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Abstract 

Included is dual-band infrared image data collected as part of the Multi-domain Smart Sensor 
effort at the U. S. Army Research Laboratory. The ultimate goal of this effort is to produce large 
format, staring focal plane arrays that are able to see the battlefield in both the 3 to 5 urn 
(midwave infrared) and 8 to 12 urn (longwave infrared) atmospheric transmission windows. The 
image data were collected using separate boresighted cameras with equal pixel formats and fields 
of view during field tests that were conducted during the summer of 1998. This work shows a 
number of scenarios under which the imagery from one band is superior to that from the other 
band and various image fusion techniques that help to enhance the visibility of targets. 
Discussed is a technique for using computer hardware to do the image fusion in real time as well 
as results of the application of aided target recognition algorithms to the data. 
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Introduction 

Recently, the U. S. Army Research Laboratory (ARL), in federation with several industry 
and academic partners, has developed the concept of the Multi-Domain Smart Sensor 
(MDSS) [i]. This system, shown schematically in figure 1, is envisioned as a single unit 
combining both passive and active sensor components with advanced signal processing 
and aided target recognition (ATR) tools. Such a sensor would enhance situational 
awareness on the battlefield in all ambient conditions by locating and classifying threats 
with increased effectiveness over existing systems. 
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Figure 1. The Multi-Domain Smart Sensor combines several sensor types with advanced signal processing 
and aided target recognition for faster and more accurate battlefield threat classification. 

The ultimate goal of the MDSS program is to demonstrate simultaneous active and 
passive infrared (IR) imaging over a wide spectral bandwidth. Another goal is to cue an 
active laser radar (LADAR) sensor using passive multi-color IR sensors to provide a 
dramatic improvement in battlefield situational awareness by rapid detection, location, 
and recognition of enemy targets (day or night, obscured and/or camouflaged) in highly 
cluttered environments. In the ultimate demonstrations, increased target detection range 
and reduced target classification time will be demonstrated using this advanced sensor 
hardware coupled with software developments (such as real-time sensor fusion hardware) 
from the signal processing and ATR technical factors. 

The signatures of targets and backgrounds can vary significantly over the entire range of 
the IR spectrum. A sensor that can image simultaneously in different bands of the IR will 
have an advantage in target discrimination and clutter rejection over conventional single- 
band imaging systems. The active portion of the MDSS system is a laser radar system 
that will give a three-dimensional image of the target. 

In the notional system, imagery from the (passive) multi-wavelength infrared sensors is 
processed to cue a LAD AR which actively scans regions of interest to acquire high- 
resolution shape and range information for accurate and timely target classification using 
a combination of model-based and phenomenological ATR algorithms. In addition, 



spectro-polarimetric imagery may be used to search for and match to specific non- 
imaging target features (such as chemical signatures) to cue an active sensor such as a 
LAD AR. High-speed optical data paths using vertical-cavity surface-emitting lasers will 
provide thermal isolation and critical interconnect bandwidth for image transmission, 
processing, and sensor feedback. 

A key element of the MDSS system is the dual-band IR imager (also known as a forward- 
looking infrared or FLIR). In the notional MDSS system, this imager consists of large- 
format, pixel-registered two-dimensional focal plane arrays (FPA) one of which is 
sensitive in the 3 to 5 m mid-wave IR wavelength band (MWIR) and the other sensitive 
in the 8 to 12 m long-wave IR wavelength band or (LWIR). Thus the passive part of the 
MDSS imager can take advantage of both of the atmospheric transmission bands in the 
IR spectrum. 

Two approaches have been put forward to produce the dual-band IR imager portion of the 
MDSS. The first, being developed by DRS Infrared Technologies, Inc., uses the 
incumbent HgCdTe technology. This approach offers the advantage of near-unity 
quantum efficiency and an operating temperature near that of liquid nitrogen (77 K). The 
second approach, being employed by BAE Systems North America, uses quantum well 
IR photodetectors (QWIPs). The advantage of this approach is that the mature growth 
and processing technology of III-V compounds such as GaAs, AlGaAs, and InGaAs 
allow for greater array uniformity and higher yield relative to that of II-VI materials like 
HgCdTe. The disadvantage of QWIPs is that they have lower quantum efficiency 
relative to HgCdTe photodiodes and detectors operating in the LWIR spectral region 
need to be cooled to temperatures below 77 K (typically between 60 K and 65 K) to give 
background-limited performance (BLIP). Nevertheless, QWIPs have made great strides 
in recent years and now present a serious alternative to HgCdTe for high-performance IR 
imaging systems. 

Experiment 

The ultimate goal of the MDSS effort is that the dual-band FPA be 640 by 480 pixels or 
larger in both bands. However, the initial dual band FLIR format is to be 320 by 240 for 
DRS HgCdTe array and 256 by 256 for BAE QWIP FPA. The dual-band FLIR arrays 
were under development during 1998. Delivery of the dual-band arrays is expected 
during the second quarter of 1999. 

From July 27 to 30 and September 14 to 18, 1998 field tests were held at the Drop Zone 
at Ft. A. P. Hill Military Reservation near Fredericksburg, VA. The goal of these field 
tests was to gather simultaneous IR imagery in the MWIR and LWIR bands of various 
military targets. Since the dual band FLIR was not available, separate MWIR and LWIR 
cameras were used for image acquisition. The cameras were configured such that the 
instantaneous fields-of-view (IFOV) of the pixels and the total fields of view of the 
cameras were the same in both the LWIR and MWIR bands. This was accomplished by 
choosing FPAs with equal pixel sizes and array formats as well as imaging lenses with 



equal focal lengths. The properties of the cameras used are shown in table 1. The 
camera/data acquisition system is shown schematically in figure 2. 

Table 1. Infrared cameras used in 1998 MDSS field tests 

Property MWIR LWIR 
FPA Manufacturer Lockheed Martin Santa 

Barbara Focalplane 
Sanders, a Lockheed Martin 
Company 

Material Technology InSb Photodiode QWIP Photoconductor 
Wavelength Range 3.0 to 5.3 urn 8.0 to 9.5 urn 
Pixel pitch 24 um by 24 urn 24 urn by 24 pm 
Array format 640 by 480 640 by 480 
Lens focal length 100 mm and 400 mm 100 mm and 400 mm 
Focal ratio f/2.5 f/2.3 
IFOV 0.24 mrad and 0.06 mrad 0.24 mrad and 0.06 mrad 
Total FOV 8.8s by 6.6s and 2.2s by 

1.65s 
8.8s by 6.6s and 2.2s by 
1.65Q 

Operating temperature 77 K 62 K 
Integration time 0.95 ms 1.83 ms 
Temporal NEDT 0.025 K 0.032 K 
Pixel operability* 99.84 % 99.25 % 
* Defined as pixels with responsivity within ±50% from the mean 
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Figure 2. Schematic diagram of the camera/image acquisition system for MDSS field test. 



A photograph of the cameras mounted on a computer-controlled gimbal is shown in 
figure 3. The gimbal had a pointing accuracy of 0.01°. The cameras were boresighted 

using micrometer-controlled optical mounts. A bright object that took up only a few 
pixels was identified in the LWIR image, and the position of the MWIR camera was 
adjusted such that the same object occupied the same pixel positions in the MWIR image. 
This method achieved perfect pixel registration. However, in practice the motion of the 
various components caused the images to be misregistered by 2 to 4 pixels in the 
horizontal and vertical directions in the narrow FOV (field of view) mode. Perfect 
registration (to within 1 pixel) was achieved for the wide FOV. We were able to confirm 
that the FOVs for each of the cameras were indeed the same in both wide and narrow 
field modes. 

Several targets of military significance were imaged. Imagery was taken over a wide 
variety of ambient conditions during both day and night including scenarios just before 
and after sunrise and sunset. A list of the targets observed and their ranges is given in 
table 2. Over 1200 images were obtained for each of the MWIR and LWIR advanced 
FLIRs. Ground truth for MDSS-controlled vehicle tests include global positioning 
system target tracks and meteorological data. Three planned scenarios included: 

Mock turntable scenarios: Each target vehicle was rotated (to driver-estimated 
accuracy) at 22° intervals to provide full rotation views at a fixed target elevation 

(ground-to-ground level elevation). 

Smoke obscuration drills: In the first test, a stationary M60 tank at a range of 2100 m 
was obscured by hexachloroethane (HC) practice smoke. In the second test, the HC 
smoke obscured two stationary vehicles at fixed ranges (M2 Bradley at 3209 m and 
Ml 13 APC at 1192 m). 

Clutter/foliage obscuration drills: Each target vehicle was randomly driven over a 
clutter/occlusion course at a fixed range (1600 m). 



Figure 3. Boresighted IR cameras used in the MDSS field tests. The LWIR camera is on the left and the 
MWIR camera is on the right. 

Table 2. Target vehicles and their ranges from the camera position 

Vehicle 
M60 Tank 
M2 Bradley Fighting Vehicle 
M35 Truck 
Ml 13 Armored Personnel Carrier (APC) 
HMMWV 

Ranges (m) 
1192,3209 
1192,2113,3209,4157 
1192,3209 
1192,2113,3209,4157 
1192,2113,3209,4157 

An additional 75 images were obtained from sensors operated against targets of 
opportunity during Night Vision Electronic Sensors Directorate tests designed to measure 
the range and tracking capability of second-generation FLIRs operated on a YUHB-60 
helicopter. Several panoramas, consisting of a series of 16 overlapping images, were 
taken of the Drop Zone at various times of day. 

Smoke obscurants were tested during daylight operation to determine the visibility of 
stationary military targets at various ranges through HC smoke using the LWIR and 
MWIR imagers. Practice smoke from a K866 smoke pot was the obscurant. During the 
September field test, the stationary targets consisted of one Ml 13 armored personnel 
carrier at 1192 meters range, and one M2 Bradley Fighting Vehicle at 3209 meters range; 
both vehicles were configured with standard Northern Forest camouflage paint. In the 
July field test, the stationary target was a single M60 tank at a range of 2100 meters. 



Results and Discussion 

a.     Smoke 

All imagery taken through HC smoke demonstrated greater target visibility with the 
LWIR camera than with either the MWIR or the visible light imagers. Typical results of 
the test are shown in figures 4 and 5. The visible light image shows complete 
obscuration of the M2 Bradley at 3209 m, and the partial obscuration of the Ml 13 APC 
at 1192 m. The MWIR image shows partial obscuration of the Ml 13 APC, although the 
M2 is visible. The LWIR provides ATR-quality imagery for both targets regardless of 
the high levels of HC smoke. The recent results confirm similar observations during 
earlier tests. Results from both tests showed that the LWIR QWIP camera imaged salient 
features of military vehicles which were obscured in the MWIR InSb and visible CCD 
camera imagery at ranges as far as 4157 meters. 

(b) (c) 

Figure 4. Effect of HC smoke on imagery in the visible (a), MWIR (b), and LWIR (c). The vehicle in the 
foreground is an Ml 13 APC at a range of 1192 m and that in the background is an M2 Bradley at 3209 m. 

(a) MWIR (b) LWIR 
Figure 5. Effect of HC smoke on imagery in the MWIR (a) and LWIR (b). The target vehicle was an M60 
tank at a range of 2100 m. 

10 



b.     Ambient Conditions: Ground Fog and Rain 

In the pre-dawn hours of September 15, the test range was shrouded in a heavy ground 
fog. The meteorological conditions at 0600 were as follows: temperature: 20.3 °C, 

relative humidity: 98%, and visibility: 1.8 km. Figure 6 shows imagery taken under these 
ambient conditions. The fog did not impact the MWIR imagery much. One can clearly 
see the tree line out to the end of the range, and cloud detail is visible in the sky. On the 
other hand, the LWIR image was severely degraded by the fog with the tree line invisible 
beyond about 2 km. It is interesting to note that the gravel road on the right side of the 
image appears to be bright in the MWIR image and dark in the LWIR image. 

(a) MWIR (b) LWIR 
Figure 6. Images of the Ft. A. P. Hill dropzone taken before sunrise under conditions of heavy ground fog. 
The MWIR image (a) shows much detail downrange. The ground fog seriously degrades the LWIR image 
(b). 

On the evening of September 17, heavy thunderstorms came through the area and caused 
the field test to be suspended. After the severe weather passed, the test resumed amid a 
light, steady rain (rain rate of approximately 1 mm/hr). The storms had cooled both the 
air and ground considerably: The air temperature dropped from 25.9 °C just before the 

storm to 20.3 °C after it had passed; the soil temperature dropped from 27.7 °C to 23.9 °C 

in the same period. The relative humidity after the storm was at or near 100% and the 
visibility was between 2 and 4 km. 

Figure 7 shows MWIR and LWIR images taken just after the thunderstorm of an Ml 13 
APC (armored personnel carrier) and an M2 Bradley Fighting Vehicle at a range of 2 km. 
Figure 8 shows MWIR and LWIR images of the Bradley at a range of 4 km. The images 
shown in figures 7 and 8 consist of the central 320 by 240 pixels of the original 640 by 
480-pixel images. The presence of rain and cooler air and ground temperatures caused 
both the LWIR and the MWIR image quality to be severely degraded. The MWIR 
imagery was affected by the ambient conditions to a greater extent than that of the LWIR. 
The M2 was clearly recognizable in both the LWIR and MWIR images at the 2 km range. 
However, the Ml 13 was barely visible at all in the MWIR 2 km image. At the 4 km 
range, the M2 is almost lost in the noise of the MWIR image while the LWIR image still 
shows some detail of the vehicle as well as that of the tree line behind it. 

11 



(a) MWIR (b) LWIR 
Figure 7. MWIR (a) and LWIR (b) Images of an Ml 13 (left) and an M2 (right) taken at night under rainy 
conditions; the range to the targets was 2.1 km. The Figure shows the central 320 by 240 pixels of the 
acquired images. The Ml 13 had been idle for approximately 2 h prior to these images while the M2 was 
running. 

(a) MWIR (b) LWIR 
Figure 8. MWIR (a) and LWIR (b) Images of an M2 (right) taken at night under rainy conditions. The 
range to the targets was 4 km. The Figure shows the central 320 by 240 pixels of the acquired images. 

c.      Image Fusion 

The goal of dual-band or multicolor IR imagery is to provide more information about the 
target and/or background to a human observer or to an automatic target recognition 
system than could be provided by a single band imager. To present this additional 
information to the user, the dual-band image data needs to be combined (fused) into a 
single image. Many methods have been proposed to do the fusion, but the most 
straightforward methods of image fusion are the simple sum and difference of the 
individual images. 

For all image fusion methods it is important that the individual images be equal ized 
with each other. The pixel values in each image ranged form 0 to 4095 (12 bits). The 
majority of the pixel values covered a spread of approximately 200 counts near the center 
of the range. The differences between the pixel values and the value at which the peak of 
the histogram occurred were calculated. The resulting pixel values formed the equalized 
images for both the LWIR and the MWIR images. The equalized images could then be 
summed or subtracted from one another to give new images that combined the 

12 



information in both of the individual images. An example of the results of this process is 
shown in figure 9. The MWIR and LWIR data are shown as grayscale images with hot 
objects represented as white and cold objects as black. The hot engine exhaust on the 
side of the vehicle (an M2 Bradley Fighting Vehicle) shows up bright in both images. 
The exposed dirt just beyond the fence in the foreground is hotter than the surrounding 
grass-covered ground, which is, in turn, warmer than the trees in the background. In the 
MWIR image there is a region behind the vehicle that is slightly brighter than its 
surroundings. 

Figure 9 (c) shows the result of subtracting the pixel values of the MWIR image from 
those of the LWIR image. In the difference image, white pixels indicate regions where 
the LWIR intensity is greater than that of the MWIR, while dark pixels are those regions 
where the MWIR intensity dominates that of the LWIR. In the fused difference image, 
the entire dust plume kicked up by the moving vehicle is visible. It is only through the 
fusion of the two single-color images that the dust plume becomes plainly visible. 

(a) MWIR (b) LWIR 

\ 1*5» 

(c) Fused Difference LWIR—MWIR 

y:?fm 
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Figure 9. IR images of a Bradley Fighting Vehicle (M2) in the MWIR (a) and LWIR (b). The vehicle was 
moving from left to right across the frame at a range of approximately 500 meters. The fused difference 
image is shown in (c). 
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The remaining examples of image fusion are the result of a more sophisticated color 
fusion algorithm, developed at the Naval Research Laboratory [ii] (NRL), in which pixel 
values from the LWIR and MWIR bands are assigned to color opponents such as red- 
cyan, blue-yellow, or green-magenta. Figure 10 illustrates this color fusion scheme using 
the red-cyan color opponents. Each pixel in the LWIR image is assigned a red value and 
each pixel in the MWIR image is assigned a cyan value (i.e., equal values of blue and 
green). For 8-bit color, the pixel values range from 0 to 255. Objects in the image with 
high brightness values in both bands will appear white; those with low brightness values 
in both bands will appear black. Objects with a high pixel value in the LWIR band and a 
low value in the MWIR band will appear red, and objects with a low pixel value the 
LWIR band and a high value in the MWIR band will appear cyan. 

In this scheme, bands in which the background and targets are highly correlated will yield 
fused images with little color contrast (the pixel data will lie roughly along the diagonal, 
[0,0] to [255,255], of the plot and the image will appear as shades of gray).   Bands in 
which they are weakly correlated will yield maximum color contrast (the pixel data will 
be spread out in a direction orthogonal to the diagonal). In the case where the 
background is highly correlated and the target is only slightly different, the color contrast 
can be enhanced by performing a principal component (PC) transformation, normalizing 
the data along the PC directions (thereby stretching the data to fill the available color 
space), then performing the inverse transform back to the original color-opponent space. 

An example of this color fusion approach is shown in figure 11. The LWIR and MWIR 
images were taken in the in the wide FOV configuration in early morning near dawn with 
a significant amount of ground fog present (the individual MWIR and LWIR images are 
shown in fig. 6). The tree line is between 1 and 3 kilometers from the cameras. Image 
fusion using blue-yellow color opponents, in which the pixel values of the MWIR image 
are mapped to shades of yellow and those of the LWIR image are mapped to shades of 
blue, yields an image with the sky looking blue and the grass looking green giving a 
realistic visual feel while still conveying the thermal characteristics of the scene. 

14 



Figure 10. Red-cyan color scheme for fusing MWIR and LWIR images. The MWIR image is mapped to 
shades of cyan and the LWIR image is mapped to shades of red. Pixels with approximately equal values in 
the MWIR and LWIR will lie along the diagonal of the color diagram and will be represented by shades of 
gray. 
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Figure 11. Color fusion algorithm applied to the MWIR and LWIR images shown in fig. 6. The MWIR 
pixel values are mapped to shades of yellow and the LWIR values to shades of blue. The color fusion gives 
a realistic feel to the image (blue sky and green grass). 
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An advantage of this color fusion approach over monochrome fusion approaches, such as 
the difference image discussed above, is that it not only displays information about which 
objects are bright, but it also displays information about the band in which the object is 
emitting. This is demonstrated in figure 12 which shows, respectively, the fused 
difference (a) and color-fused (b) images of an M60 tank taken through HC smoke. The 
corresponding MWIR and LWIR images were shown previously in figure 5. The tank is 
visible only in the LWIR image and therefore is a bright red in the color-fused image. 
The grass, trees, and sky that are difficult to distinguish in the difference image are 
clearly separated in the color-fused image. 

(a) Fused Difference (LWIR-MWIR)        (b) Color Fusion 
Figure 12. Fused IR imagery of an M60 tank through HC smoke (individual MWIR and LWIR images 
shown in fig. 5). Monochrome difference image is shown in (a). Color fusion with LWIR mapped to 
shades of red and MWIR to shades of cyan is shown in (b). The color fusion clearly shows more detail of 
the scene including the smoke, the background and foreground vegetation as well as the tank. 

16 



d.     ATR 

As the quantity of information that helicopter and tank crews must analyze increases, the 
need for an automated screening process increases. It is anticipated that vehicle crews 
will not be able operate the vehicle and simultaneously view the outputs of MWIR, 
LWIR, visible, and LAD AR sensors. An algorithm that screens the data and presents 
only the most likely targets to the operator would enable the crew to make maximum use 
of the data. 

To test the utility of dual band IR imagery, automated target detection and clutter 
rejection (CR) algorithms were designed, coded, and run on the MDSS data collected at 
Ft. A. P. Hill. The idea behind the experiments was to quantify algorithm performance 
on the MDSS data set using MWIR data only, LWIR data only, and MWIR and LWIR 
together. If an algorithm performs better on both bands together, then there is some 
utility in having a dual band sensor. If not, then this suggests that the data is nearly 
redundant, that almost all of the information in one band is contained in the other. 

The experiment was performed by applying a simple detector to each image separately, 
and counting as a detection any location that was reported by the detector on either of the 
images (i.e., the detection locations for both bands is a superset of the detection locations 
for each band). Image chips were formed by extracting a target size region from the 
image at each detection location and scaling to a standard range, so that each chip is the 
size of a target size region at the standard range. This allows the use of a learning 
algorithm that is not scale invariant. The image chips were then separated into disjoint 
training and testing sets. The chips were used as input to three clutter rejectors: one 
operating on MWIR alone, one on LWIR alone, and MWIR-LWIR together. 

The detection algorithms were simple untrained algorithms that look for regions of 
approximately the size of the target that display some difference from their immediate 
background. A detailed description can be found in Dwan and Der [iii]. The 
mathematical features that were used to determine if a difference existed include gray 
level (hot or cold spots), local variance, component size blobs, edge strength, and so on. 
The features were combined with a weighted sums algorithm. Since the algorithm is 
nearly untrained, it should, and does, perform about equally well on MWIR and LWIR. 
Figure 13 shows the detection rates on the training and test sets, as a function of false 
alarms per frame. 

17 



ROC curves of 462 LLM and 479 MLM images 
i                i                i                i                i                i                i                i 

FA=95% 

0.9 

0.8 - 

-^—»=* --■ 

FA=I o%^^::'e,-
&-                           ^*?* 

•x ,   -er                                                                       .':''.•'■■ 
FA=5%«/^,'-                                                                     ,'Ä-*' 

►,<r^di>o.o - 

•7 /'                                                                     .--*''■"'" 
0.7 

" y           ....&^0^~* 
IV a?                       ..-'-'"."' ■;l"-'^'''' 

c 
n 

0.6 
It           .A'"~ "li-^-"*1'"'    dl>0.5 

t3 |fl        /..* yf 
IV 
tf> 0.5 - jj\   ,'.■■' „■'.'                                                                      PCA LLM Train —i— 
Q jfL*: V"   -■                                                                      PCA LLM Test 

|("   T    P                                                                      PCA MLM Train —*-■- 

0.4 
FA 

h    i  /                                                                               PCA_MLM_Test 
IMM    ■ /                                                                              Det LLM Train 

_I/T:J    /?                                                                                  Det LLM Test 
j!j   •';                                                                                  Det MLM Train 

—a— 
—■— 
—Q- — 
...4... 

0.3 'if   "'                                                                                   Det MLM Test 

*?  e dl>0.9 

— Jt — 

0.2 f 
H 

0.1 
3 4 E 
False alarm per frame 

Figure 13. Detection rates on the training and test sets, as a function of false alarms per frame. 

The clutter rejection algorithms used in the experiments were based on principal 
component analysis (PCA) or eigenspace separation transform (EST) reduction of the 
data, followed by a neural network. The PCA/EST portion of the algorithm was applied 
to the training set to compress the imagery into the few parameters that describe the most 
of the variability in the set of images. The compression was then applied to the test 
imagery, and the resulting components were input to a neural network which had been 
trained to distinguish between clutter and target components. For the case which used 
both MWIR and LWIR data together, the image vectors were simply appended. 
Description of the PCA and EST transforms are given below, followed by a description 
of the neural network that uses these features. 

1.     PCA 

PCA, also referred to as the Hotelling transform or the discrete Karhunen-Loeve 
transform, is based on statisticaures. PCA is an important tool for image processing 
because it has several useful properties, such as decorrelation of data and compaction of 
information (energy) [iv]. We provide here a summary of the basic theory of PCA. 
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Assume a population of random vectors of the form 
x, 

\- (1) 

The mean vector and the covariance matrix of the vector population x are defined as 
mx = E{x],   and (2) 

Cx=£{(x-mx)(x-mx)
7'}/ (3) 

where £{arg} is the expected value of the argument, and T indicates vector transposition. 
Because x is «-dimensional, Cx is a matrix of order n by n. Element cu of Cx is the 
variance of x, (the /th component of the x vectors in the population), and element ctj of Cx 

is the covariance between elements xt and x} of these vectors. The matrix Cx is real and 
symmetric. If elements xt and Xj are uncorrelated, their covariance is zero and, therefore, 
cr = c-j = 0. For TV vector samples from a random population, the mean vector and 
covariance matrix can be approximated from the samples by 

m 1  N 

= -Yxp/   and (4) 

Because Cx is real and symmetric, we can always find a set of n orthonormal 
eigenvectors for this covariance matrix. A simple but foolproof algorithm to find these 
orthonormal eigenvectors for all real symmetric matrices is the Jacobi method [v]. The 
Jacobi algorithm consists of a sequence of orthogonal similarity transformations. Each 
transformation is just a plane rotation designed to annihilate one of the off-diagonal 
matrix elements. Successive transformations undo previously set zeros, but the off- 
diagonal elements get smaller and smaller, until the matrix is effectively diagonal (to the 
precision of the computer). We obtain the eigenvectors by accumulating the product of 
transformations during the process, while the main diagonal elements of the final 
diagonal matrix are the eigenvalues. Alternatively, a more complicated method based on 
the QR algorithm for real Hessenberg matrices can be used [vi]. This is a more general 
method because it can extract eigenvectors from a nonsymmetric real matrix. 
Furthermore, it becomes increasingly more efficient than the Jacobi method as the size of 
the matrix increases. Given the considerable increase in efficiency for the size of our 
covariance matrix, we chose the QR method for our experiments described in this paper. 
Figure 14 shows the first 50 most dominant PC A eigenvectors representing the targets 
(top 5 rows) and clutter (bottom 5 rows) in the training set. Having the largest 
eigenvalues, these eigenvectors capture the greatest variance or energy as well as the 
most meaningful features among the training data. 
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Figure 14. First 50 most dominant PCA eigenvectors for the targets (top 5 rows) and clutter (bottom 5 
rows) in the training set. 

Let e, and A.,, i = 1, 2, ..., n, be the eigenvectors and the corresponding eigenvalues of Cx 

sorted in a descending order so that Xj > Xj+l forj= 1,2, ...,«- 1. Let A be a matrix 
whose rows are formed from the eigenvectors of Cx, such that 

V 
A = (6) 

This A matrix can be used as a transformation matrix that maps the x's into vectors 
denoted by y's, as follows: 

y = A(x-mx). (7) 
The y vectors resulting from this transformation have a zero mean vector; that is, nij, = 0. 
The covariance matrix of the y's can be computed from A and Cx by 

Cy = ACxA
r. (8) 

Furthermore, Cy is a diagonal matrix whose elements along the main diagonal are the 
eigenvalues of Cx; that is, 

Cy = (9) 

Since the off-diagonal elements of Cy are zero, the elements of the y vectors are 
uncorrelated. Since the elements along the main diagonal of a diagonal matrix are its 
eigenvalues, Cx and Cy have the same eigenvalues and eigenvectors. In fact, the 
transformation of the Cx into Cy is the essence of the Jacobi algorithm described above. 
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Therefore, through the PCA transformation, a new coordinate system is established. The 
origin of this new coordinate system is at the centroid of the population, mx, with new 
axes in the direction specified by the eigenvectors {ei, e2, , en   }. The eigenvalue A,- 

becomes the variance of component yt along eigenvector e,. With its ability to realign 
unknown data into a new coordinate system based on the principal axes of the data, PCA 
is often used to achieve rotational invariance in image processing tasks. 

On the other hand, we may want to reconstruct vector x from vector y. Because the rows 
of A are orthonormal vectors, A"1 = AT. Therefore, any vector x can be reconstructed 
from its corresponding y by the relation 

x = A7y + mx    . (10) 
Instead of using all the eigenvectors of Cx, we may pick only k eigenvectors 
corresponding to the it largest eigenvalues and form a new transformation matrix Ak of 
order kxn.ln this case, the resulting y vectors would be ^-dimensional, and the 
reconstruction given in eq. (10) would no longer be exact. The reconstructed vector 
using At is 

x = A[y + mx. (11) 
The mean square error (MSE) between x and x can be computed by the expression 

k 

«-ZVl*,= 2v (12) 
y=l j=\ j=k+l 

Because of the Vs decrease monotonically, eq.(12) shows that we can minimize the 

error by selecting the k largest eigenvalues. Thus, the PCA transformation is optimal in 
the sense that it minimizes the MSE between the vectors x and their approximations x. 

The EST has been proposed by Torrieri as a preprocessor to a neural binary [vii]. The 
goal of the EST is to transform the input patterns into a set of projection values such that 
the size of a neural classifier is reduced and its generalization capability is increased. The 
size of the neural network is reduced, because the EST projects an input pattern into an 
orthogonal subspace of smaller dimensionality. The EST also tends to produce 
projections with different average lengths for different classes of input and, hence, 
improves the discriminability between the targets. In short, the EST preserves and 
enhances the classification information needed by the subsequent classifier. It has been 
used in a mine-detection task with some success [viii]. 

The transformation matrix S of the EST can be obtained as follows. 

Compute the n by n correlation difference matrix 

iVl  p=\ iV2  q = \ 

where M and \!p are the number of patterns and the/rth training pattern of Class 1, 
respectively. N2 and \2q are similarly related to Class 2 (which is the complement of 
Class 1). 

1. Calculate the eigenvalues of M, {A, | i = 1,2, • • •,«}. 

2. Calculate the sum of the positive eigenvalues 
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£+=£A,       if   ^>0, 
i=\ 

and the sum of the absolute values of the negative eigenvalues 
n 

£-=£W    if A.<0- 
1=1 

(14) 

(15) 

(a) If E+ > E_, then take all the k eigenvectors of M that have positive eigenvalues and 
form the n by k matrix S. 

(b) If E+ < E_, then take all the k eigenvectors of M that have negative eigenvalues and 

form the n by k matrix S. 

(c) If E+ = E_, then use either subset of eigenvectors to form the matrix S, preferably the 

smaller subset. 

Given the S transformation matrix, the projection yp of an input pattern xp is computed as 
yp = ST\p. The yp, with a smaller dimension (because k < n) and presumably larger 
separability between the classes, can then be sent to a neural classifier.   Figure 15 shows 
the eigenvectors associated with the positive and negative eigenvalues of the M matrix 
that was computed with the target chips as Class 1 and the clutter chips as Class 2. From 
the top 5 rows of the figure, we may trace those signatures that are associated with the 
targets. On the other hand, the bottom 5 rows represent mostly features of the clutter. As 
shown in figure 16, while the eigenvalues diminish rapidly for both the PCA and EST 
methods, those of the EST decrease even faster. In other words, the EST may produce a 
higher compaction in contextual information. 

Figure 15. First 50 most dominant EST eigenvectors associated with positive (top 5 rows) and negative 
(bottom 5 rows) eigenvalues for the training set. 
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Figure 16. Rapid attenuation of eigenvalues in PCA and EST transforms. 

2.      Clutter Rejection 

The inputs for our clutter rejection module are the image chips extracted from bigger 
scenes. The size of these image chips is fixed to a predefined dimension, which is 
common to both the targets and the clutter. To reduce the background information in 
target chips, we clip each image chip at a size that equals the dimension of the largest 
target in our training set. After the background removal, the input image is scaled to a 
preferred size based on a linear interpolation technique. This scaling is needed to achieve 
an image size that is efficient for feature extraction via the eigenspace transformation, 
while an effective amount of information is retained in the image. 

After normalizing the clipped and scaled training data, we compute the eigenvectors 
using either PCA or the EST. We treat each image pixel as a dimension of the data 
vector in these computations. The resulting eigenvectors are sorted in descending order 
based on the norm of their corresponding eigenvalues. Characterized by their 
eigenvalues, different subsets of these eigenvectors may be used as feature extractors in 
different experiments. To achieve feature extraction and dimensionality reduction, we 
project the preprocessed input image to a chosen set of« eigenvectors. The resulting n 
projection values are fed to a multi-layer perception (MLP) algorithm, where they are 
nonlinearly combined. 

A typical MLP used in our experiments is shown in figure 17. The MLP has n+\ input 
nodes (with an extra bias input), several layers of hidden nodes, and one output node. In 
addition to full connections between consecutive layers, there are also shortcut 
connections directly from one layer to all other layers, which may speed up the learning 
process. The MLP is trained to perform a two-class problem, with training output values 
of ±1. Its sole task is to decide whether a given input pattern is a target (indicated by a 

high output value of around +1) or clutter (indicated by a low output value of around -1). 

The MLP is trained in batch mode by a modified Qprop algorithm [v] for a quick but 
stable learning course. 
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Figure 17. A simple MLP with two layers of weights and shortcut connections. 

If the number of target chips and clutter chips are quite different in the training set, a 
trained MLP tends to predict the class that has more training samples. This negative 
effect of an imbalanced training set has been studied by Anand, et a/, [ix]. To avoid 
creating such a biased network, we add a corrective measure in our modified learning 

dE 
algorithm. Because the training is carried out in batch mode [x], the error gradient — 

dw 
obtained for each network parameter or weight for a given training pattern can be 
accumulated separately, depending on the type of intended outputs for that training 
pattern. At the end of a training epoch, the average value of the error gradient when the 
training output is high (low), eA, (e'), for a weight i is computed as 

f=±Y?EjL and £< ±Y^JL (i6) 

where iV* and Ni are the number of occurrences of high and low training objects, 
respectively. If £■' and e\ have the same sign or direction, then their average is used to 
update the corresponding weight /. Otherwise, no update is made to the controversial 
weight. This corrective scheme allows the output errors incurred by both high and low 
target outputs to be reduced simultaneously. To maximize the class separation between 
the targets and clutter, we focus only on the training patterns that are easily confused or 
wrongly classified at a predefined false-alarm rate. Only the errors incurred by these 
confusing patterns are used to update the MLP weights, so that these patterns may be 
classified correctly later. A less confusing pattern may be considered only during the 
early stage of training. 

This technique of focused learning improves the target recognition rate drastically for a 
given false-alarm rate. 
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3.      Experimental Results 

To examine the performance of our clutter rejection technique, we implement a difficult 
two-class problem. Second-generation 10-bit gray-scale FLIR images of five target types 
were obtained at three separate sites during different seasons of the year. These region of 
interest images were purposely captured under challenging conditions, such as having 
targets in and around clutter, in different backgrounds, and under various weather 
conditions. We used a neural-based target detector (developed at ARL by Christopher 
Dwan and Sandor Der) to detect the potential target areas in these images. The detected 
areas were then extracted as image chips of size 75 by 40 pixels, and labeled as either a 
target or clutter based on the ground-truth information. Because the target locations 
suggested by the detector might not match well with the ground-truth locations, and no 
manual centering was performed during the extraction process, many silhouettes remain 
severely off-center in the resulting target chips. There were 47,716 image chips in our 
training set, in which 4,627 were target chips and 43,089 clutter chips. On the other 
hand, there were 2,459 target chips and 18,070 clutter chips in the testing set. The testing 
set and 29,053 chips of the training set were taken from the same site, but in a different 
month and year. 

Considering the size of the targets and the computational complexity of the QR algorithm 
(which is roughly proportional to the cube of the image size), we scale the input image to 
a moderate size of 40 by 20 pixels. As shown in figure 16, the norms of the eigenvalues 
also decrease rapidly from their respective maximum values in both types of eigenspace 
transformation. Therefore, we were only interested in the 40 most dominant 
eigenvectors, instead of all 800 eigenvectors available. 

For PCA, the covariance matrix is computed from all the target images in the training set. 
For EST, on the other hand, the target images in the training set form Class 1, while the 
clutter images form Class 2. We used the 1, 5, 10, 20, 30, and 40 most dominant 
eigenvectors of each transformation to produce the projection values for the MLP. In 
each case, five independent training processes were tried with different initial random 
weights for the MLP. 

When the MLP has fewer than 40 inputs, the average recognition rates for both PCA and 
EST increase with the number of eigentargets used for feature extraction. With 40 or 
more inputs, however, their performances started to either saturate or drop, indicating that 
the larger MLPs might have become over-fitted to the training set. When fewer than 20 
projection values are used, the EST performed better than PCA. This improvement can 
be attributed to the better compaction of information associated with EST. On the other 
hand, the slightly lower recognition rates achieved by the EST with 20 or more inputs 
indicate that some minor information might have been lost in this transformation. 
Because a smaller number of inputs implies a much simpler and faster MLP, it would be 
most suitable to use EST in situations where speed and efficiency are more of a concern 
than slightly degraded recognition performance. In other situations, PCA is more suitable 
for achieving the maximum recognition performance possible through a bigger and 
slower MLP. 

For the two-band case, the CR was implemented in two ways. First, the input LWIR and 
MWIR chips were appended, to form one vector, which was used to train the PCA and 
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EST algorithms. The resulting outputs were applied to an MLP in the same manner as 
described above. The second method uses the previously trained PCA and EST basis 
functions in parallel, resulting in twice as many outputs (LWIR plus MWIR outputs). The 
outputs were then input to an MLP with twice as many input nodes. 

The threshold on each CR was set to allow a false alarm (FA) rate of 10 percent. Table 3 
gives a breakdown of the images and chips available for the study. Tables 4 and 5 show 
the performance of the PCA CR and EST CR on the LWIR data only.   Likewise tables 6 
and 7 give performance on the MWIR data, tables 8 and 9 give performance for both 
bands together using the first method, and tables 10 and 11 using the second method. 
Note that the first multiband method gives slightly better performance than the second 
method. Also, in all cases, the maximum performance corresponds to 20 eigenvectors. 
In all cases, PCA gives maximum performance superior to EST. However, if the number 
of eigenvectors is fixed at a low level, the EST gives superior performance in some cases, 
implying that EST will be useful for applications that require low computational 
complexity. 

The maximum target hit rates for the four CRs were 90.34, 87.34, 93.49 and 93.31 
percent, for the MWIR, LWIR, and two multiband CRs, respectively. In other words, the 
multiband CR was able to reduce the missed detections by 51.42 percent for a fixed level 
of false alarms, over LWIR alone, and 32.6 percent over MWIR alone. 

A word of caution is in order here about the relative merits of LWIR versus MWIR. 
While the results here suggest that MWIR is superior to LWIR, it is quite possible that 
the difference is due more to the particular sensors brought to the data collection than to 
the inherent physical limitations of the two bands. The opinion of the majority of the IR 
community is that, for state of the art sensors, LWIR gives superior quality to MWIR. 
Regardless of whether this is true, the experiments here suggest that the two bands are 
sufficiently independent of each other that multiband IR gives performance superior to a 
single band, as long as the single bands give similar performance alone. 

Table 3. The number of training/testing image clips used for the clutter-rejection study. 

Purpose Data Target Clutter Total 

Training 
LLM 273 1906 2179 
LBM 282 1861 2143 
MLM 282 1861 2143 
MBL 273 1906 2179 

Testing 
LLM 272 1906 2178 
LBM 281 1860 2141 
MLM 281 1860 2141 
MBL 272 1906 2178 
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Table 4. Hit rates of PCA-d2b_L (LLM chips detected by 2 bands: LLM+LBM) at 10 percent FA rate. The 
MLP has either 1, 5, 10, 20, 30, or 40 inputs plus a bias. 

Number 
of inputs 

Data 
type 

Hit rates at 10 percent FA of five runs (%) 
1 2 3 4 5 Avg. 

1 Train 43.96 43.96 43.96 43.96 43.96 43.96 
Test 37.79 37.79 37.79 37.79 37.79 37.79 

5 Train 84.50 84.32 84.14 86.31 85.23 84.90 
Test 74.50 78.30 76.31 77.94 76.85 76.78 

10 Train 89.37 85.95 84.68 91.53 86.85 87.68 
Test 86.26 79.39 77.03 86.26 81.92 82.17 

20 Train 92.97 91.17 94.95 91.89 96.04 93.40 
Test 86.80 86.44 88.43 84.99 90.05 87.34 

30 Train 88.29 95.68 90.45 91.53 80.72 89.33 
Test 85.17 88.79 82.64 87.34 77.03 84.19 

40 Train 84.68 88.11 83.06 82.70 82.52 84.21 
Test 80.83 86.08 78.12 78.12 78.30 80.29 

Table 5. Hit rates of EST-d2b_L (LLM chips detected by 2 bands: LLM+LBM) at 10 percent FA rate. The 
MLP has either 1,5, 10, 20, 30, or 40 inputs plus a bias. 

Number 
of inputs 

Data 
type 

Hit rates at 10 percent FA of five runs (%) 
1 2 3 4 5 Avg. 

1 Train 59.82 59.82 59.82 59.82 59.82 59.82 
Test 52.62 52.62 52.62 52.62 52.62 52.62 

5 Train 89.19 85.59 89.01 86.49 85.62 87.17 
Test 82.64 75.59 81.56 78.48 75.77 78.81 

10 Train 89.91 85.95 92.79 86.31 91.53 89.30 
Test 80.65 75.05 84.81 77.58 81.37 79.89 

20 Train 96.22 88.11 95.86 95.32 90.81 93.26 
Test 87.88 80.11 86.62 86.08 81.74 84.49 

30 Train 85.77 84.14 95.68 88.65 86.13 88.07 
Test 79.20 77.40 81.92 79.57 78.66 79.35 

40 Train 74.41 74.59 74.23 73.87 73.87 74.19 
Test 68.90 69.08 68.90 68.54 68.72 68.83 
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Table 6. Hit rates of PCA-d2b_M (MLM 
The MLP has either 1, 5,10, 20, 30, or 40 

chips detected by 2 bands: MLM+MBM) at 10 percent 
inputs plus a bias. 

FA rate. 

Number 
of inputs 

Data 
type 

Hit rates at 10% FA of five runs (%) 
1 2 3 4 5 Avg. 

1 Train 31.35 31.35 31.35 31.35 31.35 31.35 
Test 28.21 28.21 28.21 28.21 28.21 28.21 

5 Train 87.39 89.37 87.03 87.57 86.85 87.64 
Test 82.62 82.64 82.82 81.92 81.56 82.32 

10 Train 97.93 90.45 89.55 89.55 92.79 90.05 
Test 96.44 87.16 87.52 90.42 89.15 88.14 

20 Train 91.71 91.71 98.02 92.79 91.89 93.22 
Test 89.51 89.33 93.49 91.14 88.25 90.34 

30 Train 92.79 91.17 88.65 94.05 91.71 91.67 
Test 84.99 86.26 84.63 90.24 88.07 86.84 

40 Train 78.74 79.64 78.92 79.10 79.10 79.10 
Test 76.13 76.31 76.13 75.95 76.31 76.17 

Table 7. Hit rates of EST-d2b_M (MLM chips detected by 2 bands: MLM+MBL) at 10 percent FA rate. 
The MLP has either 1, 5, 10, 20, 30, or 40 inputs plus a bias. 

Number 
of inputs 

Data 
type 

Hit rates at 10% FA of five runs (%) 
1 2 3 4 5 Avg. 

1 Train 59.10 59.10 59.10 59.10 59.10 59.10 
Test 54.97 54.97 54.97 54.97 54.97 54.97 

5 Train 89.01 88.65 87.39 83.78 85.77 86.92 
Test 83.91 81.92 79.93 79.02 80.11 80.98 

10 Train 90.81 93.33 87.21 88.29 90.27 89.98 
Test 87.34 86.80 81.19 83.00 86.98 85.06 

20 Train 90.09 96.04 94.05 96.94 96.58 94.74 
Test 86.62 87.52 86.26 90.24 89.69 88.07 

30 Train 91.53 92.43 89.91 91.53 97.84 92.65 
Test 81.74 82.10 81.19 79.39 87.52 82.39 

40 Train 71.17 70.99 70.63 71.35 70.27 70.88 
Test 65.64 64.20 64.56 62.93 64.01 64.27 
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Table 8. Hit rates of PC A- 
has either 1,5, 10,20,30, 

mrg (merged 2 bands: LLMMBL+MLMLBM) at 10 percent FA rate, 
or 40 inputs plus a bias. 

The MLP 

Number 
Of inputs 

Data 
type 

Hit rates at 10% FA of five runs (%) 
1 2 3 4 5 Avg. 

1 Train 40.90 40.90 40.90 40.90 40.90 40.90 
Test 36.71 36.71 36.71 36.71 36.71 36.71 

5 Train 92.43 91.89 91.71 93.33 91.71 92.21 
Test 87.16 84.99 86.08 90.24 86.80 87.05 

10 Train 97.84 96.40 96.76 98.02 94.77 96.76 
Test 92.22 92.41 92.41 95.30 91.86 92.84 

20 Train 98.20 97.84 99.10 96.94 99.10 98.24 
Test 94.39 92.95 93.85 93.31 92.95 93.49 

30 Train 100.00 98.74 96.58 98.74 99.82 98.78 
Test 93.49 93.31 91.86 92.41 93.31 92.88 

40 Train 94.95 99.82 94.95 96.76 97.48 96.79 
Test 87.16 93.67 89.87 91.86 91.14 90.74 

Table 9. Hit rates of EST-mrg (merged 2 bands: LLMMBL+MLMLBM) at 10% false alarm rate. The 
MLP has either 1,5, 10, 20, 30, or 40 inputs plus a bias. 

Number 
of inputs 

Data 
type 

Hit rates at 10% FA of five runs (%) 
1 2 3 4 5 Avg. 

1 Train 62.35 62.35 62.35 62.35 62.35 62.35 
Test 56.24 56.24 56.24 56.24 56.24 56.24 

5 Train 94.05 91.35 92.61 93.15 93.33 92.90 
Test 89.15 88.61 89.69 90.24 90.60 89.66 

10 Train 98.20 97.30 97.84 96.04 95.68 97.01 
Test 91.50 92.59 93.31 92.59 92.77 92.55 

20 Train 94.05 97.84 97.30 97.48 96.94 96.72 
Test 86.44 91.50 92.22 89.87 90.05 90.02 

30 Train 96.04 95.32 95.50 94.41 94.95 95.24 
Test 86.80 88.97 86.98 85.35 88.79 87.38 

40 Train 90.63 91.53 91.17 94.59 93.51 92.29 
Test 84.81 84.63 82.46 85.35 84.45 84.34 
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Table 10. Hit rates of PCA-d2b_LM (separate eigenvector sets, joint MLP) at 10 percent FA rate. 
MLP has either 2, 10,20, 30, or 40 inputs plus a bias. 

The 

Number 
of inputs 

Data 
type 

Hit rates at 10% FA of five runs (%) 
1 2 3 4 5 Avg. 

2 Train 44.14 42.70 44.86 44.86 44.50 44.21 
Test 37.79 37.43 39.06 38.16 39.06 38.30 

10 Train 97.66 95.50 96.94 94.59 95.50 96.04 
Test 91.32 89.51 91.86 89.69 93.13 91.10 

20 Train 95.14 96.76 97.48 96.94 98.02 96.87 
Test 92.22 92.59 94.21 94.03 93.49 93.31 

30 Train 94.77 96.04 97.12 94.77 96.40 95.82 
Test 90.42 91.50 91.50 93.31 93.31 92.01 

40 Train 83.60 83.78 84.32 83.60 83.24 83.71 
Test 79.93 81.01 80.47 79.93 80.11 80.29 

Table 11. Hit rates of EST-d2b_LM (separate eigenvector sets, joint MLP) at 10 percent FA rate. The 
MLP has either 2, 10,20, 30, or 40 inputs plus a bias. 

Number 
of inputs 

Data 
type 

Hit rates at 10% FA of five runs (%) 
1 2 3 4 5 Avg. 

2 Train 62.52 62.52 62.88 62.16 62.88 62.59 
Test 57.50 57.50 57.32 57.32 57.50 57.43 

10 Train 92.79 93.15 93.33 92.97 93.33 93.11 
Test 89.33 87.70 88.61 87.88 87.52 82.21 

20 Train 94.41 96.76 95.86 96.58 95.68 95.85 
Test 87.52 92.22 89.33 89.87 86.62 89.12 

30 Train 94.23 93.69 92.25 95.50 94.77 94.09 
Test 85.71 86.44 84.63 88.07 88.61 86.69 

40 Train 94.23 96.94 97.48 97.66 94.95 96.25 
Test 84.99 88.07 89.33 88.61 88.61 87.92 

e.      Hardware Implementation of Image Fusion 

A Reconfigurable Computing module has been developed [xi] which is capable of 
implementing the three-module, center-surround shunt processing (CSSP) color fusion 
algorithm in real time similar to the Waxman [xii] fusion algorithm. The goal of this 
process is to produce a single image enhanced in such a way as to present the relevant 
information content from the original images in a form that is easily and naturally 
interpreted by the viewer. Algorithms for combining two images range from simple linear 
approaches such as pixel averaging, to complicated approaches that combine the pixel 
data using nonlinear function of the two pixel values. Among the latter are techniques 
that use information in a local region around a given pixel to modulate parameters in the 
fusion function. 

A class of fusion algorithms also attempts to generate a false color image from two 
grayscale images. The three-module CSSP fusion algorithm was chosen for this hardware 
implementation based upon subjective evaluation of the simulation results. This 
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algorithm seemed to perform well and the false color enhancement provided a useful 
conduit for enhanced information content. Figure 18 shows a block diagram of the three- 
processor fusion algorithm and figure 19 shows an example of two-color IR fusion using 
this algorithm. The color map has been tuned so that the lake appears as blue-green. 

The development approach for the reconfigurable digital signal processor (RCDSP) was 
guided by twin needs: to develop a computing solution capable of performing 640 by 
480 image fusion at 30 Hz frame rate and to develop an extensible, experimental platform 
suitable for exploration of numerous other applications. In order to meet these twin 
needs, we undertook a study of several candidate algorithms to determine computational 
complexity and suitability for implementation. The algorithm chosen was the center- 
surround shunt processing image fusion algorithm shown schematically in figure 18. 

source 1 

CSSP 

source 2 

CSSP 

CSSP Scaling 
REG 
Map 

R 

G 

B 

Figure 18. Block diagram of the three-processor, CSSP fusion algorithm. 

Figure 19. The left image was taken with a cooled MWIR sensor, the center image was acquired with an 
uncooled LWIR sensor and the right is the result of processing with three CSSP to produce a false color 
enhanced image. 
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The center-surround shunt processing core operation is defined by eq (17). Design trade- 
offs associated with casting this equation into a form amenable to field-programmable 
gate array (FPGA) implementation will be described. 

_ _[   BCGin-DGm,   )tI ^ 
'    {A + (C-Gin+G0Ut)*I 

where: 

xt is the value of the ith pixel of the image. 

/ is the input image. 

A,B,C and D are constants, 

G,„ is a Gaussian weighted mask for the central element, (usually set to unity) which 
gives the center element as the pixel. 

Goa is a Gaussian weighted mask for the pixels surrounding the center pixel, 

* is the convolution operator. 

The terms in" and out refer to the center and the sur round regions, respectively. 

For the case where there are two different input images to the center-surround shunt 
processor, eq (17) becomes: 

_ _B-C-Gin*Iin-DGou*Iout 

A + C-Gin*Iin + Gou*Iout 
(18) 

The convolutional kernels G,„ and G    are defined to be Gaussian and are therefore 
separable. This is taken advantage of in the FPGA implementation by performing row 
and then column Gaussian filtering with one-dimensional filters and performing the 
corner turn in an external RAM (random access memory) bank. The one-dimensional 
Gaussian filter is implemented as a cascade of first-order filters with coefficients of [1, 
1]. Each of these small filters requires one add. The two-dimensional convolution takes 
2N adds per output pixel. This is in contrast to the 0( N2) multiplications (or additions) 
for the straightforward approach. The 2N additions cannot be parallelized so this 
implementation automatically introduces a one frame latency to the calculation but 
allows for more flexibility in determining the appropriate kernel size. The faster 
implementation creates row buffers inside the FPGA but this quickly becomes prohibitive 
for large kernels or large images. 

By beginning the analysis with the more general case of eq (18), it is possible to 
determine the worst case computational complexity. As can be seen, the operations are 
two convolutions, 3 multiplies, one divide and 3 adds. The convolution can be expanded 
into 2N adds, 4 adds for bounds checking and limiting, and a scaling operation equivalent 
to 5 adds. The following are assumed: 

• Image size is 640 by 480 pixels 
• Frame rate is 30 frames/s 
• Pixels require 16-Bit words 
• Convolutional kernels are 9 by 9 
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For the choice of Xilinx 4000 series devices, one 16-bit adder requires 9 configurable 
logic blocks (CLBs) and a 16-bit multiply or divide requires 136 CLBs (based upon 
sizing estimation). The total CLB count for one center-surround shunt processor is 
2-9(2-9+9)+3136+136+3(9) = 1057. The total for three center-surround shunt 

processors, not counting external interfaces is 3171 CLBs. The Xilinx 4085XL device 
has 3136 CLBs. Fortunately, in actual operation, the general case for the center-surround 
shunt processor is never implemented. In order to preserve image clarity and detail, the 
center convolutional kernel, G,„, is set to 1 by 1 so that no smoothing takes place. This 
essentially removes 243 CLBs from the total for one center-surround shunt processor. In 
addition, since the coefficients A,B,C and D are small numbers, the multipliers can be 
reduced to simple scaling (5 adder equivalent) resulting in l-9-(2-9+9)+3-45+136+3-(9) = 

541 or 1623 CLBs, not counting external interfaces. This design can be implemented 
with reasonable confidence in the Xilinx 4085XL device chosen for the hardware. 

For the case described above with an image size of 640 by 480 at 30 frames/s, the total 
number of 16-bit equivalent additions can be determined. The data rate is 9216000 
pixels/s. For simplicity, take the incoming data rate to be 10 million pixels/s. If the 
divide operation is equivalent to 16 add operations, then each center-surround shunt 
processor consists of approximately 60 16-bit add equivalent operations per pixel. For 
three processors, the aggregate operation count is 1.8 Billion 16-bit add equivalent 
operations per second. 

As previously mentioned, two corner-turn memories are required for each center- 
surround shunt processor. These are implemented as a virtual ping-pong buffer, one 
corner-turn to one RAM bank. This requirement of the algorithmic implementation 
placed a lower bound of six independent RAM banks on the hardware design. It also 
required that the RAM banks and the control circuitry operate at twice the incoming data 
rate, in this case 20 MHz, in order to support the virtual ping-pong structure. There are 
eight independent RAM banks on the RCDSP card, each of which is 1 Meg. by 16 bits, 
15 ns access time. The minimum size required by the algorithm is 614400 16-bit 
locations. The total required memory bandwidth is 240 Mbytes/s. The total available 
memory bandwidth, assuming 40 MHz memory interface operation, is 640 Mbytes/s. 

In addition to a 32-bit data path to the ADSP 21060 on the Alex Computer System PAC 
509 card, the RCDSP supports 83 user I/O. Assuming 50 MHz. operation, the user 
input/output (I/O) alone provides over 500 Mbytes/s of I/O. The 32-bit link to the ADSP 
21060 supports burst rates of up to 160 Mbytes/s. 

A small, high performance FPGA-based computing module has been designed to 
implement a variety of signal processing algorithms. This FPGA card is coupled with a 
SHARC 21060-based processing card to create the RCDSP processing module. The 
three processor center-surround shunt two-color image fusion algorithm has been chosen 
as the first algorithm to be mapped to the RCDSP although several other algorithms were 
analyzed and their requirements considered in the design of the RCDSP. The RCDSP 
was demonstrated using archived image data in 1998. We expect to demonstrate this 
system with live dual-band imagery late in 1999 or early in 2000. 
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Current Status and Future Plans 

As stated in the introduction, the ultimate goal of the MDSS effort is to obtain the 
imagery in the two infrared spectral bands from a single FPA. Early in 1999, BAE 
Systems (formerly Sanders, A Lockheed Martin Company) demonstrated a dual-band 
256 by 256 focal plane array using QWIP technology [xiii]. Laboratory measurements 
show that the noise-equivalent temperature difference is 0.03 °C for both MWIR and 
LWIR bands at an operating temperature of 61 K. The detailed results of laboratory tests 
done on this FPA will be presented elsewhere [xiv]. 

Figure 20 shows an image obtained with the QWIP dual-band FPA. The left-hand image 
is LWIR and the right-hand image is MWIR. The man is holding a glass filter in front of 
a lit butane lighter. The filter is partially transparent in the MWIR and so the flame is 
visible in the MWIR image. The filter is completely opaque in the LWIR making the 
flame nearly invisible in the LWIR image. The entire plume is seen much better in the 
MWIR image than in the LWIR image. In addition, the reflection of the flame is seen on 
the man's hand in the MWIR image but not in the LWIR image. This behavior is 
expected because hot objects are known to be more visible in the MWIR and the MWIR 
is known to have a significant reflective component. 

Figure 21 shows the results of the application of the image fusion algorithm discussed 
above on the images from figure 20. The flame and its reflection are seen as shades of 
cyan in the fused image because they were more prominent in the MWIR image. The 
man's skin appears red because it radiates more strongly in the LWIR. 
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LWIR MWIR 

Figure 20. Image of a man holding a glass filter in front of a lit butane lighter taken with the QWIP dual- 
band FPA. In the left image (LWIR) the filter is opaque and the flame is not seen. In the right image 
(MWIR) the filter is partially transparent showing the flame. Both the flame and its reflection are much 
more prominent in the MWIR image. 

Figure 21. Result of image fusion on the images shown in fig. 20. The flame and its reflection emitted 
strongly in the MWIR and therefore are represented by shades of blue. The man's skin emits most strongly 
in the LWIR and is therefore mapped to shades of red. 

It is our intention to take the dual-band FPA out into the field to gather data on targets 
under various ambient conditions including a wide range of obscurants. The dual-band 
FPA will be used in conjunction with image fusion algorithms. We hope that the data 
gathered in these tests will help to determine the best fusion algorithms and operating 
conditions for a conceptual MDSS system. 
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Summary and Conclusion 

We have shown simultaneous IR imagery from the MWIR and LWIR bands taken at the 
MDSS field tests during summer, 1998. The imagery clearly shows the utility of dual- 
band IR imaging for (a) enhanced visibility through smoke (fig. 5), (b) greater operability 
in conditions of ground fog (fig. 6), and (c) enhanced visibility of objects not seen well in 
either band separately (fig. 9). In addition, we have shown that a color fusion algorithm 
can be used to map the information contained in the separate MWIR and LWIR images 
into a single image that can give the observer increased situational awareness. We have 
shown a path for implementing the image fusion in hardware at real-time frame rates. 
Finally, we have shown that the use of dual-band imagery can significantly reduce missed 
detections in and ATR for a fixed false alarm rate as compared with either LWIR or 
MWIR imagery alone. 
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