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Abstract

Included is dual-band infrared image data collected as part of the Multi-domain Smart Sensor
effort at the U. S. Army Research Laboratory. The ultimate goal of this effort is to produce large
format, staring focal plane arrays that are able to see the battlefield in both the 3to 5 pm
(midwave infrared) and 8 to 12 um (longwave infrared) atmospheric transmission windows. The
image data were collected using separate boresighted cameras with equal pixel formats and fields
of view during field tests that were conducted during the summer of 1998. This work shows a
number of scenarios under which the imagery from one band is superior to that from the other
band and various image fusion techniques that help to enhance the visibility of targets.

Discussed is a technique for using computer hardware to do the image fusion in real time as well
as results of the application of aided target recognition algorithms to the data.
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Introduction

Recently, the U. S. Army Research Laboratory (ARL), in federation with several industry
and academic partners, has developed the concept of the Multi-Domain Smart Sensor
(MDSS) [i]. This system, shown schematically in figure 1, is envisioned as a single unit
combining both passive and active sensor components with advanced signal processing
and aided target recognition (ATR) tools. Such a sensor would enhance situational
awareness on the battlefield in all ambient conditions by locating and classifying threats

with increased effectiveness over existing systems.
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Figure 1. The Multi-Domain Smart Sensor combines several sensor types with advanced signal processing
and aided target recognition for faster and more accurate battlefield threat classification.

The ultimate goal of the MDSS program is to demonstrate simultaneous active and
passive infrared (IR) imaging over a wide spectral bandwidth. Another goal is to cue an
active laser radar (LADAR) sensor using passive multi-color IR sensors to provide a
dramatic improvement in battlefield situational awareness by rapid detection, location,
and recognition of enemy targets (day or night, obscured and/or camouflaged) in highly
cluttered environments. In the ultimate demonstrations, increased target detection range
and reduced target classification time will be demonstrated using this advanced sensor
hardware coupled with software developments (such as real-time sensor fusion hardware)
from the signal processing and ATR technical factors.

The signatures of targets and backgrounds can vary significantly over the entire range of
the IR spectrum. A sensor that can image simultaneously in different bands of the IR will
have an advantage in target discrimination and clutter rejection over conventional single-
band imaging systems. The active portion of the MDSS system is a laser radar system
that will give a three-dimensional image of the target.

In the notional system, imagery from the (passive) multi-wavelength infrared sensors is
processed to cue a LADAR which actively scans regions of interest to acquire high-
resolution shape and range information for accurate and timely target classification using
a combination of model-based and phenomenological ATR algorithms. In addition,




spectro-polarimetric imagery may be used to search for and match to specific non-
imaging target features (such as chemical signatures) to cue an active sensor such as a
LADAR. High-speed optical data paths using vertical-cavity surface-emitting lasers will
provide thermal isolation and critical interconnect bandwidth for image transmission,
processing, and sensor feedback.

A key element of the MDSS system is the dual-band IR imager (also known as a forward-
looking infrared or FLIR). In the notional MDSS system, this imager consists of large-
format, pixel-registered two-dimensional focal plane arrays (FPA) one of which is
sensitive in the 3 to 5 m mid-wave IR wavelength band (MWIR) and the other sensitive
in the 8 to 12 m long-wave IR wavelength band or (LWIR). Thus the passive part of the
MDSS imager can take advantage of both of the atmospheric transmission bands in the

IR spectrum.

Two approaches have been put forward to produce the dual-band IR imager portion of the
MDSS. The first, being developed by DRS Infrared Technologies, Inc., uses the
incumbent HgCdTe technology. This approach offers the advantage of near-unity
quantum efficiency and an operating temperature near that of liquid nitrogen (77 K). The
second approach, being employed by BAE Systems North America, uses quantum well
IR photodetectors (QWIPs). The advantage of this approach is that the mature growth
and processing technology of III-V compounds such as GaAs, AlGaAs, and InGaAs
allow for greater array uniformity and higher yield relative to that of II-VI materials like
HgCdTe. The disadvantage of QWIPs is that they have lower quantum efficiency
relative to HgCdTe photodiodes and detectors operating in the LWIR spectral region
need to be cooled to temperatures below 77 K (typically between 60 K and 65 K) to give
background-limited performance (BLIP). Nevertheless, QWIPs have made great strides
in recent years and now present a serious alternative to HgCdTe for high-performance IR

imaging systems.

Experiment

The ultimate goal of the MDSS effort is that the dual-band FPA be 640 by 480 pixels or
larger in both bands. However, the initial dual band FLIR format is to be 320 by 240 for
DRS HgCdTe array and 256 by 256 for BAE QWIP FPA. The dual-band FLIR arrays
were under development during 1998. Delivery of the dual-band arrays is expected
during the second quarter of 1999.

From July 27 to 30 and September 14 to 18, 1998 field tests were held at the Drop Zone
at Ft. A. P. Hill Military Reservation near Fredericksburg, VA. The goal of these field
tests was to gather simultaneous IR imagery in the MWIR and LWIR bands of various
military targets. Since the dual band FLIR was not available, separate MWIR and LWIR
cameras were used for image acquisition. The cameras were configured such that the
instantaneous fields-of-view (IFOV) of the pixels and the total fields of view of the
cameras were the same in both the LWIR and MWIR bands. This was accomplished by
choosing FPAs with equal pixel sizes and array formats as well as imaging lenses with



equal focal lengths. The properties of the cameras used are shown in table 1. The
camera/data acquisition system is shown schematically in figure 2.

Table 1. Infrared cameras used in 1998 MDSS field tests

Property MWIR LWIR
FPA Manufacturer Lockheed Martin Santa Sanders, a Lockheed Martin
Barbara Focalplane Company
Material Technology InSb Photodiode QWIP Photoconductor
Wavelength Range 3.0t0 5.3 pm 8.0t0 9.5 pm
Pixel pitch 24 um by 24 pm 24 ym by 24 ym
Array format 640 by 480 640 by 480
Lens focal length 100 mm and 400 mm 100 mm and 400 mm
Focal ratio /2.5 /2.3
IFOV 0.24 mrad and 0.06 mrad 0.24 mrad and 0.06 mrad
Total FOV 8.82 by 6.6° and 2.2° by 8.82 by 6.6% and 2.2° by
1.65° 1.65°
Operating temperature 77K 62 K
Integration time 0.95 ms 1.83 ms
Temporal NEDT 0.025K 0.032 K
Pixel operability* 99.84 % 99.25 %
*Defined as pixels with responsivity within £50% from the mean
frame
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Figure 2. Schematic diagram of the camera/image acquisition system for MDSS field test.




A photograph of the cameras mounted on a computer-controlled gimbal is shown in
figure 3. The gimbal had a pointing accuracy of 0.01°. The cameras were boresighted

using micrometer-controlled optical mounts. A bright object that took up only a few
pixels was identified in the LWIR image, and the position of the MWIR camera was
adjusted such that the same object occupied the same pixel positions in the MWIR image.
This method achieved perfect pixel registration. However, in practice the motion of the
various components caused the images to be misregistered by 2 to 4 pixels in the
horizontal and vertical directions in the narrow FOV (field of view) mode. Perfect
registration (to within 1 pixel) was achieved for the wide FOV. We were able to confirm
that the FOVs for each of the cameras were indeed the same in both wide and narrow

field modes.

Several targets of military significance were imaged. Imagery was taken over a wide
variety of ambient conditions during both day and night including scenarios just before
and after sunrise and sunset. A list of the targets observed and their ranges is given in
table 2. Over 1200 images were obtained for each of the MWIR and LWIR advanced
FLIRs. Ground truth for MDSS-controlled vehicle tests include global positioning
system target tracks and meteorological data. Three planned scenarios included:

Mock turntable scenarios: Each target vehicle was rotated (to driver-estimated
accuracy) at 22° intervals to provide full rotation views at a fixed target elevation

(ground-to-ground level elevation).

Smoke obscuration drills: In the first test, a stationary M60 tank at a range of 2100 m
was obscured by hexachloroethane (HC) practice smoke. In the second test, the HC
smoke obscured two stationary vehicles at fixed ranges (M2 Bradley at 3209 m and

M113 APC at 1192 m).

Clutter/foliage obscuration drills: Each target vehicle was randomly driven over a
clutter/occlusion course at a fixed range (1600 m).



S B BYIT.

Figure 3. Boresighted IR cameras used in the MDSS field tests. The LWIR camera is on the left and the
MWIR camera is on the right.

Table 2. Target vehicles and their ranges from the camera position

Vehicle Ranges (m)

M60 Tank 1192, 3209

M2 Bradley Fighting Vehicle 1192, 2113, 3209, 4157
M35 Truck 1192, 3209

M113 Armored Personnel Carrier (APC) 1192, 2113, 3209, 4157
HMMWV 1192, 2113, 3209, 4157

An additional 75 images were obtained from sensors operated against targets of
opportunity during Night Vision Electronic Sensors Directorate tests designed to measure
the range and tracking capability of second-generation FLIRs operated on a YUHB-60
helicopter. Several panoramas, consisting of a series of 16 overlapping images. were
taken of the Drop Zone at various times of day.

Smoke obscurants were tested during daylight operation to determine the visibility of
stationary military targets at various ranges through HC smoke using the LWIR and
MWIR imagers. Practice smoke from a K866 smoke pot was the obscurant. During the
September field test, the stationary targets consisted of one M113 armored personnel
carrier at 1192 meters range, and one M2 Bradley Fighting Vehicle at 3209 meters range;
both vehicles were configured with standard Northern Forest camouflage paint. In the
July field test, the stationary target was a single M60 tank at a range of 2100 meters.




Results and Discussion

a. Smoke

All imagery taken through HC smoke demonstrated greater target visibility with the
LWIR camera than with either the MWIR or the visible light imagers. Typical results of
the test are shown in figures 4 and 5. The visible light image shows complete
obscuration of the M2 Bradley at 3209 m, and the partial obscuration of the M113 APC
at 1192 m. The MWIR image shows partial obscuration of the M113 APC, although the
M2 is visible. The LWIR provides ATR-quality imagery for both targets regardless of
the high levels of HC smoke. The recent results confirm similar observations during
earlier tests. Results from both tests showed that the LWIR QWIP camera imaged salient
features of military vehicles which were obscured in the MWIR InSb and visible CCD

camera imagery at ranges as far as 4157 meters.

(a) (b) (©)

Figure 4. Effect of HC smoke on imagery in the visible (a), MWIR (b), and LWIR (c). The vehicle in the
foreground is an M113 APC at a range of 1192 m and that in the background is an M2 Bradley at 3209 m.

(a) MWIR (b) LWIR
Figure 5. Effect of HC smoke on imagery in the MWIR (a) and LWIR (b). The target vehicle was an M60
tank at a range of 2100 m.
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b. Ambient Conditions: Ground Fog and Rain

In the pre-dawn hours of September 15, the test range was shrouded in a heavy ground
fog. The meteorological conditions at 0600 were as follows: temperature: 20.3 °C,

relative humidity: 98%, and visibility: 1.8 km. Figure 6 shows imagery taken under these
ambient conditions. The fog did not impact the MWIR imagery much. One can clearly
see the tree line out to the end of the range, and cloud detail is visible in the sky. On the
other hand, the LWIR image was severely degraded by the fog with the tree line invisible
beyond about 2 km. It is interesting to note that the gravel road on the right side of the
image appears to be bright in the MWIR image and dark in the LWIR image.

(a) MWIR (b) LWIR
Figure 6. Images of the Ft. A. P. Hill dropzone taken before sunrise under conditions of heavy ground fog.
The MWIR image (a) shows much detail downrange. The ground fog seriously degrades the LWIR image

(b).

On the evening of September 17, heavy thunderstorms came through the area and caused
the field test to be suspended. After the severe weather passed, the test resumed amid a
light, steady rain (rain rate of approximately 1 mm/hr). The storms had cooled both the
air and ground considerably: The air temperature dropped from 25.9 °C just before the

storm to 20.3 °C after it had passed; the soil temperature dropped from 27.7 °C to 23.9 °C

in the same period. The relative humidity after the storm was at or near 100% and the
visibility was between 2 and 4 km.

Figure 7 shows MWIR and LWIR images taken just after the thunderstorm of an M113
APC (armored personnel carrier) and an M2 Bradley Fighting Vehicle at a range of 2 km.
Figure 8 shows MWIR and LWIR images of the Bradley at a range of 4 km. The images
shown in figures 7 and 8 consist of the central 320 by 240 pixels of the original 640 by
480-pixel images. The presence of rain and cooler air and ground temperatures caused
both the LWIR and the MWIR image quality to be severely degraded. The MWIR
imagery was affected by the ambient conditions to a greater extent than that of the LWIR.
The M2 was clearly recognizable in both the LWIR and MWIR images at the 2 km range.
However, the M113 was barely visible at all in the MWIR 2 km image. At the 4 km
range, the M2 is almost lost in the noise of the MWIR image while the LWIR image still
shows some detail of the vehicle as well as that of the tree line behind it.
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(a) MWIR (b) LWIR

Figure 7. MWIR (a) and LWIR (b) Images of an M113 (left) and an M2 (right) taken at night under rainy
conditions; the range to the targets was 2.1 km. The Figure shows the central 320 by 240 pixels of the
acquired images. The M113 had been idle for approximately 2 h prior to these images while the M2 was
running.

(a) MWIR (b) LWIR

Figure 8. MWIR (a) and LWIR (b) Images of an M2 (right) taken at night under rainy conditions. The
range to the targets was 4 km. The Figure shows the central 320 by 240 pixels of the acquired images.

c¢. Image Fusion

The goal of dual-band or multicolor IR imagery is to provide more information about the
target and/or background to a human observer or to an automatic target recognition
system than could be provided by a single band imager. To present this additional
information to the user, the dual-band image data needs to be combined (fused) into a
single image. Many methods have been proposed to do the fusion, but the most
straightforward methods of image fusion are the simple sum and difference of the
individual images.

For all image fusion methods it is important that the individual images be equal ized
with each other. The pixel values in each image ranged form 0 to 4095 (12 bits). The
majority of the pixel values covered a spread of approximately 200 counts near the center
of the range. The differences between the pixel values and the value at which the peak of
the histogram occurred were calculated. The resulting pixel values formed the equalized
images for both the LWIR and the MWIR images. The equalized images could then be
summed or subtracted from one another to give new images that combined the

12



information in both of the individual images. An example of the results of this process is
shown in figure 9. The MWIR and LWIR data are shown as grayscale images with hot
objects represented as white and cold objects as black. The hot engine exhaust on the
side of the vehicle (an M2 Bradley Fighting Vehicle) shows up bright in both images.
The exposed dirt just beyond the fence in the foreground is hotter than the surrounding
grass-covered ground, which is, in turn, warmer than the trees in the background. In the
MWIR image there is a region behind the vehicle that is slightly brighter than its
surroundings.

Figure 9 (c) shows the result of subtracting the pixel values of the MWIR image from
those of the LWIR image. In the difference image, white pixels indicate regions where
the LWIR intensity is greater than that of the MWIR, while dark pixels are those regions
where the MWIR intensity dominates that of the LWIR. In the fused difference image,
the entire dust plume kicked up by the moving vehicle is visible. It is only through the
fusion of the two single-color images that the dust plume becomes plainly visible.

(a) MWIR (b) LWIR

Figure 9. IR images of a Bradley Fighting Vehicle (M2) in the MWIR (a) and LWIR (b). The vehicle was
moving from left to right across the frame at a range of approximately 500 meters. The fused difference
image is shown in (c).

13




The remaining examples of image fusion are the result of a more sophisticated color
fusion algorithm, developed at the Naval Research Laboratory [ii] (NRL), in which pixel
values from the LWIR and MWIR bands are assigned to color opponents such as red-
cyan, blue-yellow, or green-magenta. Figure 10 illustrates this color fusion scheme using
the red-cyan color opponents. Each pixel in the LWIR image is assigned a red value and
each pixel in the MWIR image is assigned a cyan value (i.e., equal values of blue and
green). For 8-bit color, the pixel values range from 0 to 255. Objects in the image with
high brightness values in both bands will appear white; those with low brightness values
in both bands will appear black. Objects with a high pixel value in the LWIR band and a
low value in the MWIR band will appear red, and objects with a low pixel value the
LWIR band and a high value in the MWIR band will appear cyan.

In this scheme, bands in which the background and targets are highly correlated will yield
fused images with little color contrast (the pixel data will lie roughly along the diagonal,
[0,0] to [255,255], of the plot and the image will appear as shades of gray). Bands in
which they are weakly correlated will yield maximum color contrast (the pixel data will
be spread out in a direction orthogonal to the diagonal). In the case where the
background is highly correlated and the target is only slightly different, the color contrast
can be enhanced by performing a principal component (PC) transformation, normalizing
the data along the PC directions (thereby stretching the data to fill the available color
space), then performing the inverse transform back to the original color-opponent space.

An example of this color fusion approach is shown in figure 11. The LWIR and MWIR
images were taken in the in the wide FOV configuration in early morning near dawn with
a significant amount of ground fog present (the individual MWIR and LWIR images are
shown in fig. 6). The tree line is between 1 and 3 kilometers from the cameras. Image
fusion using blue-yellow color opponents, in which the pixel values of the MWIR image
are mapped to shades of yellow and those of the LWIR image are mapped to shades of
blue, yields an image with the sky looking blue and the grass looking green giving a
realistic visual feel while still conveying the thermal characteristics of the scene.

14



Figure 10. Red-cyan color scheme for fusing MWIR and LWIR images. The MWIR image is mapped to
shades of cyan and the LWIR image is mapped to shades of red. Pixels with approximately equal values in
the MWIR and LWIR will lie along the diagonal of the color diagram and will be represented by shades of

gray.

Figure 11. Color fusion algorithm applied to the MWIR and LWIR images shown in fig. 6. The MWIR
pixel values are mapped to shades of yellow and the LWIR values to shades of blue. The color fusion gives
a realistic feel to the image (blue sky and green grass).

15




An advantage of this color fusion approach over monochrome fusion approaches, such as
the difference image discussed above, is that it not only displays information about which
objects are bright, but it also displays information about the band in which the object is
emitting. This is demonstrated in figure 12 which shows, respectively, the fused
difference (a) and color-fused (b) images of an M60 tank taken through HC smoke. The
corresponding MWIR and LWIR images were shown previously in figure 5. The tank is
visible only in the LWIR image and therefore is a bright red in the color-fused image.
The grass, trees, and sky that are difficult to distinguish in the difference image are
clearly separated in the color-fused image.

(a) Fused Difference LWIR-MWIR)  (b) Color Fusion

Figure 12. Fused IR imagery of an M60 tank through HC smoke (individual MWIR and LWIR images
shown in fig. 5). Monochrome difference image is shown in (a). Color fusion with LWIR mapped to
shades of red and MWIR to shades of cyan is shown in (b). The color fusion clearly shows more detail of
the scene including the smoke, the background and foreground vegetation as well as the tank.

16



d. ATR

As the quantity of information that helicopter and tank crews must analyze increases, the
need for an automated screening process increases. It is anticipated that vehicle crews
will not be able operate the vehicle and simultaneously view the outputs of MWIR,
LWIR, visible, and LADAR sensors. An algorithm that screens the data and presents
only the most likely targets to the operator would enable the crew to make maximum use
of the data.

To test the utility of dual band IR imagery, automated target detection and clutter
rejection (CR) algorithms were designed, coded, and run on the MDSS data collected at
Ft. A. P. Hill. The idea behind the experiments was to quantify algorithm performance
on the MDSS data set using MWIR data only, LWIR data only, and MWIR and LWIR
together. If an algorithm performs better on both bands together, then there is some
utility in having a dual band sensor. If not, then this suggests that the data is nearly
redundant, that almost all of the information in one band is contained in the other.

The experiment was performed by applying a simple detector to each image separately,
and counting as a detection any location that was reported by the detector on either of the
images (i.e., the detection locations for both bands is a superset of the detection locations
for each band). Image chips were formed by extracting a target size region from the
image at each detection location and scaling to a standard range, so that each chip is the
size of a target size region at the standard range. This allows the use of a learning
algorithm that is not scale invariant. The image chips were then separated into disjoint
training and testing sets. The chips were used as input to three clutter rejectors: one
operating on MWIR alone, one on LWIR alone, and MWIR-LWIR together.

The detection algorithms were simple untrained algorithms that look for regions of
approximately the size of the target that display some difference from their immediate
background. A detailed description can be found in Dwan and Der [iii]. The
mathematical features that were used to determine if a difference existed include gray
level (hot or cold spots), local variance, component size blobs, edge strength, and so on.
The features were combined with a weighted sums algorithm. Since the algorithm is
nearly untrained, it should, and does, perform about equally well on MWIR and LWIR.
Figure 13 shows the detection rates on the training and test sets, as a function of false
alarms per frame.

17




ROC curves of 462 LLM and 479 MLM images
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Figure 13. Detection rates on the training and test sets, as a function of false alarms per frame.

The clutter rejection algorithms used in the experiments were based on principal
component analysis (PCA) or eigenspace separation transform (EST) reduction of the
data, followed by a neural network. The PCA/EST portion of the algorithm was applied
to the training set to compress the imagery into the few parameters that describe the most
of the variability in the set of images. The compression was then applied to the test
imagery, and the resulting components were input to a neural network which had been
trained to distinguish between clutter and target components. For the case which used
both MWIR and LWIR data together, the image vectors were simply appended.
Description of the PCA and EST transforms are given below, followed by a description

of the neural network that uses these features.

1. PCA

PCA, also referred to as the Hotelling transform or the discrete Karhunen-Loéve
transform, is based on statisticaures. PCA is an important tool for image processing
because it has several useful properties, such as decorrelation of data and compaction of
information (energy) [iv]. We provide here a summary of the basic theory of PCA.
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Assume a population of random vectors of the form

X
x=.’ ()
xn
The mean vector and the covariance matrix of the vector population x are defined as
m, = E{x}, and 2)
C, :E{(x—mx)(x—mx)T}, (3)

where E{arg} is the expected value of the argument, and T indicates vector transposition.
Because x is n-dimensional, C, is a matrix of order n by n. Element c; of C, is the

variance of x; (the ith component of the x vectors in the population), and element ¢; of C,
is the covariance between elements x; and x; of these vectors. The matrix C, is real and
symmetric. If elements x; and x; are uncorrelated, their covariance is zero and, therefore,
¢; = ¢;=0. For N vector samples from a random population, the mean vector and
covariance matrix can be approximated from the samples by

Ly d @)
m =— ) X, an
X ]\',p:1 p
N
C = -I—Z(xpx; —mxm;f) &)
N &

Because C, is real and symmetric, we can always find a set of n orthonormal
eigenvectors for this covariance matrix. A simple but foolproof algorithm to find these
orthonormal eigenvectors for all real symmetric matrices is the Jacobi method [v]. The
Jacobi algorithm consists of a sequence of orthogonal similarity transformations. Each
transformation is just a plane rotation designed to annihilate one of the off-diagonal
matrix elements. Successive transformations undo previously set zeros, but the off-
diagonal elements get smaller and smaller, until the matrix is effectively diagonal (to the
precision of the computer). We obtain the eigenvectors by accumulating the product of
transformations during the process, while the main diagonal elements of the final
diagonal matrix are the eigenvalues. Alternatively, a more complicated method based on
the QR algorithm for real Hessenberg matrices can be used [vi]. This is a more general
method because it can extract eigenvectors from a nonsymmetric real matrix.
Furthermore, it becomes increasingly more efficient than the Jacobi method as the size of
the matrix increases. Given the considerable increase in efficiency for the size of our
covariance matrix, we chose the QR method for our experiments described in this paper.
Figure 14 shows the first 50 most dominant PCA eigenvectors representing the targets
(top 5 rows) and clutter (bottom 5 rows) in the training set. Having the largest
eigenvalues, these eigenvectors capture the greatest variance or energy as well as the
most meaningful features among the training data.
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Figure 14. First 50 most dominant PCA eigenvectors for the targets (top 5 rows) and clutter (bottom 5
rows) in the training set.

Lete;and A, i=1, 2, ..., n, be the eigenvectors and the corresponding eigenvalues of C,,

sorted in a descending order so that A, > A+1 forj=1,2, ...,n— 1. Let A be a matrix
whose rows are formed from the eigenvectors of C,, such that

A=["| (6)

This A matrix can be used as a transformation matrix that maps the x's into vectors
denoted by y's, as follows:
y=A(x-m,). )

The y vectors resulting from this transformation have a zero mean vector; that is, m, = 0.
The covariance matrix of the y's can be computed from A and C, by

C,=ACA" ®)
Furthermore, Cy is a diagonal matrix whose elements along the main diagonal are the
eigenvalues of Cy; that is,

0 A,
Since the off-diagonal elements of Cy are zero, the elements of the y vectors are
uncorrelated. Since the elements along the main diagonal of a diagonal matrix are its
eigenvalues, C and Cy have the same eigenvalues and eigenvectors. In fact, the

transformation of the Cy into Cy is the essence of the Jacobi algorithm described above.
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Therefore, through the PCA transformation, a new coordinate system is established. The
origin of this new coordinate system is at the centroid of the population, my, with new
axes in the direction specified by the eigenvectors {e, e, , e, }. The eigenvalue A;
becomes the variance of component y; along eigenvector e;. With its ability to realign
unknown data into a new coordinate system based on the principal axes of the data, PCA
is often used to achieve rotational invariance in image processing tasks.

On the other hand, we may want to reconstruct vector x from vector y. Because the rows
of A are orthonormal vectors, A" = AT. Therefore, any vector x can be reconstructed
from its corresponding y by the relation

x=A"y+m, . (10)
Instead of using all the eigenvectors of C,, we may pick only & eigenvectors
corresponding to the k largest eigenvalues and form a new transformation matrix A, of
order k X n. In this case, the resulting y vectors would be k-dimensional, and the
reconstruction given in eq. (10) would no longer be exact. The reconstructed vector
using A, is

X=Aly+m, . (11)

The mean square error (MSE) between x and % can be computed by the expression

n k n
e:ZAj—zlaﬁ > A (12)
j= j=

Jj=k+1
Because of the A;’s decrease monotonically, eq.(12) shows that we can minimize the

error by selecting the k largest eigenvalues. Thus, the PCA transformation is optimal in
the sense that it minimizes the MSE between the vectors x and their approximations X.

The EST has been proposed by Torrieri as a preprocessor to a neural binary [vii]. The
goal of the EST is to transform the input patterns into a set of projection values such that
the size of a neural classifier is reduced and its generalization capability is increased. The
size of the neural network is reduced, because the EST projects an input pattern into an
orthogonal subspace of smaller dimensionality. The EST also tends to produce
projections with different average lengths for different classes of input and, hence,
improves the discriminability between the targets. In short, the EST preserves and
enhances the classification information needed by the subsequent classifier. It has been
used in a mine-detection task with some success [viii].

The transformation matrix S of the EST can be obtained as follows.
Compute the n by n correlation difference matrix

N 1 Nl 1 NZ
M:FZXIPXITP—TV—ZXZ(IX;([, (13)

I p=1 2 g¢=1
where N; and x;, are the number of patterns and the pth training pattern of Class 1,
respectively. N and x,, are similarly related to Class 2 (which is the complement of
Class 1).

1. Calculate the eigenvalues of M, {/l,. li=1,2,-, n}.

2. Calculate the sum of the positive eigenvalues
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E =% if >0, (14)
i=1
and the sum of the absolute values of the negative eigenvalues

&:i%] if A,<0. (15)
i=l

(a) If E, > E._, then take all the k eigenvectors of M that have positive eigenvalues and
form the n by k matrix S.

(b) If E, < E_, then take all the k eigenvectors of M that have negative eigenvalues and
form the n by k matrix S.
(c) If E, = E_, then use either subset of eigenvectors to form the matrix S, preferably the

smaller subset.

Given the S transformation matrix, the projection y, of an input pattern x,, is computed as
y,= S’x ,+ The y,, with a smaller dimension (because k < r) and presumably larger

separability between the classes, can then be sent to a neural classifier. Figure 15 shows
the eigenvectors associated with the positive and negative eigenvalues of the M matrix
that was computed with the target chips as Class 1 and the clutter chips as Class 2. From
the top 5 rows of the figure, we may trace those signatures that are associated with the
targets. On the other hand, the bottom 5 rows represent mostly features of the clutter. As
shown in figure 16, while the eigenvalues diminish rapidly for both the PCA and EST
methods, those of the EST decrease even faster. In other words, the EST may produce a
higher compaction in contextual information.
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Figure 15. First 50 most dominant EST eigenvectors associated with positive (top 5 rows) and negative
(bottom 5 rows) eigenvalues for the training set.
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Figure 16. Rapid attenuation of eigenvalues in PCA and EST transforms.

2.  Clutter Rejection

The inputs for our clutter rejection module are the image chips extracted from bigger
scenes. The size of these image chips is fixed to a predefined dimension, which is
common to both the targets and the clutter. To reduce the background information in
target chips, we clip each image chip at a size that equals the dimension of the largest
target in our training set. After the background removal, the input image is scaled to a
preferred size based on a linear interpolation technique. This scaling is needed to achieve
an image size that is efficient for feature extraction via the eigenspace transformation,
while an effective amount of information is retained in the image.

After normalizing the clipped and scaled training data, we compute the eigenvectors
using either PCA or the EST. We treat each image pixel as a dimension of the data
vector in these computations. The resulting eigenvectors are sorted in descending order
based on the norm of their corresponding eigenvalues. Characterized by their
eigenvalues, different subsets of these eigenvectors may be used as feature extractors in
different experiments. To achieve feature extraction and dimensionality reduction, we
project the preprocessed input image to a chosen set of » eigenvectors. The resulting »
projection values are fed to a multi-layer perception (MLP) algorithm, where they are
nonlinearly combined.

A typical MLP used in our experiments is shown in figure 17. The MLP has n+1 input
nodes (with an extra bias input), several layers of hidden nodes, and one output node. In
addition to full connections between consecutive layers, there are also shortcut
connections directly from one layer to all other layers, which may speed up the learning
process. The MLP is trained to perform a two-class problem, with training output values
of £1. Tts sole task is to decide whether a given input pattern is a target (indicated by a

high output value of around +1) or clutter (indicated by a low output value of around —1).

The MLP is trained in batch mode by a modified Qprop algorithm [v] for a quick but
stable learning course.
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Figure 17. A simple MLP with two layers of weights and shortcut connections.

If the number of target chips and clutter chips are quite different in the training set, a
trained MLP tends to predict the class that has more training samples. This negative
effect of an imbalanced training set has been studied by Anand, et al.[ix]. To avoid
creating such a biased network, we add a corrective measure in our modified learning

algorithm. Because the training is carried out in batch mode [x], the error gradient %E—
w

obtained for each network parameter or weight for a given training pattern can be
accumulated separately, depending on the type of intended outputs for that training
pattern. At the end of a training epoch, the average value of the error gradient when the
training output is high (low), £”, (€'), for a weight i is computed as
N, h N !
e=L3% g gty (16)
N, & dw, N, & dw,
where N, and N, are the number of occurrences of high and low training objects,
respectively. If £ and &' have the same sign or direction, then their average is used to
update the corresponding weight i. Otherwise, no update is made to the controversial
weight. This corrective scheme allows the output errors incurred by both high and low
target outputs to be reduced simultaneously. To maximize the class separation between
the targets and clutter, we focus only on the training patterns that are easily confused or
wrongly classified at a predefined false-alarm rate. Only the errors incurred by these
confusing patterns are used to update the MLP weights, so that these patterns may be
classified correctly later. A less confusing pattern may be considered only during the

early stage of training.

This technique of focused learning improves the target recognition rate drastically for a
given false-alarm rate.
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3. Experimental Results

To examine the performance of our clutter rejection technique, we implement a difficult
two-class problem. Second-generation 10-bit gray-scale FLIR images of five target types
were obtained at three separate sites during different seasons of the year. These region of
interest images were purposely captured under challenging conditions, such as having
targets in and around clutter, in different backgrounds, and under various weather
conditions. We used a neural-based target detector (developed at ARL by Christopher
Dwan and Sandor Der) to detect the potential target areas in these images. The detected
areas were then extracted as image chips of size 75 by 40 pixels, and labeled as either a
target or clutter based on the ground-truth information. Because the target locations
suggested by the detector might not match well with the ground-truth locations, and no
manual centering was performed during the extraction process, many silhouettes remain
severely off-center in the resulting target chips. There were 47,716 image chips in our
training set, in which 4,627 were target chips and 43,089 clutter chips. On the other
hand, there were 2,459 target chips and 18,070 clutter chips in the testing set. The testing
set and 29,053 chips of the training set were taken from the same site, but in a different '
month and year.

Considering the size of the targets and the computational complexity of the QR algorithm
(which is roughly proportional to the cube of the image size), we scale the input image to
a moderate size of 40 by 20 pixels. As shown in figure 16, the norms of the eigenvalues
also decrease rapidly from their respective maximum values in both types of eigenspace
transformation. Therefore, we were only interested in the 40 most dominant
eigenvectors, instead of all 800 eigenvectors available.

For PCA, the covariance matrix is computed from all the target images in the training set.
For EST, on the other hand, the target images in the training set form Class 1, while the
clutter images form Class 2. We used the 1, 5, 10, 20, 30, and 40 most dominant
eigenvectors of each transformation to produce the projection values for the MLP. In
each case, five independent training processes were tried with different initial random
weights for the MLP.

When the MLP has fewer than 40 inputs, the average recognition rates for both PCA and
EST increase with the number of eigentargets used for feature extraction. With 40 or
more inputs, however, their performances started to either saturate or drop, indicating that
the larger MLPs might have become over-fitted to the training set. When fewer than 20
projection values are used, the EST performed better than PCA. This improvement can
be attributed to the better compaction of information associated with EST. On the other
hand, the slightly lower recognition rates achieved by the EST with 20 or more inputs
indicate that some minor information might have been lost in this transformation.
Because a smaller number of inputs implies a much simpler and faster MLP, it would be
most suitable to use EST in situations where speed and efficiency are more of a concern
than slightly degraded recognition performance. In other situations, PCA is more suitable
for achieving the maximum recognition performance possible through a bigger and
slower MLP.

For the two-band case, the CR was implemented in two ways. First, the input LWIR and
MWIR chips were appended, to form one vector, which was used to train the PCA and
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EST algorithms. The resulting outputs were applied to an MLP in the same manner as
described above. The second method uses the previously trained PCA and EST basis
functions in parallel, resulting in twice as many outputs (LWIR plus MWIR outputs). The
outputs were then input to an MLP with twice as many input nodes.

The threshold on each CR was set to allow a false alarm (FA) rate of 10 percent. Table 3
gives a breakdown of the images and chips available for the study. Tables 4 and 5 show
the performance of the PCA CR and EST CR on the LWIR data only. Likewise tables 6
and 7 give performance on the MWIR data, tables 8 and 9 give performance for both
bands together using the first method, and tables 10 and 11 using the second method.
Note that the first multiband method gives slightly better performance than the second
method. Also, in all cases, the maximum performance corresponds to 20 eigenvectors.

In all cases, PCA gives maximum performance superior to EST. However, if the number
of eigenvectors is fixed at a low level, the EST gives superior performance in some cases,
implying that EST will be useful for applications that require low computational

complexity.

The maximum target hit rates for the four CRs were 90.34, 87.34, 93.49 and 93.31
percent, for the MWIR, LWIR, and two multiband CRs, respectively. In other words, the
multiband CR was able to reduce the missed detections by 51.42 percent for a fixed level
of false alarms, over LWIR alone, and 32.6 percent over MWIR alone.

A word of caution is in order here about the relative merits of LWIR versus MWIR.
While the results here suggest that MWIR is superior to LWIR, it is quite possible that
the difference is due more to the particular sensors brought to the data collection than to
the inherent physical limitations of the two bands. The opinion of the majority of the IR
community is that, for state of the art sensors, LWIR gives superior quality to MWIR.
Regardless of whether this is true, the experiments here suggest that the two bands are
sufficiently independent of each other that multiband IR gives performance superior to a
single band, as long as the single bands give similar performance alone.

Table 3. The number of training/testing image clips used for the clutter-rejection study.

Purpose Data Target Clutter Total
LLM 273 1906 2179
Training LBM 282 1861 2143
MLM 282 1861 2143
MBL 273 1906 2179
LLM 272 1906 2178
Testing LBM 281 1860 2141
MLM 281 1860 2141
MBL 272 1906 2178
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Table 4. Hit rates of PCA-d2b_L (LLM chips detected by 2 bands: LLM+LBM) at 10 percent FA rate. The
MLP has either 1, 5, 10, 20, 30, or 40 inputs plus a bias.

Number | Data Hit rates at 10 percent FA of five runs (%)
of inputs | type 1 2 3 4 5 Avg.
1 Train 43.96 43.96 43.96 43.96 43.96 43.96
Test 37.79 37.79 37.79 37.79 37.79 37.79
5 Train 84.50 84.32 84.14 86.31 85.23 84.90
Test 74.50 78.30 76.31 77.94 76.85 76.78
10 Train 89.37 85.95 84.68 91.53 86.85 87.68
Test 86.26 79.39 77.03 86.26 81.92 82.17
20 Train 92.97 91.17 94.95 91.89 96.04 93.40
Test 86.80 86.44 88.43 84.99 90.05 87.34
30 Train 88.29 95.68 90.45 91.53 80.72 89.33
Test 85.17 88.79 82.64 87.34 77.03 84.19
40 Train 84.68 88.11 83.06 82.70 82.52 84.21
Test 80.83 86.08 78.12 78.12 78.30 80.29

Table 5. Hit rates of EST-d2b_L (LLM chips detected by 2 bands: LLM+LBM) at 10 percent FA rate. The
MLP has either 1, 5, 10, 20, 30, or 40 inputs plus a bias.

Number | Data Hit rates at 10 percent FA of five runs (%)
of inputs type 1 2 3 4 5 Avg.
1 Train 59.82 59.82 59.82 59.82 59.82 59.82
Test 52.62 52.62 52.62 52.62 52.62 52.62
5 Train 89.19 85.59 89.01 86.49 85.62 87.17
Test 82.64 75.59 81.56 78.48 75.77 78.81
10 Train 89.91 85.95 92.79 86.31 91.53 89.30
Test 80.65 75.05 84.81 77.58 81.37 79.89
20 Train 96.22 88.11 95.86 95.32 90.81 93.26
Test 87.88 80.11 86.62 86.08 81.74 84.49
30 Train 85.77 84.14 95.68 88.65 86.13 88.07
Test 79.20 77.40 81.92 79.57 78.66 79.35
40 Train 74.41 74.59 74.23 73.87 73.87 74.19
Test 68.90 69.08 68.90 68.54 68.72 68.83
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Table 6. Hit rates of PCA-d2b_M (MLM chips detected by 2 bands: MLM+MBM) at 10 percent FA rate.
The MLP has either 1, 5, 10, 20, 30, or 40 inputs plus a bias.

Number Data Hit rates at 10% FA of five runs (%)
of inputs type 1 2 3 4 5 Avg.
1 Train 31.35 31.35 31.35 31.35 31.35 31.35
Test 28.21 28.21 28.21 28.21 28.21 28.21
5 Train 87.39 89.37 87.03 87.57 86.85 87.64
Test 82.62 82.64 82.82 81.92 81.56 82.32
10 Train 97.93 90.45 89.55 89.55 92.79 90.05
Test 96.44 87.16 87.52 90.42 89.15 88.14
20 Train 91.71 91.71 98.02 92.79 91.89 93.22
Test 89.51 89.33 93.49 91.14 88.25 90.34
30 Train 92.79 91.17 88.65 94.05 91.71 91.67
Test 84.99 86.26 84.63 90.24 88.07 86.84
40 Train 78.74 79.64 78.92 79.10 79.10 79.10
Test 76.13 76.31 76.13 75.95 76.31 76.17

Table 7. Hit rates of EST-d2b_M (MLM chips detected by 2 bands: MLM+MBL) at 10 percent FA rate.
The MLP has either 1, 5, 10, 20, 30, or 40 inputs plus a bias.

Number Data Hit rates at 10% FA of five runs (%)
of inputs type 1 2 3 4 5 Avg.
1 Train 59.10 59.10 59.10 59.10 59.10 59.10
Test 54.97 54.97 54.97 54.97 54.97 54.97
5 Train 89.01 88.65 87.39 83.78 85.77 86.92
Test 83.91 81.92 79.93 79.02 80.11 80.98
10 Train 90.81 93.33 87.21 88.29 90.27 89.98
Test 87.34 86.80 81.19 83.00 86.98 85.06
20 Train 90.09 96.04 94.05 96.94 96.58 94.74
Test 86.62 87.52 86.26 90.24 89.69 88.07
30 Train 91.53 92.43 89.91 91.53 97.84 92.65
Test 81.74 82.10 81.19 79.39 87.52 82.39
40 Train 71.17 70.99 70.63 71.35 70.27 70.88
Test 65.64 64.20 64.56 62.93 64.01 64.27

28




Table 8. Hit rates of PCA-mrg (merged 2 bands: LLMMBL+MLMLBM) at 10 percent FA rate. The MLP
has either 1, 5, 10, 20, 30, or 40 inputs plus a bias.

Number Data Hit rates at 10% FA of five runs (%)
Of inputs | type 1 2 3 4 5 Avg.
1 Train 40.90 40.90 40.90 40.90 40.90 40.90
Test 36.71 36.71 36.71 36.71 36.71 36.71
5 Train 92.43 91.89 91.71 93.33 91.71 92.21
Test 87.16 84.99 86.08 90.24 86.80 87.05
10 Train 97.84 96.40 96.76 98.02 94.77 96.76
Test 92.22 92.41 92.41 95.30 91.86 02.84
20 Train 98.20 97.84 99.10 96.94 99.10 98.24
Test 94.39 92.95 93.85 93.31 92.95 93.49
30 Train 100.00 98.74 96.58 98.74 99.82 98.78
Test 93.49 93.31 91.86 92.41 93.31 92.88
40 Train 94.95 99.82 94.95 96.76 97.48 96.79
Test 87.16 93.67 89.87 91.86 91.14 90.74

Table 9. Hit rates of EST-mrg (merged 2 bands: LLMMBL+MLMLBM) at 10% false alarm rate. The
MLP has either 1, 5, 10, 20, 30, or 40 inputs plus a bias.

Number Data Hit rates at 10% FA of five runs (%)
of inputs type 1 2 3 4 5 Avg.
| Train 62.35 62.35 62.35 62.35 62.35 62.35
Test 56.24 56.24 56.24 56.24 56.24 56.24
5 Train 94.05 91.35 92.61 93.15 93.33 92.90
Test 89.15 88.61 89.69 90.24 90.60 89.66
10 Train 98.20 97.30 97.84 96.04 95.68 97.01
Test 91.50 92.59 93.31 92.59 92.77 92.55
20 Train 94.05 97.84 97.30 97.48 96.94 96.72
Test 86.44 91.50 92.22 89.87 90.05 90.02
30 Train 96.04 95.32 95.50 94 .41 94.95 95.24
Test 86.80 88.97 86.98 85.35 88.79 87.38
40 Train 90.63 91.53 91.17 94.59 93.51 92.29
Test 84.81 84.63 82.46 85.35 84.45 84.34
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Table 10. Hit rates of PCA-d2b_LM (separate eigenvector sets, joint MLP) at 10 percent FA rate. The
MLP has either 2, 10, 20, 30, or 40 inputs plus a bias.

Number Data Hit rates at 10% FA of five runs (%)
of inputs type 1 2 3 4 5 Avg.
2 Train 44.14 42.70 44.86 44.86 44.50 4421
Test 37.79 37.43 39.06 38.16 39.06 38.30
10 Train 97.66 95.50 96.94 94.59 95.50 96.04
Test 91.32 89.51 91.86 89.69 93.13 91.10
20 Train 95.14 96.76 97.48 96.94 98.02 96.87
Test 92.22 92.59 94.21 94.03 93.49 93.31
30 Train 94.77 96.04 97.12 94.77 96.40 95.82
Test 90.42 91.50 91.50 93.31 93.31 92.01
40 Train 83.60 83.78 84.32 83.60 83.24 83.71
Test 79.93 81.01 80.47 79.93 80.11 80.29

Table 11. Hit rates of EST-d2b_LM (separate eigenvector sets, joint MLP) at 10 percent FA rate. The
MLP has either 2, 10, 20, 30, or 40 inputs plus a bias.

Number Data Hit rates at 10% FA of five runs (%)
of inputs type 1 2 3 4 5 Avg.
2 Train 62.52 62.52 62.88 62.16 62.88 62.59
Test 57.50 57.50 57.32 57.32 57.50 57.43
10 Train 92.79 93.15 93.33 92.97 93.33 93.11
Test 89.33 87.70 88.61 87.88 87.52 82.21
20 Train 94.41 96.76 95.86 96.58 95.68 95.85
Test 87.52 92.22 89.33 89.87 86.62 89.12
30 Train 94,23 93.69 92.25 95.50 94.77 94.09
Test 85.71 86.44 84.63 88.07 88.61 86.69
40 Train 94.23 96.94 97.48 97.66 94.95 96.25
Test 84.99 88.07 89.33 88.61 88.61 87.92

e. Hardware Implementation of Image Fusion

A Reconfigurable Computing module has been developed [xi] which is capable of
implementing the three-module, center-surround shunt processing (CSSP) color fusion
algorithm in real time similar to the Waxman [xii] fusion algorithm. The goal of this
process is to produce a single image enhanced in such a way as to present the relevant
information content from the original images in a form that is easily and naturally
interpreted by the viewer. Algorithms for combining two images range from simple linear
approaches such as pixel averaging, to complicated approaches that combine the pixel
data using nonlinear function of the two pixel values. Among the latter are techniques
that use information in a local region around a given pixel to modulate parameters in the

fusion function.

A class of fusion algorithms also attempts to generate a false color image from two
grayscale images. The three-module CSSP fusion algorithm was chosen for this hardware
implementation based upon subjective evaluation of the simulation results. This
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algorithm seemed to perform well and the false color enhancement provided a useful
conduit for enhanced information content. Figure 18 shows a block diagram of the three-
processor fusion algorithm and figure 19 shows an example of two-color IR fusion using
this algorithm. The color map has been tuned so that the lake appears as blue-green.

The development approach for the reconfigurable digital signal processor (RCDSP) was
guided by twin needs: to develop a computing solution capable of performing 640 by
480 image fusion at 30 Hz frame rate and to develop an extensible, experimental platform
suitable for exploration of numerous other applications. In order to meet these twin
needs, we undertook a study of several candidate algorithms to determine computational
complexity and suitability for implementation. The algorithm chosen was the center-
surround shunt processing image fusion algorithm shown schematically in figure 18.

source 1
R
| CSSP N
. REG
—] CSSP Scaling | Map G
source 2
T cssP | B

Figure 18. Block diagram of the three-processor, CSSP fusion algorithm.

Figure 19. The left image was taken with a cooled MWIR sensor, the center image was acquired with an
uncooled LWIR sensor and the right is the result of processing with three CSSP to produce a false color
enhanced image.
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The center-surround shunt processing core operation is defined by eq (17). Design trade-
offs associated with casting this equation into a form amenable to field-programmable
gate array (FPGA) implementation will be described.

— B'C'Gin_'D'Gnm * ] (17)
A+(C-G,+G,,)*I

where:
x, is the value of the ith pixel of the image.

I is the input image.
A,B,C and D are constants,

G,, is a Gaussian weighted mask for the central element, (usually set to unity) which
gives the center element as the pixel.

G

out

is a Gaussian weighted mask for the pixels surrounding the center pixel,

* is the convolution operator.
The terms in" and out refer to the center and the sur round regions, respectively.

For the case where there are two different input images to the center-surround shunt
processor, eq (17) becomes:
B-C- Gin*Iin -D- Gou/*lout
x, = (18)
A + C G *Iin + Gout*loul

m

The convolutional kernels G,, and G, , are defined to be Gaussian and are therefore

separable. This is taken advantage of in the FPGA implementation by performing row
and then column Gaussian filtering with one-dimensional filters and performing the
corner turn in an external RAM (random access memory) bank. The one-dimensional
Gaussian filter is implemented as a cascade of first-order filters with coefficients of [1,
1]. Each of these small filters requires one add. The two-dimensional convolution takes
2N adds per output pixel. This is in contrast to the O( N* ) multiplications (or additions)
for the straightforward approach. The 2N additions cannot be parallelized so this
implementation automatically introduces a one frame latency to the calculation but
allows for more flexibility in determining the appropriate kernel size. The faster
implementation creates row buffers inside the FPGA but this quickly becomes prohibitive
for large kernels or large images.

By beginning the analysis with the more general case of eq (18), it is possible to
determine the worst case computational complexity. As can be seen, the operations are
two convolutions, 3 multiplies, one divide and 3 adds. The convolution can be expanded
into 2N adds, 4 adds for bounds checking and limiting, and a scaling operation equivalent
to 5 adds. The following are assumed:

o Image size is 640 by 480 pixels
¢ Frame rate is 30 frames/s

e Pixels require 16-Bit words

¢ Convolutional kernels are 9 by 9
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For the choice of Xilinx 4000 series devices, one 16-bit adder requires 9 configurable
logic blocks (CLBs) and a 16-bit multiply or divide requires 136 CLBs (based upon
sizing estimation). The total CLB count for one center-surround shunt processor is
2.9-(2:9+9)+3-136+136+3-(9) = 1057. The total for three center-surround shunt

processors, not counting external interfaces is 3171 CLBs. The Xilinx 4085XL device
has 3136 CLBs. Fortunately, in actual operation, the general case for the center-surround
shunt processor is never implemented. In order to preserve image clarity and detail, the
center convolutional kernel, G, , is set to 1 by 1 so that no smoothing takes place. This
essentially removes 243 CLBs from the total for one center-surround shunt processor. In
addition, since the coefficients A,B,C and D are small numbers, the multipliers can be
reduced to simple scaling (5 adder equivalent) resulting in 1-9-(2-9+9)+3-45+136+3-(9) =
541 or 1623 CLBs, not counting external interfaces. This design can be implemented
with reasonable confidence in the Xilinx 4085XL device chosen for the hardware.

For the case described above with an image size of 640 by 480 at 30 frames/s, the total
number of 16-bit equivalent additions can be determined. The data rate is 9216000
pixels/s. For simplicity, take the incoming data rate to be 10 million pixels/s. If the
divide operation is equivalent to 16 add operations, then each center-surround shunt
processor consists of approximately 60 16-bit add equivalent operations per pixel. For
three processors, the aggregate operation count is 1.8 Billion 16-bit add equivalent
operations per second.

As previously mentioned, two corner-turn memories are required for each center-
surround shunt processor. These are implemented as a virtual ping-pong buffer, one
corner-turn to one RAM bank. This requirement of the algorithmic implementation
placed a lower bound of six independent RAM banks on the hardware design. It also
required that the RAM banks and the control circuitry operate at twice the incoming data
rate, in this case 20 MHz, in order to support the virtual ping-pong structure. There are
eight independent RAM banks on the RCDSP card, each of which is 1 Meg. by 16 bits,
15 ns access time. The minimum size required by the algorithm is 614400 16-bit
locations. The total required memory bandwidth is 240 Mbytes/s. The total available
memory bandwidth, assuming 40 MHz memory interface operation, is 640 Mbytes/s.

In addition to a 32-bit data path to the ADSP 21060 on the Alex Computer System PAC
509 card, the RCDSP supports 83 user I/O. Assuming 50 MHz. operation, the user
input/output (I/0) alone provides over 500 Mbytes/s of I/O. The 32-bit link to the ADSP
21060 supports burst rates of up to 160 Mbytes/s.

A small, high performance FPGA-based computing module has been designed to
implement a variety of signal processing algorithms. This FPGA card is coupled with a
SHARC 21060-based processing card to create the RCDSP processing module. The
three processor center-surround shunt two-color image fusion algorithm has been chosen
as the first algorithm to be mapped to the RCDSP although several other algorithms were
analyzed and their requirements considered in the design of the RCDSP. The RCDSP
was demonstrated using archived image data in 1998. We expect to demonstrate this
system with live dual-band imagery late in 1999 or early in 2000.
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Current Status and Future Plans

As stated in the introduction, the ultimate goal of the MDSS effort is to obtain the
imagery in the two infrared spectral bands from a single FPA. Early in 1999, BAE
Systems (formerly Sanders, A Lockheed Martin Company) demonstrated a dual-band
256 by 256 focal plane array using QWIP technology [xiii]. Laboratory measurements
show that the noise-equivalent temperature difference is 0.03 °C for both MWIR and

LWIR bands at an operating temperature of 61 K. The detailed results of laboratory tests
done on this FPA will be presented elsewhere [xiv].

Figure 20 shows an image obtained with the QWIP dual-band FPA. The left-hand image
is LWIR and the right-hand image is MWIR. The man is holding a glass filter in front of
a lit butane lighter. The filter is partially transparent in the MWIR and so the flame is
visible in the MWIR image. The filter is completely opaque in the LWIR making the
flame nearly invisible in the LWIR image. The entire plume is seen much better in the
MWIR image than in the LWIR image. In addition, the reflection of the flame is seen on
the man’s hand in the MWIR image but not in the LWIR image. This behavior is
expected because hot objects are known to be more visible in the MWIR and the MWIR
is known to have a significant reflective component.

Figure 21 shows the results of the application of the image fusion algorithm discussed
above on the images from figure 20. The flame and its reflection are seen as shades of
cyan in the fused image because they were more prominent in the MWIR image. The
man’s skin appears red because it radates more strongly in the LWIR.
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LWIR MWIR

Figure 20. Image of a man holding a glass filter in front of a lit butane lighter taken with the QWIP dual-
band FPA. In the left image (LWIR) the filter is opaque and the flame is not seen. In the right image
(MWIR) the filter is partially transparent showing the flame. Both the flame and its reflection are much
more prominent in the MWIR image.

Figure 21. Result of image fusion on the images shown in fig. 20. The flame and its reflection emitted
strongly in the MWIR and therefore are represented by shades of blue. The man's skin emits most strongly
in the LWIR and is therefore mapped to shades of red.

It is our intention to take the dual-band FPA out into the field to gather data on targets
under various ambient conditions including a wide range of obscurants. The dual-band
FPA will be used in conjunction with image fusion algorithms. We hope that the data
gathered in these tests will help to determine the best fusion algorithms and operating
conditions for a conceptual MDSS system.
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Summary and Conclusion

We have shown simultaneous IR imagery from the MWIR and LWIR bands taken at the
MDSS field tests during summer, 1998. The imagery clearly shows the utility of dual-
band IR imaging for (a) enhanced visibility through smoke (fig. 5), (b) greater operability
in conditions of ground fog (fig. 6), and (c) enhanced visibility of objects not seen well in
either band separately (fig. 9). In addition, we have shown that a color fusion algorithm
can be used to map the information contained in the separate MWIR and LWIR images
into a single image that can give the observer increased situational awareness. We have
shown a path for implementing the image fusion in hardware at real-time frame rates.
Finally, we have shown that the use of dual-band imagery can significantly reduce missed
detections in and ATR for a fixed false alarm rate as compared with either LWIR or

MWIR imagery alone.
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