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ABSTRACT 

In this report, we develop a front-end nonlinear auditory model based on recent work of 
Dau, Puschel, and Kohlrausch (DPK) [Dau, Puschel, and Kohlrausch, 1997]. An important 
aspect of the model is the robust accentuation of temporal change in a signal at the cochlea level 
that forms the basis of a feature set for automatic speaker recognition. Preliminary speaker 
recognition experiments with the DPK front-end auditory model give performance close to that 
from the standard mel-cepstrum. Fusion of scores from the mel-cepstrum and the DPK front-end 
auditory model, however, is shown to give a useful performance gain relative to the standard 
mel-cepstrum alone. The dynamics provided by the nonlinear auditory model, therefore, appears 
to provide some "orthogonality" to that of the more static mel-cepstral representation. 

In addition, in this report, we provide initial development of new "common modulation" 
features based on modeling a more central region of auditory processing in the brain's inferior 
colliculus than the low-level auditory front-end. These higher-level features rely on the DPK 
auditory model as a foundation for further analysis of low-level temporal trajectories. This new 
feature representation is an important research direction and provides additional feature 
"orthogonality" to front-end auditory processing, as exhibited in improved speaker recognition 
performance with fusion of scores from low-level and high-level feature sets. 

in 
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1.0 INTRODUCTION 

The proposed primary objective for FY2001 was to develop robust techniques for extraction of 
speech source and vocal tract parameters and to apply these techniques to improve speaker 
recognition in degrading environments characterized by noise and distortion. For the robust 
speaker recognition research, our approach is to develop new parameter extraction techniques 
using linear and nonlinear models of distributed source generation in the vocal tract, and more 
generally using novel temporal representations of speech events on different time scales. In prior 
work at Lincoln [Quatieri, Jankowski, and Reynolds 1994], speaker identification performance 
improvements have been achieved by estimating the onset times of secondary excitation pulses 
within glottal cycles. Here we had assumed secondary excitations (per glottal cycle) were 
associated with a nonlinear production model, e.g., multiple vocal fold vibrations or sound 
generation by vortices. This is a special case of distributed source generation illustrated in Figure 
T. 

New Nonlinear Modeling 

Figure 1: Distributed 
excitation modeling 
approach. 

Sources   —each dependent 
on vocal tract shape and 
dynamics   —excite different 
but related, systems 

Generalized multi- 
source, multi  -system 

transfer characteristic 

Lips 

Spatially distributed, 
flow -induced vortex 

( smoke-Ring ) 

sources 

Vocal 
Cords 

Source 1 
System 

1 \±&4 [T]^te ^0 ww 
Source 2 Source n 

In onset-time recognition experiments, the source arrival times were measured with the high- 
resolution Teager energy operator that consists of only three discrete-time samples [Maragos, 
Kaiser, Quatieri, 1996] and gives a robust high-resolution energy estimate. The onset times were 
used as features in the Lincoln Gaussian-mixture speaker identification algorithm [Reynolds, 
1995]. Feature sets were constructed with primary pitch and secondary pulse locations derived 
from low and high speech formants (Figure 2). Preliminary testing was performed with a 
confusable 40-speaker subset from the NTEVIIT (telephone channel) database. Speaker 
identification improved from 55% to 70% correct classification when the full set of new resonant 
energy-based features were added as an independent stream to conventional mel-cepstra 
[Quatieri, Jankowski, Reynolds, 1994]. About half of the performance gain was achieved with 
the secondary pulse arrival times. One important observation in this work is that occasionally 
within a glottal cycle, some formants exhibited both primary and secondary onset times, while 
others only primary onset times, and that use of the secondary onset times as a speech feature 
improved speaker identification performance. This is consistent with secondary pulses not 
always exciting all formants associated with primary pulses, and may be consistent with a 
speaker dependence of this attribute. 



ORIGINAL WAVEFORM 

Figure 2: Estimation of 
distributed source time-of- 
arrivals from the Teager 
energy formant output. 
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The importance of these experiments for our purpose is the illustration of the existence of 
temporal-based features "orthogonal" to the spectral-based mel-cepstrum. Nevertheless, there are 
limitations to this approach in requiring explicit formant, pitch, voicing, and pulse-time 
estimation that are not desirable under degrading conditions. Furthermore, the approach is far too 
model-constrained to reflect a rich variety of temporal features. A more practical problem is that 
a C-code rendition of the current Matlab code is a large time investment. Although we may 
revisit this approach in the future, we now take a different tact. We desire this different approach 
to give a rich variety of temporal features that reflect both linear (e.g., transient and transitional) 
and nonlinear (e.g., distributed sources from vortices or secondary glottal flaps) phenomenon, 
allow perspectives on different time scales (e.g. within a single glottal cycle and a phone 
sequence), and be robust in degrading environments characterized by additive noise and signal 
distortions. 

With these desired properties in mind, we have introduced an auditory model-based approach 
because of its known ability to represent temporal structure on both a fine and coarse scale 
[Pickles, 1988], as from complex nonlinear production models, and because of its speech 
recognition robustness in noise for human and machine [Strobe and Albeer, 1998], [Tchorz and 
Kollmeier, 1999], [Schmidt-Nielsen and Crystal, 2000]. This perception-based, non-parametric 
approach is a more solid foundation than the parametric approach that originally motivated this 
study in which secondary pulse times provided temporal feature streams [Quatieri, Jankowski, 
and Reynolds, 1994] because, as we have observed, the later approach requires explicit formant, 
pitch, and voicing estimation that is not desirable under conditions. Specifically, we are utilizing 
a recent auditory perception model by Dau, Puschel, and Kohlrausch that accounts for 
importance of temporal change arising from speech dynamics [DPK, 1996]. We are also using a 
more-recent extension of this model to a higher level of the auditory pathway, motivated by the 
physiological studies of Schreiner and Langner [Schreiner and Langner, 1988] that purport that 
temporal amplitude modulations within the inferior colliculus of the cat are "orthogonal" to the 
more spectrally-based lower-level front-end auditory features. 

In this report we show, in the context of automatic speaker recognition, some degree of 
"orthogonality" with the mel-cepstrum of two new auditory-based feature sets: (1) The 
nonlinearity of the front-end auditory model provides accentuated dynamics not seen by a 
conventional front-end auditory model and (2) A high-level (inferior colliculus) frequency 
analysis and integration of common modulation of the auditory channels of (1) further reveals 
temporal structure. Fusion of likelihood scores from these two feature sets with mel-cepstral 
scores provides an encouraging recognition performance gain over use of the conventional mel- 
cepstrum alone. Specifically, this report describes the following FY01 accomplishments: 



1. C-code implemention of the Dau, Puschel, and Kohlrausch (DPK) front-end nonlinear 
auditory model [Dau, Puschel, and Kohlrausch, 1997] that robustly accentuates temporal 
change. 

2. Preliminary automatic speaker recognition experiments with the DPK front-end auditory 
model, giving speaker recognition performance close to that from the standard mel-cepstrum. 

3. Fusion of scores from the mel-cepstrum and the DPK front-end auditory model, giving useful 
performance gain relative to the mel-cepstrum alone. The dynamics provided by the full 
auditory model, therefore, appears to provide some "orthogonality" to that of more static 
features. 

4. Initial development of new "common modulation" features based on a more central region of 
auditory processing in the brain's inferior colliculus than the low-level auditory front-end. 
These higher-level features rely on the DPK auditory model as a foundation for further 
analysis of low-level temporal trajectories. This new feature representation is an important 
research direction and provides additional feature "orthogonality" to front-end auditory 
processing and, as a result, improved speaker recognition performance. 

In this report, we summarize our accomplishments in each of the above areas, and end with a 
discussion of future directions. 

2.0 FRONT-END AUDITORY MODEL DEVELOPMENT 

We observed above that the front-end auditory model of "effective signal processing" by Dau, 
Puschel, and Kohlrausch (DPK) accounts for importance of temporal change (i.e., speech 
dynamics) [DPK, 1996] and gives improved automatic speech recognition relative to mel- 
cepstrum in noise [Strope and Albeer, 1997], [Tchorz and Kollmeier, 1999]. In this section, we 
describe our simulation of the DPK model, modification of the model for specific desired 
temporal resolution, and examples using both synthetic and real speech. We begin with a 
baseline system that gives equivalent temporal resolution to the standard mel-cepstrum and does 
not invoke the nonlinear component of the model. The nonlinear element, responsible for 
auditory adaptation, is then added, resulting in enhanced manifestation of temporal dynamics. 

2.1 Baseline System 

The three basic elements of the DPK front-end model are: (1) Constant-Q filter-bank front end, 
(2) Adaptive nonlinear compression, and (3) Smoothing of nonlinearly-compressed channel 
outputs (Figure 3). In the original DPK model, the smoothing component was fixed across 
frequency to emulate certain aspects of temporal masking; as seen in Figure 3, we have 
generalized the smoother to vary with auditory channel. In this section, we describe the two 
linear modules and in the following section, we describe the nonlinear module. 

Figure 3: Basic 
elements of the 
Dau, Puschel, 
and Kohlrausch 
auditory model. 
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The bandpass filters of the auditory-like filter bank have spectral magnitude envelopes that are 
Gaussian in shape. The bandwidths and center frequencies of each Gaussian filter were designed 
to be close to that of triangular filters used in the standard mel-filter energy calculation. These 
Gaussian filters are illustrated in Figure 4 superimposed on the triangular filters used by the mel- 
cepstrum. This particular design was chosen in order to avoid the discontinuous derivative of the 
triangular filters while providing a basis similar to the triangular filters. To implement the 
Gaussian filter bank, zero phase was assigned to each Gaussian-shaped envelope and inversed 
transformed to form a set of FIR filters, each 240 samples (30 ms at 8000 samples/s) in duration. 
Each filter is convolved with the pre-emphasized input speech waveform via FFT overlap-add. 
Pre-emphasis was also used in the original DPK model; we selected the first-order pre-emphasis 
that is used in the standard mel-cepstrum calculation in order to provide a baseline as close as 
possible to the mel-cepstrum formulation. 

500 1000 1500 2000 2500 
Frequency (Hz) 

3003 3500 4000 

Figure 4: The band-pass filters used in the DPK front end are uniformly spaced up to 1000 Hz and 
have logarithmic spacing and bandwidth above 1000 Hz up to 4000 Hz. The shape of each filter 
frequency response is Gaussian (solid curves) and selected to match each triangular shape from the 
standard mel-filters (dashed curves). To preserve phase, we chose a zero-phase rendition of the 
Gaussian-shaped filters. Further improvements might be made with replacing the Gaussian filters 
with Gammatone filters (as used by DPK) and by forming a minimum-phase rendition of the filter 
responses, both of which are known to better emulate auditory signal processing. 

A band-dependent smoother was selected to yield resolution approximately equivalent to a 20-ms 
Hamming window when convolved with each filter-output envelope of the filter bank. The 
resulting resolution is thus equivalent to that of the standard mel-cepstrum derived from a 20-ms 

Hamming window analysis. Specifically, for the kth Gaussian filter hk[n] of our filter bank, and 

a   Hamming   window    w[n],   the   output   smoothing   filter    gk [n]    is   designed   such   that 
WM = gk[n]*hk[n] where * denotes convolution and where hk[n] is understood to be complex. 

Each  filter   gk[n]   was obtained using an inverse FFT of  W{co)l Hk(a>)   where   W(&>)and 

Hk (a>) denote the frequency response of w[n] and hk[n], respectively. We refer to gk[n] as the 

"exact inverse" smoothing filters. Each resulting filter was constrained to be 30 ms in duration by 
truncation. 

An example of an exact inverse design is shown in Figure 5 for the 23rd channel of a 24-channel 
Gaussian filter bank. The bandwidth of the 23rd channel is very wide, and thus its impulse 
response very narrow, and so for this case a long exact inverse smoothing filter is required to 
meet the 20-ms resolution of the Hamming window. For lower-frequency filters, shorter filter 



responses are required to meet the desired time resolution. Using features derived by sampling 
the resulting filter-output envelopes, we found speaker recognition performance, using the corpus 
and evaluation strategy of the following section, to be roughly equivalent to that of the standard 
mel-cepstral analysis, as expected because we have not attempted to improve on the window 
resolution. By forcing a temporal resolution equivalent to that of the mel-cepstrum, we have 
removed any possible recognition benefit of the greater inherent temporal resolution provided by 
a direct auditory filter-like output, a path we will revisit in the future. Nevertheless, this analysis 
system provides a good baseline for establishing the importance of auditory-model adaptation 
and higher-level representations. 

Figure 5: Design of an 
"exact inverse" smoothing 
filter for channel 23 of a 24- 
channel Gaussian filter bank. 
Upper panel: Envelope of 
Gaussian filter impulse 
response. Middle panel: 
Exact inverse design. Lower 
panel: Superposition of 20- 
ms Hamming window (solid) 
and convolution of Gaussian 
filter and exact inverse 
(dashed) filter impulse 
responses. 
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2.2 Nonlinear Adaptation 

The adaptive nonlinear component of the DPK model enhances temporal change and appears to 
be the most important element of the model in achieving robustness in noise [Tchorz and 
Kollmeier, 1999]. As illustrated in Figure 6, the nonlinearity consists of five stages, each of 
which is a first-order smoother whose input is the output of the previous stage divided by the 
output of the first-order smoother delayed by one time sample. Observe that, because a division 
takes place at the input of each stage, one must take care in division by zero. To avoid division 
by exceedingly small numbers, the input level is set to a minimum threshold if it is smaller than 

the threshold. In our implementation, the threshold was set to 10~   (over a signal range [-1,1]). 

Thus, for a constant input signal with zero amplitude, the output signal is not zero but the 2 th 

root of 10~   (with 5 adaptation loops). [In steady-state, the output O of each recursive stage is 

related to its input / by O = /10 or O - I'2.] Since we assume zero initial condition, we set the 
initial condition in each first-order smoother according to this relation for an assumed input 

10~ . Thus the initial condition for the first smoother is 10"" , for the second 10" , and so on up 
to the fifth stage. After direct feedback from the authors (DPK), we were able to accurately 
mimic their published test cases [DPK, 1996], incorporating the above (unpublished) parameter 
specifications. 



Nonlinearity 
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Figure 6: Nonlinear module of the DPK auditory model. Upper panel 
Complete five-stage nonlinearity; Lower panel: One nonlinear 

smoothing component, -^.[n] and M^fn] are the input and ouput, 

respectively, of the nonlinearity of each channel. 

The implementation of the full DPK auditory model, including the above nonlinearity, was first 
coded in Matlab for development and refinemnent purposes. Its C-code rendition was then 
implemented for computational speed in recognition experiments. An important difference 
between the Matlab- and C-code versions is the need to structure the C code frame-by-frame, 
while the Matlab function runs on the entire speech waveform. The C-code version thus entailed 
working out the buffering, level, and initial condition requirements for frame-based processing, 
and giving energy trajectories similar to those of the Matlab simulation. Therefore, significant 
effort was made in refining considerations on each component of the 5-stage nonlinearity for a 
frame-based system, including the limiting conditions for small-valued input. 

An example in Figure 7 shows the response of the C-code system for a sine-wave input of 875 
Hz, corresponding to the center frequency of the 9lh auditory bandpass filter. The output is 
characterized by an abrupt jump at the signal onset, a log-like compression during the static 
portion of the signal (auditory "adaptation"), and a sharp drop and recovery at the signal offset. 
This design has a remarkable cabability to accentuate signal change, such as onset and offsets, 
and compress stationary regions such as steady portions of vowels, in a manner a static design 
could not achieve. That is, this capability cannot be obtained with a simple static nonlinearity, 
such as a fixed logarithmic operation, that is more standardly used in auditory modeling. 



Figure 7: Response 
(b)oftheDPK 
auditory model to a 
875 Hz sinewave (a) 
centered on the 9,h 

bandpass filter. 
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On real speech, as in the synthetic case, while the static regions are found to be close to log- 
compressed, rapidly-varying regions are accentuated, as illustrated in the example of Figure 8. 
In the figure, the output envelope of the 2nd (near 200 Hz) and the 11th (near 2000 Hz) are 
shown for both the full DPK auditory model and the DPK model with the adaptive 
nonlinearity replaced by a static log-compression. The later case acts similar to the 
computation of the standard mel-scale filter energies. Our first observation is that the 
presence of the adaptive nonlinearity clearly accentuates the speech dynamics, relative to 
the log-compression. Onsets and transient events are accentuated. Furthermore, different 
filters reveal different events; in the example, the filter #2 output envelope shows onsets 
(dashed lines) while filter #11 better reveals transient events (dotted lines), in particular the 
plosives. Another interesting observation is that we see in low-frequency filter outputs, 
semblances of the response to a single sine wave, as depicted in the box superimposed on the 
#2 filter-output envelope. This is because the low-frequency filters are narrow enough to pass 
a few, and sometimes a single, sine wave. 

Adaptive Compression 

,1 1 1 1    .      I 1 l^_- 1 1 H !_. 1 1   -4' ' ' ' ' ' ' ' ' — • 
0 01    '     02 0.3!    I   0.4 O.f 00 0.7    :;   0B Oft 1     0 01 02 03 04 05 08 07 0B 09 1 

Filter 11 

Figure 8: Illustration of band-pass filter-output 
envelope of the DPK auditory model with the 
adaptive nonlinearity (left bottom panels) and with 
static log-compression (right panels). Upper left 
panel shows the original speech waveform. Two filter 
outputs are depicted. 



3.0 RECOGNITION WITH FULL FRONT-END AUDITORY MODEL 

Speaker recognition experiments were performed using the Lincoln GMM-UBM recognition 
system [Reynolds, 1995]. The training and testing utterances are taken from a subset of the 1998 
NIST evaluation corpus; both correspond to electret handsets, but possibly different telephone 
numbers. 50 target speakers are used for each gender with 262 test utterances for males and 363 
for females. Target training utterances are 2 min in duration and test utterances 30 s in duration. 
Background models are trained using the 1996 NIST evaluation corpus and 1996 NIST 
evaluation development corpus. The experiments were performed using both standard cepstral 
mean subtraction and RASTA to account for telephone channel degradation. Energy measures 
from the mel-filters and the DPK auditory front-end filters were downsampled and transformed 
to a 19-element feature vector, allied with delta-cepstra, through the discrete-cosine transform. 
We performed recognition comparisons at a 5-ms analysis frame interval because this frame 
interval gives a slight performance gain over the standard 10-ms interval for the auditory features 
and comparable performance with a 10-ms interval for mel-cepstral features. Observe that the 
standard RASTA filter (designed for a 10-ms frame) requires a re-design. This was performed by 
an explicit factor-of-two upsampling of the standard RASTA filter impulse response to create an 
unconventional FIR RASTA filter. 

The result of a speaker recognition experiment with features derived from the DPK auditory 
model is shown in Figure 9 where we see Detection Error Rate (DET) performance for male 
speakers, relative to the recognition with the standard mel-cepstrum. Although there is a small 
relative decrease in performance with the use of the DPK features over some parts of the DET 
curve, the important observation is that the new auditory features provide a good basis for 
speaker recognition. An important question is whether these new features provide new, 
"orthogonal", information that the mel-cepstrum does not provide. Toward this end, we fused the 
scores (with equal weight) obtained from the two feature sets, with the result of a reasonable 
performance gain over either feature set alone, as shown in Figure 9. There appears then to be 
some orthogonality between the two feature sets. 

SW9S6-U-CE Ua» EvaS9 

Figure 9: illustration of speaker 
verification improvement via score fusion 
of DPK auditory and mel-cepstrum 
features. Fusion of scores provides a 
performance improvement over either 
feature set alone. 
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It should be noted that in recognition with the new auditory-based features, we have applied both 
Cepstral Mean Subtraction (CMS) and RASTA. Application of RASTA, however, is in some 
sense self-defeating because RASTA low-pass-filters temporal trajectories, thus perhaps 
reducing the rapid changes we are attempting to exploit in recognition. In future work, removing 
RASTA may therefore further improve "orthogonality" with respect to the standard mel- 
cepstrum. Finally, we emphasize that another caveat in the above experiments is that, through an 
"exact inverse" post-filter (Section 2.1), we have forced the temporal resolution of the baseline 
auditory filtering to be equivalent to that of the mel-cepstrum. We enforced this restriction in part 
to provide a known (preliminary) starting point and in part to avoid the need for multi-resolution 
sampling of filter-bank outputs. 

4.0 A HIGH-LEVEL AUDITORY CHANNEL EXTENSION 

Although we have seen some performance gain with the use of new auditory features for speaker 
recognition, we have barely exploited the temporal dynamics of the complete chain of aural 
processing by the human; that is, the richness of the temporal trajectories was lost in a simple 
envelope sampling. Indeed, Dau, Kollmeier, and Kohlrausch [Dau, Kollmeier, and Kohlrausch, 
1997] realized this limitation in seeking to extend the DPK model and, as a result, proposed an 
interesting extension of the original model. This extension was motivated by the physiological 
studies of Schreiner and Langner [Schreiner and Langner, 1988], showing that amplitude 
modulations in the cochlea channels are passed up the auditory pathway to a higher-level region 
of the brain referred to as the inferior colliculus (IC). These amplitude modulations are 
represented in a systematic way orthogonally to the tonotopical organization of the basilar 
membrane. The experiments were performed on a cat's auditory system which is known to be 
similar to that of the human. The placement along the auditory pathway of the inferior colliculus 
relative to that of the cochlear front end is illustrated in Figure 10. 

Figure 10: Location of the inferior 
colliculus relative to that of the cochlear 
front end along the auditory pathway. 
Figure from [Hudspeth, 2000]. 



4.1 Model of the inferior colliculus (IC) 

To further clarify the importance the inferior colliculus (IC), in the Schreiner and Langner work, 
the IC of the cat revealed a linear array of cells that corresponds to the tonotopic organization of 
the cochlea filters of the basilar membrane. By "tonotopic" we mean the spatial dimension of the 
basilar membrane being related monotonically to frequency. Moreover, each IC cell is tuned to 
different temporal modulation frequencies of the envelope of a cochlea filter-output signal. The 
stimulus in these experiments consisted of sine waves with carriers equal to the characteristic 
frequency of the IC cells. Each sine wave was amplitude-modulated with the frequency of the 
amplitude modulation selected as the experimental variable, and the response of each cell was 
measured with the changing frequency of the amplitude modulation. Modulation transfer 
functions were obtained, i.e. ,the response as a function of modulation frequency, and best 
modulation frequencies were then established for each IC cell. Best modulation frequencies were 
found to scan the range [90, 1000] Hz, with a concentration between 30 and 300 Hz. The shape 
of the modulation transfer functions is primarily band-pass, although high-pass, low-pass, and 
band-reject were also observed. Because of some redundancy in the modulation transfer 
functions, best modulation frequencies may appear in more than one IC cell, covering a range of 
different bandwidths. 

For many IC cells, the best modulation frequency was characterized by a strong synchronization 
to the signal envelope, similar to a phase synchrony at the lower cochlea signal level [Pickles, 
1988]. (Another property of the IC, perhaps related to this synchrony, is the frequency 
occurrence of "intrinsic oscillations" that are speculated to provide a delay line for correlation 
analysis within the IC region.) In many cases, this synchrony appears strong just after the 
stimulus onset for modulation frequencies above the best modulation frequency and wane 
thereafter. Synchrony also deteriorates with increasing modulation frequency. On the average, 
the mean and upper best modulation frequency for a channel increased with the characteristic 
frequency of the IC cell. Although the best modulation frequency is concentrated in the range 
[30, 300] Hz, as mentioned, the best frequency was found to go as high as 1000 Hz, thus 
providing high temporal resolution. This temporal envelope representation of the inferior 
colliculus thus complements the more well-established spectral-based processing at the lower- 
level cochlea. One approach to realize this, perhaps, "orthogonal" information for recognition is 
to perform a frequency analysis of each temporal trajectory as through, for example, a filter-bank 
analysis [Dau, Kollmeier, and Kohlrausch, 1997]. Features can then be obtained from this filter- 
bank output. 

In invoking the desired frequency analysis of each filter-bank-output envelope, one preliminary 
"nested" analysis configuration that we are proposing is illustrated in Figure 11 where a 12- 
element filter bank over a 1000-Hz range (Figure 12) is allied to the envelope of each filter 
output. "Nested" refers to the output of each nonlinear auditory channel (denoted as nac in 
Figure 11) being processed by a second-stage filter bank. The bandpass filters that we 
implemented are similar to those used by Dau, Kollmeier, and Kohlrausch [Dau, Kollmeier, and 
Kohlrausch, 1997], being ls'-order recursive with different time constants corresponding to 
different filter bandwidths. Each filter-bank output is complex and can be represented by a 
complex phasor:  a[n]exp(j0[n])   with magnitude  a[n]and phase  8[n]. Above  10 Hz, we 

sample only the magnitude, a[n], of each channel at a 5-ms frame rate. Below 10 Hz, we sample 

the quadrature representation, a[n]cos(jd[n]), because the magnitude function at such low 
frequency is said to not be well estimated. In addition, this preserves signal phase in the low- 
frequency region and thus is consistent with physiological evidence of such phase preservation 
[Pickles, 1988]. In this sampling strategy, no attempt has been made  to address aliasing due to 

10 



under sampling. The extraction of features from the 24 x 12 = 288 element array of temporal 
envelopes is clearly unwieldy. Nevertheless, such a 2-D array is likely the information- 
(modulation) rich signal-network structure that is used by the higher (brain) levels of the auditory 
system. 
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nacl * 

nac2 
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•     nacN 
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Figure 11: A nested-channel extension of the DPK front-end auditory 
model. The outputs of each front-end nonlinear auditory channel (nacl, nac2 
...nacN), i.e., the processor of Figure 3, are further analyzed by the filter 

bank /i, h2 ...hM (Figure 12). "Nested" refers to the output of each nac being 

processed by a second-stage filter bank. 
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300 

Figure 12: The band-pass filters used to measure common channel modulation (in the nested 
configuration of Figure 11) are uniformly spaced by 5 Hz with a 5-Hz bandwidth up to 10 Hz and 
have logarithmic spacing and bandwidth above 10 Hz up to 1000 Hz. To preserve phase in the low- 
frequency region, the quadrature version of the filter output is sampled up to 10 Hz, while the filter 
output envelope is sampled above 10 Hz. No attempt has been made to address aliasing due to under- 
sampling. Only the first 300 Hz of the filter bank is shown. 
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4.2 Feature Extraction 

One approach that we are proposing to reduce dimensionality is seen in the summation post- 
network in Figure 13. The summation implements an average of the filtered trajectory outputs, 
corresponding to the same modulation frequency across channels. Interesting properties of this 
configuration is that it is consistent with the above observed redundancy across IC filters, 
enhances common modulation across frequency, and may provide a reasonable reduction of the 
information that is orthogonal to the tonotopical organization of the basilar membrane (e.g., 
information provided by the mel-cepstrum). It is interesting to observe that our extraction of 
common modulation is also consistent with recent theories of auditory scene analysis [Bregman, 
1990]. 
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Figure 13: Reduction of dimensionality in the nested-channel extension of the DPK 
auditory model.   For each front-end center frequency, the output envelopes of each filter 

/?, h2 ...A   are summed to enhance common modulation and to yield a reduced feature set. 
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An example of the nested auditory output for speech input is shown in Figure 14, consisting of a 
particularly noisy Switchboard (NIST 98) example. In the figure we see two sets of summed 
filter outputs: from band-pass filter #4 at about 25 Hz and from band-pass filter #12 at about 800 
Hz. We have turned off the post-smoothing in the auditory front end to maintain signal dynamics 
prior to summation. We see that the summation accentuates dynamics common across cochlear- 
filter outputs and is robust in the presence of noise. The modulation structure for the high- 
frequency summation reflects fine transient, transition, and pitch structure, while the modulation 
structure for the low-frequency summation reflects a broader look at common modulation across 
frequency. Observe also that the low-pass filter reveals a sine-like response as depicted in the 
boxes of Figure 14. Clearly, the current fixed 5-ms frame sampling imparts aliasing due to under- 
sampling of the modulation from high-frequency summation. 

Figure 14: Summation output (c) of 
one low-frequency filter (filter #4) 
and (b) of one high-frequency filter 
(filter #12) of the high-level inferior 
colliculus-model filter bank (Figure 
12). The original noisy Switchboard 
passage is given in panel (a). As an 
aside, it is interesting to observe in 
panel (c) the two responses enclosed 
in the boxes are similar to that of 
Figure 7b where a single sine wave 
enters a narrowband filter. 

4.3 Speaker Recognition 

The result of automatic speaker recognition with the inferior colliculus-based features is shown 
in Figure 15 where we see performance for male speakers, relative to recognition with the DPK 
front-end auditory-model and the mel-cepstrum features. Although there is relatively low 
performance with the inferior colliculus-based features, fusion of scores from these features with 
the two other feature sets provides a good incremental performance gain in speaker recognition, 
relative to the solid curve of Figure 9. Consistent with the physiological observations of 
Schreiner and Langner [Schreiner and Langner, 1988], there is additional "orthogonality" 
relative to the two previous spectrally-based feature sets. 
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Figure 15: Illustration of speaker 
verification improvement via fusion of 
scores from the DPK auditory front end 
(0.25 weight), the high-level inferior 
colliculus model (0.25 weight), and the 
mel-cepstrum (0.50 weight). Fusion of 
scores provides a useful performance 
improvement over the mel-cepstrum alone. 
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5.0 FUTURE DIRECTIONS 

We began this research effort with the objective of extracting speech source and vocal tract 
parameters based on new linear and non-linear speech production models, and to apply these 
techniques to improve speaker recognition in degrading environments characterized by noise and 
distortion. The auditory model-based approach was introduced because of its known ability to 
represent temporal structure on both a fine and coarse scale, as introduced by complex nonlinear 
production models, and because of its recognition robustness [Tchorz and Kollmeier, 1999], 
[Schmidt-Nielsen and Crystal, 2000]. We felt this perception-based, non-parametric approach is 
a more solid foundation than the parametric approach that originally motivated this study in 
which secondary pulse times provided temporal feature streams [Quatieri, Jankowski, and 
Reynolds, 1994] because the later approach requires explicit formant, pitch, and voicing 
estimation that is not desirable under degrading conditions. 

In summary, from preliminary speaker recognition results, we have shown some degree of 
orthogonality with the mel-cepstrum of the two new auditory-based feature sets: (1) The 
nonlinearity of the auditory front-end provides accentuated dynamics not seen by a conventional 
auditory front-end model and (2) A frequency analysis and integration of common modulation of 
the auditory channels of (1) further emphasizes temporal structure. Fusion of likelihood scores 
from these two feature sets with mel-cepstral scores provides an encouraging recognition 
performance gain over use of the conventional mel-cepstrum alone. 

Our approach provides an important new direction in speech feature representation with many 
possibilities and questions remaining. Here we name several: 

1. The particular auditory dynamics for the nonlinear auditory component (Figures 3 and 6) were selected 
to mimic the work of Tchorz and Kollmeier [Tchorz and Kollmeier, 1999] who are developing features 
for speech recognition. The auditory system, on the other hand, is known to sometimes adapt itself to 
the task at hand, and thus it behooves us to optimize the nonlinear dynamics for speaker recognition. 

2. The postfilters used in our auditory model (Figures 3 and 5) were selected to preserve a constant 
temporal resolution across frequency. Clearly, this imposes an unnecessary limitation. Likewise (as 
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alluded to at the end of Section 3), an additional limitation has been invoked in the use of RASTA with 
features derived from the nonlinear auditory model. 

3. Our summation method of feature reduction from the 288 channels of the high-level auditory model of 
Figures 11 and 13 are preliminary and heuristic. One can conceive of a multitude of other approaches. 
One alternate approach we are currently exploring relates sub-groups of channels to auditory precepts 
(which may relate to abstract articulatory precepts). Each sub-group will form a feature stream, and 
likelihood scores from these feature streams will be fused. 

4. In general, although improving resolution, our new approach is still lacking in a clear understanding 
and implementation of time- and frequency-resolution and sampling. With respect to resolution, we 
seek to include hierarchical temporal information, going beyond simple delta cepstra that "look" over 
about 50 ms with sub-groups [of (3) above] that integrate temporal information over longer time 
durations. With respect to sampling, our current frame-based, uniform sampling needs to be 
generalized to a non-frame-based, non-uniform approach, as motivated by the multi-resolution of 
Figure 14. 

5. Exploiting a large training corpus, such as the NIST 2001 extended corpus (e.g., 45 min training 
sessions), for representing temporal structure on different scales. Evidence of the importance of larger 
time scales for speaker recognition has been demonstrated in idiolectal speech representations which 
requires phone or speech recognition [Doddington, 2001], [Andrews, Kohler, Campbell, 2001]. Our 
multi-level auditory-based approach provides the possibility of capturing idiolectal differences without 
the need of speech or phone recognition. 

6. Testing the new auditory-based features in degrading environments, relative to the mel-cepstrum, 
including channel mismatch conditions, where the channels for the training and test data are 
mismatched. Additional speaker identification experiments will be carried out on the MIST 
(Multilingual Interoperability of Speech Technology) data being collected by the NATO IST-TG01 
group, as this data becomes available. 

7. Investigating the effect of channel normalization methods such as znorm, hnorm, and tnorm. 

8. Revisit early work on temporal features derived from the distributed-source paradigm described in the 
introduction to this report. This would involve developing a nonlinear aeroacoustic speech production 
model accounting for the spatially distributed sound sources and the associated multi-source excitation 
induced by non-acoustic fluid motion in the vocal tract, building upon the previous work of Sinder, 
Krane, and Flanagan [Sinder, Krane, and Flanagan, 1998], [Sinder, 1999]. In general form, this model 
will include n sources SI, S2,...,Sn distributed along the vocal tract, each contributing to the speech 
production via corresponding transfer functions HI, H2, ..., Hn. A first experiment will be specializing 
this general nonlinear distributed source model to the case of two sources, and using this model to 
develop robust techniques for estimating the effects of secondary pulse excitations, as were initially 
shown in the earlier work at Lincoln Laboratory [Quatieri, Jankowski, and Reynolds, 1994], 
Extensions to more than two sources, and relation to our above modulation auditory modeling, would 
then follow. For the speaker identification experiments, the distributed source model techniques will be 
combined with other robust speaker identification techniques. 
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