered far field that, in 
contrast to the general expressions, includes the distance-dependent part of the far field 
as an explicit factor. Throughout the paper the time factor expQert) is suppressed. 

2. THE LINE INTEGRAL DERIVATION 
Consider the scattering configuration in Fig. 1. It consists of a plane, arbitrarily shaped, 

PEC plate A illuminated by either an electric or a 

\ 

magnetic   HD   with   position   vector   rs.   The 

observation point F and the image point / , with 
respect to the plane of the plate, are in the far- 
field region. Consequently, the truncated cones 

V0'1 from [1],[2] are converted into the cylinders 
CFJ whose generators extend from the far-field 
observation and image points, respectively, to the 
edge Tof the plate. The HD is located in the half 
space, including the plane of the plate, into which 
the unit normal vector n of the plate is directed. 
However, the HD is not to be placed on the plate 

itself. In addition, n is related to the edge unit tangent vector t via the right-hand rule. 

Fig. 1 Scattering configuration. 
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The observation point is, without loss of generality, assumed to be located in the same 
half-space as the HD, i.e., f,: • n > 0 . Finally, it is noted that the HD is not to be located 

on the surface of the cylinder C   ■ 

First, consider the illumination by an electric HD with the electric current density 
Jc. =ac8(r-rs) whereac [Am] is the electric dipole moment and 8 is the Dirac delta 

function. By evaluation of the analytical limit of [2, (11)] as the distance rF to the far- 
field observation point tends to infinity, we find that the magnetic PO scattered far field, 
H''(l

>(r1,) (subscripts eand f refer to the electric HD illumination and the far-field 

observation point, respectively), is 

H:^rj = —J[t-(e^r'W,f(r,,rVeMrW,f(rpr')-(T-2nn)) 
'i   r 

+ ^e^ ,'nn-(txH:.(r,))]dr,-H|:(r,)x(r,:) (1) 

where the incident magnetic field Hj. is given in [5, (12)], r1 is the position vector of 

the integration point and k is the wave number. x(r,:) = 1 if the HD is inside the cylinder 

C   and zero otherwise. The dyad Wcf is the far-field version of [2, (13)] and reads 

— e~,kl' — 
\V,,(r,r')=-—7 (K,,(Afp-(I-ff)xoe) 

(4TU)- 

+ K2,(-ac? + Tf-ac + y*AfBf) + KuAfBf) (2) 

with A, =fxp, B, =fxaL., p = pp = r'-rs and f = r-1 r. The functions K,, -K3f are 

-e"(""fpl — * — (3) K„ -A 
( jk 2 - r • p 

p-r p    (p-r-p)- (P -(r-prr 

K,f =- \ c'""-'»-^—^  (4) 
pp-r-p p--(r-p)- 

K,,t=-\(\ + jkp) (5) 
P 

Now the associated electric PO scattered far field is readily found as 
E™(^) = -ZrfxH"(rF) (6) 

with Z denoting the intrinsic impedance of the ambient medium. 

Second, consider the illumination by a magnetic HD with the magnetic current density 
Jm =ani5(r-rs)where aJVm] is the magnetic dipole moment. By evaluating the 

analytical limit of the general expressions [1], [2], we find that the electric PO scattered 

far field, E|j" (r,.) (the subscript m refers to the magnetic HD illumination ), is given by 

(7). In (7) we use (2) to obtain WnU. as Wmf = -Z Wc_r with ac replaced by Z"'om . The 

incident magnetic field H'mis given in [5, (21)] while the incident electric field is 
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E,
m(r') = -G(r',rs)(./yfc + l/p)amxp  where  G(r',rs)   is the scalar Green's function. 

E
p

m° (iy) = — J[t-(eÄr' Wm,f(rF,r') + e^''r' Wm,f (ri,r')-(l-2nh) 
rF    r 

—e^r'H'm(r')?F) +—e^r'(I -nn)-(txEi
m(r,))]dr,-Ei

m(rF)x(rF)    (7) 
2JI 27i 

3.    NUMERICAL RESULTS 
The exactness of the new results is now illustrated through a comparison of the PO scat- 

tered far fields obtained by use of the conventional surface 
radiation integral and the new line integrals. Scattering by a 
rectangular plate with the dimensions AX by 3X (X being the 
wavelength) is considered. The plate is located in the xy -plane 
with one of its corners positioned at the origin of the Cartesian 
xyz -coordinate system (see Fig. 2). The HD is placed at (3A,, IX, 

2k) with the dipole moment ae= (1, 1, 1) Am for the electric 

HD and a,„ = (376, 376, 376) Vm for the magnetic HD. The ob- 
servation points are located in the (p = 60° plane with Be [0°, 
90°]. For this configuration the dipole is inside the cylinder C 

 L. , 30°[ and outside for Ge ]30°,90°]. In Fig. 3 the source is an electric HD and 
in Fig. 4 the source is a magnetic HD. The figures show the amplitudes of the 9- and <p- 
components of the electric PO scattered far-field pattern. Perfect agreement is found 
between the two methods of calculation. This was also found for the phase. 
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Fig. 3 Electric HD illumination. 
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Fig. 4 Magnetic HD illumination. 
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ABSTRACT 

A system of microstrip antenna modelling is presented. The modelling is accomplished 
on the base of the integral equation composed by means of vector electric potential 
Green's function. The integral equation is solved by method of moments in spatial 
domain. The calculation is effective due to usage of the closed-form of the Green's 
function. The process of spatial domain Green's function composing is formalized by 
using of microstrip structure decomposition model. 

INTRODUCTION 
Integral equations are widely used for microstrip circuits and antennas modelling. These 
equations are composed by using of Green's functions for vector and scalar electric 
potentials and are solved by method of moments [1]. 
Computational expenses for modeling at this approach are basically determined my 
method of Green's function calculation. Significant increase of modeling effectiveness 
can be provided using a closed-form Green's function as explicit dependencies of 
spatial coordinates [1]. 
The closed form can be derived as a result of approximation of spectral-domain Green's 
function representation as an exponential series with transformation to spatial domain 
through Sommerfeld identity [1-3]. The approximation is commonly realized by Prony 
techniques [2], based on the pencil-of-functions [3] and their modifications. 
In the presented system there used a closed form on the basis of expansion on small 
parameter of Green's function spectral dependencies to exponential series. 
Computations formalizing is accomplished by introduction of substrate structure 
decomposition model. This model allows to form a set of auxiliary image-currents in an 
open space by method of repeated reflections, which determine the spectral-domain 
Green function. 

THEORETICAL PART 

In common, applying method of moments to the integral equation for surface currents 
gives the following system of equations: 

ZI=V. (1) 

The elements of impedance matrix Z and voltage vector V are determined in the 
following way: 

zmn = JVm (0 J<t>„ (r0 )Z(r, r0 )drdr0, (2) 
s s 
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Vm= jcpm(r)E(r)dr, 

261 

(3) 

where cpm, <k are sample and basis functions of the subregions, Z(r,r0) is mutual 
impedance tensor which is connected with components of vector electric potential 
tensor G(r,ro). 
Suppose the z-axis of Cartesian coordinate system is perpendicular to the surfaces of 
microstrip media sections. Then the components of tensor in spectral domain can be 
presented as follows [4]: 

G„=i^(i + rT)e-k^z-h>; 'IT 2k 
G,, = ^08 n , r ^-kzo(z-h) 

zO 2k 
-a + r2)e- 

zO 

|a08 aGzt/az = jkTa-^^(i + rT)(i+rz)e-k^(z-h): 
2k zO 

(4) 

n _ rk -e~^zlh r _ rs +rn 

where LX_1-rk
e"2kz,h;Z    ^ 

rk +e~2kz'h 

"i+rke-2kzlh re=^ rk er-l 
_kzQ    ^zl 

kzo+kzi 

jkxx0+jk y0 

a = 8 = ■,k2
z0=y2-k2

0,   kzl=y2-k§8r,y
2=k2+k2; 

(l + r£) (2TI)' 

jkT is Fourier transformation variable on coordinate x=x,y; h and sr are thickness and 
relative permittivity of a dielectric substrate. 
Function Fx can be approximated as given in [4] provided that k0h(£r-l)   <7i/2: 

n. -p_kzoh     .   . 
r = 5 c~ z0 

T i-r5e-kz°h 

where r5=l-8h-ctg(8h), 8=ko(sr-l)   . 
The original of GTT is composed according to (5): 

GTT(r) = -NuJ+uö). 
471 

The computation of UQ is made by recurrent formula: 

un =r5un+l ~un+2 +r8un+l 

where uj = e~j W+(nh)2 /^/r
2+(nh)2 , initial condition u^+i =0,   N -» oo. 

The original of Gzz is approximated by the following expression: 

Ho 

(5) 

(6) 

(7) 

Gzz(r)=^Ko;o
+S^;,o+S^U2.,o-Si3u20;1 

the parts of which are calculated by recurrent formula as follows: 
(8) 

u- zn,m 

-'n,m 

$22 -S23 

$32 _S33 

u2    , zn+l,m 

Jn,m+1 

+ 
s21u+ 

S3Iu+ 
(9) 

where 
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'n,m 
-jk0^

2
+(n2h+m2A/(j5hc))2

//^r2+(n2h + m2A/(j6he))2 

initial condition u->        =0,   u? 
^N-!,M ' ->N,M + 1 

= 0,      N -> 00,      M -» 00 . 

The formula for original of <3Gzx/dz is composed in similar way. 

MODELLING SYSTEM AND RESULTS OF COMPUTATION 

The considered above method of Green's function calculation is realized in the system 
of wire antenna modeling [5] where used a precise basis for surface currents 
approximation and Pocklington integral equation. This approach provided a significant 
simplification of computation procedures as well as flexibility in respect of the form of 
radiating elements. 
As an example figure 1 presents the modeling results of scattering pattern of a 
microstrip half-wave vibrator (a) and a spiral antenna (b) with conductor width 
d=0,8mm on frequency F=10GHz for a substrate with er=9,3, h=2 mm. Spiral parameter 
a=9mm, gap between the spirals s=0,6 mm. 

J^QM^LV ^ygp**^* 

a) b) 
Figure 1. The far-field pattern for X/2 vibrator (a), and a spiral antenna (b). 

The results of modeling in the system have good compliance with the known data at 
insignificant computational expenses. 
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ABSTRACT 
The paper presents an accurate analysis of the periodical microstrip structure on the 2-D 
lattice of square holes at the ground plane and its application for circuit design of high- 
efficiency power amplifiers. 

INTRODUCTION 

The growing interest in photonic bandgap (PBG) materials has created a demand for 
efficient methods of analysis of periodic structures. Periodic structures have been the 
subject of numerous investigations due to their importance in slow-wave structures and 
corrugated antennas. Potonic bandgap microstrip structures have bin proposed as a 
novel way to accomplish the filtering providing a board reject band [1-6]. 

PBG STRUCTURE ANALYSIS 

Due to the complexity of PBG structure, their characterization can be achieved only via 
a full-wave analysis such as plane wave expansion, integral equation method, finite 
element method, etc. Here, the accurate analysis of PBG microstrip structure on the 2-D 
lattice of square holes at the ground plane was performed using the mixed potential 
integral equations (MPIE). 

ii     i ,i 
a        I 

Fig. 1. Microstrip 2-D PBG line with etched squares in the ground plane. 

A microstrip line (MSL) with etched squares in the ground plane is shown in Fig.l. 
Such a structure is equivalent to inclusions of high-impedance sections in original MSL. 
Using the partial regions' approach, this structure can be divided into homogeneous 
sections with and without etched squares in the ground plane as shown in Fig. 2. The 
eigenwaves problem needs to be solved for the each of sections, then diffraction 
integrals and quasi-TEM wave scattering characteristics on 2-D-lattice can be found. 
The level 3 (see Fig. 2) of screened MSL can be considered as evanescent waveguide 
that has to be taken into account for diffraction integrals' calculation. 
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w/2 

Fig. 2. Partial regions of microstrip PBG structure. 

The microstrip line eigenwaves problem formulation is standard: z-components of 
electric   and   magnetic   Hertz's   vectors    IIe hj = (0,0, ne hj)   are   satisfied   to   the 

Helmholtz's equation in the partial regions 1-3 (see Fig.2) and to the boundary 
conditions on screen's and strip's ideally-conductive metal surface. The wave equation 
solution for the partial regions 1-3 can be found as Fourier series. The Fourier 
coefficients can be expressed through the field components at the strips' plane at y=h 
and j=0. The achieved integral equations are solved by the Galerkin's method with 
account of field behavior at an infinitely thin edges and symmetry of a problem relative 
to the x=0 plane. The detail description of an algorithm and its convergence can be 
found in [7]. In case of MSL with a holes in the ground plane, there are two solutions 
(accounting vacuous) for quasi-TEM eigen waves. Further, the eigen wave's solution of 
the central strip is considered. 
The calculation of coupling coefficients between the quasi-TEM wave of MSL with a 
hole in the ground plane and waveguide in region 3 (see Fig. 2) showed that coupling is 
provided by the odd H-waves of waveguide. The one TEM-wave and 16 waveguide's 
modes were taken into account. Figure 3 shows an example of 2-D lattice line with 
etched squares in the ground plane design. Its contains of 5 unit sections. Base 
transmission line is MSL with the wave impedance Z0=50Q on dielectric substrate with 
£, i=9.8, vt'=/z=lmm. 

Fig. 3. S-parameter of 5-section PBG microstrip circuit with a=xw=5 mm, 
1=9.18 mm, x0=7.0 mm. 
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Fig. 4. S-parameters (a) of 3-section PBG microstrip circuit for class-F PA with 

Xwl=Xw3=2.065 mm, xw2=2.8 mm, ax=ay=Yl.\ll mm, a2=12.18 mm, x0=7.0 mm, 
/= 10.97mm, and collector current and voltage waveforms (b). 

Using described algorithm, a harmonic filter for 1GHz class-F power amplifiercontains 
3 unit sections of a PGB structure was designed. Here, xwl=xw3=2.065 mm, xw2=2.8 mm, 
a,=a3=12.177 mm, fl2=12.18 mm, x0=7.0 mm, /=10.97 mm. In order to tune phase 
characteristics, a length of input MSL was varied (as in [8]). The S-parameters of 
designed network along with collector current and voltage waveforms are shown in Fig. 
4, (a) and (b), respectively. Collector efficiency of simulated power amplifier was as 

high as 74.7%. 
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Full-wave solution of electromagnetic problem about lumped excitation of a 
microstrip phased array has been obtained. Microstrip antennas attract much attention 
due to their numerous advantages. However any single printed antenna has low 
directivity. Microstrip arrays overcome this demerit. However, experimentation and 
measuring of parameters of arrays are complex and expensive procedures. This causes 
significant interest to creation of mathematical and computational models of arrays. The 
purpose of the present work is the development of a mathematical model for a printed 
antenna array. This antenna consists of arbitrary-shape microstrip radiators excited by a 
periodic system of probes simulating coaxial waveguides or two-wire transmission 
lines. Rectangular grid nodes determine the placements of printed radiators. Presented 
mathematical model allows investigating the microstrip radiators, which contain 
controllable elements used to expand an antenna array angular scanning sector. A 
conducting probe with an impedance load simulates each controllable element. It is 
necessary to introduce an impedance distribution on the probe. 

The mathematical model foundation for the microstrip is the concept of infinite periodic 
array. Such an approach is reasonable because of consideration of multielement arrays with 
rather complicated element structure. An alternative way of simulating can be based on so called 
"element by element method" with taking into account mutual couplings between array 
elements. This way can become very difficult because of necessity to solve large-size sets of 
integral equations (IE). Proposed mathematical model is based on the periodical structure 
conception and an IE solution. A set of IEs for the magnetic and electric currents on the surface 
of the array unit cell has been developed. These vector IEs are obtained from the Lorentz 
lemma: 

\E[H\'*" + H^ K     -   \[n2, H2 fo)]£<'><« (g, p)dSq - 

-   j[n2,E2(qp2l)aiLX(g,p)dSg=   \[n2,Et
d(qp2

l^(g,P)dSq. 
^ihunl Sri ■'ring 

Application of the periodicity condition allows reducing the solution area to one Floquet 
channel. The magnetic current density on the array aperture and the electrical currents in 
controllable elements are determined from IE set obtained from the boundary conditions. The 
moment method is used for IE numerical solution. The subsection rooftop function set is used 
for magnetic current approximation. By solving these IEs, we determine magnetic and electric 
currents. Then we can determine input impedance of printed radiator, radiation fields and other 
important parameters of considered antenna array. Results of numerical simulation of the 
microstrip phased arrays will be presented. Comparison with known theoretical data allows to 
validate numerical solutions and confirm the adequacy of the mathematical model. Numerical 
analysis of the microstrip phased array radiation characteristics have been carried out. These 
numerical results can be used to develop antennas with optimal parameters. 
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ABSTRACT 
The paper presents the design and simulation of microwave class-E power amplifier 
based on the photonic bandgap microstrip structure on the 2-D lattice of square holes at 
the ground plane. 

INTRODUCTION 
Switching class-E power amplifiers provide high-efficiency conversion of dc to ac via 
careful design of the transient waveforms of a resonant load network [1, 2]. Earlier 
class-E designs have concentrated on the development of lumped element load network 
topologies for RF applications operating in the megahertz range [1 - 3]. However, in the 
microwave region, lumped elements are not so easily fabricated and may depart from 
idealized components. Recent developments in the literature include a transmission line 
circuit utilizing a series line and single shunt stub to achieve class-E operation [4], and a 
power combining four transistor class-E amplifier [5] employing GaAs MESFETs to 
obtain an output power 2.95W at 935MHz, with a power-added efficiency of 67%. 
Transmission line topology and design methodologies of narrow-band microstrip class- 
E amplifier were considered also in [6]. 
Recently, photonic bandgap (PBG) microstrip structures have been proposed as a novel 
way to accomplish the filtering providing a board reject band [7-10]. Such a structures 
can be successfully used as the output networks of high-efficiency power amplifiers. 
Presented paper describes the design of microwave class-E power amplifier based on 
the microstrip structure on the 2-D lattice of square holes at the ground plane. 

AMPLIFIER DESIGN 
The low-order class-E circuit [1,2] is shown in Fig. 1(a). 

Drive      \ 
frequency/0 \ 

Zin- 
R + jX for/-/»     ! 
R ->■ j infinity for/= nfi,  I 

" = 2,3, 

Fig. 1. (a) Class-E amplifier with the low-order network, (b) Equivalent circuit. 
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Design equations [2, 6] for an idealized class-E amplifier with a 50% duty cycle are 
reproduced below (component symbols are depicted in Fig 1(b)): 

Output power: P0 = Vdc
2/üdc ; Equivalent dc resistance: Rdc =1.7337/?; 

Shunt susceptance: B = coC = 1/5.4466 Ä; Load angle: (p = 49.052°; 

Load-network impedance: Z = R + jX , where X = \.\52R ; 

Peak switch voltage: vsmax =3.56^; Peak switch current: ismax = 2.84/^c . 

(1) 
According to (1), needed input impedance of output network was calculated in order to 
provide 25mW output power into a 50Q resistive load at 1GHz. 

Fig. 2. Considered PBG structure. 

The photonic bandgap microstrip structure on the 2-D lattice of square holes at the 
ground plane used for an output network design is shown in Fig. 2. Here, the sizes of a 
and L were equal 12.5mm and 30mm, respectively. 

SIMULATION RESULTS 

Collector efficiency of simulated class-E amplifier based on considering PGB structure 
was as high as 95.53% for 2V supply and 22mW output power. 

v.„ (V) 

0,00E.OOO 5.00E-010 1.00E-009 1.5OE-0O» 

/(sec) 

(a) (b) 

Fig. 3. Simulated waveforms of transistor output current (a) and voltage (b). 
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The simulated collector current and collector-emitter voltage waveforms of designed 
class-E amplifier are shown in Fig. 3(a) and 3(b), respectively. As can be seen from 
figures, these waveforms are in agreement with target waveforms of class-E amplifier 
[1,6].' 

CONCLUSIONS 
The class-E power amplifier using PBG microstrip structure on the 2-D lattice of square 
holes at the ground plane was designed and simulated. As high collector efficiency as 
95.53% for 2V supply and 22mW output power at 1 GHz was achieved by proper 
tuning. The result shows the prospects of future using of such structures for high- 
efficiency amplifiers' networks design. 
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The geometry of a problem considered is shown in the figure. A plane H-polarised 
electromagnetic wave drops on periodic in x-direction stratified dielectric structure with a 
period a. After dispersing by boundary z = 0 waves, passed in area 1 + 2, are dispersed by 
boundary z = w (z\ = 0), partially getting in area 2 + 4. A matching problem in [1] leads to 
problems of the similar type. Diagonal tensor describes the permittivity of strata. 

e.w 0 x=-al2 z = 0 zy 

It is proved in [2], that the planes of symmetry x = 0 and x = all at excitation by a plane H- 
polarised electromagnetic wave must be electric walls. The structure to the right of the 
boundary z\ = 0(z= w) has a twice smaller period - a/2. The planes of symmetry x = 0 and 
x = ±a/2 here are also electric walls. However, aside from these planes of symmetry there 
are some other planes of symmetry at x = ±a/4. In these planes of symmetry there are not 
direct requirements on the field mode. But, as the planes of symmetry x = 0 and x = ±a!2 
are electric walls, the planes of symmetry x = ±a/4 can be either electric walls, or magnetic 
ones. Therefore fields in region z>w should be taken as the total of fields with electrical and 
magnetic walls in the plane of symmetry x - ±o/4. Fields with electric walls in planes of 
symmetry x = ±a/A can be found from the same dispersion equations as in [3], after 
substitution o->o/2. The dispersion equation for fields with magnetic walls in planes of 
symmetry x = ±a/4 of region 2 + 4 is as follows 

■z2 It 
£,4   l~t 

Kcthu:=v:tgv:. 

KIEV, UKRAINE, IX-TH INTERNATIONAL CONEERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



MMET*02 PROCEEDINGS 
271 

Here the superscript corresponds to the magnetic wall in planes of symmetry of type x 
=±a/4, and the subscript determines the number of the root, 

Jz4 
Jzl 

2nn 

V   a   ) 
-k: 

The fields in region 3 can be written down as 

H 3 = e~ikz + RQ ■e,k2 + £ R„er"2 cos( Inn-),    r„ 
y n=\ a 

Here and further other components are derived from Maxwell's equations under the earlier 
specified conditions. 
The fields in region 1 + 2 can be given as   

Hyl=±(An^+Ay-)cHqm(x^)),   Hy2=±{Bme-^+B-me^)cos(hmx),   ym = jk\2-K^. 

Link between A~ and B~ is the same as between Am and Bm in [3]. 

Fields in region 2 + 4 with electric and magnetic walls in planes x = ±alA are 

Npcos(h'p(x-l)) 

a 
Lpch(qp(x--)) 

Np cos(he
px) 

*■*•*, #;=£ 
/>=! 

a 
-Dpcos(h;(x--)) 

a 
Cpsh(q;(x--)) 

Dpcos(hM
px) 

a-t a 
 <x<—, 

2 2 

\e 'y'"Zl npu — <x< 
t_ 

2 

a-t 

0<x< 

Subordinating   fields   to   boundary   conditions,   using   a   system   of  trial   functions 

cos(2nn -)Y   and applying the moment method we'll receive a system of linear algebraic 

equations (SL AE) of a solved problem. 
At actual limitations on number of waves taken into account, the order of the obtained 
SLAE is high. However, coefficients R„ in the sub-SLAE, taken as a result of satisfying 
boundary conditions at z = 0, are simply expressed through Am, A~, Bm, B~ . Let's eliminate 

R„ and therefore reduce the SLAE order. We'll have: 

5> 
m=\ 

Y    s , chu „   yT„     . y_ e,3 . _, El 
k k   E x\ COS V, 

Ei 
k k  s x2 

+ 

+ 
OU ^•r^^ + .«*S«_ril_,!*.«*„•. 

A:   8 xl COS V, k  s. 

:e^(ymn+^Fmn) = Vmn  ' mn-' cosv„ 

= 48„0,    « = 0,1,2,..., 

chtf„ ^ Crlli 

'—'.F    F      cosv„ 
p =\ p 

P=x cosvp 
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■1=1 

, - n ,„ "'    i m   / jP 

k      £ 
£ A,„e-r'™w ±^-(^^ + 

chu m mn 

x\ cos v,„  e,2 

CO 

m=l • Al 

cfo „1 Fm„; = 

Y; ** _ 2  cÄ«' 

P = l * 8.v4 

■ + 
et2 cos vp 

FI;,  « = 0,2,.. 

JWA V*      0 ' p /     P" 
-(■ 

2    shu M 

COS  V 
F"),   n = l,3,... JW /"' 

,    » = 0,1,... 

where 5„0 is equal to 1 at «=0 and 0 at w*0, the formulae for (p,„„, Fm„ are listed in [3], and 

4 r x 4 r x 
F' =- cos#*x)cos@nw-)*fe; Fl=- \cos{tf!x)cosQnn-)dx, 

fln a '     at       p a 
a-l 

4 \ 

o 
a-/ 

~2~ 

<;=-)c%;(x-^))cos(2Kn^Kv, 0£=- \sh(q;(x--))cos(2im-)dx 

2 2 

The calculated magnitude and phase of a reflectivity coefficient J?0 as a function of w at 
constant a, t, e are shown in the table. 

w, mm 0 25 50 75 100 125 150 175 200 225 

| E 
e'=2 |R| 

argR° 
0.03397 
4.79799 

0.02995 
-23.160 

0.01862 
-51.802 

0.00282 
-86.95 

0.01370 
74.4423 

0.02689 
45.3817 

0.03359 
16.3825 

0.03221 
-12.275 

0.02308 
-40.907 

0.00837 
-70.888 

e'=5 IRI 
argR° 

0.05715 
10.3886 

0.05078 
-17.102 

0.03050 
-46.906 

0.00277 
-101.42 

0.02623 
80.3676 

0.04819 
49.8499 

0.05797 
20.0037 

0.05312 
-9.6216 

0.03485 
-39.510 

0.00777 
-74.796 

E'=10 IRI 
argR0 

0.06350 
14.6052 

0.05771 
-11.635 

0.03404 
-41.968 

0.00261 
-125.25 

0.03158 
6.3579 

0.05622 
54.7741 

0.06628 
24.3151 

0.05921 
-6.0008 

0.03680 
-36.965 

0.00503 
-84.784 

E" E 
E E 
o o 
TT O 
ON) — 
II  II 
CO *- 

e'=2 IRI 
argR0 

0.13577 
1.93685 

0.11542 
-26.075 

0.06038 
-53.382 

0.01392 
71.1760 

0.08172 
58.1038 

0.12475 
29.2369 

0.13022 
0.01373 

0.09672 
-28.145 

0.03475 
-45.647 

0.04317 
66.3780 

£'=5 IRI 
argR0 

0.29837 
7.40310 

0.26045 
-19.465 

0.16118 
-40.354 

0.06132 
-21.424 

0.10042 
31.2138 

0.14946 
20.9081 

0.13864 
10.8797 

0.12386 
22.9391 

0.16752 
33.1451 

0.22795 
24.7836 

e'=10 IRI 
argR° 

0.39346 
2.97062 

0.34496 
-28.154 

0.18954 
-71.513 

0.08134 
140.458 

0.23437 
72.7125 

0.32585 
45.4853 

0.37896 
23.0286 

0.38937 
-2.2198 

0.31749 
-35.076 

0.14239 
-87.438 

Comparing results from [3] and calculated ones shows essential decrease of the magnitude 
of the reflectivity coefficient. So, the method offered in [1], is effective. 
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ABSTRACT Possible mathematical models of atmospheric process as a result of 
superposition of random and deterministic components of wind shear vector in the air 
space under study are considered. The canonical decompositions are used. The methods 
of necessary measurable data obtaining and the way of measurable parameter estimating 
as well as their separation are discussed. Method of state space and optimal stationary 
measuring system are suggested to be studied for data processing. 

Meteorological conditions (special weather conditions) are known to be a factor which 
affects essentially on safety and quality of flights [1]. Wind phenomena which make 
aerodynamic influence on aircraft directly are the most dangerous. 
Character and rate of danger of special weather conditions, which effect aircraft, depend 
on type and intensity of the phenomenon, sizes and mass of aircraft, aerodynamic 
characteristics and operation phase. The most negative is combination of mentioned 
factors during the takeoff or landing in the presence of wind shear and turbulence near 
the ground surface. In this case regimes of flight are close to critical: maneuver time and 
space of aircraft are limited. 
By definition [2], wind shear is a change of wind vector from one space point to 
another, and it can be evaluated as difference between wind vectors in two points, which 
are vectors as well because they have velocity and direction. 
As wind shear can appears in combination with turbulence, mathematical model of wind 
conditions includes constant and variable components. Constant component represents 
wind shear and variable one represents turbulence. So, on the whole, mathematical 
model of wind conditions can be represented as random process which includes 
constant and variable components. Momentary value of vector in some space point will 
be determined as the sum of constant and variable components. Wind shear 
determination problem leads to finding of wind vector over the elementary volumes and 
corresponding wind shear calculating. 

Considering temporal and spatial changes of wind vector X(t) as random time- 
dependent process it can be represented as superposition of random and determinate 
components in 3-dimensional space. This process depends on time and space 
coordinates. It can be described by mathematical model in the form of canonical 
decomposition [3]: 

X(t,x,y,z) = mx{t,x,y,z) + £ Vv(xy2)Xv(t,x,y,z) 
(1) 

where mx(t,x,y,z) is mean of observed random process; Vv are uncorrelated random 

variables with mean equals zero; Xv(t) are some (nonrandom) functions of time. 
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Representation as canonical decomposition will allow to separate constant and variable 
components (wind shear and turbulence) at signal processing. 

Practically it is impossible to realize the general model (1) because measuring 
equipment, which is used in reality (anemometers, Doppler radar sets), allow to take 
measurements of wind vector only discretely in space or (and) time. Therefore, it is 
rationally to use a discrete model of the evaluated space parameters: 

X(tk,x,, v,,zr) = mx(tk,x,, v7,zr) + £ Vv(Xi>J0>2r)Xv (tk,x, ,yj,zr), (2) 
v 

where tk are reading moments of observed value; Xj, yj, zr are the numbers of 
coordinates in corresponding axis of the some elementary volume center of the space. 
Evaluating of measuring parameters averaged over this volume is made over the limits 
of elementary volume. 

Corresponding averaged discrete readings related to geometrical sizes of the space 
elementary volumes are determined by scanning beam aperture on corresponding 
distance from radar antenna at using of Doppler radar. And only radial component of 
velocity is measured. So, equation (1) is simplified: 

X(tk,zr) = mx(tk,zr) + ^d Vv_ Xv{tk,zr), (3) 

where zr is coordinate axis which corresponds to axis of symmetry of scanning beam 
aperture; r is a number of elementary volume which defines the distance between the 
center of the volume and antenna. 

Therefore, the problem of wind vector determination in the given point of the space 
with Doppler radar leads to evaluating velocity vector component according to the 
equation (3) for corresponding axis of some orthogonal system. It is convenient for 
practical using at air navigation, especially, for the systems which deal with runway, 
construction line of airplane or routing line of flight. 

In this case vector X(t) is considered as useful signal which characterizes studied space. 
It is supplied on the input of measuring instrument (input of radar set). Evaluating of 
signal X(t) is made according to the signal observed on the output of radar Y(t). It 
is represented as n-dimensional real-valued vector-function. It is defined by the 
following expression: 

Y(t) = G[X(t),H(t)], (4) 
where H(t) is n-dimensional real-valued vector-function which defines measurement 
error; G is arbitrary real-valued abstract function. 
Abstract function G is represented as necessary linear operator: 

G[T] = G0[Y] + X„, 

with Go as arbitrary homogeneous abstract function and X„ as given nonrandom 
nonzero s-dimensional vector. 
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Determination of optimal weighting functions G0*(t,x) and X„are made with Wiener- 
Hopf integral equation: 

t 

J   G^TjKy^Tjd^   = KxyfrTj   . (5) 
t-T 

Vector-function X»(t), which provides non-bias estimate, is defined by the following 

equation: 

Xn (0 = mx (0 - j Gl (f,, T, K (T, )rfr,  . (6) 

Integration in formulas (5), (6) is made over the limits which define boundaries of 
elementary volume of space. 

Optimal invariant estimate of signal is found by using Lagrange functions of function 
and undetermined multipliers. 

Suggested model of estimation (5) allows to minimize the time of signal processing. 

A model of measurements with one Doppler radar gives a possibility to determine only 
a projection of total wind on the axis of radar beam. It is necessary to use 3-positional 
radar system with interorthogonal scanning beam orientations to determine wind 
vectors. As it is impossible to realize a 3-positional system onboard, it is necessary to 
make out methods of obtaining and use of additional information for total wind vector 
estimation. 
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ABSTRACT 
The new nonparametric algorithm of radar signal disorder detection task has been 
considered. The algorithm is based on spectral estimating of a few signal samples of a 
few close windows and nonparametric Wilkockson's test application to compare them. 
The algorithm can be used for radar signal detection specifically in the tasks of 
turbulence detection in clouds and precipitation as well as for moving target detection. 
The efficiency of the new algorithm is analyzed. 

INTRODUCTION 

The determination of position where radar cross-section becomes different appreciably 
in comparison with previous one is an important problem of signal analysis. Radar 
signal is an unsteady random process. The difficulty of determining the moment when 
the signal characteristics change is associated with the fact that radar signal statistical 
characteristics haven't been defined a priori. 
This paper considers the nonparametric rank algorithm synthesis for random process 
disorder detection that is used for evaluating statistical characteristics of the point of 
time when the change occurred. The effectiveness of the algorithm is researched by 
means of statistical modeling. 

THE SYNTHESIS OF ALGORITHM. 

We define the row of radar signal samples as   S(kT), k=0,l,..., where T is the time 
sampling interval. 
Let us consider a radar signal to be a segment of random process realization, whose 
length is M|*T=Q*N*T , where N is the fixed number, whose name is the size of the 
analysis window, Q is the number of windows. 
Let us consider, that in the time interval equal to the length of the analysis window, a 
radar signal is a stationary random process. The row of signal samples, that correspond 
to the 1-th window , can be presented in the decomposition into the harmonic functions: 

S^k^^a,/"^,    k = 0,...,N-\,    / = 1,...,Q, (1) 
;=0 

where the coefficients of decomposition  are determined by the formula 
1   AM -jw—ik 

a,,=-TSi(kT)e    N  >   / = L-,Q  • (2) 

The decomposition coefficients (2) will be the co-ordinates of the signal segments in the 
criteria-space. For signal segments which differ from each other in the form of spectral 
characteristics independent of signal power , for each signal segment we determine 
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normalized spectral coefficients of Fourier series decomposition. The decomposition 
coefficients av are complex numbers and contain the information about the amplitude 

and phase of the i-th harmonic of the j-th signal. To reduce the dimensions of the vector 
representing the signal we can use normalized amplitude spectral coefficients 

a'  = H    2  ,     / = 1,...,   Q,     /=0,...,   Nil    . <3) 

In the same way each of the signal segments can be characterized by probability density 
distribution        of       normalized        amplitude        spectral        coefficients        (3) 

f,(a'l0,...,a'IN/2),   l = \,...,Q. 
In general case the probability density distributions of normalized amplitude spectral 
coefficients are unknown and for synthesizing the algorithm for random process 
disorder detection (the moment when the characteristics of the signal change) the 
methods of nonparametric statistics should be applied. 
The random process disorder detection task is to check nonparametric hypotheses about 
the probability density distribution of normalized spectral coefficients of Fourier series 
decomposition of neighboring signal segments (neighboring windows). 
For the synthesis of the nonparametric test (Q+l) windows are created. In each window 
the amplitude spectrum is calculated. The results   of spectrum calculation using the i-th 
realization of random process can be presented in the form of the following matrix 

akfii iuk,NI2 

A,- 

yak-Q,0>'">ak-Q,N/2 J 

The first index of matrix cell indicates the harmonic number. The second index denotes 
the window number. The hypothesis H0 implies that the probability density 
distributions of normalized spectral coefficients of the k-th and (k-l),...,(k-Q)-th 
windows are equal 

f(a'k0,...filNI2)=f(äk_lfi,-^k-i,N/2)  >  i = l-Q- 
The hypothesis Hi implies that the probabilities density distributions of normalized 
spectral coefficients of the k-th and (k-1),...,(k-Q)-th windows are different 

f(dkSS,...dKNI2)*f(dk<0,...dk-i,Ni2)  ,  l=\-Q- 
For checking the nonparametric hypotheses H0 and Hi concerning   the distribution 
function of A-matrix cells    the modification of Wilkockson' s statisic [ 1 ] is used. 

N_       N_ 

M    max     22 

m=\     l'J i=0    y=0 

where Ri,m is the rank of the i-th harmonic amplitude estimation using the m-th 
realization of random process , which is obtained in the k-th window a'lk, comparing 

amplitude estimations of the same harmonic  a'k_lnl = \,...,Q     in the preceding p 

windows, M is the number of random process realization . 
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The random process disorder detection algorithm consists of calculating L(Ai,..,AM) 
statisic and comparing it with the threshold of decision Vd If statistic L(Ai,..,AM ) 
exceeds the threshold Vd, then the detection algorithm generates one, that determines 
acceptance of hypothesis Hi. Otherwise hypothesis H0 will be accepted. 
The threshold of decision Vd is calculated with regard to the given probability of 
disorder false alarm- a. 

ANALYSIS OF EFFICIENCY 

The evaluation of the detection characteristics was done by the Monte-Carlo method. 
Random process realizations are modeled as a mix of harmonics signal with amplitude 
U , frequency cox and Gaussian noise with variance a\ . 

S,(lT) = Ucos(coi;ilT + <pl) + 7](lT), l = 0,...,N(Q + \)-l,   i = \,M 

= jl,/ = 0,...,(7V-l); 
where       gl     [2,1 = N,...,N(Q + \)-\; 

<pt -random   phase. 

Random process disorder consists in changing the frequency of harmonic signals that 
reaches the value of a>2. The amplitude of harmonic signal and the variance of noise 

are not changed. The changing of frequency is Aa> = a>2 -a>x = 2K I NT, where N is the 
size of windows created for rank statisic calculating, T-is the time sampling interval. 
The signal to noise ratio b is calculated according to the formula b = U212q. The 
characteristics of the random process disorder detection D are shown in Figure 1. 

The reliability of the random process 
disorder detection was calculated for 
different numbers of samples N and 
number of windows Q. The following 
sample sizes have been adopted: M=16; 
N = 16; Q=2,3,8. The detection threshold 
was set to provide the given value of the 
false alarm probability a = 0.05 . 
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Fig. 1. The characteristics of the 
random process disorder detection 
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ABSTRACT 
This paper deals with mathematical modeling and simulation of echo-signals of micro- 
wave remote sensing of precipitation in both frequency and time domains. It establishes 
some important relationships between Doppler-Polarimetric observables and weather 
object under observation. 

INTRODUCTION 

Determination of the relationships between radar echo-signal characteristics and inten- 
sity of rain is the oldest problem of radar meteorology. Later more sophisticated pa- 
rameters of rain microstructure and turbulence in rain became available for the deriving 
from radar returns. The implementation of Doppler-polarimetric radars opens new pos- 
sibilities to improve the quality of radar measuring intensity and other parameters of 
rain. 
In order to analyze different algorithms of weather signal processing comparing them 
between themselves at various meteorological conditions, it is necessary to have in pos- 
session some controllable radar signal models. These models must use some critical 
meteorological characteristics (rain rate, turbulence intensity, etc.) as initial parameters 
and provide samples of simulated radar signals on the output. 
A complex of mathematical models of Doppler-polarimetric spectra of radar signals 
from rain is described. Some of the models were developed [1] as a part of joint project 
of the International Research Centre for Telecommunications and Radar (IRCTR) at the 
Delft University of Technology (The Netherlands) and the National Aviation University 
(Kiev, Ukraine). These models are very useful for data analysis and interpretation espe- 
cially for CW FM atmospheric radars like DARR and TARA [2]. However impulse ra- 
dars are also widely used for weather observations. 
In this paper we consider approaches to the modeling Doppler-polarimetric temporal 
signal samples and spectral realizations. The purpose is to relate Doppler-Polarimetric 
observables with weather object parameters for data interpretation. 

INITIAL MODELS OF RAIN AND TURBULENCE 

The microstructure of rain is described by statistical distributions of the size, shape, fall 
speed, orientation, and concentration of raindrops. The fall speed of raindrops in stag- 
nant air is related to their size. The shape of a falling raindrop is not exactly spherical: 
it is flattened at the base. In quiet air the horizontal axis of a spheroid droplet is hori- 
zontal. Local disturbances of the air density and wind variations may force the raindrop 
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to cant. The canting angle of drop is a random value assumed to be subjected to Gaus- 
sian distribution. The gamma-distribution is used as a model of dropsize distribution: 

3.67-m^ 

N(D)=N0D
>xe    D" (1) 

with \x as spread parameter, and D0 as median drop diameter. The dropsize distribution 

plays an important role in the development of the model because it effects on both Dop- 
pler and polarization characteristics. The inertia of raindrops in a turbulent environment 
is taken into account in accordance with [2]. 
The turbulence energetic spectrum S(Cl) is a decomposition of the kinetic energy of 
turbulence in Fourier series on the wave numbers Cl = 2n IL (spatial frequency). In the 
inertial subrange, if the conditions of homogeneity and local isotropy of turbulence are 
valid, the analytical expression of turbulence spectrum is: 

S(Q) = CE
2/3

!T
5/3 (2) 

where C is a dimensionless constant, and e is the eddy dissipation rate. Q is defined 

as Q = Q. = 2% IL with Q as three-dimensional turbulence wave-vector. The kinetic 

energy of turbulence passes on consecutively from large scales to small ones, and then it 
is dissipated at the scale / < /,„,„. The latter process is quantified by the eddy dissipation 
rate e , which is a fundamental parameter of turbulence that characterizes the turbulence 
intensity. It does not depend on scale of turbulence within the inertial subrange, which 
makes E convenient as an initial parameter for the modeling. 

SIMULATION OF DOPPLER-POLARIMETRIC SPECTRA 

The Doppler measurements give the information about the dynamic properties of the 
process (for example, wind, speed of drops falling), and the polarimetry is connected to 
the shape and orientation of the hydrometeors. For researching the relationship between 
the intensity of precipitation and radar echo the model [1] was used. It takes into con- 
sideration the polarization properties of radar signal, reflected from the ensemble of 
raindrops as a function of their speed. The model takes into account polarization fea- 
tures caused by the shape and spatial orientation of drops and the influence of turbu- 
lence on radar scatteres. It allows calculating the power spectra of radar signals from 
rain S,„„(v), where v - is the radial component of Doppler speed, at different combina- 
tions of polarization on transmitting (first index) and receiving (second index). The in- 
dexes may have the following meanings: m=x; y, n=x; y, x-y - linear orthogonal polari- 
zation base. If the basis is "horizontal - vertical" (x=h; y=v), the model provides spectra 
Shh(v), Svv(v), which correspond to the two main polarization components on orthogonal 
polarizations. The model takes into account parameters of atmospheric turbulence - 
eddy dissipation rate e and the range of turbulence scales Lmax, parameters of radar and 
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the characteristic of a microstructure of rain - dropsize distribution, which allows to cal- 
culate the rain intensity. 
On the basis of the developed models, the application package is developed and imple- 
mented as software for radar data interpretation. 
In frequency domain the model gives Doppler energy spectra at different combinations 
of linear polarization of transmitted and received waves. Polarization observables such 
as differential reflectivity and linear depolarization ratio are calculated as functions of 
the Doppler velocity. 

SIMULATION OF TEMPORAL SAMPLES 

From power spectra we can easily calculate the power or amplitude of the signal. How- 
ever, complex spectra are necessary to retrieve the appropriate temporal realizations by 
the Fourier inversion. That is why we simulated temporal samples according to general 
equation V(t) = l{t)+jQ(t), where l(t) and Q(t) are random functions depending on 
the Rayleigh distributed amplitudes [3]. The mean amplitude was determined by the 
corresponding power spectra Shh(v), Sw(v), and Sf,v(v). 
In time domain the model enables simulating the complex signal, which corresponds to 
Doppler-polarimetric radar with quadrature channels. In other respects the simulation in 
time domain was done independently on the calculated Doppler spectra. 
Verification of the model has been done in frequency domain using the Delft Atmos- 
pheric Research Radar DARR [2], which is widely used for the research of the micro- 
structure of precipitation. 

MEASURABLE VARIABLES 

In this paper we calculated such Doppler-polarimetric parameters in frequency domain: 
mean Doppler velocity at orthogonal polarizations Vhh, Vvv, Vhv, Doppler spectrum 

width at different polarizations AVhh, AVn, AVhv, the difference between mean Doppler 

velocity at orthogonal polarizations DD¥=Vhh-Vvv, and the slope of the regression line 

SlpZdrofa spectral differential reflectivityZc/r(v) = \0lg[Shh(v)/Svv(v)]. In time domain 

the correlation window xk was calculated. 

RESULTS OF MODELING AND COMPARISON WITH DATA 

We will show that mentioned parameters could be related with microstructure and tur- 
bulence in rain. Finally, eddy dissipation rate and rain rate will be retrieved. 
Comparison between Doppler spectrum width af calculated from spectral samples and 

correlation window calculated from temporal samples is shown in Fig. 1. One of the re- 

sults, which displays the relation between parameter AF and median diameter D0 of 

the raindrops at constant n and different 8 is shown in Fig. 2. 
Median drop diameter DQ of raindrops is connected with rain intensity by the following 

equation: 
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Fig. 1. Comparison of spectral 
and temporal modeled parameters. 
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R(D0)= JN(D,D0)v(D)V(D)dD, (3) 

where N(D,D0) is given by formula (1), v(D)is a fall speed of the drop of size D, 
V(D) is the volume of drop with equivalent diameter D. 

It is seen that DDV is more if the rain rate is more. It is because of the big drops are 
more oblate and fall faster than small ones. Having big axis horizontal they give more 
signal at hh polarization in comparison with vv polarization. Turbulence disturbs the 
velocities of drops and drop normal orientation. That is why turbulence decreases the 

degree of the connection between AV and D0. It is clearly displayed in figure 2. 

The relationship in logarithmic scale between the parameter of intensity of turbulence e 
[cm2/s3] and the Doppler spectrum width AVhh [m\s], appointed at -3dB level is shown 

in figure 3 at three values of spread u of the dropsize gamma-distribution (1). 
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4 
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I —  "   ~~ .is                        ~~ 

n 1            1            1 

Fig. 3. The relationship between the 
intensity of turbulence and Doppler 
spectrum width. 
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Figure 4 displays the relationship between turbulence eddy dissipation rate s 
[cm2/s3] and the slope of linear regression line of the spectral differential reflectivity 
SlpZdr. 

SlpZdr 

0.01 

a 

u=l 

—[ 

u=5 

Ik 
%Q- filing 

Fig. 4. Relationship between spectral 
differential reflectivity and turbulence 

50 

The adequacy of the model has been justified by the comparison of modeled and 
measured data, which were done with Delft Atmospheric Research Radar (DARR). As 
an example, in figure 5 one can see the relation SlpZdr versus Doppler spectrum width 
using the results of the calculation with the model (solid line) and measured data (cir- 
cles). Good coincidence can be seen. 

SlpZDR 

Fig.5. Comparison of measured 
and modeled slope of Zdr(v) vs 
Doppler spectrum width 
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TT 
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CONCLUSION 

The study has shown that considered Doppler and polarization parameters of radar 
signal contain information on rain microstructure and turbulence intensity in weather 
object. The connection between the parameters of a signal of the Doppler-polarimetric 
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radar (Doppler spectrum width, differential Doppler velocity and slope of the regression 
line of the spectral Zdr) and the intensity of turbulence hes been established. 
The combination of Doppler and polarization diversity in weather radars enables a de- 
tailed study of microphysical phenomena in weather objects. An important application 
of modeled signals is to compare different signal processing algorithms of turbulence 
detection in clouds and precipitation and measuring the intensity of turbulence and other 
meteorological parameters. 
Fourier analysis shows the correspondence between the calculated Doppler spectra and 
the simulated independently time samplings of radar signal from rain. 
The model of temporal samples of radar signal reflected from rain can be used for the 
analysis of different signal processing algorithms of the extracting meteorological in- 
formation. 
All the data and results where received on the computer, using the developed mathe- 
matical models, which were previously validated using the comparison with the real ex- 
perimental data. 
The differential Doppler velocity of raindrops carries the important information on mi- 
crostructure of rain and can be used in order to measure the rain intensity. However tur- 
bulence decreases this effect and should be taken into consideration as well. Actually 
simultaneous measuring turbulence intensity and rain rate help to increase accuracy of 
the estimation of both parameters. 
The quantitative results need for more extensive experimental confirmation. 
The method based on these researches can be practically used for study turbulence in 
precipitation, as well as for measuring rate rain and study rain microstructure, and it is 
difficult to say which of this two applications is more important to the practice. The ob- 
vious applications of these results are: detection of turbulent zones dangerous for flight, 
meteorological and hydrological observations and prognoses, climatic research and oth- 
ers. 
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ABSTRACT 

The width of Autocorrelation Function (ACF) is characterized by the interval of 

correlation at the 0.5 level,  x0.5. The eddy dissipation rate  (s)  is a fundamental 

parameter that describes the intensity of turbulence. We use the data of simulation and 

build a model of relationship between the characteristics of a radar echo-signal and 

parameters of reflecting objects given in [4] at sample size n=30. The results of 

calculation after formula (6) with K as level of a reference of an interval of correlation 

(K=0.5, A, =3.2cm) are presented. We can see rather good agreement of the interval of 

correlation with the intensity of turbulence (s). 

The simulation results enable us to consider that sample size n=15 is insufficient for 

deriving a measuring information by using the classical algorithms for ACF calculation. 

MAIN CONTAINS OF THE PAPER 

If S(f) is a gaussian Doppler spectrum with the middle frequency f0 and frequency 

dispersion a2f, then the spectrum fluctuation Sp (F) after amplitude detection (see [1]), 

is given by: 
oo 1 p2 

Sp(F) =  fS(f)S(f + F)df =   . exp( -) , (1) 
i V2riCTf 2CT

F 

Here cr2F = 2af2 is the normalized ACF determined after the formula 

R(x) = exp(-2n2aFV) = exp(-4n2afV) = exp(LnK—), (2) 

where xk is the interval of correlation calculated at the level K<1. 
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Doppler relation f = 2v / X enables us to consider the spectrum S(f) as a distribution of 

radial velocities of scatters. On taking into account (2), the radial velocities dispersion 

a2 can be obtained by the following relation: 

2     X    2    ^     2     ^-" I Lnk | 
< = —a   = — < = ^ ± (3) v     4    f      8    r     (4ITxK)

2 

It is known that a2 is determined by plenty of factors: 

ol=a2
s + ol + a2

d+G2
0 + al (4) 

where as
2 is the wind motion contribution, a2 is the antenna motion contribution, a] is 

from the different velocities of falling droplets, a2 is the contribution of turbulence, a2 

is contribution of vibration and orientation of weather observers. 

With taking into account (4) in horizontal sensing of clouds and precipitation, we 

consider the shape of scatters to be cylindrical with the length Cxs/2 (where xsis 

duration of radiated pulse) and radius r = R0/2 (where 0 is antenna pattern width, and 

R is the distance to reflecting object). Then frequency dispersion is related to (e) as 

follows: 

a2«0.206A2^2-h2'3^f^, (5) 
A. 3-a 

where  a = 2r/h,  £,   is a numerical factor around unity (from the Kolmogorov - 

Obuknov Law). If a «1, then from (5) we accept: 

0.042|Lnk|3/2?i3 

e = —,—  (6) n5hx3 

The width of ACF is characterized by the interval of correlation x0,5 at the level of 0.5. 

A relationship between x 0.5 and (e) calculated by using the data of simulation with the 

sample size n=30 is shown by dots in Fig.l. We observe rather good agreement of the 

interval of correlation with the intensity of turbulence, (s). 

KIEV, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



MMET*02 PROCEEDINGS 
289 

e(xo.s), 
m2 

0.1 

0.01 

0.001 

10-" 

io-: 

T0.5, ms 

Fig. 1. Relationship between the interval of correlation and eddy dissipation rate. 

The solid line in Fig.l shows results calculated after the formula (6) with K as a level of 

reference  of the  interval  of correlation  (K=0.5^=3.2xl()-2m)-   These  results  of 

simulation give a foundation to consider that the sample size n=15 is insufficient for 

deriving a measuring information by using the classical algorithms for calculation ACF. 
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ABSTRACT 

A possibility of an application of the tomography method and spectrum filtering for the 
images reconstruction of the cross-sections of different inhomogeneities, which are 
taking place under plane surface of a medium, has been studied. The spectral approach, 
use of the information containing in near field of scattering object, opportunity of use of 
the tomography algorithm in a case of strongly absorbing environments have allowed 
essentially to improve quality of the restored images and have expanded the application 
area of the subsurface tomography. Obtained results can find application in practice at 
designing of the tomography systems used for visualisation of the subsurface targets. 

ALGORITHMS CONSIDERATION 

Modeling and the experiments on restoration of the cross sections images of various 
objects embedded in an environment by using the subsurface tomography method can 
be based on the tomography integral equation [1] 

 c(v\ = JJ*(*,j/)exp[-2;ri(flrx + ßy')]dxdy (1) 

where y/{y,yx) is Fourier image of complex scattered field ^{x.yj, which should be 

measured above surface of probed medium at line y = yl; variable v is the space 

frequency; c, [y^v),y2{v)]is complex function of v; yt, y2 and/? are complex 

functions of v in general case; a is real function of v; function K(X ,y) represents 
the normalized polarization current in the subsurface region S (cross-section of an 
investigated cylindrical subsurface object), which is sought for and which is source of 
scattered field y/(x,yx). Investigated region S is limited, so integral in equation (1) can 
be considered in infinite limits. It is supposed here that the Fourier transform of the 
scattered field exists, as this field is located in space. In practice measured field is 
mostly total field and represents the sum of three fields. They are incident, reflected by 
the plane surface of environment and scattered by region S fields. The probing 
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(incident) field in considered algorithm has a kind of a plane wave. In this case incident 
and reflected fields in probing line can be calculated theoretically and then deducted 
from total field. However, in practice this operation is unrealizable as the probing field 
is not plane wave. Incident and reflected fields are unknown generally. Experiments on 
restoration of the cross-sections images of various objects at use in the equation (1) of 
total field measured on the limited line (line of scanning) have shown that the surface 
image presenting in the restored cross-section of the subsurface region can not be 
completely removed by subtraction of known plane wave incident and reflected fields. 
Such operation essentially does not improve the image quality of the required scattering 
object, and the weakly scattering objects located near to the medium surface poorly 
come to light. Thus there is a problem of use in the reconstruction algorithm of the 
equation (1) and measured total field. It is considered below an algorithm allowing to 
allocate a scattered field from a total field and by that essentially to improve quality of 
the image. 
Let we consider equation (1) and suppose that in inversion the data about total field at 
line;/ = yl (yl < 0)aieusedTteequation(l)canbewrittenäieninäieform 

^(v.ttMexpOVi cos^ + iJexpHV, cos0,)] jexp[-2m(y-vQ)x\dx 
x2 

x,yb *~3 jb Jc sin 0 
= J JK(x, v) exp[-2m(ax + ßy)]dxdy,    where v0 = —-—L 

x, o 

c,(v) 

(2) 

and second term from left side of equation (2) is the Fourier transform of incident and 
reflected fields. The reflection coefficient is denoted by R . The borders of the scanning 
area are designated by x2, x3 (x3 > x2) and integral is taken in this limits. It is supposed 

that the image function is reconstructed in the rectangular region x2 < x < x3, 0<y<yb. 

Values Jfcj, yx, 9vx2,x3 and R are parameters which can be changed. 

One can see from (2) that reconstructed function K(x,y)cm be presented as 

follows K(x,y) = Ks(x,y) + Kr(x,y). First term Ks(x,y) is required function defining 

distribution of polarization current in the region S. Another term Kr(x,y) is defined by 

integral equation 

[exp(^y,cos^1) + i?exp(-zl,y1cos^1)]exp(z>1>;1)|c::p[ ^.^   1>u)^_ 

x,yb 

= f f Kr (x, v) exp[-2^/'(ax + ß v)]dxdy . (3) 
x2 o 

The function Kr(x, v) is imposed on function Ks(x,y). Therefore the scattering region 
S can be poorly observed in the reconstructed image of the probed subsurface region. 
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Hence the function Kr(x,y) should be removed at a stage of the image reconstruction. 

In general case the function Kr(x,y) can be removed from reconstruction process by 
filtering of spectrum of the measured field in the Fourier space. The process of the 
filtering consists in following. One can see from (3) that integral in it left part is 
S(v-v0)if x2 and x3 are tended to -oo and oo, respectively. So, if only one 

component at the space frequency v = v0 is deleted from spectrum of measured field, 

left part of (3) will be equal to zero and Kr(x, y) = 0. In this case also will be deleted 

one component at v = v0 from spectrum ipr. Bat spectrum y/ is usually determined in a 

wide frequency band and deleting only one component from this spectrum cannot 
essential change the image of the subsurface object. Let the complex numbers F2, F3 

are complex amplitudes of measured field at final points of scanning x2, x3, 

respectively. If field scattered by a subsurface object is equal to zero in 
intervals (-oo, x2], [x3, oo)(that is supposed), the complex numbers F2, F3 are complex 

amplitudes of field created by incident and reflected from the mediums interface waves. 
This field does not depend on x and it will be used only one number F = (F] + F2)/2 as 

its complex amplitude. Let coordinate points x,, x4 such, that x, <s x2 and x4 » x3, then 

two new functions 7,(V-v0) and I2(v- v0)can be defined by integrals 

Xlr x> 

Il(v-v0) = F j exp[-2m(v-v0)x]dx and I2(v-v0) = F Jexp[-2;n(V -v0)x]dx    (4) 
x< x, 

where x,, x2, x3, x4 are parameters and x2, x, are specified by size of the scanning 

region. The functions 7,(v) and I2(v) can be added to spectrum of measured field. 

After this operation, the new spectrum is sum of two functions: y/(v) and y/s(v-v0). If 

x, = -A and x4 = B where A and B sufficiently large numbers, the function 

^(v-vo)aPProaches to delta-function S(v-v0)and can be deleted from spectrum by 

a filter. After filtering the function Ks(x,y) is calculated from equation (2) using its 
inverse. Inversion of (1) was considered in [1]. It was determined using results of this 
work that polarization currents are good reconstructed around borders of an 
inhomogeneity buried in lossy medium if complex values of functions y{{v), y2(v) 
and /?(v)are taken in account in the inverse of the tomography integral equation (1). 
Reconstruction in this case gives enables to receive the image of object, which is taking 
place under the surface of environment, in such form, as though lossy in this 
environment connected with it conductivity were absent. 
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INTRODUCTION 

In the past three decades, several exact and numerical techniques have been established 
in order to solve the inverse scattering problems in connection with cylindrical bodies. 
These methods can also be divided into two categories: (a) non-iterative methods and 
(b) iterative methods. The iterative methods include the Algebraic Reconstruction 
Technique (ART) [1] and Simultaneous Iterative Reconstruction Technique (SIRT). 
These methods generate reconstruction via an iterative process, which begins with an 
initial estimate of the object being constructed and then improves on this initial estimate 
via a sequence of estimates that presumably converge to an optimum reconstruction 
after some large number of iterations. The ART algorithm was first employed in 
Computerized Tomography (CT). Ladas and Devaney [2] developed an iterative 
algorithm of the ART type for Diffraction Tomography (DT) using the Rytov 
approximation. And also this algorithm has been successfully used in the case of buried 
bodies by Akduman and Alkumru [3]. 
The purpose of this work is to develop an ART algorithm to solve the electromagnetic 
inverse scattering problem whose aim is to recover the electromagnetic properties as 
well as the geometry of the infinitely long cylindrical bodies buried in a half space. The 
problem then consists of finding the constitutive parameters of the buried body by using 
the data collected throughout the measurements along a line in the half space not 
containing the body. The buried body will be illuminated by a Gaussian Beam which is 
excited in the same region where the data will be collected. The problem considered 
here can also be interpreted as the use of an iterative algorithm of the ART type which 
basically consists of an application of the Kaczmarz method [4] to solve an inverse 
scattering problem related to buried cylindrical bodies illuminated by Gaussian Beams 
where a method constituted on a complex manifold technique was previously used [5]. 

FORMULATION OF PROBLEM 

Assume that the regions x2>0 and x2<0 are filled with the materials having 
electromagnetic constitutive parameters s0, Ho, CJ=0 and £i, u0, a=0, respectively (Fig. 
1). An infinitely long cylindrical body D, which is composed by a non-magnetic simple 
material is located in the region x2<0 parallel to Ox3 axis. The dielectric permittivity 
s(x) and conductivity a(x) of the body D are scalar functions of the space coordinates in 
R2. The cylindrical body D can be composed of several finite number of disjoint parts. 
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The aim of this work is to find a method for determining the geometry (location and 
shape) and physical parameters (e(x) and a(x)) of the body D by observing its effect on 
the illumination of a Gaussian beam excited in the region x2 >0. In the following 
analysis it is assumed that the incident wave is a Gaussian beam whose electric field E 
is parallel to the Ox3 axis, namely; 

£'=(o,0,"'M) (1) 
u'(x,z) = 1 

In \ 
exptPQQ] exp {/Ax, + y0(A)x2}dA > 0, X e C, (2) 

with P{X) = -[w0{A-k0sm6)/{2cos9)]2-ilzl-ro{X)z2, where W0, z and G are depicted in 

Figure 1 and Ci is the line shown in Figure 2 while the function y0 stands for the square 
root y0(x)= j\2 - *0

2 defined in the complex X-plane cut as shown in Figure 2 with the 

condition y0(o) = -/*„ with k0 the wavenumber of the region x2>0. 

The integral representation of the scattered field uD(x) by means of the Green's function 
of the two part space and using the well-known Born approximation, the Fourier 
transform of the scattered field uD(x) with respect to xx at the line x2=l >0 gives 

v(y - A,ifr,(v)+ y,(A)])exp [P(*)}U «0(v,/)=     *■' exp (~ ^("fr)     f 
it cos 5» l/o(i')+ r i (" )] J 

r0O) 
fro(*)+r.0O] 

.  (3) 
where rM = ^2 -*,2  is the square root function defined by yl (o) = -zVfc, and v is the 
two dimensional Fourier transform of the object function given by 
v(x) = \e(x)+io(x)l a) / ex J-l. 

Our purpose is now to solve v(x) from (3) by using the generalized ART algorithm. To 
this end the asymptotic evaluation of the integral in (3) by saddle-point technique 
provides 

(4) 
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As=k0 sin<9 + [ko(zlcosO + z2sm0)]/[(iWtko/2cos0)-z2+(ism2O/ko cos3 o)\ 

(5) 
In (4) Mv is the two dimensional Fourier transform of the masking operator on v(x): 

'v(x) ,- L < x2 < 0 (6) 
Mv(x) = . 

0       , otherwise 

By multiplying both sides of (4) by e"v x\/2n and integrating over the interval ve(-ki, 
ki) for certain fixed values of 0n for n=l,2,...,N , one gets a system of linear operator 
equations: 

Anv(xl)=an{xl), n = l,...,N (7 a) 

2n2 cos Q„[y0{K)+yAK)l{ [Yolvj+Y.lvJJ 
(7 b) 

with 6n=arctan(-zi7 z2
n) and Asn=kosm0n . Thus the problem is to obtain v(x) from the 

method which is based on the iterative solution of the operator equation system given 
in (7 a). The right-hand side of (7 a) is known from scattering field measurements 
performed along the line x2=l >0 for the incidence angles 0n , n=l,2,...,N. Then the 
system of operator equations (7 a) can be solved by using the method proposed by 
Kaczmarz [6] in the following form 

v.=v>,     vn=vn_l + A:(AnA:Y{"n-Anvn_,),  n = \,....,N,    v^=vN (8) 

Here j is the iteration number and v0 is the initial estimate value of the unknown 

function v(x) while A* denotes the adjoint of An defined by the inner products in the 

related Hubert spaces. Namely ; 
(A„v(x,), a„ (x{ ))H = (v(x), A*„a„ (x))^ (9 a) 

After some straightforward manipulations one can easily obtain the adjoint and 
composite operator appearing in (8) and gets 

4{A,<Tk-4.^) = ^exdrik^/cOSBJicOSQn + ^ /'kj - sir?^9„]x 

M }[Yo(v)+ÄY°(i4(v)-4,v„>)]^ . » = 1. N 
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ABSTRACT 

The possibility of geometrical parameters determination of perfectly conducting infinite 
cylinder (radius of surface curvature in a neighborhood of a line of mirror reflection and 
orientation) located in a dielectric half-space (in particular with parameters of a ground) 
is justified. The proposed technique is based on asymptotic relations characterizing a 
field scattered by such an object when a plane monochromatic electromagnetic wave is 
incident on its surface. 

INTRODUCTION 

In a number of applications there is a necessity of determination of geometrical 
parameters of a cylindrical scatterer located in a dielectric lossy half-space. One of such 
applications is diagnostics of various-purpose pipelines (for example oil or gas). In the 
paper, a possibility of this problem solution for an infinite perfectly conducting circular 
cylinder is justified. Cylinder's radius is greater than the length of the incident 
electromagnetic wave. The technique is based on relations characterizing solution of 
direct problem for such a scatterer. These relations are obtained by deriving a number of 
asymptotic estimations of integrals for 

• currents on the scatterer surface in a small neighborhood of the stationary phase 
point; 

• electromagnetic field scattered by the object in the far-field region. 

ASYMPTOTIC SOLUTION OF THE PROBLEM OF 
ELECTROMAGNETIC WAVE SCATTERING BY A PERFECTLY 
CONDUCTING CYLINDRICAL OBJECT BURRIED IN A DISPERSIVE 
LOSSY DIELECTRIC HALF-SPACE 

An infinite perfectly conducting cylindrical scatterer with the surface L located at the 
depth d in a homogeneous half-space G2 with parameters e2, u2, characterized by the 

wave number k2 (generally complex-valued) is considered (Fig. 1). The origin of a 
coordinate system OXYZ is placed above the center of the object on its surface. The 
axis OZ is directed along the generator of the cylinder. The interface between the half- 
space G1 with parameters of free space and half-space G2 is the plane Lx. A plane 
monochromatic electromagnetic wave of unit amplitude normally incidents from the 
half-space G, on the media interface. Its wavelength is assumed much smaller than 
characteristic radius of curvature and geometrical size of the scatterer. It is required to 
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"(v) = «o(v)+ J rf/ (1) 

G, 

77777771 
I Uo 

determine the field scattered by this cylinder at a point above its center in area Gx high 

above the plane Lx. 
For solution of this problem we shall take advantage of integral representation of total 
electromagnetic field in the presence of cylindrical object buried in the half-space G2: 

where functions u, u0 are the z - components of 

the vector of electric (in the case of the E- 
polarization) or magnetic (H-polarization) total 
and incident field, respectively; the function 

F^j7,C) is the field of a current line in the 

presence of half-space G2; vj7 is the position 

vector of observation point with coordinates xQ, 

y0; £ is the position vector of the point of 

integration along line L with coordinates x, y. 
Fig. 1 By the E (H-)- polarization we imply the case of 

the vector of electric (magnetic) field of the 
incident electromagnetic wave parallel to the generator of cylinder. 
One can derive the formulas characterizing electromagnetic field scattered by the 
cylinder by following [1]. The final expressions are given by: 
- for the E- polarization case 

/Vl /C') 

77777777777 

X 

_e<*,U+<0 e
i2k2dpk^Rp 

U
P^)=    I -7 

- for the H- polarization case 

/Ci ~r K"y 

l + - 
5i_ 

\6k2R 
- + ■ 

"D(V) = 
*,(y0+rf) eak'd ^2kxk2Rp 

■sfy^+d        kx+k2 

1 + - 
5/ 

\6k2R 

/Ci ~T K') 

/Ci    i  ICJ 

— ■ \R + 4d 
J2k-,d 

lR + 4d 
ilk.d 

3» 
\6k2R 

3/ 
\6k2R 

\\ 

■1 

A^ 

)) 

,(2) 

(3) 

The adequacy of the obtained relations was tested by comparing the results of 
calculations with simulation of the scattering characteristics based on the method of 
integral equations [2]. This comparison has shown that the error of results of calculation 
after the formulas (2), (3) decreases if the frequency of sounding wave increases, and at 
|&2i?| = 8 (X2 » 0,757?) it already becomes 8 %. It is evident that the use of presented 

technique is possible for engineering estimations. 

DETERMINATION OF PARAMETERS OF CYLINDER BURRIED IN 
DIELECTRIC HALF-SPACE 
Thus formulas (2), (3) yield the relationships between the field scattered by the cylinder 
and its radius and burial depth. They allow to construct an algorithm of inverse problem 
solution - determination of parameters of unknown cylindrical object by its scattering 
characteristics measured in far-field zone. 
Let antenna system of monostatic radar be located at the point x at large height from 
the ground surface (for example, it can be an airborne radar). Assume that location of 
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underground object is determined and besides it is known that it has cylindrical form. It 
is required to carry out the sounding with two orthogonal polarizations whose directions 
are characterized by the unit vectors M,° and U°. At the observation point, the 
measurement of scattered field characteristics is carried out with the same polarizations. 
As a result, amplitudes of the fields w, and w2 are determined. Let the cylinder axis 

form an angle 9 with the vector w, . Denote by M(| and ü± the vectors of the scattered 

field corresponding to the case when polarization vector is parallel or perpendicular to 
cylinder's axis, respectively. Then we can write 

I- I2        I- I2 2 I-   I2    •    2 w,   =\uA cos cp + Wjl sin 9, 

therefore 

|w2|  = LJ sin2(p+|wj cos2(p, 

1-12    1- 12    I- I2    1- 12 /^ \u,\ + M,   =\u,\  +\u,\ (4) 

I     |2      I     |2       i\     I2      I      |2 \ 
H      n2l  =l"n      r-M /cos2cp. (5) 

Suppose now that the left hand parts of both expressions are known from 
measurements. Right hand parts are functions of unknown parameters. Analytical form 
of these functions is given by formulas (2), (3). The orientation angle does not appear in 
equation (4). Further operations depend on availability and structure of a priori 
information. In the case when the burial depth is known (for example it has been 
measured), one can determine the cylinder radius from equation (4). Then the cylinder 
axis orientation is determined from equation (5). 
Denote that carrying out the measuremens even with a single additional sounding 
frequency brings additional information that allows solving the problem without a priori 
data. 
It is needed to note that for application of the presented algorithm an information about 
the electrical parameters of the ground is required. This information can be obtained 
from the digitalized maps or from the data of radar measurements. 
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ABSTRACT 

The problem of detection and estimation of parameters of cylindrical objects in a 
dielectric layer using a reflection characteristic has been considered. A reflection 
characteristic for fixed frequency was obtained by scanning the interface of dielectric 
structure by measuring antenna probe. Use of the multiscale discrete wavelet analysis 
has allowed one to select the peculiarities of the reflection characteristic which have 
been caused by the presence of objects. Thus their localization on the background of 
noise have been completely successful. The approximating properties of different 
wavelet bases for the given class of physical data using different types of measuring 
probes at different frequencies and for different depth of object dispositions have been 
explored. 

INTRODUCTION 

At present the wavelet analysis has become the powerful mathematical instrument in 
many investigations [1-3]. In basic it is used for processing non-stationary or non- 
uniform signals of different types. Wavelets are capable to detect the difference in 
characteristics at different resolutions by scale change and to analyze the signal 
properties in different points of observation interval using translation. It determines 
preferability of wavelets using for the analysis of characteristics of reflection with local 
discontinuities containing the information on explored objects. Possibility of use of the 
wavelet analysis for detection of objects in dielectric layer using a reflection 
characteristic from explored structure has been considered in this paper. 

BASIC CONCEPTION 

The problem of detection and estimation of parameters of cylindrical objects in a 
dielectric layer using a reflection characteristic has been considered. The reflection 
characteristic at fixed frequency has been obtained by scanning the frontier interface of 
dielectric structure by measuring antenna probe. Pyramidal horn, H- and E- sectorial 
horns, open-ended waveguide have been used as measuring probe. The reflection 
characteristic has been measured by reflectometer. The sizes of cylindrical objects in the 
form of cylindrical holes in the dielectric layer were approximately equal to wavelength 
of radiation. The parameters of objects p (hole center locations and sizes) have been 

estimated using the data of intensity of reflected wave Rs as function of the cross 
coordinate x. For description of this dependence the expression has been used: 

M 

Rz&p^Ro+^R&pJ, (1) 
m=\ 
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where R(x,pm)= jJE(x,p„,£,£, )d^dC,   is integral from allocation of reflected field E 
D 

from m-th object on the aperture D of measuring probe, pm are parameters of m-tb. object 
and p = {pl,p2,...,pM}. An experience of practical use has shown that for estimation 
of centers c,„ and cross sizes (radiuses) rm of cylindrical holes enough even of 
unrigorous model in next form 

R(x>CmSmh-\f 
AX-Cm-rm) 

a 
-f 

n(x-cm+rj 
a 

(2) 

where a is cross size on the aperture of measuring probe along x, also function is used 

, v   fsinx, \x\<nj2 
t{X)   [x/\x\, \x\>n/2- C3) 

The experimentally obtained reflection characteristics RT czV0eRN have strong 

distortions (see fig. la and 2a), stipulated by the different reasons and having different 
character (low-frequency trend, high-frequency oscillations with separate pulsing 
outlets). They do not allow one to select the indicated reflections from objects 
(especially with small sizes) on background of noise. 
As the peaks of reflections from objects R(x,cm,rm) are well enough localized in x at 
intervals [cm -(rm +a/2); cm +{rm +a/2)], for overcoming this problem the multiscale 

j 

wavelet decomposition of the reflection characteristic has been used Rz = A^ +][]D ■, 
7=1 

A',-1 Nr\ 

where Ay = X
ay*(t)y,* and Dy = X^.^y,* are representations of coefficients of 

approximations ay ={aJk \k=^- and details dj={djk )k_— in subspace of a signal V0. 

Wj,k}k=YV and Wj\k\k=^Y are orthonormal wavelet basis for subspace of 

approximation Vj a V0 and subspace of details Wj 1V-; Nj is the number of 

coefficients on y'-th decomposition level; J is the number of decomposition levels. 
Thresholding (threshold zerofilling) of small coefficients of expansion d-<tj in 

subspace of details Wj and complete zerofilling of coefficients of expansion in subspace 
of approximation Vj (flj =0) has been used for the reconstruction of reflections from 

objects. The entropy approach has been used for a choice of the value of the threshold: 

',=4*,)/*y 
NUMERICAL AND EXPERIMENTAL RESULTS 

The analysis has shown the greater efficiency of special form of entropy criteria. The 
entropy has been calculated in form of concentration of expansion coefficients in norm 

Nj-\ 

L\\ £'(dJ)= ]T dJk . The additional threshold zerofilling was used in reconstructed 

signal space for removing the negative values of reconstructed reflection characteristic. 
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The approximating properties of different wavelet bases for the given class of physical 
data have been explored. The influence of types of scaling and wavelet functions on 
quality of expansion is analyzed. For a solution of the problem considered, advantages 
of Daubechies wavelets of the seventh order and coiflets of the third order have been 
determined. The influence of measuring probe (pyramidal horn, H- and E- sectorial 
horns, open-ended waveguide), influence of measuring frequency and depth of position 
of cylindrical holes on obtained results has been explored additionally. As an example 
the results of use of developed technique for typical cases are presented. The reflection 
data of scanning at frequency 24 GHz by E-sectorial horn of two-layer dielectric 
structure are presented in fig. 1. The structure has contained continuous layer with 
thickness of 10 mm and layer with thickness of 5 mm with three holes of diameter 12 
mm (hole 1), 3 mm (hole 2), 6 mm (hole 3) and distance 110 mm between them. The 
data of scanning on frequency 19.6 GHz by H-sectorial horn of three-layer dielectric 
structure are depicted in fig. 2. The indicated layer with holes has been disposed 
between two dielectric layers by width of 5 mm. 
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Fig. 1. Measured with using of E-sectorial horn (a) and reconstructed with using of 
Daubechies wavelet of 7 order (b) reflection characteristics 
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Fig. 2. Measured with using of H-sectorial horn (a) and reconstructed with using of 
coiflets of 3 order (b) reflection characteristics 
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ABSTRACT 

A modification of the aperture synthesizing method aimed at improving resolution of 
the subsurface radar is proposed. The results of the data processing by this method are 
presented. The input data had been obtained with the use of a prototype of the step- 
frequency subsurface radar developed in the Institute of Applied Physics. 

INTRODUCTION 

The area of practical application of underground radar constantly extends during recent 
years. They are used for detection and classification of objects and structures of both 
artificial and natural origin that are located inside a dielectric medium (soil, rocky 
breeds, wall of building constructions etc.). The underground exploration is applied at 

evaluation of state of roads and 
railway cloth, search of the 
buried organic bodies, 
unexploded shells [1] and other 
ammunitions, localization of 
sewer pipes and underground 
utilities etc. [2]. Thus, the 
problem of determination of the 
sizes and form of hidden objects 
is doubtless actual. Many authors 
investigated the aperture 
synthesizing method to improve 
the radar resolution [3-4]. 

The paper is devoted to 
the analysis and determination of 
optimal parameters of 
mathematical data processing 

obtained with use of the step-frequency underground radar, intended for detection of 
underground objects. 

EXPERIMENT 

The scheme of experiment is shown on Fig. 1. The radar includes receiving and 
transmitting horn antennas separated by 40 cm from each other. The scanning was 
carried out in steps of 10 cm along ground surface and across two pipes buried at a 

Fig. 1 
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depth of about 60 cm. The frequency range of 0.5 GHz to 1.4 GHz has been selected as 
a compromise between the penetration depth depending on conductivity and 
permittivity of the soil, and the resolution. The radar measures the reflection coefficient 
in the frequency band of operation for a number of points on the ground surface. Then 
the collected data with use of Fourier transform are converted into a time domain. 
Buried objects of different reflectivity produce peaks of corresponding amplitudes P 
that are delayed in accordance with their depths. Since the antenna radiation pattern 
F(a) has some width, the aperture synthesizing can be carried out using several nearest 
surface points, instead of whole route of scanning. 

SYNTHESIZING 

In the experiment the horn antennas had been used. Their radiation pattern as a function 
of angle a is determined by the expression [5]: 

, ,    cos(k*b/2*sia(a)) m 
F(a) = cos(a)* - j- . ,   '   , d) v ' l-(2*c/X*sm(a))2 

where c and b denote aperture dimensions, X is wavelength in the ground, k = 2n/X- 
propagation constant. The expression for the pattern of the system from two antennas is 
as follows: 

F(Q) = F(al)*F(a2), (2) 

where on, oc2 are angles between line to point of observation and normal to antennas Al 
and A2. Let coordinates of the point are (xbyj) and for aperture synthesizing t nearest 
points are used. Then synthetic aperture method proposed here is principally based on 

[4]: 

Q(xi,yJ)=^Dm-P(xl+m,ym), (3) 
m=-l 

where y„, = ^j(xl+m -x,.)2 +y) and Dm is a weighting function. Obviously, the 

amplitude of each response from the object illuminated at the angle a will be less in 
F(a) times. Then, the weighting function can be defined as: 

Dm=VFQ). (4) 

The equation (3) together with (4) allows taking into account the antenna radiation 
pattern and using the additional information from nearest responses. 

RESULTS 

The results of the data processing are shown in Fig. 2 and Fig. 3 that present obtained 
image without and with aperture synthesizing with optimal parameters, respectively. In 
the aperture synthesis only data from three nearest points had been utilized. 

KIEV, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY 



304 MMET*02 PROCEEDINGS 

In Fig. 2 one can see that the two pipes are not resolved. Aperture synthesis allows 
observing two pipes as separated objects (Fig. 3). Thus, such choice of the aperture 

SO      tOD     ISO    200     250300    350    400*50    500 0       50      100     ISO     200     250    300     350    «0     450    500 
paccnuww, cu 

Fig-2 Fiß.3 
synthesizing parameters allows resolving near objects. Parameters of synthesis can be 
determined from conditions of practical use of the radar in a particular application. So, 
insufficient number of points used for synthesizing leads to restricted quality of image. 
Too large number of points just adds a noise. For the given antennas and soil the 
optimal synthesizing implies use of three nearest points before and three after the 
central point. 
The proposed method can be applied for any type of radars. So, for pulsed radar the 
received echo should be merely substituted into (3) as P. For other type of antennas an 
expression (1) will change. Separation of antennas is taken into account by angles ai 
and a2 in the formula (2). 
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ABSTRACT 

The algorithm and analysis program for spiral antennas with using of curvilinear seg- 
mentation are developed on the basis of generalized induced EMF Method (Galerkin's 
method) in conformity with Harrington equation. Comparison with well-known results 
is carried out. 

INTRODUCTION 

Recently, more and more attention is gave to the antenna systems consisting of any type 
of curvilinear radiators, particularly spiral form radiators. Because of large diversity of 
such radiators the development of suitable numerical analysis algorithms is actual. Such 
algorithms are the basis to solve the problems of antenna optimization and constructive 
synthesis. 
Today, there are many algorithms for thin-wire antenna numerical analysis (e,g,., [1]- 
[4]) used for designing of antenna-feeder devices. Such mathematical models, as a rule, 
are directed to calculation of radiators with divers configuration approximated by linear 
segments [1,2]. The choice of linear segments is stipulated for presence of correspond- 
ing analytic expressions, to a greater extent. However, there are problems related to at- 
tainment of acceptable tolerance, computational stability and computational burdens. 
Given problems substantially reduces efficiency of numerical investigations of curvilin- 
ear radiators. Therefore it is advisable to approximate radiator by the curvilinear seg- 
ments. It is allow to obtain more accurate results on the one hand and to reduce the 
segment number of curvilinear radiator on the other. 
In the paper the technique of Harrington equation solving used Galerkin's method is 
presented. The curvilinear segments are used for the analysis of spiral antennas. 

GENERAL FORMULATION 

The integro-differential Harrington equation [3] governing the electric current on gen- 
eral three-dimensional curved wires was applied. The wire is assumed to be a perfect 
electrical conductor and to be thin, which means that the radius is must smaller than the 
wavelength and the length of wire. Under these thin-wire conditions, the current is taken 
to be axially directed, circumferentially invariant. The equation governing the total axial 
current l(s)- s on the thin curved wire is 

dl(s')  dG(s,s') 
- j30k jl(s')■ s'-s • G(s, S') +  ■ ds'= -E{s), 

s,s'eS, (1) 
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in which S is the wire axis contour, s denotes the arc displacement along S from a 
reference to a point on the wire axis, s is the unit vector tangent to S at this point, and 
k is the free space wave number. G\s,s') is the kernel or Green's function 

G(s.s')=- f J-dV, (2) 
-K 

in which R is the distance between the source and observation point on the wire surface 
and E(S) is the incident electric field, which illuminates the wire, evaluated in Eq.l on 
the wire surface at arc displacement 5. 
The generalized induced EMF Method (Galerkin's method) was used to solve the Eq.l. 
It is equivalent to the method of moments with sinusoidal basis and weight functions. 

CALCULATION ALGORITHM OF CURRENT DISTRIBUTION FUNCTION 
FOR SPIRAL ANTENNAS 

1. Spiral antenna geometry assignment. 
1.1 Assignment of parametric dependencies, describing the spiral arms geometry in 
Cartesian coordinate system. 
1.2 Partial derivation of length element coordinates with given parameter and calcula- 
tion of radiator lengths. 
2.1 Calculation of number of segments for each radiator. 
2.2 Calculation of parametric angles corresponding to segment connection points. 
3 Redefinition of parametric dependencies, describing the cross segments geometry in 
Cartesian coordinate system. 
3.1 Calculation of number of dipole segments along the radiator. 
3.2 Redefinition of parametric angles corresponding to the ends of lower and upper 
arms of the dipole segments. 
3.3 Redefinition of parametric dependencies to define the geometry of lower and upper 
arms of the dipole segments. 
3.4 Derivation of length element coordinates and current length of lower and upper arms 
of the dipole segments with respect to given parameter. 
3.5 Approximation of dipole segments current distribution and its derivation with length 
of dipole segment arms. 
4 Integral and matrix equations compiling. 
4.1 Calculation of distance between the observation and integration points and also in- 
crement calculation depending on parametric angle in observation point. 
4.2 Calculation of Green's function and its increment depending on distance between 
the observation and integration points. 
4.3 Calculation of scalar product of the unit tangential vectors in the observation and 
integration points. 
4.4 Calculation of tangential component of radiation field in observation point. 
4.5 Calculation of matrix of proper and mutual radiation impedance of dipole segments. 
5 Assignment of column-matrix with exciting EMF, which are defined with the given 
incident electric field distribution E{s). Equations system solution with respect to 
complex current amplitude of segments. 
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6 Recovery of distribution current dependence along the curvilinear wire radiator and 
antenna radiation characteristics calculation. 

RESULTS 
The program package for spiral antenna numerical analysis is developed on the basis of 
presented technique. The programs are made on MathCAD package and Borland Del- 
phi. The only subprograms describing the parametric dependencies of radiators Carte- 
sian coordinates are changed for antennas with divers configurations. 
Calculation of input impedance of helix antenna located on fiat reflector was carried 
out. The helix has the dimensions: circumference of helical cylinder equals the wave- 

length, pitch angle 12.5°. 
Fig.l shows the configuration of balanced helical antenna and the change in the input 
impedance with increase in the number of turns. Here, there are the similar results pre- 
sented for helical antenna input impedance computed in [4]. 
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ABSTRACT 
The results of modelling of wire antenna with fractal configuration of radiating elements 
are presented. For analysis the fractional differintegration calculus is used. Antenna 
diagrams depending on index of fractality of consisting vibrators are compared. 

INTRODUCTION 
The necessity of perfection of mobil communication makes it actual designing and 
studying of properties of nonsymmetrical antennas with very little electrical length of 
vertical parts of vibrators. It is interesting to use inhomogenious artificial mediums with 
vertical and inclined vibrator elements placed near to each other and weakly radiate 
because of odd currents. Antennas with such properties my be realised on the base of 
designing of fractal radiating elements. 
As a result of covering of fractal part of vibrator by regular compacts the problem of 
analysis is reduced to construction of the Housdorff s smoothing measure on the 
physically prefractal layer with differintegration of equilibrational current density over 
the projection of fractal set on smooth segment. 
Proceeding from the fractal representations about the current structure in a conductor 
and the field induced in an artificial metal-dielectric medium, using of the concept of 
fractional differintegration calculus the proved fact [1] is used in this paper that the 
behaviour of the field component u(r) in the medium with fractal properties of 
conductivity, permittivity etc. may be described by fractional integrodifferential (a- 
characteristic): 

.    r (  Da,u(a))(r') 
u(a,(r)=air(aD>(a))(r) = -I- p-J_ dl, f (1) 

Ua)a
J   (r-r')1_a 

where T(a)- Euler's gamma-function, 0<oc <1- scaling index, (aD"u(c°)(r)- satisfies 

the Helmholz equation with corresponding boundary conditions. 

MAIN PART 
The basis of the analysis of the fractal element of wire vibrator is the assumption that un- 
characteristic of a current has a direction along the axis of cylinder and is symmetrical 
in azimuth. This allows consideration the average fractal distributions of current only 
along the axis of conductor and the description of ideal fractal conductivity may be 
accomplished by introducing the constant scaling index a. In this case the edge effects 
are taken into account because a-characteristic of the field on the butt-end of a vibrator 
corresponds to the exponential behaviour of the field near the edge. Such behaviour 
corresponds to the model of so-called 2a-fields [2]. 
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Using the solution of the Maxwell's equations in the view of a-potential for conducting 
cylinder of length L and radius a, the approximation of the longitudinal component of 
vector potential may be received: 

A(a)(z)=   fi«*)(z')G(r)daz', (2) 
-L/2 

where r = -Ja2 +(z-z')2 ,   G(r) - free space Green's function, d°z' = 5a(z-z')dz'. 

differintegrational element of length, ot-dimensional Dirac function 

5a(z-z') = 
1 1 

(3) 
r(a)(z-zr' 

Here    a - scaling index. 
Taking into account the relationship of A(

z
a)(z) with a-characteristic of the electric 

field component E(
z
a), the Pocklingtone integral equation may be derived 

-jcosE(
z
a)(z) = 

1 L/2 

r(a) _L- 
J I(a)(z') 

f d2 

12 dz' 
+ k2 G(r) 

dz' 

J (z-z') f\l-a (4) 

which is analogous to the Abel integral equation. 
As a result, cc-characteristics of longitudinal E(

z
a) and radial E(

p
a) components of the 

electric field of fractal vibrator may be obtained in the view: 

E(
z
a)(z) = - 

I, 
L/2 

I d' \ 

■ + k: G(r) 
dz' 

jcD£r(a)_L
J/2Uz2  ' " J   w(z-z')'--a 

Io L/r2 52G(r)      dz' 

j(ösr(a) _L*2   dz2    (z-z')1-a E(
P
a)(z) = ^^T   J 

(5) 

(6) 

Some results of modelling [3] of the fractal wire antennas are shown below in figures 1 
and 2.   

a)a=0.1 

■/'.:- 

b) a=0.19 c) a=0.2 

d) a=0.3 e) a=0.5 f) a=0.7 

g)a=0.8 h)a=0.9 i) a=0.99 
Figure 1. Changing of the far-field pattern for X/2 fractal vibrator. 
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a)a=0.1 b)a=0.3 c) a=0.9 
Figure 2. Changing of the far-field pattern of the corner-fed square loop fractal antenna. 

Figure 1 demonstrates how the far-field pattern of the Ä./2-vibrator is changed in the 
process of variation of the scaling index a, and figure 2 shows the same for the corner- 
fed square loop fractal antenna. 

CONCLUSIONS 
Presented results show that variation of the scaling index a allow changing the far-field 
pattern of the fractal wire antennas in very wide limits. Theoretical results are 
comparable with experimental [4]. 
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ABSTRACT 
3-D radiation problem solution in a far zone of an ideally conducting rectangular plane screen 
excited by an arbitrarily oriented electric dipole when changing the position of a screen has been 
obtained by the uniform geometrical theory of diffraction method. Numerical comparative 
analysis of the radiation resistance of an dipole having different orientations depending on the 
screen displacement is carried out. 

INTRODUCTION 
The asymptotic solution of the 3-D diffraction problem of radiation of an arbitrarily oriented 
electric dipole from an ideally conducting infinitely thin rectangular screen in the far field zone 
was obtained in paper [1] using the uniform geometrical diffraction theory (UGTD) method. On 
the base of the algorithms developed for solving such problems in the case, when the dipole was 
placed above the screen midpoint, the radiation resistance R of the screen-and-dipole system 
was calculated and analyzed in [2] depending on the dipole orientation, its distance from the 
screen, and the screen dimensions. Now the algorithms and computer codes for calculation of 
the dependencies R on the varying the screen position were worked out. 

STATEMENT OF THE PROBLEM 
In the rectangular co-ordinate system XYZ 
(Figure 1) the electric dipole location is 
indicated by the co-ordinates (0,0,h), the 
metallic infinitely thin rectangular screen 
ABCD with its sizes L and W is situated in 
the XY - plane being defined by the co- 
ordinates of the apex A(a,b,0). Consider 
three cases of the dipole orientation: dipoles 
1,2,3, oriented along the X,Y,Z-axes. For 
each of the dipoles the full radiation field is 
determined as the sum of geometrical optics 

A(W/2,L/2,0) 

D 
Figure 1 

(a-W,b,0) (a-W,b-L,0) 

C D 

(GO) fields and the fields of the waves excited by GO field on each of the four screen edges.The 
GO field light-and-shadow boundaries are defined on an infinitely distant observation sphere by 
equations of the curvilinear quadrangle, whose sides, in the 0, (p spherical co-ordinate system 
(Figure 1) are the arcs of circles. According to the GTD postulates, the edge waves terminate in 
space at the light-and-shadow boundary surfaces in the Keller form cones due to the finite 
screen dimensions. The cones are formed by the extreme GO rays passing through the screen 
corner points A,B,C,D. The congruences of the AC and BD edge waves terminate at the 
surfaces of shadow cones with cone angles 

ß1A = arctan|(h2+b2)1/2/a|,       ßic = arctan|(h2+b2)1/2/(a-W)|, (1) 
ß2B = arctan|(h2+(b-L)2),/2/a|, ß2D = arctan|(h2+(b-L)2)1/2/(a-W)| 

and those of AB and CD edge waves terminate at shadow cones with cone angles 
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ß3A = arctan|(h2+a2),/2/b|, ß3B = arctan|(h2+a2)1/2/(b-L)|, (2) 
ß4C = arctan|(h2+(a-W)2),/2/b|,    ß4D = arctan|(h2+(a-W)2)1/2/(b-L)|. 

The equations of the lines of intersection of the shadow cones of the AB and CD edge waves 
with the observation sphere are the equations of circles 

e3A,B=arctan(sin(p(tan2 ß3A,B - cotan2(p))"', e„c,D=arctan(sin(p(tan2 ß4C,D - cotan2cp))"' (3), 

the equations of circles for the AC and BD edge waves are 

6iA = ßiA, 6ic = ßic, e2B = ß2B, e2D = ß2D. (4) 

One can see from (1) - (4) that the boundary angles 0b, q>b, at which the edge waves give the 
contribution to the far field, are varying when changing the position of the screen. We defined 
the light-and-shadow regions of GO and edge waves for three characteristic cases of the screen 
position on the Y-axes: b > L - the dipole is located to the right of the screen, b < 0 - the dipole 
is located to the left of the screen, b = L...0 - the dipole is located above the screen, the co- 
ordinate xA being in the interval a = 0... W, zA= 0. 

The total radiation resistance R   is calculated through the mean radiated power of the 
2 71      71 

antenna   as   R =AI ,   where    Iz = Jdcp Jf 2(e,(p)sin9dG,    ?(&,<&=   |fe(G,(p)|2+|f,,(e,<p)|2. 
0 0 

A=30TT(1/A.)
2
 is the numerical factor proportional to the dipole electric length, MX; f6(8,(p), f„(6,(p) 

- the directive patterns of the antenna. To study the physical peculiarities of the radiation 
resistance formation on depending of the dipole orientation we are calculated separately the 
radiation resistance of the GO field R g0, the ones of the edge waves fields at the lateral (1,2) 
R iat and at the transversal (3,4) R ,r screen edges too. 

NUMERICAL RESULTS 

The dependencies of the radiation resistance of the dipole having different orientations on the 
varying co-ordinates of the screen apex A(a,b,0) have been investigated. Some dependencies of 
the normalised radiation resistance on b/ are shown in Fig.2 when the dipole is placed at 
h=0.25 : the separate radiation resistance R g0(a), R lat (b), R tr (c) under exciting the screen 
with its sizes L=3 , W=3 and a=1.5 by the dipoles 1,2,3; the total radiation resistance R ,, 
R 2, R 3 of the dipole l(d),2(e),3(e) exciting the same screen under different co-ordinate a; the 
total radiation resistance R under a=0.5 (f), when the screen dimensions are equal to 1^3 , 
W= ; 3 . Here the curves 1,2,3 are determined by the R of the dipoles 1,2,3 respectively under 
W= ; the curves 4,5,6 are determined by the R for the same dipoles respectively under W=3 
The dipole is located above the screen when b/ are changing from 0 to 3 , being out of this 
interval the dipole is located by the side of the screen. The R values of the curves 1, 2, 4, 5 are 
near to R =9.647A, the R of the curves 3, 6 exceed R =11.363A(R , R 'are the 
radiation resistance of the dipole, with an infinite screen). From the analyses of the 
dependencies R on b/ for the screens with different L and W (f), it follows that in the case 
when the dipole is oriented perpendicular to the screen and placed above the screen the R 
values are higher for the smaller W values (3); when the dipole is placed by side of the screen, 
the curve of the R (3) falls steeper with regard to R 0=8.37A of a dipole in free space under the 
smaller W values. 
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S the uniform geometric diffraction theory method, algorithms and computer codes for 
calculating the radiation field intensity of the electric dipole in presence of infinitely thin 
perfety conducting rectangular screen arbitrarily placed and oriented in space have been 
woted out On this'base, the radiation resistance of the screen-and-dipole radiating system are 
computed and analyzed in relation to the dipole orientation and the screen dimensions when 

changing the position of the plane screen. 
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ABSTRACT 

A simple and almost exact image method is proposed for the analysis of vertical thin- 
wire antennas above lossy ground. This method is based on the replacement of the lossy 
half-space by a few complex images. The GPOF technique and Sommerfeld integral 
equation are used to find the location and intensity of the current images. Similar to 
dipole sources, a few proper image line sources are obtained for an original line source. 
The results obtained for the radiation pattern of this equivalent structure are found to 
practically coincide with the exact results (i.e. those obtained from the Sommerfeld 
theory). Compared to other methods of solution, this method is conceptually much 
simpler and requires less computing time 

THEORETICAL BACKGROUND 

The geometry of the vertical wire antenna of length L, located at a height h above an 
imperfect conducting half-space as shown in Fig. 1. 
According to the thin-wire approximation and Sommerfeld theory [1, 2], the z- 
component of the radiated electric field can be expressed as 

E,= &   . ,.2ir. ,     ,s    n2-\ 
-iS^ + k2oK8o(z,z') + ^g>(z,z') + -^U2]xI(z')d(z') 

Where I(z') is current distribution along the antenna, g0(z,z') denotes the free-space 
Green function of the form 

g^,z') 
R, (2) 

While g] (z, z')   follows from image theory: 

Ä, (3) 

In which k0 and *, are the phase constant of free space and lossy ground, respectively, 

and Ä, and R2 are the distances from the antenna and from its image to the observation 
point. The medium of lower half-space is taken to be lossy ground characterized by 
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(n2e0,Mo), with n2 = sr - ja I m,, where sr is the relative dielectric constant, and a is 

the conductivity of the medium. Sommerfeld integral U2 is defined as follows: 

* u0 n u0 + w, 

Where u0 = VF^.n, = VF^\/> = [(x-x')2 +(y-/)2]K^o(MP) » a zero" 
order Bessel function, while h is the distance from the interface to the antenna. 

NUMERICAL EVALUATION 

The integrand in the Sommerfeld integral U2 is a weakly damped quasioscillatory 
complex function, which greatly complicates accurate numerical evaluation of the 
integral and makes it quite lengthy. By using the DCIM [2] method and GPOF [5] 

technique, the («0-«1)/(«2«0+«,) term in U2 can be approximated by 

N 
11 V~* b,ua 

2    — = 2, a'e 
n u0 + w,      ,=i 

u0-ux    _ v ^ J>"o (5) 

Therefore U2 becomes 

i=i 

Where r, = J(p2+(z + h~b/k/    'Z~° 

Based on the above complex images and superposition principle, the dipole images are 
extended to wire line sources. Therefore the equivalent image line sources can be 

defined by 

"2 -1 / (V) -(h + l)<z'<-h Quasistatic image 
n2 +1 

^-a,I0W        -(h + l) + ^<z><-h + ± 
n +1 . «o K< 

a, ,b,, and N are determined from the GPOF technique and required accuracy 

"   +1 (7) 

7YZ') =  
2n   gj(z')        - (Ä + /) + ^- < z' < -h + -f i=2,..., N Complex images (8) 

' n2 +1 ^o *o 

NUMERICAL RESULTS 

Considering the original source and   N discrete images, we have   N + \   element 
collinear arrays. Therefore, the radiated electric field is obtained as 

-jk„r ,/ Jv+1 

Eß=jü){i {sm0 \i(z)eJ°      dz)\2^lne ) K>) 
Aw ^n «=o 

The current distribution of vertical wire antenna is assumed sinusoidal and can be 

written as 
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70(z') = /0sin[*0(--|z|)] h<z<h + l (10) 

The radiation electric fields of this line source above lossy ground and also above 
perfect electric conductor are computed and shown in Fig. 2. 

CONCLUSION 

The DCIM with proper number of images is practically as accurate as the exact 
Sommerfeld-based method for analysis of vertical wire antenna. However, it is much 
simpler and significantly faster. The radiation pattern of wire can be considered as exact 
for all regions. 

Mj'^O 

M0,£r,(7 

Fig.l Vertical wire antenna over 
imperfect conducting half-space 

Fig. 2 Radiated electric field of half-wave dipole 
above ground with sr=]Q and a = lOms/m 
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ABSTRACT 
The problem of radiation from a planar waveguide with symmetrical flange is studied. 
This is one of the model problems of the diffraction theory. The method of partial 
regions is used. In the first and second subregions the fields are presented in terms of 
Fourier integrals, and in the third subregion - in terms of Sommerfeld-Maliuzhinets 
integral. After binding the fields on common subregion boundaries, the calculation 
reduces to the set of inhomogenious functional Maliuzhinets equations, which are 
solved by Tuzhilin S-integrals. This allows for the initial problem to be formulated as 
the infinite set of algebraic linear equations relative to transformation coefficients of 
waveguide waves 

PROBLEM FORMULATION AND METHOD OF SOLUTION 
One of the model problem of diffraction theory is a problem of radiation from the 
waveguide with symmetrical flange. Planar half-infinite waveguide with 2a height and 
with symmetrical flange is excited by the base wave of the TEM type with the 
amplitude equal to one: 

H'y(x,z) = exp(ikz),       | x |< a,   - co < z < 0,        (exp(-icot)) , (1) 

where k = In/X is a wavenumber. 
The problem is worked out by the method of partial regions. Taking into account the 
symmetry of the incident field and the symmetry of the structure related to plane x = 0, 
let us study the fields in the following three subregions: 

1.0<x<a,    z<0;       2.0<x<a,   z>0;       3.r>0,   0<^<cD  , (2) 

where   the   Cartesian   and   polar   coordinates   are   connected   by   the   equations 
x-a = rsmq>, z = rcosq>. 
Let us represent the total field in the waveguide as superposition of eigenwaves of E02„ 

type with unknown amplitudes of the excited waves An 

E\ (X, Z) = exp(z'ftz) + YuA« cos QXP(~ianz)' (3) 
nnx 

where an = ^k2 -(nn/a)1  are constants of propagation. 
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The field in region 2 is presented as Fourier integral 
1   °° 

H ] (x, z) = ~~ fvF+ (x, a) exp(-iaz)da , (4) 
IK   J 

-00 

vF+(x,«)=     ; ;      cosh^+ +l^j 
ysinhya a + k 

-"  -cos , (5) 
n=0 cc-a„ a 

C+{an) = -i(-\)"enanaAn, 
Jll    when    n>\ 

2     when   n = 0 

where y = Vor" -k   , Rey > 0. 

The field in region 3 is presented as Sommerfeld-Maliuzhinets integral [1] with 
transform S^ip) 

H](r,(p) =      . Jexp(-/fccosp)S^(p + cp)dp, 
2m 

(7) 

The set of integral equations is obtained using the condition of vanishing of the 
tangential component of the electric field on the flange and the conditions of continuity 
of the tangential components of the field on the boundary of regions 2 and 3. 

-. Jexp(-/ÄT cos p)S<b (p + $) sin pdp = 0, (8) 
2m 

-    . fexp(-/*r cos p)S0 (p)dp = 
2KI i 2K 

fexp(-/*r cos p)S0 (p)dp = n     f»F+ (a, a) exp(-iar)da, 
J 7-rr   J 

(9) 

1 -I oo 

2m \ex^~ikr cos P)S* (P)sin PdP = ~ 2 ■ -k JC
+ (") exp(-/ar)f/a ,       (10) 

y -» 

Then the inhomogenious functional equation for function S0(p) is obtained by the 
inversion formula for Sommerfeld-Maliuzhinets integral [1] 

where 
S0 (p) -S0(p + 2<D) exp(-2/*a sin p) = -(l - exp(-2/*ar sin pj)F{p) 12,    (11) 

F(p) = sin p 
f      1       +^     (-l)'X     ^ y 

cos p + \    ^ cos p - cos 6>„ 

sin <9, 
nK 

cos8=a",       O^ReO.,^* 
"     ka "      k ■ "2 

The solution of equation (11) by Tuzhilin S integrals [2] is presented 

(12) 

(13) 

SJp) = txp{wll)(p))\T(p,K) + fj(-\yAnT(p,en) 
M = 0 

where 

(14) 

w4> (P) = -ika((cos(p - <D) - cos0)/sin 0> + 2$(cos(^^/<D) - \)/(K2
 - O2)),     (15) 
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sin^p/O))'] f(T,ß)dr  (16) 

f(p ß) = —^ (l-exp(-2/tesin/>))exp(-w0(p)) . (17) 
•/v^'^       2(cosp-cos/?) 

The infinite set of algebraic linear equations is obtained for unknown amplitudes A„ 

-i(rl)memkacosOmAm +S-l)",P(öll)ö,K=-m^).       i» = <U,2,..., (18) 

where 
W(p,ß) = ^(w<b(p)lTip,ß)-T(p-2<!>,ß)) . (19) 

The solution of equation (11) was constructed for two particular cases: 1) O = n and 

2) O = n\2 in quite another way. In both cases the solution is as follows 

S.(ri-f?fc£^C.(,)-W (20) 
2 sinh(zÄOt sin p) I 

1) Homogenious Maliuzhinets equations are obtained for function Cn(p). This 

function and unknown amplitudes are explicitly determined from these equations. 
The constructed solution totally coincides with the solution obtained by the 
factorization method [3]. 

2) In this case inhomogenious Maliuzhinets equations are obtained for function 
CnP (p). Their solution can be written by Tuzhilin S -integrals [2]. The infinite set 

of algebraic linear equations is obtained for unknown amplitudes. This set of 
equations and its coefficients coincide with the obtained factorization method [4]. 
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ABSTRACT 

Rigorous numerical-analytical field-theory technique for analysis of rectangular 
waveguide arrays with finite flush mounted dielectric cover is presented. The method is 
based on the dyadic Green function technique and Galerkin's method with taking into 
account the edge condition. The comparison of the presented theory with experimental 
and theoretical results of other works shows good agreement. 

INTRODUCTION 

The waveguide phased arrays flush mounted in flat or conform conducting surfaces 
find wide use in both radar and communications application. These array antennas are 
sometimes dielectrically loaded and usually covered with some dielectric material for 
environmental protection and for wide-angle impedance matching. There are no the 
simple methods based on the classical antenna theory to analyze the influence of the 
dielectric cover on the arrays performances. On the other hand, it is well known that 
both the high-order mode coupling as well as dielectric cover can individually produce 
scan blindness in waveguide phased arrays [1]. These reasons call for the rigorous field 
theory analysis of such arrays. 
There is a number of 2D and 3D models to study rectangular waveguide arrays both 
with and without dielectric sheets. But only a few papers consider 3D models of finite 
rectangular waveguide arrays with dielectric sheets [2, 3] and only paper [2] takes into 
account the finite size of dielectric cover. 

THEORY 

In this paper a novel Galerkin's method based numerical-analytical approach to analysis 
of rectangular waveguide arrays with finite dielectric cover is presented. The array 
under consideration is covered with rectangular dielectric sheet flush mounted in 
perfectly conducting ground plane (Fig. 1). In general case array includes arbitrary 
number M of rectangular waveguides of differing size. All waveguides are arbitrary 
positioned under dielectric cover. Such a problem formulation gives the opportunity to 
study arrays with rectangular or hexagonal grid and arrays with non-equidistant grid or 
different-sized waveguide arrays. A major reason for employing different-sized 
elements and non-equidistant grid is a design flexibility in beam shaping and side lobe 
level control. 
Rigorous field theory solution of the problem is based on the dyadic Green's function 
technique and Galerkin's method. The straightforward application of the equivalence 
principle and the continuity conditions on the common interfaces leads to the system of 
integral equations (SIE) for magnetic currents on the apertures of waveguides and 
dielectric cover. The components of dyadic Green's functions in SIE are written in the 
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Fig.l. Rectangular waveguide array with finite flush mounted dielectric cover in an 
infinite perfectly conducting ground plane. 
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Fig. 2. E-plane radiation pattern (a) and efficiency (b) of 7-element array by uniform 
excitation and different scan angles Go. Presented theory , theory of [2] +++ . 
(£i = 2.56, e=\, a = 0.73A,   b =3AA, ax = 0J2Ä,bi = 0.3Ä, A = 0.3122, dy= 

0.52). 
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form of full wave modal expansions for rectangular waveguides and cavity (i.e. 
dielectric sheet). Free-space Green's function components are expressed as their Fourier 
transform representations. 
The first key point of this theory is a special choice of the basis finctions for solving 
SIE. The weighted Chebyshev and Gegenbauer polynomials were used as basis 
functions taking into account the edge condition in explicit form.  For example, 
equivalent magnetic current components on the vth waveguide aperture (v=l, 2 M) 
were written in the form of expansions 

/=() A-=0 

xr(x) =(\-(2(x-xv)/av)
2}+m.crl(2(x-xv)/av) , 

IT (y) = (l-(2(y-yv)/hvf)T-m . Cl (2(y-yv)/bv) , 

C-v (y) = (l -(2(y-yv)/bvf)T+U2 ■ C^ (2(y-yv)/bv) . 

where uik are unknown coefficients, C] (x) are Gegenbauer polynomials (0< r< 1/6), 

(xv,yv) are coordinates of the central point of the vth waveguide aperture. 
By implementation of the standard Galerkin's method procedure the SIE is reduced to 
the system of linear algebraic equations (SLAE). Therefore the second basic point of the 
theory is both analytical and numerical techniques of evaluation of double infinite 
integrals included into some matrix elements of SLAE. 

RESULTS 

Numerical results given in the paper demonstrate good numerical convergence and 
accuracy of this theory by comparison with the both theoretical and experimental results 
of other works for some particular cases [2, 4] (Fig. 2). Some examples of radiation 
patterns for arrays with number of waveguides up to 100 were considered. 
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ABSTRACT 
Solution of three-dimensional problem of radiation from an infinite waveguide antenna 
array is considered. Investigated is an antenna array with subarray of matching 
elements. Antenna system has triangular cells of radiation elements location. The study 
method is based on using an integral equation with separation of piercing domain. 

INTRODUCTION 
The method of integral equation is an efficient tool for solving three-dimensional 

problems. The paper subject is application of the method of integral equation to the 
analysis of a waveguide antenna array with triangular spacing of radiation elements. 
The whole domain of the field determination is subdivided into a piercing domain and 
partial domains (Fig. 1). The theorem of the vector theory of diffraction is used for 
obtaining the total field in the piercing domain. Theoretical investigation of antenna 
array composed of open-ended rectangular waveguides and finite subarray for obtaining 
the impedance matching with free space is presented. 

METHOD OF SOLUTION 

The vector theory of diffraction is a theory of diffraction of electromagnetic field in 

three-dimensional space. Maxwell's equations lead to an equation for £ field: 

[V[V£]] -k2E = -jconJexc> (V 

where Jexc is a given current. 
Consider the Green's tensor of electric type, which satisfies the equation 

[V[VGe(r,r')]]-k2Ge(r,r') = IS(r-F). (2) 

In (2), 7 is a unit tensor of the second rank with components (I)aß = 5aß; a and ß in 

three-dimensional space are 1,2,3. Multiply the equation (1) from the right with 

Ge(r,F) and multiply the equation (2) from the left with E. Subtract the second from 

the first and obtain 
[V[VE]]Ge-EMVGe]] = -jaJexcG

e -ES(f-F). (3) 

Here E*I=E . Traditional method of solution of the equation (3) is spatial integration 
of both sides of equation and application of the Green's theorem. Besides, the solution 
of equation (3) can be obtained by using the Gauss theorem. For the left hand side of 
equation (3), by using the relations 

[V[V£]]Ge -£[V[VGe]] = V[[[VE]Ge] + [E[VGe]]]., 
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a-a 

1 z 

-zl 

V 
-z2 

wx 

Fig. 1. Antenna array geometry 

equation (3) can be written in the form 

£(/^(r-F') = -/w//^ 

(4) 
where r is the variable of integration and F is the point of observation which is inside 
V. The surface of integration S is the boundary of V. After spatial integration over V 
and application of the Gauss theorem, a general theorem (formula) of the vector theory 
of diffraction is obtained: 

E(r) = -j<oM   J Jexc(F)Ge(r,F)dV-jH([E(F)[VGe(r,F)]]+[[V E(r)]Ge\F,F)])dS. 
Ve,c S 

(5) 
Here n is external normal to surface S. Equation (5) represents the electric intensity E 
at the point of observation as a sum of fields. They are formed by the current in volume 

Vexc, and the fields £(F)and [V£(F)] on surface S. Analogous result for determination 

of H(F) can be obtained as 

W')=   j [V^r(0]Ge(F,P)^-^{[//(F)[VGe(F,F')]] + [[V//(F)]Ge(F,P)]}^ 
Vexc S 

(6) 
In equations (5) and (6), the boundary conditions for tensor Ge(f,F) are not concrete. 
Consider a combined surface S containing a conducting surface and a hole. The hole 
domain is denoted as I . Then boundary conditions yield the following formula of the 
vector theory of diffraction 
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E(r') = -J"M   I Jexc(r)Ge
x{r,r)dV-{V JGj(r,r')[«£(r)]dS]. 

Vexc _ S 

This representation is convenient in computations. 

PROBLEM FORMULATION 

For a unit cell the whole domain of the field determination is subdivided into three 

domains: 
I - waveguide extended to infinity (piercing domain) 
-wx/2< x< wx/2;    -wy/2< y< wy/2;   -oo < z< co; 
II - Floquet channel 

PA sin(y4)           PA sin(A)       .   .     .    , 
-Px/2< x< Px/2;  - K  }<y< y-1;  -z2<z<-zl; 

III - semi-infinite Floquet channel 
PAsin(A) ^    ^ PA sin(A).  n<7<no. 

-Px/2< x< Px/2; -^^<^< ,  0<z<oo, 

Thanks to the theorem of the vector theory of diffraction, one can write integral 
representation for the total field in the piercing domain, 0 < z< co, as 

El(x,y,z) = Elxc +[V \G\x,y,z;x'y'z')[nE\x',y',z')]dS]. 

Sl 

Here n is the inner unit normal to the boundary Sl; Gl(r,r') is the dyadic Green's 
function of potential type of the second kind which satisfies the Helmholts equation 

AGl(?,?') + k2 Gl(r,F) = -IS(r-F) 

and the boundary conditions on conductor surface 5" 

[n[VG\r,F)]] = 0; 

(nÖ\r,r')) = 0, f,FeS'. 
Place the observation point at z=-z2, -zl, 0 and take into consideration the boundary 
condition for the tangential component of the vector of electric field. Then we obtain a 
system of the Fredholm integral equations of the second kind. Application of the 
Galerkin method finally yields a system of linear algebraic equations, which can be 
solved by the use of the truncation. 
Numerical results obtained agree well with other available data. The influence of 
geometrical parameters on the reflectivity in the waveguide is investigated. It is shown 
that the presence of a matching inner resonator makes it possible to improve the 
characteristics of antenna array. 
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V.N.Karazin Kharkov National University, 61077, Svobody Sq.,4, Kharkov, Ukraine 

E-mail: Mikhail.V.Nesterenko@univer.kharkov.ua 

INTRODUCTION 

In the super-high frequency technique narrow slots are widely used as independent 
radiators or elements of waveguide antenna arrays. The foundations of slot theory and 
calculation algorithms have been developed mainly for comparatively short slots of 
length 2L < X, where X is an operating wavelength. But in some cases (for example 
when an antenna must have a pattern of special form, a pattern with a narrow main 
beam and low sidelobes or by producing multi-frequency, multi-channel antennas, ones 
with complex apertures) it is necessary to use slots with 2L > X. 
Among the most effective methods of analysis of such radiators (for example a 
longitudinal slot in a broad wall of a rectangular waveguide) one can name moments 
method [1], Galyorkin's method [1,2]. The last one reduces to the same system of linear 
algebraic equations (SLAE) as the Ritz method applied to the solving the variation 
problem, equivalent to the initial integral equation concerning the magnetic current in a 
slot. During realization of these methods various basis functions and weight ones may 
be used: piecewise constant [3], piecewise linear and piecewise sinusoidal [4], even 
Gegenbauer polynomials [5], trigonometric functions [6]. Using these methods one 
must solve N-order SLAE, where N is a number of linearly independent basis 

functions. Matrix elements of such system (their number is N2) very often cannot be 
found analytically. As a rule half of them result from single or double numerical 
integration which is not very simple. 
For more then one slot the order of SLAE increases proportionally to their number. In 
order to make easier solving the problem it is necessary to diminish a number of 
approximating functions - to use one or two functions (depending on an excitation 
character) for a slot as it was done in [7-9]. In a special case when only one 
approximation function is used for every slot in the multielement system Galyorkin's 
method gets a name «induced magnetomotive forces method (IMMFM)» [2]. The 
solution in this case is the more correct the more correctly approximating function 
describes distribution of the magnetic current in the slot. In [7-9] the half-wave and one- 
wave sinusoidal functions were used for slots of length 2L < X. For the longer slots it is 
necessary to use a greater number of approximating functions. We suggest here the 
more perfect functions for the IMMFM, which provide a good current approximation 
for the more long slots. These functions were obtained by solving the integral equation 
for the magnetic current in a slot with the asymptotic method of averaging [10]. In this 
paper the results of investigation of electrically long slots electrodynamic characteristics 
using these functions are presented. The slots are supposed to be cut in a broad wall of a 
rectangular waveguide. The numerical results are compared with ones of other authors 
and with the experimental data. 
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MAIN PART 
In a general case a projection of an original field H0s (s) on the slot axis and a magnetic 

current in it 3(s) can be presented using two components: symmetrical and 
antisymmetrical one along a slot with respect to its center. Let s be the local coordinate 

connected to the slot. Then H0s(*) = Hs
0s(,) + H^), J(*) = Js(*) + Ja(*)- Accounting 

this the integral-differential equation for the current in the narrow linear slot (d/2L«l, 
d/A.«l, where d is a width of the slot), may be written as [10]: 

LjJ(S')[GsU5') + Gi(5,5')]d5' = -icö[H^s(5) + Hgs(s)]. (1) 
yds2 j 

Here Ge
s(s,s') and G[(s,s') are quasi-one-dimensional Green's functions for the vector 

potential respectively in the external ("e") and internal ("i") coupled volumes, 
k = 2n/X, co - cyclic frequency (time dependence eicot). Let us represent the current as a 

product of unknown amplitudes and known distribution functions 
j(5) = j^fs(5) + jgfa(,), (2) 

where the functions fsO) and fa<» must satisfy the following boundary conditions 

fs(±L) = 0,fa(±L) = 0.For the longitudinal slot in a broad wall of the rectangular 
waveguide 'with the cross section axb the magnetic field of the incident wave can be 

written as H0s(s) = H0 cos^(cosV-isinkgs), where H0 is an amplitude of the 

wave, x0 is a distance from the narrow wall to the slot axis, 

k =^kr-(Ti/a)2 =2%/Xg, Xg is the wave length in a waveguide. Basis functions 

f s(s) and f a(^) can be chosen in the following form [10]: 

fs(s) = coskscoskgL-coskLcoskgs, fa(s) = sinkssinkgL-sinkLsinkgs. (3) 

Then according to the IMMFM [2] we transform (1) using (3) into the system of two 

independent algebraic equations concerning unknown amplitudes Js
0 and J3, 

Js
0[Ys

e(kd,kL) + YJCkd.kL)] = Ms(kL), Ja0[Ya
e(kd,kL) + Ya(kd,kL)] = Ma(kL), (4) 

where 

L 

i 
-L 

Y,ei= jfs>a(^) 
( A1 ^ 

)f^(s')G^(s,s')ds' d5,   MS;a=-ico|fs'a(5)Hs
0f(5)d5.    (5) 

The solution of (4) with the account of (2,3,5) gives us the desired expression for the 

current. The results of calculations (Figure 1-3, |SE |2 - normalized radiated power, h - 
wall thickness) show a good agreement up to the electric length of slots 2L/X < 2.75 of 
our results obtained by using only two functions (3), experimental data and results 
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obtained in with Galyorkin's method [6]: j(*)= £jnsin-^±^ and moment method 
N 

n=l 2L 

[3]. The last two methods demand not less then 12 basis functions for the longest slots. 

s..r !             ;     1 !  

Ofi  Moment method [3] 

—=—IMMFM[7-9] 

Aj 

0.1 

0 ~i 
!n\ : i        ' \                                 / 

*fl     \ 
M                     V                     ■          fh ■ 
u           ■       \> ■                    /" : 

0.0 

"S^W. 

 1   i            i            i 
0-50 0.75 1.00 1.25 2L/X 

Figurel: a=22.86mm, b=10.16mm, A.=32mm, 
d=l.5875mm. x0=7.43mm, h=0mm. 
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Figure 2: a=23mm, b=10mm, d=1.5mm, 
2i=30mm. x0=a/4, h=lmm. 

05 1.0 1.5 2.0 2L/X 

Figure 3: a=23mm, b=10mm, d=lmm, 
x0=6.5min, h=lmm. 

CONCLUSION 

As a result of investigations 
performed we can affirm that the 
proposed mathematical model is 
adequate to the real 
electromagnetic process. The 
results obtained can be used at 
designing waveguide-antenna 
devices having electrically long 
slots or their systems as coupling 
elements. 
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In this paper, we present and analyze a model phased antenna array of rectangular 
waveguides that employs a new mode of excitation and a new approach to the antenna 
pattern scanning. The phased antenna array is excited by a surface wave of a planar 
dielectric waveguide lying on a metal substrate. 

Phased antenna arrays composed of open ends of waveguides are widely and effectively 
used in radar, communication and other areas where enhanced levels of the radiated 
power and fast control of the antenna pattern are required. Such antennas have shown a 
particularly good performance at shorter wavelengths of the UHF and SHF bands. At 
shorter centimeter wavelengths and especially at millimeter waves problems arise 
associated with the construction of feed systems for phased antenna array elements and 
antenna pattern control units. The difficulties result from the increased dimensions of 
both structural elements of waveguide channel feed systems and those of antenna 
pattern control units (phase shifters) as compared with the transverse sizes of the 
waveguide channels. As a result, a satisfactory matching of a generator (receiver) with 
the antenna array is impeded. 
The phased antenna array is excited by a surface wave of a planar dielectric waveguide 
lying on a metal substrate. Waveguiding elements in the antenna are fed through the 
conversion of the surface wave of the planar dielectric waveguide into propagating 
modes of the waveguide channels. Such mode of the waveguide channel driving 
removes the problem of matching the antenna feed line with the waveguiding channels. 
The new mode of antenna pattern scanning of the waveguide-based phased antenna 
array consists in changing the surface wave propagation direction across the plane of the 
antenna array aperture. The change of the propagation direction of the surface wave 
with a plane phase front results in changing the phase distribution of the 
electromagnetic field over the waveguiding channel aperture, and thus in changing the 
radiation direction of the phased antenna array [1]. This approach to the control of the 
phased antenna array radiation would relieve from the necessity of employing expensive 
phase-shifters of the millimeter wave band. 
The model phased antenna array under analysis is shown in Fig.l. The structure consists 
of an infinite perfectly conducting screen of a finite thickness hd with waveguiding 

channels of rectangular cross-section (Fig.la). The screen lies within the plane xOv. 
Centers of the waveguiding channels are allocated periodically along two 
non-orthogonal directions making an angle % ■ The value of X equal 90° corresponds 
to an array with the rectangular mesh. The waveguide cross-sections, a x b, are selected 
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such that the only propagational mode in the waveguides is the fundamental TEm - 

Fig.l 

mode. The antenna array under consideration is characterized by a waveguide cell of 
dt xd2 in size (Fig.lb). A dielectric plate (diel.) of thickness ad backed by a metal 

substrate (metal) is placed at a distance bd from the screen within the plane parallel to 

the aperture plane of the phased antenna array. The coordinate frame x'y'z' is tied to the 
plate. The dielectric constant of the plate is £, while its permeability is equal to one. 
The E00 surface wave of amplitude qd propagates through the dielectric plate along the 

0/ axis at an angle <ptl with respect to the Oy axis. 

The transverse electric field component £, can be represented with the range behind the 

screen (z < -hd) as a complete set of spatial vectorial TE - and TM - modes, viz. [1]: 
CO CO CO CO 

E,(x,y,z)= £   I<:Vi!V,/Vs + Z   Z<2V{?V'r-'. (1) 
9=-x.5=-oo 0=-oo.f=-a> 

Here d™ and d™ are unknown amplitudes of the spatial TE - and TM - modes, 
respectively. 
The algorithm developed to compute electromagnetic field amplitudes makes it possible 
to analyze the antenna performance in the multiwave operation mode. In addition, the 
multi-wave mode allows modeling the antenna array capable of simultaneous reception 
or transmission at several directions. 
It is known from the antenna array theory [1] that if   the electromagnetic field in 
waveguiding channels is varied between waveguiding cells as 

En,„ (#«„,) = £oo (#oo) exP {'O ¥x + « ¥y )}, (2) 
where Emn(x,y) and Rm„(x,y) is the electromagnetic field in the waveguiding channel 

labeled by m,n\ Em(x,y) and #00(x,v) is the electromagnetic field in waveguide 

0,0; and y/x and y/y are fixed phase shifts along the axes Ox and 0 v, respectively, 

then the linear phase distribution Eq.(2) will produce radiation toward the direction 
given by the angles 3 and <p determined from the relations 
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y/x = kdx sin 9 cosy;      y/y = kdy sin 9 sin q>. 0) 

Here k = 2TV/A; dx and dy are the waveguiding cell dimensions along the axes Ox 

and Oy respectively; and 9 and <p are angles in the polar spherical coordinate system. 
The surface wave propagating through the dielectric plate is characterized by a plane 
phase front. Hence, the electromagnetic field excited in the waveguiding channels with 
a fixed propagation direction of the surface wave follows a law similar to that given by 
Eq(2) Changing the surface wave propagation direction ( changing the angle <pd) 

results in changing the electromagnetic field distribution over the waveguiding 
channels, and hence, according to Eq.(3), in changing the radiation direction of the 
phased antenna array. 
Fig 2 show absolute values of the spatial mode complex amplitudes in dependence on 
the propagation'direction of the surface wave through the dielectric plate. 

a = 0.515X;b = 0.25*;^ = X;d2 = 0.8-1; 

hd=\.925X;z=W;    ad = 0A3X. 

Fig.2 

If the angle <pd is varied within the range <pd=0°* 47°, then the beam produced by 
the mode with q land 5 1 changes its orientation within the angular range 

^j =78° -5-17.5° and <pn = 89° -5—74.4°. Thus, the paper suggests a new mode of 
excitation and control of radiation from a phased antenna array of open ends of 
waveguides that is based on the use of a surface wave. The design simplicity of the 
phased antenna array and the simple technique of the radiation excitation and control 
allow us to claim that the model suggested for the phased antenna array of open ends of 
waveguides is promising for millimeter wave applications. 
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