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Mathematical Models for a Missile Autopilot 
Design 

Executive Summary 

Requirements for next generation guided weapons, particularly with respect to their 
capability to engage high speed, highly agile targets and achieve precision end-game 
trajectory, has prompted a revision of the way in which the guidance and autopilot 
design is undertaken. This report considers the derivation of the mathematical models 
for a missile autopilot in state space form. The basic equations defining the airframe 
dynamics are non-linear, however, since the non-linearities are "structured" (in the 
sense that the states are of quadratic form) a novel approach of expressing this non- 
linear dynamics in state space form is given. This should provide a useful way to 
implement the equations in a computer simulation program and possibly for future 
application of non-linear analysis and synthesis techniques. 

This report also considers a locally linearised state space model that lends itself to 
better known linear techniques of the modern control theory. A coupled multi-input 
multi-output (MTMO) model is derived suitable for both the application of the modern 
control techniques as well as the classical time-domain and frequency domain 
techniques. This is validated by comparing the model with the other published results, 
and through both open and closed-loop systems simulations. The models developed 
are useful for further research on precision optimum guidance and control. It is hoped 
that the model will provide more accurate presentations of missile auto-pilot dynamics 
and will be used for adaptive and integrated guidance & control of agile missiles. 
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1. Introduction 

Requirements for next generation guided weapons, particularly with respect to their 
capability to engage high speed, highly agile targets and achieve precision end-game 
trajectory, has prompted a revision of the way in which the guidance and autopilot 
design is undertaken. Integrating the guidance and control function is a synthesis 
approach that is being pursued as it allows the optimisation of the overall system 
performance. This approach requires a more complete representation of the airframe 
dynamics and the guidance system. The use of state space model allows the application 
of modern control techniques such as the optimal control and parameter estimation 
techniques to be utilised. In this report we derive the autopilot model that will serve as 
a basis for an adaptive autopilot design and allow further extension of this to 
integrated guidance and control system design. 

Over the years a number of authors [1-3, 6] have considered modelling, analysis and 
design of autopilots for atmospheric flight vehicles including guided missiles. In the 
majority of the published work on autopilot analysis and design, locally linearised 
versions of the model with decoupled airframe dynamics has been considered. This 
latter simplification arises out of the assumption that the airframe and its mass 
distribution are symmetrical about the body axes, and that the yaw, pitch and roll 
motion about the equilibrium state remain "small". As a result, most of the autopilot 
analysis and design techniques, considered in open literature, use classical control 
approach, such as: single input/single output transfer-functions characterisation of the 
system dynamics and Bode, Nyquist, root-locus and transient response analysis and 
synthesis techniques [5,7]. These techniques are valid for a limited set of flight regimes 
and their extension to cover a wider set of flight regimes and airframe configurations 
requires autopilot gain and compensation network switching. 

With the advent of fast processors it is now possible to take a more integrated 
approach to autopilot design. Modern optimal control techniques allow the designer to 
consider autopilots with high-order dynamics (large number of states) with multiple 
inputs/outputs and to synthesise controllers such that the error between the 
demanded and the achieved output is minimised. Moreover, with real-time 
mechanisation any changes in the airframe aerodynamics can be identified (parameter 
estimation) and compensated for by adaptively varying the optimum control gain 
matrix. This approach should lead to missile systems that are able to execute high g- 
manoeuvres (required by modern guided weapons), adaptively adjust control 
parameters (to cater for widely varying flight profiles) as well as account for non- 
symmetric airframe and mass distributions. 

Typically, for a missile autopilot, the input is the demanded control surface deflection 
and outputs are the achieved airframe (lateral) accelerations and body rates measured 
about the body axes. Other input/output variables (such as: the flight path angle and 
angle rate or the body angles) can be derived directly from lateral accelerations and 
body rates. 
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This report considers the derivation of the mathematical model for a missile autopilot 
in state space form. The basic equations defining the airframe dynamics are non-linear, 
however, since the non-linearities are "structured" (in the sense that the states are of 
quadratic form) a novel approach of expressing this non-linear dynamics in state space 
form is given. This should provide a useful way to implement the equations in a 
computer simulation program and possibly for future application of non-linear 
analysis and synthesis techniques. Detailed consideration of the quadratic/bilinear 
type of dynamic systems is given in [4]. 

This report also considers a locally linearised state space model that lends itself to 
better known linear techniques of the modern control theory. A coupled multi-input 
multi-output (MIMO) model is derived suitable for both the application of the modern 
control techniques as well as the classical time-domain and frequency domain 
techniques. This is validated by comparing the model with others previously published 
and through simulation of a decoupled single-input single-output (SISO) system. 

2. Rigid Body Dynamics 

2.1 Notation and Convention 

Conventions and notations for vehicle body axes systems as well as the forces, 
moments and other quantities are shown in Figure 2.1 and defined in Table 2.1. 

Figure 2.1 Motion variable notations 
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The variables shown in Figure 2.1 are defined as: 
m - mass of a vehicle. 
a - incidence in the pitch plane. 
ß- incidence in the yaw plane. 
X - incidence plane angle. 
a- total incidence, such that: tan a = tan a cos A, and tan ß = tan ex sin Ä. 
T-thrust. 

Table 2.1: Motion variables 

Vehicle Body Axes System 

Angular rates 
Component of vehicle velocity along each axis 
Component of aerodynamic forces acting on vehicle along 
each axis 
Moments acting on vehicle about each axis 
Moments of inertia about each axis 
Products of each inertia 
Longitudinal and lateral accelerations 
Euler angles  
Gravity along each axis 
Vehicle thrust along the body axis 

Roll 
axis 

X 

X 

tyz 

T 

Pitch 
axis 
Y 

Y 

M 
lw 

gy 

Yaw 
axis 

Z 
r 
w 

N 

ixy 

JL 

£,- aileron deflection. 
T] - elevator deflection. 
q- rudder deflection. 

Figure 2.2 defines the control surface convention. Here the control surfaces are 
numbered as shown and the deflections (ö,,52,ö3,84) are taken to be positive if 

clockwise, looking outwards along the individual hinge axis. Thus: 

Aileron deflection: E, = —(81 +S2 +S3 +S4), if all four control surfaces are active; or 
4 

<£ = —(SI+53), or £ = — (ö2+ö4) if only two surfaces are active. Positive control 

defection {q) causes negative roll. 
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Elevator deflection: 77 = -(«5, -83). Positive control deflection (rj) causes negative 

pitch. 

Rudder deflection: £ = -(82 -ö4). Positive control deflection (£) causes negative yaw. 

+84 

Figure 2.2 Control surfaces seen from the rear of a missile 

2.2 Eider's Equations of Motion 

The six equations of motion for a body with six degrees of freedom may be written as 

[1-3]: 

m(ü + wq-vr) = X + T + gxm <2- *) 

m(v + ur-wp) = Y + gym (2-2' 

m(w-uq + vp) = Z + gxm @-3' 

Ixxp-(I>v-IJ^ + Iyz(r2-q2)-IJpq + r) + IJrp-q) = L 

Iyyq-(I„-I„)rp + IJp2-r2)-Ij4r + P) + IJM-r) = M 

iar-(i»-iyy)pq+Ly(<i2-P2)-Iy*(rP+i)+I~(cir-P) = N- 

(2.4) 

(2.5) 

(2.6) 

Here (•) = is the derivative operator. 
dt 
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Equations (2.1 to 2.3) represent the force equations of a generalised rigid body and 
describe the translational motion of its centre of gravity (eg) since the origin of the 
vehicle body axes is assumed to be co-located with the body e.g. 

Equations (2.3 to 2.6) represent the moment equations of a generalised rigid body and 
describe the rotational motion about the body axes through its e.g. 

Separating the derivative terms and after some algebraic manipulation, Equations (2.1 
to 2.3) may be written in a vector form as: 

d_ 

dt 

0 0     0    10-1 

0-10010 

1 0-1000 

uq ~X + f gx 

ur + Y + gy 

vp Z .s*. 
vr 

wp 

wq 

(2.7) 

where: X = —. 
m 

~     Y      ~    Z      ~     T 
Y=-;    Z=-;    T=- 

m m m 

Note that the states (u,v,w,ip,q,r) appear as "quadratic terms (form) 

Equations (2.4 to 2.6) can be written as: 

M dt -W 
P 

pq 
pr 

qr 
2 

L 

M 

N 
(2.8) 

where: matrices [Ä\ and [B] are given by: 
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M- 
xy zx 

w- 

-'* yy -^ 

-7„ -*» I, 

0 I» 
-I„ -/,„ 

*xy *yz       Vyy      1 zz /        I yz 

■7„ 
*xy     Vxx ~*yy) *yz ~   *y 

Here again, the states (p,q,r) appear in "quadratic form". 

Equation (2.8) may also be written as: 

d_ 

dt -k'wi 
p 

pq 

pr 

q2 

qr 
..2 

H'] 
L 

M 

N 

where the inverse [A] 
1 is given by (see Appendix A.3): 

1 J       A 
U+vJ (w.-'«2) U+yJ 
(/^ + yB) ^ + v„) fc./* - V) 

and A = (Tä/„/„ - J»/,.2 -7^2 -7ZZ7^2 -27^7j. 

(2.9) 

(2.9a) 

The selection of the particular order of the terms in the "quadratic-state vectors" 

[uq ur vp vr wp wqf oi Equation (2.7) and [p2pq pr q2qr r2\ of Equation (2.8) is 

discussed in Appendix A.l. 

Combining Equations (2.7) and (2.9), we obtain the full 6* order rigid body dynamics 
state equations as: 
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r MI xy 
d 

dt \i\ X ~2 

\c] 

w 
w 

M-'N 
+ 

W    ! w 

[o]   Ml 

(2.10) 

where [Cj; 

0 0     0    10-1 

0-1001     0 

1 0-1000 

x,=[u   v   w]r, 

x[2]=[p   q   rf, 

xf = [uq   ur   vp   vr   wp   wq] , 

X[2]=[P2   PR   pr   q2   qr   r2\, 

u[l]=[x + T    Y    z], 

u\]=[L   M   Nf, 

b ,r. 
Equation (2.10) may be written in a compact form as: 

-^-xW=[F]xW+[GliW+gW 

where 

[c]= 

Ic] 

['] 

[o] 

[o] 

M'N 
is the 6x12 (quadratic) state coefficient matrix. 

[0]' 

Ml 
: is the 6x6 coefficient matrix. 

(2.11) 
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x['] = [xl',] i *l"]r = [«    v   w ! p   q   r\: is the 6x1 linear-state vector. 

s'^fer1 \^]] = iw Mr ^ w WP wi\ p~ pq pr q2 qr r'^: is 

the 12x1 quadratic-state vector. 

Ml'i_Ll'l    L'/'f =[j? + f    Y    Z\ L   M    N] : is 6x1 a vector function of control 

inputs, forces and moments. 

and   g["=y   ö|r=[g,    gy    g|    0   0   Of: is the 6x1  gravity  (or disturbance) 

vector. 

Note that for a two-axis symmetrical airframe, lyz = Izx = Ixy = 0. Hence, in this case, the 
equation (2.9) can be reduced to: 

d_ 

dt 

0     0 

I      0 

L pq L 

0 pr + M 

0 qr. N 

(2.12) 

where /„ =   ^    ° , I„-     f 
yy 4 zz 

T   i    a   M    a   N 

As a result, the state equation for the system now becomes: 

d_ 

dt 

±i 

,M 

[C] [0] F] 
[H] /?. 

+ 
w    w ■«?'" 

+ 
~g 

[0]          M w 0 

(2.13) 

where: [H\ = 

0      0     1^ 

0     !„     0 

L    o    o 
> ^ - [pq Pr qrf'and 
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u[!
2
] = [l   M    NJ. 

Remarks: 

Equations (2.11) and (2.13) are complete non-linear description of the full 6-DOF 
autopilot model. In fact, these equations contain quadratic terms in states and will be 
classed as the quadratic dynamic model. This type of model is required when autopilot 
design is undertaken for a missile executing high g- or high angle of attack 
manoeuvres, and (u, v, w, p, q, r) are not small. 

A more detailed consideration of the algebraic structure of this type of dynamic 
systems is given in [4]. 

2.3 Linearised model for a two-axis symmetrical airframe 

It is assumed that X, Y, Z, L , M and N are functions of u, v, w, p, q, r, £,, rj and g. 
Using first order linearisation about the nominal values Uo, Vo, wo, po, CJO, ro, §o, rjo and go, 
and defining the aerodynamic derivatives as: 

dX    ~   _dX    ~   _8X    ~   _8X    ~   _8X    ~   _8X 

du dv dw dp dq dr 

ÖX    ~   _dX    ~   _dX_ 

dt'   "~ dn'   <~ d' 

du' dv ' dw'   p     dp     q     dq     r     dr 

*     d£     "     dr]     c     d£ 

^L z -— z =— z =— z =— z = — 
du'    v     dv dw      p     dp      q     dq dr 

4   d%    "   dr]    c   d<? 

du' dv' dw'    p     dp'   q     dq' dr 

*~dt'   "'dr,'   <~dC 
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~      dM    ~.     dM    ~      dM    ~      dM    7      dM   ü  _ dM 

du dv dw        p      dp dq or 

~      dM    ~      dM    ~      dM 
M^-dT'M«=-c^'M<=W 

~      dN   rr     dN   ~      dN   ~      dN   ~      dN   ~  _dN 

dN    ~r     dN   ~      diV 

The six equations of motion of an airframe (using equation (2.13)) can thus be written 
as: 

A ü = r0Av+v0Ar - q0Aw - w0Aq 

+ (xuAu + XvAv + XwAw + XpAp + XqAq + XrAr + X^ + X^AT] + XqAq) 

+ AT + Agx 

(2.14a) 

Av = p0Aw+w0Ap- rQAu - u0Ar 

+ (YUAU + YvAv + YwAw + YpAp + YqAq + YrAr + YtA£, + YAAv\ + YqAq)+ Agy 

(2.14b) 

Aw = q0Au + u0Aq - pQAv - v0Ap 

+ (zuAu + ZvAv + ZwAw + ZpAp + ZqAq + ZrAr + Z^AZ, + Z^AT) + Z^Aq)+ Ag2 

(2.14c) 

^P = 7„(q0Ar + r0Aq) 

+ (ZuAu + LvAv + LwAw + LpAp + LqAq + LrAr + L^AS, + L^Ar\ + LqAq) 
(2.14d) 

+ (MUAU + MvAv + MwAw + MpAp + MqAq + MrAr + M^ + MnAr\ + MqAq) 

(2.14e) 

Ar = 7z2{p0Aq + qQAp) 

+ (NUAU + NvAv + NwAw + NpAp + NqAq + NrAr + N^AZ, + NnAr\ + NqAq) 
(2.14f) 

10 
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Aii 

Av 

Aw 

Ap 

Aq 

Ar 

Xu (r0+XJ     (-q0+XJ 

(-r0+YJ Yv ^        (Po+YJ 

(q0+ZJ    (-p0+ZJ 

X>    X„    Xr 

Yc y 

Ms    Mn    M? 

N*     N„     N^ 

N.. 

'AS 
ATJ 

Ag 

Lw 

Nw 

'AT + Agx 

ASy 

Agz 

0 

0 

0 

(-v0+Zp) 

(7n,r0+Mp) 

(-™0+xq) 

(Uo+ZJ 

M„ 

(iBq0+Np) (iap0+Nj 

(v0+Xr)  ' Au 

(-u0+Yr) Av 

zr Aw 

(7„q0+Lr) Ap 

(IyyP0+Mr) Aq 

Nr Ar _ 

Note that Equation (2.15) is represented in a state-space form as: 

dt 
Ax = [F, ]AX + [G, ]AU, + Aw, (2.16) 

where Ax 

Au AT + Agx 

Av 
'At Agy 

Aw Ag 
, Auj = At] , Aw, = O z 

Ap 
A_ 

0 

Aq 0 

A. 0 

11 
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fa]« 

Xu (rQ+Xv) -q0+Xw 

-r0+Yu Yv ^ Po+Yw 

<lo+Zu ~Po+Zv        zw 

Lu Lv             Lw 

N.. N„ AL 

-v0+Zp 

VO
+M

P 

■wo+xq 

u0 + Zq 

M„ 

IB1o+Np   InPo+X, 

v0+Xr 

-u0+Yr 

IyyP0+Mr 

N„ 

fa] = 

x,  x„  xc 

M,   M„   Mq 

N,   Nn   N< 

T=T0+AT, gx = gx0 +Agx, gy =gy0+Agy, gz =gl0+Agz. 

2.4 Incorporation of accelerometer and gyro measurement model 

Generally, not all state variables in the state equation are accessible or measurable. The 
common measurement variables, in most missiles or airplanes, are the angular rate 
components (roll rate, p, pitch rate, q, and yaw rate, r) and the acceleration components 

(flx, fly, a2). 

Assuming that the gyros provide ideal readings of the angular rates, we get: 

Pm=P 

rm=r m 

(2.17a) 

(2.17b) 

.(2.17c) 

where pm qm and rm are the measured body rates. Normally, errors due to drifts and 
noise are included. These appear as additional additive terms in equations (2.17a) to 
(2.17c). 
In contrast to the readings of the angular rate components, the readmgs of the 
acceleration components are dependent on the location of the accelerometers, w.r.t. the 

e.g. of the body. 

12 
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The acceleration components measured at point O (where O is at a distance of dx, dy 

and dz from the central point of gravity, e.g., along x-, y- and z-axis, respectively), may 
be written as: 
ax = ü + qw-rv-dx(q2 + r2) +dy(pq-r) + d2(pr + q) (2.18a) 

ay = v + ru -pw + dx(pq + f)-dy(p
2 + r2) + d2(qr-p) (2.18b) 

a2=w + pv-qu + dx(pr-q) + dy(qr + p)-d:(p
2 +q2) (2.18c) 

If the accelerometers are mounted along the x-axis (ie. dxj = dz = 0) which is usually the 
case, then equations (2.18a-c) reduce to: 

ax=ü + qw-rv-dx(q2+r2) = X + T + gx-dx(q2+r2) 

ay = v + ru-pw + dx(pq + r) = Y + gy+dx(pq + f) 

a2 = w + pv-qu + dx(pr-q) = Z +g2 +dx(pr-q) 

(2.19a) 

(2.19b) 

(2.19c) 

Note that the right hand side of Equations (2.19a) to (2.19c) come directly from 
Equations (2.1) to (2.3). 

Linearising Equations (2.19a) to (2.19c), and using the relationship (2.15) gives us: 

Ay(t) = [H, ]Ax(t) + [J, ]Au(t) + Av(t) (2.20) 

where:    Ay(t) = [Ap   Aq   Ar   Aax   Aay   Aaz f: is the output vector, 

K 

~0   0   0 X 
u 

Y  +N d 
u       u   ' 

Z   -M d 
u         u   " 

0   0   0 X 
V 

Y +N d                                   Z   -M dx 
V           V    '                                                        V            V 

0   0   0 X 
w 

Y   +N   d 
w       w 

Z    -M   d 
w        w 

1   0   0 X 
p 

Y   +(q   +1   q   +N   )d, 
p        0      zz  0       p 

Z    +(r -J    r -M   )d 
P       0      yy 0        p 

0   1   0 X   -2q d 
q      ^0 

Y  +(p   +7   p  +N  X 
q         0      zz   0       q 

Z   -M d 
q     q ' 

0   0   1 X   -2r d 
r       o 

Y +N d 
r       r   ' 

Z   +(p   -I    p   -M  )d 
r        0      yy   0        r 

IS 

the state output matrix, 

13 
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w= 

0 

0 

0 

X. 

0 

0 

0 

X 

0 

0 

0 

X 

Yi+N(dx     l+Ndx     Yf+Nd 

_Zi-M(dx    Zn-Mndx    Zg-Mdx\ 

measurement matrix, 

is the matrix related to inputs in the 

Au/t) = [A^   ATJ   Aq\: is the input vector, and 

Av,(t) = 0   0   0   — + Agx    Agy   Agz 
m 

is the disturbance vector. 

2.5 Linearised model of the airframe including fin servos 

Assuming that the servo dynamics for the aileron, elevator and rudder can be 
described adequately by a second order lag as: 

#>4 

fc*« 
2"^ + 1 

<*>* ** 
(2.21a) 

Ar\ k sx\ 

^L+
2^s./ 

(2.21b) 
In   +1 

<öJn        0),n 

AC, = *,c 

AC,d       s2    ,2^^|1
/ 

(as
2      <osl. 

(2.21c) 

where 4&, 4?7d and A& are the demand aileron, elevator and rudder deflection, 
respectively. 

ksfy ksri, and k$i are the servo gain for the aileron, elevator and rudder, 
respectively. 

14 
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Hsfy fisn, and fist; are the damping factor for the aileron, elevator and rudder, 
respectively. 

a>sp cosn, and cos^ are the natural frequency for the aileron, elevator and rudder, 
respectively. 

Equations (2.21a) to (2.21c) can be converted into differential equations as follows: 

A% = -co^AE, - 2jusiasiAi + k^ajA^, 

AT) - -COJAT] - 2jUsna)siiArj + ksria>sij~Arjd, 

Ag = -<ajA£ - 2JUS((DS(A£ + ks(ajA^d. 

(2.22a) 

(2.22b) 

(2.22c) 

Hence, the state-space model for the autopilot of a missile including the servos and 
air frame is: 

Ax2 (t) = [A2 ]AX2 (t) + [B2 ]AU2 (t) + Aw2 (t), (2.23) 
where 

Ax2(t) = 
Note that the al 

Au   Av   Aw  Ap   Aq   Ar   AE,   Ar\   AC,   At,   Af\   AC\ , 
eron, elevator and rudder deflection now become state variables. 

Hence, the dimension of the state vector is increased to [12 x 1]. 

Au2(t) = [A^d   Ax\d   AC,d]T, 

The inputs are now the demanded aileron, elevator and rudder deflection. 

AT 
Aw2(t)- 

m 
+ Agx   AgY   Ag2   0  0  0  0   0   0  0  0   0 
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M- 

:      o 
0 

0 

0 

0 

0 

fc] fo] 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0   0 0 0   0 0 0 0 0 1 0 0 

0   0 0 0   0 0 0 0 0 0 1 0 

0   0 0 0   0 0 0 0 0 0 0 1 

0   0 0 0   0 0 -°>si2 0 0 -2ufco, 0 0 

0   0 0 0   0 o; 0 -*>./ 0 0 -2/Jsno)sn 0 

0   0 0 0   0 0 \ 0 0 -a« 0 0 -2ßsicosi 

(Here matrices Fi and Gi are the same as in Equation (2.16)). 

[*,]- 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 
k*<°« 0 

0 K°>« 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

k rco / 

The output vector (or the measurement equation) is given by: 

Ay2 (t) = H2Ax2 (t) + Av2 (t), 

where    Ay2(t) = [Apm    Aqm    Arm    AaXm    Aaym    AazJ, 

(2.24) 
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(Note that gyro drift and noise and the accelerometer bias may be added to the right 
hand side of Equation (2.24)). 

[*,]= H] M 

:    0 0 0 

:    0 0 0 

; o 0 0 

:    0 0 0 

':    0 0 0 

:    0 0 0_ 

(Here matrices Hi and ]\ are the same as those in Equation (2.20)). 

Av2(t) = 
A T 

000000000   — + Agx   Agy    Ag2 
m 

Figure 2.3 shows the block diagram of an open-loop autopilot which contains the fin 
servos and airframe. 

Demand 
input    i 

Am     ! 

"in deflections lOutpu 

Fin servos Airframe ■'■■ ■ —-1^ 

'     A\h 

Demand] 

D> input     i 
B2 -OS. Axi 

H2 

1 Output 
L ■. ■ — L.f—~. 

i                  IE-* 

Au2      ' 
-j 1-^-— 

i Ayi 
1 
1 

1 
1 A2 
1 

Figure 2.3 A block diagram of an open-loop autopilot system. 
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2.6 Lateral Auto-pilot design 

For the case of small perturbation, we may assume that (u0, v0, w0/ po, qo, r0) are 
identically zero. In this case, the airframe model decouples into two lateral dynamics 
(pitch and yaw) and one roll dynamics. We will consider the lateral autopilot dynamics 
to validate the model derived in this report. 

Figure 2.4 shows the block diagram of a closed-loop autopilot system. 

References ^n 
7in deflections 

Fin servos Airframe 

Gyros/ 

Outpu 

4/2 

References^., [ 

Figure 2.4 A block diagram of a closed-loop auto-pilot system. 

Ignoring the instrument (gyro, accelerometer) dynamics, the measured roll, pitch and 
yaw angular rates (the gyro outputs) can be expressed as inputs to the gyros multiplied 
the gyro gains, Kgr, K& and K&, respectively. Similarly, the measured longitudinal 
acceleration, ax, and lateral accelerations, ay and az, are inputs to the accelerometers 
multiplied accelerometer gains, Kax, Kay and Kaz, respectively. The accelerometer gains 
affect the steady state response and may be set to 1 for transient tests. Rescaling 
accelerometer gains, after selecting gyro gains, allows a unity gain autopilot to be 
designed. 

18 



DSTO-TN-0449 

The reference signals, generally used for testing the transient time response of the 
autopilot, are the desired accelerations in yaw direction, ayct, the pitch direction, azd, and 
roll rate, pa. The reference roll rate is kept at zero to assess the missile dynamics in roll 
against spurious disturbances. Hence, the reference vector, Ar, can be written as: 

Ar = [Apd    Aazd    Aayd\, 

For a case of lateral directional control, the control input signal for the fin servos can be 
derived as follows: 

Agd =Aayd -KayAay -KgrAr 

(2.25a) 

(2.25b) 

For sake of simplicity, pt is set to zero since this case only considers the lateral 
directional control. As a result, the control input vector can be written as: 

Au2 (t) = Ar(t) - KAy2 (t), (2.26) 

where K is the feedback matrix as follows: 

K = 

0     0 0 

OK 0 
SI 

0     0 K 

0 0 0 ' 

0 0 K„ 

0 K 
ay 

0 

3. Verification of the Developed Model 

In order to verify the developed model, the state-space model (Equations (2.23, 2.24 
and 2.26)) was converted into transfer-function form using Matlab symbolic toolbox 
(see Appendix B and Appendix C.l) for comparison with the results already published 

[4]- 

Consider the following derivatives and variables to be non-zero: 

LuJpJiMq,MwMn,Nr,Nv,Ni,Xu,Xp,X?XX.Yi,Zw,Z71,Zq,u0,dx, 

we obtain the transfer-function between the roll rate and the aileron deflection as: 

p(s) _ V + (Lu +XS- XUL^ ) 

4(s) " s2 - (L  + Xu )s + (XuLp - Xl ) ' 
(2.27) 
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The transfer-function between the pitch rate and the elevator deflection as: 

q(s) = M,s-M,Zw+MwZ^ ^ (2 2g) 

ri(s)    s2 -(Mq + ZJs + MqZw -MwZq -Mwu0 ' 

The transfer-function between the yaw rate and the rudder deflection as: 

r(s) = N€s + NJc-NJv ^ (Z29) 

C(s)    s2 -(Nr+YJs + Nvu0 +NX-ÜX ' 

The transfer-function between longitudinal acceleration and the aileron deflection as: 

ax(s) = (XuXe +X,X(L()s-XuX4L, +XpX,Lu ^ ^ 

S(s) s2-(Xu+Lp)s + XuLp-XpLu ' 

The transfer-function between lateral acceleration ay and the rudder deflection as: 

ay(s) (Yi+N(dx)s2+(NJidx-NYvdx + NYr-N^)s + NJiu0-NYvu0 

~OTj= s2 -(Nr +YJs + Nvu0 +NrYv-&X ' 

(2.31) 

And the transfer-function between lateral acceleration az and the elevator deflection as: 

az(s) _ (Z„ + Mt}dx)s2 + (MwZridX-Mr]Zwdx + Mr)Zq -MqZJs+^MvZwu0 -MwZ,u0 

l](s) " s2-(Mg+ZJs-Mwu0-MwZq+MqZw 

(2.32) 

Furthermore, if it is assumed that Xu = X( = f = Z = 0, the transfer-function between 

the roll rate and the aileron deflection may be simplified to: 

P(s) =    Ls (2.33) 

The transfer-function between the yaw rate and the rudder deflection as: 
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N<S + NVY;-NJV r(s)  

£(s)    s
2-(Nr+YJs + NvuB+NrYv 

(2.34) 

And the transfer-function between the lateral acceleration in yaw axis, ay/ and the 
rudder deflection measured at the e.g. can be rewritten as: 

ay(s) _ Ycs'-NrYcs + NvY(ug-N(Yvu0 

£(s) "   s2-(Nr+YJs + Nvu0+NrYv 

(2.35) 

Equations (2.33) to (2.35) are identical to those of the transfer-functions presented in 
[P.GarneU and D.J.East [Equations (4.6-6), (4.6-8) and (4.6-7)]. 

The state-space model was used for simulation of open-loop and closed-loop responses 
for a typical missile, using the same values as those used in [4] (see Appendices C and 
D). 

Figures 2.5 and 2.6 show the lateral accelerations of the missile due to a step input to 
the rudder and elevator, respectively, for an open loop simulation. As can be seen from 
these figures, there are large steady state errors. However, the steady state errors can 
be reduced with a feedback loop as can been seen in Figures 2.7 and 2.8. These 
simulation results are similar to the results presented in [4]. 

700- 

600 - 

E 500 

& 300 

Figure 2.5 Open loop simulation: Lateral autopilot response to a step demand acceleration 
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Figure 2.6 Open loop simulation: Lateral autopilot response to a step demand acceleration. 

Tims [sj 

Figure 2.7 Closed loop simulation: Lateral autopilot response to a step demand acceleration. 

22 



DSTO-TN-0449 

60 

50 

KT40 
1 

1 30 

5 20 

10 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
Time [s] 

Figure 2.8 Closed loop simulation: Lateral autopilot response to a step demand acceleration. 

4. Conclusions 

Both the non-linear and linearised autopilot models have been derived in this report. 
The state-space model of a missile autopilot was validated by comparing the model 
with the other published results, and through both open and closed-loop systems 
simulation. The non-linear dynamics model presented as structural quadratic algebraic 
system is novel and will be used for developed non-linear control techniques suitable 
for missile systems high g- manoeuvres and operating of a range of aerodynamics 
conditions. The models developed in this report are useful for further research on 
precision optimum guidance and control. It is hoped that the higher order model with 
motion and inertial coupling will provide more accurate representation of missile 
autopilot dynamics and should be used for adaptive and integrated guidance and 
control of agile missiles. 
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Appendix A: State Equation 

A.l.    Quadratic State Vector 

Since the state equations (Equations (2.7) and (2.9)) include the quadratic terms, which 
are comprised of all the combinations of state variables, we define two separate state 
vectors, one linear state vector, and one quadratic state vector. 

Let define the linear-state vector as: 

x,  -[u   v   w] , 

x[2]=[p   q   rf, 

x[,]=[^\x^]=[u   V w p  q '1. 

(AH) 

(A1.2) 

(A1.3) 

We shall consider the quadratic-state vector x Corresponding to x[ . The quadratic- 
state vector will be defined as a vector whose elements are components of a 
homogeneous quadratic polynomial of these states taken in the same lexicographic 
order. That is, the quadratic-state vector may be written as: 

x®=[u 2uv uw up uq ur\v2vw vp vq vr\ w2wp wq wr\p2pq pr\q qr kr (A1.4) 

There are 21 terms in this quadratic state vector. Note that the dimension of the 

quadratic state vector is —  when the dimension of the linear-state vector is n. 

This type of representation has been used by other authors [3, 4] when describing high 
order state combinations of dynamical systems. In the rigid body dynamic equations 
(2.7) and (2.9), coefficients of a number of these terms are zero. For the sake of 
simplicity (to avoid setting large number elements in the matrices to zero), only those 
quadratic states that are associated with non-zero terms are retained. That is, the 

quadratic-state vector xv Jand its partitioned form may be written as: 
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X1    = \x[2]]   A   [uq   ur   vp   vr    wp    wq   <j)2    pq    pr   q2    qr    r2\ (Al. 

5) 

A.2.    Linearisation of the Quadratic Vector 

Given the quadratic-state vector (A1.4), the first-order locaUy linearised vector is given 

by: 

Ax [2) =b[/] tef 

{u0Aq + q0Au) ~1o 0 0 0 u0 

(u0Ar + r0Au) ro 0 0 0 0 

(v0Ap + p0Av) 0 Po 0 vo 0 

(v0Ar + r0Av) 0 ro 0 0 0 

(w0Ap + p0Aw) 0 0 Po w0 0 

(w0Aq + q0Aw) 0 0 <lo 0 w0 

2p0Ap 0 0 0 2p0 
0 

{p0Aq + q0Ap) 0 0 0 <lo Po 
{p0Ar + r0Ap) 0 0 0 ro 0 

2q0Aq 0 0 0 0 2qc 

(q0Ar + r0Aq) 0 0 0 0 r0 

2q0Aq 0 0 0 0 0 

Note that (u0, v0, w0, po, qo, r0) are local operating states. 

We shall write this relationship in a compact form as: 

£2] = W;]    AxM]=[X0]AxM 

The matrix [X0 ] is defined via the equation (A2.1). 

A.3.    Calculation of Inverse Matrix 

Given a matrix [G] defined as: 

[G] = 

A -F -E~ 

-F B -D 

-E -D C 

0 ' 

u0 

0 

vo Au 

0 Av 

0 Aw 

0 Ap 

0 Aq 

Po Ar 

0 

Qo 

2rQ_ 
(A2 

(A2.2) 
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Its inverse [G\    is given by: 

[^4 
(BC-D

2
) (CF+DE) (DF + BE) 

(CF + DE) (AC-E
2
) (AD + EF) 

(DF + BE) (AD + EF)  (AB-F
2
) 

where A = [ABC - AD2 - BE2 - CF2 - 2DEF). 
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Appendix B:  From State-Space Form into Transfer- 
function 

Consider a system given as: 

x(t) = Ax(t) + Bu(t), (B1) 
and y(t) = Cx(t) + Du(t). (B-2) 

Laplace transformation of Equations (B.l) and (B.2) yields: 

sX(s) = AX(s) + BU(s), (B-3) 
and Y(s) = CX(s) + DU(s). (B-4) 

Equation (B.3) can be rearranged as: 

X(s) = (sI-A)-'BU(s). (B-5) 

Substituting (B.5) into (B.4), we obtain: 

Y(s) = [C(sl - A)'1 B + DJU(s) = H(s)U(s). (B.6) 

Hence, the transfer-function of the system is: 

H(s) = ^ = C(sI-Ar'B + D. (B7) 
U(s) 
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Appendix C: Matlab Codes 

C.l.    Converting the state-space model into the transfer- functions 

The following m.file converts the state-space model into transfer-functions 

clear all; 

% Define  the deravatives and parameters 
syms Xu Xp Xxi f; 
syms Yv Yr Yxi Yzeta f; 
syms Zw Zq Zeta f; 
syms Lu Lp Lxi f; 
syms Mw Mq Meta f; 
syms Nv Nr Nxi Neta Nzeta f; 
syms u v w p q r f; 
syms xi eta zeta xi_dot eta_dot zeta_dot f; 
syms xi_d eta_d zeta_d f; 
syms ks ws mus f; 
syms ax ay az f; 
syms dx uO f; 
syms s; 

% Define  the elements of the matrix A 
all=Xu; al2=0; al3=0; al4=Xp; al5=0; al6=0; 
a21=0; a22=Yv; a23=0; a24=0; a25=0; a26=-uO+Yr; 
a31=0; a32=0; a33=Zw; a34=0; a35=uO+Zq; a36=0; 
a41=Lu; a42=0; a43=0; a44=Lp; a45=0; a46=0, 
a51=0; a52=0; a53=Mw; a54=0; a55=Mq; a56=0, 
a61=0; a62=Nv; a63=0; a64=0; a65=0; a66=Nr, 

% Define  the elements of the matrix B 
bll=Xxi;   bl2=0;   bl3=0; 
b21=Yxi;   b22=0;   b23=Yzeta; 
b31=0;   b32=Zeta;   b33=0; 
b41=Lxi;   b42=0;   b43=0; 
b51=0;   b52=Meta;   b53=0; 
b61=Nxi;   b62=Neta;   b63=Nzeta; 

% Define  the  elements  of  the matrix C 
cll=0;   Cl2=0;   Cl3=0;   cl4=l;   Cl5=0;   cl6=0, 
c21=0;   C22=0;   c23=0;   c24=0;   c25=l;   c26=0; 

C31=0;   c32=0;   C33=0;   c34=0;   c35=0;   c36=l, 
c41=Xu;   C42=0;   C43=0;   c44=Xp;   c45=0;   c46=0; 
C51=0;   c52=Yv+Nv*dx;   c53=0;   c54=0;   c55=0;   c56=Yr+Nr*dx; 
c61=0;   c62=0;   c63=Zw+Mw*dx;   c64=0;   c65=Zq-Mq*dx;   c66=Yr; 
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% Define  the elements of the matrix D 
dll=0;   dl2=0;   dl3=0; 
d21=0;   d22=0;   d23=0; 
d31=0;   d32=0;   d33=0; 
d41=Xxi;   d42=0;   d43=0; 
d51=Yxi+Nxi*dx;   d52=0;   d53=Yzeta+Nzeta*dx; 
d61=0;   d62=Zeta-Meta*dx;   d63=0; 

A=[all,al2/al3,al4,al5,al6j 
a21, a22,a23,a24,a25,a26; 
a31,a32,a33,a34,a35,a36; 
a41,a42,a43,a44,a45,a46 ; 
a51,a52,a53,a54,a55,a56j 
a61,a62,a63,a64,a65,a66] ; 

B=[bll,bl2,bl3; 
b21,b22,b23; 
b31,b32,b33; 
b41,b42,b43; 
b51,b52,b53; 
b61,b62,b63]; 

C=[cll,cl2,cl3#cl4,cl5,cl6j 
C21,c22,c23,c24,c25,c26j 
031,032,033,034,035,036; 
C41,C42,c43,C44,C45,C46 , 
C51,c52,c53,c54,c55,c56, 
C61,c62,c63,c64,c65,c66] ; 

D=[dll,dl2,dl3; 
d21,d22,d23; 
d31,d32,d33; 
d41,d42,d43; 
d51,d52,d53; 
d61,d62,d63]; 

U=[xi;eta;zeta]; 

S=[s,0,0,0,0,0; 
0,3,0,0,0,0; 
0,0,3,0,0,0, 
0,0,0,3,0,0; 
0,0,0,0,3,0; 
0, 0,0,0,0,S] ; 

%  The  transfer-function of the system is: 

%  H(s) = 4r = C(SI-A)"lB + D 
u(s) 
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% Calculate   (SI-A) ' 
SIAinv= inv(S-A) ; 

% Calculate   the  transfer-function 
H=C*SIAinv*B +D; 

% Display the  transfer-function between  the lateral 
% acceleration,   ay,   and  the rudder deflection, £. 
H(5,3) 

C.l.    Open-loop and closed-loop simulation 

%This main program simulates  the response of the missile 
%for a step input  at  the  elevator and rudder. 

clear all; 

% Call   the M-file called values.m 
values; 

% Call   the M-file called init.m 
init; 

% Call   the M-file called ssmodel.m 
ssmodel; 
for t=0:ts:5 

REF=[theta_d;az_d;ay_d]; 
U=REF - K*Y; 
X_dot_prev=X_dot; 
X_dot=A*X+B*U; 
X= X+(X_dot_prev + X_dot)/2*ts; 
Y=C*X; 
accy=[accy,Y(5,1) ] ; 
accz=[accz,Y(6,1) ] ; 
time = [time,t]; 
ay_d=50; 
az_d= 50; 
theta_d = 0; 

end; 
plot(time,accl,time,acc3) ; 
xlabeK 'Time [s] ■ ) ; 
ylabel('Lateral acceleration, a_y [m/s*2]'); 
title ('Closed loop response for a step input of 50 ra/sA2 at the 
rudder'); 
figure; 
plot(time,acc2,time,acc3); 
xlabel('Time [s]'); 
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ylabel('Lateral acceleration, a_z [m/sA2]'); 
title ('Closed loop response for a step input of 50 m/s 2 at the 
elevator'); 

***************** Values.m  ******************************* 
% Set values of the parameters 
Xu=0.0; Xp=0.0; Xxi=0.0; Xeta=0.0; Xzeta=0.0; 

Yv=-3; Yp=0; Yr=0; Yxi=0.0; Yeta=0; Yzeta=180; 

Lu=0.0; Lp=0.0; Lxi=0.0; 

Mu=0.0; Mv=0.0; Mw=-1.0; Mq=-3.0; Meta=-500.0; Mzeta=0.0; 

Nv= 1; Np=0.0; Nw=0.0; Nr=-3; Nxi=0.0; Neta=0.0; 
Nzeta=-500.0; 

Zw=-3; Zq=Yr; Zeta =-Yzeta; 

ks=0.0068; ksz=ks 
mus=0.7; mus z=mus; 
ws=180; 
dx =0.5; 
u0=500; 

% For  the case of open-loop simulation,   Kgr=Kay=Kgq=Kaz=0 
Kgr= 30.75; Kay - 0.825; 
Kgq=-Kgr; Kaz = Kay; 

%***********************  init.m  ************************* 
%Initialise  the parameters 
u=0;   v=0;   w=0;   p=0;   q=0;   r=0; 
xi=0;   eta=0;   zeta=0; 
xi_dot=0;   eta_dot=0;   zeta_dot=0; 
X=[u;V;w;p;q;r;xi;eta;zeta;xi_dot;eta_dot;zeta_dot]; 

X_dot=X; 
Y=t0;0;0;0;0;0]; 
i =  l; 
ay_d=0; 
az_d=0; 
theta_d=0; 
xi_d(i)=0; 
eta_d(i)=0; 
zeta_d(i)=0; 

ts=0.001; 
accy=01 
accz=0 
time=0; 
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%  ********************* ssmod&l.m  *********************** 

% Define  the state-space model 
al_l=Xu;al_2=0;al_3=0;al_4=Xp;al_5=0;al_6=0; 
al_7=Xxi;al_8=0;al_9=0;al_10=0;al_ll=0;al_12=0; 

a2_l=0;a2_2=Yv;a2_3=0;a2_4=0;a2_5=0;a2_6=-u0+Yr; 
a2_7=Yxi;a2_8=0;a2_9=Yzeta;a2_10=0;a2_ll=0;a2_12=0 

a3_l=0;a3_2=0;a3_3=Zw;a3_4=0;a3_5=uO+Zq;a3_6=0; 
a3_7=0;a3_8=Zeta;a3_9=0;a3_10=0;a3_ll=0;a3_12=0; 

a4_l=Lu;a4_2=0;a4_3=0;a4_4=Lp;a4_5=0;a4_6=0; 
a4_7=Lxi;a4_8=0;a4_9=0;a4_10=0;a4_ll=0;a4_12=0; 

a5_l=0;a5_2=0;a5_3=Mw;a5_4=0;a5_5=Mq;a5_6=0; 
a5_7=0;a5_8=Meta;a5_9=0;a5_10=0;a5_ll=0;a5_12=0; 

a6_l = 0;a6_2=Nv,-a6_3 = 0;a6_4 = 0;a6_5 = 0;a6_6=Nr; 
a6_7=Nxi;a6_8=Neta;a6_9=Nzeta;a6_10=0;a6_ll=0;a6_12=0; 

a7_l=0;a7_2=0;a7_3=0;a7_4=0;a7_5=0;a7_6=0; 
a7_7=0;a7_8=0;a7_9=0;a7_10=l;a7_ll=0;a7_12=0; 

a8_l=0;a8_2=0;a8_3=0;a8_4=0;a8_5=0;a8_6=0; 
a8_7=0;a8_8=0;a8_9=0;a8_10=0;a8_ll=l;a8_12=0; 

a9_l=0;a9_2=0;a9_3=0;a9_4=0;a9_5=0;a9_6=0; 
a9_7=0;a9_8=0;a9_9=0;a9_10=0;a9_ll=0;a9_12=l; 

alO_l=0;alO_2=0;alO_3=0;alO_4=0;alO_5=0;alO_6=0; 
alO_7=-ws^2;alO_8=0;alO_9=0;alO_10=-2*mus*ws;alO_ll=0; 
al0_12=0; 

all_l=0;all_2=0;all_3=0;all_4=0;all_5=0;all_6=0; 
all_7=0;all_8=-wsA2;all_9=0;all_10=0;all_ll=-2*musz*ws; 
all_12=0; 

al2_l=0;al2_2=0;al2_3=0;al2_4=0;al2_5=0;al2_6=0; 
al2_7=0;al2_8=0;al2_9=-ws^2;al2_10=0;al2_ll=0; 
al2   12=-2*mus*ws; 

bl_l=0;bl_2=0;bl_3=0 
b2_l=0;b2_2=0;b2_3=0 
b3_l=0;b3_2=0;b3_3=0 
b4_l=0;b4_2=0;b4_3=0 
b5_l=0;b5_2=0;b5_3=0 
b6_l=0;b6_2=0;b6_3=0 
b7_l=0;b7_2=0;b7_3=0 
b8_l=0;b8_2=0;b8_3=0 
b9   l=0;b9   2=0;b9_3=0 
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blO_l=-ks*wsA2;blO_2=0;blO_3=0; 
bll_l=0;bll_2=-ksz*wsA2;bll_3=0; 
bl2_l=0;bl2_2=0;bl2_3=-ks*ws"2; 

cl_l=0;cl_2=0;cl_3=0;cl_4=l;cl_5=0;cl_6=0; 
cl_7=0;cl_8=0;cl_9=0;cl_10=0;cl_ll=0;cl_12=0; 

c2_l=0;C2_2=0;c2_3=0;c2_4=0;c2_5=l;c2_6=0; 
c2_7=0;C2_8=0;c2_9=0;c2_10=0;c2_ll=0;c2_12=0; 

C3_l=0;C3_2=0;c3_3=0;c3_4=0;c3_5=0;c3_6=l; 
c3_7=0;C3_8=0;c3_9=0;c3_10=0;c3_ll=0;c3_12=0; 

c4_l=Xu;c4_2=0;c4_3=0;c4_4=Xp;c4_5=0;c4_6=0; 
c4_7=Xxi;c4_8=Xeta;c4_9=Xzeta;c4_10=0;c4_ll=0;c4_12=0; 

c5_l=0;c5_2=Yv+Nv*dx;c5_3=0;c5_4=0;c5_5=0;c5_6=Yr+Nr*dx; 
c5   7=Yxi+Nxi*dx;c5_8=Yeta+Neta*dx;c5_9=Yzeta+Nzeta*dx; 

c5~10=0;c5_ll=0;c5_12=0; 

c6_l=0;c6_2=0;c6_3=Zw-Mw*dx;c6_4=0;c6_5=Zq-Mq*dx;c6_6=0; 
c6_7=0;c6_8=Zeta-Meta*dx;c6_9=0;c6_10=0;c6_ll=0;c6_12=0; 

A=[al_l,al_2,al_3,al 
a2_l,a2_2,a2_3,a2 
a3_l,a3_2,a3_3,a3 
a4_l,a4_2,a4_3,a4 
a5_l,a5_2,a5_3,a5. 
a6_l,a6_2,a6_3,a6 
a7_l,a7_2,a7_3,a7 
a8_l,a8_2,a8_3,a8. 

a9_l,a9_2,a9_3,a9_4,a9_ 
al0_l,al0_2,al0_ 

alO_12;  all_l,all_2,all. 
all_12; al2_l,al2_2,al2_ 
al2_12]; 

_4, al_5, al_6, al_7, al_8, al_ 
_4 , a2_5, a2_6, a2_7, a2_8, a2_ 
_4, a3_5, a3_6, a3_7, a3_8, a3_ 
_4, a4_5, a4_6, a4_7, a4_8, a4_ 
4, a5_5, a5_6, a5_7, a5_8, a5_ 

~4, a6_5, a6_6, a6_7 , a6_8, a6_ 
_4, a7_5, a7_6, a7_7, a7_8, a7_ 
4, a8_5, a8_6, a8_7, a8_8, a8_ 

5,a9_6/a9_7/a9_8,a9_9,a9_10,a9 
_3,al0_4^10_5/al0_6/al0_7,al0. 

3,al2_4/al2_5,al2_6,al2_7/al2_ 

9,al_10,al_ll,al_12 
~9,a2_10,a2_ll,a2_12 
~_9, a3_10, a3_ll, a3_12 
_9, a4_10, a4_ll, a4_12 
]9,a5_10,a5_ll,a5_12 
"9, a6_10, a6_ll, a6_12 
"9, a7_10, a7_ll, a7_12 
"9, a8_10, a8_ll, a8_12 
lll,a9_12; 
_8,al0_9,al0_10,al0_ll, 
_8,a.n-9,anj~0,äll._ll, 
8/al2_9,al2_10/al2_ll/ 

B=[bl_l,bl_2,bl_3; 
b2_l,b2_2,b2_3j 
b3_l,b3_2,b3_3j 
b4_l,b4_2,b4_3, 
b5_l,b5_2,b5_3 j 
b6_l,b6_2,b6_3; 
b7_l,b7_2,b7_3; 
b8_l,b8_2,b8_3j 
b9_l,b9_2,b9_3; 
blO_l,bl0_2,bl0_3; 
bll_l,bll_2,bll_3; 
bl2   I,bl2_2,bl2_3]; 
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C=[cl_l,Cl_2,Cl_3,Cl_4,cl_5 ,cl_6 ,Cl_7,Cl_8,cl_9,Cl_10 , Cl_ll,Cl_12 
C2   l,c2   2,c2   3,c2   4,c2   5,c2   6,c2   7,c2   8,c2   9,c2   10,c2   11,c2   12 
C3_l,c3_2,c3_3,c3_4 
c4_l,C4_2,C4_3,C4_4 
C5_l, c5_2 , c5_3 , C5_4 
c6 1,c6 2,c6 3,c6 4 

,c3_5,c3_6,c3_7,c3_8,c3_9, c3_10 , c3_ll,c3_12 
, C4_5,C4_6,c4_7,c4_8,c4_9,c4_10,C4_ll,c4_12 
,C5_5,c5_6,C5_7,c5_8,c5_9,c5_10, c5_ll,c5_12 
.c6 5,c6 6,c6 7,c6 8,c6 9,c6 10,c6 11,c6 12] 

[0,0,0; 
0,0,0; 
0,0,0; 
0,0,0; 
0,0,0; 
0,0,0] ; 

K = [0,0,0,0,0,0; 
0,Kgq,0,0,0,Kaz; 
0,0,Kgr,0,Kay,0] ; 
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Appendix D: Values of the Non-Zero Derivatives and 
Parameters used in the simulation 

Yv = -3, Yc = 180, Nv =1,N,= -3, N^ = -500, 

Zw = -3, Z„ = -180, Mw = -1, Mq = -3..M, = -500, 

ksi = 0.0068, ksn = 0.0068, ksi = 0.0068, 

Ms? =0.7, Ms, =0.7, Mt( =0.7, 

asi = 180, o)sri = 180, asi = 180, 

u0=500,dx = 0.5 

Feedback gains: 

Kgr= 30.75; Kay = 0.825; 
Kgq=-Kgr; Kaz = Kay; 
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