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Part I 

Introduction 



Project Summary and Organization of the Report 
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Computer Science Laboratory 

SRI International 
Menlo Park CA 94025 USA 



1 Objective 

Safety- and security-critical systems such as integrated avionics and encryption con- 
trollers both require encapsulation of code and data belonging to different applica- 
tions and sensitivity levels: even though a system is shared by several applications, it 
must be impossible for a fault or Trojan Horse in one application to affect the opera- 
tion or real-time performance of another, and it must be impossible for information 
of one sensitivity level to contaminate that of another. Encapsulation is achieved 
by the combination of software in an operating system kernel managing hardware 
protection mechanisms (e.g., memory management and watchdog timers). The crit- 
ical nature of the applications concerned means that extremely high assurance is 
required for the correctness of the encapsulation mechanisms. This project develops 
and demonstrates the use of mechanically checked formal verification methods to 
provide this assurance. 

2 Approach 

The security and safety communities have both developed requirements that spec- 
ify how applications may share resources without disrupting one another, and that 
prescribe how the applications may communicate exclusively through known chan- 
nels. The two fields have evolved different approaches that may be synthesized 
into a common set of requirements, issues, and implementation mechanisms, yield- 
ing a cross-fertilization that should reduce costs and increase assurance for future 
acquisitions. 

A systematic approach is developed for the formal specification and verification 
of these encapsulation properties and mechanisms. The approach addresses the in- 
teraction between a processor, custom protection hardware, and the kernel software 
that manages these; it encompasses both safety and security concerns and may be 
adjusted for the characteristics of different classes of systems. 

The approach is validated by mechanically checked verification of a design de- 
rived from the Collins AAMP-FV processor, whose microarchitecture and microcode 
have been formally verified in a previous project [3]. This validation provides a 
formal guarantee—from kernel interface down through hardware—of both spatial 
(memory) and temporal (time-slicing) encapsulation for a processor of the kind 
used for life-critical avionics functions. 

3    Accomplishments 

Work accomplished in the first two years of this contract defined the space of design 
choices for encapsulation in safety-critical architectures, including consideration of 



partitioning mechanisms for security and other critical properties; identification of 
interactions between these mechanisms and those for system structuring, schedul- 
ing, and fault tolerance; and discussion of issues involved in providing assurance 
for partitioning. The initial work also proposed a set of noninterference proper- 
ties referred to as invariant performance, and formalized a corresponding conjecture 
for the Schultz model, a simple implementation of a small kernel and supporting 
hardware that maintains noninterfering partitions on an enhanced Collins AAMP- 
FV. The final two years of contract work completed and extended these results, 
including mechanized proofs of noninterference properties of the Schultz model; ap- 
plication of invariant performance to the design and formalization of a real-time, 
safety-critical, partitioned system; evaluation of the utility of invariant performance 
for partitioning of commercial components in certified systems; and the development 
and documentation of methodologies and tools to mechanize the verification of en- 
capsulation properties. A summary of the accomplishments produced in the course 
of this contract appears below, along with a guide to the accompanying documents 
that constitute the body of this final report. 

1. We have documented a comprehensive analysis of issues in the specification, 
design, and implementation of encapsulation mechanisms for safety-critical ap- 
plications. Appended report, Part II: Partitioning for Safety and Security: Re- 
quirements, Mechanisms, and Assurance by John Rushby, SRI International. 

2. We have refined a set of requirements and specified a correlative architecture 
for partitioning in avionics systems. Appended report, Part II: Partitioning 
System Requirements and Architecture by David Hardin, Rockwell Collins. 

3. We have developed the concept of invariant performance that provides a con- 
tract with application developers and a basis for independent verification and 
validation of the safety and security of applications run on a shared platform. 
Appended report, Part III: Invariant Performance by Matthew Wilding, Rock- 
well Collins. 

4. We have completed a user partition memory protection proof for Schultz using 
deductive methods in PVS. The proof establishes both spatial and temporal 
encapsulation and involves 900 subproofs, including subsidiary type correct- 
ness conditions and sublemmas. Appended report, Part III: Invariant Per- 
formance and PVS: A Statement of Task Isolation that can be Certified by 
Machine-Checking by David Greve and Matthew Wilding, Rockwell Collins. 

5. We have developed and documented several novel methodologies for the ver- 
ification of encapsulation mechanisms that satisfy invariant performance and 
related properties. We have also developed and documented general meth- 
ods, such as "Disjunctive Invariants" and the "Completion Functions Ap- 



proach," that have the potential to improve the mechanization and scalability 
of such proofs. Appended reports and papers, Part IV: Verifying Advanced Mi- 
croarchitectures that Support Speculation and Exceptions by Ravi Hosabettu, 
Ganesh Gopalakrishnan, and Mandayam Srivas, SRI International; Automat- 
ing Partition Proofs by Mandayam Srivas, SRI International; Verification Di- 
agrams Revisited: Disjunctive Invariants by John Rushby, SRI International. 

6. We have implemented enhancements to PVS to support efficient automation 
of the proofs required to establish properties of encapsulation architectures, in- 
cluding static analysis to determine safe destructive array updates. Appended 
report, Part IV: Static Analysis for Safe Destructive Updates by N. Shankar, 
SRI International. 

7. We have developed interfaces to allow SAL (Symbolic Analysis Laboratory) 
to interoperate with other tools and languages, including PVS, SMV, JAVA, 
and InVeSt [1]. In the context of SAL, we have augmented PVS with tools 
for abstraction, invariant generation, and program analysis. We have also 
developed techniques for effectively combining abstraction with deductive and 
algorithmic proof methods within the SAL framework. Appended reports, 
Part IV: An Overview of SAL by Saddek Bensalem et al., SRI International; 
Ubiquitous Abstraction: A New Approach for Mechanized Formal Verification, 
by John Rushby, SRI International; Symbolic Analysis of Transition Systems 
by N. Shankar, SRI International; Combining Theorem Proving and Model 
Checking through Symbolic Analysis by N. Shankar. 

8. We have extended the concept of invariant performance to the JEM2/PMU, 
a real-time, safety-critical system that exploits a virtual machine partitioning 
scheme to support high-rate context switching. We have constructed exe- 
cutable formal models of the JEM2 and the JEM2 PMU that allow us to 
generate functional simulators to validate these design models. JEM2 model 
validation has also used execution of test programs, and the PMU model has 
been integrated with a VHDL simulation environment to provide a PMU test 
bench circuit. Appended report, Part V: Invariant Performance and PMU 
Design Considerations by David Greve, Rockwell Collins. 

9. We have demonstrated the utility of the notion of invariant performance for 
system certification, and developed techniques of automated modeling and 
reasoning that have been integrated into the Rockwell Collins computer system 
development cycle [2]. Appended report, Part V: Invariant Performance and 
Commercial System Components by David Greve, Rockwell Collins. 



4    Organization of the Report 

The organization of this final report reflects the main topics identified in the preced- 
ing summary. In order of presentation, the major sections are as follows: issues in 
the specification, design, and implementation of encapsulation mechanisms and an 
architecture that addresses them; a precise characterization of strict encapsulation; 
methodology and tools; and technology transition. 

References 
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Computer Science, pages 321-333, Palo Alto, CA, November 1998. 
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Part II 

Requirements, Mechanisms, 
Assurance, and Architectures 

for Encapsulation 



Overview 

Automated aircraft control traditionally implemented distinct functions as separate 
systems (e.g., autopilot, autothrottle, flight management) that inherently contained 
faults within the system in which they occurred. By contrast, modern avionics ar- 
chitectures typically support multiple functions on a single, shared, fault-tolerant 
computer system in which fault containment is intrinsically less well defined. The 
approach to strong fault containment proposed in our work uses hardware and soft- 
ware mechanisms to enforce a partitioning regime. These mechanisms are analogous 
to those used in computer security to assure separation of information of differing 
sensitivity levels. 

Our DARPA contract work identifies requirements for partitioning in safety- 
critical applications, explores mechanisms for achieving those requirements with very 
high assurance, defines an architecture that exploits these mechanisms to satisfy the 
given requirements, and studies the parallels between these partitioning mechanisms 
and separation mechanisms used in the computer security domain [8,11]. 



Partitioning for Safety and Security: 
Requirements, Mechanisms, and Assurance 

John Rushby 
Computer Science Laboratory 

SRI International 
Menlo Park CA 94025 USA 
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Abstract 

Automated aircraft control has traditionally been divided into distinct "func- 
tions" that are implemented separately (e.g., autopilot, autothrottle, flight manage- 
ment); each function has its own fault-tolerant computer system, and dependencies 
among different functions are generally limited to the exchange of sensor and con- 
trol data. A by-product of this "federated" architecture is that faults are strongly 
contained within the computer system of the function where they occur and cannot 
readily propagate to affect the operation of other functions. 

More modern avionics architectures contemplate supporting multiple functions 
on a single, shared, fault-tolerant computer system where natural fault containment 
boundaries are less sharply defined. Partitioning uses appropriate hardware and 
software mechanisms to restore strong fault containment to such integrated archi- 
tectures. 

In computer security, information of different sensitivity levels must be kept 
separate and the requirements for highly assured separation are similar to those 
for partitioning. It is possible that the mechanisms and techniques developed for 
computer security can contribute to those required for avionics in particular, and 
safety in general, and vice-versa. 

Since partitioning for safety is less well studied than separation for security, this 
report examines the requirements for partitioning in avionics, mechanisms for their 
realization, and issues in providing assurance for them. Security models are then 
reviewed and compared with the concerns of partitioning. 

11/12 



Chapter 1 

Motivation and Introduction 

Digital flight-control is a quintessential safety-critical application. Digital flight- 
control functions in current aircraft are generally implemented by a federated archi- 
tecture in which each function (e.g., autopilot, flight management, yaw damping, 
displays) has its own computer system that is only loosely coupled to the computer 
systems of other functions. A great advantage of this architecture is that fault con- 
tainment is inherent: that is to say, a fault in the computer system supporting one 
function, or in the software implementing that function, is unlikely to propagate to 
other functions because there is very little that is shared across the different func- 
tions. To be sure, some functions interact with others, but these interactions are 
accomplished by the exchange of data, and functions can be designed to detect and 
tolerate a faulty or erratic data source. 

The obvious disadvantage to the federated approach is its profligate use of re- 
sources: each function needs its own computer system (which is generally replicated 
for fault tolerance), with all the attendant costs of acquisition, space, power, weight, 
cooling, installation, and maintenance. Integrated Modular Avionics (IMA) has 
therefore emerged as a design concept to challenge the federated architecture [1,78]. 
In IMA, a single computer system (with internal replication to provide fault tol- 
erance) provides a common computing resource to several functions. As a shared 
resource, IMA has the potential to diminish fault containment between functions: 
for example, a faulty function might monopolize the computer or communications 
system, denying service to all the other functions sharing that system, or it might 
corrupt the memory of other functions, or send inappropriate commands to their 
actuators. It is almost impossible for individual functions to protect themselves 
against this kind of corruption to the computational resource on which they de- 
pend, so any realization of IMA must provide partitioning to ensure that the shared 
computer system provides protection against fault propagation from one function 
to another that is equivalent to that which is inherent to the federated architecture. 

13 



The purpose of this report is to identify the requirements for partitioning in 
safety-critical applications, to explore topics in achieving those requirements with 
very high assurance, and to relate these to similar issues in computer security. 

We use IMA as our canonical safety-critical application. The next chapter, 
therefore, is concerned with the general requirements for IMA and partitioning, and 
the one following with issues in the implementation of IMA and the mechanisms 
for partitioning. In Chapter 4, we consider methods developed for specifying and 
analyzing computer security policies and relate these to the needs of partitioning in 
avionics. We end with conclusions and suggestions for future work. 

14 



Chapter 2 

Informal Requirements 

To gain insight into the requirements for partitioning, we first need to examine the 
context provided by IMA and related developments in avionics. 

2.1    Integrated Modular Avionics 

It can be argued that the simplest interpretation of IMA envisions an architecture 
that technology has already rendered obsolete: an embedded systems version of the 
centralized time-shared "mainframe." Thanks to recent technological developments, 
powerful processors, large memories, and high-bandwidth local communications are 
all available as reliable and inexpensive commodity items, and these developments 
surely favor less rather than more centralization. Thus, this argument proceeds, 
a modern avionics architecture should be more, not less, federated, with existing 
functions "deconstructed" into smaller components, each having its own processor. 

There is some plausibility to this argument, but the distinction between the 
"more federated" architecture and centralized IMA proves to be moot on closer 
inspection. A federated architecture is one whose components are very loosely 
coupled—meaning that they can operate largely independently. But the different 
elements of a function—for example, vertical and horizontal flight path control in 
an autopilot—usually are rather tightly coupled (and it is argued below that they 
should become even more tightly coupled), so that the deconstructed function would 
not be a federated system so much as a distributed one—meaning a system whose 
components may be physically separated, but which must coordinate to achieve 
some collective purpose. Dually, a centralized IMA architecture would not be a 
simple mainframe—-for a computer system supporting flight functions must provide 
replicated and physically distributed hardware for fault tolerance, together with 
mechanisms for redundancy management. Consequently, a conceptually centralized 
architecture will be, internally, a distributed system, and the basic services that 
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it provides will not differ in a significant way from those required for the "more 
federated" architecture. 

Another contrarian point of view is that neither centralized IMA nor the "more 
federated" architecture offers significant benefits over current practice; the present 
federated architecture has been validated by experience, and modern hardware tech- 
nology will reduce its cost penalty—so there is no reason to change it. The argument 
against this point of view is that it takes a very narrow interpretation of the costs 
associated with the current architecture, and therefore grossly underestimates them. 
One neglected cost is safety: the federated architecture has the advantage of natural 
fault containment, but it imposes a cost in poorly coordinated control, and complex 
and fault-prone pilot interfaces. 

The current allocation of flight automation to separate functions is the result 
of largely accidental historical factors. Consequently, certain control variables that 
are tightly coupled in a dynamical sense are managed by different functions: for 
example, engine thrust is managed by the autothrottle, and pitch angle by the 
autopilot. Since a change in either of these variables affects the other, but there is no 
higher-level function that manages them in a coordinated manner, such conceptually 
simple services as "cruise speed control," "altitude select," and "vertical speed" have 
complex and imperfect implementations that are difficult to manage. For example, 
Lambregts [59, page 4] reports: 

"Because the actions of the autothrottle are not tactically coordinated 
with the autopilot, the autothrottle speed control constantly upsets the 
autopilot flight path control and vice versa, resulting in a notorious cou- 
pling problem familiar to every pilot. It manifests itself especially when 
excited by turbulence or windshear, to the point where the tracking 
performance and ride quality becomes unacceptable. The old remedy to 
break the coupling was to change the autopilot mode to ALTITUDE HOLD 

(e.g., the older B747-200/300). On newer airplanes, this problem has 
been reduced to an acceptable level for the cruise operation after a very 
difficult and costly development process, implementing provisions such 
as separation of the control frequency by going to very low autothrottle 
feedback gain, application of 'energy compensation,' turbulence compen- 
sation, and nonlinear windshear detections/compensation." 

And again: 

"Due to the lack of proper control coordination, the autopilot AL- 

TITUDE SELECT and VERTICAL SPEED modes never functioned sat- 
isfactorily. .. these problems resulted in development of the FLIGHT 

LEVEL CHANGE (FLC) mode that was first implemented on the 
B757/B767... however the mode logic depends on certain assumptions 
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that are valid only for certain operations, so the logic can be tricked and 
cause an incorrect or poorly coordinated control response... as a result 
there have been a number of incidents where the FLC mode did not 
properly execute the pilot's command." 

The lack of properly integrated control caused by the artificial separation of functions 
in the federated architecture is one of the factors that leads to the complex modes 
and submodes used in these functions, and thence to the "automation surprises" 
and "mode confusions" that characterize problems in the "fiightcrew-automation 
interface." Numerous fatal crashes and other incidents are attributed to such hu- 
man factors problems [28, Appendix D], but it is clear from their origins in the 
artificial separation of functions that these problems are unlikely to be solved by 
local improvements in the interfaces and cues presented to pilots. The plethora of 
modes, submodes, and their corresponding interactions also exacts a high cost in 
development, implementation, and certification. If this analysis is correct, the tra- 
ditional federated architecture is a major obstacle to a more rational organization 
of flight functions, and IMA is the best hope for removing this obstacle. 

The topics considered so far suggest that the appropriate context in which to 
examine partitioning for IMA is a distributed system in which flight functions (which 
might well be defined and subdivided differently than in the traditional federated 
architecture) are each allocated to separate processors (replicated as necessary for 
fault tolerance). In this model, we would need to consider partitioning to limit fault 
propagation between the processors supporting each function, but not within them. 
This model, however, overlooks a new opportunity that could be created by more 
fine-grained partitioning. 

If functions have no internal partitioning, then all their software must be assured 
and certified to the level appropriate for that function. Thus, all the software in an 
autopilot function is likely to require assurance to Level A of DO-178B (this, the 
highest level of DO-178B, the guidelines for certification of airborne software [30,84], 
is for software whose malfunction could contribute to a catastrophic failure condi- 
tion [29]), and this discourages the inclusion of any software that is not strictly 
essential to the function. While this may be a good thing in general, it also discour- 
ages inclusion of services that could have a positive safety impact, such as continuous 
self-test, or for-information-only messages to the pilot. More generally, partitioning 
within a processor could allow an individual function to be divided into software 
components of different criticalities; each could then be developed and certified to 
the level appropriate to its criticality, thereby reducing overall costs while allowing 
assurance effort to be focused on the most important areas. Without partitioning, 
the concern that a fault in less critical software could have an impact on the oper- 
ation of more critical software necessarily elevates the criticality of the first to that 
of the second; partitioning would remove the danger of fault propagation, and allow 
the criticality of each software component to be assessed more locally. 
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The considerations of the previous paragraph suggest that for partitioning within 
a single processor it might be appropriate to limit attention to the case where the 
processor is shared by the components of only a single function. We might suppose 
that these components consist of one implementing the main function, and several 
others providing subsidiary services. Since a fault in the main component amounts 
to a fault in (this replica of) the overall function, there seems little point in protect- 
ing the subsidiary components from faults in the main component, and this suggests 
that partitioning could be asymmetric (the main component is protected from the 
subsidiary ones, but not vice versa). It is not clear whether such asymmetry would 
provide any benefit in terms of simplicity or cost of the partitioning mechanisms, 
but the point is probably moot since other scenarios require a symmetric approach. 
One scenario is support for several minor functions, for example undercarriage and 
weather radar, on a single processor. Where the functions are not required at the 
same time, partitioning could perhaps be achieved by giving each one sole command 
of its processor while it is active (this is similar to "periods processing" in the secu- 
rity context), but the more general requirement is for simultaneous operation with 
symmetric partitioning. The second scenario concerns very cost sensitive applica- 
tions, such as single-engine general aviation aircraft. Here it may be desirable to run 
multiple major functions (such as autopilot and rudimentary flight management) on 
a single (possibly non-fault-tolerant) processor. There are even proposals to host 
these functions on mass-market systems such as Windows NT. Although one can 
be skeptical of this proposal (particularly if "free flight" air traffic control makes 
flight management data from general aviation aircraft critical to overall airspace 
safety), it seems worth examining the technical feasibility of symmetric partitioning 
for critical functions within a single processor. 

The current federated architecture not only uses a lot of computer systems, 
it uses a lot of different computer systems: each function typically has its own 
unique computer platform. There is a high cost associated with developing and 
certifying software to run on these idiosyncratic platforms. Logically independent 
of IMA, but coupled to it quite strongly in practice, are moves to define standardized 
interfaces to the platforms that support flight functions, and to introduce some of 
the abstractions and services provided by an operating system. The ARINC 653 
(APEX) [4] standard represents a step in this direction. Developments such as 
this could significantly reduce the cost of avionics software development and might 
stimulate creation of standard modules for common tasks that could be reused by 
different functions running on different platforms. 

The design choices for partitioning interact with those for providing operat- 
ing system services. The major decision is whether partitioning is provided above 
an operating system layer (Figure 2.1(a)), or above a minimal kernel (or executive) 
with most operating system services then provided separately in each partition (Fig- 
ure 2.1(b)). The first choice is the way standard operating systems are structured 
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(with partitions being client processes), but it has the disadvantage that partition- 
ing then relies on a great deal of operating system software. The second choice is 
sometimes called the "virtual machine" approach, and it has the advantage that 
partitioning relies only on the kernel and its supporting hardware.1 

Partition A Partition B 

Operating System 

Hardware 

Partition A 

OS Services A 

Partition B 

OS Services B 

Kernel 

Hardware 

(a) (b) 

Figure 2.1: Alternative Operating System/Partitioning Designs 

Another area where IMA has the potential to reduce costs is through improved 
dispatch reliability. Critical flight functions must tolerate hardware faults, and so 
they run on replicated hardware (typically quad-redundant or greater for primary 
flight control and displays, triple for autopilot and autoland, dual for flight manage- 
ment and yaw damping, and single for autothrottle). But despite the massive cost 
of providing a fault-tolerant platform for each function, and despite the large num- 
ber of separate processors and other components available (there can be as many 
as 50 processors among the major functions of a large modern transport plane), the 
federated architecture does not provide a large margin of redundancy, nor opera- 
tional flexibility. A single faulty processor in any function may be enough to prevent 
takeoff (thereby requiring maintenance in possibly less than ideal circumstances), 
and multiple faults afflicting such a function during flight might trigger a diversion, 
or have even more serious consequences. With IMA, in contrast, replicated proces- 
sors are not bound to a specific function, but can be allocated as required: normal 
operation can continue as long as the total number of nonfaulty processors is suf- 
ficient to provide the required level of replication to each function. This increases 

1Some operating systems use the second model. It was first employed in VM/370 [70], which 
served as the basis for a major early secure system development [7,36]. Fully virtualizing the under- 
lying hardware is expensive, so later "/x-kernels" such as Mach and Chorus provided a more abstract 
interface. These also proved to have disappointing performance. Second-generation /i-kernels and 
comparable toolkits such as Exokernel [49], Flux [32], L4 [39], and SPIN [11] achieve good per- 
formance and introduce several implementation techniques relevant to the design of partitioned 
systems. 
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overall safety margins, while also allowing maintenance to be deferred (e.g., until 
the aircraft's schedule brings it to a major maintenance base) [41].2 

The ability to exploit this increased redundancy and flexibility depends on a 
systematic approach to fault tolerance within functions (so that they are not tightly 
bound to a specific processor), and across the distributed coordination mechanisms 
of the IMA platform itself. Design of fault-tolerant systems is not only a massively 
difficult and expensive activity (the basic mechanisms of fault tolerance concern the 
coordination of distributed, real-time systems operating in the presence of faults, 
which are among the hardest problems in computer science) but is often a pervasive 
one: that is, mechanisms for fault tolerance and redundancy management in avionics 
are seldom encapsulated as an operating system or middleware service, and instead 
affect the design of every piece of software within the function. As a result, it is gen- 
erally impossible to take software—or even the design for a piece of software—from 
one function and reuse it in another, or on another platform, even when standards 
such as APEX are used, for these standards concern only the mechanics of system 
calls and do not address the deeper concerns of systematic and transparent fault 
tolerance. Another reason for the pervasive influence of fault tolerance in current 
system designs is that the these mechanisms (and most others that involve coordina- 
tion across multiple processors and functions) are seldom compositional—meaning 
that there is no a priori guarantee that elements that each work on their own will 
also work in combination. The massive resources expended on systems integration 
are a symptom of the lack of compositionality provided by current design practices. 

Thus, full realization of the benefits of IMA requires adoption of modern concepts 
for systematic, compositional, fault-tolerant real-time system design [55]. These 
would reduce the pervasive impact of fault tolerance in avionics software devel- 
opment and provide cost savings and opportunities for reuse that could be much 
greater than those provided by lower-level standards such as APEX. Taken to their 
conclusion, such approaches could completely decouple the implementation of flight 
functions from that of their fault-tolerant platform, possibly enabling each to be 
certified separately. The impact of such developments on partitioning is, first, a 
requirement that the distributed partitioning mechanisms must themselves be ro- 
bustly fault tolerant and, second, that these mechanisms must cooperate with oper- 
ating system or kernel functions to provide the services required for systematic and 
transparent fault tolerance in the implementations of flight functions. 

Summarizing this review of issues in IMA, we see that partitioning should be 
considered both within a single processor and across a distributed system, and that 
partitioning has interactions with the provision of operating system services and 
transparent fault tolerance. In the next section we examine the requirements for 
partitioning a little more closely. 

2Current implementations of IMA allocate functions to processors at startup time; reconfigura- 
tion in flight is a future prospect. 
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2.2    Partitioning 

The purpose of partitioning is fault containment: a failure in one partition must 
not propagate to cause failure in another partition. However, we need to be careful 
about what kinds of faults and failures are considered. The function in a partition 
depends on the correct operation of its processor and associated peripherals, and 
partitioning is not intended to protect against their failure—this can be achieved 
only by replicating functions across multiple processors in a fault-tolerant manner. 
After all, each function would be just as vulnerable to hardware failure if it had 
its own processor. Rather, the intent of partitioning is to control the additional 
hazard that is created when a function shares its processor (or, more generally, a 
resource) with other functions. The additional hazard is that faults in the design 
or implementation of one function may affect the operation of other functions that 
share resources with it.3 Now a design or implementation fault in a flight function is 
surely a very serious event and it might be supposed that (a) such faults are so serious 
that it does not matter what else goes wrong, or (b) certification ensures that such 
faults cannot occur. Both suppositions would, if true, diminish the requirements for 
partitioning. 

The first point is easily refuted: the whole thrust of aircraft certification is to 
ensure that failures are independent (and individually improbable) if their combi- 
nation could be catastrophic. Thus, while a design fault in, say, the autothrottle 
function would be serious, appropriate design and system-level hazard analysis will 
ensure that it is not catastrophic, provided other functions do not fail at the same 
time. Allowing a fault in this function to propagate to another (e.g., autoland) 
would violate the assumption of independent failures. Thus, far from a fault in a 
critical function being so serious as to render concern for partitioning irrelevant, it 
is the need to contain the consequences of such a fault that renders partitioning 
essential (and elevates its criticality to at least that of the most critical function 
supported). 

It could be argued that both functions will certainly be lost if their shared pro- 
cessor fails, so they surely would not be sharing if their correlated failure could be 
catastrophic. This overlooks a couple of points. First, malfunction or unintended 
function is often more serious than simple loss of function, and the consequences of 
a propagating fault (unlike those of a processor failure) may well be of these more 
serious kinds. For example, a buffer overflow in one function might overwrite data 
in another, leading to unpredictable consequences. (The Phobos I spacecraft was 
lost in just this circumstance—when a keyboard buffer overflowed into the mem- 
ory of a critical flight control function [14,17].) Second, the increased interdepen- 
dency wrought by IMA may introduce shared resources—and hence paths for fault 

Partitioning can also limit the consequences of transient hardware faults (by containing them 
within the partition that is directly affected), but that is a side benefit, not a requirement. 
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propagation—that are less obvious and more easily overlooked than shared proces- 
sors. For example, functions in separate processors, where correlated failure would 
not be anticipated (and would not occur in a federated architecture) might become 
vulnerable to fault propagation through a shared bus in an IMA architecture. 

Returning to the second point raised above (that certification ought to ensure 
the absence of design and implementation faults), note that certification requires 
assurance proportional to the consequences of failure. In a federated architecture, 
such consequences are generally limited to the function concerned, so that assur- 
ance is related to the criticality of that function. But if the failure of one function 
could propagate to others, then a low-criticality (and correspondingly low assur- 
ance) function might cause a high-criticality function to fail. This means that either 
all functions that share resources must be assured to the level of the most critical 
(such elevation in assurance levels is directly contrary to one of the goals of IMA), 
or that partitioning must be used to eliminate fault propagation from low-assurance 
functions to those of high criticality. When different functions already happen to 
have the same level of assurance, the need for partitioning may not be so great, and 
it has been suggested that functions with software assured to Level A of DO-178B 
may be allowed to share resources without partitioning. Note, however, that a fault 
that causes one function to induce a failure in another might not affect the operation 
of the first (as noted above, a temporary buffer overflow can have this property). 
And although certification requires assurance of the absence of such unintended ef- 
fects, as well as positive assurance that the intended function is performed correctly, 
it is generally much harder to provide the first kind of assurance than the second. 
Furthermore, shared resources create new pathways for the propagation of unin- 
tended effects, and these pathways might not have been considered when assurance 
was developed for the individual functions. Consequently, partitioning seems advis- 
able even when the functions concerned are of the same level of criticality, and all 
software is assured to the same level. 

Summarizing the discussion in this chapter, we may conclude that future avionics 
architectures will have the character of distributed, rather than federated, systems, 
and that multiple functions, of possibly different levels of criticality and assurance, 
will be supported by the same system. Resources, such as processors, communi- 
cations buses, and peripheral devices, may be shared between different functions. 
Shared resources introduce new pathways for fault propagation, and these hazards 
must be controlled by partitioning. 

Because partitioning is required to prevent fault propagation through shared 
resources, a suitable benchmark or "Gold Standard" for the effectiveness of parti- 
tioning would seem to be a comparable system (intuitively a federated one) in which 
there are no shared resources. This is captured in the following. 
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Gold Standard for Partitioning 

A partitioned system should provide fault containment equivalent to an 
idealized system in which each partition is allocated an independent pro- 
cessor and associated peripherals, and all inter-partition communications 
are carried on dedicated lines. 

Although this Gold Standard provides a suitable mental benchmark for design- 
ers and certifiers of partitioning mechanisms for IMA, it is less useful as a "con- 
tract" with the "customers" of such mechanisms. These customers—that is, those 
who develop software for the functions that will run in the partitions of an IMA 
architecture—are assured that their software will be as well protected in a partition 
as if it had its own dedicated system, but they are not provided with a concrete 
environment in which to develop, test, and certify that software. The Gold Standard 
implies that the environment provided by the partitioned system to a particular ap- 
plication function must be indistinguishable from an idealized system dedicated to 
that function alone, but this idealized system is just that—an imaginary artifact— 
and not one suitable for testing and evaluating real-world software. The only en- 
vironment actually available is the partitioned system itself, so its customers need 
a contract expressed in terms of that environment. This can be done as follows:4 

instead of comparing the environment perceived by the software in a partition to 
that of an idealized, dedicated system, we require that the environment (whatever 
it is) is one that is totally unaffected by the behavior of software in other partitions. 
This leads to the following alternative statement of our Gold Standard. 

Alternative Gold Standard for Partitioning 

The behavior and performance of software in one partition must be un- 
affected by the software in other partitions. 

This formulation is not only simpler and more direct than that involving an 
idealized system, but it also suggests how the customers of a partitioned system 
can develop and evaluate their software—for if software in one partition is unaf- 
fected by that in other partitions, it will run the same (in terms of both behavior 
and performance) whether the other partitions are inhabited or empty. Thus, in 
particular, individual software functions can be developed and certified using the 
real environment of the partitioned system, but with the other partitions empty 
(or, more likely, containing stubs to provide the data sources and sinks required 
by the function under examination).  The Alternative Gold Standard ensures that 

4I am grateful to David Hardin, Dave Greve, and Matt Wilding of Collins Commercial Avionics 
for explaining this approach and its motivation to me [111]. 
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the certified software will behave exactly the same when those other partitions are 
inhabited by real (and possibly faulty) functions. 

A problem with the Alternative Gold Standard is apparent in the mention of 
"data sources and sinks" in the discussion above: software functions residing in sep- 
arate partitions are seldom completely independent—some provide data or control 
inputs to others. This means that "unaffected by the software in other partitions" 
needs to be qualified in some way that allows the effects of intended communica- 
tions while excluding those that are unintended. Thus, although the Alternative 
Gold Standard is more attractive than the original one as a requirements definition 
for partitioning isolated functions, it needs further development before it can serve 
as a gold standard for the more general case of partitioned but interacting functions. 
When restricted to isolated functions, the basic and the Alternative Gold Standards 
are very similar; indeed, if suitably formalized, each would be definable in terms of 
the other. 

The original formulation of the Gold Standard has the advantage that it fo- 
cuses attention on the structural differences between a partitioned system and a 
federated one. These structural differences introduce two classes of hazards into a 
partitioned system: a fault in one partition could corrupt code, control signals, or 
data (in memory or in transit) belonging to another, or it could affect the ability 
of another partition to obtain access to, or service from, a shared resource (such as 
the processor or a bus). In considering issues in the design and assurance of par- 
titioned systems, it is therefore useful to distinguish two dimensions—spatial and 
temporal—corresponding to these two classes of hazards. 

Spatial Partitioning 

Spatial partitioning must ensure that software in one partition cannot 
change the software or private data of another partition (either in mem- 
ory or in transit), nor command the private devices or actuators of other 
partitions. 

Temporal Partitioning 

Temporal partitioning must ensure that the service received from shared 
resources by the software in one partition cannot be affected by the soft- 
ware in another partition. This includes the performance of the resource 
concerned, as well as the rate, latency, jitter, and duration of scheduled 
access to it. 

The mechanisms of partitioning must block the spatial and temporal pathways 
for fault propagation by interposing themselves between avionics software functions 
and the shared resources that they use. In this way, the partitioning mechanisms 
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can control or "mediate" access to shared resources. In the next chapter, we consider 
the mechanisms that can be used to provide mediation in each of the two dimensions 
of partitioning. 
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Chapter 3 

Issues and Mechanisms 

As discussed in the previous chapter, issues in partitioning arise at two levels: within 
a single processor, and across a distributed system. Issues in partitioning also in- 
teract with those in fault tolerance. We consider these topics separately below, and 
further separate them into consideration of spatial and temporal partitioning. 

3.1    Partitioning Within a Single Processor 

We start by considering partitioning within a single processor. We sometimes use the 
neutral term application to refer to the computational entity within each partition; 
this could be a complete avionics function (e.g., a yaw damper), or a part of one. 
Depending on the implementation, an application could correspond to the operating 
system notions of process or virtual machine, or it could be some different notion. 
An application will generally be composed of smaller units of computation that are 
called or scheduled separately; we generally refer to these as tasks. Again depending 
on the implementation, these may correspond to an operating system notion such 
as thread or lightweight process. Partitioning must prevent applications interfering 
with one another, but the tasks within a single application are not protected from 
each other. We focus first on partitioning in the spatial dimension. 

3.1.1    Spatial Partitioning 

The basic concern of spatial partitioning is the possibility that software in one 
partition might write into the memory of another: memory is often pictured as a 
one- or two-dimensional grid, hence the reference to the spatial dimension for this 
aspect of partitioning. Memory includes that used to store programs as well as data, 
although in embedded systems it is sometimes possible to hold the former in ROM, 
where it cannot be overwritten by errant software. 
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Hardware mediation provided by a memory management unit (MMU) is the 
usual way to guard against violations of spatial partitioning. The details vary from 
one processor design to another, but the basic idea is that the processor has (at 
least) two modes of operation and, when it is in "user" mode, all accesses to memory 
addresses are either checked or translated using tables held in the MMU. A layer of 
operating system software (generally called the kernel) manages the MMU tables so 
that the memory locations that can be read and written in each partition are disjoint 
(apart, possibly, from certain locations used for inter-partition communications). 
The kernel also uses the MMU to protect itself from being modified by software 
in its client partitions, and must be careful to manage the user/supervisor mode 
distinctions of the processor correctly to ensure that the mediation provided by the 
MMU cannot be bypassed. (In particular, entry and exit from the kernel needs to 
be handled carefully so that software in a partition cannot gain supervisor mode; 
some processors have had design flaws that make this especially difficult [44].) 

Software executing in a partition accesses processor registers such as accumula- 
tors and index registers as well as memory. Generally, the kernel arranges things so 
that the software in one partition executes for a while, then another partition is given 
control, and so on; when one partition is suspended and another started, the kernel 
first saves the contents of all the processor registers in memory locations dedicated 
to the partition being suspended, and then reloads the registers (including those in 
the MMU that determine which memory locations are accessible) with values saved 
for the partition that executes next. The software in the partition resumes where 
it left off and cannot tell (apart from the passage of time while it was suspended) 
that it is sharing the processor with other partitions. 

The description just given resembles classical time-sharing, where partitions can 
be suspended at arbitrary points and resumed later. Some variations are possible 
for embedded systems. For example, if partitions are guaranteed an uninterruptible 
time slice of known duration, they can be expected to have finished their tasks before 
being suspended and can then be restarted in some standard state, rather than 
resumed where they left off. This eliminates the cost of saving the processor registers 
when a partition is suspended (but at least some of them—including the program 
counter—must be restored to standard values when the partition is restarted). We 
can refer to the two types of partition swapping arrangements as the restoration and 
restart models, respectively. 

In either case, the requirement on the mediation mechanisms managed by the 
kernel is that the behavior perceived across a suspension by the software in each 
partition is predictable without reference to anything external to the partition. In 
the "restoration" model, the processor state must be restored to exactly what it was 
before suspension; in the "restart" model, it must be restored to some known state. 
It may be acceptable in the latter case to specify that some registers may be "dirty" 
on restart and that the software in a partition is required to work correctly without 
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making assumptions on their initial contents—this saves the cost of restoring these 
registers to standard values (obviously, the program counter and MMU registers 
must be restored).1 The requirement to make behavior predictable across the sus- 
pension and resumption of a partition generates in turn the requirement that the 
operation of the processor must be specified precisely and accurately with respect 
to all of its registers—for it is important that register saving and restoration or 
reinitialization should not overlook visible minor registers such as condition codes 
and floating point/multimedia modes, and that hidden registers, such as those as- 
sociated with pipelines and caches, really are hidden. (Again, processors often have 
design glitches, or errors and omission in documentation, that make it difficult to 
accomplish this [98].) 

In the approach just outlined, the mechanisms of spatial partitioning comprise 
the processor and its MMU, and the kernel. There is much advantage, from the 
point of view of assurance and formal specification, if these mechanisms are sim- 
ple. Unfortunately, commodity processors, their MMUs, and associated features 
such as memory caches, are generally designed for high performance and extensive 
functionality rather than simplicity. Although a fast processor is often desired, the 
functionality of MMUs and cache controllers generally exceeds that required for 
embedded systems; MMUs, in particular, are usually designed to provide a flexible 
virtual memory and contain large associative lookup tables—whereas for partition- 
ing, a simple fixed memory allocation scheme would be adequate.2 The latter would 
also be far less vulnerable to bit-flips caused by single-event upsets (SEUs) than a 
traditional million-transistor MMU. However, because they are usually highly inte- 
grated with their processor, it can be difficult or even impossible to replace MMUs 
and cache controllers with simpler ones, but consideration should be given to this 
issue during hardware selection. 

An alternative to spatial partitioning using hardware mediation is Software Fault 
Isolation (SFI) [107]. The idea here is similar to array bounds checking in high-level 
programming languages, except that it is applied to all memory references, not just 
those that index into arrays. By examining the machine code of the software in a 
partition, it is possible to determine the destinations of some memory references and 

1 Although partitioning has much in common with computer security, this is one aspect where 
they differ: "dirty" registers are anathema in computer security because they provide a channel 
for information flow from one partition to its successor. The issues underlying this difference are 
considered on page 75 in Chapter 4. 

MMUs are also heavily optimized for speed: in some architectures, the MMU will start a read 
from the memory using the current page map before it has determined whether that is still valid; if 
it is not valid, the MMU squashes the bus read transaction before it completes. Also, for efficiency, 
multiple copies may be maintained for some of the associative lookup tables, and these must be kept 
consistent with each other. All this is done in the context of speculative out-of-order execution, 
where providing assurance for correctness of these optimizations is nontrivial. A separate problem 
is the timing uncertainty introduced by these optimizations: ratios of 2 to 1 between average-case 
and worst-case timings are not uncommon [52] (see also http://uww.intelligentfinn.com/). 
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jumps and hence to check, statically, whether they are safe. Memory references that 
indirect through a register cannot be checked statically, so instructions are added to 
the program to check the contents of the register at runtime, immediately prior to 
its use. By using more elaborate static analysis or program verification techniques 
(e.g., to ensure that an index register has not been changed since last checked), it is 
possible to minimize the number of runtime checks; by using modest optimizations 
of this kind, an overhead of just 4% has been reported for the runtime checks of 
SFI [107]. 

Static (i.e., compile-time) analysis of information flow within individual pro- 
grams written in high-level languages has long been a topic in computer security. 
In its simplest form, some of the variables used by the program are labeled HIGH 
and some LOW, and the goal is to check whether information from a HIGH variable 
can ever influence the final value of one labeled LOW. Techniques for information 
flow analysis include approximate methods similar to typechecking [21,106] or to 
data flow analysis [6], as well as exact methods [63] and those that rely on formal 
proof [81]. It is possible that approaches based on these techniques could reduce, or 
even eliminate, the runtime overhead of SFI. 

Although SFI usually imposes a small overhead on memory references within a 
partition, it can greatly reduce the cost of controlled references or procedure calls 
across partitions (compared with hardware mediation, since the cost of a partition 
swap is avoided). However, for reasons discussed later (page 49), such cross-partition 
references may not be acceptable in some partitioned architectures, so the advantage 
would be moot in those cases. 

A disadvantage of SFI compared with hardware-mediated partitioning is that 
it imposes an additional analysis and certification cost on every program, whereas 
hardware mediation has the one-time cost of designing, implementing, and certifying 
the partitioning mechanisms of the kernel and its supporting hardware. On the other 
hand, the analysis required for SFI lends itself to powerful automation (cf. "extended 
static checking" [22], and "proof carrying code" [80]) where the certification cost 
would be transferred to the one-time cost of certifying the tools. 

Even without automation, SFI may have advantages of cost and simplicity in 
"asymmetric" applications where a single function is allocated to a processor but it 
is desired to include some less critical "nice-to-have" features. These could be parti- 
tioned from the main safety-critical function by SFI, while the latter runs unchanged. 
SFI might also be cost-effective in partitioning functions of similar assurance levels 
that already require significant analysis (e.g., two Level A functions). And SFI could 
also be used to provide additional protection within partitions (i.e., among tasks) 
established by hardware mediation. 

One concern about SFI, especially when static analysis is used to optimize away 
many of the runtime checks, is that it provides little protection against hardware 
faults (e.g., SEU-induced bit-flips) that cause memory addresses that were correct 
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when analyzed to be turned into ones that are incorrect when executed. The bad 
memory reference will be caught only if a runtime check is in the right place; a 
hardware MMU, on the other hand, mediates every reference at its time of execu- 
tion. It was earlier stated that the purpose of partitioning is to protect functions 
against faults of design and implementation in other functions, not to guard against 
hardware faults—since these could afflict the function even if it had its own ded- 
icated processor—but a hardware fault that leads to a violation of partitioning is 
not a fault that would have afflicted the function if it had its own processor, so 
it seems that the concern is legitimate. However, a little analysis shows that the 
increased exposure to hardware faults is small. Suppose the function in which we 
are interested shares its processor with n other functions of similar size, and that 
the probability of an SEU hitting any one of them is p. Suppose further that the 
probability that an SEU in one function will cause it to violate SFI partitioning and 
to afflict some other function is q. Then the probability of an SEU directly or indi- 
rectly affecting the original function changes from p to (1 + q)p when the function is 
moved from a dedicated to a shared processor. (Notice that this is independent of n: 
the chance of an SEU hitting somewhere increases by a factor of n, but the chance 
that the consequent memory error affects the function concerned is reduced by the 
same factor.) This small increase in probability is unlikely to be significant, and we 
conclude that the possibility of SEU-induced addressing errors does not invalidate 
SFI. 

Perhaps surprisingly, it is some implementations of hardware-mediated parti- 
tioning that seem more vulnerable to this kind of fault scenario. Although an SEU 
in an individual function cannot lead to a violation of partitioning when memory 
references are mediated by an MMU, an SEU in the MMU itself could be quite dan- 
gerous. If the MMU is a large device with millions of transistors, then the possibility 
of an upset cannot be overlooked, and a change to one bit in an address translation 
register may cause the memory references of one partition systematically to infringe 
on the memory of another. It seems to me that in designs where it is possible to 
provide a custom MMU, it would be prudent to ensure that this is either fault toler- 
ant, or that it merely checks rather than translates addresses (so that a double fault 
would be needed to violate partitioning); best of all might be relocation or checking 
with hardwired values. 

So far, our consideration of partitioning has considered only the processor and 
the memory, and has assumed that different partitions are meant to be isolated from 
each other; we now need to consider inter-partition communications, and devices. 
Like partitioning itself, there are two dimensions to inter-partition communication: 
the spatial dimension is concerned with where and how data is transferred from 
one partition to another, while the temporal dimension is concerned with whether 
and how synchronization is performed, and how one partition invokes services from 

30 



another. We postpone consideration of the latter topics to the discussion of temporal 
partitioning in Section 3.1.2 and focus here on the spatial dimension. 

The obvious way to communicate data from one partition to another is to copy 
it from a buffer in memory belonging to the first partition into a separate buffer in 
the memory of the second. Because only the kernel has access to the memory of 
both partitions, it must perform the copying and, since it generally runs without 
memory protection, it must check carefully against buffer overruns. A more efficient 
scheme uses a single buffer in memory locations that are among those the sending 
partition can write and the receiver can read (both MMU and SFI forms of memory 
protection can do this); data can then be copied into the shared buffer by the sending 
partition without the active participation of the kernel. The receiving partition must 
assume that the sending one can write arbitrary data anywhere in their shared 
buffers whenever it has control, and its verification must be performed under this 
assumption. It seems cleanest if separate buffers are used for each direction of 
transfer, but bidirectional buffers may also be acceptable. It is, however, important 
that separate buffers are used for each pair of partitions (otherwise, partition A 
could overwrite the data of B in C's single input buffer). 

Observe that it is important to restrict inter-partition communications to those 
that are intended: one partition should be able to send data to another only if that 
communication is authorized in the specification of the system configuration (and 
the receiving partition must then have a buffer to receive it). A related topic is 
how one partition should name the other partitions with which it communicates. 
Absolute addresses (e.g., "send this datum to Partition 7") lead to a rigid and 
fragile system organization and are to be deprecated on this account. Functional 
addresses (e.g., "send this datum to the pitch autopilot") are little better: they 
build assumptions about the system structure into individual applications and limit 
the opportunities for reuse and reconfiguration. Relative addressing (e.g., "send this 
datum out on my Port 7") allows the binding of names to specific inter-partition 
communication channels to be postponed until system configuration time (and may 
allow some dynamic reconfiguration), but requires a database to record what type of 
data or service is provided (or expected) on a given port. The best arrangement may 
be one where partitions use the type of data or service provided or expected as the 
name of the port concerned (e.g., "send this datum out on my air-data-samples 
port," or "get me an air-data-sample"); the binding of these names to inter- 
partition channels can be done during system configuration, or at runtime. In 
the latter case, we have something like a publish-subscribe architecture [82]; this 
provides excellent support for dynamic reconfiguration, but its application to life- 
critical systems is still an issue for research. (Some avionics systems use this type of 
naming or addressing scheme, but not in a way that is tightly integrated with their 
fault-tolerance mechanisms.) 
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Software in one partition should not make assumptions about when tasks in 
other partitions are scheduled (tasks within some partitions may be dynamically 
scheduled); this, combined with normally asynchronous communication, means that 
care is needed when communicating time-sensitive data. For example, a task that 
collects from its input buffer a sensor sample contributed by another partition needs 
to know when that sample was taken. The usual arrangement is to attach a time- 
stamp to the sample (since both partitions are running in the same processor, they 
have access to a common clock). However, the utility and interpretation of a sensor 
sample depends not only on its age, but also on its accuracy and the dynamics of 
the physical process being measured (e.g., an altimeter reading that is 1 second 
old is much less useful if the aircraft is landing than if it is in cruise). Some of 
these factors are likely to be much better known to the partition that provides the 
sensor sample than to the one that receives it, and duplicating the knowledge in 
both places is expensive and raises the problem of ensuring consistency. Instead, 
it seems best if the provider of the data also provides a compact description of its 
temporal interpretation. Kopetz has made an interesting proposal of this kind under 
the name temporal firewall [53,57], which exists in two variants. A phase-insensitive 
sensor sample is provided with a time and a guarantee that the sampled value is 
accurate (with respect to a specification published by the partition that provides 
it) until the indicated time. For example, suppose that engine oil temperature may 
change by at most 1% of its range per second, that its sensor is completely accurate, 
and that the data is to be guaranteed to 0.5%. Then the sensor sample will be 
provided with a time 500 ms ahead of the instant when it was sampled, and the 
receiver will know that it is safe to use the sampled value until the indicated time. 
This is much more useful than a timestamp that merely records when the sample 
was taken. A phase-sensitive temporal firewall is used for rapidly changing processes 
where state estimation is required; in addition to sensor sample and time, it provides 
the parameters needed to perform state estimation. For example, along with the 
sampled altitude it may supply vertical speed, so that altitude may be estimated 
more accurately at the time of use. 

In addition to communications between partitions, we must examine communica- 
tions between partitions and devices. Devices, which include sensors and actuators 
as well as peripherals such as mass storage, have implications for both temporal and 
spatial partitioning. Most devices raise an interrupt when data is available, or when 
they need service. Such interrupts affect the timing and locus of control, and con- 
sideration of their impact is postponed to the discussion on temporal partitioning in 
Section 3.1.2; here we concentrate on the relationship of devices to spatial partition- 
ing. Devices impact spatial partitioning in three ways: they need to be protected 
against access by the wrong partition, they must not be allowed to become agents 
for violating partitioning, and they may themselves need to be partitioned. 
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The simplest case is where a device "belongs" to some partition and should not 
be accessed by others. Most modern processors use memory-mapped I/O, mean- 
ing that interaction with devices is conducted by reading and writing to registers 
that are referenced like ordinary memory locations. In these cases, the mechanisms 
(MMU or SFI) used to provide ordinary memory protection can also protect devices. 
If memory protection is insufficiently fine-grained to permit devices to be allocated 
to partitions as desired, then it will be necessary to create special device manage- 
ment partitions that own several devices but are trusted to keep them separate. 
Similar arrangements will be necessary if several devices are attached to a data bus 
or remote data concentrator (and may also be useful if multicast communication 
services are desired). Of course, the trust in such "multiplexing" partitions needs 
to be justified by suitable verification and assurance. An alternative to providing 
device management partitions is to perform these functions in the kernel. The ar- 
gument against doing this is that the properties of the kernel must be assured to a 
very high degree, so there is much advantage to keeping its functionality as simple as 
possible. It should be easier to provide assurance for a kernel that provides memory 
protection, plus separate device management partitions, than for a kernel having 
both functions. 

Some devices may be shared by more than one partition. Such devices come 
in two forms: those that need protection and those that do not. An example of 
the former is a sensor that periodically places a sample in a device register. There 
seems no harm in allowing two partitions both to have read access to the memory 
location containing that device register. Devices that accept commands are more 
problematical in that faulty software in one partition may issue commands that 
render the device inoperable or otherwise unavailable to other partitions. Protection 
by a special device management partition seems necessary to mediate access in 
these cases. (The Clementine spacecraft was lost when a software fault caused 
garbage to be sent over an unmediated bus, where it was interpreted by an attached 
device as a command to fire all the thrusters without limit.) Notice that such a 
device management partition must play a more active role in checking or controlling 
the device than the simple "multiplexing" device management partitions described 
earlier. 

Device management partitions also are necessary to mediate access to truly 
shared devices such as mass storage. In these cases, it is usual for the device manager 
to synthesize a service (e.g., a file system) rather than just mediate access to the raw 
device (e.g., a disk), and to partition the service appropriately (e.g., with a separate 
"virtual" file system for each client partition). A device manager of this kind poses 
challenges to assurance that are similar to those of the main memory partitioning 
mechanism, since flaws could allow one client partition to write into areas intended 
for another. 
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Mass storage and other devices that transfer large amounts of data at high 
speed generally do so by direct memory access (DMA) rather than through memory- 
mapped device registers (which are limited to a few bytes at a time). Depending 
on the processor and memory architecture, DMA devices may be able to address 
memory directly, without the mediation of the MMU. This arrangement has the 
potential to violate partitioning since faulty software may instruct the device to 
use a region of memory belonging to some partition other than its own; a fault in 
the device itself could have a similar effect. A simple solution is to interpose some 
checking or limiting mechanism into the device's memory address lines (e.g., by 
cutting or hard-wiring some of them) so that the range of addresses it can generate 
is restricted to lie within that of the partition that manages it. Another solution is 
to isolate each DMA device to a private bus with a dual-ported memory bridging 
the private and main system buses. 

3.1.2    Temporal Partitioning 

Our context is real-time embedded systems, where correctness requires not only that 
the right results are produced, but that they are produced at the right time. The 
concern of temporal partitioning is to ensure that activities in one partition do not 
disturb the timing of events in other partitions. 

The most gross concerns are that faulty software in one partition might mo- 
nopolize the CPU, or that it might crash the system or issue a HALT instruction— 
effectively denying service to all other partitions. Other scenarios that can cause 
a partition to fail to relinquish the CPU on time include simple schedule overruns, 
where particular parameter values cause a computation to take longer than its al- 
lotted time, and runaway executions, where a program gets stuck in a loop. 

Although their manifestations are in the temporal dimension, system crashes 
and instructions that halt the CPU are usually prevented by the mechanisms of 
spatial partitioning. In particular, HALT and other dangerous instructions usually 
cannot be issued (or, rather, they cause a trap to the kernel) when in user mode. 
There are reports, however, that some steppings of some commodity processors 
have untrapped instructions that can halt the CPU, or user-mode instructions that 
can "hang" when supplied with certain parameters (e.g., see http://www.x86.org; 
also [98] notes 102 bugs reported up to 1995 in various versions and steppings of 
the Intel 80X86 architecture, while [8] documents a comparable number in later 
processors). It is important to know these characteristics of the precise stepping of 
the processor employed (which may require a nondisclosure agreement), but it is 
difficult to provide a complete solution to such untrapped hardware flaws. Perhaps 
the best that can be done is to use SFI-like techniques and to scan the machine code 
of each application and insert runtime checks as necessary to prevent execution of 
dangerous instructions or parameter values (a purely static check will be inadequate 
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if parameter values can be constructed or modified—either under program control 
or by an SEU—at runtime). 

The last-ditch escape from a halted or locked-up CPU is a watchdog timer in- 
terrupt managed by the kernel. This is not certain to provide recovery, however, 
unless the basic kernel design is correct: for example, design faults in the Magellan 
spacecraft led to a runaway execution in which a program sat in a loop that did 
nothing but reset the watchdog timer [18, pp. 209-221] [26,51],3 and not all halted 
or "hung" processors respond to the timer interrupt. Recovery in these dire cases 
usually depends on a system reset (or cycling the power supply, which causes a re- 
set), which may be invoked either manually or by other components in a distributed 
fault-tolerant system (which is how Magellan recovered). 

Runaway executions in the kernel, lockups, and untrapped halt instructions 
could all afflict a processor dedicated to a single function, and so their treatment is 
more in the domain of system-level design verification or fault tolerance than parti- 
tioning. Overruns or runaways within a function, however, are genuinely the concern 
of partitioning and are usually controlled through timer interrupts managed by the 
kernel: the kernel sets a timer when it gives control to a partition; if the partition 
does not relinquish control voluntarily before its time is up, the timer interrupt will 
activate the kernel, which then will then take control away from the overrunning 
partition and give it to another partition under the same constraints. 

Merely taking control away from an overrunning partition does not guarantee 
that other partitions will be able to proceed, however, for the overrunning partition 
could be holding some shared device or other resource that is needed by those 
other partitions. The kernel could break any locks held by the errant partition and 
forcibly seize the resource, but this may do little good if the resource has been left 
in an inconsistent state. These considerations reinforce the earlier conclusion that 
devices and other resources cannot be directly shared across partitions. Instead, a 
management partition must own the resource and must manage it in such a way 
that behavior by one client partition cannot affect the service received by another. 

Another problem can arise if the overrunning partition is performing some service 
on behalf of another partition: it will generally be necessary to notify the invoking 
partition (the next time it is scheduled) of the failure of the service provided by 
the other. The invoking partition must have enough fault tolerance that it can 
do something sensible despite the failure of the service. It may also be necessary 
for the kernel to perform some remedial action on the partition that overran its 

3The flaw in Magellan was in the design of its kernel (sensitive data structures were manipulated 
outside the protection of a critical section, so an interrupt could leave them in an inconsistent state). 
Such flaws would be unconscionable in a safety-critical system: the design of the core hardware 
and software mechanisms simply have to be correct in these systems. In addition to skilled and 
experienced designers, formal methods of specification and analysis may be valuable for this purpose 
(design diversity is implausible at these levels). 
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allocation. This could force that partition to do a restart next time it is scheduled, 
or could simply notify the partition of its failure and leave recovery (e.g., the killing 
of orphans) to the operating system functions resident in that partition. 

Timeout mechanisms such as those just described ensure that each partition will 
get enough access to the CPU and other resources, but real-time systems need more 
than this: the tasks within partitions need to get access to the CPU and to devices 
and other resources at the right time, and with great predictability. This means 
that discussion of temporal partitioning cannot be divorced from consideration of 
scheduling issues. The real-time tasks within a partition generally consist of iterative 
tasks that must be run at some fixed frequency (e.g., 20 times a second) and sporadic 
tasks that run in response to some event (e.g., when the pilot presses a button); 
iterative tasks often require tight bounds on jitter, meaning that they must sample 
sensors or deliver outputs to their actuators at very precise instants (e.g., within a 
millisecond of their deadline), and sporadic tasks often have tight bounds on latency, 
meaning that they must deliver an output within some short interval of the event 
that triggered them. 

There are two basic ways to schedule a real-time system: statically or dynami- 
cally. In a static schedule, a list of tasks is executed cyclically at a fixed rate. Tasks 
that need to be executed at a faster rate are allocated multiple slots in the task 
schedule. Even sporadic tasks are scheduled cyclically (to poll for input and process 
it if present). The maximum execution time of each task is calculated, and sufficient 
time is allocated within the schedule to allow it to run to completion: thus, one task 
never interrupts execution of another (although a task may be terminated if it ex- 
ceeds its allocation). Notice that this means that a long-duration task may need 
to be broken into several smaller pieces to make room for short tasks with higher 
iteration rates. The schedule is calculated during system development and is not 
changed at runtime (although it may be possible to select among a fixed collection 
of different schedules at runtime according to the current operating mode). 

In a dynamic schedule, on the other hand, the choice and timing of which tasks to 
dispatch is decided at runtime. The usual approach allocates a fixed priority to each 
task, and the system always runs the highest-priority task that is ready for execution. 
If a high-priority task becomes ready (e.g., due to a timer or external interrupt) 
while a lower-priority task is running, the lower-priority task is interrupted and the 
high-priority task is allowed to run. Note that this requires a context-switching 
mechanism to save and later restore the state of the interrupted task. The challenge 
in dynamic scheduling is to allocate priorities to tasks in such a way that overall 
system behavior is predictable and all deadlines are satisfied. Originally, various 
plausible and ad-hoc schemes were tried (such as allocating priorities on the basis 
of "importance"), but the field is now dominated by the rate monotonic scheduling 
(RMS) scheme of Liu and Layland [66]. Under RMS, priorities are simply allocated 
on the basis of iteration rate (the highest priorities going to the tasks with the highest 
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rates) and, under certain simplifying assumptions, it can be shown that all tasks will 
meet their deadlines as long as the utilization of the processor does not exceed 69% 
(the natural logarithm of 2—higher utilizations are possible when the task iteration 
rates satisfy certain relationships). Some of the simplifying assumptions (e.g., that 
the context-switch time is zero, and that tasks do not share resources) have been 
lifted or reduced recently [62,69,96]. 

The choice between static and dynamic scheduling is a contentious one (Locke 
[67] provides a good discussion). The basic arguments in favor of static scheduling 
are its complete predictability and the simplicity of its implementation; the argu- 
ments against are that all tasks must run at a multiple of the basic iteration rate (so 
that some run more or less frequently than is ideal for their control function), the 
handling of sporadic tasks is wasteful, and long-running tasks must be broken into 
multiple, separately scheduled pieces (to make room for tasks with faster iteration 
rates). The arguments in favor of dynamic scheduling are that it is more flexible 
and copes better with occasional task overruns; the arguments against hinge on 
the difficulty of giving complete assurance that a given task set will always meet 
its deadlines under all circumstances. (The factors that must be considered are 
complex and not all are fully characterized; errors of understanding or judgment 
are not uncommon. For example, the much publicized communications breakdowns 
between the 1997 Mars Pathfinder and its Sojourner rover were due to priority in- 
versions in its RMS scheduler.4 Priority inversions are a well-understood problem in 
dynamically scheduled systems, with a well-characterized solution called "priority 
inheritance" [20,96] that was available, but not used, in the commercial real-time 
executive used for Pathfinder.) 

The mechanisms of both static and dynamic scheduling have to be modified to 
operate in a partitioned environment, and these modifications change some tradi- 
tional expectations about the tradeoffs between the two approaches; in addition, 
partitioning creates opportunities for hybrid approaches that combine elements of 
both basic mechanisms. The traditional scheduling problem is to ensure satisfac- 
tion of all deadlines, given information about the rate and duration of the tasks 
concerned. It is assumed that this information is accurate; if it is not—if, for ex- 
ample, some task runs longer or requests service more often than expected—then 
the system may fail. When all the tasks in the system are contributing to some 
single application, such a failure may be undesirable but will not have repercussions 
beyond those consequent on the failure of the application concerned. In a parti- 
tioned system, however, it is necessary to ensure that faulty assumptions about the 
temporal behavior of tasks belonging to one application cannot affect the temporal 
behavior of applications in different partitions. 

See http://www.research.microsoft.com/reseEurch/os/mbj/Mars_Pathfinder/ 

Authoritative_Account.html. 
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There seem to be two ways to achieve this temporal partitioning: one is a two- 
level structure in which the kernel schedules partitions, with the application in each 
partition then responsible for locally scheduling its own tasks; the other is a single- 
level structure in which the kernel schedules tasks, but with a quota system to limit 
the consequences of any faults—or faulty assumptions—to the partition that is in 
violation. 

The first approach usually employs static scheduling at the partition level: the 
kernel guarantees service to each partition for specified durations at a specified fre- 
quency (e.g., 20 ms every 100 ms) and the partitions then schedule their tasks within 
their individual allocations in any way they choose; in particular, partitions may use 
dynamic scheduling for their own tasks. Any partition that schedules its tasks dy- 
namically must provide a mechanism for interrupting one task in favor of another. 
Such support for task swapping is one of the reasons for preferring dynamic over 
static scheduling: it simplifies application programming by allowing long-running, 
low-frequency tasks to be interrupted by shorter high-frequency tasks, whereas stat- 
ically scheduled systems have to break long-running tasks into separately scheduled 
fragments that perform their own saving and restoration of local state data to cre- 
ate room for the higher-frequency tasks. If partition swapping uses the restoration 
model, however, it provides an alternative mechanism for dealing with long-running 
tasks within a statically scheduled environment: a single application can be divided 
into parts that are allocated to separate partitions that are scheduled at differ- 
ent rates. The partition-swapping mechanism then takes care of interrupting and 
restoring the long-running tasks, thereby simplifying their construction. 

Opportunities such as this make static scheduling for both partitions and tasks 
relatively attractive. Conversely, the constraints of static partition scheduling render 
its combination with dynamic task scheduling rather less attractive. One of the 
conveniences of dynamic scheduling is that it allows new tasks to be introduced—or 
the frequency and duration of existing tasks to be changed—with relative ease. But 
this ease is vitiated when partitions are statically scheduled because, for example, 
a new 10-Hz task can only be fitted into a partition that is already scheduled at 
this rate (or some multiple of it), so that the rigidity of the partition-scheduling 
mechanism dominates any flexibility in task scheduling. 

This drawback could be overcome, however, if partitions could be scheduled at 
iteration rates very much higher than those of any task—say 1,000 times a second. 
Under the restoration model of partition swapping, a partition that is scheduled at 
such a rate and that is guaranteed, say, one tenth of the CPU (i.e., 100 /is every 
millisecond) could, for most purposes, be regarded as running continuously on a CPU 
that has one tenth the power of the real one, and its tasks could be dynamically 
scheduled without regard to the underlying partition schedule. Partition swaps 
are relatively expensive on traditional processors (because there is a large amount 
of state information that has to be saved and restored) and this renders kilohertz 
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partition schedules infeasible on such hardware (all the resources of the system would 
be expended in swapping). However, specialized processors are under development 
where partition swapping is performed at the microcode and hardware levels, and 
these are believed to be capable of supporting partition schedules in the kilohertz 
range with no more than 5% to 10% of the system resources expended on swapping. 
Notice that the task swapping required for dynamic scheduling within each partition 
can be relatively lightweight (since tasks within a partition are not protected from 
each other) and will be activated at a frequency comparable to the fastest task 
iteration rate and not the much faster partition swapping going on beneath it. 

The radical combination of a static partition schedule operating at kilohertz rates 
and dynamic task scheduling within each partition is an attractive one: it seems to 
provide both the convenience of dynamic scheduling and the predictability of static 
scheduling. However, one of the conveniences of dynamic scheduling is the ease with 
which it can accommodate aperiodic activities driven by external events, such as 
operator (e.g., pilot) inputs and device interrupts, and it requires care to support 
this on top of static partition scheduling—even when this is running at kilohertz 
rates. The basic concern is that external events of interest to one partition must 
not disturb the temporal behavior of other partitions. If partitions are scheduled 
dynamically, use of suitable quota schemes can allow temporal predictability to 
coexist with aperiodic event-driven task activations (this is discussed on page 50), 
but static partition scheduling ensures predictability through temporal determinism 
and this imposes strong restrictions on event-driven activations. 

First and most obviously, a static partition schedule does not allow an external 
event to initiate a partition swap: the partition schedule is driven strictly by the 
processor's internal clock, so that if an event requires the services of a task in a 
partition other than the current one, it must wait until the next regularly scheduled 
activation of the partition concerned. This increases latency, but may not be a 
problem if partitions are scheduled at kilohertz rates. Less obvious, perhaps, are 
the consequences of the requirement that the currently executing partition should 
see no temporal impact from the arrival of events destined for other partitions. 
Even the cost of a kernel activation to latch an interrupt for delivery to a later 
partition reduces availability of the CPU to the current partition and must be strictly 
controlled. It is possible to add padding to the time allocated to each partition to 
allow for the cost of kernel activity used to latch some predicted number of interrupts 
for other partitions. But this makes temporal correctness of one partition dependent 
on the accuracy of information provided by others (i.e., the number and rate of their 
external events)—and even originally accurate information may become useless if a 
fault causes some device to generate interrupts constantly. 

This concern is a manifestation of a more general issue: temporal partitioning 
requires not only that each partition has access to the resources of the system at 
guaranteed intervals, but that those resources provide their expected performance. 
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A CPU whose performance is degraded by the cost of latching interrupts for later 
delivery is just one example; others include a memory subsystem degraded by DMA 
transfers on behalf of other partitions, or an I/O subsystem that is busy on their 
behalf. 

Under static partition scheduling, temporal partitioning is predicated on deter- 
minism: because it is difficult to bound the behavior of faulty partitions, the avail- 
ability and performance of each resource is ensured by guaranteeing that no other 
partition can initiate any activity that will compete with the partition scheduled to 
access the resource. This means that no CPU or memory cycles may be consumed 
other than at the behest of the software in the currently scheduled partition. Thus, 
in particular, there can be no servicing of device interrupts, nor cycle-stealing DMA 
transfers other than those initiated by the current partition. These requirements can 
be violated in two ways: a previously scheduled partition may have had some I/O 
activity pending when it was suspended, or the external environment may generate 
an interrupt spontaneously (e.g., to indicate that a button has been pressed). 

Draconian measures seem necessary to prevent these sources of temporal uncer- 
tainty. External events either should not generate interrupts (the relevant partition 
should poll for the event instead), or it should be possible to defer handling them 
until the relevant partition is running (whether this is possible depends on the na- 
ture of the device and the interrupt, and on how selectively the CPU architecture 
allows interrupts to be masked off). Similarly, interrupts due to pending I/O from 
a device commanded by a previous partition should be masked off. If interrupts 
cannot be masked with sufficient selectivity, we could require the kernel to issue 
commands that quiet the devices of the previous partition as part of the process of 
suspending that partition and starting the next. Alternatively, if devices go quiet 
when uncommanded for some short time, the kernel could make the device registers 
unavailable (e.g., by changing the MMU table) during the final few milliseconds of 
each partition's schedule. 

The restrictions just described as necessary to ensure that temporal correctness 
of tasks in one partition are unaffected by software in other partitions have con- 
sequences for inter-partition communications. With static scheduling of partitions, 
a task that needs the services of software in another partition (e.g., to access a 
shared device) cannot simply issue a procedure call. In fact, there can be no syn- 
chronous services (i.e., where the caller blocks and waits for the service provider 
to reply) across partitions because (a) one partition should not depend on another 
(that may be faulty) to unblock its progress, and (b) it would impose a large per- 
formance penalty: the caller would block at least until its next slot in the schedule 
after the service provider's slot. Instead, all inter-partition communication must be 
asynchronous (where the caller places requests in the input buffers of tasks in other 
partitions and continues execution; when next activated, it looks in its own input 
buffers for replies, requests, and unsolicited data from other partitions).   Because 
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faulty software could generate an excessive number of requests for service by another 
partition, it seems necessary that fixed quotas should be imposed on the number or 
rate of service requests that will be honored from each partition. 

Some of the restrictions that are necessary when partitions are scheduled stati- 
cally may possibly be relaxed when they are scheduled dynamically. It makes little 
sense to schedule partitions dynamically and tasks statically, and when both parti- 
tions and tasks are scheduled dynamically there is little point in maintaining two 
levels of scheduling, so the unit of scheduling will actually be the task. However, the 
concern for temporal partitioning will influence which tasks are eligible for execution. 
Whereas static scheduling ensures temporal partitioning through strict preplanned 
determinism, dynamic scheduling relies on theorems from the mathematical study 
of (for example) RMS. There are two problems in applying this theory in the con- 
text of partitioning: one is that a faulty partition may violate the assumptions 
underlying the theorem concerned; the other (related) problem is that the simplest 
(and therefore, for life-critical applications, preferred) theorems make the strongest 
assumptions (e.g., that context switches take no time), whereas those with more 
realistic assumptions rest on more elaborate and less well-established theory. Both 
problems can probably be overcome by having the kernel and its scheduler enforce 
quotas. 

For example, if schedulability of a task set is predicated on a given partition tak- 
ing no more than 20% of the available time in each cycle, then the kernel can simply 
refuse to make any of its tasks eligible for scheduling once that 20% quota has been 
reached. The problem with this simple scheme is that a faulty partition may con- 
sume its quota in very many small bursts (or a device may generate interrupts at a 
rapid rate). The many partition swaps entailed thereby may have a more deleterious 
effect on the tasks of other partitions than the CPU time directly consumed by the 
faulty task. A plausible way to overcome this problem is to subtract the cost of a 
partition swap (and the performance degradation caused by disturbing the caches) 
from the quota of the task that causes it. Quotas managed in this way provide 
many of the guarantees of static scheduling while retaining some of the flexibility of 
dynamic scheduling. For example, such a scheme could allow synchronous as well as 
asynchronous inter-partition communications, together with the ability to service 
aperiodic events and interrupts. (Modern operating systems such as Scout use a 
somewhat similar approach, in which accounting for resource usage is performed 
on abstractions called paths [102].) However, many of the restrictions and concerns 
discussed for static partition scheduling remain relevant for dynamic scheduling: 
for example, it still seems necessary to eliminate cycle-stealing DMA transfers and 
other performance-degrading activities that cannot easily be controlled by quotas, 
and it is also necessary to ensure that interrupts for a partition that has exceeded 
its quota are masked or latched at truly zero cost. Other potential sources of cross- 
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partition interference such as locks and semaphores must also be suitably controlled 
(probably by elimination). 

Quota-based dynamic scheduling may provide simple guarantees that the tasks 
of nonfaulty partitions receive their expected allocations (i.e., they receive enough 
time), but guarantees that they will hit their deadlines (i.e., they get it at the 
right time) are more problematical (there are, for example, scenarios under RMS 
where the early completion of one task causes another to miss its deadline [85]). 
In practice, relatively few tasks may need to be scheduled with great temporal 
precision: it is generally necessary to sample sensors and control actuators with 
very low jitter, but it does not greatly matter when the control laws are evaluated 
provided their results are ready when needed. Thus, we can envisage a scheme in 
which certain tasks (those associated with sensors and actuators) are guaranteed to 
execute with great temporal accuracy, while others are guaranteed only to get their 
allocation of resources sometime during their period. To achieve this, the sensor 
and actuator tasks could run in separate processors that are statically scheduled 
(and communicate with the dynamically scheduled computational tasks through 
dual-ported memory), or they could run at the highest priority in the dynamically 
scheduled system; justification for the latter scheme would require deeper theorems 
than the former. 

Whether partitions and tasks are statically or dynamically scheduled, the kernel 
must collaborate with other software to provide some of the services of an oper- 
ating system—at the very least it will be necessary to service interrupts. Under 
static partition scheduling, interrupts from external devices are allowed only when 
their partition is running; this means it is possible to vector interrupts directly to 
handlers in the partition, rather than handle them in the kernel. The advantage of 
the former arrangement is that it minimizes the complexity of the kernel; its diffi- 
culty is that interrupts are often vectored in supervisor mode, which can threaten 
hardware-mediated spatial partitioning. Compromise arrangements have the kernel 
fielding the hardware interrupt, but then passing it in a safe way to the partition 
for service. Arguments against device handling in a partition are that this really 
is an operating system service that is better done by an operating system. A con- 
ventional operating system is unattractive in a partitioned environment because, as 
portrayed in Figure 2.1(a) on page 27, it is a large shared resource that must be 
shown to respect partitioning as well as to be free of other faults. A more suitable 
arrangement provides operating system services separately within each partition, as 
portrayed previously in Figure 2.1(b). This arrangement has the additional bene- 
fit that different partitions can use different sets of operating system services: for 
example (see Figure 3.1 on page 52), a critical function might use a minimal set of 
services (Partition C), while a less critical but more complex function might employ 
something close to a COTS operating system (Partition B), and a device manage- 
ment partition might consist largely of standardized operating system services for 
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device management. Operating system services cannot affect basic partitioning in 
this arrangement; however, they must be used with great circumspection in parti- 
tions that encapsulate a shared service or resource (e.g., a partition that provides 
a shared file system). Such partitions are logically an extension of the kernel and 
must be shown to partition their service or resource appropriately—which is likely 
to be more difficult the more software they contain. 

Partition A 
Partition B 

Device Management 
Partition 

Partition C 

OS Services for 
Device Management OS Services B 

OS Services A 
OS Services C 

Kernel 

Hardware 

Figure 3.1: Different Operating System Software for Different Partitions 

3.2    Partitioning Across a Distributed System 

A distributed system resembles our original Gold Standard—a separate processor 
for each partition—more closely than a single shared processor, and might seem to 
raise few new issues with respect to partitioning: if we accept that the partition- 
ing mechanisms employed within individual processors are sound, then connecting 
several such systems together surely cannot do any harm. This would be true if we 
could arrange dedicated physical point-to-point communications between partitions 
in different processors, but the only physical communications that can be provided 
are between processors. This limitation has a fairly significant impact, which is 
compounded when we consider shared communications, such as buses. 

To start with, suppose we wish to communicate data from partition a\ of pro- 
cessor A to partition 61 in a different processor B, and that we have a suitable 
communications line from A to B. Interrupts will be generated at B as the data 
starts to arrive and, as we discovered in the previous section, some care is needed 
to ensure that these do not disturb temporal partitioning in B. If B is dynamically 
scheduled, the quota schemes discussed previously may be all that is needed, but 
matters can be more complicated when partitions are scheduled statically.  Under 
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static scheduling, we must require either that the interrupts can be latched at no 
cost until the scheduled execution of partition b\ (partitions must be scheduled at 
high-frequency to make it feasible to service communications in this way), or that 
partition b\ (or some device management partition that handles the communications 
line) is guaranteed to be executing when the interrupts arrive. The latter clearly re- 
quires synchronization between the partition schedules of processors A and B and, 
by extension to other processors, this implies global synchronization of schedules 
across all processors. 

The only way to avoid these consequences when static partition scheduling is 
employed is to have a data concentrator device at B that buffers incoming data 
without imposing a load on the CPU or its buses. The partition 61 can then retrieve 
incoming data from the data concentrator as part of its normally scheduled activ- 
ity. A more aggressive design would allow the data concentrator to write incoming 
data directly into buffers associated with each partition using dual-ported RAM. 
Even these designs do not necessarily eliminate the need for global synchronization, 
however, because of the need to control "babbling idiot" failures in partitions and 
processors. 

These are failures where a transmitter sends data constantly, possibly over- 
whelming its recipient, or denying service to other transmitters. One scenario would 
be a runaway in partition a\ that causes it to transmit to 61 throughout its scheduled 
execution. We need to be sure that this heavy load on the communications line from 
A does not affect the ability of the recipient {B or its data concentrator) to service 
its other lines. This requires either some kind of quota scheme at the recipient, or 
a global schedule that excludes simultaneous transmissions. A babbling partition 
can do so only during its scheduled execution, so a global schedule may be able 
to ensure that no two processors simultaneously schedule partitions that transmit 
to the same recipient. An alternative if a,\ does not drive the communications line 
directly, but instead sends data to a device management partition, is for the man- 
agement partition to impose a quota on the quantity of data that it will accept from 
any one partition. A babbling processor is an even more serious problem than a 
babbling partition; either the recipient must be able to tolerate the fault, or it must 
be prevented at the transmitter—mechanisms to do this are discussed below in the 
context of bus communications. 

The measures discussed above address temporal partitioning in inter-processor 
communications; we also need to consider spatial partitioning. The spatial dimen- 
sion to partitioning requires mechanisms to ensure that partition a\ of processor 
A can send data to partition 61 in a different processor B only if that communi- 
cation is authorized. No additional mechanisms are required to ensure this when 
a communication line is dedicated to a specific inter-partition channel; additional 
mechanisms are needed, however, when one line is shared among multiple receiving 
partitions.   In this case, the address of the intended recipient must be indicated 

44 



in each transmission. This can be done explicitly by including the address in the 
data transmitted, or implicitly through the time at which it is sent (the schedules of 
the sending and receiving processors must be coordinated in this case). A concern 
with explicit addresses is that a communications fault could transform a datum ad- 
dressed to partition b\ into one addressed to 62- This is a fault-tolerance issue, and 
is generally handled by checksums or similar techniques to ensure the integrity of 
transmitted data. The related partitioning issue is the concern that a fault in the 
sending partition ai could cause it to address data directly to an unauthorized re- 
cipient 62—this fault will not be detected by checksums, since it occurs outside their 
protection. The only certain way to contain this fault is to mediate the communi- 
cation with some trusted entity that has independent knowledge of the authorized 
inter-partition communications. This can be performed either at the transmitter 
(e.g., if a device management partition is used to access the communications line) 
or at the receiver (e.g., in a data concentrator). A probabilistic method to contain 
the fault is to allocate partition addresses randomly from a very large space; the 
chance that a fault in ai will cause it to manufacture the legitimate address 62 is 
then correspondingly small. In the case of implicit addresses, the concern is that 
by sending data at the wrong time, the transmitting partition will cause it to be 
received by an unintended recipient. Mediation is required to contain this fault, 
which is considered in more detail below, in the context of bus communications. 

Some architectures allow the components of a distributed system to communicate 
without adding explicit addresses to name the intended recipient. In "publish- 
subscribe" architectures [82], for example, data is tagged with a description of its 
content (e.g., air-data-samples) and recipients "subscribe" to data carrying given 
tags. These issues of naming and binding were discussed earlier (page 40) in the 
context of individual processors, and similar considerations apply here, but with the 
added concern for fault tolerance with respect to communications faults. 

Using separate communications lines to connect each pair of processors is ex- 
pensive, so buses are generally used in practice. A bus is a departure from the Gold 
Standard—it is a resource shared by all processors and all partitions—and it is 
therefore crucial to provide partitioning so that a fault in one partition or processor 
cannot affect others. The faults of greatest concern with buses are those where a 
partition or processor either babbles or fails to follow the access protocol in some 
way, so that other partitions or processors are denied timely access to the bus. 

A babbling or misbehaving partition cannot interfere with bus access by other 
partitions in its own processor (because a partition can access the bus only when 
it is scheduled), but it can interfere with access by other processors (by contending 
for the bus if this is mediated, or by sending transmissions that collide with those 
of other processors if it is not), and it may overwhelm its receivers. A babbling or 
misbehaving processor is even more disruptive than a babbling partition because 
it is not constrained by its own schedule and can monopolize the bus. Notice that 
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processor faults such as this are partitioning—not fault-tolerance—issues, because 
their consequences would not be so serious if the buses were not shared. Dual or 
multiple buses can be used, in the hope that a babbler will confine itself to just 
one of them, but this cannot be guaranteed. The only certain way to prevent 
babbling is to mediate each processor's access to the bus by some component that 
will fail independently. The question then is how does the mediator know what is 
a legitimate transmission and what is babbling? The answer depends on whether 
communications are time or event triggered. 

In a time-triggered system, transmissions are determined by a schedule, and the 
mediating component need only have an independent copy of its processor's sched- 
ule and an independent clock in order to determine whether its processor should 
be allowed to transmit on the bus. The schedules that govern time-triggered trans- 
missions can be either local or global. A local schedule treats each processor inde- 
pendently, so that different processors may contend for the bus and the receiving 
partition need not be scheduled at the same time as the transmitter. A global sched- 
ule, on the other hand, coordinates all processor and bus activity, so that there is 
no bus contention. Although it is perfectly feasible to use global scheduling with 
contention buses such as Ethernet or CAN (global synchronization means that their 
ability to resolve contention will never be exercised, but the system benefits from the 
low cost and high performance of the network interface hardware), some specialized 
buses have been developed specifically to support and exploit static global schedul- 
ing. Examples include the ARINC 659 SAFEbus™ [2,42] and the Time Triggered 
Protocol and its associated Architecture (TTP/TTA) [58]. With global scheduling, 
there is no real need to include a destination address with the data (because this 
is implicit in the time the message is sent) and some globally scheduled buses (e.g., 
ARINC 659) do eliminate explicit addresses, thereby reducing the number of bits 
that need to be communicated and increasing the useful capacity of the bus. 

The clock of a bus mediation component needs to be independent of that of 
its processor, but synchronized with it. With local scheduling, the purpose of the 
mediating component is to control the pacing of bus accesses, but not their absolute 
timing and for this purpose it is adequate for the mediator and its processor to 
synchronize locally (obviously, this must be done carefully to maintain plausibility 
of the independent failure assumption). With global scheduling, however, the clocks 
of all processors and mediators must be globally synchronized, and the mediating 
components should perform the synchronization independently of their processors. 
If clock synchronization is achieved by a high-level protocol, then the mediating 
components must be capable of interpreting the full protocol hierarchy, and this 
greatly complicates their design. For this reason, the mediating components in 
TTA (called bus guardians) do not perform independent clock synchronization, but 
take synchronizing signals from their host processors [103]. This design prevents 
babbling, but a processor that loses clock synchronization will take its bus guardian 
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with it and will still be able to access the bus at the wrong time, though only for short 
periods. However, the unsynchronized processor/guardian pair will also be unable 
to receive messages correctly (because synchronization is required to satisfy the CRC 
checks on each message), and the guardian will shut off all bus access after failing to 
receive a set number of expected messages. An alternative approach performs clock 
synchronization as a low-level protocol that can be performed by simple mediating 
components. This approach seems to require suitable electrical properties of the 
bus and its drivers. In SAFEbus, for example, the signals from separate drivers are 
OR'ed together on the bus, and this allows a very simple synchronization protocol 
that is performed directly in the mediating components (they are called Bus Interface 
Units in SAFEbus) [2]. 

Whereas globally scheduled systems guarantee that the bus will be free when 
a processor is scheduled to transmit, locally scheduled and event-triggered systems 
must cope with contention between processors attempting to transmit on the bus. In 
buses intended for control applications, contention is not resolved probabilistically 
following collisions as it is in classic Ethernet, but deterministically using preassigned 
slots (as in Echelon's LON), a circulating token (as in PROFIBUS [Process Field 
Bus] [23]), or a priority arbitration scheme (as in CAN [Controller Area Network] 
[47]) to provide distributed mutual exclusion and thereby prevent collisions. This 
determinism does not provide very strong guarantees on how long a processor must 
wait to access the bus, however. In CAN, for example, a processor that wishes to 
transmit must first wait for any current transmission to finish and then it must 
contend with any other processors that also wish to transmit. In CAN, the lowest- 
numbered processor always wins the arbitration and may therefore have to wait only 
as long as the longest message transmission, while other processors also have to wait 
while any lower-numbered processors perform their transmissions.5 It follows that 
only probabilistic guarantees can be given on the bus-access delay in such systems, 
and that these guarantees will be quite weak in the presence of faults [105], even if 
bus access is mediated to control the worst manifestations of babbling. 

It is not straightforward to mediate a processor's access to the bus when that 
access is event triggered—that is to say, triggered by the processor's internal compu- 
tations, possibly based on data it has received—for there is no way to know whether 
an event has legitimately occurred without independently copying the data received 
and reproducing the computation performed by that processor.  A master-checker 

5The Echelon LON protocol has similar characteristics: stochastic flow control is used to reduce 
the likelihood of collisions; if a collision does occur, processors back off and access the bus in 
order of their "contention slots." The main application of the LON protocol is in automating 
buildings, where tight real-time guarantees are unlikely to be required, but the Echelon web site 
http://www.lonworks.echelon.com reports that Raytheon uses this technology in its Control-By- 
Light™ fault-tolerant fiber optic distributed control system, which is currently undergoing FAA 
Part 25 certification for use in commercial aircraft; however, it seems that mechanisms in addition 
to the LON protocol are employed in this application. 
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dual-processor arrangement such as this is a very expensive way to prevent babbling. 
Redundant processors are obviously required for fault tolerance in IMA, but such 
redundancy should be managed flexibly at the system level, not committed to pair- 
ing. Without master-checker pairs, the best that can be done to control babbling in 
an event-triggered system seems to be the imposition of some limit on the rate at 
which a processor may transmit on the bus. The ARINC 629 avionics data bus [3] 
has this capability (the bus uses time slots to control access, but it can be used in 
the larger context of an event-triggered system). 

Because the purpose of partitioning is to control fault propagation, some aspects 
of partitioning are very close to fault tolerance—for example, the control of babbling 
discussed in the previous paragraphs has elements of both. Mechanisms such as these 
are needed to preserve the integrity of the service provided by an IMA architecture 
to the avionics functions that it supports. In addition, the avionics functions often 
need to be fault tolerant themselves, and an IMA architecture must therefore support 
the development of such fault-tolerant applications. There is a choice in how much 
fault tolerance should be provided by the IMA architecture, and how much by 
the functions themselves. Faults such as babbling, which are outside the control 
of any single function and that can have system-wide ramifications, must clearly 
be tolerated by mechanisms of the IMA architecture. Sensor failure, on the other 
hand, seems more naturally the responsibility of the function that uses the sensor, 
while failure of a processor seems to fall somewhere in between—the designers of the 
function may best know how to handle such a fault, but may need services provided 
by the IMA architecture to implement their strategy. 

As mentioned in Section 2.1 (page 28), the trend toward IMA runs in parallel 
with another trend toward developing avionics functions on top of a layer that 
provides standard operating system services and, possibly, additional services to 
support systematic fault tolerance. Fault tolerance in critical systems is usually 
based on active redundancy; errors are detected or masked through comparison or 
voting of the redundantly computed values. Fault tolerant architectures differ in 
whether the redundant replicas perform the same or different computations, and in 
whether their states are synchronized (to allow exact-match voting). Some of the 
architectural choices for fault tolerance are strongly contingent on other choices—for 
example, that between time- and event-triggered architectures—that are themselves 
strongly tied to choices in partitioning mechanisms. Kopetz presents persuasive 
arguments that time-triggered architectures are the best choice for critical real- 
time applications [54-56] and this choice also fits well with the requirements and 
mechanisms, discussed in the previous section, for ensuring temporal partitioning 
in a distributed system. 
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3.3    Summary 

The topics examined in this chapter show that partitioning interacts rather strongly 
with several other issues in system design: for example, scheduling, communication, 
distribution, and fault tolerance. By "interacts with" I mean that design freedom in 
these dimensions is curtailed when partitioning is a primary system goal. This is not 
necessarily a bad thing, however, because the restrictions imposed by partitioning 
are exactly those that prevent unexpected interactions among system components, 
thereby promoting compositionality (i.e., the property that components that work 
on their own continue to do so when combined with other components) and reducing 
integration costs. 

Because partitioning is critical to the safe deployment of IMA, the design and im- 
plementation of its mechanisms must be assured to very high standards. Guidelines 
for the assurance and certification of safety-critical airborne software are specified 
in the document known as DO-178B in the USA and ED-12B in Europe [84]. These 
guidelines call for a very rigorous—if traditional—process of reviews, analysis, and 
documentation; however, an appendix includes formal methods among the "alter- 
native methods" that "may be used in satisfying one or more of the objectives" 
described in the document. The idea behind formal methods is to construct a 
mathematical model of a software or system design so that calculations based on 
the model can be used to predict properties of the actual system—in much the way 
that finite element analysis of a structural model for an airplane wing can be used 
to predict mechanical properties of the actual wing. Because the appropriate math- 
ematical domain for modeling software is mathematical logic, where "calculation" is 
performed by so-called "formal deduction" (as opposed to, say aerodynamics, where 
the appropriate mathematical domain is partial differential equations, and calcu- 
lation is performed by numerical methods), this approach is referred to as use of 
"formal methods." 

The utility of calculation—as an adjunct to, or replacement for, physical 
experimentation—is well understood in other branches of engineering, and is similar 
in computer science. In fact, its utility is potentially greater in computer science 
than in other engineering disciplines because computer science deals with discrete or 
discontinuous phenomena, where experimentation and testing are of limited value 
as assurance methods. With discontinuous systems, there may be little relationship 
between the behavior of the system in one circumstance and its behavior in another 
"similar" circumstance; consequently, extrapolation from tested to untested cases 
is of doubtful validity. This contrasts with physical systems, where continuity jus- 
tifies safe extrapolation from limited test cases. Formal methods augment testing 
by allowing all the behaviors of a system to be examined. Formal methods con- 
sider a model of the system, whereas testing examines the real thing, so the two 
approaches complement each other. An elementary description of formal methods, 

49 



and their application to the certification of avionics is presented in [92], with more 
detail available in [91]. 

In addition to their role in assurance, the models constructed in formal methods 
can often help clarify requirements and design choices, and can lead to improved 
understanding of design problems. They do this by abstracting away all detail 
considered irrelevant to the problem at hand, and by formulating the remaining 
issues with mathematical precision. Formal models for partitioning could therefore 
help refine our understanding of this topic. Now, partitioning has much in common 
with certain issues in computer security, and those issues have been the target of 
considerable research in formal modeling extending over more than two decades. The 
next chapter, therefore, examines issues in computer security related to partitioning, 
and outlines the formal modeling techniques that have been tried. 
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Chapter 4 

Comparison With Computer 
Security 

Computer security is related to partitioning in that both are concerned with the abil- 
ity of one software application to influence another. The concerns are that sensitive 
information might "leak" from one partition to another (this is called information 
flow in the security context), or that doubtful information might contaminate high- 
quality information (this is called information integrity in the security context), or 
that one partition might monopolize or reduce timely access to the CPU or some 
other resource (this is called denial of service in the security context). Much work 
over many years (see, for example, a survey published in 1981 [61]) has sought to 
provide a firm understanding of these security issues and their enforcement mech- 
anisms, and we might hope to apply some of this work—or at least the underlying 
ideas—to partitioning. In addition, research in computer security has sought to 
provide rigorous, formal approaches to the specification and verification of secure 
systems, and there is hope that these approaches could contribute to the devel- 
opment of strong assurance techniques for partitioning in avionics. The following 
sections review these security issues and the formal modeling techniques that have 
been applied to them. The goal here is to explain the basic ideas and approaches, so 
we merely describe the formal techniques that have been used rather than present 
the actual formalism. 

4.1    Data and Information Flow 

The most studied aspect of computer security is something of a dual to one of 
the concerns of spatial partitioning. In spatial partitioning, a concern is that one 
partition might write data into a second, and thereby disrupt its operation. In 
security we are more concerned with the data that is written: if data in the first 
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partition is considered highly classified, then writing it into a more lowly classified 
partition is tantamount to disclosing it. Reflecting this concern, computer security 
generally uses the more neutral term process for what was called a partition in the 
previous chapter (indeed, the computer security notion that is closest to partitioning 
is called "process security" [9]). Data flow security is concerned with controlling 
channels for disclosure; information flow security is concerned with more subtle 
channels in which data is not written directly, but its information content is disclosed 
just as effectively. 

4.1.1    Access Control 

A basic mechanism in enforcing both partitioning and information flow security is 
called access control: the computer system is assumed to have some means (typically, 
supervisor/user mode distinctions and memory management hardware) for limiting 
the primitive resources that a process can access, and the ways in which it can access 
them. Then some higher-level resources are synthesized (e.g., a file system), and 
rules governing access to those resources are defined and implemented in terms of 
the more primitive resources and protections. The rules constitute an access control 
policy. A familiar example is that of the Unix file system: each file is associated with 
a particular owner and group, and we can specify separately whether the owner, 
members of the group, or other users can read, write, or execute the file. This 
example raises two important topics in access control: the first concerns the choice 
and specification of the access control policy that is to be enforced, and the second 
concerns the completeness of that enforcement. 

The Unix file system provides a discretionary access control policy: users who 
have read access to a file can, at their discretion, copy it and grant access to the copy 
in any way they choose. This may be contrary to the intent of the original owner, or 
to some organizational policy. To deal with these concerns, various more constrained 
kinds of mandatory access control policies have been defined. The simplest example 
is the multilevel security policy that is intended to reflect practices for handling 
classified military information. In a multilevel policy, every resource and every 
process (computer security uses the terms object and subject for these) is given 
a label from some ordered set (typically UNCLASSIFIED, CONFIDENTIAL, SECRET, 

and TOP SECRET), and a subject may have read access to an object only if the 
subject's label (its clearance) is equal to or greater than that of the object (its 
classification).1 This rule (it is called the simple security property) does not stop a 
subject creating a copy of an object at a lower classification and thereby violating 
the intent of the policy, so it is augmented by another rule called the *-property 
(pronounced "star property") that says that a subject may have write access to an 

'Matters are complicated in practice by the use of compartments (e.g., NATO, NOFORN) in 
combination with the basic classifications to create a partial ordering. 
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object only if the object's label is equal to or greater than that of the subject. The 
combination of the simple and the * properties (i.e., a subject can only read "down" 
and write "up" in security level) constitute the historically significant Bell and La 
Padula security policy [10]. Under further examination, this policy raises important 
questions that will be considered shortly. First, though, we return to the related 
question of completeness of an access control policy. 

The access control policy of the Unix file system can be bypassed if users can 
directly read or write the contents of the disk on which those files are stored. Thus, 
although our interest is in protecting files, we also need to be concerned about the 
disk, and possibly other elements of the system as well. So the issue of completeness 
in access control concerns how much of the system needs to be placed under access 
control, and in what way, for us to be sure that the resource we actually want to 
protect is, indeed, protected against all possible attacks. This issue is complicated 
by the fact that security is really about protecting information, not mere data, so 
that any channel (a metaphorical example would be by tapping on the walls in Morse 
code) that allows the information content of a file to be conveyed to an unauthorized 
user is as dangerous as the ability to copy a file directly. 

The possible channels for information flow can be quite subtle and hard to detect 
(there were at least two in Bell and La Padula's "Multics Interpretation" [10]). For 
example, suppose we had a special Unix system that imposed the Bell and La 
Padula policy on file access, but with the additional property that file names are 
required to be unique across all users: an attempt to create a file with an existing 
name returns an error code. Then, a SECRET process can convey information to 
an UNCLASSIFIED one by creating files with prearranged names: the UNCLASSIFIED 
process retrieves the information by checking whether or not it is able to create files 
with those names. This is an example of a "covert" channel; more particularly, it 
is a covert storage channel (because it exploits information stored in the directory 
structure of the file system; the other kind of channel uses timing information—see 
Section 4.3) [60, 65]. The channel is noisy (some other, innocent, process might 
have created files with those names), but coding techniques allow information to 
be transmitted reliably over noisy channels. Covert channels are of concern for 
two reasons: first, they can be used to transmit information at surprisingly high 
bandwidth (one early demonstration drove a teletype at full speed using a channel 
that depended on sensing where a disk head was positioned [95]) and second, they 
are no different in concept from more blatant channels (e.g., the unprotected disk) 
that leave a resource open to direct access (both are symptoms of incompleteness)— 
so that unless we have methods of specification and verification that are able to 
eliminate subtle covert channels, we have little guarantee that we can eliminate any 
channels at all. 

It might seem that information flow and covert channels are esoteric security 
concerns and that only basic access control is relevant to partitioning.   However, 
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while it is true that covert information flow may be of little concern for partitioning 
(because it depends on collusion between sender and receiver and is therefore im- 
plausible as a fault manifestation), the mechanisms used for such flow definitely are 
of concern. Consider, for example, the unique-file-name channel described above. 
This serves as a channel for information flow because one subject can affect the be- 
havior perceived by another (i.e., whether or not the attempt to create a file returns 
an error), and this is surely contrary to the expectations of partitioning—for one 
interpretation of those expectations is that the behavior perceived by software in 
any given partition should be independent of the actions by software in other parti- 
tions. We might try to arrange for this expectation to be satisfied in the presence of 
the unique-file-name restriction by allocating disjoint name spaces to each partition. 
But then a fault in the software of one partition could cause it to create a file from 
another's name space—and thereby cause a subsequent file creation in that other 
partition to fail. This example shows that covert channels for information flow raise 
issues that are relevant to partitioning, and that examination of how security has 
dealt with these channels may be of use in partitioning. 

Another potential problem with access control formulations of security is that 
they depend on informal understandings of what "read" and "write" accesses really 
mean. We can construct perverse systems in which these terms are given incorrect 
(e.g., reversed) interpretations and that satisfy the letter of an access control policy 
while violating its spirit [72]. 

Covert channels and perverse interpretations are both symptoms of the real prob- 
lem with access control as we have used it: it is a mechanism for implementing, not 
an instrument for specifying, security policies. An adequate specification should get 
at the "intent" that underlies a security policy in a convincing manner. It should 
then be possible to prove that an implementation in terms of access control cor- 
rectly enforces the policy. Problems of completeness, covert channels, and perverse 
interpretations should all be eliminated by a sound approach of this kind. The next 
section examines such approaches. 

4.1.2    Noninterference 

To repair the problems with access control, we need to be more explicit about our 
system model: we need to specify how a system computes and interacts with its 
environment, how inputs and outputs are observed, and how subjects and objects 
are identified. Then we can specify security in terms of constraints on the observable 
behavior of the system, without needing to describe mechanisms to enforce those 
constraints (although we would hope to be able to describe such mechanisms at a 
later stage of development, and to verify that they enforce the desired policy). 

The most successful treatments of this kind are all variations on a formulation 
called noninterference that was introduced by Goguen and Meseguer in 1992 [34], 
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although the key idea was adumbrated five years earlier [31]. That key idea is that 
if there is no flow of information from one security classification to another, then 
the behavior perceived by subjects of the second ("lower") classification should be 
independent of any activity by subjects of the first ("higher") classification. In 
particular, the behavior perceived by the second classification should be unchanged 
if all activity by the first is removed. The precise details depend on the formal model 
of computation employed, but the traditional treatment uses a finite automaton as 
the system model: the automaton changes state and produces an output in response 
to inputs, which are labeled with their security level. A relation p ~> q indicates 
whether level p is allowed to convey information to or interfere with level q; its 
negation is the noninterference relation •/», which is considered a specification of 
the desired security policy. A sequence of inputs a is purged for level p by removing 
all inputs from levels that may not interfere with p; this purged input sequence 
is denoted a/p. Starting from some initial state SQ, the state of the automaton 
after consuming the input sequence a is run(so,a), while that after consuming the 
purged sequence is run(so,a/p). The noninterference formulation of security then 
requires that any level p input must produce the same output in both these states. 
The intuition is that this ensures that no experiment conducted at level p can reveal 
anything about the presence or absence of earlier inputs from levels that should not 
interfere with p. 

The noninterference formulation of security is stated in terms of a system's 
behavior in response to a sequence of inputs. An unwinding theorem reduces this to 
three conditions on its behavior with respect to individual inputs. These conditions 
are stated in terms of each level's "view" of the system state (intuitively, if the system 
state is thought of as consisting of different components "belonging" to each level, 
then level p's view of the state comprises its own component and the components 
of all the levels that are allowed to interfere with p). If the level p views of two 
states are the same, we say these states "look the same to p" (technically, this is an 
equivalence relation on states). 

Output Consistency: if two states look the same to p, then a level p input must 
produce the same output in both states. 

Step Consistency: if two states look the same to p, then the states that result 
from applying the same input (of any level) to both states must also look the 
same to p. 

Local Respect (for ~>): the system state must look the same to p before and 
after an input of a level that is noninterfering with p. 

It is straightforward to prove that these conditions are sufficient to imply noninter- 
ference. The proof is formalized and mechanically verified in one of the tutorials for 
the PVS verification system [94]. 
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A connection between the noninterference and access control notions of security 
can be established by interpreting the unwinding conditions in access control terms. 
We suppose that the system state is a function from objects to values and that 
each object has a level. Inputs of level p are reinterpreted as actions performed 
by a subject of level p. Then we suppose that access control enforces the following 
Reference Monitor Assumptions. 

• The output produced by an action depends only on the values of objects to 
which the subject performing the action has read access. 

• If an action changes the value of any object, then its new value depends only 
on the values of objects to which the performing subject has read access. 

• An action may change the values only of objects to which the performing 
subject has write access. 

With these assumptions, access control can enforce the unwinding conditions 
by setting up the controls as follows (these are essentially the Bell and La Padula 
conditions). 

1. If p ~> q, then the objects to which subjects of level p have read access must 
be a subset of those to which subjects of q have read access, and 

2. A subject of level p may have write access to an object for which a subject of 
level q has read access only if p ~> q. 

The connection between the two formulations is established by interpreting a sub- 
ject's "view" as the values of all the objects to which it has read access. A proof 
is given in [90, Section 2.1]. The proof requires formalizing the reference monitor 
assumptions, which is surprisingly difficult to do correctly (Popek and Färber [83], 
who first recognized the importance of these conditions, made errors in formalizing 
them). 

Contrary to early expectations (e.g., [35]), standard noninterference requires 
the interferes relation ~> to be transitive [90]. All such transitive relations are 
equivalent to multilevel security policies, and the two conditions on access control 
enumerated in the previous paragraph are likewise equivalent to the Bell and La 
Padula properties in these cases [90, Section 3.1]. 

Because they imply a partial ordering on security levels, multilevel security poli- 
cies do not seem to capture the concerns of partitioning all that closely, but intran- 
sitive policies (that is, those where ~> is not required to be transitive) seem more 
promising. Intransitive policies capture the additional security restrictions known 
as channel control [88] or type enforcement [13], which are concerned not only with 
whether information may flow from one place to another, but with the paths through 
which it may flow. Channel control security policies can be represented by directed 
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graphs, where nodes represent security domains and edges indicate the direct in- 
formation flows that are allowed. The paradigmatic example of a channel-control 
problem is a controller for end-to-end encryption, as portrayed in Figure 4.1. 

BYPASS 

' 

RED BLACK 

, , 

CRYPTO 

Figure 4.1: Allowed Information Flows for an Encryption Controller 

Plaintext messages arrive at the RED side of the controller; their bodies are 
sent through the encryption device (CRYPTO); their headers, which must remain in 
plaintext so that network switches can interpret them, are sent through the BYPASS. 
Headers and encrypted bodies are reassembled in the BLACK side and sent out onto 
the network. The security policy we would like to specify here is the requirement 
that the only channels for information flow from RED to BLACK must be those 
through the CRYPTO and the BYPASS (it is a separate problem to specify what those 
components must do). Notice that the edges indicating allowed information flows in 
this example are not transitive: information is allowed to flow from RED to BLACK 
via the CRYPTO and BYPASS, but must not do so directly. 

Noninterference can be extended to intransitive policies by substituting a more 
complicated purge function for the standard one. When p 7^ q, the usual require- 
ment is that deleting all actions performed by p should produce no change in the 
behavior of the system as perceived by q. This is too strong if we also have the 
assertions p ~> r and r ~* q. Surely we should only delete those actions of p that are 
not followed by actions of r (in the CRYPTO example, RED, BLACK, and BYPASS or 
CRYPTO take the roles of p, q,r, respectively). This insight, and a definition of the 
generalized purge function, were given by Haigh and Young [38], together with corre- 
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sponding unwinding conditions. Unfortunately, one of their unwinding conditions is 
incorrect; correct conditions were given, and formally verified, by Rushby [90]. These 
unwinding conditions simply replace the step consistency condition by a weak form. 

Weak Step Consistency: if two states look the same to p, and also look the same 
to q, then the states that result from applying the same input of level q to 
both states must also look the same to p. 

The corresponding conditions for access control enforcement consist simply of the 
second of the two conditions given on page 66.2 

The formal statements of standard and intransitive noninterference use an au- 
tomaton as their formal system model and therefore apply straightforwardly only 
to a single monolithic system. To examine the interactions of multiple, distributed 
systems, more general models are required—for example, transition relations or pro- 
cess algebras—and it is necessary to admit nondeterminism. Nondeterminism arises 
naturally in concurrent systems, because there is generally no system-wide coordi- 
nation of the rate at which different components proceed; hence, interactions can 
occur in different orders in otherwise identical runs, and the behaviors perceived 
in those runs can diverge markedly (this is why it is so hard to debug concurrent 
systems). To accommodate this system-level nondeterminism, noninterference for 
concurrent systems is formulated to require that the set of behaviors possible in a 
given scenario is unchanged at a given level when interactions are purged in some 
suitable way. One problem with this formulation is that it does not define a property 
in the technical sense. 

A system can be identified with the set of runs that it can produce (a run is a 
sequence or "trace" of inputs, outputs, and other significant interactions). A speci- 
fication is likewise a set of runs, and a system satisfies a specification if its runs are a 
subset of those of the specification. A set of runs is called a property, so that specifi- 
cations and systems can both be considered properties. Special classes of properties 
called safety and liveness play an important role in formal methods of analysis, and 
it can be shown that every property can be expressed as the conjunction of a safety 
and a liveness property [5]. Security, however, is not a property in this sense: it is 
not a set of runs, but a set of sets of runs [73]. This means that standard methods 
for deriving or verifying an implementation that satisfies a given specification do 
not work for security—because these methods apply only to properties. 

Another problem when noninterference is extended to concurrent systems in the 
manner just described is that it is not compositional: that is, two systems individ- 
ually satisfying some noninterference policy can be combined to yield a composite 

2This might seem to suggest that the first condition on page 66 is implied by the second when 
the policy is transitive. In fact, this is not necessarily so for a given set of access controls, but it 
will be possible to construct another set (i.e., a different assignment of read and write permissions) 
that will satisfy both conditions. This is a consequence of the "nesting property" for transitive 
policies [90, Theorem 5]. 
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system that does not satisfy that policy [71]. Many alternative formulations of non- 
interference were proposed for concurrent systems in the attempt to overcome this 
unattractive result. Unfortunately, those that were compositional were either very 
unintuitive (having no plausible interpretation as a natural security concern), or 
were excessively restrictive (and unlikely to be satisfied by practical systems). A 
partial resolution was provided by Roscoe, who suggested that the difficulty was due 
to a failure to appreciate the significance of nondeterminism when contemplating 
security [86]. 

The problem with nondeterminism is that it can sometimes be resolved in a way 
that depends on unsecure information flow. A typical example would be a system 
with two levels, LOW and HIGH where HIGH is required to be noninterfering with 
LOW. Inputs to LOW cause the outputs odd or even to be generated nondetermin- 
istically unless there have been any high inputs, in which case the LOW output is 
odd or even according to the oddness or evenness of the last HIGH input (the HIGH 

inputs are assumed to be positive integers). This example satisfies most definitions 
of noninterference for concurrent systems because the set of possible behaviors ob- 
servable at the LOW level is unchanged by the presence or absence of HlGH-level 
activity—yet it plainly violates any reasonable interpretation of "secure system." 
The violation is exposed when the system is composed with one that generates only 
even numbers on the HIGH input. Roscoe excluded such paradoxical constructions 
by requiring their component systems to have behavior that is deterministic at each 
security level. Roscoe's insistence on determinism also suggests a resolution to an- 
other difficulty that had plagued most earlier treatments: noninterference is not 
preserved under refinement. Refinement in this (process algebra) context means a 
reduction in nondeterminism, and it poses the same challenge to noninterference as 
composition. Roscoe's treatment is couched in the formalism of CSP [40], where a 
process is deterministic if it is free of "divergence" and never has a choice between 
"accepting" and "refusing" an event [87]. The relationship between this treatment 
and traditional interpretations of determinism and security in state machines is one 
that requires clarification. 

There is another sense of refinement for which security in general (not only its 
noninterference formulations) is not preserved. This is the notion of refinement in the 
sense of elaboration, where more mechanisms and details are added to a specification 
in order to obtain an implementation that is effectively executable. Under the 
standard notion of correctness for such refinements, it is necessary only to show 
that the properties of the specification are implied by those of the implementation: 
the implementation is required to do at least as much as the specification, but it is 
not prohibited from doing more. An implementation of the specification suggested 
by Figure 4.1, for example, must provide at least the four communications channels 
shown, but the standard notion of correct refinement would not prevent it adding a 
direct communications channel between RED and BLACK—despite the fact that the 
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absence of such a channel is the whole point of the design. For security, it is necessary 
to constrain the notion of correct refinement so that the implementation does not 
add capabilities that are absent in the specification. Clearly the implementation 
must contain more details and mechanisms than the specification (else it is surely 
not an implementation), but for secure refinement these mechanisms and details 
must have no consequences on the behavior that can be perceived at the originally 
specified interfaces. The formal characterization of this requirement is given in 
terms of faithful interpretations and is due to Moriconi, Qian, Riemenschneider, 
and Gong [75]. 

4.1.3    Separability 

Using Roscoe's perspective, an adequate treatment for distributed channel-control 
security might be achieved by taking the nondeterministic composition of determin- 
istic systems, each characterized by intransitive noninterference. Some architectural 
refinement to a more detailed implementation level could be obtained using faithful 
interpretations, and the restrictions within each system could then be enforced by 
access control, using the derivation from the unwinding conditions described earlier. 
(As far as I know, nobody has determined whether the formal details of the various 
models support this combination, nor whether satisfactory properties can be derived 
for the combination, but it seems plausible.) However, the resulting model would 
still be rather abstract for the purpose of deriving, for example, conditions on how 
a single processor should implement the RED, BYPASS, and BLACK components of 
Figure 4.1 (the CRYPTO is usually an external device). 

An approach called separability was proposed for this problem by Rushby [88]. 
The idea is easiest to understand when no communications are allowed between the 
separate components. Then the idea is that the implementation should provide the 
appearance of a separate, dedicated processor to each component. The real pro- 
cessor is time shared, so that it sometimes performs instructions on behalf of one 
component and sometimes on behalf of another. The requirements for separability 
can be expressed in terms of abstraction functions that give the "view" of the pro- 
cessor perceived by each component. For example, if we have just two components, 
RED and BLACK, and $# and $ß denote their respective abstraction functions, then 
the requirement when the processor is executing instructions on behalf of RED is 
that the following diagram should commute. 

OPR 
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That is to say, the state change in the physical processor caused by executing the 
instruction op should be consistent with execution of the "abstract" operation opR 

on RED's view of the processor. At the same time, BLACK's view of the processor 
should be unchanged, as expressed by the following diagram. 

op 

Because I/O devices can directly observe and change aspects of the real proces- 
sor's internal state (by reading and writing its device registers, for example), and 
can also influence its instruction sequencing mechanism (by raising interrupts), the 
activity of these devices is relevant to security. Consequently, we must impose condi- 
tions on their behavior. Expressed informally (and only from the RED component's 
point of view), these conditions are the following. 

1. If $R(<T) = $H(T) and activity by a RED I/O device changes the state of the 
real processor from a to o\ and the same activity would also change it from T 

to T', then <&ß(cr') = §R{T') (i.e., state changes in the RED view caused by RED 
I/O activity must depend only on the activity itself and the previous state of 
the RED view). 

2. If activity by a non-RED I/O device changes the state of the real processor 
from a to r, then $R{(T) = $R{T) (i.e., non-RED I/O devices cannot change 
the state of the RED view). 

3. If $ß(cr) = $R{T), then any outputs produced by RED I/O devices must be 
the same in both cases. 

4. If $R{<T) = $R{T), then the next operation executed on behalf of the RED 
component must also be the same in both cases. 

Separability was proposed before formal treatments of concurrent systems had 
been fully developed, so the justification of the above conditions presented in [89] is 
not fully satisfactory. Furthermore, neither the informal nor the formal presentation 
deals with allowed communications channels between components. The proposal 
in [88] is to remove the mechanisms intended to provide the desired communications 
channels and then verify, using the conditions above, that the components of the 
resulting system are isolated. Jacob [48] noted that this does not exclude a particular 
kind of covert channel (called a "legitimate" channel) that piggybacks undesired 
clandestine communication on the desired channel. 

61 



A more modern treatment [93] derives the conditions for separability with com- 
munications from those for intransitive noninterference. This treatment weakens 
the "triangular" commutative diagram of strict separability so that it applies only 
if RED -/> BLACK (this derives from the "local respect for yUn unwinding condition) 
and, when RED ~» BLACK, it replaces the "rectangular" diagram by the following 
condition (which is based on the "weak step consistency" unwinding condition). 

*ä(<T) = $ä(T) A $B(CT) = $B(T) D §B{op{o)) = $B(OJP(T)) 

Notice that this last condition does not use the abstract operation opR that appears 
in the "rectangular" commutative diagram. This is because we do not really care 
what this operation is, only that $B{OP{CT)) should be functional in $B(<T), and the 
formula above expresses this directly. 

4.2 Integrity Policies 

The previous sections have considered computer security notions related to the un- 
desired disclosure of information. There are similar notions related to the modifica- 
tion of information, where the main concern is to ensure integrity of the protected 
information. Integrity is related to the "reliability" or "quality" of information: 
information of high integrity should not be allowed to become contaminated by in- 
formation of low integrity. This requirement can be treated as a strict dual to the 
Bell and La Padula security policy (that is, a subject can only read "up" and write 
"down" in integrity level), and is known as the Biba integrity policy [12]. 

Clark and Wilson [15] argued that the integrity of information is also a function 
of the operations that are performed on it, and the identity of those who invoke 
those operations. A user should not be able to invoke arbitrary operations on high- 
integrity information, but only certain well-formed transactions, and the admissible 
transactions might be determined by the state of the data, the identity of the user, 
and other factors. In commercial environments, the transactions available to a user 
are often governed by requirements for separation of duties: a user who authorizes 
a purchase should not be the same as the one who selects the vendor. 

Other similar models for integrity have been proposed, and there has been con- 
siderable investigation of whether these or the Clark-Wilson model can be enforced 
by adaptations of security mechanisms developed to control disclosure [79]. 

4.3 Timing Channels and Denial of Service 

Most work on formalizing security has focused on the data and information flow 
issues described in the previous sections. In partitioning terms, these all concern 
issues in spatial partitioning. There are, however, two topics in computer security 
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that correspond to issues in temporal partitioning: timing channels and denial of 
service. 

Timing channels (they were called "covert channels" when first identified [60]) 
are mechanisms for clandestine information flow that work by modulating the time 
when some events occur, or the rate at which they occur. For example, a process 
can choose whether or not to give up its time slice early. If only two processes are 
running, the other process can use the time at which it receives control to infer the 
choice made by the other process [60]. More generally, the decisions of a real-time 
scheduler can be manipulated to provide a channel for information flow [16]. Other 
timing channels modulate the load or contention on some system resource (e.g., the 
system bus [43]) or parameters affecting performance (e.g., the time to seek a disk 
track is affected by whether the previous seek was to a nearby or distant track [50]; 
the time to access a memory page will be affected by whether or not it was previously 
swapped out to disk [95]). 

Where they cannot be removed, timing channels are typically rendered harmless 
either by reducing contention, or by introducing randomness into the behavior of 
the resource being manipulated [37, 68,104], or by reducing the precision of the 
various "clocks" (e.g., time-of-day clocks, timers, instruction loops, asynchronous 
I/O performance) by which a process can measure the passage of time [43]. These 
measures do not block a timing channel, but they introduce sufficient noise that its 
bandwidth is reduced to acceptable levels (typically less than 10 bits per second). 

Whereas the concerns of partitioning and security are quite close in the case of 
storage channels, they diverge for timing channels. The very existence of a timing 
channel is unacceptable in a partitioned system, since it indicates that one partition 
can change the temporal behavior observed by another. Similarly, the remedies 
used in security to reduce the bandwidth of timing channels are worse than the 
original problem from the perspective of partitioning, because they introduce further 
unpredictability into system behavior. 

Formal analysis of pure timing channels is generally based on information the- 
ory (e.g., [76,77]), but there is dispute over whether some channels (e.g., the disk 
arm channel) really are timing channels, storage channels, or a combination of the 
two [112]. Consequently, formal description and analysis of such channels is diffi- 
cult, and informal methods are generally employed. As described in Section 3.1.2, 
static partition scheduling requires implementation choices (strict determinism, no 
concurrent I/O) that eliminate the mechanisms that could serve as timing channels. 
In systems that do not require such strict temporal partitioning, the techniques used 
in computer security to identify timing channels [112] might help reveal unexpected 
sources of temporal interference. 

Denial of service can be seen as an extreme type of timing channel: the perceived 
performance of some resource is reduced to an unacceptable level, rather than merely 
modulated. In the limit, the resource may become unavailable to some processes. 
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The possibility of this limiting case is usually equivalent to the existence of a storage 
channel. For example, if file space is shared between two processes, then one can 
deny service to the other by consuming all available space—-but this is also a chan- 
nel by which one process can convey information to another (the receiving channel 
attempts to create a file: success is taken as a 1 bit, failure as a 0; the transmitting 
process determines the outcome by consuming and releasing space). Because denial 
of service is related to timing and storage channels, it can be prevented by enforcing 
strict spatial and temporal partitioning. In general-purpose systems, the strictness 
of these mechanisms may be considered undesirable: they would require, for exam- 
ple, fixed per-process allocations of file space. Attempts to provide flexible resource 
allocation without incurring the risk of denial of service require "user agreements" 
that place limits on the demands that each process may place on each resource and 
that are enforced by a "resource allocation monitor" or "denial of service protection 
base" [64, 74] (these are somewhat similar to the quality of service ideas used in 
multimedia systems [102]). Formalizations of these approaches are stated in terms 
of fair or maximum waiting times [33,113]. 

These more elaborate treatments of denial of service are probably unacceptable 
in strictly partitioned systems because they still allow the response perceived by 
one application to be influenced, even if not denied, by another. They may also 
be unnecessary in partitioned systems because the requirements for temporal parti- 
tioning seem stronger than those for denial of service: thus, denial of service should 
automatically be excluded in any system that provides strict temporal partitioning. 
Formal justification for this claim would be an interesting and worthwhile exercise. 

4.4    Application to Partitioning 

The formal models for computer security reviewed in the previous sections pro- 
vide several ideas that seem applicable to partitioning. In particular, the central 
idea of noninterference—that the behavior perceived at one security level should 
be independent of actions at higher levels—can be reinterpreted in the context of 
partitioning and fault tolerance by supposing that ordinary behavior should be inde- 
pendent of faults: that is, faults are actions invoked by the environment, which is at 
a level that should be noninterfering with the level of ordinary users. This approach 
has been explored by Weber and by Simpson [99,100,108,109]. It works well as a 
specification for partitioning when the partitions are completely isolated (in which 
case it is equivalent to the strict form of separability): if we have two partitions A 
and B that do not communicate in any way, then saying that the behavior of B must 
be independent of that of A is a good way to say that faults in A must not affect 
B. It works less well when A has to communicate with B: noninterference says only 
that A interferes with B and does not discriminate between legitimate interference 

64 



(the known communication stream) and illegitimate (e.g., changes to 5's private 
data). 

This example shows that the concerns of security are, in a certain sense, too 
coarse to capture those of partitioning: security is concerned only with whether 
information can flow from A to B, not with how the flow can affect B. Channel 
control and its formalization by intransitive noninterference does allow the desired 
discrimination, but only at the cost of introducing a third component C to represent 
the buffer used for the intended A to B communication stream. Using intransitive 
flows, we would specify A ~> C ~* B and A^ B. This approach seems to capture 
some of the concerns of partitioning, but the introduction of the third component 
is artificial and unattractive. 

A more fundamental objection to the idea that noninterference can serve as a 
model for partitioning is that partitioning is a safety property (because violations 
of partitioning occur at specific points in specific runs) whereas noninterference 
is not even a "property" (recall page 68). This suggests that noninterference is 
an unnecessarily subtle notion for partitioning, and that something simpler should 
suffice. 

There is another sense in which the concerns of security diverge from those of 
partitioning: security assumes that all components are untrustworthy and that the 
mechanisms of security must be set up so that only allowed information flows occur, 
no matter how the components behave. In partitioning, however, we are concerned 
only with misbehavior by faulty partitions and are willing to trust nonfaulty compo- 
nents to safeguard their own interests. For example, suppose that two components 
A and B are statically scheduled and that each begins execution at a known entry 
point each time it is scheduled (this is the restart model of partition swapping). 
Suppose further that each has an area of "scratchpad" memory that is assumed to 
be "dirty" at the start of each execution: that is, the software in each of A and B 
is verified to perform its functions with no assumptions on the initial contents of 
the scratchpad memory. Finally, suppose that A and B are required to be isolated 
from one another. Then the scratchpad can be shared between A and B under the 
partitioning interpretation of isolation, but not under the corresponding security 
interpretation. The reason is that when B receives control, the scratchpad may con- 
tain data written by A; under the security interpretation we may assume nothing 
about even a nonfaulty B (in particular, that it will not "peek" at the data left by 
A), and so the scratchpad is a channel for information flow from A to B in violation 
of the isolation security policy. In the partitioned system, we accept (or specify) 
that a nonfaulty B does not do this, and our concern is to be sure that A (even 
if faulty) does not write outside its own memory or the scratchpad. Notice that 
this arrangement would not be safe in the restoration model of partition swapping, 
because A could preempt B, change its scratchpad, and then allow B to resume. 
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These examples demonstrate that the concerns of partitioning and security, al- 
though related, do not coincide. Thus, although formal treatments of partitioning 
may possibly be developed using ideas from computer security, they cannot be based 
directly on existing security models. Research to develop formal models of parti- 
tioning, and to refine the distinctions between partitioning and security, would be 
illuminating for both fields. 

66 



Chapter 5 

Conclusion 

We have reviewed some of the motivation for integrated modular avionics and the 
requirement for partitioning in such architectures. We then considered mechanisms 
for achieving partitioning, the interactions between these mechanisms and those for 
system structuring, scheduling, and fault tolerance, and issues in providing assurance 
for partitioning. Finally, we reviewed work in computer security that has similar 
motivation to partitioning. 

Although partitioning is a very strong requirement and imposes many restric- 
tions, there is a surprisingly wide range of architectural choices that can achieve 
adequate partitioning. The space of these design choices is seen most clearly in 
scheduling, where both static and dynamic schedules seem able to combine flexibil- 
ity with highly assured partitioning. 

The strongest need for future work is to develop the narrative description given 
here into a mathematical framework that will permit rigorous analysis of archi- 
tectural choices for partitioned systems and provide a strong basis for the assur- 
ance of individual designs. There is already some significant work in this direc- 
tion [24,25,27,111], but great opportunities remain, particularly with respect to 
distributed systems and temporal partitioning. We are examining these topics in 
current work and will describe our results in a successor to this report. 
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Abstract 

This paper describes requirements and architecture for an operating system 
and associated hardware for avionics applications that provides confinement of 
programs (herein referred to as partitions) in both space and time. The operat- 
ing system consists of a kernel that executes in the most-privileged mode of the 
processor and a set of library functions that execute in 'user' mode and provide 
an application programmatic interface (API) to kernel services. Partitions are 
protected from each other in space by memory management hardware internal 
to the CPU, or by a specially developed partition management unit. Partitions 
are confined in time by periodic scheduling events driven off a nonmaskable 
interrupt. The operating system framework provides partition scheduling on 
a strict periodic time slice basis, with an additional period for asynchronous 
event handling, similar to the approach described in the IEEE 1394 'FireWire' 
standard. Thus, both time-triggered and event-driven requirements are met, 
with a straightforward extension to distributed systems. Interpartition com- 
munications are provided by a set of message-passing API's. 

79 



1 What is Partitioning 

Partitioning is the name given to the ability of a single avionics computer system 
to execute multiple concurrent, yet noninterfering, application programs. Such a 
system provides confinement both in space, through memory protection, and time, 
through periodic partition switching. Partitioning is distinguished from its close 
cousin, multiprogramming, chiefly by the fact that partitions lack the full semantics 
of, say, a Unix process. A partition is, in effect, a handy, rigid confinement vessel 
for threads of control and data. 

There are two ways to produce a partitioning system. In the first scenario, 
applications that previously executed on separate CPU's are integrated onto a single 
processing site. In the second scenario, a previously monolithic program is split into 
partitions of differing criticalities, again executing on a single processor. The basic 
motivation for the first scenario is to save on hardware and associated costs (one 
powerful CPU versus several less powerful ones); the primary motivation for the 
second scenario is to save on verification, validation, and certification costs. 

Partitioning operating systems have begun to appear in commercial avionics, 
most notably in the Boeing 777 AIMS, a large Integrated Modular Avionics ('cabi- 
net') system [6] whose time-slicing schedule is driven by the [2] data bus. However, 
we see applications for partitioning operating systems all the way down to the tra- 
ditional avionics 'black box' LRU level. 

2 The Need for Safe, Secure Partitioning 

The need for provably secure and safe hardware encapsulation mechanisms is in- 
creasing for both military and commercial avionics products, as more functions are 
integrated onto fewer high-performance processing sites. The basic technological 
trend driving partitioning is that available processing cycles per unit time are in- 
creasing faster (according to Moore's Law) than the demands of traditional avionics 
functions. (However, it is becoming increasingly difficult to procure the latest CPU 
technology for the extended environmental conditions required by avionics, so there 
may be a limit to how much functionality can be integrated.) 

We foresee the use of verified hardware encapsulation both in the security realm, 
for example, in red-black separation, and in the safety realm, through the increasing 
use of 'brickwall' partitioning systems. Brickwall partitioning allows multiple, non- 
interfering applications of potentially differing verification levels to share the same 
processor; a formal basis for this partitioning would ease verification and certification 
burdens significantly. 

In both the security and safety arenas, the sheer quantity of code in today's 
avionics functions calls out for hardware-and-kernel-enforced partitioning between 
unrelated software modules.  In this way, reverification of unchanged components 
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can be reduced to confirming the interactions between the changed and unchanged 
components. 

Formally verified hardware encapsulation techniques have widespread applica- 
bility that encompasses nearly the entire product line of Collins' civil and military 
avionics, radio, and global positioning systems. 

2.1 Application to Secure Systems 

One particular application area for formally verified hardware encapsulation tech- 
nology in the security domain is the Global Positioning System Selective Availabil- 
ity Anti-Spoofing Module (SAASM). SAASM will be the next generation Precise 
Positioning Service security module, incorporating GPS Selective Availability, anti- 
spoofing, and electronic keying functions. The SAASM system architecture specifies 
separate red, yellow, and green program and data spaces for an application micro- 
processor, with a precise set of rules concerning access. Access control will require 
both hardware and software for encapsulation. 

Collins GPS engineers are concerned about the effects of cache and scratchpad 
memory on separation for SAASM, as well as security flaws of off-the-shelf CPU's 
and DSP's. 

Formally verified hardware and software encapsulation technology would provide 
a significant advantage for a military electronics supplier during security audits. In 
addition, proofs of correctness are beginning to be required of military contractors, 
for example, MOD-055. 

2.2 Application to Safety-Critical Systems 

2.2.1    Integrated Modular Avionics 

Advances in high-speed microprocessor computing technology have recently pro- 
vided the opportunity to reduce flight deck space, power, interconnect, and cost by 
"integrating" multiple avionics applications on a single processing site that shares 
resources such as memory. The most notable example of this is the Integrated Mod- 
ular Avionics (IMA) architecture [6] developed by the AEEC Subcommittee for 
Systems Architecture and Interfaces [1] and the related APEX standard for inter- 
facing application tasks to the executive operating system [3]. Integrated avionics 
is also becoming common in the military market. 

Future designs will be even more integrated, especially as hydraulic and me- 
chanical actuation systems are replaced by electronics and photonics. However, the 
ability to mix applications of different criticality levels on a single processing site 
also offers enormous benefits even for today's federated (single-function) systems 
by providing a means to concentrate verification on the most critical portions of a 
single application. 
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Issues that must be addressed when integrating previously federated applications 
include: 

• Ensuring the isolation of applications that share common resources, such as 
the processor or memory, so that a faulty application cannot interfere with 
other applications. In federated systems, this isolation is provided through 
physical separation of the processing sites and resources. 

• Providing reliable channels for communication between applications. In fed- 
erated systems, such communication is provided by physical buses with well- 
defined protocols. 

• Responding to external inputs or controlling external outputs within fixed time 
limits. In federated systems, each processing site performs a specific function 
designed to ensure that these limits are met. In integrated systems, the delays 
introduced by the other applications must be taken into account. 

In the simplest terms, what has been demonstrated safe in federated systems 
must be shown safe in integrated systems. For example, in integrated systems 
a central problem is guaranteeing that each application receives its allocation of 
processing time and memory space and that corruption by other applications is 
inhibited or "brickwalled". In this sense, applications are still federated even though 
they reside on the same processing module. What architectural and kernel executive 
design features guarantee that this brickwalling occurs? How can these features be 
verified? 

This is not a simple problem. For flight-critical applications, it is not clear how to 
verify the mechanisms for partitioning to the necessary levels of confidence. Testing 
alone is well known to be insufficient to ensure the levels of reliability needed [5, 9]. 
Reviews and inspections are invaluable in improving the reliability of digital systems, 
but are inadequate for the levels of assurance required here. Testing techniques are 
especially limited in the area of real-time programming where errors arise that are 
not repeatable due to different timing sequences. 

Formally verified encapsulation technology, we believe, provides a means to as- 
sure that these federated system properties continue to hold in an integrated avion- 
ics environment, and thus will be of great value to designers of integrated modular 
avionics. 

2.2.2    Federated Avionics 

As noted above, partitioning can be applied to both integrated modular avionics and 
federated avionics. In a typical federated avionics application, for example, an EFIS 
(Electronic Flight Instrumentation System), partitioning could be used to segregate 
software into flight-critical and non-flight-critical functions, with kernel-mediated 
messaging between the partitions. This has several advantages: 
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1. Critical code can be isolated from the rest of the system. This isolation reduces 
intermodule interactions, thus enhancing safety, and makes verification of the 
smaller critical partition easier. 

2. Application code is isolated from the hardware by the kernel [13, 14]. The 
hardware interface is thus concentrated in one piece of highly trusted code, 
again enhancing safety. 

3. Verification burden is decreased, as not all modules need be certified to the 
highest level of criticality. 

In a typical sensor application, for example, a GPS sensor, partitioning could 
be used to integrate BITE (Built-in Test Equipment) functionality, heretofore lo- 
cated on a separate maintenance processor, onto the main processor. This saves on 
both non-recurring and recurring hardware costs, without forcing BITE code to be 
developed and verified to flight-critical level. 

In general, formally verified hardware encapsulation technology would provide a 
significant advantage for an avionics supplier seeking FAA certification of a safety- 
critical system incorporating partitioning. Indeed, formal verification of this tech- 
nology would even permit its use in such ultra-safety-critical systems as autopilots. 
Formal methods have been recognized as an 'alternate method' for software de- 
velopment under RTCA (Requirements and Technical Concepts for Aviation) DO- 
178B [12], the software development standard for civil avionics. 

2.2.3    Application to RTCA SC-182 Avionics Computing Resource 

The technologies developed during this project could be transferred to the civil avia- 
tion industry as a whole if they are made part of the RTCA SC-182 standard. SC-182 
is an effort to specify the Minimal Operating Performance Standard (MOPS) for a 
generic Avionics Computing Resource (ACR). The ACR is a set of general-purpose 
hardware and operating system software that supports brickwall partitioning, and 
can be 'pre-certified' for use in any number of avionics applications, such as FMS or 
EFIS. A generic ACR with a formal basis would be a very powerful building block. 

3    Partitioning System Requirements 

In setting down the requirements for a partitioning system, one must consider char- 
acteristics of both the hardware and software infrastructure, and capture those el- 
ements that are truly important for the preservation of partitioning. It is easy to 
omit crucial details in such an informal analysis; thus, the requirements formulated 
herein should not be considered sufficient. However, it is hoped that this domain- 
oriented analysis will guide, and indeed lend an additional degree of relevance to, 
the formal work to follow. 
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First, some definitions are in order: 

• Gong: The fundamental partition switch interval. Abbreviated Tg. 

• Kernel: Privileged, trusted software that manages partitions. 

• Partition: A set of application tasks allocated to a single address space which is 
confined in memory and execution time by the system hardware and software. 

• Processor. The computational hardware upon which the kernel and partition 
software executes. 

Partitioning can be divided into space and time components; thus, we address 
the space and time requirements separately. But first, we must describe the compu- 
tational environment for a reasonable avionics partitioning system, then establish 
requirements for the initialization of a partitioning system. 

3.1     System Environment Requirements 

[Requirement El] No software shall disable system reset. 

[Requirement E2] No processor execution may take less than some finite time inter- 
val, called the CPU cycle time, Tcpu. 

[Requirement E3] Asynchronous interrupts may occur at any time, but will only be 
recognized on multiples of the CPU cycle time, Tcpu. 

[Requirement E4J Failure to handle an interrupt before the next occurrence of that 
interrupt shall be detected. 

[Requirement E5J Only the kernel shall handle processor interrupts. 

[Requirement E6J The partition switch interval, designated the gong interval, Tg, 
shall be constant. 

[Requirement El] No partition shall be able to detect the presence of any other 
partition on the same processor. 

[Requirement E8] No partition shall have direct access to peripheral hardware; all 
access to such peripherals shall be through the intermediation of the kernel. 

[Requirement E9] No partition shall be able to execute privileged processor instruc- 
tions. 
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[Requirement ElO] The memory system shall be of a fixed absolute size, M; no 
secondary paging storage exists. 

3.2    Initialization System Requirements 

[Requirement II] Control shall pass to the kernel after system reset. 

[Requirement 12] No partitions shall be assumed to exist at system reset. 

[Requirement 13] Only the kernel shall create and schedule partition memory spaces 
and execution time slots. 

[Requirement 14] The maximum number of active partitions per processor shall be 
a fixed value, Np. 

[Requirement 15] The kernel shall not schedule partitions such that the sum of the 
partition execution intervals (the Tp) and the maximum kernel execution time, Tk, 
shall exceed the gong interval, Tg. 

[Requirement 16] Partition event handling shall not exceed a fixed interval, Te, 
expressed as a fraction of Tg. 

[Requirement 17] The kernel shall be entered upon the occurrence of any nonrecov- 
erable partition execution error. 

[Requirement 18] Only the kernel shall terminate the execution of a partition. 

[Requirement 19] The execution schedule of a partition shall be a function of its Tp, 
the global constants Tg, Tk, and Np, and the Tp values of the partitions active 
when it is created. 

3.3    Space Partitioning System Requirements 

[Requirement SI] Each partition shall have a designated memory space. 

[Requirement S2] All the code and data for each partition shall be contained within 
its designated memory space. 

[Requirement S3] No partition shall be permitted to read outside its designated 
memory space. 
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Requirement S4J No partition shall be permitted to write outside its designated 
memory space. 

Requirement S5] No partition shall be permitted to change any partition's memory 
space boundaries or permissions. 

[Requirement S6] The kernel shall have unrestricted access to partition memory 
spaces. 

3.4 Time Partitioning System Requirements 

[Requirement TlJ Every active partition p shall be guaranteed a minimum execution 
time allocation, Tp, per gong interval. 

[Requirement T2] No partition shall be permitted to exceed its execution time allo- 
cation per gong. 

[Requirement T3] No partition shall be permitted to change any partition's time 
allocations. 

[Requirement T4] No partition shall be permitted to interfere with the partition 
gong. 

[Requirement T5J If the kernel's maximum execution time per gong, Tk, is exceeded, 
a system reset shall occur. 

3.5 Interpartition Communications System Requirements 

Given that we do not wish partitions to be directly aware of each other's presence 
for reasons of both isolation and incremental verification/validation (see Require- 
ment E7), it makes no sense to speak of peer-to-peer interpartition communications. 
However, partitions must be able to transmit and receive information. 

We take the approach of providing labelled, broadcast information flow; this 
is typical of avionics buses (e.g., [4]). To transmit a message, a partition first 
opens a logical device (managed by the kernel) for writing, designated by its device 
number or label. The partition then writes to the logical device using a kernel service 
(provided via a kernel API), and closes the logical device when it is no longer needed. 

On the receive side, a partition indicates interest in a particular label by open- 
ing the appropriate numbered device for reading. A thread in the partition then 
typically blocks on the kernel read service, and is awakened when there is data on 
that label. A polling loop can also be used, if one can stand the overhead. 
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The kernel mediates all communications, from enforcing read/write policies on 
labels to ensuring that messages are delivered to all interested partitions. The kernel 
is also responsible for any fault-tolerance operations, such as voting. In the fault- 
tolerant model, communications may require several rounds [15]; partitions should 
not be concerned with this, other than the latency which such rounds introduce 
(which can be expressed simply in terms of time, without reference to any particular 
mechanism). 

Since we do not assume a time-triggered model; thus, the kernel must assure 
that all messages have enough 'header' information to identify them. Typically, one 
or two bytes of label is all that is required, as all messages are broadcast, and thus 
do not require source and destination addresses in the headers. 

Certain labels may be persistent; that is, reading the message does not destroy 
it. Persistence management is a system responsibility; the persistence attribute of 
a given label may not be changed by partition action. 

[Requirement ClJ No partition may directly communicate with another; communi- 
cation occurs via kernel mediation. 

[Requirement C2] All messages shall be labelled. 

[Requirement C3] The kernel shall ensure that pending messages for a partition are 
the most current at the beginning of the partition's time slice. 

[Requirement C4] A partition may read a label only with the permission of the 
kernel. 

[Requirement C5] A partition may write a label only with the permission of the 
kernel. 

[Requirement C6] A partition may not change the persistence of a given label. 

4    Verification, Validation, and Certification of Integrated 
Applications 

The verification, validation, and certification approach that we envision for the use 
of a partitioned operating environment is a straightforward extension of current 
avionics practice. 
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4.1 Demonstration of Excess Space and Time Capacity 

Avionics products delivered to the government or to a commercial airframe customer 
must demonstrate the existence of 'spare capacity' in both space and time (usually 
expressed as a percentage of the delivered capacity). This leaves room for future 
growth, and has the side effect of reducing the overall 'stress' on the system. Spare 
capacity is usually demonstrated by various measurement and analyses of the final 
product. 

It is fairly easy to demonstrate that excess space capacity exists: the code size is 
known at link time, and since most avionics systems statically allocate data memory, 
the RAM allocation is also readily determined. (Additional instrumentation of the 
heap may also be used to show that heap allocation never exceeds a fixed limit.) 
Demonstrating excess time capacity is a bit more complex, and can require analysis 
of the worst-case execution path of a given application; this is complicated by such 
real-world concerns as interrupts, asynchronous messaging, and real-time executive 
scheduling. A typical measurement approach is simply to monitor the amount of 
time spent in an 'idle' or 'background' task during execution of what the customer 
and developer agree is a realistic worst-case processing load. 

In a partitioned system, the space and time 'fences' are set up in advance by 
the system integrator. The (formally verified) partitioning hardware and software 
ensures that no space or time allocations are exceeded; thus, excess space and time 
capacity are very readily demonstrated. 

4.2 Verification and Validation 

Avionics product testing typically addresses two separate concerns: verification 
('Did we build the thing right?') and validation ('Did we build the right thing?') 
Verification testing is normally consumed with forcing all paths through the design 
in 'white box' fashion in order to show that all paths perform as expected and can 
indeed be reached. Validation testing, by contrast, determines whether the sys- 
tem performs properly from an external ('black box') point of view via a series of 
functional tests. 

Partitioning can aid both verification and validation testing. In the area of ver- 
ification, partitioning restricts the state space visible to any given application par- 
tition; this reduction in the state space should yield commensurate verification cost 
reductions. In addition, the separation of application and kernel tasks reduces the 
amount of hardware-dependent code in any given partition, allowing for portability 
of both the code and its associated verification tests. This is similar to the benefit 
derived from developing applications for modern, standards-conforming operating 
systems. 

Validation testing will benefit in particular from partitioning in the area of in- 
tegration testing.   Since the partitioning system guarantees non-interference, par- 
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titions can undergo validation testing independently, both simplifying testing and 
relieving test schedule pressure. In a typical validation testing regime, testing would 
occur in an n-partition environment, where only the partition under test is actually 
running. The other partitions' time slices would be occupied with background pro- 
cessing, or with test stimulation routines. Alternately, multiple versions of a given 
partition can be run in the other partition time slices, and their outputs compared 
for regression testing purposes. In any case, the requirements of Section 3 guarantee 
that the partition will behave identically when integrated with other application 
partitions. 

4.3    Certification 

There have not been enough FAA and JAA certifications of partitioning systems for 
any sort of standard procedures and expectations to have developed. Suffice it to 
say that commercial avionics suppliers will find partitioning much less cost-effective 
if they cannot certify partitions separately. Formally verified partitioning should 
aid in the attainment of this goal. 

5    A Formally Verifiable Partitioning Architecture 

The following partitioning architecture is offered as a candidate for satisfying the 
requirements of Section 3, and is one that can be formally specified and verified. 

In developing this architecture, we weighed the merits of time-triggered versus 
event-driven systems [8]. On the one hand, time-triggered systems are easily speci- 
fied and reasoned about, as they require only periodic time slicing of partitions, and 
do not allow asynchronous event handling. On the other hand, the vast majority of 
real-world systems are to a large extent event-driven, especially those systems that 
feature operator interaction. (Indeed, interactive performance has been a significant 
problem in the time-triggered systems developed to date.) 

In the end, we developed a hybrid architecture, one that allows for asynchronous 
events, but only a maximum number per gong. This hybrid approach allows us 
to address real-world environments more naturally, while also allowing the time- 
triggered architecture as a degenerate case (i.e., by setting the maximum number of 
event handlers per gong to zero). 

5.1    Combining Time Slicing and Event Handling 

As in a traditional time-triggered architecture, the hybrid architecture guarantees 
that up to a maximum number (Np) of partitions will be scheduled on a time-slice 
basis per gong, with a time slice of Tp. (An equal time slice interval per partition 
is not required, but is typical for time-triggered systems, and makes the following 
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discussion a bit easier.) Unlike a time-triggered architecture, however, each time 
slice is followed by an event handling interval, Te. (It is expected that Te o/ Tp in 
practice.) A maximum number, Ne, of asynchronous events may be handled in Te 
(one event per partition, in all likelihood), with a resulting latency of Tp. As the 
number of partitions Np increases, this latency compares favorably with the latency 
Np * Tp of a time-triggered system, that supports only polling. 

5.1.1 Restrictions on Event Handling 

Given that event handling is restricted to the interstices between partition time 
slices, one might expect that event handling might be quite limited. This is indeed 
the case; we envision that event handling would be restricted to vectoring to the 
interrupt handler, then transferring a data value from, say, a hardware peripheral, to 
a FIFO in the appropriate partition's data space. (NB: Here we have a weak coupling 
to the fact that there are a maximum of Np other active partitions possible in the 
system. If a partition needs to process j events per Te, each of which results in 
a datum being read into the partition's memory space, then the partition's event 
handling FIFO would need j * Np entries in order to avoid FIFO overrun. However, 
this does not appear to be an onerous situation, as the verification scenario currently 
envisioned requires that the maximum value Np is known.) 

Note that for efficiency and hardware interfacing reasons, event handlers are ex- 
ecuted by the kernel on behalf of the partitions; it is expected that any such handler 
would have to be simple in order to meet the kernel level verification requirements. 

5.1.2 Relationship to IEEE 1394 (FireWire) Bandwidth Reservation 

This hybrid scheme bears a strong resemblance to the various sporadic task schedul- 
ing approaches found in the literature (e.g., [10, 7]). However, this theme is not 
restricted to process scheduling. It is in fact similar to the bandwidth reservation 
scheme of the IEEE 1394 (FireWire) bus standard [16, p. 24]: 

Using time-division multiplexing, the cycle master allocates bus re- 
sources among competing nodes in a systematic fashion. One of its key 
functions is to transmit a timing message called a cycle start at regular 
intervals, generally occurring every 125 usec. 

The first portion of the bus cycle is available for isochronous data 
transmission. Since at least 20 percent of the cycle must be reserved for 
asynchronous traffic, the isochronous portion of the cycle may not exceed 
80 percent, or 100 usec, in the case of 125-usec cycles. Asynchronous 
data fills the remaining portion of the cycle. 

On every cycle, nodes needing to transmit data, whether isochronous 
or asynchronous, must vie for control of the bus. An arbitration process 
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ensures that only one node transmits at a time and that all have fair 
access to the bus. 

The nodes with reserved isochronous channels arbitrate first ... The 
process continues until all nodes wishing to transmit isochronous data 
have done so... 

Next ... asynchronous arbitration occurs ... In addition, to give all 
nodes equal access, each node is allowed to transmit only once during the 
asynchronous portion of the cycle, also known as the 'fairness interval'. 

Although the hybrid partitioning scheme and IEEE 1394 were developed com- 
pletely independently, if one substitutes 'scheduling' for 'arbitration', 'gong' for 
'cycle start', 'partition time slice' for 'isochronous transmission', etc., it can be seen 
that the hybrid architecture is quite similar to the FireWire approach. The main 
difference is that the hybrid architecture allows asynchronous events in between 
each time slice, whereas FireWire allows an asynchronous event interval only after 
all the isochronous transmissions have occurred. This resemblance is reassuring, 
and provides a rather obvious pathway to distributed systems, which is scheduled 
to be studied later in the contract. 

5.2 Partition Data Required for Hybrid Architecture Scheduling 

How does one determine whether a partition's processing requirements will be met 
by the hybrid architecture? First, the provider of the partition must indicate the 
periodic (time slice) processing requirements for the partition (Tp execution per 
Tg), the event handling rate, the event handling latency that can be tolerated, and 
the event handling duration. Then, given the maximum number of partitions, Np, 
the gong interval, Tg, and the event handling interval Te, the system integrator 
can determine whether the partition's time requirements can be met. The space 
requirements are easily met; one need only determine that the total memory load 
does not exceed M. Note that, as discussed in Section 4, the information required 
is no more extensive than that required for verification and validation of federated 
avionics. 

5.3 System Design Using the Hybrid Architecture 

In order to show the hybrid architecture at work, consider the following example: 
Partition E is an Electronic Flight Instrument System, encompassing the 'basic 

T' instruments on one display. EFIS implementations are usually required to update 
the display at a 20 Hz rate, and typically poll their external interfaces at the same 
rate. EFIS systems must also respond to a variety of operator inputs, including 
brightness control. 

91 



Partition I is an Engine Indication/Crew Alerting System, or EICAS. EICAS 
'synoptics pages' are typically required to update the display at a 5 Hz rate, and 
the EICAS receives engine data at the same rate. 

Partition B is a background BITE (Built-in Test Equipment) partition; such 
functions are usually required to perform a complete check every 30 seconds, al- 
though they often complete before then. 

Assume that typical kernel services (partition-to-partition context switches, etc.) 
take 200 microseconds (Tk = 0.2 msec). If we employ a rule-of-thumb that states 
that the kernel should not require more than 5interval of 4 msec, or 250 Hz. This 
is comparable to other operating system 'ticks'; Unix ticks, for example, are usually 
100 Hz. A gong interval of 4 msec, however, is probably too short to perform one 
complete cycle of an avionics function. Let's see what Tg = 16.67 msec (60 Hz) 
would imply. 

For our example above, each major cycle should complete every 20 Hz; this 
implies that Tg * Np = 50 msec, or Np = 3 for Tg = 16.67 msec. Assume that the 
duty cycle for event handling is 20partition execution, similar to [16]; this leads to 
an event handling interval, Te, of 3.33 msec every 16.67 msec. Also assume a similar 
0.2 msec interval for each event to be handled; thus, in a 3.33 msec event handling 
time slice, up to 14 events may be handled (subtracting two 0.2 msec intervals for 
context switching). Assuming all partitions had at least one event handler, this 
would lead to a maximum Np of 14; systems currently envisioned by Collins do not 
exceed this number. More likely, each partition would have more than one event 
source. For the case of three event sources per partition, this would imply an Np of 
4, which is still more than we need for the example. 

This periodic event handling also implies 16.67 msec latency for all external 
events; this is probably tolerable for the example partitions above. 

Of course, we are not counting any partition-specific event handlers in our kernel 
time allocation; the actual computation time available to application code is thus 
further restricted. Assuming Np = 3 and Te = 3.33 msec, the maximum time that 
any given application partition is allowed is Tp = Tg, Te = 16.67 msec - 3.33 msec 
= 13.33 msec every Tg * Np = 50 msec, for a partition rate of 20 Hz. The EFIS, 
EICAS, and background partitions, then, would run at a sufficient rate; and 13 msec 
is probably sufficient to perform each function, given a reasonably modern CPU. One 
final note: The problem of the computation of the 'optimum' gong interval is similar 
to the problem of selecting the Target Token Rotation Time (TTRT) for real-time 
token-passing datalinks [11]. Further exploration of this similarity will follow. 

6     Conclusion 

We have established partitioning system requirements from an avionics perspec- 
tive, and have proposed a partitioning architecture that is both amenable to formal 
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verification and reflective of real-world computational environments. 
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Overview 

One of the new and important results to come out of the work undertaken for 
this DARPA contract is the notion of invariant performance. The novelty and 
utility of this notion is that it precisely characterizes strict encapsulation in a way 
that is meaningful to developers as a contract between a partitioned system and 
its hosted applications, and as a property whose specification and proof assures 
that a given system demonstrates the requisite noninterference behaviors [17]. Our 
approach is illustrated through the formal specification and mechanical verification 
of the invariant performance of Schultz, a simple partitioning system consisting of 
the Rockwell Collins AAMP-FV microprocessor and a Partition Management Unit 
(PMU) [6]. 
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Abstract 

We describe a theorem about computer systems that support encapsulation 
of applications called the invariant performance theorem, explain why it is 
useful, and outline its formalization and proof. 
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1    Introduction 

1.1    Overview 

The DARPA "Formally Verified Hardware Encapsulation for Security, Integrity, and 
Safety" project is an effort to develop mathematical proofs of correctness to establish 
security, integrity, and safety all the way from the application software through the 
kernel software down to the design of a real microprocessor with related memory 
management or other protection mechanisms. The use of computer systems that 
support this kind of encapsulation is described in [2]. One challenge of this project is 
determining what should be proved about computer systems of this type; proposing 
such a theorem is the purpose of this paper. 

Application builders have various concerns about their application's behavior. 
Will it do the right thing, will it run fast enough, will it process all its inputs, 
etc. Verification and validation of applications—especially safety-critical applica- 
tions and applications with vital security properties—is very difficult. A great deal 
of analysis and testing is typically required to assure that an application works as 
needed. The prospect of hosting multiple applications on a single host is increas- 
ingly attractive because processors are increasingly powerful. However, this has the 
potential to make the verification and validation challenge more daunting since the 
potential for interaction between applications makes their behavior even more com- 
plex. Furthermore, all applications that share a host might need to be verified to 
the level appropriate for the most critical application running on the host. 

One solution is to create a computing platform that hosts multiple applications 
in such a manner that they run independently and can be verified individually. 
The operating system support for this scheme can be localized in a small, trusted 
kernel. The purveyor of a given "partitioning" system is obliged to offer assurances 
of non-interference between applications using the system, a contract between the 
partitioning system and the hosted application. We will state one such contract and 
use machine-checked mathematical reasoning to ensure that a partitioning system 
fulfills it. 

What contract should we formalize to simplify the application builder's verifi- 
cation and validation task? We address this question in later sections, but to begin 
we observe what is useful about such a correctness theorem: 

The correctness theorem provides a contract with the application 
developers that allows them to verify and validate the safety and security 
properties of their applications in isolation. 

This section describes a useful theorem about systems that support partitioning, 
which we call the invariant performance theorem. Section 2 presents a statement of 
this theorem. 
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1.2 Virtual Machines 

One approach to describing what an encapsulation-supporting computer system is 
required to do is to introduce the notion of an abstract, "virtual" machine. That is, 
to describe the operation of the system with respect to one of its partitions in terms 
of the operation of a more abstract computer system with only a single partition. 
A notable example of this approach is described by Rushby [5]. 

At the high end, the system could be conceived as a distributed one where the 
significant issues are those of controlling access to information and the communica- 
tion of information between conceptually separate single-user machines. The fact 
that all users actually happen to share the same physical machine should be masked 
at this level. 

The work described in [5] uses a virtual machine to motivate the appropriateness 
of a set of proof obligations for kernels of this kind. A more concrete representation 
of a virtual machine that is implemented by each of the partitions in a partitioning 
system is presented by Bevier in his KIT verification work [1]. KIT is an operat- 
ing system kernel that enforces isolation and is proved using a mechanical theorem 
prover to provide to each running task resources consistent with an isolated, dedi- 
cated machine. 

The use of a virtual machine allows a clean description of a notion of isola- 
tion, and it is appealingly intuitive. However, this kind of theorem is not quite the 
contract that the application developer needs in order to allow him to verify his ap- 
plication in isolation. If the application developer is unable to verify his application 
with respect to a particular, realized machine whose behavior he can predict then 
his verification burden will increase. Note in particular the complexity of the timing 
properties of such abstract machines: the virtual machine used as the specification 
for KIT has a "sputtering" clock whose "ticks" correspond to the execution of the 
partition containing the running application. 

The use of a virtual machine such as used in the KIT specification would make 
the contract between the partitioning system and the application developer less 
useful since it is unclear how the application developer might verify his application 
with respect to such an abstract processor. 

1.3 Invariant Performance 

Rather than use an abstract machine to describe the partitioning contract, we will 
use a simpler, more concrete notion. A partition has invariant performance if its 
behavior is a function of its initial state and its inputs. We will provide as a parti- 
tioning contract that each of the partitions supported by our system has invariant 
performance, a theorem we call the invariant performance theorem. 

The invariant performance theorem is in many respects a weaker claim than 
might be made using an abstract machine formulation of correctness since it does not 
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characterize "correct" partition behavior, only that the behavior is unchanged by the 
operation of other partitions. Note for example that an encapsulation system that 
does not execute any of its partitions satisfies the invariant performance although it 
is obviously not useful. Invariant performance is nevertheless the crucial correctness 
property of a partitioning system because it allows applications to be developed 
in isolation. The application developer who runs his application in a partition is 
assured by this theorem that his application will run identically when changes are 
made to other partitions. 

Of course, other theorems about system performance are interesting and poten- 
tially useful contracts with application developers. This would be particularly true 
if one were to apply formal analysis to the verification of the applications hosted 
by partitions. For example, a minimum CPU allocation contract ("at least X CPU 
seconds every Y seconds") could aid the analysis of applications. We do not mean 
to suggest that invariant performance is the only interesting property that might be 
proved about a system that supports encapsulation, only that it is the crucial prop- 
erty for being able to develop applications in isolation using conventional verification 
and validation techniques. 

We will discuss this theorem in more detail in Section 2 when we present its 
formalization. 

1.4    Architectural Implications of Invariant Performance 

The invariant performance theorem requires a very strong notion of separation be- 
tween partitions. How realistic it is to expect an encapsulation system architecture 
to implement this? There are two concerns: is it realistic to expect application 
developers to use it, and is it realistic to implement? We believe the answer to both 
these questions is yes. The "boxcar" architecture is a partitioning system architec- 
ture [2] that is consistent with the notion of invariant performance. This architec- 
ture allocates the CPU among the active partitions with a round-robin schedule. 
Inputs are sensed between partition executions, thereby achieving predictable par- 
tition scheduling (since partition execution is not interrupted by input handling) 
with relatively little interrupt processing latency (since inputs are sensed at every 
task switch). 

It appears realistic to implement the boxcar architecture so as to satisfy the in- 
variant performance theorem. The architecture's uncomplicated approach to schedul- 
ing is crucial and contrasts sharply with, say, an architecture with multiple priority 
levels or immediate interrupt handling. We currently anticipate only two areas 
where we might use an implementation approach that we might not use if we were 
not building to fulfill such a strong separation contract, and both of these involve 
nothing eliminating a few microcycles of "slop" when the system swaps partitions. 
First, rather than a single signal to trigger partition swap we foresee a "double" 

101 



signal, the first causing the current partition to cease and the second to cause the 
succeeding partition to commence. This eliminates the effect on other partitions of 
unpredictable partition-switching signal latency caused by the non-interruptibility 
and variable execution time of processor instructions and kernel calls. Although 
this time is small since it is bounded by the slowest user-accessible kernel call, elim- 
inating it allows us as partitioning system builders to make a far simpler and more 
usable contract with the application programmer. Second, we will ensure that an in- 
put is read on a partition swap if it arrives before a certain, predictable time. This 
eliminates the chance that one input's processing during a partition swap could 
determine whether another input is processed during the same partition swap or 
whether it is delayed. 

The question of whether the boxcar architecture is capable of meeting the re- 
quirements of a particular application is perhaps the more challenging question since 
it cannot be answered absolutely. The ability of an architecture to support an ap- 
plication depends of course on the exact requirements, most notably the real-time 
requirements, of that particular application. Nevertheless this architecture appears 
to be a realistic approach to hosting multiple applications in a partitioned environ- 
ment. The simple scheduling approach appears attractive for multiple applications 
and, as argued in [2], overhead incurred from supporting this architecture allows 
response times and CPU allocations for this system that are consistent with the 
requirements of a variety of avionics applications. 

In short, although invariant performance is a very simple and quite constrained 
approach to sharing a processor between applications, we believe that the boxcar 
architecture suggests that it is a realistic. 

1.5    Safety, Security, and Invariant Performance 

Safety can be enhanced by a partitioning system because a faulty application is 
unable to compromise the effectiveness of another application running in another 
partition. Security can be enhanced by a partitioning system because it restricts 
the interaction of applications in different partitions. The concerns of application 
developers with respect to safety and security overlap to a large extent, but are 
not necessarily identical. An example that illustrates the difference between safety 
and security properties of partitioning systems involves cache associated with a 
swapped-out partition. If the values of the cache are accessible to another partition 
then security may be compromised, but this kind of leakage would presumably not 
effect safety. 

The differences between safety and security are not apparent in systems that 
enforce invariant performance when there is no direct communication between par- 
titions. Since invariant performance is the strongest possible notion of separation 
any system that provides it cannot hope for a stronger notion to ensure safety or 
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security. Consider the example above - the use of this kind of "leaked" informa- 
tion is not consistent with invariant performance since applications run identically 
regardless of the behavior of other partitions. What about systems that involve 
communication between partitions? Invariant performance is a very useful property 
when verifying those kinds of systems too. Let's assume that the output of partition 
A is used as input by partition B. We can analyze and test each of these partitions 
in isolation because we know they do not interfere with each other. Of course, we 
may wish to demonstrate other aspects of the behavior of the system. For example, 
we may need to demonstrate that partition B works when inputs arrival is no faster 
than some rate, and that partition A does not exceed that rate. Application of the 
invariant performance theorem allows us to decompose the task of verifying these 
properties. 

Safety and security of a system are of course enhanced when the system is a 
high-integrity system. Fault-tolerance is an important consideration of partitioning 
systems. We have not yet investigated in detail how an architecture implemented 
to fulfill the invariant correctness theorem can be enhanced to withstand faults. 
However, we believe that simple, predictable execution will be more amenable to 
this kind of enhancement than more complex architectures. We may adopt a fault- 
tolerance approach similar to that in [6], where fault-tolerance is achieved using 
round-based communications. Communication can be isolated to the interregnum 
between partition execution in our model, thus separating to a large extent the 
fault-tolerance from invariant performance. 

2    The Theorem 

2.1    Formalization 

This section presents a somewhat more formal description of the invariant perfor- 
mance theorem. The approach to processor modeling is inspired by several other 
projects. (See, for example, [8, 9].) 

time is represented by a natural number. We think of it as the number of clock 
ticks of the processor, value is a 32-bit natural. A channel is a function of type 
time —>• value. A channel set is a function of type name -» channel. 

A value of type processor state represents the state of a processor. A processor 
model we have been experimenting with that is based on the AAMP-FV processor 
"macro" model [3] contains 8 fields: memory, page register, top-of-stack pointer, 
program counter, local environment pointer, user/exec flag, interrupt mask register, 
and interrupt state register. 

processor(s, i, o, ct, mt) is a function whose arguments are an initial processor 
state, a channel set representing inputs, a set of names representing some output 
channels, a time representing the "current" time, and a time representing the last 
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value of interest, processor returns a channel set whose domain is o and the domain 
of each channel in the range is {n : nat \ ct < n < mtg}, where the values are 
consistent with the processor starting in processor state s with input channel set i. 
partitioned{n, s) holds when processor state s is executing with n partitions. This 
requires that 

• the kernel code is loaded 

• the kernel data structures include a valid memory map for n partitions 

• the kernel data structures has input and output channels as associated with 
each of the partitions 

• no channel is an output channel of more than one partition 

• the interrupt mask partition switch ("gong" in the sense of [2]) interrupt is 
enabled 

pmem(n, s) returns the memory associated with partition n in processor state s. 
inputs(n, s) returns a set of names corresponding to the input channels of partition 
n in processor state s. 
outputs(n, s) returns a set of names corresponding to the output channels of parti- 
tion n in processor state s. 
together(i, si, s2) holds when 

• processor states si and s2 are executing in the same partition 

• either the current partition is not partition i or the program counters of states 
si and s2 match 

valid(in) holds when in is a channel set that includes the distinguished partition 
switch ("gong") interrupt and the gong channel values do not require too-fast par- 
tition swapping. 

The invariant performance theorem is: 

V(z, n, ct, mt :  nat; si, s2 : processor state; in :  channel set)  : 

(i < n A partitioned(n, si) A partitioned(n, s2) A 

pmem(i, si) = pmem(i, s2) A valid{in) A 

together(i, si s2)  A inputs(i, si) = inputs(i, s2) A 

outputs(i, si) = outputs(i, s2)) 

processor(sl, in, outputs(i, si), ct, mt) = 

processor(s2, in, outputs(i, s2), ct, mt) 
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2.2    Proof Approach 

We will prove this theorem using the mechanical proof system PVS [4, 7]. The 
chief advantage of developing a proof in this fashion is that the proof is unlikely to 
contain a mistake, since only the exploitation of a PVS soundness bug by the proof 
developer can lead to the false certification of a conjecture as a theorem. In this 
section we briefly outline the proof of the theorem. 

The proof is by induction on the difference between the "maximum" time to be 
considered and the "current" time. The base case is trivial because the function 
processor returns a function with empty domain. A step is the computation that 
can occur between two instants that a partition swap could potentially begin, which 
can be a user-called kernel service request, the execution of some other kind of 
instruction, or a partition swap. We instantiate the invariant performance theorem 
with the state that results from executing an arbitrary state s one step and use this 
as an induction hypothesis. The induction is justified in part because a step requires 
at least one microcycle. 

The bulk of the proof effort will be to establish that the hypotheses of the 
induction hypothesis holds. That is, that each of the assumptions described in 
the previous section hold after one step of the computation. The proof breaks 
into a case for each of the three kinds of step, which in turn breaks into cases 
for each instruction, each user-callable kernel call, and the partition swap. So, 
for example, we must show that the "read-from-input" kernel call does not falsify 
the partitioned predicate, that the "add" instruction does not disable the interrupt 
mask with respect to the gong interrupt, that the partition swap does not change 
the kernel code, and so on. 

Once the (many) induction hypothesis hypotheses are proved, the theorem con- 
clusion follows from the induction hypothesis conclusion. One of the lemmas that 
is needed here is that the execution of an instruction depends only on the state of 
the kernel and the partition, for example, instruction timing is such a function. 

One interesting note about this proof: although our representation of time is 
very concrete—it relates back to the underlying processor clock—very little must 
be proved about instruction timings. 

We expect that this will be a lengthy proof. The proof's complexity depends 
significantly on how complex the kernel turns out to be, but that complexity will be 
minimized. The proof will probably be more complex than the AAMP-FV microcode 
proof [3], since although there will probably be somewhat less code the behavior of 
that code is more complex. We are optimistic that with modest PVS performance 
and better proof engineering we will accomplish this with somewhat less overall 
effort than was required for the AAMP-FV effort. 
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Abstract 

We describe the challenge of embedded application integration and ar- 
gue that the conventional formal verification approach of proving abstract 
behavior is not useful in this domain. We introduce invariant perfor- 
mance, a formulation of task isolation useful for application integration. 
We demonstrate invariant performance by formalizing it in the logic of 
PVS for a simple yet realistic embedded system, outline its proof infor- 
mally, and describe the machine-checked proof of an important sublemma. 
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1    Introduction 

Integration of multiple real-time embedded applications onto a single processor 
is increasingly attractive because the capacity of computing devices continues to 
grow. The use of fewer devices reduces space and power consumption that can 
be very valuable in an embedded environment, and fewer device connections 
increase reliability. Greater integration can also simplify the development of 
fault-tolerant architectures. 

Integration of applications poses daunting challenges as well, because inte- 
grated applications may interact. Applications that share computing resources 
can interfere with each other's space — values saved in memory by an applica- 
tion — and timing — the rate at which an application performs. 

The system developer who wants to integrate an application with other 
applications has several concerns. 

safety Can any other application in the system effect an application's perfor- 
mance to cause it not to meet its requirements? 

security Can other applications in the system glean information that should 
be restricted to one application? 

verification level Must each application be verified at the confidence level 
associated with the most critical application in the system? 

verification completeness Has the verification of each application taken into 
account the many ways other applications might interfere with it? 

These challenges can be met if the host computer system provides an en- 
capsulation mechanism that separates applications so that they can be verified 
separately. This kind of mechanism, known as a "partitioning" system in the 
avionics community, allows not only the verification of integrated applications 
initially but can eliminate the need for reverification in future system configu- 
rations. An encapsulation mechanism must be no less trusted than the most 
trusted application in the system, so it is natural to turn to formal verification 
to gain a high level of confidence. 

Operating system correctness statements in the literature have proved inad- 
equate for application integration, so we have developed our own that we call 
invariant performance. In this paper we describe some previous work by others 
and introduce our notion of task isolation that allows separate verification of 
applications. We describe a small operating system and underlying hardware 
and a correctness statement that supports encapsulation useful for separate 
verification of integrated applications. 
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2    Verified Operating Systems 

2.1 Verified Computer Systems 

Machine-checked computer system proof has been used to build extremely re- 
liable computer systems. Some examples of these involve compiled routines 
from the C string library targeted to the Motorola 68020 [5], microcode for the 
Motorola CAP processor [6], a stack of verified systems [3], verification of the 
"oral messages" algorithm [4, 10], code for some simple real-time systems [18], 
floating-point microcode [6, 15], a verified Piton [13] program [17], floating-point 
hardware [16], a simple scheduler [7], and partial microcode correctness of some 
Rockwell Collins microprocessors [11, 12]. 

Broadly speaking, each of these projects relates the execution of a model of a 
computer system with the execution of a more abstract model that describes the 
expected behavior of the system. This approach has also been used to establish 
aspects of operating system correctness. The most applicable example of the 
formal verification of an operating system is Bevier's verification of KIT [1, 2]. 

2.2 KIT 

KIT ("kernel, isolated, tasks") is an operating system kernel that enforces parti- 
tioning among a set of user tasks. The kernel supports some simple communica- 
tion services for interpartition messages and input devices. KIT is implemented 
with about 300 instructions of machine code for a machine called TM, a fictional 
machine with a simple von Neumann architecture. TM has some hardware sup- 
port useful for building a partitioning operating system kernel, including 

• a memory protection scheme involving base and limit registers, 

• user and executive modes that effect instruction execution, 

• input and output ports that provide a communication mechanism, and 

• a clock that decrements after each instruction and generates an interrupt 
when it reaches 0. 

KIT provides a set of user-mode tasks with the illusion that each is operating 
in isolation, except for the effect of interprocess communication. Each I/O 
device is associated with exactly one partition. Most of the verification work to 
establish partition isolation involves showing that KIT correctly maintains the 
state of the various tasks in the face of partition swapping and task execution, 
and that it does the right thing when there is communication with I/O devices 
or between partitions. 

The correctness theorem relates a very detailed and realistic model of KIT 
executing on TM to an abstract model where tasks execute in isolation. The 
KIT correctness statement embodies in microcosm the appeal of formal meth- 
ods. Rather than attempt to list all the things that could go wrong in a par- 
titioned operating system (a hopeless task for all but the simplest of systems) 
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Figure 1: The KIT correctness theorem[2] 

and show that nothing undesirable occurs, we demonstrate correct functioning 
of the system. Once this specification is proved we need not worry that we 
checked that a partition might overwrite another partition's memory space by, 
say, adding a value using an indirect address. 

The KIT correctness theorem relates the execution of each partition running 
in isolation on an unloaded TM to its execution under KIT, and is illustrated in 
Figure 1. The partition running on the abstract machine used to specify KIT's 
behavior executes in spurts that correspond to the allocation of the CPU by 
the kernel at the more concrete level, and this relationship is formalized in the 
statement of the correctness theorem. 

2.3    Invariant performance 

The KIT theorem — and most of the other verification projects with which we 
are familiar — provides a service guarantee about a computer system. Real- 
time concerns are not considered in the KIT verification, but the approach used 
by KIT could be extended to provide guarantees about throughput and latency. 

But these properties do not suffice to allow separate verification of inte- 
grated applications. It is unrealistic to expect application developers to verify 
applications against an abstract, unrealized machine model, even if the abstrac- 
tion arguably characterizes "good" system behavior. Our specification dispenses 
with the definition of the abstract machine altogether. We will use machine- 
checked proof to relate the execution of an application on a realistic model of 
the computer system with the application's execution when other applications 
are different. This approach is suggested by Figure 2: partition T operates 
without regard to the operation of the other partitions. If two kernel-controlled 
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Figure 2: Invariant Performance 

partition sets have identical initial kernel states and identical states for some 
partition T then the execution of the partition sets maintains the equivalence 
of the states of T. 

The guarantee invariant performance makes to the application developer 
is that after his application is integrated with other applications it will work 
precisely as it worked before integration. If for example the developer tests his 
application in a partition he can rely on the system to work identically even 
if other partitions are used to host other applications. This can not be done, 
for example, with the KIT correctness statement: the developer does not know 
precisely how his application will run, only that it will run just like it would 
run on an abstract machine described by the correctness theorem. The abstract 
machine used in the KIT specification is like the concrete machine except that 
the clock sputters in a way that corresponds to CPU allocation under KIT. 

We believe that invariant performance is the crucial property needed to 
allow separate verification of real-time, embedded applications since it provides 
complete time and space isolation. It also provides the strict separation needed 
to host applications that require isolation from each other in order to satisfy a 
security policy. It provides the application developer a development platform 
that will be unaffected by the application's integration, thereby allowing for 
independent verification of real-time, embedded applications. 

3    An Example Application of Invariant Perfor- 
mance 

We demonstrate invariant performance by developing its statement on a simple, 
concrete system. The system we model contains an AAMP-FV microprocessor 
[11] and a partition management unit ("PMU"). The PMU maintains memory 
isolation among the partitions and includes timers that allow temporal control 
of partitions by the kernel. The model of the AAMP-FV we use is adapted from 
the instruction-level AAMP-FV "macrolevel" model [11]. 

In this section we describe Schultz, a simple partitioning system, our formal- 
ization of invariant performance for Schultz, and an outline of the proof. 
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Figure 3: Schultz Hardware 

3.1    Schultz Overview 

Schultz supports a cyclic schedule of noninterfering partitions. There is no 
explicit provision in this initial model for kernel-mediated shared resources such 
as interrupt controllers. Each partition is allocated a predetermined amount of 
CPU time with no interruption and has its own memory space, thereby ensuring 
noninterference between partitions. The Schultz kernel is very simple since there 
is only one shared resource, the CPU, and is responsible for initializing the 
system and maintaining the partition schedule. An unusual aspect of Schultz is 
microcycle-accurate partition-starting to achieve strict temporal independence 
among partitions. 

Figure 3 represents the Schultz hardware configuration. The AAMP-FV and 
the PMU interact in several ways. 

• The accessible memory range is determined by the PMU using the pro- 
cessor user/executive line and base/limit addresses contained in memory- 
mapped PMU registers. 

• For each processor memory transaction the PMU determines whether the 
location is currently accessible. 

• A PMU timer, the gong timer, generates a periodic non-maskable interrupt 
("NMI") to the processor. 

• A PMU timer, the mucos timer, is used to generate a memory acknowledge 
signal to the processor when the processor writes a non-zero value to a 
particular memory address, the mucos register. As will be discussed below, 
this mechanism provides for strict temporal synchronization. 
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• Each PMU timer has a corresponding memory-mapped control register 
that determines whether the counter is active and, if so, the value to 
which the timer is set when it expires. 

Our AAMP-FV model is a modification of the model of [11]. We have 
modified the model in order to simplify underlying proofs about code following 
the suggestions of [20], particularly the use of an interpreter style to facilitate 
code proof automation. 

The Schultz PMU maintains information about the current partition execut- 
ing on the processor, including how long its CPU allocation is, how much CPU 
time it has used, and the range of memory to which it has access. Expiration 
of the "gong" timer signals the end of the current partition's CPU allocation. 
The "mucos" timer signals the end of partition switch handling time and is used 
to time the start of a partition, thereby synchronizing the timing of partition 
execution to eliminate any effect of unpredictable interrupt latency — inter- 
rupts are only recognized on instruction boundaries — or early partition exits 
due to illegal instruction execution. The timers are free-running timers that are 
decremented each microcycle. When a counter reaches 0 it is reinitialized with 
a corresponding timer initialization value. A timer is shut off by setting the 
timer initialization value to 0. 

The two PMU timers operate differently, reflecting how they are used. The 
gong timer is used to signal partition switching and generates an NMI when it 
reaches 0. The mucos timer is used to synchronize the start of a partition to 
the correct microcycle and delays the memory acknowledge signal on non-zero 
writes to the mucos register until the mucos timer reaches 0. 

The PMU also maintains a base/limit pair for the currently operating par- 
tition that is used to restrict partition access to memory. When a user-mode 
instruction writes to memory outside the range of addresses between the base 
and limit pair it has no effect, and when an address from outside the range is 
read it returns a value of 0. 

We express the model and its correctness conjecture in the logic of the PVS 
theorem prover [14] since we intend to prove that Schultz provides invariant 
performance, using PVS to machine-check the proof. The PVS formalization of 
the Schultz hardware is presented in Figure 4. We have not provided enough 
information for the reader to understand this model fully. (The subsidiary 
functions are defined in our model but not presented in this paper, and we 
do not attempt here to describe the semantics of the PVS logic.) We present 
Figure 4 to convey that we have modeled the Schultz hardware in detail to 
support reasoning about it. 

4    The Schultz Kernel 

We now introduce a partition switch signal handler that implements partition- 
ing. The AAMP-FV assembly code is given in Figure 5. The loop initializes the 
PMU and schedules the next partition in the schedule. 
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step(system): system_8tate * 
LET conns = conns (system), s = proc«ssor(system), p = pmu(system) IN 

"/. run next instruction with protected memory and PMU-generated NHI 

LET 82 * step_processor(s WITH [(mem) :=protectmem(memory(eonns) ,p,conns) , 
(intreg):«setint6(intreg(s), nmi(conns))] ,s) IN 

LET mem2 ■ IF um(s2) THEN 
restoremem(mem(s2) ,memory(conns) ,p,conns) 

ELSE mem(s2) ENDIF IN 

V. calculate time of instruction execution 
V, (mucos register active when in exec mode and timermod is positive) 

LET itime ■= step_time(s,mucosset(mem2) ,val(mucostimermod(p))>0, 

vaKmucostimer(p))) IN 

7, update connections to reflect PHU/processor operation 
LET conns2 = (# (nmi) := (val(gongtimermod(p))>0 AND vaKgongtimer(p)) <= itime), 

(memory):=resetmucos(mem2), 

(urn) := um(s2), 
(itime) := itime #) IN 

V. update PHU state 
LET p2 - step_pmu(p,memory(conns2) ,itime) IN 

make.system (s2, p2, conns2) 

protected.system(system,cur,finish): RECURSIVE system.state = 

IF finish<=cur 

THEN system 

ELSE 
LET system2 - step(system) IN 
protected_system (system2, cur + itime(conns(system2)) , finish) 

ENDIF 
MEASURE max(0,finish-cur) 

Figure 4: Schultz Hardware Formalization 
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Figure 5: Partition Switch Kernel Code 
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Figure 6: A Typical Schultz Partition Switch 

The scheduling code maintains several data structures. A schedule of parti- 
tions is assumed at symbolic location psds. The schedule is saved using a list of 
length length of process state descriptors ("PSD"s), each of which represents 
a partition. An AAMP-FV PSD is 8 double words containing processor state 
values PC, TOS, LENV, and PAGE and 4 unused locations. Schultz uses 2 
of the spare PSD double words to maintain the base and limit values for each 
partition. 

The symbolic value curr is the number of the current partition in the sched- 
ule. Each time a partition switch occurs we increment curr, thereby advancing 
to the next partition in the schedule. The schedule is a simple, cyclic schedule, 
so when the value of curr reaches length it is reset to 0. 

The partition switch handler uses the AAMP-FV USER instruction to start 
the next partition. Before executing the USER instruction, however, the handler 
reads the mucos register and clears pending interrupts. 

Strict time partitioning requires that partition scheduling be unaffected by 
what individual partitions do. This requires some effort in the face of interrupt 
latency, since interrupts like the partition swap interrupt are only recognized 
on instruction boundaries. The partition switch handler uses the PMU mucos 
register to guarantee strict time partitioning. Before starting a partition the 
mucos register is referenced. The memory transaction acknowledgement signal 
for the mucos register address is delayed until the mucos timer expires. Thus, 
the start of the next partition is delayed until a predictable time, as illustrated 
in Figure 6. 

The handler also addresses another scenario: it is possible that the previous 
partition ended not because of a partition switch signal but rather due to the 
partition's execution of an illegal instruction, as illustrated in Figure 7. If this 
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Figure 7: Partition switch after illegal instruction 

occurs then during execution of the handler the partition swap signal will be 
generated; and since the handler runs in executive mode the partition switch 
interrupt will be pending. If this happens it will occur before the mucos timer 
times out (since the mucos timer is designed to time out after the gong timer) 
so the partition switch interrupt will be pending after the mucos synchroniza- 
tion. The kernel executes a CLRINT instruction to clear this pending interrupt, 
thereby ensuring that the next partition receives its entire CPU allocation. 

5    Schultz Invariant Performance 

Figure 8 presents our PVS formalization of invariant performance for Schultz. 
Given two good initial Schultz states that have equal length schedules with 
a valid schedule element i that has identical base/limit values and processor 
memory that is identical for that region, then running the system will yield a 
state with identical memory in that region starting in either state. 

The conjecture has four universally-quantified variables: sysl and sys2, 
initial system states, i, a schedule element, and fin, an ending time. The 
hypotheses of the conjecture restrict the applicability of the conclusion to "rea- 
sonable" initial states and schedule elements — the initial states have the kernel 
loaded, the schedule element must have identical corresponding memories in the 
initial states, the schedule element must actually be in the schedule, etc. The 
ending time at which the memories must correspond has no restriction — the 
conjecture must hold at all times during execution of the system. 
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Bchultzip: LEHHA 
FORALL (sysl,sys2: system.state) (i: validpaxt) (fin: nat): 
LET ml= memory(conns(sy8l)), m2- memory(conns(sys2)) IN 

initial_schultz(sysl) AND initial_schultz(sys2) AND 
length(ml) = length(m2) AND i < length(ml) AND 
psdequal(i,ml,m2) AND psdvalid(i,ml) AND psdvalid(i,m2) AND 
memoryrange(ml,base(i,ml),limit(i,ml)) B 

memoryrange(m2.base(i,ml).limitCi,ml)) 
IMPLIES 
memoryrange(memory(conns(protected.ßystem(sysl,0,fin)))f 

based,ml) ,limit(i,ml)) = 
memoryrange(memory(conns(protected.system(sys2,0,fin))), 

base(i,ml),limit(i,ml)) 

Figure 8: Schultz invariant performance in PVS 

6    Proving Schultz Invariant Performance 

6.1    Background 

There are two main lemmas needed to prove the invariant performance conjec- 
ture for Schultz. The "reset" lemma guarantees that resetting the AAMP-FV 
with Schultz leads to a reasonable state. The "maintenance" lemma guarantees 
that the code in Figure 5 maintains various invariants about the system that 
can be used to guarantee invariant performance. We briefly sketch the proof of 
the maintenance lemma. 

The maintenance lemma is similar to the schultzip lemma in Figure 8, except 
rather than assume that the two Schultz states satisfy "initial Schultz" condi- 
tions they will be assumed to have "reasonable timer values" and be "safely 
executing the current user partition". Reasonable timer values means that the 
mucos timer is greater than the gong timer value plus the maximum user in- 
struction time plus the maximum handler execution time (excepting the write 
of the mucos register). Safely executing the current user partition means that 
the PMU is initialized with the current base/limit pair, the processor is in user 
mode, and the executive PSD is initialized correctly. 

The proof of the maintenance lemma is by induction on the time required to 
complete one user partition and partition swap. The base case is when the fin 
value occurs before the completion of the partition swap to the next partition, 
which we prove by showing that the only way to modify partition i's memory 
is if partition i is the current partition, in which case the memory is changed 
identically by the two executions. The inductive case is when the fin value 
occurs after the switch to the next partition. We show that the execution of a 
partition and the partition swap code maintains each of the hypotheses of this 
conjecture, which together with an inductive hypothesis suffices to prove the 
result. 

Figure 6 shows a typical partition swap, where the gong timer generates 
an NMI which (after whatever latency is associated with finishing the current 
user instruction) transitions the machine into executive mode. After setting up 
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for the next partition the kernel then waits for the mucos timer timeout before 
starting the next partition. A second possibility exists for the timing of partition 
swapping, however: a partition can transition back to the kernel as the result 
of the execution of an illegal instruction, as suggested by Figure 7. 

6.2 Maintenance Lemma Sublemmas 

The maintenance lemma described in the previous section requires the proof 
of several sublemmas. Initial formalizations of these lemmas have been accom- 
plished in PVS. Informal descriptions of these sublemmas are listed below. 

1. Execution of the system can be decomposed into execution until the next 
transition to executive mode, and subsequent processing. 

2. When transition to executive occurs the system is in a know state 

3. When executing a user partition only the memory of that partition in 
changed. 

4. When two executions of the partitioning system have an identical partition 
and have some identical executive values, the results of executing until the 
next executive transition are identical. 

5. Partition swap code works to specification. 

6. The specification of the partition swap code implies that the proper user 
partition will execute in user mode as a result of its execution. 

6.3 A User Partition Memory Protection Proof 

We have accomplished the proof of one of these lemmas for Schultz using PVS, 
that an executing user partitions' effect on memory is limited to its own memory 
space.1 

This sublemma formalized in PVS is 

partition_leaves_other_memory.untouched: LEMMA 
executing.partition(sys) IMPLIES 

visiblemem(val(pmubase(pmu(sys))),val(pmulimit(pmu(sys))), mem, 

memory(conns(protected_system(sys, cur, nextstop(sys, cur, fin))))) « 

visiblen\em(val(pmubase(pmu(ays))),val(pmulimit(pmu(sys))), mem, memory(conns(ays))) 

The function visiblemem takes four arguments - two addresses that describe 
a range of memory, and two memories, memin and memout. The result returned 
by this function is a new memory space with values that are identical to memin 
within the address range and identical to memout without. 

1 There are a total of 916 proofs accomplished in this proof, including all the subsidiary 
TCCs and sublemmas. Of these, 907 have proofs accepted by the PVS available in June 1999. 
The remaining lemmas that are left as unproved axioms primarily involve the equivalence of 
several views of bit-vector representations. 
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visiblememdouphigh.memin.memout) : nemory.space - 
(lambda (a:  belov(«xp2(24))): 

if a>=low AND a<=high THEN memin(a) ELSE memout(a) ESDIF) 

The function protected_system is the Schultz system, including processor 
and PMU, and appears as Figure 4. The PVS-checked proof of the lemma 
partition_leaves_other jnemory_untouched assures us that no executing user 
task will write outside its memory region. 

7    Summary 

Statements of formal correctness that do not use an abstract execution model 
are rare. One example is the self-consistency checking work, wherein for exam- 
ple the operation of a processor's pipeline is specified using the same pipeline 
with "NOP"s inserted into the instruction stream [9]. Another is the symbolic 
simulation work whose objectives include regression testing of an evolving design 
by comparing symbolic execution of generations of designs [8]. 

The KIT correctness theorem, and all theorems that use an abstract model 
to specify system behavior, are not especially useful for justifying the integration 
of embedded applications. We believe that, from the standpoint of dependable 
embedded application integration, invariant performance is the right property 
to guarantee for partitioning systems. 
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Part IV 

Methodologies and Tools to 
Automate Verification of 

Encapsulation 
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Overview 

Effective specification and highly automated, formal verification of encapsulation 
properties have been major goals of the work performed for this contract; this focus 
has produced a wide range of reusable methods and significantly enhanced proof 
components for the PVS and SAL systems. 

Rockwell Collins has refined the use of symbolic simulation by exploiting au- 
tomated reasoning tools to derive behaviors from a formal system model, that is, 
effectively executing the model on a symbolic state. This approach retains much 
of the high assurance value of formal verification, while detouring the costs asso- 
ciated with formal proofs of correctness. The enclosed report [7] provides a brief 
overview of the methodology, while focusing on benchmarking to suggest PVS opti- 
mizations to enhance the system's ability to reason about code execution. A more 
detailed discussion of the methodology itself may be found in an account of work 
supported by Rockwell Collins on the design of the JEM1 microprocessor [3]. The 
key PVS optimization implemented to support symbolic simulation, namely the use 
of static analysis to provide safe destructive updates, is also described in an enclosed 
report [15]. 

SRI has developed several techniques to automate the formal verification of ad- 
vanced microarchitectures, including the Completion Functions Approach [9], and 
the use of abstraction to reduce the complexity of proofs of partitioning proper- 
ties [16]. SRI has also developed a systematic method for deductive verification of 
safety properties of concurrent programs, which works by strengthening a putative 
safety property into a disjunction of "configurations" that may be easily proven to 
be inductive [12]. 

SRI has focused on the development of tools and techniques to increase the 
scope, scale, automation, and utility of formal methods. Two enclosed papers [1,14] 
describe SRI's Symbolic Analysis Laboratory (SAL) and an instantiation of it that 
augments PVS with tools for abstraction, invariant generation, and program analysis 
(e.g., slicing). An extended abstract [10] suggests techniques for combining theorem 
proving, abstraction, and model checking in the SAL framework, and a final paper 
demonstrates the efficacy of a specific combination of theorem proving and model 
checking [13]. 
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Abstract. In this paper, we discuss the verification of a microprocessor 
involving a reorder buffer, a store buffer, speculative execution and ex- 
ceptions at the microarchitectural level. We extend the earlier proposed 
Completion Functions Approach [HSG98] in a uniform manner to han- 
dle the verification of such microarchitectures. The key extension to our 
previous work was in systematically extending the abstraction map to ac- 
commodate the possibility of all the pending instructions being squashed. 
An interesting detail that arises in doing so is how the commutativity 
obligation for the program counter is proved despite the program counter 
being updated by both the instruction fetch stage (when a speculative 
branch may be entertained) and the retirement stage (when the spec- 
ulation may be discovered to be incorrect). Another interesting detail 
pertains to how store buffers are handled. We highlight a new type of 
invariant in this work—one which keeps correspondence between store 
buffer pointers and reorder buffer pointers. All these results, taken to- 
gether with the features handled using the completion functions approach 
in our earlier published work [HSG98,HSG99,HGS99], demonstrates that 
the approach is uniformly applicable to a wide variety of pipelined de- 
signs. 

1    Introduction 

Formal Verification of pipelined processor implementations against instruction 
set architecture (ISA) specifications is a problem of growing importance. A sig- 
nificant number of processors being sold today employ advanced features such as 
out-of-order execution, store buffers, exceptions that cause pending uncommit- 
ted instructions to be squashed, and speculative execution. Recently a number of 
different approaches [HSG99,McM98,PA98] have been used to verify simple out-. 
of-order designs. To the best of our knowledge, no single formal verification tech- 
nique has been shown to be capable of verifying processor designs that support 

* The first and second authors were supported in part by NSF Grant No. CCR- 
9800928. The third author was supported in part by ARPA contract F30602-96- 
C-0204 and NASA contract NASI-20334. The first author was also supported by a 
University of Utah Graduate Fellowship. 
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all of these features and also apply to other processors such as those that per- 
form out-of-order retirement. In this paper, we report our successful application 
of the Completion Functions Approach to verify an out-of-order execution design 
with a reorder buffer, a store buffer, exceptions and speculation, using the PVS 
[ORSvH95] theorem-prover, taking only a modest amount of time for the overall 
proof. This result, taken together with the earlier published applications of the 
completion functions approach [HSG98,HSG99,HGS99], demonstrates that the 
approach is uniformly applicable to a wide variety of pipelined designs. 

One of the challenges posed in verifying a combination of the above mentioned 
advanced features is that the resulting complex interaction between data and 
control usually overwhelms most automatic methods, whether based on model 
checking or decision procedures. One of the main contributions of this work is 
that we develop a way of cleanly decomposing the squashing of instructions from 
normal execution. These decomposition ideas are applicable to theorem proving 
or model checking or combined methods. 

Our basic approach is one of showing that any program run on the specifica- 
tion and the implementation machines returns identical results. This verification 
is, in turn, achieved by identifying an abstraction map ABS that relates implemen- 
tation states to corresponding specification states. The key to make the above 
technique work efficiently in practice is a proper definition of ABS. As we showed, 
in our earlier work [HSG98], one should ideally choose an approach to construct- 
ing ABS that is not only simple and natural to carry out, but also derives other 
advantages, the main ones being modular verification that helps localize errors, 
and verification reuse that allows lemmas proved about certain pipeline stages 
to be used as rewrite rules in proving other stages. In [HSG98], we introduced 
such a technique to define ABS called the Completion Functions Approach. In 
subsequent work [HSG99,HGS99,Hos99], we demonstrated that the completion 
functions approach can be applied uniformly to a wide variety of examples that, 
include various advanced pipelining features. An open question in our previous 
work was whether combining out-of-order execution with exceptions and spec- 
ulation would make the task of defining completion functions cumbersome and 
the approach impractical. 

In this paper, we demonstrate that the completion functions approach is ro- 
bust enough to be used effectively for such processors, that is, (i) the specifica- 
tion of completion functions are still natural, amounting to expressing knowledge 
that the designer already has; (ii) verification proceeds incrementally, facilitating 
debugging and error localization; (iii) mistakes made in specifying completion 
functions never lead to false positives; and (iv) verification conditions and most 
of the supporting lemmas needed to finish a proof can be generated systemat- 
ically, if not automatically. They can also be discharged with a high degree of 
automation using strategies based on decision procedures and rewriting. These 
observations are supported by our final result: a processor design supporting 
superscalar execution, store buffers, exceptions, speculative branch prediction, 
and user and supervisor modes could be fully verified in 265 person hours. This, 
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we believe, is a modest investment in return for the significant benefits of design 
verification. 

Some of the highlights of the work we report are as follows. Given that our 
correctness criterion is one of showing a commutativity obligation between imple- 
mentation states and specification states, the abstraction map used in the process 
must somehow accommodate the possibility of instructions being squashed. We 
show how this is accomplished. This leads us to a verification condition with 
two parts, one pertaining to the processor states being related before and after 
an implementation transition, and the other relating to the squashing predicate 
itself. Next, we show how the commutativity obligation for the program counter 
is obtained despite the program counter being updated by both the instruction 
fetch stage (when a speculative branch may be entertained) and the retirement 
stage (when the speculation may be discovered to be incorrect). We also show 
how the store buffer is handled in our proof. We detail a new type of invariant 
in this work, which was not needed in our earlier works. This invariant keeps 
correspondence between store buffer pointers and reorder buffer pointers. 

2    Processor Model 

At the specification level, the state of the processor is represented by a regis- 
ter file, a special register file accessed only by privileged/special instructions, a 
data memory, a mode flag, a program counter and an instruction memory. The 
processor operating mode (one of user/supervisory) is maintained in the mode 
flag. User mode instructions are an alu instruction for performing arithmetic 
and logical operations, load and store instructions for accessing the data mem- 
ory, and a beq instruction for performing conditional branches. Three additional 
privileged instructions are allowed in the supervisory mode: rf eh instruction for 
returning from an exception handler, and mf sr and mtsr instructions for moving 
data from and to the special register file. Three types of exceptions are possi- 
ble: arithmetic exception raised by an alu instruction, data access exception 
raised by load and store instructions when the memory address is outside legal 
bounds (two special registers maintain the legal bounds, and this is checked only 
in user mode), and an illegal instruction exception. When an exception is raised, 
the processor saves the address of the faulting instruction in a special register 
and jumps to an exception handler assuming supervisory mode in the process. 
After processing a raised exception, the processor returns to user mode via the 
rf eh instruction. 

An implementation model of this processor is shown in Figure 1. A reorder 
buffer, implemented as a circular FIFO queue with its tail pointing to the earliest 
issued instruction and head pointing to the first free location in the buffer, is 
used to maintain program order, to permit instructions to be committed in that 
order. Register translation tables (regular and special) provide the identity of 
the latest pending instruction writing a particular register. "Alu/Branch/Special 
Instr. Unit" (referred to as ABS Unit) executes alu, beq and all the special 
instructions. The reservation stations hold the instructions sent to this unit 
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Fig. 1. The block diagram model of our implementation 

until they are ready to be dispatched onto an appropriate execution unit. These 
instructions are executed out of program order by the multiple execution units 
present in the ABS Unit. Instructions load and store are issued to the "Load 
Store Unit" (referred to as LS Unit) where the reservation stations form a circular 
FIFO queue storing the instructions in their program order. (Again, tail points 
to the earliest instruction and head points to the first free reservation station.) 
These instructions are executed in their program order by the single execution 
unit present in the LS Unit. For a store instruction, the memory address and 
the value to be stored are recorded in an entry in the store buffer, and the value 
is later written into the data memory. The store buffer is again implemented 
as a circular FIFO queue, with head and tail pointers, keeping the instructions 
to be written to the data memory in their program order. When two store 
buffer entries refer to the same memory address, the latest one has a flag set. 
A load instruction first attempts an associative search in the store buffer using 
the memory address. If multiple store buffer entries have the same address, the 
search returns the value of the latest entry. If the search does not find a matching 
entry, the data for that address is returned from the data memory. A scheduler 
controls the movement of the instructions through the execution pipeline (such 
as being dispatched, executed etc.) and its behavior is modeled by axioms (to 
allow us to concentrate on the processor "core"). Instructions are fetched from 
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the instruction memory using a program counter; and the implementation also 
takes a ho.op input, which suppresses an instruction fetch when asserted. 

An instruction is issued by allocating an entry for it at the head of the reorder 
buffer and (depending on the instruction type) either a free reservation station 
(schjiew.slot) in the ABS Unit or a free reservation station at the head of the 
queue of reservation stations in the LS Unit. If the instruction being issued is a 
branch instruction, then the program counter is modified according to a predicted 
branch target address (sch.pred.target, an unconstrained arbitrary value), and 
in the next cycle the new instruction is fetched from this address. No instruction 
is issued if there are no free reservation stations/reorder buffer entries or if no.op 
is asserted or if the processor is being restarted (for reasons detailed later). 
The RTT entry corresponding to the destination of the instruction is updated 
to reflect the fact that the instruction being issued is the latest one to write 
that register. If the source operands are not being written by previously issued 
pending instructions (checked using the RTT) then their values are obtained 
from the register file, otherwise the reorder buffer indices of the instructions 
providing the source operands are maintained (in the reservation station). Issued 
instructions wait for their source operands to become ready, monitoring all the 
execution units if they produce the values they are waiting for. An instruction 
can be dispatched when its source operands are ready and a free execution unit 
is available '. In case of the LS Unit, only the instruction at the tail of the queue 
of reservation stations is dispatched. As soon as an instruction is dispatched, 
its reservation station is freed. The dispatched instructions are executed and 
the results are written back to their respective reorder buffer entries as well as 
forwarded to those instructions waiting for this result. If an exception is raised 
by any of the executing instructions, then a flag is set in the reorder buffer 
entry to indicate that fact. In case of a store instruction, the memory address 
and the value to be stored are written into a store buffer entry instead of the 
reorder buffer entry when the store instruction does not raise an exception 
(other information such as the "ready" status etc. are all written into the reorder 
buffer entry). The control signals from the scheduler determine the timings of 
this movement of the instructions in the execution pipeline. 

The instruction at the tail of the reorder buffer is committed to the architec- 
turally visible components, when it is done executing (at a time determined by 
sch_retire_rb?). If it is a store instruction, then the corresponding store buffer 
entry is marked committed and later written into the data memory (at a time 
determined by sch_sb_retire_mem?). Also, if the RTT entry for the destination 
of the instruction being retired is pointing to the tail of the reorder buffer, then 
that RTT entry is updated to reflect the fact that the value of that register is 
in the appropriate register file. If the instruction at the tail of the reorder buffer 
has raised an exception or if it is a mis-predicted branch or if it is a rf eh in- 

1 Multiple instructions can be simultaneously dispatched, executed and written back 
in one clock cycle. However, for simplicity, we do not allow multiple instruction issue 
or retirement in a single clock cycle. 
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struction, then the rest of the instructions in the reorder buffer are squashed and 
the processor is restarted by resetting all of its internal (non-observable) state. 

3    The Completion Functions Approach 

The key idea in proving the correctness of pipelined microprocessors is to discover 
a formal correspondence between the execution of the implementation and the 
specification machines. The completion functions approach suggests a way of 
constructing this abstraction in a manner that leads to an elegant decomposition 
of the proof. In the first subsection, we briefly discuss the correctness criterion 
we use. In the second subsection, we describe the different steps in constructing 
a suitable abstraction function for the example under consideration. In the third 
subsection, we discuss how to decompose the proof into verification conditions, 
the proof strategies used in discharging these obligations, and the invariants 
needed in our approach. The PVS specifications and the proofs can be found at 
[Hos99]. 

3.1     Correctness Criterion 

We assume that the pipelined implementation and the ISA-level specification 
are provided in the form of transition functions, denoted by I.step and A.step 
respectively. The specification machine state is made up of certain components 
chosen from the implementation machine called the observables. The function 
projection extracts these observables given an implementation machine state. 
The state where the pipelined machine has no partially executed instructions is 
called a flushed state. 

We regard a pipelined processor implementation to be correct if the behavior 
of the processor starting in a flushed state, executing a program, and terminat- 
ing in a flushed state is matched by the ISA level specification machine whose 
starting and terminating states are in direct correspondence with those of the 
implementation processor through projection. This criterion is shown in Fig- 
ure 2(a) where n is the number of implementation machine transitions in a run of 
the pipelined machine and m corresponds to the number of instructions executed 
in the specification machine by this run. An additional correctness criterion is to 
show that the implementation machine is able to execute programs of all lengths, 
that is, it does not get into a state where it refuses to accept any more new in- 
structions. In this paper, we concentrate on proving the correctness criterion 
expressed in Figure 2(a) only. 

The criterion shown in Figure 2(a) spanning an entire sequential execution 
can be established with the help of induction once a more basic commutativity 
obligation shown in Figure 2(b) is established on a single implementation ma- 
chine transition. This criterion states that if the implementation machine starts 
in an arbitrary state q and the specification machine starts in a corresponding 
specification state (given by an abstraction function ABS), then after executing 
a transition their new states correspond. A.step_new stands for zero or more 
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applications of A_step. The number of instructions executed by the specifica- 
tion machine corresponding to an implementation transition is given by a user 
defined synchronization function. Our method further verifies that the ABS func- 
tion chosen corresponds to projection on flushed states, that is, ABS(fs) = 
projection(f s) holds on flushed states, thus helping debug ABS. The user may 
also need to discover invariants to restrict the set of implementation states con- 
sidered in the proof of the commutativity obligation and prove that it is closed 
underI_step. 
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Fig. 2. Pipelined microprocessor correctness criterion 

The crux of the problem here is to define a suitable abstraction function 
relating an implementation state to a specification state. The completion func- 
tions approach suggests a way of doing this in a manner that leads to an elegant 
decomposition of the proof. We now detail how this is achieved for our example 
processor. 

3.2     Compositional construction of the abstraction function 

The first step in defining the abstraction function is to identify all the unfinished 
instructions in the processor and their program order. In this implementation, 
the processor (when working correctly) stores all the currently executing instruc- 
tions in their program order in the reorder buffer. We identify an instruction in 
the processor with its reorder buffer index, that is, we refer to instruction at. 
reorder buffer index rbi as just instruction rbi2. In addition to these, the store 
buffer has certain committed store instructions yet to be written into the data 
memory, recorded in their program order. These store instructions are not as- 
sociated with any reorder buffer entry and occur earlier in the program order 
than all the instructions in the reorder buffer. 
2 Brief explanation of some of the notation used throughout rest of the paper: q refers 

to an arbitrary implementation state, s the scheduler output, i the processor input, 
I.step(q,s, i) the next state after an implementation transition. We sometimes refer 
to predicates and functions defined without explicitly mentioning their arguments, 
when this causes no confusion. 
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Having determined the program order of the unfinished instructions, the sec- 
ond step is to define a completion function for every unfinished instruction in 
the pipeline. Each completion function specifies the desired effect on the observ- 
ables of completing a particular unfinished instruction assuming those that are 
ahead of it (in the program order) are completed. The completion functions, 
which map an implementation state to an implementation state, leave all non- 
observable state components unchanged. However not every instruction in the 
pipeline gets executed completely and updates the observables. If an instruc- 
tion raises an exception or if the target address is mis-predicted for a branch 
instruction, then the instructions following it must be squashed. To specify this 
behavior, we define a squashing predicate for every unfinished instruction that is 
true exactly when the unfinished instruction can cause the subsequent instruc- 
tions (in the program order) to be squashed. The completion function for a given 
instruction updates the observables only if the instruction is not squashed by 
any of the instructions preceding it. 

We now elaborate on specifying the completion functions and the squashing 
predicates for the example under consideration. An unfinished instruction rbi 
in the processor can be in one of the following seven phases of execution: Issued 
to ABS Unit or to LS Unit (issued.abs or issuedJsu), dispatched in either of 
these units (dispatched.abs or dispatchedJsu), executed in either of these units 
(executed.abs or executedJsu) or written back to the reorder buffer (writtenback). 
A given unfinished instruction is in one of these phases at any given time and the 
information about this instruction (the source values, destination register etc) 
is held in the various implementation components. For each instruction phase 
"ph", we define a predicate "Instr.ph?" that is true when a given instruction is in 
phase "ph", a function "Action_ph" that specifies what ought to be the effect of 
completing an instruction in that phase, and a predicate "Squash-rest?.ph" that 
specifies the conditions under which an instruction in that phase can squash all 
the subsequent instructions. We then define a single parameterized completion 
function and squashing predicate (applicable to all the unfinished instructions 
in the reorder buffer) as shown in \T\. We similarly define (a parameterized) 
completion function for the committed store instructions in the store buffer. 
These store instructions can only be in a single phase, that is, committed, 
and they do not cause the subsequent instructions to be squashed. (A store 
instruction that raises an exception is not entered into the store buffer.) 

'/.  state_I:impl.   state type,   rbindex:reorder buffer  index type. I    T" 
Complete_instr(q:state_I,   rbi:rbindex,   kill?:bool):   state.I  = 

IF kill? THEN q 
ELSIF Instr_urittenback?(q,rbi) THEN Action_writtenback(q,rbi) 

ELSIF Instr_executed_lsu?(q,rbi) THEN Action_executed_lsu(q,rbi) 

ELSIF ... Similarly for other phases ... ENDIF 

Squash_rest?_instr(q:state_I, rbi:rbindex): bool = 

IF Instr_writtenback?(q,rbi) THEN Squash.rest?_writtenback(q,rbi) 

ELSIF Instr_executed_lsu?(q,rbi) THEN Squash_rest?_executed.lsu(q,rbi) 

ELSIF ... Similarly for other phases ... ENDIF 
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In this implementation, when an instruction is in the writtenback phase, 
its reorder buffer entry has the result value and destination of the instruction, 
and also enough information to determine whether it has raised any excep- 
tions or has turned out to be a mis-predicted branch. Action_writtenback and 
Squash_rest?_writtenback are then defined using this information about the 
instruction. Similarly, we define the "Action"s and the "Squash_rest?"s for the 
other phases. When an instruction is in an execution phase where it has not 
yet read its operands, the completion function obtains the operands by sim- 
ply reading them from the observables. The justification is that the completion 
functions are composed in their program order in constructing the abstraction 
function (described below), and so we talk of completing a given instruction in 
a context where the instructions ahead of it are completed. 

'/. Complete_Squash_rest?_till  returns  a tuple. |   2 
'/. proj.l  and proj_2 extracts the first  and the second components. 
7. rbindex_p  is  type  ranging from 0 to the size of the reorder buffer. 
Complete_Squash_rest?_till(q:state_I,rbi_ms:rbindex_p): 

RECURSIVE   [state.I.bool]   = 
IF rbi_ms = 0 THEN   (q,FALSE) 
ELSE LET t = Complete_Squash_rest?_till(q,rbi_ms-l), 

x = proj.Kt),   y = proj_2(t)   IN 
(Complete_instr(x,measure_fn_rbi(q,rbi_ms) ,y) ,   7.7,  1st  component. 
Squash_rest?_instr(x,measure_fn_rbi(q,rbi_ms))   OR y)   '/,'/, 2nd one. 

END IF 
MEASURE rbi.ms 

Complete_till(q:state_I,rbi_ms:rbindex_p):   state.I  = 
proj_l(Complete_Squash_rest?_till(Complete_committed_in_sb_till( 

q,lsu_sb_commit_count(q)),rbi_ms)) 

Squash_rest?_till(q:state_I,rbi_ms:rbindex_p):   bool  = 
proj_2(Complete_Squash_rest?_till(Complete_committed_in_sb_till( 

q, lsu_sb_commit_count(q)),rbi.ms)) 

7. state.A  is  the  specification state  type. 
ABS(q:   state.I):   state.A  = projection(Complete_till(q,rb_count(q))) 

The final step is to construct the abstraction function (that has the cumula- 
tive effect of flushing the pipeline) by completing all the unfinished instructions 
in their program order. A given instruction is to be killed, that is, the kill? 
argument of Complete_instr is true, when the squashing predicate is true for 
any of the instructions ahead of that given instruction. In order to define an 
ordering among the instructions, we define a measure function rbijneasurejfn 
that associates a measure with every instruction in the reorder buffer such that 
the tail has measure one and successive instructions have a measure one greater 
than the previous instruction. So the instructions with lower measures occur ear- 
lier in the program order than instructions with higher measures. The function 
measure_fn_rbi returns the reorder buffer index of the instruction with the given 
measure. To define the abstraction function, we first define a recursive function 
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CompleteJ5quash_rest?.till that completes the instructions and computes the 
disjunction of the squashing predicates from the tail of the reorder buffer till a 
given unfinished instruction, as shown in [T]. Complete-committed_in.sb_till 
is a similar recursive function that completes all the committed store instruc- 
tions in the store buffer. We can then define the abstraction function by first 
completing all the committed instructions in the store buffer (they are earlier 
in the program order that any instruction in the reorder buffer) and then com- 
pleting all the instructions in the reorder buffer. So we define Complete_till 
and Squash_rest?_till as shown in [2], and then in constructing the abstrac- 
tion function ABS, we instantiate the Complete.till definition with the mea- 
sure of the latest instruction in the reorder buffer. The implementation variable 
rb.count maintains the number of instructions in the reorder buffer, and hence 
corresponds to the measure of the latest instruction. 

3.3    Decomposing the proof 

The proof of the commutativity obligation is split into different cases based on 
the structure of the synchronization function. In this example, the synchroniza- 
tion function returns zero when the processor is restarted or if the squashing 
predicate evaluates to true for any of the instructions in the reorder buffer (i.e., 
Squashjrest?_till(q,rb_count(q)) is true) or if no new instruction is issued. 
Otherwise it returns one, and we consider each of these cases separately. We 
discuss proving the commutativity obligation for register file rf and program 
counter pc only. The proofs for the special register file, mode flag and data 
memory are similar to that rf, though in the case of data memory, one needs to 
take into account the additional details regarding the committed instructions in 
the store buffer. The proof for instruction memory is straight-forward as it does 
not change at all. 

We first consider an easy case in the proof of the commutativity obligation 
(for rf), that is, when the processor is being restarted in the current cycle 
(restart_proc is true). 

- The processor discards all the executing instructions in the reorder buffer, 
and sets rb.count and lsu_sb_commit_count to zeros. So Complete.till 
will be vacuous on the implementation side of the commutativity obliga- 
tion (the side on which I.step(q,s,i) occurs), and the expression on the 
implementation side simplifies to rf (Ijstep(q,s,i)). 

- Whenever the processor is being restarted, the instruction at the tail of 
the reorder buffer is causing the rest of the instructions to be squashed, 
so Squashjrest?_till(q,l) ought to be true. (Recall that the tail of the 
reorder buffer has measure one.) We prove this, and then from the definition 
of Complete_Squash_rest?_till in [T|, it follows that the kill? argument 
is true for all the remaining instructions in the reorder buffer, and hence 
these do not affect rf. Also, the synchronization function returns zero when 
the processor is being restarted. So the expression on the specification side 
of the commutativity obligation simplifies to rf (Complete.till (q, 1)). 
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- We show that the rf (I.step(q,s,i)) and rf(Complete_till(q,1)) are 
indeed equal by expanding the definitions occurring in them and simplifying. 

Now assume that restart.proc is false. We first postulate certain verifica- 
tion conditions, prove them, and then use them in proving the commutativity 
obligation. Consider an arbitrary instruction rbi. Though the processor exe- 
cutes the instructions in an out-of-order manner, it commits the instructions to 
the observables only in their program order. This suggests that the effect on 
rf of completing all the instructions till rbi is the same in the states q and 
I_step(q,s,i). Similarly, the truth value of the disjunction of the squashing 
predicates till rbi is the same in the states q and I_step(q,s,i). This verifica- 
tion condition Complete_Squash_rest?.till_VC is shown in \3j. This is proved 
by an induction on rbijns3 (the measure corresponding to instruction rbi). 

'/. valid_rb_entry?  predicate  tests whether rbi  is within the [   3 
'/. reorder buffer bounds. 
Complete_Squash_rest?_till_VC:   LEMMA 
FORALL(rbijns:rbindex):   LET rbi  = measure_fn_rbi(q,rbi_ms)   IN 
((valid_rb_entry?(q,rbi)   AND NOT restart_proc?(q,s,i))   IMPLIES   ( 
rf(Complete_till(q,rbi_ms))   = rf(Complete_till(I_step(q,s,i),rbi_ms))   AND 
Squash_rest?_till(q,rbi_ms)   = Squash_rest?_till(I_step(q,s,i),rbi_ms))) 

As in the earlier proofs based on completion functions approach [HSG99,HSG98], 
we decompose the proof of Complete_Squash_rest?_till_VC into different cases 
based on how an instruction makes a transition from its present phase to its 
next phase. Figure 3 shows the phase transitions for an instruction rbi in the 
reorder buffer (when the processor is not restarted) where the predicates label- 
ing the arcs define the conditions under which those transitions take place. The 
Figure also shows the three transitions for a new instruction entering the proces- 
sor pipeline. Having identified these predicates, we prove that those transitions 
indeed take place in the implementation machine. For example, we prove that an 
instruction rbi in phase dispatched.hu (D.lsu in the Figure) goes to executedJsu 
phase in I_step(q,s,i) ifExecuteJ.su? predicate is true, otherwise it remains 
in dispatched.lsu phase. 

We now return to the proof of Complete-Squash_rest?_till-VC and consider 
the induction argument (i.e., rbijns is not equal to 1). The proof outline is as 
follows: 

- Expand the Complete_till and the Squash.xest?_till definitions on both 
sides of Complete_Squash_rest?-till_VC and unroll the recursive definition 
of Complete_Squash_rest?_till once. 

- Consider the first conjunct (i.e., one corresponding to rf). The kill? ar- 
gument to Complete_instr is Squash_rest?_till(q,rbi_ms-1) on the left. 

3 Since the measure function is dependent on the tail of the reorder buffer, and since 
the tail can change during an implementation transition, the measure needs to be 
adjusted on the right hand side of Complete_Squash.rest?_till.VC to refer to the 
same instruction. This is a detail which we ignore in this paper for the ease of 
explanation, and use just rbijns. 
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NOT Dispalchjsu'' NOT Execuiejsu'        NOT Wrilcbackjsu'' 

3ispalchjsu'' _ V~y    Execute.!«!? 

NOT Dispatch_abs?      NOT E»ecutc_abs?        NOT Wriieback_abs? 

Fig. 3. The various phases an instruction can be in and transitions between them (when 
the processor is not being restarted). Also, the three transitions for an instruction 
entering the processor are shown. 

hand side and Squash_rest?_till(Ijstep(q,s,i) ,rbijns-l) on the right 
hand side, and these have the same truth value by the induction hypothesis. 
When it is true, the left hand side reduces to rf (Complete.till (q.rbi jns-1)) 
and the right hand side to rf (Complete.till(I_step(q,s,i) ,rbijns-l)) 
which are equal by the induction hypothesis. When it is false, the proof 
proceeds as in our earlier work [HSG99]. We consider the possible phases 
rbi can be in and whether or not, it makes a transition to its next phase. 
Assume rbi is in dispatched.abs phase and the predicate Execute.abs? is 
true. Then, in I.step(q,s ,i), rbi is in executed-abs phase. By the definition 
of Coraplete_instr, the left hand side of the verification condition simpli- 
fies torf (Action_dispatched_abs(Complete_till(q,rbijns-l) .rbijns)) 
and the right hand side reduces to rf (Action.executed_abs (Completedill 
(I.step(q,s,i) ,rbi_ms-l),rbijns)). The proof now proceeds by expand- 
ing these "Action" function definitions, using the necessary invariant prop- 
erties and simplifying. The induction hypothesis will be used to infer that 
the register file contents in the two states Completed ill (q, rbi jns-1) and 
Complete_till(I_step(q,s,i) ,rbi_ms-l) are equal, as those two terms 
appear when the "Action" definitions are expanded. Overall, the proof de- 
composes into 14 cases for the seven phases rbi can be in. 

- Consider the second conjunct of Complete_Squashjrest?_tillJ/C. Using 
the induction hypothesis, this reduces to showing that the two predicates 
Squash_rest?_instr(Complete.till(q,rbijns-l) ,rbijns) and Squasru 
rest?.instr(Complete_till(Ijstep(q,s,i),rbijns-l) ,rbijns) have the 
same truth value. This proof again proceeds as before by a case analysis on 
the possible phases rbi can be in and whether or not, it makes a transition 
to its next phase. The proof again decomposes into 14 cases for the seven 
phases rbi can be in. 

For the program counter, however, it is not possible to relate its value in 
states q and I.step(q,s,i) by considering the effect of instructions one at a 
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time in their program, order as was done for rf. This is because I_step updates 
pc if a new instruction is fetched, either by incrementing it or by updating 
it according to the speculated branch target address, but this new instruction 
is the latest one in the program order. However, if the squashing predicate is 
true for any of the executing instructions in the reorder buffer, then completing 
that instruction modifies the pc with a higher precedence, and the pc ought to 
be modified in the same way in both q and I_step(q,s,i). This observation 
suggests a verification condition on pc, shown in [TJ. This verification condition 
is again proved by an induction on rbi _ms, and its proof is decomposed into 14 
cases based on the instruction phase transitions as in the earlier proofs. 
pc_remains_same_VC: LEMMA| 4 
FORALL(rbi_ms:rbindex):   LET rbi = measure_fn_rbi(q,rbi_ms)   IN 

(valid_rb_entry?(q,rbi)   AND NOT restart_proc?(q,s,i)   AND 
Squash_rest?_till(q,rbi_ms))   IMPLIES 

pc(Complete_till(q,rbi__is))   = pc(Complete_till(I_step(q,s,i),rbi_ms)) 

Now we come to the proof of the commutativity obligation, where we use the 
above lemmas after instantiating them with rb.count. We consider the differ- 
ent remaining cases in the definition of the synchronization function in order— 
Squash_rest?.till(q,rb_count(q)) is true, no new instruction is issued or the 
three transitions corresponding to a new instruction being issued as shown in 
Figure 3. 

- When Squash_rest?_till(q,rb.count(q)) is true, the kill? argument for 
the new instruction fetched (if any) will be true in I.step(q,s,i) since 
Squash_rest?.till has the same truth value in states qand I_step(q,s,i). 
Hence on the implementation side of the commutativity obligation, there is 
no new instruction executed. On the specification side, the synchronization 
function returns zero, so A_step_new is vacuous. The proof can then be ac- 
complished using Complete_Squash_rest?_till_VC (for the register file) and 
pc_remains_same_VC (for the program counter). 

- The proof when no new instruction is issued or when one is issued is similar 
to the proof in our earlier work [HSG99]. For example, if the issued instruc- 
tion is in issuedJsu phase in I_step(q,s,i), then we have to prove that 
completing this instruction according to Action_issuedJ.su has the same 
effect on the observables as executing a specification machine transition. 

Correctness of the feedback logic: Whenever there are data dependencies 
among the executing instructions, the implementation keeps track of them and 
forwards the results of the execution to all the waiting instructions. The cor- 
rectness of this feedback logic, both for the register file and the data memory, is 
expressed in a similar form as in our earlier work [HSG99]. For example, a load 
instruction obtains the value from the store buffer if there is an entry with the 
matching address (using associative search), otherwise it reads the value from 
the data memory. Consider the value obtained when all the instructions ahead 
of the load instruction are completed, and then the data memory is read. This 
value and the value returned by the feedback logic ought to be equal. The ver- 
ification condition for the correctness of the feedback logic for data memory is 
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based on the above observation. It will be used in the proof of the commutativity 
obligation and the proof of this verification condition itself is based on certain 
invariants. 

Invariants needed: Many of the invariants needed like the exclusiveness and 
the exhaustiveness of instruction phases, and the invariants on the feedback 
logic for the register file and data memory are similar to the ones needed in our 
earlier work [HSG99]. We describe below one invariant that was not needed in 
the earlier work. 

The LS Unit executes the load and store instructions in their program 
order. These instructions are stored in their program order in the reservation 
stations in the LS Unit and in the store buffer. It was necessary to use these 
facts during the proof and it was expressed as follows (for the reservation sta- 
tions in LS Unit): Let rsil and rsi2 be two instructions in the reservation 
stations in the LS Unit, rsil.ptr and rsi2_ptr point to the reorder buffer en- 
tries corresponding to these instructions respectively. Let lsu_rsi_measure_fn 
be a measure function defined on the LS Unit reservation station queue similar 
to rbi-measure_fn. If rsil has a lower/higher measure than rsi2 according to 
lsu_rsi_measure Jn, then rsil.ptr has a lower/higher measure than rsi2_ptr 
according to a rbi_measure_fn. 

PVS proof effort organization: This exercise was carried out in four phases. 
In the first phase, we "extrapolated" certain invariants and properties from the 
earlier work, and this took 27 person hours. In the second phase, we formulated 
and proved the invariants and certain other properties on the store buffer, and 
this took 54 person hours. In the third phase, we formulated and proved all the 
verification conditions about the observables and the commutativity obligation, 
and this took 131 person hours. In the fourth phase, we proved the necessary 
invariants about the feedback logic and its correctness, and this took 53 person 
hours. So the entire proof was accomplished in 265 person hours. 

Related work: There is one other reported work on formally verifying the cor- 
rectness of a pipelined processor of comparable complexity. In [SH99], Sawada 
and Hunt construct an explicit intermediate abstraction in the form of a table 
called MAETT, express invariant properties on this and prove the final correct- 
ness from these invariants. They report taking 15 person months. Also, their 
approach is applicable to fixed size instantiations of the design only. Various 
other approaches have been proposed to verify out-of-order execution processors 
recently [McM98,PA98,JSD98,BBCZ98,CLMK99,BGV99], but none of these 
have been so far demonstrated on examples with a similar set of features as we 
have handled. 
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Example verified Effort spent doing the proof 

EX1.1 and EX1.2 2 person months 
EX3.1 13 person days 
EX2.1 19 person days 
EX3.2 7 person days 
EX2.2 34 person days 

Table 1. Examples verified and the effort needed. 

4    Experimental Results and Concluding Remarks 

We have applied our methodology to verify six example processors exhibiting 
a wide variety of implementation issues, and implemented our methodology in 
PVS [ORSvH95]. Our results to date are summarized in Table 1. This table 
summarizes the manual effort spent on each of the examples, listing them in the 
order we verified them. The first entry includes the time to learn PVS4. Each 
verification effort built on the earlier efforts, and reused some the ideas and the 
proof machinery. 

The processor described in this paper is listed as EX2.2. In contrast, EX1.1 
is a five stage pipeline implementing a subset of the DLX architecture, EX 1.2 
is a dual-issue version of the same architecture, and EX2.1 is a processor with 
a reorder buffer and only arithmetic instructions. We also considered two ex- 
amples that allowed out-of-order completion of instructions: EX3.1 allowed cer- 
tain arithmetic instructions to bypass certain other arithmetic instructions when 
their destinations were different, and EX3.2 implemented Tomasulo's algorithm 
without a reorder buffer and with arithmetic instructions only. 

In conclusion, the completion functions approach can be used effectively to 
verify a wide range of processors against their ISA-level specifications. We have 
articulated a systematic procedure by which a designer can formulate a very 
intuitive set of completion functions that help define the abstraction function, 
and then showed how such a construction of the abstraction function leads to 
decomposition of the proof of the commutativity obligation. We have also pre- 
sented how the designer can systematically address details such as exceptions 
and feedback logic. Design iterations are also greatly facilitated by the com- 
pletion functions approach due to the incremental nature of the verification, 
as changes to a pipeline stage do not cause ripple-effects of changes across the 
whole specification; global re-verification can be avoided because of the layered 
nature of the verification conditions. Our future work will be directed at over- 
coming the current limitations of the completion functions approach, by seeking 
ways to automate invariant discovery, especially pertaining to the control logic 
of processors. 

By the first author who did all the verification work. 

141 



References 

[BBCZ98] Sergey Berezin, Armin Biere, Edmund Clarke, and Yunshan Zu. Combin- 
ing symbolic model checking with uninterpreted functions for out-of-order 
processor verification. In Gopalakrishnan and Windley [GW98], pages 369- 
386. 

[BGV99] Randal Bryant, Steven German, and Miroslav Velev. Exploiting positive 
equality in a logic of equality with uninterpreted functions. In Halbwachs 
and Peled [HP99], pages 470-482. 

[CLMK99] Byron Cook, John Launchbury, John Matthews, and Dick Kieburtz. For- 
mal verification of explicitly parallel microprocessors. In Pierre and Kropf 
[PK99], pages 23-36. 

[GW98] Ganesh Gopalakrishnan and Phillip Windley, editors. Formal Methods in 
Computer-Aided Design, FMCAD '98, volume 1522 of Lecture Notes in 
Computer Science, Palo Alto, CA, USA, November 1998. Springer-Verlag. 

[HGS99] Ravi Hosabettu, Ganesh Gopalakrishnan, and Mandayam Srivas. A proof 
of correctness of a processor implementing Tomasulo's algorithm without 
a reorder buffer. In Pierre and Kropf [PK99], pages 8-22. 

[Hos99] Ravi Hosabettu. The Completion Functions Approach homepage, 1999. 
At address http://www.cs.utah.edu/~hosabett/cfa.html. 

[HP99] Nicolas Halbwachs and Doron Peled, editors. Computer-Aided Verification, 
CAV '99, volume 1633 of Lecture Notes in Computer Science, Trento, Italy, 
July 1999. Springer-Verlag. 

[HSG98] Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. Decom- 
posing the proof of correctness of pipelined microprocessors. In Hu and 
Vardi [HV98], pages 122-134. 

[HSG99] Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. Proof of 
correctness of a processor with reorder buffer using the completion func- 
tions approach. In Halbwachs and Peled [HP99], pages 47-59. 

[HV98] Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Verification, 
CAV '98, volume 1427 of Lecture Notes in Computer Science, Vancouver, 
BC, Canada, June/July 1998. Springer-Verlag. 

[JSD98] Robert Jones, Jens Skakkebaek, and David Dill. Reducing manual abstrac- 
tion in formal verification of out-of-order execution. In Gopalakrishnan and 
Windley [GW98], pages 2-17. 

[McM98] Ken McMillan. Verification of an implementation of Tomasulo's algorithm 
by compositional model checking. In Hu and Vardi [HV98], pages 110-121. 

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. 
Formal verification for fault-tolerant architectures: Prolegomena to the de- 
sign of PVS. IEEE Transactions on Software Engineering, 21(2):107-125, 
February 1995. 

[PA98] Amir Pnueli and Tamarah Arons.     Verification of data-insensitive cir- 
cuits: An in-order-retirement case study. In Gopalakrishnan and Windley 
[GW98], pages 351-368. 

[PK99] Laurence Pierre and Thomas Kropf, editors.    Correct  Hardware Design 
and Verification Method, CHARME '99, volume 1703 of Lecture Notes in 
Computer Science, Bad Herrenalb, Germany, September 1999. Springer- 
Verlag. 

[SH99] J. Sawada and W.A. Hunt, Jr.   Results of the verification of a comples 
pipelined machine model. In Pierre and Kropf [PK99], pages 313-316. 

142 



Automating Partition Proofs 

Mandayam K. Srivas 
Computer Science Laboratory 

SRI International 
Menlo Park, CA 94025 USA 

143 



Abstract 

We study and contrast the role played by abstraction, invariant generation, 
and automation in deductive and algorithmic verification using a small, but 
realistic embedded system. 
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1    Introduction 

Key techniques that determine the successful application of formal verification to 
real systems, whether the method of proof is deductive or algorithmic, include ab- 
straction, invariant generation, automation, and scaling. In this paper, we study 
and contrast the role played by these techniques by verifying a small but significant 
example using a deductive method based on rewriting and decision procedures, and 
an algorithmic method based on symbolic model checking. 

The example illustrates formal analysis of a particular kind of safety property, 
namely a partitioning property about a hardware/software system architecture that 
implements a safe partitioning mechanism. Partitioning [5] is an important problem 
in Integrated Modular Avionics (IMA), where software that supports a collection of 
avionics tasks is implemented using a common, shared computing platform. This 
shared architecture provides pathways for undesired interference between the dif- 
ferent tasks supported by the software. A partitioning mechanism in an IMA ar- 
chitecture is intended to prevent design faults in one task from interfering with the 
behavior of other tasks. The advantage of having a partitioning mechanism is that 
not every task has to be assured to the same level regardless of its criticality. As 
long as the partitioning mechanism and the critical tasks are subjected to a high 
level of assurance, it is not necessary to worry about the faults in noncritical tasks 
affecting critical ones, even if the noncritical tasks are not formally verified. 

The partitioning architecture we analyze is built using a microcoded processor, the 
AAMP-FV, whose microcode has been partially verified [8], a Partition Management 
Unit (PMU), and an unprotected MEMORY. A piece of kernel code implements the 
partitioning mechanism in hardware. A partitioning property may be expressed as a 
safety property on execution traces. Our formal model is written as a program inter- 
preter for AAMP-FV code with specially defined functions to model the hardware 
mechanisms. The system is centrally controlled and deterministic. 

This architecture is a good candidate for proof by rewriting and decision procedures 
because it uses a data-dominated design. Given a sufficiently strong invariant on 
the set of reachable states, the proof can, in principle, be automated in PVS using 
rewriting and decision procedures. Rockwell Collins attempted a partial verification 
of the design, using a proof based on symbolic simulation of the actual kernel code. 
Our goal in re-verifying the design is to explore the use of appropriate abstractions 
to reduce the complexity of the proof. 

We employ two abstractions in the deductive proof. The first abstracts the kernel 
code into a set of constraints, referred to as kernel_code_invariants, that must be 
satisfied by every transition made by execution of the code. The second abstracts 
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the level in the definition hierarchy of the transition function to which the transition 
function is symbolically simulated. Both abstractions are constructed with respect 
to the property to be verified. Predictably, the most challenging part of the proof 
using symbolic simulation and decision procedures is identification of the invari- 
ants. In addition to the kernel.code_invariants, we need a number of auxiliary 
invariants about components of the system state. 

The primary motivations for exploring model checking as an alternate proof strategy 
are to increase the automation and eliminate the need for auxiliary invariants in the 
proof of the partition property. Our approach is to incorporate the information 
in kernel_code_invariants in constructing the abstract system to model check. 
Taking care to use the same level of abstraction for the kernel code in both the 
deductive and algorithmic proofs, it turns out that the stack pointer invariant is 
the only invariant required for reducing the problem to a model checking proof (cf. 
Section  5). 

In the remainder of the paper, we describe verification of the partitioning architec- 
ture with respect to the two approaches outlined above. The deductive verification 
uses rewriting and the PVS decision procedures, and the algorithmic proof uses the 
PVS model checking capability. As of this reporting, the PVS proof using decision 
procedures is complete and the PVS model checking proof is nearly complete. This 
paper is organized as follows. Section 2 outlines the partitioning architecture and 
introduces the version of the partitioning property that we use. Section 4 describes 
verification of the property using decision procedures. Section 5 presents the corre- 
sponding discussion for the finite state verification, including one additional wrinkle: 
the model checking proof is not complete until the abstracted system is shown to 
be a conservative abstraction of the original system. This step is fairly easy in our 
case because the abstraction is essentially conservative by construction. In both 
approaches, completing the verification requires proof that the actual kernel code 
satisfies the kernel_code_invariants. The last section discusses these additional 
proofs. 

2    Partitioning Architectures and Their Properties 

The purpose of partitioning is fault containment: a failure in one partition must 
not be allowed to propagate and cause failure in another partition. Although prop- 
agation of failures may be due to physical faults in the underlying hardware, this 
type of propagation is best handled by fault-tolerant mechanisms. The intent of 
partitioning in our work is to control the effect of faults in the design and imple- 
mentation of tasks in partitions that share resources.   As this focus suggests, the 
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design choices for partitioning interact with those for providing operating system 
services. The architecture we study uses a "virtual machine" approach, shown in 
Figure 1, that relies for enforcement on the kernel and its supporting hardware. 

Partition A Partition B 

OS Services for A OS Services for B 

KERNEL 

HARDWARE 

Figure 1: A General Partitioning Architecture 

There are two kinds of partitioning: spatial and temporal. Spatial partitioning is 
concerned with memory separation, while temporal partitioning is concerned with 
the independence of timed events in separate tasks. The property we verify involves 
spatial partitioning. The basic concern of spatial partitioning is the possibility 
that software in one partition might write into the memory of another. Hardware 
mediation provided by a partition management unit (PMU) is the usual way to 
guard against violations of spatial partitioning. The basic idea is that the processor 
has two modes of operation: user and supervisor. In user mode, all accesses to 
memory addresses are either checked or translated using tables maintained in the 
PMU. A kernel or layer of operating system software manages the PMU tables 
so that the memory locations that can be read and written in each partition are 
disjoint. The kernel also uses the PMU to protect itself from being modified by 
software in its client partitions, and manages the user/supervisor mode distinctions 
of the processor to ensure that the mediation provided by the PMU cannot by 
bypassed. 

A typical kernel scheduling algorithm allows the software in one partition to execute 
for a while, then passes control to another partition and so on; when one partition 
is suspended and another started, the kernel saves essential information needed to 
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resume the suspended software where it left off. The technique described here for 
partitioning is similar to classical time-sharing where partitions may be suspended 
at arbitrary points and later resumed. 

2.1    The Rockwell Collins Partitioning Architecture 

The specific architecture we use is shown in Figure 2. The architecture was de- 
signed at Rockwell Collins to investigate design alternatives for implementing safe 
partitioning mechanisms for AAMP-FV, a member of the AAMP family of proces- 
sors [10].  Since the microcode of AAMP-FV was itself partially formally verified, 

nmi     ' 
PMU 

□  □□ 
AAMP-FV 

urn      i 

mem      ' 
(protected) i MEM 

Figure 2: AAMP-FV Partitioning Architecture 

this architecture was chosen to provide a nontrivial example of formal verification 
of a software/hardware system that uses AAMP-FV. The kernel we verify is a piece 
of AAMP-FV code that manages the PMU tables and the partitioning swaps. The 
PMU maintains two memory mapped registers for memory partitioning—base and 
limit—that define the boundaries of the address space allocated to the current par- 
tition. In user mode, the hardware protection in the architecture prohibits writes 
to addresses outside of this address space. 

The state machine shown in Figure 3 is an abstract characterization of the execution 
behavior of the kernel code. Every transition in the state machine corresponds 
to execution of an AAMP-FV machine instruction. The sequence of transitions 
from state ExecO to state User corresponds to code execution with the processor 
in executive mode. The sequence of transitions from state User to state ExecO 
corresponds to user-task execution. User-to-Exec mode switching occurs by means 
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of interrupts or trap-like instructions. Exec-to-User mode switching occurs via a 
special USER instruction. The longest path possible in the kernel code has about 40 
instructions. 

Executive operation 

ExecO^ 

*+*■ User task operation   —*)*— Executive operation 

Figure 3: Kernel State Machine 

The kernel code also maintains additional timing registers in the PMU to implement 
temporal partitioning mechanisms that ensure that every partition gets its pre- 
allocated slot of time/service. This ensurance persists even under the uncertainties 
caused by latency in interrupt handling by the AAMP-FV processor. Since the 
property we verify concerns memory partitioning, our specification abstracts away 
most of the details in the kernel code. 

2.2    Invariant Performance and Cumulative Invariance 

Recently, a number of people have specified partitioning properties of systems for- 
malized on execution traces of the partitioned system [2, 3, 10]. The property 
partially verified by Rockwell International [10], called invariant performance and 
shown in Figure 4, asserts that "If two kernel-controlled AAMP-FV partition sets 
have identical initial kernel states and identical states for some partition p, then the 
execution of the partition sets maintains the equivalence of the states of partition 

P-" 

K0   P01 P02 

MEM|0 MEM|0 

KO P01 P02 

Figure 4: Invariant Performance Property 

Note that the invariant performance property, although stated as a condition on 
memory, ensures certain aspects of temporal partitioning, since it requires confor- 
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mance after every transition. For example, the scheduling of tasks must be invariant 
with respect to behavior of software in the partitions. The property we verify, called 
cumulative invariance and shown in Figure 5, is weaker than the Rockwell Collins 
property. Our property asserts that "If two execution traces starting from the same 
initial state execute the same sequence of instructions pertaining to a partition p, 
then the memory projected to the partition p in the two traces after the instruction 
sequence is complete must be identical." In other words, if the two execution traces 
are filtered of all transitions except those belonging to partition p, the memory 
projected to partition p must be identical in corresponding states in both traces. 

KO P01 
InstrnO 

P02 

11 MEM|0 11 MEM|0 

KO P01 
InstrnO 

P02 

\ 

InstrnO 
P02 

ntrnsO 11 MEM|0 

InstrnO 
P02 

Figure 5: Cumulative Invariance Property 

The cumulative invariance property may be proved by induction if the following 
safety properties are established on the global transition system. 

1. Every user-mode-to-user-mode transition must affect only the memory space 
of the current partition. 

2. All other transitions (i.e., all nonuser-mode-to-user-mode transitions) must 
not affect the user space. 

Although we have completed the inductive PVS proof of the cumulative invariance 
property, we focus in this report on the more instructive proof of the two safety 
properties. 

3    Modeling the System 

The system model reflects the standard approach to modeling synchronous systems: 
a state transition function is defined for every major component of the global system 
state, in our case, the PMU AAMP-FV, and the connections (CONNS), of which 
MEMORY is a part. The global transition function step is defined as a composition 
of the component transition functions. Since the system is deterministic, we use a 
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functional style to define next-state transitions. Excerpts from the definition of the 
step function are shown below. 

system_state: TYPE =   [# processor: macro_state, 
pmu :  pnm_state, 
conns  :  connections_state #] 

step_processor(s,sunprot):macro_state = 
if um(s) AND intreg(s)"6 AND um(s)=um(sunprot) then 

ute_action(sunprot) 
elsif um(s) AND impending_toexec_instruction(s) AND um(s)=um(sunprot) then 

illegal_act ion(sunprot) 
else next_state(s) ENDIF 

step(system):  system_state = 
LET conns = conns(system), s = processor(system), p = pmu(system) IN 

'/, run next instruction with protected memory and PMU-generated NMI 
LET s2 = step.processor(s WITH  [(mem):=protectmem(memory(conns),p,conns), 

(intreg):=setint6(intreg(s), nmi(conns))],s)  IN 
LET mem2 = IF um(s2)  THEN 

restoremem(mem(s2).memory(conns),p,conns) 
ELSE mem(s2)  ENDIF IN 

LET p2 = step_pmu(p,memory(conns2),itime)  IN 
make_system (s2,  p2,   conns2) 

Note, in particular, functions protect_mem and restore_mem, which model the hard- 
ware protection enforced by the PMU on access to memory via the PMU special 
registers. For example, protect jnera provides "read protection" by "zeroing" all 
read accesses to an address outside the memory partition corresponding to the cur- 
rent execution partition. Similarly, the restore_mem function provides "write pro- 
tection" by restoring writes to the prohibited addresses to their original values. The 
hardware protection is used only when the system makes a user-mode-to-user-mode 
transition; in all other cases, protection is provided by kernel code behavior. The 
structure of the specification is best understood in terms of its functional hierarchy, 
which is shown in Figure 6. 
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step_processor 

normaI_action ute_action 

step_PMU step_itime 

illegal_action 

UPDATE/READ Functions 

push/pop 

fetch_addr/store_addr 

read/write 

Figure 6: The Specification Hierarchy 

4    Verification by Decision Procedures 

Correctness Argument 

The main idea behind the correctness proof is to use induction to reduce proof of 
the infinite trace property shown in Figure 5, to a 1-step noninterference property 
whose PVS formalization is shown below. The noninterference property essentially 
states that every kind of system transition (including executive transitions) that 
causes a state-change, must modify only the current partition. 

step_property:  LEMMA 
FORALL  ((system:   system.state   I   invariant(system)),  a:   address): 

LET conns = conns(system),  s = processor(system), p = pmu(system) 
IN in_userspace(a)  IMPLIES 

memory(conns(step(system)))(val(a)) = memory(conns)(val(a)) 

We consider four types of transition corresponding to the two possible modes (user 
and exec) of the current and next states.   In user-mode-to-user-mode transitions, 
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the hardware protection guarantees safe memory partitioning provided that the 
PMU base and limit registers maintain the correct address boundary information 
for the current partition. This constraint is characterized as the PMU invariant. 
The correctness argument relies on the preservation of the PMU invariant by all 
other modes of transitions: in user mode, the base and limit (memory-mapped) 
registers must correspond to the (constant) base and limit addresses associated 
with the current user partition. The PVS formalization of the PMU invariant is 
shown below. 

pmu_mem_cond(sys: system_state): bool = 
LET mem = memory(conns(sys))  IN 
um(conns(sys)) IMPLIES 

base(curr(mem), mem)    = sys'pmu'base    & 
limit(curr(mem), mem)  = sys'pmu'limit 

To allow the inductive proof to go through, this invariant must be strengthened 
significantly by additional invariants. For explanatory purposes, we classify the 
additional invariants into two categories: 

1. core invariants: invariants that identify a structure in the executive data space 
that must be preserved by the kernel and task switching transitions 

2. auxiliary invariants: invariants that state conditions peripheral to the preser- 
vation of the PMU invariant. 

Core invariants suggest a partition of the memory address space into a finite num- 
ber of regions and assert that the contents of a set of selected locations used to 
store pointers must remain within specified address ranges. For example, one core 
invariant specifies that the executive stack pointer, exectos, must remain within 
the stack_space region. Auxiliary invariants state assertions about other locations 
in the executive data space, asserting either that contents of certain variables must 
remain unchanged or that a specified relationship between pairs of variables must 
remain true. 

Mechanizing the Proof 

Our approach to mechanizing the proof of the PMU invariant uses the PVS decision 
procedures to provide a symbolic simulation strategy that consists of the following 
steps: 

1. provide appropriately strong antecedents for the PMU invariant 
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2. install auto-rewrite rules to rewrite defined functions to primitive PVS data 
types 

3. invoke GRIND, a PVS defined strategy that repeatedly applies rewriting, prepo- 
sitional simplification, and decision procedures 

In principle, if a strong-enough reachability invariant is constructed, the memory 
partitioning property could be proved in PVS using the three steps outlined above. 
However, this approach would not work for the PMU invariant because the size of the 
terms created during the proof would be prohibitively large. Accordingly, we adopt a 
strategy similar to the three-step process described above, except that we restrict the 
depth to which the defined functions are rewritten. We rewrite all the way down the 
functional hierarchy shown in Figure 6, until we reach the level of the update/read 
functions. In other words, we treat the update/read functions as uninterpreted func- 
tions, although we do provide certain lemmas about their behavior to be used by 
GRIND as rewrite rules. These lemmas assert selective behaviors of the update/read 
functions that affect memory when the addresses are drawn from the indicated ad- 
dress partitions. For example, the typical lemma mem_store-register jrule shown 
below specifies the behavior of a matched pair of update/read functions with respect 
to addresses drawn from mutually exclusive regions. The main advantage of treating 
update and read as partially interpreted functions is that it reduces the size of terms 
and the number of cases considered by GRIND. 

mem_store_register_rule:  LEMMA 
FORALL  (r:   register,  a:   address,  b:  below(exp2(24))): 

mutually_exclusive(address(b),  a)   IMPLIES 
mem(store_register(a, r, ms))(b)  = mem(ms)(b) 

With sufficient strengthening, the revised proof strategy now successfully proves 
the partitioning properties, the invariants, and the lemmas on the update/read 
functions. 

5    Verification by Model Checking 

As previously noted, the most time-consuming parts of the deductive proof of cumu- 
lative invariance were formulation of the strengthening invariants, and formalization 
of the behavior of the update/read functions in the abstraction used to decompose 
the proof. The primary motivation for analyzing the cumulative invariance property 
with the PVS model checker is to reduce this effort and achieve greater automation. 

There are two sources of unboundedness in the design model for the partitioned 
system:   the number of user partitions, and the memory data and address space. 
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Since the behavior of the system is symmetrical with respect to the main invariant, 
we need only model the current partition and all other partitions. Accordingly, we 
reduce the model to two symbolic partitions. Using nondeterminism, system tran- 
sitions that manipulate the partition number may be correspondingly abstracted. 

Abstracting the memory to a finite instance is somewhat more challenging. The 
deductive proof is helpful in this regard; information accumulated in the invariants 
constructed for the PVS proof suggests that it is sufficient to consider a finite num- 
ber of address space partitions. With the exception of the executive stack pointer, 
the contents of all locations may be abstracted to one bit of information indicating 
whether or not the location is modified. It turns out that we also need a second 
bit of information reflecting which partition (i.e., current, kernel, or other) is rele- 
vant for a given piece of data. Although push and pop operations may increment 
and decrement the stack pointer in an unbounded fashion, the system may be ab- 
stracted to a finite abstraction that preserves the crucial invariant as long as the 
stack pointer remains invariantly inside one of the identified address partitions of 
the memory abstraction. Given this stack pointer constraint, which is in fact one 
of the kernel_code_invariants, the cumulative invariance property may be model 
checked using a conservative abstraction of the original system. 

We use the specification hierarchy shown in Figure 6 to construct an abstract defi- 
nition of the transition function. The property to be verified is similarly abstracted. 
Push and Pop functions that affect the stack pointer invariant are modeled as non- 
deterministic functions that may affect any of the address partitions; however we 
conjoin the stack pointer invariant with the transition function. The abstract model 
is verified by invoking the PVS model check command. 

6    Discussion 

The deductive and algorithmic proofs outlined above must be buttressed with the 
further proof that the actual kernel code satisfies the kernel_code_invariants, in- 
cluding core invariants and four additional kernel code assumptions. The invariants 
concerning the execution of kernel code instructions may be established in one of two 
ways. The first approach considers the kernel code one instruction at a time, with- 
out any abstraction, and shows that if the given invariants hold prior to execution 
of a kernel instruction, they are preserved after execution of that instruction. An 
advantage of this method is that it does not involve setting up further abstractions; 
a major disadvantage is that it may require further strengthening of the invariant, 
especially if the kernel code contains loops. 
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A second approach involves the use of abstraction. We construct a finite state tran- 
sition system that models an abstract interpreter for kernel code execution by ab- 
stracting each instruction in the code with respect to the abstract memory described 
in Section 5. We then use model checking to verify the kernel_code_invariants 
of this model. The advantage of this approach is that it works well even in the 
presence of loops. As before, the abstraction yields a finite state system only under 
the assumption of the stack pointer invariant (cf. Section 5). One way to prove 
the stack invariant is to construct the abstraction using the predicate abstraction 
method of [1, 6], with the base predicates specified in terms of the stack pointer and 
its relation to the boundaries of the stack space region in the memory. In future 
work we plan to explore the utility of the automated predicate abstraction facility 
in PVS [7] for verifying the kernel_code_invariants. 
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Abstract 

I describe a systematic method for deductive verification of safety properties 
of concurrent programs. The method has much in common with the "verification 
diagrams" of Manna and Pnueli [17], but derives from different intuitions. It is 
based on the idea of strengthening a putative safety property into a disjunction 
of "configurations" that can easily be proved to be inductive. Transitions among 
the configurations have a natural diagrammatic representation that conveys insight 
into the operation of the program. The method lends itself to mechanization and 
is illustrated using a simplified version of an example that had defeated previous 
attempts at deductive verification. 
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1   Introduction 

In 1997, Shmuel Katz, Patrick Lincoln and I presented an algorithm for Group Mem- 
bership together with a detailed, but informal proof of its correctness [14]. Shortly 
thereafter, our colleague Shankar and, independently, Sadie Creese and Bill Roscoe of 
Oxford University, noted that the algorithm is flawed when the number of nonfaulty 
processors is three. Model checking a downscaled instance can be effective in find- 
ing bugs (that is how Creese and Roscoe found the problem in our algorithm [8]), but 
true assurance for a potentially infinite-state n-process algorithm such as this seems 
to require (mechanically checked) deductive methods—either direct proof or justifica- 
tion of an abstraction that can be verified by algorithmic means. Over the next year 
or so, Katz, Lincoln and I each made several attempts to formalize and mechanically 
verify a corrected version of the algorithm using the PVS verification system [19]. On 
each occasion, we were defeated by the number and complexity of the auxiliary invari- 
ants needed, and by the "case explosion" that bedevils deductive approaches to formal 
verification. 

Eventually, I stumbled upon the method presented in this paper and completed the 
verification in April 1999 [23]. This new method made the verification not merely 
possible, but easy, and it provides a visual representation that conveys considerable 
insight into the operation of the algorithm. Holger Pfeifer of the University of Ulm 
was subsequently able to use the method to verify a related but much more complicated 
group membership algorithm [21] used in the Time Triggered Architecture for critical 
real-time control [15] 

I later discovered that my method has much in common with the "verification dia- 
grams" introduced by Manna and Pnueli [17], and subsequently generalized by Manna 
and several colleagues [5, 7, 10, 16]. However, the intuition that led to my method is 
rather different than that for verification diagrams, as is the way I approach its mecha- 
nization. I hope that by revisiting these methods from a slightly different perspective, I 
will help others to see their value and to investigate their application to new problems. 

I describe my method in the next section and present an example of its application 
in the one after that. The final section compares the method with verification diagrams 
and with other techniques and provides conclusions and suggestions for further work. 

2   The Method 

Concurrent systems are modeled as nondeterministic automata over possibly infinite 
sets of states. Given set of states 5, initiality predicate I on 5, and transition relation 
T on 5, a predicate P on S is inductive for S = (5, /, T) if 

i(s)DP(sy (i) 

and 

P(s)AT(s,t)DP(t). (2) 

'Formulas are implicitly universally quantified in their free variables; the horseshoe symbol D denotes 
logical implication. 
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The reachable states are those characterized by the smallest (ordered by implication) 
inductive predicate R on <S. A predicate G is an invariant or safety property if it is larger 
than R (i.e., includes all reachable states). The focus here is on safety (as opposed to 
liveness) properties, so we do not need to be concerned with the acceptance criterion 
on the automaton S. 

The deductive method for verifying safety properties attempts to establish that a 
predicate G is invariant by showing that it is inductive—i.e., we attempt to prove the 
verification conditions (1) and (2) with G substituted for P. The problem, of course, is 
that many safety properties are not inductive, and must be strengthened (i.e., replaced 
by a smaller property) to make them so. Typically, this is done by conjoining additional 
predicates in an incremental fashion, so that G is replaced by 

G\ = G A Gi A • • • A Gi (3) 

until an inductive G™ is found. This process can be made systematic, but is always 
tedious. In one well-known example, 57 such strengthenings were required to verify a 
communications protocol [12]; each Gi+i was discovered by inspecting a failed proof 
for inductiveness of G\, and the process consumed several weeks. 

Some improvements can be made in this process: static analysis [4] and automated 
calculations of (approximations to) fixpoints of weakest preconditions or strongest 
postconditions [5] can discover many useful invariants that can be used to seed the 
process as Gi,..., G,. Nonetheless, the transformation of a desired safety property 
into a provably inductive invariant remains the most difficult and costly element in 
deductive verification, and systematic methods are sorely needed. 

The method proposed here is based on strengthening a desired safety property with 
a disjunction of additional predicates, rather than the conjunction appearing in (3). That 
is, we construct 

G™ = G A (Gi V • • • V Gm) 

instead of G™. Obviously, this can be rewritten as follows 

Gv
m = (GAG!)V---v(GAGm). 

Rather than form each disjunct as a conjunction (G A Gi), it is generally preferable to 
use 

G™ = Giv---VG^ (4) 

and then prove G[ D G for each G\. The subexpressions G\ are referred to as configu- 
rations, and the indices i as configuration indices. 

Observe that in the construction of G™, each Gi must be an invariant (the very 
property we are trying to establish), and that the inadequacy of G\ only becomes ap- 
parent through failure of the attempted proof of its inductiveness—and proof of the 
putative inductiveness of G^,+1 must then start over.2 In contrast, the configurations 
used in construction of G™ need not themselves be invariants, and can be discovered 

2PVS attempts to lessen the amount of rework that must be performed in this situation by allowing 
conjectures to be modified during the course of a proof; such proofs are marked provisional until a final 
"clean" verification is completed. 
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in a rather systematic manner. To see this, first suppose that G™ is inductive, and con- 
sider the proof obligations needed to establish this fact. Instantiating (2) with G™ of 
(4) and case-splitting across the configurations, we will need to prove a verification 
condition of the following form for each configuration index i: 

G'i(s)AT(s,t)DGl
1(t)W---VG'm(t). 

We can further case-split on the right of the implication by introducing predicates 
Citj(s) called transition conditions such that, for each configuration index i 

Vs£S:\/Cij{8) (5) 
i 

(here j ranges over the indices of the transition conditions for configuration G\) and 

C?;(a)AT(S)t)ACi,i(s)DG;(t) (6) 

for each transition condition dj of each configuration G\. Note that some of the Cij 
may be identically false (so that the proof obligation (6) is vacuously true for this case) 
and that it is not necessary that the Cij for different j be disjoint. 

This construction can be represented in a diagrammatic form called a configura- 
tion diagram such as that shown several pages ahead in Figure 1. Here, each vertex 
represents a configuration and is labeled with the name of the corresponding formula 
G\ and each arc represents a non-false transition condition and is labeled with a phrase 
that suggests the corresponding predicate. To verify the diagram, we need to show that 
the initiality predicate implies some disjunction of configurations 

I(s)DG'1(s)W--.vG'm(s) (7) 

(typically there is just a single starting configuration), that each configuration implies 
the desired safety property 

G'1(s)V---vG'm(s)DG(s), (8) 

that the disjunction of the transition conditions leaving each configuration is true (i.e., 
(5)), and that the transition relation indeed relates the configurations in the manner 
shown in the diagram (i.e., the verification conditions (6)). Notice that this is just a new 
way of organizing a traditional deductive invariance proof (i.e., the proof obligations 
(5)-(8) imply (1) and (2) with G substituted for P). And although a configuration 
diagram has some of the character of an abstraction, its verification involves only the 
original model, and no new verification principles are involved. 

The previous discussion assumed we already had a configuration diagram; in prac- 
tice, the diagram is constructed incrementally in the course of the proof. To construct 
a configuration diagram, we start by inventing a starting configuration and checking 
that it is implied by the initiality predicate and implies the safety property (i.e., proof 
obligations (7) and (8)). Then, by contemplation of the algorithm (the guard predi- 
cates and other case-splits in the specification are good guides here), we invent some 
transition conditions for the starting configuration and check that their disjunction is 
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true (i.e., proof obligation (5)). For each transition condition, we symbolically simu- 
late a step of the algorithm from the starting configuration, under that condition. The 
result of symbolic simulation becomes a new configuration (and implicitly discharges 
proof obligation (6) for that case)—unless we recognize it as a variant of an existing 
configuration, in which case we must explicitly discharge proof obligation (6) by prov- 
ing that the result of symbolic simulation implies the existing configuration concerned 
(sometimes it may be necessary to generalize an existing configuration, in which case 
we will need to revisit previously-proved proof obligations involving this configura- 
tion to ensure that they are preserved by the generalization). We also check that each 
new or generalized configuration implies the safety property (i.e., proof obligation (8)). 
This process is repeated for each transition condition and each new configuration un- 
til the diagram is closed. The creative steps are the selection of transition conditions, 
and recognition of new configurations as variants of existing ones. Neither of these is 
hard, given an informal understanding of the algorithm being verified, and the result- 
ing diagram not only verifies the desired safety property (once all its proof obligations 
are discharged), but it also serves to explain the operation of the algorithm in a very 
effective way. Bugs in the algorithm, or unfortunate choices of configurations or of 
transition conditions, will be manifested as difficulty in closing the diagram (typically, 
the result of a symbolic simulation step will not imply the expected configuration). As 
with most deductive methods, it can be tricky to distinguish between these causes of 
failure. 

3   An Example: Group Membership 
A simplified version of the group membership algorithm mentioned earlier [14] will 
serve as an example. There are n processors numbered 0,1,..., n — 1 connected to a 
broadcast bus; a distributed clock synchronization algorithm (not discussed here) pro- 
vides a global clock that ticks off "slots" 0,1,2,... In slot i it is the turn of processor 
i mod n to broadcast. The broadcast contains a message, not considered here, and the 
ack bit of the broadcasting processor, which is described below. Processors may be 
faulty or nonfaulty; those that are faulty may be send-faulty, receive-faulty, or both. A 
processor that is send-faulty will fail to send its broadcast message in its first slot after 
it becomes faulty; thereafter it may or may not broadcast in its slots. A processor that 
is receive-faulty will fail to receive the first broadcast from a nonfaulty processor after 
it becomes faulty; thereafter it may or may not receive broadcasts. Notice that faults 
affect only communications: a faulty processor still executes the algorithm correctly; 
additional elements in the full protocol suite ensure that other kinds of faults are man- 
ifested as "fail silence," which appears to the algorithm described here as a combined 
send- and receive-fault in the processor concerned. 

Each processor maintains a membership set which contains all and only the pro- 
cessors that it believes to be nonfaulty. Processors broadcast in their slots only if they 
are in their own membership sets. The goal of the algorithm is to maintain accurate 
membership sets: all nonfaulty processors should have the same membership sets (this 
is the agreement property) and those membership sets should contain all the nonfaulty 
processors and at most one faulty one (this is the validity property; it is necessary to al- 
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low one faulty processor in the membership because it takes time to diagnose a fault). 
These safety properties must be ensured subject to the fault arrival hypothesis that 
faults do not arrive closer than n slots apart. Initially all processors are nonfaulty, their 
membership sets contain all processors, and their ack bits are true. 

The algorithm is a synchronous one: in each slot one processor broadcasts and all 
the other processors expect to receive its message, provided the broadcaster is in their 
membership sets. Receivers set their ack bits to true in each slot iff they receive an 
expected message. In addition, they remove the broadcaster from their membership 
sets if they fail to receive an expected message (on the interim assumption that the 
broadcaster must have been send-faulty). A receiver that subsequently receives a mes- 
sage carrying ack false when its own ack is z\so false knows that it made the correct 
decision in this case (since the current broadcaster also missed the previous expected 
message), but one that receives ack true realizes that it must have been receive-faulty 
(since the current broadcaster did receive the message) and removes itself from its own 
membership; a receiver that fails to receive an expected message when its ack bit is 
false also removes itself from its own membership (because it has missed two expected 
messages in a row, which is consistent with the fault arrival hypothesis only if that 
processor is itself receive-faulty); a receiver that receives a message with ack/a/se 
when its own ack bit is true removes the broadcaster from its membership (since the 
broadcaster must have been receive-faulty on the previous broadcast). Processors that 
remove themselves from their own membership remain silent when it is their turn to 
broadcast—thereby communicating their self-diagnosed receive-faultiness to the other 
processors. 

Formally, we let mem(p) and ack(p) denote the membership set and ack bit of 
processor p. Note that processor p has access to its own mem and ack, and can also 
read the value of ack(6), where b = i mod n and i is the current slot number, because 
this is sent in the message broadcast in that slot. 

Initiality predicate: mem(p) = {0,1,... ,n - 1},   ack(p) = true? 

The algorithm is specified by two lists of guarded commands: one for the broad- 
caster and one for the receivers. Primes denote the updated values of the state variables. 
The current slot is i and the current broadcaster is b, where b = i mod n. 

Broadcaster: Processor b executes the appropriate guarded command from the fol- 
lowing list. 

(a)    b e mem(6) ->    mem(6)' = mem(6), ack(6)' = true 
otherwise -»    no change. 

3I use the redundant = true because some find that form easier to read. 
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Receiver: Each processor p ^ b executes the appropriate guarded command from the 
following list: 

The guards (b)-(g) apply when b G mem{p) A p G mem(p) 

(6) ack(p) A no msg rcvd —¥ mem(p)' = mem(p) — {b}, ack(p)' = false 
(c) ack(p) A ack(b) -» mem(p)' = mem(p), ack(p)' = true4 

(d) ack(p) A -iack(6) -► mem(p)' = mem(p) — {6}, ack(p)' = £rue 
(e) -iack(p) A no msg rcvd —► mem(p)' = mem(p) — {p} 
(/)    -iack(p) A-iack(b) ->    mem(p)'= mem(p), ack(p)'= true 
(5)    -iack(p) A ack(6) -»    mem(p)' = mem(p) — {p} 
otherwise -»    no change. 

The environment can perform only a single action: it can cause a new fault to 
arrive—provided no other fault has arrived "recently." Characterization of "recently" 
is considered below. We let the_mem denote the current set of nonfaulty processors, 
so that the following specifies arrival of a fault in a previously nonfaulty processor x. 

Fault Arrival: 3x G thejnem : the jnem' = thejnem — {x} 

The desired safety properties are specified as follows. 

Agreement: p G thejnem A q G thejnem D mem(p) = mem(q) 

Validity: p G the jnem D mem(p) = the jnem V 3x : mem(p) = thejnem U {x} 

The first says that all nonfaulty processors p and q have the same membership sets; the 
second says that the membership set of a nonfaulty processor p contains all nonfaulty 
processors, and possibly one faulty one. 

The starting configuration is the following: all nonfaulty processors have their ack 
bits true and their membership sets contain just the nonfaulty processors. 

Stable: p € thejnem D mem(p) = thejnem A ack(p) = true 

It is natural to consider two transition conditions from this configuration: one where 
a new fault arrives, and one where it does not. In the latter case, the broadcaster will 
leave its state unchanged (no matter whether its executes command (a) or its "other- 
wise" case), and the receivers will execute either their command (c) or their "otherwise" 
case, and leave their states unchanged. The overall effect is to remain in the stable con- 
figuration. In the case that a new fault arrives, the same transitions as above will be 
executed but some previously nonfaulty processor x will become faulty, leading to the 
following configuration. 

Latent(a;): x £ thejnem 
Ap € thejnemU {x} D mem(p) = thejnemU {x} A ack(p) = true 

4This case could be absorbed into the "otherwise" clause with no change to the algorithm; however, the 
structure of the algorithm seems clearer written this way. 

165 



There are two transition conditions from latent(x): one where x is the broadcaster 
in the next slot, and one where it is a receiver. 

In the former case, x will execute its command (a) while all nonfaulty receivers 
will note the absence of an expected message and execute their commands (b), leading 
to the following configuration. 

Excludedi(x): x g the .mem A mem(x) = thejnemU {x} A ack(x) = true 
Ape the jnem D mem(p) = thejnem A ack(p) = false 

In the latter case, a nonfaulty broadcaster will transmit5 and its message will be 
received by all nonfaulty receivers, but missed by x, leading to the following configu- 
ration. 

Missed.rcv(x): x & thejnem A mem(x) = thejnem U {x} - {6} A ack(x) = false 
Ape thejnem D mem(p) = thejnem U {x} A ack(p) = true 

There are four transition conditions from missed.rcv(x): one where the next broad- 
caster is x and it fails to broadcast; one where x does broadcast; one where the next 
broadcaster is already faulty; and an "otherwise" case. The first of these is similar to 
the transition from latent(x) to excludedi(x) and leads to the following configuration. 

Excluded2(x): x £ thejnem A mem(x) = thejnem U {x} - {6} A ack(x) = true 
Ape thejnem D mem(p) = thejnem A ack(p) = false 

We recognize that excludedi(x) and excluded2(x) should each be generalized to 
yield the following common configuration. 

Excluded(x): p e thejnem D mem(p) = thejnem A ack(p) = false 

In the case where x does broadcast, it will do so with ack/a/se, causing nonfaulty 
processors to execute their commands (d) and leading directly to the stable config- 
uration. The case where the next broadcaster is already faulty causes all nonfaulty 
processors and processor x to leave their states unchanged (since that broadcaster will 
not be in their membership sets), thereby producing a loop on missed.rcv(x). The re- 
maining case (a broadcast by a nonfaulty processor, executing its command (a)) will 
cause nonfaulty receivers to execute their commands (c), while x will either miss the 
broadcast (executing its command (e)), or will discover the true ack bit on the received 
message and recognize its previous error (executing its command (g)); in either case, x 
will exclude itself from its own membership, leading to the following configuration. 

Self-diag(x): x g thejnem A x g mem(x) 
Ap€ thejnem D mem(p) = thejnemU {x} A ack(p) = true 

The transition conditions from this new configuration are those where x is the 
broadcaster, and those where it is not.   In the former case, x will fail to broadcast 

'Treatment of the case that the next broadcaster is an already-faulty one depends on how fault "arrivals" 
are axiomatized: in one treatment, a fault is not considered to arrive until it can be manifested (thereby 
excluding this case); the other treatment will produce a self-loop on latent(x) in this case. These details are 
a standard complication in verification of fault-tolerant algorithms and are not significant here. 
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Figure 1: Configuration Diagram for the Group Membership Example 

(since it is not in its own membership), causing nonfaulty processors to execute their 
commands (b) and leading to the configuration excluded(x). The other case will cause 
them to execute their commands (c), or their "otherwise" cases, producing a self-loop 
on the configuration selfjdiag(x). 

The only transitions that remain to be considered are those from configuration ex- 
cluded(x). The transition conditions here are the case where the next broadcaster is 
already faulty, and that where it is not. The former produces a self-loop on this con- 
figuration, while the latter causes all nonfaulty receivers to execute their commands (f) 
while the broadcaster executes its command (a), leading to a transition to configuration 
stable. 

It is easy to see that the initiality predicate implies the stable configuration and that 
all configurations imply the desired safety properties, and so we have now completed 
construction and verification of the diagram shown in Figure 1. The labels in the ver- 
tices of this diagram indicate the corresponding configuration, while the labels on the 
arcs are intended to suggest the corresponding transition condition. One detail has been 
glossed over in this construction, however: what about the cases where a new fault ar- 
rives while we are still dealing with a previous fault? In fact, this possibility is excluded 
in the full axiomatization of the fault arrival hypothesis, which states that faults may 
only arrive when the configuration is stable (we then need to discharge trivial proof 
obligations that all the other configurations are disjoint from this one). We connect this 
axiomatization of the fault arrival hypothesis with the "real" one that faults must arrive 
more than n slots apart by proving a bounded liveness property that establishes that the 
system always returns to a stable configuration within n slots of leaving it. This proof 
requires that configurations are embellished with additional parameters and clauses that 
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remember the slots on which certain events occurred and count the numbers of self-loop 
iterations. The details are glossed because they are peripheral to the main concern of 
this paper; they are present in the mechanized verification of this example using PVS, 
which is available at http: / /www. csl. sri. com/ "rushby /cavOO . html and 
in a paper that describes verification of the full membership protocol [23]. (The full 
algorithm differs from the simplified version given here in that all faulty processors 
eventually diagnose their faults and exclude themselves from their own membership; 
its proof is about four times as long as that presented here).6 

4   Discussion, Comparison, and Conclusion 

The flawed verification of the full membership algorithm in [ 14] strengthens the desired 
safety properties, agreement and validity, with six additional invariants in an attempt 
to obtain a conjunction that is inductive. Five of these additional invariants are quite 
complicated, such as the following. 

"If a receive fault occurred to processor p less than n steps ago, then ei- 
ther p is not the broadcaster or ack(p) is false while all nonfaulty q have 
ack(g) = true, or p is not in its own membership set." 

The informal proof of inductiveness of the conjoined invariants is long and arduous, 
and it must be flawed because the algorithm has a bug in the n = 3 case. This proof 
resisted several determined attempts to correct and formalize it in PVS. In contrast, the 
approach presented here led to a straightforward mechanized verification of a corrected 
version of the algorithm.7 Furthermore, as I hope the example has demonstrated, this 
approach is naturally incremental, develops understanding of the target algorithm, and 
yields a diagram that helps convey that understanding to others. In fact, the diagram 
(or at least its outline) can usually be constructed quite easily using informal reasoning, 
and then serves as a guide for the mechanized proof. 

This approach is strongly related to the verification diagrams and their associ- 
ated methods introduced by Manna and Pnueli [17]. These were subsequently ex- 
tended and generalized by Manna with Bj0rner, Browne, de Alfaro, Sipma, and Uribe 
[5,7,10,16]. However, these later methods mostly concern fairness and liveness prop- 
erties, or extensions for deductive model checking and hybrid systems, and so I prefer 
to compare my approach with the original verification diagrams. These comprise a set 
of vertices labeled with formulas and a set of arcs labeled with transitions that cor- 
respond to the configurations and transition conditions, respectively, of my method. 
However, there are small differences between the corresponding notions. First, it ap- 
pears that verification diagrams have a finite number of vertices, whereas configura- 
tions can be finite or infinite in number. The example presented in the previous section 

6The algorithm presented here is fairly obvious; there is a similarly obvious solution to the full problem 
(with self-diagnosis) that uses two ack bits per message; this clarifies the contribution of [14], which is to 
achieve full self-diagnosis with only one ack bit per message. 

7The verification was completed on a Toshiba Libretto palmtop computer of decidedly modest perfor- 
mance (75 MHz Pentium with 32 MB of memory). 
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is a parameterized system with an unbounded parameter n, and most of the configura- 
tions are parameterized by an individual x selected from the set {0,1,..., n}, yielding 
an arbitrarily large number of configurations; Skolemization (selection of an arbitrary 
representative) reduces the number of proof obligations to a finite number. Second, 
the arcs in verification diagrams are associated with transitions, whereas those in my 
approach are associated with predicates. It is quite possible that this difference is a 
natural manifestation of the different examples we have undertaken: those performed 
with verification diagrams have been asynchronous systems (where each system tran- 
sition corresponds to a transition by some component), whereas I have been concerned 
with synchronous systems (where each system transition corresponds to simultaneous 
transitions by all components). Thus, in asynchronous systems the transitions suggest 
a natural analysis by cases, whereas in synchronous systems (especially those, as here, 
without explicit control) the case analysis must be consciously imposed by selection of 
suitable transition conditions. 

Mechanized support for verification diagrams is provided in STeP [18]: the user 
proposes a diagram and the system generates the necessary verification conditions. 
PVS provides no special support for my approach, but its standard mechanisms are 
adequate because the approach ultimately yields a conventional inductive invariance 
proof that is checked by PVS in the usual way. As illustrated in the example, the 
configuration diagram can be constructed incrementally: starting from an existing con- 
figuration, the user proposes a transition condition and then symbolically simulates a 
step of the algorithm (mechanized in PVS by rewriting and simplification); the result 
either suggests a new configuration or corresponds to (possibly a generalization of) an 
existing one. Enhancements to PVS that would better support this activity are primarily 
improvements in symbolic simulation (e.g., faster rewriting and better simplification). 

The key to any inductive invariance proof is to find a partitioning of the state space 
and a way to organize the case analysis so that the overall proof effort is manageable. 
The method of disjunctive invariants is a systematic way to do this that seems effec- 
tive for some problem domains. Other recent methods provide comparably systematic 
constructions for verifications based on simulation arguments: the aggregation method 
of Park and Dill [20] and the completion functions of Hosabettu, Gopalakrishnan and 
Srivas [13] greatly simplify construction of the abstraction functions used in verifying 
cache protocols and processor pipelines, respectively. 

Other methods with some similarity to the approach proposed here are those based 
on abstractions: typically the idea is to construct an abstraction of the original system 
that preserves the properties of interest and that has some special form (e.g., finite state) 
that allows very efficient analysis (e.g., model checking). Methods based on predicate 
abstraction [24] seem very promising [1, 3, 9, 25]. A configuration diagram can be 
considered an abstraction of the original state machine and it is plausible that it could 
be generated automatically by predicate abstraction on the predicates that characterize 
its configurations and transition conditions. However, it is difficult to see how the user 
could obtain sufficient insight to propose these predicates without constructing most 
of the configuration diagram beforehand, and it is also questionable whether fully au- 
tomated theorem proving can construct sufficiently precise abstractions of these fairly 
difficult examples using current technology. 
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Such an abstracted system would still have n processes and further reduction would 
be needed to obtain a finite-state system that could be model checked. Creese and 
Roscoe [8] do exactly this for the algorithm of [14] using a technique based on a suit- 
able notion of data independence [22]. They use a clever generalization to make the 
processes of algorithm independent of how they are numbered and are thereby able to 
establish the abstracted n-process case by an induction whose cases can be discharged 
by model checking with FDR. This is an attractive approach with much promise, but 
formal and mechanized justification for the abstraction of the original algorithm still 
seems quite difficult (Creese and Roscoe provide a rigorous but informal argument).8 

In summary, the approach presented here is one of a growing number of methods 
for verifying properties of certain classes of algorithms in a systematic manner. Cir- 
cumstances in which this approach seems most effective are those where the algorithm 
concerned naturally progresses through different phases: these give rise to distinct dis- 
juncts G'i in a disjunctive invariant G™ but are correspondingly hard to unify within 
a conjunctive invariant G™. Besides those examples already mentioned, the approach 
has been used successfully by Holger Pfeifer to verify another group membership al- 
gorithm [21]: the very tricky and industrially significant algorithm used in the Time 
Triggered Architecture for safety-critical distributed real-time control [15]. 

The most immediate targets for further research are empirical and, perhaps, the- 
oretical investigations into the general utility of these approaches. The targets of my 
approach have all been synchronous group membership algorithms, while the verifi- 
cation diagrams of Manna et al. seem not to have been applied to any hard examples 
(the verification in STeP of an interesting Leader Election algorithm [6] did not use 
diagrammatic methods). If practical experience with a variety of different problem 
types shows the approach to have sufficient utility, then it will be worth investigating 
provision of direct mechanical support. 
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Abstract 

Pure functional programs are more amenable to rigorous mathematical analysis than im- 
perative programs, but are not comparably efficient in terms of space or time. The updates of 
aggregate data structures, such as arrays, are an important source of space/time inefficiencies in 
functional programming. Imperative programs can execute such updates in place, whereas the 
semantics of functional programs require such data structures to be copied. In many functional 
programs, the execution of updates by copying is redundant and can be carried out destruc- 
tively. We describe a method for analyzing higher-order, eager functional programs for safe 
destructive updates. This method has been implemented for the PVS specification language for 
efficiently animating specifications. Both the update analysis and the proof of correctness are 
straightforward and can be easily applied to other functional languages. 
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1    Background 

Functional programs, unlike imperative programs, do not perform in-place modifications of aggre- 
gate data structures such as arrays. The aggregate update problem for functional programs is that 
of statically identifying the array updates in a program that can be executed destructively while 
preserving the semantics of the program. This problem has been widely studied but none of these 
techniques appears to have actually been implemented in any widely used functional language. We 
present a simple, efficient, and effective method for the static detection of safe destructive updates 
in a functional language. The method has been implemented for the functional fragment of the 
specification language PVS.1 This fragment is essentially a strongly typed, higher-order language 
with an eager order of evaluation. The method can be easily adapted to other functional lan- 
guages. The analysis method is interprocedural. We also outline a proof of the correctness for the 
introduction of destructive updates. 

PVS is a widely used framework for specification and verification. By optimizing functions written 
in the PVS specification language with safe destructive updates, specifications can be executed for 
the purposes of animation, validation, code generation, and fast simplification. The technique is 
presented for a small functional language fragment of PVS, but applies to other functional languages 
as well. 

The concepts are informally introduced using a functional language with booleans, natural numbers, 
subranges, flat (unnested) arrays over subranges, lambda-abstraction, application, conditionals, 
and array updates. The technique can be extended to richer languages. A function is defined as 
f{x\,...,xn) - e. A few simple examples serve to motivate the ideas. Let Arr be an array from 
the subrange [0.. 9] to the integers. Let A and B be variables of type Arr. An array lookup is 
written as A(i) and array update has the form A[(c) :- d\. Pointwise addition on arrays A + B is 
defined to return (a reference to) an array C such that C(i) - A(i) + B(i) for 0 < i < 10. Now 
consider the function definition 

h(A) = A + A[(3):=4\. 

When executing f\(A), the update to A cannot be carried out destructively since the original array 
is an argument to the + operation. The evaluation of A[(3) :- 4] must return a reference to a new 
array that is a suitably modified copy of the array A. 

The implementation of array updates by copying can be expensive in both space and time. It can 
also be wasteful. Consider the definition 

f2(A,i)=A(i) + A[(3):=4](i). 

Given an eager, left-to-right evaluation order, the expression A(i) will be evaluated prior to the 
update A[(3) :- 4]. Since the original value of A is no longer used in the computation, the array 
can be updated destructively. Note that if a lazy order of evaluation was being employed, this 
optimization would depend on the order in which the arguments of + were evaluated. Also, the 
optimization assumes that array A is not referenced in the context where /2(>l,z) is evaluated. For 
example, in the definition 

MA) = A[(3) := f2(A,3)], 

it would be incorrect to execute f2 so that A is updated destructively since there is a reference to 
the original A in the context when f2(A,3) is evaluated. 

The PVS system and related documentation can be obtained from the URL pvs. csl. sri. com. The presentation 
in this paper is for a generic functional language and requires no prior knowledge of PVS. 
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Next, consider the function definition 

f4(A,B) = A + B[(3):=4). 

Here, the update to array B can be executed destructively provided A and B are not aliased to the 
same array reference. This happens, for instance, in the definition 

h(C) = h(C,C). 

In such a situation, it is not safe to destructively update C in the definition of f4 since the reference 
tö C is active in the definition of f4 when the update occurs. 

The task is that of statically analyzing the definitions of programs involving function definitions 
such as those of /i, /2, /3, f4, and /s, in order to identify those updates that can be executed 
destructively. Our analysis processes each definition of a function /, and generates a (possibly) de- 
structive analogue fD of / that contains destructive updates along with the conditions Lv(f) under 
which it is safe to use fD instead of /. The analysis when applied to a definition f{x\,... ,xn) = e 
produces a definition of the form fD(x\,... ,xn) — eD, where some occurrences of updates of the 
form ei[(e2) := e$\ in e have been replaced by destructive updates of the form ei[(e2) «— e%\. The 
analysis of the examples above should therefore yield 

fP(A) =   A + A[(Z):=4] Lv(h) =   0 
f?{A,i) =   A(t) + A[(3)<-4](t) Lv{h) =   {.4^0} 

hD(A) =   A[(3):=/2(A,3)] Lv(h) =   0 
f?(A,B) =   A + B[(3) +- 4] Lv(U) =   {B^A} 

hD(C) =   h(C,C) Lv(h) =   0 

We now informally describe the construction of the definition fD{x\,..., xn) = eD from the defini- 
tion f(x\,..., xn) = e. The analysis also generates the table Lv(f) as a partial map from the set of 
variables {x\,... ,xn} to its powerset such that Xj € Lv(f)(xi) if Xj is live in a context (as defined 
below) within which X{ might be destructively updated. The table Lv(f) can be used to determine 
whether it is safe to replace f(a\,...,an) by /D(ai,...,an) in another function definition. 

A specific occurrence of an update u of the form e\ [(e2) := ez] in e can be identified by decomposing 
e as U{u}, where U is an update context containing an occurrence of the hole {}, and U{u} is the 
result of filling the hole with the update expression u. In order to determine if the update is safe, 
we compute 

1. The set L of live array variables in the update context U. The set L is a conservative estimate 
of the variables in U that point to active array references in the partially evaluated form of 
U. These references might be shared with u when the update u in U{u} is executed. Let U' 
represent the partially evaluated form of U at the point where the update u in U{u} is to 
be reduced. All the array references in U' that could possibly clash with those in u must be 
among those bound to the variables in L. We write the update context as UL to indicate that 
the set of array variables L from U are the live variables in the context U' of the evaluation 
of the update expression u. 

2. The set Ov(e) of the array variables in e so that the output array reference of e must be 
among those bound to the variables in Ov(e). 
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An update expression ei[(e2) := e$] occurring in an update context UL for the expression e in a 
definition f(x\, ...,xn) = e, is safe if LC\Ov(ei) = 0. When this condition holds, it is safe to replace 
the nondestructive update ei[(e2) := 63] by its destructive counterpart ei[(e2) <- 63]. Informally, 
this is because the array references that are possible values of e\ are either those bound to the 
variables in Ov(e\) or are freshly created in e\. The freshly created references in t\ cannot overlap 
with those in the context. The above condition ensures that none of the updateable references in 
e\ are accessible from the partially evaluated context U' since the references in U' must be among 
the array references bound to the variables in L. 

However, it is possible that one of the references in Ov(e{) is shared with those in L even when 
L n Ov(e\) = 0 since a single reference might be shared by two distinct variables through aliasing. 
For this purpose, Lv(f)(x) must be constructed so that L C Lv(f)(x) for each x in Ov{e{). 

An application occurrence g(a\,... ,a„) is safe in an update context UL if Ou(a;)n(LUOu(aj)) = 0 
for each X{ in the domain of Lv(g) andxj mLv(g)(xi). If this condition holds, then g{ai,..., an) can 
be safely replaced by gD{au ..., an) in the update context UL since none of the references Ov(a{) 
possibly updated in the definition of gD for gD{au... ,an) are live in the context in which they 
are updated in the definition eD. The mapping Lv(f) must be defined to satisfy the constraint 
L U Av(a,j) C Lv(f)(x) for each x in Ov(ai) such that X{ is in the domain of Lv(g) and Xj in 
Lv{g){xi). 

Thus in the examples /1 to /5, we have 

1. f\: e is A + A[{3) := 4], Ov{A) is {A} and the update context is (A + {}){A^. Since Ov(A) 
overlaps with the live variables {A}, the update is not safe. 

2. f2: e is A{i) + A[{3) := 4](i), Ov(A) is {^1} and the update context is (A(i) + {}(i))0. Since 
the updated variable A is not live in the update context, the update is safe. Note that 
Lv(h)(A) = $. 

3. /3: e is A[{3) := /2(^,3)]. Here, the update context is (A[{3) := {}]){A] and A is in the 
domain of Lv(f2). Since there is an overlap between Ov(A) and the live variable set {A}, 
the occurrence of f2{A) is unsafe. The update occurring in /3 can be executed destructively, 
since there are no live references to A in the update context ({}[(3) := f2(A,i)]f. We then 
have Lv(f3)(A) = 0. 

4. /4: e is A + B[(3) := 4]. Here, Ov(B) is {B} and the update context is {A + {}){A}. Since 
{B} f]{A} - 0, eD can be written as A + B[{3) <- 4] in the definition of /f, but note that 
Lv(f4)(B) = {A}. 

5. f5: e is f4(C,C). The update context here is {}0. Here Lv(f4) maps B to {A}. Since 
Ov(C) = {C}, the analysis detects the aliasing between the binding C for A and C for B. 
The occurrence of f4{C,C) is therefore unsafe and cannot be replaced by /4

D(C, C). 

The formal explanation for the destructive update analysis and optimization is the topic of the 
remainder of the paper. A similar analysis and transformation for safe destructive updates was 
given independently and earlier by Wand and Clinger [13] for a first-order, eager functional language 
with flat arrays. In this paper, we go beyond the treatment of Wand and Clinger by 

1. Simplifying the presentation of the analysis. 
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2. Simplifying the proof of correctness through the use of evaluation contexts. 

3. Applying the optimization to a richer language with higher-order operations and nested ag- 
gregate structures. 

4. Carrying out a complexity analysis of the static analysis procedure. 

These extensions are the novel contributions of the paper. We have also implemented our method 
for an executable functional fragment of the widely used specification language PVS. This imple- 
mentation was carried out in the first part of 1999 and released with PVS2.3 in the Fall of 1999. 
Functional programs, such as sorting routines, written in this fragment of PVS execute at speeds 
that are competitive with imperative languages like C, and with comparable space usage. 

There is an extremely large body of work on the aggregate update problem. We know of only one 
language, Clean [10], where such an optimization has actually been implemented. The Clean scheme 
requires complicated programmer annotations and is actually quite messy. We do not carry out a 
comparison with languages that are explicitly annotated for the purpose of highlighting updateable 
data structures. These include the use of state monads [12] and various linear type systems [11]. 
The method presented here does not rely on any programmer annotations. 

There is a large body of work on static analysis applied to the aggregate update problem including 
that of Hudak [7], Bloss and Hudak [2], Bloss [3], Gopinath and Hennessy [6], and Odersky [8], and 
Draghicescu and Purushothaman [4]. Most of these analyses apply to lazy functional languages. 
Laziness complicates the analysis since there is no fixed order of evaluation on the terms as is 
the case with eager evaluation. Even so, all these analysis methods are complicated, inefficient 
(exponential), and mostly non-interprocedural. Many of the analyses calculate more information 
(e.g., reference counts, reading/writing) than is needed for update optimization. The work of 
Draghicescu and Purushothaman [4] deserves special mention because it contains the key insight 
that in a language with flat arrays, the sharing of references between a term and its context can 
occur only through shared free variables. 

In summary, in comparison to previous approaches to update analyses, the method given here is 
simple, efficient, interprocedural, and has been implemented for an expressive functional language. 
The implementation is competitive with efficient imperative languages. The proof of correctness 
also matches the simplicity of the analysis. 

2    Update Analysis 

We describe a small functional language and an update analysis procedure for this language that 
generates a destructive counterpart to each function definition. The language is strongly typed. 
Types are exploited in the analysis, but the principles apply to untyped languages as well. 

The base types consist of bool, integer, and index types of the form [0 < numeral], where numeral 
is a numeral.2 The only type constructor is that for function types which are constructed as 
[Ti,. ..Tn—>T] for types T,Ti,... ,T„. The language admits sub typing so that [0 < i] is a subtype 
of [0 < i'] when i < i', and these are both subtypes of the type integer. A function type 
[Si,..., Sn->S] is a subtype of [Tx,..., Tn-+T] iff Si = Ti for 0 < i < n and S is a subtype of T. 

2For ease of presentation, we blur the distinction between numbers and numerals. 

179 



We do not explain more about the type system and the typechecking of expressions. Readers are 
referred to the formal semantics of PVS [9] for more details. An array type is a function type of 
the form [[0 < z]->W] for some numeral i and base type W, so that we are, for the present, dealing 
only with flat arrays.3 

The metavariable conventions are that W ranges over base types, S and T range over types, x, y, z 
range over variables, p ranges over primitive function symbols, / and g range over defined function 
symbols, a, b, c, d, e range over expressions, L, M, N range over sets of array variables. 

The expression forms in the language are 

1. Constants: Numerals and the boolean constants TRUE and FALSE. 

2. Variables: x 

3. Primitive operations p (assumed to be nondestructive) and defined operations /. 

4. Abstraction: (X(xi : 7\,... ,xn : Tn) : e), is of type [7\,... ,Tn-*T], where e is an expression 
of type T given that each X{ is of type Tx for 0 < % < n. We often omit the types Ti,... ,T„ 
for brevity. 

5. Application: e(ei,... ,en) is of type T where e is an expression of type [Ti,... ,Tn-¥T] and 
each ej is of type Tj. 

6. Conditional: IF e\ THEN e2 ELSE e^ is of type T, where e\ is an expression of type bool, and 
e2, and e3 are expressions of type T. 

7. Update: ei[(e2) := e3], where e\ is of array type [[0 < i]->W], e2 is an expression of type 
[0 < i], and e^ is an expression of type W. The destructive calculus contains a destructive 
update expression e\[(e2) •<— e^]. 

A program is given by a sequence of function definitions where each function definition has the 
form f(xi : T\,..., xn : Tn) : T = e. The body e of the definition of / cannot contain any functions 
other than /, the primitive operations, and the previously defined functions in the sequence. The 
body e cannot contain any free variables other than those in {x\,... ,xn}. 

A type is mutable if it is an array type or is a function type whose range type is mutable. A variable 
is mutable if its type is mutable. Mv(a) is the set of all mutable free variables of a, Ov(a) is the 
set of output variables in a, and Av(a) is the set of active variables in the output of a. These will 
be defined more precisely below. 

An update context UL is an expression U containing a single occurrence of a hole {} where L is the 
set of free variables from U that are live, i.e., point to references in the context when the expression 
filling the hole is evaluated. An update context UL has one of the forms 

1. {}<>. 

2. FM(ei,...,e„), ifi = MUAf«(ei)U...UM«(e„). 
3The language used here is similar to that employed by Wand and Clinger [13] but with the important inclusion of 

higher-order operations and lambda-abstraction. We allow arrays to be built by lambda-abstraction, whereas Wand 
and Clinger use a NEW operation for constructing arrays. 
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3. e(ei,...,ej_1,F
M,ej+i,...,en),ifL = MUAv{e)UAv{el)U...l)Av{ej-i)UMv{ej+i)U...U 

Mv(en). Note that with respect to the hole, Av(a) is used for "already evaluated" expressions 
a, whereas Mv(b) is used for "unevaluated" expressions b. 

4. IF VM THEN e2 ELSE e3, if L = M U Mv{e2) U Mu(e3). 

5. IF ei THEN VL ELSE e3. 

6. IF ei THEN e2 ELSE VL. 

7. FL[(e2) := 63] (and VL[(e2) «— e3] in the destructive fragment). 

8. ei[(V
M := e3] (and ex[(V

M) <- e3]), if L = Af U Mu(ci) U Mv(e2). 

9. ei[(e2) :=FM] (and ei[(e2) <- FM]), if L = M U Mu(ei). 

Let 7(e) represent the result of repeatedly replacing destructive updates ei[e2 <— e3] in e by corre- 
sponding nondestructive updates 7(ei)[7(e2) := 7(e3)], and destructive applications gD{ai,... ,an) 
by g(j(ai),... ,7(a2)). To obtain the destructive definition fD{xi,... ,xn) = eD and the liveness 
table Lv(f), from the definition f(x\,... ,xn) = e, we construct eD so that 7(eD) = e and eD is 
safe. An expression eP is safe if 

1. Every occurrence of ei[(e2) <— e3] in eD within an update context UL (i.e., e = J7L{ei[(e2) := 
e3]}) satisfies Ov(e\) n L = 0 and L C Lv(f)(x) for each variable £ in Ou(ei). 

2. Every occurrence of a nondestructive function application g(ai,..., an) in e within an update 
context [/-k (i.e., e = UL{g(ai,... ,on)}) satisfies OV(OJ) D (IU Av{a,j)) — 0 for each X{ in the 
domain of Lv (g) and y^ € Lv(g)(x{). Furthermore, L U Au(oj) C Lv(f)(x) for each variable 
x in Oü(oj) for Xj in the domain of Lv(g) and Xj G Lu(g)(xj)- 

Given the destructive body eD for fD, the liveness table Lv(f) can be computed to satisfy the 
constraints given by eD. Note that / could be recursively defined and the operation g in the 
definition of safety could be a recursive occurrence of/, i.e., the function being defined. The liveness 
table Lv(f) can be constructed to satisfy the constraints either by solving the set constraints [1] 
or directly by a fixed point iteration where the above constraints are used to compute Lv(f) 
cumulatively by starting with Lv°(f)(xi) = _L for 0 < i < n until Lvk+1(f) = Lvk(f). Termination 
is guaranteed because the set Lv(f)(x{) for 0 < i < n can have at most n — 1 elements from 
{xi,...,xn}. The definition eD that is computed for fD is the one that is carried out with Lv(f) — 
Lvk(f).A We are glossing over one important point. The set of variables Ov{fD{a\,... ,an)) is 
needed in the computation of Lv(f) and has to be computed iteratively along with Lv(f). 

The definitions of the operations Av, Mv, and Ov are given below. Mv(a) is just the set of mutable 
free variables of a. The set of output variables of an expression a of array type is computed by 
Ov(a). If a is evaluated to a' in an environment a that maps variables to values, then the references 
in a(Ov(a)) must include all the references in a' that are accessible from a. Thus Ov(a) could be 
conservatively calculated as the set of all mutable variables in a, i.e., Mv(a), but the analysis below 
is more precise. The auxiliary function Ovr(a) computes a lambda-abstracted set of variables 
(X(xi,... ,xn) : S) for a defined function or a lambda-abstraction in the function position of an 

4We are not dealing with mutually recursive functions here, but the analysis can be extended to include such 
definitions. 
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application.   This yields a more precise estimate of the set of output variables.   For example, if 
X + Y is defined as (X{x : [0 < i]) : X{x) + Y{x)), then Ovr{X + Y) = (X(x, y) : <b){X, Y) = 0. 

Ovr(a 

Ovr(x 

Ovr(f 
Ovr{a{ai,...,an) 

Ovr((\(xi,...,xn) :e) 

Ovr(IF ei THEN e2 ELSE e3 

Ovr(ai[{a2) := a3] 

Our(ai[(a2) «- 03] 

Ou(a 

Ou(a 

(A(xi,...,a;n) : S)(Si,...,Sn 

o(5i,..., On 

= 0, if a is not of mutable type 

= {x}, if x is of mutable type 

= Ovr((X(xi,... ,xn) : e)), where e is the body of / 

= Ovr(a)(Ov(ai),... ,Ov(an)) 

= (X(xi,...,xn):Ov{e)) 

= Ov{e2) U Ov(e3) 

= Ov{ai) 

= S - {xi,...,xn}, HOvr{a) = (\{xl,. 

= Ovr(a), otherwise 

- {S-{x1,...,xn})\j{J{Si\xieS} 

= S U Si u... u sn 

,xn):S) 

The set Av(a) of variables returns the active variables and is used to keep track of the variables 
that point to active references in already-evaluated expressions. The set Av(a) includes Ov(a) but 
also contains mutable variables that occur in closures. 

Av(a) 

Av(x) 

MS) 
Av(a{ai,...,an) 

Av({X(xu...,xn) : e)) 

Av(IF ei THEN e2 ELSE e3) 

Av(ai[{a2) :=a3])    =   0 

Av{ai[{a2) <- a3])    =    Au(ai) 

0, if a is not of function or mutable type 

{x}, if x is of function or mutable type 

0 

Ovr(a)(Av(ai),..., Av[an)) 

Mv({X(xu...,xn) :e)) 

Au(e2) U Au(e3) 

3    Operational Semantics 

We present operational semantics for the languages with and without destructive updates. We 
then exhibit a bisimulation between evaluation steps in the two semantics. The concepts used in 
defining the operational semantics are quite standard, but we give the details for the language used 
here. 

The expression domain is first expanded to include 

1. Explicit arrays: #(eo,..., en_i) is an expression representing an n-element array. 

2. References: ref(i) represents a reference to reference number i in the store. Stores appear in 
the operational semantics. 
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A value is either a boolean constant, an integer numeral, a closed lambda abstraction (Axi,..., xn : 
e) or a reference ref(i). The metavariable v ranges over values. 

An evaluation context [5] E is an expression with an occurrence of a hole \\ and is of one of the 
forms 

i. 0- 

2. E'(eu...,en). 

3. v{vi,..., Vj-i,E', ej+u • • ■, e„). 

4. IF E' THEN e2 ELSE e3. 

5. IF TRUE THEN E' ELSE e3. 

6. IF FALSE THEN e2 ELSE £". 

7. ei[(E') := e3]. 

8. ex[{v2) := E'). 

9. E'[(v2) := t>3]. 

A redea; is an expression of one of the following forms 

1. p{vi,...,vn). 

2. f{vi,...,vn). 

3. (\{x : [0 < n]) : e). 

4. (A(xi,...,in) :e)(vi,...,un). 

5. #(«o,...,v„_i). 

6. IF TRUE THEN ex ELSE e2. 

7. IF FALSE THEN ex ELSE e2. 

8. ref(i)[(v2) := v3]- 

A store is a mapping from a reference number to an array value. A store s can be seen as a list of 
array values [s[0], s[l],...,] so that s[i] returns the (i + l)th element of the list. 

A reduction transforms a pair consisting of a redex and a store. The reductions corresponding to 
the redexes above are 

1. (p(v\,... ,vn),s) —> (v,s), if the primitive operation p when applied to arguments v\,..., vn 

yields value v. 

2. {f(vi,...,vn),s) ->■ ([«i/a;i,...,i;n/a;n](e),s>, if/ is defined by f(xi,...,xn) = e. 

3. ((X(x : [0 < n]) : e),s) -> (#(e0, •.., e„_i),s), where ej = {X(x : [0 < n]) : e){i), for 0 < i < n. 
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4. ((\{xi :Tu...,xn :Tn) : e){vu ...,vn), s) -» ([vi/xi,... ,vn/xn]{e),s). 

5. (#(v0,...,vn-i),s) -> (ref{m),s'), where s = [s[0],..., s[m-1]] and s' = so[#(vQ,... ,vn-i)]. 

6. (IF TRUE THEN ex ELSE e2,s) ->■ (eus). 

7. (IF FALSE THEN ej ELSE e2,s) -»• (e2,s). 

8. (re/(i)[(7;2) := u3],s) -» (re/(m),.s'), where 

(a) a = [s[0],...,a[i],...>5[m-l]], 

(b) a' = [a[0],...,a[i],...,a[m]], 

(c) a[i] = #(tü0)...1«;Tl_i), 

(d) v2 = j, and 

(e) s[m] = #(w0,...,t;3,ti;j+i,...,«;„_!). 

9. (rß/(i)[(w2) <- i>3], s) -> (ref{i),s'), where sj = [s[0],..., s[i],..., s[m-l}} and s2 = [s[0],..., s[i]{u2 

u3},...,a[m- 1]]). 

A step transforms a pair (e, s) consisting of a closed expression and a store, and is represented as 
(ei,ai) —► (e2,s2). A step {E[r{\,8i) —> (E[r2],s2) holds if (rusi) -> (r2,s2). The reflexive- 
transitive closure of —> is represented as (e, s) -^-> (e', s'). If (e, s) -^ (v, s'), then the result of the 
computation is s'(v), i.e., the result of replacing each reference ref(i) in v by s'[i]. The computation 
of a closed term e is initiated on an empty store as (e, []). The value reval(e) is defined to be s(v), 
where (e,[|) -^ (v,s). 

A step in the destructive calculus is represented as (ei,si) => (e2,s2) where (i?[ri],si) => 
{E[r2],s2) if (ri,si) => (r2,s2). As with —► , we let =^ represent the reflexive-transitive closure 
of =>. The value deval(e) is defined to be s(v), where (e, Q) =^> (f,s). 

4    Observations 

The correctness proof for the destructive update optimization is outlined in the Appendix. The 
proof demonstrates the existence of a bisimulation between evaluations of the unoptimized nonde- 
structive program and the optimized program. The key idea in the proof is that the destructive 
optimizations always occur safely within update contexts during evaluation. When an update con- 
text coincides with an evaluation context, then the references accessible in the context are precisely 
those that govern the hole in the update context. The conditions on the occurrences of destructive 
operations within an update context then ensure that a reference that is updated destructively does 
not occur in the context. The operation 7(a) transforms all destructive updates in a to correspond- 
ing nondestructive updates, and all destructive applications to the corresponding nondestructive 
applications. The observation that all destructive operations occur safely within update contexts 
can be used to construct a bisimulation between a nondestructive configuration (e, s) and a de- 
structive configuration (e',s') that holds when s(e) = j{s'(e')). The bisimulation easily yields the 
main theorem 

reval(a(e)) = deval(a(eD)) 

for closed e and environment a that binds variables in e and eD to values. 
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As already mentioned, our analysis is essentially similar to one given independently and earlier by 
Wand and Clinger [13], but our presentation and correctness proof are substantially simpler. The 
simplification in the proof derives from the use of evaluation contexts. Wand and Clinger use a 
configuration consisting of a label, an environment, a return context, and a continuation. 

The worst-case complexity of analyzing a definition f{x\,... ,xn) = e as described here is n2|e|. 
The procedure requires n2 iterations in the fixed point computation since Lv(f) is an n-element 
array consisting of at most n — 1 variables. Each iteration is linear in the size of the definition e. 
In practice, the complexity is much smaller since only a few variables are mutable. 

We have used a simple core language for presenting the ideas. The method can be adapted to richer 
languages, but this has to be done carefully. For example, nested array structures introduce the 
possibility of structure sharing within an array that escapes the above analysis. For example, the 
update of index 3 of the array at index 2 of A might have the unintended side-effect of updating 
a shared reference at index 1 of array A. The analysis has to be extended to rule out the nested 
update of nested array structures. Non-nested updates of nested arrays such as A(2)[(3) := 4] are 
already handled correctly by the analysis since the result is the updated inner array A(2) and not 
the nested array A. Other nested structures such as records and tuples also admit similar structure 
sharing, but type information could be used to detect the absence of sharing. 

Allowing array elements to be functional is only mildly problematic. Here, it is possible for ref- 
erences to the original array to be trapped in a function value (closure) as in A[(2) := (A(x) : 
x + .4(2) (2))]. It is easy to modify the notion of an update context and the accompanying defini- 
tions to handle functional values in arrays. 

The analysis method can be adapted to lazy functional languages. Here, an additional analysis is 
needed to determine for a function f(x\,... ,xn) = e if an argument Xj might be evaluated after 
an argument Xi in the body e of /. 

PVS functions are translated to destructive Common Lisp operations that are then compiled and 
executed.5 The typical performance of simple destructively optimized functional programs is within 
a linear factor of 5 of the corresponding C program in time, and with the same space behavior. For 
example, a "tiny" processor model from Rockwell Collins simulates roughly 1.25 million machine 
instructions per second using the PVS ground evaluator, which is about five times slower than a 
hand-built C-code simulator for the same processor model. (Using an optimizing compiler, the 
C-code can be boosted to nearly 10 million instructions per second.) 

Conclusions. The mathematical orderliness of functional programming makes it possible to write 
efficient and easily optimizable programs. Optimizations arising from the static analysis for destruc- 
tive update presented in this paper make it possible to execute functional programs with efficiency 
comparable to low-level imperative programs. The code generated by the PVS ground evaluator 
is so efficient that it is feasible to consider PVS as a programming language for applications such 
as safety-critical systems, where it is crucially important to run verified programs, and processor 
verification, where it is highly desirable to use a common specification for both verification and 
simulation. 

5We are currently implementing a similar translator from PVS to Ocaml. 
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A    Correctness of Destructive Update Optimization 

The correctness of the destructive update optimization is established by showing that the evalu- 
ations of the optimized and the unoptimized programs yield the same result. This result follows 
from the existence of a bisimulation between evaluations of the unoptimized nondestructive pro- 
gram and the optimized program. The key idea in the proof is that the destructive optimizations 
always occur safely within update contexts during evaluation. When a destructive subexpression 
is reduced during the evaluation, it occurs safely within the expression being evaluated, and this 
ensures that the bisimulation relation is preserved following the reduction. 

The operation 7(a) transforms all destructive updates e\[{e2) •<— 63] in a to corresponding nonde- 
structive updates ei[(e2) := e^], and all destructive applications gD{ei,..., en) to the corresponding 
nondestructive applications g{e\,..., en). 

An environment a maps variables to values. The application of the substitution given by an 
environment a to an expression e is written as c(e). Similarly, the application of a store s of the 
form [s[0],..., s[n — 1]]] to an expression e, written as s(e), replaces each occurrence of ref(i) in e 
by s[i], for 0 < i < n. 

The definition of safety for an expression e has been given in page 212. A destructive expression is 
either a destructive update of the form e\ \e-i <r- 63] or a destructive function invocation of the form 
gD{a\,..., an). An expression is safe if all destructive updates occur safely within update contexts. 
In the update analysis, the expressions being analyzed contained variables but no references. For 
the proof, the definitions of Ovr, Mv, and Av have to be extended to include references so that 

Ovr(ref(i)) = Mv(ref(i)) = Av{ref{i)) = {ref(i)}. 

The demonstration that all destructive operations occur safely within update contexts can be 
used to construct a bisimulation between a nondestructive configuration (e, s) and a destructive 
configuration (e',s') that holds when s(e) = 7(s'(e')). The bisimulation easily yields the main 
theorem 

reval(a(e)) = deval(a(e   )), 

where a(e) and <r(eD) are closed terms. 

The main observation is that the safety of the expression being evaluated is preserved by an evalua- 
tion step. All the terms considered in evaluations are closed. Let a safe term be one in which every 
destructive term occurs safely within an update context. In other words, e is safe if every occur- 
rence of a destructive u of the form e\[e<2 •*- 63] or gD{a\,... ,an) is safe in UL, where e = UL{u}. 
An evaluation step always takes a safe closed term to a safe closed term. 

The observation can be established by showing that whenever a safe term e goes to e' in an 
evaluation step (e, s) =>• (e',s'), then e' is also safe. We outline the argument before diving into 
the details of the proof. We need to show that each destructive term u in e' occurs safely. We 
can show that each destructive term in u in e' occurs within an update context VM such that 
e' = VM{u}. In the evaluation step (e, s) =$■ (e1, s'), we reduce a redex r such that (r, s) =*> (r', s') 
where e = E[r] and e' = E[r'] for an evaluation context E. It is an important property of redexes 
that the residue r' can either occur properly within u\ coincide with u', properly contain u, or be 
independent of v!. That is, it is not possible for r' to partially overlap u'. 

Let us call a term e normal if every occurrence of a destructive term u in e occurs within an update 
context, i.e., there is some update context UL such that e = UL{u). Normalcy is preserved during 
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evaluation: if e is a normal term and (e, s) => (e', s'), then so is e'. Essentially, UL is an update 
context if the hole {} in U does not occur within a lambda-abstraction. It is easy to see that none 
of the reductions cause a destructive term to appear within a lambda-abstraction. It is also easy to 
see that any evaluation context E can also be viewed as an update context of the form U{\\}, but 
not necessarily vice versa. Having shown that normalcy is preserved by evaluation, we can restrict 
our attention to the preservation of the safety conditions from page 212. 

Let dom(s) for a store s be the set {ref(i)\i < \s\}. A configuration (e,s) is called well-formed 
if each reference ref(i) occurring in e is in the domain of s, dom(s). The well-formedness of 
configurations is preserved during evaluation. The expression s(e) contains no references when 
(s, e) is a well-formed configuration. 

For every reduction (r,s) =$■ (r',s'), p(r') n dom(s) C p(r). Hence, for every evaluation step 
(e,s) =4> (e',s'), p(e') D dom(s) C p(e). 

For the preservation of safety, we have to show that every occurrence of a destructive term u' in 
an update context VM in e' where e' = VM{u'} is safe. Let e be of the form E[r] and e' be of the 
form E[r'], where (r, s) => (r', s'). Then, either r' occurs properly in u', u' occurs properly in r', or 
r' = u', or r' and v! do not overlap. This is because a redex cannot partially overlap a destructive 
term. 

If r' occurs properly in u', then e = VM{u}, and the following cases arise: 

1. u' is of the form ei[e2 <- e^]: Then, if r' occurs in either e2 or e3, we have that e[ = e\, where 
u = ei[e2 «- eß]. Therefore Ov{e\) = Ov{e\) and v! occurs safely within the update context 
VM since u occurs safely within VM. 

2. u' is of the form gD(a[,... ,a'n), where r' occurs in a{ for some t, 1 < i < n. Then, u = 
gD(ai,...,an), where a,j = a'j for j, 1 < j < n and i ^ j. Since, (e,s) is a well-formed 
configuration, M C dom(s). We also have that Ov{a'i) l~l dom(s) C Ov(ai), and Av{a'i) D 
dom(s) C ylv(aj). Since gD{a\,... ,a„) occurs safely in VM and M C dom(s), it is also the 
case that ^(a^,... ,a'n) occurs safely in the update context VM. Thus, the safety of (e',s') 
follows from that of (e, s). 

If u' occurs (properly or not) within r', then by the syntax of a redex r, one of the following two 
cases is possible 

1. r is a conditional expression and r' must be either the THEN or ELSE part of r. Either way, u' 
occurs safely in VM since e = UM{u'} and e is safe. 

2. The reduction rule 2 has been applied in this step, a redex r of the form gD{v\,... ,vn) is 
reduced to r' of the form a(eD), where a = [ui/xi,.. .,vn/xn]. We have to ensure that u\ 
which does not occur in e, is safe within the newly introduced update contexts. During the 
generation of eD, we have already ensured that any destructive updates occur safely within 
update contexts. Thus, if u' is of the form cr(ei[(e2) <- e3]), we have eD = WAr{ei[(e2) «- e3]} 
where Ov(e\) D JV = 0. Since eD does not contain any references, the result of applying 
environment a to eD is just W'N'{cr(e1)[a(e2) <- tr(e3)]}, where W = a(W) and N' = 
p(a{N)). Note that for a value v, Ov(v) C ^4u(t;) C MD(D) = p(v). From the update 
analysis of g, we know that Ov{e\) nJV = 0 and AT C Lv(g)(x) for x G Ou(e!). Note that 
Ov{a(e\)) C p(cr(Ou(ei))). Since the occurrence of ^(^i,... ,vn) is safe with respect to the 
update context UL, we have that 
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(a) 0u(<7(ei))ni\r' = 0 
(b) p(a(Ou(ei))) D L = 0, hence Ou(<r(ei)) n L = 0. 

Therefore, the destructive update o{e\)[o(e2) «- a(ea)] is safe with respect to the update 
context VM since VM = UL{W'N'}, where M = LUN'. 

A similar argument can be used to show that if v! is of the form fD{a\,... ,an) in eD, it 
occurs safely within the update context VM. 

Finally, if u' and r' do not overlap, then r' occurs in VM and (UL,s) =*• (VM,s'). We can check 
that if UL is of the form E'[r] and VM is E'[r'], then M C (L - Av(r)) U ^u(r'). We can also check 
that for each reduction (r, s) =*• (r',s'), Av(r') D do7n(s) C >lu(r). Hence, M (1 dom(s) C L. Then 
obviously, u' occurs safely in VM if it occurs safely in UL. 

This concludes the proof of the main invariant. The significance of the invariant should be obvious. 
It shows that whenever a destructive update redex ref(i)[v2 4— «3] is evaluated, it occurs within 
a context that is both an evaluation context E\\ and an update context UL. It is easy to check 
that L contains all the references in e\\. Since the destructive update ref(i)[v2 4— V3) is safe for the 
update context UL, the reference ref(i) does not occur in E\\ and hence can be safely executed 
destructively. 

Given that all configurations are well formed and safe, it is easy to establish the bisimulation 
between destructive and nondestructive execution. The bisimulation R between a nondestructive 
configuration (e, s) and a destructive configuration (e',s') is given by s(e) = j(s'(e')). It is now a 
routine matter to check that (ei,si) —> (02,S2) and (e^s^) =$■ (e2,s2) and i2((ei,si),(ei,s'1)), 

then i?((e2,S2),(e2,S2>)- 

The main correctness theorem easily follows from the bisimulation proof. 

Theorem A.l // e and e' are closed, reference-free terms such that 7(e') = e, then 

reval(e) = deval(e). 
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Abstract 

One challenge in proving that a computing system maintains separa- 
tion between applications is reasoning about the behavior of the operating 
system code that does the system scheduling. General-purpose theorem 
proving programs offer the potential for highly reliable computing system 
verification, but harnessing theorem provers for this kind of activity poses 
some substantial challenges. This report discusses work to improve PVS's 
ability to reason about code execution. Work to make more automatic 
some kinds of PVS code proofs is reported in [8], and some of the intro- 
ductory material in this report is adapted from it. The benchmarking 
work and identification of optimization opportunities was accomplished 
primarily by Rockwell Collins, and the PVS optimizations were imple- 
mented and tested primarily by SRI. Most of the work reported here was 
accomplished in the Fall of 1997 and Spring of 1998. 
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1    Introduction 

Formal proofs about computer systems are often very complex and hard to get 
right, and the social process that is usually counted on to certify mathematical 
proofs is ineffective because particular computer system designs are often pro- 
prietary and in any case not of general interest. Mechanical theorem provers 
can help overcome both of these problems with formal proof: proofs generated 
with computer programs can be easier to produce and more reliable. 

PVS is a verification system for "specifying and verifying digital systems" 
[4, 5, 7]. It supports a specification language that is based on a simply typed 
higher-order logic, and provides a large number of prover commands that al- 
low machine-checked reasoning about expressions in the logic. There is support 
for automating reasoning in PVS, namely a simple rewriting system and a fa- 
cility for constructing new proof commands, although the emphasis in PVS is 
on building clear specifications and supporting user proof with domain-specific 
decision procedures. 

Earlier work at Rockwell Collins and SRI verifying aspects of the Rockwell 
AAMP5 and AAMP-FV processor designs with microcoded instruction sets is 
reported in [2, 3]. Partial microcode correctness of these processors has been 
established using PVS. The hardware that executes microcode was formalized 
in the PVS logic, and proofs that the microcode correctly implements some of 
the processor instruction sets have been constructed. While the application of 
PVS to realistic-sized processors in the AAMP5 and AAMP-FV projects led to 
a partial verification of their microcode, the experience of building these proofs 
led the developers to the pragmatic realization that practical computer systems 
proofs must be robust [2]. That is, computer system proofs must be able to 
demonstrate correctness with minimal human assistance despite modest system 
or specification changes. 

Mistakes in proof development and changes to system design and specifi- 
cation are inevitable for realistic-sized verifications. For example, during the 
AAMP-FV verification effort a change was made in the formal model related to 
memory address decoding [2]. This change caused every previously-constructed 
instruction correctness proof to fail even though the change had little to do with 
the substance of most of the proofs. Large programming projects use software 
engineering techniques to make software robust despite inevitable changes. So 
too must large machine-checked proof projects use techniques to develop robust 
proofs. 

In the next section we present a formalization of the simple computing sys- 
tem and a benchmark, both previously introduced in [8]. In order to improve 
PVS code proof capabilities, we used this benchmark to illustrate scaling prob- 
lems that were fixed. We then outline how we adapted the techniques of [8] that 
foster robustness to reason about AAMP-FV code. Rockwell Collins developed 
these benchmarks and uncovered some optimization opportunities in PVS, and 
SRI developed and implemented the improvements. 
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move a b store value at location b in location a 
movei a n move value n in location a 
movewind a b store value at location b in location stored at location a 
moverind a b store value at the location stored at location b in location a 
add a b store sum of values at locations a and b in location a 
sub a b store in location a the greater of 0 and the difference of a and b 
incr a increment value at location a 
deer a decrement value at location a 
jump n store value n in pc 
jumpz a n store value n in pc if value at location a is 0. 
call n store (incremented) pc on the stack and store value n in pc 
ret store a value popped from the stack in pc 
halt set the halt flag 

Figure 1: The sm Instructions 

2    A benchmark based on a simple machine in- 
terpreter 

We initially worked on models of "small machine" or "sm" [8]. This toy comput- 
ing system model is a slightly modified version of John Rushby's formalization 
of Bob Boyer's and J Moore's simple machine-level language [1, 6]. It is far sim- 
pler than realistic device models, but allows us to focus on fundamental issues 
related to code proofs before we add the complexity of a realistic model such as 
the AAMP-FV. 

As introduced in [8], an sm state is composed of five elements: a program 
counter, a stack containing subroutine call return addresses, a data memory 
that maps natural number addresses to natural number values, a flag whose 
boolean value indicates whether the processor is halted, and a program memory 
that maps natural number addresses to instructions. Both instruction and data 
memory size at 100 elements which limits the valid addresses for the memories to 
values less than 100. Each sm instruction is a record containing one of 13 opcodes 
and two addresses. The instructions are described informally in Figure 2. 

Following the style of some previous code proof efforts using other theorem 
proving systems [1, 9], we introduce an interpreter that provides an opera- 
tionalaxiomatic specification of the execution of the machine. The function 
step defines precisely the effect of executing the instruction pointed to by the 
pc, thereby providing a formal version of the instruction descriptions of Figure 2 
with which we can reason about programs. We define a function sm that returns 
the state resulting from running n instructions starting in state s. 

sm(s:   state,  n:  nat):  RECURSIVE state = 
IF n = 0 THEN s ELSE sm(step(s),  n -  1)  ENDIF 

MEASURE n 
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address code 
0 move 2 0 
1 move 3 0 
2 move 4 1 
3 sub 4 2 
4 jumpz 4 12 
5 incr 2 
6 moverind 4 2 
7 moverind 5 3 
8 sub 5 4 
9 jumpz 5 2 
10 move 3 2 
11 jump 2 
12 ret 

Figure 2: A benchmark program [8] 

Figure 2 presents a "min" program that returns in register 3 the location 
of a least element of the array whose bounds are contained in registers 0 and 
1. A discussion of the issues related to the specification and PVS proof of this 
program appears in [8]. The verification relies on PVS's builtin simplification 
procedures that among other things apply previously-proved theorems as rewrite 
rules. As a first step in benchmarking and improving PVS's ability to handle 
computing models of realistic size and complexity, we experimented with adding 
complexity to the simple program of Figure 2 in various simple ways. This 
approach helped us identify aspects of PVS that have the potential to cause 
problems on real computational models. By initially starting with a simple 
computational model we simplified the later optimization process. 

One of the approaches that identified a promising PVS optimization was to 
to add effective "no-op" statements to the program's loop and to measure the 
effect on the time required to process the proof. Ideally one would expect that 
the time required to complete a proof that requires symbolic execution of code 
would require time approximately linear in the number of instructions at issue. 
When the symbolic state of a machine is updated with the effect of a single 
instruction, it should be possible to calculate the effect of the next instruction 
in roughly the time that would have been required had the first instruction's 
effect not been calculated. 

Figure 3 shows the time required to execute the benchmark program loop 
once through symbolically on the PVS available before the optimizations re- 
sulting from this program.1. The X-axis indicates how many effective "no-ops" 
were added to the code, and the y-axis indicates how long the proof requires in 
seconds. 

Trial 1 uses perhaps the most straightforward set of simplifiers, that has 
the effect during simplification of opening the interpreter sm until only a nest of 

'on an unloaded Sparestation 5 running PVS version 2.1 Test (patch level 2.399) 
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number or added no-ops 

Figure 3: Timing of simple PVS code correctness proof 

step remains, then applying the definition of step until the symbolic expression 
representing the result remains. Trial 2 improves on this approach somewhat, by 
opening the interpreter and simplifying the step function definition immediately. 
Generation of the large term of step functions slowed proofs in PVS, which we 
noted for future PVS proofs. 

Note that neither trial achieved the linear timing for which we hope. Al- 
though trial 2 is "close", note that sm is very simple, and far less complex 
than the models we actually care about involving real computing systems. The 
nonlinearity was basically caused by PVS 2.1's elegant formalization of record 
structures, which treats them essentially as functions. An unfortunate practi- 
cal implication of this approach was the flexibility with which the user could 
adjust the domain - and therefore the type! - of functions. This capability is 
not necessary for the typical use of records, but its treatment in this way led to 
unnecessary inefficiency in the PVS simplifier. 

SRI implemented several optimizations in response to these problems. Most 
visibly, record updates that do not change the domain now are distinguished 
from updates that may change the domain in the logic. This allows more efficient 
manipulation for typical use. 

3    A Simple Benchmark Based on a Real Ma- 
chine Model 

In the previous section we described our use of a toy computing model to identify 
PVS optimization opportunities. Once we exhausted the improvements we could 
make with the toy, the next step was to develop a realistic model for use on the 
project. We describe in this section this model, and our benchmark use of it. 

The AAMP-FV is a paper-and-pencil design of a realistic flight control pro- 
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cessor. An earlier project pursued the formal specification and verification of the 
AAMP-FV using the PVS theorem prover [2]. This work related the execution 
of microcode to the formal specification of the instructions for the processor, and 
did so for many of the instructions using the capabilities of the PVS theorem 
prover. We adapted the instruction-level model of the AAMP-FV. 

The adaptation of the model for this project required several changes from 
that developed in [2] in order to make it consistent with the robust proof ap- 
proach from [8]. In particular, 

• 

• 

Integers are used to represent the bit-vectors of the machine state, rather 
than a function mapping bit-vector location to bits. 

A PVS record is used to represent the state, rather than a list of axioma- 
tized functions describing state elements. 

An explicit interpreter and step function definitions similar in style to sm 
is introduced to describe the model, rather than rely on the PVS "axiom" 
feature. 

In order to reason about AAMP-FV code, a toolchain that produced PVS- 
readable object code from AAMP-FV assembly language was developed. This 
was relatively straightforward: PVS rewrite rules were developed that "read" 
from an axiomatized variable, and axioms representing the bytes of object code 
were introduced. The axioms are generated by a short Lisp program that reads 
a standard AAMP-FV object file. A preexisting assembler generates this object 
file. 

A benchmark program we call "dummkopf" allowed testing of the code. 
Fragments of this code are listed in Figure 4. The dummkopf code flips between 
user and executive mode, incrementing two counters counters that keep track 
of the number of flips. 

Initial application of PVS to dummkopf was disappointing. After a few in- 
structions are symbolically executed, the prover slowed to a crawl as a result. 
It was not possible to reason about the execution of more than about 10 in- 
structions at a time. However, SRI implemented a number of optimizations 
that made possible symbolic simulation of arbitrarily long sequences of AAMP- 
FV code. Current versions of PVS now support symbolic simulation in times 
approximately linear with the number of instructions. 

4    Summary 

A crucial capability for proving security or safety properties of computing system 
is reasoning about the execution of software. Computing platform models and 
benchmark code identified several ways in which PVS could be improved to 
support reasoning about code execution and optimizations implemented by SRI 
significantly improved PVS in this area. 

196 



ELOOP: LIT16 OFFFFh 
ASN24 EXEC.CODE 
LIT24 PSD.UO 
USER 
ASN24 EXEC.CODE 
REF24 COUNT.E 
LIT4 1 
ADD 
ASN24 C0UNT_E 
LIT16 ELOOP.b. ■ 
SKIP 

SUB.O: .dw 08000h I 0 
.dd PAGE.UO 
LIT4 0 
ASN24 C0UNT_U0 

LOOP.O: REF24 COUNT.UO 
LIT4 1 
ADD 
ASN24 COUNT.UO 
TRAP 
LIT16 LOOP.O.b. 
SKIP 

; Should never get here ; 
LIT4 0 
RETURN 

- $.b. 

Activate user task 

Write out TRAP code 

Increment COUNT.E 

Loop 

- $.b. 

Clear iteration counter (COUNT.UO) 

Increment COUNT.UO 

Trap to executive 

Loop 

;  deallocation amount 
;  return to primal proc. 

Figure 4: Fragments of Dummkopf, an AAMP-FV assembly benchmark 
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Formal methods can provide many benefits but, to my mind, the chief benefit of specifically formal meth- 
ods is that they allow some properties of a computational system to be deduced from its design by a process 
of logical calculation, in much the same way that computational fluid dynamics allow properties of aerofoils 
to be examined by numerical calculation. 

Originally, "computational system" meant computer program, and the main property of interest was cor- 
rectness of the program with respect to its specification. More recently, however, these notions have widened 
to include almost any level of system description (e.g., hardware, algorithms, software architecture, require- 
ments), properties short of full "correctness" (e.g., various notions of internal and external consistency), and 
refutation (i.e., bug finding) as much as verification. Mechanized formal verification uses the techniques of au- 
tomated deduction—that is theorem proving and model checking—to perform the "logical calculations" that 
enable such properties to be checked for such system descriptions. The most successful verification systems 
combine an interactive theorem prover with powerful automation such as decision procedures for equality and 
arithmetic, and rewriting: the user directs the overall process, while the automation takes care of the details. 

With the aid of a modern verification system, routine formal analyses are, well, routine. By this I mean that 
if the property of interest follows fairly directly from the system description by reasoning in some previously 
formalized mathematical domains, then mechanized formal verification is unlikely to be more difficult or to 
take longer—and may be considerably easier, as well as less error-prone—than a comparably detailed informal 
examination. Much worthwhile analysis can be accomplished economically and reliably in this way (see, for 
example, [4], which describes analysis of tables and other requirements specifications for some recent Space 
Shuttle software), but there is much else that can be accomplished only with great difficulty and effort. 

These more challenging problems often involve concurrency, as in protocols and distributed algorithms, 
and the difficulties are not so much in theorem proving as in ancillary tasks, such as the invention of suitably 
strong invariants, and diagnosing whether an intractable subgoal indicates an error in the design, an inadequate 
invariant, or a mistaken proof step. To establish that a concurrent system (typically specified as a transition 
relation) maintains a desired invariant (expressing some safety property, for example), the basic deductive 
method is to show that the invariant is implied by the initial system state(s), and that it is preserved by all tran- 
sitions. Usually, the desired property is not preserved in this simple manner, and it is necessary to strengthen 
it with additional conjuncts to characterize the reachable states (since preservation is required only for states 
that can be reached from the initial states). These conjuncts can often be found—one at a time—by inspecting 
a failed proof, extracting a plausible conjunct, and repeating the process until the proof succeeds. In one well- 
known example, 57 iterations of this kind were required to verify a relatively simple communications protocol 
known as the "bounded retransmission protocol" [5]. 

Model checking is an attractive alternative to theorem proving in circumstances such as these. Model 
checking is largely automatic, but it is applicable only to finite state systems (and to some infinite state sys- 
tems having special forms); consequently, most system descriptions must be "downscaled" (i.e., aggressively 
simplified) before they can be subjected to model checking. Unless there is a suitable abstraction (i.e., sim- 
ulation) relationship between the original system description and the downscaled one, model checking may 
be unsound or incomplete with respect to the original system: that is, it may fail to detect an error (because 
it is not present in the downscaled system), or may falsely report errors (that are present in the downscaled 
system but not in the original). The latter is not much of a problem when refuation is the goal: model checkers 
generally produce a counterexample in the form of an execution trace that manifests the error in the abstracted 
system, and it is usually straightforward to check whether a corresponding trace leads to an error in the original 
system. This may be adequate for refutation, but for verification we need to know that the model checker's 
inability to find errors in the downscaled system implies satisfaction of the desired property by the original 
system. For this, it is necessary to establish a suitable abstraction relationship between the original and the 
downscaled system descriptions—and doing so by traditional means can be almost as hard as proving the 
property directly. For the example of the bounded retransmission protocol, justification of an abstraction for 
model checking required 45 of the 57 conjuncts used in the direct proof. 
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Recently, several researchers, including my colleagues at SRI, have been exploring ways to combine the- 
orem proving, abstraction, model checking, and other techniques more aggressively than before in order to 
avoid some of the difficulties and costs described above. 

One idea is to calculate an abstracted system description, so that it is correct by construction, rather than to 
justify a downscaled description constructed by hand. Given an abstraction function relating the original and 
abstracted state spaces, a verification condition can be generated for each pair of abstract states that specifies 
the conditions under which no transition is required between those states in the abstracted system description 
(the condition is that there is no transition between any pair of original states that map to those abstract states). 
If the verification condition can be proved (using automatic proof procedures), then the transition can be 
omitted from the abstracted system description; if not, then it is conservative to include the transition. For 
the bounded retransmission protocol, this approach is able to compute automatically an abstracted system 
description suitable for model checking [1]. More sophisticated treatments allow the desired invariant to be 
used in construction of the abstracted system, and can use information from a failed model check to refine the 
abstraction. 

Calculation of abstracted system descriptions often requires, and is usually made easier, if known invariants 
can be supplied to the process. Some useful invariants can be calculated by static analysis [3], but others 
can be extracted from model checking. As part of its computation, a model checker will almost certainly 
calculate the set of reachable states of the system description presented to it. Now, the reachable states of a 
system characterize its strongest invariant, so a concretization of the reachable states of an abstracted system 
is certainly an invariant, and possibly a strong one, for the original system.1 This suggests a new way to 
calculate invariants that may help in the construction of abstracted system descriptions: construct some simpler 
abstraction (one for which already known invariants are adequate for its construction), and use a concretization 
of its reachable states as a new invariant. A practical difficulty in this approach is that the reachable state set 
calculated by a model checker is not usually made available externally and, in any case, it is usually represented 
by a data structure (a BDD) that is not directly suitable for input to a theorem prover. This difficulty has been 
overcome in the current version of the SMV model checker, where a print function, implemented by Sergey 
Berezin, provides external access to the reachable states. 

The techniques described so far allow calculation of invariants and of abstracted systems, but they require 
the user to supply suitable abstraction functions. Some guidance in doing this can be obtained by inspecting 
the predicates that appear in the original, concrete, system description (particularly those in the guards on 
transitions): if a predicate such asx = y+lAx^z appears in the concrete system description, then an 
abstraction can be constructed having a boolean state variable that records the truth or falsity of this predicate 
[8]. Even with the aid of heuristics such as this, however, it can still require great insight to design a tractable 
abstraction that preserves the property of interest. 

An alternative approach does not seek to construct an abstraction that directly preserves the property of 
interest: instead, this approach uses theorem proving as its top-level technique, and employs abstraction and 
model checking to help discharge the subgoals that are generated [7]. The attraction here is that theorem 
proving will have performed some case analysis in generating the subgoals, so that they will be simpler than 
the original problem. Therefore the abstraction needed to help discharge a given subgoal can be much simpler 
than one that discharges the whole problem; furthermore the predicates that appear in the formulas of the 
subgoal provide useful hints for the construction of a suitable abstraction. 

In summary, "ubiquitous abstraction"—that is constructing many different abstracted system descriptions 
at many different points in an analysis, and for several different purposes—has great promise as a way to 
ease difficulties and increase productivity and automation in the formal analysis of concurrent systems. The 
approach also provides a new way to combine different tools, such as theorem provers and model checkers, 
though full exploitation of this opportunity requires modification to the tools so that they can exchange sym- 
bolic values (e.g., the reachable state set, or a counterexample) rather than merely report the success or failure 

'"Concretization" is the inverse of abstraction; the inverse of the abstraction function is not a function, in general, so some approxi- 
mation is required to find a set of concrete states who image under the abstraction function includes all the reachable abstract states. 
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of their own local analysis. Some of the capabilities I have described are already integrated in a system called 
InVeSt [2] and initial experiments with this and other prototypes developed as part of our "Symbolic Analysis 
Laboratory" (SAL) are quite promising. Our current plans are to evaluate the approach on more challenging 
examples. 
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Abstract 

To become practical for assurance, automated for- 
mal methods must be made more scalable, automatic, 
and cost-effective. Such an increase in scope, scale, au- 
tomation, and utility can be derived from an emphasis on 
a systematic separation of concerns during verification. 
SAL (Symbolic Analysis Laboratory) attempts to address 
these issues. It is a framework for combining differ- 
ent tools to calculate properties of concurrent systems. 
The heart of SAL is a language, developed in collabora- 
tion with Stanford, Berkeley, and Verimag, for specifying 
concurrent systems in a compositional way. Our instan- 
tiation of the SAL framework augments PVS with tools 
for abstraction, invariant generation, program analysis 
(such as slicing), theorem proving, and model checking 
to separate concerns as well as calculate properties (i.e., 
perform symbolic analysis) of concurrent systems. We 
describe the motivation, the language, the tools, their 
integration in SAL/PVS, and some preliminary experi- 
ence of their use. 

properties (symbolic analysis) of concurrent systems ex- 
pressed as transition systems. The heart of SAL is an 
intermediate language, developed in collaboration with 
Stanford, Berkeley, and Verimag for specifying concur- 
rent systems in a compositional way. This language will 
serve as the target for translators that extract the tran- 
sition system description for popular programming lan- 
guages such as Esterel, Java, or Verilog. The intermedi- 
ate language also serves as a common description from 
which different analysis tools can be driven by translat- 
ing the intermediate language to the input format for the 
tools and translating the output of these tools back to the 
SAL intermediate language. 

This paper is structured as follows. In Section 2 we 
describe the motivation and rationale behind the design 
of the SAL language and give an overview of its main 
features. The main part, Section 3, describes SAL com- 
ponents including slicing, invariant generation, abstrac- 
tion, model checking, simulation, and theorem proving 
together with their integration into the SAL toolset. Sec- 
tion 4 concludes with some remarks. 

1   Introduction 
The SAL Common Intermediate Lan- 
guage 

To become practical for debugging, assurance, and 
certification, formal methods must be made more cost- 
effective. Incremental improvements to individual ver- 
ification techniques will not suffice. It is our basic 
premise that a significant advance in the effectiveness 
and automation of verification of concurrent systems is 
possible by engineering a systematic separation of con- 
cerns through a truly integrated combination of static 
analysis, model checking, and theorem proving tech- 
niques. A key idea is to change the perception (and im- 
plementation) of model checkers and theorem provers 
from tools that perform verifications to ones that calcu- 
late properties such as slices, abstractions and invariants. 
In this way, big problems are cut down to manageable 
size, and properties of big systems emerge from those of 
reduced subsystems obtained by slicing, abstraction, and 
composition. By iterating through several such steps, it 
becomes possible to incrementally accumulate proper- 
ties that eventually enable computation of a substantial 
new property—which in turn enables accumulation of 
further properties. By interacting at the level of proper- 
ties and abstractions, multiple analysis tools can be used 
to derive properties that are beyond the capabilities of 
any individual tool. 

SAL (Symbolic Analysis Laboratory) addresses 
these issues. It is a framework for combining dif- 
ferent tools for abstraction, program analysis, theorem 
proving, and model checking toward the calculation of 

Mechanized formal analysis starts from a description 
of the problem of interest expressed in the notation of 
the tool to be employed. Construction of this descrip- 
tion often entails considerable work: first to recast the 
system specification from its native expression in C, Es- 
terel, Java, SCR, UML, Verilog, or whatever, into the 
notation of the tool concerned, then to extract the part 
that is relevant to the analysis at hand, and finally to re- 
duce it to a form that the tool can handle. If a second tool 
is to be employed for a different analysis, then a second 
description of the problem must be prepared, with con- 
siderable duplication of effort. With m source languages 
and n tools, we need m*n translators. This situation nat- 
urally suggests use of a common intermediate language, 
where the numbers of tools required could be reduced to 
m + n translators. 

The intermediate language must serve as a medium 
for representing the state transition semantics of a sys- 
tem described in a source language such as Java or Es- 
terel. It must also serve as a common representation 
for driving a number of back-end tools such as theorem 
provers and model checkers. A useful intermediate lan- 
guage for describing concurrent systems must attempt to 
preserve both the structure and meaning of the original 
specification while supporting a modular analysis of the 
transition system. 

For these reasons, the SAL intermediate language is a 
rather rich language. In the sequel, we give an overview 
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mutex : CONTEXT = 
BEGIN 

PC: TYPE = {trying, criti- 
cal, sleeping} 

mutex [tval:boolean] : MODULE = 
BEGIN 
INPUT pc2: PC, x2: boolean 
OUTPUT pel: PC, xl: boolean 

INITIALIZATION 
TRUE -->  pel = sleeping; 

xl  = tval 

TRANSITION 
pel = sleeping 

--> pel' = trying; 
xl' = (x2=tval) 

[] 
pel = trying AND 
(pc2=sleeping OR xl= (x2/=tval) ) 
--> pel' = critical 

[] 
pel = critical 

--> pel' = sleeping; 
xl' = (x2=tval) 

END 

system: MODULE = 
HIDE xl,x2 
(mutex[FALSE] 
|| RENAME pc2 TO pel, 

x2 TO xl, 
pel TO pc2, 
xl TO x2 

mutex[TRUE]) 

mutualExclusion: THEOREM 
system |- 

AG(NOT(pcl=critical 
AND pc2=critical)) 

eventuallyl: LEMMA 
system |- EF(pcl=critical) 

eventually2: LEMMA 
system |- EF(pc2=critical) 

END 

Figure 1. Mutual Exclusion 

of the main features of the SAL type language, the ex- 
pression language, the module language, and the con- 
text language. For a precise definition and semantics of 
the SAL language, including comparisons to related lan- 
guages for expressing concurrent systems, see [31]. 

The type system of SAL supports basic types such 
as booleans, scalars, integers and integer subranges, 
records, arrays, and abstract datatypes. Expressions 
are strongly typed. The expressions consist of con- 
stants, variables, applications of Boolean, arithmetic, 
and bit-vector operations (bit-vectors are just arrays of 
Booleans), and array and record selection and updates. 
Conditional expressions are also part of the expression 
language and user-defined functions may also be intro- 
duced. 

A module is a self-contained specification of a tran- 
sition system in SAL. Usually, several modules are col- 
lected in a context. Contexts also include type and con- 
stant declarations. A transition system module consists 
of a state type, an initialization condition on this state 
type, and a binary transition relation of a specific form 
on the state type. The state type is defined by four pair- 
wise disjoint sets of input, output, global, and local vari- 
ables. The input and global variables are the observed 
variables of a module and the output, global, and local 
variables are the controlled variables of the module. It 
is good pragmatics to name a module. This name can be 
used to index the local variables so that they need not be 
renamed during composition. Also, the properties of the 
module can be indexed on the name for quick lookup. 

Consider, for example, the SAL specification of a 
variant of Peterson's mutual exclusion algorithm in Fig- 
ure 1. Here the state of the module consists of the 
controlled variables corresponding to its own program 
counter pel and boolean variable xl, and the observed 
variables are the corresponding pc2 and x2 of the other 
process. 

The transitions of a module can be specified variable- 
wise by means of definitions or transition-wise by 
guarded commands. Henceforth, primed variables X' 
denote next-state variables. A definition is of the form 
X = f (Y, Z). Both the initializations and transitions 
can also be specified as guarded assignments. Each 
guarded command consists of a guarded formula and an 
assignment part. The guard is a boolean expression in 
the current controlled (local, global, and output) vari- 
ables and current-state and next-state input variables. 
The assignment part is a list of equalities between a left- 
hand side next-state variable and a right hand side ex- 
pression in both current-state and next-state variables. 

Parametric modules allow the use of logical (state- 
independent) and type parameterization in the definition 
of modules. Module mutex in Figure 1, for example, is 
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parametric in the Boolean tval. Furthermore, mod- 
ules in SAL can be combined by either synchronous 
composition | |, or asynchronous composition [ ]. Two 
instances of the mutex module, for example, are con- 
joined synchronously to form a module called system 
in Figure 1. This combination also uses hiding and re- 
naming. Output and global variables can be made local 
by the HIDE construct. In order to avoid name clashes, 
variables in a module can be renamed using the RENAME 
construct. 

Besides declaring new types, constants, or modules, 
SAL also includes constructs for stating module prop- 
erties and abstractions between modules. CTL formulas 
are used, for example, in Figure 1 to state safety and live- 
ness properties about the combined module system. 

The form of composition in SAL supports a com- 
positional analysis in the sense that any module prop- 
erties expressed in linear-time temporal logic or in the 
more expressive universal fragment of CTL* are pre- 
served through composition. A similar claim holds for 
asynchronous composition with respect to stuttering in- 
variant properties where a stuttering step is one where 
the local and output variables of the module remain un- 
changed. 

Because SAL is an environment where theorem prov- 
ing as well as model checking is available, absence of 
causal loops in synchronous systems is ensured by gen- 
erating proof obligations, rather than by more restrictive 
syntactic methods as in other languages. Consider the 
following definitions: 

X = IF A THEN NOT Y ELSE C ENDIF 
Y = IF A THEN B ELSE X ENDIF 

This pair of definitions is acceptable in SAL because we 
can prove that X is causally dependent on Y only when 
A is true, and vice-versa only when it is false—hence 
there is no causal loop. In general, causality checking 
generates proof obligations asserting that the conditions 
that can trigger a causal loop are unreachable. 

3   SAL Components 

SAL is built around a blackboard architecture cen- 
tered around the SAL intermediate language. Different 
backend tools operate on system descriptions in the in- 
termediate language to generate properties and abstrac- 
tions. The core of the SAL toolset includes the usual 
infrastructure for parsing and type-checking. It also al- 
lows integration of translators and specialized compo- 
nents for computing and verifying properties of transi- 
tion systems. These components are loosely coupled 
and communicate through well-defined interfaces.  An 

invariant generator may expect, for example, various ap- 
plication specific flags and a SAL base module, and it 
generates a corresponding assertion in the context lan- 
guage together with a justification of the invariant. The 
SAL toolset keeps track of the dependencies between 
generated entities, and provides capabilities similar to 
proof-chain analysis in theorem proving systems like 
PVS. 

The main ingredients of the SAL toolset are special- 
ized components for computing and verifying properties 
of transition systems. Currently, we have integrated var- 
ious components providing basic capabilities for analyz- 
ing SAL specifications, including 

• Validation based on theorem proving, model check- 
ing, and animation; 

• Abstraction and invariant generation; 

• Generation of counterexamples; 

• Slicing. 

We describe these components in more detail below. 

3.1    Backend translations 

We have developed translators from the SAL inter- 
mediate language to PVS, SMV, and Java for validat- 
ing SAL specifications by means of theorem proving 
(in PVS), model checking (in SMV), and animation (in 
Java). These compilers implement shallow structural 
embeddings [26] of the SAL language; that is, SAL 
types and expressions are given a semantics with re- 
spect to a model defined by the logic of the target lan- 
guage. The compilers performs a limited set of semantic 
checks. These checks mainly concern the use of state 
variables. More complex checks, as for example type 
checking, are left to the verification tools. 

3.1.1    Theorem Proving: SAL to PVS 

PVS is a specification and verification environment 
based on higher-order logic [27]. SAL contexts con- 
taining definitions of types, constants, and modules, are 
translated into PVS theories. This translation yields a se- 
mantics for SAL transition systems. Modules are trans- 
lated as parametric theories containing a record type to 
represent the state type, a predicate over states to rep- 
resent the initialization condition, and a relation over 
states to represent the transition relation. Figure 2 de- 
scribes a typical translation of a SAL module in PVS. 
Notice that initializations as well as transitions may be 
nondeterministic. 
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module[para:Parameters] : THEORY 
BEGIN 

State : TYPE = [# 
input  : InputVars, 
output : OutputVars, 
local  : LocalVars 

#] 

state,next : VAR State 

initialization(state):boolean = 
(guard_init_l AND 
output(state) = ... AND 
local(state) = ...) 

OR ... OR (guard_init_n AND ...] 

transitions(state, next):boolean = 
(guard_trans_l AND 
output(next) = 

output(state) WITH [...] 
local(next) = 

local(state) WITH [... ]) 
OR ... OR 
(guard_trans_m AND ...) 
OR 
(NOT guard_trans_l AND ... AND 
NOT guard_trans_m AND 
output(next) = output(state) 
local(next) = local(state)) 

Figure 2. A SAL module in PVS 

Compositions of modules are embedded as logical 
operations on the transition relations of the correspond- 
ing modules: disjunction for the case of asynchronous 
composition, conjunction for the case of synchronous 
composition. Hiding and renaming operations are mod- 
eled as morphisms on the state types of the modules. 
Logical properties are encoded via the temporal logic of 
the PVS specification language. 

3.1.2   Model Checking: SAL to SMV 

SMV is a popular model checker with its own system 
description language [25]. SAL modules are mapped to 
SMV modules. Type and constant definitions appearing 
in SAL contexts are directly expanded in the SMV spec- 
ifications. Output and local variables are translated to 
variables in SMV. Input variables are encoded as param- 
eters of SMV modules. 

The nondeterministic assignment of SMV is used to 
capture the arbitrary choice of an enabled SAL transi- 
tion. Roughly speaking, two extra variables are intro- 
duced. The first is assigned nondeterministically with a 

value representing a SAL transition. The guard of the 
transition represented by this variable is the first guard 
to be evaluated. The second variable loops over all tran- 
sitions starting from the chosen one until it finds a tran- 
sition which is enabled. This mechanism assures that 
every transition satisfying the guard has an equal chance 
to being fired in the first place. Composition of SAL 
modules and logical properties are directly translated via 
the specification language of SMV. 

3.1.3 Animation: SAL to Java 

Animation of SAL specifications is possible via compi- 
lation to Java. However, not all the features of the SAL 
language are supported by the compiler. In particular, 
the expression language that is supported is limited to 
that of Java. For example, only integers and booleans are 
accepted as basic types. Elements of enumeration types 
are translated as constants and record types are repre- 
sented by classes. 

The state type of a SAL module is represented by 
a class containing fields for the input, output, and lo- 
cal variables. In order to simulate the nondeterminism 
of the initialization conditions, we have implemented a 
random function that arbitrary chooses one of the initial- 
ization transition satisfying the guard. 

Each transition is translated as a Java thread class. 
At execution time, all the threads share the same state 
object. We assume that the Java virtual Machine is non- 
deterministic with respect to execution of threads. The 
main function of the Java translation creates one state 
object and passes the object as an argument to the thread 
object constructors. It then starts all the threads. Safety 
properties are encoded by using the exception mecha- 
nism of Java, and are checked at run time. 

3.1.4 Case Study: Flight Guidance System 

Mode confusion is a concern in aviation safety. It oc- 
curs when pilots get confused about the actual states of 
the flight deck automation. NASA Langley conducts 
research to formally characterize mode confusion situ- 
ations in avionics systems. In particular, a prototype 
of a Flight Guidance System (FGS) has been selected 
a case study for the application of formal techniques to 
identify mode confusion problems. FGS has been spec- 
ified in various formalisms (see [23] for a comprehen- 
sive list of related work). Based on work by Lüttgen 
and Carrefio, we have developed a complete specifica- 
tion of FGS in SAL. The specification has been auto- 
matically translated to SMV and PVS, where it has been 
analyzed. We did not experience any significant over- 
head in model checking translated SAL models com- 
pared to hand-coded SMV models.   This case study is 
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available at http: / /www. icase. edu. / "munoz / 
sources.html. 

3.2   Invariant Generation 

An invariant of a transition system is an assertion— 
a predicate on the state—that holds of every reachable 
state of the transition system. An inductive invariant is 
a assertion that holds of the initial states and is preserved 
by each transition of the transition system. An inductive 
invariant is also an invariant but not every invariant is 
inductive. 

Let SP(T, 4>) denote the formula that represents the 
set of all states that can be reached from any state in 4> 
via a single transition of the system T, and 6 denote the 
formula that denotes the initial states. A formula <f> is 
an inductive invariant for the transition system T if (i) 
0-></>;(ii)SP(T,</O->0. 

We recall that for a given transition system T and 
a set of states described by formula (f>, the notation 
SP(T, <j>) denotes the formula that characterizes all 
states reachable from states <fi using exactly one transi- 
tion from T. If 0 denotes the initial state, then it follows 
from the definition of invariants that any fixed-point of 
the operator F(<j>) = SP(T, </>) V 0 is an invariant. 

Notice that the computation of strongest postcondi- 
tions introduces existentially quantified formulas. Due 
to novel theorem proving techniques in PVS2.3 that are 
based on the combination of a set of ground decision 
procedures and quantifier elimination we are able to ef- 
fectively reason about these formulas in many interest- 
ing cases. 

It is a simple observation that not only is the greatest 
fixed point of the above operator an invariant, but ev- 
ery intermediate fa generated in an iterated computation 
procedure of greatest fixed point also is an invariant. 

<t>i+l 

true 

SP(T,&)V0 

A consequence of the above observation is that we do 
not need to detect when we have reached a fixed point in 
order to output an invariant. 

As a technical point about implementation of the 
above greatest fixed point computation in SAL, we men- 
tion that we break up the (possibly infinite) state space 
of the system into finitely many (disjoint) control states. 
Thereafter, rather than working with the global invari- 
ants 4>i, we work with local invariants that hold at par- 
ticular control states. The iterative greatest fixed point 
computation can now be seen as a method of generating 
invariants based on affirmation and propagation [6]. 

Note that rather than computing the greatest fixed 
point, if we performed the least fixed point computation, 

we would get the strongest invariant for any given sys- 
tem. The problem with least fixed points is that their 
computation does not converge as easily as those of 
greatest fixed points. Unlike greatest fixed points, the 
intermediate predicates in the computation of the least 
fixed point are not invariants. We are currently investi- 
gating approaches based on widening to compute invari- 
ants in a convergent manner using least fixed points [8]. 

The techniques described so far are noncomposi- 
tional since they examine all the transitions of the given 
system. We use a novel composition rule defined in [29] 
allowing local invariants of each of the modules to be 
composed into global invariants for the whole system. 
This composition rule allows us to generate stronger in- 
variants than the invariants generated by the techniques 
described in [6,7]. The generated invariants allows us to 
obtain boolean abstractions of the analyzed system using 
the incremental analysis techniques presented in [29]. 

3.3   Slicing 

Program analyses like slicing can help remove code 
irrelevant to the property under consideration from the 
input transition system which may result in a reduced 
state-space, thus easing the computational needs of sub- 
sequent formal analysis efforts. Our slicing tool [18] 
accepts an input transition system which may be syn- 
chronously or asynchronously composed of multiple 
modules written in SAL and the property under verifica- 
tion. The property under verification is converted into a 
slicing criterion and the input transition system is sliced 
with respect to this slicing criterion. The slicing crite- 
rion is merely a set of local/output variables of a subset 
of the modules in the input SAL program that are not 
relevant to the property. The output of the slicing al- 
gorithm is another SAL program similarly composed of 
modules wherein irrelevant code manipulating irrelevant 
variables from each module has been sliced out. For ev- 
ery input module there will be an output module, empty 
or otherwise. In a nutshell the slicing algorithm does 
a dependency analysis of each module and computes 
backward transitive closure of the dependencies. This 
transitive closure would take into consideration only a 
subset of all transitions in the module. We call these 
transitions observable and the remaining transitions are 
called T or silent transitions. We replace silent transi- 
tions with skips. 

We are currently investigating reduction techniques 
that are simpler than slicing and also ones that are more 
aggressive. One example is the cone-of-influence re- 
duction where the slicing criterion is a set of variables 
V, and the reduction computes a transition system that 
includes all the variables in the transitive closure of V 
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given by the dependencies between variables [21]. In 
comparison with slicing, the cone-of-influence reduc- 
tion is insensitive to control and is therefore easier to 
compute but generally not as efficient at pruning irrele- 
vance. Slicing preserves program behavior with respect 
to the slicing criterion. One could obtain a more dra- 
matic reduction by admitting slices that admitted more 
behaviors by introducing nondeterminism. Such aggres- 
sive slicing would be needed for example to abstract 
away from the internal behavior of a transition system 
within its critical section for the purpose of verifying 
mutual exclusion. Slicing for concurrent systems with 
respect to temporal properties has been investigated by 
DwyerandHatcliff[16]. 

3.4   Connecting InVeSt with SAL 

So far we have described specialized SAL compo- 
nents that provide core features for the analysis of con- 
current systems, but we have also integrated the stand- 
alone InVeSt [5] into the SAL framework. Besides com- 
positional techniques for constructing abstraction and 
features for generating counterexamples from failed ver- 
ification attempts, InVeSt introduces alternative methods 
for invariant generation to SAL. InVeSt not only serves 
as a backend tool for SAL but also has been connected 
to the IF laboratory [10], Aldebaran [9], TGV [17] and 
Kronos [15]. 

The salient feature of InVeSt is that it combines the 
algorithmic with the deductive approaches to program 
verification in two different ways. First, it integrates the 
principles underlying the algorithmic (e.g. [11,28]) and 
the deductive methods (e.g. [24]) in the sense that it uses 
fixed point calculation as in the algorithmic approach but 
also the reduction of the invariance problem to a set of 
first-order formulas as in the deductive approach. Sec- 
ond, it integrates the theorem prover PVS [27] with the 
model checker SMV [25] through the automatic com- 
putation of finite abstractions. That is, it provides the 
ability to automatically compute finite abstractions of 
infinite state systems which are then analyzed by SMV 
or, alternatively, by the model checker of PVS. Further- 
more, InVeSt supports the proof of invariance proper- 
ties using the method based on induction and auxiliary 
invariants (e.g. [24]) as well as a method based on ab- 
straction techniques [2,12-14,21,22]. InVeSt uses PVS 
as a backend tool and depends heavily on its theorem 
proving capabilities for deciding the myriad verification 
conditions. 

3.4.1   Abstraction 

InVeSt provides also a capability that computes an ab- 
stract system from a given concrete system and an ab- 

straction function. The method underlying this tech- 
nique is presented in [4]. The main features of this 
method is that it is automatic and compositional. It com- 
putes an abstract system Sa — S\ || • • • || 5£, for a 
given system S = S1 || • • • || Sn and abstraction func- 
tion Q, such that S simulates Sa is guaranteed by the 
construction. Hence, by known preservation results, if 
Sa satisfies an invariant <p then S satisfies the invari- 
ant a_1(yj). Since the produced abstract system is not 
given by a graph but in a programming language, one 
still can apply all the known methods for avoiding the 
state explosion problem while analyzing Sa- Moreover, 
it generates an abstract system which has the same struc- 
ture as the concrete one. This gives the ability to apply 
further abstractions and techniques to reduce the state 
explosion problem and facilitates the debugging of the 
concrete system. The computed abstract system is op- 
tionally represented in the specification language of PVS 
or in that of SMV. 

The basic idea behind our method of computing ab- 
stractions is simple. In order to construct an abstrac- 
tion of 5, we construct for each concrete transition TC 

an abstract transition ra. To construct ra we proceed by 
elimination starting from the universal relation, which 
relates every abstract state to every abstract state, and 
eliminate pairs of abstract states in a conservative way, 
that is, it is guaranteed that after elimination of a pair the 
obtained transition is still an abstraction of rc. To check 
whether a pair (a, a') of abstract states can be eliminated 
we have to check that the concrete transition rc does not 
lead from any state c with a(c) = a to any state c' with 
a(c') = a'. This amounts to proving a Hoare triple. The 
elimination method is in general too complex. There- 
fore, we combine it with three techniques that allow 
many fewer Hoare triples to be checked. These tech- 
niques are based on partitioning the set of abstract vari- 
ables, using substitutions, and a new preservation result 
which allows to use the invariant to be proved during the 
construction process of the abstract system. 

We implemented our method using the theorem 
prover PVS [27] to check the Hoare triples generated by 
the elimination method. The first-order formulas corre- 
sponding to these Hoare triples are constructed automat- 
ically and a strategy that is given by the user is applied. 
In [1] we developed also a general analysis methodol- 
ogy for heterogeneous infinite-state models, extended 
automata operating on variables which may range over 
several different domains, based on combining abstrac- 
tion and symbolic reachability analysis. 
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3.4.2   Generation of Invariants that it is an invariant of S. 

There are two different way to generate invariants in 
InVeSt. First, we use calculation of pre-fixed points 
by applying the body of the backward procedure a fi- 
nite number of times and use techniques for the auto- 
matic generation of invariants (cf. [3]) to support the 
search for auxiliary invariants. The tool provides strate- 
gies which allow derivation of local invariants, that is, 
predicates attached to control locations and which are 
satisfied whenever the computation reaches the corre- 
sponding control point. InVeSt includes strategies for 
deriving local invariants for sequential systems as well 
as a composition principle that allows combination of 
invariants generated for sequential systems to obtain in- 
variants of a composed system. Consider a composed 
system Si \\ S2 and control locations li and l2 of Si 
and 52, respectively. Suppose that we generated the lo- 
cal invariants Pi and P2 at h and l2, respectively. Let us 
call Pi interference independent, if Pj does not contain a 
free variable that is written by S, with j ^ i. Then, de- 
pending on whether P, is interference independent we 
compose the local invariants Pi and P2 to obtain a lo- 
cal invariant at (li,l2) as follows: if P is interference 
independent, then we can affirm that Pi is an invariant 
at (li, l2) and if both Px and P2 are interference depen- 
dent, then Pi VP2 is an invariant at (li ,l2). This compo- 
sition principle proved to be useful in the examples we 
considered. However, examples showed that predicates 
obtained by this composition principle can become very 
large. Therefore, we also consider the alternative option 
where local invariants are not composed until they are 
needed in a verification condition. Thus, we assign to 
each component of the system two lists of local invari- 
ants. The first corresponds to interference independent 
local invariants and the second to interference dependent 
ones. Then, when a verification condition is considered, 
we use heuristics to determine which local invariants are 
useful when discharging the verification condition. A 
useful heuristic concerns the case when the verification 
condition is of the form (pc(l) = li Apc(2) = l2) => cp, 
where pc{\) = h Apc(2) = l2 asserts that computation 
is at the local control locations li and Z2. In this case, we 
combine the local invariants associated to li and l2 and 
add the result to the left hand side of the implication. 

Second, we use abstraction generating invariants at 
the concrete level: Let <SQ] the result of the abstrac- 
tion of a concrete system S, the set of reachable states 
denoted by Reach(Sai) is an invariant of Sai (the 
strongest one including the initial configurations in fact). 
We developed a method that extract the formula which 
characterizes the reachable states from the BDD. Hence, 
a^1 (Reach(Sai)) is an invariant of the concrete model 
<S. This invariant can be used to strengthen ip and show 

3.4.3   Analysis of Counterexamples 

The generation of the abstract system is completely au- 
tomatic and compositional as we consider transition by 
transition. Thus, for each concrete transition we obtain 
an abstract transition (which might be nondeterministic). 
This is a very important property of our method, since it 
enables the debugging of the concrete system or alter- 
natively enhancing the abstraction function. Indeed, the 
constructed abstract system may not satisfy the desired 
property, for three possible reasons: 

1. The concrete system does not satisfy the invariant, 

2. The abstraction function is not suitable for proving 
the invariant, or 

3. The proof strategies provided are too weak. 

Now, a model checker such as SMV provides a trace as 
a counterexample, if the abstract system does not satisfy 
the abstract invariant. Since we have a clear correspon- 
dence between abstract and concrete transitions, we can 
examine the trace and find out which of the three rea- 
sons listed above is the case. In particular if the concrete 
system does not satisfy the invariant then we can trans- 
form the trace given by SMV to a concrete trace, thus 
generating a concrete counterexample. 

3.5   Predicate/Boolean Abstraction 

In addition to the InVeSt abstraction mechanisms, we 
implemented boolean abstraction of SAL specifications. 
We use the boolean abstraction scheme defined in [19] 
that uses predicates over concrete variables as abstract 
variables to abstract infinite or large state systems into 
finite state systems analyzable by model checking. The 
advantage of using boolean abstractions can be summa- 
rized as follows: 

• Any abstraction to a finite state system can be ex- 
pressed as a boolean abstraction. 

• The abstract transition relation can be repre- 
sented symbolically using Binary Decision Dia- 
gram (BDDs). Thus, efficient symbolic model 
checking [25] can be effectively applied. 

• We have defined in [30] an efficient algorithm for 
the construction of boolean abstractions. We also 
designed an efficient refinement technique that al- 
lows us to refine automatically an already con- 
structed abstraction until the property of interest is 
proved or a counter-example is generated. 
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• Abstraction followed by model checking and suc- 
cessive refinement is an efficient and more pow- 
erful alternative to invariant generation techniques 
such as the ones presented in [6,7]. 

3.5.1    Automatic Construction of Boolean Abstrac- 
tions 

The automatic abstraction module takes as input a SAL 
basemodule and a set of predicates defining the boolean 
abstraction. Using the algorithm in [30] we automati- 
cally construct the corresponding abstract transition sys- 
tem. This process relies heavily on the PVS decision 
procedures. 

INPUT  x: integer 
OUTPUT y, z: integer 

INPUT Bl: boolean 
OUTPUT B2,B3: boolean 

INITIALIZATION 
TRUE -->  INIT(X) = 0, 

INIT(y) = 0 
INIT(z) = y 

TRANSITION 
NOT(x > 0)  —> y = y + 1 
[]   z > 0  —>  z' = y - 1, y 

Figure 3. Concrete Module. 

Figure 3 and 4 display a simple SAL module and its 
abstraction where the boolean variables Bl, B2 and B3 
correspond to the predicates x > 0,y > 0, and z > 0. 
Notice that the assignment to B3 is nondeterministically 
chosen from the set {TRUE,   FALSE}. 

3.5.2   Explicit Model Checking 

Finite-state SAL modules can be translated to SMV for 
model checking as explained above. However, model 
checkers usually do not allow to access their internal 
data structures where intermediate computation steps of 
the model-checking process can be exploited. For this 
reason, we implemented an efficient explicit-state model 
checker for SAL systems obtained by boolean abstrac- 
tion. The abstract SAL description is translated into 
an executable Lisp code that performs the explicit state 
model checking procedure allowing us to explore about 
twenty thousand states a second. This procedure builds 
an abstract state graph that can be exploited for further 
analysis.   Furthermore, additional abstractions can be 

INITIALIZATION 
TRUE --> INIT(Bl) = FALSE; 

INIT(B2) = FALSE; 
INIT(B3) = FALSE; 

TRANSITION 
NOT(Bl) --> B2'=F 

[] B3 —> B2'=T, B3'= { TRUE FALSE  } 

Figure 4. Abstract Module. 

applied on the fly while the abstract state graph is be- 
ing built. 

3.5.3   Automatic Refinement of Abstractions 

When model checking fails to establish the property of 
interest, we use the results developed in [29,30] to de- 
cide whether the constructed abstraction is too coarse 
and needs to be refined, or that the property is violated 
in the concrete system and that the ge nerated counter- 
example corresponds indeed to an execution of the con- 
crete system violating the property. This is done by ex- 
amining the generated abstract state graph. The refine- 
ment technique computes the precondition to a transition 
where nondeterministic assignments occur. The precon- 
ditions corresponding to the cases where the variables 
get either TRUE or FALSE define two predicates that are 
used as new abstract variables. The following transition 
from the example 

B3   —>  B2'=TRUE,   B3'=   {TRUE,   FALSE} 

can be automatically refined to 

B3   -->   B2'=TRUE,   B3'=B4   , 
B4'=FALSE,   B5'   =   FALSE 

where B4 and B5 correspond to the predicates y=l and 
y>l, respectively. 

4   Conclusions 

SAL is a tool that combines techniques from static 
analysis, model checking, and theorem proving in a truly 
integrated environment. Currently, its core is realized as 
an extension of the PVS system and has a well-defined 
interface for coupling specialized analysis tools.   So 
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far, we have been focusing on developing and connect- 
ing back-end tools for validating SAL specifications by 
means of animation, theorem proving, and model check- 
ing, and also for computing abstractions, slices, and in- 
variants of SAL modules. There are as yet no automated 
translators into the SAL language. Primary candidates 
are translators for source languages such as Java, Ver- 
ilog, Esterei, Statecharts, or SDL. Since SAL is an open 
system with well-defined interfaces, however, we hope 
others will write those if the rest of the system proves 
effective. 

We are currently completing the implementation of 
the SAL prototype which includes a parser, typechecker, 
a sheer, an invariant generator, the connection to InVeSt, 
and translators to SMV and PVS. We expect to release 
the prototype SAL system in mid-2000. 

Although our experience with the combined power of 
several forms of mechanized formal analysis in the SAL 
system is still rather limited, we predict that proofs and 
refutations of concurrent systems that currently require 
significant human effort will soon become routine cal- 
culations. 
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Abstract 

We give a brief overview of the Symbolic Analysis Laboratory (SAL) 
project. SAL is a verification framework that is directed at analyzing 
properties of transition systems by combining tools for program analysis, 
model checking, and theorem proving. SAL is built around a small inter- 
mediate language that serves as a semantic representation for transition 
systems that can be used to drive the various analysis tools. 
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1    Introduction 

The transition system model of a program consists of a state type, an initializa- 
tion predicate on this state type, and a binary next-state relation. The execution 
of a program starts in a state satisfying the initialization predicate so that each 
state and its successor state satisfy the next-state relation. Transition systems 
are a simple low-level model that have none of the semantic complications of 
high-level programming languages. Constructs such as branches, loops, and 
procedure calls can be modelled within a transition system through the use of 
explicit control variables. The transition system model forms the basis of sev- 
eral formalisms for several popular formalisms including UNITY [11], TLA [28], 
SPL [30], and ASMs [21]. It also underlies verification tools such as SMV [32], 
Murphi [18], and STeP [31]. 

If we focus our attention on the verification of properties of transition sys- 
tems, we find that even this simple model poses some serious challenges. The 
verification of transition systems is performed by showing that the system sat- 
isfies an invariance or progress property, or that it refines another transition 
system. It is easy to write out proof rules for the verification of such proper- 
ties but the actual application of these proof rules requires considerable human 
ingenuity. For example, the verification of invariance properties requires that 
the invariant be inductive, i.e., preserved by each transition. A valid invariant 
might need to be strengthened before it can be shown to be inductive. Fair- 
ness constraints and progress measures have to be employed for demonstrating 
progress properties. It takes a fair amount of effort and ingenuity to come up 
with suitable invariant strengthenings and progress measures. 

Methods like model checking [12] that are based on state-space exploration 
have the advantage that they are largely automatic and seldom require the fine- 
grain interaction seen with deductive methods. Since these methods typically 
explore the reachable state space (i.e., the strongest invariant), there is no need 
for invariant strengthening. Progress measures are also irrelevant since the size 
of the whole state space is bounded. However, model checking methods apply 
only to a limited class of systems that possess small, essentially finite state 
spaces. 

Theorem proving or model checking are not by themselves adequate for effec- 
tive verification. It is necessary to combine the expressiveness of the deductive 
methods with the automation given by model checking. This way, small, finite- 
state systems can be directly verified using model checking. For larger, possi- 
bly infinite-state systems, theorem proving can be used to construct property- 
preserving abstractions over a smaller state space. Such abstractions convert 
data-specific characteristics of a computation into control-specific ones. The 
finite-state model constructed by means of abstraction can be analyzed using 
model checking. It is easy to actually compute the properties of a system from a 
finite-state approximation and map these properties back to the original system. 

We give an overview of an ongoing effort aimed at constructing a general 
framework for the integration of theorem proving, model checking, and program 
analysis. We use the term symbolic analysis to refer to the integration of these 
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analysis techniques since they all employ representations based on symbolic logic 
to carry out a symbolic interpretation of program behavior. The framework also 
emphasizes analysis, i.e., the extraction of a large number of useful properties, 
over correctness which is the demonstration of a small number of important 
properties. The framework is called the Symbolic Analysis Laboratory (SAL). 
We motivate the need for symbolic analysis and describe the architecture and 
intermediate language of SAL. 

2    A Motivating Example 

We use a very simple and artificial example to illustrate how symbolic analysis 
can bring about a synergistic combination of theorem proving, model checking, 
and program analysis. The example consists of a transition system with a state 
contain a (control) variable PC ranging over the scalar type {inc, dec}, and two 
integer variables B and C. Initially, control is in state inc and the variables B 
and C are set to zero. There are three transition rules shown below as guarded 
commands: 

1. When PC = inc, then B is incremented by two, C is set to zero, and 
control is transferred to state dec. 

PC = inc-^ B' = B + 2; C = 0; PC1 = dec; 

2. When PC = dec, B is decremented by two, and C is incremented by one, 
and control is transferred to state decl. 

PC = dec A B > 0 —> B' = B - 2; C" = C + 1; PC' = inc; 

3. Same as transition rule 2, but control stays in dec. 

PC = dec A B > 0 —-*• B' = B - 2; C = C + 1; 

There is also an implicit stuttering transition from state dec to itself when none 
of the guards of the other transitions holds, i.e., when B < 0. Since the inc 
state has a transition with a guard that is always true, there is no need for a 
stuttering transition on inc. The transition system is shown diagrammatically 
in Figure 1. 

The transition system Twos satisfies a number of interesting invariants. 

1. B is always an even number. 

2. B and C are always non-negative. 

3. B is always either 0 or 2. 

4. B is always 0 in state inc. 

5. C is always either 0 or 1. 
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B>0->B:=B-2; B>0-> B:= B-2; 
C:=C+1; C:=C+1; 

Figure 1: A Simple Transition System: Twos 

6. In state dec, B = 2 iff C = 0. 

The purpose of symbolic analysis is to find and validate such properties with 
a high degree of automation and minimal human guidance and intervention. 
While efficient automation is essential for analyzing large transition systems, the 
intended outcome of symbolic analysis is human insight. The analysis should 
therefore not rule out human interaction. 

3    Some Symbolic Analysis Techniques 

We enumerate some symbolic analysis techniques and assess their utility on the 
Twos example. For this purpose, we focus on the invariant (1) below. 

B = 0vB = 2 (1) 

Note that the transition system Twos is a potentially infinite state system since 
variables B and C range over the integers. 

Some mathematical preliminaries are in order. A transition system P is 
given by a pair (Ip,Np) consisting of an initialization predicate on states Ip, 
and a binary next-state relation on states Np. We constrain the next-state 
relation N to be total so that Vs : 3s' : N(s,s'). The metavariables s, s' 
range over states. We treat a set of states as equivalent to its characteristic 
predicate. The boolean connectives A, V, D, are lifted from the booleans to the 
level of predicates and correspond to the set-theoretic operations D, U, and C, 
respectively. An assertion is a predicate on states. The metavariables <f>, ip range 
over assertions. A predicate transformer is a map from predicates to predicates. 
A monotone predicate transformer r preserves the subset or implication ordering 
on predicates so that if 0 D ip, then T(4>) D T(V>). The fixed point of a monotone 
predicate transformer r is an assertion 0 such that 0 — T(0). AS a consequence 
of the Tarski-Knaster theorem, every monotone predicate transformer has a 
least fixed point lfp{r) and a greatest fixed point gfp(r) such that 

lfp(r) = r{lfp(T)) D gfp(T) = T(gfp(T)). 
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Let J. represent the empty set of states, T the set of all states, and w the set 
of natural numbers. If the state space is finite, then the least fixed point lfp(r) 
can be calculated as 

1 V r(±) V r2(±) V ... V rn(±) 

for some n, and similarly, gfp(r) can be calculated as 

TAr(T)Ar2(T)A...Arn(T), 

for some n. 
If r is V-continuous (i.e., r(\/i€u fa) = \/i€u T{<j>i) for fa such that whenever 

i < 3, 4>i 3 4>j)>tnen 

lfp(r) = V r'(±) (2) 

Similarly, if r is A-continuous (i.e., r(f\ieu> fa) = f\i€u r(fa) for ^ such that 
whenever i < j, fa D fa), then 

9fp(T) = f\T*(T) (3) 

Equations (2) and (3) provide an iterative way of computing the least and 
greatest fixed points but these on infinite-state spaces, the computations might 
not converge in a bounded number of steps. 

Typical examples of monotone predicate transformers include 

1. Strongest postcondition of a transition relation N, sp(N), which is defined 
as 

sp(N){4>) = (3s' : <t>(s') A N(s',s)). 

2. Strongest postcondition of a transition system P, sp(P) is defined as 

sp(P)(fa=IpVsp(Np)(<P). 

3. Weakest precondition of a transition relation N, wp(N) is defined as 

wp{N)(<t>) = (Vs' : N(s, s') D (f>(s)). 

3.1    Invariant Proving 

The invariance rule is the most heavily used proof rule in any program 
logic [24, 33].   Given a transition system P as a pair (Ip,Np), consisting of 
an initialization Ip and a next-state relation Np, the invariance rule usually 
has the form: 

h Ms) D fas) 
h IP(S) D rl>{a) 

hV(so)AJVp(s0,si) Dr/>(8i) 

P \= invariant </> 
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In this rule, the assertion ip is a strengthening of the assertion <f>. Such a 
strengthening is needed since the assertion </> may not be inductive, i.e., satisfy 
the premises I- Ip(s) D <f>(s) and I- <f>(s0) A NP(s0,s\) D <t>(si). 

In the Twos example, the invariant (1) is not inductive. It fails because it 
is not preserved by transition 1 since we cannot establish 

I- (PC = inc A (B = 0 V B = 2)) 
A    (PC = inc A B' = B + 2 A C = 0 A PC' = dec) 
D    (J3' = 0VB' = 2). 

The invariant has to be strengthened with the observation that when PC = inc, 
B is always 0 so that it now reads 

B = 0W(PC^incAB = 2). (4) 

The strengthened invariant (4) is inductive. The need for invariant strength- 
ening in program proofs is the key disadvantage of the deductive methods with 
respect to model checking. Quite a lot of effort is needed to turn a putative 
invariant into an inductive one. Once an invariant has been strengthened in 
this manner, it can contain a large number of conjuncts that generate a case ex- 
plosion in the proof. Much of the focus of symbolic analysis is on supplementing 
deductive verification with the means of automatically obtaining useful invari- 
ants and invariant strengthenings. 

3.2    Enumerative Model Checking 

The early approaches to model checking were based on the feasibility of com- 
puting fixed point properties for finite-state systems. The reachable states of 
a finite-states can be computed by starting from the set of initial states and 
exploring the states reachable in n consecutive transitions. Any property that 
holds on all the reachable states is a valid invariant. There are many variations 
on this basic theme. Many modern enumerative model checkers such as Mur- 
phi [18] and SPIN [25] carry out a depth-first search exploration of the transition 
graph while maintaing a hash-table to record states that have already been vis- 
ited. In SPIN, the LTL model checking problem is transformed into one of 
emptiness for w-automata, i.e., automata that recognize infinite strings [38, 20]. 

In enumerative model checking, properties written in a branching-time tem- 
poral logic CTL can be verified in time proportional to N x F where TV is the 
size of the transition graph and F the size of the temporal formula. Model 
checking linear-time temporal logic formulas is more expensive and takes time 
proportional to TV x 2F where TV is the size of the model and F is of the formula. 

The Twos example succumbs rather fortuitously to enumerative model 
checking. Even though the potential state space of Twos is unbounded, only a 
bounded part of the state space is reachable since B is either 0 or 2, and C is ei- 
ther 0 or 1. The success of enumerative model checking is somewhat anomalous 
since this method is unlikely to terminate on typical infinite-state systems. Even 
on finite-state systems, an enumerative check is unlikely to succeed because the 
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size of the searchable state space can be exponential in the size of the program 
state. Still, enumerative model checking is an effective debugging technique that 
can often detect and display simple counterexamples when a property fails. 

3.3 Symbolic Model Checking 

The use of symbolic representation for the state sets was proposed in order to 
combat the state explosion problem in enumerative model checking [10, 32]. A 
symbolic representation for boolean functions based on binary decision diagrams 
(BDDs) [9] has proved particularly successful. A finite state can be represented 
as a bit-vector. Then sets of bit-vectors are just boolean functions and can 
be represented as BDDs. In particular, the initial set, a given invariant claim, 
the transition relation, and the reachable state set, can all be represented as 
BDDs. The BDD operations can be used to compute images of state sets with 
respect to the transition relation. This allows predicate transformers such as 
strongest postcondition and weakest precondition to be applied to the BDD 
representation of a state set. The reachable state set can be computed by means 
of a fixed point iteration of the strongest postcondition computation starting 
from the initial state set. Every intermediate iteration of the reachable state 
set is also represented as a BDD. There are several advantages to the use of 
BDDs. Sometimes even sets of large cardinality might have compact symbolic 
representations. BDDs are a canonical representation for boolean functions so 
that equivalence tests are cheap. BDDs are especially good at handling the 
boolean quantification that is needed in the image computations. Automata- 
theoretic methods can also be represented in symbolic form. Some symbolic 
model checkers include SMV [32] 

Such symbolic representations do require the state to be explicitly finite. 
This means that the Twos example cannot be coded directly in a form that can 
be directly understood by a symbolic model checker. Some work has to be done 
in order to reduce the problem to finite-state form so that it can be handled by 
a symbolic model checker. 

3.4 Invariant Generation 

Automatic invariant generation techniques have been studied since the 1970s [16, 
19, 27, 37], and more recently in the work of Bj0rner, Browne, and Manna [8], 
and Bensalem, Lakhnech, and Sai'di [6, 34, 4]. 

As in model checking, the basic operation in invariant generation is that 
of taking the strongest postcondition or weakest precondition of a state set X 
with respect to the transition relation N. Some of the techniques for computing 
invariants are described briefly below. 

Least Fixed Point of the Strongest Postcondition. The invariant 
computed here corresponds to the reachability state set. It is computed by 
starting with an initial symbolic representation of the initial state set given 
by the program.   This set is successively enlarged by taking its image under 
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the strongest postcondition operation until a fixed point is reached, i.e., no 
new elements are added to the set. We term this method LFP-SP. It yields 
a symbolic representation of the set of reachable states which is the strongest 
invariant. However, LFP-SP computation often does not terminate since the 
computation might not converge to a fixed point in a finite number of steps. 
Take, for example, a program that successively increments by one, a variable x 
that is initially zero. This program has a least fixed point, i.e., x is in the set 
of natural numbers, but the iterative computation does not converge. 

For the Twos example, the LFP-SP computation does terminate with the 
desired invariant as seen in the calculation below. 

Inv0    = (PC = inc A B = 0 A C = 0) 

Inv1    = Inv0 V (PC = dec A B = 2 A C = 0) 

Inv2    = Inv1 V(B = 0AC=1) 

Inv3    = (B = 0 A C = 1) V {PC = dec A B = 2 A C = 0) 

= Inv2 

The resulting invariant easily implies the strengthened inductive invari- 
ant (4). The LFP-SP computation terminates precisely because the reachable 
state set is bounded. In more typical examples, approximation techniques based 
on widening will be needed to accelerate the convergence of the least fixed point 
computation. 

Greatest Fixed Point of the Strongest Postcondition. The greatest 
fixed point iteration starts with the entire state space and strengthens it in each 
iteration by excluding states that are definitely unreachable. This approach, 
which we call GFP-SP, yields a weaker invariant than the least fixed point 
computation. The GFP-SP computation also need not terminate. Even when 
it does terminate, the resulting invariant might not be strong enough. In the 
case of the program with single integer variable x that is initially zero and 
incremented by one in each transition, the GFP-SP computation returns the 
trivial invariant true. However the GFP-SP method has the advantage that 
it can be made to converge more easily than the LFP-SP method, and any 
intermediate step in the computation already yields a valid invariant. 

The greatest fixed point invariant computation for Twos (ignoring the vari- 
able C) can be carried out as follows. Here Invl(pc) represents the i iteration 
of the invariant for control state pc. 

Inv°{inc)    =    (B=0vfl>-1) = (B>-1) 

Inv°(sub)    =    true 

Inv\inc)    =    (B > -1) 

Inv1 (sub)    =    (ß>lVß>-l) = (ß>-l) 

222 



Inv2(inc)    =    (B > -1) 

Inv2(sub)    =    (B > -1) 

The invariant B > — 1 is not all that useful since this information contributes 
nothing to the invariants that we wish to establish. Still, the GFP-SP method 
is not without value. It is especially useful for propagating known invariants. 
For example, if we start the iteration with invariant (1), then we can use the 
GFP-SP method to deduce that the strengthened invariant (4). 

Greatest Fixed Point of the Weakest Precondition. Both LFP-SP and 
GFP-SP compute inductive invariants that are valid, whereas the method GFP- 
WP takes a putative invariant and strengthens it in order to make it inductive. 
The computation starts with a putative invariant S, and successively applies the 
weakest precondition operation wp(P)(S) to it. If this computation terminates, 
then either the resulting assertion is a strengthening of the original invariant 
that is also inductive, or the given invariant is shown to be invalid. 

With the Twos example, the weakest precondition with respect to the pu- 
tative invariant (1) yields the strengthened invariant (4). 

3.5 Abstract Interpretation. 

Many of the invariant generation techniques are already examples of abstract 
interpretation which is a general framework for lifting program execution from 
the concrete domain of values to a more abstract domain of properties. Ex- 
amples of abstract interpretation include sign analysis (positive, negative, or 
zero) of variables, interval analysis (computing bounds on the range of values 
a variable can take), live variable analysis (the value of a variable at a control 
point might be used in the computation to follow), among many others. 

We can apply an interval analysis to the Twos example. Initially, the interval 
for B is [0,0] for PC - inc. This yields an interval of [2,2] for B when PC = dec. 
In the next step, we have an approximation of [0,2] for B when PC = dec, and 
[0,0] when PC = inc. The next round, we get an approximation of [—1,0] for 
the range of B when PC = inc, and [0,2] for the range of B when PC = dec. 
At this point the computation converges, but the results of the analysis are still 
too approximate and do not discharge the invariant (1). 

3.6 Property Preserving Abstractions 

Since model checking is unable to cope with systems with infinite or large 
state spaces, abstraction has been studied as a technique for reducing the state 
space [14, 29, 35]. In data abstraction, a variable over an infinite or large type 
is reduced to one over a smaller type. The smaller type is essentially a quotient 
with respect to some equivalence relation of the larger type. For example, a 
variable ranging over the integers can be reduced to boolean form by consider- 
ing only the parity (odd or even) of the numbers. Predicate abstraction is an 
extension of data abstraction that introduces boolean variables for predicates 

223 



Figure 2: Abstract Twos 

over a set of variables. For example, if x and y are two integer variables in a 
program, it is possible to abstract the program with respect to the predicates 
such as x < y, x = y. These variables are then replaced by boolean variables p 
and q such that p corresponds to the x < y and q corresponds to x = y. Even 
though predicate abstraction introduces only boolean variables, it is possible to 
simulate a data abstraction of a variable to one of finite type by using a binary 
encoding of the finite type. 

In general, an abstraction is given by means of a concretization map 7 such 
that 7(a) for an abstract variable a returns its concrete counterpart. In the case 
of the abstraction where x < y is replaced by p and x = y by q, 7(a) = (x < y) 
and 7(6) = (x = y). The more difficult direction is computing an abstraction 
a(C) given a concrete predicate C. The construction of a requires the use of 
theorem proving as described below. 

There are also two ways of using abstractions in symbolic analysis. In one 
approach, the abstract reachability set [35, 17] is constructed by the following 
iteration 

ARG{P)(s) = lfp(a{IP) V Q o sp{P) o 7). 

We can then check if p is an invariant of P by verifying -y(ARG(P)) D p. 
A second way of using abstraction is by actually constructing the abstracted 

version of the program and the property of interest [5, 15, 36]. This can be more 
efficient since the program and property are usually smaller than the abstract 
reachability graph. 

In the Twos example, the predicate abstraction is suggested by the predicates 
B = 0 and B = 2 in the putative invariant. The abstract transition system by 
replacing the predicate B = 0 by c and B = 2 by d is shown in Figure 2. 

The abstract transition system computed using predicate abstraction can 
easily be model checked to confirm that invariant (1) holds. The stronger in- 
variant (4) can also be extracted from the reachable state space of the abstract 
transition system. 
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Predicate abstraction affords an effective integration of theorem proving and 
model checking where the former is used to construct a finite-state property- 
preserving abstraction that can be analyzed using the latter. The abstraction 
loses information so that a property can fail to hold in the abstract system 
even when its concrete counterpart is valid for the concrete system. In this 
case, the abstraction has to be refined by introducing further predicates for 
abstraction [5, 13]. 

4    SAL: A Symbolic Analysis Laboratory 

We have already seen a catalog of symbolic analysis techniques. The idea of 
a symbolic analysis laboratory is to allow these techniques to coexist so that 
the analysis of a transition system can be carried out by successive applications 
of a combination of these techniques [3]. With such a combination of analysis 
techniques, one could envisage a verification methodology where 

1. A cone-of-influence reduction is used to discard irrelevant variables. 

2. Invariant generation is used to obtain small but useful invariants. 

3. These invariants are used to obtain a reasonably accurate abstraction to 
a finite-state transition system. 

4. Model checking is used to compute useful invariants of the finite-state 
abstraction. 

5. The invariants computed by model checking over the abstraction are used 
propagated using invariant generation techniques. 

6. This cycle can be repeated until no further useful information is forthcom- 
ing. 

SAL provides a blackboard architecture for symbolic analysis where a col- 
lection of tools interact through a common intermediate language for transition 
systems. The individual analyzers (theorem provers, model checkers, static an- 
alyzers) are driven from this intermediate language and the analysis results 
are fed back to this intermediate level. In order to analyze systems that are 
written in a conventional source language, the transition system model of the 
source program has to be extracted and cast in the SAL intermediate language.1 

The model extracted in the SAL intermediate language essentially captures the 
transition system semantics of the original source program. 

The SAL architecture is shown in Figure 3 The SAL architecture is con- 
strained so that the different analysis tools do not communicate directly with 
each other, but do so through the SAL intermediate language. The interaction 
between the tools must therefore be at a coarse level of granularity, namely in 

1We are currently working on a translator from a subset of Verilog to SAL, and another 
from a subset of Java to SAL. 
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Figure 3: The Architecture of SAL 

terms of transition systems, their properties, and property-preserving transfor- 
mations between transition systems. Allowing the tools to communicate directly 
to each other would require a quadratic number of different maps (for a given 
number of tools) between these analysis tools. 

4.1    The SAL Intermediate Language 

The intermediate language for SAL2 serves as 

1. The target of translations from source languages. 

2. The source for translations to the input formats of different analysis tools. 

3. A medium for communication between different analysis tools. 

The SAL intermediate language is based on languages and models such as 
SMV [32], Murphi [18], Reactive Modules [1], ASM [21], UNITY [11], and 
TLA [28], among others. The unit of specification in SAL is a context which 
contains declarations of types, constants, transition system modules, and as- 
sertions. A SAL module is a transition system unit. A basic SAL module is 
a state transition system where the state consists of input, output, local, and 
global variables, where 

• An input variable to a module can be read but not written by the module. 

• An output variable to a module can be read and written by the module, 
and only read by an external module. 

2The SAL intermediate language was designed in collaboration with Prof. David Dill of 
Stanford, Prof. Tom Henzinger at UC Berkeley, and several colleagues at SRI, Stanford, and 
UC Berkeley. 
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• A local variable to a module can be read and written by the module, but 
is not read or written by the module. 

• A global variable to a module can be read and written by the module as 
well as by an external module 

A basic module also specifies the initialization and transition steps. These can 
be given by a combination of definitions or guarded commands. A definition is of 
the form x — expression or x' = expression, where x' refers to the new value of 
variable x in a transition. A definition can also be given as a selection of the form 
x' € set which means that the new value of x is nondeterministically selected 
from the value of of set. A guarded command is of the form g —► S, where g 
is a boolean guard and 5 is a list of definitions of the form x' = expression or 
x' € set. 

As in synchronous language such as Esterel [7] and Lustre [22], SAL allows 
synchronous, i.e., Mealy machine, interaction so that the new value of a local 
or output variable can be determined by the new value of a variable. Such 
interaction introduces the possibility of a causal cycle where each variable is 
defined to react synchronously to the other. Such causal cycles are ruled out by 
using static analysis to generate proof obligations demonstrating that such cycles 
are not reachable. The UNITY and ASM models do not admit such synchronous 
interaction since the new values of a variable in a transition are completely 
determined by the old values of the variables. SMV allows such interaction 
but the semantics is not clearly specified, particularly when causal cycles are 
possible. The Reactive Modules [1] language uses a static partial ordering on 
the variables that breaks causal loops by allowing synchronous interaction in 
one direction of the ordering but not the other. In TLA [28], two modules 
are composed by conjoining their transition relations. TLA allows synchronous 
interaction where causal loops can be resolved in any manner that is compatible 
with the conjunction of the transition relations is satisfied. 

SAL modules can be composed 

• Synchronously, so that M1HM2 is a module that takes Mi and M2 tran- 
sitions in lockstep, or 

• Asynchronously, so that Mi [] M2 is a module that takes an interleaving 
of Mi and M2 transitions. 

There are rules that govern the usage of variables within a composition. 
Two modules engaged in a composition must not share output variables and 
nor should the output variables of one module overlap with the global variables 
of another. The modules can can share input and global variables, and the input 
variables of one module can be the output or global variables of the other. Two 
modules that share a global variable cannot be composed synchronously, since 
this might create a conflict when both modules attempt to write the variable 
synchronously. The rules governing composition allow systems to be analyzed 
modularly so that system properties can be composed from module proper- 
ties [1]. 
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The N-fold synchronous and asynchronous compositions of modules are also 
expressible in SAL. Module operations include those for hiding and renaming 
of variables. Any module defined by means of composition and other module 
operations can always be written as a single basic module, but with a significant 
loss of succinctness. 

SAL does not contain features other than the rudimentary ones described 
above. There are no constructs for synchronization, synchronous message pass- 
ing, or dynamic process creation. These have to explicitly implemented by 
means of the transition system mechanisms available in SAL. While these fea- 
tures are useful, their introduction into the language would place a greater 
burden on the analysis tools. 

The SAL language is thus similar in spirit to Abstract State Machines [21] 
in that both serve as basic conceptual models for transition systems. However, 
machines described in SAL are not abstract compared with those in ASM no- 
tation since SAL is intended as a front-end to various popular model checking 
and program analysis tools. 

5    Conclusions 

Powerful automated verification technologies have become available in the form 
of model checkers for finite, timed, and hybrid systems, decision procedures, 
theorem provers, and static analyzers. Individually, these technologies are quite 
limited in the range of systems or properties they can handle with a high degree 
of automation. These technologies are complementary in the sense that one 
is powerful where the other is weak. Static analysis can derive properties by 
means of a syntactic analysis. Model checking is best suited for control-intensive 
systems. Theorem proving is most appropriate for verifying mathematical prop- 
erties of the data domain. Symbolic analysis is aimed at achieving a synergistic 
integration of these analysis techniques. The unifying ideas are 

1. The use of transition systems as a unifying model, and 

2. Fixed point computations over symbolic representations as the unifying 
analysis scheme. 

3. Abstraction as the key technique for reducing infinite-state systems to 
finite-state form. 

Implementation work on the SAL framework is currently ongoing. The pre- 
liminary version of SAL consists of a parser, typechecker, causality checker, an 
invariant generator, translators from SAL to SMV and PVS, and some other 
tools. SAL is intended as an experimental framework for studying the ways in 
which different symbolic analysis techniques can be combined to achieve greater 
automation in the verification of transition systems. 
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Abstract 

Automated verification of concurrent systems is hindered by the fact 
that the state spaces are either infinite or too large for model checking, and 
the case analysis usually defeats theorem proving. Combinations of the 
two techniques have been tried with varying degrees of success. We argue 
for a specific combination where theorem proving is used to reduce verifi- 
cation problems to finite-state form, and model checking is used to explore 
properties of these reductions. This decomposition of the verification task 
forms the basis of the Symbolic Analysis Laboratory (SAL), a framework 
for combining different analysis tools for transition systems via a common 
intermediate language. We demonstrate how symbolic analysis can be an 
effective methodology for combining deduction and exploration.1 

'The SAL project is a collaborative effort between Stanford University, SRI International, 
and the University of California, Berkeley. 
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1    Introduction 

The verification of large-scale concurrent systems poses a difficult challenge in 
spite of the substantial recent progress in computer-aided verification. Tech- 
nologies based on model checking [11] can typically handle systems with states 
that are no larger than about a hundred bits. Techniques such as symme- 
try and partial-order reductions, partitioned transition relations, infinite-state 
model checking, represent important advances toward ameliorating state ex- 
plosion, but they have not dramatically increased the overall effectiveness of 
automated verification. Model checking does have one advantage: it needs only 
a modest amount of human guidance in terms of the problem description, pos- 
sible variable orderings, and manually guided abstractions. Verification based 
on theorem proving, on the other hand, requires careful human control by way 
of suitable intermediate assertions, invariants, lemmas, and proofs. Can au- 
tomated verification ever combine the automation of model checking with the 
generality of theorem proving? 

It has often been argued that model checking and theorem proving could 
be combined so that the former is applied to control-intensive properties while 
the latter is invoked on data-intensive properties. Achieving an integration of 
theorem proving and model checking is not hard. Both techniques verify claims 
that look similar and it is possible to view model checking as a decision procedure 
for a well-defined fragment of a specification logic [41]. However, most systems 
contain a rich interaction between control and data so that there is no simple 
decomposition between data-intensive and control-intensive properties. 

For the purpose of this paper, we view model checking as a technique for 
the verification of temporal properties of a program based on the exhaustive ex- 
ploration of a transition graph represented in explicit or symbolic form. Model 
checking methods typically use graph algorithms, automata-theoretic construc- 
tions, or finite fixed point computations. Theorem proving is usually based on 
formalisms such as first-order or higher-order logic, and employs proof tech- 
niques such as induction, rewriting, simplification, and the use of decision pro- 
cedures. Some infinite-state verifiers and semi-decision procedures can be clas- 
sified as both deductive and model checking techniques, but this ambiguity can 
be overlooked for the present discussion. 

We make several points regarding the use of theorem proving and model 
checking in the automated verification of concurrent systems: 

1. Correctness is over-rated. The objective of verification is analysis, i.e., 
the accretion of useful observations regarding a system. Verifying cor- 
rectness is an important form of analysis, but correctness is usually a big 
property of a system that is demonstrated by building on lots of small 
observations. If these small observations could be cheaply obtained, then 
the demonstration of larger properties would also be greatly simplified. 
The main drawback of correctness is its exactitude. The verification of 
a correctness claim can only either fail or succeed. There is no room for 
approximate answers or partial information. 
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2. Theorem proving is under-rated. Deduction remains the most appropriate 
technology for obtaining insightful, general, and reusable automation in 
the analysis of systems, particularly those that are too complex to be 
analyzed by a blunt instrument like model checking. Theorem proving 
can exploit the mathematical properties of the control and data structures 
underlying an algorithm in their fullest generality and abstractness 

3. Theorem proving and model checking are very similar techniques. In the 
verification of transition systems, both techniques employ some represen- 
tation for program assertions, they compute the image of the transition 
relation with respect to these assertions, and usually try to compute the 
least, greatest, or some intermediate fixed point assertion for the transition 
relation. The difference is that in theorem proving, 

• The image constructions are usually more complicated since they in- 
volve quantification in domains where quantifier elimination is either 
costly or impossible. 

• The least and greatest fixed points can seldom be effectively com- 
puted and human guidance is needed to suggest an intermediate fixed 
point. 

• Showing that one assertion is the consequence of another is typically 
undecidable and requires the use of lemmas and human insight. 

4. Theorem proving and model checking can be usefully integrated. Such an 
integration requires a methodology that decomposes the verification task 
so that 

• Deduction is used to construct valid finite-state abstractions of a sys- 
tem. The construction of a property-preserving abstraction generates 
simple proof obligations that can be discharged, often fully automat- 
ically, using a theorem prover. These are typically assertions of the 
form: if property p holds in a state s from which there is a transition 
R to a state s', then property q holds in s'. Similar proof obligations 
arise during verification (in the form of verification conditions) but 
these are usually not valid and the assertions have to be strengthened 
in order to obtain provable verification conditions. While theorem 
proving is useful for examining the local consequence of properties, 
it is not very effective at deducing global consequences over a large 
program or around an iterative loop. Such computations can be ex- 
tremely inefficient and the computation of fixed points around a loop 
rarely terminates. 

• Exploration by means of model checking is used to calculate global 
properties of such abstractions. This means that model checking is 
not used merely to validate or refute putative properties but is ac- 
tually used to calculate interesting invariants that can be extracted 
from the reachability predicate or its approximations.   Finite-state 
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exploration of large structures can also be inefficient but it is much 
easier to make finite-state computations converge efficiently. 

• Deduction is used to propagate the consequences of such properties. 
For example, model checking on a finite-state abstraction might re- 
veal an assertion x > 5 to hold at a program point simply because 
it was true initially and none of the intermediate transitions affected 
the value of x. If the program point has a successor state that can 
only be reached by a transition that increments i by 2, then we 
know that this successor state must satisfy the assertion x > 7. Such 
a consequence is easily deduced by theorem proving. 

In summary, we advocate a verification methodology where deduction is 
employed in the local reasoning steps such as validating abstractions and prop- 
agating known properties, whereas model checking is used for deriving global 
consequences. In contrast, early attempts to integrate theorem proving and 
model checking were directed at using model checking as a decision procedure 
within a theorem prover. These attempts were not all that successful because 
it is not common to find finite-state subgoals within an infinite-state deductive 
verification. 

2    Background 

We review some of the background and previous work in the combined use of 
theorem proving and model checking techniques. 

2.1    Model Checking as a Decision Procedure 

Joyce and Seger combined the theorem prover HOL [22] with the symbolic 
trajectory evaluation tool Voss [28] by treating the circuits verified by Voss as 
uninterpreted constants in HOL. This integration is somewhat ad hoc since the 
definitions of the circuits verified by Voss are not available to HOL. Dingel and 
Filkorn [20] use a model checker to establish assume-guarantee properties of 
components and a theorem prover to discharge the proof obligations that arise 
when two components are composed. Rajan, Shankar, and Srivas [41] integrate 
a mu-calculus [40, 9] model checker [27] as a decision procedure for a fragment 
of the PVS higher-order logic corresponding to a finite mu-calculus. While this 
integration smoothly incorporates CTL and LTL model checking into PVS, the 
work needed to reduce a problem into model-checkable form can be substantial. 
This integration has recently been extended with an algorithm for constructing 
finite-state abstractions of mu-calculus expressions [45].2 

2
These features are part of PVS 2.3 which is accessible at the URL pvs.csl.sri.com. 
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2.2    Extending Model Checking with Lightweight Theo- 
rem Proving 

Several alternative approaches to the integration of model checking and theorem 
proving have emerged in recent years. Some of these have taken the approach 
of supplementing a model checker with a proof assistant that provides rules for 
decomposing a verification goal into model-checkable subgoals. McMillan [36] 
in his work with Cadence SMV has extended the SMV model checker with the 
following decomposition rules that are used to reduce infinite-state systems to 
model-checkable finite-state ones. 

1. Temporal splitting: Transforms a goal of the form 0(Vi : A) into Dv = i D 
A for each i. 

2. Symmetry reduction: Typically, the system being verified and the property 
are symmetric in the choice of i so that proving Dv = i D A for a single 
specific value for i is equivalent to proving it for each i. Examples of such 
symmetric choices include the memory address or the processor in the 
verification of multiprocessor cache consistency. 

3. Data abstraction: Large or infinite datatypes can be reduced to small finite 
datatypes by suitably reinterpreting the operations on these datatypes. 
For example, with respect to the choice of i in temporal splitting, the 
remaining values of the datatype can be abstracted by a single value non- 
i. 

4. Compositional verification: The verification of P||<2 (= A A B is decom- 
posed as P \= -.(£ U ->A) {B fails before A does) and Q (= -n(A U -.£). 
This allows different components to be separately verified up to time t + 1 
by assuming the other components to be correct up to time t. 

These and other proof techniques have been used to verify an out-of-order 
processor, a large cache coherence algorithm, and safety and liveness for a ver- 
sion of Lamport's N-process bakery algorithm for mutual exclusion [35]. McMil- 
lan's approach is substantially deductive. The rules of inference, such as symme- 
try reduction and compositional verification, are specialized but quite powerful. 

Seger [46] has extended the Voss tool for symbolic trajectory evaluation with 
lightweight theorem proving. Symbolic trajectory evaluation (STE) which is a 
limited form of linear temporal logic model checking. A few simple proof rules 
are used to decompose proof obligations on the basis of the logical connectives 
such as conjunction, disjunction, and implication. These rules can be used to 
decompose a large model checking problem into smaller ones. 

2.3    Abstraction and Model Checking 

Abstraction has been studied in the context of model checking as a technique 
for reducing infinite-state or large finite-state models to finite-state models of 
manageable size [3, 30, 12, 32, 17, 5]. 
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Some of the work on abstraction is based on data abstraction where a variable 
X over a concrete datatype T is mapped to a variable x over an abstract type t. 
For example, a variable over the natural numbers could be replaced by a boolean 
variable representing the parity of its value. Clarke, Grumberg, and Long [12] 
gave a simple criterion for abstractions that preserve VCTL*+ properties. Let 
the concrete transition system be given by (Ic,Nc) where Ic is the initialization 
predicate and Nc is the next-state relation. Then the verification of a concrete 
judgement (Ic,Nc) \= Pc can be reduced by means of the abstraction function 
a to the verification of an abstract judgement (IA,NA) (= PA provided 

1. Ic C I A ° OL 

2. Nc QNAo {a, a) 

3. PAoaZlPc 

Data abstraction has the advantage that the abstract description can be 
statically constructed from the concrete program. The drawback is that many 
useful abstractions are on relations between variables rather than on individual 
variables. 

Graf and Sai'di [44] introduced predicate abstraction as a way of replacing 
predicates or relations over a set of variables by the corresponding boolean 
variables. For example, given two variables x and y over the integers, and the 
predicate x < y over these variables, predicate abstraction would replace the 
variables x and y by a boolean variable b that represents the behavior of the 
predicate. 

The application of predicate abstraction makes significant use of theorem 
proving. Graf and Sai'di used predicate abstraction to construct an abstract 
reachability graph for a concrete program by a process of elimination. If a 
represent an abstract state, a' a putative successor, 7(a) the concrete state 
corresponding to a, and 7(0') the concrete state corresponding to a', then if 

7(a) D iop(P)H7(a'))) 

is provable, the corresponding transition between a and a' can be ruled out.3 

However, if a proof attempt fails, the corresponding successor node can be 
conservatively included in the abstract reachability graph. Using predicate ab- 
stractions with the PVS theorem prover [39], Graf and Sai'di [44] were able to 
verify a variant of the alternating bit protocol called the bounded retransmission 
protocol [25]. Das, Dill, and Park [18] extended this technique using the SVC 
decision procedures [2] and were able to verify such impressive examples as the 
FLASH cache coherence protocol, and a cooperative garbage collector. 

Predicate abstraction can also be used to construct an abstract transition 
relation instead of the abstract reachability graph. It is typically less expen- 
sive to construct the abstract transition relation since fewer proof obligations 

3A11 programs are assumed to be total as transition system, i.e., the domain of the next- 
state relation is the set of all states. Thus, wp(P)(A) is the set of states that have no transitions 
in P to states in -<A. The dual notion sp(P)(A) is the set of states reachable from some state 
in A by a transition of P. 

239 



are generated, but it typically results in a coarser abstraction than one that is 
obtained by directly computing the abstract reachability graph. In the latter 
construction, information about the current set of abstract reachable states can 
be used to rule out unreachable successor states. Bensalem, Lakhnech, and 
Owre [5] describe an abstraction tool called InVeSt that uses the elimination 
method to construct an abstract transition system from a concrete one in a com- 
positional manner. Colon and Uribe [13] give another compositional method for 
constructing abstractions with the framework of the STeP theorem prover [33]. 

All of the above abstraction techniques preserve only VCTL*+ properties, 
namely those in the positive fragment of CTL* with universal path quan- 
tification. For more general calculi, criteria for abstractions that preserve 
CTL* [16] and mu-calculus [32], but these results are quite technical. Saidi 
and Shankar [45] gave a simple method for constructing predicate abstractions 
over the full relational mu-calculus [40]. The two key observations in this work 
are: 

1. The operators of the mu-calculus are monotonic with respect to upper and 
lower approximations. 

2. The over-approximation of a literal (an atomic formula or its negation) 
can be efficiently computed in conjunctive normal form by using a theorem 
prover as an oracle. 

Verification diagrams [34] can also be seen as a form of predicate abstraction. 
These diagrams employ graphs whose nodes are labeled by assertions and the 
edges correspond to program transitions within the diagram. Properties can be 
directly checked with respect to the verification diagram. 

The primary advantage of predicate abstraction is that it is sufficient to 
guess a relevant predicates without having to guess the exact invariant in these 
predicates. For n predicates, the construction of the abstract transition system 
generates of the order of 2n proof obligations. The resulting abstract model can 
also be model checked in time that is exponential in n to yield useful invariants. 
With deduction, there are 22" boolean functions that are candidate invariants 
in these n predicates so that it is harder to guess suitable invariants. 

2.4    Automatic Invariant Generation 

Automatic invariant generation has been studied since the 1970s [15, 21, 29, 48]. 
This study has recently been revived through the work of Bj0rner, Browne, and 
Manna [8], and Bensalem, Lakhnech, and Sai'di [6, 43, 4]. 

The strongest invariant of a transition system P is given by the least fixed 
point starting from the initial states of P of the strongest postcondition operator 
for P, fiX.Ip V sp{P){X). If this computation terminates, it would yield the 
set of reachable states of P which is its strongest invariant. Unfortunately, the 
least fixed point computation rarely terminates for infinite-state systems. A 
program with a single integer variable x that is initially 0 and is repeatedly 
incremented by one, yields a nonterminating least fixed point computation. 
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Widening techniques [14] are needed to accelerate the fixed point computation 
so that it does terminate with a fixed point that is not necessarily the least one. 

A different, more conservative approach to invariant generation is given 
by the computation of the greatest fixed point of the strongest postcondition 
vX.sp(P)(X). For example, a greatest fixed point computation on a program 
with a single variable x and a single guarded transition x > 0 —► x := x + 1 
would terminate and yield the invariant x > 0. The greatest fixed point invari- 
ant computation also may not terminate and could require narrowing as a way 
of accelerating termination. However, one could stop the greatest fixed point 
computation after any bounded number of iterations and the resulting predicate 
would always be a valid invariant. 

Dually, a putative invariant p can be strengthened to an inductive one by 
computing the greatest fixed point with respect to the weakest precondition 
of the program of the given invariant vX.p A wp(P)(X). If this computation 
terminates, the result is an invariant that is inductive. 

Automatic invariant generation is not yet a successful technology. Right now, 
it is best used for propagating invariants that are computed from other sources 
by taking the greatest fixed point with respect to the strongest post-condition 
starting from a known invariant. However, as theorem proving technology be- 
comes more powerful and efficient, invariant generation is likely to be quite a 
fruitful technique. 

3    Symbolic Analysis 

Symbolic analysis is simply the computation of fixed point properties of pro- 
grams through a combination of deductive and explorative techniques. We have 
already seen the key elements of symbolic analysis as 

1. Automated deduction, in computing property preserving abstractions and 
propagating the consequences of known properties. 

2. Model checking, as a means of computing global properties of by means 
of systematic symbolic exploration. For this purpose, model checking is 
used for actually computing fixed points such as the reachable state set, 
in addition to verifying given temporal properties. 

3. Invariant generation, as a technique for computing useful properties and 
DroDacatinsr known Dronerties. propagating known properties. 

3.1    SAL: A Symbolic Analysis Laboratory 

SAL is a framework for integrating different symbolic analysis techniques in- 
cluding theorem proving and model checking. The core of SAL is a description 
language for transition systems. The design of this intermediate language has 
been influenced by SMV [37], UNITY [10], Murphi [38], and Reactive Mod- 
ules [1].  Transition systems described in SAL consist of modules with input, 
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output, global, and local variables. Initializations and transitions can be ei- 
ther specified by definitions of the form variable = expression or by guarded 
commands. The assignment part of a guarded command consists of assign- 
ments of the form x' = expression, meaning the new value of x is the value 
of the expression, as well as selections x' € set, meaning the new value of x 
is nondeterministically selected from the value of the nonempty set set. SAL 
is a synchronous language in the spirit of Esterel [7], Lustre [23], and Reactive 
Modules [1], in the sense that transitions can depend on latched values as well 
as current inputs. SAL modules can be composed by means of 

1. Binary synchronous composition P||<2 whose transitions consist of lock- 
step parallel transitions of P and Q. 

2. Binary asynchronous composition P\\Q whose transitions are the inter- 
leaving of those of P and Q. 

3. N-fold synchronous composition (|| (t) :  P[i]) 

4. N-fold asynchronous composition ([] (i) :  P[i\) 

The implementation of SAL is still ongoing. The version to be released some 
time in 2000 will consist of a parser, typechecker, translators to SMV and PVS, 
a translator to Java (for animation), and a translator from Verilog, among other 
tools. 

Since the SAL implementation is still incomplete, we informally describe 
some examples that motivate the need for a symbolic analysis framework inte- 
grating abstraction, invariant generation, theorem proving, and model checking. 

3.2    Analysis of a Two Process Mutual Exclusion Algo- 
rithm 

As a first example, we use a simplified 2-process version of Lamport's Bakery 
algorithm for mutual exclusion [31]. The algorithm consists of two processes 
P and Q with control variables pep and pcq, respectively, and shared variables 
x and y. The control states of these processes are either sleeping, trying, 
or critical. Initially, pep and pcq are both set to sleeping and the control 
variables satisfy x — y = 0. The transitions for P are 

pep = sleeping —>    x' = y + 1; pep' — trying 
[]    pep = trying A (y = 0 V x < y) —>    pep' = critical 
0 pep = critical —>    x' = 0; pep' = sleeping 

Similarly, the transitions for Q are 

pcq = sleeping —►    y' = x + 1; pcq' = trying 
0    pcq = trying A (x = 0 V y < x) —>   pc' = critical 
0 pcq = critical —>    y' = 0; pcq' = sleeping 
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The invariant we wish to establish for P [] Q is -<(pcp = critical A pcq = 
critical. Note that P [] Q is an infinite-state system and in fact the values of 
the variables x and y can increase without bound. We can therefore attempt to 
verify the invariant by means of a property-preserving predicate abstraction to 
a finite-state system. 

The abstraction predicates suggest themselves from the initializations, 
guards, and assignments. We therefore abstract the predicate x = 0 with the 
boolean variable xo, the predicate y = 0 with the boolean variable yo, and the 
predicate x < y with the boolean variable xy. The resulting abstract system 
can be computed as P' and Q', where in the initial state, xo A yo A ->xy, and 
the transitions for P' are 

pep = sleeping —►    xj, = false; xy' = false; pep' = trying; 
W   pep = trying A (yo V xy) —>   pep' = critical; 
W pep = critical —>    x'0 = true;xy' € {true, false}; pep' = sleeping; 

The transitions for Q' are 

pcq = sleeping —>    y'0 = false; xy' = true; pcq' = trying; 
[)    pcq = trying A (x0 V ->xy) —►   pep' = critical; 
W pep = critical —>   y'0 = true; xy' = false; pep' = sleeping; 

Model checking the abstract system P' [j Q' easily verifies the invariant 

-■(pep = critical A pcq = critical). 

The theorem proving needed to construct the abstraction is at a trivial level 
that can be handled automatically by the decision procedures over quantifier-free 
formulas in a combination of theories [42]. Such decision procedures are present 
in systems like PVS [39], ESC [19], SVC [2], and STeP [33]. The above example 
can be verified fully automatically by means of the abstract-and-model-check 
command in PVS [45]. 

3.3    Analysis of an N-Process Mutual Exclusion Algorithm 

We next examine a fictional example, namely, one that has not been mechani- 
cally verified by us. This example is a simplified form of the N-process Bakery 
algorithm due to Lamport [31]. The description below shows a hand-executed 
symbolic analysis. 

In this version of the Bakery algorithm, there are N processes P(0) to P(N — 
1), with a shared array x of size N over the natural numbers. The logical 
variables i, j, and k range over the subrange 0..(7V — 1). The operation max(x) 
returns the maximal element in the array x. Initially, each P(i) is in the control 
state sleeping, and for each i, x(i) = 0. Let (x,i) < (y,j) be defined as the 
lexicographic ordering x<yV(x = yAi<j). We abbreviate y = 0 V (a;, i) < 
(y,j) as (x,i) < (y,j). 
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The transitions of processes P(i) for 0 < i < TV are interleaved and each 
non-stuttering transition executes one of the following guarded commands. 

pc(i) = sleeping —►      x'(i) = 1 + max(x); 
pc'(i) = trying; 

0 pc(i) = trying —►    pc'{i) = critical; 
A    (Vj:(x(i),i)±(x(j),j)) 

Q pc(i) = critical —>      x'(i) = 0; 
pc'(i) = sleeping; 

We want to prove the invariance property 

(Vi : pc{i) = critical D (Vj : pc(j) - critical D i = j)). (1) 

Invariant generation techniques can be used to generate trivial invariants 
such as 

(Vi : x(i) =0 iff pc(i) = sleeping). (2) 

We omit the details of the invariant generation step. The above invariant will 
prove useful in the next stage of the analysis. 

We next skolemize the mutual exclusion statement so as to obtain a correct- 
ness goal about a specific but arbitrary i which we call a. The main invariant 
now becomes 

pc(a) = critical D (Vj : pc{j) = critical Da = j) (3) 

The goal now is to reduce the TV-process protocol to a two process protocol 
consisting of process a and another process 6 that is an existential abstraction of 
the remaining TV-1 processes. By an existential abstraction, we mean one where 
the TV - 1 processes are represented by a single process b such that a transition 
by any of the N - 1 processes is mapped to a corresponding transition of b. 
In such an abstraction, b is in control state critical if any one of the TV - 1 
processes is critical. Otherwise, b is in control state trying if none of the TV — 1 
processes is in the state critical and at least one of them is in its trying 
state. If none of the TV - 1 process is either trying or critical, then b is in 
its sleeping state. 

By examining the predicates appearing in the initialization, guards, and the 
property, we can directly obtain the following abstraction predicates given by 
the function 7 which maps abstract variables to the corresponding concrete 
predicates: 

l{pca) =   pc{a) 

-y(pcb) =     if (3j : j ^ a Apc(j) = critica 
then critical 
elsif (3j : j / a Apc{j) = trying) 
then trying 
else sleeping 

j(xa0)    =    (x(a) = 0) 

244 



pea — sleeping — 
ma' = xb; 
pea' = trying; 

[]  pea = trying A ma —>     pea' = critical; 
0    pea — critical —>     pea' = sleeping; 

ma' = xb; 
ea' = -*{pcb = critical); 
xa' = true; 

[| peb = sleeping —>     peb' = trying; xb' = false; 
ma' = ->xa 

[]    peb = trying A -*ma —>     peb' = critical; ea' = false; 
W peb = critical —>     peb' = sleeping; 

ea' = true; 
ma' — true; 
xb' = true; 

[j peb = critical —>     peb' = trying; 
ea' = true; 
ma' € {true,ma}; 

[] peb = critical —>    ma' € {true,ma}; 

Figure 1: Abstract transitions for the N-process Bakery Algorithm 

■y{xb0)    =    (Vj :j^aD x(j) = 0) 

7 (ma)    =    (Vj 

j(mb)    =    (3j 

7(ea)    =    (Vj 

(x(a),a) X (x(j),j)) 

W:(x(j),j)±(x(k),k)) 

pc(j) = critical D a = j) 

Since m6 is only relevant when pc(j) = trying for j ^ a, we can use invari- 
ant (2) to prove that 

j^aA pc(j) ^ sleeping D ^(mb) = j(->ma) 

thereby dispensing with mb in the abstraction. 
With the above abstraction mapping, the goal invariant (3) becomes 

pea = critical D ea. 

and the resulting abstracted transition system is one where initially 

pea — sleeping A peb = sleeping A xao A xbo A ma A ea 

Each non-stuttering step in the computation of the abstract program exe- 
cutes one of the guarded commands shown in Figure 1. 

Model checking the abstract protocol fails to verify the invariant 

pea = critical D ea 
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as the model checker could generate the following counterexample sequence of 
transitions: 

transition pea xa ma ea peb xb 
initially sleeping true true true sleeping true 
3 sleeping true false true trying false 
4 sleeping true false false critical false 
1 trying false false false critical false 
8 trying false true false critical false 
2 critical false true false critical false 

An inspection of the counterexample and the abstract model confirms that 
the mutual exclusion invariant would follow if the invariant -<xa A rna D ea were 
to hold. Mapped back in the concrete domain, this corresponds to 

Vi : x(i) ? 0A(Vj : x{j) = 0V(z(i),i) < (x{j),j)) D (Vj : pc{j) = critical D i = j). 

This goal can be generalized as 

(Vi, j : x(i) ^ 0A{x{j) = 0V(a:(t),i» < (x{j),j) D (pc(j) = critical D i = j)). 

and further rearranged as 

(Vi, j : pc(j) = critical D (x(i) ? 0A(x(j) = Ov(z(i),i) < (x{j)J))) D i = j). 

By the invariant (2), we can eliminate the subformula x(j) = 0 and simplify the 
goal to the equivalent formula 

(Vi,j : pc(j) = critical D x(i) = 0 V (x(j),j) < (x(i),i)). 

This can be rearranged as 

(Vj : pc{j) = critical Z) (Vi : x{i) = 0 V {x{j),j) < (x(i),i))). 

But this is the just the invariant pea = critical D ma which is already implied 
by the abstract model. 

The safety property is thus verified by using a judicious combination of a 
small amount of theorem proving and model checking. The abstractions were 
suggested by the predicates in the text of the program. Simple invariant genera- 
tion methods were adequate for generating trivial invariants. Theorem proving 
in the context of these invariants could be used to discharge the proof obliga- 
tions needed to construct an accurate abstraction of the N-process protocol. 
Abstraction mappings of this sort are quite standard and work for many mu- 
tual exclusion and cache consistency algorithms [47]. The abstract model did 
not discharge the main safety invariant but it was easy to extract the minimal 
condition needed to verify the invariant from the abstract model. A reachability 
analysis of the abstract model delivered enough useful invariants so that a small 
amount of theorem proving could discharge this condition. Neither the model 
checking nor the theorem proving used here is especially difficult. While some 
guidance is needed in selecting lemmas and conjectures, the proofs of these can 
be carried out with substantial automation. 
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4    Conclusion 

We have argued that verification technology is best employed as an analysis 
technique to generate properties of specifications and programs rather than as a 
method for establishing the correctness of specific properties. Such a symbolic 
analysis framework can employ both theorem proving and model checking as 
appropriate to generate useful abstractions and automatically derive system 
properties. 

Many ideas remain to be explored within the symbolic analysis framework. 
The construction of the symbolic analysis laboratory SAL as an open framework 
will support the exploration of ideas at the interface of theorem proving and 
model checking. 
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Overview 

Key results generated by this project have had a significant impact on the computer 
system development process at Rockwell Collins. For example, the encapsulation 
mechanisms developed under this DARPA contract have influenced both the de- 
sign philosophy and the design process at Rockwell Collins, and are reflected in 
their partitioning architecture for both civil and military avionics. The hallmarks of 
this architecture, namely simple memory management hardware, guaranteed time 
slicing, and mediated interrupt handling, constitute the core of Rockwell Collins' 
common computing platform for avionics. The notion of invariant performance, 
another significant contribution of this project, has become an essential component 
of the basic contract between the developers and users of the new Rockwell Collins 
partitioning environment [5]. The further utility of this notion for technology transi- 
tion derives from the cogent claim that invariant performance provides the strongest 
possible composability argument with respect to system certification [4J. 

This project has also yielded methods for automated modeling and reasoning 
that are being integrated into the Rockwell Collins computer system development 
cycle. These methods include the use of symbolic execution to explore design choices, 
and the use of symbolic results to enhance regression testing [3]. In the longer term, 
Rockwell Collins expects executable formal models to become an integral part of 
their processor development process [18]. 
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Abstract 

This report outlines some of the design considerations surrounding the 
development of the JEM2 PMU and documents the impact the concept 
of invariant performance has had on the PMU implementation. 
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1    Introduction 

Digital flight-control functions in modern aircraft are typically implemented 
using a federated architecture. A federated architecture is one in which each 
function has its own computer system that is only loosely coupled to the com- 
puter systems of other functions. Typically, functions in a federated architecture 
are physically separated and dependencies between functions are limited to the 
exchange of sensor and control data. Physical separation and limited functional 
dependency provide strong functional isolation in federated systems. As a re- 
sult, a fault or error in the computer hardware or software implementing one 
function is unlikely to propagate to other functions. It is this isolation that 
allows for independent certification of functionally distinct systems. 

Integrated Modular Avionics (IMA) has received significant attention as an 
alternative to the federated architecture. In IMA a single computer system 
provides a common computing resource for several functions. Centralizing this 
functionality reduces the resource requirements of an avionics suite while capital- 
izing on the computational capabilities of modern computing systems. Crucial 
to the success of IMA, however, is the concept of composability. Composability 
allows the various functions hosted by the IMA computer system to be certified 
once, independently, and only to a level appropriate to the criticality of the 
function. Ideally, each function then retains its certification when composed 
with other functions on the same IMA system. 

Note that the IMA model of composability is identical to what one finds in 
a federated system in which each function is hosted on a dedicated computer 
system: the functions are certified once, independently, and only to a level 
appropriate to the criticality of the function they perform. With this observation 
it is clear that anything less than full composability will significantly increase the 
cost of certifying a given avionics suite in an IMA system. Because certification 
is a major portion of the cost of an avionics system, any savings in hardware 
costs will rapidly evaporate in the absence of composability. 

The fact that the IMA computer system is a shared resource, however, is in 
direct conflict with the concept of isolation so carefully maintained in the feder- 
ated architecture. Isolation, such as one finds in a federated architecture, is the 
key to composability. In order to counteract the lack of physical separation and 
to achieve the degree of functional isolation required to support composability, 
an IMA computer system must employ partitioning. 

Partitioning is a technique for isolating functions in an effort to extend the 
current federated architecture certification process to cover integrated systems. 
Partitioned systems provide isolation in space through memory protection and in 
time through periodic partition switching. Integrated systems then rely on this 
spatio-temporal isolation of functions executing on the same computer system 
to emulate the logical isolation occurring naturally in a federated system as a 
result of physical isolation. 

Invariant performance is a concept that was developed to describe the prop- 
erties of an ideal partitioned system[3]. The invariant performance property 
states that, given a partition schedule, all aspects of the operation of a given 
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Figure 1: Invariant Performance Illustration 

partition are strict functions of the logical state of the partition and its inputs. 
Invariant performance guarantees that, given identical inputs, the outputs and 
the execution of a partition are identical regardless of the activity of any other 
partition in the system. 

Invariant performance provides the developer with a contract that states 
that any function developed in a partitioned environment will operate iden- 
tically before and after system integration. It also provides the certification 
authority with the assurance that any test run on a function in a partitioned 
system will have exactly the same results following system integration. In this 
sense, invariant performance provides the strongest possible argument for the 
composability of integrated modular avionics systems. 

Figure 1 illustrates some of the aspects of invariant performance. The upper 
time line in this figure shows that partition A is scheduled to run during a 
particular time slot and that it receives inputs (x, y, and z) and produces output 
values (X, Y, and Z) with a particular temporal relationship. The bottom time 
shows that, following system integration, if partition A is given the same input 
values at the same relative time, it produces the same output values and they 
are available at the same relative time. 

2    JEM2/PMU Design Objectives 

The JEM2/PMU is designed to support embedded real-time safety-critical par- 
titioned systems that are capable of exhibiting invariant performance. We de- 
scribe several aspects of this design, focusing particularly on how the invariant 
performance concept is reflected in the development of this proprietary device. 
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The first three design objectives of the JEM2/PMU are addressed directly by 
the fundamental architecture of the JEM[5]. The JEM is a descendant of a long 
line of stack-based processors designed by Rockwell with similar objectives[l]. 
The high code density, small die size, and low power consumption of the JEM 
processor family makes it ideal for embedded applications. Likewise, microcode 
support for interrupt handling and thread scheduling make it attractive in real- 
time systems. The direct support for object oriented programming, in the form 
of virtual functions and data objects, as well as the strong type system encourage 
good programming style and help in developing safety-critical applications. 

The goal of partitioning, however, is somewhat contrary to the first three 
system objectives. Sophisticated memory management to support spatial isola- 
tion of functions can lead to increased cost and reduced performance, contrary 
to the embedded system and real-time design goals. The need provide temporal 
isolation between the various partitions can infringe on the real-time behavior. 
Finally, the complexity of many partitioning schemes threatens the very level of 
safety they set out to secure in the first place. The JEM2/PMU design strategy 
addresses these issues through the use of a virtual machine partitioning scheme 
supporting high rate context switching. 

2.1    Virtual Machine Partitioning 

There are two common models that might be followed when developing a par- 
titioning system: a tasking model or a virtual machine model[2]. Figure 2 illus- 
trates these two models. In the virtual machine model, both the applications 
and the operating system are isolated from the partitioning kernel. The par- 
titioning kernel performs only the bare essential tasks of system initialization, 
partition configuration and partition scheduling. Each partition, therefore, has 
its own operating system to allocate resources and perform thread scheduling; 
behaving effectively like an independent machine. In the tasking model, the par- 
titioning kernel and the operating system are essentially one and the same. In 
this model, partitioning is performed implicitly at the task level as a by-product 
of the thread scheduling process and each partition shares the various resources 
offered by the host operating system. 

Under invariant performance, the behavior of one partition, no matter how 
corrupt or malicious, must not affect the performance of another partition. 
Given this requirement, it was decided that the partitioning scheme that af- 
forded the greatest degree of protection would be a virtual machine partitioning 
scheme. This choice proved advantageous in a number of ways. 

2.1.1     Straightforward Memory Protection 

Because of the course-grain nature of virtual machine partitioning, the memory 
protection logic can be quite simple, allowing for the development of simple, 
high-performance memory protection circuitry. The system level separation 
of the memory into kernel-specific and application-specific memory protects 
against the mixing of critical and non-critical memory spaces and helps enforce 
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Figure 2: Partitioning Models 

separation of crucial data structures. Using this technique, one can predefine 
the programming data for the memory protection logic in the protected memory 
space accessible only by the partitioning kernel and this data can be Saved in 
ROM. Thus, there is no dependence on run-time code for memory allocation 
and it is possible to perform static analysis of the memory protection properties 
based only on the data written to ROM during system programming. 

2.1.2    High Rate Context Switching 

In real-time systems, interrupt latency is a crucial factor. In partitioned systems, 
however, a trade-off exists between interrupt latency and time determinism. Us- 
ing an immediate interrupt service model, where any interrupt will suspend the 
currently execution partition to allow interrupt handler code to execute, the sys- 
tem interrupt latency can be low. However, without a sophisticated partition 
timing scheme it is virtually impossible to provide deterministic partition exe- 
cution. For that matter, without governors on external interrupts, it is difficult 
even to provide partition execution bounds. 

A more deterministic alternative, however, which is to wait until the end 
of the currently scheduled partition to service interrupts, bounds the minimum 
interrupt latency below by the maximum partition time slice. This is of par- 
ticular concern for systems in which partition context switching overhead is 
significant. The JEM2/PMU opts in favor of deterministic execution (invari- 
ant performance) over interrupt latency, but then makes a concerted effort to 
minimize partition context switching overhead. 

In general, partition context switching involves suspending a current parti- 
tion and dispatching another. Suspending a partition involves saving the crucial 
state of that partition so that execution can later resume where it left off. Dis- 
patching a partition involves programming the memory and time management 
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Utilities of the partition management unit, restoring partition state and then 
resuming partition execution. 

There are essentially two aspects of the JEM2/PMU system that enable 
support of high rate context switching: minimal system state and configuration 
caching. The JEM family of processors has a relatively small internal state. 
This simple fact enables rapid saving and restoring of context, an important 
feature in in real-time systems. Reprogramming the memory protection logic of 
the PMU, however, can be a lengthy process involving writing many different 
configuration words to several different registers. To address this issue the PMU 
supports configuration caching. In a nutshell, configuration caching allows the 
processor to write an identifying partition number into a PMU configuration 
register to instantly activate a preprogrammed set of memory protection logic. 
This combination of limited processor state and PMU configuration caching 
allows the JEM2/PMU to support the very fast partition switch rates needed 
for realistic real-time systems. 

2.1.3     Implementation Complexity 

The JEM2/PMU partitioning scheme relies on specialized, privileged microcode 
in the JEM2 to perform initialization, partition configuration and partition 
scheduling. This microcode represents the entirety of the JEM partitioning 
system: it is not possible to execute software in privileged kernel mode. This 
limitation serves to keep the issue of partition kernel verification tractable. Be- 
cause the tasks performed by the partitioning kernel are simple, its implemen- 
tation can be kept small. Ideally, the handful of microcode used to perform this 
task can then be subjected to rigorous formal analysis to guarantee correctness 
under all operating conditions. 

2.2    Invariant Performance 

The development of the concept of invariant performance has had a signifi- 
cant impact on the design decisions made in the development of the Rockwell 
Collins JEM2/PMU. One of the design requirements of the JEM2/PMU is that 
it provide the strongest possible incremental certification story to support the 
requirements of integrated modular avionics systems. The operating assumption 
is that anything less than full composability will significantly increase the cost of 
certifying avionics suites, potentially overshadowing any savings obtained from 
reduced component costs. For these reasons, invariant performance has been 
considered a priority throughout the design process. 

In order to obtain invariant performance in a partitioned system, certain 
restrictions must be met. These include, among others, a completely specified 
processor with bounded interrupt latency whose privileged mode of operation is 
well contained, a memory protection unit that can prohibit memory transactions 
outside of the predefined bounds of a partition, a partition timer that can end of 
one partition time interval, and a "MUCOS" timer[3] that can deterministically 
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mark the beginning of subsequent partition execution. All of these issues are 
addressed and solved in the JEM2/PMU design. 

2.3    Additional PMU Features 

In addition to the partition timer, MUCOS timer and configuration cache the 
PMU also provides other partition-sensitive services to the system. An inter- 
esting result of choosing a virtual machine partitioning scheme over a threaded 
scheme is that operating system resources must now be duplicated within the 
context of each virtual machine. This includes such mechanisms as interrupt 
controllers and timers. As a result the PMU also provides a set of runtime 
resources for each supported partitions. These resources include a global clock, 
runtime counters for delay and cyclic interrupts, a dedicated interrupt controller, 
and an interrupt mailbox and subscription service for sending and receiving in- 
terrupts between partitions. 

3    Compliance Proof Strategy 

A crucial aspect of invariant performance is that the processor itself cannot be 
used to violate partitioning. In particular, it is important that the processor 
have a protected (or user) mode, in which memory transactions can be checked 
against predefined acceptable ranges, and a privileged (or kernel) mode in which 
the processor can access the partitioning data structures as well as reconfigure 
the memory management hardware. It is crucial that user tasks cannot cause the 
processor to perform privileged memory transactions and it is important that 
entry into and exit from the privileged mode be well defined and guaranteed to 
be consistent with invariant performance. Interestingly, it is not important that 
any of the user mode processor instructions work correctly in order to satisfy 
invariant performance; only that they do not result in protected transactions or 
an unexpected transition into protected mode. 

Timing issues are also a concern in partitioned systems. For example, the 
processor must have an acceptably tight bound on interrupt latency. In partic- 
ular, there can be no circumstances under which the processor fails to respond 
to a partition interrupt. Demonstrating this property involves identifying the 
interrupt response sequence and showing that, regardless of the current state, 
the longest sequence of events leading to an interrupt response has an acceptable 
bound. 

Uniform start times are also crucial to invariant performance. Implemen- 
tation of uniform start times requires that the system have the ability to stall 
the processor while waiting for the MUCOS timer to time out. Such stalling 
might be implemented with a wait-for-interrupt style instruction or, as we have 
done, using a delayed-acknowledge bus arbitration scheme. The time it takes 
for the processor to resume execution following the MUCOS time-out must be 
fixed and it must be impossible to get into a stalled state except in response to 
a partition interrupt or an early partition exit. 
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To support these verification activities, an Executable Formal Model (EFM) 
of the JEM2 and the JEM2 PMU have been constructed. EFMs allow for 
the generation of a functional simulator of a hardware device directly from the 
formal model[4]. As a result, in addition to enabling formal reasoning about 
models of hardware devices, this process supports the validation of the formal 
models through their use as a simulator in an engineering design environment. 

While development of such formal models is straightforward, the process of 
constructing a simulator for a new hardware device is relatively complex. As 
a result, while models of the entire JEM2 and the JEM2 PMU have been con- 
structed, no substantial correctness proofs have yet been attempted. The JEM2 
model, however, has been validated through the execution of test programs and 
the PMU model has been integrated with a VHDL simulation environment to 
enable its use in a PMU test bench circuit. 

4    Conclusion 

This report discussed the design objectives for a real partitioning system, specif- 
ically the design objectives for the JEM2/PMU system, showed how invariant 
performance impacted the design decisions associated with that system, and 
demonstrated that it is possible to construct realistic systems that exhibit in- 
variant performance. 
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Abstract 

In this paper we explore the relationship between invariant perfor- 
mance and the use of commercial system components in certified sys- 
tems. Invariant performance is a concept developed under DARPA con- 
tract D855. This paper describes invariant performance in the context of 
a partitioned system and explains how it provides the strongest possible 
composability argument from the perspective of certification. Illustrations 
highlight the various invariant performance properties and relaxations of 
those properties are evaluated with respect to their impact on the cer- 
tification process. The relaxations we consider are consistent with those 
encountered when using commercial components and software to imple- 
ment a partitioned system. 
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1    Introduction 

In this paper we explore the relationship between invariant performance and 
system certification by introducing the concept of invariant performance in a 
partitioned system and explaining how it provides the strongest possible com- 
posability argument from the perspective of certification. We begin by providing 
motivating factors for considering partitioning in avionics systems as well as in- 
troducing much of the terminology used throughout the paper. Some of the 
subject matter in this paper is taken without attribution from [7, 5, 6]. 

1.1 Federated Architecture 

Digital flight-control functions in modern aircraft are typically implemented us- 
ing a federated architecture. A federated architecture is one in which each func- 
tion has its own computer system that is only loosely coupled to the computer 
systems of other functions. Typically, functions in a federated architecture are 
physically separated and dependencies between functions are limited to the ex- 
change of sensor and control data. Examples of such functions include autopilot, 
flight management, and displays. 

It should be noted that the physical separation and limited functional de- 
pendencies characteristic of federated architectures provide strong functional 
isolation. That is to say, a fault or error in the computer hardware or software 
implementing one function is unlikely to propagate to other functions. It is 
this isolation that provides for independent certification of functionally distinct 
systems. 

Between the various components of an avionics function, however, interac- 
tions are not ruled out. The certification of such functions may involve the 
incremental verification of their various components, from the hardware and 
peripherals used to construct the system to the operating system and applica- 
tions running on the hardware. Nonetheless, for the purposes of certification, 
all of these components must be considered together as a system and all must 
be verified to the same level of criticality. It is widely understood that one does 
not certify an individual functional component, one certifies an entire avionics 
system. 

1.2 Integrated Modular Avionics 

Integrated Modular Avionics (IMA) has received significant attention as an 
alternative to the federated architecture. In IMA a single computer system pro- 
vides a common computing resource to several functions. Centralizing this func- 
tionality reduces the resource requirements of an avionics suite while capitalizing 
on the enhanced computational capabilities of modern computing systems. 

Crucial to the success of IMA, however, is the concept of composability. The 
concept is that the various functions hosted by the IMA computer system are 
certified once, independently, and only to a level appropriate to the criticality of 
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the function they perform. Ideally each function will then retain its certification 
even when composed with other functions on the same IMA system. 

Note that the IMA model of composability is identical to what one finds in 
a federated system in which each function is hosted on a dedicated computer 
system: the functions are certified once, independently, and only to a level ap- 
propriate to the criticality of the function they perform. From this observation 
it is clear that anything less than full composability will significantly increase 
the cost of certifying a given avionics suite in an IMA system. Because certifi- 
cation is often a major portion of the cost of an avionics system, any savings in 
hardware costs will rapidly evaporate in the absence of composability. 

The simple fact that the IMA computer system is a shared resource, how- 
ever, is in direct conflict with the concept of isolation so carefully maintained 
in the federated architecture. Isolation, such as one finds in a federated archi- 
tecture, is the key to composability. In order to counteract the lack of physical 
separation and to achieve the degree of functional isolation required to support 
composability, an IMA computer system must employ partitioning. 

1.3    Partitioning 

Partitioning is a technique for providing isolation, both in space and time, be- 
tween two or more functions executing on the same computer system. A par- 
titioned system provides isolation in space through memory protection and in 
time through periodic partition switching. A partition is simply a rigid con- 
finement vessel for threads of control and data. This vessel is managed by a 
partition management system and serves to isolate the behavior each function 
from the behavior of other functions on the system. Note that this definition of 
a partition doesn't preclude the use of operating system style processes to im- 
plement partitioning. Partitioning is merely a technique for isolating functions 
in an effort to extend the current federated architecture certification process to 
include IMA. 

1.4    Invariant Performance 

Invariant performance is a concept developed to describe the properties of an 
ideal partitioned system [8]. The invariant performance property is that, given 
a partition schedule, all aspects of the operation of a given partition are strict 
functions of the logical state of the partition and its inputs. Invariant perfor- 
mance guarantees that, given identical inputs, the outputs and the execution of 
a partition are identical regardless of the activity of any other partition in the 
system. 

Invariant performance provides the developer with a contract that states 
that any function developed in a partitioned environment will operate iden- 
tically before and after system integration. It also provides the certification 
authority with the assurance that any test run on a function in a partitioned 
system will have exactly the same results following system integration. In this 
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Figure 1: Invariant Performance Illustration 

sense, invariant performance provides the strongest possible argument for the 
composability of integrated modular avionics systems. 

Figure 1 illustrates some of the concepts of invariant performance. The 
upper time line in this figure shows that partition A is scheduled to run during a 
particular time slot and that it receives inputs (x, y, and z) and produces output 
values (X, Y, and Z) with a particular temporal relationship. The bottom time 
shows that, following system integration, if partition A is given the same input 
values at the same relative time, it produces the same output values and they 
are made available at the same relative time. 

Throughout the remainder of this paper we will consider the ideal parti- 
tioning system as one supporting invariant performance. It worth noting that 
the primary strength of any system supporting invariant performance is that 
it provides partitioning guarantees in a fashion that is absolutely independent 
of the actual functions within the partitions. However, if the invariant perfor- 
mance assumptions are weakened, one is drawn into painstaking analysis that 
may require knowledge and guarantees about the behaviors of functions within 
partitions. This makes the verification effort more difficult and weakens the 
composability argument. 

1.5    Composability 

As previously mentioned, a primary goal of IMA is functional composability: 
the ability to retain the certification of two functions certified independently 
when they coexist in a partitioned environment. When considering this IMA 
objective, it is helpful to understand the distinction between verification and 
certification. 
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The verification of a system provides a degree of assurance that the system is 
built the right way. Verification testing typically includes forcing decision paths 
through a design in order to show that each path performs as expected and 
can be reached. The level of verification required by a system is intimately tied 
to the criticality of the function performed by the system under consideration. 
The higher the degree of criticality, the more extensive the verification testing 
must be. 

The term "verified" is used throughout this paper to describe a level of 
confidence that some property holds. Ideally, verified would mean absolutely 
guaranteed to hold. In practice, however, verified is more likely to mean that 
the properties in question have been shown to hold in a manner consistent with 
the criticality of the most critical function to be performed by the portions of 
the system that depend upon the property. Note that if the correct operation 
of the partition management system depends upon a property then the entire 
system depends upon that property. 

Certification, on the other hand, is the process by which one obtains credit 
from a regulatory agency for performing the verification of a system based upon 
a specific set of verification criteria. Certification involves demonstrating to 
some degree of confidence that a particular system implements its required 
functionality. Note that certification only requires assurance proportional to 
the consequences of failure. In a federated architecture, such consequences are 
generally limited to the function concerned, so that assurance is related to the 
criticality of that function. But if the failure of one function could propagate to 
others, then all must be assured to the level of the most critical. This elevation 
in assurance levels is contrary to the goal of composability, so partitioning is 
required when resources are shared by functions that have different levels of 
criticality and assurance. 

Composability is partitioning's "golden ring" and is crucial to the success 
of IMA. Composability enables incremental certification: each of the software 
building blocks of a system can be certified independently and only to the level 
of criticality for the function they perform and then the components can be in- 
crementally combined together without invalidating previous certification work. 

It should be noted that, although there is on-going work within SC-182/WG- 
48 to establish minimum operational performance standards in support of par- 
titioning and computational resources, there have not been enough FA A and 
JAA certifications of partitioning systems for any sort of standard procedures 
and expectations to have developed. Nonetheless, composability is an essen- 
tial enabling technology for IMA. Avionics suppliers will find IMA much less 
cost-effective if they cannot certify partitions separately. For this reason, the 
certification process must be of foremost consideration when evaluating a par- 
ticular IMA partitioning strategy. 

1.6    Terminology 

Below we provide definitions for selected terminology used in this paper. 
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Certification (Per SC-167) Legal recognition by the certification authority 
that a product, service, organization or person complies with the require- 
ments. Such certification comprises the activity of technically checking 
the product, service, organization or person and the formal recognition of 
the compliance with the applicable requirements by issue of a certificate, 
license, approval or other documents as required by national laws and pro- 
cedures. In particular, certification of a product involves: (a) the process 
of assessing the design of a product to ensure that it complies with a set of 
standards applicable to that type of product so as to demonstrate an ac- 
ceptable level of safety; (b) the process of assessing an individual product 
to ensure that it conforms with the certified type design; (c) the issuance 
of a certificate required by national laws to declare that compliance or 
conformity has been found wih the standards in accordance with items 
(a) or (b) above. 

Cornposability The ability to retain the certification of two or more functions 
certified independently when they are brought together in an integrated 
modular environment. 

Federated Architecture An avionics system architecture in which each func- 
tion is provided a dedicated computer system. 

Function A generally self-contained program or software system that performs 
a specific task. Example avionics functions include autopilot, flight man- 
agement, and displays. 

IMA Integrated Modular Avionics. An avionics system architecture that sup- 
ports the independent certification and composition of multiple functions 
onto a single computer system. 

Invariant Performance A property of a partitioned system that guarantees 
that, given a partition schedule, all aspects of the operation of a given 
partition are strict functions of the logical state of the partition and its 
inputs. 

Operating System Those services generally provided by the system to an 
application, often including resource management, communication and 
task scheduling. 

Partition A space-time container managed by the partition management sys- 
tem that isolates the behavior of a particular function from the behavior 
of other functions executing on the same computer system. 

Partition Management System The combination of hardware and software 
relied upon to provide and enforce partitioning guarantees. 

Partitioning Kernel The privileged, trusted software portion of the parti- 
tion management system implementation typically responsible for medi- 
ating shared resources, supporting communication channels, and partition 
scheduling. 
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Verification (Per SC-167) The evaluation of the results of a process to en- 
sure correctness and consistency with respect to the inputs and standards 
provided to that process. Specifically, this includes testing that exercises 
the conditional paths through a design to an extent defined by guide- 
lines whose rigor is in proportion to the criticality of the function being 
performed. 

2 Overview 

In the remainder of this paper we consider the relationship between invariant 
performance and certification. We will present selected issues faced in the design 
of a partitioned system and describe how those issues are addressed in an ideal 
partitioned system having the invariant performance property. As each issue is 
introduced, relaxations of the invariant performance ideal are considered from 
the perspective of certification. The relaxations considered are consistent with 
those one might face in attempting to use commercial components and software 
to implement a partitioned system. These issues demonstrate how partition- 
ing systems that support invariant performance provide the strongest possible 
certification argument and how, in the absence of invariant performance, the 
developer is drawn into partition-specific analysis in order to support incremen- 
tal certification claims. Note that we are in no way implying that invariant 
performance is essential for the certification of integrated modular avionics sys- 
tems. Rather, our claim is that invariant performance is a property that will 
minimizes the level of effort required by developers to certify such systems. 

3 Hardware Components 

Ideal The system is composed of hardware components whose behavior is com- 
pletely specified and verified to be capable of supporting all partitioning 
requirements. 

The component verification process for a partitioned system begins with the 
process used in federated systems. In addition it must consider those component 
aspects that impact the system's ability to isolate the various partitions from one 
another. For processors, issues such as instruction times, interrupt latency, and 
transitions in and out of privileged modes must be considered. For peripherals, 
issues such as hidden state and unexpected mode transitions must be addressed. 
Ultimately, one must verify that the components used in a partitioned system 
cannot be employed as agents to violate the partitioning requirements. 

3.1    Unspecified Behavior and Errata 

Verification is straightforward when the components are free of potential viola- 
tions of the partitioning requirements. However, there may be conditions under 
which the behavior of a component is unspecified or under which the behavior of 
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the component is known to violate a partitioning requirement. Note that these 
two conditions are similar in that unspecified behavior must be assumed to vi- 
olate partitioning unless other assurances are provided that it will not. When 
such conditions exist, the issue becomes how to protect against their manifes- 
tation. Ultimately, the mechanisms used to protect against component based 
partition violations may take one of three forms: hardware solutions, single 
point software solutions, or multi-point solutions. 

Hardware Solutions Hardware solutions are solutions that can be imple- 
mented in hardware and verified once to work for all systems. Such solutions 
place no subsequent restrictions on the system software. An example of a com- 
ponent issue that is amenable to hardware solution is Pentium II bug A42 [1], 
in which the processor may cause bus contention if the bus controller chipset 
attempts to optimize for arbitration latency. Bus contention, under certain con- 
ditions, may qualify as a violation of spatial partitioning. The hardware solution 
is simply to not optimize for arbitration latency, thus effectively avoiding the 
issue. 

Single Point Solutions Single point solutions are similar in nature to hard- 
ware solutions in that they can be fixed once and for all at a single point. How- 
ever, in this case, the single point is a piece of code included in, perhaps, the 
partitioning kernel. As an example, the Pentium III errata identifies a BIOS fix 
for Errata E34 [2], in which certain floating point flags are not updated correctly 
when values are loaded into cache. While Errata E34 does not necessarily rep- 
resent a partition violation, it is nonetheless representative of the class of errors 
with single point solutions. 

Multi-Point Solutions Perhaps the most difficult issues to address, and cer- 
tainly the most common, are those requiring multi-point solutions. Multi-point 
solutions are solutions that must be implemented in software in more than one 
location and, often times, directly within the application code stream. Error 
G39 of the Pentium III Xenon [3] states that a misaligned locked access to APIC 
space will hang the processor. Hanging of the processor by one partition would 
certainly be a violation of temporal partitioning. Assuming that locked access 
to APIC space were for some reason desirable inside of arbitrary partitions, 
some mechanism must be put in place on a Xenon system to enforce correct 
alignment. This, however, is an issue in partitioned systems. 

In a federated architecture, when a processor contains a bug in a particular 
instruction, it is standard practice to analyze the software in so as to guarantee 
that the bug is never exercised or to place software wrappers around the buggy 
section to detect and correct buggy conditions. This practice works in a feder- 
ated system because the system is verified as a whole, and the verification of 
the analysis or the wrapper code is done with consideration of the criticality of 
the function to be performed. 
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Partitioning, on the other hand, is designed to support the execution of 
functions verified to different levels of criticality. Unspecified behavior and er- 
rata that potentially affect partitioning guarantees have a global impact on the 
system. In other words, all of the software on the system depends upon the 
avoidance of such conditions in every partition. To what extent, therefore, will 
a level A function accept the analysis performed on the bug fix for a level D 
function? It seems that the only solution is to perform verification of any such 
fix to the level of the partitioning kernel, making sure that any assumptions or 
dependencies encountered during such analysis are also verified to that level. 

This elevation in assurance levels, however, is contrary to the goal of com- 
posability, which strives to verify each partition only to the level of criticality 
of the function that it performs. In this way, components suffering from errata 
or unspecified behavior that require multi-point solutions violate a basic tenant 
of IMA. 

4    Memory Protection Issues 

Ideal No instruction executing in user mode can obtain privileged access to the 
memory space. 

Ideal No event can transition control from user mode to privileged mode with- 
out transitioning the thread of control to the partitioning kernel. 

Ideal The memory protection logic can be modified only in privileged mode. 

Most modern microprocessors provide two modes of operation: privileged 
and user mode. Privileged mode is the least protected mode and offers func- 
tionality not available to programs executing in user mode. The nature of the 
privileged mode functionality is typically such that it impacts the entire system, 
rather than just the current thread of control. This functionality is therefore 
restricted to privileged threads of control, such as the operating system, in order 
to protect arbitrary user tasks from one another. Memory management schemes 
are also typically sensitive to the processor mode and will allow memory trans- 
actions in privileged mode that would be illegal in user mode, including access 
to the memory space of other programs. It is easy to see why, in a partitioned 
system, one would require that access to this mode of operation be controlled. 

A significant issue in the design of a partitioned system is allowing both 
the partitioning kernel and the operating system to execute in privileged mode. 
If a processor supports two or more privileged modes of operation, it may be 
possible to implement the partitioning kernel in a more privileged mode than 
the operating system. When this is not possible, however, no distinction is made 
between the access rights of the OS and those of the partitioning kernel. As 
a result, the partition management system is made vulnerable to errors in the 
operating system. Because of the dependencies introduced by this fundamental 
limitation, the entire OS must be verified together with and to the same level 
as the partitioning kernel. 
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This issue is particularly important when one considers a virtual machine 
style partitioning scheme that allows different operating systems to execute in 
different partitions, with each executing in privileged mode. If this is the case, 
all of the operating systems must be verified to the highest level and they must 
all be verified together with and to the same level as the partitioning kernel. 
Note that this in direct violation of the IMA composability criteria. 

5    Temporal Protection Issues 

Ideal Partition Timers are protected resources and only the partitioning kernel 
can modify the timers. 

Ideal The partition timer interrupts are non maskable interrupts that can be 
modified only by the partitioning kernel. 

Allowing partitioned software to modify the partition timer, the partition 
timer interrupt or the partition timer interrupt mask provides the opportunity to 
violate temporal isolation. Any software with such capability must be certified 
together with and to the same level as the partitioning kernel. 

Ideal The processor must respond to the partition timer interrupts within some 
acceptable, quantifiable time period. 

Unbounded partition timer interrupt latency is a violation of temporal isola- 
tion. If the processor contains instructions with unacceptable or unquantifiable 
interrupt latency or if the processor can enter a state in which it does not respond 
correctly to the partition timer interrupt, some mechanism must be provided to 
force the processor back into a known state from which partition scheduling can 
be resumed. It may be the case that the only available mechanism is a hard- 
ware reset. In any case, the mechanism must then be integrated into a partition 
watchdog timer that is capable of monitoring the health of the partition man- 
agement system. Note that all of the aforementioned restrictions applying to 
the partition timer apply to this watchdog timer as well. Furthermore, the time 
required to resume correct partitioned execution following watchdog time-out 
must be quantifiable and included in the partition context switch overhead. 

5.1    Performance Issues 

Ideal For a given partition schedule and a given set of inputs, the execution of 
a given partition is exactly the same, to the clock cycle, regardless of the 
activity of any other partition. 

Performance guarantees relate to reproducibility of results in partitioned sys- 
tems. The ideal system is absolutely reproducible (modulo any asynchronous 
inputs) by virtue of clock cycle accuracy. This guarantee builds confidence that 
the system will behave as expected, even following integration, and provides 
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both the developer and the certification authorities with a contract that guar- 
antees that the system will operate exactly the same, both on the test bench 
and in the system. 

5.1.1    Instruction Times 

Invariant performance expects that instruction execution time in the context 
of the system be a function of only the logical state of the partition in which 
it executes. In other words, a partition should execute the same number of 
instructions during any fixed period of time for a given initial logical state. It 
is, however, a simple matter to violate this assumption. The mere existence of 
a cache, while it does not change the logical state of a partition, can change the 
processor performance within a partition from one partition execution to the 
next. If at one time the cache is full and in the next it has been flushed, the 
partition will execute a different number of instructions during some fixed length 
of time. A cache is an example of hidden system state that can allow execution 
in one partition to impact the performance of another partition. Hidden state 
and dynamic bus arbitration are common causes of system nondeterminism. If 
one does not know or cannot control the parameters affecting the execution time 
of the various instructions, it is impossible to guarantee that the execution of a 
function within a partition will be exactly the same following a partition switch. 

5.2    Uniform Start Times 

Ideal All partitions begin execution at exact times relative to the partition 
interrupt. 

Ideal Early exit from a partition will not affect the start time of a subsequent 
partition. 

In order to be compliant with the statement of invariant performance, the 
partitioning kernel must perform partition execution dispatch at uniform times. 
Note that this is an unusual requirement and one that will almost always require 
hardware support. Typical real-time systems provide the option of uniform in- 
terrupt intervals. However, variable interrupt latency, coupled with non-trivial 
(thus difficult to analyze) context switching, will typically lead to non-uniform 
partition start times, even under the best of circumstances. Uniform start times 
typically require a second synchronizing event following the partition switch in- 
terrupt that can be used to absorb the random fluctuations normally associated 
with partition context switching. This second event can then be used to provide 
a uniform starting point for partition execution. 

Figure 2 illustrates the concept of uniform start times and the various con- 
ditions under which it must hold. In the upper time line partition A exhibits 
a variable interrupt latency which must be completely absorbed by the parti- 
tioning system. In the lower time line partition A exits early due, perhaps, to 
an error in that partition. Note, however, that the kernel does not dispatch 
partition B until partition B's start time arrives. 
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Figure 2: Uniform Start Time Illustration 

Failure to provide uniform start times under any condition violates invari- 
ant performance and necessitates the quantification and bounding of partition 
schedule jitter. These bounds must then be addressed as a part of the process 
of evaluating and verifying the real-time behavior of each function. 

5.2.1    Performance Bounds 

For many systems it is arguably the case that exact temporal behavior is not 
necessary for functional correctness. Most real-time operating systems today 
provide some form of multitasking, but few if any make claims beyond statis- 
tical guarantees of service, latency or jitter. Even given deterministic operat- 
ing system task scheduling, applications still face all of the issues associated 
with variations in instruction execution time; a problem exacerbated by caches, 
pipelines, and speculative execution, all of which substantially improve average 
performance at the expense of worst case performance. 

With this as the current state of affairs, it could be argued that the concept 
of invariant performance is asking for properties of a partitioned system that 
are above and beyond what current practice provides in a federated system. 
Furthermore, the variations in performance due to flushed caches or jitter in the 
partitioning schedule could simply be modeled in the same way as the "natural" 
variations in a federated system described above. This would then lead to a 
straight-forward extension of current practice. 

While this is certainly a valid argument, it should be observed that invari- 
ant performance, far from being an outlandish requirement, is in fact the typical 
state of affairs in most federated systems today. Although it is true that fluc- 
tuations exits in the execution time of various instructions and that jitter is 
an accepted aspect of the scheduling mechanisms, these variations are all re- 
producible in a federated system modulo asynchronous events. In a completely 
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synchronous system, these events are reproducible exactly. Thus, in effect, fed- 
erated systems already provide invariant performance. 

In a partitioned system, however, when these so-called natural events are 
played upon by different functions executing in different partitions, the result is 
a temporal variation that cannot be accounted for nor reproduced by considering 
only the execution of the partition of interest. Keep in mind that the goal of 
partitioning is composability: the ability to certify functions independently and 
then combine them together to create a certified system. The key to this ability 
relies on partitioning to isolate the behavior of different partitions in such a way 
as to emulate the physical isolation of a federated system. 

Nonetheless, in the final analysis strict temporal partitioning may be deemed 
unnecessary. While it is certainly the case that invariant performance is bene- 
ficial in a synchronous environment, most useful systems are ultimately asyn- 
chronous. Given this, the designer is still left with the task of producing assur- 
ances based on the expected operating environment that can provide a guarantee 
of correct functional operation. 

6    Partition Scheduling 

The partitioning kernel is responsible for allocating and protecting shared re- 
sources among the various partitions. One shared resource in a partitioned sys- 
tem is processor time. Time is allocated to partitions by alternately suspending 
the dispatching partition execution. 

6.1    Schedule Analysis 

Ideal The scheduling policy is amenable to deterministic analysis and that the 
analysis is independent of the behavior of the partitions to be scheduled. 

Ideal The latency and throughput of each function can be computed knowing 
only the partition schedule. 

Figure 3 illustrates the impact of partitioning on the latency and throughput 
of a typical function. The function executes within the time constraints of a 
partition, labeled A in the diagram. The time it takes for the function to begin 
to respond to an input is the response latency. The time it takes to service 
the input and produce some output is the service time. Both of these aspects 
will be negatively effected by partitioning. In the ideal system, these effects are 
known and quantifiable at the individual partition level. If exact analysis is not 
possible or if the scheduling is somehow function-dependent, it must be possible 
to provide absolute bounds on the maximum latency and minimum throughput 
available to each function. These bounds must then be addressed as a part of 
the process of evaluating and verifying the performance and spare capacity of 
each function. 
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Figure 3: Performance and Latency Impact of Partitioning 

6.2    Reset 

Ideal On reset, the partitioning kernel performs, at most, partition independent 
initialization of each function and then signals each partition to initiate 
partition dependent initialization. 

Reset, or cold start, corresponds to a complete reboot of the system. Start- 
ing with only the information available in non-volatile memory, the processor 
must first bootstrap the system to the point at which software can begin ex- 
ecuting. That software must then complete the configuration of the system 
and ultimately begin running the various functions. This sequence of events is 
referred to as the reset sequence. 

Obviously, once a partition has been configured for execution by the par- 
titioning kernel, each function must be capable of bootstrapping into a state 
in which it can execute successfully. If multiple functions exist on the same 
computing resource, it must be possible to bootstrap all of the functions. 

In the simplest case, the partitioning kernel is the only software responsible 
for initializing a partition. However, more sophisticated systems may have boot 
loader hierarchies that gradually increase in complexity and become increasingly 
more application dependent. Note, however, that any software responsible for 
initializing a partition must be verified to the level of the partition being ini- 
tialized. 

Of greater concern, however, is whether partition initialization is being per- 
formed in privileged mode. If this is the case, one must verify that initialization 
itself does not violate partitioning. Any function-specific initialization that is 
performed in privileged mode must be verified together with and to the same 
level as the partitioning kernel.   Unless care is taken, this may lead to the 
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undesirable scenario in which the partitioning kernel will have to change (and 
therefore be re-verified) to support different system configurations. 

6.3    Power Down and Warm Start 

Ideal On power down and warm start, the partitioning kernel may modify 
the partition schedule to accommodate power down timing requirements 
and then notify each concerned partition in some modular fashion of the 
pending event. 

Power Down and warm start are examples of global system events for which 
each function may require its own handling procedure. The requirements for 
power down may vary significantly from one function to the next and it is not 
desirable to have partition specific kernel code handling such diverse require- 
ments. Partition specific code in the kernel may force recertification of the 
kernel for different system configurations, ultimately hampering composability. 

7    Operating System Versus Partitioning Kernel 

In a partitioned system, the distinction between the operating system and the 
partitioning kernel is not always clear. Figure 4 illustrates two common models 
for partitioned systems: the virtual machine model and the tasking model [7]. 
In the virtual machine model, both the applications and the operating system 
are isolated from the partitioning kernel. Each partition, therefore, has its own 
operating system and acts as a virtual machine. In the tasking model, the 
partitioning kernel and the operating system are essentially one and the same. 
In this model, partitioning is performed at the task level. While the virtual 
machine model allows for a smaller, simpler partitioning kernel as well as a 
higher degree of isolation between partitions, the tasking model may be more 
practical in commercial systems due to restrictions of commercial operating 
systems or to the limited number of privileged modes supported by commercial 
processors. 

Regardless of the degree to which a particular implementation matches one 
of the two models, however, isolation conflicts will inevitably exist between the 
operating system and the partitioning kernel. Three possible isolation conflicts 
are in the areas of data handling and data structure access, exception and error 
handling, and interrupt handling. 

7.1    Data Structures and Data Handling 

Ideal The partitioning kernel data structures can be modified only by the par- 
titioning kernel. The partitioning kernel never relies on data that does 
not originate exclusively from the partitioning kernel memory space. 

When the operating system operates in privileged mode, it effectively has 
access to all of the partitioning data structures.   Any software, including the 
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Figure 4: Partitioning Models 

operating system and partitioning kernel, that executes in privileged mode must 
take care when using data from within an arbitrary partition's memory space. 
If privileged mode software ever accepts pointers, for example, from within a 
partition's memory space, the privileged software must be verified to the level 
of the partitioning kernel to operate correctly, even in the presence of corrupted 
or malicious pointer values. 

If the correct operation of the partitioning kernel relies on the correctness 
of data from a memory space that can be modified by partitioned code, any 
software executing in that partition must be verified together with and to the 
same level as the partitioning kernel. 

7.2    Exceptions and Errors 

Ideal All exceptions and errors are handled outside the partitioning kernel and 
so as not to impact the operation of the kernel. The partitioning kernel is 
verified to be free of any exceptions or errors. 

Exceptions and errors are events in the processor that cause an otherwise 
unexpected transfer of control. While the response of different processors to 
such events varies significantly, it is important in a partitioned system to be 
able to isolate the results of exceptional and error events to the partition in 
which they occurred. 

This isolation may be particularly challenging for exceptions or errors that 
propagate into the privileged operational mode of the processor. Because priv- 
ileged mode operation may be uninterruptible, these error handling sections 
must be carefully considered when computing temporal properties of the sys- 
tem. Many of the issues associated with exceptions and errors also arise when 
considering interrupts, which are discussed in Section 7.3. 
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A system must be careful not to violate partition isolation when considering 
attributing exceptions and errors that propagate into (or originate from) the 
partitioning kernel to particular partitions. An error must be attributed to 
a particular partition only if the error would have occurred regardless of the 
contents of the other partitions. 

7.3    Interrupt service models 

Ideal At any given instant, each interrupt in a partitioned system is owned 
by a particular partition or by the partitioning kernel. Interrupts are 
acknowledged only while the owning entity is executing. 

Invariant performance mandates that the activities associated with a partic- 
ular partition do not impact the operation of any other partition. The activities 
associated with a partition include those activities involved in servicing inter- 
rupts associated with the partition. While the ideal may be unattainable in 
some systems, it is nonetheless crucial to understand the impact interrupt ser- 
vicing has on the partitioned system. Towards this goal, we broadly classify 
the possible interrupt servicing schemes according to two criteria : the time at 
which the interrupt service is provided and the degree to which the partitioning 
kernel is involved. 

7.3.1    Service Timing 

The timing of the interrupt service has a direct impact on the temporal proper- 
ties of the partitioned system. It is often the case that interrupt handlers are, 
themselves, uninterruptible. This fact can lead to increased interrupt latency 
which can effect both function performance and partitioning guarantees. It is 
also important to be able to quantify the impact interrupt servicing has on the 
performance and latency of individual functions so that developers can compute 
such critical factors as spare throughput and response time. There are three ba- 
sic approaches for timing interrupt services in a partitioned system: immediate, 
interstitial, and targeted. 

Immediate Immediate interrupt handlers service interrupts as soon as possi- 
ble, regardless of the partition schedule. While this model of interrupt service 
is quite natural for federated systems, in a partitioned system this interrupt 
policy results in system wide performance variations due to interrupt activity 
that may functionally impact only a subset of the partitions. The result of this 
global impact is strict limitations on the number and frequency of interrupts 
allowed by the system, a limitation which might ultimately have to be enforced 
in hardware. 

Immediate interrupt servicing has a negative impact on the throughput and 
latency available to every function in the system, an impact which must be 
considered when computing the processing requirements of individual functions. 
At a minimum this impact must be quantified and bounded and these bounds 
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must then be addressed as a part of the process of evaluating and verifying the 
real-time behavior of each function. 

Interstitial Interstitial handlers service interrupts only while performing par- 
tition context switches, in the interstices between partitions. Such a design 
eliminates the impact of interrupts on the performance of each function but 
can result in a significant increase in the partition switch latency. Nonetheless, 
this style of interrupt handling can be readily accommodated using interrupt 
controllers with simple interrupt masking capabilities. 

Targeted Targeted interrupts are interrupts that have been "targeted" or 
linked to a particular partition. The handlers servicing targeted interrupts are 
associated with a particular partition and execute only when the partition own- 
ing those interrupts is scheduled. Targeted interrupts are advantageous in that 
their temporal impact is localized, since a targeted interrupt owned by one par- 
tition has no impact on the timing behavior of any other partition. Thus, the 
frequency and duration of such interrupt handlers will affect only the partition 
owning those interrupts. Targeted interrupts, however, require that the inter- 
rupt mask logic be managed by the partitioning kernel during context switches 
so as to avoid allowing one partition to steal an interrupt from another and to 
protect partitions from interrupts generated in other partitions. The hardware 
used to support targeted interrupts must insure that residual interrupt state 
does not carry over from one partition to another. Hardware induced latency 
and hidden interrupt state may make the use of standard commercial interrupt 
controllers impractical for such applications. 

7.3.2    Partitioning Kernel Involvement 

The degree of partitioning kernel involvement in servicing interrupts has a sig- 
nificant impact on the extent to which interrupt handlers and the partitioning 
kernel can be verified independently. In many systems, the degree of partitioning 
kernel involvement is dictated by the interrupt behavior of the processor. Many 
commercial processors automatically enter privileged mode when servicing in- 
terrupts. Although a transition into privileged mode need not imply execution 
of the partitioning kernel thread, it does compromise the isolation of the parti- 
tioning kernel from the interrupt handlers. 

Full Service Full service kernel handlers completely handle the interrupt and 
then communicate the result to the associated partition. This makes the par- 
tition code very portable but places a heavy burden on the partitioning kernel, 
a burden which may result in increased partition interrupt latency and a heavy 
drain on available throughput. Such a service model tends to result in an 
function-specific partitioning kernel with limited composability. 
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Lightweight With lightweight handlers, the kernel interrupt handler merely 
communicates the event to the associated partition, preferably in some modular 
fashion. The majority of the interrupt processing occurs when the relevant 
partition is subsequently scheduled. This approach minimizes the function- 
specific code in the partitioning kernel but increases the system dependency of 
the partition code. This approach is composable to the extent that it is possible 
to signal partitions of pending events in a modular fashion. 

Transparent A transparent interrupt handler does not involve the execution 
of any partitioning kernel code and the processor never enters privileged mode. 
This solution may not be an option with most commercial microprocessors since 
many processors enter privileged mode while servicing interrupts. However, such 
an approach does provide maximally independent partitioning kernel code at the 
expense of heavy system dependence in the partition operating system code. 

7.4    Other Interrupt Issues 

The scope of different interrupts may present particular issues in the design of 
interrupt controllers and interrupt handlers. Interrupts can be classified into 
three categories according to their scope: partitioned, shared, or global. 

7.4.1 Partitioned Interrupts 

A partitioned interrupt is an interrupt corresponding to a resource that is owned 
exclusively by one partition. An example of such an interrupt might be one orig- 
inating from a dedicated UART. Because the partitioned interrupt is intended 
for only a particular partition, invariant performance dictates that interrupts 
effect only the owning partition and that no other partition is capable of steal- 
ing the interrupt events from the owning partition. As previously discussed, 
however, the extent of the impact of any such interrupt depends heavily upon 
the interrupt service style adopted by the system. 

7.4.2 Shared Interrupts 

A shared interrupt is an interrupt corresponding to a single resource that is 
time shared among the various partitions. An example of such an interrupt 
is a transaction time-out interrupt originating from a memory controller. If a 
transaction is initiated that causes the bus to hang, the bus arbitration logic 
may terminate the transaction and generate a transaction time-out interrupt 
to the processor. Note that such an event is the result of the execution of a 
particular partition (assuming it was not a result of kernel execution) and that 
the event must be communicated exclusively to the offending partition. Shared 
interrupts are of particular concern around the time of a partition switch. Shared 
interrupts, if not managed properly, can lead to event leakage between partitions 
and ultimately compromise system composability. 

282 



7.4.3    Global Interrupts 

Certain resources are shared among all of the partitions in a multi-partitioned 
system simply by virtue of their existence on the same processing resource. 
Examples of such resources are clock (time), power supply, thermal condition, 
EMI, ionizing radiation exposure, etc. Because of the existence of these re- 
sources, certain functionality may be needed to support activities surrounding 
these resources. However, such functionality may differ on a partition by parti- 
tion basis. 

A global interrupt is an interrupt corresponding to a shared resource that 
affects multiple partitions residing on the system. Examples of such interrupts 
are reset, partition switch, power down, and warm start. Global interrupts are 
characterized by necessitating action from the partitioning kernel, from two or 
more partition resident in the system, or from both the partitioning kernel and 
one or more other partitions. 

It is important from the perspective of certification that the kernel-specific 
code be independent of the partition specific code. Optimally, the kernel-specific 
code is executed in kernel mode and the partition-specific code is executed in the 
context of the partition to which it belongs. This allows independent verification 
of the kernel and partition code and also serves to isolate the partition specific 
code from other partitions. The inability to modularize such event handlers 
leads to a breakdown of composability. 

8    Resource Arbitration 

Ideal Each system resource required by each function previously hosted on a 
federated system must be duplicated for each function instance composing 
an integrated system [4]. 

Adherence to the above stated ideal eliminates all but the intrinsically shared 
resources (time, power, etc). However, it also goes against one of the partition 
motivating factors: reduced component costs. From this perspective, it is prefer- 
able to share as many redundant system resources as possible. 

If the partitioned system provides a resource that is shared between parti- 
tions in an exclusive way, the system must also provide an arbitration service 
for that resource in order to maintain an acceptable degree of functional iso- 
lation between those partitions. The arbitration service must decide when to 
allocate a resource, for how long to allocate the resource, and must be capable 
of forcibly removing control of the resources from any non-compliant partitions. 
This arrangement abstracts the interdependency between functions in different 
partitions and provides fault isolation between them. 

One means of providing arbitration services for resources such as communi- 
cation ports is to encapsulate the services within the context of an independent 
partition. This "broker" partition would accept resource requests from other 
partitions in the system, allocate resources to the partitions based on some 
scheme, and monitor resource usage to provide fault isolation.   Of course the 
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broker partition must still be certified to a high level of criticality, but this 
scheme provides the advantage of isolating resource arbitration from both the 
individual partitions as well as the partitioning kernel. 

If arbitration services are not provided at the system level for a particular 
shared resource, all of the partitions competing for that resource must be verified 
together to the highest collective degree of criticality. 

Regardless of how the arbitration service is provided, the latency and through- 
put bounds imposed by the arbitration must be quantifiable and must be consid- 
ered when analyzing the latency of and throughput requirements of the functions 
relying on that resource. If the arbitration scheme cannot guarantee perfor- 
mance bounds on the resource, all of the partitions sharing that resource must 
be verified together to the highest collective degree of criticality. 

Note that the shared resource requirements of each function must be care- 
fully analyzed to guarantee schedulability given an arbitration scheme, exactly 
as the processor throughput and latency requirements of each function in a par- 
titioned system must be analyzed to guarantee schedulability on the shared host 
processor. There is no substitute for this analysis. No hardware or software par- 
titioning support is capable of isolating functions that require use of a shared 
resource and whose combined performance requirements exceed the capacity of 
that resource. 

While the above discussion is geared towards such shared resources as com- 
munication ports or peripheral devices, they also apply to more obscure re- 
sources such as multi-master busses and data and instruction caches. While the 
details are more involved, the bottom line is that the performance impact of 
such resources must be completely deterministic if they are to support invariant 
performance. If not completely deterministic, the behavior must be bounded in 
such a way as to allow credible analysis of behavior, performance, and latency. 
In the absence of such well defined behavior, all of the partitions sharing that 
resource must be verified together to the highest collective degree of criticality. 

9    Autonomous Hardware Agents 

Ideal The central processing unit is the only agent capable of modifying a 
partition's logical state. 

One can consider any automata other than the central processing unit that 
performs actions on the system to be an autonomous agent. Such hardware 
agents may act either on behalf of a particular partition or independently of 
any particular partition. A Direct Memory Access (DMA) unit is an example 
of an agent that operates on behalf of a specific partition. A DRAM refresh 
circuit might be an agent acting independently of any particular partition. 

Agents can impact system behavior in many different ways. They may mod- 
ify the logical state of partitions or perhaps arbitrate with partitions for shared 
resources. Agents that modify memory or steal bus or CPU cycles must be 
verified to do so under the constraints of the partitioned system. An agent can 
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change the logical state of a partition only if the partition expects the agent to 
do so. 

Agents that arbitrate for resources must do so in a fashion that is indepen- 
dent of the partitions resident on the system and in a completely deterministic 
manner if they are to satisfy invariant performance. In the worst case there must 
be a quantifiable bound on their performance impact and that bound must be 
addressed during the verification of each application. 

10    Conclusion 

This paper illustrated the concept of invariant performance in a partitioned 
system and explained how it provides the strongest possible composability ar- 
gument from the perspective of certification. The strength of invariant per- 
formance is that it allows one to provide partitioning guarantees in a fashion 
independent of the actual functions within the partitions. We explained how, as 
the assumption of invariant performance is weakened, one is drawn more deeply 
into analysis that requires knowledge and guarantees about the behaviors of 
functions within partitions. This makes the verification effort more difficult and 
weakens the certification argument. While practical issues may limit a system 
designer's ability to provide invariant performance partitioning using commer- 
cial components, ATC has recently developed a system based on the JEM2 
and a companion partition management unit (PMU) that provides invariant 
performance in a partitioned system. 
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