
PROCEEDINGS 

v ■'■ 

16-19 JUNE 2001 BOSTON, MASSACHUSETTS 

IEEE 

COMPUTER 
SOCIETY 

/       Sponsored by IEEE Computer Society Technical Committee on Mathematical Foundations of Computing 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB NO. 0704-0188 

Public Reporting burden for this collection of information is estimated to average 1 hour par response, including the time for reviewing instructions, search.ng existing data solves, gathering 
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden esBmates or any other «^^^StaL Suite 
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operabons and Reports, 1215 Jefferson Dav.s Highway, Surte 
1204, Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Proiect (0704-0188,)JVa^gton^UL^ZUSO^ 
1. AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 

March  31,   2001 
TITLE AND SUBTITLE 

2001 IEEE Conference on Logic and 
Computer Science (LICS 2001) 

6. AUTHOR(S) 

Joseph Halpern (Editor) 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

IEEE  LICS 

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Dr. Ralph Wächter 
ONR 
6 Ballston Tower One 
800 North Quincy Street 

3. REPORT TYPE AND DATES COVERED 

Final 
5. FUNDING NUMBERS 

N00014-01-1-0568 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

Arlin 
11. SUPPLEME 

igton,   VA 
iNtÄRY NOTES 

22217 

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12 b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

The LICS Symposium is an annual internationa 
practical topics in computer science that re 
sense. Topics of interest include: automata 
concurrency, constraint programming, databas 
finite model theory, formal methods, hybrid 
linear logic, complexity, artificial intelli 
modal and temporal logics, model checking, s 
rewriting, specifications, type theory, and 

1 forum on theoretical and 
late to logic in a broad 
theory, category theory, 

e theory, domain theory, 
systems, language calculi, 
gence, logic programming, 
emantics, security, 
verification. 

14. SUBJECT TERMS 

Logic, Computer Science,automata,language calculi, 
concurrency, formal methods, model checking, 
security, specifications, verification 

17. SECURITY CLASSIFICATION 
OR REPORT 

UNCLASSIFIED     

18. SECURITY CLASSIFICATION 
ON THIS PAGE 

UNCLASSIFIED  

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

441 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL          

NSN 7540-01-280-5500 
89) 

ANSI Std. 239-18 

Standard Form 298 (Rev.2- 
Prescribed by 

298-102 



fiFNFRAL INSTRUCTIONS FOR COMPLETING SF 298 

The Report Documentation Page (RDP) is used for announcing and cataloging reports   It is important 
that this information be consistent with the rest of the report, particularly the cover and title page. 
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet 

optical scanning requirements.  ,  —  

Block 1. Aaencv Use Only (Leave blank) 

Block 2. Report Date. Full publication date 
including day, month, and year, if available (e.g. 
1 Jan 88). Must cite at least year. 

Block 3. Type of Report and Dates Covered. 
State whether report is interim, final, etc. If 
applicable enter inclusive report dates (e.g. 
10Jun87-30Jun88). 

Block 4. Title and Subtitle. A title is taken from the part of the 
report that provides the most meaningful and complete information. 
When a report is prepared in more than one volume, repeat the 
primary title, and volume number, and include subtitle for the 
specific volume. On classified documents enter the title 
classification in parentheses. 

Block 5. Funding Numbers. To include contract and grant 
numbers; may include program element number(s) project 
number(s), task number(s), and work unit number(s). Use the 
following labels: 

C - Contract 
G - Grant 
PE - Program 

Element 

PR - Project 
TA-   Task 
WU - Work Unit 

Accession No. 

Block 6. Author(s). Name(s) of person(s) responsible for writing 
the report, performing the research, or credited with the content of 
the report. If editor or compiler, this should follow 
the name(s). 

Block 7. Performing Organization Name(s) and 
Address(es). Self-explanatory. 

Block 8. Performing Organization Report 
Number. Enter the unique alphanumeric report number(s) 
assigned by the organization performing the report. 

Block 9. Sponsoring/Monitoring Aoencv Name(s) 
and Addressfes) Self-explanatory. 

Block 10. Sponsoring/Monitoring Agency 
Report Number, {if known) 

Block 11. Supplementary Notes. Enter 
information not included elsewhere such as; prepared in 
cooperation with....; Trans, of...; To be published in.... When a 
report is revised, include a statement whether the new report 
supersedes or supplements the older report. 

Block 12a. Distribution/Availability Statement. 
Denotes public availability or limitations. Cite any availability 
to the public. Enter additional limitations or special markings 
in all capitals (e.g. NORFORN, REL, ITAR). 

DOD 

DOE 
NASA 
NTIS 

See DoDD 4230.25, "Distribution 
Statements on Technical 
Documents." 
See authorities. 
See Handbook NHB 2200.2. 
Leave blank. 

Block 12b. Distribution Code. 

DOD 
DOE 

NASA 
NTIS 

Leave Blank 
Enter DOE distribution categories 
from the Standard Distribution for 
unclassified Scientific and Technical 
Reports 
Leave Blank. 
Leave Blank. 

Block 13. Abstract. Include a brief (Maximum 
200 words) factual summary of the most 
significant information contained in the report. 

Block 14. Subject Terms. Keywords or phrases 
identifying major subject in the report. 

Block 15. Number of Pages 
number of pages. 

Enter the total 

Block 16. Price Code.   Enter appropriate price 
code (NTIS only). 

Block 17. -19. Security Classifications. Self- 
explanatory. Enter U.S. Security Regulations (i.e., 
UNCLASSIFIED). If form contains classified 
information, stamp classification on the top and 
bottom of the page. 

Block 20. I imitation of Abstract. This block must 
be completed to assign a limitation to the 
abstract. Enter either UL (Unlimited) or SAR (same 
as report). An entry in this block is necessary if 
the abstract is to be limited. If blank, the abstract 
is assumed to be unlimited. 



Proceedings 

16th Annual IEEE Symposium on 

Logic in Computer Science 



Proceedings 

16th Annual IEEE Symposium on 

Logic in Computer Science 

16-19 June 2001 • Boston, Massachusetts 

Sponsored by 

IEEE Computer Society Technical Committee on 

Mathematical Foundations of Computing 

IEEE VA'» 

COMPUTER 
SOCIETY 

Los Alamitos, California 
Washington     •     Brussels     •     Tokyo 



Copyright © 2001 by The Institute of Electrical and Electronics Engineers, Inc. 
All rights reserved 

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may 
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume 
that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid 
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. 

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE 
Service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331. 

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. 
They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented 
and without change. Their inclusion in this publication does not necessarily constitute endorsement by the 
editors, the IEEE Computer Society, or the Institute of Electrical and Electronics Engineers, Inc. 

IEEE Computer Society Order Number PRO 1281 
ISBN0-7695-1281-X 

ISSN: 1043-6871 

IEEE Computer Society 
Customer Service Center 
10662 Los Vaqueros Circle 
P.O. Box 3014 
Los Alamitos, CA 90720-1314 
Tel:+ 1714 821 8380 
Fax: + 1 714 8214641 
http://computer.org/ 
csbooks@computcr.org 

Additional copies may be ordered from: 

IEEE Service Center 
445 Hoes Lane 
P.O.Box 1331 
Piscataway, NJ 08855-1331 
Tel: + 1 732 981 0060 
Fax:+ 1 732 9819667 
http://shop.ieee.org/store/ 
customer-service® ieec.ore 

IEEE Computer Society 
Asia/Pacific Office 
Watanabe Bklg., 1-4-2 
Minami-Aoyama 
Minato-ku, Tokyo 107-0062 
JAPAN 
Tel: +81 3 3408 3118 
Fax:+ 81 3 3408 3553 
tokyo.ofc@computcr.org 

Editorial production by A. Denise Williams 

Cover graphic design by Alvy Ray Smith 

Cover art production by Joseph Daigle/Studio Productions 

Printed in the United States of America by The Printing House, Inc. 

IEEE 

COMPUTER 
SOCIETY 



Table of Contents 
16th Annual IEEE Symposium on Logic in Computer Science 

Foreword x 

Conference Organization xi 

Additional Reviewers xii 

Invited Talk 

Chair: Joseph Y. Halpern 

Probabilistic Polynomial-Time Precess Calculus and Security Protocol Analysis 3 
J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague 

Session 1 

Chair: Jean-Pierre Jouannaud 

Definitions by Rewriting in the Calculus of Constructions 9 
F. Blanqui 

Deconstructing Shostak 19 
H. Rueß and N. Shankar 

A Decision Procedure for an Extensional Theory of Arrays 29 
A. Stump, C. Barrett, D. Dill, and J. Levitt 

On Ordering Constraints for Deduction with Built-in Abelian Semigroups, 
Monoids and Groups 38 

G. Godoy and R. Nieuwenhuis 

Invited Talk 

Chair: Jean-Pierre Jouannaud 

Successive Approximation of Abstract Transition Relations 51 
S. Das and D. Dill 

Session 2 

Chair: Pawel Urzyczyn 

A Bound on Attacks on Payment Protocols 61 
S. Stoller 

A Dichotomy in the Complexity of Propositional Circumscription 71 
L. Kirousis and P. Kolaitis 

Relating Semantic and Proof-Theoretic Concepts for Polynomial Time 
Decidability of Uniform Word Problems 81 

H. Ganzinger 



Session 3 

Chair: Radha Jaghadeesan 

Semantics of Name and Value Passing 93 
M. Fiore and D. Turi 

A Fully Abstract Game Semantics of Local Exceptions 105 
J. Laird 

A Universal Characterization of the Closed Euclidean Interval 115 
M. Escardo and A. Simpson 

Invited Talk 

Chair: Gordon Plotkin 

Logician in the Land of OS: Abstract State Machines in Microsoft 129 
Y. Gurevich 

Session 4 

Chair: Michel de Rougemont 

Eliminating Definitions and Skolem Functions in First-Order Logic 139 
J. Avigad 

On the Decision Problem for the Guarded Fragment with Transitivity 147 
W. Szwast and L. Tendera 

The Hierarchy inside Closed Monadic Ii Collapses on the Infinite 
Binary Tree 157 

A. Arnold, G. Lenzi, and J. Marcinkowski 

On Definability of Order in Logic with Choice  167 
T. Huuskonen and T. Hyttinen 

Invited Talk 

Chair: Erich Graedel 

The Engineering Challenge for Logic 
Wolfgang Thomas 

Session 5 

Chair: Erich Graedel 

A Second-Order System for Polytime Reasoning Using Graedel's Theorem 177 
S. Cook and A. Kolokolova 

The Crane Beach Conjecture 187 
D. Barrington, N. Immerman, C. Lautemann, 
N. Schweikardt, and D. Therien 

An n! Lower Bound on Formula Size 197 
M. Adler and N. Immerman 

VI 



Session 6 

Chair: Nevin Heintze 

Light Affine Lambda Calculus and Polytime Strong Normalization .'. 209 
K. Terui 

Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory 221 
F. Pfenning 

Dependent Types for Program Termination Verification 231 
H.Xi 

Short Paper Session 

Chair: Joseph Y. Halpern 

The Dolev-Yao Intruder is the Most Powerful Attacker 
/. Cervesato 

Semantics of Machine Instructions at Multiple Levels of Abstraction 
G. Tan and A. Appel 

A Proof-Carrying Authorization System 
L. Bauer, M. Schneider, and E. Feiten 

Recursive Programming Languages for Complexity Classes 
E. Covino and G. Pani 

Interior-Point Approach to Parity Games 
V. Petersson and S. Vorobyov 

Recent Progress in Proof Mining 
U. Kohlenbach 

On the Complexity of Confluence for Ground Rewrite Systems 
A. Hayrapetyan and R. Verma 

Computing the Density of Regular Languages 
M. Bodirsky, M. Gaertner, T. von Oertzen, and J. Schwinghammer 

Integrating Simplification Techniques in SAT Algorithms 
/. Lynce and J. Marques-Silva 

Basic Completion Modulo with Simplification 
C. Lynch and C. Scharff 

Finite Visit Sequential Deterministic Tree Automata 
S. Lindell 

Invited Talk 

Chair: Ron van der Meyden 

Foundational Proof-Carrying Code 247 
A. Appel 

Vll 



Session 7 

Chair: Parosh Abdul I a 

Intuitionistic Linear Logic and Partial Correctness 259 
D. Kozen and J. Tiuryn 

Perturbed Turing Machines and Hybrid Systems 269 
E. Asarin and A. Bouajjani 

From Verification to Control: Dynamic Programs for Omega-Regular Objectives 279 
L. de Alfaro, T. Henzinger, and R. Majumdar 

Deterministic Generators and Games for LTL Fragments 291 
R. Alur and S. La Torre 

Session 8 

Chair: Adolfo Piperno 

Normalization by Evaluation for Typed Lambda Calculus with Coproducts 303 
T. Altenkirch, P. Dybjer, M. Hofinann, and P. Scott 

Strong Normalisation in the 7C-Calculus 311 
N. Yoshida, M. Berger, and K. Honda 

A Symbolic Labelled Transition System for Coinductive Subtyping of F/;< 
Types 323 

A. Jeffrey 

A Continuum of Theories of Lambda Calculus without Semantics 334 
A. Salibra 

Session 9 

Chair: Hubert Comon 

Relating Levels of the Mu-Calculus Hierarchy and Levels of the Monadic 
Hierarchy 347 

D. Janin and G. Lenzi 

Focus Games for Satisfiability and Completeness of Temporal Logic 357 
M. Lange and C Stirling 

Safety and Liveness in Branching Time 366 
P. Manolios and R. Trefler 

Short Papers 

Self-Verifying Systems, the Incompleteness Theorem and the Tangibility 
Reflection Principle 

D. Willard 

Repairing the Interpolation Theorem in First-Order Modal Logic 
C. Areces, P. Blackburn, and M. Marx 

A Game involving Epistemic Logic and Probability 
A. Pogel, G. Voutsadakis, and M. Gehrke 

A Theory of Advanced Transactions in the Situation Calculus 
/. Kiringa 

Vlll 



Invited Talk 

Chair: Michel de Rougemont 

Semistructured Data: From Practice to Theory 379 
S. Abiteboul 

Session 10 

Chair: Ranee Cleaveland 

Synthesizing Distributed Systems 389 
O. Kupferman and M. Vardi 

Permutation Rewriting and Algorithmic Verification 399 
A. Bouajjani, A. Muscholl, and T. Touili 

Temporal Logic Query Checking 409 
G. Bruns and P. Godefroid 

Session 11 

Chair: Ron van der Meyden 

Typechecking XML Views of Relational Databases 421 
N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu 

A Model-Theoretic Approach to Regular String Relations 431 
M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin 

Author Index 441 

IX 



Foreword 

It's hard to believe that this is already the 16th LICS. It doesn't seem all that long (at least to 
me!) since the conference started. The program chair of the first LICS was Albert Meyer. This 
year, one of the workshops associated with LICS is the Symposium on Complexity, Logic, and 
Computation, in honor of Albert. 

From the 104 submissions received, the Program Committee selected thirty-six papers. Many 
worthy abstracts had to be rejected due to the time constraints of the conference. These papers 
are preliminary reports of ongoing research. Most will appear in more polished and complete 
form in scientific journals. There are also six invited talks that are represented in the 
proceedings. Finally, the titles of fifteen short talks are listed. These are mainly announcements: 
in some cases, full papers are available from the authors; in other cases, the research is so 
preliminary that there is no paper yet. 

Many people put in a great deal of time and effort into selecting the program. First and 
foremost, there was the Program Committee. These days, program committee meetings are 
virtual; they are conducted asynchronously by email. That means that "meetings" take place over 
a 10-day period. Program committee members had to read email at all times of the day just to 
keep up. Fortunately for me, this was a very active program committee, and they seemed to be 
willing to do that. Even better, we were able to converge to a program that we were all 
comfortable with in a remarkably smooth manner. This year we put a special emphasis on having 
papers where the relevance to computer science was clear and which would be accessible to 
nonexperts. These proceedings should attest to how well we succeeded. 

Another one of our tasks was to choose the best student paper(s) for the Kleene award. This 
year there are two winners: Frederic Blanqui for "Definitions by Rewriting in the Calculus of 
Constructions," and Kazushige Terui for "Light Affine Lambda Calculus and Polytime Strong 
Normalization." I'd like to congratulate them both. 

The people involved with the conference organization, the program committee, and the 
(many!) outside reviewers used by the program committee members are all listed on the 
following pages. I'd like to thank them all; the conference could not have happened without their 
efforts. I'd like to add a special note of thanks to someone whose name is not listed so 
prominently: Jon Riecke. Jon kept up the submissions software, housed at Lucent, even after he 
left Lucent for a startup. 

I hope you will find that the contents of these Proceedings were worth the effort required to 
create them. 

Joe Halpern 

LICS 2001 Program Chair 
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Invited Talk 



Probabilistic polynomial-time process calculus 
and security protocol analysis 

(short summary) 

J. Mitchell^   A. Ramanathan* 
Stanford University 

A. Scedrov** 
University of Pennsylvania 

V. Teague* 
Stanford University 

Abstract 

We describe properties of a process calculus that has 
been developed for the purpose of analyzing security proto- 
cols. The process calculus is a restricted form of'n-calculus, 
with bounded replication and probabilistic polynomial-time 
expressions allowed in messages and boolean tests. To 
avoid problems expressing security in the presence of non- 
determinism, messages are scheduled probabilistically in- 
stead of nondeterministically. We prove that evaluation may 
be completed in probabilistic polynomial time and develop 
properties of a form of asymptotic protocol equivalence that 
allows security to be speciied using observational equiva- 
lence, a standard relation from programming language the- 
ory' that involves quantifying over possible environments 
that might interact with the protocol. We also relate pro- 
cess equivalence to cryptographic concepts such as pseudo- 
random number generators and polynomial-time statistical 
tests. 

1    Introduction 

A variety of methods are used for analyzing and reason- 
ing about security protocols. The main systematic or formal 
approaches include specialized logics such as BAN logic 
[BAN89, DMP01], special-purpose tools designed for cryp- 
tographic protocol analysis [KMM94], and theorem prov- 
ing [Pau97b, Pau97a] and model-checking methods using 
general purpose tools [Low96, Mea96, MMS97, Ros95, 
Sch96]. Although these approaches differ in significant 
ways, all reject the same basic assumptions about the way 
an adversary may interact with the protocol or attempt to de- 
crypt encrypted messages . In the common model, largely 

'Partially supported by DoD MURI "Semantic Consistency in Infor- 
mation Exchange," ONR Grant N00014-97-1-0505, and DARPA Contract 
N66001-00-C-8015 

+ Additional support from NSF Grant CCR-9629754. 
t Additional support from NSF Grant CCR-9800785. 

derived from [DY81] and suggestions found in [NS78] (see, 
e.g., [CDL+99]), a protocol adversary is allowed to non- 
deterministically choose among possible actions. This is 
a convenient idealization, intended to give the adversary a 
chance to £nd an attack if there is one. In the presence 
of nondeterminism, however, the set of messages an adver- 
sary may use to interfere with a protocol must be restricted 
severely. For example, if the adversary may perform bit 
manipulation on data, then a nondeterministic adversary 
may guess any possible secret key. Therefore, the com- 
mon "Dolev-Yao assumptions" only allow an adversary to 
construct new messages from indivisible data that are either 
known from the start or found in messages overheard on the 
network. Although the Dolev-Yao assumptions make proto- 
col analysis tractable, they also make it possible to "verify" 
protocols that are in fact susceptible to simple attacks that 
lie outside the adversary model. Another limitation is that a 
deterministic or nondeterministic setting does not allow us 
to analyze probabilistic protocols. 

This invited talk will describe some general concepts 
in security protocol analysis, mention some of the com- 
peting approaches, and describe some technical properties 
of a process calculus that was proposed earlier [LMMS98, 
LMMS99] as the basis for a form of protocol analysis that 
is formal, yet closer in foundations to the mathematical 
setting of modern cryptography. The framework relies on 
a language for defining probabilitic polynomial-time func- 
tions [MMS98]. The reason we restrict processes to proba- 
bilistic polynomial time is so that we can reason about the 
security of protocols by quantifying over all "adversarial" 
processes definable in the language. In effect, establish- 
ing a bound on the running time of an adversary allows us 
to relax other simplifying assumptions. Specifically, it is 
possible to consider adversaries that might send randomly 
chosen messages, or perform sophisticated (yet probabilis- 
tic polynomial-time) computation to derive an attack from 
messages it overhears on the network. A useful aspect of 
our framework is that we can analyze probabilistic as well 
as deterministic encryption functions and protocols. With- 

0-7695-1281-X/01 $10.00 © 2001 IEEE 



out a probabilistic framework, it would not be possible to 
analyze an encryption function such as ElGamal [E1G85], 
for which a single plaintext may have more than one ci- 
phertext. 

The work has been carried out in collaboration with P. 
Lincoln, M. Mitchell, A. Scedrov, A. Ramanathan, and V. 
Teague. The main ideas are outlined in [LMMS98], with 
the term language presented in [MMS98] and further ex- 
ample protocols considered in [LMMS99]. The closest 
technical precursor is the Abadi and Gordon spi-calculus 
[AG99, AG98] which uses observational equivalence and 
channel abstraction but does not involve probability or com- 
putational complexity bounds; subsequent related work is 
cited in [AF01], for example. Prior work on CSP and secu- 
rity protocols, e.g., [Ros95, Sch96], also uses process cal- 
culus and security specifications in the form of equivalence 
or related approximation ordcrings on processes. 

Although our main long-term objective is to base pro- 
tocol analysis on standard cryptographic assumptions, this 
framework may also shed new light on basic questions in 
cryptography. In particular, the characterization of "se- 
cure" encryption function, for use in protocols, does not ap- 
pear to have been completely settled. While the definition 
of semantic security in [GM84] appears to have been ac- 
cepted, there are stronger notions such as non-malleability 
[DDN91] that are more appropriate to protocol analysis. In 
a sense, the difference is that semantic security is natural 
for the single transmission of an encrypted message, while 
non-malleability accounts for vulnerabilities that may arise 
in more complex protocols. Our framework provides a set- 
ting for working backwards from security properties of a 
protocol to derive necessary properties of underlying en- 
cryption primitives. While we freely admit that much more 
needs to be done to produce a systematic analysis method, 
we believe that a foundational setting for protocol analysis 
that incorporates probability and complexity restrictions has 
much to offer in the future. 

Slides from this talk will be available on the first author's 
web site at http://www.stanford.edu/lcm. 
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Abstract : The main novelty of this paper is to con- 
sider an extension of the Calculus of Constructions 
where predicates can be defined with a general form of 
rewrite rules. 

We prove the strong normalization of the reduction 
relation generated by the ß-rule and the user-defined 
rules under some general syntactic conditions includ- 
ing confluence. 

As examples, we show that two important systems 
satisfy these conditions : a sub-system of the Calculus 
of Inductive Constructions which is the basis of the 
proof assistant Coq, and the Natural Deduction Modulo 
a large class of equational theories. 

1    Introduction 

This work aims at defining an expressive language al- 
lowing to specify and prove mathematical properties 
in which functions and predicates can be defined by 
rewrite rules, hence enabling the automatic proof of 
equational problems. 

The Calculus of Constructions. The quest for 
such a language started with Girard's system F [19] 
on one hand and De Bruijn's Automath project [18] on 
the other hand. Later, Coquand and Huet combined 
both calculi into the Calculus of Constructions (CC) 
[10]. As in system F, in CC, data structures are defined 
by using an impredicative encoding which is difficult 
to use in practice. Following Martin-Löf's theory of 
types [24], Coquand and Paulin-Mohring defined an 
extension of CC with inductive types and their asso- 
ciated induction principles as first-class objects : the 
Calculus of Inductive Constructions (CIC) [2(3] which 
is the basis of the proof-assistant Coq [17]. 

Reasoning Modulo. Defining functions or predi- 
cates by recursion is not always convenient. More- 
over, with such definitions, equational reasoning is un- 
easy and leads to very large proof terms.    Yet, for 

decidable theories, equational proofs need not to be 
kept in proof terms. This idea that proving is not 
only reasoning (undecidable) but also computing (de- 
cidable) has been recently formalized in a general way 
by Dowek, Hardin and Kirchner with the Natural De- 
duction Modulo (NDM) for first-order logic [12]. 

Object-level rewriting. In CC, the first exten- 
sion by a general notion of rewriting is the Ai?-cube 
of Barbanera, Fernandez and Geuvers [1]. Their 
work extends the works of Breazu-Tannen and Gal- 
lier [8] and Jouannaud and Okada [21] on the com- 
bination of typed A-calculi with rewriting. The no- 
tion of rewriting considered in [21, 1] is not restricted 
to first-order rewriting, but also includes higher-order 
rewriting following Jouannaud and Okada's General 
Schema [21], a generalization of the primitive recur- 
sive definition schema. This schema has been reformu- 
lated and enhanced so as to deal with definitions on 
strictly-positive inductive types [5] and with higher- 
order pattern-matching [3]. 

Predicate-level rewriting. The notion of rewriting 
considered in [1] is restricted to the object-level while, 
in CIC or NDM, it is possible to define predicates by 
recursion or by rewriting respectively. Recursion at 
the predicate-level is called "strong elimination" in [26] 
and has been shown consistent by Werner [31]. 

Our contributions. The main contribution of our 
work is a strong normalization result for the Calcu- 
lus of Constructions extended with, at the predicate- 
level, user-defined rewrite rules satisfying some general 
admissibility conditions. As examples, we show that 
these conditions are satisfied by a sub-system of CIC 
with strong elimination [26] and the Natural Deduc- 
tion Modulo [13] a large class of equational theories. 

So, our work can be used as a foundation for an ex- 
tension of a proof assistant like Coq [17] where users 
could define functions and predicates by rewrite rules. 
Checking the admissibility conditions or the convert- 
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ibility of two expressions may require the use of exter- 
nal specialized tools like CiME [16] or ELAN [15]. 

Outline of the paper. In Section 2, we introduce 
the Calculus of Algebraic Constructions and our no- 
tations. In Section 3, we present our general syntactic 
conditions. In Section 4, we apply our result to CIC 
and NDM. In Section 5, we summarize the main con- 
tributions of our work and, in Section 6, we give future 
directions of work. Detailed proofs can be found in [4]. 

2    The    Calculus    of   Algebraic 
Constructions (CAC) 

2.1    Syntax and notations 

We assume the reader familiar with the basics of 
rewriting [11] and typed A-calculus [2]. 

Sorts and symbols. Throughout the paper, we let 
5 = {*, □} be the set of sorts where * denotes the 
imprcdicative universe of propositions and O a pred- 
icative universe containing *. We also assume given a 
family T = {T^^ of sets of symbols and a family 

.V = (.Y'')''€,-s of infinite sets of variables. A symbol 
/ € T^ is said to be of arity a; = n and sort s. Ts. 
Tn. T and .1' respectively denote the set of symbols 
of sort ,s, the set of symbols of arity n, the set of all 
symbols and the set of all variables. 

Terms. The terms of the corresponding CAC are 
given by the following syntax : 

1 ::= s \ ;■ \ f(f) \(.v:t)t \[x:t]t \ It 

where s G 5, x G .V and / is applied to a vector / of n 
terms if/ G T„. [x:U]1 is the abstraction and [x:U)\' 
is the product. A term is algebraic if it is a variable 
or of the form /(/) with each U algebraic. 

Notations. As usual, we consider terms up to o- 
conversion. We denote by FY(t) the set of free vari- 
ables of/, by FV'[i) the set Fl'(r)n.Vs, by t{x ^ a) 
the term obtained by substituting in t every free oc- 
currence of.!' by it, by dom(O) the domain of the sub- 
stitution 0, by dotn(O) the set dom(0)C\X\ by Pos(i) 
the set of positions in / (words on the alphabet of pos- 
itive integers), by t\P the subtcrm of / at position p. 
by t[u]r the term obtained by replacing /|;, by u in /. 
and by Pos(f,l) and Pos(.vJ) the sets of positions in 
/ where / occurs and x freely occurs respectively. As 
usual, we write T -» U for a product [x :T)U where 
x $ FV(U). 

Rewriting. We assume given a set R. of rewrite rults 
defining the symbols in T. The rules we consider are 

pairs / -> r made of two terms / and r such that / 
is an algebraic term of the form /(/) and FV(r) C 
FV(l). They induce a rewrite relation ->TC on terms 
defined by / —^ /' iff there are p G Pos(t), I -> r G 
R and a substitution a such that t\p = la and t' = 
t[ra]p (matching is first-order). So, 7v can be seen as 
a particular case of Combinatory Reduction System 
(CRS) [23] (translate [x :T)u into A(T,[x]u) and {x : 
T)U into Yl(T,[x]U)) for which higher-order pattern- 
matching is not necessary. 

Reduction.   The reduction  relation  of the calculus 
is —> = —>-7j U —>ß where —>^ is defined as usual by 
[x:T]u I -tß u{x (-)■ /}. We denote by ->* its reflexive 

and transitive closure, by <->* its symmetric, reflexive 
and transitive closure, and by / |* w the fact that / 
and u have a common reduct. 

2.2    Typing 

Types of symbols. We assume given a function r 
which, to each symbol /, associates a term TJ , called 

its type, of the form (.? : T)U with |.?| = aj. In 
contrast with our own previous work [5] or the work 
of Barbanera, Fernandez and Geuvers [1], symbols can 
have polymorphic as well as dependent types, as it is 
the case in CIC'. 

Typing. An environment T is an ordered list of pairs 
Xj-.l) saying that Xj is of type Tj. The typing relation 
of the calculus, h, is defined by the rules of Figure 1 
(where s. s' G S). 

An environment is valid if there is a term typable in 
it. The condition F h v : V in the (synib) rule insures 
that T is valid in the case where n = 0. 

Substitutions. Given two valid environments F and 
A, a substitution 0 is a well-typed substitution from 
T to A, written 0 : T -4 A, if, for all x G riom(F), 
A h xO : xVfl, where jT denotes the ty])c associated 
to .;■ in F. With such a substitution, if F f- t : T then 
Ar-tfl: TO. 

Logical consistency. As usual, the logical consis- 
tency of such a system is proved in three steps. 

First, we must make sure that the reduction relation 
is correct w.r.t. the typing relation : if T h / : T and 
i —> 1' then F h /' : T. This property, called subject 
reduction . is not easy to prove for extensions of C( ' 
[31. 1]. In the following subsection, we give sufficient 
conditions for it. 

The second step is to prove that the reduction rela- 
tion —> is weakly or strongly normalizing, hence that. 
every well-typed term has a normal form. Together 
with the confluence, this implies the decidability of the 
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Figure 1: Typing rules 

h*: a 

(symb) 

(weak) 

(prod) 

(abs) 

(app) 

f€?t,Tf=(x :f)U, 7 = {*-►*-} 
hr;:s    T\-v:V    Vi, T h *,- : Ti7 

r I" /(*) : £'7 

rhT:s    a;GP\(fom(r) 

r,i:Thi :T 

T\-t:T   T\-U:s    xeA's\dom{T) 

r, x : U \~ t : T 

T\-T:s    T,x:ThU :s' 

rh (x:T)U :s' 

T,x:T<ru:U    T h (x:T)U : s 

ri- [x:T]u: [x:T)U 

T\-1:(x:U)V    T h u : U 
r h <w : V'{a- >->. u} 

rhf :T    T 4* T'    rhf:s' 

r h / : T 

typing relation which is essential in proof assistants. 
In this paper, we will study the strong normalization 
property. 

The third step is to make sure that there is no nor- 
mal proof of _L = (P:-k)P in the empty environment. 
Indeed, if _L is provable then any proposition P is prov- 
able. We will not address this problem here. 

2.3     Subject reduction 

Proving subject reduction for -*g requires the follow- 
ing property [4] : 

{x:U)V <r+* (x:U')V U <->* V A  V O* V 

It is easy to see that this property is satisfied when 
—> is confluent, an assumption which is part of our 
admissibility conditions described in the next section. 

For —»■■£, the idea present in all previous works is 
to require that, for each rule / —> r, there is an en- 
vironment T and a type T such that T h / : T and 
T \- r : T. However, this approach has an important 
drawback : in presence of dependent or polymorphic 
types, it leads to non-left-linear rules. 

For example, consider the type list : * —> * of poly- 
morphic lists built from nil : (A:*)list(A) and cons : 

(.4 :-k)A —y list(A) -> list [A), and the concatenation 
function app : (A:*)list(A) ->■ list (A) -> list (A). To 
fulfill the previous condition, we must define app as 
follows : 

app(A,nil(A),l)  -> £ 
app(A,cons(A, x, £),£')  ->  cons(A, x, app(A,£,£')) 

This has two important consequences. The first one 
is that rewriting is slowed down because of numer- 
ous equality tests. The second one is that it may be- 
come much more difficult to prove the confluence of 
the rewrite relation and of its combination with —>/g. 

We are going to see that we can take the following 
left-linear definition without loosing the subject reduc- 
tion property : 

app(A,nil{A'),£)  -> £ 
app(A, cons(A',x, £),£')   ->  cons(A,x,app(A, £,£')) 

Let / = app(A, cons(A', x, £),£'), r = cons(A,x, 
app(A, I, I')), T be an environment and a a substitu- 
tion such that F h la : list(Aa). We must prove that 
F h i'tr : list(Aa). For T \- la : list(Aa), we must have 
a derivation like : 

(symb) 

(conv] 

r h A'a : *    T h xa : A'a    V h la : list(A'a) 

r h cons(A'a, xa, ta) : list (A'a) 
list(A'<r) I' list(Aa)    T h list(Aa) : * 

(symb) 

r h cons(A'a, xa, la) : list(Aa) 
r h Aa : *    TV- I'a : list(Aa) 

T\- la : list(Aa) 

Therefore, A!a I" Aa and we can derive T h xa 
Aa, r b (a : list(Aa) and : 

(symb) 
rb.4<7:*    F \-la : list{Aa)    ("a : list(Aer) 

F h app{Aa, la, I'a) : list(Aa) 
T\- Aa:-k    T b xa : Aa 

(symb) 
r h ra : //stUa) 

The point is that, although / is not typable, from any 
typable instance la oil, we can deduce that A'a \* Aa. 
By this way, we come to the following conditions : 

Definition 1 (Type-preserving rewrite rule) 
A rewrite rule / —> r is type-preserving if there is 
an environment T and a substitution p such that, if 
/ = /(f), Tf = {x : f)U and 7 = {x >-> 1} then : 

(51) dom(p) CFV{l)\dom(T), 

(52) T\-lp:Uip, 
(53) rhr: £/7/0, 
(54) for any substitution a, environment A and type 

T, if A h /o- : T then <r : T -» A, 
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(S5) for any substitution a, environment A and type 
T, if A h ler : T then, for all x £ dorn{p), xa \.' 
XpCT. 

In our example, it suffiees to take T = A:*,.v:A,(: 
list{A), C':list{A) and p = {A' ^ A}. 

One may wonder how to check these conditions. In 
practice, the symbols are incrementally defined. So. 
assume that we have a confluent and strongly normal- 
izing CAC built over T and 7v and that we want to add 
a new symbol g. Then, given T and p, it is decidable 
to check (SI) to (S3) in the CAC built over TU {y} 
and 7v. since this system is confluent and strongly nor- 

malizing.  In [4], we give a simple condition ensuring 
(54) (T simply needs to be well chosen). The condition 
(55) is the most difficult to check and may require the 
confluence of —h 

3    Admissibility conditions 

3.1     Inductive structure 

Until now, we made few assumptions on symbols or 
rewrite rules. In particular, we have no notion of in- 
ductive type. Yet, the structure of inductive types 
plays a key role in strong normalization proofs [25]. 
On the other hand, we want rewriting to be as general 
as possible by allowing matching on defined symbols 
and equations among constructors. This is why. in 
the following, we introduce an extended notion of con- 
structor and a notion of inductive structure which gen- 
eralize usual definitions of inductive types [26]. Note 
that, in contrast with our previous work [5], we allow 
inductive types to be polymorphic and dependent, as 
it is the case in CIC. 

Definition 2 (Constructors) For (/ C T, let 'Re, be 
the set of rules defining the symbols in Q, that is. the 
rules whose left-hand side is headed by a symbol in Q. 
The set of fnt symbols is CT = {f £ T \ 7?.u} = 0}. 
The set of defined symbols is VT = Jr\CJr. The set of 
constructors of a free predicate symbol C is Co(C') = 

{feT* \T, = (y:Ü)C(Ü)™d\y\ = af}. 

The constructors off' not only include the construc- 
tors in the usual sense but every defined symbol whose 
output type is C. For example, the symbols 0 : int. 

s : hit. —> hit, p : hit —> hit, + : in I —>• int —> int and 
x : int. —> int —>■ hit defined by the rules $(p(x)) —> x. 
p(s(x)) —> x and others for + and x are all construc- 
tors of the type int of integers. 

Definition 3 (Inductive structure) An inductive 
structure is given by : 

• a quasi-ordering >jr on T, called precedence , whose 
strict part, >jr, is well-founded. 

• for each C £ CT° such that TC = (x : 7')*, a set 
Ind(C) C {i £ {l....QC} | Xj £ .1'°} of inductive: 
positions. 

• for each constructor r, a set Acc(c) C {1,..,(>,.} of 
accessible positions. 

The accessible positions allow the user to describe 
which patterns can be used for defining functions, and 
the inductive positions allow to describe the arguments 
on which the free predicate symbols should be mono- 
tone. This allows us to generalize the notion of posi- 

tivity used in CIC. 

Definition 4 (Positive and negative positions) 
The sets of positive positions Pos+('[') and negative 
positions Pos~(T) of a term T are mutually defined 
by induction on T as follows : 

- Pos+(s) = Pos+(F(f)) = Pos+(X) = {;}, 
- Pos-{s) = Pos-[F(t)) - Pos-(.X) = 0. 
- Poss((xA')\V) = l.Pos-s(V)U-2.Poss{\Y), 
- Pos6 ([.(•: I']II") = 1.Pos(\') U 2.Poss (IF), 
- PosS(\-u) = \.Pos6 [V)U2.Pos{u), 
- PosS(YC) = l.Pos6(Y). 

- Pos+((■({)) = {s}u\J{i.Pos+(ti) | / £ Ind(C)}, 
- Pos-(C(f)) = {j{i.Pos-(l,) | / £ Ind(C)}. 

where S £ {-.+}. -+ = -, = +. 

For example, in (x:A)P, B occurs positively while 
.4 occurs negatively. Now. with the type list, of 
polymorphic lists. .4 occurs positively in list(A) iff 
lnd{list) = {1}. 

Definition 5 (Admissible inductive structure) 
An inductive structure is admissible if, for all 

C eCT° with TV = (.? :7> : 

(11) V/£ Ind(C), i-i £ ,VD, 

and for all c with rc = (if : U)(.'(r) and j £ Acc(c) : 

(12) VZ £ lnd(C). Pos(v,.Uj) C Pos+{l-j), 

(13) VDeCF°.D=rC=>Pos{D.Vj)CPos + (Uj), 
(14) \/D £ CT°,D >? C => Pos{D, Uj) = 0, 
(15) VF £ VTa. Pos(F, Uj) = 0. 
(IG) VA £ FI-D(r,).3/A-£{!....nr}, r,v = A. 

For example, with the type //.s7 of polymorphic lists, 
Ind(list) - {1}. Aec(nil) = {1} and Acr(cons) = 
{1.2.3} is an admissible inductive structure. If we 
add the type tree : * and the constructor node : 
list(tr(() —> tree with Acc(nod() — {1}, we still have 
an admissible structure. 

The condition (1(5) means that the predicate- 
arguments of a constructor must be parameters of the 
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type they define. One can find a similar condition in 
the work of Walukiewicz [30] (called 'Vdependency") 
and in the work of Stefanova [27] (called "safeness"). 

On the other hand, there is no such explicit restric- 
tion in CIC. But the elimination scheme is typed in 
such a way that no very interesting function can be 
defined on a type not satisfying (16). For example, 
consider the type of heterogeneous non-empty lists (we 
use the CIC syntax here) listh = Ind(X : *){Ci|C2} 
where d = (A : *){x : A)X and C2 = {A : *)(x : A) 
X —* X. The typing rule for the non dependent elim- 
ination schema (Nodep*,*) is : 

r h £ : listh    r K Q : •   Mi, T h /; : d{listh, Q) 
T^Elim{£,Q){f1\f2}:Q 

where Ci{listh, Q} = (A : *)(x : A)Q and 
d{Hsth,Q] = (A :*)(x : A)listh -» Q -t Q. Since 
Q, /i and fa must be typable in T, the result of f\ 
and fa cannot depend on A or on i. This means that 
it is possible to compute the length of such a list but 
not to use an element of the list. 

Definition 6 (Primitive, basic and strictly pos- 
itive predicates) A free predicate symbol C is : 
• primitive if, for all D —^ C, for all constructor d of 

type Td = (y : U)D(w) and for all j £ Acc(d), Uj is 
either of the form E(i) with E <? D and E basic, 
or of the form E(i) with E =T D. 

• basic if, for all D =jr C, for all constructor d of 
type Td = (y : U)D(w) and for all j £ Acc(d), if 
E =yr D occurs in Uj then Uj is of the form E(t). 

• strictly positive if, for all D =? C, for all con- 
structor d of type Td = (y : U)D(w) and for all 
j £ Acc(d), if E =jr D occurs in Uj then Uj is of 

the form (z : V)E(t) and no occurrence of D' —? D 

occurs in V. 

For example, the type list of polymorphic lists is 
basic but not primitive. The type listint of lists of 
integers with the constructors nilint : listint and 
consint : int —¥ listint —> listint is primitive. And the 
type ord of Brouwer's ordinals with the constructors 
0 : ord, s : ord —>■ ord and lim : [not —» ord) —> ord is 
strictly positive. 

Although we do not explicitly forbid to have non- 
strictly positive predicate symbols, the admissibility 
conditions we are going to describe in the following 
subsections will not enable us to define functions on 
such a predicate. The same restriction applies on CIC 
while the system of Walukiewicz [30] is restricted to 
basic predicates and the Ai?-cube [1] or NDM [13] are 
restricted to primitive and non-dependent predicates. 
However, in the following, for lack of space, we will 
restrict our attention to basic predicates. 

3.2    General Schema 

The constructors of primitive predicates (remember 
that they include all symbols whose output type is a 
primitive predicate), defined by usual first-order rules, 
are easily shown to be strongly normalizing since the 
combination of first-order rewriting with —»^ preserves 
strong normalization [8]. 

On the other hand, in the presence of higher-order 
rules, few techniques are known : 

• Van de Pol [28] extended to the higher-order case 
the use of strictly monotone interpretations . This 
technique is very powerful but difficult to use in 
practice and has not been studied yet in type sys- 
tems richer than the simply-typed A-calculus. 

• Jouannaud and Okada [21] defined a syntactic crite- 
rion, the General Schema, which extends primitive 
recursive definitions. This schema has been refor- 
mulated and enhanced to deal with definitions on 
strictly-positive types [6], to higher-order pattern- 
matching [3] and to richer type systems with object- 
level rewriting [1, 5]. 

• Jouannaud and Rubio [22] extended to the higher- 
order case the use of Dershowitz's recursive path 
ordering. The obtained ordering can be seen as a 
recursive version of the General Schema and has 
been extended by Walukiewicz [30] to the Calculus 
of Constructions with object-level rewriting. 

Here, we present an extension of the General Schema 
defined in [5] to deal with type-level rewriting, the 
main novelty of our paper. 

The General Schema is based on Tait and Girard's 
computability predicate technique [19] for proving the 
strong normalization of the simply-typed A-calculus 
and system F. This technique consists in interpret- 
ing each type T by a set [T] of strongly normalizable 
terms, called computable, and in proving that t £ fTj 
whenever F h t : T. 

The idea of the General Schema is then to define, 
from a left-hand side of rule /(/), a set of right-hand 
sides ?■ that are computable whenever the /,'s are com- 
putable. This set is built from the variables of the 
left-hand side, called accessible, that are computable 
whenever the /,'s are computable, and is then closed 
by computability-preserving operations. 

For the sake of simplicity, two sequences of argu- 
ments of a symbol / will be compared in a lexico- 
graphic manner. But it is possible to do these com- 
parisons in a multiset manner or with a simple combi- 
nation of lexicographic and multiset comparisons (see 
[4] for details). 
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Definition 7 (Accessibility) A pair (u.U) is ac- 
cessible in a pair {t,T), written (t.T) >i («,['), if 
(t,T) = (c(u),C{v)-r) and (u,U) = (vj,Uj-y) with c 

a constructor of type rc — (y : f)C'(v), 7 = {y ►-» ;7} 
and j G /lcc(c). 

For example, in the definition of app previously 
given, A', x and C are all accessible in t = 

cons{A',x.() : (/,//.s/(.4)) Oj (A',*), (t,list{A)) >i 

(x',.4') and <U''s/(-4)) t>i (f,//s/(.4')). 

Definition 8 (Derived type) Let < be a term of the 

form la with / = /(/) algebraic, 77 = (,? : T)U and 

7 = {a? H-> /}. Let p G Pos(I) with p ^ s. The subterm 
<|p of 2 has a derived type, r(t,p), defined as follows : 

- if p = i then r(t,p) = T^/cr, 

- if p = /ry and 17 ^ e then r(t,p) = r(tj,q). 

Definition 9 (Well-formed rule) Let R = (I ->• r, 

F,p) be a rule with / = /(/"*), 77 = (.? : f)(r and 

7 = {x i->- /}. The rule /? is well-formed if, for all 
;r £ rfom(r), there is / < o/■ and pj. G Pos(xJj) such 
thai (li,!}'/) >i (x,T(l,ipr)) and r(/, /p.r)p = JT. 

Definition 10 (Computable closure) Let    /?     = 

(/ -> r, Fn,p) be a rule with / = /(/*), 77 = (.? : f)V 

et 7 = {.? M- /}. The order > on the arguments of / 
is the lexicographic extension of r>j". The computable 
closure of R is the relation hc. defined by the rules of 
Figure 2. 

Definition 11 (General Schema) A rule (/(/) —> 

7', T,p) with 77 = (x : T)U and 7 = {,? H-> /} satisfies 
the General Schema if it is well-formed and r \~c r : 

Uip. 

It is easy to check that the rules for app are well- 
formed and that F hc eons{A, x,app(A, t, (')) : list(A). 
For example, we show that F hc app(.4, /', C) : l ist (A) : 

T r-c -4 
r h * : D     F h list(A) : • ... 

T f-c. A : *     fhj: list(A)     F hc (> : list {A) 
(cons(A',x.(),list{A)) > ((.lisi(A)) 

Fr-Capp(,4.f,f) 

3.3    Admissibility conditions 

Definition 12 (Rewrite systems) Let Q be a set of 
symbols. The re writ ( system  (Q ,'Rc,) is : 

• algebraic if : 

Figure 2: Computable closure 

r0 r-c -KFO : s    x £ dorn'(T0) 

To Fc x : 1T0 

(ax) 
To Fc • : D 

aeT;l,rg = (y:U)V\j={i/^v} 
,       l<4    <7<^/    rr-c7-3:.s    V/, T hc «,- : f/,-7 
(symbv)   

T hc <,(«) : v7 

<7 G ^, rg = (3/ : 17) V, 7 = {</ ^ u} 
9 =T f    T r-c 77 : s    V/, T hc u,- : £77 

,    ,-, (lfl0)>{u.XJi) 
(symb   ) 

(var) 

(weak) 

(prod) 

(abs) 

(app) 

(com) 

The 9(u) Vl 

T hc T : s x G Xs \ FV(l) 

r,x :Thc r :T 

r \-c t: T  r r-c U : s x G X' \ FV(l) 

r,x- ■ Vh t : T 

r hc r: s r,.c: ThV : s' 
rhc x:T) U : s1 

r,j':Thc i( : 1
—

1
 

h(x:T)U:s 

Fr-C[,r: Tj« : (x:T)U 

r hc / : [x : U)V r t-c u : V 
Fhc 1i : V'{, •!->■[/} 

r r-c / : r   1 I' V T hc V : s' 
T hc / : T 

- (7 is made of predicate symbols or of constructors 
of primitive predicates, 

- all rules of'Rc, have an algebraic right-hand side; 
• non-duplicating if, for all /—»/•£ 7v.ti, no variable 

has more occurrences in r than in /; 
• primitive if, for all rule / -> r G 7vo, r is of the 

form [.F : T]y(u)v with r/ belonging to Q or // being 
a primitive predicate symbol; 

• simple if, for all //(/) —> r G Tv.^ : 

- all the symbols occuring in / are free, 
- for all sequence of terms /, at most one rule can 

apply at the top of y(t), 

- for all rule //(/) -> ;■ G Rc, and all }" G FV°(r), 
there is a uni<|ue Ky such that /Kv = V"; 

• positive if, for all / —> /• G Kii and all // 6 Q, 
Pos(y,r) C Pos + {r); 
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• recursive if all the rules of TZg satisfy the General 
Schema; 

• safe if, for all (g(l) —>■ r, T, p) £ TZg with rg = (x : T) 

U and 7 = {x >->■ /} : 

- for all A" £FVD(TU), Xjp £ c/oma(r), 

- for all X,X'eFVa(TU), X1P = X'1P => X = X'. 

Definition 13 (Admissible CAC)  A   CAC  is   ad- 
missible if : 

(Al) —>•=—>TI U —>ß is confluent; 
(A2) its inductive structure is admissible; 

(A3) (VTD,7lvr°) is either : 
- primitive, 
- simple and positive, 
- simple and recursive; 

(A4) there is a partition Ta W Fna of VT (algebraic 
and non-algebraic symbols) such that : 

- [Fa'Ufa)   i's   algebraic,   non-duplicating   and 
strongly normalizing, 

- no symbol of Tna occurs in the rules of lZra, 
- (Fna,TZjrna) is safe and recursive. 

The simplicity condition in (A3) extends to the case 
of rewriting the restriction in CIC of strong elimination 
to "small" inductive types, that is, to the types whose 
constructors have no predicate-arguments except the 
parameters of the type. 

The safeness condition in (A4) means that one can- 
not do pattern-matching or equality tests on predicate- 
arguments that are necessary for typing other argu- 
ments. In her extension of HORPO to the Calculus 
of Constructions, Walukiewicz requires similar condi- 
tions [30]. 

The non-duplication condition in (A4) ensures the 
modularity of the strong normalization. Indeed, in 
general, the combination of two strongly normalizing 
rewrite systems is not strongly normalizing. 

Now, for proving (Al), one can use the following 
result of van Oostrom [29] (remember that TZ-Dß can be 
seen as a CRS [23]) : the combination of two confluent 
left-linear CRS's having no critical pairs between each 
other is confluent. So, since —>ß is confluent and 7v and 
ß cannot have critical pairs between each other, if 7v is 
left-linear and confluent then —>^ U —>ß is confluent. 
Therefore, our conditions (SI) to (S5) are very useful 
to eliminate the non-linearities due to typing reasons. 

We can now state our main result. You can find a 
detailed proof in [4], 

Theorem 14 (Strong normalization) Any admis- 
sible CAC is strongly normalizing. 

The proof is based on Coquand and Gallier's exten- 
sion to the Calculus of Constructions [91 of Tait and 

Girard's computability predicate technique [19]. As 
explained before, the idea is to define an interpreta- 
tion for each type and to prove that each well-typed 
term belongs to the interpretation of its type. 

The main difficulty is to define an interpretation for 
predicate symbols that is invariant by reduction, a con- 
dition required by the type conversion rule (conv). 

Thanks to the positivity conditions, the interpreta- 
tion of a free predicate symbol can be defined as the 
least fixpoint of a monotone function over the lattice 
of computability predicates. 

For the defined predicate symbols, it depends on the 
kind of system (VTa ,TZ-DT°) is. If it is primitive then 
we simply interpret it as the set of strongly normaliz- 
able terms. If it is positive then, thanks to the posi- 
tivity condition, we can interpret it as a least fixpoint. 
Finally, if it is recursive then we can define its inter- 
pretation recursively, the General Schema providing a 
well-founded definition. 

4    Examples 

4.1     Calculus   of   Inductive   Construc- 
tions 

We are going to see that we can apply our strong nor- 
malization theorem to a sub-system of CIC [26] by 
translating it into an admissible CAC. The first com- 
plete proof of strong normalization of CIC (with strong 
elimination) is due to Werner [31] who, in addition, 
considers ^-reductions in the type conversion rule. 

In CIC, one has strictly-positive inductive types and 
the corresponding induction principles. We recall the 
syntax and the typing rules of CIC but, for the sake 
of simplicity, we will restrict our attention to basic in- 
ductive types and non-dependent elimination Schemas. 
For a complete presentation, see [4], 

• Inductive types are denoted by Ind(X : A){C] 
where the CVs are the types of the constructors. 
The term .4 must be of the form [x : A)* and the 

CVs of the form (r : B)Xin. 
• The /-th constructor of an inductive type / is de- 

noted by Constr(i, I). 

• Recursors are denoted by Elim[I,Q,a,c) where / 
is the inductive type, Q the type of the result, a the 
arguments of / and c a term of type la. 

The typing rules for these constructions are given in 
Figure 3. The rules for the other constructions are the 
same as for the Calculus of Constructions. 

If d = (:: B)Xm then C,-{/, Q} denotes (z: B){? : 

B{X i—> Q}) Qifi. The reduction relation associated to 
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Figure 3: Typing rules of CIC 

Vt, r,A" :.4hC; :* 
(IncU)  =  

rh Ind(X:A){C] : A 

T\- 1= Ind(X:A){C) : A 
(Const.r) — 

(Nodep* 

T\-Const.r[i.J) : d{X-> 1} 

The: la    T b Q : (x : A)s 

V/, rh/,-:Q{/,Q} 

T\- Elim(I,Q,a, c){f] : Qa 

Elim is called i-reduction and is defined as follows : 

Elim{I, Q, a, Constr(i, I') b){f} ->, /,- b b' 

where, if d = (~:B)Xm, then b) = Elim(I,Q,a'.bj) 
if Bj = A'a', and 6^ = 6/ otherwise. 

Now, we consider the sub-system CIC- obtained by 
applying the following restrictions : 

• In the typing rules (Ind*) and (Constr). we assume 
that T is empty since, in CAC, the types of the 
symbols must be typablc in the empty environment. 

• In the rule (Nodep*,*) (the one for weak elimina- 
tion), we require Q to be typable in the empty en- 
vironment. 

• In the rule (Nodep*,o) (the one for strong elimina- 

tion), instead of requiring T b Q : (.? : A)0 which is 
not possible in the Calculus of Constructions since 
D is not typable, we require Q to be a closed term 
of the form [x : A]K with A" of the form (y : U)*. 

• We assume that every inductive type satisfies (16). 

Theorem 15 CIC- can be translated into an admis- 
sible CAC, hence is strongly normalizing. 

We define the translation ( ) by induction on the 
size of terms : 

• Let / = Ind(X:A){C}. We define (/) = [x : (.4)] 

Indi(x) where Indj is a symbol of type (.?: (.-1))*. 

• By assumption, d = {z : B)Xm. We define 

(Cons1r(i,I)} = [:: B]C on si r\{z) where Constr) 

is a symbol of type (5*: (B))Indj((m)). 

• Let Ti = Ci{I,Q). If Q = [x : .4]A" then we de- 

fine (FMm(I,Q,a,c){f)) = SElimf((f),(S),{c)) 

where SElinij is a symbol of type (f:(T)) (x:(A)) 

(A). Otherwise, we define (EIim(I.Q.d,c){f}) = 

WEHn>,{(Q),(f),(a),{c)) where WEIini; is a sym- 

bol of type (Q:(A))(f:(f))(7:(Ä))(Q)r. 
• The other  terms are defined  recursively  (((/(')   = 

<«><!'>. ■■■)■ 

The /-reduction is translated by the following rules : 

SEIimf(f,a.Constr){b})   ->■  /,- b // 

\\EIiw,{Qj.d.Constr){b))  ->  /,-6 6' 

where, iff; = (=": B)Xm, then b'j = SElhv?(f, a', bj) 

(or \VElhnj{Q,f,(7.bj)) if Bj = Xd', and b) = bj 

otherwise. 

Now, we are left to check the admissibility : 

(Al) —>-,}, is orthogonal, hence confluent [29]. 
(A2) The inductive structure defined by / <? J if / is 

a subterm of,/, Ind(Indj) = 0. Acc(Consfr)) = 

{1,.., |5|} if C'i = (~ : ß)A'ffl, is admissible. 
(A3) The rules defining the strong recursors form a 

simple (they are defined by case on each construc- 
tor and only for small inductive types) and re- 
cursive rewrite system (they satisfy the General 
Schema). 

(A4) The rules defining the recursors form a safe (ex- 
cept for the constructor, all the arguments are 
distinct variables) and recursive rewrite system 
(they satisfy the General Schema). 

4.2    Natural Deduction Modulo 

NDM for first-order logic [12] can be presented as an 
extension of Natural Deduction with the additional in- 
ference rule : 

n- P 
r\-Q if P = Q 

where = is a congruence relation on propositions. This 
is a powerful extension of first-order logic since both 
higher-order logic and set theory with a comprehension 
symbol can be described in this framework (by using 
explicit substitutions). 

In [13], Dowek and Werner study the termination of 
cut-elimination in the case where = is induced by a 
confluent and weakly-normalizing rewrite system. In 
particular, they prove the termination in two general 
cases : when the rewrite system is positive and when 
it is quantifier-free. In [14], they provide an example 
of confluent and weakly normalizing rewrite system for 
which cut-elimination is not terminating. The problem 
comes from the fact that the elimination rule for V 
introduces a substitution : 

ITVj'.Pl.r) 

rh P(t) 

Thus, when a predicate symbol is defined by a rule 
whose right-hand side contains quantifiers, its coinbi- 
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nation with ß may not preserve normalization. There- 
fore, a criterion for higher-order rewriting is needed. 

Since NDM is a CAC (we can define the logical con- 
nectors as inductive types), we can compare in more 
details the conditions of [13] with our conditions. 

(Al) In [13], only -+n is required to be confluent. In 
general, this is not sufficient for having the con- 
fluence of-j-Tj U -*ß. However, if H is left-linear 
then -+Ti U ->ß is confluent [29]. 

(A2) NDM types are primitive and form an admissi- 
ble inductive structure if we take them equivalent 
in the relation <?. 

(A3) In [13], the termination of cut-elimination is 
proved in two general cases : when {VTn,TZv^n) 
is quantifier-free and when it is positive. 
Quantifier-free rewrite systems are primitive. So, 
in this case, (A3) is satisfied. In the positive case, 
we require that left-hand sides are made of free 
symbols and that at most one rule can apply at 
the top of a term. On the other hand, we pro- 
vide a new case : {VTa,Uvra) can be simple 
and recursive. 

(A4) Quantifier-free rules are algebraic and rules with 
quantifiers are not. In [13], these two kinds of 
rules are treated in the same way but the counter- 
example given in [14] shows that they should not. 
In CAC, we require that the rules with quantifiers 
satisfy the General Schema. 

Theorem 16 A NDM system satisfying (Al),  (A3) 
and (A4) is admissible, hence strongly normalizing. 

4.3    CIC + Rewriting 

As a combination of the two previous applications, our 
work shows that the extension of CIC- with user- 
defined rewrite rules, even at the predicate-level, is 
sound if these rules follow our admissibility conditions. 

As an example, we consider simplification rules on 
propositions that are not definable in CIC. Assume 
that we have the symbols V:*—>■*—>•*, A:*—»*—>■*, 
-> :*->■*, J_ : •, T : *, and the rules : 

TVP  -> 
PVT  -> 

LAP 
P M -» 

1 
_L 

iT 1 
T 

-"(PAQ) -»-.PV-.Q (PVQ) -+-PA^Q 

The predicate constructors V, A, ... are all primitive. 
The rewrite system is primitive, algebraic, strongly 
normalizing and confluent (this can be automatically 
proved by CiME [16]). Since it is left-linear, its combi- 
nation with -*ß is confluent [29]. Therefore, it is an ad- 
missible CAC. But it lacks many other rules [20] which 

requires rewriting modulo associativity and commuta- 
tivity, an extension we leave for future work. 

5 Conclusion 

We have defined an extension of the Calculus of Con- 
structions by functions and predicates defined with 
rewrite rules. The main contributions of our work are 
the following : 

• We consider a general notion of rewriting at the 
predicate-level which generalizes the "strong elimi- 
nation" of the Calculus of Inductive Constructions 
[26, 31]. For example, we can define simplification 
rules on propositions that are not definable in CIC. 

• We consider general syntactic conditions, including 
confluence, that ensure the strong normalization of 
the calculus. In particular, these conditions are ful- 
filled by two important systems : a sub-system of 
the Calculus of Inductive Constructions which is the 
basis of the proof assistant Coq [17], and the Natu- 
ral Deduction Modulo [12, 13] a large class of equa- 
tional theories. 

• We use a more general notion of constructor which 
allows pattern-matching on defined symbols and 
equations among constructors. 

• We relax the usual conditions on rewrite rules for 
ensuring the subject reduction property. By this 
way, we can eliminate some non-linearities in left- 
hand sides of rules and ease the confluence proof. 

6 Directions for future work 

• In our conditions, we assume that the predicate 
symbols defined by rewrite rules containing quan- 
tifiers ("non-primitive" predicate symbols) are de- 
fined by pattern-matching on free symbols only 
("simple" systems). It would be nice to be able 
to relax this condition. 

• Another important assumption is that the reduc- 
tion relation ->-=->TC U -+p must be confluent. We 
will try to find sufficient conditions on 7v in order 
to get the confluence of -^ U -¥p. In the simply- 
typed A-calculus, if 7v is a first-order rewrite system 
then the confluence of 7v is a sufficient condition [7]. 
But few results are known in the case of a richer type 
system or of higher-order rewriting. 

• Finally, we expect to extend this work with rewrit- 
ing modulo some useful equational theories like as- 
sociativity and commutativity, and also by allowing 
^-reductions in the type conversion rule. 
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Abstract 

Decision procedures for equality in a combination of 
theories are at the core of a number of verification sys- 
tems. Shostak's decision procedure for equality in the 
combination of solvable and canonizable theories has 
been around for nearly two decades. Variations of this 
decision procedure have been implemented in a num- 
ber of systems including STP, EHDM, PVS, STeP, and 
SVC. The algorithm is quite subtle and a correctness 
argument for it has remained elusive. Shostak's algo- 
rithm and all previously published variants of it yield 
incomplete decision procedures. We describe a variant 
of Shostak's algorithm along with proofs of termina- 
tion, soundness, and completeness. 

1    Introduction 

In 1984, Shostak [Sho84] published a decision pro- 
cedure for the quantifier-free theory of equality over 
uninterpreted functions combined with other theories 
that are canonizable and solvable. Such algorithms 
decide statements of the form T h a = 6, where T 
is a collection of equalities, and T, a, and b contain a 
mixture of interpreted and uninterpreted function sym- 
bols. This class of statements includes a large fraction 
of the proof obligations that arise in verification includ- 
ing those involving extended typechecking, verification 
conditions generated from Hoare triples, and inductive 
theorem proving. Shostak's procedure is at the core of 
several verification systems including STP [SSMS82], 
EHDM [EHD93], PVS [ORS92], STeP [MT96, Bj099], 
and SVC [BDL96]. The soundness of Shostak's algo- 
rithm is reasonably straightforward, but its complete- 

"This work was supported by SRI International, and by NSF 
Grant CCR-0082560, DARPA/AFRL Contract F33615-00-C- 
3043, and NASA Contract NAS1-0079. 

ness has steadfastly resisted proof. The proof given 
by Shostak [Sho84] is seriously flawed. Despite its sig- 
nificance and popularity, Shostak's original algorithm 
and its subsequent variations [CLS96, BDL96, BJ099] 
are all incomplete and potentially nonterminating. We 
explain the ideas underlying Shostak's decision proce- 
dure by presenting a correct version of the algorithm 
along with rigorous proofs for its correctness. 

If the terms in a conjecture of the form T h 
a = b are constructed solely from variables and un- 
interpreted function symbols, then congruence clo- 
sure [NO80, Sho78, DST80, CLS96, Kap97, BRRT99] 
can be used to partition the subterms into equivalence 
classes respecting T and congruence. For example, 
when congruence closure is applied to 

f(x) = f(x) h f5(x) = f(x), 

the equivalence classes generated        by 
the antecedent equality are {x},{f(x),f3(x),f5(x)j, 
and {f2(x), f4{x)}. This partition clearly validates the 
conclusion f5(x) = f(x). 

In practice, a conjecture T h a = b usually con- 
tains a mixture of uninterpreted and interpreted func- 
tion symbols. Semantically, uninterpreted functions 
are unconstrained, whereas interpreted function are 
constrained by a theory, i.e., a closure condition with 
respect to consequence on a set of equalities. An ex- 
ample of such an assertion is 

/(:r-l)-l = x+l, f(y) + l = y-l, y + 1 = x h false, 

where +, -, and the numerals are from the theory of 
linear arithmetic, false is an abbreviation for 0 = 1, 
and / is an uninterpreted function symbol. The con- 
tradiction here cannot be derived solely by congruence 
closure or linear arithmetic. Linear arithmetic is used 
to show that x - 1 = y so that f(x - 1) = f(y) follows 
by congruence. Linear arithmetic can then be used to 
show that x + 2 = y - 2 which contradicts y + l = x. 

0-7695-1281-X/01 $10.00 © 2001 IEEE 
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Nelson and Oppen [N079] showed how decision pro- 
cedures for disjoint equational theories could be com- 
bined. Since linear arithmetic and uninterpreted equal- 
ity are disjoint, this method can be applied to the 
above example. First, variable abstraction is used 
to obtain a theory-wise partition of the term uni- 
verse, i.e., the subterms of T, a, and b, in a con- 
jecture T I- a = b. The uninterpreted equality the- 
ory Q then consists of the terms {f{u),f(y),w,z} and 
the equalities {w = f{u),z = f(y)}, and the linear 
arithmetic theory L consists of the terms {u,x,y,x - 
l,w - l,x + l,z + l,y - l,y + 1} and the equalities 
{u = x - l,iu - 1 = x + l,z + 1 - y - l,y + 1 = x}. 
The key observation is that once the terms and equal- 
ities have been partitioned using variable abstraction, 
the two theories L and Q need exchange only equalities 
between variables. Thus, linear arithmetic can be used 
to derive the equality u = y, from which congruence 
closure derives w = z, and the contradiction then fol- 
lows from linear arithmetic. Since the term universe 
is fixed in advance, there are only a bounded number 
of equalities between variables so that the propagation 
of information between the decision procedures must 
ultimately converge. 

The Nelson-Oppen combination procedure has some 
disadvantages. The individual decision procedures 
must carry out their own equality propagation and the 
communication of equalities between decision proce- 
dures can be expensive. The number of equalities is 
quadratic, in the size of the term universe, and each 
closure operation can itself be linear in the size of the 
term universe. 

Shostak's algorithm tries to gain efficiency by main- 
taining and propagating equalities within a single con- 
gruence closure data structure. Equalities involving 
interpreted symbols contain more information than 
uninterpreted equalities. For example, the equality 
y + 1 = x cannot be processed by merely placing y + l 
and x in the same equivalence class. This equality 
also implies that y = x - 1, y - x — -1, x - y — 1, 
y + 3 = x + 2, and so on. In order to avoid processing 
all these variations on the given equality, Shostak re- 
stricts his attention to solvable theories where an equal- 
ity of the form y + 1 = x can be solved for x to yield 
the solution x = y + 1. If the theories considered arc 
also canonizable, then there is a canonizer a such that 
whenever an equality a = b is valid, then a (a) = a(b), 
where = represents syntactic equality. A canonizer for 
linear arithmetic can be defined to place terms into an 
ordered sum-of-monomials form. Once a solved form 
such as x = y + 1 has been obtained, all the other con- 
sequences a = b of this equality can be obtained by 
a {a') = cr(b') where a' and b' are the results of sub- 

stituting the solution for x into a and b, respectively. 
For example, substituting the solution into y — x - 1 
yields y = y + 1 - 1, and the subsequent canonization 
step yields y = y. 

The notion of a solvable and canonizable theory is 
extended to equalities involving a mix of interpreted 
and uninterpreted symbols by treating uninterpreted 
terms as variables. For the conjecture, 

/(z-l)-l =i+l, /(?y) + l = y-l, y + l = x h- false, 

Shostak's algorithm would solve the equality f(x -1) - 
1 = x + 1 as f(x - 1) = x + 2, the equality f(y) + 1 = 
y - 1 as f(y) = y - 2, and y + 1 - x as x = y + 
1. Now, f(x - 1) and f(y) are congruent because the 
canonical form for x - 1 obtained after substituting 
the solution x - y + 1 is y. By congruence closure, 
the equivalence classes of f(x - 1) and f(y) have to 
be merged. In Shostak's original algorithm the current 
representatives of these equivalence classes, namely x + 
2 and y - 2 are merged. The resulting equality x + 
2 = y - 2 is first solved to yield x = y - 4. This is 
incorrect because we already have a solution for x as 
x = y + 1 and x should therefore have been eliminated. 
The new solution x = y - 4 contradicts the earlier one, 
but this contradiction goes undetected by Shostak's 
algorithm. This example can be easily adapted to show 
nontermination. Consider 

f(v) = v,f(u) l,i/ = vh false. 

The merging of u and v here leads to the detection of 
the congruence between f(u) and f(v). This leads to 
solving of v. - 1 = v as u = v + 1. Now, the algorithm 
merges v and v + 1. Since v occurs in v + 1, this causes 
v + 1 to be merged with v + 2, and so on. 

An earlier paper by Cyrluk, Lincoln, and 
Shankar [CLS96] gave an explanation (with minor cor- 
rections) of Shostak's algorithm for congruence clo- 
sure and its extension to interpreted theories. Though 
proofs of correctness for the combination algorithm are 
briefly sketched, the algorithm presented there is both 
incomplete and nonterminating. Other published vari- 
ants of Shostak's algorithm used in SVC [BDL9G] and 
STeP [Bjo99] inherit these problems. 

In this paper, we present an algorithm that fixes the 
incompleteness and nontermination in earlier versions 
of Shostak's algorithms. In the above example, the in- 
completeness is fixed by substituting the solution for 
x into the terms representing the different equivalence 
classes. Thus, when f(x - 1) and f(y) are detected to 
be congruent, their equivalence classes are represented 
by y + 3 and y - 2, respectively. The resulting equality 
y+ 3 = j/-2 easily yields a contradiction. The nonter- 
mination is fixed by ensuring that no new mergeable 
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terms, such as v + 2, are created during the processing 
of an axiom in T. Our algorithm is presented as a sys- 
tem of transformations on a set of equalities in order to 
capture the key insights underlying its correctness. We 
outline rigorous proofs for the termination, soundness, 
and completeness of this procedure. The algorithm 
as presented here emphasizes logical clarity over effi- 
ciency, but with suitable optimizations and data struc- 
tures, it can serve as the basis for an efficient imple- 
mentation. SRI's ICS (Integrated Canonizer/Solver) 
decision procedure package [FORS01] is directly based 
on the algorithm studied here. 

Section 2 introduces the theory of equality, which 
is augmented in Section 3 with function symbols from 
a canonizable and solvable theory. Section 3 also in- 
troduces the basic building blocks for the decision 
procedure. The algorithm itself is described in Sec- 
tion 4 along with some example hand-simulations. The 
proofs of termination, soundness, and completeness are 
outlined in Section 5. 

2    Background 

With respect to a signature consisting of a set 
of function symbols F and a set of variables V, a 
term is either a variable x from V or an application 
f{ai,...,an) of an n-ary function symbol / from F 
to n terms ai,...,an, where 0 < n. The metavari- 
able conventions are that u, v, x, y, and z range over 
variables, and a, b, c, d, and e range over terms. The 
metavariables R, S, and T, range over sets of equali- 
ties. The metatheoretic assertion a = b indicates that 
a and b are syntactically identical terms. Let vars(a), 
vars{a = 6), and vars(T) return the variables occur- 
ring in a term a, an equality a - b, and a set of equal- 
ities T, respectively. The operation [a] is defined to 
return the set of all subterms of a. 

Some of the function symbols are interpreted, i.e., 
they have a specific interpretation in some given theory 
r, while the remaining function symbols are uninter- 
preted, i.e., can be assigned arbitrary interpretations. 
A term f(ai,...,an) is interpreted (uninterpreted) if 
/ is interpreted (uninterpreted). A term e is non- 
interpreted if it is either a variable or an uninterpreted 
term. We say that a term a occurs interpreted in a term 
e if there is an occurrence of a in e that is not prop- 
erly within an uninterpreted subterm of e. Likewise, a 
occurs uninterpreted in e if a is a proper subterm of an 
uninterpreted subterm of e. solvables(a) denotes the 
set of outermost non-interpreted subterms of a, i.e., 

those that do not occur uninterpreted in a. 

solvables(f (a!,..., an))    =    \Jsolvables(ai), 
i 

if / is interpreted 

solvables(a)    =    {a}, otherwise 

The theory of equality deals with sequents of the 
form T \- a = b. We will insist that these sequents be 
such that vars(a = b) C vars(T). The proof theory 
for equality is given by the following inference rules. 

1. Axiom: 
T\-a = b 

-, for o = b G T. 

2. Refiexivity: 

3. Symmetry: 

T h a — a 

Tha 
T\-b 

4. Transitivity: T\-a = b T\-b = c 

5. Congruence: 
T h Qi = bi 

Th 

• T h an = bn 

T\- /(ai,...,an) = /(&!,...,&„) 

The semantics for terms is given by a model M 
over a domain D and an assignment p for the vari- 
ables so that M{x\p = p(x) and M{f(au.. .,an)Jp = 
M(/)(M[a1]/9,...,M[an]p), and M[a]p G D for all 
a. We say that M,p f= a = b iff M[aJp = M{b}p, 
and M \=a = biSM,p\=a = b for all assign- 
ments p over vars(a = b). We write M,p \= S 
when \/a,b : a = b G S D M,p (= a = 6, and 
M,p[=Tha = b when {MlP\=T) D{M,p\=a = b). 

3    Canonizable and Solvable Theories 

Shostak's algorithm goes beyond congruence closure 
by deciding equality in the presence of function sym- 
bols that are interpreted in a theory r [Sho84, CLS96]. 
The algorithm is targeted at canonizable and solvable 
theories, i.e., theories that are equipped with solvers 
and canonizers as outlined below. We write \=T a = b 
to indicate that a = b is valid in theory r. The canon- 
izer and solver are first described for pure r-terms, i.e., 
without any uninterpreted function symbols, and then 
extended to uninterpreted terms by regarding these as 
variables. 

Definition 3.1 A theory T is canonizable if there is a 
canonizer a such that 
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1. \=T a = b iff a (a) = a(b). 

2. a{x) = x. 

3. vars{a{a)) C vars(a). 

4- a {a {a)) = a (a). 

5. If a (a) = f(bi,...,bn), then a(bt) = 6; for 1 < 
i <n. 

For example, a canonizer a for the theory of linear 
arithmetic can be defined to transform expressions into 
an ordered-sum-of-monomials normal form. A term a 
is said to be canonical if a(a) = a. 

Definition 3.2 A model M is a CT-model if M (= a — 
a(a) for any term a, and M \£ a = b for distinct 
canonical, variable-free terms a and b. 

Definition 3.3 A set of equalities S and a = b are 
er-equivalent iff for all a-models M and assignments p 
over the variables in a and b, M, p \= a = b iff there 
is an assignment p' extending p, over the variables in 
S,a, and b, such that M,p' \= S. 

Definition 3.4 A canonizable theory is solvable if 
there is an operation solve such that, solve(a = b) = ! 
if a = b is unsatisfiable in any a-model, or S = 
solve(a = b) for a set of equalities S such that 

1. S is a set of n equalities of the form x,- = e,- for 
0 < n where for each i, 0 < i < n, 

(a) x-i G vars(a = b). 

(b) Xj $ vars(ej), forj, 0 < j < n. 

(c) x,i ^ Xj, for i ^ j and 0 < j < n. 

(d) a{e,) = et. 

2. S and a = b are a-equivalent. 

A solver for linear arithmetic, for example, takes an 
equation of the form 

c + ai.Ti + ... + a„xn = d + b\X\ + ... + bnx„, 

where Oi ^ b\, and returns 

xi = a{ (d-c)/{ai - &i) 
+ {(b-> - a>)/(ni - h)) * x2 

+ ... 
+ {(bn -a„)/(ai -bx)) *xn). 

In general, solve(a = b) may contain variables that do 
not occur in a = b, and vice-versa. 

There are a number of interesting canonizable and 
solvable theories including linear arithmetic, the the- 
ory of tuples and projections, algebraic datatypes like 

lists, set algebra, and the theory of fixed-sized bitvec- 
tors. In many cases, the canonizability and solvabil- 
ity of the union of theories (with disjoint signatures) 
follows from the canonizability and solvability of its 
constituent theories.1 We do not address modularity 
issues here but instead assume that we already have a 
canonizer and solver for a single combined theory. 

The solvers and canonizers characterized above are 
intended to work in the absence of uninterpreted func- 
tion symbols. They are adapted to terms containing 
uninterpreted subterms by treating these subterms as 
variables. Canonizers are applied to terms containing 
uninterpreted subterms by renaming distinct uninter- 
preted subterms with distinct new variables. For a 
given term a, let 7 be a bijective mapping between a 
set of variables X that do not appear in a and the 
uninterpreted subterms of a. The application of a sub- 
stitution 7 to a term a, written 7(0], is defined so that 
7[a] = /(7[m],...,7[an]) if a = /(ai,... ,a„), where 
/ is interpreted. If a is in the domain of 7, then 
-y[a] = 7(a), and otherwise, 7(0] = a.   Then a(a) is 
7[a(7^H)]. 

For solving equalities containing uninterpreted 
terms, we introduce, as with a, a bijective map 7 be- 
tween a set of variables X not occurring in a or b, and 
the uninterpreted subterms of a and 6, such that 

solve(a = b) = 7[so/);e(7_; [a] = 7~;[b])] ■ 

When uninterpreted terms are handled as above, the 
conditions in Definitions 3.1 and 3.4 must be suitably 
adapted by using solvables(a) instead of vars(a). 

The proof theory for equality is augmented for can- 
onizable, solvable theories by the proof rules: 

1. Canonization: 
T \- a = a (a) 

-, for any term a. 

2. Solve: 
T\-a = b     TöSh- c = d 

if   S     = 
TV- c = d 

solvc(a = b) -fi _L and vars(c = d) C vars(T). 

3. Solve-!: —=-;—7—, , if solvefa = b) = _l_. 
1 h false 

A sequent T h c = d is derivable if there is a proof 
of T h c = d using one of the inference rules: axiom, 
reflexivity, symmetry, transitivity, congruence, canon- 
ization, solve, or solve-!. We say that T h 5 is deriv- 
able if T \- c = d is derivable for every c = d in S. 
The sequent T, 5 h c - d is just T U S h c = d. The 
weakening and cut lemmas below are easily verified. 

1 The general result on combining solvers claimed by 
Shostak [SI108I] is incorrect, but. there are some restricted re- 
sults on combining equational unifiers [BSOfi] that, can be applied 
here. 
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Lemma 3.5 (weakening) If T C T' and T h a = b 
is derivable, then T' \- a = b is derivable. 

Lemma 3.6 (cut) //T' h T and T h a = b is deriv- 
able, then X" h a = b is derivable. 

Theorem 3.7 (proof soundness) If T \- a = b is 
derivable, then for any a-model M and assignment p 
over vars(T), M,p\=T\- a = b. 

Proof. By induction on the derivation of T h a = 
b. The soundness of the solve rules follows from the 
conditions in Definition 3.4. ■ 

A set of equalities S is said to be functional (in 
a left-to-right reading of the equality) if whenever a = 
b e S and a = b' G S,b = b'. For example, the solution 
set returned by solve is functional. A functional set 
of equalities can be treated as a substitution and the 
associated operations are defined below. S(a) returns 
the solution for a if it exists in S, and a itself, otherwise. 
If a = b is in S for some b, then a is in the domain of 
5, i.e., dom(S). 

S(a)    = 
b    if a = b€S 
a     otherwise 

dom(S)    =    {a \ 3b. a = b G 5}. 

The operation a ~ b checks if a is congruent to b 
in S, i.e., a = f(au ..., a„), b = f{bu ..., bn), and 
S(ai) = S(bi) for 1 < i < n. A set of equalities S is 
said to be congruence-closed when for any terms a and 

b in dom(S) such that a ~ b, we have S(a) = S(b). 
S[a] replaces a subterm b in a by S(b), where b 6 

solvables(a). 

S[f(ai,...,an)]    =    f(S[ai},...,S[an}), 

if / is interpreted 

S[a]    =    S(a), otherwise. 

norm(S)(a) is a normal form for a with respect to 5 
and is defined as cr(S[a}). The operation norm does not 
appear in Shostak's algorithm and is the key element 
of our algorithm and its proof. With S fixed, we use a 
as a syntactic abbreviation for norm(S)(a). 

norm(S)(a) <r(S[a]). 

Lemma 3.8 // solve(a = b) = S ^ _L, then 
norm{S){a) = norm(S)(b). 

Proof. By definitions 3.3 and 3.4(2), for any a- 
model M and assignment p1', we have M,p' (= S <=» 
M,p' \=a = b. Let a1 = S[a] and b' = S[b]. By induc- 
tion on a, M,p' \= a = a', and similarly M, p' \=b = b'. 

Hence, M, p' (= a' = b'. Then, since M is a cr-model, by 
Definition 3.2, it must be the case that <j(a') = <r(6'), 
and therefore norm(S)(a) = norm(S)(b). * 

The definition of the lookup operation uses Hilbert's 
epsilon operator, indicated by the keyword when, to 
return S(/(&i,..., &„)) when b\,...,bn satisfying the 
listed conditions can be found. If no such bi,...,bn 

can be found, then lookup(S)(a) returns a itself. We 
show later that the lookup operation is used only when 
the results of this choice are deterministic. 

lookup{S){f{ai,...,an))    =    S(f(h,...,bn)), 

when bi,...,bn : 

f{bi,...,bn) £ dom(S), 

and üi = S(bi), 

for 1 < i < n 

lookup(S)(a)    =    a, otherwise. 

can(S)(a) is a canonical form in which any uninter- 
preted subterm e that is congruent to a known left- 
hand side e' in 5 is replaced by S(e'). It is analogous 
to the canon operation in Shostak's algorithm. We use 
a as a syntactic abbreviation for can(S)(a). 

can(S){f(a1,...,an))    =    lookup(S){f(aT, ■ ■ ■ ,ö^)), 

if / is uninterpreted 

can(S)(f {a!,..., an))    =    CT(/(OT, ... ,0^)), 

if / is interpreted 

can(S)(a)    =    S(a), otherwise. 

Lemma 3.9 (cr-norm) // S is functional, then 
norm(S)(a(a)) = ä and can(S)(a(a)) = a. 

Proof. We know that h a (a) = a. Then for b' = 
S[a(a)] and b = S[a], the equality b' = b is valid in 
every cr-model. Then by Definition 3.2, cr(S[er(a)]) = 
a(S[a}), and hence the first part of the theorem. 

The reasoning in the second part is similar. If we let 
R = {b = b | b G [a]}, then can(S){a) = norm{R)(a). 
We can therefore use the first part of the theorem to 
establish the second part. ■ 

We next introduce a composition operation for 
merging the results of a solve operation into an existing 
solution set. When RoS is used, S must be functional, 
and the result contains a — b for each equality a = b 
in R in addition to the equalities in S. 

RoS    =    {a = b\a = be R}US. 

The following lemmas about composition are given 
without proof. 

Lemma 3.10 (norm decomposition) If R U S  is 
functional, then 

norm(R o S)(a) = norm(S)(norm(R)(a)). 
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process({a — b, T}) 

process{%) 

asseri(a = b, _L) 

assert (a = b, S) 

expand(S, a, b) 

new(S, a, 6) 

merge(a, b, S) 

merge(a, b, S) 

cc(l) 

cc{S) 

= assert{a = b,proeess{T)) 

= 0. 

= _L 

= cc(mergc(a,b, S+)), where. 

S+ = expand {S,H,b). 

= S U {e = e | e e new(S, a, b)}. 

= ([a = b} - dom{S). 

= _L, if solve(a = b) = _l_ 

= S o solve(a — b), otherwise. 

= 1 

cc(merge(S(a), S(b), S)), 

w/ien a, b : 

a,b £ dom(S) 

a ~ 6, and 5(a) ^ S(6) 

cc(5)    =    5, otherwise. 

Figure 1: Main Procedure: process 

Lemma 3.11 (associativity of composition) If 
Q U R U S is functional, then 

(Q°R)oS = Qo(RoS). 

Lemma 3.12 (monotonicity) If RuS is functional, 
then if R{a) = R(b), then (R o 5)(«) = (Ro S)(b), for 
any a and b. 

4    An Algorithm for Deciding Equality 
in the Presence of Theories 

We next present an algorithm for deciding T \- c = 
d for terms containing uninterpreted function sym- 
bols and function symbols interpreted in a canoniz- 
able and solvable theory. The algorithm for verify- 
ing T h c = d checks that can(S)(c) = can(S)(d). 
where S = process(T). The process procedure shown 
in Figure 1, is written as a functional program. It is 
a mathematical description of the algorithm and not 
an optimized implementation. The state of the algo- 
rithm consists of a set of equalities 5 which holds the 
solution set. We demonstrate as an invariant that S is 
functional. Two terms a and b in dom(S) are in the 
same equivalence class according to 5 if S(a) = S(b). 

The operation process(T) returns a final solution 
set by starting with an empty solution set and suc- 

cessively processing each equality a = b in T by in- 
voking assert(a = b,S), where S is the state as re- 
turned by the recursive call of process. The invocation 
of assert (a = b. S) is executed by first reducing a and 
b to their respective canonical forms ci and b. Next, 
S is expanded to include e = e for each subterm e 
of ö = b where c $ dom(S). This preprocessing step 
ensures that S contains entries corresponding to any 
terms that might be needed in the congruence closure 
phase in the operation cc.1 The merge operation then 
solves the equality a — b to get a solution'' S", and 
returns S ° S' as the new value for the state 5. As 
we will show, this new value affirms a = b, but it is 
not congruence-closed and hence does not contain all 
the consequences of the assertion a = b. The step 
cc(S) computes the congruence closure of S by repeat- 
edly picking a pair of congruent terms a and b from 
dom(S) such that S(a) ^ S(b) and merging them us- 
ing mergc(S(a), S(b), S). Eventually either a contra- 
diction is found or all congruent left-hand sides in S 
are merged and the cc operation terminates returning 
a congruence-closed solution set. 

The above algorithm fixes the nontermination and 
incompleteness problems in Shostak's algorithm by in- 
troducing the norm operation and the composition op- 
erator R o S to fold in a solution. The norm, opera- 
tion ensures that no new uninterpreted terms are in- 
troduced during congruence closure in the function cc, 
as is needed to guarantee termination. The composi- 
tion operator It o S ensures that any newly generated 
solution 5 is immediately substituted into R and the 
algorithm never attempts to find a solution for an al- 
ready solved non-interpreted term. 

We first illustrate the algorithm on some examples. 
The first example contains no interpreted symbols. 

Example 4.1 Consider the goal /5(:r) = x,f3(x) = 
.T \- f(x) = x. The value of 5 after the base case is 
0. After the preprocessing of /3(x) = .r in assert, S 
is {x = x,f(x) = f{x),f-(x) = f2(x),p(x) = f(x)}. 
After merging f3(x) and x, S is {x — x,f(x) = 
f{*),r-(z) = P(■'■), P(x) = x). When f'{x) = x 
is preprocessed in assert, can(S)(f5(x)) yields f~{x) 
since 5(/3(.r)) = x, and S is left unchanged. When 
f2(x) and x have been merged, S is {x = x,f(x) — 

f(x),p(x) = x,p(x) = x}. Now /(,;) £ f(x) 
and hence /(.;:) and x are merged so that S is now 
{x = x,f(x)=x,r-(x)=x,p(x)=x}. 

2Artua!Iy, the interpreted subternis of a — b need not all be 
included in dom(S). Only those that are immediate Kubterms of 
uninterpreted subterms in « = b are needed. 

■'Any variables occurring in solve.{a — b) and not, in vars(a — 
b) must be fresh, i.e., they must not occur in the original con- 
jecture or be generated by any other invocation of solve. 
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The  conclusion   f(x)    =   x  easily  follows  since 
can(S)(f(x)) = x = can{S){x). 

Example 4.2 Consider y + 1 = x, f(y) + 1 = y - 
1, f(x — 1) — l = x + lh false which is a permutation 
of our earlier example. Starting with S = 0 in the 
base case, the preprocessing of f(x — 1) — 1 = 2 + 1 
causes the equation to be placed into canonical form 
as -1 + /(—1 + x) = 1 + x and 5 is set to 

{ 1 = 1, — 1 = — l,x = x, — 1 + x = — 1 + x, 
/(-l + x) = /(-l + x), 1 + x = 1 + x}. 

Solving -l + /(-l+z) = l+x yields f(-l+x) = 2+x, 
and 5 is set to 

{ 1 = 1, — 1 = — l,x = x, — 1 + x = — 1 + x, 
/(-l + x) = 2 + x, 1 + x = 1 + x). 

No unmerged congruences are detected. Next, f(y) + 
1 = y — 1 is asserted. Its canonical form is 1 + f(y) = 
-1+2/, and once this equality is asserted, the value of 
5 is 

{ 1 = 1, — 1 = — l,x = x, — 1 + x = — 1 + x, 
/(-l + x) = 2 + x,l+x = l + x,y = y, 
f(y) = -2 + y,-l + y = -l + y, 
l + f(y) = -l + y}. 

Next y + 1 = x is processed. Its canonical form is 
1 + y = x and the equality l + y = l + yis added to 5. 
Solving y + 1 = x yields x = 1 + y, and 5 is reset to 

{  1■ = 1,-1 = -l,x= l + y,-l + ar = y, 
/(-l + x)=3 + y,l + x = 2 + y,y = y, 
f(y) = -2 + y,-l + y = -l + y, 

i + f{y) = -i + y,i + y = i + y}- 

The congruence close operation cc detects the congru- 
c 

ence /(l — y) ~ /(s) and invokes merge on 3 + j/ and 
-2 + j/. Solving this equality 3 + y = -2 + y yields _L 
returning the desired contradiction. 

5    Analysis 

We describe the proofs of termination, soundness, 
and completeness, and also present a complexity anal- 
ysis. 

Key Invariants. The merge operation is clearly the 
workhorse of the procedure since it is invoked from 
within both assert and cc. Let U(X) represent the set 
{o € X | a uninterpreted} of uninterpreted terms in 
the set X.  Let A be solvables(a), B be solvables(b), 

and S" = merge(a,b,S), then assuming U(AuB) C 
dom(S) and for all c e A U B, S(c) = c, the following 
properties hold of £" if they hold of S: 

1. Functionality. 

2. Subterm closure: 5 is subterm-closed if for any 
a £ dom(S), [a] C dom(S). 

3. Range closure: 5 is range-closed if for any a € 
dom(S), U(solvables(5'(a))) C dom(S), and for 
any c G solvables(S(a)), S(c) = c. 

4. Norm closure: 5 is norm-closed if 5(a) = 
norm(S)(a) for a in dom(S). This of course holds 
trivially for uninterpreted terms a. 

5. Idempotence: 5 is idempotent 
if 5[5(a)] = S{a), norm(S){S(a)) = S(a), and 
norm(S)(norm(S)(a)) = norm(S){a). 

These properties can be easily established by in- 
spection. Since whenever merge(a, 6,5) is invoked in 
the algorithm, the arguments do satisfy the conditions 
U(A UB)C dom(S) and for all c € A U B, S(c) = c, 
it then follows that these properties are also preserved 
by assert and cc, and therefore hold of process (T). We 
assume below that these invariants hold of 5 whenever 
the metavariable 5 is used with or without subscripts 
or superscripts. 

Lemma 5.1 (merge equivalence)  Let 
A = solvables (a) and B = solvables (b). Given that 
U(A U B) C dom(S) and for all c £ A\JB, S{c) = c, 
if S' = merge(a, b, 5) ^ ±, then 

1. norm(S')(a) = norm(S')(b). 

2. U(dom(S')) = U{dom(S)). 

Proof. Let it!  =   solve (a  =   b).    By definition, 
merge(a, 6, 5) = S o R. By Lemma 3.8, norm(R)(a) = 
norm(R)(b). Since S(c) = c for c e 4 U B, 
norm(S)(a) = a and norm(S)(b) = b. Hence, by norm 
decomposition, we have norm(S')(a) = norm(S')(b). 

By Definition 3.4, dom(R) C i U ß, hence 
t/(dom(5')) = U(dom(S)). m 

Termination. We define #(5) to represent the 
number of distinct equivalence classes partitioning 
U(dom(S)) as given by P(S). 

E(S)(a)    =    {b£U(dom{S))\S{b) = S{a)} 

P(S)    =    {E(S)(a)\aeU(dom(S))} 

#(5)    =    \P(S)\ 
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The definition of cc(S) terminates because the mea- 
sure #(5) decreases with each recursive call. If 
in the definition of cc, merge(S(a), 5(6), 5) = -L, 
then clearly cc terminates. Otherwise, let S' — 
merge(S(a), 5(6), 5) ^ _L, for a and 6 in dom(S) such 

that S(a) ^ 5(6) and a ~ b. In this case a and b must 
be uninterpreted terms since for interpreted terms a 

and 6, if a ~ 6, then 5(a) = 5(6) by norm closure. By 
merge equivalence, norm(S')(S(a)) = norm(S')(S(b)) 
and U(dom(S')) = U(dom(S)). By monotonicity, 
for any c and d such that 5(c) = S(d), we have 
5'(c) = S(d), and therefore #(5') < #(5). However, 
by norm c/o.s?/re, S'{a) = S'{b) so that #(5') < #(5). 

Soundness. The following lemmas establish the 
soundness of the operations norm and can with re- 
spect to 5. Substitution soundness and can soundness 
are proved by a straightforward induction on a, and 
norm soundness is a simple consequence of substitu- 
tion soundness. 

Lemma 5.2 (substitution soundness) 
// vars(a) C vars(T U 5), then T,S \~ a = a' w dcrn;- 
o,6/e, /or a' = S[a]. 

Lemma 5.3 (norm soundness) 
// vars(a) C vars(T U 5), then T, 5 h « = a w deriv- 
able. 

Lemma 5.4 (can soundness) 
// vars(a) C vars(T U 5), £/?,en T, 5 h a = S is deriv- 
able. 

Lemma 5.5 (merge soundness) 
// 5' = mc.rge(a, b, 5) / _L, then if T,S \~ a = b, and 
T,S' \- c = d with vars(c — d) C vars(T U 5), £/ten 
T, 5 h c = d.    Otherwise,  merge(a,b, 5)  =  _L,  and 
T,Shi. 

Proof. If 5' = merge(a,b,S) £ 1, then let R = 
solve(a = 6). By norm soundness, S, R h 5', and 
hence by c«f, T, 5, i? h c = d is derivable. By the solve 
rule, T, 5 h c = d is derivable. 

If m,crge(a, b, 5) = JL, then by similar reasoning us- 
ing the solve-1 rule, T, S h /aZ.se is derivable. ■ 

Lemma 5.6 (cc soundness) // 5' = cc(5) ^ L, 
T,S' \- a — b for vars(a = 6) C vars(T,S), then 
T,S \- a = b is derivable. Otherwise, cc(S) = _l_, and 
S \- false is derivable. 

Proof. By computation induction on the definition 
of cc using merge soundness. m 

Lemma 5.7 (process soundness) 
If S = process(T,) ^ _L, 7\ C T2, and T2,S h c = 
d /or vars(e = d) C vars(T2), then T2 \~ c = d is 
derivable. Otherwise, process(T1) — ±, andT\ \- false 
is derivable. 

Proof. By induction on the length of 7\. In the 
base case, 5 is empty and the theorem follows triv- 
ially. In the induction step, with T\ — {a = 6,7^'} and 
5' — process(T1,), we have the induction hypothesis 
that T2 h c = d is derivable if T2, 5' h c = d is deriv- 
able, for any c, d such that vars(c = d) C vars(Ts). 
We know by can soundness that T2,5' h 5 = a and 
T2,5' h 6 = 6 are derivable. When S' is augmented 
with identities over subterms of a and 6 to get 5'+, we 
have the derivability of T2,S' \- S'+. By cc soundness, 
we then have the derivability of T2,S'+ h c = d from 
that of T2,5 h c = d. The derivability of T2,5' h c = d 
then follows by CM£ from that of T2,5'+ h c = d, and 
we get the conclusion T2 \- c = d by the induction 
hypothesis. 

A similar induction argument shows that when 
proeess(Ti) = _1_, then T2 h /a/.se. ■ 

Theorem 5.8 (soundness) If S — process(T) ^ L, 
vars(a = 6) C vars(T), and ä =b, then T \- a = b is 
derivable. Otherwise, process(T) = _L, and T h /a/,se 
is derivable. 

Proof. If 5 = process(T) ^ ±, then by can sound- 
ness. T,S \~ a — ä and T, S h 6 = 6 are derivable. 
Hence, by transitivity and symmetry, T,S \- a = b is 
derivable. Therefore, by process soundness, T h a = b 
is derivable. 

If process(T) = ±, then already by process sound- 
ness, T h false. m 

Completeness. We show that when 5 = process(T) 
then can(S) is a er-model satisfying T. When this is 
the case, completeness follows from proof soundness. 
In proving completeness, we exploit the property that 
the output of process is congruence-closed. 

Lemma 5.9 (confluence) 
If S is congruence-closed and [/(ftt"fl) C dorn(S), then 
can(S)(a) = norm(S)(a). 

Proof. The proof is by induction on a. In the 
base case, when a is a variable, can(S)(a) = S(a) = 
norm(S)(a). 

If a is uninterpreted and of the form /(«i,..., o„), 
then can(S)(a) = lookup(S)(f(aJ, ■ ■ ■ ,oJ7))- Since 5 is 
subterm-closed, by the induction hypothesis and norm 
closure, we have oj = fl, = 5(o,) for 0 < i < n. Then 
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there must be some b of the form f{bi,...,bn) such 
that S(bi) = S(a,i), for 0 < i < n, since a itself is such 
a b. Then by congruence closure and norm closure, 

ä = S(b) = S(a) = a, since o ~ b. 
If a is interpreted, by the induction hypothe- 

sis and subterm closure, ä = a(f(a\,... ,a^)) = 
<r{f{di,...,dn)) =ä. u 

Lemma 5.10 (can composition) If S' — S o R and 
S' is congruence-closed, then can(S')(can(S)(a)) = 
can(S')(a). 

Proof. By   induction   on   a.        When   a 
is a variable. can(S)(a) = S(a). If a $ 
dom(S), then S(a) = o, and hence the conclu- 
sion. Otherwise, by range-closure, U(fS(a)1) C 
dom(S) C dom(S'). Then, by confluence, norm 
decomposition, and idempotence, can(S')(S(a)) = 
norm(S')(S(a)) = norm(R)(norm(S)(S(a))) = 
norm(R)(norm(S){a)) = norm(S')(a) = can(S')(a). 

In the induction step, let a = /(ai,... ,an). If a is 
uninterpreted, then if 

f(au...,an) ~ /(&i ,M 
for some f(b\,...,bn) e dom(S), then ä = 
S(f(bi,... ,bn)). The reasoning used in the base 
case can then be repeated to derive the conclusion. 
Otherwise, 5 = f (a~[,... ,a~^) and by the induction 
hypothesis and the definition of can, can(S')(a) = 
/ootup(5')(/(con(5')(oi),..., can(S'){an))) = 
can(S')(a). 

When a is interpreted, by the induction hypothesis 
and the a-norm lemma, 

can(S')(a) 
=    can(5')(cr(/(ß7, ...,ö^))) 
=    a{f{can(S'){äJ),...,can(S'){ä^))) 
=    can(S')(a). 

■ 
Lemma can composition with 0 for R yields the 

idempotence of can(S) for congruence-closed S so that 
we can define a a-model Ms in terms of can(S). The 
domain D of Ms consists of {a\can(S)(a) = a}. The 
mapping of functions is such that Ms (/)(ai,..., an) = 
lookup(S)(f(sL1,... ,an)), if / is uninterpreted. If / is 
interpreted Ms(/)(ai,... ,an) = cr(/(a1;... ,an)). If 
p[x] = p(x) and p[}{au ..., an)\ = f{p[ai],... ,p[an]), 
then by the idempotence of can(S), Msla}p is just 
can(S)(p[a]). Lemma c-norm can then be used to show 
Ms \= a(a) — a. Ms is therefore a a-model. Corre- 
spondingly, for a given set of variables X, pg is defined 
so that pg (x) = can(S)(x) for x E X. 

Lemma 5.11 (can a-model) If S — process(T) ^ 
_L and X = vars(T), then Ms,p$ |= a = 6 for any 
a = beT. 

Proof. Showing that Ms,Ps   \=  a  =  b is the 
same as showing that can(S)(a) = can(S)(b). The 
proof is by induction on T. In the base case, T 
is empty. In the induction step, T = {a = b,T'} 
with X' = vars(T'). Let 5' = process(T'). By 
the induction hypothesis, Ms>,Ps> |= T''. With 
S'+ = expand(S,a',b') for o' = can(S')(a) and b' = 
can{S')(b), let So = merge(a,b,S'+), hence by merge 
equivalence, norm(So)(a') = norm(So){b'). By asso- 
ciativity of composition, it can be shown that there 
is an R such that S = So ° R and an R' such that 
S = S'+ o R'. Hence by monotonicity, norm(S)(a') = 
norm(S)(b'). Since S is congruence-closed, by con- 
fluence, can(S)(a') = norm(S)(a') and can(S)(b') = 
norm(S)(b'). Hence, can(S)(a') = can(S)(b'). 

It can also be shown that can(S'+)(a) = can(S')(a), 
and similarly for b. Therefore, by can composition, we 
have can(S)(a) = can(S)(b), and hence Ms,p§ )= a = 
ö. A similar argument shows that for c = d G T", since 
can(S')(c) = can(S')(d), we also have can(S)(c) = 
can(S)(d). ■ 

When T h /a/se is derivable, we know by proof 
soundness that there is no cr-model satisfying T and 
hence by the can a-model lemma, process(T) must be 
_L. 

Theorem 5.12 (completeness) 
If S   =   process(T)   ^   ±   and T   h   a 
can(S)(a) = can(S)(b). 

b,   then 

Proof. Since Ms,Ps \= T by can a-model for Ar = 
vars(T), we have by proof soundness that can(5)(a) = 
can(5)(&). ■ 

Complexity. We have already seen in the termina- 
tion argument that the number of iterations of cc in 
process is bounded by the number of distinct equiv- 
alence classes of terms in dom(S) which is no more 
than the number of distinct uninterpreted terms. We 
will assume that the solve operation is performed by 
an oracle and that there is some fixed bound on the 
size of the solution set returned by it. In the case of 
linear arithmetic, the solution set has at most one el- 
ement. Let n represent the number of distinct terms 
appearing in T which is also a bound on \S\ and on 
the size of the largest term appearing in 5. The com- 
position operation can be implemented in linear time. 
Thus the entire algorithm has 0{n2) steps assuming 
that the a and solve operations are length-preserving 
and ignoring the time spent inside solve. 
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6    Conclusions 

Shostak's decision procedure for equality in the 
presence of interpreted and uninterpreted functions 
is seriously flawed. It is both incomplete and non- 
terminating, and hence not a decision procedure. All 
subsequent variants of Shostak's algorithm have been 
similarly flawed. This is unfortunate because decision 
procedures based on Shostak's algorithm are at the 
core of a number of widely used verification systems. 
We have presented a correct algorithm that captures 
Shostak's key insights, and described proofs of termi- 
nation, soundness, and completeness. 
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Abstract 

A decision procedure for a theory of arrays is of inter- 
est for applications informal verification, program analy- 
sis, and automated theorem-proving. This paper presents a 
decision procedure for an extensional theory of arrays and 
proves it correct. 

1. Introduction 

A decision procedure for a theory of arrays is of interest 
for applications in formal verification and program analy- 
sis. Such a procedure is also of value for theorem-provers. 
The PVS theorem-prover [11] has an undocumented deci- 
sion procedure for a theory of arrays [12], and HOL has 
some automatic support for a theory of arrays via a library 
for finite partial functions [3]. 

Two kinds of array theories have been studied previously. 
Extensional theories require that if two arrays store the same 
value at index i, for each index i, then the arrays must be 
the same. Non-extensional theories do not make this re- 
quirement. This paper is the first to present a procedure for 
checking satisfiability of arbitrary quantifier-free formulas 
in an extensional theory of arrays and prove its correctness. 

2. Theories of arrays 

Decision procedures for various theories of arrays have 
been studied previously. Most of these theories can be di- 
vided into extensional and non-extensional varieties. In this 
section, several families of array theories are axiomatized 
in classical first-order multi-sorted logic with equality. The 
theory Arr decided in this paper is then presented and com- 
pared to previously decided theories. 

2.1. The language 

Sorts The language has a basic sort I for indices into 
arrays. It also has value sorts, which are the sorts of indi- 

viduals that may be stored in arrays. The sort V is the sort 
for primitive values stored in arrays. The set of value sorts 
is defined to be the least set X satisfying 

• Vex 

• r 6 X -> arrayT 6 X 

Every value sort except V is an array sort. The value sorts 
together with I are all the sorts of the language. V and I 
need not be distinct. 

Definition 1 (dimensionality of a value sort) The dimen- 
sion dim(r) of a value sort r is defined by 

• dim{V) = 0 

• dim(arrayT) = dim(j) + 1 

Terms The language has countably infinitely many 
variables and constants, with countably infinitely many of 
each distinct sort. The constants are uninterpreted, in the 
sense they will not occur in any axiom or axiom scheme. 
The function symbols of the language are 

• readT of type (arrayT —> / —► r), for every value sort 
T 

• writeT of type (arrayT —>■ I —> r —> arrayT), for every 
value sort r 

Subscripts on read and write will generally be omitted. In- 
formally, read(a, i) will denote the value stored in array a at 
index i, and write(a, i, v) will denote an array which stores 
the same value as a for every index except possibly i, where 
it stores value v. 

Terms are built up in the usual way from constants and 
variables using the function symbols. Terms whose sort is 
an array sort will be called array terms. Terms whose sort 
is I will be called index terms. The dimension dim(a) of 
an array term a is the dimension of its sort. If dim(a) = n, 
array a is said to be n-dimensional. If n > 1, a is also said 
to be multi-dimensional. 
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Formulas The atomic formulas of the language are the 
equations between terms of the same sort. Formulas are 
built up from atomic formulas using propositional connec- 
tives and quantifiers in the usual way. A formula is closed if 
it has no free variables. A literal is an atomic formula or the 
negation of an atomic formula. A theory is a set of closed 
formulas. 

2.2. Theories 

Some theories restrict which array sorts are allowed. If a 
theory allows array sorts of dimension at most n, it is said to 
have just n-dimensional arrays. If a theory allows all array 
sorts, it is said to have multi-dimensional arrays. 

The following scheme, which is schematic in a value 
sort T, is called the read-over-write axiom scheme. Infor- 
mally, it says that for all arrays a, indices i and j, and val- 
ues v of suitable type, reading the value stored at index j of 
write(a,i,v) is v if the two indices are equal and read(a,j) 
if they are different. 

Axiom scheme 1 (read-over-write) 

\/a:arrayT.\/i:I.Vj iI.Vv.V. 

{i = j -> read(write(a, i, v),j) = v) A 

(J ¥" 3 ~* read(write(a, i, v), j) = read{a,j)) 

The following scheme, which is schematic in a value sort 
r, is called the extensionality axiom scheme. Informally, 
it expresses a principle of extensionality for arrays: if two 
arrays store the same value at index i, for each index i, they 
are equal. 

Axiom scheme 2 (extensionality) 

Vo : arrayT . V6 : arrayT . 

(Vi : I. read(a, i) = read(b, i)) —> a = b 

The extcnsional theories are those axiomatized by the 
read-over-write and extensionality axiom schemes. The 
non-extensional theories are those axiomatized by just the 
read-over-write axiom scheme. Note that since a theory is a 
set of closed formulas, quantifier-free array theories have no 
variables; all 0-ary symbols are (uninterpreted) constants. 

2.3. The theory Arr 

The theory Arr decided in this paper is the quantifier- 
free fragment of the extcnsional theory with multi- 
dimensional arrays where sort V is defined to be sort I. So 
indices are the values stored in 1-dimensional arrays. 

The restriction to the quantifier-free fragment is justi- 
fied by the fact that the fully quantified theory is undecid- 
able, even in the absence of the function symbols writeT 

and the read-over-write scheme. This is because single- 
sorted first-order theories with function symbols and equal- 
ity may be translated into this array theory in such a way 
that a first-order formula is valid iff its translation is. The 
translation maps constant symbols to index constants, n- 
ary function symbols to n-dimensional array constants, 
and terms like /(z'i,...,i„) to nested read expressions 
read(... read{read{f ,i\),i'2)... ,i'n), where f',i[,... ,i'n 

are the translations of /, i\,..., in. The undecidability re- 
sults for classical first order logic with just function symbols 
and equality (see, e.g., [5]) can then be applied to show that 
even quite restricted quantified fragments of the extensional 
theory of arrays are undecidable. 

A decision procedure for Arr may be useful even for 
applications which require a fully quantified logic. Many 
theorem provers, such as the widely used PVS [11], pro- 
vide strategies to reduce goals to subgoals in decidable frag- 
ments of their logic. 

2.4. Comparison with related work 

In this section, related work is summarized by describing 
which theories are decided. These theories often use axiom- 
atizations different from but equivalent to that of Arr. All 
the theories decided are quantifier-free. Kaplan is the only 
one to distinguish the sorts V and /. Many of the previous 
theories allow arithmetic operators or uninterpreted func- 
tions over sort / to be used in addition to the symbols read 
and write. The restriction here to just the essential theory of 
arrays is justified by the fact that, as will be shown in Sec- 
tion 6 below, the satisfiability procedure for Arr is suitable 
for incorporation into a framework for cooperating decision 
procedures [2]. In such a framework, separate decision pro- 
cedures for arithmetic and uninterpreted functions may be 
combined with the decision procedure for Arr to decide the 
combined theory. 

The first two works present axioms but no decision pro- 
cedure for their theories. With the exception of Levitt's 
work, the others give decision procedures for theories that 
are strictly weaker than Arr, cither because they restrict the 
form of formulas in the theory (e.g., to just equations), dis- 
allow equations between arrays, or arc non-extensional. 

McCarthy In [8], McCarthy introduces the function 
symbols read and write and gives an informal semantics for 
an extensional theory of arrays based on them. 

Collins and Syme Collins and Syme present in HOL 
a theory of finite higher-order partial functions similar to a 
theory with multi-dimensional arrays [3]. 

Kaplan In [6], Kaplan gives a decision procedure for a 
non-extensional equational theory with just 1-dimensional 
arrays. He considers equations between index terms only, 
which is reasonable since his theory contains no non-trivial 
equations between arrays. He then shows how to extend his 
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procedure to decide an extensional equational theory, where 
the equations may be between array as well as index terms. 
He imposes the restriction that distinct variables of sort I 
must receive distinct interpretations. 

Suzuki and Jefferson In [15], Suzuki and Jeffer- 
son present a decision procedure for a theory with just 1- 
dimensional arrays, where equations between arrays are not 
allowed. The theory has axioms for extensionality and the 
existence of constant arrays (arrays that store the same value 
at all indices), but these appear to be included for technical 
reasons only; the theory decided is equivalent to the one 
without those axioms under the restrictions they impose. 
They extend their procedure to decide a theory with a new 
predicate symbol PERM, where PERM(a, b) holds iff the 
multiset of the values stored in a is contained in the mul- 
tiset of the values stored in b. Sentences of the theory are 
restricted to the form P -¥ PERM(a,b), where P is any 
(quantifier-free) sentence not containing PERM. Arr does 
not have the PERM predicate, but inspection of the way 
Suzuki and Jefferson extend their algorithm to treat PERM 
shows that it could just as easily be used to extend the algo- 
rithm for Arr, as long as their restriction disallowing equa- 
tions between array terms were retained. 

Downey and Sethi In [4], Downey and Sethi present 
a decision procedure for an extensional equational theory 
with just 1-dimensional arrays. Equations between array 
terms are allowed. They prove that determining the invalid- 
ity of an equation in their theory of arrays is NP-complete. 

Nelson and Oppen In [ 10], Nelson and Oppen describe 
an extensional theory of arrays. Their theory allows multi- 
dimensional arrays. They do not present their satisfiabil- 
ity procedure for the extensional theory, but in [9], Nelson 
gives a detailed presentation of a satisfiability procedure for 
a non-extensional theory. 

Levitt In Chapter 5 of his PhD thesis [7], Levitt presents 
a decision procedure for an extensional theory of arrays 
based on solving equations and canonizing terms, in the 
style of Shostak [13]. A detailed proof of correctness is 
not given, and has proved elusive to the authors. In con- 
trast, a detailed proof of correctness is given below for the 
procedure for Arr. 

3. The satisfiability procedure for Arr 

Arr is decided by a refutation procedure. The procedure 
decides satisfiability of conjunctions of literals, which are 
equations and disequations between terms. Deciding satis- 
fiability of arbitrary boolean combinations of atomic formu- 
las can be reduced to this problem by well-known means. 
A conjunction of literals whose satisfiability is to be tested 
will be called a goal. Comma will be used to denote con- 
junction. Two goals are said to be equisatisfiable when one 
is satisfiable iff the other is. 

3.1. Informal overview 

The procedure works in two phases. In the first phase, 
the original goal is transformed into a set of subgoals such 
that (i) no subgoal contains write and (ii) the original goal 
is satisfiable iff one of the subgoals is. Eliminating write 
expressions is straightforward except when they occur as 
the left or right hand side of an equation. How to eliminate 
such occurrences of write expressions is the crucial insight 
of this algorithm. 

Definition 2 (=_) 

a—%b     ^def     Vi : I. i 0 1 —> read(a, i) = read(b, i) 

Formulas of the form a =% b with 1 ^ 0 are called partial 
equations. 

The crucial observation is that 

write(a,i,v) = 6 <=>  (a =^y 6 A read(b,i) = v). 

write expressions occurring as sides of equations may thus 
be eliminated by introducing partial equations. 

The second phase of the procedure is based on the ob- 
servation that in the absence of write, arrays behave like 
uninterpreted functions and read behaves like function ap- 
plication. So in the absence of write, a congruence closure 
algorithm (cf. [1]) could be used to decide the theory. The 
algorithm must be modified to work with partial equations 
as well as equations, but this can be done. For simplicity, the 
very simple congruence closure algorithm described in [14] 
is used, but it should be possible to modify a more complex 
algorithm. 

3.2. Formal presentation 

Figure 1 presents our procedure as a proof system. The 
proof system determines a non-deterministic procedure, 
where rules are applied bottom-up to analyze a goal into 
one or more subgoals. The system may be thought of as 
a rewrite system, where, for each rule, the goal below the 
line is rewritten to the subgoals above the line. The sys- 
tem resembles a Gentzen-Schiitte system where only left 
rules of the corresponding sequent system are used (i.e., a 
sequent system where sequents are restricted to be of the 
form T =>■ _L). The derivable objects of this system are sets 
of literals. It is intended that a set of literals be derivable iff 
their conjunction is unsatisfiable. A deduction of a goal is a 
tree obtained by applying the proof rules bottom-up to that 
goal. A goal to which no rule can be applied is said to be 
normal. 

31 



Phase 1: 

F, read(a, k) ^ readib, k) 
(ext)  pq -j—,      k is not free in the conclusion; a and b arc arrays r, of & 

r\v], i = j     YWeadia. j)], i ^ j 
(r-over-w) —l-^- J l        v   'J;h     r J 

(w-elim) 

T[read(write(a, i,v),j)] 

r, a =2 b: i £ X     r, a —itx b, read(b, i) = v, i 0 X 
T, write(a, i, v) =x b 

r, b=T a 
(w-elim-helper)    —p T—    6 is a write expression, and a is not 

1 , a —j 0 

Phase 2: 

r, a —x b, read(a, i) = read(b, i), i $ X     T, a =j b, i 6 X 
(partial-eq) 

T, a =x b 
where a > b; X ^ 0; read(a, i) occurs in T 

,,     , T, a=i6, a =r c, 6 =IUI' c 
(trans)  = ;     2^0 and I 7^ 

T, o =1 b, a =x> c 

r[y], x = y 
(subst) p,  1 —     x > y, x ^ y,x not in r[] 

r, y —1 x 
(symm) -r=      x -< ?/ 

T, X =x y 

Both phases: 

T. i = j     r, i £ X T, i $ 1, i 7^ j 
(G-split)    —^—■ ^ 1 ■ T\  (^-expand) r,»e(j,J) v^"~     r,^(j,i) 

(e-empty) ffl (ax) 
r, i G 0 y   '     T, x^ X 

Figure 1. The decision procedure as a proof system 
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The system has two phases. Some rules may be applied 
in just one phase, while others may be applied in either 
phase. The rules of phase 1 are applied to a goal until no 
rule applies, and then the rules of phase 2 are applied. The 
procedure stops and reports that the original conjunction is 
satisfiable if it encounters a normal subgoal. Otherwise, it 
reports that the original goal is unsatisfiable. As mentioned 
before, phase 2 is a modified congruence closure algorithm. 
The core congruence closure algorithm consists of just the 
rules (symm) and (subst) [14]. 

The set-theoretic operators have their usual meanings; 
note that i,l denotes {i} U X, where I does not contain 
i. T[] denotes a context, which is an expression contain- 
ing one or more occurrences of a single free variable. The 
expression obtained by substituting the term t for the con- 
text's free variable is written T[t]. In the rule (subst), since 
the side condition requires that T[] contain no occurrences 
of the term x, applying (subst) replaces all occurrences of a: 
in T[x] with the term y. = denotes syntactic identity. The 
symbol -< denotes an ordering on terms by size, which is 
defined on terms in the usual way. Let x ^ y iff x and y are 
such that the size of x is less than or equal to the size of y. 
The variants -< and ^ are derived from ^ in the usual way. 

3.3. Avoiding non-termination in phase 2 

In phase 2, applications of (partial-eq) and (trans) must 
be restricted to avoid certain sources of non-termination. 
There is nothing preventing (partial-eq) and (trans) from be- 
ing applied repeatedly with the same partial equations, be- 
cause for both rules, the partial equations are retained in the 
goal. For (partial-eq), this form of non-termination may be 
prevented by adding a side condition to the rule that pre- 
vents it from being applied if, informally, read(a,i) and 
read(b, i) are already known to be equal or if i is already 
known to be equal to an element of I. Formally, the proce- 
dure can test whether or not t and t' are already known to 
be equal by applying all the rules of phase 2 except (partial- 
eq) and (trans) to the current goal with t ^ t' added, and 
seeing whether or not that goal is reported unsatisfiable. If 
neither (G-split) nor (^-expand) applies to the current goal, 
then this is equivalent just to comparing normal forms as de- 
termined by the core congruence closure algorithm. So in 
an implementation, this non-termination may easily be pre- 
vented. A similar approach can be used to prevent (trans) 
from being applied repeatedly to the same formulas. The re- 
quired machinery, however, has been omitted from the proof 
system for simplicity. 

4. Correctness of the Procedure 

A satisfiability procedure is sound iff when it reports a 
goal unsatisfiable, the goal is indeed unsatisfiable. A pro- 

cedure is complete iff when it reports a goal satisfiable, the 
goal is indeed satisfiable. A procedure is correct iff it ter- 
minates on all inputs, and it is sound and complete. In this 
section, a detailed proof of completeness for the satisfiabil- 
ity procedure for Arr is given. The proof of termination is 
routine and omitted for lack of space. The following theo- 
rem implies soundness. 

Theorem 1 (equisatisfiability) The conclusion of each 
rule of the system is satisfiable iff one of its premises is sat- 
isfiable. 

Proof: The proof is routine. Consider just the rule (trans). 
If a =x b and a =z' c are true in some model, then it is 
easy to see by the definition of =_ that b —JUT C is also 
true in some model. If c agrees with a at every index except 
those in I' and a agrees with b at every index except those 
in I, then clearly i g lul' implies that c agrees with a at 
i and also that a agrees with b at i. Hence, c agrees with b 
at i. For the other direction, if the premise has a model, so 
does the conclusion, since the conclusion is a subset of the 
premise. G 

Recall that a normal goal is one to which no rule applies. 
By the equisatisfiability theorem, to prove completeness of 
the algorithm it suffices to show that any normal goal is 
satisfiable. This may be done by constructing a model for a 
normal goal. The following lemma is easily established. 

Lemma 1 (effect of phase 1) A goal that is normal with 
respect to phase 1 of the algorithm contains no write ex- 
pressions and no disequations between array expressions. 

4.1. A convenient form for normal goals 

In preparation for constructing a model, several trans- 
formations, which are not actually performed by the algo- 
rithm, are applied to a normal goal to give an equisatisfiable 
normal goal F, which is in a more convenient form. If the 
normal goal contains equations of the form x = x, clearly 
they may be removed and the result will be equisatisfiable. 
Next, modify the goal by doing the following. Let G be the 
goal as it currently stands. If there is a term of the form 
read(a, i) in G that is not the left hand side of any equation 
in G, choose a constant symbol c not occurring in G, and 
modify G by replacing read(a, i) everywhere in it with c 
and adding the equation read{a, i) = c to it. If there is no 
such term read(a, i) in G, stop. It is easy to show that the 
resulting goal is normal and equisatisfiable with the original 
normal goal. This resulting goal consists of formulas of one 
of the following four forms, where x, y, and z are constant 
symbols: 

I. read(x,y) = z 
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II. x^y 

III. x =2 y, where every element of 2 is a constant symbol 

IV. x = y 

Since this resulting goal is normal, no formula x = y of 
the form (IV) has its left hand side appearing anywhere else 
in the goal, since otherwise (subst) would apply. Let T be 
this resulting goal, except without the equations of the form 
(IV). T will be said to be in convenient normal form. Any 
model M of T may be extended to a model of T with those 
equations of the form (IV) by giving the same interpretation 
for the constant x as for the constant y, if M interprets y, 
and a single arbitrary interpretation for both x and y other- 
wise. 

• The chain is denoted (ai i?x, 02 Rx2 ... Rin_x an). 

• n is the length of the chain. 

• The union along the chain is defined to be \Jl<: <n2j. 

• The chain is said to be from x to y iff a\  = x and 
an = y- 

b 

b a 

a 

4.2. Construction of a model 

In this section, a kind of term model for the goal F in 
convenient normal form is constructed. Several definitions, 
in terms of T, are required. The fact that the core congru- 
ence closure algorithm (rules (subst) and (symm)) is correct 
is used (sec [14] for the proof). 

Definition 3 (—>_ and «— _) Let —>_ and <— _ be the ternary 
relations defined, respectively, by 

« ->ib     iff    (ft =xb) GT 

a^xb    iff    (b =1 a) G T 

Note that for any 2, -»j and —»2 need not be symmetric, 
since (a =2 b) £ F does not imply (b =2 a) 6 T. 

Definition 4 (ss_) Let «_ be the least ternary relation sat- 
isfying 

1. a «0 a, for every array constant a appearing in F 

2. (a -*■! b) V (b ->i a) 4 o «2 i 

* * Definition 5 («_) Let K_ be the least ternary relation con- 
taining RJ_ and satisfying 

* * 
(3 c. a «2 c A c «j/ b) -> a ~iui' b 

* * 
Definition 6 (^) L^/1 äS /?<? the binary relation defined by 

* * 
a w 6    jj^   31. a Kx b 

* * * 
The context will help distinguish ss_ and ta. Note that ss 

is an equivalence relation. 

Definition 7 (chains) A chain of applications of a ternary 
symbol R, like K_ or —>_, called an R-chain, is defined to 
be a conjunction of the form (a\ Rjl n2) A (a2 Ri2 a3) A 
... A (a;l_i i?2T,_i (in), with n > 2. 

Figure 2. Standard forms for ss.-chains 

Lemma 2 (standard form for chains) Suppose a «2 b, 
with 2^0. Then one of the following is true: 

i. there is a —>_-chain from a to b or from b to a, where 
the union along the chain is 2 

ii. for some c, there is a —> -chain from a toe and another 
from b to c, where the union of the unions along the two 
chains is I. 

Figure 2 shows the possibilities. 

Proof Let C be a ss_-chain a\ «2, • • • ~Z„-i o-n from 
a to b, with 2 = Ui<i<„-i^- Assume C is of mini- 
mal length of all such chains. For every i with 1 < i < 
n — 1, let Hj be either —>j{ or <—2,, and suppose we 
have ai H, ... «-»„-I an. It is easy to prove that if 
this latter chain is not of one of the forms described in 
(i) and (ii), there must be an i with 1 < i < n — 1 
such that «-)•;_ 1 is <—2,_i and «->,- is —>x{. So we have 
ßi-i <-z,-i a; ->ij a;+i- So both a; =2,_, a,;-i and 
ft; =1, fti+i are in F. It must be the case that both 2;_[ and 
2, arc non-empty, since otherwise (subst) would apply to re- 
place the left hand side of one of those equations by the right 
hand side of the other. No rules can apply, since T is nor- 
mal. Since both 2,_i and 2,- are non-empty, (trans) would 
be applicable, unless the conditions described in Section 3.3 
for preventing non-termination were keeping it from being 
applied. This implies that cither «,_i =2,_iUi, «;+i or 
ß,+i =2i_1uz, fli-i is in T, since a.\ and a> must be their 

34 



own normal forms as determined by the core congruence 
closure algorithm. Hence, we have a*_i «z^ux,- ai+i. 
So the chain (n ssi1 ... ßj_i «i^uz,- ai+i... «!„., an, 
whose union is I, has smaller length than C. This contra- 
dicts the assumption that C is of minimal length of such 
chains. D 

Now an interpretation, given as a function |_] from the 
constant and function symbols of T to their interpretations, 
is defined. [_J is defined to map every constant symbol a 
of basic type I to a itself. [_] will map array constants to 
functions. To satisfy extensionality, functions that give the 
same value for every input are required to be equal. First 

let Lc be a new symbol not occurring in T, for every fa- 
equivalence class C. Define {read} to be the operation of 
function application, except that when it is given Lc, it may 
just return Lc- Intuitively, for an array constant a, [a] will 
be a function mapping all but a finite number of inputs to a 

default value Lc- Formally, suppose a is in «-equivalence 
class C. Define [a] to be the function that returns Lc for 
every input, except those assigned values by the following: 

Definition 8 (interpretation of array constants) 
for every constant symbol b of the same type as a, 

for every set 2 such that a RJJ b, 
for every index constant i not appearing in X, 

ifread(b,i) = x £ T for some x, then 
the value of [aj for input [i] is defined to be \x\ 

Notice that the body of Definition 8 may specify the 
value for [a] on input i more than once. So for [ ] to be well- 
defined, if the value of [a] on input i is specified to be [xj 

and [x2], we need [xi] = [x2]. So if a «i b and a «i- c 
with i not in 2 and not in 2', then for [] to be well-defined, 
it must be the case that if read(b, i) — x\, read(c, i) = x2 £ 

T, then \x\\ = \x-2~\- Since the conditions a «2 b, a «1» c, 

i not in 2, and i not in X' together imply b «IUZ' c and i 
not in IU 2', the following lemma suffices to prove that [] 
is indeed well-defined. 

Lemma 3 (well-definedness of []) If a KT b, i not in X, 
and read(a, i) = x\, read(b, i) = x2 £ T, then X\ = x2. 

The proof of this lemma relies on the following sub- 
lemma. 

Lemma 4 (certain reads equal along chains) Suppose 
Oi,... ,an, andi are such that a\ —»j, ... -^jn_l anfor 
some Ii,... ,I„_i, where i is not in Ui<j<n-i "^i-  ^UP' 
pose there is a constant x such that reacfta^, i) = x £ F. 
Then read(an ,i) =x eT. 

Proof The proof is by induction on n. The base case is triv- 
ial. For the induction case, suppose read(a,\ ,i) = x € T. 

Since T is normal, no rules can apply. So we must have 
X\ 7^ 0, since otherwise (subst) would apply with a\ — a2 

and read(ai,i). Furthermore, since (partial-eq) cannot 
apply, it must be the case that the conditions of Section 3.3 
for preventing non-termination are what is prohibiting its 
application with a,\ =%1 a2 and read{a,i). In particular, 
it must be the case that read(a2,i) is already known to 
be equal to read(a\,i). The other possibility, namely that 
i is known to be equal to an element of X, is excluded 
because i is not in 2 by hypothesis, and correctness of 
the core congruence closure algorithm would require i to 
appear in 2 in a normal goal if i were known to be equal 
to an element of 2. For read{a\,i) and read(a2,i) to have 
the same normal form with respect to the core congruence 
closure algorithm, we must have read(a2,i) = x £ T; 
this follows from the definition of convenient normal form. 
Now the induction hypothesis may be applied to conclude 
that read(an, i) = x E T. D 

Proof (of Lemma 3) Suppose a KX b and suppose 
2^0. Then by Lemma 2, there is either a ->_-chain 
from a to 6 or from b to a, or there is a constant c 
such that there is a ->_-chain from a to c and another 
from b to c. By Lemma 4, in the first case either 
read(b, i) = x\ € V or read(a, i) = x2 £ T, and in the sec- 
ond, read(c, i) = Xi, read(c, i) = x2 £ I\ Since T is nor- 
mal, for all x, y, and z, read(x,i) = y, read(x,i) = z eT 
implies y = z, since otherwise (subst) would apply. 
So in either case, x\ = x2. If 2 = 0, then it must be 
the case that a = b, since read(a,i) and read(b,i) are 
both in F; otherwise, (subst) would apply. But again, 
read(a, i) = x, read(a, i) = y £ T implies that x = y. □ 

Lemma 5 (correctness of the constructed model) The 
model constructed in the previous section satisfies every 
formula of the goal T in convenient normal form. 

Proof Consider the types (I), (II), and (III) of formulas 
from the list in section 4.1; recall that goals in convenient 
normal form consist of formulas of just these types. 

Case I: read(x, y) = z Since x is an array constant, 
x sag x, and so the construction of Definition 8 will assign 
the value that function [x] takes on argument [y] to be [z]. 
Hence [read(x,y)j = (zj. 

Case II: x ^ y Since all disequations in T are between 
index expressions, x and y must be index constants. Hence, 
[xj = x and [y] = y, by construction. If x = y, then the 
goal would not be normal, because (ax) would apply. So the 
interpretation satisfies x ^ y. 

Case III:   x =x y     It must be shown that for every 
index constant not in [2], [x] and [y] give the same value. 
[x] and [y] have the same default value since they are in the 

* 
same «-equivalence class. For those index constants i not 
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in I that appear in a formula of the form read(y, i) = z £ T, 
they store the same values, by Definition 8. □ 

From the fact that a model has been constructed for a 
normal goal, the main result now follows. 

Theorem 2 (completeness) The satisfiability procedure 
for Arr is complete. 

5. Complexity analysis 

Observe that each application of (w-elim) or (partial-eq) 
leads to one new subgoal for each element of the indexing 
set 2 in the rule. The size of 1 is easily seen to be bounded 
by the size TV of the original goal T. So any deduction from 
T may be viewed as a tree with branching factor no more 
than N. It is not hard to show, in fact, that N is an upper 
bound on the number of branching nodes in the tree, so there 
are at most 0{NN) = 0{2Nl^N) branches. Each branch 
can be shown to be of polynomial length, so the algorithm 
runs in worst-case exponential time. 

Theorem 3 (NP-completeness) The problem of testing a 
conjunction of literals for satisfiability in Arr is NP- 
complete. 

Proof Downey and Sethi showed that a subproblem of 
the problem decided here is NP-hard [4]. To show that the 
problem is in NP, observe that the size of the model con- 
structed in the previous section for a goal F in convenient 
normal form is polynomial in the size of T. The conver- 
sion of a normal goal to convenient normal form incurs at 
most a polynomial expansion of the goal. So the size of the 
model constructed is polynomial in the size of the normal 
goal. Hence a model can be nondeterministically guessed 
in polynomial time. Checking whether or not a conjunction 
of literals is satisfied by a model can be done deterministi- 
cally in polynomial time. So satisfiability of a conjunction 
of literals can be checked nondeterministically in polyno- 
mial time. □ 

6. Extensions 

In this section, several extensions to the refutation pro- 
cedure for Arr are considered. Due to lack of space, cor- 
rectness proofs are omitted. 

6.1. Propagating all entailed equations 

Full incorporation of the satisfiability procedure into the 
framework for cooperating procedures of [2] requires that 
the procedure can discover all equations between terms oc- 
curring in a satisfiable goal that are entailed by that goal. 

The procedure for Arr always does this for index terms but 
not always for array terms. If the rules of Figure 3 are added 
to phase 2, however, it can be shown that if t and t' are ar- 
ray terms in a normal goal that are entailed to be equal, then 

t «„ t'. 

(trans2) 

(patch) 

r, a b. b -T c, a =xur c 
T, a=xb, b =x> c 

where I ^ 0 and T ? 0 

r, -nft, a =j, xb     r, </>, a =x b 
T, a-itXb 

where <f> is read(a, i) = read(b, i) 

Figure 3. Rules to propagate entailed equa- 
tions 

6.2. Propagating properly entailed disjunctions 

Definition 9 (proper entailment of disjunctions) A dis- 
junction that is entailed when neither of its disjuncts is 
entailed is said to be properly entailed. 

Incorporating the procedure into the framework of [2] also 
requires it to have the following property. Let tp and iji be 
equations whose sides appear in goal T. If the procedure re- 
ports F satisfiable, then F cannot properly entail ft V ip. The 
original procedure for Arr does not have this property; an 
example is the normal goal a ={,j b, a ={j] b, read(b, i) = 
v, read(b,j) = v', which entails i = j V a = b but nei- 
ther i = j nor a = b. It can be proved, however, that the 
modified procedure of section 6.1 does have this property. 

6.3. Allowing constant arrays 

Constant arrays arc arrays that store a single value for 
all indices. The language is extended with function sym- 
bols constT for each value sort r, and the following axiom 
schema is added: 

V x : T . V i : I. read(const(x), i)    =    x 

The procedure of section 6.1 is modified to obtain a pro- 
cedure for this extended theory by adding the rules of Fig- 
ure 4. (const-eliml) is added to both phases, and (const- 
symm) and (const-elim2) are added to phase 2. To ensure 
that the conclusion of (const-elim2) entails its premise, the 
simplifying assumption is made that the interpretation of the 
type I of indices is infinite. With this modified procedure, 
goals that arc normal with respect to phase 2 may fail to be 
normal with respect to phase 1. For example, the applica- 
tions of const in the goal const(write(a,i,v)) = const(b) 
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are removed using (const-elim2) in phase 2, but this adds 
the equation write(a,i,v) = b to the goal, which could be 
analyzed with the (w-elim) rule of phase 1. So it is neces- 
sary to repeat the phases. 

(const-eliml) 
T[x] 

T[read(const(x), i)} 

T, a =2 const(x) 
T, const(x) =i a 

where a is not of the form const{y) 

 r, x = y  
T, const(x) =i const(y) 

Figure 4. Rules to treat constant arrays 

(const-symm) 

(const-elim2) 

7. Conclusion 

A refutation procedure for an extensional theory of 
multi-dimensional arrays has been presented and proved 
correct. The theory Arr decided essentially subsumes all 
previously decided array theories. The procedure is suitable 
for incorporation into a framework for cooperating decision 
procedures. 
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Abstract 

It is crucial for the performance of ordered resolution or 
paramodulation-baseddeduction systems that they incorpo- 
rate specialized techniques to work efficiently with standard 
algebraic theories E. 

Essential ingredients for this purpose are term orderings 
that are E-compatible, for the given E, and algorithms de- 
ciding constraint satisfiability for such orderings. 

Here we introduce a uniform technique providing the 
first such algorithms for some orderings for abelian semi- 
groups, abelian monoids and abelian groups, which we be- 
lieve will lead to reasonably efficient techniques for prac- 
tice. 

The algorithms are optimal since we show that, for any 
well-founded E-compatible ordering for these E, the con- 
straint satisfiability problem is NP-hard even for conjunc- 
tions of inequations, and our algorithms are in NP. 

Keywords:   symbolic constraints,  term orderings, auto- 
mated deduction. 

1    Introduction 

It is crucial for the performance of ordered resolution 
or paramodulation-based deduction systems that they incor- 
porate specialized techniques to work efficiently with stan- 
dard algebraic theories E, like abelian semigroups (AC, for 
associative and commutative) abelian monoids (ACO), or 
abelian groups (AG). 

Essential ingredients for this purpose are reduction (i.e., 
well-founded and monotonic) orderings >- on ground terms 

•Both authors arc partially supported by the ESPRIT Basic Research 
Action CCL-II, ref. WG # 22457. and the Spanish CICYT project 
HEMOSS ref. TIC98-0949-C02-01. The first author is supported by De- 
partament d'Universilats, Recerca i Societal de la Informaciö de la Gen- 
eralität de Catalunya. A version of this paper with all proofs is available 
from www. lsi .upc . es/~roberto . 

that are E-compatible for the given E, i.e., s =E s' y t' —Et 
implies s y t, and algorithms deciding the satisfiability of 
ordering constraints for such orderings. Such ordering con- 
straints are used to express ordered strategies in automated 
deduction at the formula level [8]. This allows one to re- 
duce the search space by inheriting the ordering restrictions 
while keeping completeness [13, 15]. 

An ordering constraint is a quantifier-free first-order for- 
mula built over terms in T(T, X) and over the binary predi- 
cate symbols '=' and '>'. These constraints arc interpreted 
over the domain of ground terms, where = and > are in- 
terpreted, respectively, as a congruence sa and a reduction 
ordering >- such that >- is total up to cs, i.e., for all ground 
terms s and 1 either s y t or t y s or t & s. Hence 
a solution of a constraint C is a substitution a with range 
T[T) and whose domain is the set of variables of C such 
that Ca evaluates to true when interpreting = as sa and > 
as y. Then we say that <r satisfies C. 

The first practical applications of ordering constraints 
gave rise to the distinction between fixed signature seman- 
tics (solutions are built over a given signature T), and ex- 
tended signature semantics (new symbols arc allowed to ap- 
pear in solutions). The latter semantics is in some cases 
easier to check, and is used in applications like the compu- 
tation of saturated sets of ordering constrained clauses that 
can be used for deduction with other clauses containing ar- 
bitrary new (e.g., Skolem) symbols, but it is less restrictive 
and hence less powerful for refutational theorem proving. 
The satisfiability problem for ordering constraints was first 
shown decidable for the well-known recursive path order- 
ings (RPO) introduced by N. Dcrshowitz [4], for fixed sig- 
natures [2, 7] and extended ones [13, 12]. NP algorithms 
(fixed and extended signatures) were given in [12, 11]. For 
the Knuth-Bcndix ordering (KBO) this result has only re- 
cently been obtained (for fixed signatures) in [9]. 

Ordered strategies and ordering constraint inheritance 
can be used without loosing completeness with built-in al- 
gebraic theories E, like AC [14, 18] or AG [6]. An ad- 
ditional advantase of constraints in this context is that in 
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each inference only one conclusion is generated, instead of 
one conclusion for each E-unifier. This can have dramatic 
consequences. For example, there are more than a million 
unifiers in mguAC{f{x, x, x), f{yu y2, y3, Vi))- But, prob- 
ably due to the lack of adequate orderings and constraint 
solving algorithms, these ideas have not been put into prac- 
tice yet. For example, McCune found his well-known AC- 
paramodulation proof of the Robbins conjecture [10] by still 
computing complete sets of AC-unifiers, and adding one 
new equation for each one of them (although heuristics were 
used to discard some of the unifiers). 

Indeed, of the many, rather complex, AC-compatible re- 
duction orderings that have been defined in the literature, 
only for the AC-RPO ordering of [16] a constraint solving 
algorithm exists [3]. But, unfortunately, this algorithm is far 
from practical due to its conceptual and computational com- 
plexity, and moreover, it only deals with extended signature 
semantics. 

However, in many practical cases one has to deal with 
only one single associative and commutative symbol, and 
then a simple version of the RPO on flattened terms, which 
we will call FRPO, fulfills all requirements. The same 
FRPO can be used as an ingredient for an AG-compatible 
reduction ordering AG-RPO that satisfies all requirements 
of [6], by using it to compare AG-normal forms of ground 
terms. Finally, it turns out that an ACO-compatible order- 
ing AC0-RPO is obtained in a similar way by considering 
normal forms w.r.t. the rule x + 0 —> x. 

Here we introduce a uniform technique providing the 
first constraint solving algorithms for fixed signature se- 
mantics for AC compatible orderings. More precisely, we 
give NP algorithms for FRPO-based orderings for abelian 
semigroups, abelian monoids and abelian groups. We be- 
lieve that the new techniques will lead to reasonably effi- 
cient practical algorithms for these orderings, and give new 
insights for the development of constraint solving methods 
over fixed signatures for other E-compatible orderings. 

This paper is structured as follows. After the basic defi- 
nitions of Section 2, in Section 3 we deal with FRPO con- 
straints. For explanation purposes, we start with constraints 
built with a single unary symbol /, a constant symbol 0 
and the AC symbol +, and later extend it to arbitrary sig- 
natures. After explaining the relatively simple extension to 
AC0-RPO in Section 4, in Section 5 we deal with the hard- 
est part of the paper, namely the techniques for AG-RPO. 

It is obvious that the satisfiability problems we deal with 
are NP-hard, because as subcases they include the AC, ACO 
and AG-unifiability problems which are all NP-hard. As a 
consequence, since our algorithms are in NP, they are op- 
timal, and the problems are NP-complete. But one may 
wonder whether there exists any ordering at all for these E 
such that at least the satisfiability problem for positive con- 

junctions of inequations (by which one cannot always en- 
code unification) is in P. In Section 6, we answer this ques- 
tion negatively: we show that for any well-founded total 
E-compatible ordering for each one of these E, the problem 
is NP-hard even for conjunctions of positive inequations. 

Finally, in Section 7 we give some conclusions and di- 
rections for further work. 

2   Basic Definitions 

We use the standard notation and terminology for terms and 
constraints of [5] and [15]. The rewrite system RAG con- 
sists of the following five rules: 

x + 0 -)• X 

— X + X -> 0 
-(-*) -> X 

-0 ->■ 0 
{x + y) -> (- ■X + (-y) 

By AG we denote the set of seven equations consisting of 
these five rules (seen as equations) plus AC, the associativ- 
ity and commutativity axioms for +. By ACO we mean AC 
U Ro = {x + 0 -» x). By =E we denote the congruence 
on terms generated by a set of equations E. In this paper, 
rewriting with a set of rules R is always considered mod- 
ulo AC, that is, when writing —>RAO, we mean the (con- 
vergent) relation =AC ->RAG =AC. and terms will always 
be considered in flattened form w.r.t. AC: we consider e.g. 
+ (a, b, c) instead of +(a, + (b, c)). Furthermore, + is writ- 
ten in infix notation: a + b + c. 

Let us first recall the definition of RPO, which allows for 
variadic symbols (hence we can cope with flattened terms). 
We assume given a precedence > on T, and, for each 
/ G T, a status which is either multiset or lexicographic. 
In the following, a symbol will have the multiset status if, 
and only if, it is variadic. Below, the relation =mul has to 
be understood modulo permutations of the direct subterms 
of any symbol whose status is multiset. More precisely, 
for every permutation n, if status(/) = multiset, then, for 
all terms *!,...,*„, f(h,...,tn) =mul /(^(1),.. .tn{n)). 
Then RPO is defined as follows: s = /(si,..., sn) yr 

g{ti,...,tm) = t iff 

1. 3 i G {1,. ..,?)•} Si yrpo t or s,- =mul t, or 

2. / > g and s yrpo U for all i = 1,..., m or 

3. / = g and status(/) = multiset, and {si,...,s„} >-™' 
{ti,.. .,tm} where >-™' is the multiset extension of 
rrpo Or 

4. / = g and status(/) = lexicographic, and 
(si,..., s„) y\f0 (tu ...,tn) where ^x

0 is the lexi- 
cographic extension of yrpo. 

rpo 
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In the following, we call the RPO on flattened terms FRPO: 
we define s yfrpo t iiflat{s) yrpo flat{t). FRPO is not 
monotonic in general: 

Example 1 //+ > a > b then b + b yjrpo a but a + 
a yjrpo b + b + a. Also, if a> + > / then f(a) + 
/(a) yjrpo /(/(«)) but f(a) + f(f(a)) yfrpo f(a) + 
f(a) + f(a). Similar non-monotonicities occur if there is 
more than one AC symbol. O 

However, we have the following result: 

Lemma 2 ([1]) // + is the only AC symbol and either + 
is the smallest symbol in the precedence, or else only the 
smallest constant is smaller than +, then FRPO is an AC- 
compatible reduction (i.e., monotonic and well-founded) or- 
dering on ground terms that is total up to =AC. 

Let us now define the ACO-RPO and AG-RPO orderings. 
Given two ground terms s and t, we define 

S ~>~acO- rpo 

s y ag — rpo t 

if       "//?„(s) y/rpo nfRo(t) 
and 
if        nfRAG(s)>-f>-ro"fRAa{t) 

where nfR(s) denotes the normal form w.r.t. R of s. 
The following is not difficult to prove (see also [6]): 

Lemma 3 ACO-RPO (AG-RPO) is a total ACO-compatible 
(AG-compatible) reduction ordering on ground terms in 
normal form w.r.t. —>Ro (—>RAa) if+ is the only AC sym- 
bol and the precedence is of the form ...>   +   >   0 
(. ..>-> + > o;. 

In the following, we will consider these precedences. 

3    FRPO Constraint Solving 

For explanation purposes, we present here the simple 
subcase where the signature contains only +, 0, and a unary 
function symbol /, with the precedence / > + > 0. 

Let C be an ordering constraint built over /, + and 0, and 
let Tc be the set of all (sub)terms of C that are: variables, 
sides of relations > or = in C, terms headed with /, or 
terms t such that f(t) occurs in C. A linear constraint for 
C is a constraint S of the form 

<1,1 = ■■■-tl,ki    > •••>   /,,..! n,k„ 

where all tij arc distinct and 
{ti,u ■ ■ • ■ ti,kl,..., /n,i,..., /„,*„} = Tc U {0}. 

We denote by =,$ the equivalence relation generated by the 
equalities in S and by >s the smallest strict ordering re- 
lation on T{T, X) compatible with =5 and containing the 
inequalities of .5'. 

Each constraint C can be expressed as an equivalent (i.e., 
with the same solutions) finite disjunction of linear con- 
straints ,5' for C (see below); similarly, in what follows we 
will also make the following assumptions: 

Al. W.l.o.g. we can assume S to be of the form 

•Pl='l,l = - • • = 'l,fci  > • • • > xn =tji,l — ■ ■ • = tn,k„ 

where {^i,.. .,xn} = vars(S) and all <;i7- arc distinct 
non-variable terms. Indeed it is sufficient to insert a 
new (existcntially quantified) variable in each equiv- 
alence class without any variables, or to merge two 
equal variables into one if necessary (merging of equal 
variables, which will be done more often in this paper, 
can be recorded separately if one wants to reconstruct 
a solution for the original constraint rather than to de- 
cide its satisfiability). 

A2. W.l.o.g. we may assume that each <,-j is either: a sum 
of variables, or the term 0, or of the form f(x) where 
x is a variable. This is accomplished by replacing non- 
variable arguments / by the variable x with x =<,• /. 

A3. W.l.o.g. we may also assume that in each equivalence 
class Xi = /;,i = ... = tjtk, either all /,,,- arc headed 
by + or else the class is simply ,r, = f(x) or ,T, = 0 
or X{. This is the case since equalities between terms 
headed with different top symbols are trivially unsat- 
isfiable, and linear constraints (to which the previous 
transformations have been applied) containing equali- 
ties f(x) = /(.(/) are satisfiable only if .;• and 1/ arc the 
same variable. The rightmost equivalence class can be 
assumed to be xn = 0: otherwise S is trivially unsat- 
isfiable. 

A4. Again w.l.o.g.. for comodity of explanations, S can be 
assumed to be of the form x = f(z) >   A con- 
straint ,;'i = /i,i = ... = /1./,.j > ... can be trans- 
formed, by adding an additional leftmost equivalence 
class, into x0 = f(x1) > x1=t1A-... = tij-1 > ... 

A5. Every variable x occurring as a proper subtcrm in S 
can w.l.o.g. be assumed to have another occurrence to 
the right of it in S at top level (i.e., not as a proper 
subterm of another term). Otherwise, S is trivially un- 
satisfiable. 

A6. One may assume that if /(.;■) >,<,- /(.'/), then also x ><,- 
(/. Otherwise, S is again trivially unsatisfiablc. 

A7. If we have y\ + ... + yk >s /(;/), then, for some / 
in 1 ... k we have m >s /(//)• Otherwise, S is again 
trivially unsatisfiablc. 

Example 4 Let the constraint C be f(x + :) > y A  : > 
/(.r). One of its linear constraints is y = /(.;■ + :) > 
/(■'■)> x + : > x = ; = 0. Enforcing the assumptions, it 
becomes y = f(ir2) > »!i = f(x) > w-z = x + x > x = 0 
by adding new variables t/'i and w? for the classes of f(x) 
and x + z respectively, and merging x and z. However, it 
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is in contradiction with our initial constraint C. Another 
linear constraint is f(x + z)>x + z>z — y> f(x) > 
x = 0, which becomes w\ = f(w2) >W2 = x + y>y> 
w3 = f[x) > x = 0. This linear system satisfies all our 
assumptions and it is not in contradiction with C. □ 

Lemma 5 ([2,12]) Each constraint C can be transformed 
into a finite disjunction of linear constraints satisfying the 
previous assumptions, and such that C is satisfiable if and 
only if one of the linear constraints is. 

3.1    Segments and the splitting transformation 

A term u is a summand if it is headed with a symbol 
different from +. It is a top-level summand of a term t if t 
is of the form u or u +t'. A segment T of a linear constraint 
5 is a subsequence of S of the form 

xo = f(s)   >   xi=titl = ... = tiikl   >   ...   >   xt = 
U,l — --- — ti,ki    >   Xi + i=t 

where t is 0 or headed with / and all t{j are sums of vari- 
ables. The variables x\,..., a;,-+i are said to be the defined 
variables of T, and their occurrences as single variables in 
their equivalence classes are their definitions. 

In such a segment T, every variable occurring in some 
tij is defined either in T itself or in some other segment 
to the right of T. Now our aim is to transform S in such 
a way that the latter kind of variables are removed from T, 
while preserving satisfiability. On the other hand, as a re- 
sult of this transformation, terms f(v) where v is a sum of 
variables may appear in S. 

The idea is as follows. Let a be some arbitrary solu- 
tion of 5, let x be a variable defined in T, and let y be the 
variable defined in the equivalence class immediately be- 
low x, that is, x is Xj with 1 < j < i, and y is Xj+\. Then 
xa >- ya > ta. Therefore, for at least one of the top-level 
summands u of xa we have u y ta. Hence, if Ux is the 
sum of all top-level summands u of xa with u > ta, and 
ux is the (possibly empty) sum of the smaller ones, then xa 
is of the form Ux + ux or of the form Ux. Similarly, ya 
can be of the form Uy + uy or Uy. Furthermore, either (i) 
Ux >- Uy, or else, if ux is non-empty, (ii) Ux = Uy and uy 

is empty or ux >- uy. In the former case, we say that x > y 
due to the "large" sumands, and in the latter case due to the 
"small" summands. 

According to these ideas, S will be transformed by the 
following splitting transformation, treating one whole seg- 
ment T at the same time, segment by segment from left to 
right, except for the rightmost segment, that does not need 
any treatment. One can assume that in segments V to the 
left of T, all variables not below / are defined in V. Let T 
be: 

xo = f{s)   >   xi=ti,\ = ... = htitl   >   •••   >   X{ = 
ti,l = --- = U,ki   >   Xi+i=t 

1. Guess a subset of split variables of {xi.. .xi] such 
that whenever x =5 yi + • ■ • + yit, then x is split if, 
and only if, at least one of the y,- is split or defined in 
a segment to the right of T (intuitively, x is split if it is 
guessed to have at least one "small" summand). 

2. If x is a split variable, then introduce two new vari- 
ables X and x', and everywhere in S replace x by 
X + x'. In this case we say that x is split into X + x' 
(intuitively, the X is for the large summands and the 
x' for the small ones). If a; is a non-split variable of 
{x\.. .Xi+i\, replace x by anew variable X. 

3. After this, the equivalence classes e in the segment are 
either of the form Vi+fi = ... = Vk+Ok or of the form 
Vi = ... — Vfc, where the \\ are sums of upper case 
variables and the v\ are sums of lower case variables 
and variables defined in segments to the right of T. 
If e is such an equivalence class, we denote by E the 
equivalence class V\ = ... = Vk and by e' the class 
v\ = ... = Vfc (if it exists for e). Then we can write 
T as XQ = f(s) > €\ > ... > e,+i and we can guess, 
for each relation e,j > eJ + 1 whether (i) it is due to 
the large summands or (ii) to the small ones (note that 
case (ii) applies only if e' is non-empty). Accordingly, 
replace T by the new segment T: 

x0 = f{s)  > £i# ... #£,+! 

Furthermore, insert each e'- in a segment to the right of 
T, adding it to an existing equivalence class or creating 
a new one, in such a way that, whenever Ej =?• -Ej+i, 
either e'- > e'+1 ore'+1 does not exist. 

This transformation does not increase the number of seg- 
ments of S and only a polynomial number of variables are 
split: each variable can only lead to k splittings, where k is 
the number of segments. 

Example 6 (Example 4 continued) Let us apply the split- 
ting transformation to the result tui = /(1Ü2) > «'2 = 
x + y > y > u»3 = f(x) > x = 0 of Example 4. First we 
treat the leftmost segment W\ = f(w2) > w>2 = x + y > 
y > W3 = f(x). The possible variables to be split are ti'2 
and y. We guess to split only u>2 into W2 + w'2, obtain- 
ing wi = f(W2 + w'2) > W2 + w'2 = x + y > y > 
W3 = f{x). Now, for the relation W2 + w'2 > y we guess 
W2 = y. After removing w'2 from this segment and insert- 
ing it, for example, in the equivalence class of 0, we obtain 
wi — f(y + x) > y > w3 = fix) > x = 0. For the 
segment «13 = f(x) > x — 0 no splitting is needed. D 

Definition 7 We say that two sums of variables A'i + ... + 
Xk and Yi + .. . + Yi are compared by segments in S' if: 

• For all i in 1.. .k — 1 the segment where Xi+i is de- 
fined is to the right of the segment where Xi is defined, 
and the same for the Yi 'sfor i in 1... / — 1. 
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• There exists an i in 1... k such that Xj =5 Yj for all j 
withj < i, and either i — l+l ori < I andXi >s F;. 

If x >s y and S' is obtained from S by the splitting 
transformation, then the occurrences of f(x) and f(y) in S 
become f{X + X' + X" + ...) and f(Y + Y' + Y" + ...) 
in S', respectively, where the sums A' + X' + X" +... and 
Y + Y' + Y" + ... are compared by segments in S'. 

3.2    Diophantine systems 

Assume 5 is the result of applying the splitting transfor- 
mation to a linear system. Now we can define a system of 
diophantine equations and inequations Ds for ,5' as follows. 
For each segment T in S of the form 

£o = /(s)   >   x1=thi = ... = tlfkl   >   ...   >   x,= 
:U,k,    >   Xi + l=t 

the system Ds contains the equations and inequations: 

1. Xi  > X2,   X2 > X3,   ...   , X'i > Xi+i 

2. Xj = tjfk, for all j in {1... i}, and all k in {1... kj} 

3. the equation z!+1 = 1. 

Example 8 (Example 6 continued) The system of diophan- 
tine equations for «>i = f(y + x) > y > u>3 = f{x) > 
x = 0 is 

U»l = 1      !/ > W'3      l/\3 =1      X =  1 

We obtain a solution 9 for it by defining yO = 2. Below we 
will see that from each such a 0 one can build a solution a 
for the linear constraint from right to left. We have xa — 0 
and hence 10317 = /(0). Now for each variable v with rO = 
n, we define va = < + ..."'+ /, where t is the summand 
at the lower end of its segment; e.g., we define ycr to be 
/(0) + /(0). Finally, we have wxa = /(/(0) + /(0) + 0). 
// one desires to reconstruct the solution for the original 
constraint of Example 4: w'2a is 0, and za is /(0) + /(0). 
D 

The following simple result will be used below when 
solving ordering constraints on multisets of several ele- 
ments as multisets over a single element: 

Lemma 9 Let C be a set {cn,..., c0} with an ordering y 
where e„ y ... y CQ. Then for any decreasing sequence of 
finite multisets over (.' 

Mo >y ...yy Mm 

there exists a weighting function f : C —> X' with f(co) = 
1 such that 

F(M0)>...>F(Mm) 

where the extension to multisets F of f is defined 
F({al...,ak}) = f(a1) + ... + f(uk). 

Proof: Let k be n0 + ... + nm. Then, for instance, the 
function/(e,) = k' fulfills the requirements. D 

Lemma 10 Let Si ... Sm be the resulting systems of ap- 
plying the splitting transformation to a linear constraint S 
over the signature / > + > 0. Then S is satisfiable for 
FRPO if and only if some Ds, is satisfiable in the positive 
natural numbers. 

Proof: <^: Assume Ds> is satisfiable for some S' in 
{Si .. .5,,,}. Let 0 be a solution for DS'. We can build 
a solution a for S' as follows. For each segment T in S of 
the form 

2'0 = /(s) > Zl=<l,l = ... = *l,fc, > ... > Xj = 

U,l=--- = ti,k,    >    Xi+i=t 

assume a (partial) solution a has already been defined for 
all segments to the right of T. Then, for the variables x,j 
defined in this segment we define Xjcr to be ta + ..."' + to- 
where n — Xj6 (note that if T is the rightmost segment, then 
/ is 0). Clearly, a satisfies all equality relations in 5", that 
is, ua =AC va for all u and v with w =5/ v. Furthermore, it 
also satisfies the relations XJ<J >- Zj + icr with j in {1... i} 
for such segments T. 

Hence it only remains to be checked that a satisfies 
f(s)a >- x,i<j. Since Xicr is of the form ta + ... + ta 
and / > +, it suffices to check that f{s)a y tcr, where t is 
headed with / (the case where t is 0 is trivial). Then f(s) 
is of the form /(A + A"' + A" + ...) and / is of the form 
f(Y + Y' + Y" + ...), as a result of the splitting transfor- 
mation applied to terms f(x) and f(y). 

But by assumption A6, if f(x) >s f(y), then also 
x >5 y. Therefore, our result follows: after the splitting 
transformation, the sums A', A'', A'",... and V, Y', Y",... 
are compared by segments in S', and a assigns one different 
summand to each segment, and in the correct order. 

Once we have this solutions for S', it can be extended to 
a solution for S by recursively defining xa to be Xa + x'a, 
for each splitting of a variable x into A' + x'. 

==>: Assume S is satisfiable. Now we prove that Dg> is 
satisfiable as well for some S' in {,S'i .. .5,,,}. Let ubca 
solution of S. Let S' be the system obtained by applying 
the splitting transformation according to a, that is, if x is 
defined in a segment T of 5 of the form 

•>'o = f{s)   >   xi=titi = ... = tuki   >   ...   >   xt = 
U.l = • • - = U.k,    >   ■>'i + i=t, 

then x is split into A" + x' if xa contains any summands 
smaller than ta; we proceeed similarly for the other guess- 
ings, and a is extended conveniently for the new variables. 
The extended substitution a is a solution for S'. More- 
over, in a segment of .5" like the previous one, for all j in 
{1 ...?'+ 1} we have that xja contains only top-level sum- 
mands greater than or equal to la. 

Now let C = {»0 ,»n} be all the different top- 
level summands of these variables, where 1/,,  >- M„_I >- 
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... >- Mo and Mo is tcr. Every Xjcr and tjjcr can be seen 
as a multiset on these summands (the multiset of its top- 
level summands). By Lemma 9 there exists a function 
f : C -¥ M" such that its extension F to multisets sat- 
isfies F(x1cr) >->- ... >->- F(xi+i<r), and F(xi+i<r) = 
/(MO) = 1. Moreover, since Xja and tjjer are the same 
multiset, if tjj is oftheformx-jj +... + Xjt, then F(xjcr) = 
F(tjja) = F(XJ1(T) + ... + F(xjlcr). Therefore, the as- 
signment Xj = F[xjcr) satisfies the equations of Ds> cor- 
responding to T. D 

Theorem 11 The satisfiability problem for FRPO con- 
straints over the signature f > + > 0 is in NP. 

Proof: Generating one of the linear constraints S of the dis- 
junction equivalent to C consists of a polynomial number 
of guessings of the relations between all the subterms in C, 
and the size of 5 is polynomial w.r.t. the size of C. The 
splitting transformation consists of a polynomial number of 
guessings. By Lemma 10 S is satisfiable if and only if there 
exists a sequence of guessings, in the splitting transforma- 
tion, giving a linear constraint S', such that Ds' is satisfi- 
able. Checking whether DS' is satisfiable is again in NP 
[17]. D 

3.3    More function symbols 

We consider now the case where the signature contains 
any finite number of function symbols with arbitrary arities. 
The precedence is now of the form ...> + > 0. 

W.l.o.g., the following additional assumptions w.r.t. the 
linear constraint generated from the initial constraint may 
be assumed (otherwise the linear constraint is again trivially 
unsatisfiable): 

A8. If f(xi,...,xn) >s g{yi,...,ym) and g > /, then 
xi >s g{y\,- • •, Dm) for some i in 1...n. 

A9. If f(xi,...,xn) >s /(yi,..., M,,) then either 
xi >s f(yi, ■ ■ ■, Vn) for some / in l...n or else 
(x!,...,xn) >'s

er (yi,...,yn). 

Segments are defined as before, except that now the 
function symbols at the begining and at the end of it may 
be different: a segment T of a linear constraint 5 is a sub- 
sequence of S of the form 

x0 = s  >   x1 = titl = ... = tljkl   >   ...  >  Xi = titi = 

■ ■ • = ti,k,    >    xi + l =t 

where s and t are not headed with + and all tij are sums of 
variables. The splitting transformation and the diophantine 
system are defined exactly as before. 

Lemma 12 Let S\... Sm be the resulting systems of ap- 
plying the splitting transformation to a linear constraint S. 
Then S is satisfiable if, and only if some Ds, is satisfiable. 

Theorem 13 The satisfiability problem for FRPO con- 
straints is in NP. 

4 ACO-RPO Constraints 

In this section we consider ACO-RPO constraints over 
arbitrary signatures of the form ...>/> + > 0. Observe 
that all terms of the form 0 + ... + 0 are equivalent to 0 in 
this setting and that hence the second smallest term w.r.t. the 
ordering y is /(0,..., 0). Therefore we can add, w.l.o.g., 
an aditional assumption to our linear constraints: 

A10 All linear constraints S are of the form S' > x = 
f(y,..., y) > y = 0 and no term of the form t + y 
occurs in S. 

With this additional assumption, it is easy to see that the 
whole rest of the steps described in the previous section di- 
rectly suffice for ACO-RPO constraints. Minor details are 
that, during the splitting process, the new assumption A10 
has to be preserved, and then, no small variables result- 
ing from a splitting can be inserted in the rightmost seg- 
ment. Moreover, in the diophantine system it is not neces- 
sary to create the equations corresponding to the rightmost 
segment. 

Observe that the basic idea of the splitting process is 
that solutions for the linear constraint are transformed into 
new solutions where, at every segment, the variables that 
appear in it contain only top-level summands of this seg- 
ment. Therefore, 0 does not appear in segments that are not 
the rightmost one, and hence everything behaves like in the 
FRPO case, again solving the diophantine equations over 
the positive natural numbers. This gives us the following 
result. 

Theorem 14 The satisfiability problem for ACO-RPO con- 
straints is in NP. 

5 AG-RPO Constraints 

In this section we consider AG-RPO constraints over ar- 
bitrary signatures of the form ...> — > + > 0. In this 
context summands are terms headed with some symbol dif- 
ferent from 0, + or -. 

Let us first consider some examples over the signature 
/>o> — > + >0 where / is unary and a is a constant. 

Example 15 Then the smallest terms over this signature in 
increasing order w.r.t. >- are: 

0, a, a + a, a + a + a, ..,, -a, -a —a, -a — a — 
«,•••, /(0), f(0)+a 

f(0)+a + a, ..., /(0)-a, /(O)-a-a, ..., /(0) + 
/(0), /(0) + /(0)+a, ...,-/(0) 
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where —a is the smallest limit ordinal u, /(O) is 2u>, /(O) — 
a is 3w, /(O) + /(O) w 4w, -/(O) « w2, anrf /(«) « 2w2. 
G 

Example 16 We have f(f(a)) y f{a - /(0) + f(a - a)) 
since 

nfRAG(f(f(a))) = f(f(a)) yFRPo /(«) = 
nffl^(/(a-/(0) + /(«-«))). Ü 

Example 17 7e/7H.r can be smaller than their subterms: 
a \= x > f(x-f(a)) ifxa = f(a), since nfRAG(f(a)) = 

f(a) yFRPO /(0) = nffl>lo(/(/(a)-/(a))). D 

Since, as wc have seen in the previous example, a linear 
constraint such that x appears to the right of the segment 

where it is defined may be satisfiable, assumption A5 will 
not be made in this section. Similarly, the following exam- 
ple shows us that terms headed with / may become equal 
to terms headed with + or —. Hence assumption A3 is also 
dropped in this section: 

Example 18 a (= x — y = f(z) if we have xcr = f(a) + 
f(a),   ya = f(a),   za = a. D 

An other difficulty to be taken into account is that, after 
the splitting transformation, contrarily to what happened in 
the previous sections, a solution for a linear constraint may 
need more than one different top-level summand for some 
segments: 

Example 19 Suppose that we have a signature of the form 
/> — > + > 0 where f is unary. Then the smallest terms 
are ordered like: 

0,    /(0),    /(0)+/(0),    /(0)+/(0) + /(0)  
-f(0), -/(0) - /(0), -/(0) - /(0) - 

/(0),    .-.,    f(f(0)). 
The linear constraint /(/(0)) > —z > ; > y > —y > 
/(0) is unsatisfiable: since we need to satisfy y > —y, nec- 
essarily ycr is a sum of negative f(Q)'s. Therefore zcr is 
of the form — /(0) — ... — /(0), with some more negative 
/(0) 's. But then —z>z is not satisfied by a. 

However, the linear constraint /(/(/(0))) >—;>;> 
y > — y > /(0) has the solution a where ycr = — /(0) — 
f{0)andzcr = /(/(0)) + /(/(0)). It has no solution where 
ycr and zcr are built from one single summand. □ 

5.1    Only unary symbols 

For explanation purposes, in this subsection we first as- 
sume that all the non-constant function symbols have arity 
one. Our signature is of the form ...>/?>ci>...> 
d > — > + > 0, where /; is the smallest non-constant 
function symbol, i.e., all the c; are constants. 

Then wc have the following ordering on summands 
(from which the ordering on ground terms is easily de- 
rived). If / = 0 then the smallest summands are, in 
increasing order: /i(0), h(h{0)), h(h(h(0))),... If 
/ ^ 0 then the smallest summands are, in increasing 

order:   Q,       ...,       c\,       /i(0),       MQ),       /'(<"' + 
c/),   h(ci + ci + ci) These summands will be denoted 
by sumi, sum-2, simij,... 

Note that the successor summand of a summand of the 
form h(s) is h(s + sunii) if s is not of the form s' — sumi, 
and h(s — sumi) otherwise. The successor summand of a 
summand f(s) with / > h is always h(f(s)). We write 
svccsunik(u) to denote the A--th successor summand of u. 

5.1.1 Conditions for the linear constraints. 

As before, we generate a disjunction of linear con- 
straints, and apart from the assumptions Al — Ad, except, 
as said, A3 and A5, wc need: 

All. W.l.o.g. one can assume that all the constants r, and 
the terms sumi, sum-2 and h(Q) appear in S, and in 
the correct order. We will refer to the segment between 
sum2 and sumi as the base segment. 

Al2. Every variable .;■ is defined to the right of all occur- 
rence of the form f{x). 

Al 3. There is no /(.;•) =5 <j{y) for / ^<j or x ^5 ;/. There- 
fore we may assume that each equivalence class is of 
the form x; — tiA = ... = Z,,^ or .;•,■ = /,.j = ... = 
tiki = /(.r/), where all /,,/ arc sums of positive and 
negative variables. 

A14. All linear constraints arc of the form S' > J; = ... = 
sumi > ,'/=••• = 0 and no term of the form t + y 
occurs in S. 

In all assumptions, the symbols / and y refer always to 
functions different from + and —. Conditions A12 and Al 3 
arc weaker versions of conditions A5 and A3 respectively. 
Condition A14 is a modification of condition A10: in the 
class of 0, sums of variables defined to the left of it may 
appear; in a solution for the constraint, these variables will 
contain summands that cancel each other out. 

In this setting, a sum of variables is, in fact, a sum of 
positive and negative variables, and all assumptions have 
to be interpreted accordingly. For example, condition A7 
implies that no term of the form — x is in a segment to the 
left of the segment where x is defined. 

5.1.2 The splitting transformation. 

The splitting transformation is essentially as before, with 
some differences. For example, when wc guess that some 
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relation is due to the small summands, the small terms can- 
not be inserted in the class of 0. Therefore, it makes no 
sense to do any splitting of variables in the base segment. 
Another difference with the previous cases is that after split- 
ting and removing small variables from a segment T, some 
variables defined in T may appear to the right of T. For this 
reason, we need to introduce the so-called associated equa- 
tions, a set of equations associated to each segment, but that 
is not inserted in the linear constraint. During the splitting 
transformation, just after removing the small variables of a 
segment T, equations are associated to T as follows. Let s 
be a term in an equivalence class to the right of T, and sup- 
pose that s is of the form M + m or f(M + m), where M 
is a sum of positive and negative variables defined in T (i.e. 
upper case variables at this point), and m does not contain 
any of these variables. Then clearly in any solution a the 
term Ma must be equivalent to 0. Therefore, for each such 
s, the part M is removed from s, and M = 0 becomes an 
associated equation of T (if the part m of s is empty, then 
M is replaced by x, the variable of the class of 0). 

Finally, for explanation purposes, we want the rightmost 
class of each T to be of the form x = t, for some term t not 
headed by + (remember: since condition A3 is dropped, 
there can be other terms headed with + in this class). This 
can be accomplished as follows. Assume after splitting, this 
class is of the form x = T, + t[ = ... = 7} + t\ = t, 
where the T, are the "large" sums, i.e., the sums of the pos- 
itive and negative variables defined in T. Then the class 
t[ = ... = t\ necessarily has to be inserted in the class 
of 0. Furthermore, the T;'s are removed as well, and the 
equations x — Ti = 0 are added as additional associated 
equations of T. 

By processing the segments in this manner, from left to 
right, when we arrive to the segment containing the class of 
0, it is of the form x = sumi > x = 0, since the rest of 
variables cannot appear in this segment, at this point. 

Example 20 Let us consider the signature h > — > -f > 
0. Suppose during the splitting transformation just after 
splitting the variables of the leftmost segment we obtain: 

z = h(x3) > x3 > x2 > xi > x0 = x3-x2-xi+y2- 

2/1-2/1 = h(yi) > 
2/3 = X2-xi-x0+y2+yi > 2/2 > 2/1 > H™) > w = 0. 

At this point, if we assume that this splitting of variables 
has been done according to a solution a, then, all the Xicr 
contain top-level summands bigger than or equal toh(yi)a, 
and all the yi<r contain top-level summands smaller than 
h{yi)a. Since (x3 — x2 — Xi + y2—yi—yi)o must coincide 
with h{yi)<T, the summands below the yi<r's must cancel 
each other, i.e. [y2 — j/i - 2/i)c must be 0. Therefore, we 

remove y2-y\-yi from the sum x3-x2-xi + y2-yi-yi, 
and add it to the class o/0, obtaining: 

z = h(x3) > x3 > x2 > xi > xo — x3-x2-xi = 

%i) > 

2/3 = x2-x1-x0 + y2 + y1 > y2 > yi > h(w) > w = 

2/2-2/1-2/1 = 0 
Now, in order to leave the treated segment in a normalized 
form x0 = h(yi), we remove the x3 — x2—x\ and we add 
XQ — X3 + X2-\-X\ = 0 to the set of associated equations of 
this segment. 

Finally, since the term x2—x\—XQ-\-y2-\-yi is to the right 
ofh(yi), and hence it must contain only summands smaller 
than h(yi)a, we have to force the a;,- 's to cancel each other. 
We remove X2 — X\ — XQ andwe addx2 — x\—xo — 0 to the 
associated equations of the leftmost segment. Note that this 
is a different treatment with respect to what was done with 

2/2 — 2/i — 2/i before. But remember that the aim is to remove 
variables of the treated segment from the other segments to 
the right of it. In fact, this y2—yi-yi added to the class o/O 
will be removed from this class when we will treat the next 
segment, since none of the yi's is defined in the rightmost 
segment. 

Just after finishing the treatment of the leftmost segment 
we obtain: 

z = h(x3) > x3 > x2 > xi > x0 = h(yi) > 

2/3 = 2/2+2/1 > 2/2 > 2/1 > h(w) > Zü = j/2-2/1-2/1 = 0 
where the leftmost segment contain the associated equations 
Xo — x3-\-X2-\-x\=üandx2 — xi—xo=0. G 

5.1.3    Diophantine equations. 

Example 19 shows that now in solutions more than one 
summand may be needed in a single segment. But only a 
certain number of summands play an important role in the 
comparisons. 

Example 21 If a > b > c, in the inequation a+a+a+b+b+ 
c >- a+a+a—c—c—c the summand b will be called the decisive 
summand, since it is the greatest sumand that appears in 
both terms with a different number of occurrences. G 

Let s be a term and u a summand. The number of oc- 
currences of u in s (notation #(u, s)) is the integer n such 
that s =AG nu + s', where u is not a top-level summand of 
s'. For instance #(a, f(a + b)—a — a) =-2. Let s and t be 
two ground terms such that s y t. The decisive summand 
of the inequation s y t is the top-level summand u such 
that for all summands v y u, #(v, s) = #(v, t), and either 
(i) #(«,«) > #(«,t) > 0or(ii)#(«,s) < #(«,/) and 

#(«,*) <0. 
Once the splitting transformation has been applied to S, 

we can define a system of diophantine equations and in- 
equations Ds for 5 as follows. For each segment T in S of 
the form 

x0 = s > Xi=titi = ... = tiikl > ... > Xi=tijl = 

■■■ = ti,k,    >   Xi+i=t 

with associated equations q\ — 0,..., qi = 0, several guess- 
ings are necessary. First, the number ndec of the segment 
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is guessed. Intuitively, for a given a, the number ndec 
is the cardinality of dec(Ta) U {ta}, where dec(Ta) is 
the set of different decisive summands in the inequations 
Xjcr y Xj+iv with j > 0. Hence one can guess ndec to be 
between 1 and i + 1. There are some cases where it must 
be exactly 1, which is when we know that for all a we have 
sa = succ sum\(tcr): 

• sis some Cj and t is Cj+\, or 

• tisci and s is /i(0), or 

• t is sum\ and s is sum,2, or 

• t is headed with some / with / > h and s is /)(.rI+1). 

In the following, the elements of dec(Ta) U {ta} are de- 
noted (and ordered) by unc[ec >-...>- «i. Note that always 
ta is i/i (if the splitting has been done according to a). 

Now, for every variable Xj with 1 < j < i + 1 we 
create ndec integer variables Xj^i,..., Xj,ndec, representing 
the number of occurrences of each decisive summand in Xj. 
For the segments where ndec is 1 (as for the base segment) 
we preserve the same variable name Xj for the correspond- 
ing integer variable. 

Example 22 Consider f > /; > — > + > 0 and suppose 
that after the splitting transformation we have: 

;.! = /)(«;i-f .r2) > i<!6=-u>5 > w5 > «>., =-M'3 > u>3 > 

tr2=-J"'i > «'i = /(;.3) > 
-3 = h{x3) > j/4 =-2/3  >  2/3  >  2/2 =-2/i   >  J/i = 

fc(*2)  > 

r2 = /'(-i'i) > x3> x-2 > a;i = /?(ri) > ri=0 
/Vow, we WA«/ to find a solution a such that for every vari- 
able it contains summands greater than or equal to the 
rightmost term of the segment where it is defined. We may 
guess that the number of decisive summands for the leftmost 
segment is 3. Therefore, we need to guarantee that at least 
two summands between f(z3)a and h(wi+X2)a exist. Ob- 
serve that the successor summand of f[z3)a is h(f(z3))a 
and the next one is h(f(z3)+h(Q))a. Since X2 is a variable 
in the base segment, we need x-ia to be at least /i(0)+/i(0). 
Here appears the need of adding, to the diophantine sys- 
tem, either an equation of the form X2 > 2 or one of the 
form X2 < 0, since—/(0) is greater than any sum of posi- 
tive f(0)'s. 

Later on, we may decide that the number of decisive sum- 
mands for the segment z3= h(x3) > 2/4=—2/3 > 2/3 > 2/2 = 

"i/i > 2/1 = h(x2) is 2. We need to guarantee that there 
exists at least one summand between h{x3)a and h(x2)a. 

Observe that x3 and x.2 are defined in the base segment. If 
we guess X20- to be h (0)+.. .+h (0), then either x3a is also 
of the form h(0) + .. , + h(0) with at least two more h(0)'s 
than x2a, or x3a is of the form —h (0) — ... — /> (0). If we 
guess that x2a is—h(Q) — ...—h(0), then x3a also has to be 

—h(0) —... — h(0), but with at least two more—h(0) 's than 
X2a. D 

We now impose some more diophantine equations en- 
suring that there will be enough space for the decisive sum- 
mands between sa and ta, when ndec > 1. Assume 
ndec > 1 and let y and z be variables defined in the base 
segment: 

1. If s is of the form h(y + s') and t is of the form h(z + 
s'), it has to be guessed whether one adds either the 
equations (i) y > z + ndec and z > 0, or the equations 
(ii)jy < z-ndec and z < 0, or the equations (iii) y < 0 
and z > 0. 

2. If s is of the form h(y+s') and t is of the form h(s'), 

there is another choice between the equation (i) y > 
ndec, and the equation (ii) y < 0. 

3. If s is of the form h(xi+i+y) and t is of the form f{t'), 
either the equation (i) y > ndec — 1 or (ii) y < 0 is 
added. 

The following equations are added to the system Ds in or- 
der to express for which inequation which decisive sum- 
mand is decisive, and whether it decides positively or nega- 
tively: 

1. For each j between 1 and i, we guess which index sum- 
mand k between 1 and ndec is the decisive one for the 
inequation xj > Xj+\. Now, for all k' > k we add the 
equation x.jtk' = zy+i,*'- In order to decide in which 
manner the A'-th summand is decisive, we guess adding 
either (i) XJ^ > Xj+i,k > 0 or (ii) Xjtk < Xj+i^ and 
xj,k < 0. 

2. Let tjj be the result of replacing in tjti every variable 
Xji by Xji^k, the integer variable corresponding the the 
k-lh decisive summand. Now in order to make sure 
that the number of occurrences of the k-ih summand at 
each side of the equality coincides, add x,j^ = tk-,, for 
all j in {1... /}, and all k in {1.. .ndec}, and all / in 
{1... kj}. We proceed identically with the associated 
equations. 

3. We add a',+i,i = 1, and for all k in {2.. .ndec} we 
add xi+hk = 0. 

Theorem 23 The satisfiability problem for AG-RPO con- 
straints restricted to signatures with functions of arity 0 or 

1 is in NP. 

5.2    Arbitrary arities 

The extension to arbitrary signatures is obtained 
analogously   to   the   AC   case.        What   has   to   be 
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taken into account is that succsumi(f(si,...,Sk)) is 
ft(0,...,0,/(si,...,Sfc)), and succsum1(h(si, ...,Sk)) 
is h(si,..., Sft + sumi) if s^ is not of the form s' — sumi, 
and /i(si,..., Sk—sumi) otherwise. 

Theorem 24 The satisfiability problem for AG-RPO con- 
straints is in NP. 

6 Hardness 

Obviously, the satisfiability problems we deal with are 
NP-hard, because as subcases they include the AC, ACO and 
AG-unifiability problems. But one may wonder whether 
there exists any ordering at all for these E such that at least 
the satisfiability problem for positive conjunctions of in- 
equations (by which one cannot always encode unification) 
is in P. Here we answer this question negatively (by reduc- 
ing l-in-3-sat with only posive literals), even if monotonic- 
ity of the ordering is not required. 

Theorem 25 Let E be AC, ACO, or AG, and let >- be any 
arbitrary well-founded E-compatible ordering on ground 
terms that is total up to —B Then the constraint satisfiabil- 
ity problem for y and =E is NP-hard even for constraints 
that are conjunctions of positive inequations. 

7 Conclusions and further work 

Constraint solving algorithms have been defined for 
FRPO-based orderings for abelian semigroups, abelian 
monoids and abelian groups. We believe that the new tech- 
niques will lead to reasonably efficient practical algorithms 
for these orderings. This, as well as building an implemen- 
tation, is one of the directions for further research in the 
context of the PhD. Thesis of the first author. 

Finally, we expect that the ideas given here will provide 
new insights (to us or to others) for the development of con- 
straint solving methods over fixed signatures for other E- 
compatible orderings. 
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Abstract 

Recently we have improved the efficiency of the predicate 
abstraction scheme presented in [7). As a result the number 
of validity checks needed to prove the necessary verification 
condition has been reduced. The key idea is to refine an ap- 
proximate abstract transition relation based on the counter- 
example generated. The system starts with an approximate 
abstract transition relation on which the verification condi- 
tion (in our case this is a safety property) is model checked. 
If the property holds then the proof is done. Otherwise the 
model checker returns an abstract counter-example trace. 
This trace is used to refine the abstract transition relation if 
possible and start anew. At the end of the process the system 
either proves the verification condition or comes up with an 
abstract counter-example trace which holds in the most ac- 
curate abstract transition relation possible (with the user 
provided predicates as a basis). If the verification condition 
fails in the abstract system then either the concrete system 
does not satisfy it or the abstraction predicates chosen are 
not strong enough. This algorithm has been used on a con- 
current garbage collection algorithm and a secure contract 
signing protocol. This method improved the performance 
on the first problem significantly and allowed us to tackle 
the second problem which the previous method could not 
handle. 

1    Introduction 

Abstraction is emerging as the key to formal verification 
of large designs, especially those that are not finite-state. 
Predicate Abstraction provides the potential for combining 
the generality of theorem proving with the ease-of-use of 
model checking by automatically mapping an unbounded 
system (called the concrete system) to a finite state system 

'This work was supported by NASA contract NAS1-98139 and 
DARPA contract OO-C-8015. The content of this paper does not neces- 
sarily reflect the position or the policy of the Government and no official 
endorsement should be inferred. 

(called the abstract system). The states of the abstract sys- 
tem correspond to truth assignments to a set of abstraction 
predicates, which can be supplied by the user or derived 
from the problem using heuristics [4]. 

The user must supply a verification condition that is to 
be proved. Throughout this paper, the verification condi- 
tion is assumed to be an invariant. Of course more complex 
safety properties can be checked by augmenting the system 
description with history variables, and specifying an invari- 
ant over the history variables. Either the system extracts ap- 
propriate predicates or uses user provided abstraction predi- 
cates to automatically construct an abstract system from the 
concrete system description. 

Model checking techniques can then be used to check 
whether the abstract system satisfies the verification con- 
dition. The abstraction is conservative, meaning that if a 
property is shown to hold on the abstract system, there is a 
concrete version of the property that holds on the concrete 
system; however, if the verification condition fails to hold 
on the abstract system, it may or may not hold on the con- 
crete system. 

The prototype system described here handles more 
complex system descriptions than methods previously de- 
scribed. It uses two existing libraries: SVC [2], an 
implementation of decision procedures for quantifier-free 
first-order logic, and Boolean Decision Diagrams (called 
BDDs), an efficient representation for Boolean functions. 
The use of these efficient libraries is crucial for the success 
of the system. For example, SVC is typically called tens of 
thousands of times during verification. 

The prototype works in two phases: it first produces a 
representation of a finite-state machine that is a conserva- 
tive abstraction of the concrete system. Creating a good 
abstract machine is expensive, so an over-approximation 
of the abstract transition relation is computed. In the sec- 
ond phase, the verification condition is checked on this ma- 
chine using a variant of standard BDD-based model check- 
ing algorithms. If the verification condition holds then the 
proof is complete. Otherwise an abstract counter-example 
trace is generated. This counter-example is checked to see 
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whether it is an artifact of the approximation during the first 
phase. If it is, then the abstract transition relation is re- 
fined (by adding constraints to the transition relation) so as 
to eliminate the spurious counter-example and the verifica- 
tion condition is model checked once again. This process 
is repeated until the verification condition is proved or a 
valid abstract counter-example is generated. This counter- 
example guided refinement phase is essential to speed up the 
predicate abstraction process. 

The technique has been applied to a concurrent garbage 
collection algorithm and a contract signing protocol. The 
new technique was able to verify the garbage collection al- 
gorithm much faster than the technique used by Das, Dill, 
and Park in 1999 [7], which was the first and still only at- 
tempt to verify it using predicate abstraction. The original 
method could not even prove the contract signing protocol 
because the proof obligations generated were too difficult 
for the decision procedure. 

Related work 

The use of automatic predicate abstraction for model 
checking infinite-state systems was first presented by Graf 
and Saldi in 1997 [9]. Their method represented the abstract 
states as monomials (monomials are conjunctions of ab- 
stract state variables or their negations). Compared with the 
original method of Das, Dill, and Park, and the new method, 
the use of monomials may result in more false errors and 
failed proofs. However their method also requires fewer va- 
lidity checks. The original Graf/Sai'di method computes the 
reachable state set as part of the abstraction process. Our 
work uses some of the ideas present in the Graf/Sai'di ab- 
straction scheme [9] and [7]. 

The creation of the initial abstract transition relation is 
similar to the abstraction method presented by Sai'di and 
Shankar [15]. In that work the authors construct an accu- 
rate abstract transition relation that is used in model check- 
ing. If the desired invariant does not hold, then new pred- 
icates are added. In their paper, refinement is used to con- 
struct the new abstract transition relation from the original 
relation. Their method computes the exact abstract transi- 
tion relation which can be expensive. In contrast our strat- 
egy of successive approximation is more efficient because 
it attempts to compute the least accurate approximation that 
gives a definitive answer. 

Colon and Uribe have also described a method that first 
generates an abstract transition system, then model checks 
it [6]. The transition relation generated is less accurate than 
that presented here. 

The idea of counter-example-guided refinement is a gen- 
erally useful technique in model checking, which has been 
used before, by Kurshan et al. [13] for checking timed au- 
tomata, Balarin et al [1] for language containment and 

Clarke et al [5] in the context of verification using abstrac- 
tion for different variables in a version of the SMV model 
checker. Counter-example guided refinement has even been 
used with predicate abstraction by Lakhnech et al. [18]. 
However, their method refines by discovering new predi- 
cates to add, an idea that is quite different from refining the 
use of a given set of predicates in the abstract system. 

We believe that the present method can handle signifi- 
cantly larger problems than previous methods. So far as we 
know, the original method of Das, Dill and Park is able to 
handle more difficult problems than any of the other meth- 
ods described above, and the new method is much more 
efficient. 

2   Abstraction Method 

This section summarizes the theory of conservative ab- 
straction. Since the theory behind this is well known and 
descriptions of this can be found in previous papers on this 
subject (for instance in [9]), the important properties of the 
abstraction will mostly be stated without formal proof. In 
stating and proving the claims, we have found that using 
logical formulas uniformly, instead of a mix of set and logic- 
notation, eliminates a certain amount of confusion. Hence 
initial states, transition relations and reachable state sets are 
represented as predicates. 

The key idea in conservative abstraction is that the ab- 
stract state machine yields a superset of the reachable con- 
crete states. This means that if the verification condition 
holds in the superset of the reachable concrete states then it 
will also hold in the concrete system. 

The concrete transition system consists of initial states 
represented by the predicate IQ. IC{X) is true iff x is 
an initial state. The transition system is represented by 
Rc(x.y). Rc(x,y) is true iff y is a successor of x. 

The concrete system is mapped to an abstract tran- 
sition system. If there are 7V abstraction predicates, 
4>i, (f>->, ■ ■ ■ 0Ar, then the abstract state space is the subset of 
all bit-vectors of length N, which can be modeled as fol- 
lows. IfF={a:e/V|0<3;< TV}, then the type of these 
bit-vectors is P —» {0,1}. In what follows 1 and 0 shall be 
interpreted as true and false in the obvious way. The initial 
states and the transition relation for the abstract system are 
constructed later in the section. 

The abstraction can be formalized as a standard Galois 
connection, having an abstraction function, a which maps 
concrete states to bit-vectors, and a concretization function, 
7 which is essentially the inverse image of a. Specifically, 
a(x) is a bit-vector whose i'h bit has the truth value </>;(x) 
while 7(s) is a predicate on concrete states that hold on x 
when for every i £ P the ith bit of s matches <f>i(r). 

Definition 1  The abstraction and concretization functions, 
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a : C -> (P -> {0,1}) W 7 : (P -»• {0,1}) ->• C are 
defined as, 

a(x)(i) =4>i{x) 

j(s)(x) = [\<j)i{x) = s(i) 
i<EP 

(= is the biconditional) 

The definition of a and 7 can be extended to work on 
the predicates defined over the concrete states and abstract 
states respectively. These extended definitions are as fol- 
lows: 

Definition 2 Given predicates, Qc and QA over concrete 
and abstract states respectively, the abstraction and con- 
cretization functions are extended as follows: 

a(Qc)(s)    =    3x. Qc(x) A f\ ^(x) = s(i) 
ieP 

J(QA)(X)    =    3s.QA(s)A f\Mx)=s(i) 
i€P 

Predicates are used to describe sets. So the set of all ab- 
stract states are defined by the predicate, 3x. ~/(s)(x). Then 
for any arbitrary predicates S and X defined on the abstract 
and concrete states respectively it can be easily proved that, 

A-->7(a(X)) 

(3x.7(S)(z))-^(S = a(7(S))) 

These two results show that the abstraction scheme is in- 
deed a Galois connection. 

Definition 3 The set of abstract initial states, I A is defined 
to be a(Ic). 

Notice that a has been used on a concrete predicate and so 
the second definition of a is to be used. It may be shown 
that the concrete and abstract initial states satisfy the inclu- 
sion relation, IQ -* J(IA) 

Definition 4 The abstract transition relation is represented 
by a predicate RA with two states, s and t as arguments. 
The transition relation is defined as, 

RA{S, t) = 3x, y. 7(a)(1) A 7(t)(y) A Rc(x, y) 

The abstract transition system so defined is a conserva- 
tive abstraction of the concrete system. Let the predicate 
SA (s) hold if s is an abstract state that is reachable from 
an initial state after k transitions. Similarly let the predicate 
SQ(X) hold if a; is a concrete state that is reachable from an 
initial state after k transitions. Assuming that 

Vs. Sk
c(x) -+ j(Sk

A)(x) (1) 

holds it can easily be shown that 

Vs. Sk
c
+1(x)^7(Sk

A
+1)(x) 

where the reachable concrete and abstract states after k + 1 
transitions are given by 

Sc+1(y) = Sk
c(y) V 3x. Sk

c(x) A Rc(x,y) 
Sk

A
+1(t) = SA(t)V3s.SkA(s)ARA(s,t) 

Then by induction it may be concluded that (1) holds for 
all k. Since the abstract system is finite, the fixed point of 
abstract reachable states exists and the concretization of the 
abstract reachable states must include all concrete reachable 
states. This shows that any invariant that holds in the con- 
cretization of the abstract reachable states must also hold in 
the concrete system. Thus the abstract system is a conser- 
vative abstraction of the concrete system. 

3    Counter-Example Guided Refinement 

Now that the abstract system has been defined, a method 
is presented to compute the abstract system efficiently and 
with the necessary accuracy. Usually, computing the exact 
abstract transition relation defined in the previous section 
requires excessive time for all but the most trivial of sys- 
tems. Also typically the set of abstract reachable states is 
extremely sparse. So most of the abstract states are un- 
reachable. Hence computing the full transition relation is 
not necessary. 

Assume that the successive approximation process starts 
with an over-approximation, R0, of the exact abstract tran- 
sition relation. If a state t is a successor of s in the ex- 
act transition relation then t is also a successor of s in the 
over approximated transition relation as well. R0 is used 
to model check the verification condition. If the verifica- 
tion condition holds then the proof is complete. Otherwise 
the model checker generates an abstract counter-example 
trace which violates the verification condition. The abstract 
counter-example trace is a finite sequence of abstract states, 
s0,si,...sn such that IA(so) holds and R0(si,si+i) holds 
for every i € [0,n). Also sn violates the verification con- 
dition. Now, for each pair of consecutive abstract states, 
(si,Si+i), check ifiZJ4(sj,Sj+i) holds. In this case, a valid 
abstract counter-example has been found. Otherwise R0, 
can be refined to eliminate the generated counter-example. 
This process of model checking followed by refinement is 
repeated till the verification condition is proved or a valid 
counter-example is found. 

We now explain how the refinement process works. Sup- 
pose R is the an over approximated abstract transition rela- 
tion and that the abstract counter-example trace found after 
model checking has two consecutive states, Sj and Sj+i, 
such that RA(SJ,SJ+I) is false. The algorithm tries to find 
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PROVE-VERIFICATION-CONDITION(propcrty) 
begin 

I A '■= Initial State predicate 
RA '■= true 
while (true) 

trace := model check property in abstract system, (IA , RA) 
if empty (trace) then 

return PROPERTY.PROVED 
else 

for each pair of successive states Sj, Sj+i in trace do 
if "/(sj)(x) A y(sj+i)(y) A Rc(x,y) is unsatisfiable 
then 

Rorig '•— RA 
RA := RA A REFINE-TRANSJlELisj^j+i) 
break 

endif 
end 
if RA = -Roris return trace 

endif 
end 

end 

REFINEJ^RANSJRELisj, sj+i) 
/* The function returns the constraint C */ 
begin 

X:=7(*i)(*)A7(sj + i)(y) 
for each conjunct, p in A' do 

remove p from Ar 

if satisfiable(X A Rc{x,y)) then 
add p back to A 

endif 
end 
return -IQ(A') 

end 

Figure 1. Abstract State Machine Refinement 

a constraint, C(s,t), such that i?/i(s,t) -» C(s,t) and 
C(sj, Sj+i) is false. Then the abstract transition relation, 

fl'(M) = fi(s,l)AC(s,f) 

is also a conservative abstract transition relation. Since 
i?^(sj,Sj+i) is false, this means that 7(SJ)(X) A 
j(sj+\)(y) A Rc(x, y) is unsatisfiable for every a: and ev- 
ery y. From the definition of 7, it follows that j(sj)(x) A 
7(sj+i)(y) is a conjunction of abstraction predicates, 0,(a:) 
and 4>i(y) and their logical complements. We wish to find a 
minimal subset of these predicates that is unsatisfiable when 
conjoined with Rc(x,y). The heuristic in the present sys- 
tem is a simple greedy algorithm. It is explained in Figure 
1. 

The following theorem shows that this construction re- 
sults in a new conservative abstract transition relation. The 
key point to note is that at the end of the algorithm the con- 

junction of the remaining conjuncts and Rc(x,y) is unsat- 
isfiable. The bit-vectors Cj and Cj+\ determine which con- 
juncts have been removed. Wherever c,j(k) is false, the con- 
junct involving <f>h{x) has been removed from ~f(sj)(x) in 
the added constraint, C(s,t). Similarly, if Cj+i(k) is false, 
then the conjunct involving <pk{]l) has been removed from 

l{sj+i){y). 

Theorem 1 Let the initial abstract transition relation, R 
satisfy Vs,£. RA(s,t) —> R(s,t) and Sj, Sj+\ be abstract 
states and c,j and Cj+\ are bit-vectors such that 

f\cj{i)^{sj{i)=<}>x{x)) 

ieP 

A   A C
J+I(

2
') -* (

S
J+I(

J
') = <i>i{y))f\Rc{x,y) 

i€P 

is unsatisfiable, then the new transition relation defined by, 

R'(s,t)    =    R(s,t)A 

-i[/\cj(i)^(s(i) = Sj(i))A 

i£P 

A C
J+I (o->wo = *i+i(0)] 

teP 

satisfies 
Vs,t. RA{s,t) -» R'(s,t) 

Proof To prove the theorem assume that RA {S, t) holds for 
some arbitrary s and t. 

Since i?^(s,i)   —>  R(s,t), it may be concluded that 
R(s,t) holds as well. Also by definition of RA, 

3x,y. 7(.s)(x) A -y(t)(y) A Rc(x,y) 

Existential instantiation of the quantifier and using the defi- 
nition of 7 yields, 

A s(i) = <j>i(x0) A A *(*) = <t>iiVo) A Rc(x0,yo)     (2) 
i€P i&P 

Because of the condition that cj and c.j+\ satisfies, 

-{3x,y.     A C
J(*) "► (sj(t-) = ^(-r)) A 

ieP 

A cJ+l(i) -»• (Sj-+1(i) = Mv)) A Rc(x,y)} 
ief 

Simplifying the expression and then instantiating with XQ 

and ?;o yields, 

[\Jcj(i)A{Sj(i)2<t>i(xo))] 
ieP 

V    [Vcj+i(i)A(flj+i(i)£&(?A>))] 
ieP 

V    ->Rc{xo,yo) 
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Using the expressions for 0j(a:o) and 4>i(y0) from (2) yields, 

ieP 

V    \J cj+1(i) A (sj+1(i) ^ t(i)) (3) 
ieP 

Now from the definition of R', 

R'{s,t)    =    R(s,t)A 

ieP 

/\ cj+i(i)-> {t(i) = sj+1(i))] 
i€P 

Simplifying the above definition and using that R(s,t) 
holds, 

R'(s,t)    =    [\/ Cj(i)A(s(i)jtSj(i))V 
ieP 

\J cj+1(i)A(t(i)^sj+1(i))}      (4) 
ieP 

The combination of (4) and (3) shows that R'(s,t) holds. 
This completes the proof of the theorem. D 

As mentioned above, the approximate abstract system is 
model checked, and then refined if necessary. This process 
is repeated until one of the following happens: 

1. The verification condition holds. 

2. A counter-example trace in which for any two succes- 
sive states, Sj and Sj+i, 

3x,y. l(sj)(x) A-y{sj+1)(y) ARc{x,y) 
holds. 

It is easy to see that the process will necessarily terminate 
in one of these situations. Every refinement must remove at 
least one pair of abstract states from the transition relation. 
Since the abstract system is finite, the number of times the 
refinement can be carried out is bounded. 

In the first scenario the desired invariant holds in an over- 
approximation of the exact abstract transition relation and 
so would also hold in the exact transition relation. Thus 
the desired invariant has been proved correct. In the second 
case the counter-example generated would also hold in the 
abstract machine with transition relation RA. So further re- 
finement of RA would be useless. This is proved in the next 
theorem. 

Theorem 2 If an abstract transition system with transition 
relation, R such that RA -> R and initial state set, IA has 
a counter-example trace, so,Si,...sn such that for each 

j £ [0, n) there are concrete states x and y (not necessarily 
the same for different values of j) such that, 

l(sj)(x) A -y(sj+1)(y) A Rc(x, y) 

is satisfiable, then s0, Si,... sn is also a counter-example 
trace in the abstract transition system where the transition 
relation is RA and the initial state set is I A- 

Proof Since s0, Si,... sn is an execution trace in the ap- 
proximate transition system, 

IA(S0) (5) 

Now for every j £ [0, n), 

RA(SJ,SJ+1)    =3x,y.    -f(sj)(x) A-y(sj+1)(y) 

A Rc{x,y) (6) 

Existential instantiation of the precondition of the theorem 
yields, 

7(si)(a;o) A 7(si+i)(y0) A RC(x0,y0) 

Using this with (6) implies that RA{sj,sj+i) is true and 
so Sj+i is a successor of Sj. Using this fact in conjunction 
with (5) proves that s0, si,... sn is a counter-example trace 
in the exact abstract system. D 

Thus, if a counter-example is generated, either the set of 
predicates provided are not rich enough to prove the desired 
verification condition or the invariant does not hold in the 
concrete system. 

4   Prototype Implementation and Results 

A prototype verifier based on the preceding ideas was 
implemented to evaluate efficiency on real problems. The 
decision procedure, SVC was used to do the satisfiability 
checks. Binary Decision Diagrams were used to represent 
the abstract transition relation and to model check the ver- 
fication condition on the abstract system. The user has to 
provide the predicates used to construct the abstract system. 

An obvious choice for the initial approximate abstract 
transition relation is the completely unconstrained abstract 
transition relation. The decision procedure, SVC, did not 
perform well when this was the case, so the prototype pro- 
duced an initial approximation by heuristically collecting 
small sets of predicates with many common variables, and 
building a abstract transition relation using only those pred- 
icates. 

Unlike the preceding discussion, the prototype creates 
abstraction predicates on the next-state variables by substi- 
tuting transition functions for current state variables in the 
abstraction functions (this is the method used in most pre- 
vious papers on predicate abstraction). 

We have used two examples to evaluate the successive 
approximation method presented here. The examples are: 
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• On-Thc-Fly Garbage Collection 

• GJM Secure Contract Signing Protocol 

On-The-Fly Garbage Collection 

The on-the-fly garbage collection algorithm was pro- 
posed by Dijkstra, et al. [8]. This algorithm is widely 
acknowledged to be difficult to get right, and difficult to 
prove. A more detailed discussion of the subtlety of this al- 
gorithm and subsequent variations can be found in a paper 
by Havelund and Shankar [10]. 

The algorithm was simplified by Ben-Ari [3] to involve 
two colors instead of three. This also led to a simpler ar- 
gument of correctness. Alternative justifications of Ben- 
Ari's algorithm were also given by Van de Snepscheut [17] 
and Pixley [12]. However it must be remembered that these 
proofs were informal pencil and paper proofs. 

Later this modified algorithm was mechanically proved 
by Russinoff [14] using the Boyer-Moore theorem prover. 
A formulation of the same algorithm was also proved by 
Havelund and Shankar m PVS [10]. The authors give an es- 
timation of the complexity and size of the proof. The proof 
needed 19 invariant lemmas and 57 function lemmas and 
took about two months. So far as we know, no one has me- 
chanically proved the original algorithm of Dijkstra, et al. 

In the garbage collection algorithm, the collector and the 
user program, the mutator, may be regarded as a concur- 
rent system with both processes working on shared mem- 
ory. The memory is abstractly modeled as a directed graph 
with each node having at most two outgoing edges. A sub- 
set of these nodes are called roots and they are special in the 
sense that they are always accessible to the mutator. Also 
any node that can be reached from one of the roots by fol- 
lowing edges is also accessible to the mutator. The mutator 
is allowed to choose an arbitrary node and redirect one of 
its edges towards another arbitrarily chosen accessible node. 
Each memory node also has a color field which the collec- 
tor uses to keep track of the accessible nodes. The collector 
also maintains a free-list which is a list of nodes that are 
not being used by the mutator. The mutator can request 
nodes from the collector which the collector satisfies from 
the free-list. The collector collects garbage nodes (that is 
nodes which are no longer accessible to the mutator) and 
adds them to the free-list. 

The garbage collection algorithm must satisfy two prop- 
erties for it to be correct. First it must guarantee that no node 
accessible to the mutator is ever added to the free-list. The 
second property is that if some node becomes inaccessible 
to the mutator it is eventually added to the free-list. The first 
property makes sure that no data which would be used by 
the user program is ever freed. The second property makes 
sure that there are no memory leaks in the system. We have 
proved that the first property holds for the algorithm using 

predicate abstraction. The proof of correctness needs some 
auxiliary graph properties which arc treated as axioms by 
the predicate abstraction tool. 

GJM Abuse-Free Contract Signing Protocol 

The abuse-free contract signing protocol provides a 
mechanism for signing contracts between two parties and 
guarantees some correctness properties. A contract can be 
thought of as reciprocal promises between the involved par- 
ties. For instance if Alice is buying a car from Bob then she 
promises to pay Bob the negotiated price while he promises 
to give her the car. 

A very basic correctness condition is fairness. For a con- 
tract signing protocol to be fair it must be the case that after 
the protocol terminates either both parties have a contract 
or neither party has a contract. In the previous example if 
Alice promises to pay the price of the car she should have a 
promise from Bob that he would give her the car. Otherwise 
the protocol violates fairness. 

Other correctness properties of the protocol are account- 
ability and abuse-freeness. We have not proved these prop- 
erties. 

The protocol we have studied here was introduced 
in [11]. The protocol depends on a trusted third parry to 
resolve conflicts. The protocol works in two phases. In the 
first phase the participants exchange messages and try to ar- 
rive at a contract. If something goes wrong (cither because 
messages were lost or because of foul play) the trusted third 
party resolves the contract. The protocol has been exhaus- 
tively analyzed for weaknesses using a model checker [16] 
with a finite number of concurrent contract signings. A 
problem was discovered during this and was fixed. We have 
looked at the fixed protocol and proved that it maintains fair- 
ness with any number of concurrent contract signings. 

Results 

For each example, the execution times on a 800MHz 
Pentium processor are reported. In the table below the ab- 
straction time is the time required to compute the initial ap- 
proximate transition relation. The model checking time is 
the time required to repeatedly model check and refine the 
abstraction. The time required is compared to the approach 
presented in implicit predicate abstraction [7]. 

One reason that the current method works much bet- 
ter than implicit predicate abstraction is that it never has 
to check the satisfiability of similar expressions repeatedly. 
To sec why this can be a problem with implicit predicate 
abstraction consider the following example. Assume that 
we have abstraction predicates 4>\ = a > b and fa = 
b > a (where a and b arc concrete state variables). It is 
obvious that both predicates can not be true at the same 
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Abstraction time 
(in hnmin) 

Model checking time 
(in min) 

GC(implicit) 
GC(current) 

2:25 
0:09 

N/A 
1 

GJM(implicit) 
GJM(current) 

24hr+ 
0:13 

N/A 
4 

time. In the implicit abstraction scheme, expressions, which 
are unsatisfiable because they are conjunctions containing 
4>i{x) A fa(x), are checked for satisfiability repeatedly. In 
the current method this will be recognized the first time a 
counter-example has both predicates true. After that the ab- 
stract transition relation will be suitably modified so that a 
counter-example is never generated which has both predi- 
cates asserted simultaneosly. 

Another interesting observation is that the set of reach- 
able abstract states is usually extremely sparse. So the cur- 
rent method will perform much better than systems which 
naively compute an exact abstract transition system. 

If the verification condition can be proved with the pro- 
vided abstraction predicates then the current method will in- 
deed be able to prove the verification condition. Thus if the 
proof fails then that means that the set of abstraction pred- 
icates is not enough to prove the verification condition. In 
systems which construct a weaker abstraction, a failed proof 
has to be investigated to determine if the proof failed be- 
cause the abstraction predicates are insufficient or because 
the approximation lost information. 

5    Conclusion 

This paper demonstrates that using counter-example 
guided refinement with predicate abstraction can reduce the 
computational difficulty of formally verifying systems with 
unbounded numbers of states. However, we have only done 
a few examples of any size, and there are obviously many 
additional problems that would need to be solved before 
predicate abstraction could be used as routinely as model 
checking is currently. 

The most obvious issue at this point is the need to find 
good candidate predicates automatically, instead of requir- 
ing the user to provide them. This problem has been ad- 
dressed to some extent by others (as discussed in section 
1), but it is not clear that the techniques would scale up 
to the size of problems in the previous section. Automat- 
ically deriving excessively complex predicates or too many 
irrelevant predicates could make the computational part of 
predicate abstraction too difficult. Another important issue 
is how to find good candidate predicates containing quan- 
tifiers, which are needed for the examples in the previous 
section. 

Another difficult issue is how to discover when there are 

design errors. A good pragmatic step would be to model 
check a finite instance of the problem before applying pred- 
icate abstraction. But feasible finite instances may not ex- 
hibit the errors (which is the motivation for doing predi- 
cate abstraction in the first place). In the system described 
here, errors will result in valid abstract counter-examples, 
but there is no algorithmic way to determine if these corre- 
spond to a concrete counter-example, which is what the user 
really needs to determine whether the problem is a design 
error or an inadequate abstraction. Of course, the problem 
is undecidable, so there is no perfect solution, but there may 
be good heuristics for finding useful counter-examples. 
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A Bound on Attacks on Payment Protocols 

Scott D. Stoller* 
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Abstract 

Electronic payment protocols are designed to work cor- 
rectly in the presence of an adversary that can prompt hon- 
est principals to engage in an unbounded number of con- 
current instances of the protocol. This paper establishes an 
upper bound on the number of protocol instances needed to 
attack a large class of protocols, which contains versions 
of some well-known electronic payment protocols, includ- 
ing SET and 1KP. Such bounds clarify the nature of attacks 
on and provide a rigorous basis for automated verification 
of payment protocols. 

1. Introduction 

Many protocols, including electronic payment protocols, 
are designed to work correctly in the presence of an adver- 
sary (also called a penetrator) that can prompt honest prin- 
cipals to engage in an unbounded number of concurrent in- 
stances of the protocol. Payment protocols should satisfy at 
least two kinds of correctness requirements: secrecy, which 
states that certain values are not obtained by the penetra- 
tor, and agreement, which states that a principal executes 
a certain action only if appropriate other principals previ- 
ously executed corresponding other actions (e.g., a payment 
gateway approves a charge to customer C's account only if 
customer C previously authorized that charge). 

Allowing an unbounded number of concurrent protocol 
instances makes the number of reachable states unbounded. 
The case studies in, e.g., [13, 6, 19, 10, 17] show that state- 
space exploration of security protocols is feasible when 
small upper bounds are imposed on the size of messages 
and the number of protocol instances. In most of those case 
studies, the bounds are not rigorously justified, so the results 
do not prove correctness of the protocols. Rigorous auto- 
mated verification of these protocols requires either sym- 
bolic state-space exploration algorithms that directly ac- 
commodate these infinite state spaces or theorems that re- 
duce correctness of these protocols to finite-state problems. 

This paper presents a reduction for a large class of pro- 
tocols. It uses the strand space model [24]. A regular strand 

* The author gratefully acknowledges the support of NSF under Grant 
CCR-9876058 and the support of ONR under Grants N00014-99-1- 
0358 and N00014-01-1-0109. Email: stoller@cs.sunysb.edu Web: 
http://www.cs.sunysb.edu/-stoller/      Phone: 631-632-1627 

can be regarded as a thread that runs the program corre- 
sponding to one role of the protocol and then terminates. A 
central hypothesis of our reduction is the bounded support 
restriction (BSR), which states that in every history (i.e., ev- 
ery possible behavior) of the protocol, each regular strand 
depends on at most a given number of other regular strands. 
Our notion of dependence, embodied in the definition of 
support, is a variant of Lamport's happened-before relation 
[15], modified to handle freshness of nonces appropriately. 
BSR is not easily checked by static analysis, so we propose 
to check it by state-space exploration, while checking the 
correctness requirements. With statically checkable restric- 
tions alone, it seems difficult to find restrictions that are both 
strong enough to justify a reduction and weak enough to be 
satisfied by well-known protocols. 

To check BSR by state-space exploration, we need a re- 
duction for it. We prove: if a protocol satisfies its correct- 
ness requirements and BSR when appropriate bounds are 
imposed on the number of regular strands in a history, then 
the protocol also satisfies its correctness requirements and 
BSR without those bounds. 

Most existing techniques for automated analysis of sys- 
tems with unbounded numbers of concurrent processes, 
such as [9, 11,2,3, 14], are not applicable to payment pro- 
tocols, because they assume the set of values (equivalently, 
the set of local states of each process) is independent of the 
number of processes, whereas payment protocols generate 
fresh values, so the set of values grows as the number of 
processes (strands) increases. 

Roscoe and Broadfoot use data-independence techniques 
to bound the number of nonces needed for an attack [20]. 
Their result assumes that each trustworthy principal partic- 
ipates in at most a given number of protocol instances at a 
time. Our reduction does not require that assumption; in- 
deed, our goal is to justify such assumptions. Lowe's re- 
duction [16] has similar goals as our reduction and provides 
tighter bounds in its domain of applicability, but it does not 
handle agreement requirements and does not apply to the 
variants of SET and 1 KP described in Section 2.1. 

The reduction embodied in Theorems 2 and 3 handles se- 
crecy and agreement requirements and applies to simplified 
versions of SET [21] and 1KP [4]. It extends the reduc- 
tion in [22] in several significant ways. The class of pre- 
served properties is extended to allow protocol-specific se- 
crecy properties (roughly, any non-cryptographic value can 
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be designated as a secret) and to allow use of more gen- 
eral predicates to characterize the desired relationship be- 
tween actions in agreement properties. The class of proto- 
cols is extended by allowing hash functions, allowing ar- 
bitrary nesting of hashing and encryption in protocol mes- 
sages, and relaxing the restriction that the recipient of a 
message be able to recognize the entire structure of the mes- 
sage.1 These extensions necessitate substantial changes to 
the statement and proof of Theorem 1. That theorem is the 
crux of the proof of our reduction: it provides a statically- 
calculated bound on a "dynamic" quantity (i.e., a quantity 
defined by a maximum over all possible executions of the 
protocol); that quantity is the dependence width, defined in 
Section 4. 

Our results implicitly describe a simulation relation be- 
tween systems with bounded-size histories and systems 
with unbounded-size histories. It would be interesting to 
see whether similar results could be obtained more easily in 
a process-algebraic framework, such as Spi calculus [1]. 

2. Model of Protocols 

We use the strand space model [24], with minor modifi- 
cations. 

The set of primitive terms is Prim = TextuKey, where 
Text is a set of values other than cryptographic keys, and 
Key = {kcy(x,y) \ x,y 6 Namer\x 7^ y}U{pub(x) | x 6 
Name} U {pvt(x) | x £ Name). Informally, key(x, y) is a 
symmetric key intended for use by x and y, and pub(x) and 
pvt(x) represent x's public and private keys, respectively, 
in a public-key cryptosystem. Name is the subset of Text 
containing names of principals. Nonce is the subset of Text 
containing nonces. 

The set Term of terms is defined inductively as follows. 
(1) All primitive terms arc terms. (2) If t and t' are terms 
and k £ Key, then encr(t, k) (encryption of t with k, usu- 
ally written {£}*■), pair(t,t') (pairing of t and t', usually 
written t.-t'), and h(t) (hash of t, where h represents a one- 
way collision-resistant hash function [18]) arc terms. 

inv 6 Key —> Key maps each key to its inverse: de- 
crypting {£}<• with inv(fc) yields t. For a symmetric key A:, 
'mv(k) = k. We usually write inv(fc) as k~l. 

\Avvt(:v) abbreviates t ■ {h(t)}pvl(x), i.e., t signed by .7:. 
A ciphertext is a term whose outermost operator is encr. 

A hash is a term whose outermost operator is /;.. A term t' 
occurs in the clear in t if there is an occurrence of t' in t 
that is not in the scope of encr or //. 

Let clom(/) denote the domain of a function /. A se- 
quence is a function whose domain is a finite prefix of the 
natural numbers.   Let hn(a) denote the length of a se- 

1 Session keys are not used in the examples in this paper, so we omitted 
them from the framework. They can be handled roughly as in [22]. 

quence a. ((a, b,...)) denotes a sequence a with cr(0) = a, 
a{\) — b, and so on. 

A directed term is +t or —t, where t is a term. Positive 
and negative terms represent sending and receiving mes- 
sages, respectively. We sometimes refer to directed terms 
as "terms" and treat them as terms, for instance as having 
subterms. 

A trace is a finite sequence of directed terms. Let Trace 
denote the set of traces. 

A trace mapping is a function tr € dom(ir) —> Trace, 
where dom(tr) is an arbitrary set whose elements are called 
strands. 

A node of tr is a pair (s, i) with s E dom(ir) and 0 < 
i < len(ir(s)). Let Mtr denote the set of nodes of tr. We 
say that node (s,i) is on strand s. Let nodesjr(s) denote 
the set of nodes on strand s in tr. Let strand((s,i)) = s, 
index((s,i)) = i, and term(r((s,i)) = tr(s)(i). 

let 
The local dependence relation is: (si,ii) -> («2,^2) iff 

Si = s-2 and i2 = i\ + 1. 
A term t originates from a node (s,i) in tr iff (s, i) is 

positive, t is a subterm of term(r((s,i)), and t is not a sub- 
term of texmtr((s,j)) for any j < i. 

A term t uniquely originates from a node n in tr iff it 
originates from n in tr and not from any other node in tr. 
Typically, nonces are uniquely-originated. This is the strand 
space way of expressing freshness. 

For S C Mtr, let term<r(S) = {term(r(n) | n G S}. 
For symbols subscripted by the trace mapping, we elide the 
subscript when the trace mapping is evident from context. 

2.1. Roles, Protocols, and Penetrator 

A role is a parameterized sequence of directed terms. As- 
sociated with each parameter is a type, i.e., a set of allowed 
terms. Some parameters with type Nonce may be desig- 
nated as uniquely-originated; informally, this means that 
the value of that parameter must be uniquely-originated. 
Uniquely-originated parameters arc designated by underlin- 
ing in the parameter list. We require that for every role r, 
for every parameter x of r with type Nonce, x is uniquely- 
originated iff the first occurrence of x in r is in a positive 
term. Let r.x denote parameter x of role r. For exam- 
ple, n(u£ ■ Nonce) = ((+nc)) defines a role B with one 
uniquely-originated parameter nc with type Nonce. 

A trace for role r is a prefix of a trace obtained by 
substituting for each parameter x of r a term in the type 
of .r. A role r and a trace a for r uniquely determine 
a mapping, denoted args(r,a), from the set of parame- 
ters of r that appear in r(0),r(l),... ,?-(len(rj) — 1) to 
Term. For example, for role R(xi : Name, x? : Name) = 
((+:/•,,+.T2)) and a = ((+A)), <lom(args(R:o)) = {.X'I} 

and args(R,a)(xi) — A. 
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A protocol II is a set of roles, together with a set 
U.Secret C (Text \ (Name U Nonce)) of terms that are 
"secrets" (i.e., terms that should not be revealed to the pen- 
etrator). Excluding names here implies that the penetrator 
knows all names. Specialized notions of secrecy are used 
for keys and nonces, as described in Section 2.5. 

The penetrator model is parameterized by a set Keyp C 
Key of keys initially known to the penetrator. The set 
Up(Keyp) of penetrator roles contains: 

Pair: P(x : Term, y : Term) = ((—x, —y, +x-y)) 
Separation: S(x : Term, y : Term) — ((—x-y, +x, +y)) 
Encryption: E(k : Key, x : Term) = ((-k, -x, +{x}k)) 
Decryption: D(k:Key, x: Term) = ((-k~1, -{a;}*;, +x)) 
Message: M(x : Text U Nonce) = ((+£» 
Key: K(k : KeyP) = ((+k)) 
Hash: H(x : Term) = ((-x, +h(x))) 

Typically, Keyp = {key(x,y) £ Key | x = P V y = P] 
U {pvtkey(P)} U {pubkey(x) \ x £ Name}. 

2.2. History 

A history of protocol II is a tuple h = (tr, '^4S, role), 
where tr is a trace mapping, "^ is a binary relation on Aftr, 
and role £ dom(ir) ->■ (II U UP(KeyP)) such that 

1. For all ni,n-2 £ Mtr-, if "i ^4-9 n2, then there ex- 
ists t £ Term such that term<r(ni) = +t and 
termer(n2) = —t. This represents that n\ sends t, 
and n-2 receives t. 

2. For all ri\ £ MtT, if term<r(ni) is negative, then there 
exists exactly one n2 € Mr such that n-2 "^ n\. 

3. ^/j is acyclic and well-founded (i.e., does not have infi- 
nite descending chains), where -<h is the reflexive and 

transitive closure of ("^ U A). Note that -<h is a 
partial order, first defined by Lamport [15]. 

4. For all s £ dom(£r), £r(s) is a trace for role(s). A 
regular strand is a strand s with role(s) £ II. A pen- 
etrator strand is a strand s with role(s) £ Ylp(Keyp). 
Nodes on regular and penetrator strands are called reg- 
ular nodes and penetrator nodes, respectively. (For 
convenience, we assume II n Up(Keyp) = 0.) 

5. For all s £ dom(ir), for all x £ dom(args(role(s), 
tr(s))), if parameter x is uniquely-originated, 
then args(role(s), tr(s))(x) uniquely originates from 
(s,i), where i is the index of the first term in r that 
contains x. 

6. For all t £ II.Secret, t originates only from regular 
nodes. 

Note that a history may contain multiple traces for the 
same role with identical bindings for parameters that are 
not uniquely originated. 

To reduce clutter, we sometimes use a history instead of a 
trace mapping as a subscript; e.g., for a history h = (tr, "^ 
, role), we define Mh = Aftr- 

The set of predecessors of a node n in a history h is 
predsft(n) = {n1 € Aft | n' <h n A n' ^ n}. 

Let Hist(II) denote the set of histories of a protocol II. 
A set S of nodes is backwards-closed with respect to a 

binary relation R iff, for all nodes n\ and n^, if n2 £ S and 
ni i? n2, then m £ 5. 

Given a history /i of a protocol II, a set S of nodes of h 
that is backward-closed with respect to <h can be regarded 
as a history, denoted nodesToHist^S'), in a natural way. 

2.3. Examples 

Consider a payment protocol IISET based closely on [5] 
and reminiscent of SET [21], including the use of a dual- 
signature technique, so that the customer produces only one 
digital signature. Let Order C Text and PayDesc C Text 
denote sets of order and payment descriptions, respectively. 
Let Price C Text and Result C Text denote sets of prices 
and results (e.g., "approved"), respectively. Let Namec, 
Namem, and Name9 be disjoint subsets of Name not con- 
taining P. For a set S of terms, let Hash(S) = {h(t) | t £ 
5}. The roles of protocol IISET appear in Figure 1, and 
risET-'S'ecrei = 0, for reasons given below. We use let 
expressions to avoid repetition of large subterms. We allow 
Cust.m = P and Gate.m = P to model malicious mer- 
chants; similarly for malicious clients and gateways. There 
is no reason to allow the "me" variable of each role (namely, 
Cust.c, Mrch.m, and Gate.g) to equal P, because P's ac- 
tions are modeled by penetrator strands. 

Use of Hash(PayDesc) instead of the set of all hashes 
as the type for Mrch.hpd requires some justification, be- 
cause a merchant cannot determine whether the hash re- 
ceived in hpd is the hash of a payment description or, say, 
a ciphertext. Attacks involving terms that are not of the ex- 
pected type are called type flaw attacks. Use of the types 
Hash(PayDesc) and Hash(Order) can be justified by re- 
sults like those in [12], which show that type flaw attacks 
can be prevented by using type tags in the protocol imple- 
mentation. Extending their results to accommodate hashing 
and to accommodate the slightly larger class of agreement 
properties introduced below is fairly straightforward. 

As another example, consider a version of the 1KP pro- 
tocol [4] based closely on [8]. Following [8], we assume 
the customer account number (CAN) is secret and hence 
(for brevity) omit the PIN. We also omit the date field, 
since it does not affect the secrecy or agreement proper- 
ties of IIIKP given below, assuming nonces are uniquely- 
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Cust(c : Namec, m : Namem U {P}, g : Nameg U {P}, nc : Nonce, nm : Nonce, 
price : Price, od : Order, pd : PayDesc, result : Result) = 

let trans = c-m-g-nc-nm-price-h(od)-h(pd) in 
((+c-m, (* 1. to merchant *) 

—nm, (* 2. from merchant *) 
+ [trans]pvt{c)-{od}pub(m)-{pd}pnh{g), (* 3. to merchant *) 
— [result-h(trans)]pvt(g))) (* 4. from gateway *) 

Mrch(c : Namec U {P}, m : Name,,,, g : Nameg U {P}, nc : Nonce, run : Nonce, 
price : Price, od : Order, hpd : Hash(PayDesc), epd : Term, result : Result) 

let trans = c-m-g-nc-nm- price- h(od)-hpdin 
((—c-m, (* 1. from customer *) 

+nm, (* 2. to customer *) 
-[trans]pvt{c)-{od}puh{m)-epd, (* 3. from customer *) 
+ \trans pvt(c) \trans\ pvt[m) ■epd, 

resu dt-h{trans)]pvt(g))) 
(* 4. to gateway *) 
(* 5. from gateway *) 

Gate(c : Namec U {P}, m : Namem U {P}, g : Nameg, nc : Nonce, nn 
price : Price, hod : Hash(Order), pd : PayDesc, result : Result) 

let trans = c-m-g-nc-nm-price-hod-h(pd) in 
((-[trans]pvt{c)-[trans}pvt{m)-{pd}pub{g) (* 1. from merchant *) 

+ [i-esult-h(trans)]pvt(g)}) (* 2. to merchant *) 

None 

Figure 1. Roles for nSEr-  Comments indicate step number and intended source or destination of 
message. 

originated. Let AcctNurn C Text be a set of account 
numbers. To model dishonest customers (i.e., customers 
that collude with the penetrator), wc partition AcctNurn 
into two sets, AcctNurn^ and AcctNum\, which contain 
account numbers of honest and dishonest customers, re- 
spectively. Let Order, Result, Name,,,, and Nameg be as 
above. Wc assume these subsets of Text arc disjoint. lKP 
is designed for settings where the gateway has a private key 
with a well-known public key, but the customer and mer- 
chant do not. Consequently, 1KP provides few guarantees 
if the gateway is dishonest, so we do not include P in the 
types of Cust.0 and Mrch.g. The roles of protocol ILKF 

appear in Figure 2, and ILKP.Secret = AcctNumo- 

2.4. Derivability 

Informally, a term t is derivable (by the pentrator) from a 
set S of nodes if the penetrator can compute t from tenn(S) 
and Keyp. A formal definition follows. 

For a nonce g that uniquely originates in a history /;, let 
ox\gmh{g) denote the node from which g originates in h. 

For a set S of nodes in a history h = (tr, —> , 
role) of a protocol Ü, let uniqOrigReqrd,, (S) denote the 
set of nonces g such that there exists (s,i) £ S and 
x  £  dom(args(role(s), tr(s))) such that parameter r is 

uniquely originated and args(role(s), tr(s))(x) = g and 
origin,, {g) = (s,i). 

For a directed term t, the absolute value of t, denoted 
abs(£), is t without its sign. For T C Term, abs(T) = 
{abs(f) | t £ T], and the role Srcr is defined by Srcr(x : 
T) = «+.r». 

A term t is derivable (by the penetrator) from a set S 
of nodes of a history // of a protocol II, denoted S I-',1 t, 

if there exists a history It' = (tr', "^' , role') of the proto- 
col {Srcal)s(t(,rnl/i(.S))} such that: (1) arguments of strands 
for Message in /(' arc not in uniqOrigRoqrd,, (5); and (2) 
there exists a node n G .\'ir> with t(Tiii(r'(n) = +t. This 
relation is equivalent to the derivability relation in [7] and 
can be computed using the approach in [7]. 

2.5. Correctness Requirements 

Wc consider the following kinds of correctness require- 
ments. For a correctness requirement <p, wc say that a pro- 
tocol II satisfies <ft iff every history of II satisfies <f>. 

Long-Term Secrecy. A history h of a protocol II satis- 
fies long-term secrecy iff, for every r £ U.Secret U (Key \ 
Keyr),".\fh V)\ t. 
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Cust(od : Order, price : Price, saltc : Nonce, R± : Nonce, CAN : AcctNum0, 
IDm : Namem U {P}, TIDm : Nonce, noncem : Nonce, g : Nameg, YesNo : Result) = 

let cid = h(Rc ■ CAN) 
and common = price-IDm-TIDm-noncem-cid-h(od-saltc) 
and clear — IDm- TIDm-noncem-h(common) 
and slip = price-h(common)-CAN-Rc in 
((+saltc-cid, 

— clear 

+ {slip}pub(g), 
-YesNo-[h(YesNo-h(common))]pvt(g))) 

(* 1. to merchant *) 
(* 2. from merchant *) 
(* 3. to merchant *) 
(* 4. from merchant *) 

Mrch(od: Order, price : Price, saltc : Nonce, cid : Hash(Nonce x AcctNum), IDm : Namem, 
TIDm : Nonce, noncem : Nonce, g : Nameg, YesNo : Result, eslip : Term) = 

let common = price-IDm-TIDm-noncem-cid-h(od-saltc) 
and clear = IDm- TIDm-noncem-h(common) in 
((-saltc ■ cid, (* 1. from customer *) 
+ clear, (* 2. to customer *) 
-eslip, (* 3. from customer *) 
+ clear-h(od-saltc)-eslip, (* 4. to gateway *) 
- YesNo-[h( YesNo-h(common))]pvt(g), (* 5. from gateway *) 
+ YesNo-[h(YesNo-h(common))]pvt(g))) (* 6. to customer *) 

Gate(price : Price, Rc : Nonce, CAN : AcctNum, IDm : Namem U {P}, 
TIDm : Nonce, noncem : Nonce, g : Nameg, hodsalt : Hash(Order x Nonce), YesNo : Result) 

let cid = h{Rc ■ CAN) 
and common = price ■ IDm ■ TIDm ■ noncem ■ cid ■ hodsalt 
and clear = IDm- TIDm-noncem-h(common) 
and slip = price -h(common)- CAN -Rc in 
((-clear-hodsalt-{slip}pub(g), (* 1. from merchant *) 

+ YesNo-[h(YesNo-h(common))}pvt(g))) (* 2. to merchant *) 

Figure 2. Roles for n 1KP- 

Nonce Secrecy. Informally, nonce secrecy says: the val- 
ues of specified nonce parameters are not revealed to 
the penetrator. A nonce secrecy requirement has the 
form "r.x is secret unless r.y e S", where r e II, 
x and y are parameters of r, and S C Text (typi- 
cally, 5 C Name). A history h = (tr,"^,role) 
of a protocol II satisfies that requirement iff, for ev- 
ery strand s G dom(ir), if role(s) = r and y 6 
dom(args(role(s), tr(s))) and args(role(s),tr(s))(y) £ 
S, thenA/fr V™ args(role(s),tr(s))(x). 

Agreement. Informally, agreement says: if some strand 
executed a certain role to a certain point with certain argu- 
ments, then some strand must have executed a correspond- 
ing role to a corresponding point with corresponding argu- 
ments. An agreement requirement has the form "(r2, len2) 
satisfying x2 £ S2 is preceded by (ri, len{) satisfying h = 
t2", where x2 is a parameter of r2, S2 is a subset of Text, 

and t\ and t2 are terms containing parameters of ri and r2, 
respectively, as free variables. A history h = (tr, "^, role) 
of a protocol II satisfies that agreement requirement iff, if h 
contains a strand s2 such that role(s2) = r2, \en(tr(s2)) > 
len2, and args(r2, tr(s2))(x2) 0 S2, then tr contains a 
strand Si for role rx such that len(ir(si)) > len\ and t\ 
instantiated with the arguments of s\ equals t2 instantiated 
with the arguments of s2. 

One of Bolignano's requirements for IISET is that the 
gateway has proof of transaction authorization by the mer- 
chant [5, p. 12]. This can be expressed as an agreement 
requirement: (Gate, 1) satisfying Gate.m ^ {P} is pre- 
ceded by (Mrch, 4) satisfying 

let transm = Mrch.c-Mrch.m-Mrch.nc-Mrch.nm 
• Mrch.price -h(Mvch.od) ■ Mich.hpd 

and transg = Gate.c-Gate.m-Gate.nc-Gate.nm 
• Gate.price• G&te.hod-h(G&te.pd) in 

transm = transg A Mrch.g — Gate.g 
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This requirement applies even if Gate.c = P, i.e., even 
if the customer is dishonest.2 SET is designed to pro- 
vide secrecy for order and payment descriptions. IISET 

as defined above does not provide such secrecy, because, 
e.g., a customer strand with Cust.m = P can reveal an 
order description to the penctrator. This is why we take 
U.SET-Secret = 0. To express secrecy of order descrip- 
tions from gateways, we use a variant IIgET in which mer- 
chants are assumed to be honest; specifically, IIgET differs 
from IISET 

as follows: the type for Cust.m is Namem, and 
n§ET.5ecre< = Order. Dishonest gateways are modeled 
by penctrator strands (the types of Cust.i? and Mrch.p con- 
tain P), so if order descriptions are not known to the pen- 
etrator, then they are not known to dishonest gateways, so 
they are not known to honest gateways. Secrecy of payment 
descriptions from merchants can be expressed similarly. 

Requirements for 1KP can be expressed similarly; for 
details, see [23]. 1 KP also has a nonce secrecy requirement: 
Cust.i?c is secret unless Cust.g G {P}. 

3. Support 

Informally, a set S' of nodes of a history tr supports a 
set S of nodes of tr if 5' D S and S' contains all of the reg- 
ular nodes on which regular nodes in S depend. A formal 
definition follows. 

For T C Term, the set of nonces that occur in T is 
nonccs(T) = {g G Nonce | 3t G T : g occurs in t}. 

Let 1ZN tl denote the set of regular nodes in history h of 
protocol n. 

A set S' of nodes is a support for a set S of nodes in a 
history h of a protocol II if: 

1. Mh D S" D S. 

2. S' is backwards-closed with respect to Id 

3. For all negative nodes n in 5', preds/l(n) fl S' f) 
UM]] h? term;». 

4. For all g G nonccs(term/>(S')) Pi D, where 

D = uniqOrigRoqrd"(A/'ft) \ uniqOrigRoqrd"(5'), 

g occurs in the clear in term/,(origin^g)). (This con- 
dition ensures the compositionality property expressed 
in Lemma 2.) 

For a strand s, if S' supports nodes(s), we say that S1 sup- 
ports s. 

For example, consider the following history of a generic 
payment protocol. Suppose sc,i, sm)1, and sS)i are cus- 
tomer, merchant, and gateway strands, respectively, that in- 
teract without interference from the penetrator. Let g be a 
nonce that uniquely originates on smi and is revealed to 
the penetrator (e.g., the value of Mrch.nm in IISET)- The 
penctrator then behaves as a merchant, interacting with a 
customer strand sc,2 and a gateway strand sfli2, except that 
the penctrator uses g instead of a fresh nonce. A support for 
sc,2 or Sg,2 need not contain nodes on sm,i or sC)i. In that 
sense, sf,2 and sSi2 do not depend on sniii, even though the 
chain of messages that conveys g means that there is causal 
dependence between those nodes in the classical sense of 
Lamport [15]. Informally, that classical dependence can be 
ignored here because the penetrator could generate a nonce 
g' and replace g with g' in the terms of nodes on sCi2 and 
ss,2. The careful treatment of unique origination in the def- 
inition of derivability allows such inessential classical de- 
pendencies to be ignored. The following lemma says that a 
support can be transformed into a history by adding pene- 
trator nodes, without adding or changing regular nodes. 

For a set S of nodes, let strand(S) = {strand(n) | n G 
S). For a trace mapping tr, a strand s G dom(£r), and a 
set S of nodes of tr that is backwards-closed with respect to 

-4, S contains nodes on a prefix of tr(s); let prefixir(s, S) 
denote that prefix. 

Lemma 1. Let Ü be a protocol. If S" is a support for 5 in a 
history h — (tr, —> , role) of IT, then there exists a history 

h' = (tr1, "-^ , role') of II such that 

(V.sGstrand(S') :sGdom(rr') A tr'(s) = prefi.xlr(s,S') 
A  role'(s) = role(s)) 

A (V.s G dom(tr') \strand(S') : role {s) G YlP{KeyP)) 
.. . f-,. msq1. Tnsg       . 

A (Vni,n-2 Go   : n\  —$   n2 => n\  -> 112) 
(1) 

2Bolignano's version of the protocol omits g from trans and conse- 
quently violates the conjunct Mrch.p — Gato.g (in his presentation, 
this conjunct corresponds to st'.nicht.gateway = G in the second filter 
function on p. 12). 

Proof: /(' is constructed by combining nodes in S with his- 
tories that witness the derivability of terms (as required by 
item 3 in the definition of support). For details, see [23]. I 

Lemma 2. If S'0 and S[ support So aid S\, respectively, in 
a history h = (tr, "^, role) of a protocol II, then S0 U S[ 
supports So U Si in history /( of II. 

Proof: The only complication is dealing with nonces 
in uniqOrigReqrdJ^So) \ uniqOrigReqrd,, (S[) or 
imiqOrigReqrd"(S;) \ uniqOrigR(;qrd"(S^). The fourth 
condition in the definition of support ensures that such 
nonces arc available to the penctrator even if they arc 
uniquely-originated. For details, sec [23]. I 
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3.1. Bounded Support Restriction 

A strand count for a protocol II is a function from the 
roles of n to the natural numbers. A set S of nodes has 
strand count f iff, for each role r, S contains nodes from 
exactly f(r) strands for r. If Mh has strand count /, then 
we say that history h has strand count /. Let /i (r) = 1 for 
every role r. We define a partial ordering -<sc on strand 
counts for a protocol; <sc is simply the pointwise exten- 
sion of the standard ordering on natural numbers. 

A history h satisfies the bounded support restriction, ab- 
breviated BSR, iff for each regular strand s in h, there exists 
a support for s in h with strand count at most /i. A protocol 
satisfies BSR iff all of its histories do. 

IISET and IIIKP satisfy BSR. We proved these re- 
sults manually; the proofs are similar to the proof in [22] 
for Lowe's corrected version of the Needham-Schroeder 
public-key authentication protocol. Theorem 2 in Section 
5 shows that in principle, these results can be obtained 
automatically by state-space exploration of histories with 
bounded strand counts; an algorithm like the one in [22] 
can be used to compute a (small) support for a given set of 
nodes. The current bounds probably need to be decreased 
somewhat before this is feasible, e.g., by finding a tighter 
bound on the dependence width (see Section 4). 

4. Dependence Width 

Informally, the dependence width of a negative term r(i) 
in a role r of a protocol II, denoted DW((r,i),II), is the 
maximum number of "additional" positive regular nodes 
needed in any history h of II to provide the penetrator with 
enough knowledge to produce the term received by any 
node (s,i) of h such that role(s) = r. "Additional" here 
means "beyond those needed for the penetrator to produce 
negative terms that occur earlier in the same strand". The 
dependence width of a protocol II, denoted DW(II), is the 
maximum over all negative terms r{i) in roles r in II of 
DW((r, i), II). The concept of dependence width is used in 
the proof of Theorem 2 in Section 5 to bound the number of 
strands involved in a violation of BSR. 

Let n be a negative node of a history h of a protocol II, 
and let t be a subterm of term/; (n). A revealing set for t 
at n in h is a set S of positive regular nodes of tr such that 
S C preds/l(n) and S h£ t. 

For a set S of numbers, let min(S') and max(S) denote 
the minimum and maximum element of S, respectively. We 
define min(0) = 0 and max(0) = 0. 

The revealing set min-size oft at (s, i) in h is 

Nodes in R that are on the same strand as n are not 
counted in the revealing set min-size (and hence not in 
the dependence width), because in the proof of Theorem 
2—specifically, in equation (5)—those nodes appear in 
support^ (so) and hence are excluded from the index set of 
the rightmost union, and the dependence width is designed 
to bound the size of that index set. 

Note that, if there are no revealing sets for t at n in h 
(i.e., t is not known to the penetrator at that point), then 
rvlSetMinSz(f,n,/i) = 0. 

Let r be a role in a protocol II, and let i be the index of a 
negative term in r. The dependence width of (r, i) in II is 

DW«r,»>,n) = 
max({rvlSetMinSz(term<r((s,2)), (s,i), (trj-?, role)) \ 

(tr, ™9, role) G Hist(II) A (s, i) 6 Ntr 

A role(s) = r}) 
(3) 

The dependence width of a protocol II is 

rvlSet,MinSz(t, (s,i),h) = 
min({size(i?\ nodesft(s)) | 

R is a revealing set for t at (s, i) in h}) 
(2) 

DW(n) = max({DW«r, i), II) | (4) 
r £ II A r(i) is a negative term}) 

The proof of Theorem 2, and therefore also the proof 
of Theorem 3, rely on an upper bound on the dependence 
width of the protocol. If the protocol might send terms 
of the forms {g}kl, {h}^, {k2}k3, ■ ■., {ki-i}ki, h, 
then i + 1 terms are needed to reveal g to the penetrator. 
Our long-term secrecy requirement prohibits such behavior. 
Secrecy-limited dependence width, abbreviated SL depen- 
dence width and denoted DWSL> is defined in the same way 
as dependence width, except that the maximum over histo- 
ries is restricted to histories satisfying long-term secrecy. 

Let II be a protocol, and let t be a term, possibly 
containing parameters. nSecreto(t,II) is a bound on the 
number of subterms of t that are not known to the pene- 
trator, ignoring keys and values of parameters; formally, 
nSecret0(i,II) = Nc + Nh + Nprim, where Nc is the 
number of subterms of t whose outermost operator is encr, 
ignoring those whose second argument is always in Keyp 
(based on parameter types), Nh is the number of subterms 
oft with outermost operator h, and A^prjm is the number of 
elements of NonceLiU.Secret that occur in t. In computing 
Nc and Nh, identical subterms are counted only once. For 
a parameter r.x of a role r of II, nSecret(r.:r, II) — 
max({nSecret0(i,n) | t is in the type of r.x}). 
Let    nSecret((r, i),II)        =        nSecret0(r(i),II)    + 

£xeParams(r(i))nSecret(r-x>n)>    where   params(i)   is 
the set of parameters that occur in t. 

Theorem 1. Let r(i) be a negative term in a role r of a 
protocol n. DWSL((r,i),n) < nSecret((r,i),II). 

Proof:    Consider a strand s for r in a history h for 
II.      We   consider  each   subterm  t\   of term/l((s,i)) 

67 



and show that each hash, ciphertext, and element 
of uniqOrigR,eqrd"(A//l) U U.Secret, that occurs in 
term/i((s,i)) contributes at most 1 to DWSL((?',i),II). 
The number of such subterms is bounded by 
nSecret((7-,i),U). Other subterms contribute nothing. 
The definition of dependence width implies that terms 
not derivable by the penetrator contribute nothing to the 
dependence width (because such terms have no revealing 
sets), so in computing the bound, we conservatively assume 
all subterms are derivable by the penetrator. Consider cases 
based on the type of t\. 

case \: t\ E Key. Long-term secrecy implies that no keys 
are revealed, so keys contribute nothing to DWSL ((r, i), II). 

case 2: tx € uniqOrigReqrd"(A/ft) U Jl.Secret. The def- 
inition of history implies that tx originates from a regu- 
lar node in h and (according to the conservative assump- 
tion discussed above) is derivable by the penetrator (using 
strands for Separation and Decryption), so there is a posi- 
tive regular node n such that t\ occurs in term/, (n) either in 
the clear or encrypted only with keys known to the penetra- 
tor. Long-term secrecy implies that those keys (if any) arc 
in Keyp. Thus, t\ is derivable from {n}, so t\ contributes 
at most 1 toDWsL((r,i),n). 

case 3: tx € Text\(umqOngReqrd™{Ar
h)Uli.Secret). tx 

is directly available to the penetrator through the Message 
role, so t\ contributes nothing to DWSL((T", i), Ü). 

case 4: t\ is a pair. Revealing a pair is equivalent to reveal- 
ing its two components, so proper subterms of t\ contribute 
toDWsL((r,i),II), butti itself does not. 

case 5: tx is a ciphertext or hash, and t\ originates from a 
penetrator node in preds/l((s, i)). The penetrator performs 
the encryption or hashing to construct its copy of t\, so 
proper subterms of t\ contribute to DWSL((T", i), II), but 
t\ itself does not. 

case 6: t\ is a ciphertext or hash, and t\ does not originate 
from a penetrator node in preds,, ((s, i)). Then t\ origi- 
nates from a regular node, and the argument is the same 
as in case 2. Note that it is not necessary for proper sub- 
terms of t\ to contribute to DWgL((?',i)) n). Our bound on 
DWsL((r, i),U) might be loose because it docs not attempt 
to exploit this observation; exploiting it is left for future 
work. 

Now we justify ignoring, in the definition of Nc in 
nSccrcto, occurrences of encr whose second argument is 
always in Keyp. Let {£'}/,■ be such a ciphertext. 

case 1: 0 \-]\ t'\ in other words, t' contains no se- 
crets. Then 0 h" {£'}A-, SO {r/}*. contributes nothing to 
DWSL«r,i),II). 

case 2: 0 I/" t'; in other words, t' contains one or more 
secrets. Thus, subterms of t' contribute at least 1 to our 
bound on DWSL ((r, i), Ü). 

case 2.1: preds,, ((.s,i)) hj,1 t'. The penetrator 
can perform the encryption to construct its copy 
of {t'}i;, so proper subterms of {t'}k contribute to 
DWsL((r,i),n), but {£'}/;• itself docs not, so ignor- 
ing {t'}i; in Nc is safe. 

case 2.2: prods,,((.s, i)) l/£ t'. The ciphertext {t'}k 

must originate from a regular node and be revealed to 
the penetrator. The ciphertext actually contributes 1 to 
DWSL((?', i)>n) (cf. case 6 above), and its subterms 
actually contribute nothing. Our bound counts 0 from 
the ciphertext but counts at least 1 from subterms of t'. 
Thus, although the bookkeeping might seem skewed, 
the sum of the contributions is sufficient. I 

We simplify IISKT and IIIKP as follows. Parameters 
epd and eslip arc used to forward messages in a trivial way 
(specifically, all occurrences of these parameters arc unen- 
crypted), and TID,„ is redundant because it always appears 
together with nonce,,,. Thus, eliminating these parameters 
has no impact on correctness. Let nsl.;T and II'1Kp refer 
to versions of the protocols in which these parameters have 
been eliminated. Theorem 1 implies DWsL(nsET) < 6 
and DWsi.(II'1KI,) < 7. In both protocols, the first term of 
Gate has the largest dependence width. 

The bound on DWSL provided by Theorem I can some- 
times be decreased by replacing a negative term of the form 
—ti -t-2 in a role with the sequence of terms —t\, —t>. For 
example, let ns'KT denote the protocol obtained from nsKT 

by splitting the first term of Gate into a sequence of three 
terms. Theorem 1 implies DWSL(ÜS'ET) < 5. This trans- 
formation preserves all correctness requirements, provided 
the lengths in agreement requirements arc adjusted appro- 
priately. 

5. Reduction for BSR and Long-Term Secrecy 

The following lemma says, roughly, that constructing a 
history h' from a support S' of a set S of nodes of a history 
/( does not create new supports for S. 

Lemma 3. Suppose So supports S in a history /; of a pro- 
tocol II. Let /;' be a history of Ü whose existence is implied 
by Lemma 1 applied to So- Suppose Si supports S in his- 
tory /(' of TI. Then Si fl 7vLYrJ' supports S in history /(, of 
n. 

Proof: The proof is similar to that of Lemma 3 in [22]. I 
For a protocol Ü, define a strand count ß(U) by 

ß(U)(r) = DWSL(II) + 1. 
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Theorem 2. A protocol II satisfies BSR and long-term se- 
crecy iff all histories of II with strand count ß(U) do. 

Proof: The forward direction (=>) of the "iff" is easy. For 
the reverse direction (<=), we prove the contrapositive, i.e., 
we suppose there exists a history h of II that violates BSR 
or long-term secrecy, and we construct a history of II with 
strand count at most ,8(11) that violates the same property. 

BSR and long-term secrecy are safety properties satisfied 
by histories with zero nodes, and <h is well-founded, so 
there exists a ^-minimal node n0 such that 

1. nodesToHist"(predsft(n0)) satisfies BSR and long- 
term secrecy. 

2. nodesToHist"(predsft(n0)) U {n0} violates BSR or 
long-term secrecy. 

Let h0 = nodesToHist"(predsh(n0)). Let s0 — 
strand(no) and i0 = index(n0). Note that in h0, s0 does 
not include n0. For a strand s in a history h! that satis- 
fies BSR, let support^ (s) denote a support for s in h! with 
strand count at most fi. The definitions of BSR and long- 
term secrecy imply n0 is a regular node. Consider cases 
based on the sign of no. 

case: n0 is a negative node. n0 cannot cause a violation 
of secrecy, so it causes a violation of BSR. Suppose i0 > 0. 
n0 directly depends on (s0,io - 1) and on a revealing set 
R for term(n0) at n0 in h; more precisely, for all S", if 5' 
supports {{s0,io - 1)} U R in h, then S" U {n0} supports 
{n0} in h. h0 satisfies long-term secrecy, so Theorem 1 
implies size(i? \ nodesho(so)) < DWSL(II). Let 

Si = {n0} U support^ (s0) 
u U„6i?\nodes(ro(So) support^ (strand(n)). 

(5) 
h0 satisfies BSR, so each of the supports in (5) has strand 
count at most /x, so 5X has strand count at most ß(U) (note 
that n0 is on s0, so {n0} U supportfto(.s0) contributes at 
most /i to the strand count of Si). 

Lemma2 implies that Si \{n0} supports {(s0,i0-1)}U 
R in h; thus, Si supports {n0} in h. Lemma 1 implies that 
Si can be transformed into a history hi of II by adding pen- 
etrator nodes. Adding penetrator nodes does not affect the 
strand count, so hi has strand count at most ß(U). We show 
by contradiction that n0 also causes a violation of BSR in 
hi. Suppose n0 does not cause such a violation. Then there 
exists a support S' for {n0} in hi with strand count at most 
/i. Lemma 3 implies that S' n ftJV", is a support for {n0} 
in h with strand count at most /1; a contradiction. 

Suppose i0 = 0. The proof is similar to the case 
io > 0, except n0 does not depend on the non-existent node 
(s0, io - 1), so we omit support^ (s0) from the definition 
of Si, and Lemma Lemma 2 implies that Si \ {n0 } supports 
R'mh. 

case: n0 is a positive node. n0 cannot cause a vio- 
lation of BSR, so it causes a violation of long-term se- 
crecy. predsft(n0) satisfies long-term secrecy, so there is 
some t £ U.Secret U (Key \ KeyP) such that t appears in 
term/j(n0) either in the clear or encrypted only with keys 
in KeyP. Suppose i0 > 0. Let 50 = support^(s0) 
and Si = {n0} U 50. h0 satisfies BSR, so S0 and Si 
have strand count at most /i (note that n0 is on s0, and 
so 6 strand(So), so n0 does not increase the strand count 
of Si). Si can be transformed into a history hi by adding 
penetrator nodes; this follows from Lemma 1 and the obser- 
vation that n0 is positive and is an immediate successor of 
the last node on s0 in h0. It is easy to show that adding pen- 
etrator nodes does not change the strand count or destroy 
the violation of long-term secrecy. Thus, hi is a history of 
II with strand count at most ß(U) that violates long-term 
secrecy. Suppose i0 = 0. Then predsft(n0) = 0, and the 
history containing only node n0 has strand count at most fx 

and violates long-term secrecy. I 

6. Reduction for Nonce Secrecy and Agree- 
ment 

Define a strand count f-2 by: f2(r) = 2 for every role r. 

Theorem 3. Let <f> be a nonce secrecy or agreement re- 
quirement. Suppose all histories of a protocol II with strand 
count ß(U) satisfy BSR and long-term secrecy. II satisfies 
<p iff all histories of II with strand count /2 do. 

Proof: The forward direction (=>) of the "iff" is easy. For 
the reverse direction («=), we prove the contrapositive, i.e., 
we suppose there exists a history h = (tr, "^?, role) of II 
that violates <f>, and we construct a history of II with strand 
count at most /2 that violates <j>. Nonce secrecy and agree- 
ment requirements are safety properties satisfied by histo- 
ries with zero nodes, and <h is well-founded, so there exists 
a ^/,-minimal node n0 such that 

1. nodesToHist"(predsft(n0)) satisfies 0. 

2. nodesToHist"(predsft(n0)) U {n0} violates 0. 

Let so = strand(n0). 
By hypothesis, all histories of II with strand count ß(U) 

satisfy BSR and long-term secrecy, so Theorem 2 implies 
that n satisfies BSR. For s e dom(h), let supportA(s) de- 
note a support for s with strand count at most /i. 

Suppose 0 is a nonce secrecy requirement. <f> has the 
form "r.x is secret unless r.y 6 5". n0 is a posi- 
tive regular node, and there is a regular strand sg such 
that args(role(sg),tr(sg))(y) £ S and predsft(n0) \f^ 
g and predsh(n0) U {n0} h^ g, where g = 
args(role(s), tr(s))(x). By the same reasoning as in case 
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2 of the proof of Theorem 1, this implies that {no} \~^ g. 

Let Si = supporth(50) Usupporth(ss). Lemma 2 implies 
that Si is a support for nodes/,(so) U nodes/,(.s9). Lemma 
1 implies that Si can be transformed into a history h\ by 
adding penetrator nodes. Note that Si and hi have strand 
count at most f2. It is easy to see that no causes a violation 
of nonce secrecy in hi. 

Suppose 0 is an agreement requirement. 0 has the form: 
"(r2, len2) satisfying x2 £ S2 is preceded by (ri ,len\) sat- 
isfying t\ — t2". no causes a violation of 0, so SQ is a strand 

for r2 and args(r2, tr(s2))(x2) $ S2 and index(n0) = 
len2. Lemma 1 implies that supportft(sn) can DC trans- 
formed into a history ho of II with strand count at most 

f\. Note that n0 G N"h0- Removing nodes in J\fh \ Airho 

and adding penetrator nodes preserve the lack of a node 
(si, leni) such that role(s\) = n and such that ti instan- 
tiated with the arguments of s\ equals t2 instantiated with 
the arguments of so. Thus, ho violates 0.1 
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Abstract 

The inference problem for propositional circumscrip- 
tion is known to be highly intractable and, in fact, harder 
than the inference problem for classical propositional logic. 
More precisely, in its full generality this problem is In- 
complete, which means that it has the same inherent com- 
putational complexity as the satisfiability problem for quan- 
tified Boolean formulas with two alternations (universal- 
existential) of quantifiers. We use Schaefer's framework of 
generalized satisfiability problems to study the family of all 
restricted cases of the inference problem for propositional 
circumscription. Our main result yields a complete classifi- 
cation of the "truly hard" (Ilf-complete) and the "easier" 
cases of this problem (reducible to the inference problem 
for classical propositional logic). Specifically, we establish 
a dichotomy theorem which asserts that each such restricted 
case either is Yi\ -complete or is in coNP. Moreover, we pro- 
vide efficiently checkable criteria that tell apart the "truly 
hard" cases from the "easier" ones. 

1    Introduction and Summary of Results 

During the past three decades, researchers in artificial in- 
telligence have investigated in depth various formalisms of 
nonmonotonic reasoning. Circumscription, introduced by 
McCarthy [McC80], is perhaps the most well-known and 
extensively studied such formalism. It enjoys high expres- 
sive power and thus is suitable for modeling a wide variety 
of problems requiring nonmonotonic reasoning. Moreover, 
propositional circumscription has been shown by Gelfond et 
al. [GPP89] to coincide with reasoning under the extended 
closed world assumption (ECWA), which is one of the main 
formalisms for reasoning with incomplete information. 

•Research partially supported by the Research Committee of the Uni- 
versity of Patras and by the Computer Technology Institute. 

+ Research partially supported by NSF Grants No. CCR-9610257 and 
No. CCR-9732041 

A fundamental problem in every logical formalism is in- 
ference, i.e., the problem of deciding whether, given two 
formulas <p and ip, the formula ip can be inferred from ip in 
the context of the logical formalism at hand. Intuitively, ip 
represents a knowledge base, while ip represents a statement 
that we are interested in deciding whether it can be inferred 
from the knowledge base. In the case of classical proposi- 
tional logic, inference amounts to tautological implication 
if \= ip, i.e., to the problem of deciding whether ip is sat- 
isfied by every truth assignment that satisfies <p. Conse- 
quently, inference in classical propositional logic is a coNP- 
complete problem and thus considered to be intractable. In 
the case of propositional circumscription, inference turns 
out to have even higher inherent computational complex- 
ity. Indeed, as shown by Eiter and Gottlob [EG93], the 
inference problem for propositional circumscription is II2- 
complete. Recall that the class n^ constitutes the second 
level of the polynomial hierarchy PH and thus contains both 
NP and coNP as subclasses. Moreover, the prototypical nf - 
complete problem is IT2 -SAT, i.e., the satisfiability problem 
for quantified Boolean formulas of the form Vx3y6(x,y), 
where x, y are tuples of propositional variables and 9{x, y) 
is a CNF-formula (see [Pap94]). 

Classical propositional logic is concerned with all mod- 
els of a given formula, i.e., with all truth assignments that 
satisfy the formula. In contrast, propositional circumscrip- 
tion is concerned with the minimal models of a given for- 
mula, i.e., with those satisfying truth assignments for which 
there is no smaller satisfying truth assignment with respect 
to the coordinate-wise partial order between truth assign- 
ments. Consequently, in its full generality, the inference 
problem for propositional circumscription can be stated as 
follows: given two CNF-formulas ip and ip, is ip true in ev- 
ery minimal model of ipl A moment's reflection reveals 
that this problem is polynomial-time equivalent to the spe- 
cial case in which ip is simply a clause (i.e., a disjunction of 
literals), since ip can be inferred from ip under propositional 
circumscription if and only if each clause of ip can be so in- 
ferred. Moreover, Eiter and Gottlob [EG93] established that 
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the inference problem for propositional circumscription re- 
mains 11-2-complete even when </? is a 3CNF-formula and 
the clause tj> consists of a single negated variable. 

Are there restricted classes of propositional formulas on 
which the inference problem for propositional circumscrip- 
tion has complexity lower than IIj-complete? To make 
this question precise, one can consider restrictions on both 
the formulas representing knowledge bases and the formu- 
las representing statements to be inferred. Since clauses 
arc the syntactically simplest propositional formulas, it is 
natural to consider restrictions on the formulas represent- 
ing knowledge bases only. Thus, for every class T of 
propositional formulas, we let iNF-ClRC(^) denote the fol- 
lowing decision problem: given a formula (f € T and a 
clause ij), is ij> true on every minimal model of 1/5? The 
question then is to analyze the computational complexity 
of lNF-ClRC(Jr) for different classes T of propositional 
formulas and identify classes T for which the complexity 
of lNF-ClRC(Jr) is lower than ü^-complete. Even before 
the II2 -completeness of the full problem was established, 
this question was studied by Cadoli and Lenzerini [CL94], 
where lNF-ClRC(Jr) was shown to be in P or to be coNP- 
complete for several different classes T of propositional 
formulas. Specifically, Cadoli and Lenzcrini observed that 
if a class T of propositional formulas is such that testing 
satisfying truth assignments for minimality is in polyno- 
mial time, then lNF-ClRC(J") is in coNP. Since minimality 
testing is in polynomial time for the classes of Horn for- 
mulas, dual Horn formulas and 2CNF-formulas, it follows 
that lNF-ClRC(Jr) is in coNP, when T is one of these three 
classes. Moreover, if T is the class of all Horn formulas, 
then INF-CIRC(^) is solvable in polynomial time, since ev- 
ery satisfiablc Horn formula has a minimum (unique mini- 
mal) model that can be computed in polynomial time. In 
[CL94], it was also proved that INF-CIRC(7") is actually 
coNP-completc, when T is the class of all dual Horn for- 
mulas or the class of all 2CNF-formulas. 

The aforementioned results identify several interesting 
cases where the complexity of the inference problem in 
propositional circumscription is lower than IT? -complete. 
Nonetheless, they do not provide a complete classification 
of the "truly hard" (II? -complete) and the "easier" cases 
of this problem. In particular, except for the class of all 
CNF-formulas and the class of all 3CNF-formulas, no other 
interesting classes T of propositional formulas for which 
lNF-CiRC(^r) is rij-complete were known prior to the 
work reported here. This should be contrasted with the 
state of affairs concerning the complexity of the inference 
problem for classical propositional logic, where a com- 
plete classification can be derived from the pioneering work 
by Schaefcr [Sch78] on the complexity of GENERALIZED 

SATISFIABILITY problems. In order to describe Schaefer's 
work and relate it to the inference problem, we need to in- 

troduce some terminology and notation. 

A logical relation (or generalized connective) R is 
a non-empty subset of {0,1}A\ for some k > 1. If 
5 = {/?i,... ,i?m,...} is a set of logical relations, 
then an ^r(5)-formula is a conjunction of expressions 
(called generalized clauses or, simply, clauses) of the form 
R,(.ri,.... .T/;.), where each R, is a relation symbol repre- 
senting the logical relation /?; in 5 and each Xj is a Boolean 
variable. Furthermore, an JTc(5)-formula is a formula ob- 
tained from an .F(5)-formula by substituting some of the 
variables by the constant symbols 0 and 1. Each set S 
of logical relations gives rise to the following GENERAL- 
IZED SATISFIABILITY problem SATC(5): given an .Fc(S')- 
formula ip, is 9 satisfiablc? In a similar manner, one ob- 
tains the family of SAT(S) problems by considering J-(S)- 
formulas, instead of jrc.(5)-foimulas. 

In [Sch78], four conditions were isolated and the follow- 
ing remarkable classification theorem for the family of all 
GENERALIZED SATISFIABILITY problems SATC(5) was 
established: if the set S satisfies at least one of these four 
conditions, then SATo(S) is solvable in polynomial time; 
otherwise, SATO(S) is NP-complcte. These four conditions 
arc: (1) every relation in S is the set of models of a Horn 
formula; (2) every relation in S is the set of models of a dual 
Horn formula; (3) every relation in 5 is the set of models of 
a 2CNF formula; (4) every relation in S is the set of models 
of an affine formula, i.e., a conjunction of formulas built us- 
ing the 0 (exclusive or) connective. It should be noted that 
each of these conditions turned out to be efficiently check- 
able. Schaefcr also obtained a classification theorem for 
the family of SAT(S) problems, which involves two addi- 
tional conditions that trivially give rise to polynomial-time 
solvable SAT(S) problems. Note that the NP-complctencss 
of POSITIVE I-IN-3-SAT, NOT-ALL-EQUAL 3-SAT and 
other well known variants of SAT is an immediate conse- 
quence of Schaefer's results. Morover, the above results 
constitute the first instance of a dichotomy theorem for a 
family of decision problems in NP, i.e., results that con- 
cern an infinite family C of decision problems and assert 
that certain problems in C arc NP-complcte, while on the 
contrary all other problems in C arc solvable in polynomial 
time. It should be pointed out that the a priori existence of 
dichotomy theorems cannot be taken for granted, since Lad- 
ner's theorem in [Lad75] asserts that if P ^ NP, then there 
are problems in NP that arc neither NP-complcte nor in P. 

The inference problem in classical propositional logic 
is polynomial-time reducible to the satisfiability problem. 
Using this fact, it is easy to sec that Schaefer's dichotomy 
theorem for satisfiability problems yields a dichotomy the- 
orem for the inference problem in classical propositional 
logic. Specifically, if 5 is a set of logical relations that 
satisfy at least one of the four aforementioned conditions, 
then the inference problem in classical propositional logic 
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for .Tx: (^-formulas is solvable in polynomial time; other- 
wise, it is coNP-complete. In addition, a similar dichotomy 
theorem can be derived for the inference problem in classi- 
cal propositional logic for ^r(5)-formulas. 

In this paper, we use Schaefer's framework to investi- 
gate the computational complexity of the inference prob- 
lem in propositional circumscription. Our main result 
asserts that, for every set S of logical relations, either 
iNF-ClRC^c^)) is LT^-complete or INF-CIRC(^"C(5')) 

is in coNP. In other words, our main result tells that each 
restricted cases of the inference problem for propositional 
circumscription either is as hard as the general case or is re- 
ducible to the inference problem for classical propositional 
logic. Moreover, it provides efficiently checkable criteria 
that, given a finite set 5 of logical relations, distinguish the 
two possibilities for the complexity of INF-CIRC(JC(5)). 

This constitutes a dichotomy theorem for the inference 
problem in propositional circumscription, since results by 
Ladner [Lad75] imply that if II2 ^ coNP, then there are 
decision problems in nf that are neither PI^-complete nor 
in coNP. It should also be pointed out that the boundary in 
the dichotomy separating nf -completeness from member- 
ship in coNP turns out to be different from the boundary in 
the dichotomy theorem for the inference problem in classi- 
cal propositional logic. 

Our main result is established in two stages. In the 
first stage, we prove a dichotomy theorem for the family 
of lNF-ClRC(^b(5')) problems, where S is a set oil-valid 
logical relations, i.e., each relation in S contains the all-ones 
tuple (1,..., 1). In the second stage, we use this restricted 
dichotomy theorem as a stepping stone to derive the di- 
chotomy theorem for the full family of lNF-ClRC(Jrc(5')) 
problems, where S is an arbitrary set of logical relations. 
To this effect, we apply the restricted dichotomy theorem 
to the set S* of all 1-valid logical relations obtained from 
relations in 5 by replacing some variables by 0. A two- 
stage approach was used for the first time in a recent paper 
[KK01], where a dichotomy theorem for minimal satisfia- 
bility problems was established. With some extra work, we 
can also obtain a dichotomy theorem for the family of all 
INF-CIRC(T(S)) problems, where S is a set of logical rela- 
tions. Due to space limitations, this result will be presented 
in the full version of the present paper. 

Since the publication of the original dichotomy theo- 
rem by Schaefer [Sch78], researchers have obtained several 
other dichotomy theorems for certain variants of satisfia- 
bility problems (see, for instance, [Cre95, KSW97, CH96, 
CH97, KS98, RV00, KK01]). The results reported here 
provide the first dichotomy between II2 -completeness and 
membership in coNP. At the technical level, the proofs 
make extensive use of Schaefer's expressibility theorem 
[Sch78, Theore 3.0], as well as of a definability result by 
Creignou and Hebrard [CH97] and other special-purpose 

definability results established here. 
Finally, we conjecture that a trichotomy theorem 

holds for the complexity of propositional circumscrip- 
tion. Specifically, we conjecture that, for every set 
5 of logical relations, exactly one of the following 
three alternatives holds: (1) lNF-ClRC(Jr

c(5)) is In- 
complete; (2) lNF-ClRC(Jr

c(S')) is coNP-complete; (3) 
lNF-ClRC(Jrc(S)) is solvable in polynomial time. Note 
that if this conjecture is confirmed, it will yield the first 
trichotomy theorem for a family of natural decision prob- 
lems in a complexity class beyond NP In view of the di- 
chotomy theorem established here, it remains to establish a 
dichotomy theorem for those INF-CIRC(J"C(5')) problems 
that are in coNP Although the results in [CL94] yield parts 
of this conjectured dichotomy, much more remains to be 
done in order to complete the picture. 

2   Preliminaries and Background 

This section contains a minimum amount of the neces- 
sary background material on the complexity of GENERAL- 

IZED SATISFIABILITY problems from [Sch78]. 
Let S = {i?i,..., Rm,...} be a set of logical relations 

of various arities. As stated in Section 1, an ^(S) -formula 
is a finite conjunction of clauses built using relations from 
S and propositional variables, while an Jrc(5')-formula is 
a formula built using relations from 5, propositional vari- 
ables, and the constant symbols 0 or 1. Recall also that 
SAT(S') is the following decision problem: given an ^"(5)- 
formula </?, is it satisfiable? (i.e., is there a truth assignment 
to the variables of <p that makes every clause of ip true?) The 
decision problem SATc(5) is defined in a similar way. 

Clearly, for each finite set S of logical relations, both 
SAT(S) and SATC(5) are problems in NP. Several well- 
known NP-complete problems can easily be cast as SAT(S) 

problems for particular sets 5 of logical relations. For ex- 
ample, 3-SAT coincides with the problem SAT(S), where 
S = {R0,RUR2,R3} and R0 = {0, l}3 - {(0,0,0)} (ex- 
pressing the clause (xVyV z)), R1 = {0, l}3 - {(1,0, 0)} 
(expressing the clause (->x Vi/V z)), R2 = {0, l}3 - 
{(1,1,0)} (expressing the clause (-ix V ->y V z)), and 
R3 = {0, l}3 - {(1,1,1)} (expressing the clause (->x V 
-iy V -12)). Similarly, the NP-complete problem POSITIVE- 

I-IN-3-SAT ([GJ79, L04, page 259]) is precisely the prob- 
lem SAT(S), where S is the singleton consisting of the re- 
lation Ä1/3 = {(1,0,0), (0,1,0), (0,0,1)}. 

Recall that a Horn formula is a conjunction of clauses 
each of which is a disjunction of literals such that at most 
one of them is a variable. Similarly, a dual Horn formula is 
a conjunction of clauses each of which is disjunction of lit- 
erals such that at most one of them is a negated variable. As 
mentioned in Section 1, an affine formula is a conjunction of 
subformulas each of which is an exclusive disjunction © of 

73 



literals or a negation of an exclusive disjunction of literals. 

Definition 2.1: Let R be a logical relation and S a finite set 
of logical relations. 

R is 1-valid if it contains the tuple (1,1,..., 1), whereas 
R is 0-valid if it contains the tuple (0,0,..., 0). We say 
that S is l-valid (0-valid) if every member of S is 1-valid 
(0-valid). 

R is 2CNF (Horn, dual Horn, or affine, respectively) if 
there is a propositional formula p which is 2CNF (Horn, 
dual Horn, or affine, respectively) and such that R. coincides 
with the set of truth assignments satisfying p. 

S is Schaefer if at least one of the following four condi- 
tions hold: every member of 5 is 2CNF; every member of 
S is Horn; every member of S is dual Horn; every member 
of S is affine. Otherwise, we say that S is non-Schaefer. I 

There are efficient criteria to determine whether a logical 
relation is 2CNF, Horn, dual Horn, or affine. In fact, a set 
of such criteria was already provided by Schaefer [Sch78]; 
moreover, even simpler criteria for a relation to be Horn or 
dual Horn were given by Dechter and Pearl [DP92], Each 
of these criteria involves a closure property of the logical 
relations at hand under a certain function. Specifically, a 
relation R is 2CNF if and only if for all <i, t-2, £3 £ R, we 
have that (^ Vi2)A (t2 V t3) A {tx V £3) e R, where the 
operators V and A are applied coordinate-wise to bit tuples. 
R is Horn (respectively, dual Horn) if and only if for all 
ti, t-2 € R, we have that t\ A t-2 e R (respectively, t\ V f2 € 
R). Finally, R is affine if and only if for all t\, to, £3 G R, 
we have that t^ © t2 © h G R. 

If S is a 0-valid or a 1-valid set of logical relations, then 
SAT(S) is a trivial decision problem (the answer is always 
"yes"). If S is an affine set of logical relations, then SAT(S) 

can be solved in polynomial time using Gaussian elimina- 
tion. Moreover, there are well-known polynomial-time al- 
gorithms for the satisfiability problem for the class of all 
2CNF formulas (2-S AT), the class of all Horn formulas, and 
the class of all dual Horn formulas. Schacfer's seminal dis- 
covery was that the above six cases are the only tractable 
cases of SAT(S); furthermore, the last four arc the only 
tractable cases of SATC(S). 

Theorem 2.2: [Dichotomy Theorems, [Sch78]] 
Let S be a finite set of logical relations. 

If S is 0-valid or 1-valid or Schaefer, then SAT(S) is 
solvable in polynomial time; otherwise, it is NP-complete. 

IfS is Schaefer, then SATC(S) is solvable in polynomial 
time; otherwise, it is is NP-complete. 

Theorem 2.2 immediately implies that POSITIVE-l-lN-3- 
SAT is NP-complete, since this is the same problem as 
SAT(/?]/3), and R\/;i is neither 0-valid, nor 1-valid, nor 
Schaefer, as can be seen by applying the aforementioned 
closure properties. 

To obtain the above dichotomy theorems, Schaefer had 
to first establish a result asserting that every non-Schaefer 
set S has extremely high expressive power, in the sense 
that every logical relation can be defined from an Tc{S)- 
formula using existential quantification. 

Theorem 2.3: [Expressibility Theorem, [Sch78]] 
Let S be a finite set of logical relations. If S is non- 

Schaefer, then for every k-ary logical relation R. there is an 
Tc{S)-formula p>{x\,... ,x/,., z\,... ,zm) such that R co- 
incides with the set of all truth assignments to the variables 
xi,... ,x/t that satisfy the formula (3z)tp(x, z). 

3   Propositional Circumscription 

In circumscription, properties are specified in some log- 
ical formalism, a natural partial order between models of 
each formula is considered, and the focus is on models that 
are minimal with respect to this partial order. Minimal mod- 
els are preferred because they have as few "exceptions" as 
possible and thus embody common sense. In propositional 
circumscription, properties are specified using propositional 
formulas and the focus is on models that arc minimal with 
respect to the coordinate-wise partial order between truth 
assignments, as defined below. 

Let A- > 1 be an integer and let a = (rti,..., a*.), ß = 
(&i,..., bk) be two /c-tuplcs in {0, l}k. We write ß < a to 
denote that, for every i < k, we have that 6, < a; (as usual, 
0 < 1). Also, 8 < a means that ß < a and ß ^ a. If tp 
is a propositional formula and a is a truth assignment to the 
variables of ip, then we say that Q is a minimal model of tp 
if a satisfies ip and no truth assignment ß < a satisfies <p. 

Let p and iji be two propositional formulas in CNF. We 
say that V' can be inferred from p under propositional cir- 
cumscription, and write p NciRC ^;' '^ ^' 's truc 'n ev~ 
ery minimal model of p.   Clearly, if ij> is a conjunction 
A"ii ci °f clauses c;, then p NciRC ^ ^ anc^ on'y ^ 
p |=QRC a, for every i < in. Thus, the inference problem 
for propositional circumscription can be stated as follows: 
given a propositional formula p in CNF and a clause ip, docs 

v Nc IRC Since testing a truth assignment for mini- 
mality is in coNP, it follows that the inference problem for 
propositional circumscription is in W\. As mentioned ear- 
lier, in [EG93] this problem was shown to be Ft2 -complete, 
even when p is a 3CNF-formula and if> is just a negative 
literal -m. Our goal is to investigate the complexity of the 
inference problem for propositional circumscription in the 
context of Schacfer's framework. More precisely, each set 
5 of logical relations gives rise to the following decision 
problem lNF-ClRC(JFc:(5)): given an Jrc:(5)-formula p 
and a clause ij>, does p (=QRC ^ ^nc ncxt proposition 
asserts that each of these decision problems is equivalent to 
a special case of it. 
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Proposition 3.1: For every set S of logical relations, 
lNF-ClRC(Jx;(5)) is equivalent to the following decision 
problem: given an Tc{S)-formula p and a negative clause 
(-1U1 V • • • V ->un), does <p (=CIRC (~'ui v "'' v "1"n) ? 

Proof: Given an .Fc-formula p and a clause (xi V • • • V 
a;m V -iui V • • • V ->u„), let </?' be the Tc -formula obtained 
from <p by replacing each occurrence of xit 1 < i < m, by 
0. It is easy to verify that p |=QRC (

X
I 

V
 '''v xm V -^I V 

••• V->y„) if and only if <p' ^=ClRC (-.ui V---Vun).| 

Consider the following restricted case of 
lNF-ClRC(Jrc(S')): given an TQ(S)-formula ip and a posi- 
tive clause (xi V- • -Vxm), doesp !=CIRC (xiV---Vxm)? 
This problem is in coNP, because it is easy to check that 
V NciRC (^iV---Va;m)ifandonlyif<y9 (= (xxV---Vxm). 
Thus, the inference of clauses with negative literals is es- 
sential in establishing that certain INF-CIRC(J"C(5)) 

problems are 11% -complete. 
We are now ready to state the main results of 

this paper. These results classify the complexity 
of all INF-CIRC(J

7
C(5')) problems and, in particular, 

give efficiently checkable criteria that characterize when 
lNF-ClRC(Jrc(*5)) is a II2-complete problem. As men- 
tioned in Section 1, we first establish a dichotomy theorem 
for lNF-ClRC(Jr

c(5')), where 5 is assumed to be a 1-valid 
set of logical relations, i.e., every relation in 5 contains the 
all-ones tuple (1,1,..., 1). 

Theorem 3.2- Let S be a 1-valid set of logical relations. 
IfS is Schaefer, then lNF-ClRC(Jr

c(S')) is in coNP; oth- 
erwise, it is U% -complete. Actually, if S is non-Schaefer, 
then even the following special case o/TNF-ClRC(7"c(5)) 
is ri? -complete: given an Tc(S)-formula ip and a negative 
literal ->u, does p |=QRC ->U? 

Moreover, there is a polynomial-time algorithm to de- 
cide whether, given a finite 1-valid set of logical relations, 
INF-CIRC(Tc(S)) is in coNP or U%-complete. 

An outline of the proof of Theorem 3.2 is presented in 
Section 4. The following examples illustrate the preceding 
Theorem 3.2 and provide new instances of restricted cases 
of the inference problem for propositional circumscription 
having the same inherent complexity as the general case. 

Example 3.3: Consider the ternary logical relation K = 
{(1,1,1), (0,1,0), (0,0,1)}. Using the closure properties 
that characterize when a logical relation is 2CNF, Horn, 
dual Horn, or affine, it is easy to see that K is none of 
the above. For instance, K is not Horn because (0,1,0) A 
(0,0,1) = (0,0,0) £ K. Consequently, Theorem 3.2 im- 
plies that lNF-ClRC(J"c({iv})) is n^-complete. I 

Example 3.4: Consider the 1-valid set 5 = {R0,Ri,R2}, 
where R0 = {0,1}3 - {(0,0,0)} (expressing the clause 

(xVyV z)), Ri = {0,1}3 - {(1,0,0)} (expressing the 
clause (-.xVy Vz)), R2 = {0, l}3 - {(1,1,0)} (expressing 
the clause (->x V ->y V z)). Using the closure properties, it is 
easy to verify that Ri is neither 2CNF, nor Horn, nor affine, 
and that R2 is not dual Horn. Consequently, Theorem 3.2 
implies that lNF-ClRC(Jr

c(5)) is Il^-complete. I 

As mentioned in Section 1, Theorem 3.2 can be used as 
stepping stone to obtain a dichotomy theorem for the family 
of all lNF-ClRC(Jr

c(S')) problems, where S is an arbitrary 
set of logical relations. To this effect, we use the following 
crucial concept, which was first introduced in [KK01]. 

Definition 3.5: Let R be a fc-ary logical relation. We say 
that a logical relation T is a 0-section of R if either T is 
the relation R itself or T can be defined from the formula 
R(xi,..., Xk) by replacing at least one, but not all, of the 
variables Xi,..., Xk by 0.1 

To illustrate this concept, consider the logical relation 
Riß = {(1,0,0), (0,1,0), (0,0,1)}. Then the logical re- 
lation {1} is a 0-section of Riß, since it is definable by 
#1/3(zi, 0,0). In fact, it is easy to see that {(1)} is the only 
logical relation that is both 1-valid and a 0-section of Riß. 

Theorem 3.6: Let S be a set of logical relations and let 
S* be the set of all logical relations P such that P is both 
1-valid and a 0-section of some relation in S. 

If S* is Schaefer, then lNF-ClRC(Jb(5)) is in 
coNP; otherwise, it is U^-complete. Actually, if S* 
is non-Schaefer, then even the following special case of 
lNF-ClRC(7b(5)) is Ul-complete: given an TC{S)- 
formula p and a negative literal ->u, does p t=ClRC -lU-? 

Moreover, there is a polynomial-time algorithm to de- 
cide whether, given a finite set S of logical relations, 
lNF-ClRC(Jb(5)) is in coNP or 11%-complete. 

The proof of Theorem 3.6 will be given in the full paper. 
We now present several different examples that illustrate the 
power of Theorem 3.6. The first shows how the main result 
in [EG93] can be easily derived from Theorem 3.6. 

Example 3.7: Recall that 3-SAT coincides with SAT(S), 

where S = {R0,RUR2,R3} and RQ = {0,1}3 - 
{(0,0,0)} (expressing the clause (iVjV z)), Ri = 
{0, l}3 - {(1,0, 0)} (expressing the clause (->x V y V z)), 
R2 = {0, l}3 - {(1,1,0)} (expressing the clause (-ix V 
-ny V z)), and R3 = {0, l}3 - {(1,1,1)} (expressing the 
clause (-ix V ->y V ->z)). 

Since the logical relations RQ, Rx, R2 are 1-valid, they 
are members of S*. It follows that S* is not Schaefer, since 
Ri is not 2CNF or Horn or affine, and R2 is not dual Horn. 
Theorem 3.6 immediately implies that lNF-ClRC(Jr

c(S)) 
(i.e., INF-CIRC(3CNF)) is n^-complete. I 
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Example 3.8: Consider the set S = {Ro,R^}, where R0 

and i?3 are as in the preceding Example 3.7. In this case, 
SAT(S) is the problem MONOTONE 3-SAT, that is to say, 
the restriction of 3-SAT to 3CNF-formulas in which every 
clause is either the disjunction of positive literals or the dis- 
junction of negative literals. It is well known that this prob- 
lem is NP-complete (this can also be derived from Schae- 
fer's Dichotomy Theorem 2.2). It is not hard to verify that 
every relation in S* is dual Horn (for instance, 5* contains 
i?o, which is dual Horn). Consequently, Theorem 3.6 im- 
plies that INF-CIRC(.FC(S)) is in coNP. I 

The preceding example reveals that the boundary in the 
dichotomy for the inference problem in classical proposi- 
tional logic is different than that in the dichotomy for the 
inference problem in propositional circumscription. Sev- 
eral other instances of this phenomenon are provided by the 
final example of this section. 

Example 3.9: If m and n are two positive integers with 
m < n, then Rm/n is the n-ary logical relation consisting 
of all n-tuples that have m ones and n — m zeros. It is 
easy to see that Rm/n is not Schaefer. Consequently, if S 
is a set of logical relations each of which is of the form 
Rm/n f°r some m and n with m < n, then SAT(S) is NP- 
complctc. On the other hand, S* is easily seen to be Horn 
(and, hence, Schaefer), since every relation P in S* is a 
singleton P = {(1,..., 1)} consisting ofthc77?-ary all-ones 
tuple for some m. Consequently, Theorem 3.6 implies that 
lNF-CiRC(7b(5))isincoNP. 

This family of examples contains POSITIVE-1 -lN-3- 
SAT as the special case where S = {R1/3}. I 

4    Outline of Proof of Theorem 3.2 

In this section, we present an outline of the dichotomy 
theorem for INF-CIRC(.F(S)), where S is a 1-valid set of 
logical relations. Due to space limitations, we have to con- 
fine ourselves to stating the main technical steps and to 
making a few high-level comments. 

Assume first that 5 is Schaefer. In this case, is easy 
to sec that there is a polynomial-time algorithm to decide 
whether a given model of an .FcCS)-formula is minimal. 
From this fact, it follows immediately that if S is Schaefer, 
then lNF-ClRC(Jr

c(5')) is in coNP. 
Towards the EI2 -hardness result, assume that S is not 

Schaefer. Using Schacfcr's Expessibility Theorem 2.3, 
the following decision problem can be shown to be n''- 
complcte: Given a J"(5)-formula ip(x,y,w0,w\), decide 
whether the sentence Vx3yip{x,y,0/u>o, l/w'i) is true. Our 
goal is to show that this problem has a polynomial-time re- 
duction to lNF-ClRC(7"(5)). One of the key steps in the 
reduction is the following lemma, which was inspired from 
a result in [EG93]. A proof can be found in the Appendix. 

Lemma 4.1: Let S be 1-valid set and let ip(x, y, w0,wi) 
be an T(S)-fornuda, where x = {x\,... ,xn), y = 
(yi,..., ym), wo and w\ is the list of its variables. Let u, 
x' = (x\,..., x'n) and z = {z\,..., zn) be new variables, 
and let \-(u, x, z, x,', y) be the following formula 

<p{x',y,u/u!0,l/wi) A ( f\{xi t z,) I A 

/\(«->y;)j A (fXix'^iuVx,))). 

Then the formula V.f3;y^(.T;,y, 0/w0,1/wi) is true if and 
onlyifx(u,x,z,x',y) f=ciRC ~lU- 

Although ip is an Tc(S)-formixh, the formula x 'n tnc 

preceding lemma is not an JTc(5)-formula, because it con- 
tains elementary connectives, such as =, —>, and V. So, the 
task now is to construct an JFC (S)-formula 9 in polynomial 

time such that \ ^QRC 
_"' 'f anc^ on'v 'f ^ NciRC ""'■ ^ 

is now natural to apply Schacfcr's Exprcssibility Theorem 
2.3 again and express each of the above elementary con- 
nectives using an 3J"c(5')-formula, i.e., a formula of the 
form 3ü>C- where ( is an .Fc(S)-formula. After these steps 
arc completed, we obtain an 3J"c'(-S,)-formu'a 3vx' with the 
same free variables as x such that \ |=C[RC "'W if and only 

if 3vx' he IRC At this point, one may be tempted 
to simply drop the existential quantifiers 3v, focus on the 
3Jc(S)-formula \', and claim that \ hciRC _"/ ''" anc' 
only if x' t=ClRC ~n/- ^ne ^aw 'n tms argumcnt 's triat 

Schacfcr's Exprcssibility Theorem 2.3 gives no explicit in- 
formation about the possible values of the existential quan- 
tifiers in 3J/rc(5)-formulas expressing logical relations. As 
a result, the witnesses to the variables v in the existential 
quantifiers 3v may not give rise to minimal satisfying truth 
assignments of x', hence the claimed equivalence may fail. 

To bypass this serious obstacle, we must give up apply- 
ing Schacfcr's Exprcssibility Theorem 2.3 and instead have 
to use certain exprcssibility lemmas to the effect that all nec- 
essary elementary connectives are definable by 3JTC:(5)- 
formulas with explicit information about the witnesses to 
the existential quantifiers. The first of these lemmas, due 
to Creignou and Hebrard [CH97], concerns the definability 
of the connectives —> and V; it also brings out the impor- 
tance of the logical relation A' introduced in Example 3.3. 
In what follows. T\ (S) denotes the class of all formulas ob- 
tained from 7"(S)-formulas by substituting some variables 
by the constant 1. 

Lemma 4.2: (Creignou and Hebrard [CH97]) Let S be a 
1-valid, non-Schaefer set of logical relations. Then at least 
one of the following two statements is true. 

1.  There exists an T\ (S)-fonnula e(x, y) with the prop- 
erty that (x -> y)  = e(x.y). 
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2. The logical relation K = {(1,1,1), (0,1,0), (0,0,1)} 
is in !Fi(S), i.e., there exists an T\{S)-formula 
K(X, y, z) which is satisfied only by the three truth as- 
signments (1,1,1), (0,1,0) and (0,0,1). Therefore: 

(i) (x -> y) = (3z)K,(x,y,z); moreover, 
(3Z)K(X, y, z) has the additional property that 1 is the 
only witness for the variable z under the truth assign- 
ment (1,1) to the variables (x, y). 

(ii) (x V y) = (3z)n(z,x,y); moreover, 
(3Z)K(Z, x, y) has the additional property that 1 is the 
only witness for the variable z under the truth assign- 
ment (1,1) to the variables (x, y). 

The second expressibility lemma concerns the definabil- 
ity of the connective =. 

Lemma 4.3: Let S be a l-valid, non-Schaefer set of log- 
ical relations. Then there exists a three-variable Fi(S)- 
formula K'(X, y, z) that is satisfied by the truth assignments 
(1,1,1), (1,0,0) and (0,0,1) but is not satisfied by the 
truth assignment (1,0,1) (no information about the remain- 
ing four possible assignments is required). Moreover, if we 
set X(x', u, z, z') to be the formula 

(u -> x') A (x' Vz)^(z^ z') A (u -► z') A K'(X',U, Z'), 

we have the following properties: 
(i) the formula x' = (u V ->z) is logically equivalent to 

the formula (3z')X(x' ,u, z,z'); 
(ii) the only witnesses z' for each of the four assignments 

(x' = l,u = l,z = 0),(x' = l,u = 0,z = 0),(x' = 
1, u = 1, z = 1) and (x1 = 0, u = 0, z = 1) that satisfy the 
formula (3z')X(x', u, z,z') are z' = l,z' = 0, z' = 1 and 
z' = 1, respectively. 

The proof of Lemma 4.3 can be found in the Appendix, 
which also contains a self-contained proof of Lemma 4.2, 
since that proof is used in the proof of Lemma 4.3. 

We are now ready to return to the proof of 
Theorem 3.2. As stated earlier, our goal is to 
show that the following problem has a polynomial- 
time reduction to INF-CIRC(().FC(S)): given a T(S)- 
formula ip{x,y,wo,w\), decide whether the sentence 
Vx3y<p(x,y,0/w0,l/wi) is true. Towards this goal, we 
start with the formula x described in Lemma 4.1 and then 
adjust x in six successive steps I = 1,...,6 (enumer- 
ated below). At the last step, we will have constructed 
an Jrc(5)-formula for which the desired reduction holds. 
More formally, at each step / = 1,..., 6, we will construct 
a formula xi such that for all/ = 0,..., 5 (assuming that xo 
is x), the set of free variables of xi is going to be a subset 
(not necessarily proper) of xi+i and, in addition, the formu- 
las xi will satisfy the following three requirements: 

Rl: Every truth assignment that satisfies xi can be ex- 
tended to a truth assignment that satisfies xi+i- 

R2: The restriction of every truth assignment that satis- 
fies xi+i to the variables of xi also satisfies xi- 

R3: Let a and a' be two satisfying truth assignments of 
Xi such that a(u) = 1 and a' < a. If ß is an extension of 
Q to a satisfying truth assignment of xi+i, then there is an 
extension ß' of a' to a satisfying truth assignment of xi+i 
such that ß' < ß. 

It is easy to see that once we prove the above three re- 
quirements, then for each I > 0, xi has a minimal satisfying 
truth assignment with u = 1 if and only if xi+i does. From 
Lemma 4.1 and the fact that the formula constructed at the 
last step will be in Fc(S), it follows that the reduction will 
be complete. 

Notice first that if xi and xi+i have the same set of free 
variables, then the above three requirements are equivalent 
to asserting that xi and xi+i are logically equivalent. 

Step 1: In x, replace each connective x\ = (uVij), for 
i = 1,... ,n, with x\ = (u V -iZj). The formula xi has 
the same variables as x and it is equivalent to x, since the 
conjunct /\"=1 (xt ■£ zt) appears in both x and xi Therefore 
the requirements R1-R3 are satisfied. 

Step 2: In xi, replace each connective x\ = (u V -IZJ), 

for i = l,...,n, by X(x'i,u,zi,z{), where the z\, for 
i = l,...,n, are new variables and A is the formula 
described in Lemma 4.3. Because of the equivalence of 
x\ = (u V -izj) with (3z'i)X(x'i,u,zi,z'i), we can imme- 
diately conclude that the requirements Rl and R2 are satis- 
fied. To prove requirement R3, observe that because only 
the variables x\,u,Z{, for i = l,...,n, are involved in 
the connectives that are replaced at the current step, and 
because we have associated a different witness z\ for each 
triple of variables x't, u, zt, we can restrict our attention to 
assignments to the three variables x[,u and zt only (for an 
arbitrary but fixed i). Suppose that a and a' are two assign- 
ments to x[,u and Zi such that a' is less than or equal to 
a and u = 1 in a. Then first observe that because of the 
conjunct x[ = (u\f -i^), x\ = 1 in a. Also observe that 
because of the conjunct x, ^ ziy the values of Zi in a and 
a' are equal (recall from the proof of the Key Lemma 4.1 
that we express this fact by saying that the value of zt, as 
well as x^ remain "fixed"). The proof of this step can then 
be completed by distinguishing two cases according to the 
common value of z; in a and a'. The details will appear in 
the full paper. 

Step 3: In X2, replace each connective x\ V Z{ (that ap- 
pears as part of the formula X(xl

i,u,zi,z'^) by x» ->• x\. 
The satisfaction of the requirments R1-R3 is proved exactly 
as in Step 1. 

Observe that, apart from the conjunct /\"=1(xi ^ Zi), 
the only logical connectives that have not yet been replaced 
by an Jrc(5')-formula are connectives of the form x -» y 

11 



(x and y arc used as generic names of variables), where x 
is either u or z; or z; for some i. In the next two steps, we 
deal with these connectives. Notice first that if the relation 
K = {(1,1,1), (0,1,0,(0,01)} is not in Fi{S), then we 
are in Case 1 of Lemma 4.2, therefore there is an T\ (S) 
formula e(x,y) equivalent to x —> y. In this case, in one 
step that subsumes the following two steps, we just replace 
every occurrence of x -> y with e(x,y). So in the next 
two steps, we assume that the relation K is in T\{S), and 
therefore we are in Case 2 of Lemma 4.2. 

Step 4: In X3> replace each connective u —> x (x is 
again a generic name for variables) with K(U, x, x'), where 
x' is a new variable distinct for each x and K is the formula 
described in Case 2 of Lemma 4.2. The validity of the re- 
quirements Rl and R2 is immediate. As for requirement 
R3, restrict attention to the variables u and x, for an arbi- 
trary but fixed variable x. The validity of R3 then follows 
from the witness property (i) established in Lemma 4.2. 

Step 5: Notice first that we cannot imitate Step 4 and re- 
place the connectives of the form X{ —> x with K(XJ,X, X'), 

since in two models a and a' of x,i —> x such that a' is less 
than or equal to a, the value of Xi remains fixed, while it is 
the value of x that may drop from 1 in o to 0 in a'. There- 
fore, the witness property (i) of Lemma 4.2 does not suffice 
to prove R3 for the case when xi — 0. Instead, we first sub- 
stitute x.i -> x with zi V x and then substitute the latter with 
K(X', Zi,x). If we use the witness property (ii) in Lemma 
4.2 for the connective z,- V x, everything goes through, for 
both possibilities z; = 1 and z-, = 0, as it can be easily seen. 
We deal similarly with the connectives of the form z, —► x. 

Step 6: By Schacfcr's Expressibility Theorem 2.3, there 
is an !Fi(S) formula, say £(x, y, t\,..., ts, wo), such that 
for each i = l,...,n, the connective Xj ^ Z; is log- 
ically equivalent to (3t)C{xj/x, Zj/y, t,0/w0). To con- 
struct \6< replace in \5 the connectives Xj ^ z, with 
((xj/x,zi/y,x"A/t1,...,x"s/t,s,0/iuo), where x"r for 
i = 1,... ,7i and r = 1,..., s arc new variables. It is not 
hard to sec that requirements R1-R3 can be proved in this 
case with no special properties for the witnesses. Notice 
that xa is 'n ^c{S) (and that the constant 0 was only used 
in the last step). 

This concludes the outline of the proof of Theorem 3.2. 
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Appendix: Proof of Lemmas 4.1, 4.2, and 4.3 

Lemma 4.1: Let S be 1-valid set and let p(x,y,wo,wi) 
be an .F^-formula, where x = (xL,... ,xn), y = 
(?/i,..., ym), w0 and Wi is the list of its variables. Let u, 
x' = (x[,..., x'n) and z = {z\,..., zn) be new variables, 
and let x(u, x, z, x',y) be the following formula 

<p(x',i/,u/iuo,l/wi) A     f\(xi j£ zi) J A 

A("->w) A(A^ = (wV^))j- 
Then the formula Vx3yip(x,y, 0/w0,1/wi) is true if and 
on\y[fx(u,x,z,x',y) |=QRC ~'

U
- 

Proof: For the if part, consider an assignment a to the vari- 
ables x that satisfies the formula \/y->ip(x,y, O/wo, l/^i). 
Extend a to an assignment ß of all variables of the formula 
X by letting u = 1, x\ = 1 for i — 1,... ,n, yj = 1 for 
j — 1,..., m, and by giving to each zt, for i = 1,..., n, the 
opposite value of xt. Because <p is 1-valid, it is easy to see 
that ß satisfies x- We will show that ß is actually a minimal 
satisfying assignment of x- First observe that the conjuncts 

A"=i (x< ^ zi) ensure that none of the variables x or z can 
get a different value at a satisfying assignment of x strictly 
smaller than ß (we express this fact by saying that the values 
of x and z are fixed). Also, the conjuncts f\"lzl{u -» yj) 

and /\"=1 (x\ = (u V re;)) ensure that the values of y and x' 
are bound to be 1 at any assignment satisfying x and with 
u = 1. All we have to prove is that u cannot get the value 

0 at a satisfying assignment of x smaller than ß. Assume it 
did and let 7 < ß be be a satisfying assignment of x with 
u = 0. Then, observe that in 7, because of the conjunct 

AlLifai — (u v xi))' tne values of x' would be equal to 
the corresponding values of x. Therefore, because of the 
first conjunct of x> and because u = 0 in 7, the values of 
x and y in 7 would satisfy ip(x, y, 0/w0,1/iui). Now ob- 
serve that 7 and ß coincide on x, because the value of x 
is "fixed". Therefore 7 and a also coincide on x, since by 
construction ß extends a. This is a contradiction, because 
we assumed that a satisfies Vy-np(x, y, 0/w0, l/ioi). 

To prove the converse, consider a minimal assign- 
ment a of x with u = 1 and also consider the assign- 
ment ß induced by a on x. We claim that ß satisfies 
Vy-«p(x,y:0/wo,l/wi). If not, then there is an assign- 
ment of values to y which combined with ß forms an assign- 
ment 7 that satisfies tp(x, y, 0/wo, 1/wi). Extend 7 to an 
assignment Ö of all variables of x by setting u = 0, x\ = Xi 
for i = 1,..., n, and by giving to each Zj for i = 1,..., n 
the opposite value of a;,. It is easy to see that S satisfies x 
and is strictly smaller than a, which is a contradiction. I 

Lemma 4.2: (Creignou and Hebrard [CH97]) Let S be a 
1-valid, non-Schaefer set of logical relations. Then at least 
one of the following two statements is true. 

1. There exists an T\(S)-formula e(x,y) with the prop- 
erty that (x —» y) = e(x, y). 

2. The logical relation K = {(1,1,1), (0,1,0), (0,0,1)} 
is in Ti(S), i.e., there exists an T\{S)-formula 
K(X, y, z) which is satisfied only by the three truth as- 
signments (1,1,1), (0,1,0) and (0,0,1). Therefore: 

(i) (x —> y) = (3z)K,(x,y,z); moreover, 
(3Z)K(X, y, z) has the additional property that 1 is the 
only witness for the variable z under the truth assign- 
ment (1,1) to the variables (x, y). 

(ii)   (x  V  y)        = (3Z)K(Z, X, y);    moreover, 
(3Z)K(Z, x, y) has the additional property that 1 is the 
only witness for the variable z under the truth assign- 
ment (1,1) to the variables {x, y). 

Proof: Since S is a 1-valid, non-Schaefer set of logical rela- 
tions, it must contain a 1-valid logical relation R that is not 
affine. As shown in [CH96], there must exist two /c-tuples 
s,t e R such that 1 © s © t 0 R, where I is the all-ones 
fc-tuple (1,... ,1) and k is the arity of R. Letxi,... ,xk be 
propositional variables and let R! be a relation symbol of 
arity k that will be interpreted by R. For (i,j) e {0, l}2, 
let Vij be the set of all variables xp, 1 < p < k, such 
that the p-th coordinate of the tuple s is equal to i, and the 
p-th coordinate of the tuple t is equal to j. Let x,y,z,w 
be four new propositional variables and let <pi(x,y,z,w) 
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be the 7"(5)-formula R' {x /Vm,y /Vl0, z /V0l,w /V^) ob- 
tained from the formula R'{x\,...,Xk) by substituting 
the variable x for all occurrences of the variables in Too, 
and similarly for the variables y, z, and w. Also let 
<p-2(x,y,z) be the T\(S)-formula ipi(x,y,z,l/w). Now 
observe the following: (1) the truth assignment (1,1,1,1) 
satisfies (pi(x,y,z,w), since 1 G R; (2) the truth assign- 
ment (0,1,0,1) satisfies ipl(x,y,z,w), since s G R; (3) 
the truth assignment (0,0,1,1) satisfies the <pi (x, y, z, w), 
since t G R; (4) the truth assignment (1,0,0,1) docs not 
satisfy tpi(x,y,z,w), since 1 © s © t £ R. Therefore, 
(1,1,1), (0,1,0) and (0,0,1) satisfy ip2{x,y,z), while 
(1,0,0) does not. 

Wc have no information as to whether or not the remain- 

ing four assignments (1,1,0), (0,1,1), (1,0,1), (0,0,0) 
satisfy ip2(x,y,z). Thus, we have sixteen possibilities to 
examine regarding the satisfiability of (^(x, y, z) by these 
four truth assignments. We start by branching on the two 
possibilities for the truth assignment (0,0,0): 

Case A: (0,0,0) satisfies (p2(x,y, z). We distinguish 
two subcases: Subcase A.l: (0,1,1) satisfies ip2(x,?/,2). 
Then set e(x,y) = ip2{x,y,y). Subcase A.2: (0,1,1) 
docs not satisfy ip2(x,y,z). One more branching: Sub- 
case A.2.1: (1,0,1) satisfies (p2(x,y,z).Then set e(x,y) = 
ip2(y,x,l). Subcase A.2.2: (1,0,1) does not satisfy 
<p-2(x,y,z). Then set e(x,y) = ip-y[x,y,x). This completes 
the examination of Case A. 

Case B: (0,0,0) does not satisfy y>2(x,2/, z). Consider 
the following branching: Case B.l: None of the three 
assignments (1,1,0), (1,0,1), (0,1,1) satisfies <p2(x,y, z). 
Then n(x,y,z) = <p2(x,y,z). Case B.2: At least one 
the three assignments (1,1,0), (1, 0,1), (0,1,1) satisfies 
ifi2{x,y, z). We make a three-way branching depending 
on which of these three assignments satisfies ^(x, y, z)- 
Case B.2.1: (1,1,0) satisfies tp2(x,y,z). Then observe 
that (x V y) = <p-2(x,x,y). Wc postpone for a while the 
continuation of this case where we have already established 
that (x V y) is defined by an Jri(5)-formula. Case B.2.2.: 
(1,0,1) satisfies ^(x, y, z). Then observe that (x V y) =. 
(f-2{x,y,x). Again, we postpone the continuation of this 
case. Case B.2.3: (0,1,1) satisfies ip2(x,y,z). Since wc 
have already examined B.2.2, wc may assume that (1,0,1) 
does not satisfy <p-2(x,y,z). Then set e(x,y) = (p2(x,y, 1). 
At this point all we are left to deal with is the case where 
(x V y) is defined by an T\ (S)-formula. We examine this 
case below. 

Since not every element of 5 is a dual Horn relation. S 
must contain a logical relation Q for which there are tuples 
s,t G Q such that sVt^Q (here we use the closure prop- 
erty that characterizes dual Horn relations). By arguments 
similar to the preceding ones, wc can construct an !Fc(S)- 
formulai/>2(x,iy,z) that is satisfied by (1,1,1), (0,1,0) and 
(0, 0,1), but it is not satisfied by (0,1,1). Let TI>3{X, y, z) 

be the JTf,(5)-formula i/;2(x, y, z) A (y V z). Observe that 
V;3(x, y, z) is satisfied by (1,1,1), (0,1,0) and (0,0,1), but 
it is not satisfied by (0,1,1), (1,0,0), (0,0,0). Wc arc now 
left with the triples (1,1,0) and (1,0,1) about which there 
is no information as to whether they satisfy ij>3(x,y,z) or 
not. We consider the following three exhaustive cases: 

(1) If (1,1,0) satisfies i{>:i(x,y,z), then set e(x,y) = 
ij>3(y,l,x); (2) if (1,0,1) satisfies ^^{x.y.z), then set 
e(x.y) = il>3{y,x,l); (3) if neither (1,1,0) nor (1,0,1) 
satisfies ij)3(x,y,z), then K.(x,y,z) = ij':i(x,y, Z). This 
completes the proof of the Lemma 4.2.1 

Lemma 4.3: Let S be a \-valid, non-Schaefer set of log- 

ical relations. Then there exists a three-variable s~\_{S)- 

formula K'(X, y, z) that is satisfied by the truth assignments 
(1,1,1), (1,0,0) and (0,0,1) but is not satisfied by the 

truth assignment (1, 0,1) (no information about the remain- 
ing four possible assignments is required). Moreover, if we 
set X(x',u, z. z') to be the formula 

(w -> x1) A (x1 V z) A (z -> z') A (u -+ z1) A K'(X',U,Z'), 

we have the following properties: 
(i) the formula x' = (?/ V -e) is logically equivalent to 

the formula (3z')\(x', v, z, z')\ 
(ii) the only witnesses z' for each of the four assignments 

(x1 = 1,1/ = 1,2 = 0),(.r' = l,w = 0,2 = 0),(:;:' = 
1, u = 1,2= 1) and (.?:' = 0,1/ = 0, z = 1) that satisfy the 
formula (3z')X(x', u, z, z1) are z' = l,z' = 0, z' = 1 and 
z' = 1, respectively. 

Proof of Lemma 4.3 
Let K'(.T, y. z) be the formula V'L'O/, X, Z) constructed in the 
last part of the proof of Lemma 4.2 (notice the inversion 
of x and y in i/'a)- From the properties of XJH, it immedi- 
ately follows that K' is satisfied by the truth assignments 
(1,1,1), (1,0,0) and (0,0,1) but is not satisfied by the 
truth assignment (1,0,1). To prove the properties (i)-(ii), 
wc essentially do exhaustive case analysis for all the pos- 
sible assignments to the variables x',z,u. We can imme- 
diately check that the formula x' = (?/ V -12) is satisfied 
by the assignments (1,1,0), (1,0,0), (1,1,1) and (0,0,1) 
(each bit in each assignment is assigned to x',u and 2 
in this order), while it is not satisfied by the assignments 
(0,1,0), (0,0,0), (0,1,1) and (1,0,1). Now by plugging 
into the formula (3z')X(x', it. 2, 2') the latter four assign- 
ments, one after the other, wc can check that they do not 
satisfy it. In the same way we can check that the former 
four assignments (1,1, 0), (1, 0, 0), (1,1,1) and (0,0,1) do 
satisfy (3z')X(x', u, z, 2'). During the check that the above 
four assignments arc indeed satisfying, we also determine 
all possibilities for the witness 2', in order to verify that the 
uniqueness properties required from z' are indeed true (wc 
will only need some of these uniqueness properties). | 
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Abstract 
In this paper we compare three approaches to polyno- 

mial time decidability for uniform word problems for quasi- 
varieties. Two of the approaches, by Evans and Burris, re- 
spectively, are semantical, referring to certain embeddabil- 
ity and axiomatizability properties. The third approach is 
more proof-theoretic in nature, inspired by McAllester's 
concept of local inference. We define two closely related 
notions of locality for equational Horn theories and show 
that both the criteria by Evans and Burris lie in between 
these two concepts. In particular, the variant we call stable 
locality will be shown to subsume both Evans' and Burris' 
method. 

1    Introduction 
This paper relates two strands of results about polynomi- 

al^ decidable uniform word problems for quasi-varieties. 
A quasi-variety is a class of algebras satisfying a particu- 
lar (in this paper always finite) set K of equational Horn 
clauses. Given /C, the uniform word problem for K. is to de- 
cide whether or not an equational, variable-free Horn clause 
C, the query, is entailed by fC: the antecedent of C are the 
defining relations for the generators (fresh constants) ap- 
pearing there; the succedent of C is the word problem to be 
solved for that presentation. 

One line of research leading to decidability criteria goes 
back to work by Skolem (Skolem 1920). Skolem consid- 
ered the variety of lattices and investigated relational en- 
codings by function-free clauses which we also call Datalog 
clauses today. Given a Horn theory K, one can flatten the 
clauses such that all equations in the transformed clauses 
are of the form f{x\,... ,Xk) ftsx or xzzy with variables x,, 
x, y. Next one can replace functions / by relations (repre- 
senting their graphs) rf, so that equations f(x\,... ,Xk) &x 
become atoms rf{x\,... ,Xk,x). Datalog also allows one to 
express that equality is an equivalence and that relations are 
compatible with equality. Moreover, one can specify that 
function graphs represent partial functions, for example, by 
saying rf(x,y),rf(x,z) ->j«z.  The "only" property that 

is lost in the relational encoding is that functions are total. 
However, if one can show that all finite relational models 
of the encoding can be extended (maintaining K.) so that the 
functions become total, the uniform word problem becomes 
(poly nomially) decidable. For if the relational version C* of 
a flat clause C cannot be proved from the Datalog encoding 
K.D of K there will be a finite counter model for K,D U ~^C* 
(there are no function symbols other than the constants from 
C*), and if that model can be extended to one in which func- 
tions are total, this yields a model of K. in which C is false. 
Skolem presented this technique for the special cases of lat- 
tices and for certain axiomatizations of projective geometry, 
but not for varieties in general. His algorithm for lattices 
resulting from a dynamic programming implementation of 
the function-free encoding was rediscovered later by Cos- 
madakis (1988) and by Freese (1989).1 

Independently of Skolem's methods, Evans (1951) 
proved a somewhat stronger result for varieties in general. 
As Evans' original proof is based on quite different tech- 
niques,2 it is not surprising that Skolem's work is not even 
mentioned in his paper. Later, Burris (1995) realized that 
one might, in fact, view Evans' result as a generalization 
of Skolem's techniques. One of Burris' observations was 
that a weak form of definedness requirements for the partial 
functions can also be expressed in Datalog. (For instance, 
one can require r^(x,y) —> rK(x,y), expressing a relativized 
definedness property for the function g in terms of the de- 
finedness properties of/.) Evans' result is that the uniform 
word problem is (polynomially) decidable whenever all fi- 
nite partial algebras "satisfying" K. can be injectively em- 
bedded into a total /C-algebra, where his notion of valid- 

'This is how Burris (1995) puts it. Looking at the papers, however, the 
connections to Skolem's work are not so obvious. 

2Evans' algorithm is ground completion — before the concept of com- 
pletion was invented by Knuth & Bendix (1970) — of the antecedent of 
the query together with certain ground instances of the theory clauses dy- 
namically derived from subterms of the query. Using auxiliary constants to 
name subterms, Evans' procedure is closely related to recent presentations 
of congruence closure algorithms such as the one by Bachmair & Tiwari 
(2000). 
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ity for equations in partial algebras includes precisely those 
relativized defincdness requirements expressible in Datalog 
(cf. Section 2 below). Having seen the connection between 
Skolem's and Evans' ideas, it was not difficult for Burris 
(1995) to extend Evans' result to quasi-varicties. In the 
same paper he then also presented an even more general 
criterion for polynomial decidability that refers to the finite 
axiomatizability of certain classes of substructures of the 
relational versions of the AC-algebras. We will return to this 
criterion in Section 7 below. 

The approaches of Evans and Burris emphasize the role 
of partial algebras (constructed from the subterms and the 
equations in the antecedent of a query) for the decid- 
ability of uniform word problems. An approach that is 
based on confining deduction to subterms of the query is 
represented by the concept of local inference systems in 
(Givan & McAllester 1992, McAllester 1993). Local the- 
ories are sets of Horn clauses AC such that AC |= C, for 
variable-free Horn clauses C, only if already ACc |= C, where 
ACc is the set of instances of AC in which all terms are 
subterms of ground terms in either AC or C. Givan and 
McAllester dealt with non-equational logic whereas we are 
interested in the equational case. As we shall see below, 
the main results about non-equational local theories given 
in (Givan & McAllester 1992, McAllester 1993, Basin & 
Ganzingcr 2001) can be easily extended to the equational 
case. In particular, the uniform word problem for local 
equational theories is decidablc in polynomial time. A 
slightly more general variant of this concept is obtained by 
allowing in local entailment all instances ACrq of AC by sub- 
stitutions sending the variables in AC-clauscs to subterms of 
the ground terms of Cor AC. We call AC stably local if already 
AC[C] |= C whenever AC (= C. 

The main results of this paper establish close rela- 
tionships between the approaches by Evans, Burris and 
McAllester. We show that both Evans' and Burris' cri- 
teria lie in between the two variants of locality. The in- 
clusions arc (mostly) proper. In particular stable locality 
is shown to subsume Burris' (and hence Evans') method. 
We also show for a the subclass of superficial presenta- 
tions (McAllester 1993) AC that locality and embeddability 
coincide. 

From these results we may conclude that all three crite- 
ria for polynomial decidability of uniform word problems 
arc essentially equivalent. In the end, this might not be so 
surprising given that all three approaches arc based on ideas 
of exploiting the algebraic and deductive structure, respec- 
tively, induced by the linearly many query subterms. More- 
over it is known that any P-timc inference problem can be 
encoded as a local Horn theory. However, as we shall sec 
below, to clarify the precise relationships induces a number 
of technical complications mainly related to Evans' specific 
notion of validity in partial algebras. 

2   Basic Notions and Notation 
Our investigation assumes an arbitrary, but fixed signa- 

ture Z of function symbols to be given, containing an infi- 
nite subset C of constants that are used to denote the gener- 
ators in the formulation of word problems. An equational 
Horn clause is an implication of the form e\,... ,e^ —> en, 
k > 0, with equations e-, = (.?,~f,) over Z. We consider 
the object language symbol "«" for formal equality also* 
syntactically as symmetric, so that sK,t at the same time 
also denotes tK,s. Sometimes we also take a relational 
view of functions. Then, given a signature Z, by Z* we 
denote the corresponding relational signature where each 
n-ary function symbol / in Z is replaced by a n + 1-ary re- 
lation symbol r?. If C is an equational Horn clause with all 
equations of the form f{x\,... ,;q.) «x or x~)\ with vari- 
ables jc,-, JC, y, by C* we denote its relational form, the Z* 
clause resulting from C by replacing any equation of the 
form /(JCI,... ,Xk)zix by an atom r}{x\,... ,Xk,x). (Equa- 
tions between variables remain unchanged.) 

Let AC be a finite set of clauses, called the theory. For 
technical simplicity we assume that the only terms in AC 
which are ground are constants. In equational logic this 
restriction can always be satisfied by flattening transfor- 
mations, cf. section 4. The uniform word problem for AC 
is to decide if AC (= C, for ground Horn clauses C (called 
queries), where "(=" denotes implication in first-order logic 
with equality. 

A partial (IL)-algebra is a structure (A, {//\}/ei), where 
A is a non-empty set, and for every / £ Z with arity n, fa 
is a partial function from A" to A. 3 Where no confusion 
about the interpretation of the function symbols can arise, 
we identify the algebra with its carrier A. For partial alge- 
bras the notion of evaluating a term t with respect to a vari- 
able assignment ß for its variables, yielding a value ß(t) in 
A, is the same as for total algebras, except that this evalu- 
ation is undefined, if / = f(t\,... ,t„) and cither one of the 
ß(tj) is undefined, or else (ß(t\),... ,ß{t,,)) is not in the 
domain of fa- If the term t is ground, the evaluation is in- 
dependent of any variable assignment, and its value will be 
denoted by f^. If A C B are partial Z-algebras, B is called 
an expansion of A \{ fa = /ß|/i, the restriction of the partial 
function /# to the subset A. A is called a (total) algebra 
whenever all functions are total. Under the relational view, 
if ,4 is a (partial or total) Z-algebra, by A* we denote its rela- 
tional variant, the Z*-structure for which rA,{ci\,... ,a„,a) 
is true if, and only if, fa(a\, ... ,a„) = a. 

Given a set AC of equational Horn clauses, by AC we also 
denote the quasi-variety represented by AC, that is, the class 
of all total algebras that satisfy (in the usual sense of first- 
order logic with equality) the clauses in AC. A partial AC- 
algebra A is a partial algebra satisfying all the clauses in 

-'This also includes the possibility for a constant symbol to not bo de- 
fined in A. 
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K. Hereby a clause s\ sa t\,... , sk «f* -»• s «f w satisfied (is 
va/W) in A, if for all assignments j3 of elements in A to the 
variables in the clause, whenever the ß(sj) and /}(?,-) are all 
defined and J3(J,-) = J3(f,-), then 

(i) if j3(5) and j3 (f) are both defined then ß{s)=ß(t); and 
(ii) if j = f(uu... ,«„), n > 0, and if all terms j3(w,-) and 

0(f) are defined, then j8(j) is also defined.4 

We say that a partial algebra weakly satisfies /C, if only re- 
quirement (i) is satisfied for any clause in K,. In a partial /C- 
algebra, requiring that an equation be satisfied also induces 
certain definedness requirements for the functions that ap- 
pear in the equation. Sometimes we speak of strong sat- 
isfaction when we want to emphasize that both (i) and the 
definedness requirements (ii) are fulfilled. 

This specific concept of validity for clauses in partial al- 
gebras was introduced by Evans. Its definedness require- 
ments may appear ad hoc at first sight. Viewed relationally, 
however, one observes that this is the strongest notion of 
relative definedness that can directly be expressed in Data- 
log. For instance an equation f(g(x))« h(x) can be encoded 
by writing the two clauses rg(x,y),rJ(y,z) -» rh(x,z) and 
rl!(x,y),rh(x,z) -» r^(y,z), where these two clauses imply 
both the equality and the definedness requirement associ- 
ated with the equation. In other words, the natural encoding 
of conditional equations into Datalog induces the relativized 
definedness requirements in Evans' definition. 

As an aside, many more notions of validity have been 
considered in the literature, usually motivated by a partic- 
ular application. One of the more prominent choices is 
to consider existential equality, where an equation sxt is 
interpreted as "s and t are defined and are equal". Ex- 
istential equality appears to be useful for applications to 
the semantics of programming languages and to intuition- 
istic logic (Scott 1979). The treatment of partial algebras 
by Burmeister (1986) is also based on existential equality 
since most of the other notions of validity can be encoded 
in existential equality. 

A (total) mapping h : A -> B between partial S-algebras 
A and B is called a (weak) (I.-) homomorphism if whenever 
fA(a],...,ak) is defined, then so is fB(h(a\),... ,h{ak)), 
and h(fA(au...,ak)) = fB(h{ai),... ,h(ak)). A partial I- 
algebra A is said to weakly embed into K, if there exists a 
(total) /C-algebra B and an injective (weak) homomorphism 
from A to B. 

Evans' result (which was later extended to quasi- 
varieties by Burris) refers to partial algebras with defined- 
ness requirements: 

THEOREM 2.1 (EVANS 1951, BURRIS 1995) Let £ be a 
finite set of Horn clauses. If every finite partial /C-algebra 

4Remember that symmetry of x is built into the notation so that the 
same property is also assumed to hold when exchanging s and t. 

weakly embeds into K, then the uniform word problem for 
/C is decidable in polynomial time. 

A proof of this theorem, via the relational encoding, was 
outlined in the introduction. 

3   Local Equational Theories 
Let *F be a set of ground terms and C a clause. By ICy we 

denote the set of ground instances of K. in which all terms 
are in XV. We say that K. entails C with respect to y¥, and 
write £ f=y C, if £4, (= C. 

If S is a clause or a set of clauses, by st[S] we denote the 
set of all ground (sub)terms appearing in S or in £. (We 
use this notation when £ is fixed by the context. Note that 
we have restricted theory presentations £ to only contain 
constants as ground terms.) A theory £ is called local if for 
every ground Horn clause C we have £ |= C if, and only if, 
^st[c] t= C. Whenever £strq |= C we say that C is locally 
entailed by £. The following presentation Int of integers 
with successor and predecessor is local (at the end of this 
section we will briefly explain why): 

p(x)&y -> s(y)mx 

s(x)tzy -> p(y)&x 

p(x)&p(y) -» XKy 

s(x)xs(y) -> x&y 

For a local theory to decide a word problem represented by 
C it suffices to generate all ground instances of the theory 
K. in which all terms are either subterms of C or constants 
in K. and to check whether C is entailed by those ground 
instances. For example, the query p(s(z))taz is entailed 
in equational logic by the instance s(z)&s(z) -> p(s(z))&z 
of the second clause in Int.5 In that clause, all terms are 
subterms of the query. The third and fourth clauses of Int 
are consequences of the first two clauses. For example, 
s(u)&s(v) -)• usiv follows from S(U)KS(U) -» p(s(u))xu 
and 5(v)«j(v) ->■ p(s(v))xv. However, in this derivation 
there appear terms (such as p(s(u))) which are not admit- 
ted in local entailment. Hence, although the injectivity 
clauses are entailed by the other clauses, for the presenta- 
tion to be local they cannot be deleted. This is a general 
phenomenon. For a presentation to be local, sufficiently 
many consequences must be present — in particular those 
consequences which are not entailed by local implication. 
Clearly, locality is a property of a presentation rather than a 
property of the quasi-variety. 

If the size of K is considered as a constant, the set £strq 
is a finite set of equational ground clauses the size of which 
is polynomially bounded by C. In the non-equational case 

5 Note that z is formally a constant here. But since it does not oc- 
cur anywhere else, proving p(s(z))xz is the same as showing Int f= 
Vz(/7(,(z))«z). 
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when « is interpreted as an arbitrary binary relation sym- 
bol, applying the result of Dowling & Gallier (1984), wc 
observe that entailment of queries for local theories is dc- 
cidable in polynomial time. We will show that this result 
can be extended also to the equational case as local impli- 
cation is independent of whether or not equality is internal 
or external. 

Let us use (= and |=neq to denote implication in logic 
with equality and without equality, respectively. In logic 
without equality, « is an arbitrary binary relation symbol. 
Let EQ denote the set of equality axioms consisting of rc- 
flexivity, symmetry, transitivity and congruence axioms 

x\Rsyi,...,xkxsyk    -»    f{xu... ,**)«/(yi,... ,yk) 

for each k-ary function symbol / in the signature. In first- 
order logic equality can be internalized since AC (= C if, and 
only if, K-UEQ |=neq C. This carries over to local implica- 
tion, the main reason being that EQ itself is a local theory 
(in logic without equality): 

PROPOSITION 3.1 (GIVAN & MCALLESTER 1992) For 
any ground Horn clause C we have EQ (=neq C if, and only 

if. EQst[C] l=neq C. 

A consequence of this result is that congruence closure, 
that is, the uniform word problem for the class of all X- 
algcbras, is dccidable in polynomial time, a result that was 
first proved by Kozcn (1977) and later shown to be in 
0(Hlog«) by Downey, Sethi & Tarjan (1980). 

PROPOSITION 3.2 Let S be a set of Horn clauses in which 
all terms are contained in a subtcrm-closed set 4* of ground 
terms. For equalities e between terms in 4* we have S \= e 
if, and only if, SUEQy |=neq e. 

Proof. The direction from right to left is trivial. Conversely, 
suppose that S \= e in equational logic. Then \jtT^{%) u 

EQ |=neq e, with 77s the immediate consequence operator 
sending interpretations / to 

{<?o | lUEQ |=neq e-„ for some clause e\,... ,ek -> eo in S}. 

From Proposition 3.1 we infer that löEQ |=neq e, only if 
/ U EQyt |=neq e-„ where 4\ is the set of all subtcrms in / or 
in e\. These terms are all in 4' for those / obtained as T$(%), 
as an easy induction shows. Therefore, S UEQy f=neq e. □ 

As an immediate consequence wc obtain: 

THEOREM 3.3 Let S be a set of Horn clauses. Then S is a 
local theory in logic with equality if, and only if, SUEQ is 
local in logic without equality. 

This property of equational logic allows us to extend the 
results by Givan & McAllester (1992), McAllester (1993) 
and Basin & Ganzingcr (2001) to local equational theo- 
ries: Any language in P can be encoded as a uniform 
word problem for a local theory, that is, the method is 
complete for polynomial time. The set of local equa- 
tional Horn theories is co-recursively enumerable but un- 
decidable (McAllester 1993). Recursively enumerable ap- 
proximations of the class of local theories as given in 
(McAllester 1993, Basin & Ganzingcr 2001) can be easily 
adapted to the equational case. In particular wc may use the 
Saturate system (Ganzingcr, Nieuwcnhuis & Nivcla 1994) 
to saturate non-local presentations as described in (Basin 
& Ganzingcr 2001). The locality of the Int example was 
demonstrated by Saturate by checking that all ordered res- 
olution inferences between the clauses in IntUfß arc re- 
dundant in that the respective consequences of IntU EQ 
are entailed by smaller instances of IntUfß. This was 
checked for all total and well-founded extensions of the 
subtcrm ordering so that by the criterion given in (Basin 
& Ganzingcr 2001) the locality of Int U EQ follows. 

Queries C for local equational theories AC arc dccidable 
in polynomial time by applying dynamic programming ä la 
Dowling & Gallier (1984) to the clauses in {SU EQ)st[q. 
Note however that this implementation method will always 
give at least cubic complexity as Iföstfcil 's m £2("3) >' 
/; is the number of terms in C. For practical applica- 
tions, in particular to problems arising in program anal- 
ysis (McAllester 1999), more efficient equational reason- 
ing is required. Recent results into this direction, ex- 
tending the congruence closure method of Downey et al. 
(1980) to conditional equations, arc given in (Ganzingcr & 
McAllester 2001). 

4    Flattening and Linearity 
A quasi-variety AC is local if queries C arc implied al- 

ready by those ground instances of AC in which all terms arc 
subtcrms of C or AC. In the equational case this property, 
if it is true, has to be invariant under transformations of C 
modulo equality. In particular,//«/^'/;//?,? transformations of 
C, replacingC[/(...,/,...)] by C = c?S/VC[/(... ,r,...)], 
where c is a fresh constant, do not affect entailment from AC, 
but will change the set 4* of terms allowed in a local proof. 

A ground clause is called flat if its terms have depth 
at most 2. A flat ground clause is called linear if when- 
ever a constant occurs in two functional terms in the 
clause, the two terms are identical, and if no term con- 
tains two occurrences of a constant. Hence the clause 
cKf{a,b) -> f(a,b)Kf(b,a) is flat but not linear. If the 
clause occurs as a query, an equivalent linear query would 
be aKa'.b^b',cKf(a.b) -> f{aJ?)mf{b',a'), where a' 
and // are fresh constants. For theory clauses the definition 
is essentially the same, with variables playing the role of 
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constants: We say that a theory clause in JC is flat, when- 
ever function symbols (including constants) only occur as 
arguments of the equality symbol, but not as arguments of 
function symbols. A flat theory clause is called linear if 
whenever a variable occurs in two functional terms, the two 
terms are identical, and if no term contains two occurrences 
of a variable. Hence f{x,y)paf(x,a) is neither fiat nor lin- 
ear. An equivalent flat and linear clause is x' ?ax,z&a -» 
f(x,y) «/(x',z), where x' and z are fresh variables. Clearly 
all clauses, queries as well as theory clauses, can be flat- 
tened (and linearized) by the introduction of auxiliary con- 
stants and variables, respectively. If JC is a Horn theory, by 
/Cfiin we denote the set of flat and linear instances (not neces- 
sarily ground) of the clauses in JC. Clearly, a non-flat clause 
cannot have any flat instances. A flat but non-linear clause 
such as amf{x,y) -> bmf(x',y) has the flat and linear in- 
stance a« f(x,y) ->b&f(x,y). Therefore, if JC is finite and 
if subsumed clauses are ignored, /Cfnn is also finite. 

PROPOSITION 4.1 (i) If /C is a local theory then JCm„ is 
also local. In this case, for any query C, it holds that JC \= C 
if, and only if, JCf\m (= C. 
(ii) If JC locally entails any flat and linear query C that is 

entailed by JC, then JC is local. 

Proof, (i) Suppose that K is local. If JC \= C then K \= 
flin(C), where flin(C) is the result of flattening and lin- 
earizing C. Since JC is local, we obtain JC^> \= flin(C), with 
»F = st[flin(C)] the set of ground subterms in flin(C) and JC. 
As all terms in *F are flat and linear, and no constant occurs 
in more than one functional term, the clauses in JC^> are flat 
and linear: Therefore JC^> C {JCn\n)^>, hence ACy = (/Cfim)^- 
Consequently {JCn\n)^ |= C and JCf\\„ is a local theory. 

(ii) Suppose that JC \= C. We show that JCst[C] |= C. We 
may flatten and linearize C into C by using auxiliary, pair- 
wise different constants c, not occurring in JC or C, to de- 
note the subterms t of C. Specifically, we may assume that 
for any original subterm t = f(t\,... ,t„) in C, C contains 
the negative equation c/(ri ^ «/(c,,,... ,ct„) defining the 
constant as an abbreviation for the respective term, and that, 
apart from these definitions, no other equation in C con- 
tains a functional term. Since JC (= C", by assumption we 
also have /CV |= C", where 4" is the set of ground terms 
in C or JC. The only terms that may occur in JC^i are 
the constants ct, the constants in JC, and terms of the form 
/(c,,,... ,ctn) such that/(fi,... ,tn) is a subterm in C. Re- 
placing the c, in JC^i by t, therefore, yields clauses in /Cst[q 
which entail C. G 

In particular, if JC is local, the quasi-varieties JC and JCn\n 

coincide as JCn\„ also implies those instances of JC which 
are not in £«;„. (The latter are trivially implied by JC.) Part 
(ii) says that it is sufficient to show local entailment for flat, 

linear queries in order for a theory to be local. The rele- 
vance of this proposition is that when investigating locality 
for Horn theories it is sufficient to restrict attention to flat 
and linear theories and queries. 

Flattening transformations for theory clauses that trans- 
form a clause C[f(... ,/,...)] in JC into C = x$t V 
C[/(... ,x,...)], where x is a fresh variable, neither change 
the class of total nor the class of partial /C-algebras. 
The same holds for linearization transformations, replac- 
ing C[/(... ,y,...)], with y a variable, by C = xj&yV 
C[f(... ,x,...)], where x is a fresh variable. However re- 
placing r -»/(...) «f by r,xsj/(...) -> jc«r, although 
not affecting the class of total /C-algebras, only preserves 
weak satisfaction in partial algebras. Strong satisfaction 
which might induce that certain /-terms be defined, are 
made void when this kind of transformation is performed. 

5   Stably Local Theories 
The proposition 4.1 also suggests that the definition of 

locality is sometimes too strong. In fact, the following 
less restrictive form of locality, where we allow arbitrary 
query subterms to be instantiated for the variables in theory 
clauses, will also be useful. Let /C[C], for C a ground clause, 
denote the set of ground instances of clauses in JC where 
variables are mapped to terms in st[C], that is, to subterms 
in C or constants in JC. Considering /C[C], we also have in- 
stances of JC at our disposal in which there are terms not in 
st[C]. For example, if C = aztb and if f{x,y)«/()',JC) is 
in JC then f(a,b)K,f(b,a) is in JC[C] but not in /Cstrq, since 
f{a,b) is not a term in C. We say that JC is stably local if for 
every ground Horn clause C we have IC \= C if, and only if, 
JC[c] \= C. This presentation Int' of integers with successor 
and predecessor is stably local even without the presence of 
the injectivity clauses for s and p: 

p(x)s 

S(x)t p(y)> 

'X 

iX 

In fact, s(u)« s(v) -> u K V, say, follows from S(U)KS(U)-+ 

P(S{U))KU and j(v)«.s(v) -» p(s(v))fav, where these in- 
stances of Int' are admitted in stably local entailment but 
not in local entailment. Rewriting the clauses of Int' into 

S(p(x))t 

p(s{x))( 

gives another stably local (non-flat) presentation Int" of the 
integers. For example, p(u)fa v -> s(v)« u is stably locally 
entailed by the instance s{p{u))fau of the first clause in 
Int". 

Locality is a special case of stable locality since /Cst[q = 
Plstfcr Stab'e locality is insensitive towards flattening 

of goals in that for every theory JC we have JC^n \= C iff 
^-[fiin(c)] N flin(C). Like locality, stable locality also implies 

K 
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that the uniform word problem is decidable in polynomial 
time. 

THEOREM 5.1 Let AC be a given theory the size of which is 
considered constant. If AC is stably local and if Cis aground 
clause then AC |= C can be decided in time 0{nik) where /? is 
the size of C and k the maximal number of variables in any 
clause in AC. 

Proof. Let C = V —> e. By stable locality we have AC (= C if, 
and only if, AC[q UT |= e. From Proposition 3.2 we infer that 
the latter is equivalent with AC[C] uru£<2st[K;.f]]ust[c] Keq e- 

As the number of terms appearing ACrq is in 0{nk), the size 
of this set of propositional Horn clauses is in 0(nik). □ 

As Int" is stably local we obtain a cubic upper bound for 
the uniform word problem for integers with s and p. 

Refined complexity bounds can be obtained by more pre- 
cise analysis of the term structure in AC. Although impor- 
tant in practice, this is not our concern here. Also, with a 
specialized treatment of equality one can get a better com- 
plexity bound in many cases. Using congruence closure to 
directly decide ACrq U T |= e would yield a much better com- 
plexity of 0(nlog/;) forAC = lnt"\ 

6   Locality and Weak Embeddability 
In this section we establish the main relationships be- 

tween Evans' embeddability criterion and locality. We will 
show that Evans' criterion is weaker than stable locality but 
stronger than locality. For a large subclass of presentations, 
locality and Evans' criterion coincide. We also show that 
the weaker form of Evans' criterion with satisfaction re- 
placed by weak satisfaction is equivalent with locality. 

Looking at the proofs in (Evans 1951) it is not surpris- 
ing that some sort of relation exists between embeddability 
and locality. However the precise details are not so straight- 
forward, the reason being that Evan's notion of validity, in- 
volving a semantic notion of defincdncss, is not so easily 
captured proof-theoretically. A special case is the defincd- 
ncss of theory constants. In this section we will addition- 
ally require that for a partial algebra A in order to satisfy, 
or weakly satisfy, a theory AC, every constant appearing in 
AC is defined in A. With this, Evans' criterion becomes even 
stronger as fewer partial algebras need to be embedded. The 
restriction will only be needed for the proof of Theorem 6.1 
and its applications in Section 7. 

6.1    Locality Implies Embeddability 
In the following theorem, under the assumption of local- 

ity, the embeddability property is even shown for infinite 
partial algebras that need only weakly satisfy AC. 

THEOREM 6.1 Let AC be a local set of fiat Horn clauses. 
Then every partial algebra which weakly satisfies AC weakly 
embeds into AC. 

Proof. We prove the contrapositive of the theorem. Let A be 
a partial algebra weakly satisfying AC that does not weakly 
embed into AC. We will show that then AC is not local. With- 
out loss of generality we may assume that A C C, that is, the 
elements of A are generators in Z, but no constant occurring 
in AC is a member of A. Moreover let T^ be the "table" of 
the function definitions in A, that is, the set of equations of 
the form f(a\,... ,a„)«a with a, aj in A and / a function 
symbol in I, such that/^ai,... ,a„) is defined and equal to 
a. Suppose / is a I-algebra satisfying AC and also the equa- 
tions in T,4. The mapping /; sending a in A to its value a/ 
in / is a weak S-homomorphism as / satisfies T^. By as- 
sumption, A does not weakly embed into / so that there are 
two different elements a and a' of A for which / |= ama'. 
Hence whatever model of AC U T^ one chooses, it will iden- 
tify two constants corresponding to different elements in A. 
In other words, ACuT/i |= \J a^a,ama'. Since ACUT^ is a 
Horn theory, one of the disjuncts must be entailed, that is, 
ACUT/i (= atza', for two different elements a and a' in A. 
Compactness of first-order logic ensures that only finitely 
many equations in T^ are needed to deduce a «a'. We have 
shown that there is a (finite) Horn clause C = F —> ama' 
such that AC |= C, and with T true, but ax a' false in A. 

Suppose that already ACy |= T -» a «a', with *F the set 
of ground terms in AC or C. By assumption, A weakly sat- 
isfies AC. Moreover, all the terms occurring in ACy and 
r are defined in A. Therefore, every equation in defined 
ground terms that is true in the least congruence gener- 
ated by AC>p U r is also true in A.6 But this implies that a 
and a' are equal in A which is not the case. Consequently, 
ACH' Y1 T —> a ma', hence AC is not a local theory. □ 

Hence locality is subsumed by Evans' criterion. This 
subsumption relation is proper. For the presentation Int' 
one can show that every finite partial Int'-algcbra weakly 
embeds into Int'. (In any partial Int'-algcbra, s [p] must be 
defined on all p [s] images. Therefore both partial functions 
have to be injective.) However, as we have seen before, Int' 
is only stably local but not local. 

In the proof of the above theorem it is crucial that theory 
constants are defined in partial algebras that weakly satisfy 
AC. Suppose wc have AC consisting of the two clauses 

a ma    —>    am b 

amb    —>    amc . 

Since AC is equivalent to the two ground equations amb and 
amc. AC is a local theory. But if F is a partial algebra in 
which a is undefined and b and c are defined but different, F 
vacuously satisfies AC (including defincdncss requirements), 
yet cannot be weakly embedded into AC. 

6If a partial algebra A satisfies a set S of ground Horn clauses and if 
every term in S is defined in A, then if S f= ,?«f. with s and t defined in A, 
then A \= sRit. As equality is a local theory, cf. Proposition 3.1, cquational 
reasoning can he confined to the subterms in .V which are all delined in F. 
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6.2   Embeddability Implies Locality 
THEOREM 6.2 Let /C be a set of fiat, linear Horn clauses. 
Suppose that every finite partial algebra which weakly sat- 
isfies /C weakly embeds into /C. Then /C is local. 

Proof. Using the proposition 4.1, part (ii), we have to show 
that, under the given assumptions, if /C |= C, then /Cst[Cj (= 
C, for flat and linear ground clauses C. Let 4* be shorthand 
notation for st[C]. As C and the clauses in K. are flat, a term 
in 4* is either a constant, or else of the form f(c\,... ,c„), 
with constants c,, n > 0. Let C = s\fat\,...,static-^ smt, 
and let us assume, for the purpose of deriving a contradic- 
tion, that C is not entailed by /C^. Then there exists an 
algebra / satisfying /Cy and the equations s,- «r,-, but.? and t 
are different in /, that is, / satisfies sftt. From this we will 
now construct a finite, partial algebra F satisfying 5,«?, and 
sftt and weakly satisfying /C. 

Let F = {?/ | f a term in ¥}, and let the functions / in Z 
be defined by fF{au... ,a„) =/(c1;... ,c„)/, with n > 0, 
whenever there exist constants c,- in 4* such that a,- = c,/, for 
1 < i < n, and /(ci,... ,c„) is also a term in 4*. Let //■ be 
undefined in all other cases. We now show that F weakly 
satisfies /C. (By construction, F satisfies the st■ «r,- as well as 
■??£?.) Clearly, the constants appearing in K. are defined in 
F. Now let D = u\Kv\,... ,umazvm —> UKV be a clause in 
/C and let ß be an assignment of elements in F to the vari- 
ables in D such that the j3(w,-) = j3(v,-), with all these terms 
defined. We can now find a substitution a of the variables in 
D by terms in 4* such that for every term w in D, whenever 
ß(w) is defined then wo is a term in 4* and (wa)i = ß(w). 
For instance, if a w is of the form f(x\,... ,x„), choose x/G 
to be a constant Cj in 4* such that CJJ = ß(x/), for 1 < j < n, 
and f(c\,... ,c„) is also a term in 4*. (Note that the argu- 
ments to / have to be pairwise distinct variables.) By the 
definition of fp, such constants can be found whenever fp 
is defined on the j3(.v,-). With this, f(x\,... ,x„)o is in fact 
a term in 4/. As the entire clause D is linear in that no vari- 
able occurs in two different functional terms, the a for the 
individual occurrences of functional terms can be combined 
into a single substitution. For variables y which do not occur 
in a functional term in D, the substitution can be an arbitrary 
term s in 4* such that s/ — ß(y). 

We have to verify the condition (i) in the definition of 
satisfaction for clauses in partial algebras. Suppose that 
J3(«) and j3(v) are both defined. By the construction of 
a we have that ua and va are in 4*, and (ua)/ = ß(u), 
[va)i = j3(v). With this, Da is in /Cy. Therefore / satisfies 
Da so that ua/ = vo/, and hence /3(H) = J3(V). Now that 
F has been shown to weakly satisfy /C, according to the as- 
sumption there exists a total /C-algebra /' into which F can 
be weakly embedded. This algebra /' satisfies s;rat;, as F 
does, and since the embedding is injective, /' also satisfies 
ssfct. Altogether, /' ^ C, which contradicts the assumption 
that K. r= C. D 

Hence we see that the weaker form of Evans' criterion with 
satisfaction replaced by weak satisfaction implies locality. 
For a large subclass of presentations, the distinction be- 
tween the two forms of satisfaction is inessential. Lets us 
call a presentation K. superficial, if every term that occurs 
positively (in the head) of a clause in /C also occurs as a 
subterm negatively (in the body) the same clause. 

THEOREM 6.3 Let K be a set of flat, linear, and superficial 
Horn clauses. Then K. is local, whenever every finite partial 
/C-algebra weakly embeds into /C. 

Proof. The definedness requirements for partial /C-algebras 
are void, if every positive functional term also appears neg- 
atively in the same clause. In that case, any partial algebra 
which weakly satisfies K. is a partial /C-algebra, and the the- 
orem follows from Theorem 6.2 D 

For arbitrary presentations, the existence of weak em- 
beddings for finite partial /C-algebras implies stable local- 
ity. 

THEOREM 6.4 Let /C be a set of Horn clauses. Suppose 
that every finite partial /C-algebra weakly embeds into /C. 
Then /C is stably local. 

Proof. Let C be a ground clause. We have to show that, 
under the given assumptions, if /C |= C, then /C[Cj f= C. Let 
C = s\ «fi,... ^kKtk -> sxst, and let us assume, for the 
purpose of deriving a contradiction, that C is not entailed 
by /C[C]. Then there exists an algebra / satisfying /C[q and 
the equations .?;«/,, but .? and t are different in /, that is, 
/ satisfies sq&t. From this we will now construct a finite, 
partial /C-algebra F satisfying s-xK,t\ and s^t. The main 
difference to the proof of Theorem 6.2 will be that more 
terms are going to be defined in F. 

Let F = {ti | t a term in st[C]}, and let the functions / 
in Z be defined such that / is an expansion of F. In other 
words, a function application fp(a\,... ,a„) in F is defined 
and yields a as result, iff f/(a\,... ,a„) = a with a in F. By 
construction, F satisfies the equations s-, K, t, as well as s■ft t. 
Let D = u\ « V),...,um RJ vm —> uRJ V be a clause in /C and 
let ß be an assignment of elements in F to the variables. 
Then the pair D,ß corresponds to at least one instance of 
D in /C[c]. And, since function application fp (a \,... ,a„) in 
F is defined whenever the evaluation fi(a\,... ,an) of the 
application in / yields a value in F, F satisfies /C such that 
both conditions (i) and (ii) in the definition of satisfaction 
are met. In other words, F is a partial /C-algebra. Hence, 
there exists a total /C-algebra /' into which F can be embed- 
ded. This algebra /' satisfies the equations st: ssr,-, as F does, 
and since the embedding is injective, /' also satisfies sftt. 
Altogether, /' Y= C, which contradicts the assumption that 
/C(=C. D 
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The preceding theorem, in connection with Theorem 5.1, 
strengthens Theorem 2.1 by also providing us with a con- 
crete complexity bound. It also shows that Evans' approach 
is subsumed by stable locality. This subsumption is proper. 
Consider Int' ' given as 

p(x)Ky,s{y)', 
s(x)~y,p(y)- -» 

Like Int', the presentation lnt( ' is stably local. How- 
ever, the two-element algebra A = {a,b} with sA(a) = 
sA(b) — a and pA = 0, the totally undefined function, triv- 

ially (strongly) satisfies Int' ' but cannot be weakly embed- 
ded into Int' ' where s has to be injective. 

7   Locality and Axiomatizable Classes of Re- 
lational Substructures 

Burns' results are based on the view of partial alge- 
bras as relational structures. Remember that for a signa- 
ture Z without predicate symbols, by Z* we denote the cor- 
responding relational signature where each ;;-ary function 
symbol / in Z is replaced by a n + 1-ary relation sym- 
bol r-L X*-clauses are formed from the predicate sym- 
bols in Z*, the equality symbol, and variables. Similarly, 
if A is a Z-algcbra, by A* we denote its relational variant, 
the £*-structure for which rl

A„(a\,... ,a„,a) if, and only if, 
//[(ai,... ,a„) = a. If C is an cquational Horn clause with 
all equations of the form f(x\,... ,A>)SSA- or ,v«v, with 
variables x,, x, y, by C* we denote its relational variant 
where all equations f(x\,... ,xk) KX are replaced by atoms 
rf (x[,... ,A^,.V). If K is a class of total Z-algcbras, by S(K*) 
we denote the class of full substructures of members of K*, 
that is the class of Z*-structures A* for which there exists 
an algebra B in K such that B* is an expansion of A*. On 
the other hand, by S(K*) we denote the class of weak sub- 
structures of members of K*. This class coincides with 
the class of Z*-structures that weakly embed into K, that 
is, with {P* | P weakly embeds into an algebra A £ AT}. By 
construction we have S(IC*) C S(IC). (A full substructure 
is obtained by intersecting the graphs of the functions in 
a total algebra with the chosen subset of its carrier. Weak 
substructures arc obtained from full substructures by mak- 
ing the functions even less defined. Hence there arc more 
weak substructures than full substructures.) 

THEOREM 7.1 (BURRIS 1995) Let /C be a quasi-varicty 
over Z such that there is a finite set of Horn clauses H over 
Z* with 5(/C*) C//C 5(/C*). Then the uniform word prob- 
lem for K, is dccidable in polynomial time. 

The criterion says that if some subclass of relational weak 
substructures of fC which includes all full substructures is 
finitely axiomatizable, the uniform word problem is dccid- 
able in polynomial time. We will show constructively that 

this criterion implies the existence of a stably local presen- 
tation, and that, conversely, from a local presentation a suit- 
able H can be effectively constructed. 

It is not surprising that in comparing Burris' criterion 
with locality we encounter the same technical problem with 
constants as we did in Section 6. Hence from now on in 
this section we restrict the classes S(IC*), H (the models of 
//), and 5(/C*) to structures in which the relations r" are 
nonempty, for every constant a appearing in K,. In other 
words, if A is a partial algebra for which A* is in any of 
these classes, we again require that the constants in K- be 
defined in A. 

Given a set H of Z*-clauses, by //, we denote the set of 
equational Z-clauses obtained from H by replacing atoms 

,x„,x) by equations f(x\,... ,xk)KX. Clearly, //, rf(xi 
is a flat set of clauses. Note that if A is a partial Z-algcbra, 
then A* satisfies H if, and only if, A (strongly) satisfies 
//,. A has to satisfy the definedncss requirements im- 
plied by //, in order for A* to satisfy H. For example, if 
p"{x),ph{\) —¥ r1(x.y) is a clause in //, the corresponding 
clause in //» will be aKx,bzzy —> f(x) « v. In order for A* 
to satisfy p"(x),ph(y) -» r1 (x.y), fA has to be defined on aA 

with fA(aA) =bA. 

THEOREM 7.2 Let H be a set of Z*-clauses with S(/C*) C 
H C S(/C*). Then //» is a stably local presentation of the 
quasi-variety K-. 

Proof. First wc show that the class of algebras satisfying 
Ht coincides with K.. If A \= H, then A* \= H, and there- 
fore, A* is in S(/C*). Hence A can be weakly embedded 
into an /C-algebra B. In other words, A is isomorphic to a 
/C-subalgebra, hence is a AJ'-algebra itself. 

Conversely, suppose that A is in K.. Then A* is in 5(/C*), 
so that A* |= H, hence, A \= H,. 

Now wc show that //, is stably local. According to Theo- 
rem 6.4 wc have to show that every finite partial //»-algebra 
A weakly embeds into //,. Let such an algebra A be given. 
As A* \= H and as H C S(/C*), the embedding property for 
A follows. Ü 

Conversely, from a local theory K. wc can obtain a finite 
axiomatization HK satisfying S(K') C HK C S{K.*). We 
may assume that K. is flat and linear. (Otherwise, apply- 
ing Proposition 4.1, wc may replace K. by ICi\\„, with K.w„ 
the set of flat and linear instances of K'..) Now define H/c 
to be the union of K* and the set of uniqueness clauses 
r'(.v,. v«c for the relations. 

THEOREM 7.3 With HK as defined above, if K. is a local 
theory, then S(K.') C HK C S{K*). 

Proof. Clearly, all  full substructures of /C*  satisfy //^-. 
Moreover, it' A* (= //^-, then A is in particular a partial K'.- 
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algebra. By Theorem 6.1, any such A weakly embeds into 
/C, henceA is in 5(/C*). □ 

8   Conclusion and Further Remarks 
In this paper we have established close relationships be- 

tween the approaches by Evans, Burris and McAllester to 
capture polynomial time computation in the context of uni- 
form word problems. The criteria by Evans and Burris are 
essentially semantic, relating functional and relational mod- 
els of given presentations. Local inference (McAllester's 
approach) and stable locality (our variant of this concept) 
are notions which are more proof-theoretic in nature. It 
was interesting to see how closely related these approaches 
are. We have shown that both Evans' and Burris' criteria lie 
in between the two variants of locality. The inclusions are 
proper (at least for Evans' approach, for Burris' we do not 
know yet). In particular the concept of stably local theories 
subsumes Burris' method (which in turn subsumes Evans' 
method), and the subsumption is strict for the Evans case. 

8.1    Explicit Definedness Predicates 
The reason why [stable] locality and the other two ap- 

proaches are not quite equivalent is intimately related to the 
definedness requirements for partial functions that partial 
/C-algebras or full substructures of /C* have to satisfy. For 
the subclass of presentations for which the definedness re- 
quirements are void, we were able to establish equivalence 
of locality and Evans' criterion. Definedness, however, is a 
semantic concept that is not so easily captured syntactically. 
Only those clauses for which the antecedent is satisfiable 
contribute to definedness properties. 

The following approach should work to simulate some 
of these effects in the framework of stable locality. Trans- 
form any given K. by replacing clauses such as stat -> 
/(") ^g{v) by (read "D(x)" as "x is defined") 

D(s),D(t),D(u),D(g(v)),s*t    -►    D(f(u)) 

D(s),D(t)Mu),D(f(u)),sKt    -»    D(g(v)) 

D(s),D(t)Mf(u))Mg(v)),SKt    -+    f{u)^g{v) 

internalizing the notion of satisfaction for partial algebras. 
(The general case of the transformation should be obvious.) 
Let KP denote the result of that transformation. Call K. 
"Evans"-local if for every ground clause C = T -> e we have 
K,D[C] liruD[C] \= e whenever K\=C, with D[C] the set 
of facts D(t), for each subterm t in C and constant t in K,. 
Like in stable locality, we may use substitution instances of 
theory clauses where variables are sent to subterms of C or 
constants in /C. However, because of using the transformed 
clauses, we may additionally only compute with those terms 
in /C[q that are semantically equal to a subterm of the query 
or to a constant in K. Int' is an example of a presentation 
that is Evans-local. 

Evans-locality should be equivalent to Evans' criterion, 
but since its definition is somewhat awkward and since it 
is not clear how to design good recursively enumerable ap- 
proximations of the concept, we have not yet investigated 
this claim in more detail. 

8.2   Applications 
It might be possible to exploit the relation between the 

semantic and proof-theoretic concepts for mutually trans- 
ferring further techniques. In particular, certain (yet to be 
established) amalgamation properties for algebras would in- 
duce combination results for local theories over disjoint vo- 
cabularies. 

Let P be any partial /C-algebra. Let T(P) = TL(P)/EP, 
that is, the free (total) Z-term algebra generated over P, 
modulo the congruence £> generated by the identities in P, 
that is, the equations a0 ~/(ai,... ,a„) such that a, is in P 
and ao = fp(a\,...,a„) holds in P. We can turn T(P) into a 
/C-algebra by dividing by the intersection K of all kernels of 
homomorphismsh:T(P)^AelC. LetF(P,K.) = T(P)/K. 
A specific case of a much more general result proved by 
Burmeister (1986) is this universal property of F(P,IC): 

THEOREM 8.1 (BURMEISTER 1986) F{P,K) is a K- 
algebra, and for any weak homomorphism h from P 
into a /C-algebra B there is a unique homomorphism 
h : F(P,fC) -» B such that h = hon, with n : P -» F(P,K.) 
the canonical weak homomorphism sending any element of 
P to its congruence class under K. 

The theorem asserts that F{P,K) is the free (total) K- 
algebra generated by the partial Z-algebra P. 

COROLLARY 8.2 If P weakly embeds into K. then the 
canonical weak homomorphism n : P ->• F{P,K) is injec- 
tive. 

Hence, whenever a partial algebra P weakly embeds into 
K it specifically also weakly embeds into its free extension 
F{P,K), a fact already observed by Evans (1951). 

Suppose now that we have two flat, linear, and superfi- 
cial local theories K\ and K-2 over disjoint signatures Z] and 
Z2 respectively. We want to show that the union K\ UIC2 is 
also local. One way to do this is to utilize the methods in 
(Nelson & Oppen 1979) for combining decision procedures. 
An algebraic proof might be obtained via an amalgamation 
construction similar to the one given by Baader & Schulz 
(1998) for proving decidability of the combination of cer- 
tain unification problems. 

We need to show that every finite partial K\ U/C2-algebra 
P weakly embeds into K\ U/C2, and then apply the theo- 
rem 6.3, Given P, forget the operations in I2 and Zi, re- 
spectively, yielding a partial K\ -algebra P{ and a partial 
/C2-algebra P2. As the given theories are local, these al- 
gebras weakly embed into the free constructions F(PufC\) 
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and F(P2,K,2), respectively. We believe that one can now 
amalgamate F(P[,JCi) andF(P2,K.2) into a single/Ci U/CT- 

algebra into which P weakly embeds to, but the details have 
not been worked out yet. 
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Abstract 

We provide a semantic framework for (first order) 
message-passing process calculi by combining categorical 
theories of abstract syntax with binding and operational 
semantics. In particular, we obtain abstract rule formats 
for name and value passing with both late and early inter- 
pretations. These formats induce an initial-algebra/final- 
coalgebra semantics that is compositional, respects substi- 
tution, and is fully abstract for late and early congruence. 
We exemplify the theory with the ir-calculus and value- 
passing CCS. 

Introduction 

A complete description of the semantics of a program- 
ming language requires both an operational semantics de- 
scribing the behaviour of programs in terms of elementary 
steps and a more abstract denotational semantics describing 
the meaning of a program in terms of its components [32]. 
In the study of process calculi for concurrency (such as 
CCS [25], CSP [19], and ACP [4]) less emphasis is placed 
on denotational models and more on notions of behavioural 
equivalence, and on bisimulation equivalence [25] in partic- 
ular. Still, for the operational semantics to be well-behaved, 
one requires that the chosen notion of behavioural equiva- 
lence be a congruence with respect to the constructs of the 
language. 

To establish congruence results for behavioural equiva- 
lences it is convenient to define the operational semantics in 
terms of structural rules, i.e., Plotkin's SOS rules [29]. Cor- 
respondingly, much work has been done in order to iden- 
tify SOS rule formats [10, 6, 17, 14] for which (strong) 
bisimulation is a congruence - the most well-known be- 
ing GSOS [6]. However, such formats are hard to find and 
even harder to extend. Little or no success at all has been 
gained, e.g., in obtaining formats for more sophisticated 
process calculi than the above mentioned ones - process 
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calculi with variable binding (like value-passing CCS [26] 
and the 7r-calculus [27]) in particular. The present paper 
addresses this very problem. 

The solution we offer is based on understanding the 
mathematical structure underlying syntax and semantics of 
message passing processes. The formats we obtain are ab- 
stract and require a fair amount of category theory. How- 
ever, concrete, syntactic formats can be distilled from them 
and this, indeed, will be the next step of our investigation. 

The starting point for our work lies in [35], where a cat- 
egorical rule format is defined in terms of functorial notions 
E and B of syntax and behaviour familiar from initial alge- 
bra [16] and final coalgebra [1, 36] semantics. This format 
is given by transformations 

E(X x BX)-^BTX (1) 

natural in the parameter X (to be thought of as a generic 
set of meta-variables used in the rules), where T is the term 
monad associated to the signature E, i.e., TX = pY. X + 
EY. 

The type in (1) arises from giving to each operator of 
arity n of the signature a natural transformation 

(X x BX)n —*- BTX (2) 

describing the overall behaviour of the operator in terms of 
the behaviour of its arguments. This abstract format corre- 
sponds to GSOS when B is taken to be the functor on Set 
whose coalgebras are finitely branching labelled transition 
systems, i.e., 

BX = Pf(L x X) (3) 

where L is a finite set of labels and P{ is the finite powerset 
functor. In this case, the domain (X x Pf(L x X))n and 
the codomain Pf(L x TX) of the map in (2) correspond, 
respectively, to the premises and the conclusions of GSOS 
rules for the operator. Interestingly, naturality accounts ex- 
actly for the GSOS restrictions on the occurrences of vari- 
ables in the rules. 

Any natural transformation of type (1) has the property 
that the coalgebraic behavioural equivalence associated to 
B (which in the above case coincides with bisimulation [2]) 
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is a congruence with respect to the operators of the syntax 
E. This is a corollary of the more general fact that rules 
in the format (1) induce a denotational semantics which is 
adequate in the sense that it is fully abstract with respect to 
behavioural equivalence. 

The above result is independent from the choice of cat- 
egory and functors, provided they have enough structure 
and properties. Here we exploit this generality in order to 
find formats for process calculi with variable binding. To 
this end, we first had to give a functorial notion of syntax 
with binding. This was one of the main motivations for 
the work in [13], where we moved from sets to variable 
sets. There, variable sets are taken to be functors (called 
covariant presheaves) from a category of contexts to Set; 
the category of contexts used is the category F of finite car- 
dinals (i.e., sets of variables) and all functions (i.e., renam- 
ings). Most importantly, there exist a distinguished prcsheaf 
V of variables and a differentiation functor 5 = (_)v on 
presheaves. The latter is used to model variable binding 
with arity V: for a prcsheaf X, the elements of 5X in con- 
text n are simply the elements of X in the context n + 1 
containing an extra variable - the variable to be bound. 

We have now to find the right notions of behaviour B for 
name and value passing. Let us start from name passing, 
where the two most natural notions of behavioural equiv- 
alence are late and early bisimulation [27]. These are not 
congruences for the 7r-calculus though; one then consid- 
ers the late and early congruences instead [27], obtained by 
closing bisimulation under renamings (i.e., the maps of F). 

Previous (implicitly) coalgcbraic work on name pass- 
ing [12, 33] was based on a functor B whose associated 
behavioural equivalence turns out to be late bisimulation. 
This functor B lives in the category of presheaves over the 
category I of name contexts allowing only injective renam- 
ings. Surprisingly, the natural extension of such B to the 
category of presheaves over F yields a new behaviour B 
whose associated equivalence is exactly late congruence. 

We arc also able to solve the problem left open in [ 12, 33] 
of giving a denotational semantics fully abstract with re- 
spect to early bisimulation by introducing a new behaviour 
whose associated equivalence is early bisimulation'. The 
extension of such behaviour to the presheaves over F has 
early congruence as associated equivalence. Therefore, the 
desired formats for early and late congruences live in the 
category of presheaves over F and, for instance, rules for 
unary binding will be of type 

(X x BX) BTX (4) 

where B can be the extended behaviour for either late or 
early congruence. 

'See also [28] for a different coalgebraic approach to early (and late) 
bisimulation and [8] for a domain equation for early bisimulation in the 
framework of presheaf models. 

For value passing, we also give late and early behaviours, 
which are variations (cf. [20]) of the behaviour in (3). How- 
ever, in order to model input rules we have to take into 
account the substitution structure present in value-passing 
calculi, i.e., the homogeneous substitution of messages in 
messages and the heterogeneous substitution of messages 
in processes. (For name passing this is not needed because 
substitution is just renaming, hence it is already, though im- 
plicitly, part of the category of presheaves over F) 

The categorical framework for homogeneous substitu- 
tion was developed in [ 13]. One considers a monoidal struc- 
ture on presheaves '•' with unit V. A presheaf X • Y can 
be thought of has having elements given by pairs of an ele- 
ment of X together with a substitution consisting of a tuple 
of elements of Y. One then takes the notion of homoge- 
neous substitution on a presheaf M to be a monoid structure 
V —- M ■*— M • M. 

Here, in order to model the heterogeneous substitution 
of elements of a monoid M in elements of a presheaf X, 
we need to go one step further and consider monoid ac- 
tions X • M —>■ X. Correspondingly, the modelling of 
rules takes place in the category of actions of the monoid of 
messages. Therefore, we need then to lift signatures with 
binding E and extend behaviours B to functors E and B on 
such category. 

In general, we have primitive notions E and B living in 
different categories, of syntax S and behaviour B respec- 
tively, while the rules live in yet another category A of sub- 
stitutions (e.g., monoid actions). These categories are re- 
lated by adjunctions: 

B 

A    - 

s 

S 

U 
o 
B (5) 

The lifting of the E on S to a E on A is done by means of a 
distributive law over the monad induced by the monadic ad- 
junction A T 

? S, while the behaviour B on A is ob- 
tained by (right) extending B on B along the composite 
adjunction A T B. These constructions yield lift- 
ings/extensions as follows: 

E-Als- 

A- 

E-Alg B-Coalg 

11 

■S A 

B-Coalg 

-*~B 

The abstract rule format ensuring that behavioural equiv- 
alence is a congruence consists then of natural transforma- 
tions of type 

E(Ix BX)-+BTX (6) 
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For name passing the actions of the monoid of variables 
are simply presheaves on F, hence E is equal to E. For 
the original GSOS case of [35], with no variable binding, 
all three categories collapse to the category of sets, hence S 
and B are equal to S and B respectively and we recover (1). 

The next obvious step for our work is to characterise the 
categorical rule formats for name and value passing pro- 
posed in this paper in elementary syntactic terms. The rule 
formats so obtained will certainly not be as in [5], where 
binding and substitution are defined within the rules rather 
than treated at the syntactic level. For value passing, our 
categorical rule format seems to be related to a syntactic 
format proposed in [30]. The relationship with the format 
of [15] for which a conservative extension property holds 
should also be investigated. 

Another aspect we would like to consider is recursion. 
At present we would deal with guarded recursion follow- 
ing [34], but it would be interesting to deal with unguarded 
recursion along the lines of [31], hence working with vari- 
able epos instead of variable sets. 

Finally, there seems to be a tight correspondence be- 
tween the coalgebras of our new behaviour for early bisimu- 
lation and the indexed labelled transition systems of [7]. We 
would like to investigate this for sheaves (in the Schanuel 
topos) rather than presheaves over I. 

1. Basic syntactic and semantic structures 

1.1. Expressions 

Syntax.    Consider the following abstract grammar of ex- 
pressions for integers 

e ::— x | z | ei plus e2 \ e\ minus e2 (7) 

where x ranges over a countable list of variables x, (i € N) 
and z over the set of integers Z. 

Following [13], we consider terms in a context, so that 
we can stratify expressions into a family { En }n£N of sets 
indexed by natural numbers (indicating the number of vari- 
ables in the context). The set En consists of the expressions 
with at most n (canonical) free variables (typically denoted 
by Xi,..., xn). Thus, { En }n6N is the least solution of the 
equations 

{Xn — {xi,... ,xn} + Z + Xn   + Xn   }n6p (8) 

Semantics.    We write £[e]„ for the interpretation of an ex- 
pression e in the context x\,..., xn; that is, for the function 

Zn —>- Z defined compositionally as follows: 

1. £[x,]„ = 7Ti    (ith projection, 1 < i < n) 

2. Sfzjn — Xx.z    (constant function z) 

3. £[ei plus e2]„ = \x.(£{ei\n(x) + £[e2]„(f)) 

4. £[ei minus e2]„ = \x.{£\ei\n(x) - £{e2\n{x)) 

(9) 

This interpretation is an initial algebra semantics.   In- 
deed, the semantic domain given by 

{Set(Zn,Z)}„eN (10) 

where Set(5, S') denotes the set of functions from a set S 
to a set S', has a (pointwise) algebra structure given by the 
evident maps 

and 

{x1,...,xn}-^Set(Zn,Z) 

Z-^Set(Zn,Z) 

Set(Zn, Z)2 3* Set(Zn, Z2) —*- Set(Z", Z) 

Set(Zn, Z)2 S Set(Z", Z2) —^ Set(Z", Z) 

£ = { £[_]„ : En -» Set(Z", Z) }„eN 

(11) 

(12) 

is the unique algebra homomorphism from { En }ngN to 
{Set(Zn,Z)}n6N. 

1.2. Presheaves 

Categorically, families { Xn }„en of sets are functors 

X : N —>- Set 

where N is the discrete category of natural numbers or, 
equivalently, finite cardinals. Since we regard a finite cardi- 
nal n as a context of n variables, a function p : n —>■ m can 
be seen as a renaming of variables. In order to model weak- 
ening, contraction, and exchange rules for contexts we need 
to use, instead of the discrete category N, the category F 
of finite cardinals and all functions (cf. [13]). Correspond- 
ingly, we consider functors 

X :¥■ Set 

i.e., (covariant) presheaves over F. Thus, we will be work- 
ing with families { Xn }ngN of sets equipped with an action 
that associates every x 6 Xn (i.e., an element of X at stage 
n) and every renaming p : n —»- m with 

x[P] = X(p)(x) e Xm 

Presheaves over F form a category SetF, with natural trans- 
formations as morphisms. 
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Syntax.    The family { En }nt=n with action 

e{p]=e[x<«/Xl,...*-/Xii]        (p:n-~m) 

given by variable renaming defines a presheaf E : F ->■ Set. 
This presheaf is the least solution of the equation 

X = V + Kz + X2 + X2 

in Set   (cf. (8)), where the presheaf of variables 

V:F-*Set, Vn = n * {xu ... ,xn } 

is the inclusion of F into Set and K.z is the constantly Z 
presheaf. Hence E is the free E-algcbra pY. V + TY over 
the presheaf of variables V, where 

E : SetF ->- SetF ,    EX = Z + X2 + X2 

is the endofunctor on presheaves associated to the operators 
on expressions. 

Semantics. Also the semantic domain for expres- 
sions (10) has a presheaf structure. Indeed, for any object 
C of a cartesian category C, we have a functor 

(C,_) :C-^SetF,        (C,D)n =C(Cn,D)     (13) 

The presheaf (C, D) can be thought of as the presheaf of 
mappings from environments of type C to results of type 
D. Formally, at stage n, it consists of the set of morphisms 
in C from Cn to D with action 

f[p} = fo (TTPI ,..., 7rpn)        (p:n—*-m) 

In particular, taking C — Set and C = D = Z we obtain 
the presheaf (Z, X) with underlying family of sets as in (10). 

The copairing of the maps in (11) gives a E-algcbra 
structure 

E(Z,Z) = /CZ + (Z,Z)2+(Z.Z)2—^(Z,Z)      (14) 

on (Z, Z) that induces the initial algebra semantics 

£ :£—»(Z,Z) 

of (12). Note that the naturality of £ amounts to the identity 

=   £\e\n(Zpl 
(15) 

Syntax with binding. In the algebraic treatment of bind- 
ing of [ 13], binding operators are modelled using the differ- 
entiation operator 

S : Set" SetF , (SX)n — Xn+i 

(For details,   including  initial  algebra semantics,   con- 
sult [13].) 

Pi-calculus. The following grammar for (a fragment of) the 
7r-calculus 

r::=0  |  h\t2   \  x(y).t   \  xy.t   \   (x)t  |   [x = y]t 

corresponds to the signature endofunctor 

E.Y    =    1 + XxX + VxSX + VxVxX 
6X + V x V x X 

6) 

uF on Set . Indeed, its initial algebra 

TO    ^    1+ TO xTO + V x sro + V xV x TO 
+ STO + V x V x TO 

is the presheaf of --calculus terms: at stage n it is the set of 
(o-cquivalcnce classes of) terms with at most n (canonical) 
free variables, with action given by variable renaming. 

Value-passing CCS. We will consider the following frag- 
ment of CCS passing expressions c as in (7) along a finite 
set of channels c e C: 

r ::=0  |  ri|f2   j  c!{x).t   I  c\(c).t  |   [r,=p2]f 

This grammar has associated signature endofunctor 

Y,,.X    =    l + X x X + K-c x fiX 
+ K.c x E x X + E x E x X 

on Set", where K-c is the constantly C presheaf. 
More generally,  we have a signature bifunctor E   : 

SetF x SetF —9- SetF 

(17) 
E(M. X)  =  1 + X x X + K-c x ÖX 

+ K.c x M x X + M x M x X 

parametric in the presheaf of messages being passed. 

1.3. Substitution 

Clones. We have seen that besides the operators, the se- 
mantics £ also respects variable renaming (sec (9) and (15)). 
However, £ respects substitution in the stronger form of sat- 
isfying the semantic substitution lemma: 

for all p : n- ■ m. 

£Hri/*,> ■■■-'" Ar,, ]Jm 
=  £[r]„o (%,]„„...,£[,:„]„,) 

(18) 
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In other words, £ is not only an algebra homomorphism but 
also, as we explain below, a clone homomorphism. 

Recall that an {abstract) clone [9, page 132] X, consists 
of a family { Xn }ngN of sets, a family 

{ u\n) € Xn | 1 < i < n }„6N 

of distinguished elements, and a family 

I Mm    • Xn X (Xm)    —*■ Am }n,m£N 

of operations such that, for every element t of Xn, every 
n-tuple u = (ui,..., un) of elements of Xm, and every 
m-tuple v of elements of Xi, the following three axioms 
hold: 

ßm{Vi;Ü)=Ui Hn{t;Vi,...,Un) = t 

pt(pm(t;u);v) = ne(t; pe(ui;v),..., M(un;v)) 
(19) 

An homomorphism h : X —*- X' between clones is a fam- 
ily { hn : Xn —*■ X'n }nen of functions that respects the 
clone structure. 

The clone structure on the family { En }„6N of expres- 
sions is given by the variables Zj (1 < i < n) in En and by 
the simultaneous substitution of expressions for expressions 

En x (Em)n 

^6, C\, . . . , CJI) 

En 

/Xl ) 
6" /x„] 

(The three axioms in (19) amount to the familiar proper- 
ties of substitution.) For the semantic domain (Z, Z), the 
clone structure is given by projections and function compo- 
sition (together with pairing). In fact, for every object C 
of a cartesian category C, one can form the clone of oper- 
ations (C, C) on C, with v\n' given by the ith projection 
iTi : Cn in) C and fim  by the map 

C(Cn,C) xC(Cm,C)n 

\J) Jli ■ ■ ■ 5 Jn) 

C(Cm,C) 
/°(/l,---,/n) 

Thus, with respect to the above clone structures, the re- 
quirement that the semantics £ be a clone homomorphisms 
amounts to the identity (9.1) and the semantic substitution 
lemma (18). 

Monoids. The clone structure has equivalent representa- 
tions as either of the following: finitary monads on Set, 
Lawvere theories, substitution algebras [13, Theorem 3.3], 
or, most importantly for this work, monoids in the monoidal 
closed category (SetF, •, V) [13, Proposition 3.4], where 
the monoidal product is denned by the following coend: 

(X • Y)r, 
/n€F 

Xn X \Ym (m e F)      (20) 

This tensor product and variations thereof play a crucial role 
in this paper; they arise from the following general situa- 
tion (see, e.g., [23,1.5]): 

Setr 

(21) 

where C is cartesian and cocomplete and where C# denotes 
the cartesian extension of C. 

Proposition 1.1 1. For C and V cartesian and cocom- 
plete categories, and F : C —>- V a cartesian functor 
with a right adjoint, we have a canonical natural iso- 
morphism 

_»FC^F(_»C) 

for all C eC. 

2. For a cartesian and cocomplete category C such that, 
for all C e C, the functor _ x C is cocontinuous, we 
have the following equivalence of categories 

C     ~     CarCoc(SetF,C) 
C   h^   _*C 

FV   ^H   F 

where CarCoc is the category of cartesian and cocon- 
tinuous functors, and natural transformations. O 

Corollary 1.2 For every X e SetF and C e Setc, there 
are canonical natural isomorphisms as follows 

(-•X)»C    =    _»(X»C) 

(X,(C,_))     3*     (X.C,_) D 

In this paper we will exclusively consider the above ten- 
sor construction when C = Setc, for some small category 
C (see [23, VII.2 and VIII.4] for a general discussion in the 
context of topos theory). In this case, the tensor X • C (for 
X e SetF and C € Setc) has the following elementary 
description 

(meC) 
(X.C)m    = Jn6FXn x (Cm)" 

= (U„€N^x(^m)n)/= 

where « is the equivalence relation generated by 

(x;cpi,...,cpn) ~ (x[p];ci,...,cn>)    (p : n + n') 

Note that in particular taking C = F and C = Y e SetF 

we obtain the tensor (20) on SetF. We will also use the case 
where C = 1 (the terminal category), hence C = Set and 
C is a set 5: 

X»S = 
n€F 

XnxSn 
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As mentioned above, the categories of clones and 
monoids in (SetF, •, V) arc equivalent, hence the seman- 
tics £ : E —>■ (Z,Z) is both a E-algcbra homomor- 
phism and a monoid homomorphism. In fact, by Theo- 
rem 4.1 of [13], the presheaf of expressions E is the initial 
object in the category of T,-monoids (consisting of compat- 
ible E-algcbra and monoid structures with corresponding 
homomorphisms). And, as the E-algcbra structure in (14) 
for the clone of operations (Z.Z) is compatible with the 
clone/monoid structure of (Z,Z), the semantics £ is the 
unique E-monoid homomorphism from E to (Z.Z). 

1.4. Categorical operational semantics 

It is shown in [35] that operational rules of the form (1) 
for signature and behaviour endofunctors E and B on a bi- 
cartesian category C induce a compositional semantics hav- 
ing the (full abstraction) property that two terms have the 
same meaning if and only if they are bisimilar, provided 
that (/) the forgetful functor B-Coalg —*■ C has a right ad- 
joint (hence a final coalgebra exists), and (/<) the behaviour 
B preserves weak pullbacks. The main tool we use to es- 
tablish (/) for the behaviours in the present paper is the fol- 
lowing. 

Proposition 1.3 (Sec [24, 3]) For a finitary (rcsp. ac- 
cessible) endofunctor B on a locally finitely presentable 
(resp. accessible) category B, the forgetful functor 
B-Coalg —>■ B has a right adjoint. D 

The above mentioned (coalgcbraic) notion of bisimula- 
tion is due to [2]. In this paper, we will consider it in the 
following form: a B-bisimulation between two coalgebras 
h : X —>- BX and k : Y —>- BY is a relation (i.e., equiv- 
alence class of monos) R ^—^ X x Y between the carriers 
X and Y which lifts to the coalgebras in the sense that the 
diagram 

X* R ^Y 

BX BR BY 

commutes for some coalgebra structure on R. For the be- 
haviour in (3) B-bisimulation is (strong) bisimulation. 

2. Message passing bisimulations 

2.1. Value passing 

Late bisimulation. To model value-passing CCS, with re- 
spect to a set of values V and a finite set of channels C, we 
consider the behaviour endofunctor 

BS = Pf (C xSv + CxVxS + S) (22) 

on Set, where the components of the sum respectively 
model input, output, and silent actions. (Cf. [20].) 

With respect to this behaviour functor, coalgcbraic 
bisimulation corresponds to late bisimilarity. Indeed, a 
coalgebra h : S —>• BS induces the late transition relation 

s -^L f iff (c, /) e h(s)    (ceC,seS,f G Sv) 
c!<i.) 

*■ s' iff (c, v, s') e h{s)     (c e C, v G V, s, s' G 5) 

s-Wiffs'€ h(s)     (s,s'€A) 

that provides a characterisation of coalgebraic bisimulation 
in familiar terms (see [21]) as follows. 

Proposition 2.1 The following data are equivalent. 

1. A coalgebraic bisimulation for a coalgebra on S. 

2. A symmetric relation R C S x S such that SQ R S'0 

implies 

• if s0   - 
,     c?() 

s0 » 

?() 
>■  f then there exists /' such that 

if so 

-/'and/(i;) Rf'(v) for all v G 

c\{v) 
s then there exists s' such that 

\(v) 

'0 >- s' and s' R s0; 

• if so 
and s R s' 

s then there exists s' such that s'0 -^- s' 
D 

To appreciate the way in which (22) models the late in- 
terpretation of input, it is instructive to use the isomorphism 
Pf(5 + S') = Pf(S) x Pf(S') and consider the behaviour 
in the following form 

BS ^ Pf(5
v)c x Pf(V x Sf x Pf(5) 

from which, as observed by Gordon Plotkin, one can read 
the late interpretation off the first component of the product 
corresponding to "first choosing a derivative and then re- 
ceiving a value". To model the early interpretation of input, 
corresponding to "first receiving a value and then choosing 
a derivative", one thus needs to reverse the role of the type 
constructors for non-determinism and inaction, and input. 

Early bisimulation. Noticing the following decomposi- 
tion of the finite powerset functor 

Pf ^ 1 + P+
f 

where Pf is the non-empty finite powerset functor, a natural 
behaviour for the early interpretation is then the endofunc- 
tor 

BS = (1 + Pf(5)v)f; x Pf(V x Sf x Pf(5) 
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which we will consider below in the following uniform form 

BS 

x (C^-Pf (V x 5)) 

x (l^Pf(5)) 

(23) 

Set is the partial- 

—»- PS induces the 

where _^._ : pSetop x pSet —>■ 
exponential functor (see e.g. [11]). 

In this setting, a coalgebra h : S 
early transition relation 

s ^-l s'iff s' e-Ki{hx){c){v)   (c&C,veV,s,s' eS) 
c\(v) 

*■ s' iff (v, s') e n2{hx)(c)   (ceCveV, s, s' € S) 

s-Wiffs'e7r3(/ix)()   (s,s'eS) 

that provides a characterisation of coalgebraic bisimulation 
in familiar terms as follows. 

Proposition 2.2 The following data are equivalent. 

1. A coalgebraic bisimulation for a coalgebra on S. 

2. A symmetric relation R C 5 x S such that s0 R s'0 

implies 

• if so 

s'   C? 

c?{v) 
*-   s then there exists s' such that 

5o —>- s' and s R s': 

• if so 
\(v) 

>-   s then there exists s' such that 

'     C'{V}       'AD' s0 >■ s and s R s ; 

• if So —*- s then there exists s' such that s'0 —i- s' 
and sfis'. D 

2.2. Name passing 

Following [12], we will consider notions of behaviour 
for the 7r-calculus in the category of (variable sets) Set1, 
where I is the category of finite cardinals and injections. 
However, all the constructions involved are also meaning- 
ful for pullback-preserving presheaves in Set" and so, fol- 
lowing [33], we also obtain notions of behaviour in the 
Schanuel topos (see e.g. [23, pages 155 and 158]). 

Late bisimulation.    The constructions needed to model 
late bisimulation [27] as in [12] are: 

• The type of names N  €   Set1 with identity action 
A^ = n. 

• The power type Pf : Set1 

action (PfP)n = Pf(Pn). 
Set   with pointwise 

• Products (x) and coproducts (+) given pointwise by 
(P x Q)n = PnxQn and (P + Q)n = Pn + Qn. 

• The exponential PN with action given by (PN)n 

(Pn)
n x Pn+1 and P(i)(f,p) = (f,p') where 

/'(*) 
(/a) [A]    if x — La , _   ,        , 
p[i,x]     otherwise ^        ' 

• The dynamic allocation type 5   :   Set    —>■  Set 
with action given by (6P)n = Pn+\ and (5P)(L) = 
P(L + 1). 

The behaviour functor for late bisimulation of [12, 33] is 

BP = Pf(N xPN + NxNxP + Nx5P + P) (24) 

on Set1. Hence we have that 

BPn=   Pf(    nx(Pn)
nxPn+1 

+ n x n x Pn + n x Pn+\ 
+ P„ ) 

in Set. 
A coalgebra h : P —>■ BP induces the late transition 

relation 

P -^ f,p' iff (a, f,p') e hn(p) 
(aen,P£Pn,fe {Pn)

n,p' € P„+i) 

P —^ P' iff (a, b,p') € hn(p) 

p—^p'iff (a,p') e hn{p) 

(a, b e n,p,p' G Pn) 

(aen,pe Pn,p' e Pn+1) 

p-^p' iff p' e hn(p) 
(p.p'ePn) 

that provides a characterisation of coalgebraic bisimulation 
in familiar terms (see [27]) as follows. 

Proposition 2.3 The following data are equivalent. 

1. A coalgebraic bisimulation for a coalgebra on P. 

2. A family of symmetric relations 

{ Rn C Pn x Pn }n6N 

such that, for every n G N, 

(a) p Rn q implies p[t] Rm q[i], for all L : n >—>- m 
in I; 

(b) p Rn q implies 

a?() 
• if p  *- f.p  then there exist g,q' such 

a?() 
that q >- ^, g , and /(a) Pn g(a) (for all 
o s n) andp' Pn+i g'; 

• if p  5- p then there exists q such that 
a-{b}       'AID q ^ q' and p' Rn+1 q'\ 

99 



• if p 
a!() 

p' then there exists q' such that 
o!() 

q ^q' andp' Rn+i q'\ 

• if p —>- p' then there exists q' such that 

p' —^~ q' and p' Rn q'. D 

Early bisimulation. The definition of a behaviour functor 
for early bisimulation (left open in [12, 33]) requires the 
introduction of a new type constructor. 

• For a mono-preserving presheaf P : I —>■ Set we 
define P=^_ : Set —>■ Set as the functor mapping 
a presheaf Q to the presheaf P^Q with action given 
by (P ^ Q)n = Pn ^ Qn and 

(P^Q)(0 = P(i)^Q(0 : " ^ Q(0 o u o P(,.)R 

where P{i)R{q) = p iff P(i)(p) = q (see [11]). 

This construction extends that of products in that we 
have an injection P x Q >—>■ P^-Q given by: 

Pn x Qn 

p,q 
Pn^Qn 

pR^q 
(25) 

where (pR=^q)(x) = (if x = p then q) 

In the vein of the treatment of early bisimulation for 
value-passing CCS given in (23), we consider the follow- 
ing behaviour functor 

BP =,{N^P+
{{P)N ) 

x ( N^P^(N x P) ) x ( N-=±P+
f{8P) )    (26) 

x ( l^Pf(P) ) 

in Set", where the components of the product respectively 
model input, free and bound output, and silent actions. (The 
role of the constructor N^>_ in this behaviour functor is 
analogous to the one of the topped tensor product N &T _ 
in the model of [18].) 

Note that because of the following isomorphisms 

P((P + Q)    =    Pf(P)xPf(Q) 

Pf{N x P)    ^    N^P^(P) 

P((P)    ^    i^p+(p) 

the late behaviour functor (24) can be written in the follow- 
ing form 

( N^P^{PN) ) 

x ( N^P^N x P) ) x (yV^Pf (SP) ) 

x ( l^P+(P) ) 

which makes clear that the late and early interpretations of 
free and bound output, and of silent actions are the same. 

Considering the pointwise early behaviour 

BPn  =     ( V^(P^Pn)"   X PfPn+1   ) 

x (ri-=M??(7ixP„)) 

x ( n=M?P„+i ) 

x ( l^PfP, ) 

a coalgebra h   :  P —>- BP induces the early transition 
relation 

P ^-^ p' iffp' G 7T1(7r1(/in7;)(«))(6) 

07() 

P *-p' iff p' £ 7T2(7ri(/l„p)(o)) 

p^—^p' \ff{b.p') G 7r2(/i„p)(a) 

o!() 
p *~p' iffp' e K-s(hnp)(a) 

(a,be n,p,p' G Pn) 

) 
(a. G n,p& Pn,p' G P„+i) 

) 
(a, foe n,p,p' e Pn) 

(o. G n,p6 Pn,p' e Pn+i) 

p-^-p'iffp' G 7T.i(/lnp)() 

(/>,//eP„) 
that provides a characterisation of coalgebraic bisimulation 
in familiar terms (see [27]) as follows. 

Proposition 2.4 The following data are equivalent. 

1. A coalgebraic bisimulation for a coalgebra on P. 

2. A family of symmetric relations 

{Rn   QPn  XP„}„€N 

such that, for every n G N, 

(a) p Rn q implies p[t] Rm q[t], for all /, : n >—*- m 
in I; 

(b) p Rn q implies 

• if p  *- p then there exists q  such that 

q  >• q and p R„ q , 

• if p  *- p' then there exists q' such that 

q ^q and/; Rn + \ q ; 

• if p  >■ p' then there exists q' such that 

q *- q and/; K„ c/ ; 
n!() 

• if /;  >- // then there exists q' such that 
a!()       , 

<?■ r/and// P„ + i r/; 

if /> —»- // then there exists q' such that 

q -^ q' and // R„ q'. D 
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3   Semantics of name passing 

To model the structural operational rules for the 
7r-calculus using natural transformations of type (1), we are 
faced with the fact that the signature £ is an endofunctor 
on SetF (see (16)) while the behaviour B (for both the 
late (24) and the and the early (26) interpretations) is an 
endofunctor on Set1. Far from being a problem, this dis- 
parity allows for the desired compositionality result to hold. 
Indeed, both late and early bisimulations are not congru- 
ences. What we need are thus behaviour functors for late 
and early congruences instead. These behaviours can be ob- 
tained by (right) extending the B's on Set" along an adjunc- 
tion Set < T a Set1 obtaining new endofunctors B's on 

Set . Moreover, a natural transformation of type 

Z(X x BX) -»- BTX (27) 

in SetF will be suitable to model the desired structural op- 
erational rules for the 7r-calculus. 

Late and early congruences. The adjunction we need be- 
tween SetF and Set1 is an instance of the adjunction in (21) 
taking C = Set1 and C = N: 

Set* 
W_> 

• TV 

Set1 
(28) 

Alternatively, one can describe this adjunction as the essen- 
tial geometric morphism (see, e.g., [23, page 360]) associ- 
ated to the inclusion I —-»- F. Thus, we have a canonical 
natural isomorphism 

X • TV * \X\ (29) 

(essentially given by the action Xn x mn —>- Xm of X) 
where |_| : SetF -^ Set1 is the forgetful functor given by 
precomposing with the inclusion I —*- F. 

We can now define, for every endofunctor B on Set1, an 
endofunctor 

BX = (N,B\X\) 

i.e., the right Kan extension of (N,B_) along (N,_). 
Using_ the isomorphism (29) and the adjunction (28), 
the ß-coalgebras are in bijective correspondence with 
.B-coalgebras \X\ —*■ B\X\. In other words, 5-coalgebras 
are B-coalgebras on presheaves with an action along all re- 
namings (rather than only on injective ones). This makes a 
crucial difference in terms of coalgebraic bisimulation. 

Proposition 3.1 For B as in (24) [resp. (26)], the following 
data are equivalent. 

1. A   coalgebraic   B-bisimulation   for   a   coalgebra 
X^BX. 

2. A family of symmetric relations {Rn C Xn x Xn}n€N 

as in Proposition 2.3 (2) [resp. Proposition 2.4 (2)] 
(with respect to the transposed B-coalgebra 
\X\ —>■ B\X\) where the closure condition (a) 
is generalised to 

p Rn q implies p[p] Rm q[p], for all p : n —>- m 
inF. a 

Proposition 3.2     1. The functors (J)N : Set1 —^ Set1 

and Nn^_ : Set1 -*■ Set1 (n € N) are finitary. 

2. For B as in (24) and (26), the lifted functors B are 
finitary (hence the forgetful functor B-Coalg —^ SetF 

has a right adjoint) and preserve weak pullbacks. 
D 

Therefore, every natural transformation of type (27), with B 
the late (early) behaviour functor, induces a compositional 
semantics fully abstract with respect to late (early) congru- 
ence. 

Categorical rules. We sketch how the 7r-calculus opera- 
tional rules [27] are modelled by a natural transformation 
of type (27). For brevity, we only consider the operational 
rules of the binding operators (input and restriction); the 
operational rules for the other operators are modelled along 
the lines of [34] using the isomorphisms 

(C,D1)x{C,D2)^(C,,D1 xD2) 

8{C,D)^(C,DC) 

satisfied by the functors in (13) with C cartesian closed, and 
the map 

V xX^{N,N^\X\) (30) 

obtained by transposing |VxX| = Nx\X\>—*- iV^ |X|, 
where the injection is given by (25). 

Input. For input, the rule is modelled by a map of type 

V x 5{X x BX) -»- (N, B\TX\) 

Using (30) and projecting out the components that do not 
contribute to the rule we can focus on defining a map of 
type 

ÖX-+(N,\X\N)^Ö(N,\X\) 

The required map is 8 applied to the unit X >—^ (N, \X\) 
of the adjunction (28); that is, 

Xn+i 
x 

Set'(iVn+1,|Jüf:|) 
{Xp€mn+1.x[p}}m€l 

Note that this map can be used both for the late and 
early cases by precomposing it with suitable maps respec- 
tively arising from the injections \X\N>—^ P\(\X\N) and 
\X \N ■{P\\X\) N 
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Restriction. For restriction, the rule is modelled by a map of 
type 8(X x BX) -^ {N, B\TX\) in SetF which, in fact, 
comes from a map of type 

5B\X\ B\TX\    in Set" 

For instance, the core of this latter map corresponding to the 
following two rules 

ob ox 
P     > 0                                          P —*- 0 

(RES) — x£a,b   (OPEN) x ^ a 
(x)P-^-(x)Q (x)P  —■>■  Q 

is the map 

SNxSNx S\X\ ^2- pt(N x N x |TX| + N x <5|TX|) 

defined, using the internal language (see [12]), as follows: 

RO(a,6,<7) 
case a of 

old(a')    =>   let r/ = Srjq 
in case 5 of 

old(fc') 
new 

{(«', b'. uq')} 

new 

where T? : |X| -»■ |TA"| and u : <5|TX| —>- \TX\ (in 
Set") arc respectively the (underlying maps of the) unit and 
the restriction operator (in Set/) of the free E-algebra TX 
onX. 

4. Semantics of value passing 

Actions. We have seen in § 1.1 that the homogeneous sub- 
stitution of expressions for variables in expressions can be 
modelled as monoids. For the heterogeneous substitution 
of expressions for variables in terms we can use monoid ac- 
tions as follows. Every monoid M — (M.fi.v) in Set" 
defines a monad _ • M on SetF. The category of al- 
gebras of this monad A/-Act, consists of (right) actions 
A»M —>• A [22, VII.4]. In elementary terms, this amounts 

to a family { o 
ations such that 

(«) :An x (M„ Am }„.„I6N ofoper- 

om (a; v\,...,u„) -a 

QC(om(a; u);v) = a((a; ,i((ui; v),..., H(\un: v)) 

for all a in A„, ü in (Mm)n, and v in (M()
m. (Note the 

occurrence of// in the second law.) 
For examples of actions consider the following. 
A V-action A • V —*- A is forced, by the unit law, to be 

the canonical isomorphism A»V = A. Thus, the category 

K-Act is isomorphic to Set ; which explains why, for name 
passing, we can do without extra substitution structure. 

For objects C and D in a cartesian category C, the 
monoid (C, C) has a canonical action on the prcsheaf 
(C, D) given by (pairing and) composition in C. 

As in any bicompletc monoidal closed category 
(cf. [23, VII.3]), a monoid homomorphism M' —>- M in- 
duces a reindexing functor A/-Act —>- M'-Act with both 
left and right adjoints. Thus, the semantics of expressions 
E —>• (Z,Z) and the unique homomorphism V —>• M 
induce the following adjoint situations 

(A/,_ 

(Z.Z)-Act ->- £-Act,    M-Act Setf 

• A/ 

where, on the right hand side, X • M has action given by 
multiplication and (M, X) has action given by multiplica- 
tion and evaluation. 

Syntax. The substitution of expressions in terms involves, 
in turn, a substitution of expressions in expressions. Thus, 
the signature bifunctor for value-passing CCS needs to be 
parametric in a monoid of messages. Accordingly, we let 
E be the bifunctor Mon(SetF) x SetF —*- SetF given 
by (17). 

For a monoid M, we write T,M for the functor 
£(Jl/,_) : SetF —^ SetF. One can lift EA/ to the category 
M-Act of i\/-actions by means of a distributive law 

A:EA/(-)*A/ -M\ M) 

of the endofunctor EA; over the monad induced by the 
monadic adjunction M-Act Set"'. This distributive 
law is essentially the strength described in [13, page 200], 
with the extra use of the multiplication of the monoid M in 
the fourth and fifth summand of EA/. The resulting endo- 
functor 

Y.A!(A»M-^A) 

= ( EA/(4) • M ^ UM (A • M) Ä Y.A ) 

on M-Act has as algebras preshcaves A with both a 
E-algebra structure and an M-action compatible with each 
other in the sense that the evident diagram 

EA/(^).M EA/(.4.M) ■XM(A) 

A • M 

w 

A 

commutes. We denote the corresponding category of 
E~A/-algcbras by EA/-Alg. The associated forgetful func- 
tor EA/-Alg —>- M-Act has a left adjoint; and the induced 
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monad is denoted by TM, as it is a lifting of the monad TM 

induced by EM. 

Moreover, every monoid homomorphism M' —*■ M in- 
duces a reindexing functor EM-Alg —*- Ejv/'-Alg, which is 
a lifting of the reindexing functor M-Act —>■ M'-Act. In 
particular, the reindexing functor £<z,z)-Alg —>- Eg-Alg 
induced by the semantics of expressions E —»- (Z,Z) al- 
lows us to turn every interpretation for T<Z]Z>(0) into one 
forT£(0). 

Semantics. Let M be a monoid of messages in SetF; a 
typical example being the clone of operations (V, V) on a 
set of values V. 

We have the following situation (cf. (5)) 

M-Act 

u 
<M,_> 

-*=  
T 
T Set F  ^r~  Set 

•o 

where the adjunction on the right can be alternatively de- 
scribed as the essential geometric morphism associated to 
the functor (0) : 1 —>■ F; hence 

X • 0 ^ X0 

for all X £ SetF. 
To have both syntax and behaviour on the same category, 

we will proceed as in the previous section and (right) extend 
behaviour functors B on Set along the composite adjunc- 
tion A/-Act < T > Set to B on M-Act. To do this easily, 
we need a lemma. 

Lemma 4.1 For C cartesian and cocomplete, the compos- 

ite adjunction M-Act ^ 
<M.-> 

l-l -'C 

• C : M-Act ^T7 C : (M • C, 

<c,_) 
Set     c T ?   C is given by 

D 

It follows that the extension of a behaviour functor B on 
Set is along the adjunction 

I |o : M-Act ^T7 Set : <A/0,_) (31) 

where M0 is the set of ground messages, yielding B on 
M-Act to be given by 

BA = (M0,B(Ao)) 

Late and early congruences.    As operational models for 
value passing we take B-coalgebras 

A-^(M0,B(A0)) 

in M-Act where B is either of the two endofunctors on Set 
of (22) and (23). The adjunction (31) allows us to express 
these operational models in terms of coalgebras on Set. In- 
deed, they are in bijective correspondence with functions 

A0^B(Ao) 

where A carries an M-action. Moreover, B-coalgebra ho- 
momorphisms are action homomorphisms which at stage 0 
are also B-coalgebra homomorphisms: 

A»M- ■+A      A0 B(A0) 

Ä »M + A'      A', B(A'o, 

Proposition 4.2 For B as in (22) [resp. (23)], the following 
data are equivalent. 

1. A coalgebraic ß-bisimulation for a coalgebra 
A-+BA. 

2. A family of symmetric relations {Rn Q Anx An}neN 

such that 

(a) R0 is as in Proposition 2.1 (2) [resp. Propo- 
sition 2.2 (2)] (with respect to the transposed 
ß-coalgebra A0 —^ B(A0)). 

(b) For every n G N, s Rn s' implies 

am(s;v) Rm am(s';v), for all iTin (Mm)n. D 

Proposition 4.3     1. The category of actions M-Act is lo- 
cally finitely presentable. 

2. For B as in (22) and (23), the extended func- 
tors B are accessible (hence the forgetful functor 
ß-Coalg —>■ Af-Act has a right adjoint) and preserve 
weak pullbacks. D 

Categorical rules.    Natural transformations in M-Act of 
type _ __ 

T,(A x BA) —»- BTA (32) 

with B the late (early) behaviour functor with set of val- 
ues V = Mo, are suitable to model structural operational 
rules for languages with value passing and give a categori- 
cal format inducing fully-abstract compositional semantics 
with respect to late (early) congruence. 

Input. The most interesting rule to model is the axiom for 
input. As for the 7r-calculus, the core of this rule (both for 
the late and early behaviour) lies in the map 

SA-+(V,AoV)^~6(V,Ao) 

obtained by applying 5 to the unit of the adjunction (31), 
namely: 

An+\ 
a 

Set(Vn+1,ylo) 
\v€ Vn+1.a0(a;w) 
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Abstract 

A fully abstract game semantics for an extension of 
Idealized Algol with locally declared exceptions is pre- 
sented. It is based on "Hyland-Ong games", but as well 
as relaxing the constraints which impose functional be- 
haviour (as in games models of other computational ef- 
fects such as continuations and references), new struc- 
ture is added to plays in the form of additional pointers 
which track the flow of control. The semantics is proved 
to be fully abstract by a factorization of strategies into 
a 'new-exception generator' and a strategy with local 
control flow. It is shown, using examples, that there is 
no model of exceptions which is a conservative exten- 
sion of the semantics of Idealized Algol without the new 
pointers. 

1     Introduction 

All practical programming languages provide some 
means of manipulating the flow of control, primarily 
to recover from errors and deal with other exceptional 
eventualities. Dynamically bound, locally declared ex- 
ceptions are a simple, elegant and effective way to do 
this, making them a key part of ML and Java, for 
example. Despite their ease of use for programmers, 
however, these exceptions are not 'easy' from a seman- 
tic point of view; no denotational model of a language 
containing them has hitherto been described. Stati- 
cally bound exceptions can be implemented using call- 
with-current-continuation, but fail to account for one 
of the most important features of exceptions — that 
the same error may be handled in different ways if it 
occurs in different contexts On the other hand, dy- 
namically bound global exceptions have been modelled 
abstractly via the exceptions monad [13], but this ap- 
proach has not been applied to locally exceptions. It 
may be argued that local exceptions have proved re- 
sistant to the efforts of semanticists in part because 
they are a kind of hybrid effect.  Their main purpose 

is to give access to the flow of control, but dynamic 
binding distinguishes them from statically bound con- 
trol constructs such as call/cc, whilst locality gives 
rise to some of the identity-related issues which appear 
with reference variables. But since continuations and 
store have traditionally been modelled by (very differ- 
ent) constructions, simply piling them on top of a func- 
tional basis is likely to lead to a complicated semantics 
which is not fully abstract. 

The basis for a possible solution to these problems 
can be found in the 'intensional hierarchy' [4] of games 
models of various effects such as state [1,3], first-class 
continuations [11] and higher type references [5]. These 
all extend the basic model of PCF described by Hyland 
and Ong [9], and Nickau [14], by relaxing, one-by-one, 
the constraints on games and strategies which oblige 
them to behave in a purely functional way. This 'direct' 
approach to modelling side-effects means that they can 
often be combined simply (and fully abstractly) by re- 
laxing the relevant combination of constraints. 

However, even in the context of game semantics, the 
dynamic nature of exceptions has significant ramifica- 
tions. Rather than simply weakening the appropriate 
constraints on the model of PCF, it proves necessary 
to to add significant new structure — in the form of 
additional 'contingency pointers' — to the traces which 
represent the states of a game, in order to describe the 
dynamic binding of exceptions. These pointers give an 
explicit representation of control flow in the model, al- 
lowing a move to be played as if it immediately follows 
an earlier move which is not actually its immediate 
predecessor. 

The main contribution of this paper is therefore to 
define a new category of games by adding contingency 
pointers to HO-style games, to show that this cate- 
gory contains a model of locally declared, dynamically 
bound exceptions, and — by a full abstraction result 
— to show precisely how these combine locality with 
manipulation of control-flow. Using this analysis, it 
will show that the contingency structure really is neces- 
sary to interpret exceptions in HO games. Because the 
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games models of references and continuations do not 
have this structure, this suggests that exceptions can- 
not be expressed using continuations and references. 
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2    Idealized Exceptions 

The language which will be modelled — Idealized 
Algol [16] with (idealized) exceptions, or IAx for short 
— is a typed call-by-name A-calculus with locally 
declared ground-type references and a pared down 
call-by-name version of the simple exceptions (based 
on ML exceptions) described by Günther Remy and 
Riecke [7]. IAx types are generated from the base 
types 0 (empty), comm (commands), nat (natural 
numbers), var (natural number references) and exn 
(exceptions). 
T ::= 0 | comm | nat |   var | exn \ T => T. 
Terms are formed according to the grammar: 

M ::= x | skip | 0 | succ M | pred M | IFO 71/ | 
Xx.M | MM | YM \M;M \ 
new_exnA/ | mkexn M M | raise M | handle M M \ 
new M | mkvar A/ M | M := M | !A/. 

Typing judgements  extend  those  for  IA  as  follows 
(B = 0 | comm | nat): 

rhA/:exn=»i? 
rt~new_exn M:B 

ri-A/:exn 
ThraiseM:/? 

rhM:0=>comm    T\-N:0 
Thmkexn M N:exn 

ri-7\/:exn    rhA:0 
rt-handle 71/ Ar:comm 

The "big step" operational semantics for the impera- 
tive fragment of IAx is given in Table 1. Evaluation 
takes place in an environment consisting of a set of ex- 
ception names £, a set of variable names or locations C, 
and a store S — a partial mapping from £ to natural 
numbers. By convention, mention of the environment 
is omitted where possible. The new_exn and new con- 
stants evaluate in the same way; each generates a new 
name which is added to the environment, and supplied 
to its argument. Similarly, the mkvar construct for gen- 
erating "bad variables" [15, 1] has a precise analogue in 
the mkexn operation for constructing "bad exceptions"; 
terms of exception type which may not have the correct 
raising and handling behaviour. 

Programs are evaluated to a final form D, which 
is either a value V or an exception E = raise h for 
some name h; the latter are propagated through the 
program until they are caught.  The handler is simply 

an operation for capturing a named exception. Because 
there are no values of type 0, TV : 0 can only evaluate 
to an exception raised, so handle h TV compares the 
names h and k and evaluates to skip if they are equal 
and propagates the exception raise k if they are not. 
Unlike ML exceptions, in which the use of a universal 
type of exceptions results in recursive behaviour, the 
much more restrictive typing of IAx prevents this. 

Proposition 2.1  For any program M of IAx — {Y}, 
there is some D such that M -IJ. D. 

A standard notion of observational equivalence can be 
defined. 

Definition 2.2 Terms M,N : T are observationally 
equivalent (written M ~ N) if for any closing context 
C[-] : comm, C[M] Jj. skip if and only if C[N] JJ. skip. 

Idealized exceptions fit well with the block structure of 
Idealized Algol and, despite their apparent simplicity, 
arc quite expressive. For instance, although exceptions 
in Java (and to a lesser extent ML) are more sophis- 
ticated in that one handler can be used to trap differ- 
ent exceptions using subtyping, the basic behaviour of 
Java's try and catch operations can be captured by 
defining (for M,N : comm, H : exn): 
try A/ catch H TV =y new_exn Xk. 
handle k ((handle H (A/; raise fc)); TV; raise k). 
This executes the command 71/; if this is completed 
then the catch block is discarded, but if the exception 
H is raised whilst running A/, then it is caught and the 
command N is executed. 

Exceptions in ML can carry values; this "storage" 
aspect of exceptions has not been included in IAx be- 
cause it seems peripheral to the more significant fea- 
tures of exceptions (control-flow manipulation and lo- 
cal declaration) and can be simulated very easily using 
explicit store; for example, in IAx exceptions carry- 
ing natural numbers as values can be represented using 
(var => (exn => comm)) => comm as the type of natural- 
number-carrying exceptions as follows: 
new_exn M =df new_exn A.r.new \y.{M Xg.(g y) x) 
raise M Ar : B =dj (71/ (Xxy.y := TV; raise x)); ttB 

handle M TV =(lf 

new Xz.(M Xxy.(handle y TV); z : = \x); \z. 

3    Control Games 

The games constructions which will be used to 
model IAx are based on those given by Hyland and 
Ong [9] and Nickau [14], in which states of the game 
are represented as justified sequences of moves. Sev- 
eral developments of this basic framework will be used 
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Mh,CU{x}ij.D 

new M,£JJ.£> 
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x g C 

MW   N1J.D 
M;N$D 

Mh,£ö{h}ij.D 
new_exn M,£tyD 

MW 

h$£ 

raise MtyE 

NW 
M:=NW 

MW   A^raisee 
handle M iV-lj-raise e e^h 

raise MJJ-raise e 

Lij.n    MJJ-mkvar Ni N2 NmtyD MJJ-mkvar Nx N2    N2W 
M:=HJP> \MW 

N,SWS    M,S'W,S" 
M:=N,Styskip,S"[x^n} 

M,SW,S'     S'(x)=n 

M^mkexn Nt N2    Nx 

handle M Lij-D 
LW M^mkexnN1N2    N2W 

raise MW 

MW MW 
handle M NW M-NW 

MW   NW 
M:=NW 

MW 
\MW 

MW   iVJ|raise/i 
handle M A^skip 

Table 1. Operational semantics of exceptions and store 

here — in particular the relaxation of constraints to 
define a model of Idealized Algol [1, 5]. However, it 
has also been necessary to enrich more significantly 
the structure on which the games are based — justified 
sequences — by adding a new notion of 'contingency 
pointer' to track the flow of control. Fortunately, this 
fits in relatively smoothly with the original construc- 
tions and developments aforementioned. 

The structure of a game (the moves, their labels, 
how they are related) is specified by its arena, defined 
essentially as in [9]. An arena A is a triple: 
(MA,\-AC {MA), x MA,XA : MA -> {Q,A}): where 
MA is a set of tokens called moves, 
h^C (MA)* x MA is a relation called enabling. 
which allows a unique polarity for moves to be inferred 
by the following rule — m is an O-move if it is initial 
(i.e. * h m), or enabled by a P-move, 
m is a P-move if it is enabled by an O-move, 
XA ■ MA ->• {Q, A} is a function which labels moves as 
answers (A) or questions (Q), such that every answer 
has a unique enabling move which is a question. 

A justified sequence over an arena A is a sequence 
of elements of MA in which each occurrence of a non- 
initial move comes with a justification pointer to a pre- 
ceding occurrence of an enabling move. The transitive 
closure of justification is referred to as hereditary justi- 
fication. A sequence is alternating if Opponent moves 
are always followed by Player moves, and vice versa. 

In order to capture the control behaviour of excep- 
tions in a compositional way, additional pointers of a 
very similar kind will be added to justified sequences. 

(The key difference is that there is no structure con- 
straining these pointers analogous to the enabling re- 
lation.) 

Definition 3.1 A contingency pointer for a move in a 
justified sequence is a pointer (distinct from its justifi- 
cation pointer) to a preceding question. A move is con- 
tingent if it has such a pointer. A control sequence is a 
justified sequence in which contingency pointers satisfy 
the same conditions as justification pointers: i.e. 

• every Player move is contingent on some Oppo- 
nent move, 

• every contingent Opponent move is contingent on 
a Player move, 

• every answer move is contingent on its enabling 
question. 

The set of alternating control sequences over the arena 
A will be written CA • If a can be reached by follow- 
ing contingency pointers back from c, then c is said to 
be hereditarily contingent on a. To avoid ambiguity 
caused by multiple occurrences of the same move, we 
shall sometimes say that in the sequence tb, b is con- 
tingent on the prefix sa C tb instead of saying that b is 
contingent on a. 

3.1    A Category 

A category of arenas and strategies can now be de- 
fined using the standard constructions [9, 12]. 
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Product For any set-indexed family of arenas 
{Ai | i G I}, form the product .4 = Il!g/.4; as 
follows: 

• (m,i) \-nie!Ai  (n,j) if i = j and m \-Ai n, 
and * hn,6,/t, (n,j) if * \-Aj n, 

• Xnf€IA,((m^)) = A.4,(H- 

For finite k, the product of k copies of the arena 
A will be written Ak. 

Function Space For arenas A\, A2 

• MAI=>A, = MAl +MAl, 

• (m,i) \~A=>B (n,j) if i = j and m \- n 
or m 6 Mß, n G M^, * hß m and * hß n, 
* h (771, i) if 771 G Mß and * hß m, 

• A^B((m,i)) = XA^B{m). 

The arena with a single question move is written o. 

Definition 3.2 A (deterministic.) strategy over an 
arena A is a non-empty even-prefix-closed set of even 
length alternating justified sequences which is evenly 
branching:   sa,sb£a   =>•   b = c. 
A control-strategy on A is a strategy consisting of 
control-sequences (i.e. a subset ofCA). 

The control-strategies will be referred to simply as 
strategies where the context is clear. 

Composition of control-strategics is a straightfor- 
ward extension of 'parallel composition with hiding' 
[6] to control sequences. 
If s G CAl=>(A2^A3) then s\(Ai,Aj) is a sequence with 
contingency pointers (not necessarily a true control se- 
quence) defined as follows: 
e\{Ai,Aj) = e, 
sa\{Ai,Aj) = s\(Ai,Aj) if a £ AhAh 

sa\(Ai,Aj) = {s\{Ai,Aj))a if a £ AhAh 

where a is justified by the most recently played move 
from Ai or Aj which hereditarily justifies a in s (if any) 
and a is contingent on the most recent move from .4, 
or Aj on which it is hereditarily contingent. 

Definition 3.3 For a : A\ -+ A2,T : A-> —> .43 
a\T =  {s G CAl,A3   I   3i G C((-4,=>.42)=M3)- 
t\(A1,A2) €o/\t\(A2,A3) er/\t\Ai,A3 = s}. 

As usual, canonical morphisms are copycat strategies 
which just copy Opponent moves between different 
parts of a game. However, contingency pointers (unlike 
justification pointers) are not copied; to define copycat 
control-strategies requires the notion of pending ques- 
tion. 

Definition 3.4 Define the   "pending question prefix" 
of a justified sequence as follows: 
pending(e) = e, 
pending(sn) = sa. if a is a question, 
pending(so^6) = pending(.s), if b is an answer to a. 

Definition 3.5 For any arena A, define the identity 
control-strategy \dA : A => A to be the least subset of 
CA=>A containing e and closed under the condition: 
If s G id^ and sab\A+ = s\A~ and b is contingent on 
(the last move in) pending(so) then sab G \dA- 

So, for example, in the play of id0=>0 represented in 
Figure 1, the last move is contingent on its immedi- 
ate predecessor, but justified by the initial move.  As 

(o    =>    6)     =>     (o    =>    o) 

O 

P 

Figure 1. A play of id0=>0 (with contingency 
pointers) 

for general strategies [12], arenas and control-strategies 
form a SMCC which can be refined to a CCC of well- 
opened strategies. 

Definition 3.6  The thread of the last move in a non- 
empty control sequence is defined as follows: 
thread(*o) = a,   (a initial) 
thread(.saffr) = thread(sn)?;.   (a is the last move in sat 
justified by the same initial move as b). 
b is contingent on the most recent move, in thread(.sft) 
on which it is hereditarily contingent in satb. 
A strategy a is well-opened if every control sequence in 
o contains at most one initial move. 
If T : A is a well-opened strategy, then r'   : A is the 
least subset of CA  containing e and closed under the. 
condition: 
if s G T*, and thread(.s'«6) G r, then sab G rh 

The well-opened identity is the restriction of id.4 to 
well-opened sequences. 

Thus we have two cartesian closed categories of 
games, both of which have arenas as objects and well- 
opened strategies over the function-space A => B as 
morphisms from .4 to B, with composition defined 
a ■ T = r^; IT: 
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6,1, x,=> — the category of games, which has (gen- 
eral) strategies as morphisms — and C6,1, x, =>■ — the 
category of control games which has control-strategies 
as morphisms. 

Apart from exception-declaration and handling, the 
semantics of IAx is given by an embedding which takes 
the semantics of IA in 6 [1] to CG- To define this 
embedding requires the notion of well-bracketing. 

Definition 3.7 A strategy a in 6 is well-bracketed if 
every answer played by a is justified by the pending 
question. A control-strategy a in CG is well-bracketed 
if every move made by a is contingent on the pend- 
ing question: i.e. if sa € a, then b is contingent on 
pending(sa). 

The well-bracketed strategies form cartesian closed 
subcategories of 6 and CG, which will be written GWB 

and CGWB- All of the strategies required to interpret 
IA [1] are well-bracketed. 

Definition 3.8 For any control sequence s, let \s\ be 
the underlying justified sequence obtained by forgetting 
the contingency pointers. 
For a control-strategy a, let \a\ = {\s\ : s G a}. Say 
that a is control-blind if \a\ is a deterministic strategy. 

Proposition 3.9 There is an embedding of GWB into 
CG, which has as its image the well-bracketed and 
control-blind strategies. 

PROOF: For any a : A e GWB define a to be the least 
subset of CA containing e and closed under the follow- 
ing condition: 
If s e a, and \sab\ € a and b is contingent on 
pending(sa) then sab £ a. 
Then a is a well-bracketed strategy (well-bracketedness 
of a implies that every answer is contingent on its jus- 
tifying question) and (_) is compositional and preserves 
cartesian closed structure. For any r € 6WB, \T\ = r, 
and for any well-bracketed and control-blind a e CG, 
\a\ = a. D 

4    Semantics of Exceptions 

The interpretation of locally bound exceptions given 
here is based on viewing elements of exception type 
h : exn as 'objects' defined by their 'methods' — in 
this case raise h : conun and handle h : comm => comm. 
This was suggested as an interpretation for reference 
types by Reynolds [15] and followed in a game seman- 
tics setting in [1, 5]. 

The type exn is interpreted as the arena exn = 
=4> [comm]) x [0] (where [comm] is the arena with 

one question and one answer, and [0] is the arena o 
with just a question). The initial questions in the two 
components [0] =>• [comm] and [0] will be referred to 
as handle and raise respectively. The answer to handle 
will be referred to as caught, and the question enabled 
by handle as ok. The handle and raise methods are the 
first and second projections from exn; mkexn is pairing. 

[r h handle MN] = ([T h M];7r,, [r h iV]>; App 

[F h raise M : B] = {V h M];irr; Wk[B] 

[r h mkexn M N] = ([T I- M], [T h Nj) 

(Where Wk^ : o =>■ A is the strategy which responds 
to the initial question in A with the unique question 
in o.) Thus the only part of IAx which is not repre- 
sented by a control-blind and well-bracketed strategy is 
new-exception declaration. This is defined using com- 
position with a strategy xcell (similar to the strategy 
cell which gives the denotation of new [1]) that uses 
contingency pointers in an essential way to match up 
raises and handles appropriately, via the notion of an 
open question. 

Definition 4.1   The set of prefixes of a control se- 
quence which terminate in an open question is defined 
by induction on length, as follows: 
open(e) = {}, 
open(sa) = {sa}, if a is not contingent, 
if b is contingent on a, then: 
open(satb) = open(s) if XQA(b) = A, 
open(satb) = open(sa) U {sa ■ tb}, otherwise. 

[0    =>        comm] 

s handle 

ok \ 

/ 
/ 

caught.. 

[0] 

N   raise 

Figure 2. A typical play of xcell 

A "typical play" of xcell is depicted in Figure 2 (ar- 
rows are contingency pointers). Its behaviour can be 
described informally as follows. 

• If Opponent plays a handle move then xcell re- 
sponds with an 'ok' move, justified by (and con- 
tingent on) it. 

109 



• If Opponent plays a raise move and some handle 
moves are open, then xcell answers the most re- 
cently played one. If there is no open handle ques- 
tion, then xcell does nothing — this represents di- 
vergence caused by an uncaught exception. 

Definition 4.2 Let the strategy xcell : exn be, the least 
subset ofCexn containing e and closed under the follow- 
ing conditions: 
if s £ xcell, then s ■ handle • ok £ xcell (where ok is con- 
tingent on s ■ handle,), 
if t £ xcell, and s ■ handle £ open(t ■ raise), and for all 
r ■ handle £ open(t • raise), r C s, then t ■ raise ■ caught £ 
xcell, where caught is contingent on s ■ handle. 

[r h new.exn M] = ([r h M] x xcell); App. 

4.1    Soundness 

Soundness of the interpretation with respect to the 
operational semantics can now be established; the only 
novel feature of the proof is that it requires meanings 
to be assigned to programs which raise exceptions. 
Given M : comm or M : nat, £ = ei,...e„, 
£ = x.\,...xm, and k < m such that S(x{) I if and 
only if i < k, let new £ := S in M =df 
newAxi ...newAx,„.a;i := S(x'i);. •. ;xk := S{xk); M. 
Then \M,£,C,S\ is the unique maximal-length 
sequence in [ei,..., en b new £ := S in M] such that 
sfexn" £ xcell". 
Soundness is proved (by induction on derivation, 
using standard facts about the model together with 
analysis of xcell) with respect to the following binary 
approximation relation (~): 
\M,£,C,S} ~ [M',£',C',S'\ if the last move 
in \M,£,C,S\ is the same as the last move in 
lM',£',C',S'l 

Proposition 4.3 // M,£,C,$ JJ D,S',C',S' then 
[M,£,C,S)~[D,£',C',S'l 

The interpretation is also adequate. This follows di- 
rectly from soundness and termination of all evalua- 
tions of Y-free terms (Proposition 2.1). 

Proposition 4.4 For any IAx program M : comm, 
[A/] /li/ and only if M JJ skip. 

PROOF: The proof of completeness is by induction on 
the number of occurrences of Y in M. Suppose [A/| 7^ 
J_.   By proposition 2.1 AI JJ D for some D, and D = 
skip by soundness. If M — C[YAr] for some Y-free Ar, 
then C[YN] = U,€wIC'[An]l ? -1 (whore A'0 = n, and 
Nk+l = N Nky Hcnce CjArA] ^ ± fol. somn k e w and 

by induction C[Nk] JJ. and an induction on derivations 
shows that C[YN] JJ. D 

5    A Fully Abstract Model 

An adequate model of IAx with exceptions has been 
described which is not fully abstract because it lacks 
the following 'definability property'. 

Definition 5.1 A model M of IAx has the definabil- 
ity property if for every context V and type T, every 
(com,pact) f : |T] —> [T] in M is definable; i.e. there 
exists an IAx term Mj such that f = \T \- Mj :T\. 

In this section, the category of control games will be cut 
down so that all compact strategies are definable in IAx 
by giving a series of semantic definability criteria, and 
hence a full abstraction result will be achieved. The 
criteria are based on constraining three aspects of be- 
haviour on control games; which moves Player's contin- 
gency pointers can point to (a variant of the bracketing 
condition), which moves Player's justification pointers 
can point to (a variant of the visibility condition [9]) 
and a new condition governing which of Opponent's 
contingency pointers can be observed by Player. 

Definition 5.2 (Weak Bracketing) A strategy a is 
weakly bracketed if every Player move in a is contin- 
gent on an open question — i.e. if sb £ a where b is 
contingent on ta C. sb then ta £ open(s). 

The notion of view, defined for justified sequences in [9], 
extends to control sequences in line with the intuition 
that when Player makes a move contingent on an earlier 
move it may be regarded as if they ocurred in direct 
succession. 

Definition 5.3 (View)   The Player-view of a control 
sequence is defined as follows: 
rsa~l = a, if a is initial. 
rsatb~l = rsa~]b if b is an O-move justified by a, 
rsatb~l = rsonb if b is a P-question contingent on a, 
rsatb~l = rs~1 if b is a P-answer to a. 

This accords with the original notion of views given 
in [9] in that for any well-bracketed strategy a £ CQ, 
s £ a implies that rs~l = r|*i~'. It "dualizes" to a notion 
of (9-view (1 1) as in [9]. 

Definition 5.4 (Visibility) A strategy (in CQ or Q) 
satisfies the visibility condition if for every s £ a, 
r.sn is a well-defined justified sequence. The cartesian 
closed subcatr.gory Q of well-bracketed strategies satis- 
fying visibility will be written Q\B- 

A (well-bracketed) strategy a satisfies visibility if and 
only if \a\ satisfies visibility. Hence the embedding of 
Gun into CQ restricts to G\B- 

The third definability criterion limits the power of 
Player to observe contingency pointers. (It corresponds 
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to the fact that in IAx the only way to observe excep- 
tion handling is by raising and handling a competing 
exception.) 
Let satb be a control sequence in which b is a P-move 
contingent on a, and let re C. satb where c is a O-move. 
Then c is prematurely closed by b if re £ open(sat) and 
re $ open (so). Player's perspective on a control se- 
quence is obtained by deleting the contingency point- 
ers which are not attached to O-questions prematurely 
closed by some P move. It can be defined concisely 
(for extensions to control-sequences) as follows: 
\e] = e, 
If b is contingent on a, then \satb] = \s]a\i]b, where 
the pointer from b to a is included if and only if a is a 
P-question, and all of the pointers from a\t\ into s are 
omitted. 

Definition 5.5 A strategy is control-innocent if when- 
ever sab,t £ a and \sab] = \tab], then tab £ a. 

Proposition 5.6 // a is well-bracketed and control- 
innocent then a is control-blind. 

PROOF: If a is a well-bracketed strategy, then \s\ = \s\ 
as a closes only pending O-questions. D 

Hence the image of the embedding of GVB into CQ con- 
sists of the well-bracketed strategies satisfying visibil- 
ity and control-innocence. The following proposition is 
just a straightforard extension of the definability theo- 
rem for IA [1] to include the base type exn. 

Proposition 5.7 All finite strategies in GVB over 
IAx - {new_exn} type-objects are definable in IAx - 
{new_exn}. 

Corollary 5.8 The (compact) definable strategies of 
IAx - {new.exn} are the well-bracketed and control- 
innocent finite strategies which satisfy visibility. 

5.1    Factorization and Definability 

The finite, weakly-bracketed, visibility-satisfying 
and control-innocent strategies can now be identified 
as the compact IAx-definable morphisms by showing 
that they are obtained by composing xcell with the 
well-bracketed and and control blind strategies. 

Definition 5.9 Define CG/XCe\\ to be the cartesian 
closed subcategory of control games in which morphisms 
are finite strategies f : A ->■ B such that there exists 
k £ to and a well-bracketed strategy g : A x exn^ —> B 
such that id x xcell*;g = f. 

Proposition 5.10 The compact elements of CG which 
are definable in IAx are precisely the morphisms of 
CG/xce\\ ■ 

PROOF: It is straightforward to establish by structural 
induction on M that every [r h M : T] is the least up- 
per bound of a chain of approximants in CG/XCe\\ ■ 
Conversely, if a : [r] -> [T] is a morphism in 
CG/xce\\ then there is a well-bracketed — and hence 
IAx - {new.exn} definable — strategy a : |rj x exnfc -» 
(A =>- B) such that a = idjrj x xcell*;?, and hence 
a = [r h new.exn Xxi ... new.exn \xk-Ma\. D 

Proposition 5.11 A strategy is inCG/XCe\\ if and only 
if it is finite, weakly-bracketed, control-innocent and 
satisfies visibility. 

Proof of this proposition comes in two parts; first it is 
shown that if a : exn -> A satisfies weak-bracketing, 
control-innocence and visibility then so does xcell; a, 
which is a consequence of the following two lemmas. 

Lemma 5.12 Suppose a : exn =>• A and sa £ a is 
such that a is a move in A, and s fexn £ xcell. Then 
open(sa)fMj4 = open(sa\A) and rsa~l\A = rsa\A1. 

Lemma 5.13 Suppose a : exn =£• A is control- 
innocent, and sab,t £ a where sfexn,£fexn £ xcell 
and b is a move in A such that \sab\A] = \tab\A]. 
Then tab £ a. 

The second part of the proof of Proposition 5.11 is to 
show that all weakly-bracketed strategies can be ob- 
tained from well-bracketed strategies by composition 
with xcell (so in fact the stronger result that every com- 
pact strategy can be defined using a single exception 
variable is established). This is achieved by methods 
similar to the factorizations described in [1, 10, 5, 8], 
in this case using the jump in control between the raise 
and caught moves of xcell to generate all of the control 
jumps in a weakly-bracketed strategy. The complicat- 
ing factor is that the properties of control-innocence 
and visibility must be maintained. In particular, forc- 
ing Opponent to close questions instead of Player hides 
their contingency pointers — as has already been ob- 
served, well-bracketed strategies cannot observe any 
pointers at all. So it is necessary to make all of the 
information carried by the perspectives of a manifest 
as explicit exception handling. 

The factorization of a strategy a : B to a : exn -> B 
by adding handle, ok and raise, caught moves in exn (see 
Figure 3), can be informally described as follows. 

• Immediately before playing a question in A, a 
plays a handle move (contingent on the pending 
question), to which Opponent responds with ok. 

• If a responds to sa by playing a move b which 
prematurely closes n Opponent moves then a re- 
sponds to sa by playing n raise moves — each of 

111 



which is caught by a handler corresponding to one 
of the O-moves which are closed by b — until all of 
these O-moves have been closed. If b is an answer 
then a plays b contingent on the pending question; 
if b is a question, then a plays a handle (as above) 
and then plays b pointing to the pending question. 

Note that as all of the contingency pointers from the 
control-view of a are used to match up the raises and 
handles, they are now observable as play in the premiss 
exn. 

Proposition 5.14 (Control Factorization)  // a   : 
A is a finite, weakly-bracketed and control-innocent 
strategy (satisfying visibility) then there is some finite, 
well-bracketed strategy a : exn —> A (satisfying visibil- 
ity) such that xcell; a = a. 

PROOF: is by defining a = {t Ccl"'" s \ s £ a}, where 

(_) : CA ->• Cexn=>A is a translation on even-length con- 
trol sequences such that: 

• s\A = s and s[exn £ xcell, 

• every Player move in s is contingent on the pend- 
ing question, 

• if rsn is well-defined then so is rsn, 

• |"s] = |~£] if and only if s = t. 

For an even-length sequence ,s, let ij)(s) be the number 
of O-questions prematurely closed by the last move in 
.s. Now define s by induction on sequence length: 
£ = £, 

spq = %)(raisecaught)''''(s'"7)(handleok)7, 
spa = %)(raisecaught)"'-'(sp',)a, 
where XQA(q) = Q, and XQA(a) = A. D 

5.2    Full Abstraction 

In a now-standard fashion, definability for the com- 
pact elements of the model of IAx yields full abstrac- 
tion for its "intrinsic preorder collapse". Moreover, this 
fully abstract model can be described directly, showing 
that it is effectively presentable. 

Definition 5.15  Given strategies a,r : A, a <,\ r if 
for every well-bracketed strategy 
p : A -» [comm], a;p ^ {e} implies r; p ^ {e}. 
a = T if a < AT and T <A a. 

Theorem 5.16 (Full Abstraction)  For any closed 
term,s M, N : T, \MjCg = {Njcg if and only if M ~ Ar. 

commj      x      [0] .4 

OQ 

/ handle    _   _ 

i 

ok 

/ handle    __ 
^u - - -*- - - 

OQ 

OQ 

raise 

\     caught 

\ 
\ N   raise 

caught ~   - 

PA 

Figure 3. Factorization of a control jump 

In fact, the equationally fully abstract model can be 
directly presented simply by including visibility and 
bracketing in the definition of a legal play. 

Definition 5.17 An alternating control sequence .s 
over an arena A is legal if both Player and Oppo- 
nent satisfy the weak-bracketing and visibility condi- 
tions: i.e. 
sa £ LA if and only if s £ L\ and if a is contingent, on 
b then b £ open(s), and rsa'1 and L.SOJ are both well- 
formed justified sequences. 
For a : A, write L(a) for a C\ L.\ ■ 

Lemma 5.18 For any a.r : A, L(a) C L{T) if and 
only if a <A r. 

PROOF: To prove the implication from right to left 
(showing that control-innocence does not affect the in- 
trinsic preorder) suppose L(a) 2 L(T). Let sb £ a be a 
minimal-length control sequence such that sb $ r. Let 
q be the initial question in comm and « its answer), and 
define: 

p:A-> {t £ CA \\t]a""-" \qsba]} 

Then p is by definition a control-innocent strategy such 
that p; a ^ {e}. Moreover, p\ T = {e} --■ if sc £ p then 
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either \sc\ ^ \sb\ or c and b are contingent on different 
moves, and hence \qsca] ^ \qsbd]. D 

6    Contingency and Expressiveness 

The complex structure of control games provokes 
the question: Are contingency pointers really neces- 
sary to model exceptions? The category Q contains 
models of a wide range of sequential features, includ- 
ing both references [1, 5] and call/cc [10, 11] at all 
types. Might there not be a semantics of exceptions in 
Ql Part of the interest in this question arises because 
it is closely related to a problem which is both inde- 
pendent of semantics, and an area of current research 
interest: When can one combination of programming 
language features be macro-expressed in terms of an- 
other [17, 18]? For example, it is "folklore" [18] that 
exceptions may be expressed in terms of continuations 
and references. As both of the latter can be modelled 
in G, if the folklore were true then a semantics of ex- 
ceptions in Q could be given by factoring through this 
interpretation. On the other hand, given a model of 
exceptions, continuations and references in Q it should 
be possible to use the a combination of the definability 
results for references and continuations to extract an 
encoding of exceptions. 

In fact, it is not possible to give a semantics of ex- 
ceptions which is a conservative extension of the model 
of IA in Q, and hence it is not possible to macro-express 
exceptions using continuations and references. A paper 
is in preparation which contains formal proofs of the 
latter claim, using syntactic counterexamples extracted 
from the game semantics of exceptions, continuations 
and references. This section will sketch a proof of the 
former claim, showing how differences in contingency 
structure can cause differences in observable behaviour. 
A starting point is the observation there are strategies 
which contain the same underlying justified sequences, 
but are observationally distinct because they have dif- 
ferent contingency pointers. A simple arena in which 
this may be observed is (o =>■ o) =£■ (o =>■ o)) which will 
be called A\ for short; it is the denotation of the type 
I\ = (0 =$> 0) => (0 => 0). Recall that in the identity 
strategy ono^o (Figure 1) Player moves are always 
contingent on the preceding O-move. 

Proposition 6.1 There is a weakly bracketed, 
visibility-satisfying and control-innocent strategy 
notJd : A\ such that | not.id | = |id0=>0| but id ^ not.id. 

PROOF: Let notJd be the strategy consisting of the 
even prefixes of the play depicted in Figure 4. Then 
|not.id0=J.0| = |id0=>0| but notJd ^ id by Lemma 5.18. 

D 

Moreover   (as  the  definability  and  full  abstraction 
results imply)  notJd and id are the denotations of 
terms which are not observationally equivalent: 
id = [A/./], notJd = [NOTJD] where NOTJD = 
A/.A.x.new.exn Xh.(handle h (/ raise h))\ x. 
NOTJD   g£   A/./;   let ID.TEST   :   li   =>   comm  = 
Ag.new.exn k.handle k (((g Abhandle k x) raise k);Q): 
ID.TEST NOTJD Jj skip and ID.TEST A/./ f skip. 

The distinction between not.id and id can be used 
to show that there is no model of I Ax in Q. 

Definition 6.2 Define the Q-strategy idtrunc : A\ —► 
A1 = {t € LA-^A+ | t G \dAl A t\A^ = t\A+ G id0^0} 

As the definability result of [1] entails, idtrunc is defin- 
able as a term of Idealized Algol: 
TRUNC = \g : T.newXz.Xf.Xx.z := 0;((9Mi)M2), 
where Mt = Xy.IFO \z then (z := 1; {f y)) else Ü) and 
M2 = IF0 \z then ft else x. 

Lemma 6.3 For all a : A\ in Q, a; idtrunc <^t \d0=$0 

PROOF: This is direct by definition of idtrunc. D 

In CG, notJd; idtrunc = not.id ^^ id0=>0 — and this 
fact can be exploited to prove the following. 

Proposition 6.4 There is no adequate model of IAx 
in G which conservatively extends the semantics of I A. 

PROOF: Suppose there is such an interpretation. 
Then ID.TEST (TRUNC NOTJD) JJ. skip im- 
plies that [ID.TEST (TRUNC NOTJD)]g ± _L, 
and hence ([NOT.ID]e; idtrunc); [ID_TEST]g ^ _L. 
By Lemma 6.3, [A/./]5; [ID.TEST]e ^ JL, and so 
[ID.TEST Xf.fjg ^ ±. But this contradicts adequacy, 
as ID.TEST Xf.f ^ skip. D 

6.1    Further Directions 

By demonstrating that the games semantics of ex- 
ceptions requires new structure, unlike the models of 

(o    =►     o) 

P ^ 

o) 

O 
* A 

I 

o 

Figure 4. A typical play of not.id 
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references and continuations, we have shown the lim- 
itations of the "semantic cube" [4] of models of pro- 
gramming language features based simply upon relax- 
ing constraints on the original model of PCF. But the 
basic analyis implicit in the cube is strengthened by 
the new structure — in effect, we have added an extra 
dimension to it. The extra degree of freedom available 
in the category of control games can be exploited to 
give a thorough analysis of the interactions between 
exceptions, continuations and references. The latter 
can be modelled by dropping the "visibility condition" 
in the style of [1] to reach a fully abstract semantics 
of "core ML". (It is straightforward to move to a call- 
by-value perspective by using, for instance, the Fam(C) 
construction [2].) 

To allow call/cc to be interpreted, the weak brack- 
eting condition is relaxed. In this model, throwing a 
continuation and and handling an exception both cor- 
respond to playing a move which is not contingent on 
the pending question; the distinguishing feature of ex- 
ceptions is that they allow contingency pointers to be 
observed. The most interesting feature of the model is 
that (unlike the model of continuations in Q [11]) it is 
not an example of continuation-passing-style construc- 
tion; it contains observably distinct strategies which 
represent terms which are equivalent in all cps models. 
These terms constitute a further counterexample to the 
claim that exceptions can be expressed using continu- 
ations, which can be presented wihtout recourse to the 
game semantics. 
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Abstract We propose a notion of interval object in a cat- 
egory with finite products, providing a universal property 
for closed and bounded real line segments. The universal 
property gives rise to an analogue of primitive recursion for 
defining computable functions on the interval. We use this 
to define basic arithmetic operations and to verify equations 
between them. We test the notion in categories of interest. 
In the category of sets, any closed and bounded interval of 
real numbers is an interval object. In the category oftopo- 
logical spaces, the interval objects are closed and bounded 
intervals with the Euclidean topology. We also prove that an 
interval object exists in any elementary topos with natural 
numbers object. 

1    Introduction 

In set theory, one can implement the real numbers in 
many ways. For example, one can use Dedekind sections or 
equivalence classes of Cauchy sequences of rational num- 
bers. But what is it that one is implementing? Assuming 
classical logic, either implementation produces a complete 
Archimedian field and, moreover, any two such fields are 
isomorphic. In fact, for the purposes of classical analysis, 
one never uses a particular mathematical implementation of 
the reals. One relies instead on the specification of the real- 
number system as a complete Archimedian field and works 
axiomatically. The only purpose of particular implementa- 
tions is to be reassured that there is at least one such field. 

Unfortunately, when one tries to carry out such a pro- 
gramme in other foundational settings, difficulties arise. 
One obstacle is that the categoricity of this axiomatization 
relies on the principle of excluded middle, which is not al- 
ways available, particularly in settings that are relevant to 
the theory of computation. Further, one may criticize the 
axiomatization on the grounds that, although it is aiming 
to characterize the real line, which is fundamentally a geo- 
metric structure, it makes essential use of abstract concepts, 

♦Research supported by EPSRC grant GR/K06109 

such as suprema of bounded sets of points, whose geomet- 
ric meaning is unclear. In addition, the field axioms involve 
operations, such as multiplication and reciprocation, which 
one might rather see as derived from more primitive con- 
structions. 

A further objection to the field axiomatization is its lack 
of explicit computational content. To develop a theory 
of computability in the sense of Turing [32], one has to 
start by effectively presenting a particular implementation 
of the field of real numbers. For example, one can imple- 
ment real numbers as Cauchy sequences of rational num- 
bers with fixed rate of convergence [3]. Then one has to ar- 
gue that the basic field operations are computable and that 
various methods of defining new functions from old pre- 
serve computability—see e.g. Weihrauch [34]. With this 
approach, computability arguments involve heavy manipu- 
lation of Gödel numberings, which are detached from the 
usual practice of real analysis. 

The above contrasts with the natural numbers, where 
primitive recursion, the basic computational mechanism, is 
not only embodied in their usual Peano axiomatization but 
can also be taken as their defining property. An elegant for- 
mulation of such an axiomatization was given by Lawvere 
in his definition of a natural numbers object [22]. This style 
of axiomatization has been adopted for other inductively de- 
fined data types, such as lists and trees, which admit canon- 
ical forms of recursion that reflect their characterization as 
initial algebras. Dually, infinite data types, such as streams, 
are characterized as final coalgebras, with corresponding 
forms of corecursion. This formulation of data types has 
been convincingly exploited by Bird and de Moor in their 
algebraic approach to programming [2]. 

To place the real numbers into the above framework, one 
requires a notion of real number data type whose defining 
property embodies primitive mechanisms for recursion over 
the reals. In this paper, we present such an axiomatization 
for closed and bounded line segments, or interval objects 
for short. We characterize interval objects by a universal 
property that captures a basic geometrical notion and si- 
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multaneously provides a computational notion of recursion. 
Thus, remarkably, our axiomatization reconciles geometri- 
cal and computational conceptions of the line. 

In brief, our axiomatization: 

(i) is based on elementary geometrical considerations, 

(ii) has direct computational content, 

(iii) applies in a wide variety of settings, 

(iv) gives what one would expect in specific examples. 

Regarding (i), we take a midpoint operation as the ba- 
sic structure of line segments, with four axioms that corre- 
spond to intuitive geometric properties. We define a convex 
body as a midpoint algebra in which the midpoint operation 
can be infinitely iterated, in a precise sense discussed in the 
technical development that follows. Then an interval object 
is defined to be a free convex body over two generators, its 
endpoints. Geometrically, the free property amounts to the 
fact that any two points of a convex body are connected by 
a unique line segment. 

Regarding (ii), the free property gives rise to an analogue 
of primitive recursion for defining computable functions on 
the interval. In particular, we use this to define basic arith- 
metic operations and to verify equations between them. 

Regarding (iii), we make as few ontological commit- 
ments as possible by formulating our definitions in the gen- 
eral setting of a category with finite products. Nevertheless, 
to make the paper accessible to readers who are uncomfort- 
able with category theory, we use, as far as possible, stan- 
dard algebraic notation, so that everything we say can be 
easily understood in familiar mathematical terms. Indeed, 
when specialized to categories such as sets and topological 
spaces, our definitions assume rather concrete meanings. 

Regarding (iv), we have: (1) In the category of sets, any 
closed and bounded interval of real numbers is an inter- 
val object (Theorem 1). (2) In the category of topologi- 
cal spaces, any closed and bounded interval under the usual 
Euclidean topology is an interval object (Theorem 2). Thus, 
our axiomatization of line segments exhibits the Euclidean 
topology as intrinsic rather than imposed structure, because 
it is this topology that gives rise to an interval object. This 
is interesting in connection with the often cited fact that the 
computable functions on the reals are continuous. (3) In 
any elementary topos with natural numbers object, an inter- 
val object is given by the Cauchy completion of the inter- 
val of Cauchy reals within the Dedckind reals (Theorem 3). 
In many cases this coincides with the Cauchy or Dedckind 
intervals; but, in general, we seem to be identifying an in- 
triguing new intuitionistic notion of real number. For details 
see Section 9. Some other possible settings arc discussed 
briefly in Section 10. 

For lack of space, all proofs are omitted from this ex- 
tended abstract. 

Related work This paper has its origins in the first au- 
thor's work on exact real number computation [10, 11]. In 
this approach, real numbers arc represented by concrete 
computational structures such as streams, allowing com- 
putations to be performed to any desired degree of accu- 
racy [35, 6, 4, 5, 33]. Of particular relevance to our work 
is the issue of obtaining an abstract data type of real num- 
bers, in which the underlying computational representation 
is hidden [5, 8, 10, 11]. 

In the programming language Real PCF [10], the ab- 
stract data type is based on simple real number construc- 
tors and destructors. Mathematically, the constructors arc 
unary midpoint operations i^Offi x and x H-> X (D 1 on 
the unit interval [0,1], where x © y = (x + y)/2 is the 
binary midpoint operation. These primitives are used by 
Escardo and Streicher [11] to characterize the interval data 
type by a universal property, from which structural recur- 
sion mechanisms for real numbers arc obtained. Thus, this 
work achieves many of the aims of the present paper. How- 
ever, it crucially relies on general recursion and the conse- 
quent presence of partiality. Indeed, the interval data type 
includes partial real numbers as essential ingredients of its 
characterization, and the characterization only works in a 
domain-theoretic setting. 

The goal of the present work is to obtain a characteriza- 
tion of the real numbers that applies to a variety of compu- 
tational settings, including those, such as intuitionistic type 
theory [25], in which only total functions arc available. Al- 
though such a programme has not been undertaken previ- 
ously, algebraic and coalgebraic techniques, similar to the 
ones used in the present paper, do occur in previous axiom- 
atizations of the reals. 

Higgs [14] defines magnitude algebras and proves that 
the interval [0, oc] endowed with the function x \-> x/2 and 
the summation operation ^ : [0, oo]"' ->• [0, oc] is the mag- 
nitude algebra freely generated by 1. His definition is purely 
cquational and is based on binary expansions of numbers. 
Although our work has some connections with Higgs', es- 
pecially regarding the idea of using an infinitary operation, 
there are some important differences. Firstly, in the cate- 
gory of topological spaces, the free magnitude algebra over 
one generator is the interval [0, oc] with the topology of 
lower semicontinuity rather than the Euclidean topology. 
Indeed, the infinitary summation operation is not continu- 
ous with respect to the Euclidean topology. Secondly, in 
general, the Dedckind or Cauchy [0, oo] intervals in an el- 
ementary topos arc not magnitude algebras, let alone free 
ones, as there arc toposes, such as Johnstonc's topological 
topos [17], in which these objects do not support the sum- 
mation operation. 

Motivated by the stream implementations of real num- 
bers, Pavlovic and Pratt [29] consider coalgebraic defini- 
tions of the reals. However, they do not make connections 
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with the computational and geometrical requirements dis- 
cussed above. Peter Freyd [ 12] considers a more geomet- 
rical coalgebraic approach. In fact, he also places empha- 
sis on midpoint algebras, although the midpoint operation 
is derived rather than primitive. His approach does appear 
to have some computational content, but this has yet to be 
elaborated. 

2   Convex bodies and interval objects 

This section presents the main definitions of this paper, 
the notions of abstract convex body and interval object. 

As discussed in the introduction, we define the interval 
as the free convex body over two generators. To do this, 
we require an abstract notion of convex body that makes 
no reference to real numbers. We achieve this by viewing 
convex bodies as algebraic structures. 

The algebraic structure we identify is that associated 
with the basic ruler-and-compass construction of bisecting a 
line. Given two points in a convex body A, this construction 
finds the point midway between them. It thus corresponds 
to a binary midpoint operation m : A x A -> A. We begin 
by axiomatizing the equational properties of such midpoint 
operations. 

Let C be a category with finite products. 

Definition 2.1 (Midpoint algebra) A   midpoint   algebra 

in C is a pair (A,m), where A x A m > A is any mor- 
phism, satisfying: 

the work of Kermit [20]. They have also recently been pop- 
ularized by Peter Freyd in his investigations of (co)algebraic 
properties of the interval [12]. 

1. m(x,x) = x 

2. m(x,y) =m(y,x) 

(idempotency) 

(commutativity) 

3. m(m(x,y),m(z,w)) = m(m(x,z),m(y,w)) 
(transposition) 

A midpoint algebra is said to be cancellative if it satisfies: 

4. m(x, z) = m(y, z) implies x = y (cancellation) 

A homomorphism from (A,m) to (A',m') is a morphism 

A' such that f(m(x,y)) = m'(f(x),f(y)). We 
write MidAlg(C) for the category of midpoints algebras and 
their homomorphisms. 

In order to understand such ordinary algebraic notation in an 
arbitrary category with finite products, the variables must 
be interpreted as generalized elements. Thus, for exam- 
ple, the homomorphism equation states: for all general- 
ized elements x,y : Z » A (where Z is any object), 
fomo(x,y) = m'o(fox, Joy). In this case, the condition 
simplifies to the (unquantified) equation fom = mo(fxf). 

The equations of midpoint algebras are not new. For ex- 
ample, they have appeared as the axioms of medial means in 

Example 2.2 The set ] 
under the function © : 

is a cancellative midpoint algebra 
'xEMM" defined by 

x©y    =    (x + y)/2. 

This yields a whole range of cancellative midpoint algebras 
given by subsets A C Rn closed under ©. We call such 
midpoint algebras standard midpoint subalgebras of Rn. 
Examples are: the set of dyadic rational points; the set of 
rational points; the set of algebraic points; any convex set. 

These examples show that the midpoint axioms are still 
far from capturing the full power of convexity, which re- 
quires one to be able to fill in an entire connected line be- 
tween any two points. Intuitively, we need to express some- 
thing like a notion of Cauchy completeness for midpoint al- 
gebras. However, Cauchy completeness itself cannot be the 
appropriate notion, as midpoint algebras do not necessarily 
carry a metric structure. More fundamentally, we cannot 
use the notion of metric space to define the interval, be- 
cause axiomatizing metric spaces already begs the question 
of what the real numbers are. Instead, we need a method 
of axiomatizing the completeness of midpoint algebras in 
terms of their algebraic structure alone. 

Consider an arbitrary sequence of points x0, x\,... in an 
ordinary Euclidean convex body A. Let z be any point of A 
and consider the derived sequence 

m(x0,z), m(x0,m(xi,z)), m(x0,m(x1,m(x2,z))), ... 

If A is bounded then this is a Cauchy sequence whose 
unique limit point lies in A and is independent of z. 
Thus, any sequence XQ,X\, ..., determines a unique point 
m(x0,m(xi,m(x2,...))) obtained by infinitely iterating 
the binary operation m over the sequence. Our notion of 
completeness for a midpoint algebra A is to ask that such 
infinite iterations always exist. 

In the category of sets, such a requirement can be ex- 
pressed directly, albeit clumsily—see Proposition 3.1. Re- 
markably, there is a very concise formulation in purely cat- 
egorical terms. Infinite sequences of elements of A are nat- 
urally expressed using coalgebras for the functor (A x (-)), 
i.e. morphisms of the form (h, t) : X  Ax X. Indeed, 
any such coalgebra determines an object X of sequences 
of elements of A, as specified by the head and tail maps 
h : X ► A and t : X ►• X respectively. We can 
now state the property of being able to iterate the midpoint 
operation m over any sequence so specified. 
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Definition 2.3 (Iterative algebra) A    midpoint    algebra 
(A,m) is iterative if it satisfies the iteration axiom:   for 

every map X  >- Ax X, there exists a unique A'  ► A 
such that the diagram below commutes. 

AxX 
id x 

Ax A 

X A. 

In other words, (A,m) is iterative if, for any coalgebra 
c — (h,t) : X  A x X, there exists a unique u satis- 
fying u(x) = rn(h(x),u(t(x))). 

The above definition states that a midpoint algebra 
(A,m) is iterative if it is final as an (A x (-))-algebra 
with respect to coalgebra-to-algcbra homomorphisms from 
(A x (—))-coalgebras. Interestingly, the dual notion of a 
coalgebra being initial with respect to arbitrary algebras has 
arisen in recent work of Taylor [31, Section 6.3] and Eppen- 
dahl [9]. 

We arc now in a position to formulate our abstract notion 
of convex body. 

Definition 2.4 (Abstract convex body) An abstract con- 
vex body is a canccllativc iterative midpoint algebra. 

We henceforth omit the word abstract, except when re- 
quired to avoid confusion due to alternative notions of 
convex body being available (for example, in Euclidean 
space, where ordinary convex bodies arc convex sets with 
nonempty interior). We write Conv(C) for the full subcate- 
gory of MidAl(j(C) whose objects arc convex bodies. 

Example 2.5 Continuing from Example 2.2, any bounded 
convex subset of R", considered as a standard midpoint 
subalgcbra of K" , is an abstract convex body. Indeed, given 
functions h : X —> A and t : X —> X, where X is any 
set, the unique function u : X —>• .4 determined from the 
coalgebra (h, t) : A —> A x A' by the iteration axiom is 

u .T      = -(i+i) 

;>o 
/t(/(z)). (1) 

An important point is that the boundedness of A is crucial 
for u to be well-defined. In fact, a standard midpoint subal- 
gcbra of K" is an abstract convex body if and only if it is a 
bounded convex subset of K" ; and, given a bounded convex 
subset B of K", a function / : .4 -» D is a homomorphism 
of abstract convex bodies (i.e. a homomorphism w.r.t. ©) if 
and only if it is affine. Sec Section 3 for details. 

Example 2.6 Let A be any bounded convex subset of En 

endowed with the Euclidean topology. Then © also ex- 
hibits A as a convex body in the category Top of topo- 
logical spaces. Indeed, given any continuous (A x (—))- 
coalgebra (h,t) : X —> A x X (where X is any space), 
the function u defined in (1) is again the unique map re- 
quired by the iteration axiom. The interesting fact here is 
that u is continuous. This example will be expanded upon 
in Section 8. 

As motivated in the introduction, the interval will be de- 
fined as the free abstract convex body over two generators. 
This amounts to being an initial object in a suitable category 
of bipointed convex bodies. 

A bipointed convex body is a structure (A, m, a, b) 
where {A,m) is a convex body and a,b : 1  ►- A arc 
global points. Homomorphisms between bipointed convex 
bodies are required to preserve the points as well as the bi- 
nary algebra structure; i.e. / : A ► A' is a homomor- 
phism from (A,m,a,b) to (A',m',a',b') if and only if it is 
a homomorphism from (A,m) to (A',m') and a' = f o a 
and b' = f o b. We write BiConv(C) for the category of 
bipointed convex bodies and their homomorphisms. 

We can now give the main definition of the paper. 

Definition 2.7 (Interval object) An interval object in C is 
an initial object in BiConv{C). 

Example 2.8 In Set, any closed interval [a, b] C R, with 
a < b, gives an interval object ([a,b],Q),a,b). Of course 
the choice of a and b makes no difference. For future con- 
venience, we take the interval I = [—1,1] as our standard 
closed interval and (I, ffi, — 1,1) as our standard interval ob- 
ject. This example is discussed in more detail in Section 3. 

Example 2.9 In Top, (I, ©, — 1,1) is again an interval ob- 
ject when I is equipped with the Euclidean topology. This 
is discussed further in Section 8. 

3    Interval objects in the category of sets 

In this section wc study abstract convex bodies in the 
category Set of sets, and we show that the interval object 
in Set is indeed (I, ffi, —1, l),as claimed in Example 2.8. 

The least familiar aspect of the definition of convex body 
is the notion of iterative algebra. We begin by showing that, 
in Set, iterative algebras are exactly algebras supporting an 
additional operation of countably-infinite arity that satisfies 
certain characterising properties relating it to the binary op- 
eration. In general, this reformulation provides the most 
straightforward method of showing that an algebra is itera- 
tive. 
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Proposition 3.1 Let (A, m) be a midpoint algebra in Set. 

1. (A, m) is iterative if and only if there exists a function 
M : Au -» A satisfying: 

(a) M(x0,xi,x2,...) = m(x0,M(xi,x2,X3,...)) 

(b) If 2/0   =   m(x0,yi), yx   =   m(x1,y2), y2   = 
m{x2,y3), ...thenyo = M(x0,x1,x2, ■ ■.). 

Moreover if (A, m)   is  iterative  then  there  is  a 
unique M satisfying (a). 

2. If {A, m) and (A1, m') are iterative midpoint algebras 
then any homomorphism f : A -> A' is also a homo- 
morphism with respect to the associated infinitary M 
and M'; i.e. for every sequence Xo,Xi,..., 

f(M(x0,x1,...)) = M'(f(x0),f(x1),...). 

With an appropriate reformulation, the above proposition 
generalizes from the category of sets to any category with 
finite products and a parameterized natural numbers objects. 

It is useful to identify additional equational properties 
satisfied by the the associated infinitary operations. We use 
Mj(xj) as a shorthand for M(x0,xi,x-2, ■ ■ ■)■ 

Proposition 3.2 For any iterative midpoint algebra (A, m) 
in Set, with infinitary M : Au -> A, 

1. x = M(x,x,x,...), 

2. m(x,y) = M{x,y,y,y,...), 

3. MiiMjixij)) = MjiMiixji)), 

4. Mi(m(xuyi)) = m(Mi(xl),Ml{yi)). 

For an iterative midpoint algebra to be a convex body it 
must also be cancellative. We have yet to see any techni- 
cal consequence of this property. In fact, for iterative mid- 
point algebras, cancellation is equivalent to an important 
approximation property. To formulate this, we write mn 

for the (n + l)-ary operation defined by mo(x) = x and 
m„(x0,...,xn) = m(xo,mn_i(xi,...,xn)) for n > 1. 
Thus mi is just m itself. 

Proposition 3.3 For an iterative midpoint algebra (A,m) 
in Set, the following are equivalent. 

1. (A, m) is cancellative. 

2. The associated M : A" —> A satisfies the following 
approximation property. 

If for all n > 0, there exist zn,wn  €  A such that 
mn(x0,...,x„_i,zn) = mn(y0,...,yn-i,wn) then 

M(x0,xi,...) - M{y0,yi,...). 

This is far from immediate and is used crucially in the proof 
of Theorem 1. 

Having obtained a good understanding of what the dif- 
ferent aspects of the definition of convex body mean in Set, 
we return to Examples 2.5 and 2.8. 

Proposition 3.4 If A is a standard midpoint subalgebra 
ofW1, then A is an abstract convex body if and only if it 
is a bounded convex subset ofW1. 

Suppose A CW1 and A' C Km are convex sets. Recall 
that a function / : A -> A' is said to be affine if it preserves 
so-called convex combinations, i.e., for Ai,..., A* G [0,1] 
with Ei=l xi = 1. 

k k 

/(^AiXi)    =    2>/(Xi). 
t=i »=i 

The next proposition demonstrates the naturalness of homo- 
morphisms between abstract convex bodies. 

Proposition 3.5 For bounded convex sets A C E" and 
A' C Rm, a function f : A -> A' is affine if and only if 
it is a homomorphism with respect to ©. 

An example due to Peter Freyd [12], which uses the ax- 
iom of choice, can be used to show that the boundedness 
assumption is essential for Proposition 3.5 to hold. 

Theorem 1  (I, ©, -1,1) is an interval object in Set. 

4   Parameterized interval objects 

It is well known that Lawvere's elegant definition of a 
natural numbers object, which works very well in cartesian 
closed categories, is not powerful enough in categories with 
weaker structure. Instead, a modified parameterized defini- 
tion is needed [21, 7]. In a category with finite products, the 
notion of parameterized natural numbers object supports the 
definition of functions by primitive recursion. Moreover, in 
a cartesian closed category, any ordinary natural numbers 
objects is automatically parameterized. Much the same sit- 
uation arises for interval objects. 

Definition 4.1 (Parameterized interval object) A param- 
eterized interval object is a bipointed convex body 
(/,©,—1,1) such that, for any convex body (A,m) and 

morphisms Ar —>- A and X —9—* Am C, there exists 

a unique morphism X x / (I/-sl) A satisfying 

l[f,gUx,y®z)    =    m{1[f,gD(x,y),M,gti{x,z)), 

d/,fl])(^-l)    =    fix), 
fl/.ffJOM)    =    g(x), 

i.e. there is a unique right-homomorphism of bipointed con- 
vex bodies from X x / to A. 
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By instantiating X to the terminal object, it is easily seen 
that any parameterized interval object is indeed an interval 
object. The converse holds when C is cartesian closed: 

Proposition 4.2 // C is cartesian closed then any interval 
object is parameterized. 

Henceforth in this section, let C be a category with finite 
products and parameterized interval object (/,©,—1,1). 
The basic arithmetic operations on / can be defined by 

1 — /    =    (-1)0(1), 

/— J    =    ([1,-1]), 

1x1-^*1     =     d-, id;]). 

More explicitly, the above defines multiplication as the 

unique morphism I x I I satisfying 

x x {y ® z)    -    {xxy)®(xxz), 

X X (-1)       =       -X, 

X X I      =      X. 

Importantly, the universal property of /, stated in Defi- 
nition 4.1, suffices to establish the basic equations between 
the above operations. 

Proposition 4.3 x = x, 
x x y = y x x, 
x x (y x z) = (x x y) x z, 
-0 = 0, 
x (I) -x = 0, 
-(x(By) = (-x)©(-y), 
1x0 = 0, 
x x —y = — (x x y). 

The most entertaining proof is that of the commutativity of 
multiplication. 

5    Primitive interval functions 

In this section we give some preliminary results on the 
power of the notion of interval object with respect to defin- 
ing functions on the interval. As mentioned above, any pa- 
rameterized natural numbers object supports definition by 
primitive recursion. Here we investigate the definitional 
mechanisms supported by parameterized interval objects. 

In fact, a parameterized interval object supports two 
complementary styles of definition. On the one hand, 
the universal property of parameterized initiality gives one 
mechanism for defining functions, used above to define 
negation and multiplication. On the other, the couniver- 
sal property of the iteration axiom supports another type of 
definition, needed, for example, to define non dyadic ra- 
tional numbers.  Parameterized interval objects allow any 

combination of these two styles. We investigate the power 
of such combinations for the purpose of defining functions 
on I in Set. 

Definition 5.1 (Primitive interval functions) The primi- 
tive interval functions on I are the functions in the smallest 
family {Tn  C  I"->■ I}„>0 satisfying: 

(i)  -l,l£fo. 

(ii) If / G Tm and </i,... ,g,„ € Tn then the composite 
f° (0\,---,9m) e T„. 

(iii) If /,g e Tn then the function h defined below is in 
Tn+\'- 

H^y)   =   \(i-v)f(x) + \(i + v)g(x). 

(iv) If /i ,...,/„, g e Tn then the unique function h satis- 
fying the equation below is in Tn: 

h(x)    =    \g(x) + \h(h(x),...,f „(*)). 

Here (iii) corresponds to the parameterized initiality of I, 
with respect to I" as the object of parameters, and (iv) cor- 
responds to the iteration axiom, as induced by the coalgc- 
bra (.9, /],...,/,,): I" -> II x I". Note that property (ii) 
means that tuples of primitive interval functions between fi- 
nite powers of 1 form a category. This category has finite 
products because the projections arc definable, using (iii). 

The function defined by (iv) is given explicitly by 

h(x)     =    ^2-"+1).ry((/1,...,/,l)'(x)). 

A natural generalization is to replace the sequence 
(g ° (/ii ••• i/n)')i of composite functions with an arbi- 
trary sequence of (already defined) n-ary functions. 

Definition 5.2 (Countably-primitive functions) The 
countably-phmitive interval functions on I are the func- 
tions in the smallest family {Tn C I" -> I}„>o satisfying 
(i)-(iii) of Definition 5.1 and also 

(iv)' Given /n, f\,... £ Tn, the function /» defined below 
is in T,,: 

Mx) £*- (1+1) /i(x). 
<>o 

Clearly every primitive interval function is a countably- 
primitive interval function. The converse docs not hold 
as there are continuum many countably-primitive inter- 
val functions, but only countably many primitive interval 
functions. Indeed, every element of I gives a countably- 
primitive interval function of arity 0 (i.e. a constant). Al- 
though this cannot hold for the primitive interval functions, 
we do at least have the followine. 
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Proposition 5.3 Every rational in ] 
val constant. 

gives a primitive inter- 

The proof makes crucial use of property (iv). 
As in Section 4, we have ffi, -, x as primitive interval 

functions. Thus every n-variable ©-polynomial (i.e. poly- 
nomial where © replaces the usual +) with rational coeffi- 
cients is an n-ary primitive interval function. 

We are not sure how much further definability can be 
pushed with the primitive interval functions, as we now 
show that even the countably-primitive interval functions 
are very limited. 

Proposition 5.4 If f is an n-ary countably-primitive in- 
terval function, and x0,..., xn-i, Vo, ■ ■ ■, 2/n-i £ I are 
such that yi = x* whenever Xj € {-1,1}, then 
/(x0,...,x„_i) G {-1,1} implies f{y0,...,yn-i) = 
f(x0,...,xn-i). 

This is proved by induction over the defining properties of 
the countably-primitive interval functions. 

Thus if / is a unary countably-primitive interval function 
and /(x) € {-1,1} for some x in the interior (-1,1) then 
/ is a constant function. Clearly then, the following trun- 
cated double function is not a countably-primitive interval 
function. 

f  1       ifl/2<x, 
d{x)    =    I   2x     if-1/2 < x < 1/2, 

[   -1    ifx < -1/2. 

Accordingly, define the d-primitive interval functions to be 
the smallest class of functions containing d and closed un- 
der (i)—(iv). Define the countably-d-primitive interval func- 
tions analogously. The reason for selecting d amongst the 
non-countably-primitive interval functions is: 

Proposition 5.5 The n-ary countably-d-primitive interval 
functions are exactly the continuous functions In ->• I. 

The proof uses the Stone-Weierstrass approximation theo- 
rem [30]. 

Thus including d as a basic function enormously in- 
creases definability. It is our hope that this increase in de- 
finability also means that the d-primitive interval functions 
form a useful class, somewhat analogous to the primitive 
recursive functions on N. Although we have yet to under- 
take any systematic investigation of this class, we do have 
one important result. Recall the standard notion of an n-ary 
computable function on I [34]. 

Proposition 5.6 Every n-ary d-primitive interval function 
is an n-ary computable function on I. 

This result follows from Theorem 3 of Section 9 below, 
by interpreting it in a realizability topos in which the mor- 
phisms on the interval are exactly the computable functions. 

However, in the next section, we outline a direct proof, by 
showing that the computable functions are closed under the 
defining properties of the d-primitive interval functions. 

6   An interval data type 

In Proposition 3.1, we have seen that, in the category of 
sets, the iteration axiom is captured by the existence of an 
infinitary version M of the midpoint operation m. More- 
over, a function of convex bodies is a homomorphism with 
respect to m if and only if it is a homomorphism with re- 
spect to M. Additionally, Proposition 3.2 shows that m is 
easily defined from M. This suggests that one might con- 
sider the w-ary operation M as the primitive algebraic op- 
erator on convex bodies, rather than m. In this section, we 
exploit this idea to base a data type for the interval I on the 
term algebra of an w-ary operation M and two constants -1 
and 1. 

We outline an implementation using a functional pro- 
gramming notation similar to ML [28] and Haskell [1] (it 
is not important whether an eager or lazy language is used). 
Our data type I is defined as follows. 

datatype I = -1 | 1 |  M of Nat -> I 

Within the interval type I, we single out the w-branching 
well-founded trees as those data elements representing 
points of the interval. Such trees are precisely the elements 
of the term algebra mentioned above. To interpret a tree as 
representing an element of I, the infinitary operator M is 
interpreted as the iterated midpoint operation 

M(x0,Xi,X2,...) 

oo 

i=0 

using which any w-branching well-founded tree evaluates to 
a unique point in I. Thus, by this interpretation, I is given as 
a quotient of the set of all w-branching well-founded trees. 

The iteration axiom of Definition 2.3, in the concrete 
form given in Example 2.5, corresponds to the following 
corecursion combinator. 

corec   :    (X   ->   I)   ->   (X   ->  X)   ->   (X  ->   I) 

corec  h  t  x  =  M   (\i   ->  h(t"i(x))) 

In this definition, \i->t is typewriter notation for the 
lambda expression Xi.t and we use the evident notation for 
function iteration. 

The initiality of I, as in Definition 2.7, is exhibited by the 
following recursion combinator. 

rec   :    ((Nat   ->  A)   ->  A)   ->  A  ->  A  -> A) 

rec Nab -1 = a 
rec Nab 1 = b 
rec  Nab      (M  s)   =  N   (\i   ->   rec  Nab   (si)) 
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In this definition, the first argument N is the infinitary mid- 
point operation of a given bipointed convex body A, and the 
second and third arguments a and b are the distinguished 
points. We have not built any explicit type of parameters 
into the type of rec, because parameterization is induced 
automatically by the functional language. For example, 
negation and multiplication are defined as in Section 4, us- 
ing the recursion combinator. 

neg : I -> I 
neg = rec M 1 -1 

mul : I -> I -> I 
mul x = rec M (neg x) X 

The recursion and corecursion combinators correspond to 
conditions (iii) and (iv) of Definition 5.1 respectively. The 
truncated double function can also be implemented using 
the datatype I, but this is surprisingly tricky. However, cu- 
riously, an algorithm for doing this occurs fairly explicitly 
in our (omitted) proof of Theorem 3 below. It follows that 
the d-primitive interval functions arc definable on our inter- 
val datatype I. 

Because we are using a non-standard representation of 
the interval, based on the infinitary midpoint operation, it is 
important to show that our representation is interconvertible 
with the standard representations used in exact real number 
arithmetic. One such representation, signed binary, uses 
a data type I' of infinite sequences of the three digits -1, 
0 and 1—see [35]. It is trivial to convert from signed bi- 
nary sequences to our representation I, using the facts that 
0 = AI( — 1,1,1,1,...) and that a signed binary expansion 
Q.dQ(i\d-2 ... is the same as AI (do,d\,do,...). To translate 
in the other direction, one first defines the iterated midpoint 
operation M' : (Nat->I' ) ->I' (an interesting program- 
ming exercise), and then the conversion function I->I' is 
simply rec  M'    (\i   ->   -1)    (\i   ->   1). 

Although we have written this section using a functional 
language with general recursion, we remark that our rep- 
resentation of the interval can be implemented even more 
directly using intuitionistic type theory [25]. Indeed, by for- 
mulating the recursive definition of the data type I as a W- 
typc, one obtains precisely the well-founded w-branching 
trees over —1 and 1, and our recursion combinator is sim- 
ply the recursor for this type. 

7    Basic categorical properties 

In this section, we turn our attention to general proper- 
ties of convex bodies and interval objects arising from their 
categorical definitions. This general investigation will be 
useful in Sections 8 and 9, in which we study examples in 
categories other than Set. 

One benefit of having simple abstract definitions of con- 
vex body and interval object is that it is easy to prove that 

these notions are preserved by various categorical construc- 
tions and functors. In this section, we state basic results of 
this nature. The proofs are all routine. 

As in Section 2, let C be a category with finite products. 

Proposition 7.1 The forgetful functors Conv(C) 
BiConv(C) —> C create limits. 

C and 

In particular, if (A, m) and (A' ,m') are convex bodies then 
so is A x A' endowed with 

(Ax A') x (Ax A') -=~ (AxA)x(A'xA') ^^ Ax A' 

and an analogous statement holds for bipointed convex bod- 
ies. One simple consequence of this result is that, for any 
interval object (7, ©,o, 6), the n-dimcnsional cube In has 
an induced convex body structure. 

As well as being closed under limits, convex bodies arc 
also closed under internal powers. 

Proposition 7.2 If (A, m) is a convex body then so is 

B    AB „ AB    - . {A", Au xA (A x A) B    m   _    \B A") 

for any exponentiable object B. 

Again, the analogous result holds for bipointed convex bod- 
ies. 

It is also straightforward to establish conditions under 
which (bipointed) convex bodies arc preserved by functors. 
Suppose V is a category with finite products, and the func- 
tor F : C —> T> preserves finite products. Then there is a 
functor F : MidAlg(C) -» MidAlg(V) whose action on 
objects is: 

F(A,m) = (FA, FA x FA F(A x A) — FA) 

and whose action on morphisms is inherited from F. 

Proposition 7.3 Suppose that F has a left adjoint. 

1. The functor Fj MidAUj(C) ->■ MidAlg(D) cuts down 
to a functor F : Conv(C) —> Conv(T>). Similarly, 
by extending the action of F to bipointed objects, a 
functor F : BiConv(C) —> BiConv(T>) is obtained. 

2. If F :_C ->■ V also has a right adjoint G : V -> C 
then G : Conv(T>) —» Conv(C) is right adjoint 
to the functor F : Conv(C) —> Conv(D), and 
G : BiConv(T>) —> BiConv(C) is right adjoint to 
F : BiConv(C) —> BiGonv(D). Thus, in particular, 
F : C —» V preserves interval objects. 

It follows from 1 above that if C is a full reflective sub- 
category of T> and if T> has an interval object (I, (B, —1,1) 
where I is an object of C then (7, 0, —1,1) is also an inter- 
val object in C. 
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A special case of statement 2 is that interval objects are 
preserved by the inverse image functors of essential ge- 
ometric morphisms between elementary toposes. Thus if 
/ : £ -> £' is an essential geometric morphism and £' has 
an interval object then its image under /* gives an interval 
object in £. In particular, by Theorem 1, every presheaf 
topos Set has an interval object obtained as A (I) — re- 
call that the constant presheaf functor, A : Set -> Setc°P, 
is the inverse image functor of an essential geometric mor- 
phism [24]. More generally, in Section 9, we show that any 
elementary topos with natural numbers object has an inter- 
val object. 

8   Interval objects in the category of 
topological spaces 

In this section we return to the claims made earlier in Ex- 
amples 2.6 and 2.9, investigating abstract convex bodies and 
interval objects in the category Top of topological spaces. 

Proposition 3.1 generalizes to Top with the requirement 
that M : Au -» A be continuous with respect to the product 
topology. It follows that, for a bounded convex A CM", the 
midpoint algebra (A, ©) with the discrete topology is not an 
abstract convex body in Top , because this topology does 
not make the iterated midpoint operation into a continuous 
function. Thus the notion of abstract convex body forces 
one to consider more reasonable topologies on (.4, ©). 

Proposition 8.1 For any bounded convex subset A C W 
endowed with the Euclidean topology, (A, ©) is an abstract 
convex body in Top. 

This result is derived from Proposition 3.4, by proving that 
the infinitary midpoint operation is continuous. Certain 
other basic information about convex bodies in Top can 
be inferred using Proposition 7.3. The forgetful functor 
U : Top —> Set has both a left adjoint A (giving the 
discrete topology) and a right adjoint V (giving the indis- 
crete topology). Thus, both U and V preserve convex bod- 
ies. As U does, we see that, by Proposition 3.4, under any 
topology whatsoever, for a standard midpoint subalgebra A 
of ln to be a convex body in Top, A must be a bounded 
convex set. Also, for any bounded convex set, (A, ffi) with 
the indiscrete topology is a convex body in Top. 

Also, by Proposition 3.4, if an interval object exists in 
Top then U preserves it. In fact, we have already claimed in 
Example 2.9 that (I, ffi, -1,1) is an interval object in Top 
when given the Euclidean topology. As Top is not cartesian 
closed, it is appropriate to show that this is a parameterized 
interval object in the sense of Section 4. 

Theorem 2 (I, ®, -1,1) with the Euclidean topology is a 
parameterized interval object in Top. 

By Proposition 7.3.1, (I,©,-1,1) with the Euclidean 
topology is a parameterized interval object in any full reflec- 
tive subcategory of Top that contains the closed Euclidean 
interval. Thus, for example, it is a parameterized interval 
object in the category of compact Hausdorff spaces. 

9   Interval objects in an elementary topos 

In this section we prove that an interval object exists in 
any elementary topos with natural numbers object. There 
are at least two reasons to be interested in such a result. 
Firstly, elementary toposes include all Grothendieck and re- 
alizability toposes, of which there are numerous examples 
with direct geometrical and/or computational significance. 
Indeed, we have already mentioned that the results of this 
section can be used to prove Proposition 5.6. 

Our second motivation is to study the notion of interval 
object using an intuitionistic background logic. It is well 
known that intuitionistic logic draws sharp distinctions be- 
tween different, though classically equivalent, definitions of 
real number. To better understand our notion of interval ob- 
ject, we compare it to the competing intuitionistic accounts 
of the interval. Somewhat surprisingly, rather than obtain- 
ing one of the established notions, interval objects give rise 
to an apparently new intuitionistic notion of real number, 
albeit one that coincides with extant notions under the mild 
assumption of number-number choice. 

Let £ be an elementary topos with natural numbers ob- 
ject N. Among the alternative notions of real number avail- 
able, two are considered as being the most natural, the 
Dedekind reals Rß and the Cauchy (or Cantor) reals Rc- 
Both are defined using the object of rationals Q and its as- 
sociated ordering. The reader is referred to [16] for details. 

A basic fact is that one has inclusions 

Q C Rc C RD. 

We say that a subobject X C RD is Cauchy complete 
if every Cauchy sequence in A'N (with modulus) has a 
limit in X. It is easy to see that the Dedekind reals 
are Cauchy complete. Obviously, the rationals are not 
Cauchy complete. The Cauchy reals partially rectify the 
non-completeness of Q by adding all limits of Cauchy se- 
quences of rationals. Given N-N-choice, this suffices to 
make Rc itself Cauchy complete. However, it seems that, 
in general, Rc is not Cauchy complete, as, given a Cauchy 
sequence of Cauchy reals, there is no mechanism for se- 
lecting representative rational sequences from which the re- 
quired limiting sequence of rationals can be extracted. 

The possible failure of Cauchy completeness for Rc 
makes it natural to introduce another object of reals, namely, 
the Cauchy completion o/Q within R#. This object, which 
we call the object of Euclidean reals R#, is defined as the 

123 



intersection of all Cauchy complete subobjects of RD con- 
taining the rational numbers. 

We have identified three objects of reals 

Rc C RE C R/> 

In the case that £ satisfies N-N-choice, both inclusions are 
equalities. The Grothendieck topos of sheaves over the Eu- 
clidean line is a simple example in which the second inclu- 
sion is strict. To our embarrassment, we do not know an 
example in which the first inclusion is strict. Thus we do 
not know if the envisaged failure of the Cauchy complete- 
ness of Rc is actually possible—although we arc sure that 
it must be. 

Each notion of real number object determines a corre- 
sponding notion of interval object; for example, 

ID    =    {ieRcj-Ki<l} 
IE   =    {ieRE|-l<i<l}    =   RE n ID. 

The reason for introducing the Euclidean reals in the first 
place is the following. 

Theorem 3 (Iß, ©, -1,1) is an interval object in 8. 

Our proof is very long and makes crucial use of Pataraia's 
intuitionistic fixed-point theorem for monotonic endomaps 
of directed complete partial orders [27]. 

10    Concluding remarks 

We have provided an axiomatization of the interval, by 
means of a geometrically motivated universal property that 
supports the definition of computable functions. Moreover, 
we have investigated this axiomatization in a number of set- 
tings. 

Many other settings remain to be investigated. In the cat- 
egory of setoids over intuitionistic type theory [15, 26], it 
can be shown that any of the usual constructions of a closed 
real interval gives an interval object. In the category of lo- 
cales over any topos, we conjecture that the standard localic 
interval [18] is an interval object. 

By definition, an interval object is a free convex body 
over two generators. Freely generated convex bodies over 
different generating objects coincide with other familiar 
mathematical structures. Interesting examples occur in the 
category of topological spaces: (1) The free convex body 
over Sierpinski space is the interval with the topology of 
lower scmicontinuity. (2) The free convex body over the flat 
domain of booleans under the Scott topology is the interval 
domain studied in [11] with its pointwisc midpoint struc- 
ture. (3) The free convex body over a finite discrete space of 
cardinality n is an /(-simplex. In particular, the free convex 
body over three and four generators arc the triangle and the 
tetrahedron. All the above examples arc applications of the 

left adjoint to the forgetful functor from topological convex 
bodies to topological spaces, which exists by Freyd's Ad- 
joint Functor Theorem [23]. 

There arc intriguing connections between midpoint alge- 
bras and the probabilistic algebras that arise in the study of 
probabilistic powerdomains—sec the axiomatizations dis- 
cussed by Hcckmann [13]. It is plausible that the free 
convex body over a sufficiently nice domain may be noth- 
ing but the probabilistic powcrdomain of normalized valua- 
tions [19]. 
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Abstract 

Analysis offoundationalproblems like "What is compu- 
tation?" leads to a sketch of the paradigm of abstract state 
machines (ASMs). This is followed by a brief discussion on 
ASMs applications. Then we present some theoretical prob- 
lems that bridge between the traditional LICS themes and 
abstract state machines. 

1   Introduction 

This talk was prompted by Joe Halpern's invitation letter: 
"My hope this year is that the invited talks will showcase the 
relevance of logic to the rest of CS. It seems that some dis- 
cussion of abstract state machines (and their potential impact 
on Microsoft) would be a great theme ..." 

I always had a taste for foundational questions. That is 
why I went to logic (from algebra) in the first place. In 1982 
Michigan hired me, a logician, on the promise to become a 
computer scientist. Contrary to mathematical logic where 
the foundational questions had been more or less settled, 
the foundational questions of computer science were wide 
open. What is it that we study in computer science? What 
is computation? What are the peculiar dynamic systems of 
computer science? Thinking about these questions, I arrived 
at the notion of abstract state machine (ASM) as a formal- 
ization of the notion of computer system at any given level 
of abstraction. 

The operational approach of ASMs went against the pure 
declarative fashion of the formal methods of the time. Many 
formal-methods experts still think that any operational ap- 
proach is necessarily low-level and that an executable spec- 
ification is a contradiction in terms. But ASMs were suc- 
cessful in applications. The ASM community grew and with 
it grew the diversity of applications; see the ASM academic 
website [23] where you will find in particular a bibliogra- 
phy [13] and Egon Börger's surveys [11, 12]. While much 
of ASM activity takes place in academia, it is not confined 

to academia. Good ASM work has been done in Siemens. 
There is an active ASM group in Microsoft.   There are 
even two small ASM-based start-ups, http://www.modeled- 
computation.com and http://www.montages.com/. 

The rest of this talk is organized as follows. 

Section 2 A version of our original analysis of the funda- 
mental questions mentioned above. 

Section 3 A sketch of the ASM paradigm. 

Section 4 A few words on what ASMs are good for. 

Section 5 A few words on our Microsoft experience. 

Section 6 Some theoretical problems related to ASMs. 

Section 7 Postlude. 

I showed a draft of this talk to my former student Quisani 
which resulted in some Q & A inserted in the text. 

Acknowledgment 

1 am grateful to Andreas Blass, Mike Barnett, Uwe Glässer, 
Nikolai Tillmann and Margus Veanes for comments on this 
article which was written a little too quickly. 

2 What is computation? 

A computation can be defined as a run of a computer 
system. The notion of computer system should be general 
enough to account for future computer systems and for more 
abstract computations that you encounter, e.g., in the speci- 
fication stage of software development. We proceed to make 
our notion of computer system a little more precise 

2.1    Levels of abstraction 

A computer system has a hierarchy of levels of abstrac- 
tion. For example, you can view the execution of a C pro- 
gram on the level of the source program or on the level of 
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the executable code. These arc two different abstraction lev- 
els. Here we are interested in computations of a computer 
system with a fixed level of abstraction. 

The need to fix a particular level of detail is well under- 
stood in software engineering. To this end, for example, 
APIs (application programming interfaces) enable the pro- 
grammer to give precise syntactic information about a com- 
ponent— method names, typing information, etc. Typically 
the intended semantics is only hinted at. (And so you may 
want to use ASMs to fill in the gap.) 

2.2   The program 

A computer system is governed by a fixed program. Hu- 
man society for example is not a computer system. The more 
focused theory of computer systems should be deeper than 
General System Theory. 

A programmed system does not have to be closed. It can 
be highly interactive. 

Q: Is Internet a computer system in your sense? 

A: I guess this depends on the chosen level of ab- 
straction. Even a complex system, like Internet, 
can be algorithmic on some levels of abstraction. 

Q: Shouldn't this apply to human society as well? 

A: You arc right; it should. 

Q: Suppose that my program has loaded a bunch 
of classes from some library. Does this change the 
program of my computer system? 

A: Not necessarily. Again, this depends on the 
chosen level of abstraction. One possible view is 
this. Loading new classes changes only a part of 
your state; in particular the set of methods avail- 
able to your program. The methods themselves 
can be seen as part of the active environment. 

Q: Maybe you should say "algorithmic system" 
rather than "computer system". 

A: Maybe. I used to say "algorithm" instead of 
"computer system" but there is a tendency to in- 
terpret the term "algorithm" too narrowly. Let's 
stick to the term "computer system" for the time 
being. 

Q: There arc so-called non-von-Neumann systems 
which change their programs as they run. 

A: I saw some of them. Here is my understand- 
ing of how they work. There are fixed rules how 
to change the alleged program. Those rules con- 
stitute the real program. The alleged program is 
data. 

2.3 The state 

In general, a computer system is a dynamic system; it has 
a state that evolves in time. 

Q: Can a computer system be static? If yes, docs 
it still have a state? 

A: Yes, and yes. Consider a sorting algorithm 
at the abstraction level where you abstract from 
everything except the input-output function that 
takes a given sequence to the sorted one. At that 
level of abstraction, no dynamics remains; the sys- 
tem still has a state (including the sorting function) 
but the state docs not evolve in time. 

2.4 So what is computation? 

Computation is evolution of the state. 

Q: I guess you are talking about computations of 
a computer system at a fixed level of abstraction. 

A: Yes, I am. 

Q: This definition is not a mathematical definition. 

A: Right. It is a philosophical speculation. 

Q: I am skeptical about philosophical specula- 
tions. Give me one example of a philosophical 
speculation that proved to be useful. 

A: Turing's speculative proof of his thesis [27]. 

3   The ASM paradigm 

The notion of abstract state machine (ASM) formalizes 
our notion of computer system given at a fixed abstraction 
level. 

The ASM Thesis Let A be any computer system at a fixed 
level of abstraction. There exists an abstract state machine 
B that simulates A step-for-step. 

Q: How is this thesis different from Turing's the- 
sis? 

A: In many ways. In particular, a Turing machine 
would simulate A on the level of single bits while 
an ASM simulates A on the given abstraction level. 

The "step-for-step" requirement is crucial. In distributed 
computing, typically only single steps arc guaranteed not 
to be interrupted by other agents. If B simulates A step- 
for-step then it can substitute for A in distributed situations. 
Even if B makes only two steps to simulate one step of A, 
some other agent can intervene between the steps of B and 
mess up the simulation. 
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In [20], we proved the thesis for the case of sequential 
algorithms, more exactly for sequential-time algorithms with 
uniformly bounded parallelism. 

Q: Is it a mathematical proof or another philo- 
sophical speculation? 

A: It is a mathematical proof. 

Q: How can you prove a thesis? The notion of 
sequential algorithms is informal. 

A: We formalize the notion of sequential al- 
gorithms by means of three postulates: the 
Sequential-Time Postulate, the Abstract-State 
Postulate, and the Bounded-Exploration (that is 
stepwise uniformly bounded exploration) Postu- 
late. 

Work on more general versions of the thesis is in progress. 
Instead of defining ASMs here, we just sketch the ASM 
paradigm. The standard reference for the ASM syntax still 
is [19]; a new guide is in preparation. 

Let A be a computer system at a fixed level of abstraction. 

3.1    States as structures 

States of A are first-order structures. 

Q: Why first-order? Why not second-order or 
higher-order? 

A: Second-order and higher-order and other kinds 
of logical structures can be viewed as special first- 
order structures. See for example article [10] 
where weak higher-order structures are treated as 
first-order structures. 

Q: Why should it be any kind of logic structure? 

A: The vast experience in applications of math- 
ematical logic seems to confirm that any static 
mathematical reality can be adequately described 
as first-order structure. 

Q: It can be, I guess, adequately described in arith- 
metic. 

A: Arithmetization requires excessive encoding 
while structure representation is virtually free 
from encoding. 

All states of A have the same vocabulary. The vocabulary 
reflects the invariant aspects of the algorithm. Further the 
base set of the state does not change during the evolution. 

Q: Many graph algorithms acquire new nodes as 
they run. 

A: But where do they take those new nodes from? 
We assume that the initial state has an infinite re- 
serve of elements to be used as nodes or whatever. 
A special import (called also create) operator 
is used to fish out elements from the reserve and 
bring them to the foreground. 

The set of states of A is closed under isomorphisms. Intu- 
itively, isomorphic structures are representations of the same 
state. The details of representation should not matter. 

Q: If computation is state evolution and states are 
structures then computation is structure evolution. 

A: That is why abstract state machines used to be 
called evolving structures or evolving algebras. 

Q: Why algebras? 

A: An algebra is a structure whose vocabulary con- 
sists of function symbols. In logic, relations are 
different from functions because their values live 
outside the structure. We tweaked the definition 
of first-order structures so that the Boolean values 
are always inside and thus our states are algebras. 

3.2 State as a memory 

In logic or algebra, structures are static. Our structures 
are dynamic. A state X is a memory (or store). If / is a 
function symbol of arity j in the vocabulary of X and if ö is 
a j-tuple of elements of X then the pair (/, ä) is a location 
of X. The content of that location is the element /(a). 

3.3 Actions 

An atomic update of a state X changes the content of one 
location of X. Since the vocabulary of A is fixed and the 
base set of the state does not change during the evolution, 
the set of locations does not change either. It follows that 
any transition from one state to another is characterized by 
an update set, a set of atomic updates. 

The ASM syntax provides means to program atomic up- 
dates as well as various update sets. For example, if <p is 
a Boolean-valued term and R is an ASM rule generating 
an update set U at a state X then the rule if <p then 
R generates either U or 0 over X depending on whether cj> 
evaluates to true or to false over X. 

Q: I guess state changes should respect isomor- 
phisms of structures. 

A: Of course. In [20], this is apart of the abstract- 
state postulate. 
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3.4 Runs 

You have in general a number of computing agents exe- 
cuting their programs. It is convenient to think in terms of a 
global state. A move by an agent changes only a finite set of 
locations of the global state. Concurrent moves of different 
agents produce consistent changes. A run is a partial order 
of moves of various agents. 

Q: Your global state is some kind of shared mem- 
ory. 

A: It is not a conventional shared memory. 

Q: Consider a distributed system, say a network 
of computers. To make it more interesting, let us 
assume that different computers are located on dif- 
ferent planets so that, by the relativity theory, the 
whole system does not have a global time. The 
computers exchange information via messages. 
Arc there meaningful states of the system? 

A: Yes, they are mathematical abstractions [19]. 

Further, agents themselves arc represented in the state. 
The computation can destroy agents and create new ones. 
There could be various relations and functions involving 
agents [19]. 

3.5 ASMs and set theory 

In a 1993 Dagstuhl conference, Andreas Blass said the 
following about formalizing algorithms as ASMs: "after a 
while it becomes clear that any 'reasonable' algorithm can 
be written as an ASM, just as any 'reasonable' proof can 
be formalized in ZFC." This observation is analyzed and 
developed further in the chapter "ASMs and Set Theory" of 
his article "Abstract State Machines and Pure Mathematics" 
[4]. 

4   What are ASMs good for 

The most obvious use of ASMs is to write executable 
specifications. Here is a sorting example. 

You don't need ASMs to specify that a sorting algorithm 
should sort. But suppose that, for some reason, e.g. security, 
you need that your sorting is in-placc so that you only swap 
elements of the given array. Suppose further that you can 
do only one swap at a time. There are numerous ways to 
implement such sorting: quicksort, bubble sort, etc. Here is 
an ASM spec of in-place onc-swap-a-time sorting. Suppose 
that a is an array with the set / of indices. 

choose i,j in I with i<j and a[i]>a[j] 
do in-parallel 

a[i]:=a[j] 
a[j] :=a[i] 

This rule is supposed to be executed over and over again until 
the computation halts (when the choice set becomes empty). 
This is the most general in-place one-swap-a-timc sorting 
(such that every swap makes the array more sorted). You can 
employ various choice strategics and thus get more refined 
sorting algorithms; a refinement like quicksort is much more 
efficient than the spec. But the spec is executable as is, and 
appropriate ASM tools can execute it. 

Q: Your notion of specification is very broad. 

A: Yes. Whenever you have a pair of algorithms 
A and B so that B refines A, A is a spec for B. 
This includes the case when A is static and so the 
spec is declarative. 

Q: Why is it important that specifications arc ex- 
ecutable? 

A: Imagine that you have designed a cool product 
with many interesting features. Developers code 
it; this may take a while. Eventually testers may 
discover that the design was flawed and needs to 
be changed. You wish you could have played with 
your design before coding. 

There arc many more kinds of applications of ASMs; sec 
[23] where you will find in particular a bibliography [13] 
and Egon Börgcr's surveys [11, 12]. 

5   ASMs in Microsoft 

Jim Kajiya at Microsoft Research realized the potential of 
ASMs. In late summer of 1998, he invited me to start a new 
group, and I accepted. The ASM project had become more 
and more engineering, and I could use help. In addition, 
I was tired of analyzing old software and excited about the 
possibility to participate in the development of new software. 

The new group was called Foundations of Software En- 
gineering (FSE). By now we have a strong and busy ASM 
team that never seems to find time to dress up its outside 
window [14]. Our first priority is to develop a good tool to 
write and execute ASMs. A number of such tools have been 
developed in academia; sec [23]. Two of these tools, ASM 
Workbench and ASM Gopher, have been successfully used 
at Siemens. However none of the tools was a good fit for 
the software development environment of Microsoft, and in 
particular for COM, Microsoft's Component Object Model 
[24]. We had to start from scratch. 

Q: What is COM? 

A: I quote from [2]: "Microsoft software is usu- 
ally composed of COM components. These are 
really just static containers of methods. In your 
PC, you will find dynamic-link libraries (DLLs); a 
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library contains one or more components (in com- 
piled form). COM is a language-independent as 
well as machine-independent binary standard for 
component communication. An API for a COM 
component is composed of interfaces; an interface 
is an access point through which one accesses a set 
of methods. A client of a COM component never 
accesses directly the component's inner state, or 
even cares about its identity; it only makes use 
of the functionality provided by different methods 
behind the interface (or by requesting a different 
interface)." 

• Verification isn't everything. Verification is great 
... when it is feasible. A spec is a basis not only for veri- 
fication but also for testing, documentation, etc. Partial 
improvements can have a big impact 

• Stay relevant. A spec must be testable and up-to-date. 

• Integration is crucial. Without integration your tool 
may be useless. Integrate with the relevant developer 
environment (in our case, it is Microsoft Visual Studio). 
Integrate with the relevant run-time environments (in 
our case, they are COM, .NET and various libraries). 

The tool development in the group is headed by Wolfram 
Schulte, my first hire, who came to Microsoft in the sum- 
mer of 1999 from the University of Ulm in Germany after 
completing his ASM-related habilitation there. Our main 
tool is called AsmL (ASM Language). It is an executable- 
specification language. 

Q: What does it mean? Another high-level pro- 
gramming language? 

A: It is a high-level programming language that 
implements the ASM paradigm. Accordingly it is 
highly parallel. 

Q: What about that COM? 

A: AsmL is COM compliant. You can specify 
a component, and the spec will have full COM 
connectivity. For example, a spec of a debugger 
may be much more concise and abstract than a real 
debugger, but it will be treated as a debugger by 
other COM components. 

Q: Is AsmL optimized for efficiency or expressiv- 
ity? 

A: It is a pragmatic compromise but typically ex- 
pressivity comes first. 

Q: Are there product groups within Microsoft that 
use ASM technology? 

A: Yes. 

Q: Name one. 

A: Universal Plug and Play. 

This seems to be a wrong place to go into the details of our 
work. (A bunch of our papers should appear later this year 
in the Proceedings of ASM'2001 in Springer Lecture Notes 
in Computer Science. A few additional papers are headed 
elsewhere. Weil try to keep the website [14] current.) In- 
stead let me share a few lessons that the group learned during 
its short existence. 

6   On ASM-related theoretical problems 

I was asked more than once about ASM-related theoreti- 
cal problems. Many appetizing foundational problems arise 
in applications. For example, what are objects and classes 
[21 ] ? But let me keep closer to more traditional LICS themes 
(with hope to bridge between those themes and ASMs). 

6.1    Fine complexity classes 

The notion of polynomial time is very robust. The usual 
computation models including the Turing model give the 
same notion of polynomial time. In [22], we show that the 
usual computation models other than the Turing model give 
the same notion of nearly linear (that is linear times poly- 
log) time. Linear time is much more sensitive to the choice 
of computation model, and there are numerous versions of 
linear time in use. One example is the linear time of com- 
putational geometry. The ASM model may have enough 
parameters to take care of all these versions of linear time 
— maybe. I did not investigate this. 

In [6], we proved the linear-time hierarchy theorem for 
ASMs (that asserts that, as c varies, the classes of functions 
computable in time c • n form a proper hierarchy). As we 
wrote there, "One long-term goal of this line of research is 
to prove linear lower bounds for linear time problems". 

If you work with linear time and consider simulations, it 
is natural to require that simulation is lock-step, that is there 
exists a fixed k such that the simulator spends at most k steps 
to simulate one step of the simulatee. In [6], we used lock- 
step simulations with preprocessing to construct a diagonal- 
izing machine and thereby proved the linear-time hierarchy 
theorem. Lock-step simulation deserves to be studied in its 
own right. To this end, Andreas Blass constructed a more 
involved diagonalizing machine that avoids preprocessing 
(unpublished). 

It seems that the study of fine complexity classes was held 
back by the absence of an appropriate computation model. 
We hope that ASM can serve as such a model. 
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6.2 Computations with abstract structures 

Contrary to conventional computation models, like Tur- 
ing machines or random access machines, ASMs accept ab- 
stract structures as inputs. For example, an input could be a 
graph rather than a string (or adjacency matrix) representa- 
tion of the graph. 

Q: Why is this important? Real computers do not 
accept abstract structures as inputs. 

A: You routinely abstract from representation de- 
tails when you do specifications. But such abstrac- 
tion is not confined to specifications. Suppose for 
example that I have a database in my computer 
and I ship it to you. You store it in your computer 
but the representation of the database in your com- 
puter will surely differ from that in mine. A query 
to database should not depend on the representa- 
tion. To this end, popular query languages abstract 
from the representation, so that abstract databases 
are treated as inputs to queries. This is an impor- 
tant issue in database theory and practice [1]. 

In [18], I conjectured that there is no logic (or computa- 
tion model) for polynomial-time computations with abstract 
structures; the conjecture implies P^NP and remains open. 

Q: I do not understand your conjecture. How can 
you quantify over logics? 

A: I assume that every logic satisfies some minimal 
requirements, in particular that the set of well- 
formed formulas is recursive. 

In [10], ASMs were used as a computation model 
(and logic of a sort, called BGS) for a rich natural class 
of polynomial-time computations with abstract structures. 
Later Shelah proved the zero-one law for BGS [26, 5]. In 
particular, we show in [10] that counting is not available in 
BGS and that BGS cannot decide whether a bipartite graph 
admits a perfect matching. Later it was shown in [9] that if 
one adds counting to BGS then the perfect matching problem 
for bipartite graphs becomes expressible. It remains open 
whether the perfect matching problem for arbitrary graphs 
is expressible in BGS with counting. It is also open whether 
BGS with counting captures polynomial time. Other spe- 
cific problems along these lines are discussed in [9]. In [16], 
ASMs were used to study logspace computations with ab- 
stract structures. 

The complexity theory of computations with abstract 
structures deserves to be developed further. 

6.3 Metafinite models 

In [17], I preached finite model theory because many 
structures naturally arising in computer science are finite. In 

particular (the states of) relational databases are finite. But 
are they really finite in all cases? A database may use real 
numbers for example; where do those numbers "live"? Now 
consider the world of, say, the C programming language. It 
has arrays, records, arrays of records, records of arrays, and 
so on. It is convenient to model states of computer systems 
as infinite structures where only a finite part is active. To this 
end, we defined and studied metafinite structures in [15]. A 
metafinite structure has a finite primary part and possibly 
infinite secondary part. 

In the case of a program state, the primary part reflects 
the active foreground and the infinite part reflects the passive 
background. One example is [10] where the background is 
the collection of hereditarily finite sets over the elements 
of the input structure. In general, background structures 
contain all the material (like maps of sets of sequences of 
maps) that the program may need. The notion of background 
was formalized in [7]. 

Metafinite structures are really ubiquitous and deserve 
more attention. 

6.4    Interesting logics 

What are logics appropriate to metafinite structures? That 
question has been addressed in [15]. Basically, you can 
quantify over the primary part only. The secondary part may 
have powerful operations. In the case of reals, for example, 
you may have multiset operations like sum, product, average, 
median. But you can't quantify over the secondary part. 

The choice operator of ASMs (illustrated above, in Sec- 
tion 4) is typical for computer science. It is an independent- 
choice operator: different invocations of it produce indepen- 
dent choices. It differs from the epsilon operator of Hubert, 
the classical choice operator of mathematical logic; different 
invocations of the epsilon operator over the same set produce 
the same result. In [8], we investigated the logic of the ASM 
choice operator. We found that this fascinating logic is much 
weaker than the logic of the epsilon operator. 

There are other ASM-related logics waiting to be inves- 
tigated. One example is first-order logic with undef, a 
special element that allows you to turn partial functions into 
total ones. This undef is different from diverges of 
recursive-function theory. An ASM program can refer to 
undef explicitly; in particular wc allow tests like x = 
undef, and the equality undef = undef holds. This 
explicit use of undef makes the logic of undef more pow- 
erful than the other first-order logics of partial functions that 
I am aware of. 

Until now we spoke about static logics. Once one intro- 
duces state transitions, new challenging issues appear. 

What is the logic of the import operator mentioned above 
in Section 3? Unlike the choice operator, the import operator 
produces a different element every time it is invoked. 

134 



In the sequential-time case, an ASM program describes 
a single step (to be iterated). The state changes only at the 
end of the step, not at the middle. There are no side effects 
during the execution of one step. This feature of the ASM 
paradigm should allow one to develop clean logics to reason 
about at least one step of the program. 

One may want also to use automated and partially auto- 
mated systems, including model checking systems, to rea- 
son about the behavior of abstract state machines. The ASM 
community has some experience in this direction; see [25,3] 
and the section on Mechanical Verification in [23]. We have 
a long way to go though. 

7   Postlude 

Logic that we use and apply in computer science is math- 
ematical logic developed originally to build foundations of 
mathematics and to solve the problems in foundations of 
mathematics that arose in the beginning of twentieth cen- 
tury. Logicians distinguish clearly between syntax and se- 
mantics and strive to clarify both syntactical and seman- 
tical issues. Computer science applications of logic are 
much different from mathematical applications. Some of 
the strongest methods of mathematical logics, like the prior- 
ity method and forcing, have not found direct applications 
in computer science. But the foundational tradition of logic 
is of great value to computer science at this stage of its de- 
velopment. 

But computer science is not a purely mathematical disci- 
pline. It is an engineering discipline as well. In applications, 
it does not suffice to prove that the problem is decidable or 
even polynomial-time decidable. You may need a program 
that works reasonably fast on real computers. Some engi- 
neering compromises have to be made. It is not only syntax 
and semantics that we should worry about. It is also prag- 
matics. It may mess up your clean constructions, but it may 
also enhance them and make them work for the benefit of 
many. 
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Abstract 

In any classical first-order theory that proves the exis- 
tence of at least two elements, one can eliminate definitions 
with a polynomial bound on the increase in proof length. 
In any classical first-order theory strong enough to code fi- 
nite functions, including sequential theories, one can also 
eliminate Skolem functions with a polynomial bound on the 
increase in proof length. 

1    Introduction 

When working with a first-order theory, it is often con- 
venient to use definitions. That is, if ip{x) is a first-order 
formula with the free variables shown, one can introduce a 
new relation symbol R to abbreviate ip, with defining axiom 
Vx (R(x) «->• <p{x))- Of course, this definition can later be 
eliminated from a proof, simply by replacing every instance 
of R by ip. But suppose the proof involves nested defini- 
tions, with a sequence of relation symbols R0,..., R/. ab- 
breviating formulae ip0,... •, ipk, where each ipi may have 
multiple occurrences of i?0, -■ •, -Rj-i- In that case, the 
naive elimination procedure described above can yield an 
exponential increase in the length of the proof. 

In Section 2,1 show that if the underlying theory proves 
that there are at least two elements in the universe, a 
more careful translation allows one to eliminate the new 
definitions with at most a polynomial increase in length. 
The proof is not difficult, but it relies on the assumption 
that equality is included in the logic. A similar trick has 
been used by Solovay in simulating iterated definitions ef- 
ficiently, as discussed in [11, Section 3.2]. Consequently, 
the result proved here may be folklore, but to my knowl- 
edge it has not appeared in the literature, and it is needed in 
Section 3. 

It is also sometimes convenient, in a first-order setting, 
to introduce Skolem functions.   If ip(x, y) is any formula 

with the free variables shown and / is a new function sym- 
bol, one can add an axiom, Vx, y (ip(x,y) —> (f(x,f(x)), 
asserting, in words, "if any y satisfies ip(x, y), f{x) does." 
There is an easy model-theoretic proof of the fact that this 
does not alter the set of consequences in the original lan- 
guage: any first-order model of the original theory can be 
expanded to a model where / denotes such a choice func- 
tion. Explicit syntactic proofs of this fact are, however, 
somewhat more difficult. The first such proof appears in 
Hubert and Bernays' Grundlagen der Mathematik [8], us- 
ing the epsilon substitution method; a proof by Maehara us- 
ing cut-elimination is discussed in [14]; and another proof 
due to Shoenfield is found in [13] (see also the discussion 
in [12]). All these procedures are, unfortunately, worse than 
exponential. 

In Section 3, I show that if the underlying theory al- 
lows for a modicum of coding, one can also eliminate 
Skolem functions with at most a polynomial increase in 
proof length. The idea is to use an internal, iterated forcing 
argument to add the new functions. The forcing conditions 
involved are finite approximations to the Skolem functions 
being added, so the constraint on the underlying theory is 
that it provides an adequate representation of finite func- 
tions. The specific requirements are spelled out below; any 
sequential theory of arithmetic meets these criteria. While 
forcing methods have been used to establish lower bounds 
in proof complexity (see [1, 9, 10]), here they are used to 
establish upper bounds; similar forcing arguments can be 
founding, 3,4, 5]. 

The question as to whether or not definitions can be elim- 
inated efficiently from prepositional proof systems is a ma- 
jor open question in the field of proof complexity. The 
results here show that the answer is "yes" for most first- 
order proof systems, though the most general statement of 
the problem is equivalent to the prepositional version. Is- 
sues related to Skolem functions are similarly important to 
computer science, since most automated search procedures 
use Skolemization in one form or another. The question 
as to the increase in proof length when eliminating a sin- 
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gle Skolem function from a proof in pure first-order logic 
is listed as open problem 22 in [6]. Once again, though 
the results here do not settle the most general statement of 
the problem, they show that for many natural theories such 
an efficient elimination is possible. In Section 4, I discuss 
some questions that remain. 

2   Eliminating definitions 

If d is a proof of a sentence ip from a set of axioms T in 
first-order logic, then \d\ denotes the length of d, according 
to the number of symbols. Krajicek [9] and Pudläk [11] 
provide good general references on the lengths of proofs. 

In this section and the next I will show that in certain 
circumstances one can eliminate definitions and/or Skolem 
functions from a proof d in such a way that the length of the 
resulting proof is bounded by a polynomial in |d|. In doing 
so, I will not make an effort to compute the exact polyno- 
mial; rather, I will repeatedly appeal to the fact that the set 
of polynomials in \d\ is closed under addition, multiplica- 
tion, and composition. It will be clear from the proofs that 
in fact all the translations considered can be carried out in 
polynomial time. 

By "first-order logic," I mean first-order logic with 
equality, in any of the standard natural deduction calculi, 
Hilbert-style calculi, or sequent calculi with cut described 
in [15]. By a theorem due to Krajicek, up to polynomial- 
time equivalence it does not matter whether we take proofs 
to be given by trees or sequences of lines (see [11, Section 
4], or [9, Section 4.5] for the propositional case). In fact, 
the proof of Theorem 2.2 only assumes that there is a rep- 
resentation of ip —> ip which uses <p only once. If f-> is 
assumed to be one of the basic connectives, one can sim- 
plify the central argument somewhat; but the proof below 
works in either case. 

I will use the following conventions: x and t denote se- 
quences of variables and terms, respectively, and typically 
their lengths can be inferred from the context. Introducing 
a formula as <p(x) only serves to distinguish the sequence 
of variables x, after which <p(t) denotes the result of simul- 
taneously substituting t for x, renaming bound variables in 
<p if necessary. 

Definition 2.1 Let T be a set of first-order sentences in a 
language L. Say that T has an efficient elimination of def- 
initions if there is a polynomial p(x) such that the follow- 
ing holds: whenever R0(x0):..., /^.(xV) are new relation 
symbols of various arities, ifa(xo), ■ ■ • i Vfr(^A-) are formu- 
lae suchthat each <pi is in the language L\J{R0,... ,i?,_i}, 
and d is a proof of a formula i}) in Lfrom 

ru{Vx0(i?0(f0)ov3o(fo)),.-., 

then there is a proof d! of '«/> from T using only formulae in 
L,with\d'\ <p{\d\). 

This definition is monotone in T: if T has an efficient 
elimination of definitions and T' D T then, by the deduc- 
tion theorem, T' has an efficient elimination of definitions 
as well. The main theorem in this section is the following: 

Theorem 2.2 {3x,y (x ^ y)} has an efficient elimination 
of definitions. 

Proof. The proof will occupy most of this section. Let 
i?o,... ,Rk,(fo, ■ ■ ■ ,<fk, V;. an<J d be as in the definition. 
We can assume that each of the defining axioms occurs at 
least once in the proof, since if the axiom for Rt docs not 
occur in the proof we can replace each occurrence of Rj 
by an arbitrary sentence, say V:r (x = x). As a result, we 
can assume that k and \ip0\,...t \ipk\ arc all less than \d\, 
and so it suffices to bound the length of the final proof by a 
polynomial in these values. 

Let a and b be new constant symbols. It suffices to find a 
short (i.e. polynomially bounded) proof of ij) from {a ^ b}. 
For, if we can find a short proof of a ^ b —> xj), we can 
replace a and b by variables and obtain a short proof of-0 
from 3.T, y (x ^ y). 

First, note that without loss of generality we can assume 
that all the definitions arc given by prencx formulae. If the 
propositional connectives are among {A,V,—>,->} this is 
so because any formula involving these connectives can be 
proved equivalent to one that is prencx, with a proof whose 
length is bounded by a polynomial in the length of the origi- 
nal formula. On the other hand, if, say, O is a propositional 
connective, one can introduce additional definitions to ab- 
breviate subformulae and ensure that all the definitions arc 
prencx. Alternatively, one can first use definitions to elim- 
inate <-> as in the proof of Corollary 2.5, and then proceed 
as before. 

In the following argument, if 8 is a formula with a rela- 
tion symbol R(ij) and t)(y) is a formula with the free vari- 
ables shown, it will be convenient to write 8[q/R] for the 
result of replacing each atomic formula R(f) by ))(f). At 
other times, I will write 6[R{t\,..., tm)] to indicate that 
an atomic formula R(ti,..., r,„) occurs in the quantifier- 
free formula 8; thereafter, 8[ij] denotes the result of replac- 
ing R(t\,... ,tm) by T). While this notation is potentially 
problematic, the intention should always be clear from the 
context. 

For notational convenience, we may assume that all of 
the relations /?, have the same arity. We will need a way 
of representing the numbers 0,.... k. Let z0,..., zk be a 
sequence of variables, write Ü for the sequence «, b, b, b,..., 
1 for the sequence b, a. b,b,..., and, more generally, j for 
the sequence of length k + 1 that has an a in the jth position 
and b's elsewhere. 
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Our strategy will be to define a sequence of formulae 
tpo(z,u,x),.. .(pk(z,u,u), with length bounded by a poly- 
nomial in |d|, such that for each i < k the following equiv- 
alences are all provable from a^b: 

• <f>i(j, a, x) <-» (fii-i (j, a, x), for each j < i 

• <pi(j, b, x) <-» -i<pi-i {j,a, x), for each j < i 

• W{<pi(i,a,x) -H- <pi(x)[<pi-i(Ö,a,x)/Ro,..., 
<Pi-i(i- l,a,x)/Ri-i]) 

• W{tpi(i,b,x) <H- -K/3j(f)[(pi_i(Ü,a,x)/i?o,---, 
tpi-i{i - l,o,f)/Äj_i]). 

In other words, for each i and j < i, (pi(j,a,x) is an ef- 
ficient representation of Rj, and (pi(j,b,x) is an efficient 
representation of -<Rj. The idea is to use quantifiers and 
equality so that only a single instance of <pi is used in the 
definition of (pi+i. Note that the clauses above imply that 
for each i and j < i, we have <ßi(j, a, x) o -«pi{j, b, x). 

The sequence <p>o, • ■ •, <fk is defined recursively. Start by 
taking <po(z, u, x) to be the formula 

(u = a —> <^o(^)) A (u = b —>• ->y>o(äO)- 

For i > 0, assuming (^0, ■ • ■, <£i-i have been defined, the 
following shows how to determine (pi. Since we are assum- 
ing that all the definitions are prenex, ipi (x) is of the form 

QlVl ■■■QmVm if>{Ro{iofl),...,Ro{to,lo)i---, 

Ri-l{ti-l,o), ■ ■ ■ , -Ri —1 (*i —l,/i_! )], 

where <p is quantifier-free and the sequence in square brack- 
ets shows all instances of atomic formulae in (p involving 
Ro,..., Ri-\. In general, the sequences of terms t^p de- 
pend on the quantified variables yi, ■ ■ ■ ,ym as well as the 
free variables x of <pi, but I will not display these variables 
explicitly. Our task is to write down a formula <pi(z,u,x) 
such that 

1. for  each  j     <    i,   <pi(j,a,x)   is   equivalent   to 
<^_i(j,a,x); 

2. for  each   j     <     i,   ipt(j,b,x)   is   equivalent   to 
-><Pi-i(j,a,x); 

3. ifi(ita,x)  is equivalent to the displayed formula 
above, with each Rj(tjiP) replaced by fii-i (j, a, i}iP); 

4. <pi(i, b, x) is equivalent to the negation of the formula 
just described; and 

5. in the definition of ipi, <f>i-i is used only once. 

In order to do 3 and 4 simultaneously, we need duplicate 
copies of some of the variables and terms. Let Q\,..., Q'm 

denote the quantifiers dual to Q\,..., Qm. Pick a new se- 
quence of variables y[,..., y'm, and let 

P P P P 

denote the sequences of terms obtained by replacing the 
2/i, • • •, ym by y[, ■ • ■, y'm in each fjiP. Finally, let 

W0,0)-- -,Votl0, .. .,Vi-ifi,.. .,Vi-itii_1 

w0,0' • • • >U0,/0' • • • 'Wi-1,0> • • • >Ui-l,(;_i 

v'i,...,v'U 

be sequences of new variables. We will use the variables 
VjiP to represent the truth values of (pi-\ (j, a, ij,p), the vari- 
ables v'j to represent the truth values of (pi-\(j, a,E ), 
and the variables v'j to represent the truth values of 
ifi-i(j, a, x), where the "truth value" is a if the correspond- 
ing formula is true, and b if it is false. 

The formula <pi(z, u, x) is defined to be 

Qij/i • • • Qmym Q'IV'I ■ ■ ■ Q'mVm Vv, &, «" 

(Eval(v,if,if') -> 

A (iT = j A u = a —>■ n" = a) A 
j<i 

f\ (z = ] A u = b ->■ v'j ^ a) A 

(f=iAii = fl-> <p[wo,o = a,..., v0,i0 = a, 

• • ■, Vi-ifi = a,..., Uj-i,/;,! = a]) A 

(z = i A u = b -> -><^K,o = a, • ■ •, ^o,;0 = a: 

•••.^-1,0 = a,...,u-_lj,._1 =a])J 

where Eval(v, v1, v") is the formula 

Vr Vs £ {o,6} Vw (<pi-\(r,s,w) —> 

f\{r = j hw = x -> v'j = s) A 

A  /\{r = ] Aw = tj,p -)• Uj,p = s) A 
j<ip</j 

/\  /\(r=jAw = ^>->^p = S)). 
i<j p<;;- 

Here Vs 6 {a, 6} 0 abbreviates Vs (s = a V s = 6 -> #). 
Note that Eval(v, v1, v") also depends on the free variables 
x, y, y1 (because the terms tjtP and t'- do), but I will con- 
tinue to leave these variables implicit. 

First, let us check that each <pi(xi,u) satisfies the right 
equivalences, and then let us worry about the length. Induc- 
tively we know, for each j < i — 1, that 

Vf (<fi-i(j,a,x) «• -><£;_].(j,6,£)) 

141 



-> 

is provable from a ^ b. We can use this to show 

Vx,y,yl 3v, v1 ,v" Eval(v,if,v") 

as well as 

Vx, y, ff,v, v*,v" (Eval(v,v',v 

f\(v'j -a <->• ipi_i(j,a,x))A 

A A (^> = °- ^ ^'-1 fr a> *J>)) A 

j<jp</j 

A A KP = a ° ^-i(7.a.*lp)))- 
j<i p</j 

But then, going back to the definition of <£,-, we see that 
for j < i, tßi(j,a,x) is equivalent to <£i-i(j,a,x), and 
tpi(j,b,x) is equivalent to ->ipi--[(j,a,x). Also, ipt(i,a,x) 
is equivalent to 

Qi2/i • • • QmVm^i-i (Ö, a, f0,o), ■ • •, 

^i_i(Ü,a,to,/0)i- ■■ ,<Pi-\{i - l,a,£-i,o), 

...,(p,_i(?; - 1, a, f;-i,/,_,)] 

and so we have 

<Pi(i,a,x) <r> <pi(x)[<pi-l(Ö,a,x)/R0,..., 

<£,--i(z- l,a,f)/i?,_i]; 

and (^j(i, 6, x) is equivalent to 

Qiyl---QmyJ„^[^-i(ö,a,4o).---. 
iPi-i(Ö,a,?0ti0),...,ipi^(i - l,a,f;_1-0), 

...,^-_1(i- 1, a, ?;_!,,._,)] 

and so we have 

(fi(i,b,x) O -.(/),(f)[(/)i_1(Ö;n,f)/7?o,..., 

ifi-i(i- l,a,x)/Ri_1], 

as required. 
As far as length is concerned, it is not hard to check that 

the number of symbols occurring in <p, apart from the in- 
stance of (pi-\ can be bounded by a polynomial in |rf| (in 
fact, even a linear one). In other words, there is a polyno- 
mial p such that for each i we have 1^,1 < p(\d\) + \^,-\ |, 
and hence |<£,-| < (i + l)p(\d\) < \d\p{\d\). Similarly, it 
is not hard to find polynomial bounds on the lengths of the 
proofs of the needed equivalences, and there are only poly- 
normally many of them. 

This completes the proof of Theorem 2.2. D 

We have handled the case where there are at least two 
elements in the universe. On the other hand, on the assump- 
tion that there is only one element of the universe, we arc 
reduced to propositional logic. 

Proposition 2.3 {Vx,y (x = y)} has efficient elimina- 
tion of definitions if and only if the corresponding assertion 
holds for propositional logic. 

Proof. Assuming Vx,y (x = y), every atomic formula 
R(t\ ,...,tk) is equivalent to R(c,..., c), where c is the 
only element of the universe; t\ = t2 is always true; and 
quantifiers have no effect. To be more precise, let "the 
propositional simplification of ip" denote the result of delet- 
ing all the quantifiers in rj), replacing all atomic formulae 
R(ti,..., tk) by a propositional variable R, and replacing 
ti = h by a fixed tautology. Then any first-order proof of 
Vx, y (x = y) -> V; can be translated efficiently to a propo- 
sitional proof of the propositional simplification of ij), and 
vice-versa. D 

This implies that the general problem of eliminating def- 
initions from proofs in pure first-order logic is as hard (and 
as easy) as the propositional case. 

Theorem 2.4 0 has an efficient elimination of definitions if 
and only if the corresponding assertion holds for proposi- 
tional logic. 

Proof. It is a straightforward exercise to check that {</? V 
?/;} has an efficient elimination of definitions if and only 
if {i^} and {i/'} both do. In particular, 0 has an efficient 
elimination of definitions if and only if {\fx,y (x = y)} 
and {Bx.y (x =t y)} do. D 

As a corollary of Theorem 2.2, we have that one can 
eliminate O from standard proof systems with at most 
a polynomial increase in proof length. For propositional 
proof systems the proof (due to Reckhow, using a method 
by Spira; see [9]) is considerably more difficult. 

Corollary 2.5 With any of the standard proof systems for 
first-order logic with equality given in [15], one can elimi- 
nate the propositional connective -H- with at most a polyno- 
mial increase in proof length. 

Proof. By Theorem 2.2, it suffices to show that one can 
eliminate -H- efficiently in the corresponding proof systems 
with definitions. Use definitions to translate formulae in 
the language with f-> to the language without: translate 

tp(ic) o ^z) to (J?>7) -> Äc.(f))A(^,(f) -» RAw)), 
where i?() and 7?i are defined to be equivalent to the trans- 
lations of ip and xji, respectively. By induction one can show 
that each axiom and rule of inference can then be simulated, 
with polynomial bounds on the lengths. D 
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3   Eliminating Skolem functions 

The following is the analogue of Definition 2.1 for 
Skolem functions. 

Definition 3.1 Let Y be a set of first-order sentences 
in a language L. Say that T has an efficient elim- 
ination of Skolem functions if there is a polyno- 
mial p(x) such that the following holds: whenever 
fo{xo),..., fk(xk) are new function symbols of various ar- 
ities, ip0 (f0, y),..., tpk [xk, y) are formulae such that each 
ifi is in the language L U {/0)..., fi-i}, and d is a proof 
of a formula ip in Lfrom 

ru{Vf0,y (yo{xo,y) -» <p(xo,fo(x0))),-.-, 

Vxk,y (yk(xk,y) -> <p(xk,fk(xk)))}, 

then there is a proof' d! of 'ip from T using only formulae in 
L,with\d'\ <p(\d\). 

Right off the bat, we have the following. 

Proposition 3.2 {Vx,y {x = y)} has an efficient elimina- 
tion of Skolem functions. 

Proof. Roughly speaking, if c is the only element of the uni- 
verse, every term can be replaced by c. D 

By way of motivation, note that is not hard to show that, 
say, Zermelo-Fraenkel set theory has an efficient elimina- 
tion of Skolem functions. Argue as follows. Suppose d is 
a proof of a formula ip from the axioms of ZF and some 
Skolem functions. Let k be a bound on the complexity of 
the formulae occurring in this proof. In ZF, one can prove 
that the set of true sentences of complexity at most k + 1 
is consistent, and hence has a countable model. This count- 
able model has Skolem functions, which can then be used 
to interpret the proof d. 

This example suggests that one way to proceed is to try 
to determine how little one can get away with in carrying 
out an internal semantic argument of this kind. The answer 
turns out to be: very little. 

Definition 3.3 Say a set of sentences T codes finite func- 
tions (efficiently) if for each n there are 

• a definable element, "0n "; 

• a definable relation, "z0, • • • ,zn-i G domn(p)"; 

• a definable function, "evaln(p,x0, ■ ■ ■ ,a;n_i)"; and 

• a definable function, "p ©n (x0,..., zn_i i-* y)" 

such that, for each n, T proves 

• x $■ dom{$n) 

• w£ dom(p © (ä? i-> y)) -B- (w G dom(p) Vtc=i) 

• evaln(p®n(xi->y),x)=zy 

•w/^-> ev aln (p ©n (xt-ty),w) = evaln (p, w), 

and such that the lengths of all the definitions and proofs 
are bounded by a polynomial in n. 

Of course, the intuition is that elements of the universe are 
assumed to code finite partial functions p; 0n is the function 
that is nowhere defined; evaln(p,x) returns the value of p 
at x; p®n (x i-> y) is the modification of p which maps 
x to y; and so on. One could, more generally, assume that 
the codes are elements of a definable set; but then nothing is 
lost by taking the other elements of the universe to code the 
empty function. If one wants polynomial-time translations 
(and not just bounds on the lengths of proofs) one needs to 
add the constraint that the definitions and proofs above are 
polynomial-time computable in n. 

These requirements are not strong ones. For example, 
any sequential theory of arithmetic (in the terminology of 
[7, 9, 11]) codes finite functions, since one can take such 
functions to be sequences of tuples (x,y). Below I will 
drop the subscripts n in 0n, domn, etc. and I will write p(x) 
instead of eval(p, x). Clearly it does not hurt to assume that 
all these are actually given by symbols in the language. 

Theorem 3.4 Suppose T codes finite functions. Then V has 
an efficient elimination of Skolem functions. 

Proof. The proof will occupy most of the remainder of this 
section. By Proposition 3.2 we can assume that there are at 
least two elements in the universe, and so, by Theorem 2.2, 
we can use definitions freely. By way of exposition, I will 
first focus on the case where k = 0, i.e. there is only one 
Skolem function to eliminate. (This part does not require 
definitions.) Then I will discuss the steps necessary to elim- 
inate multiple, possibly nested instances Skolem functions. 
(This is the part that requires definitions.) 

Suppose we want to eliminate the use of a single 
Skolem function, with defining axiom Vf, y (<p(x, y) -> 
<p(x, f{x))). Let Lf denote the language L U {/}. I will 
define a forcing relation in L, for formulae in Lf. I will then 
show that T proves that the Skolem axiom is forced; and that 
anything in the original language is forced if and only if it is 
true. Given a proof d of ip from T together with the Skolem 
axiom, then, F proves that ip is forced, and hence true. 

Now for the details. Let the formula Cond(p) in the lan- 
guage L assert that p is a finite approximation to a Skolem 
function for <p, that is, 

Vf G dom(p) Vy (<p(x,y) -> ip(x,f(x))). 
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Let t be a term in Lf, and let p be a variable not occurring 
in f. Inductively we will define a term tp in the language 
of L, whose free variables are those of t together with p. 
Intuitively, tp is the value of f, when / is interpreted by p. 
At the same time, we will define a relation "£p is defined," 
asserting that the value of V makes sense. Let 

• xp = x, for each variable x (other than p), 

• (g{to,---,tm))p = g(tp,...,tp
n), for each function 

symbol g of L, and 

. (/(<o,...,«n))p=p(C...,^). 
Define "tp is defined" inductively as follows: 

• "xp is defined" is always true. 

• "(g{to, ■ ■ ■ ,tm))p is defined," where g is a function 
symbol of L, is true if and only if tp0,..., t

p
n are all 

defined. 

• "(/(*o, ■ • • ,tn))p is defined" is true if and only if 
ig,..., tpn are all defined and tp,..., fp G dom(p). 

Up and q are conditions, say p -< q, "p is stronger than or 
equal to q", if p extends q as a function: 

Vif (x G dom(q) —> x G dom{p) A p(f) = q(x)). 

Now we can define the relation p \\- 9 inductively. We can 
assume that the language has connectives A, —>, V, and ->, 
with 3 and V defined from these in the usual way. 

1. p Ih R(to,.... tm) if and only if Vg ■< p 3r < q 
(tr0,..., tr

m are all defined and R{trQ,..., f;'„)). 

2. p Ih 0 A 7/ if and only if p Ih 0 and p Ih ;/. 

3. plh 0 -» 7j if and only if Vq ^ p {q Ih 0 -» 9 Ih 7/). 

4. p Ih -.0 if and only if Vq ^ p q 1/ 0. 

5. p Ih V.r 0 if and only if V.r p Ih 0. 

The quantifiers involving q and r above are intended to 
range over conditions; so, for example, Vq ■< p ... ab- 
breviates V(/ (Cond(q) A q ■< p -» ...). For each 0, the 
relation p Ih 0 is a formula in the language of L whose free 
variables are those of 0 together with p. Note that the length 
of p Ih 0 can be bounded by a polynomial in |0| (as well as 
in \ip\, which is being held fixed for the moment). 

The phrase "0 is forced" and the notation Ih 0 abbrevi- 
ate Vp (Ccmd(p) -> p Ih 0). In the lemmata that follow, 
p,q,r ... are assumed to range over conditions. Most of 
the proofs arc routine and standard, modulo the additional 
notes provided below. It is important to recognize that the 
lengths of all the proofs alluded to in the statement of the 
lemmata can be bounded by a polynomial in the length of 
the assertion being proved, but having stated this up front, I 
will not bother to repeat it each time. 

Lemma 3.5 (monotonicity) For each formula 0 of Lf, F 
proves 

p Ih 0 A q -< p -> <7 Ih 0. 

Lemma 3.6 For each formula 0 ofLj, T proves 

p Ih 0 o V<7 < p 3r ^ q r Ih 0. 

Corollary 3.7 For each formula 0 of Lj, T proves 

plh (0O-.-.0). 

Lemma 3.8 For any term t of Lj, V proves 

V<7 3r ■< q (tr is defined). 

Proof. Use induction on the term t. The only interesting 
case is where t is of the form /(.so,..., s*). By the induc- 
tion hypothesis, we can find an r' ^ q such that sr0 ,..., .s[. 
are all defined. If sr0 ,..., .s£ G dom(r'), take r = r'. Oth- 
erwise, if 3y <p(s£,..., s[', y), let r = r' CD (s£,..., .s[.' »-» 
y), for any such y; and if Vy ~«P{SQ ,... ,sr

k , y), let r = 
s'i- h^ ?/)• f°r any V at a"- D 

The next two lemmata arc proved by induction on .s and 
0, respectively. 

Lemma 3.9 Iff and ,S(.T) arc any terms of Lf, T proves 

t" = z -> w = s(z)") 

Lemma 3.10 If0{x) is any formula ofLj and t is any term 
of Lj then T proves 

(t>> is defined A tp = z) -> (p Ih 9{t) <* p Ih 9(z)). 

Lemma 3.11 For each formula 9 of Lf, if 8 is provable in 
classical first-order logic, then T proves Ih 0. 

Proof. The proof is for the most part standard and routine, 
though one has to be a little bit careful with the quantifier 
axioms and rules since terms might not always be "defined." 
To show V.r 0(.c) —>• 0(f) is forced, let us argue in first- 
order logic from assumptions in F. Suppose p Ih V.r 6(x). 
By Lemma 3.6 it suffices to show V<y ■< p 3r -< q 0(f). So 
suppose q < p. and by Lemma 3.8 let r ■< q be such that V 
is defined. Let z = tr. By monotonicity, r Ih V.r 0(.r), so 
r Ih 9{z). By Lemma 3.10, rlh 0(f). D 

A formula in the original language is forced if and only 
if it is true. 

Lemma 3.12 For each formula 9 of L. F proves (p Ih 0) <-> 

144 



Proof. Induction on 6. D 

The next lemma is the important one: it asserts that the 
Skolem axiom is forced. 

Lemma 3.13 T proves lh Vöf, y {ip(x, y) -> ip(x, /(£)))• 

Proof. Once again, argue in first-order logic, from T. Sup- 
pose for some x,y we havep lh <p(x,y). By Lemma 3.12, 
tf(x,y). By Lemma 3.6, it suffices to show Vg < p 3r -< 
q q \\- ip(x,f{x)), so suppose q < p. If x G dom(q), the 
fact that q is a condition guarantees y>(:r, /(£)), and we can 
take r = g; otherwise, take r = q © (f i-+ y). Either way, 
as above, we have r lh ip(x, f(x)), as required. D 

Proof of Theorem 3.4, for a single Skolem function f. Sup- 
pose there is a proof d of a formula ^ in the language L 
from finitely many sentences in Fu {Vif, y (y(f, y) -> 
<p(x,f{x)))}. By Lemma 3.11, T proves that this impli- 
cation is forced. By Lemmata 3.12 and 3.13, T proves that 
all the hypotheses are forced, so T proves that ip is forced 
as well. By Lemma 3.12, T proves ip. 

Since each the length of each component of the deriva- 
tion just described can be bounded by a polynomial in \d\, 
so can the entire proof. □ 

To extend the proof to arbitrary nested definitions of 
Skolem functions, we need to iterate the forcing definition. 
A similar iteration was used in [2]; the situation here is eas- 
ier, since we only have to deal with finite iterations. 

Let d, /o,... ,fk,<Po, ■ ■ ■ ,<Pk be as in Definition 3.1. For 
each i < k, we will define the notion of an i-condition, 
an ordering <i on «-conditions, and a forcing relation 
Ihj between i-conditions and formulae 6 in the language 
L U {/o,..., fi}. An i-condition consists of a sequence 
Po,...,Pi of finite functions, with arities corresponding to 
those of /o,..., fi. As expected, p0,...,Pi <t q0,..., qi 
means that each pj extends <?_,, as above. 

The notions Condi and I hi are defined simultaneously, 
by recursion on i. Cond0(p) and p lh0 9 are defined as 
above, in the case where there is only one Skolem function. 
Assuming Condi and lh, have been defined, the relation 
Condi+i (p0,..., pi+1) is defined by 

Condi(p0, ...,Pi)Ap0,-..,Pi lh Vfi+1,y 

(xi+i e dom{pi+1) A ip(xi+1,y) -» <p(xi+1,p(x))). 

In the atomic case, assuming t0,...,tm are terms in the lan- 
guage of Lu{/0,..., fi+i}, the relationp0,... ,pi+1 lhi+1 

A(to, • ■ -, tm) is defined by 

Vq<p3r< q(4,... ,C are defined and A(t%,... ,4)). 

The forcing relation is then extended to arbitrary formulae 
in the language as above. Notice that the relation Ihj is used 

in the definition of Condi+i, which is in turn used to de- 
fine lhi+1. By introducing new relation symbols to repre- 
sent the definitions of Cond0,..., Condk, we can bound 
the lengths of all the formulae involved by a polynomial. 

Lemma 3.14 For each i < k, Lemmata 3.5-3.11 hold for 
i-conditions, <i, andWi. 

Lemma 3.15 For each i < k, if 6 is in the language L U 
{/o,..., fi], then T proves the following: 

Po,- ,Pk Ihfc 6 4r>p0,...,Pi Ihj 6. 

Lemma 3.16 For each i < k,T proves that the ith Skolem 
axiom is k-forced. 

Once again, the lengths of the relevant proofs can be 
bounded by a polynomial in \d\. The proof of Theorem 3.4 
now follows exactly as in the case of a single Skolem func- 
tion. □ 

If a and b are distinct and / is a Skolem function for 
{f{x) A y = a) V (-"p(x) A y = b), then f(x) = a serves 
as a definition for ip(x). As a corollary to Theorem 3.4 we 
have the following: 

Corollary 3.17 Suppose T codes finite functions and 
proves 3x,y (x / y). Then one can eliminate arbitrary 
nested instances of definitions and Skolem functions from 
proofs in T, with a polynomial bound on the increase in the 
lengths of proofs. 

4    Questions 

In standard terminology (e.g. [9, 11]), Section 2 shows 
that one can eliminate definitions from proofs in first-order 
logic in polynomial time if and only if extended Frege sys- 
tems for propositional logic can be p-simulated by Frege 
systems. Of course, whether or not this is the case is still a 
major open question. Section 2 shows that Theorem 2.2 and 
Corollary 2.5 hold for first-order logic with equality. What 
can one say in the absence of equality? 

It is also still open as to whether one can efficiently elim- 
inate even a single Skolem function from proofs in pure 
logic, or from theories that do not code finite functions. 

The elimination of definitions in Section 2 used the law 
of the excluded middle. As a result, it is open as to whether 
one has an efficient elimination of definitions in intuitionis- 
tic first-order logic. (See also [ 12] for a discussion of choice 
functions in the intuitionistic setting.) 

This work has been partially supported by NSF grant DMS 
0070600.1 am grateful to Samuel Buss for advice and sug- 
gestions. 
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Abstract 

The guarded fragment with transitive guards, 
[GF+TG], is an extension of GF in which certain re- 
lations are required to be transitive, transitive predi- 
cate letters appear only in guards of the quantifiers and 
the equality symbol may appear everywhere. We prove 
that the decision problem for [GF+TG] is decidable. 
This answers the question posed in [11]. Moreover, 
we show that the problem is 2EXPTlME-complete. 
This result is optimal since satisfiability problem for 
GF is 2EXPTlME-complete [12]. We also show that 
the satisfiability problem for two-variable [GF+TG] 
is NEXPTIME-/mrd in contrast to GF with bounded 
number of variables for which the satisfiability problem 
is EXPTIME-complete. 

1     Introduction 

Modal logic, that in medieval times was studied by 
philosophers, in the last decades became a subject of 
interest for computer scientists. Modal logic has ap- 
plications in many areas of computer science includ- 
ing artificial intelligence [5, 21], program verification 
[8, 24, 23], database theory [7, 20] and distributed com- 
puting [6, 16]. 

Propositional modal logic possesses useful model- 
theoretic and good algorithmic properties, like finite 
axiomability, Craig interpolation, Beth definability and 
decidability for validity. The tractability of modal logic 
was partially explained when D. Gabbay [10] showed 
that modal logic can be embedded in FO2, the fragment 
of first order logic with two variables, that is decid- 
able. The decidability of FO2 was studied by D. Scott 
[25] who proved that the satisfiability problem for FO2 

without equality is decidable, by M. Mortimer [22] who 
proved that FO2 with equality has a finite model prop- 

*This research was supported by KBN grant 2 P03A 018 18 

erty, and by E. Grädel, Ph. Kolaitis and M. Vardi [13] 
who proved the exponential model property for FO2. 
The last result together with the result by H. Lewis 
[19] implies that the satisfiability problem for FO2 is 
NEXPTIME-complete. 

FO2 can be used as a representative language also 
for a number of knowledge representation logics (de- 
scription logics) [2]. Moreover, many extensions of 
modal logics that are not fragments of FO2 can easily 
be embedded in some extensions of FO2, for example, 
CTL and the ^-calculus can be treated as FO2 with a 
fixed-point operator [28] and many powerful variants 
of the description logics can be embedded in C2, the 
extension of FO2 with counting quantifiers, or in C2 

with transitivity [4]. 
Although the translation of modal logic to FO2 ex- 

plains some good properties of modal logic, it does not 
work in the same way for distinct extensions of modal 
logic. In particular, CTL has an EXPTIME-complete 
validity problem but FO2 with a fixed-point operator 
was shown to be undecidable [14]. Similarly, Immer- 
man and Vardi proved [17] that CTL can be embedded 
in FO2 with a transitive closure operator that is again 
undecidable. In addition, FO2 has a very poor proof 
theory so it cannot be seen as a natural fragment of 
predicate logic extending modal logic and capturing 
all nice properties of modal logic. The model theoretic 
reason for the nice behavior of modal logic was recently 
given in [28] where Vardi answers the explicitly asked 
question 'Why is modal logic so robustly decidable?' 

The guarded fragment. In 1996, H. Andieka, 
J. van Benthem and I. Nemeti [1] introduced the 
guarded fragment of first-order logic, GF, in order to ex- 
plain and generalize the good properties of modal logic. 
GF consists of first-order formulas where all quantifiers 
are appropriately relativized by atoms but neither the 
pattern of alternations of quantifiers nor the number 
of variables is restricted. Andreka et al. showed that 
modal logic can be embedded in GF and they argued 
convincingly that GF inherits the nice properties of 
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modal logic. The nice behavior of GF was confirmed 
by Grädel [12] who proved that the satisfiability prob- 
lem for GF is complete for double exponential time 
and complete for exponential time, when the number 
of variables is bounded. 

In order to express certain properties of temporal 
logic, GF was later generalized by van Benthem [27] to 
the loosely guarded fragment, LGF, where all quanti- 
fiers are relativized by conjunctions of atoms. Most of 
the properties of GF generalize to LGF. 

In [28] Vardi argued that one of the main reasons 
for the nice behavior of modal logics is the tree model 
property. It was proved [12] that both GF and LGF 
also have a tree-model property analogous to the tree- 
model property for modal logic; in addition, GF has 
the finite model property. So, having proved several 
good properties of the guarded fragment one could ex- 
pect that the same will hold for some extensions of 
GF, similarity to the basic modal logic that remains 
decidable and of fairly low complexity under the ad- 
dition of a variety of operators and features, such as 
counting modalities, transitive closure modalities and 
conditions on the accessibility relation. In [15] Grädel 
and Walukiewicz proved that extending GF with fixed 
point operators one gets still a decidable logic. More- 
over, they proved that the satisfiability problem for GF 
with fixed points can be decided in the same time as 
for pure GF. The same is true for GF with bounded 
number of variables. 

The transitivity constraints. The extension of 
the guarded fragment by transitivity seems to be a nat- 
ural representative language e.g. for multi-modal logics 
of type K4, S4 or S5. These multi-modal logics are used 
to formalize epistemic logics [9]. Unfortunately, Grädel 
[12] proved that 

• GF3, the three-variable fragment of GF, with tran- 
sitive relations (or with counting quantifiers) is un- 
decidable. 

The three-variable guarded fragment may be too 
strong to represent modal logics, since, as it is men- 
tioned at the begining, two variables suffice. How- 
ever, in [11], besides other results, H. Ganzinger, C. 
Meyer and M. Veanes improved the result by Grädel 
[12] showing that even 

• GF2 with transitive relations and without equality 
is undecidable. 

In [11] Ganzinger et al. studied decidability issues for 
the extension of GF with transitivity constraints and 
they proposed a logic that is an extension of GF in 
which transitive predicate letters appear only in guards 

of the quantifiers whereas non-transitive predicates and 
the equality symbol may appear everywhere. In this 
paper we denote it by [GF+TG] and we call it the 
guarded fragment with transitive guards. [GF+TG] is 
powerfull enough to be used as a representative lan- 
guage for multi-modal logics of type K4, S4 or S5, since 
when encoding them in the first order logic the predi- 
cate letters corresponding to accessibility relations oc- 
cur only in guards. By [GF2+TG] we denote the 
two-variable fragment of [GF+TG] and by monadie- 
[GF2+TG] - the fragment of [GF2+TG] in which all 
non-unary predicate letters may appear in guards only. 
Ganzinger et al. [ll]gave a nice proof of theorem that 

• monadic-[GF2+TG] is decidable. 

and they asked the following two questions: 

1. What is the complexity of monadic-[GF2+TG]? 
(The proof in [11] proceeds through a reduction to 
the monadic theory of a tree, SkS, and hence no 
special complexity bound has been given there.) 

2. Is satisfiability of the full [GF+TG] decidable? 

This paper. We prove that the satisfiability of 
[GF+TG] can be decided in deterministic double ex- 
ponential time. Since [GF+TG] is an extension of 
GF we immediately get that [GF+TG] is 2EXPTIME- 
complete. So, similarly to GF with fixed point opera- 
tors, we do not have to pay more for adding transitive 
guards and this makes [GF+TG] the right counterpart 
of certain extensions of modal logics. 

We also prove that the satisfiability problem for 
monadic-[GF2+TG] with equality is hard for nondc- 
terministic exponential time. This is proved by a re- 
duction of F02-sentences to [GF2+TG]-scntcnces that 
preserves satisfiability. This reduction is based on an 
observation that in monadic-[GF2+TG] we are able 
to define cliques that are big enough to enclose mod- 
els for F02-sentences. Then NEXPTIME-hardness of 
[GF2+TG] follows from NEXPTIME-hardness of FO2. 
This result has been recently improved by E. Kieroriski 
[18] who showed that monadic-[GF2+TG] even with- 
out equality, is hard for EXPSPACE. These results are 
rather surprising since both GF and GF with fixed 
point operators when restricted to bounded number of 
variables are EXPTIME-complete and as we show in 
the main part of the paper the complexity for the full 
[GF+TG] is exactly the same as for GF. 

It is worth noticing that [GF+TG] and [GF2+TG] 
are strictly more expressive than the monadic sub- 
class. As an example of a [GF2+TG]-sentence that 
cannot be expressed in monadic-[GF2+TG] one can 
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take the sentence defining cliques since, as we observed 
in [26], every satisfiable monadic-[GF2-t-TG] sentence 
has a model without symmetric edges. 

The proof of the decidability is very technical. To 
obtain the decision procedures we apply new tech- 
niques inspired by the standard methods of modal logic 
that were used for establishing positive results for GF 
and its extensions, namely the tree-model property and 
bisimulation. 

As the first step we observe that the size of cliques 
of elements connected with transitive relations in mod- 
els of [GF+TG]-sentences can be bounded. Using this 
observation, we define ramified structures that have 
cliques of exponential size (with respect to the signa- 
ture), and that have only disjoint transitive paths for 
distinct transitive predicate letters. Then, for a fixed 
element a of a ramified structure, we define a flower 
that contains information about the cliques of the ele- 
ment a and the colors of elements connected with a by 
non-symmetric edges. 

As the next step we observe that the set of flowers 
realized in a ramified model for a [GF+TG]- sentence 
satisfies some properties, for example, if two distinct 
elements are connected with a non-symmetric, tran- 
sitive predicate, then every color connected with the 
first element has to be connected with the second one. 
We collect several such properties in the definition of 
a special set of flowers named a carpet and we show 
that these properties are necessary and sufficient for 
existence of a model for a [GF+TG]-sentence. In the 
proofs we do not construct models that explicitly pos- 
sess the tree-model property but the models are " tree- 
controlled:" during the construction every element is 
added as a child of an element on a fixed level of a 
tree. The proof that a (ramified) structure is a model 
for a [GF+TG]-sentence can be seen as an application 
of bisimulation but where at every moment we need to 
care about a big set of cliques of elements that lay on 
one transitive path. 

The final step is based on the facts that the size of 
a flower is exponential and the number of all flowers is 
double exponential, and this allows us to build an al- 
ternating test for satisfiability for [GF+TG]-sentences 
that uses exponential space. 

2    Preliminaries 

By FOfc we denote the class of first order sen- 
tences with k variables over a relational signature. The 
guarded fragment, GF, of first-order logic with no func- 
tion symbols of arity greater than 0, is defined as the 
least set of formulas such that 

(1) every atomic formula belongs to GF, 

(2) GF is closed under logical connectives -i,V,A,->-, 

(3) if x,y are tuples of variables, a(x, y) is atomic 
and i/j(x,y) is a formula of GF with free variables 
contained in {x,y}, then the formulas 

Vya(x,y) -> tp{x,y), 

3ya(x,y) Ai/>(x,y) 

belong to GF. 

The atom a(x, y) in the above formulas is called the 
guard of the quantifier. 

In this paper we admit conditions stating that some 
binary predicate T is transitive, we express these condi- 
tions by "T is transitive" and we let Trans[Ti,..., Tm] 
stand for the condition that each Ti is transitive. In 
this case we also say that T is a transitive predicate let- 
ter. Denote by [GF+TG] the set of sentences contained 
in GF with all transitive predicate letters appearing in 
guards only and where the equality symbol can appear 
everywhere and let [GFfc+TG]=FO*n[GF+TG]. 

Let a be a relational signature. If x is a sequence of 
variables (xi,... ,2;*), then a k-type t(x) is a maximal 
consistent set of atomic and negated atomic formulas 
over a in the variables of x. A type t is often identified 
with the conjunction of formulas in t. If not stated 
otherwise, 1-types are types of the variable x and 2- 
types are types of the variables x and y. 

Let T/>(X) be a quantifier-free formula in the variables 
of x. We say that a type t satisfies ^ if 1/) is true under 
the truth assignment that assigns true to an atomic 
formula precisely when it is a member of t and this is 
denoted by t \= ip. 

A Ar-type s is a reduction of an m-type t, if there 
exists a substitution p : {1,..., A;} H-» {1,..., m} such 
that t(x1,...,xm) \= s(xp(lh...,xp{k)). A k + 1-typet 
extends a fc-type s if s C t and a k + 1-type t properly 
extends a fc-type s if t extends s and for every i < k, t 
contains the formula a;, 7^ x^+i ■ 

If 21 is a cr-structure with the universe A, and if 
a £ Ak, then we denote by £pa(a) the unique fc-type 
realized by a in 21. If B C A then 2l|\B denotes the 
substructure of 21 restricted to the universe B. 

If 21 and 03 are cr-structures, a £ A and b 6 B 
then,we write (21,a) = (03,6) to say that there is an 
isomorphism / of the structures 21 and 03 such that 
f(a) = b. 

3    The normal form 

In [12] Grädel showed a reduction that transforms 
each GF-sentence to a sentence in normal form that 
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preserves satisfiability. In this section we show a sim- 
ilar reduction that additionally keeps the number of 
variables and the arity of predicate letters of the input 
sentence. 

Definition 3.1 A [GF+TG]-sentence A is in normal 
form iff it is a conjunction of sentences of the following 
form: 

(nl) 3x(a(x) A ij>(x)), 

(n2) VX(Q(X) -> 3y(/?(x, y) A ^(x, y))), 

(n3) VX(Q(X) -> ^(x)), 

where y PI x = 0, a and ß are atomic formulas, 1(1 is 
quantifier-free and it contains no transitive predicate 
letter. 

We have the following lemma. 

Lemma 3.2 With every [GF*' +TG]-sentence T of the 
length n over a signature r one can effectively associate 
a set A of [GFk +TG}-sentences in normal form over 
an extended signature a, A = {Ai,..., Ad}, such that 

(1) T is satisfiable if and only if\/i<d A; is satisfiable, 

(2) d < 0(2n) and for every i < d, |A,| = O(nlogn), 

(3) A can be computed deterministically in exponen- 
tial time and every sentence A, can be computed 
in polynomial time with respect to n. 

4    An example 

In this section we give an example of a sentence in 
[GF2+TG] defining cliques. Hence the class [GF2+TG] 
is strictly more expressive than GF and monadic- 
[GF2+TG] since, as we observed in [26], every satisfi- 
able monadic-[GF2+TG]-sentence has a model without 
symmetric edges. 

Let a(k) = {T, C/i,..., {/*•}, where T is a transitive 
predicate letter and [/; are unary predicate letters and 
let F(k) be the conjunction of the following clauses. 

(el) VrfyCTOT;,,,) A Af=1 tAÜ/)): 

(e2) Vx3y(T(y,x)A/\k:^Ui(y)), 

(e3) Vx,y T(x,y) -+ (V|=1(^) ** ^U,(y)) V x = y), 

(e4) Trans[T). 

Note that T(k) is a GF-sentencc since every sentence 
of the form: Vx3y(a(x,y) Aij)(x,y)) can be written as 
\/x((x = x) -t 3y(a(x,y) A if>(x,y))). One can check 
that T(k) is satisfiable and in every model for T(k), T 
is an equivalence relation with equivalence classes of 
cardinality bounded by 2k. 

In [13] Grädel, Kolaitis and Vardi prove that FO2 

has the exponential model property: there is a con- 
stant c such that every satisfiable F02-sentence $ has 
a model of cardinality at most 2<-l*L 

Let $ be a F02-sentence over a signature r in Scott's 
form Vx,y <f>{x,y)Af\i"ix3y <pi(x,y), where <j)(x,y) and 
<j>i(x, y) are quantifier-free. Let T be a new binary pred- 
icate letter and let $' be the following sentence: 

Vx,y (T(x,y) -> </>{x,y)) A/\Vxly (T(x,y) Acj>t{x,y)). 
i 

Define the sentence $ over the signature a — rUa(k): 
$ = $' A T(k), where k = c ■ |$| and c is given by the 
exponential model property for FO2. We have 

(1) * is satisfiable if and only if $ is satisfiable, 

(2) |*| = 0(|$| log(|<5>|)) and * is computable in poly- 
nomial time with respect to |$|, 

So, we have proved: 

Theorem 4.1 SAT([GF2+TG]) is NEXPTIME-/mnf. 

5    The two-variable case 

In this section we are concerned with the signature 
a = {U\,..., [/?, B\,..., Bi}, where £/; is a unary 
predicate letter, Z?, is a binary predicate letter. We 
do not allow Boolean predicates, function symbols and 
constants. Assume that T\,...,Tm are all the transi- 
tive predicate letters of a. Let M = {1,..., m}. 

We reserve the letter T to denote transitive predi- 
cates. So, when the predicate letter T or T{ appears 
in a sentence, then the sentence includes as a conjunct 
Trans[T] or Trans[Tj], even if this is not written ex- 
plicitely. Additionally, we allow only 2-typcs t(x,y) 
which contain the formula (x ^ y) and we consider 
structures that have at least two elements. 

Remark Although we do not allow predicate letters 
of arity greater than two, it is possible to transform 
every two-variable sentence that use these predicate 
letters to a sentence over a signature containing predi- 
cate letters of arity at most two (cf [13]). Moreover, the 
main part of the new sentence has the same form as the 
original one and every conjunct that was added during 
the transformation is a GF2-sentence with binary pred- 
icate letters only. So, with respect to satisfiability, the 
language a can be bounded without loss of generality. 
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In this section we assume that the conjuncts of a 
[GF2+TG]-sentence in normal form have the following 
form (cf. Definition 3.1): 

(nl) 3xip(x), 

(n2) \/x(a(x) -> 3y(ß(x,y) A ip(x,y))), 

(n3) VxVy(a(x,y) -> i(){x,y)). 

5.1   Ramified models for [GF2+TG]-sentences 

In Section 4 we proved that [GF2+TG]-sentences 
can define cliques. In this section we show that the 
size of cliques of elements connected with transitive re- 
lations can be bounded. Using this observation, we 
define ramified structures that have cliques of expo- 
nential size (with respect to the signature), and that 
have only disjoint transitive paths for distinct transi- 
tive predicate letters. 

Definition 5.1 (1) A 2-type t(x,y) is single- 
transitive if there exists exactly one transitive 
predicate letter T such that t (= T(x,y) V T(y,x). 
In this case we also say that t is T-single- 
transitive. Additionally, if t \= T(x,y) A T(y,x) 
then t is symmetric, otherwise, t is oriented. 

(2) A 2-type t(x,y) is transitive-less if all the two- 
variable formulas of t(x,y) containing transitive 
predicate letters are negated. 

(3) Let v(x),w(y) be 1-types. A negative link of v,w, 
denoted by v, w, is the unique 2-type containing 
v(x), w(y) and no atomic two-variable formula. 

Definition 5.2 Let 'Si be a a-structure, B be a binary 
predicate letter in a and € be a substructure o/2l. We 
say that € is a .B-clique if for every a,b £ C we have 
(a,b)eB*. 

Let a £ A. We denote by [a]g the maximal B-clique 
containing a, provided it exists and B is a transitive 
predicate letter. In other cases, [a]^ is the one-element 
structure 21 f{a}. 

Observe that the structure [a]® need not be a clique 
even in the case when B is a transitive predicate letter. 
This happens when there is no element b £ 21 such that 
(a,b)£B<ä. 

Definition 5.3 Let A be a [GF2+TG]-senience in 
normal form over a. A a-structure fR is a ramified 
model  for A if the following conditions hold: 

(1) <R |= A, 

(2) for every a,b £ R such that a ^ b, tpiR(a,b) is 
either a single-transitive or a transitive-less type, 

(3) for every i,j £ M such that i ^ j, for every 
a,b,c £ R, b ^ a,c ^ a, if b £ [a]^. and c £ [a]^. 

then tpm(b, c) = tpm(b),tp^(c), 

(4) for every a € R, for every T £ a, the cardinality 
of[a]% is bounded by 2°(card^\ 

In the above definition we have introduced one of the 
key notions for this paper. We have the following the- 
orem. 

Theorem 5.4 Every satisfiable [GF2+TG)-sentence 
A in normal form has a ramified model. 

As we will see later, a ramified model is tree- 
controlled, what means, that if we want to build it, we 
are able to treat the model as a tree, i.e. the universe is 
partitioned into levels and all the witnesses of elements 
lying on a given level are their immediate successors. 

Before giving the proof we present technical lemmas 
and introduce some notions that will be useful later. 

Definition 5.5 Let t be a 2-type over a and B be a 
binary predicate letter in a. 

A .B-slice of t, denoted by t,B, is the unique 2-type 
obtained from t by replacing every atomic formula of 
the form Ti(x,y) and Ti(y,x), where Ti ^ B, by the 
formula ~^Ti(x,y) and ->Ti(y, x), respectively. 

Let T be a set of types. We denote by T = {v : 

v{x) £ T}U {Co : t(x,y) £ T and B £ a} U {vyw : 
v(x),w(x) £ T}. 

Note, that if B is not a transitive predicate letter, 
then t, B is a transitive-less type. On the other hand, 
when considering t/T, the only possible appearance of 
an atomic formula containing a transitive predicate let- 
ter is T(x,y) and/or T(y,x), provided the type t con- 
tains T(x,y) and/or T(y,x). 

Definition 5.6 Let A be a [GF2+TG]-senience and 
let T be a set of 1-types and 2-types. We say that T is 
A-acceptable if 

(1) T is closed under reductions, 

(2) for every conjunct of A of the form (nl) 3x^(a;) 
there exists a 1-type s £ T such that s \= ip{x), 

(3) for every 1-type s £ T, for every conjunct of A of 
the form (n2) Wx(a(x) ->■ 3y(ß(x,y) A if)(x,y))), 
there exists t £ T such that t extends s and t (= 
a(x) ->• {ß(x,y) hip{x,y)). 
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(4) for every 2-type t £ T, for every conjunct of A of 
the form (n3) \/xVy(a(x,y) -> ib{x,y)), we have 
t |= (a(x,y) -+ijj{x,y))A(a(x,x) -nj>(x,x)), 

The following observation is an easy consequence of 
the above definitions. 

Proposition 5.7 Let A be a [GF2+TG]-sentence in 
normal form,, 21 be a a-structure and T^ be the set of 
all the 1- and 2-types realized in 21. 

(1) 21 |= A if and only if T*a is A-acceptable, every 
element of 21 has a witness for every conjunct of 
the form (n2) and every T £ a has a transitively 
closed interpretation in 21. 

(2) For every set of types T, T is A-acceptable if and 
only ifT is A-acceptable. 

Definition 5.8 Let A be a [GF2 +TG]-sentence in 
normal form, let 21 be a model for A and let p £ A. 

We say that a a-structure £> is a T-petal of \p]j if 
there exists a function G such that G : D i-> [p]^1. and 
the following conditions hold: 

(pi) card{D) = 2°^card^\ 

(p2) every 1-type realized in [p]^ is also realized in £> 
and the function G preserves 1-types, 

(p3)  there is an element de D such that G{d) — p, 

(p4) every 2-type realized in £> is a T-slice of some type 
realized in [p]^, 

(p5) for every a £ D, for every conjunct 70/i of the. 
form (n2)Vx(a(x) ->• 3y(ß{x, y) A xh{x, y))), where 
ß contains T, if there exists a witness of G(a) for 
7 in \p]j, then there exists a witness of a for 7 in 
£>. 

For a predicate letter B that is not transitive, a 
structure £> is a £?-pctal of [p]^   if 5) = [p}%. 

Lemma 5.9 Let A be a [GF2 +TG]-sentence in nor- 
mal form, let 21 be a model for A and let p £ A. 

Then, for every binary predicate letter B, there ex- 
ists a B-petal of [p]#. 

Proof (Sketch) The case when B is not a transitive 
predicate letter is obvious. 

The construction of the required £?-petal in case 
when B is a transitive predicate letter is a subtle mod- 
ification of the construction given in [13] in the proof 
that every first-order two-variable sentence has a model 
of exponential size with respect to the length of the 
sentence; we give it here for the sake of completeness. 

Let A be a [GF2+TG]-sentence in normal form and 
let T be a transitive predicate letter. To explain the 
idea of the proof we will use the following notions. 

If € is a cr-structure, then a T-local King of (* is an 
element of E with the unique 1-type realized in (£, a T- 
local Noble of (£ is an element b of E which is necessary 
for a local King a £ E with respect to a conjunct of 
the form (n2) Vx(o(.r) ->• 3y(ß(x,y) A ij>{x,y))), where 
ß(x, y) contains T, and T-local Plebeians are the rest 
of elements of E. 

Let 21 be a model for A and let p 6 A. The set 

D = KÜNOP1OP2ÜP3 

will be defined as the universe of the required structure 
I) - the T-petal of [p]y-. The above sets will be the sets 
of T-local Kings, Nobles and Plebeians of £>; they will 
play the role of T-local Kings, Nobles and Plebeians 
of [p]^. Moreover, the set Pt (P> and P3) consists of 
elements that are necessary for elements of iV (Pi,P2) 
with respect to a conjunct of the form (n2) Vz(n(:r) -> 
3y(ß(x, y) A ij>(x. ?/))), where ß(x, y) contains T.    ■ 

To simplify the presentation of the technical proofs 
we will use the following special notation. 

Definition 5.10 7/21 and 23 are a-structures, a £ A, 
b G B and <p5l(o.) = tp^ib), then we denote by 2l(«) o 
23(6) the partially defined structure 9\ with the universe 
.4Uß\ {6} such that for every c,d£ R 

• if c,d G .4 then tp*(c,d) = tpm(c.,d), 

• if c,d  G   B,  c  ^   b,  d  /   b,   then tp°\c,d)   = 
tp^ic.d), 

• if c£ B, cj£ b, then tp*(a,c) = fp'B(6,c), 

• if c £  A,  d £  B, c ^ a,  then tpm(c,d)  is not 
defined. 

Now, we are ready to give the proof of Theorem 5.4. 
Proof of Theorem 5.4. 
Let A be a [GF-'+TGJ-sentence in normal form, let 

21 (= A, let T-1 bc_the set of 1- and 2-types realized 
in 21 and let T = T%. By Proposition 5.7, the set T is 
A-acceptable. 

We will construct a ramified model of A, !R, in which 
every 2-type is taken from the set T■ Every element 
of R will have a corresponding element in .4 realizing 
the same 1-type. The correspondence will be given by 
a function H. H : R i-t A, that preserves 1-types and 
witnesses, i.e. tp^ia) = tp2{(H(a)) and if b is a witness 
of « in <H for a conjunct of A of the form (n2), then 
H(b) is a witness of H(a) in 21 for the same conjunct. 

The structure 2i will be built in stages. In every 
stage k the structure fH^-i constructed in stage A; - 1 
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will be extended to Ü\k by adding new elements to the 
k-th level of <H, Lk, as witnesses of all the elements of 
Lk-i for the conjuncts of the form (n2). If a £ Lk-\ 
and there is no witness b G D\k of a for a conjunct 7 of 
the form (n2), then we add a new element b and put 
H{b) as a witness of H(a) for 7 in 21. The element b is 
added to Lk together with a structure 35 - a B-petal of 
the clique [i/(6)]|, and the function H is extended for 
elements of D by the function G given by Definition 
5.8. Additionally, to ensure that the same cliques are 
not added more than once for the same element, when 
an element a is added to 9\ together with its B-clique, 
then o is canceled with respect to B. 

So, in every stage k, the following conditions will 
hold: 

(ml) fHfc |= 7, for every conjunct 7 of the form (nl), 

(m2) every 2-type realized in UK* is in T, 

(m3) for every o 6 L*-i, for every conjunct 7 of the 
form (n2), there is a witness of a for 7 in <Hfc, 

(m4) for every Tea, the interpretation of T in D\k is. 
transitive, 

(m5) for every a, b G *Rk 

• tp*«(a)=tp*(H(a)), 

• if 6 is a witness of a in D\k for 7 of the form 
(n2), then H(b) is a witness of H(a) in 21 for 
7, 

• for every B e a, if 9\k |= j?(q, 6) and a ^ 6 

then *p** (a, 6) = tp* (H (a), H (b)), B, 

(m6) for every a e Rk, for every b e Lk, for every 
T 6 cr, if ft is not canceled with respect to T, 
then fpKt (a, 6) is either transitive-less or T-single- 
transitive oriented, 

(m7) for every i,j e M such that i ± j, for every 
a, b, c 6 At, 6 ^ a, c ^ a, if b G [affi and c G [o]?' 

then ipm*{b, c) = tp^{b),tp^(b), 

(m8) for every a £ Rk, for every T e <r, if a was canceled 
with respect to T in stage i, i < k, then [a]*' is a 
T-petal of [H(a)]* and [a]^ = [a]**. 

Observe that if it is possible to construct a structure 
fH that satisfies the conditions (ml) -(m4) then, by part 
1 of Proposition 5.7, the structure 9* will be a model 
for A and additionally, by (m2), (m7) and (m8), it will 
be a ramified model. 

The following procedure builds the required struc- 
ture in a possibly infinite number of stages. 

Stage 0. Let L0 = R0 = 0. 

1. For every conjunct 7 G A of the form (nl) 3xip(x), 

(a) find dy e A such that 21 |= V(d7), 

(b) add a new element b to L0, 

(c) put H(b) = dy and put tp*°(b) = tp*(H(b)). 

2. For every a,b G SH0,a ¥" b, put tpm°(a,b) = 
tpa(a),tpa(6). 

After performing stage 0 condition (ml) holds since 
elements of L0 were chosen in an appropriate way. Con- 
dition (m2) holds since the negative links tp^(a), tp%{b) 
are in T by part 2 of Proposition 5.7. Conditions (m3) 
- (m8) are obvious. 

Stage A;, (k > 0) Put «H* = <Rk-i,Lk = 0. 

1. For every a G I^-i, for every transitive predicate 
letter T G a, if a was not canceled with respect to 
T, then 

(a) Creation of a T-petal of a: 
Let 35 be a T-petal of [H(a)]% and let G be 
the function given by Definition 5.8, 
find d G D such that G{d) = #(a), 
put 9\k = mk(a)oT)(d) and add to Lk all the 
elements of D except d, 
for every b G £>, put #(&) = G(&). 

(b) Transitive closure for the T-petal of a: 
For every b G D \ {a} and c G Rk \ D, 
if tp^-jca)   \=  T(x,y) V T{y,x) then put 

tp9,*(6,c) = *pa(fr(6),ff(c)),T. 
(c) Other types: 

For every 6 G 25 and c G 2^ \ 25, if tpmk (6, c) 
is not defined, then put tpKk{b, c) = 
tpmk(b),tpm>i(c) and cancel b with respect to 
T. 

2. For every a G Lk-X, for every 2? G a, for every 
conjunct 7 G A of the form (n2): Vx(a(x) -> 
^y{ß{x,y) A ijj{x,y))) such that /?(z,y) contains 
2?, if there is no witness of a for 7 in [a]^*, then 

(a)   Witness of a for 7: 
Find a witness dy of H(a) for 7 in 21, 
add a new element b to L* and put H{b) — 
d-y j,7, 

put tpX«{a,b) = tp%(H(a),H{b)),B. 

(b)   Transitive closure for the witness: 
If 2? is a transitive predicate letter, say 
T, then for every c G Rk, c ^ a, 
c £ b, if either tpm><(c,a) (= T(a;,y) 
and tp*»(a,b) |= T(x,y) or *?**(<:, a) (= 
r(ar,j/) and tpmk{a,b)  \= T(xy), then put 

tp*> (6, c) = tp*(H{b),H(c)),T. 
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(c)   Other types: 
For every c e Rk, if tp^k(b,c) is not denned, 
then put tp*k (b, c) = tp^ (b), tp*>< (c). 

Comments.       (lb.)       Note   that   tp^k(b,c)    = 

tp%(H(b),H(c)),T is well-defined since H(b) £ H{c). 
Towards a contradiction, assume H(b) = H{c). Since 
b G £>, so, by condition (m5), H(b) G [H(a)]%. Then 
H(c) G [ff(a)]a.,sotpg(//(c),ff(a)) |= T(x,y)/\T(y,x) 

and then tp*(H(c),H(a)),T is T-single-transitive sym- 
metric. Since a is not canceled then, by (m6), tp^k (c, a) 
is single transitive oriented. But by (m5), tp*k(c,a) = 

tp*(H(c),H(a)),T, a contradiction. 
(lc.)    After performing this step condition   (m7) 

holds.   Additionally,   (m8) holds, since in steps 1(b) 
and 1(c) only transitive-less or T-single-transitive ori- 
ented types are put. 

Observe that after performing step 1 all the condi- 
tions (ml)-(m8), except condition (m3) hold. 

(2a.) Note that by (m8) , [a]% is a B-petal of 
[H(a)]%. So, by condition 4 of definition 5.8, d-, $ 
[H(a)]% and so in case B is a transitive predicate letter, 
tp^(H(a),d-t) fiB(x,y)AB(y x). Since H(a) ? H(b), 

so the type tp^{H(a), H'(b)), B is well defined and, in 
case B is a transitive predicate letter, it is a B-single- 
transitive oriented type, else it is a transitive-less type. 

(2b.) Note that tp* (H '(b), H'(c)),T is well-defined 
since H(b) ^ H(c). Towards a contradiction, as- 
sume H(b) = H(c). Assume, as one of two sym- 
metric cases, tpmk(c,a) |= T(x,y) and tpyik(a,b) \= 
T(x,y). Then, by (m5), tpg(H(c), tf (a)) |= T(x,y) 
and tp»(H(b),H(a)) \= T(y,x), so, tp*(H(b), H(a)) \= 
T(x,y)   A  T(y,x). By      (m5)   ,    tp*>(b,a)     = 

tp:i(H(b),H(a)),T, so tp*k(a,b) is T-single-transitive 
symmetric which is a contradiction with the observa- 
tion made in the previous step. 

After performing this step T is transitive in 9\k, 
since T was transitive in %■ before performing step 
2(b) and the pair (b, c) is in the transitive closure of T 
if and only if the pair (a, c) is in the transitive closure. 

(2c.) Observe that conditions (m6) and (m8) hold, 
since in steps 2(a) - 2(c) only transitive-less or single- 
transitive oriented types are put. 

After performing step 2 it is ensured that condition 
(m3) holds. So, by inductive hypothesis and by the 
comments given in steps 2(a) - 2(c), all the conditions 
(ml) - (m8) hold.    ■ 

5.2    Flowers 

In this section we introduce the notion of a flower 
which   contains  information  about   cliques   and  col- 

ors of elements non-symmetrically connected with a 
fixed element of a ramified model. We observe that 
the set of flowers realized in a ramified model for a 
[GF2+TG]-sentence satisfies several properties that are 
collected in the definition of a carpet. We show in The- 
orem 5.13 that these properties are necessary and suf- 
ficient for satisfiability of a [GF2+TG]-sentence. 

Recall that m is the number of transitive predicate 
letters in a and M = {1,..., m}. 

Definition 5.11 A flower F is a triple F = 
(pF,{T»f}ieM,{Inf}ieM), where 

(l)^i£,!Df = {pF), 

(2) 3f = [pF]®/ and card(DF) = 2°^card^\ for 
every i G M, 

(3) for every i G M, for every a,b G DF,a ^ b, the 

typctp®' (a.b) is T;-single-transitive, 

(4) InF is a set of 1-types, for every i G M. 

The element pF is called a pistil of the flower F, the 
structures ©f are petals of F. 

Note that it follows from the definition that the in- 
tersection of two distinct petals is a one-element set 
containing the pistil. We write tp(pF) to denote the 
type tpVi(pF)(=tp*>(pF)). 

Definition 5.12 Let A be a [GF2 +TG]-sentence in 
normal form, let, T be a set of types and let T be a set 
of flowers. We say that the pair (T, T) is a A-carpet 
if the following conditions hold: 

(cl)  T is A-acceptable and T = T, 

(c2) for every F G T, for every i G M, we have 

(a) for every a, b G Df we. have tpt>i (a, b) G T, 

(b) for every v G Inf there, is a Ti-single- 
transitive oriented 2-type t G T such that 
t\=tp(pF)(x)Av(y)ATt(y,x), 

(c) for every a G Df there exists a flower W G T 
such that (2>f ,a) = (®]V ,pW) and Inf = 
InF, 

(c.3) for every conjunct 7 of A of the form (nl) : 
3x(o(x) A tl'(x)) there exists a flouier F G T such 
that tp(pF) }= a(x) A tj)(x), 

(c4) for every F G T, for every i G M, for every con- 
junct 7 of A of the form (n2): 7 = Vx(a(x) -)■ 
3y(ß(x,y) Aij>(x,y))), if there is no witness of ph 

for 7 in any petal 35 f then there exists a flower 
\V G T and a 2-type t G T such that 
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(a) t \= tp(pF)(x) Atp(pw){y) Aß(x,y) AxP{x,y), 

(b) if ß = Ti(y,x) then 

i. t is T{-single-transitive oriented, 
ii. tp(pw) £ Inf, 

in. Inf 2 InV u {tP^id) :de2j"}> 
(c) if ß — Ti(x,y) then 

i. t is Ti-single-transitive oriented, 
ii. tp(pF) £ Inf, 

in. Inf i Inf U {tp°? (d):de®f},     . 

(d) if ß does not contain a transitive predicate 
letter then t is transitive-less. 

Theorem 5.13 A [GF2+TG]-sentence A in normal 
form is satisfiable if and only if there exists a A-carpet. 

5.3    Complexity 

Theorem 5.14 The satisfiability problem for 
[GF2+TG] is in 2EXPTIME. 

Proof Let T be a [GF2+TG]-sentence over a signature 
r and let n be the length of T. Let V be the set of 
[GF2+TG]-sentences in normal form over a signature 
a given by Lemma 3.2. Then, F is satisfiable if and only 
if there exists a satisfiable sentence A £ V. Moreover, 
card(er) = 0(n) and the length of A is linear with 
respect to n. 

By Theorem 5.12, a sentence A £ V is satisfiable if 
and only if there exist a set of 1- and 2-types T and a 
set of flowers T such that (T,!F) is a A-carpet. 

Every type of the set T can be written using 0(n) 
space and card(T) < 24nl°sn. Define TV (A) as the 
number of all flowers. Since every flower can be written 

using 2cnlogn space, iV(A) < 22C" ° ", for a constant c. 
The following alternating exponentially space- 

bounded algorithm is a satisfiability test for 
[GF2+TG]- sentences. 

Input: a [GF2+TG]-sentence T; 
Compute the set X>; 
guess a sentence A £ T>; 
Compute N(A); 
guess a set of types T; 
if T does not satisfy condition (cl) then reject; 
universally choose a conjunct 7 £ A of the form 

(nl) 3x(a(x) A ip(x)); 
guess a 1-type t £ T and a flower F; 
if   tp(pF) ^ t or t \£ a(x) A ip(x) then reject; 
for j = 1 to JV(A) do 

universally choose the Case: 
Case  1    Condition (c2) 

universally choose i € M; 

if   F does not satisfy (c2a)-(c2b) then reject; 
universally choose a £ Df; 
guess a flower W; 
if    (V(,a) £ (V?,pw) or Inf # Inf 
then reject; 
F:= W; 

Case 2    Condition (c4) 
universally choose i £ M and a conjunct 7 

of A of the form 
(n2) Vx{a(x) -> 3y(ß(x, y) A </>(z, y))) ; 

if   there is no b £ Df such that 
Di |= a(pF) -)• /3(pF,6) A V(PF,^) then 
begin 

guess a flower W and a 2-type t 6 T; 
if   conditions (c4a) - (c4d) do not hold 
then reject; 

end; 
F:=W; 

od; 
accept 

It is well known (see [3]) that for all functions f(n) > 

logn, ASPACE(/(n)) = UC6N TIME(2
C
^")). In par- 

ticular AEXPSPACE = 2EXPTIME.  ■ 

6    The general case 

The ideas and methods used for [GF2+TG] can be 
extended to obtain the analogous results for the whole 

[GF+TG]. 
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Abstract 

Closed monadic Si, as proposed in [AFS98], is the ex- 
istential monadic second order logic where alternation be- 
tween existential monadic second order quantifiers and first 
order quantifiers is allowed. Despite some effort very little 
is known about the expressive power of this logic on finite 
structures. We construct a tree automaton which exactly 
characterizes closed monadic Si on the Rabin tree and give 
a full analysis of the expressive power of closed monadic S i 
in this context. In particular, we prove that the hierarchy in- 
side closed monadic Si, defined by the number of alterna- 
tions between blocks of first order quantifiers and blocks of 
existential monadic second order quantifiers collapses, on 
the infinite tree, to the level 2. 

1    Introduction 

The monadic second order logic (MSOL) has long been 
studied by computer scientists in at least two contexts: de- 
scriptive complexity on finite structures (the Fagin context) 
and theory of finite automata on infinite trees (the Rabin 
context). Although the results of this paper concern infinite 
trees, rather than the finite structures, the class considered 
in this paper (the closed Si hierarchy) originates from the 
descriptive complexity area. 

1.1    Previous works 

In the Fagin context, the expressive power of MSOL 
on finite structures is studied. The motivation comes from 
the fact that a property of finite structures is in the class 
NP if and only if it is expressible by an existential second 
order sentence ([F74]). The question if NP equals co-NP 

* Supported by an Italian CNR grant 
t Supported by Polish KBN grant 2 P03A 018 18 

is in this way reduced to the one if Si, the set of proper- 
ties expressible by existential second order sentences equals 
to IIi, the set of properties expressible by universal sec- 
ond order sentences. But the last question is far beyond 
the techniques we have. That is why, as suggested by Fa- 
gin ([F75]) we first study the monadic counterparts of the 
complexity questions. The monadic NP is the set of prop- 
erties expressible by a formula with the quantifier prefix 
of the form 3*(va)* (where 3 and V are monadic sec- 
ond order quantifiers while 3 and v are first order quan- 
tifiers). It is not very hard to prove ([F75]) that monadic 
NP does not equal monadic co-NP: graph connectivity be- 
longs to the second of these classes but not to the first. In 
last decade a number of deep techniques was developed to 
show non-expressibility results: in [S94] Schwentick devel- 
oped sophisticated strategies for Ehrenfeucht-Frai'sse games 
to prove that graph connectivity is not in monadic NP even 
in the presence of a built-in order. In [AF90] Ajtai and Fa- 
gin used complicated probabilistic argument to show that 
reachability in directed graphs is not in monadic NP (also 
[AF97]). Finally, Matz and Thomas ([MT97]) constructed 
an automata theory based proof of the theorem that monadic 
hierarchy, the counterpart of Stockmeyer polynomial hier- 
archy, is strict. The last means that for every natural n there 
is a property of finite structures expressible by a formula 
with quantifier prefix of the form ( 3* V*)n+1(av)* but not 
by one with ( 3* V*)"(av)*. Their proof, as we said, is 
automata theory based. Let us sketch it here. The struc- 
tures they consider are colored rectangular grids. They treat 
such a grid as a word of columns. So each property of grids 
can also be viewed as set of words. For each formula <j> of 
monadic second order logic they construct a finite word au- 
tomaton A((j>) which recognizes exactly the set of colored 
grids in which cj> is valid. It is easy to construct A{ 30): the 
set of states remains the same as in A{cj)) and the transition 
function becomes "more nondeterministic". But it turns out 
that A( \/<f>) can only be constructed as A(-< 3-K/>), which 
requires computing a complement of the original automa- 

0-7695-1281-X/01 $10.00 © 2001 IEEE 
157 



ton (via dcterminisation) and leads to exponential explo- 
sion of the number of states. Then they use the number 
of states argument, and the fact that they are considering 2- 
dimensional grids rather than words, to get the separation 
result. 

It could appear at this stage that we were able to answer 
every interesting question about the Fagin world. But in 
[AFS98],[AFS00] Ajtai, Fagin and Stockmeyer noticed that 
monadic NP is not the most general monadic subclass of 
NP: they defined closed monadic NP as the class of prop- 
erties definable by a formula with the prefix of the form 
( 3*(av)*)*. In their paper they prove that such possibility 
of alternation between first order quantifiers and monadic 
second order existential quantifiers increases the expressive 
power of the language. Closed monadic NP docs not share 
the obvious pathologies of monadic NP: connectivity and 
directed reachability are definable now, the first of them by 
a prefix of the form vv 3*(va)*, the second by 3v 3(va)*. 
To show that the increase of expressive power is indeed 
substantial the authors define a property V2, definable by 
3*(av)* 3*(av)* but (and this proof is the main techni- 

cal contribution of [AFS98]) not by any boolean combina- 
tion of formulae with the prefix of the form (va)* 3*(va)*. 
Some natural questions are stated in the paper: is closed 
monadic NP equal to closed monadic co-NP ? Does there 
exist any property in monadic hierarchy but not in closed 
monadic NP ? Another very natural question one can ask 
here is if the hierarchy inside closed monadic NP defined 
by the number of blocks of monadic second order quanti- 
fiers is strict (the n-th level of the hierarchy are here the 
properties definable by ( 3*(av)*)"). 

All the above questions seem to be hard. It is amazing, 
but despite some effort ([AFS00],[M99],[JM01 ]) we are not 
even able to show that there is any property in monadic hi- 
erarchy but not on level 2 of the hierarchy inside closed 
monadic NP, (i.e. not definable by a formula with the pre- 
fix of the form 3*(av)* 3*(av)*). One could think that a 
positive answer to the last questions should follow from the 
Matz-Thomas technique, but this is not the case: it turns 
out that the construction of the finite automaton for v</; leads 
to the same kind of exponential state explosion as the con- 
struction of A( V(/;). The property expressible with a prefix 
( 3* V*)" + '(av)* but not with ( 3* V*)"(av)* constructed 
with the Matz-Thomas method is in fact expressible also 
by a formula with the prefix 3*(a*v*)" + 1 3*(av)*, which 
means that it is on the second level of the hierarchy inside 
closed monadic NP. It seems possible that understanding the 
difference between the increase of the complexity of a rec- 
ognizable language induced by first order universal quantifi- 
cation and by monadic second order universal quantification 
may lead to the answer to some of the open questions from 
[AFS98]. In this paper we show that at least in the Rabin 
context all those questions can be answered in this way. 

In the Rabin context, one considers finite automata and 
MSOL on infinite trees. The subject was pioneered by 
Rabin in his seminal paper [R69], where he proves that 
MSOL over the infinite binary tree (also known as ,525', the 
monadic second order theory of two successors) collapses 
to £3 and is decidable. This deep result has been later used 
as a tool to solve many other decision problems by reduc- 
tion to 525'. 

The main tool of Rabin's proof are what we call today 
Rabin automata, which characterize MSOL on Rabin trees. 
Rabin's proof is difficult to understand, and in particular the 
proof that Rabin automata are closed under complement is 
very complicated; so, many papers have been devoted to ex- 
plain what is really going on in the complementation proof. 
Many sorts of tree automata have been defined in order to 
simplify the construction including Müller automata (orig- 
inally considered for infinite words [M63]), and Strcett au- 
tomata. [S82]. But the real progress came only as late as 
in [GH82] with the introduction of games on trees. Games 
correspond to automata and they arc easy to complement 
(by determinacy). A related concept are alternating tree au- 
tomata, which generalize usual, nondcterministic automata 
[MS87]: an accepting run of such an automaton looks much 
like a winning strategy in a game. After thirty years of stud- 
ies there is still research under way which gives us better un- 
derstanding of tree automata, for instance in [A94] a fully 
"algebraic" proof of the complementation lemma is given, 
in [Z98] the author proposes a proof of the lemma via infi- 
nite games on graphs; and [EJ99], where the complexity of 
the satisfiability problem on tree automata is investigated. 

A very natural class of automata traditionally studied in 
this context are Biichi automata, originally introduced in 
[B60] for infinite words. The expressive power of automata 
of this class on the infinite tree is extensively studied in Ra- 
bin's paper [R70]. Among other things, Rabin shows that 
Biichi definable sets form a proper subclass of MSOL de- 
finable sets, and that they have a number of closure proper- 
ties (including closure under weak universal quantification). 
One of the closure properties proved by Rabin (Theorem 9 
in [R70] ) gave us some inspiration for the construction per- 
formed in the present paper. Biichi automata, despite of 
their simple definition which makes them a much nicer ob- 
ject of studies than Rabin automata, are also not fully under- 
stood yet. For example, only recently in [L01], it has been 
shown that Biichi automata express exactly the properties in 
£2 on the binary tree. 

1.2    Our contribution 

We give complete analysis of the structure of closed 
monadic NP (which here should be rather called closed 
monadic £1) in the world of Rabin. Our original goal was 
to look for techniques that would establish the strictness of 
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the hierarchy inside closed monadic Si in this context. 

Our first result was the one from Appendix 3 that the 
property EGFP (the last is a CTL* formula saying that there 
is a path on which the predicate P occurs infinitely many 
times) is expressible by a formula with the prefix of the form 
3*(av)* 3*(av)* but not by a Si formula. But it turns out 

that EGFP is even harder: as we prove in Section 2.4 it 
is not expressible by any boolean combination of formulae 
with the prefix of the form (va)* 3*(va)* and in this way 
it is a counterpart, in the Rabin world, of the property V2 
from [AFS98]. 

Then we tried different kinds of nesting of CTL* formu- 
lae to construct properties in closed monadic Si but not on 
its second level. All the attempts failed: to our great sur- 
prise the hierarchy inside closed monadic Si collapses in 
the Rabin world. As we prove in Section 3 it collapses to 
level 2, the same mysterious level 2 that we are not able to 
move beyond in the Fagin context. Our proof technique is 
based on automata. We define a kind of a finite tree automa- 
ton which we call search automaton (to guess how such an 
automaton should be defined was the most difficult part of 
our research). Search automaton is a kind of Biichi automa- 
ton with additional simple requirements on accepting con- 
ditions. The class of languages recognizable by search au- 
tomata contains Si and is closed under existential monadic 
second order quantification (this is not hard to prove) and 
under universal first order quantification. But the class is 
not closed under universal monadic second order quantifi- 
cation! In Section 2.3 we show that the property AFP (on 
every path there occurs P), clearly expressible by a formula 
of monadic second order logic with the quantifier prefix of 
the form V(v3)* is not recognizable by any search automa- 
ton and thus not in closed monadic Si. This means that our 
search automata, unlike Rabin automata, and unlike finite 
automata on words are sensitive to the difference between 
first and monadic second order universal quantification. 

In Section 2.1 we show that if a property is recognizable 
by a search automaton then it is expressible by a Si for- 
mula using an additional predicate <, where the meaning 
of x < y is x is a prefix ofy. The last formula, for fixed x 
and y can be defined by additional existentially quantified 
monadic relation, and as a result we get a formula with the 
prefix of the form 3*(av)* 3*(av)*. 

1.3    Remark on Si(TC) 

There is another unexpected link between our two 
worlds: not only, as we said in Subsection 1.1, no monadic 
property in the Fagin world is known which could be proved 
not to be expressible on the level two of the hierarchy in- 
side closed monadic NR In fact we do not even know a 

monadic property provably not in Si (TC)1 where TC is 
the simplest possible version of the transitive closure op- 
erator: TC(<p,x,y), where 0 is a first order formula with 
two free variables, means that there is a finite path x — 
xi, X2, ■ ■ ■ %k — y such that (f>(xi,Xi + 1) holds for each i. 
The formula <p is generalized graph edge, and it is as hard 
to define the TC operator as to define graph reachability. 
This means that all properties in Si (TC) are, in the Fa- 
gin world, definable by a formula with a prefix of the form 
( 3*(av)*)3. Could it be possible that closed monadic NP 
in the Fagin world is exactly Si(TC)? It follows from our 
results that the classes are equal in the Rabin world. 

2   Technical part, the easy fragment 

We consider MSOL over trees. By a tree we mean a 
structure whose domain is {0,1}*. The signature consists 
of two functions left son and right son, mapping each w to 
wQ and wl respectively, and of some finite set V of monadic 
predicates. Sometimes (when explicitly mentioned) the sig- 
nature will also contain the prefix ordering relation <, with 
the natural meaning. When talking about automata we of- 
ten think that a tree is rather a function from {0,1}* to some 
alphabet X than a structure. Since X can be viewed as the 
powerset of V the two definitions are equivalent. A. path in a 
tree is an infinite sequence xi,x2 ■ ■ ■ of words from {0,1}* 
such that each xi+\ equals to XjO or to Xjl. 

2.1    Search automata 

A search automaton over an alphabet X is a tuple 
A = (Q, Q0, R, {FUF2,... Fk}) where Q is a finite set 
of states, Qo Q Q and R is a finite set of rules which are 
constructs of the form (q,a) —> (qo,qi), with q,qo:qi € Q 
and a e X. Ft are subsets of Q and satisfy the following 
condition: 

(L) For any rule (q, a) —> (q0, q{) from R and for any 
i : 1 < z < k, if q $ Fit then there exists de {0.1} 
such that qd e Fi. 

For a tree T with alphabet X a run of the automaton A 
on T is such a function p : {0,1}* —> Q that for each 
w € {0,1}* (p{w),T(w)) -> {p(w0),p(wl)) is a rule 
from R. A run p is initial if p(e) e Qo and is accepting if: 

(C) for any path Wi,w2,... and any i, p(wj) € Fi 
for infinitely many numbers j. 

We say that A recognizes the tree T if there exists an initial 
accepting run of A on T. 

'The properties constructed by Matz-Thomas method are also in this 
class 
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Lemma 2.1 If A is a search automaton, then the set of trees 
recognized by A is definable by a formula in Ei (<). 

Proof: In presence of the condition (L), it is easy to 
see that (C) is equivalent to the first order condition: 

(C) For any i and any u e {0,1}* such that p(u) ^ F, 
there exists v > u such that p(v0) € Fn p(vl) e F, 
and Vw e {0,1}*, (u < w < v -> p(w) g F,. 

In order to prove this equivalence consider, for given ?' 
and for given u e {0,1}* such that p(u) <£ Fu the set 
A = {w e {0,1}* : u < w A p(w) (£ Fi A Vu < v < 
w p(v) g Fj}. By the condition (L) the set A is a path 
(finite or not). This path is finite if and only if it contains 
a word v such that p(v0) e F, and p(vl) e F,. And the 
condition (C) means that for every u and every i the set A 
is finite.   ■ 

2.2    Main result 

Theorem 2.2 Consider the following six classes of proper- 
ties of trees: 

(i) Closed monadic Ei (7.e. the set of properties definable 
by a formula ofMSOL with the quantifier prefix of the 
förm(3*W)*). 

(ii) Second level ofclosed monadic Ei (i.e. the set of prop- 
erties definable by a formula ofMSOL with the quan- 
tifier prefix of the form 3*(va)* 3*(va)* ). 

(Hi) Monadic Ei(<) (i.e. the set of properties definable 
with the use of prefix ordering relation < by a for- 
mula of MSOL with the quantifier prefix of the form 
3>3)*). 

(iv) The properties recognizable by search automata. 

(v) Monadic üj (i.e. the set of properties definable by a 
formula ofMSOL with the quantifier prefix of the form 
V*(V3)* ). 

(vi) First order closure of T,i (i.e. the set of properties de- 
finable by a boolean combination of formulae ofMSOL 
with the quantifier prefix of the form (va)* 3*(va)* 

Then: (i)=(ii)=(iii)=(iv) and (v)^ (iv)and(vi) ^ (ii). 

Proof: (v) T^ (iv) is proved in Section 2.3, (vi)^ (ii) is 
proved in Section 2.4, (ii)C (i) is obvious, also (iii)C (ii) is 
easy to show, (iv)C (iii) was proved in the previous Section. 
For the proof of (i)C (iv) see Section 3 ■ 

Let us remark that it follows from Theorem 2.2 that 
closed monadic Ei (<) on the Rabin tree is exactly monadic 
Ei(<), the possibility of alternating first and second order 
quantifiers docs not give any additional power here. 

2.3    AFP is not in closed monadic E] 

Lemma 2.3 Let P be a monadic predicate. The property 
that on every infinite path from the root there is a P (defined 
by the CTL formula AFP), is definable by a formula with 
quantifier prefix of the form V*(av)* (is in monadic ÜJ 
but is not recognizable by a search automaton. 

Proof: Suppose A were a search automaton for AFP, 
over the alphabet {P.-^P}, with a set Q of states and k 
accepting conditions F\...., Fk- Let / = |Q|. Then con- 
sider a natural number m which is sufficiently large, say 
rn = 2(1 + l)k + 2. Let M be the tree where P is inter- 
preted as the set of all words of length m. Obviously, M 
has the property AFP. Let p be an accepting run of A on M. 
Since A is a search automaton, there exists a sequence of 
(/ + l)k words: 

W'l.l  < < w1M < < '"'(+1.1 < < W[+l.k 

such that for each pair i.j it holds that wtj has length less 
than 7/), that p(ii',.j) £ Fj, and that the distance between 
each two consecutive elements of the sequence is 1 or 2. 
Now, we find i < i' < I + 1 such that p(w,i) = /?(«>,<,i) 
and apply a "pumping" argument: let M' be a tree with 
predicate P defined as: 

(i) If (/',.i is not a prefix of w then w € P holds in M' if 
and only if it holds in M. 

(ii) Let iy be such that »',.i?y = «y.i. If w is of the form 
(/',.\ij*.r where y is not a prefix of ,r then w € P holds 
in M' if and only if «',.1.7: e P holds in M. 

In an analogous way define the run p' of A on M'. Then 
M' docs not have the property AFP: words being prefixes 
of some word of the form w,,\;j* form an infinite path with- 
out P. But p' is an accepting run of A on M'.   ■ 

2.4    Monadic Ei is much less than closed monadic 
Si 

Let us consider the following property of infinite binary 
trees colored with a monadic relation P: 
(*)    there is an infinite sequence x 1. x^. .T,J ... of vertices 
such that x 1 < r,+ i and P(x,) hold for each i . 

In the notation of the temporal logic CTL* the property 
(*) can be expressed as EGFP. 

It is easy to see that (*) is expressible in monadic Ei (<). 
Our original elementary proof of the fact that EGFP is not in 
monadic Ei can be found in the Appendix. But it turns out 
that with the use of a new result from [L01] we can easily 
have something more: 
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Theorem 2.4 Property   (*)   is   not  expressible   by  any 
boolean combination of formulae with the prefix of the form 
(V3)* 3*(V3)*. 

Proof: It is easy to see that if some property is express- 
ible by any boolean combination of formulae with the pre- 
fix of the form (va)* 3*(va)* then it is also expressible by a 
formula with the prefix of the form (va)* 3* V*(va)*. It is 
proved in [L01] that if a property is in monadic E2, that is 
expressible by a formula with the prefix 3* V*(va)*, then 
it is recognizable by a Biichi automaton. But the class of 
properties recognizable by Biichi automata is closed under 
universal first order quantification ([R70]) and under exis- 
tential first order quantification. So if a property is express- 
ible by a boolean combination of formulae with the prefix 
of the form (va)* 3*(va)* then it is recognizable by a Biichi 
automaton. 

If property (*) were expressible by a formula like in the 
theorem then its complement: 

(**) On each path there are only finitely many P 
would also be expressible in this class, and thus would be 
Biichi. But the last is not the case as proved in [R70]. ■ 

3   Technical part, the harder fragment 

In this technical section we prove that search automata 
recognize all the properties in closed monadic Ei. We leave 
it for the reader as an easy exercise to prove that they recog- 
nize all the properties in monadic Ei, and that the class of 
recognizable properties is closed under existential quantifi- 
cation, first order and monadic second order. What remains 
to be proved is: 

Lemma 3.1 Let A be a search automaton, over some al- 
phabet E x {x,x}. For a given tree T over E and for 
v e {0,1}* define Tv as the tree over E x {x,x}, with 
Tv(y) = (T(v),x) ifv = yandTv(y) = (T(v),x) oth- 
erwise. Then there exists a search automaton vA over the 
alphabet E such that \/A accepts a tree T if and only if A 
accepts every Tv for »£{0,1}*. 

From now on A = (Q,Q0,R, {FUF2,... Fk}} is a 
fixed search automaton. 

3.1    Multiruns 

Let us assume that the tree T over E is such that each Tv 

is recognized by A. Then for each v there is an initial ac- 
cepting run p° on Tv. For any v and w in {0,1}* such that 
w £ v, the subtree T£ ofTv defined by T^(u) = Tv{wu) 
is over the alphabet E x {x} (more precisely, T%(u) = 
(T(wu), x}), and pv induces an accepting run pv

w of A on 
Tl defined by pv

w(u) = pv(wu). 

The initial accepting runs of vA on T must allow us to 
retrieve a family (p")„6{0,i}- • In particular, they must con- 
tain in an encoded form, a sufficiently large set of runs pv

w, 
called multirun. 

Definition 3.2 For a tree T over E we define T as the tree 
over E x {x} with f(w) = (T(w),x). IfT is a tree and 
u e {0,1}*, then we define Tu as the "subtree ofT rooted 
in u": Tu(y) = T{uy) for each y. 

Definition 3.3 Let T be a tree over E. A multirun of the 
automaton AonT is a partial function \t whose arguments 
are pairs (w,q) (where w e {0,1}* and q e Q), such that 
for each element {w, q) of its domain ty(w, q) is a run of A 
on Tw, with the state q in the root w offw. A multirun * is 
accepting if all the runs ^{w, q) are accepting. 

For convenience, instead of considering ty(w, q), which 
is  a total  mapping,   we consider the partial mapping 
of domain w{0,1}*, denoted by ^>w<q and defined by 
^w,q{wu) = $(w, q)(u), so that if ty(w, q) is pv

w then 
(E)    *„,,,(M) = 9(w, q)(u) = pl(u) = pv(wu). 

Multiruns are a way of remembering the whole interest- 
ing knowledge about possible accepting runs of A on such 
subtrees of T x {x, x} which do not contain the (universally 
quantified) variable x. This interesting information is where 
we can start such a run and in which state we can start it: 

Definition 3.4 Two multiruns on T are equivalent // they 
have the same domain. 

We want to store the information as a run of our new 
automaton vA But s/A can only store finite piece of infor- 
mation in each of the nodes of {0,1}*. This motivates: 

Definition 3.5 A   multirun   <3>   is   uniform   // for  each 
wi,w2,y,z e  {0,1}* and qi,q2 €  Q the following im- 
plication holds: 
(wi<y< z)A(w2 < y) A *„,,.,, (2/) = ^W2.q2 (y) implies 

So a multirun is uniform, if each time when two of its 
runs agree on some node y they remain equal on all the 
successors of y. 

Of course not every multirun is uniform, but it turns out 
that: 

Lemma 3.6 For every accepting multirun * onT there ex- 
ists an equivalent accepting multirun \I>' which is uniform. 

The tool we need to prove Lemma 3.6 is: 

Lemma 3.7 Let T be a tree over E and let p be an ac- 
cepting run of A on some Tw. Let B be an antichain (with 
respect to the prefix ordering <) of nodes ofTw, and for 
each y e B let py be an accepting run of A on some sub- 
tree ofT containing Ty. Suppose for each y € B it holds 
that py(y) = p(y). Then the function Q defined as: 
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(i) g(z) = py(z) ify G B and z > y, 

(ii) g(z) = p(z) if z G Tw but z g" Tyfor any y G B, 

is an accepting run of A on Tw.    ■ 

Now, let <3/ be an accepting multirun. Let -< be any fixed 
total order on Q. We define the following ordering C on 
dom(ty): 

(i)  (w,q)c(w',q')\{\w\(\w'\, 

(ii) (w.q) (Z (w',q') if \w\ — \w'\ and w is smaller than 
w' in the lexicographic ordering of words, 

(iii) (w,q) C (w,q') iff/ -< q'. 

Obviously, C is a total order and if dom($) is infinite 
then the type of c is u>. Now, we define a multirun \I>' by 
induction on C. Suppose, for some pair (w,q) G dom(ty) 
the runs ty'w, , are already defined for all pairs (w'q') C 
(w,q). Let V be the set of such nodes z of Tw that there 
exists (w',q') C (w,q) such that V'w, q,(z) = $w,q(z), 
and let B be the set of minimal elements of V with respect 
to the prefix ordering <• Then, by Lemma 3.7 the function 
ty'w   defined as: 

(i) %lKl](z) = ¥„,.,,<(*) ifyefl and *'u,,.,,(y) = 

*iu.<j(?y) and z > y 

(ii) *;„,(2)  = $„...,(2) if 2 € T,(, but r £ Ty for any 
yeB, 

is an accepting run of A on T,,,. It is also easy to see that 
ty'w (w) = q, so \I/' as we just defined it is an accepting 
multirun and is equivalent to \I>. We leave it as an exercise 
for the reader to show that yt' is indeed uniform.   ■ 

In order to construct a family {pv)ve{o.i}- n 's not 

enough to know a multirun. This is because only the val- 
ues p"{w) where w jt v are kept in a multirun. To get the 
values of pv(w) where w < v, we need an additional piece 
of information: 

Definition 3.8 For a given multirun ^ its co-multirun, 
which will be denoted as coty is a function with domain 
{0,1}*, whose values are subsets of Q, defined by induc- 
tion as: 

(i) «jtf (e) = Q0; 

(ii) f/o G co^(wQ) if and only if there exist q G co^(w) 
and f/i G Q such that (wl.qi) G domfö) and 

(q, (T(w),x)) -» (f/o-f/i) is a rule of A; 

(iii) f/i G c.o^{wl) if and only if there exist q G co^(w) 
and f/o G Q such that (wQ.qo) G dom(ty) and 
(f/, (T(w),.?:)) -> (f/o, f/i) is a rule of A. 

Notice that coty only depends on the domain of ^: if 
<£ and 1i' are equivalent then co$ equals to coty'. So, by 
Lemma 3.6 for every multirun there exists a uniform one 
with the same co-multirun. 

The following lemma says that the information carried 
by a multirun and its co-multirun is indeed everything we 
need: 

Lemma 3.9 Let A be a search automaton, over an alphabet 
E x {x, x}. Let T be a tree over £ and let Tv be defined 
like in Lemma 3.1. Then the following two conditions are 
equivalent: 

(i) For every v G {0,1}* the automaton A accepts the 
tree Tv. 

(ii) There exists an accepting multirun $ on T such that: 
(X)for every v G {0,1}* there exist q, q0, q\ such that 
both (vO, f/o) and (vl, q\) are in the domain ofty, that 

q G co^{v) and that (q.(T(v),x)) —> (f/o,f/i) is a 
rule from R. 

Notice that by Lemma 3.6 and by the remark just above 
the last lemma we could equivalently write "exists an ac- 
cepting uniform multirun" in the first line of the second item 
in the lemma. 

Proof: (ii)=>(i). Let * be a multirun as in (ii) and let v G 
{0,1}*. We need to define an accepting initial run pof A on 
Tv. There are q, f/o, f/i such that q G co^(v), both (vO, f/o) 
and (rl.f/i) arc in the domain of ^ and (f/, (T(v),x)) —> 
(f/o.f/i) is a rule from R. Define p(v) = q. For w > vO 
define p(w) as ^vo.qil{w) and for w > vl define p(w) as 
^ri.qi (■"')■ Now, if v = E then what we defined is already 
an initial accepting run. If not, let v — yO for some y (the 
case when v = yl is obviously symmetric). From the fact 
that q G co^(v) and from the definition of coty we get 
that there are qy and qy\ such that (yl,qy\) G doin(^) and 
(f/,;. (T(y),x)) -> (q. f/yi) is a rule of A. Define p(y) = qy 

and for w > yl define p{w) = ^yi.q,n{w). Then continue 
this process until the root of the tree is reached. It is not 
hard to check that the defined function p is indeed a run as 
needed. 

(i)=Kii). For each v let pv be an initial accepting run 
of A on Tv. We first define the domain of ty as the set of 
all pairs {w.q) such that there exist at least one v such that 
pv{w) = q and v ^ w. Then, for each (w.q) G d,om(^) 

we fix one such v and define ^u-,q(y) = pv(y) for y > XL>. 

It is obvious that ^ is an accepting multirun. To prove that 
$ satisfies condition (X) we need: 

Lemma 3.10 pv(w) G co^(tv) for each v G {0,1}* and 
each w < v. 

Proof: By item (i) of Definition 3.8 this is true for w = e. 
Then use induction on the leneth of w.  ■ 
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Now, to finish the proof of Lemma 3.9 we notice that 
the triple pv(v), pv(vO), pv(vl) of states from Q is a cor- 
rect candidate for the triple q,qo,qi whose existence is 
postulated by condition (X): (vO,pv(vO)) and (vl,pv(vl)) 
are in the domain of *, by the last lemma we have that 
pv(v) € coty(v) and, since pv is a run of A on Tv, we have 
that (pv(v), (T(v),x)) -» (pv(vO),pv(vl)) is a rule from 
R. m 

3.2   An intermediate step 

As an intermediate step between multiruns and automata 
we consider ranked multiruns: 

Definition 3.11 Let ty be a uniform multirun. Then the rank 
on \I> is a function <p such that: 

(i) The domain of § are all the tuples (w, q, v) such that 
(w, q) is in the domain offy and w < v; 

(ii) The values of <p are natural numbers from the set 
{1,2,...2|Q|}; 

(Hi) ^Wuqi(v) = ^W2,q2(v) if and only if 4>(wi,qi,v) = 
(p(w2,q2,v); 

(iv) <j>(w,q,v)      > 
4>(w,q,vl); 

6(w,q,v0)    and   (f>(w,q,v)      > 

(v) If<j){w, q,v) = k and 4>(w, q, vO) < k then there is no 
pair (w', q') such that <p(w', q', vO) = k. The same for 
vl: if4>(w,q,v) = k and <j>(w,q,vl) < k then for no 
pair (w', q') it can be that 4>(w', q'.vl) = k. 

Ranks are a way how we are going to organize the mem- 
ory of vA to store a uniform multirun: <j)(w, q. v) — k can 
be understood as "in the node v the run tyw<q is kept in the 
register k". If two runs VWl,qi and ^W2,q2 are equal on 
some v then they remain equal forever (on the whole tree 
Tv) and we do not need to make a difference between them 
any more. This is why we rank them as equal on v, thus 
keeping them in the same memory register (item (iii)). It 
may also happen that two runs ^Wuqi and $W2,q2 were not 
equal on some v yet, but they are equal on vO (or vl), and 
thus remain equal on Tv0 (Tvl). Then, while moving from v 
to vO, we change the number of the register where one of the 
runs is remembered. Item (iv) gives us a hint how this will 
be done: we change the rank of the run which was ranked 
higher so far. But since we only can decrease the rank of a 
run, such a change can only happen (on a fixed path) finitely 
many times. This observation can be formalized as: 

Lemma 3.12 Suppose wx, w2,... is a path, the pair (w, q) 
is an element of the domain of a uniform multirun *, 
w < w\ and cfi is a rank on ^>. Then the sequence: 
4>{w,q,wi),4>(w, q,w2),^{w, q,w3)... is non-increasing 
and thus constant from some point. 

Let us also explain the role of the last item in Definition 
3.11. It is possible that some run *Wl,Ql has rank k on some 
v, and then, on v' > v it already has rank k' < k. But 
the memory register k must be reused: there is another run 
^w2,q2 which has rank k on v'. We need to give vA a chance 
of seeing that ^Wuqi and ^W2,q2, despite being kept in the 
same memory register, are two different runs. The way we 
do it (in item (v)) is that we secure that there is a node v" 
between v and v' when the register k is empty: no run has 
rank k on v". 

This subsection would be incomplete without: 

Lemma 3.13 For every uniform multirun ~$> of A there is a 
function 4> which is a rank on $. 

Proof: Use the same kind of inductive construction as in 
the proof of Lemma 3.5. The only new thing here is that 
we must show that it is enough to have only 2\Q\ different 
ranks. But since two runs which are equal on v have the 
same rank on v we actually only need \Q\ different numbers 
to rank them. The remaining \Q\ are needed because of item 
(v) of the definition of rank.   ■ 

3.3    The automaton v^4 

Now we are ready to define the automaton vA The set 
Qv of the states of v^ consists of all possible tuples of the 
form: (5, si,s2,.. -S2\Q\), where S C Q and each s, is ei- 
ther _!_ or is itself a tuple (qjoji) where q e Q and j0, j\ 
are natural numbers from the set {1, 2,... i). This defini- 
tion hardly comes as a surprise for a reader who understood 
the two previous subsections: the tuples Sj are the registers 
where vA will remember the runs of some uniform multirun 
*. If Sj = (q,joJi) in some node w then q is the value on 
w of all the runs with rank i, and j0, ji are ranks of the runs 
on wO and tol. Finally, S is where coty is going to be kept. 

Having this explanation on mind it is easy to guess that: 
((5,si,s2,...s2|Q|),a) -> 
((S°:S<i,sl...s

0
2lQl),(S\slsl...slm)) 

is a rule from the set i?v of the rules of vA if the follow- 
ing conditions hold: 

(i) If Sj = (q, jo, ji) then neither s°jo nors^ is 1. If s°o = 
(g0,m0,mi)ands]i = {qi,n0,ni) then (q, (a,x)) -* 
(qo, q\) is a rule of the automaton A. 

(ii) If st = (q,jo,ji) and j0 < i then s° = _L And also, 
if st = (q,Jo,ji) and ji < i then s} = ±. 

(iii) <7i e Sl if and only if there is q G S and s° = 
(qo,jo,ji) such that (q,(a,x)) -> (q0,qi) is a rule 
of the original automaton A. Symmetrically, q0 € 5° 
if and only if there is q e S and sj = (qi,j0,ji) such 
that (q, (a.x)) -> (qo,qi) is a rule of A 
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(iv) There exist q £ S, s® = (qo,no,ni), and s], = 
(qi,n'0,ni) such that (q,(a,x)) —* (qo-q\) is a rule 
of A 

To end the construction of the automaton vA we define 
Qo to be the set of such states (S, si, s2, ■ ■ ■ S2\Q\) G QV 

that S = Qo and for each accepting condition F,, G 
{Fi, F2 ■ ■ ■ Fk} of the automaton ,4 we define 2\Q\ ac- 
cepting conditions F/, F? ... Ft of the automaton vA 
where (5, Si,s2, • ■ • S2|Q|) € F/ if and only if Sj = -L or 
Sj = (q,Jo,ji) andq g F,. 

It is easy to check that wl satisfies the 
condition (L) and therefore is a search au- 
tomaton: If       ((5,si,S2,...s2|Q|),a) -♦ 
(($' 

0    0 „0 
1 *li*2' S2IO|}' W   'Sl' S2 '2|Q| ))      ^ rule 

»■   - •        'wi" 

and if i is such that s;, s°, and sj are not equal to J_, 
then Si - (<7,jo,ji), and, by item (ii), i = jQ = jY. By 
item (i), 5° = (go,"-0,^1) and s,' = (r/i, rr?o, rrii) where 
(q,(a,x)) —> (qo-qi) is a rule of the automaton A It 
follows that one of the states q, q0, qi is in F3 and thus one 
of Si, s°, sj is in F-. 

Now, Lemma 3.1 will follow from Lemma 3.9 and from: 

Lemma 3.14 For every tree T over £ the two conditions 
are equivalent: 

(i) There exists an initial and accepting run /;v ofvA on 
T. 

(ii) There exists an accepting multirun ty on T satisfying 
the condition (X)from Lemma 3.9 

Proof: (i)=>(ii). Let pv be an initial and accepting 
run of vA on T. Let co^(w) be S where pv(w) — 
(S, si, A'2, • ■ • S2\Q\). Define domfö) as the set of all pairs 
(w,q) such that there exists i,jo,j\ such that pv("') = 
(S,S1IS2,...S2\Q\) and s, = (qjo-ji). We need to 
show how to extract the run tyu,.q from pv. First de- 
fine ^n, q(w) = q. Notice that if now pv(irO) = 
(5°,.s?,s°,...sO|Q1),andpv(U;l) = (S\ ,sj, s2,... s2|Q|) 

then (by item (i) of the definition of a rule from /?v) we have 
that ,Sj(| = (qo,no,ni) and s^ = (q\.mo.m\) for some 
<?o,9i,?k)!«i:'»o, mi. Thus we can define <]/„..,(</'()) = g() 

and tyWtfl(wl) = qi, and then, by induction, we can define 
in this manner \tw,q(v) for any v > w, so that ty(-u\ q) is a 
run of A on Tw. By definition of QQ and by item (iii) the 
three conditions of Definition 5 hold and, by item (iv), the 
multirun \T/ satisfies the condition (X). What still needs to be 
shown is that it is accepting. In order to prove it we fix ir. q 
and show that ty(w, q) is an accepting run of A on Tw. Con- 
sider a path X], x-2, X3 ..., where x\ > w and an accepting 
condition Fj from the set of accepting conditions of A We 
want to show that elements from Fj occur infinitely many 
times in the sequence ^w.q{^i),^w.q(

x2)^ iv.qi^i)  

But by the construction of tyw.q there exists, for each i, a 
number h1 such that pv(x,) = (Sl, s\, s2,... SLQ,), and 

sj, = i^/w.qi^i), ?'ö-ni) f°r some n'Q, n\ < h,. It also fol- 
lows from the construction that hj+\ either equals to nl

0 or 
to 72j, so that h, + \ < h,. The last observation implies that 
the sequence h\. h2- '<3 • • • stabilizes: there exist numbers 
?'o and h such that h, — h if / > ?o. To finish the proof we 
consider the sequence .sj"   . sj!1 + 1 . sj"+2 ,..., which is, as 

1 'ii(l    'ii0i-i ■   "1,1 + 2' 

we said, the same as sj". sj" + 1, s),"+'2,.... None of the ele- 
ments of the last sequence is J_, so, since pv is accepting we 
get (by the accepting condition Fj) that infinitely many of 
the elements of the last sequence arc of the form (q', n, m) 
where q' g Fj. 

(ii)=>(i). Let ^ be an accepting multirun on T satisfying 
the condition (X) from Lemma 3.9, and let </> be a rank on 
$. Define pv(w) as a tuple (S. si, .s'2, ■ ■ • S2\Q\) such that: 

(i) 5 = co^(w) 

(ii) s, = (q.jo-ji) if there exist q' g Q and v < w 
such that ^tKq'(w) = q and <f>(v,q',w) = i and also 
(p(c.q'.wO) = ja and<f>(v,q',wl) - jt 

(iii) s, = ± if such v. q' as above do not exist. 

It is easy to check that what we defined in this way 
is indeed an initial run of Av. What still needs to be 
shown is that it is an accepting run. In order to prove it 
we consider a path XI.XJ.XJ ... and an accepting condi- 
tion Fj. from the set of accepting conditions of vA   Let 
pv(.r,)  =  (S'..s\.s'2... .s'2|Q|).   What we need to sh ow 

is that the sequence sj. sf. sf ... contains infinitely many 
± symbols or it has infinitely many elements of the form 
(q. v. m) with q g F/,.. Suppose there arc only finitely many 
± symbols among the clement of the sequence. So there is 
?'o such that none of the .sj, where i > ?'o, is a 1. By the item 
(i) of the definition of rank this implies that there exist w, q 
such that 6(ii'.q..r,) = I for i > ?'(l. Since \I\,,.f; is an ac- 
cepting run of A, we have that infinitely many of V^,,..,,(•':,) 
arc in F^. But if only i > ?'o then sj = {fyw.q(x,). 11,. in,) 
for some n ,.m,.  ■ 
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4 Appendix: An elementary proof of the fact 
that EGFP is not in monadic Ej 

We begin the proof with a definition: 

Definition 4.1 Let x be a vertex of a infinite binary tree T 
colored with some monadic relations P\, P?, ■. ■ Pi- Sup- 
pose k is some fixed natural number. 

(i) By the vertex type of x we will mean the set u{x) C 
{1, 2 .. .1} such that Pi(x) holds if and only if i g 
u{x). 

(ii) By the neighborhood type ofx we mean the triple 

U(x) = {u(x), u(x0), u(xl)) 

of the vertex types ofx and its both children. 

(Hi) A tree type U is a function whose arguments are 
neighborhood types and values are natural numbers 
0,1,... k. 
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(iv) A tree T colored with Pi, P2,... Pi has the tree type 
U(T) if for each neighborhood type U the number of 
vertices of this type in T is k-equal to (U(T))(U). Two 
numbers are understood to be k-equal if they are equal 
or if they are both greater or equal to k (in the last case 
one of them, or both, may be infinite). 

(v) A perfect tree type is a pair {U, U), where U is a tree 
type and U is a neighborhood type. A tree T has per- 
fect tree type (U,U) ifU is its tree type and U is the 
neighborhood type of its root. 

By locality of first order logic and by acyclicity of the 
infinite tree, in order to prove Theorem 2.4 it is enough to 
show: 

Lemma 4.2 For every natural number k there exists an in- 

finite monadic tree T° colored with Pi in a way satisfying 
property (*) such that for every T1 being an extension ofT° 
by monadic relations P2, P3 ... Pj there is a monadic tree 
T2 colored with the same relations as T1, not satisfying 
property (*) and of the same perfect tree type as T] 

Proof of Lemma 4.2 will occupy the rest of this section. 
For two tree types Ui and U2 let Ui -< U> mean that 

Mi(U) < U2(U) for every neighborhood type U. Notice 
that for fixed I and k there is only some finite number of 
tree types. So the partial order < is well-founded. 

Definition 4.3 Let T be the infinite monadic tree colored 
with monadic relations Pi, P2. Pi ... Pi, let T1 be another 
tree of this kind and let x be a vertex ofT. Then: T[x 

Lemma 4.8 Let xi,X2,z-3 ■ ■ ■ be an infinite sequence of 
vertices of some T such that x, < x, + i for each i and let 
no be such a number that all TXn for n > no have the same 
ultimate tree type U (such a number exists by Lemma 4.7). 
Then there exists ni > no such that if n > n\, ifT1 is a 
tree such thatU(Tl) -< U and if the vertex type of the root 
ofT1 is the same as vertex type of xn then the perfect type 
ofT is equal to the perfect type ofT[xn «— X"1]. 

It is time now to define the tree T° from Lemma 4.2. In 
order to do it it is enough to specify the predicate P1# Let m 
be the number of distinct vertex types. Then we put Pi = 

{0mk : k e M). Obviously T° satisfies the property (*). 

Now consider some fixed tree T1 being an extension ofT0 

by monadic relations P2, Pi ... Pi. We need to show that 
there is a monadic tree T2 colored with the same relations 
as T1, not satisfying property (*) and of the same perfect 
tree type as T1. 

Let x, = 0' and let ??i be the constant from Lemma 4.8. 
We consider two numbers jo < ji, both greater than n\, 
and such that: 
(i) the vertices 0-"' and (F1 have the same vertex type in T1 

(ii) if n. — 0 mod m then either n < jo or ji < n. 
Notice that the last condition implies that if x is on the path 
from 0j" to CF1 then x £ P\. 

Now, define TA as the tree where x £ Pt if and only if 
the following condition holds: 
x = 0r'J1"-'"\y for some y, 0J>~J" is not a prefix of y, and 
0J"ye P, holds in T1. 

Obviously the vertex type of the root ofT3 is the same 

T1} is "T with Tx substituted with Tl " or, to be more as the vertex type of the root of Tj(]. It is also easy to see 

precise, the infinite binary tree colored with monadic re- 
lations Pi, P2, P3 ... Pi in such a way that P,(y) holds in 
nxt-T^if: 
(i) Pi(y) holds in T and x is not a prefix of y or 
(ii) Pj(z) holds in Tl and y = xz 

It is easy to sec that: 

Lemma 4.4 // x, y are two vertices of a colored tree T, 
such that y < x then U(Ty) < U{TX). 

The last lemma and wcll-foundcdncss of -< give: 

Lemma 4.5 Let .T1.X2, .T3 . .. be an infinite sequence of 
vertices of some T such that x, < x,+i for each i. Then 
there is a number JIQ such that for eveiy n > no U(TXn ) = 
w(rIri). 

Definition 4.6 A tree type U will be called ultimate if for 
every neighborhood type U either U(U) = 0 orU{U) = k. 

Lemma 4.7 Let .TI,.T2,.T;J ... be an infinite sequence of 

vertices of some T such that x, < x, +1 for each i and let 77 0 
be the number from Lemma 4.5. Then the tree type U(TXn ) 
is ultimate. 

that U{TA)  < U(TjJ.   So by Lemma 4.8 the tree T2 

r1 
T } has the same perfect type as T . To finish 

the proof of Lemma 2.4 we observe that since Pi docs not 
occur in T3 there are only finitely many vertices in predicate 
Pi in T2 so the property (*) docs not hold in T2. ■ 
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Abstract 

We will answer questions due to A. Blass and Y. Gurevich 
on definability of order in the first-order logic with Hubert's 
epsilon operation. E.g., we will show that a linear ordering 
is almost surely definable in models with random choice. 

There is a well-known discrepancy between computa- 
tional and descriptive complexity in finite models. For in- 
stance, a finite automaton can check whether the number of 
elements in any given finite set is even or odd, even though 
this property is not expressible in either monadic T\ or 
IFP (inflationary fixpoint logic). The difference apparently 
arises from the fact that the data in a computer's memory are 
always linearly ordered, even if the ordering is random. In 
the presence of a linear ordering, there is a much nicer cor- 
respondence between computational and descriptive com- 
plexity classes. In particular, parity becomes definable in 
both monadic £} and IFP. It is natural to ask if a similar de- 
scriptive strength can be obtained with weaker extensions 
of the various logics. 

In recent years, several people have introduced strength- 
enings of the first-order logic by a choice operation in de- 
scriptive finite model theory, see the witness operation by 
S. Abiteboul and V. Vianu in [1] and Hilbert's epsilon oper- 
ation, introduced by D. Hubert and P. Bernays in § 8 of [4] 
in a restricted context, and discussed by A. Blass and Y. 
Gurevich in [2], Choice operations are easy to define from 
a global linear ordering and hence easy to compute. More- 
over, they are a natural concept in programming. 

In this paper we study the expressive power of Hilbert's 
epsilon operation. In [2], the e-logic is defined as follows. 
The syntax of the e-logic is defined as that of the first-order 
logic with the following additional rule: If <f>{vi,y) is a for- 
mula of the e-logic, then evi<j)(vi,y) is a term. An e-model 
(A, E) is a model A together with a choice operation E, 

•Research partially supported by the Academy of Finland, grant 40734, 
and the Mittag-Leffler Institute (both authors) 

i.e., E is a function from the power set of A to A such that 
for all non-empty X C A, E{X) £ X. Then the inter- 
pretation of evi<f>(vi,a) in an e-model (A,E) is defined to 
be E((p(A,a)). Otherwise the semantics of the e-logic is 
defined as the semantics of the first-order logic. 

Very little is known about the expressive power of the 
e-logic (in finite models). However, it is known that the 
e-logic is more expressive than the first-order logic by the 
work of M. Otto ([6]). In [2], the following three questions 
were asked among others: 

1. Is the standard order uniformly definable in e-logic? 
2. Is the last element of the standard order uniformly 

definable in e-logic? 
3. Is some linear ordering uniformly definable in e- 

logic? 
By the standard order we mean the usual ordering one gets 
from a choice-function: For finite e-models (A,E) and 
n < u, we define An so that A0 = A and An+1 = 
An — {E(An)}. Then a is smaller or equal to b in the 
standard order if for all n < u>, a G An implies b £ An. 
The existence of such an ordering shows that all e-models 
are inherently rigid. 

In this paper, we will give a negative answer to the first 
two questions (even) in finite e-models. Notice that the stan- 
dard order is easily definable in FO+e+IFP, see [3], and no- 
tice further that this means that FO+e+IFP is the same as 
PTIME. 

The third question appears to be much harder, and our 
partial result stems from a failed attempt to solve it by a very 
straightforward random choice argument. Contrary to our 
expectations, we found out that there is an e-formula which 
almost surely defines a linear ordering in finite e-models. 
This leaves open an interesting question. Our result im- 
plies that any property which is almost surely definable on 
randomly ordered structures is also almost surely definable 
on e-structures with a random choice. On the other hand, 
any property that is definable on all finite e-structures is de- 
finable on all linearly ordered finite structures. We do not 
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know whether either of these implications can be reversed. 
The reversibility of the latter implication is, of course, the 
question we originally tried to answer. 

1    Almost surely definable ordering 

In this section wc will sketch a proof of the fact that a 
linear ordering is almost surely definable in e-logic. 

We shall start the proof of the main theorem of this sec- 
tion (Theorem 1 below) by first explaining the general out- 
line and looking at some of the details afterwards. In the 
more informal part, expressions such as "with high proba- 
bility" mean that the limit probability of the claim holding 
in a random e-model is 1. Our techniques resemble those 
that Matt Kaufmann used in [5] to handle monadic second- 
order logic, and his article gave us some ideas for simplify- 
ing ours. 

We will use the following notion repeatedly. If A C B, 
x £ B and R C B2, we write AR[x\ for the set {y £ 
A\R(x, y)}, and we say that x R-codes the set AH[x] in A. 

Without loss of generality, we can assume that the vocab- 
ulary of our e-models is empty. So, suppose we arc given a 
random e-model 9JI' = (M\ E'). Wc define a new random 
e-model 9)1 = {M,Lm\ E) inside 9tt\ with a certain fixed 
vocabulary L that contains everything needed in the rest of 
the proof. 

In the new model there is a random unary function F. 
With high probability, there is a point a whose preim- 
agc under F is somewhat smaller than log |7\/|, but larger 
than 2 log log |A/|. Let .4 be the prcimagc of a. There is 
a subset B C A of size logarithmic in |.4| such that a bi- 
nary relation R is a linear ordering on B. Moreover, it is 
very likely that there is a parameter b £ M that V'o-codcs B 
in A, where V0 is a random binary relation. Hence, we have 
a parameter definable set B with a definable linear ordering 
such that \B\ > log log log m + 1. 

Every x £ M \\ -codes a subset of B, where \\ is an- 
other random binary relation. With the help of the choice 
operator, we can pick a set Bt such that for each C C B 
coded by some x £ M there is exactly one y E Bi that 
V\ -codes C in B. On the other hand, the ordering of B in- 
duces, in a natural way, a linear ordering on By. With high 
probability, \B\\ > log log m. We can iterate this construc- 
tion, this time looking at subsets of Bx that are V2-coded by 
elements of 71/. This way, we get definable sets B2 and B3, 
each of them with a definable linear ordering. Moreover, 
with high probability, B3 = M; hence the whole model 
carries a definable linear ordering. Finally, we show how to 
get rid of the parameters that we used in the construction. 

After this overview, we will state the claim and give the 
proof in more detail. 

The formula 

AVxyv({<p(x,y) /\ip(y,u)) -> <p(x,u)), 

expressing the condition that tp(x, y, z) defines a linear or- 
dering, is denoted by Lin^(f), where z is a (possibly empty) 
sequence of parameters. For n £ N, let 6„ be the set of all 
e-modcls (7\/; E) such that M = {0,..., n - 1}. 

Theorem 1 There is an e-formula tp(x, y) which defines a 
linear ordering in a random finite e-model with limit prob- 
ability 1, that is, 

lim 
|e„| = l. 

Proof. The theorem will follow from the sequence of lem- 
mas proved below. D 

Assume that 9)1' = (M',E') is a finite e-modcl with 
the empty vocabulary such that |7U'| = m + 9 for 
some m > 1. Wc first define another model M = 
(M, F, R, V'o, l'i, V2, V3;E) within 9)1' such that |M| = m, 
F is a unary function, R is a tournament, i.e., an irrcflcxivc 
binary relation such that exactly one of R(x, y) and R(y, x) 
holds, and the Vu i = 0,1,2,3, arc arbitrary binary rela- 
tions. Moreover, if E' is chosen randomly, then F, V0, V\, 
V-2, V3 and E arc random and mutually independent. The 
tournament R, on the other hand, is directly defined from E, 
since we do not need to assume it to be random. 

Firstly, define a0, ■ ■., o.8 to be the first nine elements in 
the standard linear ordering. That is, let o() = E'(AI'), 
a, = E'(M' \ {a0}), a-, = E'(M' \ {n0,m}), and so 
on. Then, let M = 71/' \ {a0,..., o8}, and let E = E' \ 
V{M). Further, for o e M, let F'(a.) = E'{{a0} U 71/ x 
{a}, and let 

F(a) = 
a, if F'(n) = 

otherwise. 
«o, 

Define /? by (x,y) £ R O E({x,y}) ^ y. (This implies, 
in particular, that R is irrcflcxivc.) Finally, for x,y £ 71/, 
i = 0,1,2,3, define \)(x,y) to hold iff either x ^ y 
and E({x,y,a-2i+i, «21+2}) £ {x,o2,-+i}, or .r = y and 
E({x,a2l+i}) =x. 

It is fairly easy to see that these definitions have the de- 
sired properties. For independence, it suffices to check that 
all of the defined relations depend on the values of E on 
different sets. 

Since 9)1 is definable inside 9H' without parameters and 
so arc all elements of M' \ 71/, it is clearly sufficient to 
define a linear ordering in Wl. So, from now on, we work 
in 9H. Throughout the rest of the section, in = |7l/|. 

Lemma 2 Let F : 71/ -> M be a random function. Then 
with probability approaching I as m —¥ 00, there is a £ M 
such that 

\/xy{x = y o {v{x,y)Aip(y,x)))A\/xy{ip(x,y)Vip(x,y)) where kn 

(LW2J 
IF"1 HI 

a^A'j < m < (2k„ \n„ 
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Proof. A much stronger result is known, but we sketch a 
simple argument sufficient to prove this weaker claim we 
need. 

Firstly, the number of ways to choose a subset X C M 
such that \X\ = k and an element i G Mis m(™)- Each 
such pair (X,x) satisfies the condition X C F

-1
[:E] with 

probability mTk. Hence the probability that there exists 
x G M such that \F~l[x}\>k\s at most 

m i-jfc m 
< m/k\ -> 0, 

if Lfc/2jLfc/2J > m. So, with limit probability 1, the first 
inequality is true for all a G M. 

On the other hand, let M0 U ... U Mk-i, be a partition 
of M into k equal parts, supposing for simplicity that k di- 
vides m. Let Di = F[Mi). If there is some M* such that 
\Di\ < \Mi\/k = m/k2, then there must be some a G Di 
such that \F-l[a] n Mj| > k. If not, let £, = ni<:iDi- 
It can be shown by induction on i that \E{\ > m/(3k/2)21 

with probability approaching 1. In particular, Ek-i ^ 0. 
Fora G Ek-ulF-^aW > k. 

The exact details of this proof are rather tedious and un- 
interesting, and we omit them. D 

Lemma 3 Let n £ N, let A be a set such that \A\ > 2n, 
and let R C A2 be a tournament. Then there is a set B C A 
such that \B\ = n + 1 and R \ B is a strict linear order. 

Proof. Easy Ramsey-type induction on n. For n = 0, the 
claim is trivial. Assume then that the claim holds for n = k, 
and consider a set A such that \A\ > 2k+1. Choose an 
arbitrary element a £ A, and let A0 = {x G A : R(x,a)} 
and Ai = {x € A : R(a,x)}. Now A0 U Ax = A \ {a}, 
and hence there is i € {0,1} such that \At\ > 2k. By the 
induction hypothesis, there is a subset B' C At such that 
|i?'| = k + 1 and i? f 23' is a linear order. Now the set 
B = B' U {a} witnesses the claim for n = k + 1. D 

Lemma 4 Le/ A fee a .su/we? o/M «<c/! //w? |A| = k with 
L&/2J L*/2J < m, let BCA, and let V0 CM2 be a random 
binary relation. Then with probability approaching 1, there 
isb£ M such that B = AVo [b]. 

Proof. A single element y e M fails to satisfy the condition 
with probability 1 - 2~k, independently of others. Hence 
the probability that no element satisfies the condition is 

(l-2"fc)m <e-m/2" ->0, 

Corollary 5 Let a be as in Lemma 2 and let A = F~x [a]. 
Then with probability approaching 1, there are a parame- 
ter b G M, a set B C A and a linear ordering <B on B 
such that B and <B are e-definable from the parameters 
a and b and that m < (2^B\)2    . 

Proof. Let B C A be as in Lemma 3, define x <B y iff 
R(x,y), for x,y G B, and let b G M be such that B = 
AVo[b].a 

Lemma 6 Let U, V be finite nonempty sets such that \U\ = 
u, \V\ = v, and let f : U —> V be a random function. 

(i) The function f is one-to-one with probability at least 1 — 
u2/v. 

(ii) The function f is onto with probability at least 1 — 
— u/v ve 

Proof. Easy. D 

We will define sets Bi and linear orderings <i on them, 
respectively, for i = 0,1,2,3, by recursion on i. Let B0 = 
B, <O=<B- Assume then that Bi and <, have been de- 
fined. Firstly, for a; G M, let [x]i = {j/€ M\(Bi)Vi+l[y] = 
(Bi)Vi+1[x}}, and let Bi+1 = {x G M\x = EQx]i)}- 
Then, for x,y G i?i+i, define x <»+i y iff there is some 
z G Bi such that Ri(x, z) but not Rt(y, z) and that for all 
u <i z, we have Ri{x, z) «-» Ri(y, z). 

Lemma 7 The sets Bi and the relations <, are definable 
from the same parameters, a and b, as the set B and its 
ordering <B is. Moreover, each <, is a linear ordering 
on Bj. 

Proof. Easy induction on i. 
Clearly, £?i+1 is £-definable from the same parameters 

as Bi. Moreover, <j+i is the partial ordering corresponding 
to the lexicographic ordering of V(Bi). Since Bi+i con- 
tains exactly one element from each equivalence class [a;],-, 
the ordering <i+1 is actually linear. D 

Lemma 8 For i = 0,1,2, 
with limit probability' 1. 

\Bi+1\ >min(2l^l,(logm)2) 

asm-> oo. D 

Proof. Consider the function /, : M -4 V(Bi), fi(x) = 
(Bi) vi+1 [a;]. The set Bi+\ contains exactly one element for 
each different value of ft. If 2lB;l < log2 m, then /, is 
onto with limit probability 1, according to Lemma 6, and 
hence |.Bi+1| = 2lßiL Otherwise, it has at least (logm)2 

different values. D 

Corollary 9 With limit probability 1, \B2\ > (logm)2. 

Proof. Since m < (2lB°l)2iBo1, we get m < |ßi|!ßll,and 
hence |i?2| log |£?2| > rn, which implies the claim for large 
enough m. D 
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Lemma 10 With limit probability 1, B3 = M. 

Proof. Let f-2 : M -> V(B2) be as in the proof of Lemma 8. 
By Corollary 9 and Lemma 6, /2 is one-to-one with limit 
probability 1. Hence it gets \M\ different values, and so 
j#3| = |A/|,thusß3 = M. a 

Now we have a linear order <3 of the whole of M, but 
it is defined from two parameters. At this point, we can 
eliminate them with the epsilon operator. 

Lemma 11 Let £(x, y, z) be an e-formula and neM pa- 
rameters such that £(x, y, ä) defines a linear ordering in 9)1. 
Then there is a formula £'(x, y) such that £' defines a linear 
ordering in 9JI without parameters. 

Proof. By induction on the number of parameters. If 
there arc no parameters, there is nothing to prove. Let 
then £(.T, y, z0,..., zk) be a formula with k + 1 parame- 
ters, k £ N. Let i/)(z0,..., z<.) be the formula asserting that 
£ defines a linear ordering, and let £o(x, y, z\,..., zk) be 
the formula 

£(.T, y,eu(^(u, zu..., zk)),zi,..., zk). 

Now £o defines a linear ordering with k parameters, and 
therefore, by induction hypothesis, there is £'Q(x, y) defining 
a linear ordering in 9JI without parameters. D 

This lemma finishes the proof of Theorem 1. 

2    Standard order is not definable in c-logic 

In this section we sketch a proof of a negative answer 
to the first question from [2]. We are forced to start prov- 
ing everything from the definition of the e-logic since there 
are no useful characterizations for the equivalence in the e- 
logic. In fact, it seems very difficult to find e.g. a useful 
Ehrcnfeucht-Frai'ssc style characterization for equivalence 
in the e-logic. Especially, this is the case if one restricts the 
equivalence to those sentences of the e-logic which are in- 
dependent from the choice of the choice operation (which 
is the most interesting fragment of the e-logic). 

The idea in the proof is simple (it will be tricky to find 
the right inductive hypotheses, though): We define two suit- 
ably different linear ordcrings < and <* on a set .4. Then 
we define a choice operation E on -4 so that < will be the 
standard order but otherwise, whenever possible, E chooses 
<*-lcast elements. Then, using the suitable difference be- 
tween < and <*, we show that if a set is definable in (.4, E) 
by a formula of the e-logic, then it is essentially definable in 
(.4, <*) by a first-order formula of roughly the same quan- 
tifier rank. Then we finish the proof by observing that next 
to nothing on < is definable in (.4, <*) by a first-order for- 
mula. 

Above, in the phrase "essentially definable", the word 
"essentially" plays an important role. E.g. the second ele- 
ment in the canonical order is definable in (A, E) by a for- 
mula of the e-logic but it will not be definable in (.4, <*) 
by any first-order formula of reasonable quantifier rank. 

In order to make the number of cases in the proofs small, 
we assume that all ^-formulas are in a form in which the 
quantifiers 3 and V do not appear. This is possible by the 
following observation. 

Fact 12 For every e-formula (j>(y) there is an e-formula 
\l;(y) such that the quantifiers 3 and V do not appear in ip 
and for all e-models A and sequences ä £ A, 

A |= <t>(ä) & A\= ij)(ä). 

By the quantifier rank qr(<f>) of an e-formula <j> we mean 
the number of appearances of e in 0 (this definition, al- 
though unusual, will turn out to be convenient). We say 
that an e-formula <j> is e-free if qr(<j>) = 0. 

Let TV < UJ (and so TV = {n < u\ n < TV}). By AN = 
(AN,E) we mean the following e-model: AN = TV x TV. 
By AN

n we mean the set of those (a, b) £ AN such that 
b < n. By < wc mean the lexicographic order of AN, i.e., 
(a,b) < (a',b') if a < a' or a = a' and b < b'. Notice 
that the pairs (a, b) £ AN may be considered as natural 
numbers a TV + b, in which case < is the usual ordering of 
the natural numbers. The ordering <* is defined as follows: 
(a, b) <* (a1, b') if b < b' or b = b' and a < a'. Notice that 

i<" if x £ .4^" and?/ e AN-A~p,\hcnx <* y. For A' C AN, 
wc define E(X) as follows: If for some a < TV — 1 and 
b < TV, X = {x £ AN\ x > (a,b)}, then E(X) = (a,b) 
and otherwise E(X) is the <*-least member of A', if one 
exists, and 75(0) = (0,0)(= e(AN))- The subsets of AN 

of the form {x E AN\ x < (a, &)}, a < TV - 1, arc called 
standard (so, e.g., {x e TV x TV| x < (TV - 1,0)} is not 
standard, this is important). Notice that < is the standard 
order of AN- By A*N we mean the structure (AN, <*)• 

By a <*-formula we mean a first-order formula in the 
similarity type {<*} and the quantifier rank for such a for- 
mula is defined in the usual way. For a, b £ AN, WC 

write («4^,a) =„ (A*N,b) if ö and b satisfy the same <*- 
formulas up to quantifier rank n. 

We will show that < is not definable in AN by an e- 
formula of quantifier rank < n assuming that TV is large 
enough, say N > 2'1'1+5. So all the time wc assume that 
n and Ar are such that TV > 2'1"+5. The following well- 
known fact is the reason for the choice of TV (we state the 
fact in the form it will be used): 

Fact 13 Let n < UJ and A = (.4, <*) be a linear ordering, 
(i) For i < 4, let o, be a sequence of elements of A, for 

i £ {0,2}, let «, be the <* -largest element ofTi-, and for 
i £ {1,3}, let o; be the <*-smallest element ofa\. As- 
sume that «o   <*   fli. 02   <*  ß.i. in both intervals there 
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are at least 2n — 1 elements or the same number of ele- 
ments, (-4,öo) =n (-4,02) and (A,ä\) =n (^,a3). Then 
(A,ä0,ä~i) =„ {A,ä2,ä3). 

(ii) Suppose a,b G A are such that there are > 2n — 1 
elements which are <*-smaller than both a and b and > 
2n — 1 elements which are <*-greater than both a and b. 
Then (A,a) =n (A,b). 

Definition 14 (1) We say that a sequence a = (ao,..., ap) 
of elements of AN is (k,m)-good if for all i < p, a^ G 
AN

m implies a; G AN . Then we write cPk mfor (a; | a^ G 

AN ) anda\mfor (OJ| a^ G AJV - Ajym+1). We say thatä 
is (k,m,W)-goodifais (k, m)-good and ä\ m = (a^| i G 
W). 

(2) Let k,m,p < N. We say that (k, m)-goodsequences 
ä and b of elements of AN are (k,m,p)-equivalent if the 
following holds: 

(a)(A*N,a) =p (A*N,b), 
(b) for alii < lg(a), if at G AN   or bt G A ,<k then 

üi = bi. 

Instead of a°k and a\ we write usually just ö° and 
a1, k and m are always clear from the context. 

We define F:N->Nso that F(0) = 3 and F(n + 1) = 
2F(n) + 1 (i.e. F{n) = 2n+2 - 1). 

Proposition 15 For all k,n < ui and N > 24n+5, if a 
and b are finite sequences of AN and they are (k, k + 
F(n),2n)-equivalent, then {AN,£,O) is equivalent in e- 
logic to (AN, E, b) up to quantifier rank n. 

For fixed N < u>, we will prove the proposition by in- 
duction on n for those n for which TV > 24n+5, and we will 
do this in a series of lemmas. However, in order to keep the 
induction going, we need to prove more. Let us repeat that 
from now on N is fixed. 

To avoid notational difficulties we will give the following 
precise definition for A \= 0(a), where a = [oi)i<ig(ä) ar|d 
0(17) is either an e-formula or a <*-formula: We assume 
that all the variables in the formulas are from the set {vi\i < 
UJ} and A \= 0(a) holds if 0 is true in A when each free 
variable vt G y is interpreted as a,. In addition, we assume 
that y always denotes a sequence of the form (vj)j<i. 

In the following definitions we define formulas whose 
existence will be proved later. 

Definition 16 Let 4>(vi,y) be an e-formula of quantifier 
rank r. For all W C lg(y), k, n > r and finite se- 
quences c of elements of AN' we write ipp^ w(vi,y) for 
a <*-formula such that 

{I) i'k'Xw^i'V) is of quantifier rank < 2r, 
(2) for all (k,k + F{n),W)-gooda G AN, ifa° = c, 

then 

4>{AN,a)-AN
k+F(n)-1 = i>H w(AN,a)-AN 

<k + F(n)-l 

Definition 17 (f>(vi, y) be an e-formula of quantifier rank 

r. For all W C lg(y), k, n > r, A C ^4^ w and finite 
sequences c of elements of AN we write 9f'n ^ (y) for a 
<* -formula such that 

(1) ®kn W (y) *s of quantifier rank < 2r, 
(2) for all (k,k + F{n),W)-gooda G AN, if a? = c, 

then AN N 6*^(0) iff<t>(AN,ä) n AN
k+F(n) = A. 

The following definition gives our induction assumption 
i.e. by induction on r we will show that every e-formula 
of quantifier rank < r is essentially equivalent to a <*- 
formula. 

Definition 18 Let 4>(vi,y) be an e-formula of quantifier 
rank r. We say that 0 is essentially equivalent to a <*- 
formula if for all k and n > r such that N > max(/c + 
F(n) + 3,24n+5), and for all W C lg(y), A C AN

k+F{n), 
and finite sequences c of elements of AN the following 
holds: 

(})^k',n,w(Vi^y) existS' 

(2) et^'w(y) exists> 
(3) if ä is (k, k + F(n), W)-good, C C ^4^ is standard 

and either (P(AN, a) = C or -I0(J4JV, a) = C, then C C 
,<k+F{n) 

If only (1) and (2) hold, then we say that <j>(vi,y) is weakly 
essentially equivalent to a <* -formula. 

Notice that if C C AN
k+F(n) is standard, then C C 

{(a,b) G AN\ a = 0, b < k + F(n)} (assuming N > 
k + F(n) + l). 

The following lemma gives the means to handle the 
problem of standard sets. Notice that the empty set is stan- 
dard. 

Lemma 19 Assume that <f>(vi,y) is an e-formula of quanti- 
fier rank r. 

(i) If<p(vi,y) is weakly essentially equivalent to a <*- 
formula, then <p(vi,y) is essentially equivalent to a <*- 
formula. 

(ii) Assume that <f>(vi,y) is essentially equivalent to a 
<*-formula. Let n > r and k be such that N > max(fc + 
F(n) + 3, 24n+5). Suppose S and b are (k, k + F(n),W)- 

good, (k, k + F(n), 2r + l)-equivalent, 5° = b = c and 
4>(AN,CL) is standard. Then 4>(AN,a) = <p(AN,b). 

Proof, (i): Let k, n > r and W C lg(y) be as in Defini- 
tion 18 and let a be (A;, k + F(n), W)-good. By Fact 13, 
for all b, c G AN

k+F{ - A <k+F(n)-l 
N (A*N,b,a)  =2r 

(A*N,c,a). So by Definition 18(1), 
(*)AN h 0(6,0) O0(C,S). 

But by the definition of a standard set C, C f~l (AN
k+F{n) - 

A^+Fin)-l}    ^    A<Nk + F(n)   _A^+F(n)-1   ^  Jf Q R 

171 



(AN
k+F{n) - 4A-fF(")-1) = 0, then C C A%k+FW~l. 

With (*), this implies the claim. 

(ii): We show that </>{AN,b) - AN
k+F{n) = 0, the rest 

is easy. Assume not. Let d witness this. Since n is (k, k + 
F(n))-good and (A*N,a) =2r+i (A*N,b), we can choose, 

by Fact 13 (i), d' £ AN - AN
k+F{n) so that ä~(d') and 

b (d) arc (fc,A; + F(n)-l,2r)-equivalent. But then A*N \= 
ipf'n w(d' ,a), a contradiction. D 

We skip the proof of the following lemma. 

Lemma 20 (i) If <j> is an e-free atomic formula, then it is 
essentially equivalent to a <*-formula. 

(ii) If e-formula 0 is essentially equivalent to a <*- 
formula, then so is -i</>. 

(Hi) If e-formulas 4>(vi:y) and <j)'{vj,y) are essentially 
equivalent to a <*-formula, then so is 0 A 0'. D 

Lemma 22 If e-formulas <j>(vi,Vj,y) and <j>'(vj,Vj,y) are 
essentially equivalent to <*-formulas,  then so is 0*   = 
{evi<t>(vi, Vj, y) = ev,0' (?;,, vj, y)). D 

Proof of Proposition 15. Follows from Lemmas 20, 21 
and 22. D 

Conclusion 23 The standard order is not uniformly defin- 
able in E-logic. 

Proof. For a contradiction, assume that the standard order is 
definable by an e-formula of quantifier rank n. Let N < UJ 

be such that N > 2An+h. Then by Fact 13, it is easy to sec 
that ((N - 2, N - 3), (N - 3, TV - 2)) is (1,1 + F{n), 2n)- 
equivalent to {(N - 2, N - 3), (N - 2, N - 2)) but (N - 
2, N - 3) > (N -3,N-2) and (iV -2,N-3)<(N- 
2, N - 2). By Proposition 15, we have a contradiction. D 

Lemma 21 If an e-formula 4>{vuvj,y), y = {yi)l<lg{Jl), 
is essentially equivalent to a <*-formula, then so is <\>' = 
(evi<j)(vi,Vj,y) = z), where z = vj or yt for some I < 
ig(y)- 

Proof. Without loss of generality we may assume that j = 
lg(y) and i = j + 1. Let 0 be of quantifier rank p. We 
assume that z = Vj, the other case is similar (and easier). 

Let k, n, m, W, c and A C A^I
k+F{") be as in Definition 18 

for r = p + 1. Assume that ü and b are (A-, k + F(n),2r)- 

equivalent, and ö° = 6° = c. If c E Afr
k+F{n) is such that 

£Vi(j>(vi,c,a) = c holds then by_the induction assumption 
and Lemma V), also evi<t>(vi,c,b) = c holds (sequences 
a~(c) and b (c) are always either (k, k + F(n - 1), W U 
{j})-good or {k + 1 + F(n - 1), k + 1 + 2F(n - 1), W)- 

good). With this one can see that Ofr'Aviv) exisls. i-e. (2) 
in Definition 18 holds. 

For item (1) in Definition 18, we notice that by the induc- 
tion assumption, if c $ A~k+F{n)~1, a is (k,k + F(n))- 
good and -XJ>(AN,C, a) is standard or <j)(A^, c. Ti) is empty, 
then evi(j)(vi ,c,a) ^ c. Then one can check that 

el+±C,n-i,wu{j}(vJ>y)A 

3v'^'i',n-l,\Vu{j}(V>^j,y) A V,  = Vj)h 

VvM'tn~i,wu{j}(vi>vJ>y) -> (-■(".■ <* Vj) VT/(I;,-,C))) 

is as wanted, where rj(vi:c) says that for some / < lg(c). 
there arc less than 22p - 1 elements x such that c.\ <* x <* 
Vi and if c is the empty sequence, then r](vj) says that there 
are less than 22p - 1 elements <v,.U 

The following lemma can be proved using ideas from the 
proof of Lemma 21. 

Conclusion 24 The last element in the standard order is 
not uniformly definable in e-logic. 

Proof. We define an ordering <+ to AN as follows: x <+ 

y, if either x <* y and x 6 AN
N"2 orx,y e AN-A^N~'2 

and y <* x. Also a new choice operation E+ is defined. 
This is defined exactly as E using <+ in place of <*. Then, 
as above, we can see that if a,b € AN - AN

2+k (,,), N > 
2in + '°, are such that (.4A-,<+,a) =2n (AN, < + , b), then 
(AN,E

+
,ü) is equivalent in e-logic to (AN,E

+
,1>) up to 

quantifier rank n. This implies the claim (the last element in 
the standard order is the < + -first clement of AN-A^N~2). 
D 
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Abstract 

We introduce a second-order system V\ -Horn of bounded 
arithmetic formalizing polynomial-time reasoning, based 
on Grädel's [15] second-order Horn characterization of P. 
Our system has comprehension over P predicates (defined 
by Grädel's second-order Horn formulas), and only finitely 
many function symbols. Other systems of polynomial-time 
reasoning either allow induction on NP predicates (such as 
Buss's Si or the second-order V±), and hence are more 
powerful than our system (assuming the polynomial hier- 
archy does not collapse), or use Cobham 's theorem to in- 
troduce function symbols for all polynomial-time functions 
(such as Cook's PV and Zambella 's P-def). We prove that 
our system is equivalent to QPV and Zambella's P-def. Us- 
ing our techniques, we also show that V\ -Horn is finitely 
axiomatizable, and, as a corollary, that the class of VEj 
consequences of S\ is finitely axiomatizable as well, thus 
answering an open question. 

1    Introduction 

1.1    Bounded Arithmetic 

Here Bounded Arithmetic loosely refers to a collection 
of weak formal theories of arithmetic connected to the com- 
plexity classes P (polynomial time) and PH (the polynomial 
hierarchy) (see [3, 17, 20, 6, 2]). Study of these theories 
is motivated partly by the fundamental questions in com- 
plexity theory: Does P ^ NP? Does PH collapse? An 
early example is the equational theory PV (for "Polynomi- 
al^ Verifiable") [8], which includes function symbols for 
all polynomial-time functions, defining equations for them 
based on Cobham's theorem, and a proof rule implementing 
induction on binary notation. The idea is that an equation is 
provable in PV iff it can be uniformly verified using only 
polytime concepts. 

* An expanded version of this paper is available as ECCC report number 
TR01-024 [7]. 

Later Buss [3] introduced a hierarchy of first-order theo- 
ries (^2,5|, 5|...) corresponding to the levels of the poly- 
nomial hierarchy. In particular S\ corresponds to poly- 
nomial time, in the sense that a function / : N -» N 
is polynomial-time computable iff there is a so-called Ej 
formula A(x,y) defining the graph of / such that S% r- 
Vx3yA(x,y). Here E* formulas are certain bounded for- 
mulas which semantically represent precisely the NP predi- 
cates. Sj includes PIND (induction on notation) axioms for 
all Sj formulas. 

We define QPV (quantified PV) to be the first-order 
theory with the same language as the equational theory PV, 
and whose axioms are the theorems of PV. Buss [3] proves 
that every VE^ theorem of Si is a theorem of QPV. How- 
ever [21] proves that the induction axioms for 5.] (which are 
not VEj formulas) are not all theorems of QPV, unless PH 
collapses. (Complexity theorists generally assume that PH 
does not collapse.) The theory Vi-Horn that we introduce 
in this paper turns out to be equivalent of QPV (rather than 
S^), as explained below. 

An important open question is whether the union theory 
52 of Buss's hierarchy (5|) of theories is finitely axiomati- 
zable. As shown in [21, 5, 31], this happens iff S-2 proves 
that PH collapses. Since each of the theories Si, is finitely 
axiomatizable, it is immediate that 52 is finitely axiomati- 
zable iff the hierarchy (5|) collapses. Thus the hierarchy 
(S'2) collapses iff 52 proves that PH collapses. 

The theory S^ is finitely axiomatizable because it has a 
finite language, and its infinite induction scheme for T,\ for- 
mulas follows from finitely many induction axioms, includ- 
ing one for a formula representing an NP-complete predi- 
cate. It does not make sense to ask whether QPV is finitely 
axiomatizable, because it has infinitely many function sym- 
bols. However [3] shows that PV is equivalent to the Ej 
consequences of S^, so it makes sense to ask whether the 
latter are finitely axiomatizable. We answer this affirma- 
tively in this paper by showing that our theory Vi-Horn is 
finitely axiomatizable (essentially by Ej formulas) and is 
equivalent to QPV. 

Buss [3] introduced two hierarchies of so-called second- 
order theories, including a theory for polynomial space and 
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one for exponential time. (AH "second-order" theories that 
we discuss arc actually two-sorted first-order theories; with 
one sort for numbers and the other for finite bit strings.) 
Razborov [26] argues at length that a related second-order 
theory called V/ can nicely formalize existing lower bound 
proofs on the complexity of explicitly given Boolean func- 
tions, and points out that by the "RSUV isomorphism" 
[25, 29], Vj1 is equivalent to the first-order theory 5.] and 
hence captures polynomial-time reasoning. 

Zambclla [31] introduced an elegant presentation for 
second-order theories such as V/, and we use this style 
here to present our theory Vi-Horn. One of Zambella's 
second-order theories, P-dcf, has function symbols for all 
polynomial-time functions, and can be shown to be equiv- 
alent to the first-order theory QPV by the RSUV isomor- 
phism. We show that Vi-Horn is equivalent to P-def, in the 
sense that every theorem of V'i-Horn is a theorem of P-def, 
and every theorem of P-dcf can be translated into a theorem 
of Vi-Horn by replacing function symbols by their defini- 
tions in Vi-Horn. 

1.2 Descriptive Complexity 

The first connection between finite model theory and 
complexity theory goes back to Fagin's 1974 result [13] 
showing that a language is in NP iff it corresponds to the 
set of finite models of an existential second-order formula. 
Later Stockmeycr [28] extended this result, characterizing 
the polynomial hierarchy as the class of sets of finite mod- 
els of all second-order formulas. 

Finding an elegant descriptive-style characterization of 
P proved more illusive. One such characterization of P 
uses the first-order logic augmented with the successor re- 
lation and the least fixed-point operator [30, 18]. Later 
Leivant [22, 23] found a second-order characterization of 
P using the notion of "controlled computational formula", 
which is related to Horn formula. (The motivation for 
using Horn formulas comes from the existence of a sim- 
ple polynomial-time algorithm for solving the satisfiability 
problem for propositional Horn formulas.) Finally Grädel 
[14, 15] found an elegant descriptive characterization of P 
using 503-Horn (second-order existential Horn) formulas 
with successor. 

1.3 Outline 

In Section 2 we give the syntax and intended seman- 
tics of second-order formulas and show that certain syn- 
tactic classes of formulas represent the relations in cer- 
tain corresponding complexity classes. In particular, the 
Ef -Horn (second-order existential Horn) formulas repre- 
sent the polynomial-time predicates (by Grädel's theorem). 
We define various second-order theories in Section 3, in- 

cluding our theory Vi-Horn and the theory V° correspond- 
ing to the complexity class AC0. The theory V'i-Horn uses 
a comprehension axiom scheme for the Ef-Horn formu- 
las. In Section 4 we show that Vi-Horn proves the equiva- 
lence of each formula in several broad syntactic classes to 
a Ef-Horn formula. Section 5 contains the description of 
the main tool needed for later sections, namely representing 
the Horn satisfiability algorithm in Vi-Horn by a Ef-Horn 
formula and proving its correctness in Vi-Horn. In Sec- 
tion 6 we construct a conservative extension V\ -Horn(FP) of 
Vi-Horn by introducing function symbols for polynomial- 
time functions, and show the equivalence of this and Zam- 
bella's P-def[31]. Finally, in Section 7 we demonstrate 
that both V° and V'i-Horn are finitely axiomatizable, and 
show that this implies that the VEj consequences of S\ arc 
finitely axiomatizable. 

2   Second-order   formulas   and   complexity 
classes 

The prototype for the underlying language of Vi-Horn 
is the language of second-order bounded arithmetic intro- 
duced by Buss [3]. However our language is closer to the 
nicer second-order language introduced by Zambclla [31], 
in that we eliminate the superscript terms t tagging second- 
order variables X' and instead introduce a bounding func- 
tion |A|. 

Our language C\ has two sorts, called first-order and 
second-order. (The intention is that first-order objects arc 
natural numbers and second-order objects arc finite sets of 
natural numbers, or finite binary strings.) First-order vari- 
ables are denoted by lower case letters a,b,i,j,...,x,y,z, 
and second-order variables arc denoted by upper-case let- 
ters P, Q,.... A', Y, Z. 

The first-order function and predicate symbols of C\ 
are the standard symbols {0,1, +, ■; <, =} of Pcano Arith- 
metic. To these we add the unary length function symbol 
| |, which takes second-order objects to first-order objects, 
and the binary membership predicate symbol G. 

For every second-order variable X we form a first-order 
term |Ar| called a length term. The first-order terms of CA 

arc built from 0, 1, first-order variables, and length terms 
using the function symbols + and •. The only second-order 
terms are second-order variables. 

The atomic formulas of C2
A have one of the forms ,s = 

t, ,s < t.t f_ X, where ,s and t arc first-order terms and X is 
a second-order variable. Wc usually write X(t) instead of 
/ 6 A'. Formulas arc built from atomic formulas using the 
propositional connectives A, V, ->, the first-order quantifiers 
V.r, 3.r and the second-order quantifiers VA", 3X. 

We use the usual abbreviations s ^ t. for -is = t and 
,s < t for s<(As/ t. Bounded first-order quantifiers get 
their usual meaning: V.x < t<f> stands for \/.r(x <£—></>) 

178 



and 3a; < ^stands for 3x (x < t/\(f>). We also use bounded 
second order quantifiers: VX < tcfr stands for VX(|X| < 
t -> <(>) and 3X < tcj) stands for 3X(\X\ <tAcj>). 

In the standard model for C\ first-order variables range 
over N, and second-order variables range over finite subsets 
of R If X is the empty set, then \X\is interpreted as 0, 
otherwise \X\ is interpreted as one more than the largest 
element of the finite set X. The symbols 0,1,+ •, £ get there 
usual interpretations. 

In complexity theory a member of a language is often 
taken to be a binary string, but from our "second-order" 
point of view we take it to be a finite subset X of N. To 
relate this to the string point of view we code a finite set 
X by the binary string X', where X' is the empty string if 
X is the empty set, and otherwise X' is the binary string 
x0xi,...,xn-i of length n = \X\ such that xt = 1 4=4> i 6 
X, 0 < i < n - 1. (Thus all nonempty string codes end in 
1.) If L is a set of finite subsets of N, then the correspond- 
ing set of strings is V = {A" | X e L}. If c is a standard 
complexity class such as AC0, P or NP, then our second-order 
reinterpretation of C is {L | V G C}. Since the complexity 
classes considered here are robust, this reinterpretation will 
come out the same for any reasonable string coding method. 

The role of first-order objects in our theories is that of 
members of second-order objects, or equivalently as po- 
sition indices for binary strings. Thus in determining the 
complexity of a set of natural numbers we code a natural 
number i using unary notation; that is as a string i' of 1 's of 
length i. 

Definition 2.1, If <p(z,Y) is a formula of C?A whose 
free variables are among zu...,zk,Yu...,Yt then <p rep- 
resents a k + £-ary relation R& as follows. If ai,...,ak 

are natural numbers and Bu....Be are finite sets of nat- 
ural numbers, then (au ..., ak, Bu ...,Be) satisfies R* iff 
4>{ai, ...,ak,Bi, ...,B() is true in the standard model. 

If C is a complexity class, then we make sense of the 
statement ".R* is in C" using the string encodings described 
above. In particular, a relation R{xu ...,xk,Yu ...,Ym) is 
in P iff it is recognizable in time bounded by a polynomial 
m{xl,...,xk,\Yl\,...,\Ym\). 

We now define the classes Ef and Ef of bounded 
second-order formulas. (A formula is bounded if all its 
quantifiers are bounded.) E^ and ITf both denote the class 
of bounded formulas with no second-order quantifiers. We 
define inductively £f_x as the least class of formulas con- 
taining Uf and closed under disjunction, conjunction, and 
bounded existential second-order quantification . The class 
Uf+1 is defined dually. 

The classes Ef and Uf are the formulas in our (Zam- 
bella's) simplified language C2

A which correspond to the 
classes E^' and U]'b in Buss's prototype second-order 
language [3, 20].   They are the second-order analogs of 

the first-order formula classes £* and II*, where sharply- 
bounded quantifiers correspond to our bounded first-order 
quantifiers. 

The formulas Ef represent precisely the NP relations, 
and more generally for i > 1 the Ef formulas represent 
the £? relations in the polynomial hierarchy and uf rep- 
resent the IT? relations [3, 20]. The formulas E^ represent 
precisely the uniform AC0 relations, which are the same as 
the class FO (First Order) of descriptive complexity [1] (see 
Chapter 1 of [19]). 

We now define the formulas corresponding to polyno- 
mial time. Recall that a CNF (conjunctive normal form) 
formula is a conjunction of clauses of the form (Li V ... V 
Lm),m > 1 where each Lt is a literal; that is an atomic 
formula or a negated atomic formula. 

Definition 2.2. A formula <f> of L\ is Horn with respect to 
the second-order variables Pi,...,Pk if 0 is quantifier-free 
in CNF and in every clause there is at most one positive 
literal of the form Pi(t) (called the head of the clause) and 
no terms of the form |P|. (We do allow length terms \X\ 
and any number of positive literals X(t), where X is not 
among {P1, ...,Pk}.) A formula is Ef-Horn if it has the 
form 

3P1..3PkVx1 < tx..Mxm <tm(/> (1) 

where k,m > 0 and <f> is Horn with respect to Px,...,Pk, 
and the bounding terms U do not involve xx, ...,xm. More 
generally a formula is YP-Horn if it has the above form 
except that each second-order quantifier can be either 3 or 
V. A formula is V\ Horn with respect to P1:...,Pk if it has 
the form (1) with the existential quantifiers omitted. 

Notice that our definition of Ef-Horn is somewhat dif- 
ferent from Grädel's original definition of second-order ex- 
istential Horn formula, as explained before Theorem 2.3. 
Also note that the second-order quantifiers in Ef-Horn and 
EB-Horn formulas are not bounded. However, since no oc- 
currence of \Pi\ is allowed, each such formula is equivalent 
in the standard model to one in which every quantifier 3Pt 

or VPj is bounded by a term t which is an upper bound 
on all terms u such that P,;(u) occurs in the formula. On 
the other hand, if occurrences of \Pt\ were allowed, then an 
unbounded quantifier 3Pt can code an unbounded number 
quantifier 3|Pj| and hence undecidable relations would be 
representable. 

It is often convenient to treat second-order objects 
as multi-dimensional arrays, instead of one-dimensional 
strings or sets. An easy way to do so is to use a pairing 
function < •, ■ >, defined by 

<x,y >= (x + y)(x + y + l) + 2ij (2) 

This function is a one-one map from NxN into N, and it is 
represented by a term in our language. It is easily general- 
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ized to fc-tuples by defining (x±,..., xk) by the recursion 

(x)=x,        (xi,...,xk+i) = ((xi,...,xk),xk+i)    (3) 

Thus, any finite set P can be treated as a set of fc-tuples of 
variables; P(xi, ...,£*■) is defined to be P(< x\, ...,xk >). 

The theorem below is similar to part of Gradcl's Theo- 
rem 5.2 [14] (see also Chapter 7 of [27]), which is stated 
in the context of descriptive complexity theory. There are 
technical differences: Gradcl's language is more general in 
that it allows predicate symbols of arbitrary arity, but these 
can be simulated by the pairing function as just explained. 
On the other hand our language is more general in that it 
allows interpreted function symbols + and • and terms \\\\, 
as well as universally quantified number variables whose 
range goes up to any polynomial in the size of the inputs. 
However none of these generalizations takes us outside the 
polynomial-time relations. 

Theorem 2.3. A relation R,(z\,..., zk, Y\,..., Ym) is in P 
iff it is representable by a Ef -Horn formula $. Further $ 
can be chosen with only one existentially quantified second- 
order variable, and only two universally quantified first- 
order variables. 

Example. (PARITY(A)) This is a Sf -Horn formula which 
is true for strings A' that contain an odd number of l's. It 
encodes a dynamic-programming algorithm for computing 

parity of A': P0<M(?') is truc (anü" Pcren(i) is false) iff the 
prefix of X of length i contains an odd number of 1 's. 

3PeVF„3PoddVi < |A| 

Pf(,cn(0)A-Porfrf(0)APO(M(|A|) 

A(-.Pe^n(t + l)V-.Porff/(i + l)) 

A(Pe„tn(i)A.Y(!)-»Porf(,(i + l)) 

A(Porfd(i) A X{i) -» Peven{i + 1)) 

A(Pe„e„(t') A ->X{j) -> Pevcnii + 1)) 

A(Porfrf(i) A -.A'(i) -> Podd{i + 1)) 

Proof of theorem (outline). For the if direction, let ${z, Y) 
be a Sf-Horn formula which represents R(z,Y). Then $ 
has the form 

3P1..3PrW.i < ti...Vxs < t,(l>(x,P,z,Y (4) 

where (j> is Horn with respect to P\,...,Pr. We outline a 
polynomial-time algorithm which, given numbers a{,.... ak 

(coded in unary) and finite sets B\,...,Bm (coded by bi- 
nary strings) determines whether \P(o,J3) is truc in the 
standard model. First note since ö and D are given, 
each first-order term u in <j>(x,P,ä,B) becomes a poly- 
nomial u(x\, ...,.<:/,). Each P, can occur only in the con- 
text Pi(u(x)) for some such term u, and the terms t\,..., ^5 

bounding the x,'s evaluate to constants. The algorithm 
proceeds by computing for each possible x-value b = 
(bi, ...,bs),0 < b, < tt, a simplified form <j>\b] of the in- 
stance <f>(b, P, 5, B) of 0. In this form all first-order terms 
and all atomic formulas not involving the P,'s are evaluated, 
and the result is a Horn formula <f>[b] all of whose atoms 
are in the list P(0), ...,Pj(T),i = 1, ...,r, where T is the 
largest possible argument of any Pj in any instance. By tak- 
ing the conjunction over all /; of these instances, we obtain 
a prepositional Horn formula PROP[0, ö, B). This formula 
is tested for satisfiability using a standard algorithm. 

The proof of the only-if direction resembles the proof 
of Cook's theorem that SAT is NP-complctc, and of Fagin's 
theorem of finite model theory that second-order existential 

formulas capture NP. The idea is to represent the computa- 
tion of a Turing machine M by a two dimensional array P, 
where the f-th row represents the tape configuration of M 

(including state and scanned-symbol information) at time 
i. The two existential second-order quantifiers arc 3P3P, 
where P is intended to be ->P. The two universally quanti- 
fied variables x.\, x? represent the co-ordinates of P. A cru- 
cial observation is that if M is deterministic, then the condi- 
tions on P and P can be expressed with Horn clauses.     D 

Note that above proof also shows that every NP- relation 
can be represented by a E{* formula of the form (4), except 
that d> is not Horn. 

Example. (3C()LOR(//, P))This is a Ef formula asserting 
that the graph with edge relation E on nodes {0,1,..., n— 1} 
is three-colorable. We write E(x,y) like a binary relation, 
although it can be coded as a unary relation using the pairing 
function as explained above. The three colors are P, Q, and 
P. 

3P3Q3PV.;: < nVy < n{P(x) V Q{x) V R(x)) 

A(-uE(z,?y) V -.P(:r) V -P(;iy)) 

*hE(x,y)V-,Q(x)V-,Q(y)) 
A(-£(.T,2/)V-J?(.r)V-i?(j7)) 

This formula is Ef-Horn except for the first clause. Since 
graph 3-colorability is NP-complete, it cannot be repre- 
sented by a E[*-Horn formula unless P= NP. This example 
illustrates why we cannot allow bounded first-order exis- 
tential quantifiers after the universal quantifiers in E{!-Horn 
formulas, since the first clause could be replaced by 3i < 
3P(i, x) where now P(0,.;:), P{l,x), P(2,:;:) represent the 
three colors. 

3    \ \ -Horn and other second-order theories 

Our second-order theories use the language C\ de- 
scribed in the previous section.   They all share the set 2- 
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Robinson's theory Q axioms 
BLar+l^O B2: x + 1 = y + 1 -+x = y 
B3:a; + 0 = :r B4: x + (y + 1) = (x + y) + 1 
B5:x-0 = 0 B6:x-(y + l) = (x-y)+x 

Axioms for < 
B7: 0 < x 
B8 : x < x + y 
BlLz < yVy <x 

B9: x < y Ay < z ^ x < z 
BIO : (x <y Ay < x) —> x = y 
B12 : x <y<-t x <y + l 

Predecessor axiom 
B13: a;#0-> 3y(y + 1 = x) 

Length axioms 
LI :X{y)^y < \X\ 
L2:y+l = \X\-+X(y) 

Table 1. The 2-BASIC Axioms 

BASIC of axioms in Table 1, which are similar to the ax- 
ioms for Zambella's theory 6 [31] and form the second- 
order analog of Buss's first-order axioms BASIC [3]. The 
set 2-BASIC consists essentially of the axioms for Robin- 
son's system Q, together with axioms for <, and two ax- 
ioms defining the length terms \X\. 

The underlying logic for our theories is that of two- 
sorted first-order predicate calculus. Any standard proof 
system for predicate calculus, such as Gentzen's system 
LK, can be adapted to a two-sorted system simply by rein- 
terpreting the notion offormula to be that defined in Section 
2. 

In addition to 2-BASIC, each system needs a compre- 
hension scheme for some set FORM of formulas. 

FORM - COMP : 3X < y\/z < y{X(z) *■> $(z))   (5) 

Here, $ is any formula in the set FORM with no free oc- 
currence of X. 

We denote by V1 the theory axiomatized by 2-BASIC 
and Ef -COMP. For i > 0 V{ is essentially the same as 
Zambella's E? - comp [31]. For i > 1 V1 is essentially 
the same as V{ [20]. (The latter restricts comprehension to 
E0' formulas, but allows induction on E*' formulas. How- 
ever Theorem 1 of Buss [4] shows that V{ proves the E*'6 

comprehension axioms.) Thus for i > 1 V1 is a second- 
order version of 5|. In particular, the Ef-definable func- 
tions in V1 are precisely the polynomial-time functions [9]. 
The Ef-definable functions in V° are the uniform AC0 func- 
tions [9] (called rudimentary functions in [31]). The first- 
order analog of V° is S% with a comprehension scheme for 
sharply-bounded formulas. 

Definition 3.1. Vi-Horn is the theory axiomatized by 2- 
BASIC and Ef-Horn-COMP. 

Although 2-BASIC does not include an explicit induc- 
tion axiom, L2 asserts that a nonempty set has a largest ele- 

ment. This can be turned into a least number principle, from 
which induction follows. 

Lemma 3.2. The least number principle is a theorem of 
Vi-Horn, and of V{ ,i > 0. 

LNP: 0 < \X\ -t 3x < \X\(X(x) A Vy < x->X(y)) 

Proof By the comprehension schema there is a set Y such 
that|F| < |X|andforallz < \X\ 

y(z)^Vi< \X\{X(i)->z<i) 

Thus the set Y consists of those elements smaller than every 
element in X. We claim that \Y\ satisfies the LNP for X; 
that is (i) |y| < \X\, (ii) X(\Y\) and (iii) Vy < \Y\^X(y). 
First suppose that Y is empty. Then |F| = 0 by B13 and 
L2. By assumption 0 < \X\, so (i) holds in this case. Also 
X(0), since otherwise Y(0) by B7 and the definition of Y, 
so (ii) holds. Since ->y < 0 by B7 and BIO we conclude 
(iii) holds vacuously. 

Now suppose Y{y) for some y. Then y < \Y\ by LI, so 
|F| ^ 0 so by B13 |F| = z + 1 for some z and hence Y(z) 
by L2. Then -Y{z + 1) by LI. Thus X(z + 1) by Bll, 
B12 and the definition of Y, so (ii) holds. Also -<X(z), 
so (i) holds. Finally (iii) holds by the definition of Y and 
BIO. D 

Lemma 3.3. Induction on length of a string is a theorem of 
Vi-Horn, andofV\> 0. 

IND: (X(0) A Vy < z(X(y) -> X(y + 1))) -> X(z) 

The proof of induction is a formalization of the standard 
proof LNP—► IND. It can be generalized to allow induction 
with an arbitrary A; as a basis, not just k = 0. 

If follows from the above Lemma that each of the theo- 
ries that we have presented proves an induction axiom for 
each formula in its comprehension scheme. In particular, 
for V'i -Horn we have 

Corollary 3.4. V\ -Horn proves the Hf-Horn Induction ax- 
ioms. 

($(0) A Vy < z(*(j/) -> $(y + 1))) -»■ $(z) 

where $ is any Ef -Horn formula. 

Standard arguments show that induction on open formu- 
las using axioms Bl to B13 is enough to prove simple alge- 
braic properties of + and • such as commutativity, associa- 
tivity, distributive laws, and cancellation laws involving +, 
•, and <. Hence all of our theories prove these properties, 
and in the sequel we take them for granted. These simple 
properties suffice to prove that the tupling function defined 
in (2) and (3) is one-one, so these theories all prove 

(xi,...,xk) = (x'1,...,x'k) -> (xi = x[ A...Axk =x'k) 
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Notation. We use pt6l to denote the "6-th row" when P is 
being used as a 2-dimensional array. If 4>(P) is a formula 
with no occurrence of \P\, then rfj(P^) is obtained from 
(j){P) by replacing every atomic formula P(t) by P(b, t) 
(i.e. P{(b,t)): see (2)). 

Other useful properties provable in Vi-Horn include a k- 
ary comprehension and replacement. 

Lemma 3.5 (k-ary Comprehension). If $(a,'i,...,xk) is 
a Ef -Horn formula with no free occurrence of Y, then 
Vi-Horn proves the k-ary comprehension formula 

Ey <<&!,...AJVn <h...Mxk<bk (6) 

{Y{xl:...,xk) <-> $(xu...,Xk)), 

Lemma 3.6 (Replacement). Ifcj)(y,P) is a IlJ Horn for- 
mula with respect to P and t is a term not involving y, then 
V\ -Horn proves 

My < t3P(f>(y,P) «■ 3PMy < t<p(y,pM) 

where PM js p[y\ ..., p[y\ Further the RHS is a Ef-Horn 
formula. 

The replacement scheme is a corollary of the following 
lemma: 

Lemma 3.7. If \\-Hom proves that 3PMy < b$(y,P) is 
equivalent to some Ef -Horn then \\-Horn proves 

My < &3P$(?y,P) <-► 3PMy < b$(y,pM). 

4    Formulas provably equivalent to Ef -Horn 

Our goal now is to show that every Ef formula and every 
Ef-Horn formula, i £ N, is provably equivalent in \\ -Horn 
to a Ef-Horn formula, and hence can be used in the com- 
prehension and induction schemes. Later, we also show that 
the class of formulas provably equivalent to Ef-Horn is 
closed under -i, A, V and bounded first-order quantification 
(sec 5.3). We start with a simple observation. 

Lemma 4.1. lf§\ and <I>2 are Ef -Horn formulas, then 
$i A $2 in logically equivalent to a Ef -Horn formula. 

Notation. If P is a second-order variable, then P denotes a 
second-order variable whose intended interpretation is -P. 

We now introduce the Horn formulas SEARCH^, which 
arc II; Horn with respect to all of their second-order vari- 
ables and which will allow a Ef-Horn formula to rep- 
resent 3z < bX(y,z). Assuming that X <-> -iAr, 
SEARCH*. (6,6, S, S,X, X) asserts that S(y,i) holds iff 
X(y,z) holds for some z < i, where b stands for b\, ...,bk, 
and y stands for y\,...,yk. We use y < b for y\ < 
bi A ... Ay*. < bk. 

Definition 4.2. For each k > 1 SEARCH*, (b, b, S, S, X, X) 
is the U\ Horn formula 

Vj/<6Vi<6(-.S(j/,0)A5(j/,0)) 

A(-15(j/,i + l)V-.5(y,t + l)) 

A(5(y,0->5(j/,t + l)) 

A(X{y,i)->S(y,i + l)) 

A(%i)A%f)4%i + l)) 

We can prove in Vi-Horn that this definition of SEARCH 
corresponds to a bounded existential quantifier in the above 
limited sense. 

4.2    The Ef formulas are provably equivalent to 
Ef-Horn 

Consider a Ef formula Oi?A < &i -QA?7A < bkcf>(y), 
where each Qi is cither V or 3. We can shows how to con- 
join copies of SEARCH(...) to define arrays So,..., Sk such 
that Si(yi,...,yk-i) «->• Qk-i+lyk-i+l < bk-i+i^(y). 
These are used to form an equivalent Ef-Horn formula. 

The proof of this fact proceeds by induction. For the base 
case, we define SQ(0) = <j>{y) and 5()(0) = ->0(j7) (we can 
negate a quantifier-free formula). For the induction step, to 
get the arrays S,+i and S,+i we search the values of 5, and 
S, for cither a witness or counterexample, based on whether 
the ?"' quantifier of the original formula is 3 or V. 

Corollary 4.3. Every Ef formula is provably equivalent in 
\\-Horn to a Ef -Horn formula. 

Proof. Take a suitable prencx form of $i A $2. D        4.3    Collapse of V'-Horn to V'i-Horn 

4.1    Simulating  first-order  bounded   existential 
quantification 

A major inconvenience of Ef-Horn formulas is lack of 
first-order existential quantifiers. In general we cannot al- 
low such quantifiers without increasing the apparent ex- 
pressive power of the formulas, as pointed out in the 3- 
colorability example. However, it is possible to introduce 
bounded existential quantifiers in some contexts. 

Grade! [14] showed that it is possible to represent a 
503-Horn formula preceded by alternating SO quanti- 
fiers by a 503-Horn formula, which implies the collapse 
of SO-Horn hierarchy to 503-Horn. We can formalize 
Griidel's proof in Vi-Horn, showing that Ef-Horn formu- 
las are closed under second-order quantification. That is, a 
Ef-Horn formula preceded by a sequence of (possibly al- 
ternating) second-order quantifiers is equivalent (provably 
in Vi-Horn) to a Ef-Horn formula. 
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5   Encoding the Horn SAT algorithm by a 
Sf-Horn formula 

Here we show that a run of the Horn satisfiability algo- 
rithm described in the proof of Theorem 2.3 can be repre- 
sented by a Sf-Horn formula RUN. This result is needed 
for sections 6 and 7. A simple corollary is that the negation 
of a Sf-Horn formula is provably equivalent to a Sf -Horn 
formula. In other words, Vi-Horn proves that P is closed 
under complementation. 

Theorem 5.1. Let $ be a Sf-Horn formula which does 
not involve R or R. Then there is a formula RUN<j,(.R, R) 
whose free variables include those of $ in which the only 
atomic subformulas involving R and R are R(0) and R(0) 
and such that 3R3RRVN$(R,R) is a Sf -Horn formula 
and V\ -Horn proves the following: 

(i) 3R3RRVN$(R,R) 

(«) RUN*(fi,Ä) -» [(Ä(0) ** $) A (i?(0) «• -.$)] 

In the proof of this theorem, it is sufficient to consider 
only Sf-Horn formulas with one existential second-order 
quantifier. 

Corollary 5.2. //$ is Sf -Horn, then -i$ is provably equiv- 
alent in Vi-Horn to a Sf -Horn formula NEG$. 

Corollary 5.3. The class of formulas provably equivalent 
in Vi-Horn to a Sf -Horn formula is closed under -., A, V, 
and bounded first-order quantification. 

This follows from lemmas 3.6 and 4.1, and corollary 5.2. 
Theorem 5.1 can be generalized to the case in which ar- 

rays R(y) and R(y) code values of $(£/) and ~>$(y). 

Corollary 5.4. Let $(y) be a Hf-Horn formula which 
does not involve R or R. Then there is a formula 
RUN$(y) (b, R, R) which does not have yfree but whose free 
variables include any other free variables of $ such that 
3i?3fiRuN<I,{5) (R, R) is a Sf -Horn formula and \\ -Horn 
proves the following: 

{%) 3R3RRuNi,{5)(b,R,R) 

(ii)RuN*m(b,R,R) -> 

\/y < b[(R(y) O $(y)) A (R(y) O -n$(y))] 

The algorithm we wish to represent has two main steps 
(see the proof of Theorem 2.3): First create a propositional 
Horn formula HORN[$] (which depends on the values for 
the free variables in $), and second apply the Horn Sat al- 
gorithm to determine whether HORN[$] is satisfiable. We 
encode $ in HORN[$] using an array Q, and we will present 
a Sf-Horn formula PROP$(Q,<3) which defines this ar- 
ray and its negation. Besides the indicated free variables, 
PROP$ also has as free variables the free variables of $. 

For the second step we present a Sf-Horn formula 
HORNSAT(a,&,Q, <§,#,£) (with all free variables indi- 
cated) which is independent of $ and which sets the result 
variable R(0) true iff HORN[$] is satisfiable. The encoding 
Q consists of three parts: C(x,v),D(x,v) and V(x). The 
first two assert that a clause x contains a positive (resp. neg- 
ative) literal v; the last states that the clause x is true. All 
formulas defining Q and Q are S^. 

We can now choose RUN$(i?, R) to be a Sf-Horn for- 
mula such that 

RUN*(i?,.R) o 

3Q[PROP*(Q) A HORNSAT(a, b, Q, R, R)] 

In fact we take RUN<j>(.R, R) to be a suitable prenex form 
of the right hand side. 

5.1    Definition of PROP$(Q, Q) 

We define three Sjf formulas 
tpc(x,v),tljD(x,v),ij;v(x)  which characterize the three 
arrays C, D, V. 

Lemma 5.5._ PROP<j>(<3) can be defined in such a way that 
3QPROP$ (Q) is T,f-Horn and \\ -Horn proves 

(i) 3QPROP<J,(Q) 

(ii) PROP$(Q)  -> Vv < a\/x < b 

[(C(x,v) <-» ipc(x,v)) A (C(x,v) <-> ^c(x,v)) 

A (D(x, v) «-» il>D(x, v)) A {D(x, v) o ->tpD(x, v)) 

A (V(x) <-> xf)V{x)) A {V{x) o -iipv(x))} 

5.2    Definition of HORNSAT(ü, b, Q, Q, R, R) 

Although the Horn satisfiability algorithm is easy to de- 
scribe informally, it is not straightforward to formalize in 
V'i-Horn. The propositional Horn satisfiability problem is 
complete for P, [16], and hence cannot be represented by a 
Sjf formula. 

The algorithm represented by 
HORNSAT(a,b,Q,Q,R,R) attempts to find a satisfy- 
ing assignment to the Horn formula HORN[$] described by 
the parameters a, 6, Q. This is done by filling in an array 
T(t.v), where T(t,v) is the truth value assigned to the 
atom P(v) after step t,0<t,v<a. Initially T(0,v) is 
false, and at step t + 1, T(t + 1, v) sets each P(v) true such 
that P(v) occurs positively in some clause not satisfied 
after step t. Once P(v) is set true, it is never changed to 
false. 

Defining TDEF to be the formula encoding the truth as- 
signment array T and SAT a formula stating that the result- 
ing truth assignment T^ satisfies HORN[$], the rest of the 
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algorithm is encoded by 

noRNSAj(a,b,Q,R,R) = 

3T3T[7DBV{a,b,Q:T,f)A (7) 

3WSAT*{1, R, R, W, Q, TH, fW)] 

with a formula expressing the comprehension axiom for 
some predicate which is complete for P under uniform AC0 

reductions. Hence the finite axiomatizability of Vi-Horn 
should follow from that for V°. In our proof of Theorem 
7.5 below, that predicate is the Horn satisfiability problem, 
which is complete forP [16]. 

Lemma 5.6 (Correctness of HORNS AT). VX -Horn proves Theorem 7.1. V° is finitely axiomatizable. 

HORNSAT(a, b, Q, /?, R) A NEG ->• 

{R(0) ^BTiSAlia^Q,^)) 

A(fi(0) «■ -<3TiSAJ{a,b,Q,Ti)), 

where NEG states that Q «-> -iQ. 

Full details can be found in [7]. 

6 Equivalence of Vi -Horn, P-def and QPV 

The first-order theory QPV (called PV1 in [20]) has 
function symbols for all polynomial-time computable func- 
tions, and the axioms include defining equations for these 
functions (based on Cobham's Theorem) and induction on 
the length of numbers. The theory has been extensively 
studied [8, 3, 12, 20, 10] and shown to robustly capture 
the notion of "polynomial-time reasoning". Zambclla's [31] 
theory P-dcf is a second-order version of QPV, and can 
shown to be equivalent to QPV by the method of RSUV iso- 
morphism (see [20]). We show that Vi-Horn js equivalent 
in power to P-dcf. This implies that Vi-Horn is equivalent 
in power to QPV, but is most likely not as powerful as 5.] 
(sec Section 1). 

We add function symbols to Vi-Horn by defining 
their bit graphs by Ef -Horn formulas, obtaining a sys- 
tem V'i-Horn(FP) of the same power as V'i-Horn. Then, 
we prove the equivalence (provable both in P-dcf and 
Vi-Horn(FP)) of functions defined with Ef-Horn formu- 
las and function defined by Cobham's theorem. Finally, we 
show that the classes of theorems of I'i-Horn(FP) and theo- 
rems of P-def coincide. The main result of this section is: 

Theorem 6.1. P-def is a conservative extension of\\ -Horn. 

7 Finite Axiomatizability 

Here we show that both V° and Vi-Horn are finitely ax- 
iomatizable, and that the VEf consequences of Vi-Horn 
and the VE} consequences of S\ are each finitely axiom- 
atizable. (Theorem 10.1.2 of [20] states that the VEj con- 
sequences of S-2 arc finitely axiomatizable for j > 2 and 
i > 1.) 

Since V° defines the uniform AC0 functions, it seems 
plausible that V'i -Horn could be axiomatized by V*° together 

Proof. We must show that all Ejf-COMP axioms follow 
from finitely many theorems of V° (see section 3). 

Let 2 - BASIC+ (or simply D+) denote the 2 - 
BASIC axioms along with finitely many theorems of V° 
asserting basic properties of + and • such as commutativ- 
ity, associativity, distributive laws, and cancellation laws 
involving +, •, and <. These can be proved from the 
2 — BASIC axioms by induction on ZZQ formulas, as dis- 
cussed in Section 3. 

It suffices to show that fc-ary comprehension (6) for all 
Y.Q formulas follow from B+ and finitely many such com- 
prehension instances. We use the notation $[«, Q]{x) to in- 
dicate that the E^ formula <I> can contain the free variables 
S, Q in addition to .f = x\,..., :rfr. Then COMP,i>{ä, Q, b) 
denotes the comprehension formula 

BY < (V...A)V.r, < 6,...Vx, < h(Y(x) O *(£)) 

We can show that there arc only 12 formulas <I>i,..., <3?i2 

for which we need instances COAIP,i> of comprehension 
scheme. For example, $1, $2 and <f>;j arc: 

$ 1 (.T ,, x->) =    By < x 1 (;r 1 = (:/:•_>, y)) 
$2(:ri.x2) =   Bz < x^xi = (z,x-,)) 
*s[C?i, Q2](*i , x-2) =   By < *, (Q, (.r,, y) A Q2(y, *■>)) 

In the following lemmas, we abbreviate COMP4,,■(...) 
by Cj. The lemmas state that projection, terms and finally 
atomic formulas can be defined using finitely many axioms 
ofV°. 

Lemma 7.2. For each k > 2 and 1 < i < k let 

*iA.(jy, z) = Bxl <y... Bx^i < yBxi+l <y... 3xk < y 

(y = {xi....,x,-i,z.xl+i,...,xk)) 

Then 
B+,CuC-2,Cz hCOil/P* 

Lemma 7.3. Let t(x) he a term which in addition 
to variables x may involve other variables a, Q. Let 
*,[(,., Q}(x.y)  = y = t(x).Then 

B+,C\-..., C0 h COMP*, {a. Q, b, d) 

Lemma 7.4. Let 1i{x),t->(x) be terms with variables 
among x, ci. Q. Suppose 
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*i[ö,Q](i) = h(x) = t2(x) 
*2[ä,Q](x) =t1{x)<t2(x) 
*3[ä,Q,X](x) = X(t!(x)) 

ThenB+,d,...,C9 h COMPy^fori = 1,2,3. 

Now we can complete the proof of the theorem. Lemma 
7.4 takes care of the case when $ is an atomic formula. Let 

$io[Q](x)        = ->Q(x) 
^n[Qi,Q2](x)=Q1(x)AQ2(x) 
$l2[Q,c](x)     =yy<cQ{x,y) 

Now by repeated applications of COMP$,w and 
COMP$11 we handle the case in which $ is quantifier- 
free. 

Now suppose $(x) = Vy < t(x)(f>(x,y). We assume as 
an induction hypothesis that we can define Q satisfying 

Vx < 6Vy < *(&) + l[Q(x,y) ^ (y < t(x) -> 4>(x,y)} 

Then C_OMP^{b) follows from COMP$12{Q,c,b) with 
c <-i(6) and& «-(&i,...,6jfe). D 

Theorem 7.5. V\-Horn is finitely axiomatizable. 

Proof. It suffices to show that Corollary 5.4 (i) and (ii) can 
be proved for any Ef-Horn formula $(y) using finitely 
many theorems of Vi-Horn as axioms. We first will show 
how to do this for Theorem 5.1 (i) and (ii), and then explain 
how to modify the proof to get the corollary. 

First note that for each Ef-Horn formula $ we can de- 
fine a version of PROP* such that (i) and (ii) in Lemma 5.5 
are theorems of V°. Thus we include the finite set of ax- 
ioms for V° from Theorem 7.1 among the finite axioms for 
Vi-Horn. The proof of Theorem 5.1 depends on Lemma 5.5 
(which we have established) and some properties of HORN- 

SAT. Since HORNSAT is independent of $, we can take 
these properties as axioms. 

To generalize the proof of Theorem 5.1 in order to prove 
Corollary 5.4, we incorporate the variable y in $(y) as an 
argument of each of the arrays C, D, V, C, D, V to define 
the formula PROP<J>(?/) in a modified Lemma 5.5. Then y is 
not free in PROP$(y) (although it could be free in PROP<J,). 

The definition (7) of HORNSAT is modified so that the pa- 
rameter y is incorporated as an argument of each of the ar- 
rays R,R,T,f. Then Corollary 5.4 follows in the same 
way as Theorem 5.1. D 

Theorem 7.6. V\-Horn is axiomatized by its VEf conse- 
quences. 

Proof. It suffices to show that each Ef-Horn compre- 
hension axiom is a consequence of VEf theorems of 
Vi-Horn. First we show that the second-order quantifiers 
in Ef-Horn formulas (1) can be bounded. That is, for each 
Ef-Horn formula $ there is a Ef formula $B such that 

VEf Vi-Horn (-($«■ $ß). To construct $s replace each 
second-order quantifier 3P in $ by a bounded quantifier 
3P < t, where t is a provable upper bound on all terms 
u such that P(u) occurs in $. The equivalence of $ and 
$ß requires only \t-COMP instances for formulas $ with 
no second-order quantifiers, and these instances are VEf 
formulas. 

The comprehension axiom (5) for $(2) follows from 
Corollary 5.4 (i) and (ii). The Ef form of (i) we need is 

3R<y3R<yRus'^{z)(y,R,R) 

where RUN^ > has suitable bounds on its second-order 
quantifiers. For (ii) we do not need the clause involving 
R. If we replace $ by $ß then a suitable prenex form of 
the result is VEf. D 

Corollary 7.7. The VEf consequences of V\-Horn are 
finitely axiomatizable. The VEj consequences of S\ are 
finitely axiomatizable. 

Proof. The first sentence follows by compactness from 
Theorems 7.6 and 7.5. Since V"1 is VEf conservative over 
P-def [31], it follows from Theorem 6.1 that the VEf conse- 
quences of V1 and of Vi-Horn are the same, and hence are 
finitely axiomatizable. The second sentence of the Corol- 
lary is equivalent to asserting that the VEf consequences 
of V1 are finitely axiomatizable, by the RSUV isomor- 
phism. D 

8. Conclusion 

The original motivation for this paper was to make a con- 
nection between descriptive complexity and bounded arith- 
metic. Specifically we use Grädel's theorem that a predicate 
is polynomial-time iff it corresponds to the finite models of 
some second-order Horn formula, and define a second-order 
theory based on a comprehension axiom scheme essentially 
over the second-order Horn formulas. The resulting theory 
Vi-Horn turns out to have the same power as the previously- 
defined theories QPV and P-def but the proof of equiva- 
lence is nontrivial and requires formalizing the Horn satis- 
fiability algorithm in Vi-Horn. Unlike QPV and P-def, our 
theory Vi-Horn turns out to be finitely axiomatizable, and 
this has consequences for the important theory S]. 

It seems plausible that characterizations of other com- 
plexity classes in descriptive complexity can be used to de- 
fine related theories. In particular, Grädel[15] uses second- 
order Krom formulas to characterize NL (nondeterministic 
log space), and this might serve a basis for a theory of log 
space reasoning. 

Although we do not exploit them in this paper, bounded 
arithmetic has important connections with propositional 
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proof complexity (sec [20]). The main goal of the lat- 
ter is to establish super-polynomial lower bounds on the 
lengths of proofs in various propositional proof systems. (If 
this could be done for all "reasonable" such systems then 
NP ^ coNP and hence NP ^ P [11].) [8] showed that every 
theorem of PV can be expressed as a family of tautolo- 
gies with polynomial size proofs in a so-called Extended- 
Frcge proof system. A host of similar results has been 
proved since. In the case of some weak theories T the cor- 
responding propositional proof system is sometimes weak 
enough that super-polynomial lower bounds arc provable, 
and then independence results for T follow [24]. We know 
indirectly from [8] that the E^ theorems of Vj-Horn trans- 
late into tautology families with polynomial-size Extended- 
Frcge proofs. It might be instructive to carry out this transla- 
tion directly, possibly shedding light on the central and very 
difficult problem of proving superpolynomial lower bounds 
for Extended-Frcge systems. 

References 

[1] D. M. Barrington, N. Immcrman, and H. Straubing. On uni- 
formity within NC1. Journal of Computer and System Sci- 
ences, 41(3):274 - 30, 1990. 

[2]  S.     Buss. Collection     of    papers. URL: 
"ftp://euclid.ucsd.edu/pub/sbuss/rcscarch/". 

[3]  S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986. 
[4] S. Buss. Axiomatizations and conservation results for frag- 

ments of bounded arithmetic. Contemporary Mathematics, 
106:57-84, 1990. 

[5] S. Buss. Relating the bounded arithmetic and polynomial 
time hierarchies. Annals of Pure and Applied Logic, 75:67- 
77, 1995. 

[6] S. Buss, editor. Handbook of Proof Theory. Elsevier, Ams- 
terdam, 1998. 

[7] S. Cook and A. Kolokolova. A second-order system 
for polynomial-time reasoning based on Gracdcl's theo- 
rem. Electronic Colloquium on Computational Complexity 
(ECCC),7RQ1-024, 2001. 

[8] S. A. Cook. Feasibly constructive proofs and the proposi- 
tional calculus. In Proceedings of the Seventh Annual ACM 
Symposium on Theory of Computing, pages 83 -97, 1975. 

[9] S.    A.    Cook. CSC    2429S:    Proof   Complexity 
and    Bounded    Arithmetic. Course    notes,     URL: 
"http://www.cs.toronto.edu/~sacook/csc2429h",       Spring 
1998. 

[10]  S. A. Cook.  Relating the provable collapse of P to A'C1 

and the power of logical theories.   DIMACS series in Dis- 
crete mathematics and theoretical computer science, 39:73- 
91, 1998. 

[Ill  S. A. Cook and A. R. Rcckhow.  The relative efficiency of 
propositional proof systems.    Journal of Symbolic Logic. 
44(l):36-50, 1979. 

[12]  S. A. Cook and A. Urquhart.  Functional interpretations of 
feasibly constructive arithmetic. Annals of Pure and Applied 
Logic, 63*2): 103 -200. 1993. 

[13] R. Fagin. Generalized first-order spectra and polynomial- 
time recognizable sets. Complexity of computation, SIAM- 
AMC proceedings, 7:43-73, 1974. 

[14] E. Grädel. The Expressive Power of Second Order Horn 
Logic. In Proceedings of 8th Symposium on Theoretical As- 
pects of Computer Science STACS '91, Hamburg 1991, vol- 
ume 480 of LNCS, pages 466-477. Springer-Verlag, 1991. 

[15] E. Grädel. Capturing Complexity Classes by Fragments 
of Second Order Logic. Theoretical Computer Science, 
101:35-57, 1992. 

[16] R. Grecnlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Par- 
allel Computation. Oxford University Press, 1995. 

[17] P. Hajck and P. Pudläk. Metamathematics of First-Order 
Arithmetic. Springer, Berlin, 1998. 

[18] N. Immcrman. Relational queries computable in polytime. 
Information and Control, 68:86 -104, 1986. 

[19] N. Immcrman. Descriptive complexity. Springer Verlag, 
New York, 1999. 

[20] J. Krajicek. Bounded Arithmetic, Propositional Logic, and 
Complexity Theory. Cambridge University Press, New York, 
USA, 1995. 

[21] J. Krajicek, P. Pudlak, and G. Takeuti. Bounded arithmetic 
and the polynomial time hierarchy. Annals of Pure and Ap- 
plied Logic, 52:143-153, 1991. 

[22] D. Leivant. Characterization of complexity classes in 
higher-order logic. In Proceedings of the Second Annual 
Conference on Structure in Complexity Theory, pages 203- 
217, 1987. 

[23] D. Leivant. Descriptive characterizations of computational 
complexity. Journal of Computer and System Sciences, 
39:51-83, 1989. 

[24] J. Paris and A. Wilkie. Counting problems in bounded arith- 
mctcs. In Methods in mathematical logic, volume LNM 
1130, pages 317 - 340. Springer Verlag, 1985. 

[25] A. Razborov. An equivalence between second-order 
bounded domain bounded arithmetic and first-order 
bounded arithmetic. In P. Clotc and J. Krajicek, editors, 
Arithmetic, proof theory and computational complexity, 
pages 247-277. Clarendon Press, Oxford, 1993. 

[26] A. Razborov. Bounded arithmetic and lower bounds in 
boolean complexity. In P. Clote and J. Remmcl, editors, Fea- 
sible Mathematics II, pages 344-386. Birkhauscr, 1995. 

[27] U. Scheming and R. Pruim. Gems of theoretical computer 
science. Springer, Berlin, 1998. 

[28] L. J. Stockmcyer. The polynomial-time hierarchy. Theoret- 
ical Computer Science, 3:1-22, 1977. 

[29] G. Takeuti. RSUV isomorphism. In P. Clotc and J. Krajicek, 
editors. Arithmetic, proof theory and computational com- 
plexity, pages 364-386. Clarendon Press, Oxford, 1993. 

[30] M. Vardi. Complexity of relational query languages. Infor- 
mation and Control, 68:137 -146. 1986. 

[31] D. Zambclla. Notes on polynomially bounded arithmetic. 
The Journal of Symbolic Logic, 61(3):942-966, 1996. 

186 



The Crane Beach Conjecture 

DAVID A. Mix BARRINGTON * 
Computer Science Department 

University of Massachusetts 
barring@cs.umass.edu 

CLEMENS LAUTEMANN 

Institut für Informatik 
Johannes Gutenberg-Universität Mainz 
cl@informatik.uni-mainz.de 

NEIL IMMERMAN * 
Computer Science Department 

University of Massachusetts 
immerman@cs.umass.edu 

NICOLE SCHWEIKARDT 

Institut für Informatik 
Johannes Gutenberg-Universität Mainz 

nisch@informatik.uni-mainz.de 

DENIS THERIEN * 
School of Computer Science 

McGill University 
denis@cs.mcgill.ca 

Abstract 1    Introduction 

A language L over an alphabet A is said to have a neutral 
letter if there is a letter e £ A such that inserting or deleting 
e 'sfrom any word in A* does not change its membership (or 
non-membership) in L. 

The presence of a neutral letter affects the definability of a 
language in first-order logic. It was conjectured that it ren- 
ders all numerical predicates apart from the order predicate 
useless, i.e., that if a language L with a neutral letter is not 
definable in first-order logic with linear order, then it is not 
definable in first-order logic with any set Af of numerical 
predicates. 

We investigate this conjecture in detail, showing that it fails 
already for Af = { + , *}, or, possibly stronger, for any set Af 
that allows counting up to the m times iterated logarithm, 
\g-m', for any constant m. 

On the positive side, we prove the conjecture for the case 
of all monadic numerical predicates, for Af = {+}, for 
the fragment BC(Y,i) of first-order logic, and for binary 
alphabets. 

•Supported by NSF grant CCR-9988260. 
t Supported by NSF grant CCR-9877078. 
^Supported by NSERC and FCAR. 

Logicians have long been interested in the relative expres- 
sive power of different logical formalisms. In the last 
twenty years, these investigations have also been motivated 
by a close connection to computational complexity theory 
— most computational complexity classes have been given 
characterisations as finite model classes of appropriate log- 
ics, cf. [Imm98]. In these investigations it became apparent 
that in order to describe computation over a finite structure, 
a formula has to be able to refer to some linear order of the 
elements of this structure. Given such an order, the universe 
of the structure, i.e., the set of its elements, can be identified 
with an initial segment of the natural numbers. In a logic 
with the capability to express induction we can then define 
predicates for arithmetical operations such as addition or 
multiplication on the universe, and use them in order to de- 
scribe operations on time or memory locations. In weak 
logics, however, e.g., first-order logic, defining an order re- 
lation does not automatically make arithmetic available. In 
fact, even over strings, the expressive power of first-order 
logic varies considerably, depending on the set of numerical 
predicates that can be used. 

As an example, if the order is the only numerical rela- 
tion then the only regular languages that can be defined 
in first-order logic are the star-free languages. If, how- 
ever, for every p £ N we have available the predicate modp 

(which holds for a number m iff m = 0 (mod p)) then 
we can express regular languages that are not star-free, 
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such as (000 + 001)*. In fact, with these predicates we 
can express all the first-order definable regular languages, 
cf. [Str94]. Thus, even very powerful relations (arithmetical 
relations, or even undecidable ones) are of no further help 
in defining regular languages. On the other hand, with ad- 
dition, we can express languages that are not regular, such 
as{0nri/nGN}. 

First-order logic with varying numerical predicates can also 
be thought of as specifying circuit complexity classes with 
varying uniformity conditions [BIS90], The language de- 
fined by a first-order formula is naturally computed by a 
family of boolean circuits with constant depth, polynomial 
size, and unbounded fan-in (called "AC0 circuits"). The 
power of such a family depends in part on the sophistication 
of the connections among the nodes. A formula with only 
simple numerical predicates leads to a circuit family where 

these connections are easily computable. These are called 
"uniform circuits", and how uniform they are is quantified 
by the computational complexity of a language describing 
the connections. A formula with arbitrary numerical predi- 
cates leads to a circuit family with arbitrary connections — 
the set of languages so describable is called "non-uniform 
AC°'\ 

There are languages, such as the PARITY language, for 
which we can prove no AC0 circuit exists [Ajt83, FSS84]. 
A major open problem in complexity theory is to develop 
methods for showing languages to be outside of uniform cir- 
cuit complexity classes even if they are in the corresponding 
non-uniform class. This is an additional motivation for the 
study of the expressive power of first-order logic with vari- 
ous numerical predicates, as this provides a paramctrization 
of various versions of "uniform AC°'\ 

In an attempt to obtain a better understanding of this expres- 
sive power, Thcrien considered the concept of a neutral let- 
ter for a language L, i.e., a letter e that can be inserted into 
or deleted from a string without affecting its membership in 
L. Since, in the presence of such a letter, membership in L 
cannot depend on specific (combinations of) letters being in 
specific (combinations of) positions, it seemed conceivable 
that neutral letters would render all numerical predicates, 
except for the order, useless. With this in mind, Thcrien 
proposed what was later dubbed the Crane Beach Conjec- 
ture: 

If a language with a neutral letter can be defined 
in first-order logic using some set Af of numerical 
predicates then it can be so defined using only the 
order relation. 

One particular example of a language with a neutral letter is 
PARITY, consisting precisely of those 0-1-strings in which 
1 occurs an even number of times. PARITY is not definable 
in first-order logic - no matter what numerical predicates 

are used (cf. [Ajt83, FSS84]). The Crane Beach conjecture 
would imply this result, since PARITY is a regular language 
known not to be star-free. 

In this paper, we investigate the Crane Beach conjecture in 
detail. We first show that in general it is not true — in fact, 
it already fails for Af = {+,*}. However, we also show 
that the conjecture is true in a number of interesting special 
cases, including the case of addition, i.e., when Af = {+}■ 

This work is closely related to a line of research in data 
base theory which is concerned with so-called collapse re- 
sults (cf. [BLO0]). Here one considers a finite data base 
embedded in some infinite, ordered domain, and then looks 
at locally generic queries, i.e., queries which are invariant 
under monotone injections of the data base universe into the 
larger domain. In this setting, a language with a neutral let- 
ter is the special case of a locally generic (Boolean) query 
over monadic databases with background structure (N,Af), 
and the conjecture then can be translated into a collapse for 
first-order logic. 
We will come back to this in connection with Theorem 3.12. 
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2    Preliminaries 

2.1    First-Order Logic 

A signature is a set a containing finitely many relation, or 
predicate, symbols, each with a fixed arity. A a-structurc 
21 = (U"[, cr2') consists of a set W51, called the universe of 
21 and a set a"{ that contains an interpretation R"[ C (U°[)k 

for each fc-ary relation symbol R £ a. 

In this paper, vvc are concerned almost exclusively with 
first-order logic over finite strings. In this context, for an 

alphabet A we use the signature a A '■— {Q„ / a £ ^1} 
and identify a string w = w\ ■ ■ ■ wn € A* with the struc- 
ture w = ({1,... ,n}, <J%), where aA' = {(?,"' / a<EA} and 
Qn ~ {* < n I w, = a}, i.e. i € Q™ <^=> w, = a, for all 
a e A. 
In addition to the predicates Qn we also have numerical 
predicates.  A k—ary numerical predicate P has, for every 
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n 6 N, a fixed interpretation Pn C {1,... , n}k. Our prime 
example of a numerical predicate is the linear order rela- 
tion <. Where we see no danger of confusion (i.e., almost 
everywhere) we will not distinguish notationally between a 
predicate and its interpretation. 
An atomic a-formula is either of the form xi = X2, 
or P(xi,... ,Xk), where xi,X2,- ■ ■ ,Xk are variables and 
P £ a is a fc-ary predicate symbol. First-order cr-formulas 
are built from atomic cr-formulas in the usual way, using 
Boolean connectives A, V, ->, etc. and universal (Vx) and 
existential (3 x) quantifiers. 
For every alphabet A, and every set Af of numerical predi- 
cates, we will denote the set of first-order a A U A'-formulas 
by FO[Af]. We define semantics of first-order formulas in 
the usual way. In particular, for a string w 6 A* and a for- 
mula <p G FO[Af] without free variables (i.e., variables not 
bound by a quantifier), we will write w \= <p if cp holds on 
the string w. If x\,... ,Xk are the free variables of cp, and 
if pi,... ,pk < \w\, w \= tp(pi, ■ ■ ■ ,pk) indicates that cp 
holds on the string w with Xi interpreted as Pi, for every 
i < k. 
Every formula cp 6 FO[Af] without free variables defines 
the set Lv of those yl-strings which satisfy cp. We say 
that a language L C A* is definable in FO[N~\, and write 
L e FO[Af], if L = Lv, for some <p e FO[Af]. We will 
use analogous notation for subsets of FO[Af], in particular, 
we will consider the set £i[A/*] of formulas which are of the 
form 3xi ■ ■ ■ 3xrip, for some quantifier-free ip £ FO[Af], 
and its Boolean closure, BC(Ei[Af]). (One can define a 
complete hierarchy of classes Ei[yV] and II i [A/-] along with 
their Boolean closures, using the hierarchy of first-order for- 
mulas given by the number of quantifier alternations. But in 
this paper we will have need only for BC(T,i[Af\). 

2.2    Ehrenfeucht-Fraisse Games 

One of our main technical tools will be (various versions 
of) the Ehrenfeucht-Fraisse game. In our context, the 
Ehrenfeucht-Fraisse game for a set of numerical predicates, 
Af, is played by two players, Spoiler and Duplicator, on two 
strings u,v £ A*. There is a fixed number k of rounds, and 
in each round i 

• first, Spoiler chooses one position, en in u, or a position 
bi in v, 

• then Duplicator chooses a position in the other string, 
i.e., a bi in v, if Spoiler's move was in u, and an a^ in 
u, otherwise. 

After k rounds, the game finishes with positions a,\,... , au 
chosen in u and &i,... , b^ chosen in v. Duplicator has won 
if the mapping a; H-> bi, i = 1,... , k, is a partial a A U M- 
isomorphism, i.e., if 

• for every i,j < k,a,i = a,j  4=> bi — bj, 

• for every i < k, a,i and bi carry the same letter, i.e., 
uai = Vbi. and 

• for every m-ary predicate P € Af, and every 
h, • • • , im < k, it holds that P(üii,... , a,m) ^=> 
P(bh,---,bim). 

If Duplicator has a winning strategy in the k-round game 
forM on two strings u and v, we write u =jf v. The funda- 
mental use of the game comes from the fact that it charac- 
terises first-order logic (c.f., e.g., [EFT94]). In our context, 
this can be formulated as follows: 

2.1 Theorem (Ehrenfeucht, Frai'sse) 
A language L C A* is definable in FO[Af] iff there is a 
finite subset Af' of Af and a number k such that, for every 
u € L,v $ L, Spoiler has a winning strategy in the A;-round 
game for Af' on u and v. D 

We will also use the following variant of the game: 
In the single-round Ai-game for Af on two strings u, v 

• first, Spoiler chooses k positions ai, 
&1,... A in^; 

, a/, in u, or 

• then Duplicator chooses k positions in the other string, 
i.e., positions bi,... , bk in v, if Spoiler's move was in 
u, a\,... , a,k in u, otherwise. 

Again, Duplicator wins iff the mapping <2j   *-^   bi, i   = 
1,... ,k, is a partial isomorphism.  Clearly, if Duplicator 
has a winning strategy for the single-round fc-game on u 
and v, then she also has one for the single-round /i-game, 
for all h < k. 
This    game    characterises    the    expressive    power    of 
BC(SiM): 

2.2 Theorem 
A language L C A* is definable in BC{Hi[Af]) iff there 
is a finite subset Af' of Af and a number k such that, for 
every u 6 L, v £ L, Spoiler has a winning strategy in the 
single-round fc-game for Af' on u and v. D 

3    The Crane Beach Conjecture 

Intuitively, since numerical predicates can only talk about 
positions in strings, it seems that they can only help ex- 
press properties that depend on certain (combinations of) 
letters appearing in certain (combinations of) positions. The 
Crane Beach Conjecture (named after the location of its 
first, flawed, proof) is an attempt to make that intuition pre- 
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3.1 Definition (Neutral letter) 
Let L C A*. A letter e £ A is called neutral for L if for 
any u, v £ .4* it holds that uv £ L <^=> uev £ L. D 

Thus membership in a language with a neutral letter cannot 
depend on the individual positions on which letters are: any 
letter can be moved away from any position by insertion or 
deletion of neutral letters. It seems therefore conceivable 
that for every such language, if it can be defined at all in 
first-order logic then it can be defined using the linear order 
as the only numerical relation. 

3.2 Definition (Crane Beach Conjecture) 
Let Af be a set of numerical predicates. We say that the 
Crane Beach conjecture is true far Af, iff every language 
L £ FO[<,Af] that has a neutral letter is also definable in 
FO[<}. D 

It turns out that the conjecture is true for some sets of nu- 
merical predicates, but not for all. In fact, it fails for the set 
Af — { + ,*}■ This set of predicates is particularly important 
because FO[+, *] corresponds to the most natural uniform 
version of the circuit complexity class AC0 [BIS90]. 
Our counterexample to the Crane Beach conjecture makes 
use of the well-known but somewhat counterintuitive ability 
of FO[+, *] formulas to count letters up to numbers poly- 
logarithmic in the input size: 

3.3 Definition (Definability of Counting) 
Let f(n) < n be a nondecreasing function from N to N. We 
say that a logical system can count up to f(n) if there is a 
formula <p such that for every n and for every w £ {0,1}", 

N v(c) c</(«)Ac=#,H 

where #i (u>) is the number of ones in w. 

We will need to consider two functions with similar nota- 
tion. We write the base-two logarithm of n as lgn, the 
fc'th power of this logarithm as (lgn)*, and the fc'th iter- 
ated logarithm as lg'*' n. For example, lg'2' n is the same 
aslg(lgn). 

3.4 Proposition ([AB84, FKPS85, DGS86, WWY92J) 
The system FO[+, *] can count up to (lgn)* for any A'. If 
f(n) =  (lgn)w(1), and M is any set of numerical predi- 
cates, then FO[<,Af] cannot count up to f(n). 

3.5 Theorem 
There is a language L with a neutral letter that is definable 
inFO[+,*]butnotin FO[<). 

Proof: 

We define a language A on alphabet {0,1, a} as follows. 
For each positive integer k, A will contain a string con- 
sisting of the 2* binary strings of length k, in order, sep- 
arated by a's. The total length of the k'lh string in A is thus 
2k(k + 1) - 1. The first three strings in A arc thus Ool, 
OOaOlolOoll.and 

OOOaOOlaOlOaOllolOOalOlallOalll. 

Our desired language B has alphabet {0,1, a, e} and is sim- 
ply the set of strings w over this alphabet such that the string 
obtained by deleting all the e's in w is in A. Clearly B has 
a neutral letter e, as inserting or deleting e's cannot affect 
membership in B. Clearly B is not regular, so it cannot be 
in FO[<\. It remains for us to prove: 

3.6 Lemma 
B is definable in FO[+, *]. 

Proof: 
We need to formulate a sentence of FO[+, *] that will hold 
for a string exactly if it is in B, that is, exactly if its non- 
neutral letters form a string in A. Recall that a string w is in 
A exactly if for some number k, w consists of the 2'" binary 
strings of length k, in order, separated by a's. 
Our sentence will assert the existancc of a number k such 
that the input string, with e's removed, is the k'lh string 
in the language A. Since the length of the k'lh string in 
A is exponential in k, and a valid input string must be at 
least as long, any valid k must be at most lgn. Therefore by 
Proposition 3.4, the system FO[+, *] is able to count letters 
in any interval in the input string up to a limit of k. 
We first assert that there are exactly k 0's and no l's before 
the first a, exactly k 0's and l's between each pair of a's, 
exactly k l's (and no 0's) after the last a. It then remains to 
assert that each string of 0's and l's between two a's is the 
successor of the previous one. To do this, we assert that for 
every position y containing a 0 or 1: 

• If there is a position w left of y such that there is a 0 or 
1 at y and exactly k — 1 0's and l's between w and y, 

• Then w has the same letter as y unless 

• x has the unique a between x and y, z has the next a 
to the right of x or is the rightmost position if there is 
no such a, 

• w has 1, there arc no 0's between w and x, y has 0, and 
there are no l's between y and z, or 

• w has 0. there arc no 0's between w and x, y has 1, and 
there are no 0's between y and z. 

This proves Lemma 3.6 and thus Theorem 3.5. D 
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Theorem 3.5 now follows immediately. D 

The construction above crucially uses the fact that we can 
count up to lgn in FO[+, *]. We can strengthen the con- 
struction so that it provides a counterexample using only 
counting up to lg'm' n, the m times iterated logarithm of n. 
However, we do not yet know whether this strengthening is 
non-trivial — it may be that any set of numerical predicates 
that allows counting up to lg'm' n also allows counting up 
to lgn. 

3.7 Proposition 
If the system FO[<,Af] can count up to lg(m) n for some 
m, then there is a language L with a neutral letter that is 
definable in FO[<, A/] but not in FO[<]. 

Proof: 
We must show that counting up to lg^ n suffices to pro- 
vide a counterexample to the Crane Beach conjecture. We 
give the construction in some detail for m = 2, indicating 
how to generalize it to arbitrary values for m. Take the al- 
phabet {a, 6,0,1, e} and for every k consider strings of the 
form (6(0 + l)*(a(0 + l)k)*)*b. Finally, add e as a neutral 
letter, a and 6 are used as markers, and we interpret the 0- 
1-substring between any two successive markers as the bi- 
nary representation of some number between 0 and 2k - 1. 
If x is any position, we define block(x) to be the interval 
between the two markers nearest x, and num(x) to be the 
number represented by the 0-1 subsequence in block(x). 
Using a formula that can count up to k and the construction 
from the proof of Theorem 3.5 we can write formulas ex- 
pressing num(x) = num(y) and num(x) + 1 = num(y), 
respectively. We can now express easily that between ev- 
ery successive occurences of two 6's each number from 0 to 
2k — 1 is represented precisely once. In other words, this 
formula stipulates that the {a, 0, l}-substring between two 
6's represent a permutation of the numbers 0,... , 2k - 1. 
Finally, we write a formula that expresses that all permuta- 
tions are represented. Altogether, our formula defines the 
set of those strings which consist of a sequence of permuta- 
tions of the numbers 0,... , 2fc —1, for some k, containing 
every permutation at least once. In particular, every such 
string has length fi(2fc!), whereas counting is only required 
uptofc = 0(lglg(2*!)). 
To be more precise, the formula forces all permutations to 
be present as follows. It says that for every represented 
permutation n (starting, say, with a 6 at position p), and 
every pair of positions i,j within that permutation (i.e., 
p < i < j < p', where p' is the smallest position > p 
that carries a b), there is a permutation p (between 6's at q 
and q', say) which is equal to TT, except that num(i) and 
num(j) are swapped. In what follows we will use abbre- 
viations first(x) and last(x) for formulas which express 

that x lies in the first, respectively last, block of some per- 
mutation; next(x) will denote the first position in the block 
directly to the right of block(x). Our formula for i and j 
now expresses the following for all r, s such that p < r < p' 
and q < s < q': 

• num(r)     =     num(s)     —>     num(next(r))     = 
num(next(s)) 
unless    last(r)    or    {num(r),num(next(r))}   l~l 
{num(i), num(j)} ^ 0 

• (num(r)—nuTn(s) A num(next(r))=num(i))   —> 
num(next(s))=num(j) 

• (num(r)=num(s) A num(next(r))=num(j))    —> 
num(next(s))=num(i) 

• (num(s)=num(j)       A       ->last(s)) ->• 
num(next(s))=nurn(next(i)) 

• (num(s) = num(i) A-ilast(s)) -> num(next(s)) = 
num(next(j)) 

• (first(r) A first(s) A num(r)    ^   num(i))    -> 
num(r) = num(s) 

• (first(r) A first(s) A num{r)    =   num{i))   —► 
num(s) = num(j). 

Thus we can construct the desired formula for m = 2. 
We can then iterate this process, using an additional marker 
symbol c. The resulting formula stipulates that our string 
represent all permutations of all the permutations of the 
numbers 0,... , 2k - 1. This will guarantee that string to 
beoflengthfi(((2fc)!)!),etc. D 

It is not difficult to code the languages above using only 
two non-neutral letters: just apply the homomorphism 
{a, b, 0,1, e}* -> {0,1, e}* which maps e to e, a to 010, 
6 to 0110, 0 to OHIO, and 1 to 011110, for example. How- 
ever, with only one non-neutral letter there is no way of 
defeating the conjecture. 

3.8 Theorem 
If |i4| = 2 then for every set M of numerical predicates and 
every language L C A* with a neutral letter it holds that 
L e FO[<,Af] => L e FO[<]. 

Proof: 
Let L be a language on {l,e} with e as a neutral letter. 
Consider the set of numbers n such that ln is in L and ln+1 

is not. If this set is finite, it is easy to see that L is regular 
and definable in FO[<]. Otherwise, we will show that no 
family of unbounded fan-in circuits with constant depth and 
polynomial size can recognize L — it follows from [BIS90] 
that L is not definable in FO[<,Af] for any J\f. 
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For these particular values of n, any circuit deciding 
L on strings of length 2n would compute a symmet- 
ric function of the inputs saying yes on inputs with n 
l's and no on inputs with n + 1 ones. Following the 
construction of [FKPS85], a constant-depth poly-size 
combination of these circuits can be used to compute 
the parity function on inputs of this size. If the circuit 
deciding L had constant depth and polynomial size, then 
this new circuit would compute the parity function in AC0 

for infinitely many input sizes, violating [Ajt83, FSS84]. D 

Since PARITY is a non-star-frcc regular language over 
{0,1}* and has a neutral letter, Theorem 3.8 implies the 
nonexprcssibility of PARITY in first-order logic with arbi- 

trary numerical predicates (i.e., AC0). Note, however, that 
it directly uses the existing proofs of the nonexprcssibility 
of PARITY to get this result. 

On the other hand, the following special case of the Crane 
Beach conjecture can be proved directly: 

3.9 Theorem 
The Crane Beach conjecture holds for the set of all monadic 
relations. 

Proof: 
Let L be a language with a neutral letter that is not definable 
in FO[<}. This means that for any number of moves k 
there must be two strings y £ L and z g" L such that the 
Duplicator wins the fc-movc game (using only <) on y and 
z. By adding neutral letters we can make y and z have the 
same length m. 

Now let Af be any monadic predicate. We will show that 
L is not definable in FO[<, Af] as follows. We will use Af 
to construct two strings u £ L and v g" L from y and z by 
suitable padding with neutral letters. (The length of u and v 
will be a suitably large number n to be defined below.) Then 
we will show how the Duplicator can win the fc-move game 
on u and v, with both < and Af as numerical predicates. 
The predicate Af may be regarded as a coloring of the in- 
put positions from 1 to n, with finitely many colors. If r 
and s arc input positions, consider the colored string given 
by the interval from r to s, with each input position hold- 
ing a neutral letter. For any two such strings, consider the 
fc-move game with only < as numerical predicate and the 
colors considered as the input. Let two strings be consid- 
ered equivalent iff the Duplicator wins this game on them. 
Since the language defined by this game is regular, there are 
only a finite number of equivalence classes. We now define 
a colored undirected graph whose vertices are these n input 
positions and where the color of the edge from position r 
to position s represents the equivalence class of the colored 
string for that interval. 
By the Erdos-S/.ckercs Theorem [ES35], as long as n is 
greater than md where d is the number of edge colors, there 

must be a monochromatic path in the graph of length at least 
m. We create u from y, and v from z, by placing the letters 
of the shorter strings in the locations given by the vertices 
of these path (the "special locations"), and making all other 
letters neutral. We must now explain how the Duplicator 
can win the game with < and Af on the strings u and v (the 
"Big Game"). 
The Duplicator will model the Big Game by a series of 
"small games", where she already has a winning strategy 
for each. One small game is played on the strings y and 
z using only <, and there is another small game (using < 
and color only) for each interval between special locations. 
Whenever the Spoiler moves in the Big Game, the Dupli- 
cator translates this move into the y-z small game by mov- 

ing to the position matching the next special position to the 
right. She also translates it into the small game for that inter- 

val. The Duplicator's reply in the Big Game is determined 
by her correct move in the y-z game, and her correct move 
in the special small game for that particular interval. 
After k moves Delilah must win the original Small Game 
and all the interval Small Games, as she has made at most 
k moves in each. It is easy but tedious to look at the input 
predicates, order, equality, and position color in the Big 
Game and verify that Delilah has won that as well. D 

We can use Theorem 3.9 to derive the following interest- 
ing generalization of the nonexprcssibility of PARITY. But 
again, we do not get an independent proof of this fact be- 
cause the existing proofs are used crucially to obtain the 
results in [BCST92]. 

3.10 Corollary 
The Crane Beach conjecture holds for all regular languages. 
That is, for every set Af of numerical predicates and every 
regular set L with a neutral letter it is true that that L 6 
FO[<,M] =>£€ FO[<). 

Proof: 
This follows from Theorem 3.9 and the fact, proven 
in [BCST92], that every regular language definable in 
FO[<,Af\ (using any set Af of numerical predicates) is 
definable in FO[<, {modp / p G N}], where mod,,(i) is 
true iff i = 0  mod p. O 

Although according to Theorem 3.9 the Crane Beach con- 
jecture holds for the set of all unary relations, it is not true 
for all binary relations, since FO[<,+,*] - FO[<,Bit], 
c.f., [Imm98], In fact, it already fails for the set of all unary 
functions, or for the set of all linear orderings. This follows 
from the existence of a unary function / : N -> N (see 
the proof of Theorem 3 in [Sch97]) and a set Ö of linear or- 
derings (in fact, four order relations suffice, ef.[ScSc]) such 
thatFO[<,+,*] = FO[<,B;f] =FO[<J] = FO[<,0}. 
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We can also consider special cases of the Crane Beach con- 
jecture based on restrictions on the type of logical formulas 
allowed. For example, with arbitrary sets of numerical rela- 
tions the conjecture does hold for Boolean combinations of 
Ei-formulas: 

3.11 Theorem 
Let Af be a set of numerical predicates, and let I be a 
language with a neutral letter that is definable in the class 
ßC(Ei[<,7\/l). ThenL e BC(Ei[<]). 

Proof: 
We must show that for any set Af of numerical predicates 
and any language L with a neutral letter, L is definable in 
.BC(Ei[<, Af]) iff it is definable in 5C(Ei[<]). 
Using Theorem 2.2, we first show the proposition for the 
special case Af = {sue, min, max}, where sue is the suc- 
cessor relation suc(n,m) iff m = n+1, (w,n) \= min(n) 
iff x=l, and (w,n) |= max(n) iff n = \w\. 
Let e be the neutral letter, and assume that L g BC(T,1 [<]). 
Then, for every k, there are strings u E L,v g" L such that 
Duplicator wins the single-round /c-game for < on u,v. 
We can assume u and v to be of the same length m (if 
not, append \v\+k e's to u and \u\+k e's to v). We con- 
struct strings U from u and V from v such that U G L, 
V £ L, and Duplicator wins the single-round fc-game 
for {<,suc,min,max} on U,V. Then L g" BC(E\[< 
, sue, min, max]), which proves the assertion, by contrapo- 
sition. 
In order to construct U, insert 2k—1 e's between each pair 
of adjacent positions in u, as well as at the beginning and 
the end of u. More precisely, U = U\ • • ■ Um2k+2k-\> with 
Uj2k = Uj, and Uj2k+i — e, for any j < m, i < 2k. 
Similarly, we construct V from v. Since e is neutral, we 
have U € L, V g L. 
Assume that Spoiler chooses positions a\,... , ak in U (the 
other case is symmetric). Some (possibly all, or none) of 
the Uaj will be neutral letters, others will be from A \ {e}. 
For the sake of notational simplicity we will assume, with- 
out loss of generality, that Uai, ■ ■ ■ , Uaq G A \ {e}, and 
Uaq+1 = • • ■ = Uak = e. Then each a,j with j < q is of 
the form Sj2k, for some Sj € {1,... , m}. Now Duplica- 
tor simulates a move of Spoiler in the game for <on«,» 
in which Spoiler pebbles si,... , sq on u, and finds her re- 
ply, s[,... ,s'qon v, according to her winning strategy. She 
then sets, for each j from 1 through q, bj to be s'j2k. Then 
for each j, j' <qit holds that 

• bj ^ bji+1 and Oj ^ a,v + l, 

bj < bj* 

Vbi = v.; = 

a, < a,', and 

Sj           V Qj   ■ 

To complete this move, Duplicator has to define 
bq+i,... ,bk such that Vbq+1 — ■ ■ ■ = V\,k — e, and that 
for all j, j' < k 

bj < bj, 

bj = bj. + l 

bj = l 

üj < a ,ji, 

a.jt+1, and 

CLj = 1, bj = \V\ aj = \u\. 

Such bq+i,... ,bu can easily be found, since between any 
two different bj,bj with i,j < q, there are at least 2fc-l 
positions p where Vp = e. 

Now let M be an arbitrary finite set of numerical predicates 
and assume that L $ 5C(Ei[<]). From what we have 
just shown it follows that, for every k, we can find strings 
u & L, v g L of the same length m such that Duplica- 
tor has a winning strategy in the single-round 2A;+2-game 
for <, sue, min, max on u, v. We want to construct strings 
U and V by inserting neutral letters into u and v, respec- 
tively, in such a way that the original letters of u and v 
are moved onto positions ii,... ,im which are, in a cer- 
tain sense, highly indistinguishable. To this end, we define, 
for every number n, a coloring of subsets of size h < 2k of 
{1,... , n}. This coloring was inspired by the one used by 
Straubing in [StrOl], in his proof of Theorem 8. There he 
used the following extension of Ramsey's theorem, which 
will also help us here: 

Theorem Let m, k, ci,... ,ck > 0, with k < m. Let n 
be sufficiently large as a function of m and the e's. If all 
fo-element subsets of {1,... , n}, with 1 < h < k, are col- 
ored from a set of Ch colors, then there exists an m-element 
subset T of {1,... ,n} such that for each h with 1 < h < k 
there exists a color KH such that all h-element subsets of T 
are colored K/J. D 

Let T = {TI, ... , Tq} be the set of all atomic formulas over 
Af, < on variables x\,... ,xk,yi,... ,yh. The Af, <-type 
of a tuple r = (n,... ,rjt) E {1,... ,n}k with respect 
to a /i-element set S = {pi < • • • < ph}, a(r, 5), is the 
set of all those formulas of T that are satisfied when n is 
interpreted as r;, and yj as pj, fori<k and j < h. 
We now color, for each number n and every h < 2k, every 
/i-element set S = {pi < • • • < ph} C {1,... , n} with 
the set of all those a C T for which there is a fc-tuple r 
over {1,... ,n} such that r has A/'-type a with respect to 
5. Clearly, for every h < 2k there is a fixed number of 
possible colors, independent of n. The extension of Ram- 
sey's theorem stated above tells us that for large enough n 
we can find numbers i% < ■ ■ ■ < im < n such that, for 
every h < 2k, all /i-element subsets of {ii,... ,im} have 
the same color. We now insert neutral letters into u in such 
a way that in the resulting string U we have Uj3 = us, for 
s = 1,... , m, and Uj — e for all i $ {ii,... , im}. In the 
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same way we construct V from v. Let us calh'i,... , im the 
special positions. 

We now show that Duplicator has a winning strategy in the 
fc-game for <,Af on U,V. Assume that Spoiler chooses 
a = ai,... ,Ofc in U (again, the other case is symmet- 
ric).   Then Duplicator finds, for every a,j the next small- 
est special position iSj, i.e, is. < a,- < is +i- Let 
S = {iSj,iSj+x j j = 1,... , k}. Duplicator now simulates 
a move of Spoiler in the 2fc+2-gamc for <, sue, min, max 
on u,v, in which Spoiler plays all the points Sj and Sj + 1, 
for j — 1,... , k on u, as well as min and max. Using 
her winning strategy in this game, Duplicator finds a reply 

with which she wins the game for <,suc. Therefore, we 
can safely call these points tj, tj + 1, for j = 1,... ,k, and 

we know that uSj = vtj, for j = 1,... , k. Let T be the 
set {itj,itj+1/j = l,...,k}. \T\ = \S\ = h < 2k, so 

S and T have the same colour, and this implies that there is 
a tuple b — (bi,... ,bk) with the same TV-type as a, and 
with uj(b,T) = ui(a,S). Duplicator now puts her pebbles 
on bi,... ,bk in V. We have to check the winning condi- 
tions. By construction, a(a, S = a(b, T). In particular, this 
implies that 

• {au... ,ak) and (&i,... 

• a,j < ciji   <=$>  bj < bji. 

, 6/t) have the same /V-type, 

for all j, j', 

if aj = iSj then bj = itj hence Ua. = uSj = vtj 

Vt,r If cij is not of this form then is. < cij < is .H 

consequently, it. < bj < itj+1 and Uaj = Vbj - e. 

D 

As we have seen, with addition and multiplication first- 
order logic has enough expressive power to defeat the neu- 
tral letter. Addition alone is, in many ways much weaker 
than addition and multiplication together. For example, 
this is witnessed by the fact that the first-order theory of 
the natural numbers with + and * is undccidable, whereas 
Prcsburger arithmetic, the first-order theory of the natural 
numbers with addition only, can be decided using quantifier 
elimination. Also note that at least our technique for pro- 
ducing a counterexample cannot work with addition only, 
since it is well known (sec, e.g., page 12 of [Lyn82]) that 
FO[<, +] cannot count up to any non-constant function. 
It is therefore more than conceivable that addition alone is 
too weak to make the conjecture fail, and we now show that 
this is indeed the case. 

3.12 Theorem 

Every language L £ FO[<, +] that has a neutral letter is 
definable in FO[<]. 

As indicated in the introduction, this theorem follows from 
collapse results for first-order queries over finite databases 

(e.g., Theorem 5.5 in [BST99]). However the terminology 
in which these results are formulated is rather alien to our 
setting here, so we will instead use a recent collapse result 
on infinite databases in [LS01]. First, however, let us give 
an intuitive explanation of the main idea behind the proof. 

For simplicity, we concentrate on 0-1-strings u, v of the 
same (large) si/x and discuss what Duplicator has to do in 
order to win the fc-round -I—game on u and v. Let A be the 
set of indices a for which ua = 1, similarly, B = {b /' Vb — 
1}. As in previous proofs, we will work with a set Q of 
indistinguishable positions, and choose u and v such that 
A,BCQ. 

Assume that, after i-\ rounds a(1',.. ,a(i_1) have been 

played in u, and 6(1),.., 6(i_1) in v. Let Spoiler choose 
some clement a(i) in u. When choosing 6(i) in v, Du- 
plicator has to make sure that any Spoiler moves for the 
remaining k-i rounds in one structure can be matched in 
the other. In particular, this means that any sum over the 
a'J' behaves in relation to A exactly as the corresponding 
sum over the b(^ behaves in relation to B. For instance, for 
any sets J,J' C {l,..,i}, it should hold that there is some 

a e A that lies between Y,jeJ a{j) and Y.yaj< aijl) if and 

only if there is some b G B that lies between J2eJ ^ 

and J^j'e.r ^<J '• But 'l is not enough to consider simple 
sums over previously played elements. Since with 0(r) 
additions it is possible to generate s ■ a(,) from a(l), for any 
s < 2r', we also have to consider linear combinations with 
coefficients as large as this. Furthermore, since Spoiler is 
allowed to choose cither structure to move in each time, 
it is necessary to deal with even more complex linear 
combinations. One can only handle all these complications 
because, as the game progresses, the number of rounds left 
for Spoiler to do all these things decreases. This means, for 
instance, that the coefficients and the length of the linear 
combinations we have to consider decrease: after the last 
round, the only relevant linear combinations are simple 
additions of chosen elements. 
All the technical details necessary to make this strategy 
work are worked out in [Lyn82] in order to prove that 
for each first-order formula with addition ip there is a set 
Q C N such that ip cannot distinguish between subsets of 
Q if they are of equal cardinality, or both large enough. 
Drawing on Lynch's theorem, in [LS01] the authors 
prove a theorem, which, specialised to our setting can be 
formulated as follows. 

Theorem ([LS01], Theorem 3.2) 
For every k £ N there exists a number r(k) e N 
and an order-preserving mapping q : N —> N such 
that, for every signature a the following holds: If 
au and av are interpretations of a over N, and if 
n,m    £    N with   (N,au,n)    =f(k)    {N,av,m),   then 

{N,q(au,n))=+ (N,q(av,m)).r D 
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Here,  q(au,n) is short for aq'U,q(n),  where aq'U   = 
{W>u /Re a}, and R9-u = {q{i) / i £ Ru}. 

Proof of 3.12, using the above theorem: 
Assume that L g FO[<], and let u = u\---un G L, 
v = vi.. .vm g- L, such that u =ftk\ v. We construct 
strings U 6 L, V g L from u and v, respectively, by in- 
serting neutral letters in such a way that Uq^ = U{ and 
Vq(j) — Vj, fori = 1,... , n, j = 1,... , m, where q is as in 
the theorem, u and u define o^-interpretations au

A and a^, 
respectively, and the winning strategy of Duplicator on u 
and v can easily be extended to (N, au, n) and (N, av, m): 
If Spoiler plays a position a; < n on (N, au ,n), this cor- 
responds to a move on u, and Duplicator can choose her 
answer according to her winning strategy on v. If Spoiler 
plays a position a» > n on (N, au ,n), then Duplicator 
replies with 6* := m+(aj-n). (The case where Spoiler 
plays on (N, av, n) is completely symmetric.) Clearly, this 
defines a winning strategy for Duplicator. Application of 
the theorem above gives us a winning strategy for Duplica- 
tor in the k round game for {<,+} on (N,q(au,n)) and 
(N, q(av ,m)). From this, we obtain a winning strategy for 
Duplicator in the k round game for {<, +} on U and V: 
Every move of Spoiler in U is translated into a move on 
(N,q(au,n)), and Duplicator's reply on (N, q(av ,m)) is 
translated back into a move on V. The winning condition 
of Duplicator on (N,q(au ,n)) and (N,q(av ,m)) directly 
translates into the winning condition for Duplicator on U 
and V, thus proving that U =t V. D 

4   Discussion 

Much of the above can be generalised from strings to arbi- 
trary relational structures over the natural (or real) numbers. 
This programme is pursued in [LS01]. With regard to the 
questions here, the following problems remain open. 

• It would be very good to have a proof of Theorem 3.8 
that does not rely on [Ajt83, FSS84]. However, since 
Theorem 3.8 implies the nonexpressibility of PARITY, 
we expect this to be very difficult. 

• What is the status of the conjecture for FO[<,*]7 
There is a construction of Julia Robinson [Rob49] 
defining addition from multiplication and the succes- 
sor operation, but in our context this only suffices to 
define addition on some numbers (those less than n1//4) 
from multiplication and order on all numbers. We con- 
jecture that some variant of this construction will suf- 
fice to disprove the Crane Beach conjecture for FO[< 
, *], perhaps by showing it equivalent to FO[<, +, *]. 

• Can we find a set of numerical predicates that allows 
us to count up to lg(m) n, but not to lgn? What about 

counting up to even smaller functions? We conjecture 
that the Crane Beach conjecture is true of a system iff 
it cannot count beyond a constant. 

• Within FO[<,+,*}, we can consider the subclasses 
of formulas based on the number of quantifier alter- 
nations. The lg-counting operation requires S3, and 
the construction of the counter example adds a few 
more levels. This leaves a gap between the upper 
bound of something like £5 in Theorem 3.5, and a 
lower bound of ßC(Si) in Theorem 3.11. Since in 
JBC(S2), counting is only possible up to a constant 
(cf., [FKPS85]), it is conceivable that the lower bound 
can be improved. 

• Theorem 3.12 places limits on the power of a partic- 
ular uniform circuit complexity class, an "addition- 
uniform" version of AC0. Can we use these tech- 
niques to place limits on the power of more power- 
ful uniform versions of AC0 (without using the non- 
uniform lower bounds) or on addition-uniform ver- 
sions of more powerful classes? This has been done 
for one such class, an addition-uniform version of 
LOGCFL, by Lautemann, McKenzie, Schwentick, and 
Vollmer [LMSV99]. 

• It would also be of interest to study the conjecture for 
certain extensions of FO, such as FO with unary count- 
ing quantifiers or FO with modulo counting quanti- 
fiers. These each have various versions depending on 
the numerical predicates available. 
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Abstract 

We introduce a new Ehrenfeitcht-Fraisse game for prov- 
ing lower bounds on the size of first-order formulas. Up 
until now such games have only been used to prove bounds 
on the operator depth of formulas, not their size. We 
use this game to prove that the CTL+ formula Occurn = 
E[Fpi A Fp2 A • • • A Ypn] which says that there is a path 
along which the predicates p\ through pn occur in some or- 
der, requires size n\ to express in CTL. Our lower bound is 
optimal. It follows that the succinctness of CTL+ with re- 
spect to CTL is exactly 0(n)!. Wilke had shown that the 
succinctness was at least exponential [WU99]. 

We also use our games to prove an optimal Q(n) lower 
bound on the number of boolean variables needed for 
a weak reachability logic {TIC") to polynomially embed 
the language LTL. The number of booleans needed for 
full reachability logic TIC and the transitive closure logic 
F02(TC) remain open [1V97, MOO]. 

1    Introduction 

We introduce a new Ehrenfeucht-Frai'sse game for prov- 
ing lower bounds on the size of first-order formulas. Previ- 
ous such games only proved lower bounds on the quantifier 
depth of formulas. 

We use this game to prove that the CTL+ formula, 

Occur„     =     E[Fpi A Fp2 A • ■ • A Fpn] (1.1) 

requires size n! to express in CTL. The formula Occur„ says 
that there exists a path such that each of the predicates pt 

occurs somewhere along this path. (E is the existential path 
quantifier: there exists a maximal path starting from the cur- 
rent point. F is the modal quantifier: somewhere now or in 
the future along the current path.) 

This offers a quite different proof and improves the expo- 
nential lower bound on the succinctness of CTL compared 

'Research supported by NSFgrant CCR-9877078. 

with CTL+ [Wil99]. We thus prove that the succinctness of 
CTL+ with respect to CTL is exactly 9(n)!. 

We prove that the parse tree of any CTL formula express- 
ing Occur« has at least n! leaves. This bound is exactly op- 
timal because the following formula expresses Occur„ and 
has n! leaves in its parse tree. Here we use [n] to denote 
{l,2,...,n}. 

<fn 
ii€[n] 

V EFU A     V    EF(PJ2 

i2e[n]-{ii} 

V      EF(... AEFPJ„). 
!3e[n]-{«l,i2} 

The main contribution of these results is not so much 
the introduction of the new formula-size games, as their 
effective use proving a new and optimal result. Standard 
Ehrenfeucht-Frai'sse games are played on a single pair of 
structures A, B. They are used to prove lower bounds on 
the quantifier depth of a formula <p needed to distinguish A 
from B. Our new game works on a whole set of structures 
A, B where all of A satisfies ip and all of B satisfies -*p. In 
a standard game, the pair of structures A and B may differ 
on a disjunction: ip = a V ß. In this case they differ on a or 
they differ on ß and the "or" may be discarded. However, 
in the formula- size game, the set of structures A must be 
split into two portions: Ai satisfying a and A2 satisfying ß. 
All of B satisfies ->a and -■/?. Thus the game on (A, B) is 
shifted to a pair of games, {Ai,B) and (A2,B). 

There are extensive connections between the computa- 
tional complexity of a problem and its descriptive complex- 
ity, i.e., how complex a formula is needed to describe the 
problem. Descriptive complexity is measured via the size, 
number of variables, operator depth, etc. of the requisite 
formulas as a function of the size of the input structures be- 
ing described [Imm99]. 

The formula-size games introduced here generalize stan- 
dard EF games. They are also related to the communica- 
tion complexity games that Karchmer and Wigderson used 
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to prove lower bounds on the depth of monotone circuits 
[Kar89]'. In the past, EF games have been useful in prov- 
ing bounds on operator depth and number of variables, but 
they have not been used to prove lower bounds on the size 
of formulas. This has been a crucial lack, which the present 
paper takes a step in correcting. 

The added complication of formula-size games means 
that we must build up considerable machinery to use them 
to prove lower bounds. Such lower bounds were heretofore 
unattainable for general first-order formulas. We believe 
that this game and the corresponding methods will have 
many applications. 

In another application of formula-size games we show 
that Q(n) boolcans are needed to translate an LTL formula 
of size n to a polynomial-size formula of the reachability 
logic, TZCW. 

This paper is organized as follows: In §2 we provide the 
necessary background in logic including the introduction of 
transitive closure logic (FO(TC)) which provides the gen- 
eral setting for the games that we present. In §3 we review 
Ehrenfeucht-Fraisse games and present the new formula- 
size games for FO(TC). In §4 we present the formula-size 
game for CTL. In §5 we define the graphs Gn over which wc 
prove our lower bound. In §6 we prove our main result, the 
optimal u.l lower bound on the succinctness of CTL+ with 
respect to CTL. In §7 wc prove an £l(n) lower bound on the 
number of boolean variables needed for TZCW to express 
Occur,, in polynomial size. In Appendix A wc describe the 
language CTL and in Appendix B we describe reachability 
logic {TIC). 

2   Background 

In this section wc review some basic definitions con- 
cerning finite model theory and transitive closure logic 
[Imm99]. 

The language C consists of first-order logic with unary 
relation symbols {;;„ : n e N}, and binary relation symbol, 
R. By the size of a formula, we mean the number of nodes 
in its parse tree, i.e., the number of occurrences of logical 
connectives, quantifiers, operators, and atomic symbols. 

For our purposes, a Kripkc structure is a finite labeled 
graph: 

K. (S;p* : iiEN;^) (2.1) 

'Karchmer and Wigderson gave general games for proving lower 
bounds on circuit depth; but they proved lower bounds only using a mono- 
tone version of their games. They cast their games as a communication 
game in which two sets of structures differ on some property. Through 
successive bits of communication, each of which divides one of the sets of 
structures in half, eventually the sets are reduced to a collection of pairs 
where each pair differs on a particular bit. This is analogous to the closed 
nodes of our formula size game, in which each pair differs on a particular 
atomic formula. 

(2.2) 

where 5 is the set of states (vertices), each p1^ Q 5 is a 
unary relation on S, and RK C S2 is the edge relation. 

First-order logic £ does not suffice to express such sim- 
ple formulas as, 

"There is a path from where we arc (.T) 

to a vertex where pn holds." 

For this reason we add a transitive closure operator to 
first-order logic to allow us to express reachability [Imm87]. 

Let the formula ip(xi, ■ ■ .Xk,Ui, ■ ■-yk) represent a bi- 
nary relation on fc-tuples. We express the reflexive, transi- 
tive closure of this relation using the transitive-closure op- 
erator (TC), as follows: TCj^ip. Let FO(TC) be the clo- 
sure of first-order logic under the transitive-closure opera- 
tor. For example, the following formula expresses Equation 
2.2:(3y)[(TCr.yR(x,y))(x,y) A Pl7(y)}. 

3    Ehrenfeucht-Fraisse Games 

We assume that the reader is somewhat familiar with 
classical Ehrenfeucht-Fraisse (EF) games [Ehr61, Fra54, 
Imm99]. Typically there is a pair of structures A, B and 
two players. Samson chooses vertices, trying to point out a 
difference between the two structures, and Delilah replies, 
trying to keep them looking the same. Typical games have 
a certain number of pebbles corresponding to variables, and 
rounds corresponding to the depth of nesting of quantifiers 
and other operators such as TC. 

The typical fundamental theorem of EF games is that De- 
lilah has a winning strategy for the fc-pcbblc, r?i-movc game 
on A. B iff A and B agree on all A-variablc, depth-m formu- 
las. EF games are used to show noncxpressivity of a prop- 
erty $ as follows: Delilah chooses a pair of structures A, B 
that disagree on $ but such that she has a winning strategy 
for the ??7-move, A-pebble game. It then follows that <I> is 
not expressible via a A'-variable, depth-?)! formula. 

Wc now present new games for proving lower bounds on 
formula size rather than depth. We first define the formula- 
size game for the language F02(TC) — first-order logic 
with 2 variables and the transitive closure operator. Wc 
chose this logic because it is simple, expressive, and quite 
general. It is easy to see how to generalize the game and 
its corresponding fundamental theorem to most reasonable 
logics by adding more variables and other operators. In the 
sequel wc will specialize the F02(TC) game to a less gen- 
eral language, CTL, where wc will prove our main results. 

Definition 3.1 (F02(TC) Formula-Size Game)   In the 
formula-size game. Delilah starts by picking two finite sets 
of structures: A0. B0. The root of the game tree is labeled 
AQ. BQ. (The intuitive idea is that there is some property <I> 
such that every structure in A0 satisfies <I> {AQ \= <I>) and no 
structure in Bu satisfies <I> (B0 |= -><I>). ) 
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At each move, Samson may play on any of the open 
leaves of the current game tree. (One of Samson's possi- 
ble moves will be to close a leaf.) Suppose that the leaf that 
Samson chooses to play on is labeled with the pair of sets 
A,B. 

"not" move: Samson switches the two sets letting the cur- 
rent leaf have a unique child labeled B, A. 

"or" move: Samson splits A into two sets: A = A' U A". 
He lets the current leaf have two children labeled A', B 
andA",B. 

3 move: Samson chooses a variable v e {x,y}. He then 
assigns a value for v to every structure A £ A. De- 
lilah then answers by assigning a value for v to every 
structure B <E B. Let A', B' be the two sets of struc- 
tures with the new assignments for v. The current leaf 
is then given a child labeled A', B'. 

TC move: Samson chooses a pair of previously assigned 
variables v,v' e {x,y}. For every structure A € A, 
Samson then chooses a sequence of vertices from A: 
vA = ao, öi, ci2,.... of = v'A. Delilah then answers 
by choosing for every structure B e B a similar se- 
quence, vB = bo,bi,b2,...,at' = v'B. Samson then 
chooses a single consecutive pair bi,bJ+\ for each B 
and assigns x to 6( and y to 6j+i. The current leaf is 
then given a child labeled A', B' where B' is the result 
of these new assignments for each structure in B. A' 
consists of multiple copies of each structure A € A, 
one for each consecutive pair aj.Uj+i in the sequence 
for A chosen by Samson and with x assigned to a, and 
y assigned to a,j+\. 

The idea behind this move is that Samson is assert- 
ing that every structure in A satisfies TCx,y(5)(v.v') 
and no structure in B does. He thus presents what he 
claims is a d-path from v to v' for each structure A in 
A. Delilah answers with a supposed S path from v to 
v' for every B in B. Samson must then challenge one 
pair bi, bl+\ in each of Delilah's supposed 5 paths. He 
is in effect saying "-6(bi,bi+i)". At the end of this 
move, every structure in A' should satisfy S(x,y) and 
no structure in B' should. 

atomic move: Samson chooses v, v' G {x, y) and an 
atomic formula a(v,v'). (a can be v = v', R(v.v') 
or Pi(v).) Samson can only make this move if every 
structure in A satisfies a(v, v') and no structure in B 
does. In this case, the current leaf is closed. 

The object of the game for Samson is to close the whole 
game tree while keeping it as small as possible. Delilah on 
the other hand wants to make the tree as large as possible. 

Delilah may make multiple copies of the structures in B 
before any of her moves. For this reason, there is an obvious 
strategy for Delilah that is optimal, namely do everything: 
in answer to an existential move, make a copy of B for each 
vertex in B and reply with that vertex. Similarly, in answer 
to a TC-move, Delilah can make enough copies of B and 
answer with all possible sequences without repetitions from 
v to v'. O 

The reason that Delilah is allowed to make multiple 
copies in the size game is that otherwise Samson need not 
play relevant parts of the minimal formula separating A and 
B. For example, suppose that A = {A} and B = {B} 
each consist of a single structure. Suppose that the smallest 
formula true of A but not B is, 

3x3y(pi(x) ^pi{y) A p2(x) <-> p2(y) A 

■••   A pn(x) ^Pn(y)), 

i.e., A has two points agreeing on all n predicate symbols, 
but B does not. If Delilah could not make duplicates, then 
Samson could just choose the relevant x and y in A and 
Delilah would have to answer with a single pair from B. 
Then either the x's or the y's would differ on some predicate 
symbol pi and Samson could close a game tree of size 3, 
rather than n. 

The fundamental theorem of the formula-size game is: 

Theorem 3.2 Samson can close the game started at AQ , BQ 

in a tree of size s iff there is a formula <p e F02(TC) of size 
at most s such that every structure in AQ satisfies p and no 
structure in Bo does. 

Proof: Suppose that <p of size s separates AQ and B0. Then 
Samson can "play ip" and a closed game tree of size s will 
result. Playing ip means the following. Suppose that A (= ip 
and B \= -up. 

ip = -<ip: Samson plays the "not" move. In the resulting 
leaf A' \=tp and B' \= -mp. 

ip = ip V p: Samson plays the "or" move letting A' be the 
subset of A satisfying ip, and A" the subset satisfying 
p. Thus one child differs on ip and the other differs on 
P- 

ip = (3v)ilr. Samson plays the 3 move assigning v to a 
witness for i/> in every structure of A. Thus, whatever 
Delilah answers we have that A' j= -ip and B' (= ->ip. 

if = TCx,y(5)(v,v'): Samson plays the TC move and 
as argued in the discussion after the definition of this 
move, A' \= 6 and B' \= -^5. 

ip is atomic: Samson plays the atomic move, using ip and 
succeeds in closing this leaf. 
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Conversely, suppose that Samson has succeeded in clos- 
ing the game in size s and that Delilah has played optimally. 
It follows that the resulting game tree is a size s formula sat- 
isfied by all of Ao and none of BQ. 

This can be seen inductively from the leaves of the closed 
game tree. For closed leaf, (A,B), A \= a and B (= -no, 
where a is an atomic formula, i.e., has size one. 

Inductively, assume that (A. B) has children (A,,Bi) 
each differing on a formula fa of size s, where i = 1 for 
"not", 3 and TC moves and i — 1,2 for the "or" move. Here 
Si is the size of the subtree rooted at (A,. Bt). 

"not" move: A |= -vt/>i, B |= V;i and thus they differ on a 
formula of size s\ + 1. 

"or" move: A |= i/;i V fa2, B \= ->(V>i V fa2) and thus they 
differ on a formula of size s\ + s2 + 1. 

3 move: A \= (3v)oi, B \= -I(3ü)Q1, and thus they differ 
on a formula of size si + 1. Note that since Delilah 
plays optimally, if it were the case that some B £ B 
satisfies (3v)c\\, then Delilah would have chosen the 
appropriate witness for this B and it would not have 
been the case that B\ \= -IQI. 

TC move: A \= TCT.y(o1)(c.r'), B \= 
-iTC:rij/(ai)('t;.t/), and thus they differ on a for- 
mula of size s\ -f 1. By the definition of the TC move, 
since A\ |= o i, we know that for every A £ A, there 
is an ni-path from vA to v'A. Furthermore, if there 
were an Oj-path from vB to v'B, for some B € B, then 
Delilah would have played it for one of her copies of 
B. Therefore, no matter which consecutive pair in this 
path Samson challenged, it would satisfy oi. 

Thus AQ and BQ differ on a formula of size s. □ 

4   Definition of the CTL Game 

For a definition of CTL sec the appendix or [CGP99]. 
We now define the CTL formula-size game2. This is a re- 
striction of the F02(TC) formula-size game (Definition 3.1) 
as follows. 

• There is only a single pebble name: x. 

• The "not" and "or" moves are unchanged. 

• The atomic move is unchanged except that it is played 
only using atomic formulas/;,. 

2It is easy to generalize this also to the CTL* formula-size game, but 
we leave this to the reader. 

• The 3 and TC moves arc replaced by the following, 
played on a leaf, (, labeled with the pair of sets A, B, 

EX move: For each A € A, Samson reassigns x to a 
child of the current ,T. Delilah answers by first making 
as many copies of each B e B as she wishes. For each 
copy B £ B she assigns x to a child of the current 
.T. The resulting node labeled A', B' becomes the only 
child off. 

EU move: For each A € A, Samson chooses a path 
of length zero or more: x.A = (IQ, a\,..., ar. Delilah 
answers as above with a path :rß = 6(), bi,..., bs for 
each copy she makes of each B € B. Samson is trying 
to assert that (A.x) |= E(oUß), i.e., that (A,a,) (= a 
for i < r, and (A, a,) \= ß. Presumably this holds for 
all of Samson's chosen paths and none of Delilah's. 

In the second half of the move, Samson divides the 
paths chosen by Delilah into two sets. For the first 
set he assigns x to some b, with i < s and puts these 
structures into B\. For the second set he assigns x to bs 

and puts these structures into Bi. Delilah answers by 
making enough copies so that she can assign x to each 
possible point in Samson's paths. When she assigns x 
to the final point b,. in a path, she puts that structure 
in A>. When she assigns :?• to a non-final point she 
puts that structure into A\. The node ( now has two 
children labeled ,4]. B\ and A?. #2 respectively. 

Intuitively what has happened in the second half of this 
move is that for those paths chosen by Delilah whose 
final points do not satisfy fl, Samson chooses this point 
and puts the structure into B). For those paths one 
of whose non-final points docs not satisfy o, Samson 
chooses this point and puts the structure into B\. At 
the end of the move we have that A\ \= o, B\ \= 
->o, A2 |= ß, and B2 (= -■/?. If the set B{ or B2 

should happen to be empty then that node is considered 
closed. 

AU move: This is similar to the EU move except 
that the first half of the move now has two parts: (a) 
Samson chooses a maximal path for each structure in 
B, and Delilah makes copies and chooses a maximal 
path for each copy of each structure in A; (b) Samson 
chooses a finite initial segment of each path chosen by 
Delilah and then Delilah chooses a finite initial seg- 
ment of each path chosen by Samson. Delilah may 
make copies of the paths chosen by Samson in order to 
choose more than one initial segment from each path. 
The second half of the move is the same as for the EU 
move. 

It should be clear from the above definition and the proof 
of Theorem 3.2 that the following theorem holds: 
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Theorem 4.1 Samson can close the CTL formula-size 
game started at Ao, Bo in a tree of size s iff there is a for- 
mula ip G CTL of size at most s such that every structure in 
Ao satisfies if and no structure in BQ does. 

5   Setting Up the Playing Field 

In this section we describe the graphs on which we will 
play the CTL game to prove our main lower bound, Theo- 
rem 6.1. For each n > 1, we will build two sets of graphs 
A0,Bo such that Ao \= Occurn and Bo \= -Occur«. For 
each of the n! possible paths that might satisfy Occur«, AQ 

will include one graph that contains this path. Furthermore, 
we give each graph in A0 and B0 copies of all permuta- 
tions of length n — \. This will help make Ao and B0 very 
difficult to distinguish. 

For any fixed n > 1 consider the following directed 
graph, Gn = (Vn,En). Let II[n] be the set of all permu- 
tations IT on any nonempty subset of [n] and let IIn be the 
set of permutations on the full set [n]. The vertices of Gn 

consist of the union of two sets, Vn =T„UF„, 

Tn = {t-K  | 7T G n[nj};     Fn = {/*  I n G n[n]} 

We represent the permutation TT G II[n] as a 1:1 map, 

TT : [|rng(7r)|] -> rng(7r) C [n] . 

For any such permutation n on at least two elements, define 
its tail, tail(7r) : [|rng(7r)| - 1] —> rng(7r) - {7r(l)} where 
tail(7r)(i) = 7r(z + l). For ease of notation, let TT

2
 = tail(7r), 

and in general, 7rfc+1 = tailfc(7r), i.e., the permutation TT 

starting from item k + 1. 
For all 7T G Il[ra], the relation Px(i) holds of vertex tv. 

Also, if TT is a permutation on at least two elements then 
p,r(i) holds of vertex /„.. 

The node fv has edges to the following successors 
nodes: 

• ta G T„ where rng(a) C rng(7r) - {j}, for some j G 
rng(7r),j ^ TT(1) 

fa G Fn where rng(cr) C rng(7r) 
rng(?r) 

{j}, for some j G 

The node tv has edges to all the successors of fn together 
with the additional successor tv2. Furthermore, every ver- 
tex in Vn has an edge back to itself. 

Consider the following sets of vertices and structures, 

Yn    -- -      it     G T     \ TT e nn} 
Nn    ~- =   {UeFn TT en„} 

Ao    -- -      {{Gnitx) *TT    ^    *nj 

B0    -- ~      {{Gntf-ir) | f* e Nn} 

The idea behind Gn is that for each TT G nn, tn and fv 

are very difficult to distinguish. However, observe that, 

Lemma 5.1 For any TT G Un, 

{Gn,tv) \= Occur«;     but    (Gn,/ff) |= -.Occur« 

6   Playing the CTL Game 

In this section we prove the following, 

Theorem 6.1 The formula Occurn (Equation J.]) cannot 
be expressed in a CTL formula of size less than n\. Thus, 
there is a CTL+ formula of size 0(n) whose smallest equiv- 
alent CTL formula has size n\. 

Corollary 6.2 The succinctness of CTL+ with respect to 
CTL is exactly Q(n)\? 

By Lemma 5.1 we have that A0 \= Occurn and So |= 
-iOccurn. To prove Theorem 6.1 it suffices to show the fol- 
lowing, 

Lemma 6.3 Samson cannot close the CTL-game on 
(AQ, Bo) in a game tree with fewer than n\ leaves. 

We will prove Lemma 6.3 through a series of additional 
lemmas. Since there is only one structure namely Gn on 
which we are playing and the only thing that matters is 
where x is assigned, we will abbreviate the structure A for 
which xA = a by the point a. Thus a tree node will be 
labeled A, B with A and B boths sets of vertices from Gn. 

We say that a pair (a, b) occurs at a node v of a game 
tree if v is labeled (A, B) and a G A, b G B. The following 
lemma is obvious but useful: 

Lemma 6.4 If a pair (a, a) occurs anywhere in a game 
tree, then that tree can never be closed. 

Let T be a closed game tree whose root is labeled 
(Yn,Nn) and on which Delilah and Samson have both 
played perfectly. We will argue that T has at least n\ leaves. 

Lemma 6.5 Let IT G IIn. Then there is a branch in T from 
root to leaf along which the following pairs occur (in this 
order), 

Proof: By definition of Yn,Nn, (tff, /w) occurs at the root. 
Suppose inductively that (tvk, /„.t) occurs at node Vk (and 
is preceded by (t„i, f^j) for all j < k); and vk is the low- 
est node at which (tnk,fvk) occurs. If k = n, then the 
lemma is proved. Suppose that k < n. In this case, Vk is an 

3See Emerson and Halpern [EH85] for the upper bound. 

201 



open node since t^k and /Kt both satisfy the same predicate 
symbol, p^k). 

From now on, let us assume that there are no "not" 
moves, but that instead Samson may play on the left or 
on the right. This may slightly decrease the size of T by 
removing "not" moves, but the number of leaves is un- 
changed. Note that an "or" move on the right is really an 
"and" move, and an E move on the right is really an A move. 

Observe that if Samson plays an "or" move at Vk, then 
the pair (t^k,fvk) would still occur at one of vk's children. 
Furthermore, Samson cannot close Vk- Thus, Samson must 
play one of the following moves: EX, EU, AU. 

Recall that every path from /„. is also a path from t„. 
Thus if Samson plays on the right, stepping off f* to some 
descendant d, then t^ has the identical descendant d which 
Delilah will play. It follows from Lemma 6.4 that, Samson 
must play on the left at i//.. 

If Samson plays EX then he must move from t^k to one 
of its successors. The only successor of t„.* that is not a suc- 
cessor of fnk- is t^k + i. Thus, Samson must move to r^+i 
and Delilah will move to all successors of /„.«.■, including 
/,n-i. Thus (/jMi, fnk + i) occurs in the child of vk as de- 
sired. 

Suppose that Samson plays AU. Samson starts by choos- 
ing a maximal path for each structure on the left. Delilah an- 
swers by choosing the infinite loop on the current vertex for 
each structure on the right. Recall that Gn has a self-loop 
at each vertex. Now, Samson chooses an initial segment of 
each infinite self-loop. Delilah responds by choosing the 
initial segments of length zero from Samson's paths. The 
right child of Vk is thus labeled exactly the same as ;•/,.. Thus 
it is not useful for Samson to play AU. 

Finally, suppose that Samson plays EU. He chooses a 
path from t^k to some descendant (/. Note that if d / t~>. -1 
then d is also a descendant of /^ . Thus Delilah will answer 
with the path consisting of a single step from /ri to d. If 
Samson challenges f^k then we have made no progress. If 
Samson challenges d, then the right child of Vk contains 
the pair (d, d) and thus Delilah wins. Thus, Samson must 
play the path from tnk to f^1. Delilah will answer among 
others with the path from /„.i- to fnk~\ and (f^-i./ln-i) 
occurs at a child of Vk as desired. D 

The path of permutation TT which is guaranteed by 
Lemma 6.5 to occur along at least one branch of T may 
in fact occur along several branches. For each permutation 
IT we would like to choose a particular branch as the repre- 
sentative branch of TT. If (t^k. /,.<,) occurs at v along this 
branch, and (t1,k,f1.k) still occurs at one of u\ children, 
then we follow this child, i.e., we take a branch that avoids 
making progress if possible. If both steps make progress, or 
neither do, we follow the left child. 

Let n, (T be distinct elements of Il„. In the next lemma 
we prove that the branches of TT and a must diverge at some 

point in T. By this we mean that the branches start together 
at the root, but eventually separate and end at distinct leaves. 
It will then follow that there are at least as many leaves of 
T as elements of Yn and Lemma 6.3 and Theorem 6.1 thus 
follow. 

Lemma 6.6 Let TT, a be distinct elements ofU.n. Then the 
branches ofir and a diverge. 

Proof: Let us assume for the sake of a contradiction that the 
branches of TT and a coincide. Let k be the first place that TT 

and a differ, i.e., n(i) = o{i) for i < k and n(k) ^ a{k). 
We know that (**,/*) and {ta,f„) both occur at the root. 

The branches for TT and a may be moving down in lock 
step, i.e., (t„i, f^i) occurs at the same node as {tai, fas) or 
one may be ahead of the other, e.g., (^7r, + i,/7r, + i) occurs 
at the same node as (ta,, /„,}. Let us assume that they arc 
in lock step, or TT is ahead of a when (rCTi + i, /CTMI) first 
occurs. Let Vk be the lowest node on the branch at which 
(tak, fak) occurs. Since (tak, fak) does not occur as a child 
of Vk, Sampson must play either EX or EU at the node Vk- 
There are two cases. 

Case 1: (f^ . f^k) also occurs at Vk- Thus Samson must 
step from t~k to („in and from tak to fai- + i at this step. 
Since Tr(k) ^ <r(/,-), f_t *i is a descendant of fak (and/CTi- + i 
is a descendant of/^O- If Samson challenges cither of these 
descendants, then we have the same point on both sides of 
a node in T and Delilah wins. If Samson challenges nei- 
ther, then (tl7k.fak) occurs at a proper dcsccndcnt of Vk, 
contradicting our assumption. 

Case 2: (1^,./^,) occurs at Vk for j > k. Samson must 
step from tak to tak ■ i and cither leave tnJ fixed, or step 
from t,-! to (.,+ i. Let d be the not-ncccssarily-propcr de- 
scendant of r_, that Samson steps to. Delilah answers with 
the path from f„k to d. Since we have assumed that progress 
on a is made at this node, Samson cannot challenge fak. 
Thus he must challenge d and the pair (d,d) occurs at the 
left child of Vk- This contradicts our assumption that T is 
closed. 

Thus we have proved that the branches of TT and o cannot 
remain together after the second one has moved past level 
k. D 

7    Lower Bound on Booleans in Reachability 
Logic 

In this section we give an interesting application of 
formula-size games to characterize the number of boolean 
variables needed in a reachability logic. In [IV97] it is 
shown that CTL* is linearly embcdablc in the transitive clo- 
sure logic F02(TC). Furthermore in [AIOO] a sublanguage 
of FO~(TC) called reachability logic (TZC) is described. 
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CTL* remains linearly embedable in TZC. The complex- 
ity of checking whether a Kripke structure, /C, satisfies an 
TZC formula, p, is 0(|/C||^|2n'') where nb is the number of 
boolean variables occurring in TZC. Both TIC and FO2 (TC) 
may contain boolean-valued variables in addition to their 
two domain variables. Since the time to model check is 
linear in the size of the formula and the size of the struc- 
ture, but exponential in the number of booleans, information 
about how many booleans are needed is important. 

The boolean variables are not needed to embed CTL; 
however in the linear embeddings of CTL* in TIC and 
FO (TC) at most a linear number of boolean variables may 
be used. It was left open in [IV97] whether any such 
booleans are actually needed. It was shown in [AIOO] that 
at least one boolean is needed to embed CTL* at all in 
F02(TC) or TIC. Whether more than one such boolean 
variable is needed remains open. 

In this section we use a size game for a weakened ver- 
sion of TZC which we call TZCW. The main result of this 
section is that for the formulas Occurn to be translated to 
polynomial-size formulas in TZCW, Q(n) boolean variables 
are needed. The main weakness of TZC" is that we do not 
allow new unary relations to be defined. We also require 
weak adjacency formulas to imply R{x, y) as opposed to 
R(x, y) V R(y, X)VI = J, but this is just for convenience. 
It can be shown that LTL C TZCW but CTL g TZCW. Due 
to lack of space we do not give a full explanation of TZC, 
directing the reader instead to [AIOO], (We do provide the 
definition of TZC and a few examples in Appendix B.) 

Our original motivation in trying to prove lower bounds 
on the formula Occurn was to characterize how many bool- 
ean variables are needed in the translations of CTL* to 
FO (TC) and TZC. In this section we are only able to prove 
a good lower bound for translations to the weaker language 
TZCW. We believe that even this partial result is of interest, 
and we suspect this approach will lead to a similar lower 
bound for the full TZC. 

Definition 7.1 A weak adjacency formula S(x. b. y, b') is 
the conjunction_of R(x, y) with a boolean combination of 
the booleans b, b' and the unary relations px(x), Pi(y). De- 
fine TZCW to be the smallest fragment of F02(TC) that sat- 
isfies the following: 

1. If p is a unary relation symbol then p G TZCW. 

2. lfip,ip€ TZCW, then -vp e TZC" and ^Aipe TZCW. 

3. If p e TZCW and 5(x, b. y, b') is a weak adjacency for- 
mula then the following formulas are in TZCW: 

(a) REACH(d")v? 

(b) CYCLER) 

Semantics of TZCW : 

P    = P(x) 

REACH((J)v>    = 3y(TC8){x,Ö,y,T)/\tp[y/x]) 

CYCLER)    = (1C6)(x,Ö,x,T) 

□ 
As an example, we translate Occurn to TZCW as fol- 

lows: Occurn  = REACH (<5n)true where<5n(:r,6, y, b') = 

The idea is that boolean variable bi keeps track of 
whether predicate pt has ever been satisfied in the current 
path. We can reach a point where all the booleans are one 
iff Occurn holds. 

The TZCW formula-size game is very similar to the CTL 
formula-size game. In the Reach move, Samson asserts that 
REACH(<5)</J holds for all the vertices v0 € A. For each 
such VQ he produces a path: 

(v0,¥), &!,¥),...,&,¥) 

where 6° = 0, br = T, and R(v^vl+i) holds for all i < r. 
Delilah answers with a similar path, 

{wo,0),{wi,c1), (Ws,l), 

for as many copies as she wishes of each u>0 € B. For 
each of Delilah's paths, Samson either challenges the fi- 
nal point, ws, and puts it in £?2> or he challenges some 
pair ((wi,c

i),(wl+i,ci+1)) and puts it in B\. Then Deli- 
lah lets A2 contain all the vr's and Ai contains all pairs, 
{(i'i, b1), (vl+i,bi+1)}. If originally A and B differed on 
REACH(5)p then after the move, A\ and £?i differ on S 
and A2 and £?2 differ on (p. Note that S is quantifier free and 
only concerns the booleans together with the unary predi- 
cates true at the two points of each pair. In the game we 
consider below Delilah will only play pairs that correspond 
to pairs played by Samson, so Samson will never challenge 
a pair, but rather the endpoint of each of Delilah's paths. 

The Cycle move is similar to the Reach move. Since 
the graphs we will play on below are acyclic, it will not be 
useful for Samson to play the Cycle move. Let the TZC™ 
game be the TZCW game in which the tuples of booleans are 
of size at most k. 

We next define the graph Hn on which we will play the 
TZCW game. These are simpler than the Gn from Section 5 
because we only need an exponential lower bound, not an 
n! lower bound. Thus we only need consider all subsets of 
the n propositional variables, not all possible paths through 
them. 

Let Xn be the set of all proper subsets of the n pred- 
icates. For any element e of Xn, let 5(e) be a path that 
visits every predicate of e exactly once, and then visits a 
blank vertex. Let F(e) be a path that visits every predicate 
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of e exactly once. The order of the predicates in F(e) and 
5(e) does not matter. 

Hn contains 2n - 1 "true" vertices, te, one for each e e 
Xn. Node t.e starts with the path S(e), and then from the 
last (blank) vertex — call it be — there is an edge to each 
first vertex of F(f), for any / € Xn such that eU// [n] 
and also to F(e) where e — [n] - e. 

Hn also contains 2n — 1 "false" vertices, fe, one for each 
e £ Xn. Node /e starts with the path 5(e), and then from 
the last (blank) vertex — call it b'e — there is an edge to each 
first vertex of F(f), for any / € Xn such that eU// [n]. 

Let Tn = {te | e e X„}; Fn = {/£ | e € Xn\. 
Clearly Tn \= Occurn and Fn \= ^Occurn. 

Lemma 7.2 Samson cannot close the HC™ game on 
(Tn,Fn) in a game tree with fewer than 2" /2k nodes. 

Proof: Note that the paths from tc and fe arc identical 
through the blank vertices bc.b'e at the bottom of their start- 
ing paths, 5(e), and the only difference after that is that bt 

has an edge to F(e). Thus, to close the game tree, Samson 
must play a scries of Reach moves from fc to be, and then 
into F(c.) for each c g Xn. 

The key observation is that while we are standing on b(, 
all that we know is what node of the game tree we are in, 
plus the current values of our k booleans. Indeed, we prove 
that Samson cannot play a REACH move that includes a 
path in which (&,,, e) is an intermediate node, and also in- 
cludes a path in which (b0,c) is an intermediate node, for 
distinct subsets e ^ g and the same /r-tuplc of booleans c. It 
follows that Samson can move through at most 2k different 
6,,'s at the same time. Our lower bound will then follow. 

Suppose for the sake of a contradiction that for distinct 
subsets e,cj £ Xn, Samson plays a Reach move that in- 
cludes a step from from bc and from b(J at the same node of 
the game tree and that the booleans associated with bc and 
bg are identical. 

Since e/jwe may assume that e U g ^ [n], otherwise 
interchange e and g. Delilah answers with a Reach path 
from fe to b'e that lirst copies the booleans on Samson's path 
from te to bc. Delilah continues this path to F(g) copying 
Samson's path from bg to F(g). Since each step in Delilah's 
spliced path is identical to a step in one of Samson's paths, 
Samson cannot challenge any of the steps. Thus, Samson 
must challenge the bottom of Delilah's path. However this 
is identical to the bottom of Samson's path from tg. 

Thus our assumption was false, so at most 2*'' ft-'s can 
move from their blank vertices, be, at the same node of the 
game tree. Thus there must bc at least (2" — l)/2fc inter- 
mediate nodes of the game tree. Since there are at least 
n leaves, the total number of nodes is at least 2"/2A' as 
claimed. □ 

Corollary 7.3 Q(n) booleans are required to express the 
CTL+ and LTL formula Occurrl as a polynomial-size for- 
mula ofTLCw. 

8    Conclusions and Future Directions 

In this paper we have introduced Ehrenfcueht-Fra'i'sse 
games on the size of formulas rather than their operator 
depth. We have used these games to prove a new, opti- 
mal bound which exactly characterizes the succinctness of 
CTL+ with respect to CTL. We have also used these games 
to prove an Q(n) lower bound on the number of booleans 
needed to translate LTL to 1ZCW. 

The formula-size games introduced here offer promise in 
settling many conjectures in descriptive complexity. In par- 
ticular, questions about true complexity involve languages 
where an ordering relation on the universe is present. In the 
presence of ordering, we can express complex properties 
using low operator depth, with huge disjunctions over all 
possible input structures of a given size. Thus bounds on op- 
erator depth arc not helpful here. Bounds on size would bc 
extremely helpful. The formulas involved must bc large, as- 
suming wcll-belicvcd complexity-theoretic conjectures. Al- 
though the size game is combinatorially complex, wc expect 
that the methods introduced in this paper will help make 
progress towards lower bounds for languages with ordering. 

We expect that the lower bounds from Section 7 can 
bc extended to the full reachability logic, TIC. Another 
open problem was suggested by one of the referees: Wilkc 
showed his exponential lower bound for the alternation-free 
//-calculus which properly contains CTL [Wil99|. Can our 
Theorem 6.1 bc similarly extended to the alternation-free 
//-calculus? 

Acknowledgments: Thanks to Natasha Alcchina and 
Thomas Wilkc for many helpful comments and suggestions. 
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A   Background on CTL 

Definition A.l (Syntax of CTL*) State formulas S and path 
formulas V of CTL* are the smallest sets of formulas satis- 
fying the following: 
State Formulas, S: 
the boolean constants true and false are elements of S; 
for i e N, pi e S; 
if<p€ V, thenE(/3 e S. 

Intuitively, Ep means that there exists a maximal path 
starting at the current state and satisfying tp. 
Path Formulas, V: 
if a £ S then a e V; 
if p,ip £ V, then -up, <p A ip, X(p, and iplJip are in V. 

Intuitively, Xp means that ip holds at the next time and 
ip\3%p means that at some time now or in the future, ip holds, 
and from now until then, p> holds. D 

Next, we formally define the semantics of the above op- 
erators. In this paper all structures will be finite and acyclic 
except perhaps for self-loops. Thus all paths will be finite, 
except perhaps for an infinite loop on the final point. A max- 
imal path p = pi, p2,... pe is a mapping from [£} to states 
in /C such that for all i < £, K, \= R(pi,pi+i) and such 
that pe either has no successors or it has a self-loop. We use 
the notation pl for the tail of p, with states p\,p2, ■ ■ ■, Pi-i 
removed. 

Definition A.2 (Semantics of CTL*) The following are in- 
ductive definitions of the meaning of CTL* formulas: 
State Formulas: 

(K.,s) \=pi    iff   K. \=Pi(s) 

(£, s) |= Eyj    iff   (3 path p s.t. p0 = s)(/C p) \= <p 

Path Formulas: 

{K,p)\=a iff (K.,po)\=a;   forae<S 

(!C,p)\=<fiAl> iff (IC, p) ^y and (IC, p) ^ i' 

{K,P)\=^V iff {>C,p)\£ip 

{K.,p)\=X<p iff {lC,pl)\=v 

(/C,p)^UV> iff (3i)(/C,pJ)^A(Vj<z)(/CV)h=v? 

A popular and quite expressive language for Model 
Checking is computation tree logic CTL* [CGP99]. Here 
we briefly describe CTL* together with some of its sublan- 
guages: CTL C CTL+ c CTL* and LTL C CTL*. CTL 
and CTL+ express the same set of formulas, but CTL+ is 
more succinct. CTL and LTL are incomparable. 

CTL* has two kinds of formulas: state formulas, which 
are true or false at each state, and path formulas, which are 
true or false with respect to a maximal path through some 
Kripke structure, K. The following is an inductive defini- 
tion of the state and path formulas of CTL*. 

It is convenient to introduce a few other operators com- 
monly used in CTL* all of which may be defined from the 
above: 

Ap    =    -IE-I</3 

F(/3    =    trueU<£> 
Gp    =    -IF-I</? 

for All paths 
some time in the Future 
Globally, i.e., for all times in the future 

The language CTL is the restriction of CTL* so that path 
quantifiers (E, A) and temporal operators (X, U) are always 
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paired. That is, the allowable operators are EU,AU,EX4. 
The importance of CTL is that unlike CTL* it admits linear- 
time model checking [CE81]. The language CTL+ allows 
boolean combinations of the temporal operators to be paired 
with the path quantifiers. CTL+ is no more expressive than 
CTL but it is more succinct [Wil99]. Our main result shows 
exactly how succinct. The language LTL (linear temporal 
logic) consists of CTL* formulas that have exactly one path 
quantifier E or A and that begin with this path quantifier. 

B    Background on TZC 

Here we give the definition of Reachability Logic {TZC). 
See [AIOO] for proofs of the theorems and much more mo- 
tivation and discussion. 

Definition B.l An adjacency formula (with booleans) is 
a disjunction of conjunctions where each conjunct contains 
at least one of x = y, Ra(x, y) or Ra{y, x) for some edge 
label a; in addition, the conjuncts may contain expressions 
of the form (-.)(6i = b2), (by = 0), (61 = 1) and p(x), 
where by and b2 are boolean variables. G 

Definition B.2 TZC is the smallest fragment of F02(TC) 
that satisfies the following: 

1. If p is a unary relation symbol then p E TZC; also 
T,I e nc. 

2. If <p, (/' € UC, then ^ip E TIC and -p A i/' E TIC. 

3. If if £ TZC and b is a boolean variable, then 3bp E 
nc. 

4. If ip, tj> E TZC and q is a new unary predicate symbol, 
then (let q = p in ijt) is in TZC. 

5. If <p E TZC and 6(x, b, y, b1) is an adjacency formula (a 
binary relation between two n-tuples (x, 61,..., 6„_i) 
and (y, b[,..., b'n_y)), then the following formulas are 
inTZC: 

(a) REACH((5)(p 

(b) CYCLER) 

Semantics of TZC : The semantics of TZC is defined as 
follows. In each case below assume that 6(x,b,y,b') is an 
adjacency formula. 

(let q = p in >\j>)    =    4'[p/q] 

REACH(%    =    3y(TCS)(x,Ö,y.T)Ap[y/x]) 

CYCLE(S)    =    (TC
S
ö")(.T.Ö,.T,T) 

D 

Here are some examples of formulas in TZC: 

• REACH(d> where S(x,by,b2,y,b[,b'2) is 
{Ra(x,y) A byb2 = 00 A b[b'2 = 01) V (Rb{x,y) A 
6162 =01 Ab'yb'2 = ll)(thisis(a;6)pofPDL). 

• ify =REACH(i?)p(EFpofCTL*); 

• <p2 = REACH((J)CYCLE(<J), where S is R{x,y) A 
q(x)(EGqofCTL*); 

• (let q = tfy in if2) (EGEFp of CTL*). 

TZC is a logical language and it is a fragment of 
F02(TC). However, because of the 'let' construct, when 
we talk about size in the representation of TZC, we are re- 
ally talking about circuits. Thus the size of an 7££-circuit 
may be logarithmic in the size of the smallest equivalent 
F02(TC) formula. This allows the linear size embedding of 
CTL* which presumably does not hold for F02(TC) (with- 
out a circuit representation or an extra domain variable cf. 
[IV97]). 

Boolean variables however add extra complexity, which 
is not surprising since model checking CTL* is PSPACE 
complete [SC85]. 

Theorem B.3 There is an algorithm that given a graph G 
and a formula <f(x) E TZC marks the vertices in G that 
satisfy p. This algorithm runs in time 0(\G\\<p\2n'') where 
ii\, is tf>e number of boolean variables occurring in ip. 

Theorem B.4 There is a linear-time computable function 
g that maps any CTL* formula ip to an equivalent formula 
g{p) £ TZC. While g{<p) has only two domain variables, it 
may have a linear number of boolean variables. 

4We do not need AX because it is equivalent to -IEX-* 
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Abstract 

Light Linear Logic (LLLJ and its variant, Intu- 
itionistic Light Affine Logic (1LALJ, are logics of 
the polytime computation. It has been proved that all 
polynomial time functions are representable by proofs 
of these logics (via the proofs-as-programs correspon- 
dence), and conversely that there is a specific re- 
duction (cut-elimination) strategy which normalizes 
a given proof in polynomial time (the latter may well 
be called the polytime "weak" normalization theorem). 

In this paper, we introduce an untyped term cal- 
culus, called Light Affine Lambda Calculus fALA,), 
generalizing the essential ideas of light logics into an 
untyped framework. It is a simple modification of A- 
calculus, and has ILAL as a type assignment system. 
Then, in this generalized setting, we prove the poly- 
time "strong" normalization theorem: any reduction 
strategy normalizes a given ALA term (of fixed depth) 
in a polynomial number of reduction steps, and indeed 
in polynomial time. 

1     Introduction 

In [9, 10], Girard introduced Light Linear Logic 
(LLL) as an intrinsically polytime logical system: ev- 
ery polynomial time function is representable by an 
LLL proof, and every LLL proof1 is normalizable, 
via cut-elimination, in polynomial time. Later on, 
in [2], Asperti introduced a simplified system, called 
Light Affine Logic, by adding the full (unrestricted) 
weakening rule to LLL. Its intuitionistic fragment 
(ILAL) has been particularly well investigated (see 
[3]), since it allows a compact term notation for proofs 
and has clear relevance to functional programming is- 
sues. 

These light logics provide a purely logical insight 
into the polytime computation. In contrast with 
other polytime logical (type) systems, e.g., [15, 13, 
11, 8, 14], light logics do not contain any built-in 

data type, and the characterization result is about 
the complexity of cut-elimination, which has been a 
canonical measure for estimating the complexity of a 
logical system in proof theory. Also notably, light log- 
ics are endowed with various semantics ([12, 4, 18]), 
which could lead to a semantic understanding of poly- 
time. 

An important problem remains to be settled, how- 
ever. By inspecting the normalization theorem given 
by [10], one observes that what is actually shown 
in that paper is the polytime weak normalizability, 
namely, that there is a specific reduction strategy 
which normalizes a given LLL proof in polytime. The 
same is true of ILAL ([2, 20, 3]). It has been left 
unsettled whether the polytime strong normalizabil- 
ity holds for these light logics, namely, whether any 
reduction strategy normalizes a given proof in poly- 
time. The primary purpose of this paper is to give a 
solution to this problem. 

Having such a property will be theoretically im- 
portant in that it gives further credence to light log- 
ics as intrinsically polytime systems. It will be prac- 
tically important, too. Through the Curry-Howard 
correspondence, each proof of light logics may be con- 
sidered as a feasible program, which is executable in 
polytime, and whose bounding polynomial is specified 
by its type (formula). In this context, the property 
will assure that the polytime executability of such a 
program is not affected by the choice of an evaluation 
strategy. It will also provide a good starting point for 
pursuit of efficiency in normalization. 

For our purpose, it is reasonable to begin with 
ILAL, because it is much simpler than LLL. How- 
ever, the term calculi proposed for ILAL so far either 
have a complicated notion of reduction defined by a 
large number of rewriting rules ([2, 20]), or involve 
notational ambiguity ([19, 3]).2 Therefore, we first 
need to devise a simple and accurate term calculus for 

'Research Fellow of the Japan Society for the Promotion of 
Science. 

1 Of lazy conclusions, i.e., those free from 3 and &. 

2 See the remark in 9.1 of [3]. Instead, the latter paper 
presents a proofnet syntax for ILAL, based on which several 
computational properties are investigated. 
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ILAL which is suitable for our investigation. Such a 
simple calculus will also provide a better understand- 
ing of the computational aspects of light logics. This 
is our secondary purpose. 

In this paper, we introduce a new term calculus, 
called Light Affine Lambda Calculus (ALA), which em- 
bodies the essential mechanisms of light logics in an 
untyped setting. It amounts to a simple modification 
of A-calculus with modal and let operators, having 
very simple operational behavior defined by just 5 
reduction rules with the standard notion of substitu- 
tion. It satisfies the subject reduction and Church- 
Rosser properties. ALA is an untyped calculus, but re- 
markably, all its well-formed terms are polytime nor- 
malizable. ILAL is then re-introduced as a Curry- 
style type assignment system for ALA. There are a 
number of reasons for adopting this presentation. 

1. First of all, to design a truly polytime (rather 
than just polystep) polymorphic calculus, one 
must give up a Church-style term syntax with 
embedded types: a universal quantifier may 
bind an arbitrary number of type variable occur- 
rences, and thus iterated type instantiations (A 
reductions) may easily cause exponential growth 
in the size of types.3 

2. An untyped polytime calculus deserves investi- 
gation in its own right. (This program was ad- 
vocated in the appendix of [10], but has not been 
developed so far.) 

3. The notion of well-formedness, rather than ty- 
pability, neatly captures the syntactic conditions 
for being polytime normalizable. 

4. Last but not least, typability in ILAL is pre- 
sumably intractable,4 while well-formedness is 
checked very easily (in quadratic time). 

Then, in this generalized setting, we prove 

• The Polystep Strong Normalization Theorem: 
every reduction sequence in ALA has a length 
bounded by a polynomial in the size of its ini- 
tial term (of fixed depth). 

3 Proofnets (of LLL) contain formulas. Hence proofnets 
themselves are not polytime normalizahle. A solution sug- 
gested by [10] is to work with untyped proofnets (with for- 
mulas erased) in the actual computation. When the conclu- 
sion is lazy, the formulas can be automatically recovered after 
normalization, and such formulas are not exponentially large. 
Our approach is somewhat similar, in that we work with an 
untyped formalism in the actual computation and supply it 
with a type assignment, system. 

4 The problem is undecidable for System F in the Curry stvle 
([22]). 

• The Polytime Strong Normalization Theorem: 
every reduction strategy (given as a function or- 
acle) induces a normalization procedure which 
terminates in time polynomial in the size of a 
given term (of fixed depth). 

It follows that every term typable in ILAL, which can 
be viewed as a structural representation of an ILAL 
proof (with formulas erased), is polytime strongly 
normalizable. It is very likely that essentially the 
same holds for LLL. 

The rest of this paper is organized as follows. We 
introduce ALA in Section 2 and ILAL (as a type as- 
signment system) in Section 3. In Section 4 we give 
the main part of the polystep strong normalization 
theorem. The theorem itself appears in Section 5, 
as well as its direct corollaries, namely the Church- 
Rosser property and the polytime strong normaliza- 
tion theorem. In Section 6 we discuss the polytime 
strong normalizability of LLL. We also discuss the 
interpretability of polytime type systems based on 
safe recursion in ALA. 

2    Light Affine Lambda Calculus 

In this section we set up ALA. We begin by giving 
the set VT of pseudo-terms (in 2.1). Our goal is to 
define the set T of well-formed terms (in 2.2) and the 
notion of reduction (in 2.3). 

2.1     Pseudo-terms 

Let x,y,z ... range over term variables. 

Definition 2.1 The set VT of pseudo-terms is de- 
fined by the following grammar: 

t.u    ::=    x | \x.t | tu | It | let u be \x in t 

| §i | let u be §.r in t. 

In addition to the standard constructs such as A- 
abstraction and application, we have two boxes, \t 
and §£, and two let operators. Boxes induce a strati- 
fied structure on expressions. Interaction of boxes is 
enabled by let operators. 

In the sequel, symbol \ stands for either ! or 
§. Pseudo-terms (Xx.t) and (let u be t x in t) bind 
each occurrence of x in t. As usual, pseudo-terms 
are considered up to o-equivalence, and the variable 
convention (see [5]) is adopted for the treatment of 
free/bound variables (namely, the bound variables 
are chosen to be different from the free variables, so 
that variable clash is never caused by substitution). 
Notation t{u/x} is used to denote the pseudo-term 
obtained by substituting u for the free occurrences of 
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Ax.let !x be !y in yy 
E 

let !x be !y in yy 0 

A 
/ \ 

!x              yy 

1       A 
00 
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A 1      / \ 
x           y           y 000 

/ \ 
010    on 

Figure 1: Term Tree and Addresses 

x in t. FV(t) denotes the set of free variables in t. 
FO(x, t) denotes the number of free occurrences of x 
in t and FO(t) denotes the number of free occurrences 
of all variables in t. 

As usual, each pseudo-term t is represented as a 
term tree, and each subterm occurrence u in t is 
pointed by its address, i.e., a word w £ {0,1}* which 
describes the path from the root to the node corre- 
sponding to u in the term tree. For example, the term 
tree for (Ax.let !x be \y in yy) and the addresses in it 
are illustrated in Figure 1. 

The size \t\ of a pseudo-term t is the number of 
nodes in its term tree. Since our terms are untyped, 
\t\ is not significantly different from the length of its 
string representation. Given a pseudo-term t and an 
address w, the depth of w in t is the number of !- 
boxes and §-boxes enclosing the subexpression at w. 
The depth of t is the maximum depth of all addresses 
in it. 

A context $ is a pseudo-term-like expression with 
one hole •. If $ is a context and t is a pseudo-term, 
then $[£] denotes the pseudo-term obtained by sub- 
stituting t for • in 3>. 

2.2     Terms 

Before giving the formal definition of well-formed 
terms, we shall informally discuss the critical issues. 

Firstly, we assume that variables are (conceptu- 
ally) classified into three groups: undischarged, !- 
discharged, and §-discharged variables. These are to 
be bound by A-abstraction, let-! operator and let-§ 
operator, respectively. 

The fundamental concept of light logics is to en- 
force a stratified structure on proofs/terms and to pre- 
serve it in the course of reduction. Concretely, light 
logics deny the following principles of Linear Logic 
which destroy the stratified structure: 

• Dereliction: \A —o A, 

• Digging: \A—o\\A. 

We achieve the stratification by the following mech- 
anisms: 

• In default, a variable is undischarged, and a vari- 
able is made (either !- or §-,) discharged when a 
box is built around it. This condition corresponds 
to the prohibition of the dereliction principle. It 
is expressed in our term syntax as: 

dereliction(x) := let x be \y in y, 

whose effect is to open a !-box: 

dereliction(lt) —► t. 

It is ruled out, since variable y is undischarged, 
but is illegally bound by a let-! operator. On the 
other hand, the following term corresponding to 
the canonical map \A —o %A is legitimated: 

let x be \y in §j/. 

• A box may be built around a term only when 
it contains no discharged variable. This corre- 
sponds to the prohibition of the digging princi- 
ple. It may be expressed as: 

digging(x) := let x be \y in V.y, 

whose effect is to embed a !-box into a deeper 
layer: 

digging{\t)  >!!£. 

It is also ruled out, since it attempts to build a 
!-box \\y around another box \y, but the latter 
contains a discharged variable y. 

Another fundamental property of light logics is, as 
in Linear Logic, that only duplicable are contents of 
.'-boxes. It is maintained by the following condition: 

• Among three binders, only let-/ may bind multi- 
ple occurrences of (/-discharged) variables. 

Duplication takes place when a !-box meets a let-! 
operator; for example, 

let \t be \x in (§xx)!x (§«)!*■ 

To avoid potential exponential growth caused by du- 
plication, we need a further constraint on !-boxes: 

• A \-box may be built around a term only when it 
contains at most one free variable. 

211 



Hence term constructions like 

... let \zz be \y in (let \yy be \x in \xx), 

which cause exponential growth are prohibited. 

To compensate for this, we need another kind of 
boxes, namely §-boxes. They are not duplicable. In- 
stead they may contain an arbitrary number of free 
variables. 

All these design concepts (and more) are realized 
in the following formal definition, which is written in 
a style inspired by [1]. 

Definition 2.2 Let X, Y, Z range over the finite sets 

of variables. Then the 4-ary relation t £ T\,Y,Z 

(saying that t is a (well-formed) term with undis- 
charged variables X, [-discharged variables Y and §- 
discharged variables Z) is defined as follows (in writ- 

ing t £ TX,Y,Z, 
we implicitly assume that A", 1' and 

Z are mutually disjoint): 

1. x G TX,Y,Z  <=>  x £ X. 

2. Xx.t £ TX,Y,Z   <=^ 
t & TXU{T}<Y,Z, x#X, FO{x,t) < 1. 

3. tu£Tx,Y,z  «=>•  t£Tx,Y,z, u£Tx.Y,z- 

4. \t G TX,Y,Z  *=>  t £ TYA0, FO(t) < 1. 

5-  §* G 7X,Y,Z   "<=>   t £ TYuz.ß,9- 

6. let t be \x in u £ TX,Y,Z   <=> 

t £ TX,Y,Z, u £ TX,YU{T},Z, 
X
 $ Y- 

7. let t be §x in u G TX,Y,Z   ^=^ t £ TX.Y,Z, 

u £ TXiYtZu{x}, x t'z, FO(x,u) < 1. 

Finally, t is a (well-formed) term (t G T) if t £ 

T~X,Y,Z for some X, Y and Z. 

Example 2.3 

1. UJLA = Ax.(let x be \y in %yy) G T, 

2. For each natural number n, we have Church nu- 
meral n £ T defined by 

n = Ax.(let x be \z in §Ay. (z ■ ■ ■ (z y) ■ ■ •)). 

n times 

3. For each word w 
w £ T defined by- 

Jo ■ in £  {0,1}*, we have 

w    =    Xx0xi.(\et xn be \z0 in (let xi be \z\ in 

§A2/.(2l,1---(2l„y) •••)))• 

Observe that these n's and w's are all of depth 

1. 

We have the following basic properties: 

Lemma 2.4 Let t G TX.Y,Z- 

1. IfX C A', r C Y' and Z C Z', 

then t £ Tx'.Y1 ,Z' • 

5. //.x- 0 FV'(0, t/tfin * G TX\{,},y\{,},z\{,.}. 

3.  Let x  £  FV(t).    Then x  occurs at depth 0 iff 
x £ X. x occurs at depth 1 iff x £ Y U Z. 
x never occurs at depth > 1. 

Lemma 2.5  (Substitution) 

1- t £ Txu{x},Y,z, * & X and u G TX,Y,Z 

=> t{u/x} £TX,Y.Z. 

2- t £ TX,YU{T}.Z, * <t Y u £ Ty-,0,0 and FO{u) < 1 
=> t{u/x) £ Tx,Y,z- 

3- t £ TX.Y.ZU{T}, x & Z and u G TYuz,n,,0 
=> t{u/x} eTA-r.z. 

Remark 2.6 As discussed by Asperti [2], a naive use 
of box notation causes ambiguity, and in conjunction 
with naive substitutions, causes a disastrous effect on 

complexity. 

Asperti fixed the by using a more sophisticated box 

notation of the form §(f)['"i/-'rii • • ■ i "/>/-r»]> w"il(- om' 
solution is more implicit and is based on the concep- 
tual distinction between discharged and undischarged 
variables. 

Asperti's box §(tei.T2)[;i//.f'i, ?y/.r2] (with y of !- 
type) corresponds to (let y be !.r in §(txx)) in our 
syntax. Observe that variable y, which is external 
to the §-box, is contracted in the former, while vari- 
able x, which is internal to the §-box, is contracted in 
the latter. This is parallel to the difference between 
the contraction inference ruh1 of Asperti's ILAL and 
that of Girard's original formation of LLL; the for- 
mer contracts [-formulas, while the latter contracts 
discharged formulas. 

Remark 2.7 There is a quadratic time algorithm 
checking whether a given pseudo-term is well-formed: 
Let t be a pseudo-term, and A" and Y be the sets of its 
free variables at depth 0 and at depth 1, respectively. 
Then t is well-formed iff t £ TXY,® (by Lemma 2.4 
and the fact that t G FXy,z implies t £ TXYUZ,QI)- 

The latter can be recursively checked with at most \t\ 
recursive calls, and each call involves a variable occur- 
rence check at most once (corresponding to Clauses 
2, 4 and 7 of Definition 2.2). Thus the algorithm runs 
in time (){n2), given a term of size n. 
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Name Redex Contraciitm 

(ß) (Xx.t)u t{u/x} 

(§) let §u be §i in t t{u/x} 
(!) let \u be \x in t t{u/x} 

(com) (let u be f x in t)v let -u be f x in (*v) 
let (let w be f x in £) be f y in v let u be f £ in (let t be j 2/ in v) 

Figure 2: Reduction Rules 

2.3    Reduction 

Definition 2.8 The reduction rules of ALA are those 
listed in Figure 2.    We say that t reduces to u at 

address w by rule (r), and write as t -!—> u, if t = 
$[ui], u = $[v2], the hole • is located at w in $, and 
Vi is an (r)-redex whose contractum is v2- 

Note that the address w uniquely determines the 
rule (r) to be used. When either the address w or 
the rule (r), or both, are irrelevant, we use notations 

t —> u, t —> u and t —> u. The depth of a reduction 
is the depth of its redex. 

A finite sequence a of addresses wo,.. .,wn-\ is 
said to be a reduction sequence from t0 to tn, written 
as to —?tn, if there are pseudo-terms to,..., tn such 
that 

r0 —► tl —► • • •  —> tn- 

If every reduction in cr is the application of (r), then 
c is called an (r)-reduction sequence and written as 

io ——>*tn (or simply as to 
denoted by \a\. 

ftn). The length of a is 

Remark 2.9 The stratified structure of a term is 
preserved by reduction. In particular, the depth of 
a term never increases, since in reduction rules (ß), 
(§) and (!) a subterm u is substituted for a variable 
x occurring at the same depth. 

Reduction rules (/?) and (§) strictly decrease the 
size of a term, since they never involve duplication. 
(com) just reorganaizes the structure of a term with- 
out changing its size. The only reduction rule which 
causes duplication is (!). When applied at depth i, 
it possibly increases the sizes at depths > i, while it 
strictly decreases the size at depth i. 

The terms are closed under reduction: 

Proposition 2.10 If t £ T~x,Y,z and t 

u £ TX,Y,Z- 

u, the 

Proof.   For    example,     if   t    is    a    (!) redex 

let \u be \x in v, then v £ Tx,Yu{x},z^ u € 7y,0,0 and 

FO(u) < 1. Hence v{u/x} G Tx,Y,z by Lemma 2.5. 
For the general case, show that a term u 6 TX,Y,Z 

can be replaced with another v G Txy,z m a context 
without losing well-formedness, whenever FO(x, v) < 
FO(x,u) for each x € X U Z. All reduction rules 
u —> v meet the latter condition. ■ 

Example 2.11 The term Q.LA is a light affine ana- 
logue of Q = (Xx.xx)(Xx.xx), which is not normaliz- 
able in A-calculus. However, 

&LA = ^LA^LA 
(ß) 

(ß) 

(let \uLA be \y in §yy) 

&LALOLA 

§(let uiLA be \y in §yy). 

The last term cannot be reduced anymore. 

3    Type Assignment System 

We introduce ILAL as a type assignment system 
for ALA. Our formulation is, however, different from 
Asperti's in that we use Girard's discharged formulas. 

Let a,ß range over the type variables. 

Definition 3.1 The types (formulas) of ILAL are 
given by the following grammar: 

A,B :: A -o B I Va.A I \A I SA 

An [-discharged type is an expression of the form [A\\. 
An ^-discharged type is an expression of the form [A]§. 

In the sequel, ]n A abbreviates  t''' t A 

n times 

A declaration is an expression of the form x: A or 
x: [A]f. A finite set of declarations is denoted by T, 
A, etc. 

Definition 3.2 The type inference rules of ILAL are 
those given in Figure 3. We say that a pseudo-term 
t is typable in ILAL if T h t: A is derivable for some 
F and A by those inference rules. 
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x:A h x:A 
Id 

T\-t:C 
A,Tht:C 

Weak 

r,hu:yli    x:A2,r2 hi:C 

TLi/iAj-Oilz.ral-^j/u/a:}^ 

::A{B/a},T\-t:C 

x:\/a.A,r\-t:C 
VI 

x:[A]uT\-t:C 

y :!i4,ri- let y be \x in t:C 

x:[A]hT\-t:C 

y: § A, T h let y be §x in t: C 

TII-M:A    i:i,r2ht:C 

r!,r2l-t{u/i}:C 

x:[A},,y:[A]uTr-t:C 

z:[A)uT\-t{z/x,z/y}:C 

x:AuT\-t:A2 

V h Ax.t:Ai -o A2 

Cw« 

Cntr 

ri-t:Va.i4 
Vr,   agFV(r) 

x\ :Bi,...,xm:Bm h t:>1 

ii^Bi]!,...,!«,:^]!!-!*:!^ 
!r,   0 < ra < 1 

X! :i?i,... ,xm:Bm,yi :C1;... ,yn:Cn V- t:A 

xi: [Bi],, ...,xm: [Bm]i,yi: [Ci]§, ...,yn: [Cn]§ (-§<:§>! 
§r,   7n, n > 0 

Figure 3: Type Assignment System ILAL 

Remark 3.3 Observe that if x:A,T h t:C, namely 
x is of undischarged type, then it occurs at most once 
in t. Therefore, no duplication is caused by the sub- 
stitutions used in (Cut) and (—o/) rules, which always 
operate on undischarged types. That is a reason why 
we can do away with explicit substitutions of [2]. 

Discharged types act as a barrier to substitution 
into boxes, in the same way as Wadler[21]'s patterns 

act in his term syntax for Intuitionistic Linear Logic; 
we could alternatively use the latter to obtain the 
same effect. 

As expected, we have: 

Theorem 3.4 Every typable pseudo-term is a term. 
More exactly, if 

S:A,y:[B],,z:[C]%\-t:D, 

then t G 7"{iT},{£},{=-}- 

Proof. By induction on the length of the typing 
derivation. In the cases of (Cut) and (—o/), apply 
Lemma. 2.5(1). ■ 

Theorem 3.5 (Subject Reduction) If T h t : A 
and t —> u, then T \- u:A. 

Example 3.6 Let int = Va.\(a—oa)-o§(a—cm) and 
bint = Vcv.!(rt —o a)—o\(a —o a) —o §(o —o a).  Then 

we have h n : int for each n £ N and h w: bint for 
each w & {0,1}*. 

An example of untypable terms is VILA- TO see the 
reason, define the erasure of a term of ALA to be a 
A-term obtained by applying the following operations 
as much as possible: 

fu    i—►    u, 

let u be  f x in t    i->    t{u/x}. 

If a term is typable in ILAL, then its erasure is ty- 
pable in System F (in the Curry style, see [6]). Now, 
QLA cannot be typed in ILAL, since the erasure of 
QLA is 0> a term which cannot be typed in System 
F. 

Remark 3.7 Types are not necessary for the poly- 
time normalizability. Nevertheless, they are useful in 
several ways. 

• Types are used to avoid deadlocks, such as (]t)u 

and let (Xx.t) be  f x in v.. 

• Some types, typically data types such as int and 
bint, constrain the shape of normal forms: ev- 
ery normal term of type int is of the form n (or 
A.r.(let x be \z in §z), which may be seen as an 7;- 
variant of 1). In general, for k > 0, every normal 

214 



term of type §fcint is of the form §kn (or an i\- 
variant of §fcl). Similarly, all normal inhabitants 
of bint are of the form w. 

• More generally, all lazy types, including int and 
bint, constrain the depths of normal forms: Say 
that a type is lazy if it does not contain a neg- 
ative occurrence of V. If a term t is normal and 
of lazy type A, then it means that h t : A can 
be derived without using the (V7) inference rule, 
which has an effect of hiding some information 
on derivations. Thus all uses of the ! and § in- 
ference rules in the derivation are recorded in A. 
Hence the depth of t is immediately bounded by 
the depth d of A. 

• The above suggests that in order to normalize 
a term of lazy type A we do not have to fire 
redices at depth > d, which will be removed by 
reductions at lower depths before arriving at the 
normal form. In this way, lazy types give us 
useful information on normalization. 

The expressive power of ILAL, hence of ALA, is 
witnessed by: 

Theorem 3.8 (Girard[10], Roversi[19]) 
Every function f : {0,1}* —> {0,1}* which is com- 
putable in time 0(nd) is represented by a term of type 
bint -^§rf+6bint. 

(See [3] for a good exposition. See also [17] for an- 
other proof). 

The converse will be taken up in Section 5 after 
the polytime normalizability of ALA has been proved. 

Remark 3.9 We are rather free in the choice of type 
systems; for example we can enrich ILAL with naive 
set theory or fixpoints of types (as in [10]), still pre- 
serving the polytime normalizability and the logical 
consistency (i.e., having no inhabitant of 0 = Va.a). 
To put it the other way round, any logical system 
which is cut-free consistent (i.e., with no normal in- 
habitant of 0) is consistent, in so far as it can be used 
as a type system for ALA and satisfies the properties 
of Theorems 3.4 and 3.5. 

4    Proving the Polystep Strong Nor- 
malization Theorem 

The key step toward the polystep strong normal- 
ization theorem is the standardization, i.e., to trans- 
form a reduction sequence into an outer-layer-first 
one without decreasing the length (in 4.2). To achieve 

this, we first need to extend ALA with explicit weak- 
ening and to give a translation of reduction sequences 
in ALA into this extended calculus (in 4.1). Finally we 
show that the length of a standard reduction sequence 
thus obtained is polynomially bounded (in 4.3). 

4.1     An  extended  calculus  with  explicit 
weakening 

The set VTW of extended pseudo-terms is de- 
fined analogously to VT, but each extended pseudo- 
term may contain a subexpression of the form 
let £ be _ in u (explicit weakening). To define the 
well-formedness, we give a new 4-ary relation t G 

T~XYZ by modifying Definition 2.2 as follows. 

(1) Replace clause 2, 6, and 7 with: 

2' Xx.t G TX,Y,Z   
<^=>  * £ TXu{x},Y,z> 

xgX, FO{x,t) = 1. 

6' let t be \x in u G T~x,Y,z   ^=>  t G TX,Y,Z> 

U£TX,YU{X},Z, x#Y,FO(x,u)>l. 

7' let t be §x in u € Tx.y,z   ^^  t G Tx,y,z, 
u G TX,Y,ZU{X}, x g Z, FO{x,u) = 1. 

(Namely, we require that each binder must bind at 
least one variable occurrence.) 

(2) Add the following clause: 

8' let t be _ in u G TX,Y,Z 

u G TX,Y,Z- 

teT} X,Y,Z, 

We  say   that   t   is   a   (well-formed)   extended   term 

(t G Tw) if t G TX,Y,Z 
for some x> y> Z- 

The reduction rules in Figure 2 are extended to 
VTW with the following modifications: 

• Generalize {com) so that it is also applicable to 
the new let operator for explicit weakening. 

• Add a new reduction rule (_): 
let u be _ in t —> t. 

Reduction rules other than (_) are called proper. 
A reduction sequence is proper if every reduction in 
it is proper. 

Lemmas 2.4 and 2.5 hold for Tw, too. In addition, 
we have: 

(r) 
Proposition 4.1 If t £ 1~XYZ> * —* u an<^ (r) *s 

proper, then u G TXY Z- 
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Now we consider a translation of ALA into the ex- 
tended calculus. 

Lemma 4.2 For each term t, there is an extended 

term tw such that tw -X*t and \tw\ < 4|t|. 

Proof. By induction on t. If t = Xx.u and 
FO(x,u) = 0, let tw = A.T.(let x be _ in M

U
'). If 

t = (let v be \ x in u) and FO(x,u) - 0, let tw = 
let v be  f x in (let §x be _ in uw). ■ 

Theorem 4.3 (Translation into the extended 
calculus) Let to be a term and let 

t0 —> ti 

be a reduction sequence in ALA. Then there are ex- 
tended terms t'0, t\ and a proper reduction sequence 

T such that \a\ < \r\, \t'0\ < 4|t0| and 

(-) (-) 

t' t\. 

Proof (Idea).   By Lemma 4.2, there is an extended 
term tl0" such that 

tu 
tn 't,. 

By permuting it suitably, we can obtain 

*,/    (-), 
*i, 

such that r is proper and \T\ > \a\.   For example, a 
reduction sequence of the form 

(let v be . in (\x.t))u -H (Xx.t)u ^i t{u/x) 

can be transformed into the following longer one: 

(let v be _ in (Xx.t))u —>  let v be _ in ((Xx.t)v) 

—> let v be _ in t{u/x} —^-> t{v/x}. 

In more detail, we use the following two lemmas 
for each step of permutation, which are shown by 
exhaustive case analyses. ■ 

Lemma 4.4 Let t0 € VTW.   If t0 -H f,  (^' U 
then 

B,(com)„   ,     (_) 

for some t\  and \a\ > 1. 

Lemma 4.5 Let t0  £ PT'".    // £0  ^ *i   -^ t2, 
where (r) i.s neither (corn) nor (_), i/ten 

(""■),.;     (r)      „    (-), 
% 

/or some t\  and t". 

4.2     Standardization theorem 

A reduction sequence rr is standard \i it can be par- 
titioned into subsequences a0;crl;... ;o"2,;, such that, 
for i < d, 02i + i consists of (!)-rcductions at depth i 
and a2i consists of other reductions at depth i. 

Theorem 4.6 (Standardization) Let t0 be an ex- 

tended term and a be a proper reduction sequence 

t     a ft 

Then there is a standard proper reduction, sequence r 

to  > t\ 

such that \a\ < \T\. 

Proof (Idea). The proof is again based on permu- 
taion of reduction sequences. For example, let u be a 
(ß) redex and </' be its contractum, and consider the 
following nonstandard reduction sequence: 

let !» be \.r in v ——> let !</ be !.r in v ——> v{u'/x}. 

Here the first reduction is at depth 1 and the second 
at depth 0. It can be standardized as follows: 

(!) "Ali), 
let !?/ be \x in v —> v{u/.r) ——>*<;{i/'/x}. 

Since (let !i; be !.r in v) is an extended term, we have 
FO(x,v) > 1. Hence v{u/x] contains at least one 
occurrence of the (ß) redex v. so j<x| > 1. Therefore 
the length of a reduction sequence never decreases by 
this permutation. ■ 

4.3     Bounding lengths of standard reduc- 
tion sequences 

For each extended term t its partial size st(t) at 
depth i is defined in Figure 4 (where i ranges over the 
numbers > 1). 

We define s(t) to be £^0 .s,-(r). The only differ- 
ence between \t\ and s(t) is that the size of a box 
]t in the latter sense also counts the number of free 
variable occurrences in t. Note that |i| < s(t) < 2\t\. 

The theorem below is essentially due to [10, 2]. In 
our case, however, the length of a reduction sequence 
may slightly exceed the size of its final term, since we 
have the commuting reduction rule (cam). 
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s0{x) =    1 Si(z) =    0 
so(Xx.t) =    a0(t) + l Si(Aa;.t) =      Si{t) 

s0(tu) —    s0(t) + s0(u) + 1 Si(tu) =      Si(t) + Si(u) 

ao(t*) =    FO(t) + l Si(tO =      Si-lW 
50(let t be f x in u) =      S0(t) + S0(u) + 1 s;(let t be  f i in u) =      S,(t) + Sj(u) 

s0(let t be _ in w) =    s0(t) + s0(u) + 1 5i(let t be _ in w) =      Si(t) + Si{u) 

Figure 4: Partial Sizes 

Theorem 4.7 (Polynomial bounds for stan- 
dard reduction sequences) Let t0 be an extended 
term of depth d and a be a standard proper reduc- 

tion sequence to —>*u. Then s(u) < s(i0)
2 and 

\a\<s{t0)
2     . 

Proof. The first claim is proved by iteratively ap- 
plying Lemma 4.8 below, starting from depth 0 and 
ending with depth d. See also Remark 2.9. The sec- 
ond claim follows by Lemma 4.9. ■ 

Lemma 4.8 Let a be a reduction sequence t —>*t' 
which consists of (!) reductions at depth i. Then we 
have Sj(t') < Sj(t) ■ Si(t) for each j > i. 

Proof (Idea). For simplicity, let us assume i = 0 
and j = 1. To estimate the potential size growth 
caused by (!) reductions, we make the following def- 
inition. For each extended term t, its unfolding is an 
extended pseudo-term $t £ VTW which is obtained 
by hereditarily replacing each subterm of the form 
(let \t be !a: in u) at depth 0 with 

let \t\t---\t be \x in )jw, 

n times 

where n = FO(x,$u). (Intuitively, we perform all 
possible "contraction reductions" in advance.) 

Then we can show 

(1) FO(tv)<s0(v), 

(2) s1(v)<s1($v)<s0{v)-s1(v), 

by induction on v. (The property that each !-box 
contains at most one free variable is crucial here.) 
Moreover, we can also show that 

(3) if v -^W at depth 0, then Si(t)v') < s^v). 

The lemma follows from (2) and (3): 

si(t') < Sl(U') < s^t) < s0(t) ■ Sl(t). 

Lemma 4.9 Let a be a reduction sequence t —►*£' 
which consists of reductions at depth i. Then we have 

\<r\<Si(t)2. 

Proof (Idea). For simplicity, assume that i = 0. Let 
v be an extended term. For each occurrence of a let 
subterm u = (let U\ be * in U2) at depth 0 in v, where 
* is either _ or fa;, define 

com(u,v) := s0(v) - s0(u2). 

Define com(v) to be the sum of all com(u,v)'s with 
u ranging over all such occurrences of let-expressions. 
Then we claim: 

(1) SQ(V) + com(v) < SQ(V)
2. 

(2) If v   —>   v1  by a reduction at  depth  0,  then 
SQ(V') + com(v') < s0(v) + com(v). 

The lemma follows from these two. ■ 

5    Main Results 

Now we are in a position to state the main results 
of this paper. From Theorems 4.3, 4.6 and 4.7, it 
follows: 

Theorem 5.1  (Polystep strong normalization) 
For every term to of size s and depth d, the following 
hold: 

(i)  every reduction sequence from to   has  a length 

bounded by 0(s2      ); 

(ii) every term to which t0 reduces has a size bounded 

byO(s2"). 

Corollary 5.2  (Church-Rosser property) If to is 
a term and t\ <—* i0 —^^2, then t\ —>*ts <—* £2 
for some term £3. 

Proof. By showing local confluence, which is 
straightforward. ■ 
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To make precise what we mean by polytime strong 
normalization, we give the following definitions. A 
reduction strategy for T is a partial function / : T —► 
{0,1}* such that /(£) gives an address of a redex of 
t whenever t is reducible and is undefined otherwise. 
We can think of a Turing machine normalize/ with 
function oracle /, described as follows: 

input t 
loop 

query to oracle / to obtain f(t) 
if/(0 is defined 

then let t := t' such that t —► t' 
else output t and halt 

end loop. 

Now we have: 

Corollary 5.3 (Polytime strong normaliza- 
tion) For any reduction strategy f for T, normalize/ 

terminates in time 0(s2 ), given a term to of size 
s and depth d as input. It outputs the normal form 

of t0. 

Proof. Observe that each step of reduction t —> t' is 
carried out in quadratic time: the worst case, namely 
the case of (!)-reduction, consists in substituting a 
subterm of size < |t| for at most \t\ variable occur- 
rences.   Therefore the total runtime is roughly esti- 

mated by 0(f = 0(s2 

Finally let us mention the converse of Theorem 3.8. 
(This is essentially due to [10, 2], but we include it 
here for self-containedness.) 

Theorem 5.4 Every term t of type bint —o §rfbint 
represents a function f : {0,1}* —> {0,1}* which is 

computable in time 0(n2      ). 

Proof. Recall that all «J's are of depth 1, so that fw 
is of constant depth for every w £ {0, 1}*. Without 
loss of generality, we may assume that the depth is 
equal to the depth of §rfbint, i.e., d+1 (just ignore the 
deeper layers, which do not contribute to the normal 
form; see Remark 3.7). By Corollary 5.3, the nor- 

mal form of tw is computed in time 0(|fi77|2 ), thus 

in time 0(|w|2 ) (by taking a reasonable reduction 
strategy of low complexity). The normal form should 
be of the form §rfw', and such w' is unique by the 
Church-Rosser property. ■ 

Corollary 5.5 (Characterization of the Poly- 
time Functions) A function f : {0,1}* —> {0,1}* 

is polytime computable if and only if it is represented 
by a ALA term of type bint —o §rfbint for some d. 

Observe, however, that there is an exponential gap 
between the representability (a function computable 
in time 0(n ) is representable by a term of depth 
d + 7) and the normalizability (a term of depth d is 

normalizable in time 0{n2     )). 

6     Concluding Discussion 

We have introduced an untyped term calculus ALA, 
which has ILAL as a type assignment system, and 
showed the polytime strong normalization theorem 
for ALA. It follows that every term typable in ILAL, 
which can be considered as structurally representing 
an ILAL proof, is polytime strongly normalizable. 

Strong polytime normalization for LLL. Before 
turning to LLL, let us consider decompositions of the 
(!) reduction rule: 

(!i) let \u be !x in <J>[x] —> let \u be \x in $[«]; 

(!2) let \u be !x in t—► t,    if x £ FV(t). 

Clearly the (!) reduction rule is simulated by these 
two. With this modification, we still have the poly- 
time strong normalization theorem. Note that these 
rules are natural counterparts of Girard[10]'s reduc- 
tion rules for the exponential boxes: (!j) corresponds 
to the contraction reduction and (!2) to the weaken- 
ing reduction. 

Given this, it is quite plausible that we can apply 
our technique to LLL to show the strong polytime 
normalization theorem for the proofnets of LLL(with 
formulas erased). There is, however, a limitation that 
additives should be treated in a lazy way, because 
eager reductions of additive boxes cost exponential 
time. 

On weakly polytime programs and interpre- 
tation of safe recursion. Let us consider poly- 
time programs in functional programming in general. 
Since execution of such programs depends on reduc- 
tion strategics, it makes sense to classify them into 
the strongly polytime programs (which are polytime 
executable by any strategy) and the weakly polytime 
ones (which arc polytime executable only by some 
strategy). ALA accepts only strongly polytime pro- 
grams. By contrast, most polytime type systems 
based on safe recursion ([7, 16]) accept weakly poly- 
time programs, too (see, e.g., [15, 11, 8]). Typically 
they allow the following conditional 

cond(a:) := if p(x) then f\{x) else /2(.T) 
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to be iterated when the argument x is safe. It is 
easy to see that iteration of cond is weakly polytime 
but not strongly, since unfolding the iteration without 
computing the conditional yields a term of exponen- 
tial size. (By the way, observe that iteration of this 
kind of conditionals is the key to encode Turing ma- 
chine computations: think of p as discriminating the 
current configuration and /j and fy as transforming 
it accordingly. Being strongly polytime systems, light 
systems do not allow conditionals like above to be it- 
erated, at least in full generality. That is why the 
encoding of Turing machines is so delicate in light 
systems (see [19, 3])). 

An interesting consequence is that there cannot be 
a "reasonable" embedding of those type systems of 
safe recursion into ALA which preserves the reduction 
relation. To be more precise, there is no inductive 
embedding such that 

• it maps numerals of the former systems to ALA 

terms of polynomial size and of constant depth, 
and 

• whenever t one-step reduces to u in the former 
systems, the translation of t reduces to that of u 
in several (but not zero) steps in ALA. 

Therefore there is a limitation on the interpretabil- 
ity of safe recursion; although there still remains 
a possibility to have an non-reduction-preserving 
embedding which prunes exponential reduction se- 
quences in the original system so that a weakly poly- 
time program is transfigured into a strongly polytime 
one. (This remark is complementary to the result 
of [17], which shows that safe recursion with rwn- 
contractible safe variables is interpretable in ILAL.) 

We leave the following to future work: 

• Pursuit of efficiency in normalization. The poly- 
nomial time bound given in this paper describes 
the complexity of the worst reduction strategy 
among all possible ones. It seems likely that we 
can significantly improve it by specifying a wiser 
strategy (perhaps a deeper-layer-first one). In 
particular we would like to know if it is possible 
to fill the exponential gap mentioned in the last 
of the previous section. 

• Incorporation of inductive data types as primi- 
tives, while keeping the polytime upperbound for 
normalization; it will make ALA more accessible 
to programmers. 

• Extension of the light logical approach to other 
complexity classes, such as polynomial hierarchy 
and polynomial space. 
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Abstract 

We develop a uniform type theory that integrates inten- 
sionality, extensionality, and proof irrelevance as judgmen- 
tal concepts. Any object may be treated intensionally (sub- 
ject only to a-conversion), extensionally (subject also to 
ßrj-conversion), or as irrelevant (equal to any other object 
at the same type), depending on where it occurs. Modal re- 
strictions developed in prior work for simple types are gen- 
eralized and employed to guarantee consistency between 
these views of objects. Potential applications are in logical 
frameworks, functional programming, and the foundations 
of first-order modal logics. 

Our type theory contrasts with previous approaches that 
a priori distinguish propositions (whose proofs are all 
identified—only their existence is important) from specifi- 
cations (whose implementations are subject to some defini- 
tional equalities). 

1    Introduction 

In the development of type theory, there has been con- 
siderable debate about the degree of extensionality or inten- 
sionality that should be inherent in its formulation. In an ex- 
tensional theory such as the one underlying Nuprl [4] type- 
checking is undecidable. In a non-extensional theory1 such 
as later versions of Martin-Löf's type theory [17], we distin- 
guish.a definitional equality (also called judgmental equal- 
ity) which is not extensional and decidable, from a proposi- 
tional equality which is extensional and undecidable. There 
are a number of tradeoffs, both from the philosophical and 
pragmatic points of view. In an undecidable, extensional 
theory, programs are significantly more compact than in a 

This work was partially supported by NSF Grant CCR-9988281. 
'Such type theories are often called intentional, but this is somewhat 

misleading since the meaning of objects is still subject to some conversion 
rules. 

decidable, non-extensional theory. On the other hand, we 
need external arguments to validate the correctness of pro- 
grams, defeating at least in part the motivations underly- 
ing the separation of judgments from propositions [11, 12]. 
Furthermore, the development of extensional concepts in a 
non-extensional type theory is far from straightforward, as 
can be seen from Hofmann's systematic study [10]. 

Related is the issue of proofirrelevance, which plays an 
important role in the development of mathematical concepts 
in type theory via subset types or quotient types. For exam- 
ple, the type {x:A | B(x)} should contain the elements M 
of type A that satisfy property B. If we want type-checking 
to be decidable, we require evidence that B(M) is satisfied, 
but we should not distinguish between different proofs of 
B(M)—they are irrelevant. 

In this paper we present a type theory that internalizes 
the concepts of intensionality, extensionality, and proof ir- 
relevance via distinctions familiar from modal logic. We 
strictly follow Martin-Löf's separation of judgments from 
propositions and both type-checking and definitional equal- 
ity are decidable. 

At the heart of our modal type theory are three judgments 

M :: A     M is an expression of type A, 
M : A      M is an term of type A, and 
M -f- A     M is a proof of type A, 

constructed from the same set of objects M and types A. 
Expressions are treated intensionally: they are subject only 
to a-conversion. Terms are treated extensionally: they 
are additionally subject to ß and reconversion. Proofs are 
treated as if irrelevant: any two proofs of the same type 
are identified. All these are part of the definitional equality 
of the type theory, which therefore combines intensional- 
ity, extensionality, and irrelevance into a single system in a 
coherent way. 

It is a critical property of our type theory that the dis- 
tinction between expressions, terms, and proofs is not made 
at the time the constituent constants are declared, but at the 

0-7695-1281-X/01 $10.00 © 2001 IEEE 
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time those constants arc used. Any type A can be seen as 
the type of an expression, the type of a term (= a specifi- 
cation), or the type of a proof (= a proposition). Similarly, 
an object M may be seen as an expression, as a term, or as 
a proof, depending only on whether some conditions on its 
free variables are satisfied. We believe that this flexibility is 
an inherent advantage of our approach compared to a priori 
separating propositions (inhabited by proofs that are always 
irrelevant) from specifications (inhabited by terms that are 
never irrelevant). This is the approach mostly taken in the 
literature (see, for example, [ 18] or, allowing even for some 
classical reasoning, [2]). 

Our system is also interesting in its relation to intuition- 
istic modal logic when we ignore the objects. Our default 
judgment M : A can be interpreted as "A is true". The 
judgment M :: A can be read as "A is valid". The judg- 
ment M 4- A can be read as "A is provable", hiding the 
proof object. These can be seen as modes of truth, and the 
work presented here is an extension of prior work on proof 
term calculi for the modal logic S4 [20] where validity cor- 
responds to necessary truth. 

In a type theory as a foundation for functional program- 
ming, irrelevant objects (that is, proofs) arc erased be- 
fore execution without affecting the observable outcome. 
From this point of view, our type system internally captures 
a notion of dead-code elimination (see, for example, [1] 
for a survey and position paper on related type-based ap- 
proaches). However, we need to extend our type theory with 
first-class modal operators in order to use it in the context 
of a complete functional language. Two non-dependent the- 
ories in this style are given in [20], explaining an intuition- 
istic modal logic with necessity (DA) and possibility (OA). 
A proper treatment of the fully dependent version of these 
theories would seem to require an equational theory with 
commuting conversions and is therefore left to future work. 
Fortunately, it is possible to develop a consistent and useful 
type theory where these judgments arc considered primarily 
as hypotheses. Instead of internalizing them as modal op- 
erators, we internalize the corresponding hypothetical judg- 
ment as function types. Such a restriction is not new—it 
goes back to similar treatments of linear logic [9] and linear 
type theory [3] with similar motivations. 

In the remainder of the paper we present our type theory, 
investigate its properties, and sketch some further develop- 
ments and potential applications. 

2    A Modal Type Theory 

Our modal type theory is a conservative extension of 
LF [7]. Our approach follows the outline of [8], adapted 
here to our more general type theory. The interested reader 
may find additional details in [ 19]. 

2.1 Syntax 

The syntax is stratified into objects, families, and kinds 
as for LF. 

Kinds    K    ::=    type | Ux:A. K 
| Ux::A. K \ Ux+A. K 

Families     A    ::=    a \ AM \Ux:Ai. A2 

\A»M\ Uxr.Ai.A2 
|AoM| Ux^Ai. A2 

Objects    M    ::=    c\x\ \x:A. M\MXM2 

| \x::A. M\M1»M2 

I \x~A. M\MloM2 

Signatures     E    ::=    • | £, a:K | E, c:A 

Contexts     T    ::=    ■ \T,x:A\T,x:\A\T,x+A 

Here, Mi • M2 is an application whose argument (M2) 
is treated as an expression (intensionally), while Mi o M2 

is an application whose argument is treated as a proof (ir- 
relevant for equality). We use K for kinds, A, B, C for 
type families, M, N, P for objects, T for contexts and E 
for signatures. We also use the symbol "kind" to clas- 
sify the valid kinds. We consider terms that differ only in 
the names of their bound variables as identical. We write 
[N/x]M, [N/x\A and \N/x]K for capture-avoiding substi- 
tution. Signatures and contexts may declare each constant 
and variable at most once. For example, when we write 
r, x:A we assume that x is not already declared in T. If 
necessary, wc tacitly rename x before adding it to the con- 
text T. Since a signature is generally fixed, and constants 
may be used anywhere, we have permitted only two forms 
of constant declaration, namely a:K and c:A. Note that this 
is not a restriction for our applications, since it is the use not 
the definition of a constant which determines its status with 
respect to definitional equality. 

2.2 Judgments 

The modal type theory is defined by the following prin- 
cipal judgments. 

h E sig 
h: T ctx 

Th;M:A 
TH.A-.K 
T Hz K : kind 

T h;: M = N : A 
Th:A = B:K 
Th,K = L: kind 

Th.M = N:A 

E is a valid signature 
T is a valid context 

M has type A 
A has type K 
K is a valid kind 

A/ extcnsionally equals N 
A extcnsionally equals B 
K extensionally equals L 

M intensionally equals N 

As explained later, intensional equality for types and 
kinds is not needed directly, and proof irrelevance is a de- 
rived concept. 
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For the judgment l-E T ctx we presuppose that E is a 
valid signature. For the remaining judgments of the form 
F hE J we presuppose that E is a valid signature and that T 
is valid in £. For the sake of brevity we omit the signature 
E from all judgments but the first, since it does not change 
throughout a derivation. 

If J is a typing or equality judgment, then we write 
[M/x]J for the obvious substitution of M for x in J. For 
example, if J is N : B, then [M/x]J stands for the judg- 
ment [M/x]N : [M/x]B. 

We also have several derived judgments that are central 
the nature of our type theory. Each of them is defined by 
only a single rule. In order to explain these additional judg- 
ments we need two critical operations on contexts. The 
first, Te, hides all term variables x:A by converting them to 
proof variables x+A. The second, T®, resurrects all proof 
variables x~A by converting them to term variables x:A. 
Other declarations are unaffected in both cases. 

(•)e (■r 
(r,a -.A)® = r®, X- ~A (T,a :A)® = r® x:A 
(r> :A)e = re; x: :A (T,x ■A)® = r® x::A 
;r, x- M)® = r®, x- ̂ A (T,x- -A)® = r® x:A 

Intensional Expressions.    The new judgments 

r 1-E M :: A M is an expression of type A 
r l-j; A :: K A is an expression type of kind K 

F \~x M = N :: A M and N are equal expressions 
F hj; A = B :: K A and B are equal expression types 

are defined by the following rules 

re h, M : A TefaA:K 

fh, M ::A 

Te fa M= N : A 

T hF M = N :: A 

TfaAv.K 

T~faA = B:K 

TfaA = B::K 

The idea is that an expression cannot refer to a term vari- 
able x:B, which would violate intensionality. Thus we mark 
these variables as irrelevant, x+B, which is accomplished 
by the ()e operation. Note, however, that intensionality and 
irrelevance interact: proof variables may still occur in an in- 
tensional expression, but only inside otherproofs! The rules 
for equality indicate that only intensionally equal terms are 
considered as equal expressions. We do not directly refer 
to a-convertibility here because expressions may contain 
proofs that must be identified, even as subterms of expres- 
sions. Note that expression types are not intensional, but 
that there is a restriction regarding their validity: expression 
types can not depend on term variables directly. 

In general, M :: A is inherently stronger than M : A, 
that is, M :: A implies M : A but not vice versa. In partic- 
ular, x:A fa x :: A. 

Irrelevant Proofs.    The new judgments 

r hs M -=- A M is a proof of type A 
r hE A -f K A is a proof type of kind K 
r hs M = N -j- A M and N are equal proofs 
r l-E A — B -f- K A and B are equal proof types 

are defined by the following rules 

r® hE M : A Y®bsA:K 

Th-vM + A TV-^A + K 

r® hE M = M : A       T®h:N = N:A 

r hE M = N + A 

T®^A = B:K 

T\-SA = B + K 

The idea is that a proof may depend on expression vari- 
ables, term variables, and proof variables. This effect is 
achieved by relabelling hypotheses x-^-B to x:B in the ()® 
operation. Note that equality between proofs implements 
proof irrelevance in the classical sense. We could replace 
the premise T® hE M = M : A with T® h: M : A (and 
similarly for N), but for technical reasons it is simpler if 
the equality judgment does not refer to the typing judgment 
here. 

It is important that M 4- A is inherently weaker than M : 
A. In particular, x~A fa x : A. In other words, terms can 
not depend on proof variables, but other proofs can. Under a 
functional interpretation, it is this property which allows the 
consistent erasure of all proof objects without affecting the 
observable outcome (assuming proofs are not observable). 

Note that, unlike the systems in [5, 20], the rules have the 
property of variable monotonicity: when viewed bottom- 
up, every variable is preserved—only its status might 
change from the conclusion to the premise of a rule. This is 
inspired by a similar idea in [13] and is needed for a clean 
interaction between expressions and proofs. 

2.3    Typing Rules 

Our formulation of the typing rules is similar to the sec- 
ond version given in [7] and directly based on [8]. In prepa- 
ration for the various algorithms we presuppose and induc- 
tively preserve the validity of contexts involved in the judg- 
ments, instead of checking these properties at the leaves. 
This is a matter of expediency rather than necessity. Fur- 
thermore, in order to the shorten the presentation we use 
the following notation: 

"*" stands for either ":", "::", or "4" were all occur- 
rences in a rule must be consistent. 
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Objects. 

c:A in E 

The: A r,x:A,T'^-x:A 

T\- Ai * type       T, x*A: h M2 : A2 

r,x::i4,r'l-x:i4 

r h A/j : n.x*A2. Ax 

no rule for x-r- A 

r i- A/2 * A2 

r h Ax*yli. M2 : Hx*Ai. A2 T h A/j * A/2 : [A^/x]^ 

r h M : vi        Thyl = ß: type 

T I- M : B 

Families. 

a:AT in E r h ,4 : ILr*R Ä"        F h A/ * ß 

rhoiÄ- r h .4 * A/ : [M/x]K 

T\- Ay* type       T, x*Al h- 42 : type r h ,4 : tf        r h tf = L : kind 

T h Ex*Ai. A-2 : type Thyl : L 

Figure 1. Rules for Validity of Objects and Families 

"*" stands for cither juxtaposition (an application of 
a function of type Ylx.A. B), "•" (an application of 
a function of type Ux::A. B), or "o" (an application 
of a function of type Tlx — A. B). Occurrences of "*" 
must be coordinated with occurrences of "*" in a rule 
schema in the indicated manner. 

Signatures. The rules for validity of signatures are 
straightforward and omitted here. From now on we fix a 
valid signature E and omit it from the judgments. 

Contexts. Validity of contexts must guarantee that we 
cannot incorrectly refer to a proof variable in a term or 
expression, or a term variable in an expression. This is 
achieved by the following rules. 

I- • ctx 

h T ctx        r h A * type 

I- T,x*A ctx 

Note that the second rule schema actually stands for 
three rules, depending on whether x:A, x::A, or x~A ap- 
pear in the conclusion and premise. 

Objects. Here we proceed as in LF, except that we need to 
make sure that arguments fit the type and disposition (inten- 
sional, cxtensional, or irrelevant) of the function. The rules 
can be found in Figure l. The rule schema for application 
is the most complex and has three instances. One of them, 
for example, replaces * by :: and * by •. 

Families and Kinds. The rules for application and con- 
version are copies of the rules from the level of objects. 
Valid function types restrict occurrences of the dependent 
variable based on whether the corresponding argument is 
interpreted as an expression, a term, or a proof. This is nec- 
essary to guarantee that the type of an application, which is 
obtained by substitution, is valid. The rules at the level of 
kinds mirror the ones at the level of families and are elided 
here. 

Generally, in our theory the judgments on families only 
reflect the judgments on the objects embedded in them. This 
is typical of type theories such as the one underlying LF. 

2.4    Definitional Equality 

The rules for definitional arc written with the presuppo- 
sition that a valid signature E is fixed and that all contexts 
T arc valid. The intent is that equality implies validity of 
the objects, families, or kinds involved (sec Lemma 2). In 
contrast to the original formulation of LF in [7], equality 
of terms is based on a notion of parallel conversion plus 
extensionality, rather than ^//-conversion, but the two def- 
initions turn out to be equivalent. In addition we have to 
take care of intensionality for expressions and irrelevance 
of proofs. This is reflected in the rules for intensional appli- 
cation M • N and irrelevant application M o N. 

Some of the typing premises in the rules are redundant, 
but for technical reasons we cannot prove this until valid- 
ity has been established. Such premises are enclosed in 
{braces}. 
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Simultaneous Congruence. 

c:A in E 

Y\-c = c:A T,x:A,T'hx = x:A F,x::A,T' h x = x : A 

r h Mi = AT!: nx-*A2. Ai     r i- M2 = N2 * A2 

r h M1*M2=N1*N2: [M2/x]A! 

r h A; = Ai * type       T h A'/ = ^ * type       T, x*Ax \- M2 = N2 : A2 

r I- Ax*^. M2 = \x*A'{. N2 : Tix-kAx. A2 

Extensionality. 

n-Ai*type    {T\-M:Ux*A1.A2}    {T h N : ILr*^. A2}    F,x*Ai h M * x = N * x : A2 

Th M = N:Ux*A1.A2 

Parallel Reduction. 

Type Conversion. 

{rhAj* type}        T, x-kAi h M2 = N2:A2        T h Mi = JVi * ^ 

T h (Ax*^i. M2) * Mi = [Wi/z]JV2 
: [^i/1!^ 

rhM = A^:yl        Th A = B: type 

T 1- M = TV : B 

Figure 2. Extensional Equality Between Objects 

Objects. The extensional equality rules for objects are 
shown in Figure 2, where we have elided rules stating sym- 
metry and transitivity. Conversion is modelled by parallel 
reduction, a choice motivated by technical concerns. Re- 
flexivity is admissible, which is typical for equality based 
on parallel reduction. 

The crux of intensionality and irrelevance is in the cases 
for the corresponding applications, M • N and M o N. 
We therefore explicitly consider the second premise in the 
rule schema for application in its three specific instances. 

If we compare Mi M2 = Ni N2, then the second 
premise requires M2 = N2 : A2, just as in LF. 

If we compare M\ • M2 = Ni • N2 then the ar- 
guments are treated intensionally and equality will only 
succeed if M2 and N2 are well-typed and intensionally 
equal expressions. This is enforced with the judgment 
T h M2 = N2 ■'■ A2 defined before, which holds if and 
only if Te hM2 =iV2 : A2. 

If we compare Mi o M2 = Ni o N2 then the arguments 
are proofs and are always considered equal. We only need 
to check that they are well-typed, which is accomplished 
with the judgment r h M2 = N2 4- A2 defined before. 
This holds if and only if T® h M2 : A2 and T® h N2 : A2. 

Since the main equality judgment compares terms and 

not expressions or proofs, the extensionality principle holds 
for all three kinds of functions. Modulo the construction of 
the right kind of context and some redundant premises re- 
quired for technical reasons, these are straightforward. Sim- 
ilarly, the rule of parallel reduction is available for all three 
kinds of functions. 

Families and Kinds. The rules in Figure 2 are repeated 
with straightforward adaptations at the levels of families 
and kinds and omitted here. Details can be found in the 
technical report [19]. 

Intensional Equality. The intensional equality between 
objects, r h M = N : A, is defined as a simultaneous 
congruence just as the extensional equality, but we delete 
the rules for extensionality and parallel conversion. In the 
modified rules, arguments to functions that are to be treated 
as proofs, however, are considered irrelevant for equality as 
before. Hence irrelevance takes precedence over intension- 
ality, which seems most appropriate for the intended appli- 
cations as outlined in Section 7. The reader can find the full 
set of rules in [19]. 
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2.5    Elementary Properties 

We establish some elementary properties of the judg- 
ments pertaining to the interpretation of contexts. All of 
these have standard or straightforward proofs on the struc- 
ture of derivations. First we show weakening for all judg- 
ments of the type theory. Secondly, reflexivity holds for 
valid objects, families, and kinds. 

For all lemmas and theorems from here on we tacitly 
assume that the contexts in the given derivations are well- 
formed. Furthermore, in the statement of a mcta-thcoretic 
property, several occurrences of "•" must still be instanti- 
ated consistently as for inference rules. 

Lemma 1 (Substitution)   IfT, x*A, T'\- J and T h M * 
AthenT,[M/x]r'\- [M/x\J. 

Proof: By induction over the structure of the first given 
derivation. □ 

Note that this is shorthand for several separate substitu- 
tion properties. Now there is a series of technical lemmas 
(which we omit), culminating in validity and functionality. 

Lemma 2 (Validity) 

/. IfT h M * A then T h A • type. 

2. IfT \- M = N + A, then T h M * A, T V- N * A, 
and T \- A * type. 

Analogous properties hold at the levels of families and 
kinds. 

Lemma 3 (Functionality)    If T  \~   M   =   N  *  A and 
T,x*A h O = P :  B then T h  [M/x}0 =  [N/x]P : 
[ftl/x] B and similarly at the level of types and kinds. 

Another consequence of validity is a collection of stan- 
dard inversion properties. In the interest of space, we elide 
these properties here. We can further show, from validity, 
that the premises enclosed in {...} are indeed redundant, 
that is, follow from the other premises. 

3    An Algorithm for Deciding Equality 

The algorithm for deciding definitional equality can be 
summarized as follows: 

1. When comparing objects at function type, apply exten- 
sionality. 

2. When comparing objects at base type, reduce both 
sides to weak head-normal form and then compare 
heads directly. If they are equal, we compare each cor- 
responding pair of arguments according to their status. 

(a) When the corresponding arguments are extcn- 
sional (terms), recursively compare for exten- 
sional equality. 

(b) When the corresponding arguments are in- 
tensional (expressions), compare for syntactic 
equality modulo a-conversion, ignoring only 
embedded proof terms. 

(c) When the corresponding arguments are irrelevant 
(proofs), we always treat them as equal. 

Since this algorithm is type-directed in case (1) we need to 
carry types. Unfortunately, this makes it difficult to prove 
correctness of the algorithm in the presence of dependent 
types, because transitivity is not an obvious property. For- 
tunately, we do not need to know the precise type of the 
objects we are comparing. 

We therefore define a calculus of simple approximate 
types and an erasure function ()~ that eliminates dependen- 
cies for the purpose of this algorithm. Note that there arc 
three forms of non-dependent function type which we write 
as T\ A T2 and similarly for kinds. 

We write a to stands for simple base types and we have 
two special type constants, type" and kind", for the equal- 
ity judgments at the level of types and kinds. 

Simple Kinds   K ::= type- |T4K|T4K|T4K 

Simple Types   r ::= a | T\ -4 T2 | T\ —> T2 | TI A r2 

Simple Contexts A ::= ■ | A,X:T | A,X::T | A,X+T 

We use r, 9. ö for simple types and A for contexts declar- 
ing simple types for variables. We also use "kind-" in a 
similar role to "kind" in the LF type theory. 

We write A~ for the simple type that results from eras- 
ing dependencies in A, and similarly K~. We translate each 
constant type family a to a base type a~ and extend this to 
all type families. We extend it further to contexts by apply- 
ing it to each declaration. 

AA- 

We now present the algorithm in the form of four judg- 
ments. These can be interpreted as an algorithm in the man- 
ner of logic programming. 

M ^ M' (M weak head reduces to M') Algorithmi- 
cally, we assume M is given and compute M' (if M 
is head reducible) or fail. 

(«)- =    a' 
(A * M)~ =    A 

(nx*Ax. A2)~ =    A 

A h M <=> N : T (M is equal to N at simple type r) Al- 
gorithmically, we assume A, M, N, and r are given 
and we simply succeed or fail. We only apply this 
judgment if M and N have the same type A and 
T=A~. 
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AhM <—> N : T (M is structurally equal to TV) Algo- 
rithmically, we assume that A, M and TV are given 
and we compute r or fail. If successful, r will be the 
approximate type of M and TV. 

AhAf (=) TV (M is intensionally equal to TV) Algorith- 
mically, we assume that A, M, and TV are given and 
we either succeed or fail. 

Note that the structural and type-directed equality are mutu- 
ally recursive, while weak head reduction does not depend 
on the other three judgments. 

Weak Head Reduction. 

(Xx*Ai. M2) * Mi ™ [Mi/x]M2 

A/j ^ M[ 

Mi * M2 ^ M[ * Mo 

Type-Directed Object Equality. 

whr 
M ^\M'       Ah M' TV: a 

Ah M ^^7V : a 

TV ^4 TV'        A h M <=> TV' : a 

Ah M <=> N :a 

Ah M i—> N :a 

Ah M <==> TV :Q 

A,X*TI h M * x <=> TV * x : T2 

Ah 71/ 

Structural Object Equality. 

c:A in E 

N :TI ->T2 

x:r or X::T in A 

A h c <—> c: A~ Ah x ■ 

A h A/i <—> Ni : T2 -4 n    Ah A/2 /V2:r2 

A h A/i A/2 ^^ TVi 7V2 : n 

A h A/i <—> TVj 72 4ri A h A/2 ¥) N2 

A h Mi • A/2 ^^ TVi • 7V2 : Tj 

Ah Mi ^TVi : T-2 ^ n 

Structural Intensional Object Equality. 

c:A in E x:r or X::T in A 

Ahc A h x {=) x 

A\- A <=> ß : type- A,x*A" " hM (EE)TV 

A h \x*A. M (=) Xx-kB TV 

A h Mi (=) TVj AhM2 HiV2 

A h Mi M2 H M N2 

Ah Mi (=) Ni AhM2 HiV2 

A h Af i • M2 (=) iVi • ; v2 

Ah Mi ^JVj 

A h MI o M2 (EE) TVI o TV2 

The crux of the definitions above are the rules for struc- 
tural equality for applications. We omit the corresponding 
rules at the level of families. Briefly, kind-directed equality 
simple decomposes II-types, while structural type equality 
reprises the rules for structural object equality above. 

The algorithmic equality judgments satisfy some 
straightforward structural properties, including weakening. 
Furthermore, the algorithm is essentially deterministic in 
the sense that when comparing terms at base type we have to 
weakly head-normalize both sides and compare the results 
structurally. This is because terms that are weakly head re- 
ducible will never be considered structurally equal. This 
property, as well as the symmetry and transitivity of the al- 
gorithm are completely straightforward. 

4    Completeness of the Equality Algorithm 

In this section we summarize the completeness theorem 
for the type-directed equality algorithm. That is, if two 
terms are definitionally equal, the algorithm will succeed. 
The central idea is to proceed by an argument via logical 
relations denned inductively on the approximate type of an 
object, where the approximate type arises from erasing all 
dependencies. 

The completeness direction of the correctness proof for 
type-directed equality states: 

IfTh A/= TV : 71 then T- h A/ N:A- 

Onc would like to prove this by induction on the structure of 
the derivation for the given equality. However, such a proof 
attempt fails at the case for application. Instead we define a 
logical relation A h M = TV e |rj that provides a stronger 
induction hypothesis so that both 

A h Mi o M2 <—> Ni o TV2 : TX 

1. ifThM = TV rylthenT- h M = TV e [/TJ.and 

2. if r- h M = TV e fA-j then r~ h M *=> TV e if r- 
A-, 
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can be proved. 
The development can be found in [19], following [8] 

quite closely, so we omit it here in the interest of brevity. 

Theorem 4 (Completeness of the Equality Algorithm) 
IfThM = N:A then T~ h M <=^ TV : A~. Further- 
more, an analogous property holds at the level of families. 

5 Soundness of the Equality Algorithm 

In general, the algorithm for type-directed equality is not 
sound. However, when applied to valid objects of the same 
type, it is sound and relates only equal terms. This direction 
requires a number of syntactic lemmas from Section 2.5, but 
is otherwise mostly straightforward. 

Lemma 5 (Subject Reduction)   If M ^A M' and 
r h M : A then T h M' : A and T h M = M' : A. 

Proof: By induction on the definition of weak head reduc- 
tion, making use of inversion and substitution properties. D 

For the soundness of the equality algorithm we need sub- 
ject reduction and validity (Lemma 2). 

Theorem 6 (Soundness of the Equality Algorithm) 

/. IfT h M : A and T h TV : A and T~ h M <=> TV : 
A~, thenTh M = TV : A. 

2. IfT h M : A andT h TV : B andT~ h ,1/ <—> N : 
T, then T h M = TV : A, T h A = B : type and 
A' = D~ =T. 

3. IfT h- M : A andT h TV : B andT- h M (=) TV then 
Th A = B : type andT h M = TV : A. 

Analogous properties hold for types and kinds. 

Proof: By induction on the structure of the given deriva- 
tions for algorithmic equality, using validity and inversion 
on the typing derivations. D 

6 Decidability 

We can now show that the judgments for the equality al- 
gorithm constitute a decision procedure on valid terms of 
the same type. This result is then lifted to yield decidability 
of all judgments in the type theory. This part of the develop- 
ment is relatively standard. An exposition of the necessary 
auxiliary judgments and lemmas can be found in [19]. We 
only show the final result. 

Theorem 7 (Decidability) 

1. IfT h M : A and T h TV : A then it is decidahle 
whether T h M = TV : A. 

2. Given a valid T, M, and A, it is decidahle whether 
T h M : A 

Corresponding properties hold at the level of families and 
kinds and for other equality judgments. 

We also have that our type theory is conservative over 
LF. This is important for logical framework applications, 
since previously established adequacy theorems for encod- 
ings will continue to hold in the modal framework. 

7   Further Developments and Potential Appli- 
cations 

In this section we consider various possible further de- 
velopments and potential applications of our ideas. 

7.1    Logical Frameworks 

The addition of intensional expressions and irrelevant 
proofs to the logical framework may leads to more direct 
and more compact encodings in a number of examples. 

First, the intensional nature of expressions constitutes a 
weak form of reflection: arbitrary LF terms are accessible 
in LF without regard to /^//-conversion. At present we do 
not have any concrete applications for this added expressive 
power—the primary application of intensional expressions 
we have in mind is in the richer setting of functional pro- 
gramming explained in Section 7.2 below. 

Second, the irrelevant nature of proofs can be used to 
encode similar situations in object theories, which is quite 
frequent. For example, in an encoding of linear functions in 
LF we often have to deal with pairs consisting of the actual 
function and the proof certifying its linearity. The nature of 
this proof is. however, irrelevant, as long as it exists. An 
encoding of this kind might look as shown below. Here we 
use A —> B for II.r:A B where x docs not occur in B. 

rau'tcrm 
loin 
app 

linear 

Imtcrm 

type 
(rawtc.rm —> rawtcrm) —> ra.vitc.rm 
rawtcrm —> rawtcrm —> rawtcrm 

rawtcrm type 

TlE:rawtcrm. HL+lmc.ar E. type 

The definitional equality at type lintcrm now ignores the 
proofs that the expressions E are indeed linear. A simi- 
lar situation arises in the encoding of object languages with 
subtyping, where often all proofs of subtype relationships 
should be considered equal. The logic programming inter- 
pretation of such encodings can go from infcasiblc to practi- 
cal if all choice points are discarded after the first proof has 
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been found. Such an optimization is justified by our modal 
type theory without any loss of soundness or completeness. 

Moreover, the Twelf system [21] can verify automati- 
cally that type families (such as linear or one implementing 
object-language subtyping) are in fact decidable using mode 
and termination analysis [22]. If we agree that irrelevant ob- 
jects need not be shown in the user interface, then the proofs 
of type linear E that occur in linear terms actually do not 
need to be represented at all, leading to a potentially signif- 
icant space savings that may be critical in applications such 
as proof-carrying code [14] and certifying decision proce- 
dures [23]. Another situation in which an implementation 
may mark objects as irrelevant is if they are uniquely de- 
termined, either for syntactic [15] or semantic [16] reasons. 
While our modal analysis does not cover all of these op- 
timizations, it generalizes some of the core ideas from a 
fragment of LF to the full type theory. 

7.2    Functional Programming 

Our given type theory is fully adequate as a logical 
framework, but clearly not expressive enough to develop 
verified functional programs as in various implementations 
of type theory such as Nuprl [4] or Coq [6]. Besides stan- 
dard constructs such as inductive types or E-types that are 
orthogonal to our considerations, we need to internalize ex- 
pressions and proofs as modal operators, rather than just 
arguments to functions. The blueprint for such an integra- 
tion for expressions has been given in prior work [5, 20], the 
correct notion of definitional equality in the presence of de- 
pendencies was the main missing ingredient. The presence 
of both expressions and proofs allows a new twist. We show 
the formation and introduction rules for the corresponding 
modal operators, expanding the derived judgments: 

re h A : type 

T\- DA: type 

r® h A : type 

TBh M :A 

ThboxM : UA 

T®hM:A 

r I-A4: type rhtriM:AA 

The elimination rules (especially for the A modality) are 
unfortunately quite complex. To give the idea: we can now 
represent, for example, the subset type as a proof-irrelevant 
version of the the strong sum. 

{x:A | B}    =    Zx:A. AB 

The triangle operator appears to serve the same purpose as 
the squash type in [10], except here it derived directly from 
the judgmental level rather than from identity types. 

If our operational interpretation of type theory is based 
on staged computation [5], then the A modality is necessary 

to reason about staged programs. Besides a natural symme- 
try between intensionality and irrelevance as extreme forms 
of decidable equality, this has been our main motivation for 
developing a type theory that simultaneously supports these 
concepts. As an example, consider the specification of a 
staged power function (presuming a type nat and a prepo- 
sitional equality =): 

f Hn:nat. 0(lib:nat. Jim:nat. m = bn) : type 

This not well-formed because the term variable n is not 
available in the expression underneath the □ constructor. 
This problem is neatly solved with the A modality as fol- 
lows: 

h Un:nat. D(Ub:nat. Hm:nat. A(m = bn)) : type 

This further specifies that the correctness proof for the 
staged power function may be erased before execution since 
it is computationally irrelevant. 

7.3    First-Order Intuitionistic Modal Logic 

If we consider the first-order fragment of our type the- 
ory, the three forms of II-abstraction correspond to three 
forms of universal quantification. In terms of a Kripke se- 
mantics with varying domains, ILc: A B quantifies over the 
elements of the current domain only. This means, for ex- 
ample, that ILr:A DP(x) is only well-formed if P has 
kind Ylx-^-A. type, because otherwise the truth of P(x) 
may need to be investigated in worlds in which x does 
not exist. Yet it is still possible that x occurs, even if P 
can only talk about elements of the current world, as in 
Ux:A. P(x) ->• DAP(i) (which is true, incidentally). The 
quantifier Iix::A. B quantifies over elements existing in all 
domains and thus, in general, fewer than Iix:A. B. Finally, 
ILr-^A B quantifies over all elements of the current world 
and also elements that existed in some past world. Thus our 
approach has the potential to shed new light on old debates 
by allowing various interpretations of quantification to co- 
exist peacefully in a single modal logic. 

8    Conclusion 

We have presented a dependent type theory that inte- 
grates intensionality, extensionality, and proof irrelevance 
as judgmental notions, based on considerations from modal 
logic. We proved that equality and type-checking are de- 
cidable on the fragment presented here and sketched some 
possible applications. 

The most pressing item of future work is the inclusion 
of first-class modal operators important for applications in 
functional programming. The most difficult question here 
is the right notion of the "default" equality on terms.   In 
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this paper, the term equality was fully extensional; for func- 
tional programming applications, this will not be tenable 
and must be replaced by a dccidable judgmental equality 
that is sound with respect to the operational semantics. We 
conjecture that this can be done without upsetting the "ex- 
treme" equalities of expressions and proofs for which there 
appears to be little leeway. Furthermore, some type theo- 
retic constructs such as universes may require generaliza- 
tions of our proof techniques. 

Acknowledgments. We would like to thank the anony- 
mous referees for various helpful comments and sugges- 
tions. 

References 

[1] S. Bcrardi, M. Coppo, F. Damiani, and P. Giannini. Type- 
based useless-code elimination for functional programs. In 
W. Taha, editor, Proceedings of the International Workshop 

on Semantics, Applications, and Implementation of Pro- 

gram Generation (SAIG 2000), pages 172-189, Montreal, 
Canada, Sept. 2000. Springer-Verlag LNCS 1924. 

[2] U. Bcrgcr, W. Buchholz, and H. Schwichtenbcrg. Retined 
program extraction from classical proofs. Annals of Pare 
and Applied Logic, 2001. To appear. 

[3] I. Cervcsato and F. Pfenning. A linear logical framework. 
Information and Computation, 1998. To appear in a special 
issue with invited papers from LICS'96, E. Clarke, editor. 

(4] R. L. Constable ct al. Implementing Mathematics with the 
Nuprl Proof Development System. Prentice-Hall, Engle- 
wood Cliffs, New Jersey, 1986. 

[51 R. Davics and F Pfenning. A modal analysis of staged com- 
putation. Journal of the ACM, 2000. To appear. Preliminary 

version available as Technical Report CMU-CS-99-153, Au- 

gust 1999. 
[6] G. Dowck, A. Felty, H. Herbclin, G. Huct, C. Murthy, 

C. Parent, C. Paulin-Mohring, and B. Werner. The Coq 

proof assistant user's guide. Rapport Techniques 154. IN- 
RIA, Rocqucncourt, France, 1993. Version 5.8. 

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for 
defining logics. Journal of the Association for Computing 

Machinery A0( 1): 143-184, Jan. 1993. 
[8] R. Harper and F. Pfenning. On equivalence and canonical 

forms in the LF type theory. Technical Report CMU-CS- 
00-148, Department of Computer Science, Carnegie Mellon 

University, July 2000. 
[9] J. Hodas and D. Miller. Logic programming in a fragment 

of intuitionistic linear logic. Information and Computation, 

110(2):327-365, 1994. A preliminary version appeared in 

the Proceedings of the Sixth Annual IEEE Symposium on 
Logic in Computer Science, pages 32-42, Amsterdam, The 

Netherlands, July 1991. 

[10] M. Hofmann. Extensional Concepts in Intensional Type 
Theory. PhD thesis, Department of Computer Science, Uni- 
versity of Edinburgh, July 1995. Available as Technical Re- 

port CST-117-95. 

[11] P. Martin-Löf. Analytic and synthetic judgements in type 
theory. In P. Parrini, editor, Kant and Contemporary Episte- 

mology, pages 87-99. Kluwer Academic Publishers, 1994. 
[12] P. Martin-Löf. On the meanings of the logical constants 

and the justifications of the logical laws. Nordic Journal 

of Philosophical Logic, 1(1):11-60, 1996. 
[13] A. Momigliano. Elimination of Negation in a Logi- 

cal Framework. PhD thesis, Department of Philosophy, 

Carnegie Mellon University, Aug. 2000. Available as Tech- 
nical Report CMU-CS-00-175. 

[14] G. C. Necula. Proof-carrying code. In N. D. Jones, editor, 

Conference Record of the 24th Symposium on Principles of 

Programming Languages (POPL'97), pages 106-119, Paris, 

France, Jan. 1997. ACM Press. 
[15] G. C. Necula and P. Lee. Efficient representation and vali- 

dation of logical proofs. In Proceedings of the 13th Annual 

Symposium on Logic in Computer Science (LICS'98), pages 

93-104, Indianapolis, Indiana, June 1998. IEEE Computer 

Society Press. 
[16] G. C. Necula and S. Rahul. Oracle-based checking of 

untrusted software. In H. R. Nielson, editor, Conference 

Record of the 28th Annual Symposium on Principles of Pro- 

gramming Languages (POPL'OI), pages 142-154, London, 
England, Jan. 2001. ACM Press. 

[17] B. Nordström, K. Pctcrsson, and J. Smith. Programming in 

Martin-Löf's Type Theory: An Introduction. Oxford Univer- 
sity Press, 1990. 

[18] C. Paulin-Mohring. Extraction de Programmes dans le Cal- 

cul des Constructions. PhD thesis, Universite Paris VII, Jan. 
1989. 

[19] F. Pfenning. Intensionality, extcnsionality, and proof irrel- 
evance in modal type theory. Technical Report CMU-CS- 
01-116, Department of Computer Science, Carnegie Mellon 
University, Apr. 2001. 

[20] F Pfenning and R. Davics. A judgmental reconstruction of 

modal logic. Mathematical Structures in Computer Science, 

11, 2001. To appear. Notes to an invited talk at the Workshop 

on Intuitionistic Modal Logics and Applications (IMLA'99), 

Trcnto. Italy, July 1999. 
[21] F. Pfenning and C. Schürmann. System description: Twclf 

— a meta-logical framework for deductive systems. In 
H. Ganzinger, editor. Proceedings of the I6th International 

Conference on Automated Deduction (CADE-I6), pages 
202-206, Trento, Italy, July 1999. Springer-Verlag LNAI 

1632. 
[22] E. Rohwcddcr and F Pfenning. Mode and termination 

checking for higher-order logic programs. In H. R. Niel- 
son, editor, Proceedings of the European Symposium on Pro- 
gramming, pages 296-310, Linköping, Sweden, Apr. 1996. 

Springer-Verlag LNCS 1058. 
[23] A. Stump and D. L. Dill. Generating proofs from a decision 

procedure. In A. Pnucli and P. Travcrso, editors, Proceed- 

ings of the FLoC Workshop on Run-Time Result Verification, 

Trento, Italy, July 1999. 

230 



Dependent Types for Program Termination Verification 

Hongwei Xi 
University of Cincinnati 
hwxidececs.uc.edu 

Abstract 

Program termination verification is a challenging re- 
search subject of significant practical importance. While 
there is already a rich body of literature on this subject, it 
is still undeniably a difficult task to design a termination 
checker for a realistic programming language that supports 
general recursion. In this paper, we present an approach to 
program termination verification that makes use of a form of 
dependent types developed in Dependent ML (DML), demon- 
strating a novel application of such dependent types to es- 
tablishing a liveness property. We design a type system that 
enables the programmer to supply metrics for verifying pro- 
gram termination and prove that every well-typed program 
in this type system is terminating. We also provide realistic 
examples, which are all verified in a prototype implemen- 
tation, to support the effectiveness of our approach to pro- 
gram termination verification as well as its unobtntsiveness 
to programming. The main contribution of the paper lies 
in the design of an approach to program termination veri- 
fication that smoothly combines types with metrics, yielding 
a type system capable of guaranteeing program termination 
that supports a general form of recursion (including mutual 
recursion), higher-order functions, algebraic datatypes, and 
polymorphism. 

1    Introduction 

Programming is notoriously error-prone. As a conse- 
quence, a great number of approaches have been developed 
to facilitate program error detection. In practice, the pro- 
grammer often knows certain program properties that must 
hold in a correct implementation; it is therefore an indication 
of program errors if the actual implementation violates some 
of these properties. For instance, various type systems have 
been designed to detect program errors that cause violations 
of the supported type disciplines. 

It is common in practice that the programmer often knows 
for some reasons that a particular program should termi- 
nate if implemented correctly. This immediately implies 
that a termination checker can be of great value for detect- 
ing program errors that cause nonterminating program ex- 

* Partially supported by NSF grant no. CCR-0092703 

ecution. However, termination checking in a realistic pro- 
gramming language that supports general recursion is often 
prohibitively expensive given that (a) program termination 
in such a language is in general undecidable, (b) termination 
checking often requires interactive theorem proving that can 
be too involved for the programmer, (c) a minor change in a 
program can readily demand a renewed effort in termination 
checking, and (d) a large number of changes are likely to be 
made in a program development cycle. In order to design a 
termination checker for practical use, these issues must be 
properly addressed. 

There is already a rich literature on termination verifica- 
tion. Most approaches to automated termination proofs for 
either programs or term rewriting systems (TRSs) use var- 
ious heuristics, some of which can be highly involved, to 
synthesize well-founded orderings (e.g., various path order- 
ings [3], polynomial interpretation [1], etc.). While these 
approaches are mainly developed for first-order languages, 
the work in higher-order settings can also be found (e.g., 
[7]). When a program, which should be terminating if im- 
plemented correctly, cannot be proven terminating, it is of- 
ten difficult for the programmer to determine whether this 
is caused by a program error or by the limitation of the 
heuristics involved. Therefore, such automated approaches 
are likely to offer little help in detecting program errors that 
cause nonterminating program execution. In addition, auto- 
mated approaches often have difficulty handling realistic (not 
necessarily large) programs. 

The programmer can also prove program termination in 
various (interactive) theorem proving systems such as NuPrl 
[2], Coq [4], Isabelle [8] and PVS [9]. This is a viable prac- 
tice and various successes have been reported. However, the 
main problem with this practice is that the programmer may 
often need to spend so much time on proving the termination 
of a program compared with the time spent on simply im- 
plementing the program. In addition, a renewed effort may 
be required each time when some changes, which are likely 
in a program development cycle, are made to the program. 
Therefore, the programmer can often feel hesitant to adopt 
(interactive) theorem proving for detecting program errors in 
general programming. 

We are primarily interested in finding a middle ground. In 
particular, we are interested in forming a mechanism in a pro- 
gramming language that allows the programmer to provide 
key information needed for establishing program termination 
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fun ack m n  = 
if m =   0   then n+1 
else   if  n  =   0   then  ack   (m-1)   1   else  ack   (m-1)    (ack m   (n-1)) 

withtype   {i:nat,j:nat}   <i,j>   =>   int(i)   ->   int(j)   ->   [k:nat]   int(k) 

Figure 1. An implementation of Ackerman function 

and then automatically verifies that the provided information 
indeed suffices. An analogy would be like allowing the user 
to provide induction hypotheses in inductive theorem prov- 
ing and then proving theorems with the provided induction 
hypotheses. Clearly, the challenging question is how such 
key information for establishing program termination can be 
formalized and then expressed. The main contribution of this 
paper lies in our attempt to address the question by present- 
ing a design that allows the programmer to provide through 
dependent types such key information in a (relatively) simple 
and clean way. 

It is common in practice to prove the termination of recur- 
sive functions with metrics. Roughly speaking, we attach a 
metric in a well-founded ordering to a recursive function and 
verify that the metric is always decreasing when a recursive 
function call is made. In this paper, we present an approach 
that uses the dependent types developed in DML [18, 14] to 
carry metrics for proving program termination. We form a 
type system in which metrics can be encoded into types and 
prove that every well-typed program is terminating. It should 
be emphasized that we arc not here advocating the design 
of a programming language in which only terminating pro- 
grams can be written. Instead, we arc interested in designing 
a mechanism in a programming language, which, if the pro- 
grammer chooses to use it, can facilitate program termination 
verification. This is to be manifested in that the type system 
we form can be smoothly embedded into the type system of 
DML. We now illustrate the basic idea with a concrete exam- 
ple before going into further details. 

In Figure 1, an implementation of Ackerman function is 
given. The withtype clause is a type annotation, which 
states that for natural numbers i and j, this function takes 
an argument of type int(i) and another argument of type 
int(j) and returns a natural number as a result. Note that 
we have refined the usual integer type int into infinitely 
many singleton types int(o) for a = 0,1,-1,2,-2,... 
such that int (a) is precisely the type for integer expres- 
sions with value equal to a. We write {i :nat, j mat} 
for universally quantifying over index variables i and j of 
sort nat, that is, the sort for index expressions with values 
being natural numbers. Also, wc write [k:nat] int (k) 
for E/c : nat.int(k), which represents the sum of all types 
int(fc) fork = 0,1,2,.... The novelty here is the pair {i.j) 
in the type annotation, which indicates that this is the met- 
ric to be used for termination checking. Wc now informally 
explain how termination checking is performed in this case; 
assume that i and j are two natural numbers and m and n 
have types int(i) and int(j), respectively, and attach the 
metric (i,j) to ack rn n; note that there are three recursive 
function calls to ack in the body of ack; we attach the met- 

ric (i - 1,1) to the first ack since m-1 and 1 have types 
int(i - 1) and int(l), respectively; similarly, wc attach the 
metric (i - 1,A:) to the second ack, where k is assumed to 
be some natural number, and the metric {i, j - 1) to the third 
ack; it is obvious that (i - 1,1) < (i,j), (i -l,k) < (i,j) 
and {i.j - 1) < {ij) hold, where < is the usual lexico- 
graphic ordering on pairs of natural numbers; wc thus claim 
that the function ack is terminating (by a theorem proven in 
this paper). Note that although this is a simple example, its 
termination cannot be proven with (lexicographical) struc- 
tural ordering (as the semantic meaning of both addition + 
and subtraction — is needed).' 

More realistic examples are to be presented in Sec- 
tion 5, involving dependent datatypes [15], mutual recursion, 
higher-order functions and polymorphism. The reader may 
read some of these examples before studying the sections on 
technical development so as to get a feel as to what can actu- 
ally be handled by our approach. 

Combining metrics with the dependent types in DML 
poses a number of theoretical and pragmatic questions. We 
briefly outline our results and design choices. 

The first question that arises is to decide what metrics we 
should support. Clearly, the variety of metrics for establish- 
ing program termination is endless in practice. In this pa- 
per, wc only consider metrics that are tuples of index expres- 
sions of sort nat and use the usual lexicographic ordering 
to compare metrics. The main reasons for this decision are 
that (a) such metrics are commonly used in practice to estab- 
lish termination proofs for a large variety of programs and 
(b) constraints generated from comparing such metrics can 
be readily handled by the constraint solver already built for 
type-checking DML programs. Note that the usual structural 
ordering on first-order terms can be obtained by attaching to 
the term the number of constructors in the term, which can be 
readily accomplished by using the dependent datatype mech- 
anism in DML. However, we are currently unable to capture 
structural ordering on higher-order terms. 

The second question is about establishing the soundness 
of our approach, that is, proving every well-typed program 
in the type system we design is terminating. Though the idea 
mentioned in the example of Ackerman function seems intu- 
itive, this task is far from being trivial because of the pres- 
ence of higher-order functions. The reader may take a look 
at the higher-order example in Section 5 to understand this. 
Wc seek a method that can be readily adapted to handle var- 
ious common programming features when they are added, 

'There is an implementation of Ackerman function that involves only 
primitive recursion and can thus be easily proven terminating, but the point 
we drive here is that this particular implementation can be proven terminat- 
ing with our approach. 
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including mutual recursion, datatypes, polymorphism, etc. 
This naturally leads us to the reducibility method [12]. We 
are to form a notion of reducibility for the dependent types 
extended with metrics, in which the novelty lies in the treat- 
ment of general recursion. This formation, which is novel to 
our knowledge, constitutes the main technical contribution 
of the paper. 

The third question is about integrating our termination 
checking mechanism with DML. In practice, it is common 
to encounter a case where the termination of a function / de- 
pends on the termination of another function g, which, unfor- 
tunately, is not proven for various reasons, e.g., it is beyond 
the reach of the adopted mechanism for termination check- 
ing or the programmer is simply unwilling to spend the effort 
proving it. Our approach is designed in a way that allows the 
programmer to provide a metric in this case for verifying the 
termination of / conditional on the termination of g, which 
can still be useful for detecting program errors. 

The presented work builds upon our previous work on the 
use of dependent types in practical programming [18, 14]. 
While the work has its roots in DML, it is largely unclear, 
a priori, how dependent types in DML can be used for es- 
tablishing program termination. We thus believe that it is a 
significant effort to actually design a type system that com- 
bines types with metrics and then prove that the type sys- 
tem guarantees program termination. This effort is further 
strengthened with a prototype implementation and a variety 
of verified examples. 

The rest of the paper is organized as follows.  We form 
TT y1 

a language ML0'    in Section 2, which essentially extends 
the simply typed call-by-value A-calculus with a form of de- 
pendent types, developed in DML, and recursion. We then 
extend ML0 ' to ML0 '^ in Section 3, combining metrics 

with types, and prove that every program in ML"'^ is termi- 

nating. In Section 4, we enrich ML^'Ji with some significant 
programming features such as datatypes, mutual recursion 
and polymorphism. We present some examples in Section 5, 
illustrating how our approach to program termination verifi- 
cation is applied in practice. We then mention some related 
work and conclude. 

There is a full paper available on-line [16] in which the 
reader can find details omitted here. 

{a : int \ a > 0}. We use S(i) for a base type indexed with 
a sequence of index expressions £ which may be empty. For 
instance, bool(0) and bool(l) are types for boolean values 
false and true, respectively; for each integer i, int(i) is the 
singleton type for integer expressions with value equal to i. 

We use 4> [= P for a satisfaction relation, which means 
P holds under <fi, that is, the formula (4>)P, defined below, is 
satisfied in the domain of integers. 

(■)$ = $ (0, a : int)§ = (<£)Va : int.§ 
(0,a:{a:7|P})* = (0,a:7)(PD$) 

(</>,P)$ = (0)(PD$) 

For instance, the satisfaction relation 

a : nat, a ^ 0 \= a — 1 > 0 

holds since the following formula is true in the integer do- 
main. 

Va : int.a >0D(a/0Da-l>0) 

Note that the decidability of the satisfaction relation depends 
on the constraint domain. For the integer constraint domain 
we use here, the satisfaction relation is decidable (as we do 
not accept nonlinear integer constraints). 

We use rio : 7.T and Sa : 7.T for the usual depen- 
dent function and sum types, respectively. A type of form 
Ha : 7.T is essentially equivalent to Ilai : 71 ... Uan : jn.T, 
where we use a : 7 for ai : 71,..., an : jn. 

2 We also in- 
troduce A-variables and /9-variables in ML0 ' and use x and 
/ for them, respectively. A lambda-abstraction can only be 
formed over a A-variable while recursion (via fixed point op- 
erator) must be formed over a p-variable. A A-variable is a 
value but a p-variable is not. 

We use A for abstracting over index variables, lam for ab- 
stracting over variables, and fun for forming recursive func- 
tions. Note that the body after either A or fun must be a 
value. We use (i \ e) for packing an index i with an expres- 
sion e to form an expression of a dependent sum type, and 
open for unpacking an expression of a dependent sum type. 

2.2    Static Semantics 

2    ML, 0 

We start with a language ML^'E, which essentially ex- 
tends the simply typed call-by-value A-calculus with a form 
of dependent types and (general) recursion. The syntax for 

TT y ML0 '   is given in Figure 2. 

2.1    Syntax 

We fix an integer domain and restrict type index expres- 
sions, namely, the expressions that can be used to index a 
type, to this domain. This is a sorted domain and subset sorts 
can be formed. For instance, we use nat for the subset sort 

We write 4> h r : * to mean that r is a legally formed type 
under <f> and omit the standard rules for such judgments. 

index substitutions    8j 
substitutions 8 

Or [a M- i\ 
8[x »-> e] I 0[f K> e] 

A substitution is a finite mapping and [] represents an empty 
mapping. We use 61 for a substitution mapping index vari- 
ables to index expressions and dom(0/) for the domain of 
61. Similar notations are used for substitutions on variables. 
We write •[#/] (•[#]) for the result from applying 6] (8) to 
•, where • can be a type, an expression, etc. The standard 

2In practice, we also have types of form Ea : 7.7-, which we omit here 
for simplifying the presentation. 
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index constants c; 
index expressions i 
index propositions P 
index sorts 7 
index variable contexts 4> 
index constraints $ 
types r 
contexts 1' 
constants c 
expressions e 

values 

— | —2 | — J. | 0 f 1 | 2 | - - - 
a | c/ | i\ + i-2 | i\ - i-i \ i\ * i-2 \ h/h 
h < 12 | l'l < «2 | i'i > i-2 I «1 > «2 | »I = 12 | h ^ h I P\ A P2 I -Pi V P2 

int | {a : 7 | P} 
• | 0,0:7 I 0,P 
P I P D $ I Va : 7.$ 
<5(f) I Ila : 7.r | Eft : 7.T 
• I T,x : r I T,/ : r 
<r«e |/a/se | 0 | 1 | -1 | 2 | -2 | • ■ • 
c I x I / I if (e, e\, e2) | \a : j.v | lam x : r.e \ e\ (e2) | 
fun f[a : 7] : T is v | e[i] | (i | e) | open ei as (a | x) in e2 

c I x I Xa : ~f.v | lam x : r.e | (i | t>) 

Figure 2. The syntax for MLf, n,s 

— (type-eq)   (type-A-var)       ^-T, L f   _ (type-p-var) 
6; T h e : r2 

0, a : 7; T h i; : r 
(type-ilam) 

rhx : r v"-""" " '""'       <t>;Y\- f :T 

; T h e : Ha : J.T    0 h 1*: 7 
f>; T h An : 7.1; : lift : j.r w r~ ' 0; T h e[i\ : r[a >-> 1] 

(A, ft : 7; r, / : lift : 7.T h» :T , .    „ 
 — "   ;J      ^      -     (type-fun) 
0; F h fun /[ft : 7] : r is v : Ilo : J.T 

0;Fh e :bool(i)    0, ?' = 1; T h c, : r    0, i = 0: Th e2 : r 

0; T h if(e,ei,e2) : r 
0; r, x : ri h e : r2 ,,        ,      ,       0; F I- (^ : n -> r2    0; F h e2 : n 

(type-iapp) 

(type-if) 

/. r u 1 v   " (type"131") 0; I h lam x : T\.c : T\ —> T2 

0; T h ei : Eft : 7.T1     0, n : 7; T. x : T] h c2 : T-> 

0; T I- open c\ as (n | x) in e-> : r-> 
(type-open) 

0; T h ei(e2) : r2 

0 h j : 7    0; T h e : r[a >->• i 

0; r h (i I e) : Ea : 7.T 

(type-app) 

(type-pack) 

Figure 3. Typing Rules for ML n.E 

definition is omitted. The following rules arc for judgments 
of form (f>\- 6[ : 0', which rouehly means that Q\ has "type" 
0'. 

(sub-i-empty) 
0H] 

0 1- 0, : 0'    0 h i : 7[0/] 

0 h ö/[« H-> f] : 0',o : 7 
0hfl/:0'    0|=P[6>/] 

0ho/:0',P 

- (sub-i-var) 

(sub-i-prop) 

We write dom(r) for the domain of F, that is, the set of 
variables declared in V. Given substitutions 0/ and 9, we say 
0;T h {9j;0) : (0'; V) holds if 0 h 0/ : 0'and dom(ö) = 
dom(r') and 0;T h Ö(x) : T'(x)[6i] for all x G dom(r'). 

We write 0 |= r = r' for the congruent extension of 
0 |= i = j from index expressions to types, determined by 
the following rules.  It is the application of these rules that 

generates constraints during type-checking. 

0 N i = j 0 \= r[  = T!       0 |= T2 = T2 
0 |= (5(0 = JO') 0 (= ri -> r2 = T[ -> r^ 

0, n : 7 |= r = r' 0,0, : 7 (= r = r' 

0 )= lift : J.T = fin : J.T'      0 |= Eo. : J.T = Ea : J.T' 

We present the typing rules for ML0 ' in Figure 3. Some 
of these rules have obvious side conditions, which arc omit- 
ted. For instance, in the rule (type-ilam), n cannot have free 
occurrences in T. The following lemma plays a pivotal role 
in proving the subject reduction theorem for ML0 

standard proof is available in [14]. 

II, E whose 

Lemma 2.1 Assume 0, 
0;T h (6i;0) : (4>';Tr 

e[9i][0] : r[9,}. 

0';r,r'  h e  : T is derivable and 
holds.  Then we can derive 0; T h 
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2.3   Dynamic Semantics 3    ML, o,< 

TT y We present the dynamic semantics of ML0 '   through the 
use of evaluation contexts defined below. Certainly, there are 
other possibilities for this purpose, which we do not explore 
here. i 

evaluation contexts E   ::= 

[]|if(£!ei!e2)r£[I]|£(e)N£)l 
(i | E) | open E as (a \ x) in e 

We write E[e] for the expression resulting from replacing 
the hole [] in E with e. Note that this replacement can never 
result in capturing free variables. 

Definition 2.2 A redex is defined below. 

• if(c,ei,e2) are redexes for c = true, false, which re- 
duce to e\ and e2, respectively. 

• (lam x : r.e)(v) is a redex, which reduces to e[x H-> V]. 

• Let e be fun f[a : 7] : r is v Then e is a redex, which 
reduces to \a : j.v[f t->- e]. 

• (Xa : 7.i>)[l] is a redex, which reduces to v[a ►-> i\. 

• open (i | v) as (a j x) in e is a redex, which reduces 
to e[a *-> i][x H-»- V}. 

We use r for a redex and write r <-> eifr reduces to e. If 
e\ = E[r], e-2 = E[e] andr M- e, we write ei <-» e2 and say 
e\ reduces to e2 in one step. 

Let <->* be the reflexive and transitive closure of <-». We say 
ei reduces to e2 (in many steps) if e\ ^>* e2. We omit the 
standard proof for the following subject reduction theorem, 
which uses Lemma 2.1. 

Theorem 2.3 (Subject Reduction) Assume •;■ h e : r /s 
derivable in ML0' . //e <-»* e', f/ie« ■; ■ h e' : r w «/so 
derivable in MLn '  . 

We combine metrics with the dependent types in ML0' , 
forming a language ML0 '<. We then prove that every well- 

typed program in ML0 ^ is terminating, which is the main 
technical contribution of the paper. 

3.1   Metrics 

We use < for the usual lexicographic ordering on tuples 
of natural numbers and < for the strict part of <. Given 
two tuples of natural numbers {ii, ...,in) and (i[, ...,i'n,), 
(ii,...,in) < {i[, ■■■ ,i'ni) holds if n = n' and for some 
0 < k < n, ij = i'j for j = 1,..., k - 1 and ik < i'k. Evi- 
dently, < is a well-founded. We stress that (in theory) there 
is no difficulty supporting various other well-founded order- 
ings on natural numbers such as the usual multiset ordering. 
We fix an ordering solely for easing the presentation. 

Definition 3.1 (Metric) Let ß = (ii,... ,in) be a tuple of 
index expressions and <f> be an index variable context. We 
say p. is a metric under <f> if 0 \- ij : not are derivable for 
j = 1,..., n. We write <f> h p : metric to mean p is a metric 
under (j). 

n,E r, and A decorated type in ML0 ^ is of form Ila : j.p 
the following rule is for forming such types. 

0, a : 7 I- T : *    0, a : 7 h p : metric 
0 h Ila : 7*./i => r : * 

The syntax of ML"^ is the same as that of ML"
,S
 except 

that a context T in ML0 ^ maps every p-variable / in its do- 

main to a decorated type and a recursive function in MLQ '^ 
is of form fun f\a : 7] : p =4> r is v. The process of 
translating a source program into an expression in ML0 '^ is 
what we call elaboration, which is thoroughly explained in 
[18, 14]. Our approach to program termination verification 
is to be applied to elaborated programs. 

2.4   Erasure 3.2    Dynamic and Static Semantics 

n,£ We can simply transform MLn '    into a language MLn ^, .       r, „ n E ■   , 
erasing all svntax related to tvne index exnresMons in The dynamlc semant.es of MLo;<< is formed in precisely by erasing all syntax related to type index expressions in 

ML0' . Then ML0 basically extends simply typed A- 
calculus with recursion. Let |e| be the erasure of expression 
e. We have e\ reducing to e2 in ML0 'E implies |ei| reduc- 
ing to |e2| in ML0. Therefore, if e is terminating in ML"'2 

then |e| is terminating in ML0. This is a crucial point since 
TT y the evaluation of a program in ML0 '   is (most likely) done 

through the evaluation of its erasure in ML0.   Please find 
more details on this issue in [18, 14]. 

3For instance, it is suggested that one present the dynamic semantics in 
the style of natural semantics and then later form the notion of reducibility 
for evaluation rules. 

the same manner as that of ML^'E and we thus omit all the 
details. 

The difference between MLQ
1
'^ and MLQ'E lies in static 

semantics.    There are two kinds of typing judgments in 
n y ML0 '   , which are of forms 0; T h e : r and 0; F h e : r C/ 

p0. We call the latter a metric typing judgment, for which 
we give some explanation.  Suppose 0; T h e : r <C/ po 
and T(/) = Ua : ■y.fi => r; roughly speaking, for each 
free occurrence of / in e, / is followed by a sequence of 
index expressions [i] such that p[a  H* i], which we call 
the label of this occurrence of /, is less than po under 0. 
Now suppose we have a well-typed closed recursive function 
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e = fun f[a : 7] : p =► r is u in ML0 '^ and fare of sorts 7; 

then /[!][/ ►-> e] = e[i] <->•* t> [a i-> !][/ H-» e] holds; by the 
rule (type-fun), we know that all labels of / in v are less than 
n[a i-> i], which is the label of/ in /[i]; since labels cannot 
decrease forever, this yields some basic intuition on why all 

n y 
recursive functions in ML0 '^ are terminating. However, this 
intuitive argument is difficult to be formalized directly in the 
presence of high-order functions. 

The typing rules in ML0 ^ for a judgment of form 0; T h 
IT y 

e : T arc essentially the same as those in ML0 '   except the 
following ones. 

r(/) = Ila : 7> => T 
(type-p-var) 

0;T h / : Ilo : J.T 

0, a : 7; T, / : Ila : 7.// => r h it : r <C/ /U 
——— -p— —;         _     (type-fun) 
0; 1 h tun /[a : 7] : p =>■ r is it : Ila : 7.T 

We present the rules for deriving metric typing judgments in 
Figure 4. Given p = (iu...,in) and p! = (i\ ,...,«'„), 
0 f= /1 < //' means that for some 1 < k < n, <f>,i\ = 
i'j,..., ij_i = ij._j (= ij < i'j are satisfied for all 1 < j < k 

and 0, «i = i'j,..., ij,_j = ij,._j |= ik < i'A. is also satisfied. 

Lemma 3.2 We have the following. 

1. Assume 0,0'; r,r' h e : r i.? derivable and 0: F h 
(0/;0) : {<j)';T') holds. Then we can derive 0:Y h 
e[ö/][0] : T[9,\ 

2. Assume (j),(j)';T,T' h e : r -C/ // is derivable and 
0;T h (0;;0) : (0';r') holds and f G dom(F). 7/;«; 
nr «w <7™vr 0: T h e[8,)[9] : T[0,} «C/ //[#/]. 

Proof (1) and (2) arc proven simultaneously by struc- 
tural induction on derivations of 0,0'; T.T' \- e : T and 
0, 0'; r, T' h f! : T C/ //., respectively. ■ 

Theorem 3.3 (Subject Reduction) Assume ■: •   \-  e   :   T is 

derivable in ML"'^.  If C <->* e', ?/;e« ■; ■ h e' : r i.v a/.v 

derivable in ML, 
3,« 

II,£ 
o,<- 

Obviously, we have the following. 

Proposition 3.4 Assume that V is a derivation 0; Y h r : 
r -Cy //,(). 77«'« then there is a derivation of 0; F h e : r 
w/f/j //;c .vrt/Hc height4 as V. 

3.3    Reducibility 

Wc define the notion of reducibility for well-typed closed 
expressions. 

Definition 3.5 (Reducibility) Suppose that e is a closed ex- 
pression of type T and e ■—>* v holds for some value v. The 
reducibility of c is defined by induction on the complexity of 
T. 

1. r is a base type. Then e is reducible. 

2. T = Tj —> r2. Then e is reducible if e(vi) arc reducible 
for all reducible values V\ of type r. 

3. T = Ua : 7.T1. Then e is reducible if e[i] arc reducible 
for all f: 7. 

4. r = £a : 7.T1. Then e is reducible if v = (i | i>i) for 
some i and iti such that vi is a reducible value of type 
T\ [a >-->• i]. 

Note that reducibility is only defined for closed expressions 
that reduce to values. 

Proposition 3.6 Assume that e is a closed expression of type 
T and e ■—> e' holds. Then e is reducible if and only if e' is 
reducible. 

Proof   By induction on the complexity of r. ■ 

The following is a key notion for handling recursion, 
which, though natural, requires some technical insights. 

Definition 3.7 (p-Reducibility). Let e be a well-typed closed 
recursive function fun /[« : 7] ://.=> r is v and fi^ be a 
closed metric, e is fi0-reducible if c[T\ are reducible for all 
f: 0 satisfying fi[a >-> \\ < [IQ. 

Definition 3.8 Let 0 be a substitution that maps variables to 
expressions; for every .r £ dom(ö), 0 is x-reducible ifO(x) 
is reducible; for every f G dom(#), 8 is (j', // j)-reducihle if 
0(f) is fif-reducible. 

In some sense, the following lemma verifies whether the 
notion of reducibility is formed correctly, where the difficulty 
probably lies in its formulation rather than in its proof. 

Lemma 3.9 (Main Lemma) Assume that cj>; F h e : T and 
■ h (6i\6) : (0; T) are derivable. Also assume that 0 
is x-reducible for every x G dom(F) and for every f G 
dom(r), -,r[9i} h e[6,} : T[0,} «/ fif is derivable and 0 
is (/. pf)-reducible. Then <'[9 ,]\9] is reducible. 

Proof Let V be a derivation of 0; F h c. : r and we pro- 
ceed by induction on the height of V. We present the most 
interesting case below. All other cases can be found in [ 16]. 
Assume that the following rule (type-fun) is last applied in 
V, 

cp.di : 7i;r,/i : IT«i : 7V//1 => T"I ^ "1 : n </, //, 

0: T h fun /1 [d\ : 71] : p\ => T\ is V\ : Y\a\ 7i -ri 

4For  a  minor  technicality   reason,   we  count   neither  of  the   rules 
(type-p-var) and (<C-/>var) when calculating the height of a derivation. 

where we have e = fun /1 [r7j : 71] : p\ => T\ is V\ 
and T = IIoj : 71 .Tj. Suppose that c* = e.[6i][6] is 
not reducible. Then by definition there exist 7Q : j* such 
that e*[i0] is not reducible but e*[i\ arc reducible for all 
f : Oi satisfying p*[cti >-> i\ < (i*[(ii *-> k,], where 
7j* = 7i[ö/] and //* = p\[9i). In other words, e* is //./,- 
reducible for ///, = /'*["l ^ i*o]- Note that wc can derive 
■;r[0,],/, : n«j : ^.r,^/] r- ^^[n, ^ f0]] : r, [#,[«! ^ 
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T(x) = 
«-A-var) r(/i) fxtf «-p-var) 

4>; r h e : bool(i) <y p0    0, i = 1; T h et : r <C/ ;»o    0, i = 0; T h e2 : r </ (U0 

jTr- if(e,ei,e2) : r <C/ po («-if) 

0, a : 7; T r-1; : r </ /ip 
0; T h Aa : 7.1; : IIo : 7.T </ /i0 

0; T, a; : n h e : r2 <£/ p0 

«-ilam) 
/>; T h e : ITa : 7.T </ p0    </> h f: 7 

0; T I- e[i] : r[a H> i] </ /x0 
«-iapp) 

«-lam) 
</>; T I- ei : TI ->■ r2 <C/ p0    0; T h e2 : n <Cy p0 

0;T h lamx : rx.e : n -> T2 <C/ /x0 
v""       ' ^Thei(e2) : r2 </ ^0 

<t>, oi : 7i I r, /1 : Ilai : Mi =*> 7i -n H «i : n «/> /iX 

<£, ai : 7i; T, /1 : flai : 71 .n h e1 : n <£/ /j0 

(<-app) 

<?!>; T h fun /x [ai : 7^ : px =» n is vx : II01 : 71 .n </ /U0 

4>\-\:^    <j> \= p[a H» i] < /j0    T(/) = fig : f./i =^> r 

0; T h /[T] :r[a4i] «/ ^o 

</> I- i : 7    4>\ T I- e : r[a H-> i] <y /x0 
—, _        ,  .   .       —  «-pack) 

<p; T \- (1 I e) : £a : 7.x </ ^o 

ft; r h ei : Sa : 7.T1 <C/ /z0    </>, a : 7; T, a; : n r- e2 : r2 </ MO 

05 r I- open ei as (o | a;) in e2 : r2 </ ^o 

«-fun) 

«-lab) 

«-open) 

Figure 4. Metric Typing Rules for MLj < 

To]] <SC/ yu/j. By Proposition 3.4, there is a derivation 2?! of 
0,ai : 7i;I\/i : IKi : ji.pi => rx V vx : T\ such that the 
height of X>i is less than that of X>. By induction hypothesis, 
we have that v\ = ui[0/[ai M- r0]][ö[/! i-» e*]] is reducible. 
Note that e*[f0] <->* v{ and thus e*[r0] is reducible, contra- 
dicting the definition of f0. Therefore, e* is reducible. 

The following is the main result of the paper. 

Corollary 3.10 If ■;■ \- e : T is derivable in ML"'%., then e 

in ML0 ^ is reducible and thus reduces to a value. 

Proof  The corollary follows from Lemma 3.9. ■ 

4   Extensions 

■n,£ We can extend ML0 ^ with some significant program- 
ming features such as mutual recursion, datatypes and poly- 
morphism, defining the notion of reducibility for each ex- 
tension and thus making it clear that Lemma 3.9 still holds 
after the extension. We present in this section the treatment 
of mutual recursion and currying, leaving the details in [16]. 

4.1    Mutual Recursion 

The treatment of mutual recursion is slightly different 
from the standard one. The syntax and typing rules for 
handling mutual recursion are given in Figure 5.   We use 

(Ti , • ■ •, Tn) for the type of an expression representing n mu- 
tually recursive functions of types n,... ,r„, respectively, 
which should not be confused with the product of types 
Ti,..., r„. Also, the n in e.n must be a positive (constant) 
integer. Let v be the following expression. 

funs fi [Si : 7! ] : n is vx and ... and /„ [an 7„J : Tn is vn 

Then for every 1 < k < n, v.k is a redex, which reduces to 
Aa* : 7VM/1 ^ v.l, ...,/„!-)• v.n). Let / = fr,..., fn 

and we form a metric typing judgment 0; T h e «,- fi0 for 
verifying that all labels of /x ,...,/„ in e are less than fi0 un- 
der <p. The rules for deriving such a judgment are essentially 
the same as those in Figure 4 except «-lab), which is given 
below. 

/ in /    T(/) = fig : j.fj, =» r    0 |= p[g 1-» i] < /x0 

4>;Th f[r\ :T[ä^i\^:f-ß0 

The rule «-funs) for handling mutual recursion is straight- 
forward and thus omitted. 

Definition 4.1 (Reducibility) Let e be a closed expression of 
type (n,..., T„) and e reduces to v. e is reducible ife.k are 
reducible for k = 1,..., n. 

4.2    Currying 

A decorated type must so far be of form Yla : j.p => r 
and this restriction has a rather unpleasant consequence. For 
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types r 
expressions    e 
values v 

(Uäi : ji.Ti,...,Uan : 7„.rn) 
e.n | funs f\ [ö*i : 71] : n is V\ and... and fn[an : jn] : rn is v„ 
funs /1 [äi : 7J] : Ti is Vi and ... and fn[an : jn] : T„ is vn 

f = fi,---,fn      T= (ITai : 71 -n,..., Uan : 7n.r„) 
j>, äi : 71; r, /1 : ITai : 71 : A*i => Ti ,...,/„ : IIan : % : //„ =>• rn I- ui : n «Cy /Ji 

i, an : 7„; I\ /1 : IHi : 71 : Mi => n ,...,/„ : ITan : fn : /x„ => rn h i>„ : rn «Cy /jn 

6; T h funs /1 [a*i : 71] : /ii => rx is i>i and... and fn[an : 7,,] : /j.n =$> rn is vn : T 

0; T h e : (ri,..., r„)    1 < fc < n 
0; T h e./c : r* 

(type-choose) 

(type-funs) 

Figure 5. The Syntax and Typing Rules for Mutual Recursion 

instance, we may want to assign the following type r to the 
implementation of Ackerman function in Figure 1: 

{i:nat}   int(i)   ->   {j:nat}   int(j)   ->   int, 

which is formally written as 

ritti : nat.int(aj) -> Tla-i : nat.int (a?) -> En : nnt.int(n) 

If we decorate r with a metric //., then //. can only involve 
the index variable 0,1, making it impossible to verify that the 
implementation is terminating. 

We generalize the form of decorated types to the follow- 
ing so as to address the problem. 

Uäi ■ 7i -T\ ->■ > n«„ : 7„.T„ -> no : 7./; => r. 

Also, we introduce the following form of expression e. for 
representing a recursive function. 

fun /[«j : 7i](./'i : TI) ■ ■ • [a,, : 7„](.r„ : Tn)[a : 7] : r is f0 

Wc require that c0 he a value if 7) = 0. In the following, we 
only deal with the case n = 1. For n > 1, the treatment is 
similar. For e = fun /[«i : 7i](3'i : TI)[O : 7] : r is p0» wc 

have e <-> A«i : 7*! .lam .TI : rj .\a : 7.P0 and the following 
typing rule 

(/>,»! : 71, a : 7; T, / : TQ, .Ti : Tj h c : T «/ /1 

</;; T I- fun /[«1 : 7i](xi : n )[a : 7] : /J => r is r : r0 

where T() = IlrTi : 71 .T\ —> Ilö* : 7.T, and the following 
metric typing rule 

<l> \=h ■ 7i     0 (= r; 7["i ^1*1] 
0 |= //.[fi M- ä*i][n H->i] < //o 

0;T h ei : n[«] t->T\] C/ /i0 

T(/) = n«i : 71 .ri -> II« : 7.// => r 

0; T h fW-iM : r[«i ^ n][a ^ I] «, //0 

Definition 4.2 (u-reducibility) Let e be a closed recursive 
function fun /[a* : H](x\ : n)[a : 7] : T is e and /J0 be 
a closed metric, e is ^-reducible if e\\\)(v)\}\ are reducible 
for all reducible values v : Ti[«i i-> i*i] and \\ : 71 a/?f/ 
f: 7[ä*i >->• fi] satisfying /i[«i 1—> rx][a H-> I] < //0. 

5    Practice 

n,E We have implemented a type-checker for ML0 '^ in a pro- 
totype implementation of DML and experimented with vari- 
ous examples, some of which are presented below. Wc also 
address the practicality issue at the end of this section. 

5.1    Examples 

Wc demonstrate how various programming features arc 
handled in practice by our approach to program termination 
verification. 

Primitive Recursion The following is an implementation 
of the primitive recursion operator R in Gödcl's T, which is 
clearly typablc in ML""^. Note that Z and S arc assigned 
the types Nat(0) and Tin : nat.Nat(n) -> Nat(n + 1), 
respectively. 

datatype Nat with nat = 
Z(0) I {n:nat} S(n+1) of Nat(n) 

fun('a) R Z u v = 
u I R (S n) u v = v n (R n u v) 

withtype 
{n:nat} <n> => 
Nat(n) -> 'a -> (Nat -> 'a -> 'a) -> 'a 
(* Nat is for [n:nat] Nat(n) in a type *) 

By Corollary 3.10, it is clear that every term in T is termi- 
nating (or weakly normalizing). This is the only example in 
this paper that can be proven terminating with a structural 
ordering. The point wc make is that though it seems 
"evident" that the use of R cannot cause non-termination, it 
is not trivial at all to prove every term in T is terminating. 
Notice that such a proof cannot be obtained in Pcano 
arithmetic. The notion of rcducibility is precisely invented 
for overcoming the difficulty [12]. Actually, every term in 
T is strongly normalizing, but this obviously is untrue in 
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ML, 

Nested Recursive Function Call The program in Figure 6 
involving a nested recursive function call implements Mc- 
Carthy's "91" function. The withtype clause indicates 
that for every integer x, J91(x) returns integer 91 if x < 100 
and x — 10 if x > 101. We informally explain why the 
metric in the type annotation suffices to establish the termi- 
nation of /91; for the inner call to /91, we need to prove that 
0 \= max(0,101 - (i + 11)) < max(0,101 - i) is satisfied 
for 0 = i : int,i < 100, which is obvious; for the outer 
call to /91, we need to verify that 0i (= max(0,101 - j) < 
max(0,101 — i), where 0i is <p,j : int, P and P is 

(i + 11 < 100 A j = 91)V(i + ll > 101A j = i + 11 — 10) 

If i + 11 < 100, then j = 91 and max(0,101 - j) = 10 < 
12 < 101-i; if i + 11 > 101, then j = i + 11 - 10 = i + 1 
and max(0,101 — j) < 101 — i (since i < 100 is assumed 
in 0). Clearly, this example can not be handled with a 
structural ordering. 

Mutual Recursion The program in Figure 7 implements 
quicksort on a list, where the functions qs and par are de- 
fined mutually recursively. We informally explain why this 
program is typable in ML0 ^ and thus qs is a terminating 
function by Corollary 3.10. 

For the call to par in the body of qs, the label is (0 + 
0 + a, a + 1), where a is the length of xs'. So we need to 
verify that 0 f= (0 + 0 + a, a + 1) < (n, 0) is satisfied for 
0 = n : nat, a : nat, a + 1 = n, which is obvious. 

For the two calls to qs in the body of par, we need to 
verify that 0 (= (p,0) < (p + q + r, r + 1) and 0 (= (q,0) < 
(p+q + r, r+1) for 0 = p : nat,q : nat,r : nat, r = 0, both 
of which hold since 0 \= p < p + q and 0 \= q < p + q and 
0 \= 0 < 1. This also indicates why we need r + 1 instead 
of r in the metric for par. 

For the two calls to par in the body of par, we need 
to verify that 0 |= ((p + 1) + q + a, a) < (p + q + r,r) 
and 0 (= (p + (q + 1) + a, a) < {p + q + r,r) for 
0 = p : nat, q : nat, r : nat, a : nat, r = a + 1, both of 
which hold since 0 |= (p + 1) + q + a = p + q + r and 
0 \=P+{q + l)+a = p + q + r and 0 |= a < r. Clearly, 
this example can not be handled with a structural ordering. 

Higher-order Function The program in Figure 8 imple- 
ments a function accept that takes a pattern p and a string 
s and checks whether s matches p, where the meaning of a 
pattern is given in the comments. 

The auxiliary function ace is implemented in continua- 
tion passing style, which takes a pattern p, a list of char- 
acters cs and a continuation k and matches a prefix of cs 
against p and call k on the rest of characters. Note that k 
is given a type that allows k to be applied only to a char- 
acter list not longer than cs. The metric used for proving 
the termination of ace is (n,i), where n is the size of p, 
that is the number constructors in p (excluding Empty) and 
i is the length of cs.   Notice the call ace p es' k in the 

last pattern matching clause; the label attached to this call is 
(n,i'), where i' is the length of cs'; we have i' < i since the 
continuation has the type Ila' : 7. (char) list (a1) —> bool, 
where 7 is {a : nat \ a < i}; we have i ^ i' since 
length(cs') = length(cs) must be false when this call hap- 
pens; therefore we have i' < i5 and then (n,i') < (n,i). It 
is straightforward to see that the labels attached to other calls 
to ace are less than (n,i). By Corollary 3.10, ace is termi- 
nating, which implies that accept is terminating (assuming 
explode is terminating). In every aspect, this is a non-trivial 
example even for interactive theorem proving systems. 

Notice that the test length(cs') — length(cs) in the body 
of ace can be time-consuming. This can be resolved by using 
a continuation that accepts as its arguments both a character 
list and its length. In [5], there is an elegant implementa- 
tion of accept that does some processing on the pattern to be 
matched and then eliminates the test. 
Run-time Check There are also realistic cases where termi- 
nation depends on a program invariant that cannot (or is diffi- 
cult to) be captured in the type system of DML. For instance, 
the following example is adopted from an implementation of 
bit reversing, which is a part of an implementation of fast 
Fourier transform (FFT). 

fun  loop   (j,   k) = 
if (k<j) then loop (j-k, k/2) else j+k 

withtype 
{a:nat,b:nat} int(a) * int(b) -> int 

Obviously, loop(l,0) is not terminating. However, we may 
know for some reason that the second argument of loop can 
never be 0 during execution. This leads to the following im- 
plementation, in which we need to check that k > 1 holds 
before calling loop(j — k, k/2) so as to guarantee that k/2 is 
a positive integer. 

fun loop (j, k) = 
if (k < j) then 

if (k > 1) then loop (j - k, k / 2) 
else raise Impossible 

else j+k 
withtype {a:nat,b:pos} <max(0, a-b)> => 

int(a) * int(b) -> int 

It can now be readily verified that loop is a terminating func- 
tion. This example indicates that we can insert run-time 
checks to verify program termination, sometimes, approxi- 
mating a liveness property with a safety property. 

5.2    Practicality 

There are two separate issues concerning the practicality 
of our approach to program termination verification, which 
are (a) the practicality of the termination verification pro- 
cess and (b) the applicability of the approach to realistic pro- 
grams. 

5Note that length(cs') and length(cs) have the types int(i') and 
int(i), respectively, and thus length(cs') — length(cs) has the type 
bool(i' = i). where i' = i equals 1 or 0 depending on whether i' equals i. 
Thus, i' < i can be inferred in the type system. 
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fun  f91   (x)   =   if   (x  <=   100)   then   f91   (f91   (x  +   11))   else  x   -   10 
withtype 

{i:int}   <max(0,   101-i)>   => 
int(i)   ->   [j:int   |    (i<=100   /\   j=91)   \/   (i>=101   A   j=i-10)]   int(j) 

Figure 6. An implementation of McCarthy's "91" function 

fun('a)   qs   cmp  xs   = 
case xs of [] => [] | x :: xs' => par cmp (x, [], [], xs') 

withtype ('a * 'a -> bool) -> (n:nat) <n,0> => 'a list(n) -> 'a list(n) 

and('a) par cmp (x, 1, r, xs) = 
case xs of 

[] => qs cmp 1 @ (x : : qs cmp r) 
| x' :: xs' => if cmp(x', x) then par cmp (x, x' :: 1, r, xs') 

else par cmp (x, 1, x' :: r, xs') 
withtype ('a * 'a -> bool) -> {p:nat,q:nat,r:nat} <p+q+r,r+l> => 

'a * 'a list(p) * 'a list(q) * 'a list(r) -> 'a list(p+q+r+1) 

Figure 7. An implementation of quicksort on a list 

It is easy to observe that the complexity of type-checking 
in ML0 '^ is basically the same as in MLn '" since the only 
added work is to verify that metrics (provided by the pro- 
grammer) are decreasing, which requires solving some extra 
constraints. The number of extra constraints generated from 
type-checking a function is proportional to the number of re- 
cursive calls in the body of the function and therefore is likely 
small. Based on our experience with DML. we thus feel that 
type-checking in MLn '^ is suitable for practical use. 

As for the applicability of our approach to realistic pro- 
grams, we use the type system of the programming language 
C as an example to illustrate a design decision. Obviously, 
the type system of C is unsound because of (unsafe) type 
casts, which are often needed in C for typing programs that 
would otherwise not be possible. In spite of this practice, the 
type system of C is still of great help for capturing program 
errors. Clearly, a similar design is to allow the programmer 
to assert the termination of a function in DML if it cannot be 
verified, which we may call termination cast. Combining ter- 
mination verification, run-time checks and termination cast, 
we feel that our approach is promising to be put into practice. 

6    Related Work 

The amount of research work related to program termina- 
tion is simply vast. In this section, we mainly mention some 
related work with which our work shares some similarity ei- 
ther in design or in technique. 

Most approaches to automated termination proofs for ci- 
ther programs or term rewriting systems (TRSs) use various 
heuristics to synthesize well-founded ordcrings. Such ap- 
proaches, however, often have difficulty reporting compre- 
hensible information when a program cannot be proven ter- 

minating. Following [13], there is also a large amount of 
work on proving termination of logic programs. In [ I I ]. it is 
reported that the Mercury compiler can perform automated 
termination checking on realistic logic programs. 

However, we address a different question here. We are 
interested in checking whether a given metric suffices to es- 
tablish the termination of a program and not in synthesiz- 
ing such a metric. This design is essentially the same as the 
one adopted in [10], where it checks whether a given struc- 
tural ordering (possibly on high-order terms) is decreasing in 
an inductive proof or a logic program. Clearly, approaches 
based on checking complements those based on synthesis. 

Our approach also relates to the semantic labelling ap- 
proach [19] designed to prove termination for term rewrit- 
ing systems (TRSs). The essential idea is to differentiate 
function calls with labels and show that labels are always 
decreasing when a function call unfolds. The semantic la- 
belling approach requires constructing a model for a TRS to 
verify whether labelling is done correctly while our approach 
docs this by type-checking. 

The notion of sized types is introduced in [6] for prov- 
ing the correctness of reactive systems. There, the type sys- 
tem is capable of guaranteeing the termination of well-typed 
programs. The language presented in [6], which is designed 
for embedded functional programming, contains a significant 
restriction as it only supports (a minor variant) of primitive 
recursion, which can cause inconvenience in programming. 
For instance, it seems difficult to implement quicksort by us- 
ing only primitive recursion. From our experience, general 
recursion is really a major programming feature that greatly 
complicates program termination verification. Also, the no- 
tion of existential dependent types, which we deem indis- 
pensable in practical programming, docs not exist in [6]. 

When compared to various (interactive) theorem proving 
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datatype pattern with nat = 
Empty(0) (* empty string matches Empty *) 

| Char(l) of char (* "c" matches Char (c) *) 
| {i:nat,j:nat} Plus(i+j+l) of pattern(i) * pattern(j) 

(* cs matches Plus(pi, p2) if cs matches either pi or p2 *) 
| {i:nat,j:nat} Times(i+j+l) of pattern(i) * pattern(j) 

(* cs matches Times(pi, p2) if a prefix of cs matches pi and 
the rest matches p2 *) 

| {i:nat} Star(i+1) of pattern(i) 
(* cs matches Star(p) if cs matches some, possibly 0, copies of p *) 

(* 'length' computes the length of a list *) 
fun('a) 

length (xs) = let 
fun len ([], n) = n 

| len (x :: xs, n) = len (xs, n+1) 
withtype 

{i:nat,jmat} <i> => 'a list(i) * int(j) -> int(i+j) 
in 

len (xs, 0) 
end 

withtype {i:nat} <> => 'a list(i) -> int(i) 
(* empty tuple <> is used since 'length' is not recursive *) 

fun ace p es k = 
case p of 

Empty => k (cs) 
| Char(c) => 

(case cs of 
[] => false 

| c' :: cs' => if (c = c') then k (cs') else false) 
| Plus(pi, p2) => (* in this case, k is used for backtracking *) 
if ace pi cs k then true else ace p2 es k 

| Times(pi, p2) => ace pi cs (fn cs' => ace p2 cs' k) 
j Star(pO) => 

if k (cs) then true 
else ace pO cs (fn cs' => 

if length(cs') = length(cs) then false 
else ace p cs' k) 

withtype {n:nat} pattern(n) -> 
{i:nat} <n, i> => char list(i) -> 
({i':nat | i' <= i} char list(i') -> bool) -> bool 

(* 'explode' turns a string into a list of characters *) 
fun accept p s = 

ace p (explode s) (fn [] => true | _ :: _ => false) 
withtype <> => pattern -> string -> bool 

Figure 8. An implementation of pattern matching on strings 
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systems such as NuPrl [2], Coq [4], Isabcllc [8] and PVS [9], 
our approach to program termination is weaker (in the sense 
that [many] fewer programs can be verified terminating) but 
more automatic and less obtrusive to programming. We have 
essentially designed a mechanism for program termination 
verification with a language interface that is to be used dur- 
ing program development cycle. We consider this as the main 
contribution of the paper. When applied, the designed mech- 
anism intends to facilitate program error detection, leading 
to the construction of more robust programs. 

7   Conclusion and Future Work 

We have presented an approach based on dependent types 
in DML that allows the programmer to supply metrics for 
verifying program termination and proven its correctness. 
We have also applied this approach to various examples that 
involve significant programming features such as a general 
form of recursion (including mutual recursion), higher-order 
functions, algebraic datatypes and polymorphism, support- 
ing its usefulness in practice. 

A program property is often classified as either a safety 
property or a liveness property. That a program never per- 
forms out-of-bounds array subscripting at run-time is a safety 
property. It is demonstrated in [17] that dependent types in 
DML can guarantee that every well-typed program in DML 
possesses such a safety property, effectively facilitating run- 
time array bound check elimination. It is, however, unclear 
(a priori) whether dependent types in DML can also be used 
for establishing liveness properties. In this paper, we have 
formally addressed the question, demonstrating that depen- 
dent types in DML can be combined with metrics to estab- 
lish program termination, one of the most significant liveness 
properties. 

Termination checking is also useful for compiler opti- 
mization. For instance, if one decides to change the exe- 
cution order of two programs, it may be required to prove 
that the first program always terminates. Also, it seems fea- 
sible to use metrics for estimating the time complexity of 
programs. In lazy function programming, such information 
may allow a compiler to decide whether a thunk should be 
formed. In future, we expect to explore along these lines of 
research. 

Although we have presented many interesting examples 
that cannot be proven terminating with structural ordcrings, 
we emphasize that structural ordcrings are often effective in 
practice for establishing program termination. Therefore, it 
seems fruitful to study a combination of our approach with 
structural ordcrings that handles simple cases with either au- 
tomatically synthesized or manually provided structural or- 
dcrings and verifies more difficult cases with metrics sup- 
plied by the programmer. 
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Abstract 

Proof-carrying code is a framework for the mechani- 
cal verification of safety properties of machine language 
programs, but the problem arises of quis custodiat ip- 
sos custodes—who will verify the verifier itself? Founda- 
tional proof-carrying code is verification from the small- 
est possible set of axioms, using the simplest possible ver- 
ifier and the smallest possible runtime system. I will de- 
scribe many of the mathematical and engineering prob- 
lems to be solved in the construction of a foundational 
proof-carrying code system. 

1    Introduction 

When you obtain a piece of software - a shrink- 
wrapped application, a browser plugin, an applet, an OS 
kernel extension - you might like to ascertain that it's safe 
to execute: it accesses only its own memory and respects 
the private variables of the API to which it's linked. In a 
Java system, for example, the byte-code verifier can make 
such a guarantee, but only if there's no bug in the verifier 
itself, or in the just-in-time compiler, or the garbage col- 
lector, or other parts of the Java virtual machine (JVM). 

If a compiler can produce Typed Assembly Language 
(TAL) [14], then just by type-checking the low-level rep- 
resentation of the program we can guarantee safety - but 
only if there's no bug in the typing rules, or in the type- 
checker, or in the assembler that translates TAL to ma- 
chine language. Fortunately, these components are signif- 
icantly smaller and simpler than a Java JIT and JVM. 

Proof-carrying code (PCC) [ 15] constructs and verifies 
a mathematical proof about the machine-language pro- 
gram itself, and this guarantees safety - but only if there's 
no bug in the verification-condition generator, or in the 
logical axioms, or the typing rules, or the proof-checker. 

What is the minimum possible size of the components 
that must be trusted in a PCC system? This is like ask- 
ing, what is the minimum set of axioms necessary to 

'This research was supported in part by DARPA award F30602-99- 
1-0519 and by National Science Foundation grant CCR-9974553. 

prove a particular theorem? A foundational proof is one 
from just the foundations of mathematical logic, without 
additional axioms and assumptions; foundational proof- 
carrying code is PCC with trusted components an order 
of magnitude smaller than previous PCC systems. 

Conventional proof-carrying code. Necula [15] 
showed how to specify and verify safety properties of 
machine-language programs to ensure that an untrusted 
program does no harm - does not access unauthorized 
resources, read private data, or overwrite valuable data. 
The provider of a PCC program must provide both the 
executable code and a machine-checkable proof that 
this code does not violate the safety policy of the host 
computer. The host computer does not run the given code 
until it has verified the given proof that the code is safe. 

In most current approaches to PCC and TAL [15, 14], 
the machine-checkable proofs are written in a logic with 
a built-in understanding of a particular type system. More 
formally, type constructors appear as primitives of the 
logic and certain lemmas about these type constructors 
are built into the verification system. The semantics of 
the type constructors and the validity of the lemmas con- 
cerning them are proved rigorously but without mechnical 
verification by the designers of the PCC verification sys- 
tem. We will call this type-specialized PCC. 

A PCC system must understand not only the language 
of types, but also the machine language for a particular 
machine. Necula'sPCC systems [15,7] use a verification- 
condition generator (VCgen) to derive, for each program, 
a verification condition - a logical formula that if true 
guarantees the safety of the program. The code producer 
must prove, and the code consumer must check the proof 
of, the verification condition. (Both producer and con- 
sumer independently run the VCgen to derive the right 
formula for the given program.) 

The VCgen is a fairly large program (23,000 lines of C 
in the Cedilla Systems implementation [7]) that examines 
the machine instructions of the program, expands the sub- 
stitutions of its machine-code Hoare logic, examines the 
formal parameter declarations to derive function precon- 
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ditions, and examines result declarations to derive post- 
conditions. A bug in the VCgen will lead to the wrong 
formula being proved and checked. 

The soundness of a PCC system's typing rules and 
VCgen can, in principle, be proved as a metatheo- 
rem. Human-checked proofs of type systems are almost 
tractable; the appendices of Necula's thesis [16] and Mor- 
risett et al.'s paper [14] contain such proofs, if not of the 
actual type systems used in PCC systems, then of their 
simplified abstractions. But constructing a mechanically- 
checkable correctness proof of a full VCgen would be a 
daunting task. 

Foundational PCC. Unlike type-specialized PCC, the 
foundational PCC described by Appcl and Fclty [3] 
avoids any commitment to a particular type system and 
avoids using a VC generator. In foundational PCC the op- 
erational semantics of the machine code is defined in a 
logic that is suitably expressive to serve as a foundation 
of mathematics. We use higher-order logic with a few ax- 
ioms of arithmetic, from which it is possible to build up 
most of modern mathematics. The operational semantics 
of machine instructions [12] and safety policies [2] are 
easily defined in higher-order logic. In foundational PCC 
the code provider must give both the executable code plus 
a proof in the foundational logic that the code satisfies 
the consumer's safety policy. The proof must explicitly 
define, down to the foundations of mathematics, all re- 
quired concepts and explicitly prove any needed proper- 
ties of these concepts. 

Foundational PCC has two main advantages over type- 
specialized PCC — it is more flexible and more secure. 
Foundational PCC is more flexible because the code pro- 
ducer can "explain" a novel type system or safety argu- 
ment to the code consumer. It is more secure because the 
trusted base can be smaller: its trusted base consists only 
of the foundational verification system together with the 
definition of the machine instruction semantics and the 
safety policy. A verification system for higher-order logic- 
can be made quite small [10, 17]. 

In our research project at Princeton University (with 
the help of many collcages elsewhere) we are building 
a foundational PCC system, so that we can specify and 
automatically prove and check the safety of machine- 
language programs. In this paper I will explain the com- 
ponents of the system. 

2    Choice of logic and framework 

To do machine-checked proofs, one must first choose 
a logic and a logical framework in which to manipulate 
the logic. The logic that we use is Church's higher-order 
logic with axioms for arithmetic; we represent our logic, 
and check proofs, in the LF mctalogic [10] implemented 
in the Twelf logical framework [18]. We have chosen LF 
because it naturally produces proof objects that we can 
send to a "consumer." 

The Twelf system allows us to specify constructors of 
our object logic. Our object logic has types tp; its prim- 
itive types are propositions o and numbers num; there is 
an arrow constructor to build function types, and pair 
to build tuples. For any object-logic type T, object-logic 
expressions ofthat type have metalogical type tm T. Fi- 
nally, for any formula A we can talk about proofs of A, 
which belong to the metalogical type pf {A). 

tp   : type. 
tm   : tp -> type. 
O: tp.   num: tp. 
arrow: tp -> tp -> tp. 

%infix right 14 arrow. 
pair: tp -> tp -> tp. 
pf   : tm o -> type. 

We have object-logic constructors lam (to construct 
functions). @ (to apply a function to an argument, written 
infix), imp (logical implication), and forall (universal 
quantification): 

lam: (tm Tl -> tm T2 ) -> tm (Tl arrow T2). 
@  : tm (Tl arrow T2) -> tm Tl -> tm T2. 

%infix left 20 @. 
imp    : tm o -> tm o -> tm o. 

%infix right 10 imp. 
forall : (tm T -> tm o) -> tm o. 

The trick of using lam and @ to coerce between met- 
alogical functions tm Tl -> tm T2 and object-logic 
functions tm (Tl arrow T2 ) is described by Harper, 
Honscll, and Plotkin [ 10]. We need object-logic functions 
so that we can quantify over them using forall; that is, 
the type of F in forall [F] predicate(F) must 
be tm T for some T such as num arrow num, but can- 
not be tm Tl   ->   tm  T2. 

We have introduction and elimination rules for these 
constructors (rules for pairing omitted here): 

beta__e: {P: tm T -> tm o) 
pf(P (lam F @ X)) -> pf(P (F X)). 

beta_i: {P: tm T -> tm o) 
pf(P (F X)) -> pf(P (lam F @ X)). 

imp_i: (pf A -> pf B) -> pf (A imp B). 
imp_e: pf (A imp B) -> pf A -> pf B. 

248 



forall_i: 
({X:tm T}pf(A X))    ->  pf(forall  A) . 

forall_e: 
pf(forall  A)    ->   {X:tm T}pf(A X). 

not_not_e:   pf   ((B  imp   forall   [A]   A) 
imp  forall   [A]   A) 

->  pf  B. 
Our proofs don't need extensionality or the general axiom 
of choice. 

Once we have defined the constructors of the logic, 
we can define lemmas and new operators as definitions 
in Twelf: 

and   :   tm o  ->   tm o   ->   tm o  = 
[A] [B] 
forall   [C]    (A  imp  B  imp  C)   imp  C. 

%infix  right   12   and. 

and_i :   pf  A  ->  pf  B   ->  pf    (A  and  B)    = 
[pi:   pf   A][p2:   pf   B] 
forall_i   [c:   tm o] 
imp_i   [p3]   imp_e   (imp_e p3  pi)   p2. 

and_el      :   pf   (A and  B)   ->  pf A  = 
[pi:   pf   (A  and  B)] 
imp_e   (forall_e pi  A) 
(imp_i    [p2:   pf  A]    imp_i    [p3:   pf  B]   p2). 

Of course, the defined lemmas are checked by machine 
(the Twelf type checker), and need not be trusted in the 
same way that the core inference rules are. Our interactive 
tutorial [1] provides an informal introduction to our object 
logic. 

3   Specifying machine instructions 

We start by modeling a specific von Neumann ma- 
chine, such as the Sparc or the Pentium. A machine state 
comprises a register bank and a memory, each of which 
is a function from integers (addresses) to integers (con- 
tents). Every register of the instruction-set architecture 
(ISA) must be assigned a number in the register bank: the 
general registers, the floating-point registers, the condi- 
tion codes, and the program counter. Where the ISA does 
not specify a number (such as for the PC) we use an arbi- 
trary index: 

0: rO 0: 
1: 
2: 

1: rl 

31- r31 
32: 

63: 

fpO 

fp31 
64: cc 
65: PC 

unused 

A single step of the machine is the execution of one in- 
struction. We can specify instruction execution by giving 
a step relation (r,m) H-> {iJ,m') that describes the relation 
between the prior state (r,m) and the state (r1',m') of the 
machine after execution. 

For example, to describe the instruction r\ <— r-± + r-x, 
we might start by writing, 

(r,m) H-> (r',m') ~ 
rJ{\) = r{2) + r(3) A (Vjf ^\.rJ{x)= r(x)) Am' = m 

In fact, we can define add(i.j,k) as this predicate on 
four arguments (/", m,r',m'): 

add(i,j,k) = 
Xr,m.y,m'. r1'(/) = r(j) + r(k) 

A(Vx^i.iJ{x) = r(x)) 
A m' = m 

Similarly, we can define the instruction r, m\r; + c\ 
as 

load(/,7,c)  = 
\r,my,m'. r1'(/) = m(r(j) + c) 

A (Vjt y£ i. r'(jc) = r(x)) A m' = m 

But we must also take account of instruction fetch and 
decoding. Suppose, for example, that the add instruction 
is encoded as a 32-bit word, containing a 6-bit field with 
opcode 3 denoting add, a 5-bit field denoting the destina- 
tion register i, and 5-bit fields denoting the source regis- 
ters j,k: 

3 i j k 
26 21 16 5 

The load instruction might be encoded as, 
0 

12 i / c 
26 21 16 0 

Then we can say that some number w decodes to an 
instruction instr iff, 

249 



dccode(w, instr) = 

0<i<25   A  0<;<25   A  0 < k < 25   A 
w = 3-226 + j-221+;-216 + it-2()  A 
instr = add((',y,&)) 

V(3/,;,c. 
0<i'<25   A  0<7<25   A  0<c<216  A 
w= 12-226 + (-221+;-216 + c-2°   A 
instr — load(/,y,sign-extend(c))) 

V 

with the ellipsis denoting the many other instructions of 
the machine, which must also be specified in this formula. 

Neophytos Michael and I have shown [ 12] how to scale 
this idea up to the instruction set of a real machine. Real 
machines have large but semiregular instruction sets; in- 
stead of a single global disjunction, the decode relation 
can be factored into operands, addressing modes, and so 
on. Real machines don't use integer arithmetic, they use 
modular arithmetic, which can itself be specified in our 
higher-order logic. Some real machines have multiple 
program counters (e.g., Sparc) or variable-length instruc- 
tions (e.g., Pentium), and these can also be accommo- 
dated. 

Our description of the decode relation is heavily fac- 
tored by higher-order predicates (this would not be pos- 
sible without higher-order logic). We have specified the 
execution behavior of a large subset of the Sparc archi- 
tecture (without register windows or floating-point). For 
PCC, it is sufficient to specify a subset of the machine ar- 
chitecture; any unspecified instruction will be treated by 
the safety policy as illegal, which may be inconvenient for 
compilers that want to generate that instruction, but which 
cannot compromise safety. 

Our Sparc specification has two components, a "syn- 
tactic" part (the decode relation) and a semantic part (the 
definitions of add, load, etc.). The syntactic part is de- 
rived from a 151-line specification written in the SLED 
language of the New Jersey Machine-Code Toolkit [19]; 
our translator expands this to 1035 lines of higher-order 
logic, as represented in Twclf; but we believe that a more 
concise and readable translation would produce only 500- 
600 lines. The semantic part is about 600 lines of logic, 
including the definition of modular arithmetic. 

4    Specifying safety 

Our step relation (r.m) i—+ (r1 ,m') is deliberately par- 
tial; some states have no successor state.  In these states 

the program counter r(pc) points to an illegal instruction. 
Now we will proceed to make it even more partial, by 
defining as illegal those instructions that violate our safety 
policy. 

For example, suppose we wish to specify a safety pol- 
icy that "only readable addresses will be loaded," where 
the predicate readable is given some suitable definion 
such as 

readable^) = 0 < x < 1000 

(see Appel and Feiten [2] for descriptions of security poli- 
cies that are more interesting than this one). 

We can add a new conjunct to the semantics of the load 
instruction, 

Ioad(f',y',c) = 
Xr.m.r1 ,m'. r1 (i) = m(r(j) + c) 

A readable(r(y) + c) 
A (VA- ^ i. r'ix) = r(x)) A m' = m. 

Now, in a machine state where the program counterpoints 
to a load instruction that violates the safety policy, our 
step relation >—> docs not relate this state to any succes- 
sor state (even though the real machine "knows how" to 
execute it). 

Using this partial step relation, we can define safety; a 
given state is safe if, for any state reachable in the Klcenc 
closure of the step relation, there is a successor state: 

safe-statc(/\ m)  = 
W.m'.  (r./H—V,/«')   =>   3iJ'.m". r1 ,m' -» r",m" 

A program is just a sequence of integers (representing 
machine instructions); we say that a program p is loaded 
at a location start in memory m if 

Un\dcd( p.m. start) = V/edom(/?). m(i + start) — p(i) 

Finally (assuming that programs arc written in 
position-independent code), a program is safe if, no mat- 
ter where we load it in memory, we get a safe state: 

safe)» = 
W.w. start.   \ondcd(p.m. start) A r(pc) = start => 

safe-statc(r, m) 

The important thing to notice about this formulation is 
that there is no verification-condition generator. The syn- 
tax and semantics of machine instructions, implicit in a 
VCgcn, have been made explicit - and much more con- 
cise -in the step relation. But the Hoare logic of machine 
instructions and typing rules for function parameters, also 
implicit in a VCgcn, must now be proved as lemmas - 
about which more later. 
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5   Proving safety trust the assembler. 

In a sufficiently expressive logic, as we all know, prov- 
ing theorems can be a great deal more difficult than 
merely stating them - and higher-order logic is certainly 
expressive. For guidance in proving safety of machine- 
language programs we should not particularly look to pre- 
vious work in formal verification of program correctness. 
Instead, we should think more of type checking: auto- 
matic proofs of decidable safety properties of programs. 

The key advances that makes it possible to generate 
proofs automatically are typed intermediate languages 
[11] and typed assembly language [14]. Whereas con- 
ventional compilers type-check the source program, then 
throw away the types (using the lambda-calculus principle 
of erasure) and then transform the program through pro- 
gressively lower-level intermediate representations until 
they reach assembly language and then machine lan- 
guage, a type-preserving compiler uses typed intermedi- 
ate languages at each level. If the program type-checks 
at a low level, then it is safe, regardless of whether the 
previous (higher-level) compiler phases might be buggy 
on some inputs. As the program is analyzed into smaller 
pieces at the lower levels, the type systems become pro- 
gressively more complex, but the type theory of the 
1990's is up to the job of engineering the type systems. 

source code source code 
Compiler 
Front-end 

IR (or byte codes) 

Optimizer 

\ check \ 

Compiler 
Front-end 

IR (or byte codes) 
Type-preserving 

Optimizer 

lower-level IR typed lower-level 
Code 

Generator 

\ check \ 

7i  /type- / IR \ check\ 
Type-preserving 
Code Generator 

assembly-level IR 
Register 

Allocator 

typed assembly lang. wjJeckx 
Type-preserving 
Res. Allocator 

native machine code 

Conventional Compiler 

/proof / 
;\ check \ 

Type-preserving Compiler 

proof-carrying 
native machine code' 

TAL was originally designed to be used in a certify- 
ing compiler, but one that certifies the assembly code and 
uses a trusted assembler to translate to machine code. But 
we can use TAL to help generate proofs in a PCC system 
that directly verifies the machine code. In such a system, 
the proofs are typically by induction, with induction hy- 
potheses such as, "whenever the program-counter reaches 
location /, the register 3 will be a pointer to a pair of in- 
tegers." These local invariants can be generated from the 
TAL formulation of the program, but in a PCC system 
they can be checked in machine code without needing to 

Typing rules for machine language. In important in- 
sight in the development of PCC is that one can write 
type-inference rules for machine language and machine 
states. For example, Necula [15] used rules such as 

m r- x : ti X T2 

m h m(x) : Tj A m(x + 1) : T2 

meaning that if x has type Xi x X2 in memory m - meaning 
that it is a pointer to a boxed pair - then the contents of 
location x will have type Ti and the contents of location 
x+ 1 will have type X2. 

Proofs of safety in PCC use the local induction hy- 
potheses at each point in the program to prove that the 
program is typable. This implies, by a type-soundness ar- 
gument, that the program is therefore safe. 

If the type system is given by syntactic inference rules, 
the proof of type soundness is typically done by syntac- 
tic subject reduction - one proves that each step of com- 
putation preserves typability and that typable states are 
safe. The proof involves structural induction over typing 
derivations. In conventional PCC, this proof is done in the 
metatheory, by humans. 

In foundational PCC we wish to include the type- 
soundness proof inside the proof that is transmitted to 
the code consumer because (1) it's more secure to avoid 
reliance on human-checked proofs and (2) that way we 
avoid restricting the protocol to a single type system. But 
in order to do a foundational subject-reduction theorem, 
we would need to build up the mathematical machinery to 
manipulate typing derivations as syntactic objects, all rep- 
resented inside our logic using foundational mathematical 
concepts - sets, pairs, and functions. We would need to 
do case analyses over the different ways that a given type 
judgement might be derived. While this can all be done, 
we take a different approach to proving that typability im- 
plies safety. 

We take a semantic approach. In a semantic proof one 
assigns a meaning (a semantic truth value) to type judge- 
ments. One then proves that if a type judgement is true 
then the typed machine state is safe. One further proves 
that the type inference rules are sound, i.e., if the premises 
are true then the conclusion is true. This ensures that 
derivable type judgements are true and hence typable ma- 
chine states are safe. 

The semantic approach avoids formalizing syntactic 
type expressions. Instead, one formalizes a type as a set 
of semantic values. One defines the operator x as a func- 
tion taking two sets as arguments and returning a set. The 
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above type inference rule for pair projection can then be 
replaced by the following semantic lemma in the founda- 
tional proof: 

t=*:mT| xx2 

\=m(x) :„, Ti A m(x+ \) ,Ti 

Although the two forms of the application type- 
inference rule look very similar they are actually signif- 
icantly different. In the second rule Xi and \i range over 
semantic sets rather than type expressions. The relation 
1= in the second version is defined directly in terms of a 
semantics for assertions of the form x :„, X. The second 
"rule" is actually a lemma to be proved while the first rule 
is simply a part of the definition of the syntactic relation 
k For the purposes of foundational PCC, we view the se- 
mantic proofs as preferable to syntactic subject-reduction 
proofs because they lead to shorter and more manageable 
foundational proofs. The semantic approach avoids the 
need for any formalization of type expressions and avoids 
the formalization of proofs or derivations of type judge- 
ments involving type expressions. 

5.1    Semantic models of types 

Building semantic models for type systems is inter- 
esting and nontrivial. In a first attempt, Amy Fclty and 
I 13] were able to model a pure-functional (immutable 
datatypes) call-by-value language with records, address 
arithmetic, polymorphism and abstract types, union and 
intersection types, continuations and function pointers, 
and covariant recursive types. 

Our simplest semantics is set-theoretic: a type is a set 
of values. But what is a value? It is not a syntactic con- 
struct, as in lambda-calculus; on a von Neumann machine 
we wish to use a more natural representation of values that 
corresponds to the way procedures and data structures arc 
represented in practice. This way, our type theory can 
match reality without a layer of simulation in between. 
We can represent a value as a pair (ni.x), where m is a 
memory and .v is an integer (typically representing an ad- 
dress). 

To represent a pointer data structure that occupies a 
certain portion of the machine's memory, we let .v be the 
root address ofthat structure. For example, the boxed pair 
of integers (5.7) represented at address 108 would be rep- 
resented as the value ({108 H-> 5.109 >-> 7}, 108). 

x m 

X 

■ 200 

201 

m 

200^ 1111 

4070 

To represent a function value, we let x be the entry ad- 
dress of the function; here is the function f(x) — x+ 1, 
assuming that arguments and return results arc passed in 
register 1: 

r, :=/-,+1 

jump(r7) 

This model of values would be sufficient in a semantics 
of statically allocated data structures, but to have dynamic 

heap allocation we must be able to indicate the set a of 
allocated addresses, such that any modification of mem- 
ory outside the allocated set will not disturb already al- 
located values. A state is a pair (a.m), and a value is a 
pair ((a.m).x) of state and root-pointer. The allocsct a 
is virtual: it is not directly represented at run time, but is 
existentially quantified. 

Limitations. In the resulting semantics [3] we could 
model heap allocation, but we could not model mutable 
record-fields; and though our type system could describe 
datatype 'a list = nil 

|    : :   of   'a   *    'a   list 
we could not handle recursions where the type being de- 
fined occurs in a negative (contravariant) position, as in 
datatype exp = APP of exp * exp 

I LAM of exp ->   exp 
where the boxed occurrence of exp is a negative occur- 
rence. Contravariant recursion is occasionally useful in 
ML. but it is the very essence of object-oriented program- 
ming, so these limitations (no mutable fields, no con- 
travariant recursion) are quite restrictive. 

5.2    Indexed model of recursive types 

In more recent work. David McAllester and I have 
shown how to make an "indexed" semantic model that can 
describe contravariant recursive types [4], Instead of say- 
ing that a type is a set of values, we say that it is a set of 
pairs (k.v) where k is an approximation index and v is a 
value. The judgement (k.v) <E x means, "v approximately 
has type x, and any program that runs for fewer than A' in- 
structions can't tell the difference." The indices k allow 
the construction of a well founded recursion, even when 
modeling contravariant recursive types. 

The type system works both for von Neumann ma- 
chines and for X-calculus; here I will illustrate the latter. 
We define a type as a set of pairs (k. v) where k is a non- 
ncsiative integer and v is a value and where the set X is 
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such that if (A:,v) € x and 0 < j < k then (7» e x. For 
any closed expression e and type x we write e :* x if e is 
safe for & steps and if whenever e >—>J v for some value v 
with j < k we have (k - j, v) e x; that is, 

e :* x    =    V/Ve'. 0< j <k A e^> e' A nf(e') => 

where nf(e') means that e' is a normal form — has no suc- 
cessor in the call-by-value small-step evaluation relation. 

We start with definitions for the sets that represent the 
types: 

-L      = {} 
T      = {{k,v} \k>0} 
int     = {<Jt,0>, <Jt, 1>,... |*>0} 

T!XT2   =   {{k,{vUV2))\Vj<k.{j,V1)eX]A(j,V2)€l2} 
O -> T   = {(k,Xx.e) I V; < kVv. (;» 60^ e[v/x] :; x} 

pF     = {<*,v> I    (*,v)eF*+,(±)} 

Next we define what is meant by a typing judgement. 
Given a mapping r from variables to types, we write 
r \=f, e : a to mean that 

Vc.G-.k T =» a(<?) :* a 

where a(e) is the result of replacing the free variables in e 
with their values under substitution o. To drop the index 
k, we define 

The: a   =   V*. T\=ke:a. 

Soundness theorem:    It is trivial to prove from these 
definitions that if    \=e : a 
stuck, that is, e' >—> e". 

and e e  then e' is not 

Well founded type constructors. We define the notion 
of a well founded type constructor. Here I will not give 
the formal definition, but state the informal property that 
if F is well founded and x: F(T), then to extract from x 
a value of type x, or to apply x to a value of type x, must 
take at least one execution step. The constructors x and 
—> are well founded. 

Typing rules. Proofs of theorems such as the following 
are not too lengthy: 

n=7t!(e):xi        r>7t2(e):x2        T\=e:i\xx2 

T\=e :%\ XX2 

I>ei :a->ß 

r>rci(e):x, 

T\=e2 : a 

Finally, for any well founded type-constructor F, we have 
equirecursive types: pF = F(pF). 

Our paper [4] proves all these theorems and shows the 
extension of the result to types and values on von Neu- 
mann machines. 

5.3   Mutable fields 

Our work on mutable fields is still in a preliminary 
stage. Amal Ahmed, Roberto Virga, and I are investigat- 
ing the following idea. Our semantics of immutable fields 
viewed a "state" as a pair (a, m) of a memory m and a set 
a of allocated addresses. To allow for the update of ex- 
isting values, we enhance a to become a finite map from 
locations to types. The type a{l) at some location / speci- 
fies what kinds of updates at that location will preserve all 
existing typing judgements. Then, as before, a type is a 
predicate on states (a,m) and root-pointers x of type inte- 
ger. In our object logic, we would write the types of these 
logical objects as, 

allocset 
value 

type 

fin 
num —+ type 
allocset x memory x num 
num x value   —■»   o 

The\e2 : ß 

The astute reader will notice that the metalogical type of 
"type" is recursive, and in a way that has an inconsistent 
cardinality: the set of types must be bigger than itself. 
This problem had us stumped for over a year, but we now 
have a tentative solution that replaces the type (in the al- 
locset) with the Gödel number of a type. We hope to re- 
port on this result soon; we are delayed by our general 
practice of machine-checking our proofs in Twelf before 
submitting papers for publication, which in this case has 
saved us from some embarrassment. 

5.4    Typed machine language 

Morrisett's typed assembly language [ 14] is at too high 
a level to do proof-carrying code directly. Kedar Swadi, 
Gang Tan, Roberto Virga, and I have been designing 
a lower-level representation, called typed machine lan- 
guage, that will serve as the interface between compilers 
and our prover. In fact, we hope that a clean enough def- 
inition of this language will shift most of the work from 
the prover to the compiler's type-checker. 

In order to avoid overspecializing the typed machine 
language (TML) with language-specific constructs such 
as records and disjoint-union variants, our TML will use 
very low-level typing primitives such as union types, in- 
tersection types, offset (address-arithmetic) types, and de- 
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pendent types. This will make type-checking of TML dif- 
ficult; we will need to assume that each compiler will have 
a source language with a decidable type system, and that 
translation of terms (and types) will yield a witness to the 
type-checking of the resultant TML representation. 

Abstract machine instructions. One can view ma- 
chine instructions at many levels of abstraction: 

1. At the lowest level, an instruction is just an integer, 
an opcode encoding. 

2. At the next level, it implements a relation on raw ma- 
chine states (r.m) i—> (V,m'). 

3. At a higher level, we can say that the Sparc add in- 
struction implements a machine-independent notion 
of add, and similarly for other instruction. 

4. Then wc can view add as manipulating not just regis- 
ters, but local variables (which may be implemented 
in registers or in the activation record). 

5. We can view this instruction as one of various typed 
instructions on typed values; in the usual view, add 
has type int x int —> int, but the address-arithmetic 
add has type 

(TO x I, x ... x x„) x const(/) —> (X; X T,_. ] X . 

for any /. 

XT„) 

X m 
108  

y\) ■ to 

v+2 V| : t| 

v,: t2 
1 IU- 

>'): t? 

6. Finally, we can specialize this typed add to the par- 
ticular context where some instance of it appears, for 
example by instantiating the /, /;, and T, in the previ- 
ous example. 

Abstraction level 1 is used in the statement of the theorem 
(safety of a machine-language program p). Abstraction 
level 5 is implicitly used in conventional proof-carrying 
code [15]. Our ongoing research involves finding seman- 
tic models for each of these levels, and then proving lem- 
mas that can convert between assertions at the different 
levels. 

Hoare logic. In reasoning about machine instructions at 
a higher level of abstraction, notions from Hoare logic 
are useful: preconditions, postconditions, and substition. 
Without adding any new axioms, we can define a notion 
of predicates on states to serve as preconditions and post- 
conditions, and substitution as a relation on predicates. 
But this can rapidly become inefficient, leading to proofs 
that are quadratic or exponential in size. Kedar Swadi, 
Roberto Virga, and I have taken some steps in lemma- 
tizing substitution so that proofs don't blow up [5]; in- 
teresting related work has been done in Compaq SRC's 
extended static checker [9]. 

Software engineering practices. We define all of these 
abstraction levels in order to modularize our proofs. Since 
our approach to PCC shifts most of the work to the hu- 
man prover of static, machine-checkable lemmas about 
the programming language's type system, we find it im- 
perative to use the same software engineering practices in 
implementing proofs as are used in building any large sys- 
tem. The three most important practices arc (1) abstrac- 
tion and modularity, (2) abstraction and modularity, and 
(3) abstraction and modularity. At present, wc have about 
thirty thousand lines of machine-checked proofs, and wc 
would not be able to build and maintain the proofs without 
a well designed modularization. 

6    Pruning the runtime system 

Just as bugs in the compiler (of a conventional system) 
or the proof checker (of a PCC system) can create security 
holes, so can bugs in the runtime system: the garbage col- 
lector, debugger, marshaller/unmarshaller, and other com- 
ponents. An important part of research in Foundational 
PCC is to move components from the runtime system to 
the type-checkable user code. Then, any bugs in such 
components will either be detected by type-checking (or 
proof-checking), or will be type-safe bugs that may cause 
incorrect behavior but not insecure behavior. 

Garbage collectors do two strange things that have 
made them difficult to express in a type-safe language: 
they allocate and deallocate arenas of memory contain- 
ing many objects of different types, and they traverse (and 
copy) objects of arbitrary user-chosen types. Daniel Wang 
has developed a solution to these problems [22], based on 
the motto, 

Garbage collection = Regions + Intcnsional types. 

That is, the region calculus of Tofte and Talpin [20] can 
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be applied to the problem of garbage collection, as no- 
ticed in important recent work by Walker, Crary, and Mor- 
risett [21]; to traverse objects of unknown type, the inten- 
sional type calculi of originally developed by Harper and 
Morrisett [11] can be applied. Wang's work covers the 
region operators and management of pointer sharing; re- 
lated work by Monnier, Saha, and Shao [13] covers the 
intensional type system. 

Other potentially unsafe parts of the runtime system 
are ad hoc implementations of polytypic functions - those 
that work by induction over the structure of data types 
- such as polymorphic equality testers, debuggers, and 
marshallers (a.k.a. serializers or picklers). Juan Chen and 
I have developed an implementation of polytypic primi- 
tives as a transformation on the typed intermediate repre- 
sentation in the SML/NJ compiler [6]. Like the XR trans- 
formation of Crary and Weirich [8] it allows these poly- 
typic functions to be typechecked, but unlike their calcu- 
lus, ours does not require dependent types in the typed 
intermediate language and is thus simpler to implement. 

7    Conclusion 

Our goal is to reduce the size of the trusted comput- 
ing base of systems that run machine code from untrusted 
sources. This is an engineering challenge that requires 
work on many fronts. We are fortunate that during the 
last two decades, many talented scientists have built the 
mathematical infrastructure we need - the theory and im- 
plementation of logical frameworks and automated theo- 
rem provers, type theory and type systems, compilation 
and memory management, and programming language 
design. The time is ripe to apply all of these advances 
as engineering tools in the construction of safe systems. 
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Abstract 

We formulate a Gentzen-style sequent calculus for par- 
tial correctness that subsumes propositioned Hoare Logic. 
The system is a noncommutative intuitionistic Linear Logic. 
We prove soundness and completeness over relational and 
trace models. As a corollary we obtain a complete sequent 
calculus for inclusion and equivalence of regular expres- 
sions. 

1    Introduction 

In formulating logics for program verification such as 
Hoare Logic (HL), Dynamic Logic (DL), or Kleene Algebra 
with Tests (KAT), it is tempting to treat tests and correctness 
assertions as a uniform syntactic category. This temptation 
is best resisted: although both are classes of assertions, they 
have quite different characteristics. Tests are local asser- 
tions whose truth is determined by the current state of exe- 
cution. They are normally immediately decidable. The as- 
sertion x > 0, where a; is a program variable, is an example 
of such a test. Tests occur in all modern programming lan- 
guages as part of conditional expressions and looping con- 
structs. Correctness assertions, on the other hand, are state- 
ments about the global behavior of a program, such as par- 
tial correctness or halting. They are typically much richer 
in expressive power than tests and undecidable in general. 

DL does not distinguish between these two categories of 
assertions. The two are freely mixed, and both are treated 
classically. For this reason, the resulting system is unnec- 
essarily complex for its purposes. The rich-test version of 
DL, in which one can convert an arbitrary correctness as- 
sertion to a test using the operator ?, is II}-complete (see 
[9]). Even with systems that do make the distinction, such 
as KAT, care must be taken not to inadvertently treat global 
properties as local; doing so can lead to anomalies such as 
the Dead Variable Paradox [13]. 

One major distinguishing factor between tests and cor- 
rectness assertions that may not be immediately apparent is 
that the former are classical in nature, whereas the latter are 

intuitionistic. For example, the DL axiom 

[p][q]b    =     [p;q]b 

can be regarded as a noncommutative version of the intu- 
itionistic currying rule 

p —> q -» b    =    p A g —> b. 

Gödel [8] first observed the strong connection between 
modal and intuitionistic logic, foreshadowing Kripke's for- 
mulation of similar state-based semantics for these logics 
[16, 17] (see [1]). Kripke models also form the basis of the 
standard semantics of DL(see [9]), although as mentioned, 
DL does not realize the intuitionistic nature of partial cor- 
rectness. 

In this paper we give a Gentzen-style sequent calculus 
S that clearly separates partial correctness reasoning into 
its classical and intuitionistic parts. In Section 4, where we 
introduce the system, we will explain why we view partial 
correctness reasoning in S as intuitionistic rather than clas- 
sical. System S has the flavor of a noncommutative intu- 
itionistic Linear Logic and is in some ways related to a sys- 
tem of Girard [6, 7], It is linear because expressions cannot 
be indiscriminately duplicated or eliminated. 

The system does not contain any contraction rules. The 
linear implication operator takes only programs as left ar- 
gument, while arbitrary partial correctness formulas can oc- 
cur on the right. There is a very limited way in which the 
weakening rule for programs can be used—programs can 
be inserted only at front of an environment. There is a co- 
contraction rule: a program of the form p+ already present 
in the environment can be duplicated. Troelstra [20, p. 25] 
remarks that contraction has more dramatic proof theoretic 
consequences than weakening when added to Linear Logic. 

We give relational and trace semantics for this logic 
and show how the logic captures partial correctness. We 
then prove soundness and completeness over both classes of 
models. As a corollary we obtain a complete sequent calcu- 
lus for inclusion and equivalence of regular expressions. 

We mention that our two equivalent semantics of Section 
3 are both special cases of a more general approach to the 
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semantics of noncommutative Linear Logic via quantales 
[21]. We restrict our attention to two special kinds of quan- 
tales: sets of traces and binary relations. Our completeness 
result is thus stronger than it would be for the more general 
semantics based on arbitrary quantales. 

2   Syntax 

The syntax of S comprises several syntactic categories. 
These will require some intuitive explanation, which we de- 
fer until after the formal definition. In particular we dis- 
tinguish between two kinds of propositions, which we call 
tests and formulas. 

tests 

programs 

b, c, d. 

P, 1, r,. 

b :— (atomic tests) | 1 
\b->c 

p := (atomic programs) | b 
\pUq\p C<: q | p+ 

<p := b | /; —> p 
V: :=e\T,p\T,p 

formulas ip, ijj,. 
environments   T,A,. 
sequents F h p 

In the above grammar, —> is called linear implication, C-: is 
a noncommutative multiplicative connective called tensor, 
U is a commutative additive connective called disjunction. 
and + is a unary operation called positive iteration. We use 
brackets where necessary to ensure unique readability. We 
abbreviate b —> 1 by b, J_ by 1, /; X q by pq, and 1 U p+ 

by;/. 
Several formalisms, such as PDL [5] and KAT [14], arc 

based on * rather than +. We can freely move between the 
two languages since * and + are mutually definable: 

P 1 U/^ P PP 

For this reason, models for one language can be viewed as 
models for the other. 

We base S on + instead of * because the resulting de- 
ductive system is cleaner—it contains no contraction rule1. 
This is perhaps due to the fact that + can be viewed as a 
more primitive operation than *. 

A test is cither an atomic test, the symbol ± represent- 
ing falsity, or an expression b —> c representing classical 
implication, where b and c arc tests. We use the symbols 
b,c,d,... exclusively to stand for tests. The set of all tests 
is denoted B. The sequent calculus to be presented in Sec- 
tion 4 will encode classical propositional logic for tests. 

A program is cither an atomic program, a test, or an ex- 
pression ;; U q, p ® q, or p+, where p and q are programs. 
We use the symbols p, q, r,... exclusively to stand for pro- 
grams. The set of all programs is denoted V. As in PDL 

1 In fact, one of the natural rules for ' 
a strong form of a contraction rule. 

[5], the program operators can be used to construct con- 
ventional procedural programming constructs such as con- 
ditional tests and while loops. 

A formula is either a test or an expression p —> p, read 
"after p, ip," where p is a program and p is a formula. In- 
tuitively, the meaning is similar to the DL modal construct 
[p] ip. The operator —> associates to the right. We use the 
symbols p, i/>,... to stand for formulas. 

Environments are denoted F, A,... . An environment 
is a (possibly empty) sequence of programs and formulas. 
The empty environment is denoted e. Intuitively, an envi- 
ronment describes a previous computation that has led to 
the current state. 

Sequents are of the form T \- p, where F is an en- 
vironment and p is a formula. We write h p for 
s r- p. Intuitively, the meaning of T h p> is similar 
to the DL assertion [T]^, where we think of the envi- 
ronment T = ... ,p.... , V»,... as the rich-test program 
••■ :/);••• ;t"?;--- of DL. 

The partial correctness assertion {b} p {<-•} of HL is en- 
coded by the formula b —* p —> c. The Hoare-stylc rule 

{MM^}, {(>„} Pn   {'■„} 

{b}p{c} 

is encoded by the sequent 

Pi <•'!■ • bn  —> Pi,  —> <",, h /;—>/;—> c. 

is a co-weakenin2 rule, which is 

It follows from Theorem 6.1 that all relationally valid rules 
of this form are derivable: this is false for HL (see [II. 151). 

3    Semantics 

3.1    Guarded Strings 

Guarded strings over P, B were introduced in [ 14]. We 
review the definition here. 

Let B = {l>i,... , bk} and P = {j>1,... , pm } be fixed 
finite sets of atomic tests and atomic programs, respectively. 
An atom of B is a program (\ ■ ■ ■ (k such that (:, is cither b, 
or bj. We require for technical reasons that the (', occur in 
this order. An atom represents a minimal nonzero element 
of the free Boolean algebra on B. We denote by ^4B the set 
of all atoms of B. For an atom a and a test b, we write a < b 
if o —> b is a classical propositional tautology. 

A guarded string is a sequence 

a    =    ttotfini •••o„_i</„a,!, 

where n   >  0, each n,   e  AB, and q,   e   P.   We define 
first(cr) = no and last(cr) = n„. 

If last(rr) = first(r), we can form the fusion product 
or by concatenating a and r, omitting the extra copy of 
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last(cr) = first(r) in between. For example, if a = apß 
and T = ßqj, then ar = apßqj. If last(o-) ^ first(r), 
then OT does not exist. 

For sets X, Y of guarded strings, define 

def 
XoY  =   {err | a G X, T G Y, or exists} 

Xn+l   =f XoXn. X°    =f   AB, Yn+1   ^ 

Although fusion product is a partial operation on guarded 
strings, the operation o is a total operation on sets of 
guarded strings. If there is no existing fusion product be- 
tween an element of X and an element of Y, then X oY = 
0. 

Each program p denotes a set GS(p) of guarded strings: 

GS(p)    =    {apß | a,ß G AB},    p atomic 

GS(b)    d=    {a£AB\a<b},    b a test 
def 

GS(p U q)    =     GS(p) U GS(q) 

GS(p ® q)    =f    GS(p) o G5(g) 

G5(p+)    d=     \J GS(p)n. 
n>\ 

It follows that GS{p*) = \Jn>0 GS(p)n. A guarded string 
a is itself a program, and GS[a) = {er}. 

A set of guarded strings over P, B is regular if it is 
GS(p) for some program p. The regular sets of guarded 
strings form the free Kleene algebra with tests on genera- 
tors P, B [14]; in other words, GS(p) = GS(q) iff p = <? is 
a theorem of KAT. 

Lemma 3.1 The regular sets of guarded strings are closed 
under the Boolean operations. 

Proof. Closure under 0 and union are explicit by means 
of the constructs ± and U. It was shown in [14] that for 
any program p, there is an equivalent program p such that 
GS(p) = GS(p) = R(p), where R(p) is the regular set of 
strings over the alphabet P U B U {b \ b G B} denoted by 
p under the usual interpretation of regular expressions. For 
example, if w = (pi U • ■ • U pm)*, we might take w = 
(6(pi U ■ • ■ U pm))*b, where b = (bi U h) • • • (bk U bk). 
The set GS(w) = GS(w) = R(w) is the set of all guarded 
strings. 

It remains to show closure under complement; closure 
under intersection follows by the De Morgan laws. Let p' 
be an expression such that R(p') = R(w) - R(p). The 
expression p' exists since the regular sets of strings over P U 
B U {b | b 6 B} are closed under the Boolean operations. 
Then Rip') is a set of guarded strings since R(w) is, and 

GS(p') = R(p') = R{w) - R{p) = GS(w) - GS(p). 

3.2   Trace Models 

Traces are similar to guarded strings but more general. 
They are defined in terms of Kripke frames. A Kripke frame 
over P, B is a structure (K, ma), where 

mK : P -»• 2KxK mK : B -> 2K. 

Elements of K are called states. A trace in K is a sequence 
of the form so<7iSi ■ ■ ■ sn-\qnsn, where n > 0, Sj G K, 
qt G P, and (si,si+i) G mK{qi+i) for 0 < i < n - 
1. The first and last states of a are denoted first(cr) and 
last(cr), respectively. If last(cr) = first(r), we can fuse 
a and r to get the trace or. If last(cr) ^ first(r) then 
ar does not exist. A trace so<7iSi ■ • ■ sn-iqnsn is acyclic 
if the Si are distinct. The model K is acyclic if all traces 
are acyclic. It is no loss of generality to restrict attention 
to acyclic models; every model is equivalent to an acyclic 
model obtained by "unwinding" the original model (see [9, 
p. 132] for an explicit construction). 

If X and Y are sets of traces, define 

XoY   =   {ar | a G X, T G Y, OT exists} 

X°   =   K,        Xn+1   =   XoX'\ 

Tests, programs, formulas, and environments are interpreted 
as sets of traces according to the following inductive defini- 
tion: 

\LP1K     —     {spt | (s,t) G trtA'(p)},    patomic 

[[b^K     —     Hi/f(6),     b atomic 
def 

[[LI K =       0 
def 

KpUqJlK    =     \LPHKU C<?IA- 

\Lp®qllK    =f    \LP$K°WK 

[lp+]]K    =     U WVA 
n>l 

def 
Kp-xp^K     —'    {s | Vr first(r) = s and r G II pi A: 

=>-last(r) G [{<pl\K} 
rr      -n ^ef „ 

[[r,Al^    =f    [[T]]Ko ][A]]K. 

It follows that 

mK = K - [ib]\K 

[[HA-    =    K 

HP*HA   =   U KP^- 
n>0 

Every trace cr has an associated guarded string gs (a) de- 
fined by 

gs(so9iSi •■•sn_ig„s„)    =    a0giQi---an_ig„Qn, 
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where ai is the unique atom of B such that s, G [[ail A- 

Thus gs(<r) is the unique guarded string over P, B such that 
CT<E ttgs(«r)]]K. 

The sequent r r- ip is valid in the trace model K if for 
all traces a G   [[T]]^, last(cr) G   IT^IA'. equivalently, if 
ttr]]K c nr)VjDK. 

The relationship between trace semantics and guarded 
strings is given by the following lemma. 

Lemma 3.2 In any trace model K, for any program p and 
tracer, r G KPIA iff gs(r) G GS(p). In other words, 
CPIA- = gs_1 (G5(p)). The map X i-> gs^A') isa KAT 
homomorphism from the algebra of regular sets of guarded 
strings to the algebra of regular sets of traces over K. 

Proof. Induction on the structure of p. I 

3.3   Relational Models 

Kripkc frames (K, IHA) also give rise to relational mod- 
els. In a relational model, tests, programs, formulas, and en- 
vironments arc interpreted as binary relations on K. Tests 
and formulas denote subsets of the identity relation. 

[-U/V 

{pUq]K 

[P+]K 

tjef 
mji(p),    p atomic 

clef 
{(.s,,s) | semK(b)}, b atomi 

tief 
0 

tief 
[p]l< U {([],< 

(jot 
[ph< ° [<?]A- 

tjef U wr< 
1>1 

tief 
[p->¥>]*-     =     {{s,s)\Vt{s,t)e [p]K 

=» (t,t)e [p],<] 

tr,A] 

le)K     =    {(s,s)\s€K} 
def 

A' [T]A-o [A; A'- 

Here o denotes ordinary composition of binary relations. It 
follows that 

W/v     =    {(«.») I (s,s) ^ [6]A-} 

[HA    =    {(s,s)|.seA'} 

[P*]A-    =     U  WÄ- 
»>0 

Writing .s 1= ip for (s,s) G   [<P]K, the defining clause for 
p -^ <p becomes 

s^p-^tp    •«•    W (s,<) G [/)]/<• => t N (,3, 

thus the meaning of p —>• <^ is essentially the same as the 
meaning of the box formula [p] p of DL. 

The sequent r h tp is valid in the relational model on 
(K, mK) if for all s,t G K, if (s,i) G [TIA-, then 
(t,t) G [(/?]«•; equivalently, if the DL formula [V]tp is 
true in all states under the rich-test semantics [5], where the 
environment T = ... ,p,... , ij>,... is interpreted as the 
rich-test program • • ■ ; p; ■ ■ ■ ; ?/>?; 

3.4   Relationship between Trace and Relational 
Models 

It can be shown by induction on syntax that the map 

r:X    ■->    {(first(ff),last(a)) | a G X} 

from sets of traces on K to binary relations on K maps 
Up]]A' to [p]A and \[tp]\K to [</?]A> using the fact that r 
commutes with the operators U and o on sets of traces and 
binary relations. It follows that validity over relational mod- 
els is the same as validity over trace models. We include 
these remarks to establish the connection with the standard 
relational semantics of DL. 

4    A Deductive System 

The rules of System S arc given in Figure 1. All rules 
arc of the form 

Ti H pi rn i- <Pn 
r\-p 

The sequents above the line are the premises and the sequent 
below the line is the conclusion. Since programs cannot 
occur positively on the right hand side of h, the system has 
introduction and elimination rules on the left of K 

Wc will use the notation F h tp ambiguously as both 
an object and a mcta-asscrtion. As an object it denotes a 
sequent, i.e. a sequence of symbols over the appropriate vo- 
cabulary. As a mcta-assertion it says that the sequent r h tp 
is provable in 5. In particular, FF^ means that the sequent 
r h tp is not provable in S. The proper interpretation should 
always be clear from context. 

A rule is admissible if for any substitution instance for 
which the premises are provable, the conclusion is also 
provable. The proof of the conclusion may depend on the 
structure of the expressions substituted for the metasymbols 
appearing in the rule or on the proofs of the premises. To 
show admissibility, it suffices to derive the conclusion in S 
augmented with the premises as extra axioms, considering 
the metasymbols appearing in the rule as atomic symbols 
in the object language. Any such derivation will then be 
uniformly valid over all substitution instances. 
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Axiom:      b\- c,    where 6 —> c is a classical 
propositional tautology 

Arrow Rules 

(R-+) rhp->9 

(I->) 
r,p,ii>,A h ip 

r,p-> V>,P,A h ip 

Introduction Rules: 

(I®) 
r,p,g,Ah<^ 

r,p ®5,AI-^ 

(IU) 
r,p,A I-I,?     r,5,Ah^ 

F,p U g. A h (/; 

(I-L) r,i,A^ 

(I+) g-> V.P
1-
 <P     Q -+ -PiP-.qh v 

(J -> iy5,p+ h ^ 

Elimination Rules: 

(E®) 
r,p® <7, A h v3 
r,p.3, A h (p 

(E+) 
r,p+,Ah if 
T,p, A h ^ 

(El U) 
T,p U g, A h y? 

r,p, A h ^ 

(E2U) 
T,p U g, A 1- -p> 

T,g, Ah ^ 

Structural Rules: 

(W</0 
r,Ah^ 

(Wp) 
p.r \- ip 

(CC+) 
r,p+,A\-tp 

r,p+,p+, A h <^ 

Cut Rule: 

(cut) 
r\-ip     r,ip,A\-ip 

r,Ah95 

4.1   Basic Properties 

Figure 1. Rules of System S 

Lemma 4.1 The rule 

(El) 

is admissible. 

r,Ah^ 

Proo/ From (I _L) and (R —») we get T h 1. The desired 
conclusion follows from (cut). I 

Lemma 4.2 The rule and sequent 

u)\- ib 
(mono)     ■         (ident)    <p h </? 

P —>  <y9 h p —> f/) 

are admissible. 

Proof. The following diagram gives a proof of (mono). 

P,<Pr- V 
(Wp) 

P ip,p\-l/) 
d->) 

P —»  iyj h p —>  Ip 
(R->) 

The identity sequent (ident) follows by induction on the 
structure of ip using (mono). The basis b h b is an instance 
of the axiom. I 

Lemma 4.3 The rules 

n-p- 
(MP) 

are admissible. 

<+> 
r,ph <£ 

(W±) 
rhi 

r,ph± 

Proo/ For (MP), we have ^ h y> by Lemma 4.2. The 
following fiaure eives the remainder of the derivation. 

<p\-<p 
(Wp) 

p,tp\- if 

: (Wp).(w^) 

T,p,ip\- if 

r h p —>• <y3  r,p -4- i/?,p h </5 
d->) 

(cut) 

To derive (W _L), the sequent r, _L,p I- _L is an instance 
of (I _L). Applying (cut) to this and the premise F h 1 
yields the desired conclusion. I 

We wish to pause and discuss briefly why we view par- 
tial correctness reasoning in S as intuitionistic rather than 
classical. It is not immediately obvious, since formulas are 
of the form pi -»•••-» pn —> b, where pi,... ,pn are pro- 
grams and & is a test. In particular, formulas are not closed 
under implication. But we can argue that the implication in 
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the formula p —> <p has intuitionistic flavor by considering 
the rules that introduce implication. Rule (R ->) is a typical 
rule of introduction of implication on the right of k Rule 
(I ->■) is not so typical, but it can be shown that this rule is 
derivable from (ident), (MP), (W^), (Wp), and (cut) as 
follows. 

p -> tjj h /; -> xj) 

p —> tj>,p h xj) 

: (Wi/').(Wp) 

(MP) 

r,p,v^A i- tp 

r,p ->• V', P I" V; T, p -> V;, P, V;, A I- p 
r,p->- </>,p, A i- V? 

(W r) 

(cut) 

Since each of the rules used in the above derivation 
clearly has an intuitionistic flavor, it follows that (I -») has 
as well. 

Lemma 4.4 The rule 

(iter) 9.Ph V 
</5,P+ l~ y> 

/'.? admissible. 

Proof. Taking q in (1+) to be 1, by (cut) it suffices to 
show ip \- I -> p. 1 -^ p \- p, and p>. 1,1 h p. These fol- 
low without difficulty from (R ->), (MP). (E 1), and (\V v). 

Lemma 4.5 The rules 

(curry) 

(uncurry) 

are admissible. 

Tpj) —> q ->  I;'; At"y1 

r,/j(7 —► i/Ji A 1- p 

r,pq->i!>,A\- p 

r,p —> <7 —> •(,.•, A h 9 

Proo/i By (cut), it suffices to show pq -> t'- h 
p -> q —> i/> and p -> g —> ?/; h pg -> 0. For the former, 
starting with pr/ -^ -ip \- pq -> ^/;, apply (MP) and (E '/:) to 

get pq -> V;iP:f? I" V;> then apply (R ->) twice. For the lat- 
ter, starting with ij> h 0, apply (Wp) twice to get p, r/. V- h 
V', then apply (I ->) twice to get p -> (/ -> V, P, 9 t" V'- The 
result then follows from (I C3) and (R ->). I 

4.2    Relation to Kleene Algebra 

We show in this section that S induces a left-handed 
Kleene algebra structure on programs. Recall that a Kleene 
algebra (KA) is an idempotent semiring such thatp*</ is the 
least solution to q + px < x and qp* is the least solution to 
q + xp < x. Equivalently, a Kleene algebra is an idempotent 
semiring satisfying 

1+pp* 1 + p p = p 

px < x  -» p*x < X 

xp < x  —>  xp* < X. 

(1) 

(2) 

(3) 

Boffa [2, 3], based on results of Krob [18], shows that for 
the cquational theory of the regular sets, the right-hand rule 
(3) is unnecessary. We will call an idempotent semiring sat- 
isfying (1) and (2) a left-handed Kleene algebra. Boffa's re- 
sult says that for regular expressions p and q. R(p) = R(q) 
iff p = q is a logical consequence of the axioms of left- 
handed Kleene algebra, where Ft is the usual interpretation 
of regular expressions as sets of strings. 

More specifically. Krob [18] shows that the elassieal 
equations of Conway [4], along with a certain infinite but 
independently characterized set of axioms, logically entail 
all identities of the regular sets over P. The classical equa- 
tions of Conway are the axioms of idempotent semirings, 
the equations (1). and the equations 

P* 

(P'lf 

(/' (?)  P 

l+p(qp)*q 

(p")*(l+p)'-\  H>0. 

Boffa [2. 3] actually shows that these equations plus the rul 

p- - p    -y    p   = 1 + p (4) 

—which the reader will note is neither left- nor right- 
handed—imply all the axioms of Krob, therefore the classi- 
cal equations of Conway plus Boffa's rule (4) are complete 
for the cquational theory of the regular sets over P. The 
classical equations and Boffa's rule are all easily shown to 
be theorems of left-handed KA. 

Our first task is to extend these results to Kleene algebra 
with tests and cuarded strinss. 

Lemma 4.6 Every p is provably equivalent to some p —> _L 
in the sense that p> h p —> ± and p —> _L h p. 

Proof. The formula rp ->•■■-» qn -» b is equivalent 
to <7i • • • qnb -> 1. The proof of this fact is quite easy using 
Lemma 4.5 and is left to the reader. I 

Lemma 4.7 Left-handed KAT is complete for the cqua- 
tional theory of the regular sets of guarded strings over P 
and B. //; other words, for every pair of programs p, (/ in 

the language of KAT, GS(p) = GS{q) if and only if the 
equation p = q is a logical consequence of the axioms of 
left-handed KAT. 
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Proof. We adapt an argument of [14], in which the same 
result was proved for KAT with both the left- and right-hand 
rule. It was shown there that for any program p, there is an 
equivalent program p such that 

(i) p = p is a theorem of KAT, and 

(ii) GS(p) = R{p), where R(p) is the regular set of strings 
over the alphabet PUBU{6|6eB} denoted by p 
under the usual interpretation of regular expressions. 

In other words, any p can be transformed by the axioms 
of KAT to another program p such that the set of guarded 
strings denoted by p is the same as the set of strings denoted 
by p. 

Now to show completeness of KAT over guarded strings, 
[14] argued as follows. Suppose GS(p) = GS(q). Then 

R(p) = GS(p) = GS(p) = GS(q) = GS(q) = R(q). 

Since KA is complete for the equational theory of the regu- 
lar sets, p = g is a theorem of KA. Combining this with (i) 
for p and q implies that p = q is a theorem of KAT. 

To adapt this to the present situation, we observe that 
p = qis a theorem of left-handed KA by the results of Boffa 
and Krob. Thus in order to complete the proof, we need 
only ascertain that the right-hand rule (3) is not needed in 
the proof of p — p. This does not follow from Boffa's and 
Krob's results, since the argument is in KAT, not KA. How- 
ever, a perusal of [14] reveals that the proof of p = p uses 
neither the left- or the right-hand rule, but can be carried 
out using only the classical equations of Conway and the 
axioms of Boolean algebra. I 

We now describe the left-handed KAT structure induced 
by S. Define pQq if q^ip\-p->ip is admissible; that 
is, if q —>■ ip h p —> tp is provable for all tp. Define p = q 
ifpQq and gCp. The relation C is a preorder, therefore 
= is an equivalence relation and C is a partial order on =- 
classes. Reflexivity is (ident) (Lemma 4.2) and transitivity 
follows from a single application of (cut). 

Lemma 4.8 The operators U and <g> are monotone with re- 
spect to C.. That is, ifp C. q, then p U r C q U r, pr C qr, 
and rp C rq. 

Proof. The rules (El U), (E2 U), and (I U) imply that 
p U q is the C-least upper bound of p and q modulo =. The 
monotonicity of U follows by equational reasoning: 

pQq =>• pQqlir and r Q qli r =>p\JrIZq\Jr. 

For <g>, we must show that if q -> ip h p -> ip for any 
ip, then qr -> (p h pr -> <p and rq —> ip \- rp —► <p for 
any ip. Using (cut), (curry), and (uncurry) (Lemma 4.5), 
it suffices to show that q —» r —> tp  \-  p —>■ r —>■ <p and 

r —► q —)• (p h r —)• p -> ip for any ip. The former.is im- 
mediate from the assumption, and the latter follows from 
(mono) (Lemma 4.2). I 

Lemma 4.9 Ifp C q and qq C q, then p+ C q. 

Proof. Certainly pq Qq by monotonicity. Then 

q —t tp I- pq -» ip 

q -> ip \- p —> ip 

q-><p,p\-(p 
(MP) 

q -> <p,p,qh- ip 

q^<p,p+ \~ p 

q —> ip h p+ —> ip 

(MP) 

(E®) 

(1+) 

(R->) 

Lemma 4.10 Let V/= denote the set of —equivalence 
classes. The operations LI, ®, a/zrf * are well defined on 

V/=, and the quotient structure (P/=, U, <S), *, -L, 1) is 
a left-handed KA. 

Proof.  We must argue that all the following properties 
hold: 

pU{qUr) = (pUq)Ur 
p U q = q U p 
p U ± = p 
p U p = p 
p(q U r) = pq U pr 
(p U g)r = pr U gr 

p(gr) = (pq)r 
Ip = pi = p 
Lp = p_L = _L 
1 U pp* = p* 
1 U p*p = p* 

pq Q q =>■ p*9 E ?• 

These are just the laws of left-handed KA written with the 
symbols of S. 

To derive the distributive law 

p(q U r)     C    pq U pr, 

first from (MP), (El U), and (E <8>), one can derive 
pq\J pr ^ ip,p,q\- ip from pq U pr —» ip h pg U pr —»■ </?. 
Similarly, one can derive pg U pr -> ip,p,r h 93 using 
(E2 U) instead of (El U). Then 

pg U pr —>• tp,p, q h y3 

pg 

twUpr->w,n,rl-w   : !- Zli£2 1.  (iu) 
po U pr -> w, p, A U r h (j? 
 7 —■!—- (I (»), (R-» 

U pr —>• 93 h p(g U r) —>■ (/? 

All the other axioms of idempotent semirings follow in an 
equally straightforward manner. Since U and <g> are mono- 
tone with respect to C (Lemma 4.8), they are well defined 
on =-classes. 

The inequality p+p+ C p+ follows from (CC +) by: 

(MP) 
p+ -> ip h p+ —>• ip 

p+ -+ ip,p+ \- ip 

p+ ^ ip,p+ ,p+ \- ip 
(CC+) 

</3 h p+p+ -> yJ 
(I®),(R->) 
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The inequality pCp+ follows from (E +) in a similar 
fashion. Monotonicity of + and * then follow from Lemma 
4.9 by equational reasoning: 

j)Cg+ and q+q+ C q+ 
PEI 

=>   p+ Qq+ 

pCq    =$■    p* = lUp+ ClUq+ =q*. 

We now prove the KA identities involving *.  Arguing 
equationally, we have 

p U pp+  C p+ U p+p+   C p+ U p+   C p+, 

and similarly p U p+p Q p+. For the opposite inequalities 
we will use Lemma 4.9. Clearly we have pCpU pp+. 
We also have ;;;; C ;>j5+, pp/;+ C pp+, pp+p C pp+ and 
pp+pp+ C pp+, hence 

(p U p/;+) (p U pp+)   C pp+  C ])U pp+. 

By Lemma 4.9, p+ CpU pp+. Since the opposite inequal- 
ity was already established, we have p+ = pU pp+. 

Now we can show that 1 U pp* = p*: 

p*      =    lUp+  =  lUpUpp+   =  lUp(lUp+) 

=    1 U pp*. 

The identities ;;+ = p U ;j+p and 1 U p*p = p* are ob- 
tained in a similar fashion. 

It remains to show pq C q => ;;*(/ C g. This is estab- 
lished by the following derivation: 

q -» 9 (- p<7 —> 9 

7 ->^p,(il"v3 

(MP) 

(Eg-.) 

o ->• G3 h r; ->• G9                   q ^ tp,p\- q 
(VVv)       V 

<^, 1 h- g -4 <^ <7 -> V,P+ h 9 ->• V 
(/ —> if, 1 U p+ h 7 —> f 

(R->) 

(itt-r) 

(IU) 

q -4 f h (1 U j?+)r/ 
(MP). (IK). (R->) 

V 

Lemma 4.11 Ifb—>c is a classical tautology, then b C. c. 
Thus the tests form a Boolean algebra modulo =. 

Proof. Wc have c —> f, b h c by the axiom b h c and the 
weakening rule (W 0), and wc have c —► f, c h ip by (MP). 
The desired conclusion c-» (,? h 6-> ^ then follows from 
(cut) and (R ->). I 

Combining Lemmas 4.10 and 4.11 and the fact that the 
regular sets of guarded strings form the free KAT on gener- 
ators P and B, we have 

Lemma 4.12 The structure (V/=, B/ = , LI, <g>, *, ~, 1, 1) 
is a left-handed KAT and is isomorphic to the algebra of 
regular sets of guarded strings over P and B. Thus for any 
programs p and q, p C q iff GS(p) C GS(q) andp = q iff 
GS(p) = GS(q). 

5    Soundness 

Theorem 5.1 IfT h ip is provable, then it is valid in all 
trace and relational models. 

Proof. We need only show soundness over trace models. 
This is easily established by induction on proofs in S with 
one case for each proof rule. We argue the cases (cut) and 
(I —>) explicitly. 

For (cut), we need to show that 

[[r,A]]K     C     lT,A,ip]iK 

under the assumptions 

\LT]1K     C     [[T,xj;]\K 

ir.^AD/f    C     [[r,V;,A,v?]]/c. 

Using monotonicity of o, 

=     l[T]]Ko HA]]K 

C     [[T,0]]A-° HAIK 

=     [[T^,,A]]K 

=       [[T]]Ko  [[0]]A°  \[A,ip]]K 

C     [[T]]A-o IUKO \LA,<PHK 

=     [[T]]Ko \[A,ip])K 

=     \LT,A,ip]\K. 

For (I —>), we want to show that if 

[[r,;;,V,A]]A-     C     lasr1 ([[</>]] A), 

then 

ttr,p->V>,P,A]]A-     C     last-1 ([[¥>]]/<:). 

It suffices to show that 

Up ->■ V'IA- ° ttpIU-     C      [tpIA- o [['01A'. 

But 

r€ Hp-K"]]A- ° EPIA- 

•»    first(r) € [[p -> V^IA and r £ [[PIA 

=►    r € [[/>]] A andlast(r) 6 [WA 

&    T G [[p]]A- o ttV'I/f- 

The other cases are equally straightforward. I 
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6 Completeness 

Theorem 6.1 IfTYp, then there exist an acyclic trace 
model K and a trace <r   G   \[T]]K such that last(cr)   g" 

Proof. By Lemma 4.6, we can assume without loss of 
generality that tp is of the form p ->• _L. The proof pro- 
ceeds by induction on the length of V. For the basis of 
the induction, suppose F is empty, so that Y p -> _L. 
Thenp ^ _L By Lemma 4.12, GS(p) ^ 0. Construct a 
Kripke frame K consisting of a single acyclic trace a such 
thatgs(cr) G GS(p). By Lemma 3.2, a G lplK- Then 
first(a) G {[£}}K andfirst(CT) £ [[p -> L]]K. 

For the induction step in which the environment ends 
with a program, say T, p Y ip, we have F Y p -» <p by (MP). 
Applying the induction hypothesis, there exist an acyclic 
trace model K and traces a and r such that er G [[F]]x, 
last(o-) = first(r), r G Uplx, and last(r) £ II^IA'- 

Then err G [[ F,p]] A-and last (err) g" [[<p]]A-. 
Finally, we argue the induction step in which the environ- 

ment ends with a formula, say T, ip Y p. By Lemma 4.6, we 
can rewrite this as T, q -> J_ Y p -> _L Let iu be an expres- 
sion representing the set of all guarded strings (see Lemma 
3.1). Let r and s be programs such that GS(r) = GS(p) D 
GS{qw) and GS(s) = GS(p) - GS{qw). These pro- 
grams exist by Lemma 3.1, and GS(p) = GS(r U s). By 
Lemma 4.12, we can replace p by r U s to get T,q —> J_ Y 
r U s ->• ±. By (R ->), T, g -> _L, r U s F ±, and by (I U), 
either r, q -> J_, r / _L or T, g ->• ±, s Y _L. But it can- 
not be the former, since T,q -t ±,q,w h ±, therefore 
F, g —> ± h qw —>• JL, and by Lemma 4.12, r C gtf, there- 
fore by (cut), r,q^lhr->l. 

Thus it must be the case that r,g -> _l_,,s Y _L, so 
F, g —> _L F s —> J_. By weakening we have r Y s —> J_. 
Then by the induction hypothesis, there exist an acyclic 
trace model K and traces a G [[TIA- and r G [[S]]A- 

such that last(cr) = first(r). Construct a trace model M 
consisting only of the acyclic trace or. By Lemma 3.2, 
T & [IqivliM, therefore no prefix of r is in UglU^- Then 
last(er) G [[g ->■ ±]]M, therefore o G [[T,g -> ±]]M. 
Moreover, last(a) ^ [[p ->■ _L]]A/, since last(cr) = first(r) 
andr G [[p]]M- ■ 

7 Conclusions and Future Work 

It has recently been shown that deciding whether a given 
sequent is valid is PSP/lCf-complete [12]. Several interest- 
ing questions present themselves for further investigation. 

1. The completeness proof relies on the results of Boffa 
[2, 3], which are based in turn on the results of Krob 
[18].   Krob's proof is fairly involved, comprising an 

entire journal issue. One would like to have a proof of 
completeness based on first principles. 

2. The relative expressive and deductive power of S com- 
pared with similar systems such as KAT, PDL, and 
PHL is not completely understood. S is at least as 
expressive as PHL and the equational theory of KAT, 
and apparently more so, since it is not clear how to ex- 
press general sequents pi,pi,<p2, ■■ ■ ,pn-i,fn I" i> 
in PHL or KAT. On the other hand, it is not clear 
how to express general Horn formulas of KA such as 
px = xq -> p*x = xq* in S. 

3. Application of the linear implication operator -> is 
limited to programs on the left-hand side and formu- 
las on the right-hand side. It would be interesting to 
see whether more general forms correspond to any- 
thing useful and whether the system can be extended 
to handle them. The operator —> is a form of residu- 
ation (see [19, 10]), and this connection bears further 
investigation. 

4. We would like to extend S to handle liveness proper- 
ties and total correctness. 

5. We would like to undertake a deeper investigation into 
the structure of proofs with an eye toward establishing 
normal form and cut elimination theorems. 
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Abstract 

We investigate the computational power of several 
models of dynamical systems under infinitesimal perturba- 
tions of their dynamics. We consider in our study mod- 
els for discrete and continuous time dynamical systems: 
Turing machines, Piecewise affine maps, Linear hybrid au- 
tomata and Piecewise constant derivative systems (a sim- 
ple model of hybrid systems). We associate with each of 
these models a notion of perturbed dynamics by a small 
e (w.r.t. to a suitable metrics), and define the perturbed 
reachability relation as the intersection of all reachability 
relations obtained by e -perturbations, for all possible val- 
ues ofe. We show that for the four kinds of models we con- 
sider, the perturbed reachability relation is co-recursively 
enumerable, and that any co-r.e. relation can be defined 
as the perturbed reachability relation of such models. A 
corollary of this result is that systems that are robust, i.e., 
their reachability relation is stable under infinitesimal per- 
turbation, are decidable. 

1    Introduction 
Recently, the investigation of the relations between dy- 

namics and computation attracted attention of several re- 
search communities (see e.g. [1] where Turing machines 
are considered as dynamical systems, and [2] and [3] where 
discrete and continuous time dynamical systems are con- 
sidered as computation models). 

Our initial motivation for this research was related to 
hybrid systems (see e.g. [4]). Since the first undecidability 
results were stated for hybrid systems (such as Linear hy- 
brid automata [5] or Piecewise constant derivative systems 
[3]), a folklore conjecture appeared, saying that this unde- 
cidability is due to non-stability, non-robustness, sensitiv- 
ity to initial values of the systems, and that it never occurs 
in "real" systems. There were several attempts to formalize 
and to prove (or to disprove) this conjecture [6, 7] (cf. Re- 
lated Work below). We think however that this conjecture 

*The work of this author was supported in part by the NATO under 
grant CRG-961115 

is more rich than these formalizations and that exploring 
relations between complexity of behaviours of a dynamical 
system (not necessarily hybrid) and its properties related to 
stability, robustness, chaos is an important scientific chal- 
lenge (see [8]). 

In this paper we explore one facet of this problem: how 
small perturbations of dynamics influence the computa- 
tional power of the system. We consider different kinds 
of transition systems corresponding to widely used mod- 
els of dynamical systems: Turing machines (TM), Piece- 
wise affine maps (PAM), Linear hybrid automata (LHA), 
and Piecewise constant derivative (PCD) systems. We in- 
troduce for these models a notion of "perturbed" dynam- 
ics and study the computational power of the correspond- 
ing perturbed systems. Perturbations are defined for each 
model using a notion of metrics on the state space (allow- 
ing to define how distant is the ideal dynamics from the 
perturbed one). The notion of small perturbation is easier 
to understand for computational models with a continuous 
state-space (such that PCD, LHA, and PAM) than for dis- 
crete ones like TM. For such models, given a transition sys- 
tem with a reachability relation R, the idea is to perturb the 
dynamics by a small e, and then, to take (as the perturbed 
dynamics of the system) the limit (intersection) Rw of the 
perturbed reachability relations as this e tends to 0. We say 
that a system is robust if its reachability relation does not 
change under small perturbations of the dynamics, i.e., R 
is equal to Ru. 

We show that for the three models of RAM, LHA, and 
PCD, the relation Ru belongs to the class 11° (i.e. it is 
co-recursively enumerable), and moreover, any n° relation 
can be reduced to a relation Ru of a perturbed system. In 
other words, any complement to a r.e. set can be semi- 
decided by an infinitesimally perturbed system. This result 
is somehow surprising since it means that noise by itself 
does not make the reachability problem decidable, but it 
transforms it in a rather non-trivial way (from S° to 11°). 
Furthermore, an immediate corollary of the result above is 
the following fact: the reachability problem is decidable 
for the class of robust systems. 

0-7695-1281-X/01 $10.00 © 2001 IEEE 
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In the case of Turing machines, the analogous notion 
of small perturbation is obtained by considering the pre- 
fix distance (Cantor distance) as metrics on the set of tape 
configurations. In fact, this metrics is an adequate charac- 
teristics for these machines; in particular, the dynamics of 
these machines has good properties w.r.t. this metrics, e.g., 
the transition function of a TM is always Lipshitz w.r.t. 
it (see [1] for a detailed argument). So, we consider that 
a TM is subjected to a small noise if its configuration is 
slightly perturbed in the sense of this metrics, or equiva- 
lently, all the perturbations of the tape content happen far 
from the head. Similarly to the other models, given a TM 
recognizing a language L, for every natural number n, we 
define Ln to be the set of all words that are accepted if we 
allow perturbations (arbitrary changes in the tape) beyond 
a distance n from the head, and we take Lw to be the in- 
tersection of all the languages Ln. It can be understood 
intuitively that the notion of robustness of a TM according 
to this notion of perturbation actually coincides with the 
notion of boundedness since only machines that can visit 
arbitrarily far positions from their initial position can have 
a different perturbed language. We prove that for TM also 
the same results as for the other models hold: the language 
Lw is in up and every 11° language can be represented 
as a perturbed language of a TM, which means that robust 
TM's correspond precisely to machines recognizing recur- 
sive languages. 

We give in the paper the proofs for the models men- 
tioned above in an increasing technical complexity order. 
The TM case unveils the mechanism of the effect of pertur- 
bation and allows to understand the essence of this mecha- 
nism on a common and relatively simple model. The PAM 
case makes it clear how this mechanism works in the con- 
tinuous state space, without unnceded technical complex- 
ity. Essentially the same techniques used for PAM can also 
be applied to the more popular model of LHA (we omit in 
this extended abstract the proofs concerning LHA). More- 
over, the proof for PAM is a good introduction to the trick- 
ier one for PCD, which is a simple and natural model for 
hybrid systems, and perhaps the most motivating case. 

Related work. Recently, a similar approach to ours was 
independently invented and applied in a completely differ- 
ent context to the analysis of numerical methods for chaotic 
dynamical systems by Kloeden and Kozyakin. In [9], they 
refer to the procedure of infinitesimal perturbation of dy- 
namical systems as inflation. 

The notion of perturbation we use (especially in the 
case of continuous state space systems) was inspired by 
the work of Anuj Puri who studied the reachability rela- 
tion of timed automata (with finitely many control states) 
under infinitesimal perturbation [10]. He showed that for 

these models, the perturbed reachability relation is still de- 
cidable and he gives an effective representation of this rela- 
tion. Our work concerns models that are more general than 
timed automata, and aims to show that infinitesimal per- 
turbation has the same effect on several common models 
of dynamical systems, namely that the perturbed dynamics 
corresponds in all cases to a co-recursively enumerable re- 
lation (set), and that robustness coincides with decidability. 

Concerning the decidability issue of the reachability 
problem, there are two works closely related to ours [6, 7]: 
Martin Fränzle has shown in [6] a similar result to ours for 
a certain model of hybrid systems. Our work shows that the 
fact that "robustness implies decidability" can be proved 
for other different types of transitions systems. Moreover, 
our hardness results (inverse implication) show that the re- 
lation between robustness and decidability is really tight. 
Our result is in contrast with Thomas Henzingcr's result 
[7] stating that reachability is still undccidable for hybrid 
systems that allow small perturbations of the trajectory. It 
is interesting to see that a small semantical difference be- 
tween these two approaches drastically changes the com- 
plexity. 

Finally, the effect of noise on the power of analog com- 
putational models and the dependence of this power from 
the level of this noise arc explored in [11, 12, 13]. Dif- 
ferently, we consider in our work the limit behavior with 
noise level tending to zero. 

Outline. The rest of the paper is organized as follows: 
in section 2 we define the computation models (kinds of 
dynamical systems) we consider: TM, PAM, and PCD, and 
their perturbed versions. In sections 3-5 we formulate and 
prove the main results for these models. For lack of space, 
we omit here the case of LHA since the proofs concerning 
these models are technically very similar to those for PAM. 

Acknowledgments. We would like to thank Vincent 
Blonde], Victor Kozyakin, Odcd Maler and Anuj Puri for 
useful discussion. 

2    Perturbed Models 
2.1    Perturbed Turing machines (PTMs) 

Let us recall the definition of a Turing machine (TM for 
short) (sec figure 1(a)). 

Let E be a finite alphabet, and let B be a special symbol 
ß^S. ATM over E is a tuple (Q, </„„■,, F, F) where Q is 
a finite set of control states, qinjt £ Q is the initial control 
state, F C. Q is a set of accepting states, and T is a set of 
transitions of the form (q,a) -> (q',b,8) where q,q' G Q, 
a,be EU{Z?},and<5<E {-1,0,1}. 

A configuration of the machine is an un- 
bounded  sequence  (from  left  and  right)  of the   form 
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(a)           £7 a-n-1 a-n a-2 a-i ao ai a2 3n an*1 ... 

(b)------.                            ill 
AtoÄse X                                      ,*' N 

IL * a-n a-2 a-i ao ai a2 an * 
• 

Noise 

Figure 1: (a) A Turing machine, (b) Its n-perturbed ver- 
sion. 

• • -0,-20—\{q,ao]aiü2 ■ ■ • where the a;s are symbols in 
S U {B}. Intuitively, [q, a0] means that the current control 
state of is q and that the head of the machine is at symbol 
a0. 

Given a transition (q, a) —> (q',b,5) in T, if the sym- 
bol pointed by the head of the machine is equal to a, then 
the machine can change its configuration in the following 
manner: the symbol pointed by the head is replaced by b 
and then the head is moved to the left or to the right, or it 
stays at the same position according to whether S is — 1,1, 
or 0, respectively. 

Let w = ai, ■ • ■, an be a word in £*. We say that 
w is accepted by M if, starting from the configuration 
• ■ ■ BBB[qinit,ai] ■ ■ -anBBB ■ ■ ■ the machine M even- 
tually stops in an accepting state. Let L(M) denote the set 
of such words, i.e., the recursively enumerable (r.e.) lan- 
guage semi-recognized by M. 

Now, let us introduce the concept of perturbed Turing 
machines (PTMs for short). Given an integer n > 0, the 
n-perturbed version of the machine M is defined exactly 
as M. except that before any transition all the symbols at 
the distance n or more from the head of the machine can be 
altered (i.e., replaced by other symbols) arbitrarily: Given 
a configuration 

■ ■ -a_„_ia_„a_„+i • • ■a.-i[q,a0]ai ■■ ■an-ianan+i ■■ ■ 

the n-perturbed version of M. may replace any symbols 
to the left of a_„ (starting from a_n_i) and to the right 
of an (starting from a„+i) by any other symbols in E U 
{B} before executing a transition of M (at a0). Hence, 
the machine becomes a nondeterministic transition system 
(see figure 1(b)). 

A word w is accepted by the n-perturbed version of M. 
if there exists a run of this machine which stops in an ac- 
cepting state. Let Ln{M) be the n-perturbed language of 
M, i.e., the set of words in £* that are accepted by the 
n-perturbed version of M. 

It is easy to see that if a word is accepted by M, then 
it can also be recognized by all the n-perturbed versions 
of Ai, for every n > 0 (perturbed machines have more 
behaviors). Moreover, if the (n + 1)-perturbed version ac- 

cepts a word w, the n-perturbed version will also accept it 
since obviously all alterations at distance greater than n +1 
from the head can also happen in the n-perturbed machine. 
Hence, we have: 

Lemma 1 Li(M) 2 L2{M) D ■■■ D L(M) 

This technically justifies the following crucial definition 
(explained in the introduction): uj-perturbed language of 
the machine M is given by 

LUM) = f]Ln(M) 
n 

Informally speaking, LU(M) consists of all the words that 
can be accepted by M when it is subject to arbitrarily 
"small" perturbations. The previous lemma could be triv- 
ially extended to: 

Lemma 2 LX(M) 2 L2{M) D-D^) D L{M) 

2.2    Piecewise affine maps 
The second kind of systems to which we apply small 

perturbations was introduced as a computation model in 
[2]. Recall some definitions and results from that paper. 

Definition 1 (PAM System) A Piecewise affine map sys- 
tem (PAM) is a discrete-time dynamical system V defined 
by an assignment x := f(\) on a bounded polyhedral set 
X C M , where f is a (possibly partial) function from X 
to X represented by a formula: 

f(\) = AiX + biforxe Pi,    i = l..N 

where A, are rational d x d-matrices, b^ £ Q and Pi are 
rational polyhedral sets in X. 

A trajectory of V is a sequence xn evolving according to 
/, i.e. such that xn+i = /(xn) for all n. 

In other words, a PAM system consists of partitioning 
the space into convex polyhedral sets ("regions"), and as- 
signing an affine update rule x := AiX + bi to all the points 
sharing the same region (see figure 2 (a)). 

(a) 

J. ̂
  \ 

Pi ■''' / 

"'/ A i . 

"'••-^!x+f?-v'    '"""Az'x+bz       \Aix+bi±// '■'••Ä2X+b2±£ 

Figure 2: (a) A 2-dimensional PAM system with 2 regions, 
(b) Its e-perturbed version. 
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It is important to emphasize that since we assume that 
all constants in the system's definition are rational, the ex- 
pressive power of PAM is not achieved using the introduc- 
tion of some non-computable real numbers. 

To each PAM V we associate its reachability relation 
Rv(-, ■) onQ . Namely, for two rational points x and y 
the relation Rv(x,y) holds iff there exists a trajectory of 
V from x to y. 

The following result on the computational power of 
PAMs was proved in [14, 2] 

Theorem 1 (Simulation of TM by PAM) Let  M   be  a 

TM. We can effectively construct a PAM V and an encod- 

ing e : S* —> Q such that for any word w the following 

equivalence holds, w G L{M) iff Rv(e(w),0), where O 
denotes the origin in lRe. 

The following characterization of the complexity of the 
reachability relation is now immediate: 

Corollary 1 (Computational power of PAM) 

• For any PAM V its reachability relation is r.e. 

• Any r.e. set S is l-reducible (see [15]) to the reacha- 
bility relation of a PAM. 

2.3 Perturbed PAMs (PPAMs) 

Now wc can apply the paradigm of small perturbations 
to PAMs. Consider a PAM V described by the assignment 
x := /(.r). For any e > 0 we consider the s-perturbed 
system Vz (sec figure 2 (b)). Its trajectories arc defined as 
sequences x„ satisfying the inequality ||x„+i — /(x„)|| < e 
for all 7i. This non-deterministic system can be considered 
as V submitted to a small noise with magnitude e. We 
denote reachability in the system V€ by 7?f (•, •). All tra- 
jectories of a non-perturbed system V are also trajectories 
of the e-perturbed system Vs. If ci < £■> then any trajec- 
tory of the Ei -perturbed system is also a trajectory of the 
e^-perturbcd PAM. 

Like for TM we can pass to a limit for e —> 0. Namely 
Il£(x,y) iff Ve > 0 R?{x,y). This means reachability 
with arbitrarily small perturbing noise. 

The following analog of Lemmata 1 and 2 is now im- 
mediate: 

Lemma 3 For any e-> > E\ > 0 and rational points 
x and y the following implications hold: Rv(\.y) => 
C(x,y)^<(x,y)^i?^(x,y) 

2.4 Piecewise Constant Derivative Hybrid Sys- 
tems (PCDs) 

The last kind of systems to which wc apply small per- 
turbations was introduced in [3] in the context of hybrid 
systems. Recall some definitions and results. 

Figure 3: (a) A 2-dimcnsional PCD system with 4 regions 
and a trajectory from x to y. (b) The e-perturbed version of 
this PCD. 

Definition 2 (PCD System) A piecewise-constant deriva- 
tive (PCD) system is a continuous-time dynamical sys- 
tem Ft defined by a differential equation x = /(x) on a 
bounded polyhedral set X C 1R (the slate-space), where 
f is a (possibly partial) function from X to IR' represented 
by a formula: 

f(\) =Ciforxe Pi. 1..A' 

where c, £ Q' and P, are rational polyhedral sets in X. 

A trajectory of H starting at some x0 £ A" is a solution 
of the differential equation with initial condition x = Xo, 
defined as a continuous function £ : 1RV —► A' such that 
£(()) = x0 and for every t, f{£{t)) is defined and is equal 
to the right derivative of £(/). 

In other words, a PCD system consists of partitioning 
the space into convex polyhedral sets ("regions"), and as- 
signing a constant derivative c ("slope") to all the points 
sharing the same region (sec figure 3 (a)). The trajectories 
of such systems are broken lines, with the breakpoints oc- 
curring on the boundaries of the regions. In order to rule 
out some pathologies wc consider only PCDs H which sat- 
isfy an additional assumption of being strongly non-zeno 
i.e. the time interval between two consecutive visits of the 
same region should be bounded from below by a positive 
constant A. 

To each PCD Fl we associate its reachability relation 
RH{-, ■) on Q'. Namely, for two rational points x and y 
the relation Rn(x.y) holds iff there exists a trajectory of 
FL from x to y. 

The following result on the computational power of 
PCDs was proved in [3] 

Theorem 2 (Simulation of TM by PCD) Let   M   be   a 

TM. Wc can effectively construct a PCI) Fl and an encod- 
ing c : E* —> Q' such that for any word w the following 
equivalence holds, w G L(M) iff Rn(e{w),0), where O 
denotes the origin. 
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Corollary 2 (Computational power of (strongly non- 
zeno) PCD) 

• For any PCD 7i its reachability relation is r.e. 

• Any r.e. set S is 1-reducible (see [15]) to the reacha- 
bility relation of a PCD. 

2.5   Perturbed PCDs (PPCDs) 
Consider a PCD U described by an ODE x = /(x). 

For any e > 0 the e-perturbed system Hs is described 
by the differential inclusion ||x — /(x)|| < e. This non- 
deterministic system can be considered as H submitted to 
a small noise with magnitude e (see figure 3 (b)). We de- 
note reachability in the system He by i?^(-, ■)■ The limit 
reachability relation i?^(x,y) is introduced and an analog 
of Lemma 3 is stated exactly as for PAMs. 

3    Results on PTMs 
Our first result is that the w-perturbed language of a TM 

is the complement of a recursively enumerable language. 

Theorem 3 (Perturbed reachability is co-r.e.) LU(M) 
is in the class 11°. 

Proof: First, we show that for every n £ N, Ln(M) is a 
regular language: 

Let us associate with the n-perturbed version of M a 
finite-state machine AM defined as follows: (1) Each of 
its configurations is composed of a control state of M and 
a finite sequence of length 2n + 1 corresponding to the part 
of the configuration in the radius n from the head. There 
are \Q\ x |E 4- \\2n+1 such configurations. (2) The transi- 
tion relation -> is constructed by simulating the transitions 
of M and considering that, when the head is moved to the 
left (resp. to the right), a symbol in E U {B} is nondeter- 
ministically chosen and appended to the left (resp. right) of 
the configuration and the right-most (resp. left-most) one 
is lost (it belongs now to the perturbed area of the configu- 
ration and hence it can be replaced by any other symbol). 

To formulate the link between the computations of AM 

and those of the n-perturbed version of M we need some 
definitions and notations: Let Accept = (E U B)n x [F x 
(S U B)] x (E U B)n. Given a configuration of M 

c = • • ■ a-n-ia^na-n+i ■ ■ ■ a-i[q,a0]ai ■ ■ ■ an-ianan+i ■ 

we define the sequence 

c\n = a_na_n+i • • • a_i[q, a0]ai ■ • • an_xOn 

of length 2n + l. 
Then, it is easy to see that: 

The n-perturbed version of M has an accepting 
run starting from a configuration c, if there exists 
f £ Accept such that c|„ A / in AM- 

Hence, we can effectively construct Ln(M) as a fi- 
nite union of computable regular languages: Let Basis be 
the finite set of sequences a0oi ■ • • an £ En+1 such that 
Bn[qinit,ao}ai ■ • -an -> / for some / £ Accept. Let 
Short be the finite set of sequences üQCLI ■ ■ ■ a,k £ E* with 
k < n such that Bn[qinit,a0]ai ■■ ■ a,kBn~k A /for some 
/ £ Accept. Then, we have 

Ln(M) = Short UBasisE* 

Since Ln(M) is regular and effectively constructible, 
the same holds for its complement Ln(M). Hence, the 
set Un Ln(M) = LU(M) is recursively enumerable as a 
union of a computable sequence of regular languages.    D 

A consequence of the theorem above is that robust lan- 
guages (i.e. LU(M) = L(M)) are necessarily recursive 
(since they must be in E° D U°): 

Corollary 3 (Robust => decidable) If LU(M) = L(M) 
then L(M) is recursive. 

The converse holds if we add another requirement on M: 

Proposition 1 (Decidable => robust) // M always stops 
(andhence L(M) is recursive) then L,^(M) = L(M) 

Now, we show that in general, w-perturbed languages are 
not recursively enumerable. In fact, the following result 
says that some of them are complete among 11° languages. 

Theorem 4 (Perturbed reachability is complete in 11°) 
For every TM M, we can effectively construct another TM 
M' such that L^M1) = L[M). 

Proof: Let M = {Q,qinu,F,T) be a TM over E. Sup- 
pose w.l.o.g. that the machine M is such that, for every 
input w # L(M), M never stops and uses an unbounded 
working space (the head goes arbitrarily far from the initial 
position). 

Now, let us consider an extra symbol # ^ E. Then, we 
define the TM M' = (Q',q'init,F',r') over E U {#} as 
follows: Q' = Q U {q/}, q'init = qinit, F' = {qf}, and 
r' = ru {(<?,#)->(g/,#)   :  q£Q}. 

This means that M' is constructed as M except that 
all accepting states of M are rejecting for M' and that 
whenever M1 sees the symbol #, it stops in its unique 
accepting state qf. Let us prove that we have indeed 
LÜJ(M

,) = LjM). 
Consider a word w G L(M). Then, there exists an 

accepting run of M on w. By definition of M', this run 
is rejecting for M'. Let iV be size of the space used by 
this run. It can be seen that the (N + l)-perturbed version 
of M' has exactly the same behavior as M! on w since 
perturbations in the non-visited part of the configuration 
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have no effect. Hence w $ L^+x, and consequently w £ 
Lu (Lemma 2). 

Consider now a word w $ L(M). We show that for 
every n > 0, the n-perturbed version of M' recognizes w, 
which implies that w belongs to LU(M'). Let n > 0 and 
let us exhibit an accepting run of the n-perturbed version 
of M1 on w: Suppose that, in the perturbed machine, 
starting from the initial configuration, two symbols at the 
distance n + 1 to the left and to the right from the head arc 
replaced by the symbol #. Then, since w 0 L(M), the 
machine M has an unbounded run on w (see above the 
initial hypothesis on M). Since M' has all the transitions 
of M, it has also the same unbounded run on w, visiting 
positions arbitrarily far from the initial position of the 
head. Hence, the considered run of the n-perturbed 
version of M! eventually finds the # symbol and goes to 
the accepting state. D 

Proof: (1) Suppose that ||/(x) - y|| < e. Let ae(x) = qk 

anda£(y) = qj. Then dist(f(Vk), Vj) < dist{f(x),y) < 
e. Hence by definition of the automaton A£ the state qj is 
reachable from qk. 

(2) Suppose that ag(x) = qk and as(y) = qj 
and the state q3 is reachable from qk. In this case 
dist(f(Vk),Vj) < 6. Hence there exist x0 G 14 and 
y0 € Vj such that ||/(x0) - y0|| < S. As x0 and x are 
in the same cube 14 the distance between them is inferior 
to the diameter of this cube \/d5. The same is true for y0 

and y. Finally 

ll/(x)-y||<ll/(x)-/(xo)|| + ||/(xo)-y0|| + 

+ ||y0-y||<Lv/rf<5 + <5 + v/d<5, 

where the Lipschitz constant L can be found as 
L = max,-||4;||. We can take now C > Ly/d + 1 + y/d. 
D 

4    Results on PPAMs 
We consider now the case of perturbed PAMs and show 

that their perturbed reachability relation is co-recursivcly 
enumerable. 

Theorem 5 (Perturbed reachability is co-r.e.) The rela- 
tion R%(x,y) is Jtf on Qcl. 

Remember that in the case of TM, the proof of the similar 
result was based on the fact that the /(.-perturbed TM is in 
fact a finite-state system. For PAM. this actually docs not 
hold, but we can show that each e-pcrturbed PAM can be 
"faitfully " approximated by a finite-state automaton we 
define hereafter: 

Consider a PAM x := /(x) = 4,x + b, for x e 
Pi, i = 1..JV. For any S we can partition A' into 
finitely many cubes \\,... \'s of size 6. We say that !•) 
is a ^-successor of 1> if dist(f(Vk),Vj) < S, that is 
if some point of Vk can be mapped to a point near V}. 
Now wc can construct a finite automaton .4,5 with states 
Qs = {<7i! • • • i <7.s}» and with a transition from qk to qj au- 
thorized iff Vj is a (^-successor of 14. Informally speaking, 
the automaton 4^ represents the PAM with accuracy S. In 
order to formalize it wc introduce the following abstrac- 
tion function from A' to Qs'- fv^(x) = q, for x £ V, 

Lemma 4 (Simulation) (I) for any s > 0 f/||/(x) -y|| < 
£ (i.e. the e-perturhed system can make a transition from 
x to y) then the automaton 4=- can make a transition from 
at-(x) to o£(y); (2) for any S > 0 if the automaton As can 
make a transition from a<s(x) to ag(y), then ||/(x) — y|| < 
C5 (i.e. the CS-perturhed system can make a transition 
from x to y), where C is a rational constant independent of 
S; 

Corollary 4 R^(x,y) holds iff for all rational S > 0 in 
the automaton As the state a<$(y) is reachable from ag(x). 

Hence by complementation -i/?.^(x,y) iff for some ratio- 
nal S > 0 the state a$(y) is unreachable from ng(y) in the 
automaton As- Unrcachability in this automaton is (uni- 
formly in 8) dccidablc for any particular S, and hence the 
relation ^R^ is recursively enumerable, which terminates 
the proof of Theorem 5. 

Corollary 5 (Robust => decidable) // R^ = Rv then 
R    is recursive. 

Let us consider now the converse of Theorem 5.   Wc 
prove the following fact: 

Theorem 6 (Perturbed reachability is complete in 11^) 
Let M be a TM. We can effectively construct a PAM V 
and an encoding e : E* —> Qn such that for any word w, 
the following fact holds: w $ L(M) iffR^(e.(w),0). 

Proof: W.I.o.g. suppose that on any input word the ma- 
chine M either stops in an accepting state, or computes 
forever. First wc construct a 2-dimensional PAM VQ (and 
an input encoding c : E* —> Qn) that simulates M and 
semi-recognizes L(M) as described in [2]. Its main prop- 
erty is that for any word w the following equivalence holds: 
w G L{M) iff R^°{c{w),0). It is easy to verify that if a 
rather small neighborhood ! (e.g. a l/10-square)of the ori- 
gin is reachable from e(w) then w £ L(M). The last use- 
ful property of this simulation is that all the points of the 
trajectory starting from e(w) arc internal points of polyhc- 
draP,-. 

representing the accepting slate of the TM 
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Now we construct a new 3-dimensional RAM V whose 
perturbed version will "semi-recognize" L{M). We will 
use notation x or y for 2-dimensional vectors and h for 
the third dimension (so the generic element of E? will be 
(x,/i)). It is mainly the original system VQ embedded in 
the plane h = 2 of the space B3. However there are 2 
changes (compare with the proof for TMs) — informally: 

• The accepting state 0 (with his small neighborhood) 
of the original system Vo becomes rejecting for the 

m V new system V. 

• The zone h < 1 becomes accepting for the new sys- 
tem. 

The idea is that for any w £ L(M) the original PAM Vo 
will eventually arrive to O (and accept) and hence the per- 
turbed PAM V will arrive to the neighborhood of O x {2} 
and reject. For any w g L(M) the perturbed PAM V 
will slowly drift "down" until it reaches the accepting zone 
h<\. 

Formally, let the original system be defined on a subset 
of the cube [—T, T]2 C Ft~ by equation x := /(x). Denote 
the squared neighborhood of the origin [-0.1.0.1]2 C IB2 

by C. Then the new system will be defined on the rectan- 
gular set [-T - 1, T + l]2 x [-1,3] C E3 by the equation 
x := g(x, h) where g(\, h) is defined as follows: 

• if 1 < h < 3, and x £ C, then g(x:h) = (f(\),h). 
Informally speaking, in the layer 1 < h < 3 the sys- 
tem V simulates the original system Vo without mod- 
ifying h 

• if 1 < h < 3 and x G C, then g(x, h) is undefined 

• if h < 1 we go to the origin : g(x, h) = (0. 0) 

The input encoding function for the system V is as follows: 
e(w) = (e0(w),2) where eo is the encoding function of the 
original system V,. 

Now we have to prove that R%(e(w),0) iff w $ 
L(M). Suppose first that w £ L{M). In this case the TM 
M has an infinite-length run on w and the PAM Vo has an 
infinite trajectory xn starting in eo(ui). For any e > 0 we 
can construct a trajectory g of the e-perturbed system V as 
follows: 

• gn = (x„, 2 - en) for n e [0, fl/e]]; during the first 
[1/s] time units the system simulates VQ along first 
two dimensions slowly drifting down in the third one 

• gn = 0 for n > [1/e] the trajectory jumps to the 
origin and stays there. 

It is easy to see that gn is a trajectory of the e-perturbed 
system, and hence R^(e(w),0) holds. 

Now consider the other case when w £ L{M). Then 
the trajectory x„ of Vo starting in e0{w) eventually arrives 
to the origin. The non-perturbed trajectory gn of V 
starting in e(w) will follow xn in the plane h = 2 until it 
reaches the neighborhood C of the origin. Once in this 
neighborhood the system V dies immediately. The only 
thing to verify is that all perturbed trajectories of V starting 
in e(w) are close enough to gn for e small enough. Let T 
be the time of arrival to the origin (i.e. such that gr = 0), 
A — max{l,||Aj||} and 9 = mindzst(x„,9Pi(r!)). If we 

n<T v 

take e < 8A~T, then a straightforward induction shows 
that any e-perturbed trajectory g'n is close to gn and the 
same affine maps are applied until it enters the deadly 
neighborhood of the origin. D 

Theorem 7 All the results stated in this section can be 
proved in a very similar manner for Linear hybrid au- 
tomata (LHA). 

5    Results on PPCDs 
We consider finally the case of PCDs and prove the 

same results as for PAMs (and LHAs). The overall struc- 
ture of the proofs is the same as in the previous case. How- 
ever, the proofs for the two kinds of models are technically 
different due to the fact that the rules for accumulating er- 
rors (resulting from perturbations) are different for each 
of these models. An e-perturbation of a PAM results in 
moving the state by e in any direction at each transition, 
which ensures the simulation lemma 4 (the same holds in 
the LHA model). Differently from this, a perturbed trajec- 
tory in an g-perturbed PCD deviates from the ideal trajec- 
tory after crossing a region by ~ re, where r stands for the 
time needed to cross this region, and this time depends on 
the entry point to a region and the slope at this region and 
cannot be bounded from below. 

Our solution to this consists in observing (and approxi- 
mating by an automaton) the states of the PCD only when 
it enters some special good regions. In a non-Zeno system, 
the time r' between consecutive visits of good regions is 
bounded from below and the accumulated error ~ r'e is 
large enough to ensure simulation. 

Theorem 8 (Perturbed reachability is co-r.e.) The rela- 
tion R%(x,y) onQd is in Ii\. 

We proceed in a similar manner as for PAMs: We approx- 
imate the e-perturbed system by a finite-state automaton. 
However, relations between the system and the automaton 
are somewhat subtler. First of all, let N be the number of 
regions in the PCD, and a > 0 a positive constant specified 
below. Without loss of generality we can suppose that the 
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norm used in the definition of e-perturbed system is || ■ Hoc, 
which means that e-ball centered in a pointx is in fact a 
cube with side 2e. Let us introduce now some definitions: 

Definition 3 (Good points) A point x on the boundary of 
a region is good if the trajectory starting from x does not 
change direction during at least a time. Formally let c = 
/(x) be the slope in x. Then the vector field /(y) should be 
constant (and equal to c)for all y £ [x, x + ac] 

Lemma 5 (Good regions) The set G of all good points is 

a finite union of polyhedra of dimensionality < d. 

The following lemma, saying that the good regions are 
visited often, enough follows from the strong non-zcnoncss 
of the PCD. 

Lemma 6 Each perturbed trajectory crossing N regions 
visits a good region at least once. 

Let us sec now how wc define an "approximating au- 
tomaton": For any S we can partition G into finitely 
many polyhedra \\,... V's of size 5. Wc say that \) is 
a (^-successor of I\. if there exists a trajectory of the 6- 
pcrturbed system no more than N links from an x € Ij 
to an y £ V). It is easy to see that the property of being a 
(^-successor can be reduced to a linear programming prob- 
lem, and hence is dccidable. 

Then, wc can construct a finite automaton Ag with states 
Qs = {<h i ■ ■ ■! <7.s'}, and with a transition from r/j. to q} au- 
thorized iff V) is a ^-successor of \ \.. Informally speaking, 
the automaton .4,5 represents the (5-perturbed PCD with ac- 
curacy S. In order to formalize it we introduce the follow- 
ing abstraction function from A' to Qg: og(x) = q, forx £ 
V,. 

Hereafter, wc explore in which sense Ag simulates FL-:: 

Lemma 7 (Quasi-Simulation) Let x. y £ G be two good 
points. (I) for any e > 0 if the e-perturbed system can go 
from x to y via a trajectory with less than N links, then the 
automaton As can make a transition from nr(x) to n.-(y); 
(2) for any S > 0 if the automaton Ag can make a tran- 
sition from ag(x) to ag(y), then CS-perturbed system can 
go from x to a good point y' via a trajectory with less than 
N links, where C is a rational constant independent of S, 
andag(y) = ctS(y'); 

Corollary 6 (Many steps) Let x,y £ G be two good 
points. (I) for any e > 0 if the e-perturbed system has 

a trajectory from x to y , then the automaton A, has a run 
from as{x) to ne(y); (2) for any S > 0 if the automa- 

ton Ag has a run from r><s(x) to as(y), then CS-perturbed 
system has a trajectory from x to a good point y'), where 

a<s(y) = My')- 

It is still not the result that wc want, because first it con- 
cerns only reachability between good points, and, second, 
the target point y is replaced by a neighbor point y'. 

In order to deal with these two issues wc introduce the 
following (5-test for perturbed reachability between arbi- 
trary points. First of all wc construct the Ag automaton. 
Next, we proceed in three steps: 

1. Find the set Si of indices i such that \\ is reach- 
able by Tig from x via a trajectory with less then JV 
links. This can be done algorithmically using linear 
programming. 

2. Find the set S-2 of indices of all the states qj of the .4^ 
automaton reachable in this automaton from {q, \ i £ 
S\}. This is a reachability problem in a finite-state 
automaton. 

3. For each j £ S2 test whether y is reachable by %,>• 
from \'j via a trajectory with less then N links. This 
can be solved as in the first step using linear program- 
ming. In case of positive answer for any j £ 5L>, the 
rf-tcst succeeds, otherwise it fails. 

Notice that S-\csl always terminates. Then, it is easy to see 
that the following fact holds: 

Lemma 8 (Correctness of (5-test) For any two points x 
and y (1) if n^(x.y). then 6-test succeeds for x and y. 
(2) IfS-test succeeds for x and y. then 7?('f(j (x. y). 

Corollary 7 (x.y) ^ R^ if and only if for some n £ N 
the I /n-test fails for x and y. 

By the corollary above, a semi-decision algorithm for 
-■/?" is immediate, which terminates the sketch of proof 
of Theorem 8. 

Corollary 8 (Robust => decidablc) // iVj   =   RH then 
recursive. RH is , 

Finally, we can prove the converse result of Theorem 8. 
The proof is given in the appendix. 

Theorem 9 (Perturbed reachability is complete in Of,') 
Let M be a TM. We can effectively construct a PCD 
FL and an encoding c : E* —> Q" such that for any 
word w the following equivalence holds: w $ L(M) iff 
n*(c(w),ö). 

6    Conclusion 
Wc have shown that when we consider infinitesimal per- 

turbations in the dynamics of a system, the reachability re- 
lation becomes co-rccursively enumerable, which proves 
that robust systems are dccidable. It is interesting to ob- 
serve that these results hold for several different discrete 
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and continuous time models of dynamic systems, which 
shows that they correspond to a general phenomenon. The 
proofs of these results have also a common scheme, al- 
though they differ significantly depending from the speci- 
ficity of the dynamics of each class of models. 

Our results establish a tight link between the notions of 
decidability and robustness for infinitesimal perturbations. 
This link is of a semantical nature. An interesting question 
is to find sufficient "syntactical" conditions on the models 
of dynamical systems ensuring their robustness, leading to 
decidability results for classes of dynamical systems. 
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A    Proof of Theorem 9 
The idea of this proof is similar to the case of PAMs 

(Theorem 6). We take a PCD Tio simulating the machine 
M, and add one more dimension h. We start at the level 
h = 4. Accepting states of the PCD Ti0 become reject- 
ing in the new PCD Ti. In order to be accepting in li the 
trajectory should go down and reach the plane h = 0. It 
is possible for arbitrarily small e only if the original PCD 
7io can evolve during arbitrarily long time, that is the per- 
turbed version of ri accepts a word iff %0 does not accept 
it. 

First let us construct a 4-dimensional PCD Ho (and an 
input encoding e : E* —> Qn) which simulates M and 
semi-recognizes L(M) as described in [3]. Its main prop- 
erty is that for any word w the following equivalence holds. 
w G L{M) if and only if R^°(e(w), O) It is easy to verify 
that if a rather small neighborhood (e.g. a 1/10-ball) of the 
origin is reachable from e(w) then w G L(M). 

Now we construct a new 5-dimensional PCD V. whose 
perturbed version will "semi-recognize" L(M). We will 
use notation x, y for 4-dimensional vectors and h for the 
fifth dimension (so the generic element of M5 will be 
(x, h)). It is mainly the original system HQ submerged in 
the hyperplane h = 3 of the space R5. However there are 2 
changes (compare with the proof for PAMs) — informally: 

• The accepting state O (with his small neighborhood) 
of the original system %0 becomes rejecting for the 
new system H. 

• The zone h < 1 becomes accepting for the new sys- 
tem 

The idea is that for any w € L(M) the original PCD 
7^0 will eventually arrive to O (and accept) and hence the 
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perturbed PCD H will arrive to the neighborhood of O x 2 
and reject. For any w $ L(M) the perturbed PCD H will 
slowly drift "down" until it reaches the accepting zone h < 
1. 

Formally, let the original system be defined on a subset 
of the cube [-T,T]4 C RA by equation x = /(x). Denote 
the cubic neighborhood of the origin [—0.1,0.1]4 C iR4 

byC. 
Then the new system will be defined on the rectangular 

set [-T - 1,T + l]4 x [-1,5] C M5 by the equation 
(x, h)' = g(\, h) where g(x, h) is defined as follows: 

• if /;, > 4, then g(x, h) = (0,1) : anything that arrives 
in the layer h > 4 goes "up" and is rejected 

• if 2 < h < 4 and /(x) is defined, then g(x,h) — 
(/(x),0). Informally speaking, in the layer 2 < h < 
4 the system H simulates the original system Ho 

• if 2 < h < 4 and x £ C , then g(x, h) = (0,1) 

• if 2 < It. < 4 and /(x) is undefined, then g(x,h) = 
(0,1) 

• if 1 < li < 2 we go down : g(x, h) = (0, —1) 

• finally in the layer — 1 < h < 1 we put a (piecewisc 
constant) vector field with all the trajectories going to 
the oriüin. 

The input encoding function for the system % is as fol- 
lows: e(iv) = (eo(iu),3) where eo is the encoding function 
of the original system T-LQ. 

Now we have to prove that R%-(e(w),0) if and only if 
not w $ L(M). Suppose first that w $ L{M). In this case 
the TM M has an infinite-length run on w and the PCD Ho 
has an infinite trajectory x(t) starting in e.o(w). For any 
£ > 0 we can construct a trajectory g of the e-perturbed 
system "K as follows: 

• g(t) = (\(t), 3 - et) for t £ [0, l/e]\ during the first 
1/e time units the system simulates %o along first 
four dimensions slowly drifting down in the fifth one 

. 5(0 = (x(l/e),2-(t-l/e))for*€[l/e;l/e+l]- 
the next trajectory segment goes straight down with 
unit velocity during one time unit. 

• The last trajectory segment goes straight to the origin. 

Now consider the other case when w $ L{M). Then 
the trajectory x(t) of Ho starting in eo(w) eventually ar- 
rives to the origin. The non-perturbed trajectory g(t) ofH 
starting in e(w) will follow x(t) in the plane h = 3 until 
it reaches the neighborhood C of the origin. Once in this 
neighborhood the system H goes straight up to the death. 
The only thing to verify is that all perturbed trajectories 
of H starting in e(w) are close enough to g(t) fore small 
enough. This can be done similarly to PAMs. 
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Abstract. Dynamic programs, or fixpoint itera- 
tion schemes, are useful for solving many problems 
on state spaces, including model checking on Kripke 
structures ("verification"), computing shortest paths 
on weighted graphs ("optimization"), computing the 
value of games played on game graphs ("control"). For 
Kripke structures, a rich fixpoint theory is available 
in the form of the //-calculus. Yet few connections 
have been made between different interpretations of 
fixpoint algorithms. We study the question of when 
a particular fixpoint iteration scheme p for verifying 
an w-regular property $ on a Kripke structure can 
be used also for solving a two-player game on a game 
graph with winning objective *. We provide a suf- 
ficient and necessary criterion for the answer to be 
affirmative in the form of an extremal-model theorem 
for games: under a game interpretation, the dynamic 
program p solves the game with objective * if and 
only if both (1) under an existential interpretation on 
Kripke structures, p is equivalent to 3*, and (2) un- 
der a universal interpretation on Kripke structures, <p 
is equivalent to V*. In other words, p is correct on 
all two-player game graphs iff it is correct on all ex- 
tremal game graphs, where one or the other player has 
no choice of moves. The theorem generalizes to quan- 
titative interpretations, where it connects two-player 
games with costs to weighted graphs. 

While the standard translations from w-regular 
properties to the //-calculus violate (1) or (2), we give 
a translation that satisfies both conditions. Our con- 
struction, therefore, yields fixpoint iteration schemes 
that can be uniformly applied on Kripke structures, 
weighted graphs, game graphs, and game graphs with 
costs, in order to meet or optimize a given w-regular 
objective. 

1    Introduction 

If * is a property of a Kripke structure, then every //- 
calculus formula y? that is equivalent to * prescribes 
an algorithm for model checking *. This is because 
the //-calculus formula p can be computed by itera- 
tive fixpoint approximation. Indeed, the /i-calculus 
has been called the "assembly language" for model 
checking. 

In control, we are given a two-player game struc- 
ture and an objective, and we wish to find out if 
player 1 (the "controller") has a strategy such that 
for all strategies of player 2 (the "plant") the out- 
come of the game meets the objective. If the out- 
come of a game is an infinite sequence of states, then 
objectives are naturally specified as w-regular prop- 
erties [15]. A simple but important objective is the 
reachability property OT, for a set T of states, which 
asserts that player 1 wins if it can direct the game 
into the target set T, while player 2 wins if it can 
prevent the game from entering T forever. We write 
((l))OT for the reachability game with target T for 
player 1. A dynamic program for solving the reach- 
ability game can be viewed as evaluating a fixpoint 
equation, namely, 

((l))OT  =  nx.{TV lPre{x)), 

where lPre{T) is the set of states from which player 1 
can force the game into Tina single step. It is not 
difficult to see that this fixpoint equation is identical 
to the //-calculus expression for model checking the 
reachability property 30T, namely, 

BOT =  fix.{TW EPre{x)), (1) 

"This research was supported in part by the DARPA SEC 
grant F33615-C-98-3614, the MARCO GSRC grant 98-DT-660, 
the AFOSR MURI grant F49620-00-1-0327, the NSF Theory 
grant CCR-9988172, and the NSF ITR grant CCR-0085949. 

except for the use of the predecessor operator EPre in 
place of lPre, where EPre(T) is the set of states that 
have a successor in T. 

For every w-regular property $, it is well-known 
how to construct an equivalent //-calculus formula p> 
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[7, 4], which can then be used to model check 3$, 
i.e., to compute the set of states from which there is a 
path satisfying $. Now suppose we want to solve the 
control problem with objective "f. The question we 
set out to answer in this paper is whether p is of any 
use for this purpose; more specifically, if we simply 
replace all EPre operators in ip by lPre operators, 
do we obtain an algorithm for solving the game with 
objective "3/, i.e., for computing the set of states from 
which player 1 can ensure that $ holds? 

In general, the answer is negative. Consider the 
co-Biichi property OOT, which asserts that, eventu- 
ally, the target T is reached and never left again. The 
Emerson-Lei translation [7] yields the equivalent //- 

calculus formula 

BOGT  =  Li,x.(EPrc(x) V {vy.EPre{y) A T)).     (2) 

The Dam translation [4] gives 

30DT = ti,x.(EPre{x)V(TAEPre(vy.(TAEP7-c{i/))))), 

(3) 
and Bhat-Clcaveland [2] produce the same result. But 
neither of these formulas give the correct solution for 
games. To see this, consider the following game on the 
state space {«I ,A'2, .S:J}. At S\, player 2 can play two 
moves: one of them keeps the game in .sj, the other 
takes the game to .s_>. At s->- player 1 can play two 
moves: one of them keeps the game in .s_>, the other 
takes the game to ,s:!. Once in .S:J, the game remains 
in S;J forever. The target set is T — {s\.s^}. Then. 
((l))OGT = {äI,.S2,.S:J}. However, both equations (2) 
and (3) denote the smaller set {.s-2, «3} when EPrc. is 
replaced by lPre. 

We present an extremal-model theorem which says 
that the fixpoint formula ip over IP re solves the game 
with w-regular objective "P if and only if both of the 
following conditions arc met: 

E The EPrc version of p is equivalent to the exis- 
tential property 3$. 

A The A Pre version of p is equivalent to the uni- 
versal property V^. (Here, APrc(T) is the set 
of states all of whose successors lie in T, and VvE' 
holds at a state if all paths from the state sat- 
isfy *.) 

In other words, for a fixpoint formula ip to solve the 
game with w-regular objective "P, it is not only neces- 
sary but also sufficient that <p coincides with $ under 
the two extremal, non-game interpretations. In the co- 
Biichi example, while the expressions (2) and (3) sat- 
isfy condition E of the extremal-model theorem, they 
violate condition A. By contrast, in the reachability 

example, the expression (1) meets also condition A, 
because 

VOr  =  p.(rv APre(x)). 

We show constructively that for every u>-regular ob- 
jective $ there is indeed a fixpoint formula p which 
meets both conditions of the extremal-model theorem. 
The construction is based on the determinization of 
üj-automata [12, 13], and on the translation from al- 
ternating w-automata to /j.-calculus [5]. In particular, 
for the co-Biichi property we obtain 

((l))OüT =  nx.i/y.(lPrc{x)V (lPrc(y) AT)).   (4) 

The reader may check that both 

30GT  = iixMj/.{EPre(x)V {EPrc(y) AT)), 
VOGT =  fixMy.(APre(x) V {APrc{y) A T)). 

In general, our translation provides optimal algo- 
rithms for solving games with w-regular objectives: in 
particular, if the objective is given by a formula XP of 
linear temporal logic, then the resulting algorithm has 
a 2EXPTLME complexity in the length of # [11]. 

Our results also shed light on a related question: 
given a ''verification" //-calculus formula p,. that uses 
only the predecessor operator EPrc. what is the rela- 
tion between pv and its ''control" version pi,., obtained 
by replacing EPrc. with lPre? From [G] we know that 
if pv is deterministic, i.e., if every conjunction in p,. 
has at least one constant argument, then pv speci- 
fies an u>regular language: that is, p,. is equivalent 
to 3$ for some u,'-regular property xi. We introduce 
the syntactic class of stronyly deterministic //-calculus 
formulas, a subclass of the deterministic formulas, and 
we show that if i^,. is strongly deterministic, then pv 

solves the verification problem for specification 3*1' iff 
pc solves the control problem for objective VI'. This 
correspondence does not hold in general for determin- 
istic formulas. 

We extend the connection between verification and 
control also to quantitative properties. Consider a 
graph with nonnegative edge weights, which repre- 
sent costs. By defining an appropriate quantitative 
predecessor operator Pre.., the dynamic program for 
reachability. iix.{T V Pnu (./:)), computes the cost of 
the shortest path to the target T. Similarly, consider 
a game whose moves incur costs. Then again, for a 
suitable quantitative predecessor operator IPre.f, the 
dynamic program fix.(T\/ lPre , (x)) computes the real 
value of the game, which is defined as the minimal 
cost for player 1 to reach the target T (or infinity, if 
player 1 has no strategy to reach T). For general ir- 
regular objectives, we define the cost of the infinite 
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outcome of a game as the cost of the shortest (possi- 
bly finite) prefix that is a witness to the objective. We 
show that the extremal-model theorem applies to this 
quantitative setting also. This gives us dynamic pro- 
grams for solving the real-valued games with respect 
to all w-regular objectives. For example, equation (4) 
with lPre replaced by lPrej! specifies a dynamic pro- 
gram for the quantitative co-Buchi game, whose value 
is the minimal cost for player 1 to reach and stay inside 
the target T (this cost is infinite unless player 1 can 
enforce an infinite sequence of moves all but finitely 
many of which have cost 0). 

2    Reachability and Safety 

We define our setting, and in doing so, review some 
well-known results about iterative solutions for sim- 
ple verification, optimization, and control problems, 
where the objective is to reach or avoid a given set of 
states (expending minimal cost). 

2.1    Game structures 

We define game structures over a global set A of ac- 
tions, and a global set P of propositions. A (two- 
player) game structure G = (S,Ti,T2,6, (•)) (over A 
and P) consists of a finite set S of states, two action 
assignments Fi,r2: S —> 2A \ 0 which define for each 
state two nonempty, finite sets of actions available to 
player 1 and player 2, respectively, a transition func- 
tion 6: SxAxA-+S which associates with each state 
s and each pair of actions a G Ti(s) and b £ r2(s) a 
successor state, a weight function w: S xAx A —> R>o 
which associates with each state s and each pair of ac- 
tions a £ Ti(s) and b G T2(s) a nonnegative real, and 
a proposition assignment (•): 5 —> 2P which defines 
for each state s a finite set (s) C P of propositions that 
are true in s. Intuitively, at state s, player 1 chooses an 
action a from Ti(s) and, simultaneously and indepen- 
dently, player 2 chooses an action b from T2(s). Then, 
the game proceeds to the successor state 6(s, a, b). The 
nonnegative real w(s,a,b) represents the "cost" of the 
transition 6(s, a, b) (if it is to be minimized), or a "re- 
ward" (if it is to be maximized). Given a proposition 
p £ P, a state s 6 Sis called a p-state iff p £ (s). If 
S is not given explicitly, then we write S° to denote 
the state space of the game structure G. 

Game structures are "concurrent" [1]; they subsume 
"turn-based" game structures (i.e., and-or graphs), 
where in each state at most one of the two players has 
a choice of actions. A special case of turn-based games 
are the one-player structures. A one-player structure 

is either a player-1 structure or a player-2 structure. 
The game structure G is a player-1 structure if T2(s) 
is a singleton for all states s G 5; and G is a player-2 
structure if T\(s) is a singleton for all s £ S. In player- 
1 structures, player 2 has no choices, and in player- 
2 structures, player 1 has no choices. Every game 
structure G defines an underlying transition structure 
KG = (5, —>, (■)), where for all states s,t G 5, we have 
s —> t iff there exist actions a G Ti(s) and b G T2(S) 
such that 6(s,a,b) = t. Transition structures do not 
distinguish between individual players. 

Restrictions of game structures. A player-1 re- 
striction of the game structure G = (S,Ti,T2,6, (•)) 
is a game structure of the form Gi = (S,T[,T2,6, (•)) 
with T[(s) C Ti(s) for all states s G 5. Symmetri- 
cally, a player-2 restriction of G is a game structure 
oftheformG2 = (5,ri,r2,5,(-)) with T'2{s) C T2(s) 
for all s £ S. In other words, for i = 1,2, a player- 
i restriction of a game structure restricts the action 
choices that are available to player i. 

Strategies and runs. Consider a game structure 
G = (S,Ti,T2,6,(-)). A player-i strategy, for i = 1,2, 
is a function &: S+ —> A that maps every nonempty, 
finite sequence of states to an action available to 
player i at the last state of the sequence; that is, 
£i(s-s) £ Ti(s) for every state sequence s £ S* and ev- 
ery state s £ S. Intuitively, £;(s-s) indicates the choice 
taken by player i according to strategy & if the current 
state of the game is s, and the history of the game is s. 
We write E^ for the set of player-i strategies. We dis- 
tinguish the following types of strategies. The strategy 
£; is memoryless if in every state s £ S, the choice of 
player i depends only on s; that is, &(s ■ s) = £;(s) for 
all state sequences s £ S*. The strategy & is finite- 
memory if in every state s £ S, the choice of player i 
depends only on s, and on a finite number of bits about 
the history of the game; the formal definition is stan- 
dard [5]. 

A run r of the game structure G is a nonempty, 
finite or infinite sequence so(ao,b0)si(ai,bi)s2 ... of 
alternating states Sj £ S and action pairs (a,j,bj) £ 
Ti(sj) x T2(SJ) such that Sj+i = 6(sj,a,j,bj) for all 
j > 0. The first state so is called the source of the run. 
The weight of the run is w(r) = Y<j>ow(sj,aj,bj); 
the weight w(r) is either a real number, or infinity 
(if the sum diverges). Let £i G Hi and £2 G E2 

be a pair of strategies for player 1 and player 2, re- 
spectively. The outcome R^^2(s) from state s £ S 
of the strategies £i and £2 is a source-s infinite run 
of G, namely, Rilti2(s) = s0(a0,b0)sl(a1,b1)s2... 
such that (1) s0 = s and (2) for all j > 0, both 
aj ~ 6(soSi •••Sj) and bj = £2(so«i ••■Sj)- 
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Figure 1: Boolean game and transition predecessor operators 

2.2    Single-step verification and control 

Values and valuations. A value lattice is a complete 
lattice (V, U, n, T, 1) of values V with join U, meet l"l, 
top element T, and bottom element 1. Given u,v G 
V, we write uQviSu = uf\ v. Consider a game 
structure G = (5, Ti, r2, S: (■))■ A valuation f for G on 
the value lattice V is a function from states to values; 
that is, /: 5 -+ V. The set [S —► V] of valuations is 
again a lattice, with the lattice operations (U, I~l, T, J_) 
defined pointwise; for example, for two valuations /i 
and /,, we have (/, U /2)(.s) = ^(.s) U /2(.s) for all 
states .s e S. If /: S —> V" is a valuation such that 
/(.s) G {T,l} for all states s G 5, then by -/ we 
denote the "complementary" valuation with —f(s) = 
T if /(.s) = 1, and -/(.s) = 1 if /(.s) = T. For a set 
T C S of states, we write [T]: S —> \' for the valuation 
with [T](.s) = T if s G T, and [T](.s) = J_ if .5 £ T. 
For a proposition p £ P, we write [;;]: 5 —» V for the 
valuation with \p]{s) = T if p G (s), and [/)](.■>) = J_ if 
;;£(.s). 

Predecessor operators. Let F be a value lat- 
tice. Let Pre. be a family of functions that contains, 
for every game structure G, a strict (i.e., bottom- 
preserving), monotone, and continuous function Pre ': 
[SG -> V] -> [SG -> F]. The function family Pre 
is a predecessor-1 operator on V if for every game 
structure G, every player-1 restriction G\ of 6", ev- 
ery player-2 restriction Go of G, and every valua- 
tion /:'  S°  ->   V,  both Prea{f)  3   PrcG'(f) and 

C   Pre   ■{}).    Symmetrically,  the function Prc6'(/) 
family .P're is a predccessor-2 operator on F if for every 
game structure G, every player-1 restriction G\ of G, 
every player-2 restriction G2 of G, and every valuation 
/: S° -►" F, we have both Pre6'(/) E Prec,{f) and 
Prc.c'(f) 3 PTCC'2{f)- Intuitively, the more actions are 
available to player 1 in a game structure, the "better" 
(i.e., closer to top in the valuation lattice) the result 
of applying a predecessor-1 operator to a valuation, 
and the "worse" (i.e., closer to bottom) the result of 
applying a predecessor-2 operator. 

Example  1:    boolean  game  structures   ("con- 

trol"). Consider the boolean value lattice Vj — 
(B, V,A,T,F), where truth T is the top element and 
falsehood F is the bottom element. The valuations 
for a game structure G on Vj are called the boolean 
valuations for G; they correspond to the subsets 
of SG. Figure 1 defines the predecessor operators 
IPre-a and 2Prej, applied to a game structure G = 
(S,ri,r2,<5, (•)), boolean valuation /: S —* B, and 
state s G S. For a set T C S of states, the boolean 
valuation lPrc{\T}: S —* B of "controllable prede- 
cessors" is true at the states from which player 1 can 
force the game into T in a single step, no matter which 
action player 2 chooses. The operator 2Prej behaves 
symmetrically for player 2, and therefore solves the 
control problem for the player-2 objective of reach- 
ing the target set T in a single step. The operator 
lPre. is a predecessor-1 operator on Vn, and 2Pre\\ is 
a predecessor-2 operator. 

Example 2: boolean transition structures 
("verification"). Consider again the boolean value 
lattice \\. Figure 1 defines the predecessor operators 
EPre,, and APrej. For a set T C S of states, the 
boolean valuation EPrc°[T}: S —> B of "possible pre- 
decessors" is true at the states that have some succes- 
sor in T; the boolean valuation APre^[T]: S —► B of 
"unavoidable predecessors" is true at the states that 
have all successors in T. For each game structure G, 
the functions EPreG and APreG correspond to the 
branching-time "next" operators 30 an(' VO> respec- 
tively, of temporal logic interpreted over the under- 
lying transition structure KG. Therefore, EPre.% and 
A Pre , solve the verification problems with the specifi- 
cations of possibly or certainly reaching the target set 
T in a single step. The operators EPrc& and APre-$ are 
both predecessor-1 and predecessor-2 operators on Vj. 

Example 3: quantitative game structures ("op- 
timal control"). Consider the quantitative value, lat- 
tice Vf = (R>o U {oo},min,max,0, oo), where 0 is 
the top element and oo is the bottom element. Intu- 
itively, each value represents a cost, and the smaller 
the cost, the "better." In particular, u C v iff cither 
v,v G R>o and u > v, or u = oo; that is, the lattice 
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Figure 2: Quantitative game and transition predecessor operators 

is based on the reverse ordering of the reals. The val- 
uations for a game structure G on V$-, are called the 
quantitative valuations for G; they are the functions 
from SG to the interval [0,oc]. Figure 2 defines the 
predecessor operators lPrej and 2Prey, applied to a 
game structure G = (S,Ti,T-2,S, (•)), quantitative val- 
uation /: S —> [0, oo], and state s £ S. For a set 
T C 5 of states, the quantitative valuation lPreJ [T\: 
S —> [0, oo] gives for each state the minimal cost for 
player 1 of forcing the game into T in a single step 
(if player 1 cannot force the game into T, then the 
cost is oo). The operator 2Pret behaves symmetri- 
cally for player 2, and therefore solves the optimal- 
control problem with the player-2 objective of reach- 
ing the target set T in a single step at minimal cost. 
The operator lPre_f is a predecessor-1 operator on Vf, 
and 2Prej is a predecessor-2 operator. 

Example 4: quantitative transition structures 
("optimization"). Consider again the quantitative 
value lattice T>. Figure 2 defines the predecessor op- 
erators EPrey and APref. For a set T C S of states, 
the quantitative valuation EPreG[T}: S -* [O.oo] 
gives for each state the weight of the minimal tran- 
sition into T (or oo, if no such transition exists), and 
APreG[T): S —> [0,oc] gives for each state the weight 
of the maximal transition into T (or oo, if some tran- 
sition does not lead into T). These are the single- 
step shortest-path and single-step longest-path prob- 
lems on the underlying transition structure KG. The 
operators EPrey and APrtj are both predecessor-1 
and predecessor-2 operators on Vj. 

2.3    Multi-step verification and control 

Multi-step verification ("Can a target set be reached 
in some number of steps?"), optimization ("What is 
the shortest path to the target?"), and control prob- 
lems ("Can one player force the game into the target, 
in some number of steps, no matter what the other 
player does?") can be solved by iterating the single- 
step solutions ("dynamic programming"). Here, we 
exemplify the solutions for the goals of reachability 

and safety; more general objectives will be dealt with 
in Section 4. In the following, consider a game struc- 
ture G = (S,Ti,T2,S, (■)) and a proposition p e P. 

Reachability. We define Op to be the set of mini- 
mal finite runs of G that end in a p-state; that is, the 
run s0(a0,b0)si{aubi)...sm is in Op iff (1) p E (sm) 
and (2) for all 0 < j < m, we have p g (SJ). Figure 3 
defines four boolean valuations in [S —> B]. The valua- 
tion ((l))GOp is true at the states from which player 1 
can control the game to reach a p-state; the valua- 
tion ((2))°Op is true at the states from which player 2 
can control the game to reach a p-state; the valuation 
3GOp is true at the states from which the two players 
can collaborate to reach a p-state; the valuation Vf Op 
is true at the states from which no matter what the 
two players do, a p-state will be reached. The first two 
valuations specify boolean games with the reachability 
objective Op for players 1 and 2, respectively; the last 
two valuations specify the branching-time properties 
30p and VOp on the underlying transition structures. 

Figure 3 also defines the four corresponding quan- 
titative valuations in [S —> [0,oo]]; we use the con- 
vention that the infimum of an empty set of nonneg- 
ative reals is oo, and the supremum is 0. The valu- 
ation ((l))GOp gives for each state the minimal cost 
for player 1 to direct the game to a p-state (or oo, if 
player 1 cannot direct the game to a p-state); the val- 
uation ((2))GOp gives for each state the minimal cost 
for player 2 to direct the game to a p-state; the val- 
uation 3G.Op gives for each state the minimal cost to 
reach a p-state if both players collaborate; the valu- 
ation yGOp gives for each state the maximal reward 
achievable, if both players collaborate, before a p-state 
is reached. The first two valuations specify quantita- 
tive games with the reachability objective Op for play- 
ers 1 and 2, respectively; the last two valuations spec- 
ify shortest-path and longest-path problems on the un- 
derlying transition structure. 

The boolean and quantitative, valuations for the 
reachability objective Op can be characterized by 
least-fixpoint expressions on the corresponding valu- 
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Figure 3: Boolean and quantitative reachability games 

ation lattice: 

((l))v:^  =  fix. (\p]UlPrefix)), 

((2)>?Op  =   flx. ([p] U 2Pre\;ix)), 

3yOp 

(13) 

(14) 

fix. ([p}uEPre\;i.r)). (15) 

(16) VV-Oj;   =   ^.([plu^lH/)). 

whore V G {B.R}, and the variable x ranges over 
the boolean valuations in [S —> B] if F = B. and 
over the quantitative valuations in [5 —> [0, oc]] if 
V = U. In other words, a single fixpoint expression 
(namely, "Op = //,;:.(p Vprc(.r))") suffices for the solu- 
tion of boolean and quantitative verification and con- 
trol problems, provided the pre-oporator is interpreted 
appropriately. 

Fixpoint expressions proscribe1 algorithms. The so- 
lutions to the fixpoint equations (13) (16) can be com- 
puted itoratively on the valuation lattice as the limit 
of a sequence. x0,Xi,x-i,... of valuations: let x0 = ±. 
and for all k > 0, let xk+i = [p] U Prefix,.), where 
Pre £ {lPrc,2Pre,EPrc,APre}. For our four exam- 
ples, the iteration converges in a finite number of steps. 
This is well-known in the case of boolean game struc- 
tures and in the case of quantitative transition struc- 
tures; finite convergence can be shown inductively also 
for quantitative game structures. 

Safety. The complement of a reachability objective 
is a safety objective. We define Dp to be the set of 

infinite runs of the game structure G that never leave 
p-states; that is, the run s0(a0:b0)sl(ni,bi). ■ ■ is in Dp 
iff p <E (sj) for all j > 0. Figure 4 defines the boolean 
and quantitative valuations for the safety objective 
Dp. For example, the boolean valuation ((l))fOp is 
true at the states from which player 1 can control the 
game to stay within p-states; the quantitative valua- 
tion 3f Dp gives for each state the minimal cost of an 
infinite path that stays within p-states; the boolean 

valuation \/fOp is true at the states from which p is 
an invariant. 

The boolean and quantitative valuations for the 
safety objective Dp can be characterized by groatost- 
fixpoint expressions on the corresponding valuation 
lattice: 

l»r'°P  = vx ([p] HI Prefix)). (21) 
2)){'Dp   = vx ([p}n2Pref(x)). (22) 
3r

;Dp = vx. ([pjnEPref■(.,-)), (23) 
VfaP = vx ([p}n A Prefix)). (24) 

where V e {B.R}. The solutions to these fixpoint 
equations can again be computed itoratively as the 
limit  of a  sequence x().xi.x-,   of valuations:   let 
./•() = T. and for all k > 0. let ;/>+1 = [p] n Prefix,,.). 
This iteration converges for boolean game structures 
in a finite number of stops, but not necessarily for 
quantitative game or transition structures, whore con- 
vergence may require uj many steps. 

3     An Extremal Model Theorem 

For verification problems, fixpoint solutions are known 
for much richer objectives ("specifications") than 
reachability and safety, and a fixpoint theory the 
//-calculus is available for this purpose. In the 

case of reachability and safety, the fixpoint expres- 
sions we provided (namely. Op = /ix. (p V pre.(x)) and 
Dp = v.r. (p A pre(x))) solve both the verification and 
control problems. This is not always the case: as we 
pointed out in the introduction, there are fixpoint ex- 
pressions that solve a verification problem over tran- 
sition structures, but do not solve the corresponding 
control problem over game structures. We now char- 
acterize the fixpoint expressions that, solve both verifi- 
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Figure 4: Boolean and quantitative safety games 

cation and control problems, provided the predecessor 
operators are interpreted appropriately. 

3.1    Linear temporal logic 
Consider a game structure G = (S,Ti,T2,6, (■)). We 
express winning objectives for the infinite game played 
on G by formulas of linear temporal logic (LTL). The 
LTL formulas are generated by the grammar 

$   ::= p|-* | * V* |0* I *^*, 

where p e P is a proposition,O is the "next" operator, 
and U is the "until" operator. Additional constructs 
such as 0$ = TOT and D* = -iO-.$ can be defined 
in the standard way. A trace IT: u> —► 2P is an infinite 
sequence of sets of propositions. Every LTL formula 
* has a truth value on each trace. We write L(*) for 
the set of traces that satisfy *; a formal definition of 
£($) can be found in [9]. 

Boolean LTL games. Every infinite run r = 
so(ao,bo)si(ai,bi)s-2 ■ ■ ■ of the game structure G in- 
duces a trace (r) = {s0){si)(s2) ■ ■ ■ Consider a state 
s e S and an LTL formula *. We say that player 1 
can control state s for objective $ in the game struc- 
ture G if player 1 has a strategy fi e Si such that for 
all strategies £2 € S2 of player 2, the trace induced 
by the outcome of the game satisfies the formula *; 
that is, (R^,^(s)) e £(*). A suitable strategy & is a 
winning player-1 strategy for $ from s in G. We write 
((l»f *: 5 -> B for the boolean valuation that is true 
at the states which can be controlled by player 1 for 
* in G; see Figure 5. The player-2 winning valuation 
((2))f * is defined symmetrically. Figure 5 also defines 
the boolean valuation 3f *: 5 —> B, which is true at 
the states that satisfy the existential CTL* formula 
3* in the underlying transition structure KG; and 
the boolean valuation Vf *: S —> B, which is true at 
the states that satisfy the universal CTL* formula V* 
mKG. 

Quantitative LTL games. By ((l))f * we wish to 
denote the minimal cost for player-1 to achieve the ob- 
jective \P. Recall the previous section. In reachability 
games, we compute the cost of winning as the weight 
of a finite run that reaches the target, while in safety 
games, the cost of winning is the weight of an infi- 
nite run. This is because upon reaching the target, we 
know that the reachability objective is satisfied, while 
a safety objective can be witnessed only by the entire 
infinite run generated by a game. We generalize this 
principle to arbitrary LTL formulas by defining the 
satisfaction index of a trace with respect to an LTL 
formula. Given a trace TT = TY0TTITT2 ■ ■ ■ and a nonnega- 
tive integer k, the trace 7r' = -K'^'^-K^ ... is a k-variant 
of 7T iff -KJ = TTJ for all 0 < j < k. Let A(7r, k) be 
the set of fc-variants of -K. For a trace 7r and an LTL 
formula $, the satisfaction index K(TT, $) is the small- 
est integer k > 0 such that A(TY, k) C £(*) if such 
a k exists, and K(TT, *) = OO otherwise. Intuitively, 
n(ir, $) the minimal number of steps after which we 
can conclude that the trace 7r satisfies the formula $. 

For an infinite run r and a nonnegative integer k, 
let r[0..fc] be the the prefix of r that contains k states. 
Given an LTL formula $, the quantitative valuation 
((l))-pf\I>: 5 —> [0,oo] is formally defined in Figure 5. 
For each state s G 5, we say that ((l))^'\E,(s) is the 
player-1 value of the game with objective \£ at the state 
s of the game structure G. A strategy £i that attains 
the infimum is an optimal player-1 strategy for $ from 
s in G. The player-2 valuation ((2})Gty is defined sym- 
metrically. Figure 5 also defines the quantitative val- 
uation 3:f VP: 5 —* [0, oo], which for each state 5 gives 
the minimum cost necessary for determining that some 
path from s in the underlying transition structure KG 

satisfies $> (or oo, if no such path exists). Dually, the 
valuation Vf*: S —> [0, oo] gives for each state s the 
maximal reward attainable along some path from s in 
KG until \I> can no longer be violated. 
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Figure 5: Boolean and quantitative LTL games 

3.2    Fixpoint calculi for games 

We define a family of fixpoint logics on game struc- 
tures. The fixpoint, formulas arc generated by the 
grammar 

f  ::=  p\ ~^P \ '-r- \ <p\/ <p \ <p Aip \ 
pre^ip) | pre2(<p) \ px.ip | ux.ip, 

for propositions p £ P and variables x. A fixpoint 
formula ip is a one-player formula if either it contains 
no 7>7r:2-operat.or, or it contains no prex-operator. In 
the former case, <p is a player-1 formula; in the latter 
case, a play er-2 formula. Given a value lattice V, a 
predecessor-1 operator Pre,\ on I*, and a predecessor- 
2 operator Pre-, on V, the closed fixpoint formulas 
form a logic on game structures: for every game struc- 
ture G, every closed fixpoint formula p{Pre.i, Pre-)) 
specifies a valuation [tp]G: S° —> V. The syntac- 
tic operator pre{ is interpreted semantically as the 
predecessor-1 operator Prc\, and pre-, is interpreted 
as Prc.->. To make the interpretation of the pre- 
operators exi>licit, we sometimes write p{Prc\, Pre-)) 
when naming a fixpoint formula. Then, ip(Prc[, Pre',) 
describes the syntactically identical fixpoint formula, 
with the py'fi,-operator interpreted as Pre\, and pre-, 
interpreted as Prc2. Likewise, the one-player formulas 
have only a single predecessor operator as argument. 

We now define the semantics of fixpoint formulas 
formally. Let V be a value lattice V, let Prey be 
a predecessor-1 operator on V, and let Pre-) be a 
predecessor-2 operator on V. Let G be a game struc- 
ture. A variable environment £ for G is a function that 
maps every variable x to a valuation in [SG —> V']. We 
write £[x H-> /] for the function that agrees with £ on 
all variables, except that x is mapped to the valua- 
tion /. Given V, Prei, Pre-,, G, and a variable envi- 
ronment £ for G, each fixpoint formula (p specifies a 
valuation ftp}0: So —> V, which is defined inductively 
by the following equations: 

\P\GE    =   [P] 

=   ~[P] 

v\f=mx„n) 

MR   =  £(x) 

II^IMJF = {
P
;S)M

G 

im*- A? = {u){r-sa- 
All right-hand-side (semantic) operations are per- 
formed on the valuation lattice [SG —> V]. If (p is 
a closed formula, then [^|6' = \ip\G for any variable 
environment £. 

Provided that the predecessor operators Prc\ and 
Pre.) on V are computable, each formula ip{Prc\, Pre2) 
prescribes a dynamic program for computing the val- 
uation \ip\G over a game structure G by iterative ap- 
proximation. 

Example: mu-calculus. Choose the boolean value 
lattice V'L, and the predecessor operators Prei = 
EPre.i and Prc-i = APrc.g. The resulting logic on 
game structures coincides is the //.-calculus [8] on the 
underlying transition structures. 

Example: boolean game calculus. Choose the 
boolean value lattice V%, and the predecessor opera- 
tors Prei = lPre,; and Pre-, = ZPrc%. The result- 
ing logic on game structures is the alternating-time 
//-calculus of [1]. The player-i fragment, for i = 1,2, 
is expressive enough to compute the winning states for 
player i with respect to any LTL objective. 

Example: quantitative game calculus. Choose 
the quantitative value lattice Vf, and the predeces- 
sor operators Prei = lPrey and Pre2 = 2Prc-$-. The 
resulting logic may be called the quantitative game 
calculus. We shall see that the player-i fragment, for 
i = 1,2, is expressive enough to compute all player-2' 
values with respect to any LTL objective. 

Example: quantitative mu-calculus. Choose the 
quantitative value lattice Vy-, and the predecessor op- 
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erators Prt\ = EPrej: and Pre2 = APrej. The result- 
ing logic may be called the quantitative fi-calculus. It 
can be used to compute, for example, the minimal and 
maximal weights of paths that satisfy LTL formulas in 
transition structures. 

Monotonicity. The following monotonicity property 
of fixpoint formulas will be useful. 

Lemma 1 For every game structure G, every 1- 
restriction G\ of G, every 2-restriction G2 of G, and 
every player-1 fixpoint formula tp, we have [tp]G Zj 
[</?]Gl and [tpjG C. \<p\G2. A symmetrical result holds 
for player-2 formulas. 

Lean fixpoint formulas. We shall use fixpoint for- 
mulas as algorithms for computing the values of LTL 
games. The quantitative interpretation of a fixpoint 
formula, however, does not take into account the sat- 
isfaction index of the corresponding LTL formula, and 
may compute the cost of a trace even beyond the sat- 
isfaction index. For example, the LTL formula OT has 
the satisfaction index 0, because every state has a suc- 
cessor. Hence (3G'0 T)(s) = 0 for all game structures 
G and states s G SG. While 3G<3 T = [£Pre:B:(T)]G 

for all game structures G, if s G SG is a state all of 
whose outgoing transitions have positive weights, then 
[^Pre^T)]6'^) > 0. This motivates the definition of 
lean fixpoint formulas. A fixpoint formula tp is valid if 
for every game structure G and every state s G SG, we 
have [ip( 1 Pre&, 2Pre;S)]G(5) = T. A fixpoint formula 
is lean if no valid subformula contains pre-operators. 

From now on we will make heavy use of the following 
convenient notation. If fG and gG are two families 
of valuations, one each for every game structure G, 
then we write / = g short for "/G = gG for all game 
structures G." 

Lemma 2 Let $  be an LTL formula,  and let tp be 
a lean  one-player fixpoint formula.     Then 3u$ = 
lip{EPre%)] iff 3:p* = [<p{EPre-*)\, and V,* = 
MAPre,)] iffV»* = MAPrey)}. 

3.3    From verification to control: 
a semantic criterion 

The following theorem characterizes the fixpoint for- 
mulas that can be used for solving boolean as well as 
quantitative games with LTL winning objectives. The 
characterization reduces problems on two-player struc- 
tures (control) and on quantitative structures (opti- 
mization) to problems on boolean one-player struc- 
tures (verification), which are well-understood. 

Theorem 1 For every LTL formula \? and every lean 
player-i fixpoint formula tp, where i = 1,2, the follow- 
ing four statements are equivalent: 

• ({ih^ = y{iPrey)]. 

• ((ih.y=lv(iPrej.)l 

• 3;R* = \ip{EPre-k)\ and V:R* = \tp{APre9)\. 

• 3;S* = y(EPre-M)j and V** = [<p(APn3)). 

The theorem can be stated equivalently as follows: 

((i))G$ = y(iPrey;)]
G for all game struc- 

tures G iff ((»'»£# = y{iPreM)]G for all one- 
player structures G. 

In other words, the fixpoint formula tp prescribes an 
algorithm for computing the boolean or quantitative 
values of games with the winning objective $ iff it does 
so on all boolean, extremal game structures, where one 
or the other player has no choice of actions. 

Proof sketch. Clearly, a fixpoint formula tp that 
solves games with objective $ also works over one- 
player structures, which are special cases of games. 
For the implication from one-player to game struc- 
tures, we argue by contradiction. We start with the 
boolean player-1 interpretation (the proof for player 2 
is symmetric). First we notice that given a game 
structure G for which the two valuations ((l))f * 
and \tp{lPrej)\G differ, we can construct a turn- 
based game structure G' for which the valuations dif- 
fer as well. There are two cases. If ((l))G'*(s) < 
[tp(lPres,)jG (s) for some state s € SG', then we fix a 
finite-memory optimal strategy of player 2 and show 
that in the resulting player-1 structure G\, there is a 
state t such that (3Gl*)(t) < [tp(EPrej)\G' (t). Sim- 
ilarly, if ((l))G'*(s) > ltp(lPreM)]G'{s) for some state 
5 G SG , then we fix a finite-memory optimal strategy 
of player 1 and argue on the resulting player-2 struc- 
ture. The proof for quantitative games follows by a 
similar argument. Finally, we go from quantitative to 
boolean structures using Lemma 2. G 

Suppose we are given an LTL formula *. For ver- 
ifying whether some path of a transition structure 
KG satisfies *, we can construct a /^-calculus formula 
tp(EPrej.) that is equivalent to 3j* over all transition 
structures, and check tp(EPreM) over KG; this is, in 
fact, a symbolic model checking algorithm for LTL [3]. 
Now suppose that we want player 1 to control the 
game structure G for the objective *. Theorem 1 tells 
us whether we can simply substitute the controllable 
predecessor operator lPrej for the ^-calculus prede- 
cessor operator EPre-% in the fixpoint formula tp: the 
substitution works if and only if by substituting APrej. 
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for EPrcj in <p we obtain a formula that is equivalent 
to the universal interpretation Vft$ of the LTL formula 
over all transition structures. 

To see that this property is not trivial (i.e., not 
satisfied by every /f-calculus formula ip(EPrei) that 
is equivalent to B;B\P), consider the co-Büchi formula 
$ = OOp. Over transition structures, BOOp is 
equivalent to 3030p, which is equivalent to the p- 
calculus formula px.(vy.(p A EPrejiy)) V EPrefr(x)); 
indeed, this is the result of the standard transla- 
tion from LTL to the //-calculus for co-Büchi formu- 
las [7, 4]. However, the corresponding game formula 
px.(vy.(p A lPreg(y)) V lPreg(x)) does not compute 
the boolean valuation ((l))f ODp for all game struc- 
tures G: the game structure given in the introduction 
provides a counterexample. The criterion of Theo- 
rem 1 fails, because over transition structures, V.OD;; 
is not equivalent to VOVüp, and therefore V.J\P is not 
equivalent to fi/x.{vy.(ph APre^{y))\/ APrc ,{x)). This 
is not surprising, given that the solution of w-regular 
games requires deterministic (and hence Rabin chain) 
^-automata [15], whereas nondeterministic (and hence 
Biichi) cj-automata suffice for w-regular verification. 
The translations of [7, 4] from LTL to the //-calculus go 
via nondeterministic Biichi automata, and thus can- 
not be used to solve w-regular games. 

The- following theorem characterizes the cost of 
checking the criterion given in Theorem 1. There is a 
gap between the lower and upper bounds, which is due 
to the gap between the best known lower and upper 
bounds for the equivalence problem between an LTL 
formula and a //-calculus formula. 

Theorem 2 Let $ be an LTL formula, and let p 
be a one-player fixpoint formula. The complexity of 
checking whether 3,,* = |^] is in 2EXPTIME and 
PSPACE-hard in the size of $, and in EXPTIME 
in the size of p. The complexity of checking whether 
Vji VE' = [ipj is the same. 

3.4    From verification to control: 
a syntactic criterion 

Not all fixpoint formulas correspond to verification 
or control problems with respect to linear-time objec- 
tives. This is always the case, however, for the deter- 
ministic fixpoint formulas. The deterministic fixpoint 
formulas are generated by the grammar 

ip   ::=  p | -i/j | x | if V ip | p A tp | ip A p | 

prex(p) | pre.,(<p) | px.p \ vx.p. 

From [6] we know that if p(EPree) is a one-player de- 
terministic fixpoint formula, then there is an w-regular 
language 6 such that 3lt0 = \p(EPre ^)\.   However, 

the examples (2) and (3) in the introduction illustrate 
that for such a formula <p(EPrc&), in general it is not 
the case that ((l))a0 = \p{lPre.j)\. In other words, 
the correspondence between the deterministic fixpoint 
formula and the w-rcgular language does not necessar- 
ily carry over from verification to control. It is then 
natural to ask what other conditions we need, in addi- 
tion to determinism, for a one-player fixpoint formula 
to have related meanings in verification and control. 
We answer this question by introducing a subclass of 
the deterministic formulas. A fixpoint formula p is 
strongly deterministic iff ip consists of a string of fix- 
point quantifiers followed by a quantifier-free part i/>, 
which is generated by the grammar 

V»    ::=    P \  ^P \ V; V i' I P A V; I  ~~7' A V' I 
pre^x) I prc-,(x), 

X ■■= ■■r \x V X- 

Note that every strongly deterministic fixpoint for- 
mula is lean. The following theorem shows that 
the one-player strongly deterministic fixpoint. formu- 
las provide a syntactic class of fixpoint formulas for 
which the criterion of Theorem 1 applies. In partic- 
ular, it follows that for every LTL formula yi, every 
one-player strongly deterministic fixpoint formula p. 
and / = 1.2. we have ((/)). <I< = [p(iPre. )J. 

Theorem 3 For every LTL formula (I' and every one- 
player strongly deterministic fixpoint formula p. we 
have 3, * = \p{EPrc .)] iff V. * = fp{APre .)]. 

Proof sketch. A strongly deterministic formula 
starts with a quantifier prefix. In the sequence 
px\.vx> .. .vx2k of alternating fixpoints. the "evalua- 
tion order"' is ./■■_> >- x.\ y ■■ ■ y ./-2A' >- .'•■_>*-1 >-■■■>- ./'1 
(this reflects the extension of the variables when the 
expression is being evaluated). Using this evaluation 
order, every one-player strongly deterministic fixpoint 
formula p{EPre ,) can be brought into the normal 

form //.TI./ATO . . . ux->k ■(<•/() V'\J~=l(<l'j A EPre ,(x /))). for 
some k > 0 and some mutually exclusive boolean com- 
binations //(). d\... .. d>k of propositions. The theorem 
follows from the fact that this formula has essentially 
the same structure as the solution formula of a Rabin- 
chain game (cf. [5] and Section 4). D 

While the one-player strongly deterministic fixpoint 
formulas obey strict syntactic conditions, the proof of 
Theorem 3 shows that they suffice for solving all con- 
trol problems with Rabin-chain objectives. In turn, 
every w-regular property can be specified by a de- 
terministic Rabin-chain automaton [10, 15]. We can 
therefore transform every control problem with an u>- 
regular objective into a control problem with a Rabin- 
chain objective that is to be solved on the autoinata- 
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theoretic product of the given game structure and a 
Rabin-chain automaton. Hence, at the cost of possibly 
enlarging the game structure, the one-player strongly 
deterministic fixpoint formulas suffice for the solution 
of games with arbitrary w-regular objectives. 

4    Dynamic Programs for LTL 

We show that for every LTL formula Vf we can con- 
struct an equivalent fixpoint formula <p* that meets 
the criterion of Theorem 1. The formula ipy has the 
following properties: it solves both the verification 
problem (on transition structures) for specification \t 
and the control problem (on game structures) for ob- 
jective $>, both under boolean and quantitative in- 
terpretations. The construction of ipy is optimal for 
the boolean case, in that the 2EXPTIME complexity 
of the resulting algorithm for solving boolean games 
with LTL objectives matches the hardness of the prob- 
lem [11]. 

4.1     (Co)Büchi and Rabin-chain games 

The objective of a Biichi game is an LTL formula of 
the form OOp, for a proposition p £ P, and the objec- 
tive of a co-Büchi game is an LTL formula of the form 
OOp. For V = {B,R} and i = 1,2, the Büchi and 
co-Büchi valuations can be computed by the fixpoint 
formulas 

{(i))vOOp =   \i>y.px.(iPrev(x) V (p A iPrev{y)))\, 
{(i))vODp =   \iix.vy.(iPrev{x)\j{pMPrev(y)))\. 

The objective a Rabin-chain game is an LTL formula 
of the form $ = V*~o(D<>rf2j A -nDOd2j+1), where 
k > 0 is called the index of $, and d0,...,d2k are 
boolean combinations of propositions such that 0 = 
[d2k] C [ofefc-i] C • • • C [d0] = SG for all game struc- 
tures G. An alternative characterization of Rabin- 
chain games with objective $ can be obtained by 
defining a family fig: SG -> {0,1,..., 2k - 1} of in- 
dex functions, one for every game structure G, such 
that fi$(s) = j for all states s £ [dj] \ [dj+i]. Given 
an infinite run r of G, let Inf(r) C SG be the set 
of states that occur infinitely often along r, and let 
Maxlndex(tt$,r) = max{fi$(s) \ s £ Inf(r)} be the 
largest index of such a state. Then, the run r satis- 
fies the objective $ iff Maxlndex(fl^,,r) is even. For 
VeB,R and i = 1,2, the Rabin-chain valuation can 
be computed by the fixpoint formula 

((i))v$  =   [A2ft-ix2jt-i -ßx\ -VXQ. 

where Xj = v if j is even, and Xj = /x if j is odd 
(cf. [5]). Note that the fixpoint solutions for Biichi, 
co-Büchi, and Rabin-chain games are all one-player 
strongly deterministic fixpoint formulas. 

4.2    LTL games 

Given an LTL formula $, we construct a lean one- 
player fixpoint formula ipy such that 

((i))vy = lw(iPrev)] (29) 

vS1^ A->dj+i AiPrev(xj))], 

for V £ {B,R} and i = 1,2. Following [5, 10], our 
construction is based on deterministic Rabin-chain au- 
tomata (also called parity automata [14]). A Rabin- 
chain automaton of index k over the input alphabet 
2P is a tuple C = (Q,Q0,A,(-),Q), where Q is a fi- 
nite set of states, QQ C Q is the set of initial states, A: 
Q —> 2^ is the transition relation, (•): Q —> 2P assigns 
propositions to states, and Q: Q —> {0,..., 2fc - 1} is 
the acceptance condition. An execution of C from a 
source state q0 £ Q is an infinite sequence qoqiq-2 ■ • ■ of 
automaton states such that gj+1 £ A(g;) for all j > 0; 
if qo £ Qo, we say that the execution is initialized. 
The execution e = qoqiq-2 ■ ■ ■ is generated by the trace 
(e) = (cJo)(li)(a2) ■ ■ ■■ The execution e is accepting if 
MaxIndex(Q,e) is even. The language L(C) is the set 
of traces ir such that C has an initialized accepting 
execution e generated by -K. The automaton C is de- 
terministic and total if (la) for all states q', q" £ Q0, if 
q' ^ q", then (q1) ^ (q"); (lb) for all proposition sets 
P' C P, there is a state q' £ Q0 such that (q') = P'; 
(2a) for all states q £ Q and q',q" £ A(q), if q' ^ q". 
then (q1) ^ (q"); (2b) for all states q £ Q and all 
proposition sets P' C P, there is a state q' £ A(q) 
such that (q1) = P'. If C is deterministic and total, 
then we write A(q,P') for the unique state q' £ A(q) 
with (q1) = P'. 

From the LTL formula *, we construct a determinis- 
tic, total Rabin-chain automaton Cm such that L('ä') = 
L(Cxa), by first building a nondeterministic Büchi au- 
tomaton with the language L(*) [16], and then deter- 
minizing it [12, 13]. Let C* = (Q,Q0,A,(-),n). In 
order to obtain a lean fixpoint formula ipy, we need 
to compute the set F C Q of automaton states q such 
that all executions with source q are accepting. To 
this end, it suffices to compute the set Q \ F of states 
q' such that there is an execution e with source q' and 
Maxlndex(ü',e) is even, where Q' is the complemen- 
tary acceptance condition with fl'(q) = (2fc — 1) — Q(q) 
for all states q £ Q. This corresponds to checking the 
nonemptiness of a Rabin-chain automaton [5]. 

We derive the fixpoint formula <py that satisfies 
(29) in two steps.    First, we build a fixpoint for- 
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mula <p' that solves the game with objective $ on 
the product structure GxC, for all game struc- 
tures G. From ip', we then construct the for- 
mula w that solves the game directly on G, for 
all G. Consider an arbitrary game structure G = 

(S,r1;r2,<$,<•)). Define GxC = (S'.ri,^,«', (•». 
where S' = {(s,q) E S x Q \ (s) = (q)}, where 
rj(s,g) = Ti(s) for i = 1,2, where (5'((s,9),a1,a2) = 
(ö(,s,o,i,a2),A((/, {6{s,aua2)))). Finally, for g £ F 

let (s,</) = (s) U {cn(,)}, and for g e F let (s,g) = 
(5) U {f,cn{q)}, where /,c0,... ,C2A-I are new propo- 
sitions. 

We construct ip' by proceeding similarly to [2]. We 

give the fixpoint formula <// in equational form; it 
can then be unfolded into a nested fixpoint formula 
in the standard way. The formula <p' is composed 
of blocks By,... ,B'2k_l, where B'Q is the innermost 
block and B'.7k_l the outermost block. The block 
B'0 is a /y-block which consists of the single equation 

*o =f V Vj-ip'te A W*j)))- For 0 < (. < 2k - 1, 
the block B't is a //.-block if I is odd, and a i/-block if 
I is even; in either case it consists of the single equa- 
tion X( — X(-\. The output variable is XOA-I- Then, 
({(l))^*)(.s) = lp'(lPre,)}CxC(s,q) for all states s E 
S and for the unique q E Qn such that (s,q) E S'. 

The formula py mimics on G the evaluation of p' on 
GxC. For each variable x( of tp', for 0 < (. < 2k - 1, 
the formula py contains the set {xf | q E Q} of 
variables: the value of xq

( at ,s keeps track of the 
value of X( at (s,q). The formula py is composed 
of the blocks Bu,..., B-n-r- for 0 < ( < 2k - 1, the 
block B[ consists of the set {EJ \ q E Q} of equa- 
tions. The equation E''( is derived from the equa- 
tion for x.( in p' by replacing the variable .77 on 
the left-hand side with the variable xQ

c, by replac- 
ing c.j with T if Sl(q) = j and F otherwise, by re- 
placing / with T if q E F and F otherwise, and by 

, xq- ); the right- replacing prc.1(xj) with prel(\/ ti 

hand side is then conjuncted with the propositions 
in (q). The block Bok~\ contains the extra equation 

Xavt = Vfgo, X
'A--1' 

wnicn defines the output vari- 
able x„vt. Note that <py is independent of the game 
structure G, and contains no propositions other than 
those in $. 

Theorem 4 For every LTL formula \f and i = 1,2, 
we have ((i))j.Mt = [p^(iPrci)}. Moreover, the fixpoint 
formula py is lean and its size is doubly exponential 

in the size of 5'. 

Since p^ is lean, by Theorem 1 it follows that 
((j)) p. $ — Ip^(iPre-f)]. The doubly exponential size 
of ipy is optimal, because boolean games with LTL 
objectives arc 2EXPTIME-hard [11]. 
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Abstract 1    Introduction 

Deciding infinite two-player games on finite graphs 
with the winning condition specified by a linear tem- 
poral logic (LTL) formula, is known to be 2EXPTIME- 

complete. In this paper, we identify LTL fragments 
of lower complexity. Solving LTL games typically in- 
volves a doubly-exponential translation from LTL for- 
mulas to deterministic w-automata. First, we show 
that the longest distance (length of the longest simple 
path) of the generator is also an important parame- 
ter, by giving an 0(d\og n)-space procedure to solve 
a Büchi game on a graph with n vertices and longest 
distance d. Then, for the LTL fragment with only 
eventualities and conjunctions, we provide a transla- 
tion to deterministic generators of exponential size and 
linear longest distance, show both of these bounds to 
be optimal, and prove the corresponding games to be 
PsPACE-complete. Introducing next modalities in this 
fragment, we provide a translation to deterministic 
generators still of exponential size but also with ex- 
ponential longest distance, show both of these bounds 
to be optimal, and prove the corresponding games to 
be ExPTiME-complete. For the fragment resulting by 
further adding disjunctions, we provide a translation 
to deterministic generators of doubly-exponential size 
and exponential longest distance, show both of these 
bounds to be optimal, and prove the corresponding 
games to be EXPSPACE. Finally, we show tightness of 
the double-exponential bound on the size as well as 
the longest distance for deterministic generators for 
LTL even in the absence of next and until modalities. 

"This research was partially supported by NSF Career award 
CCR97-34115, NSF award CCR99-70925, SRC award 99-TJ- 
688, and Alfred P. Sloan Faculty Fellowship. 

^Partially supported by the M.U.R.S.T. in the framework of 
project TOSCA. 

Linear temporal logic (LTL) is a popular choice 
for specifying correctness requirements of reactive sys- 
tems [14, 13]. An LTL formula is built from state 
predicates, boolean connectives, and temporal modal- 
ities such as next, eventually, always, and until, and is 
interpreted over infinite sequences of states modeling 
computations of reactive programs. The most studied 
decision problem concerning LTL is model checking: 
given a finite-state abstraction G of a reactive system 
and an LTL formula ip, do all infinite computations of 
G satisfy pp. The first step of the standard solution to 
model checking involves translating a given LTL for- 
mula to a (non-deterministic) Büchi automaton that 
accepts all of its satisfying models [12, 21]. Such a 
translation is central to solving the satisfiability prob- 
lem for LTL also. The translation can be exponential 
in the worst case, and in fact, both model checking 
and satisfiability are PsPACE-complete [18]. 

The standard interpretation of LTL over infinite 
computations is the natural one for closed systems, 
where a closed system is a system whose behavior 
is completely determined by the state of the system. 
However, the compositional modeling and design of re- 
active systems requires each component to be viewed 
as an open system, where an open system is a system 
that interacts with its environment and whose behav- 
ior depends on the state of the system as well as the 
behavior of the environment. In the setting of open 
systems, the key decision problem is to compute the 
winning strategies in infinite two-player games. In the 
satisfiability game, we are given an LTL formula ip 
and a partitioning of atomic propositions into inputs 
and outputs, and we wish to determine if there is a 
strategy to produce outputs so that no matter which 
inputs are supplied, the resulting computation satis- 
fies tp. This problem has been formulated in different 
contexts such as synthesis of reactive modules [15], re- 
adability of liveness specifications [4], and receptive- 
ness [5]. In the model-checking game, we are given an 
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LTL specification y>, and a game graph G whose states 
are partitioned into system states and environment 
states. We wish to determine if the protagonist has 
a strategy to ensure that the resulting computation 
satisfies tp in the infinite game in which the protago- 
nist chooses the successor in all system states and the 
adversary chooses the successor state in all environ- 
ment states. This problem appears in contexts such 
as module checking and its variants [9, 10], and the 
definition of alternating temporal logic [2]. Such game- 
based model checking for restricted formulas such as 
"always p" has already been implemented in the soft- 
ware MOCHA [3], and shown to be useful in construc- 
tion of the most-general environments for automating 
assume-guarantee reasoning [1]. 

We focus on the game version of model checking: 
given a game graph G and an LTL formula <p, what 
is the complexity of deciding whether a given player 
has a winning strategy starting from a given initial 
state (game version of satisfaction is a special case, 
and similar bounds apply). It is known that the com- 
plexity of this problem is doubly-exponential in the 
size of the LTL formula, and the problem is 2EXPTI\1L- 

complete [15]. Note that the complexity is much lower 
for formulas of specific form: generalized Büchi games 
(formulas of the form A/DO;;,) are solvable in poly- 
nomial time, and Streett games (formulas of the form 
A,(nOj;, -> üO<7,-)) are coNP-complete (the dual. Ra- 
bin games are NP-complctc) [16, 7]. It is worth men- 
tioning that, in the standard model checking, while 
full LTL is PsPACK-completo. the fragment which al- 
lows only eventually and always operators (but no 
next or until) has a small model property and is NP- 
complete [18] (see also [C] for complexity results on 
simpler fragments of LTL). This motivated us to con- 
sider the problem addressed in this paper: are there 
fragments of LTL for which games have complexity 
lower than 2EXPTLME? 

The standard approach to solving games for LTL is 
by reduction to a game on the product of the game 
graph and a deterministic automaton that accepts all 
the models of the given formula. The winning con- 
dition in this reduced game corresponds to the type 
of the acceptance condition (e.g. Büchi or Rabin) for 
the deterministic generator l. To obtain a determinis- 
tic generator, the standard approach is to first build a 

'in the automata-theoretic formulation of the problem [20], 
the game graph can be viewed as a tree automaton that gener- 
ates all the strategies of one of the players. From the formula <p, 
we can construct a tree automaton that accepts precisely those 
trees all of whose paths satisfy ip, take product, with the game 
tree automaton, and test for emptiness. This approach has the 
same computational essence, and requires determinization. 

nondeterministic generator and then detcrminizc it. 
Each of these steps costs an exponential, and it is 
known that there are LTL formulas whose determinis- 
tic generators have to be doubly-exponential [11]. 

In this paper, we give a comprehensive study 
of deterministic generators and game complexities 
of various LTL fragments. We use the notation 
LTL(opi,..., opk) to denote the fragment of LTL given 
by top-level boolean combination of formulas which 
use only the boolean connectives and the temporal 
operators in the list opu..., op*. Our first result is 
a construction of a singly-exponential deterministic 
Büchi automaton for the fragment LTL(0,A). This 
construction is different from the standard tableau- 
based construction, and builds the automaton for a 
formula in a modular way from the automata for its 
subformulas. This immediately gives a single exponen- 
tial bound for LTL(0, A) games by using the standard 
algorithm for Büchi games. However, the determinis- 
tic generators have the property that the longest sim- 
ple path is at most linear in the size of the formula. 
We show that this property can be exploited to reduce 
space requirement. In fact, we show a general result: 
in a game graph with n vertices and longest distance <7 
(that is, length of longest simple path), a Büchi game 
can be solved in space ()(d\og v) (the conventional 
algorithm uses O(n) space). This leads us to the re- 
sult that LTL(O.A) games can be solved in Psi'ACK, 
and we show a matching lower bound. Note that the 
fragment Ln.(0, A) contains boolean combinations of 
invariant ("always //') and termination ("eventually 
(f) properties, and thus includes many of the com- 
monly used specifications. 

Combining next modalities with the eventuali- 
ties raises the complexity. For any formula in 
LTL(0.0, A), we show how to construct a determinis- 
tic Büchi generator with both states and longest dis- 
tance of exponential size. The construction is op- 
timal since there exists an LTL(0,0, A) formula for 
which all deterministic generators must have expo- 
nential longest distance. This construction leads to an 
EXPTIMF: algorithm for solving games in LTL(0,0, A), 
and we show a matching lower bound. 

Adding disjunctions to LTL(0,0, A) raises com- 
plexity. Given an LTL(0,0, A,V) formula, we show 
how to construct a corresponding deterministic Büchi 
automaton with doubly-exponential states and singly- 
exponential longest distance. The construction is op- 
timal since we show that there is an LTL(O.A,V) for- 
mula whose deterministic generator must be doubly- 
exponential with singly-exponential longest distance. 
Our construction leads to an ExPSPACE algorithm for 
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solving games in LTL(0,0, A, V).   A matching lower 
bound remains an open problem. 

The nesting of eventually and always modalities 
causes a further increase in the complexity. We 
prove that there exists a formula in LTL(U,0,A,V) 

whose deterministic generator must be doubly- 
exponential with doubly-exponential longest distance, 
that matches the upper bound for the full LTL. This is 
in sharp contrast to the fact that the longest distance 
of nondeterministic generators for LTL(D, O, A, V) for- 
mulas is only linear, and becomes exponential only by 
addition of next or until modalities. 

2    Definitions 

2.1 Linear Temporal Logic 

We first recall the syntax and the semantics of linear 
temporal logic. We will define temporal logics by as- 
suming that the atomic formulas are state predicates, 
that is, boolean combinations of atomic propositions. 
Given a set of atomic propositions, a linear temporal 
logic (LTL) formula is composed of state predicates, 
the boolean connectives conjunction (A) and disjunc- 
tion (V), the temporal operators Next (O), Eventually 
(O), Always (□), and Until ( U). Formulas are built 
up in the usual way from these operators and connec- 
tives, according to the following grammar 

(p:=p\ipAtp\(pV(p\0<p\ Otp\ Oip\ipU ip. 

An ui-word over a given alphabet £ is a mapping 
from N into £, that is, an infinite sequence of sym- 
bols over £. LTL formulas are interpreted on an u- 
word w = w0wiw2 ■ . . over the alphabet £ = 2P and 
the satisfaction relation w \= ip is defined in the stan- 
dard way. In the following, we will use the notation 
LTL(O£>I ,..., opk) to denote the fragment of LTL which 
contains boolean combination of basic formulas which 
use only the boolean connectives and the temporal op- 
erators in the list opi,..., opk ■ 

2.2 Finite automata on w-words 

Automata on w-words have been extensively stud- 
ied in relation to temporal logic [8]. In this section, 
we will recall the definition of Biichi automata and the 
results relating them to LTL as generators of models. 

A nondeterministic transition graph is a 4-tuple 
(£, S, So, A), where E is an alphabet, S is a finite set 
of states, So C S is the set of initial states, and A is a 

subset of S x E x S. A transition graph is determin- 
istic if | So | = 1 and A defines a total function S from 
5 x E into S. In the following, when we consider deter- 
ministic transition graphs, we will define directly this 
function S instead of the transition relation A. The 
behavior of a transition graph on a word is captured 
by the concept of a run. Let A = (£,5, So, A) be a 
transition graph and w be an w-word, a run of A on 
w is a mapping r : N —> S such that r(0) £ So and 
for all i G N, (r(i),w(i),r(i + 1)) e A. Given a run r 
on a word w, we denote with Inf(r) the set of states 
appearing infinitely often in r. A clear property of de- 
terministic transition graphs is that they have exactly 
one run for each word. 

Given a transition graph we define an automaton 
by specifying the acceptance conditions. A nonde- 
terministic (resp. deterministic) Biichi automaton is 
a 5-tuple A = (E,S,S0, A, F), where (£,S,S0,A) 
is a nondeterministic (resp. deterministic) transition 
graph and F C S is the set of the accepting states. An 
w-word w is accepted by a Biichi automaton A iff there 
exists a run r of A on w such that Inf(r)C\F / 0. The 
language accepted by A, denoted by L(A), is defined 
to be the set {w \ w is accepted by A}. 

For our results, besides the size, another character- 
izing measure of an automaton A is the length of the 
longest simple directed path connecting two states in 
the transition graph. We will refer to this measure as 
the longest distance of A. 

For every LTL formula if, it is possible to con- 
struct an automaton on w-words accepting all mod- 
els of it. We will denote such an automaton as Av 

and we will refer to it as a generator of models for ip. 
A deterministic generator for an LTL formula of size 
0(exp(exp(\(p\)) can be obtained in the following way: 
from the formula <p, by the tableau construction, it is 
possible to construct a nondeterministic Biichi gener- 
ator of size 0(exp(\ip\)) [12, 21]; this automaton can 
then be determinized so that we obtain a deterministic 
Rabin automaton of size 0(exp(exp(\ip\)) [17]. Notice 
that in general, for a given formula ip, a determinis- 
tic Biichi generator may not exist but, when this ex- 
ists, it has been proved that the translation from LTL 

formulas to deterministic Biichi automata is doubly- 
exponential [11], and thus, the above construction is 
asymptotically optimal. 

2.3    Game graphs 

In this section we will introduce the notation con- 
cerning two-player games. A two-player game is mod- 
eled by a game graph and a winning condition. A 
game graph is a tuple G = (V,Vo,Vi,'E,ry) where V 
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is a finite or countable set of vertices, V0 and V\ de- 
fine a partition of V, £ is a finite set of actions and 
7 : V x E -> V is a partial function. For i = 0,1, the 
vertices in V* are those from which only Playeri can 
move and the allowed moves are given by the function 
7. A winning condition is a predicate over w-words of 
vertices, and depending on its type, we can have dif- 
ferent kinds of games. In this paper we will consider 
only Biichi and LTL games. In a Büchi game, the wan- 
ning condition is given by a set of vertices F C V 
with the requirement that at least a state in F must 
repeat infinitely often. In an LTL game, the winning 
condition is instead an LTL formula. 

A piny of a game G is constructed as a sequence 
of vertices corresponding to the actions taken by the 
two players. Formally, a play starting at x0 is a se- 
quence x0xi ...z/, in V* with the property that there 
exists a sequence of actions «i,..., «/, G E such that 
7(;jTj_i,o.j) = x.j, for j = l,...,h. Starting from a 
vertex it, a game G can be seen as the w-tree T(Gu), 
called a game, tree, which is obtained by unwinding 
G from u. Each node of this tree corresponds to a 
play starting at. u: the root corresponds to u and, if a 
node v corresponds to a play Xi ... x/,, then each of its 
children corresponds to a possible continuation of the 
play X()...x/|, i.e. to a play x0 .. . x/,.T/i + ] such that 
7(x/, ,a) = x/, + 1 for an action a. e E. A strategy for 
Player, gives an allowed move to continue each play 
ending at a vertex in V';. More formally, a strategy for 
Player j is a total function / : \'*\) —► V mapping a 
node in the function domain into one of its successors 
in the game tree. A strategy then corresponds to a tree 
obtained from the game tree T^a.u) D>' pruning all the 
subtrees containing plays that are not. constructed ac- 
cording to /. When a strategy depends only on the 
last vertex of a play, it is called a memoriless strategy. 

Given a game G and a winning condition W, a 
strategy / is said to be a whining strategy if the re- 
quirement expressed by W holds on all the paths of the 
tree corresponding to /. In a two-player game, given 
a game G and a winning condition W, we consider 
the decision problem: "Is there a strategy for Playeri 
satisfying the winning condition IT?" We remark that 
while Buchi games admit memoriless winning strate- 
gies and can be solved in quadratic time, LTL games 
in general do not have a memoryless winning strat- 
egy and are decidable in time polynomial in |G| and 
doubly-exponential in \ip\ [15]. 

3    Deterministic generators 

We begin this section by introducing a proper sub- 
class of deterministic Biichi automata whose transition 
function defines a partial order over the states. To 
emphasize this property, we call an automaton in this 
class a partially-ordered deterministic Biichi automa- 
ton (PODB). Then, we will show that, for formulas 
in some fragments of LTL, it is possible to construct a 
deterministic generator which is a PODB. 

A PODB is a deterministic Biichi automaton whose 
transition graph is a directed acyclic graph except 
for the self-loops. Obviously, the longest distance of 
a PODB is the longest distance between the initial 
state and a sink state, where an initial and a sink 
state are respectively a minimal and a maximal state 
with respect to the partial order induced by the tran- 
sition function of the PODB. PODBs are closed under 
boolean operations. 

Proposition 3.1 For i = 1,2, let At be PODBs of 
size n, and longest distance rf;. There exists a PODB 

AiHA-2 (resp. A1UA2) accepting the language L(A\)r\ 
L(A2) (respectively, L(A])UL(A'2)), and such that its 
size is 0{n\ n-i) and its longest distance is not greater 
than d\ + do- Moreover, for i = 1,2, there exists a 
PODB Aj of size /?,- and longest distance, d; accepting 

£-U(.4,). 
Note that to prove the above proposition, the con- 
struction for intersection does not require the intro- 
duction of a counter as in the case of general deter- 
ministic Biichi automata. Moreover, the above results 
on intersection and union are naturally extended to 
a tuple of automata Ai,...,A* and we will denote 
the corresponding automata with A\ D ... D .4* and 
Ai U ... U A/,., respectively. 

The following automaton construction will be used 
in the next sections to build the generator for 0(pr\tp) 
given the generator for ip. Let A = (E, S, s0,S, F) be a 
Biichi automaton and p be a predicate over E. Given a 
s'0 $ S, we define the (deterministic) Biichi automaton 
A°<""4) as {j:,SU{s'0},s'0,6',F) where: 

• ö'(s,a) = 6(s,a) for s £ S, 
• 6'(s'0,a) = S(s0,a) for a satisfying p, and 
• S'(s'Q,a) = s'0, otherwise. 

The construction is illustrated in Figure 1. 

Proposition 3.2 Let A = (T,,S,SQ,S,F) be a (deter- 
ministic) Biichi automaton of size, n and longest dis- 
tance, el such that E L(A) C L(A), andp be, a predicate 
over E. The (deterministic.) automaton A°'p,/1' has 
size 0(n), longest distance, d+1 and accepts the lan- 
guage E* [p] L(A), where [p] = {a € E | a satisfies p). 
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Figure 1: Graphical representation of the automaton 

Moreover, if A is a PODB then A^P'A) is a PODB 
also. 

3.1     Generators for LTL(0, A) 

The fragment LTL(0,A) contains boolean combi- 
nations of formulas built from state predicates using 
eventualities and conjunctions. Thus, negations and 
disjunctions are allowed only at the top-level and at 
the atomic level. By definition, LTL(0,A) is equiva- 
lent to LTL(D, V). A sample formula of this fragment 
is öpv 0(q A Or). This fragment includes combina- 
tions of typical invariants and termination properties. 

Let us consider the formula tp = O p\ A ... A O pn, 
where p{ G P for i = l,....n. Obviously, ip is in 
LTL(0,A). This formula asserts that each one of 
Pi,... ,p„ has to be true sometimes. Then, a deter- 
ministic generator A^ for p has to keep track only of 
the set of atomic propositions which have been already 
fulfilled. The size of A^ is 0(2") and its longest dis- 
tance is the cardinality of the maximal totally ordered 
set of states with respect to the subset relation, that is, 
n. We proceed to show that all the LTL(0, A) formu- 
las have a deterministic generator which is a PODB of 
exponential size and linear longest distance, but first, 
we introduce a characterization of the formulas in the 
considered fragment. A formula <p in LTL(0, A) is a 
boolean combination of formulas defined inductively 
by the following rules: 
• ip is a state predicate over P or, 
• for k > 0, ip is p A O ipi A ... A O pk where p is 

a state predicate over P and px,... ,pk are for- 
mulas in LTL(<>, A) that do not contain negations 
and disjunctions at the top-level. 

Theorem 3.3 There exists a deterministic Büchi au- 
tomaton A accepting all the models of a formula ip in 
LTL(0, A) such that A is a PODB of 0{exp(\<p\)) size 
and 0(\ip\) longest distance. 

Proof. We inductively define a deterministic Büchi 
automaton A accepting all the models of a given for- 
mula Otp in LTL(0,A) such that A is a PODB of 
exponential size and linear longest distance in \<p\, 
and then by Proposition 3.1 this result is extended 
to a general formula in LTL(0,A). For a state 
predicate p, we define Ap and Aop as the minimal 
deterministic generator for p and Op, respectively. 
Clearly, Ap and Aop are PODBs and Aop is such 
that Y,*L(Aop) C L{Aop). Now, let %p be the for- 
mula 0(p A Ofa A ... A Ofa) and, for a formula 
7 G {^i,..., fa}, Ao-y be a PODB accepting all the 
models of O7. By inductive hypothesis we have that 
size of Aoy is 0{exp(\ O7D) and longest distance of 
Ao7 is 0(| 07|). Obviously, E*L(A<>7) C L(AoJ 
also holds. Then, by Proposition 3.1, A' = Ao^ n 
...nAo ^k is a PODB of 0(exp(\ O fa | +... +1 O fa|)) 
size, 0(I O fa I +...+1 O fa I) longest distance, and such 
that Y,*L{A') C L(A'). Thus, from Proposition 3.2, 
we have that At = A°{p'A"> is the generator for fa  I 

The previous result is optimal in the sense that we 
may not have a smaller generator for some formula in 
LTL(0, A), as shown in the following theorem. 

Theorem 3.4 There exists a formula ip in LTL(0, A) 

such that all generators of ip have Q(exp(\ip\)) size and 
fi(|v?|) longest distance. 

Proof. Consider the formula p> = Opx A ... A Op„, 
where p{ G P for i = l,...,n and n > 2. Clearly, 
\<p\ = 0(n). The first assertion can be easily proved by 
contradiction showing that the initial state of a <p> gen- 
erator must have at least 2n-1 successors. The second 
assertion can be proved by contradiction by showing 
that if a generator Av for ip has longest distance less 
than n, from the tp model w = {pi}{p-2} ■ ■ ■ {Pn}^, we 
can derive another word which is not a model of ip but 
is accepted by A^. I 

3.2     Generators for LTL(0,0, A) 

In this section we use the notation O" as a short- 
hand for n nested next modalities. We therefore con- 
sider size of On ip to be \ip\ + n. Let us consider the 
formula p = 0(pAOn q), where p, q G P. This formula 
asserts that p has to be fulfilled at a position i and q at 
a position i + n for some i G N. A deterministic gener- 
ator for p has to keep track of the truth values of p in 
the previous n positions. This can be done by running 
n copies of the deterministic generators for (p A O" q). 
Such a generator requires exponentially many states 
and has exponential longest distance. We prove that 
this upper bound holds for all LTL(0,0, A) formulas: 
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Theorem 3.5 There exists a deterministic Büchi au- 
tomaton A accepting all the models of a formula ip in 
LTL(0,0, A) such that A has both size and longest dis- 
tance at most exponential in \tp\. 

Proof. The construction is done inductively on the 
structure of formulas in LTL(0,0, A). We observe 
that given a formula ij>, the next operators in ij) can 
be pushed inside so that we can obtain an equivalent 
formula »/>' having only state predicates in the scope 
of a finite sequence of next operators, and such that 
tp' — 0(\tj>\2). As a consequence most of the cases 
are handled as for the construction of a determinis- 
tic generator for LTL(0, A) formulas. The interest- 

ing case is to construct a deterministic generator for 
ip = 0(p A O q A </?') given a deterministic genera- 
tor A^i for ip' of both size and longest distance ex- 
ponential in l^l, and such that E*L(.4^-) C L(A^>). 
A deterministic generator Av for <p can be obtained 
by running in parallel k copies of A^> and checking 

for the fulfillment of (p A O q). At every position 
i of the input word a copy of ,4v-< is started and if 

i > k and (p A O q) is not true at position (/ — k) 
then the copy started at position (?' — k) is dismissed. 
As soon as (;; A O q) becomes true, A^ dismisses all 
copies of Api but the one started at the position where 

(p A O q) is true, and continues as A^>. The size of 
,4^, is thus ()(<<xp(k\P\)\A^'\) and hence exponential 
in \ip\. Its longest distance is 0(exp(k) +d'). wlmrc d' 
is the longest distance of .4^-, and thus is exponential 
in \<p\. I 

The previous result is optimal in the sense that we 
may not have a smaller generator for some formula in 
LTL(0,0, A), as shown in the following theorem. 

Theorem 3.6 There exists a formula p> in 
LTL(0,0, A) such that all generators of ip have 
Q(cxp(\ip\)) size and fl(cxp(\ip\)) longest, distance. 

Proof. Consider the formula tp = D(p —> O" q). 
where p,q G P and n > 2. Clearly, \p\ = 0(n). Since 
LTL(0, A) is a fragment of LTL(0,0, A), we only need 
to prove that all generators for ip have a simple path of 
length at least 2". Assume that A^ = (2P, S, .s0, A. F) 
is a generator for ip. Consider words iv = «i ...an 

and w' = a\ ...a'n such that w,w' G (2P)*, and p $ 
a; and p G a' for some i. Let y G {2py be such 
that y = bi . ..b), ..., q $ bj, and xwy is a model of 
ip for some x £ (2P)*. We have that xw'y is not a 
model of tp. Thus a generator .4^ cannot enter the 
same state after reading xw and xw', since it must 
accept xwy and reject xw'y. Clearly we can prove 
this for any pair of words w,w' of length n that differs 
with respect to the truth of ;; at least in a position. 

Since we can determine 2" words Wi,... ,%U2» which 
are pairwise different with respect to truth values of 
/J, there are 2" pairwise disjoint sets of states each of 
them contains the states which are reached on all runs 
of A^ by reading a prefix of a model for ip ending in «;,■. 
To conclude this proof we just need to prove that there 
exists a word that forces .4^ to visit a state from each 
of these sets without rcentering any of them before 
reading at least one state from each set. But this is 
equivalent to prove that there is an exponentially long 
word w in {0,1}* such that any two subwords of w of 
length n differ at least in a. position, and thus we are 
done. I 

3.3    Generators 
LTL(O,O. A,V) 

for      LTL(0,A,V)      and 

The fragment LTL(0,0, A, V) contains boolean 
combinations of formulas built from state predicates 
using eventualities, next, disjunctions, and conjunc- 
tions. This fragment includes combinations of safety 
and guarantee properties, and belongs to the class of 
syntactic obligation properties [13]. 

Let us consider the formula ip = O /\"=1 (pi V O r/,), 
where /;,-.(/,• G P. for i — l,...,n and n > 2. Ob- 
viously p is an LTI.(0,A.V) formula. This formula 
assents that at a same position in the model all the 
clauses (/), V Ory,-) have to be satisfied. Since the ful- 
fillment of a clause at a position implies either p,Vr/, at 
that position or q, at a later position, a nondeterminis- 
tic generator for p is the one that nondeterininisticallv 
guesses the first position at which all the clauses are 
satisfied and. then, check for their fulfillment. Such a 
generator has an exponential size and a linear longest 
distance. We can detenninize this strategy to obtain 
a deterministic generator for <p with C)(2'2 ) states and 
()(2") longest distance. It. is possible to prove that 
this result indeed holds for all Ln.(0,0, A,V) formu- 
las, as stated by the following theorem. 

Theorem 3.7 There exists a deterministic Büchi au- 
tomaton A accepting all the models of a formula 
tp in LTL(0,0, A, V) such that, A has size doubly- 
exponential in \p\ and lojiqc.st. distance exponential in 

M- 
Proof. To construct a deterministic generator for 
LTL(0,0. A,V) formulas we first transform them into 
a "layered" conjunctive normal form where1 we have 
either LTI.(0,0, A) formulas or formulas of typt1 V' = 
"^ V,{Pi AO'C/; A V'I)- This translation may cause an 
exponential blow-up in the size of the formula. The 
results obtained for Ln'U(0,0,A) then give the up- 
per bound on the size of the deterministic genera- 
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tor for LTL(0,0, A,V) formulas. An accurate anal- 
ysis of the longest distance in the construction given 
for LTL(0,0, A) gives an 0(exp(k \P\) + \ip\) upper 
bound, where k is the largest number of nested next 
modalities in the starting formula. Since the trans- 
formation into the layered CNF does not increase this 
parameter, given an LTL(0,0, A,V) formula we get 
that the longest distance of the deterministic genera- 
tor obtained by the given construction is exponential 
in \tp\. I 

The following theorem shows that the above result 
is optimal also in the case of LTL(0, A, V) formulas. 

Theorem 3.8 There exists a formula ip in 
LTL(0, A, V) such that all the deterministic genera- 
tors of (p have Cl(exp(exp(\if\))) size and Q(exp(\tp\)) 
longest distance. 

Proof. Consider the formula ip = O A"=i (P» v ^ ?»)> 
where Pi, qt 6 P for i = 1,..., n and n > 2. Obviously, 
\<p\ = 0(n). Denote with Pp the set {pi,... ,pn} and 
Pq the set {qi,..., qn}. We prove that a minimal de- 

terministic generator for ip has 22 " states. With a 
similar argument it is also possible to show that all 
the deterministic generators for ip have a simple path 
of length 2"("). Assume that Av = (2p,S,s0,S,F) 
is a deterministic generator for ip. Given a subset 
b of Pp, define q(b) as the set {qt\pi £ b}. Define 
Ej; as the set of Pp subsets of cardinality k, that is, 
£fc = {a C Pp | \a\ = k}. The cardinality of £*> is 
( I \ . If we choose k = fs], then |Sfe| = 2^n\ Ob- 

serve that for w,w' G T,*k such that w = O-QOI .. . <rm, 
w' = a'0a[...a'm, and U™^} ^ U™'^}, it must 
hold that 5(SQ, W) ^ 6(so, w'). In fact, we can suppose 
without loss of generality that there is a a G U^ {a{\ 
such that a £" U™'^}. Thus, for any w" G (2P)W, 
the word wq(a)w" is a model of (p and w'q{a)%... 0 ... 
is not. Since Av accepts all and only the models 
of ip, and there is an accepting run for any word 
wq(a)w", HS(so,w) = S(s0,w') then Av accepts also 
w'q{a)% ... 0 ..., and this contradicts the hypothesis 
Ay, being a generator of models for ip. Since the num- 
ber of subsets of St is 2^h^, Av must have at least 

2lEfcl states. Thus, for A; = [§], this means 22"'") 

states. I 

3.4    Generators for LTL(U,0,A,V) 

In section 2.2 we recalled the results concerning the 
construction of a deterministic generator for a given 
formula in LTL. In this section we prove that a match- 
ing lower bound to that construction even in absence 
of next and until modalities. 

Theorem 3.9  There exists     a    formula    ip     in 
LTL(H, O, A, V)    such that    all   the    deterministic 
generators of ip have an fl(exp(exp(\<p\)) longest 
distance. 

Proof.   Consider the formula 

n n 

°{o /\(oiV Obi) ->o f\(ciV Odi)), 
i=i t=i 

where ai,b,,Ci,di £ P for i = l,...,n and n > 2. 
Assume that Av = (2p,S,s0,6,F) is a deterministic 
generator for ip. Denote by Px the set {x\,... ,xn). 
Moreover, denote by pj a subset of Pa and by qj a 
subset of Pc. By arguments similar to those used in the 
proof of Theorem 3.8, it is possible to prove that: 1) a 
deterministic generator for ip has to keep track of the 
Pj's that have been fulfilled and for each pj the list of 
qf/t's which have been fulfilled starting at the position 
where p3 was true the last time; 2) we may need to 
store exponentially many pj's and exponentially many 
<7j's, to check the fulfillment of O /\"=1 (a* V O bi) and 
° Ar=i(c* v °dt). respectively. Thus for k = fi(2"), 
let pi,..., pk and qi,... ,qk such sets. We observe that 
only one among all pj's (respectively, qj's) can be true 
at each position. Every time a pj is true at a position 
i, A resets the list for pj with only the q^ which is true 
at position i. Every time a qj is true, A adds qj to 
all lists. To conclude the proof it is sufficient to show 
that there exists a word w in (Pp UP,U {pj U q^ \ pj G 
PP,qh G QP})* of length 2k such that the A run on w 
is such that r(i) ^ r(j) for any i ^ j. To see this, we 
map each state s of A into a binary fc-tuple {x\,..., xk) 
such that Xi = 1 if and only if qi is in the list for pi. 
Clearly, if two states s and s' are mapped into two 
different tuples then s ^ s'. Moreover, by the above 
observations, if neither qi or pi is true at the current 
position the i-th bit of the tuple associated to the next 
A state is the i-th bit of the current state, while if qi 
true then the i-th. bit becomes 1, otherwise if pi is true 
the i-th bit becomes 0. Since at most a pi and a qj 
are true at each position, the tuples of two consecutive 
states in a run may differ for at most 2 bits. Since it is 
possible to list all the 2k binary tuples in such a way 
two consecutive tuples differs in exactly 1 or 2 bits, 
we have proved that any deterministic generator for ip 
has tt(2k) = ft(22") longest distance. I 

4    Biichi games 

In this section we present a new decision algorithm 
for Biichi games, which mainly performs a depth-first 
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traversal of a portion of the game tree and is space- 
efficient when the longest distance is 0(^—). Stan- 
dard techniques to solve Biichi games involve fix-point 
computation [19], and requires space 0(n) no matter 
what the longest distance is. An interesting aspect of 
our algorithm is that it can be applied to all the games 
in which the winning condition can be translated into 
a deterministic Büchi automaton, as for the formulas 
in the fragments of LTL we have studied in sections 3.1, 
3.2 and 3.3. Then we combine this algorithm with the 
results on LTL generators from the previous section 
and study the complexity of the obtained solutions. 

In this section we search for winning strategies of 
Playero, while Playeri will be our adversary. Con- 
sider a game graph G and a subset F of G vertices. 
We denote by II the set of plays whose last state is 
the first state which repeats, that is, plays of the form 
XQ .. .x/i such that x^ — Xi for some 0 < i < h, and 
for all 0 < i,j < h, xi ^ Xj. We have that any long- 
enough play in G has a prefix which is in II, and each 
of the plays from II is constituted by an acyclic prefix 
followed by a loop. Moreover, we denote by 11/.- the 
set of plays in IT containing a state from F in their 
loop, and by 11/ the set of plays from II which can be 
constructed using the strategy /. We define a game 
(C7, F)jjn as the game where Playero wins from a state 
u if there is a strategy / from ?/ such that 11/ C Ü/.-. 
Since Biichi games arc memoryless, we have: 

Lemma 4.1 There exists a winning strategy for 
Playero from a vertex u in a Biichi game (G, F) if 
and only if their exists a winning strategy for Player0 

from, u in (G, F)fi„ . 

Directly from the definition of a winning strategy 
in a game1 (G,F)fm, we have the following lemma. 

Lemma 4.2 Any winning strategy f for Playero in 
a game. (G,F)fin is such that, the lenght of a play in 
Ily is 0(d), where d is the longest, distance of G. 

By the above lemmas, there is a decision algorithm 
for Biichi games which explores a tree whose height is 
the longest distance of the game graph. 

Theorem 4.3 Given a game graph G with m vertices 
and longest distance d, the Biichi game (G, F) is de- 
cidable in space O(rflogm). 

Given a game (G, W), if the winning condition 
W can be translated to a deterministic Biichi au- 
tomaton, it is possible to use the algorithm by Lem- 
mas 4.1 and 4.2 to decide it. In particular, let .4 be a 
deterministic Biichi automaton equivalent to winning 
condition W, in the sense that the language accepted 
by A is the language of the w-words satisfying W. De- 
fine G x A as the game graph whose vertices V x Q, 

where Q is the set of A states, are partitioned accord- 
ing to the V partition, and from a vertex (v,q) it is 
possible to reach a vertex (v1, q') by taking an action a 
if and only if A enters q' from q by reading the subset 
of atomic propositions true at v and in G it is possible 
to move from v to v' taking the action a. Let F and 
so be the set of final states and the initial state of A, 
respectively, then there is a winning strategy in the 
Biichi game (G x A,V x F) starting at a vertex (u, s0) 
if and only if there is a winning strategy in (G, W) 
starting at u. 

As a consequence of the results from section 3 and 
the above argument, Theorem 4.3 applies to games 
with winning condition expressed by formulas in the 
LTL fragments we have considered so far. In fact, the 
following theorems hold. 

Theorem 4.4 LTL(0, A) games are PSPACE- 
complete. 

Proof. Membership in PsPACE is a consequence of 
Theorems 3.3 and 4.3. To prove PsPACE-hardness, 
we can reduce the satisfiability of quantified boolean 
formulas in conjunctive normal form to deciding the 
existence of a winning strategy in an LTL(0, A) game. 
This also shows that LTL(ü,V) games are PsPAOE- 
hard. Let tp = AiX\.... Anxn. /\'-=i ci ^c a quantified 
boolean formula over the variables x,\,... ,xn. Con- 
sider the LTL(0>,A) formula <p' = /\™, O c* over the 
atomic propositions {c.\,... ,c,„}. The game graph 
G is defined in such a way that each literal corre- 
sponds only to a vertex, a path of the game tree cor- 
responds to the assignment given by assuming true 
the literals corresponding to its vertices, each vertex 
is labeled with the conjuncts which contain the corre- 
sponding literal, and a strategy corresponds to a selec- 
tion of paths fulfilling the requirements of quantifiers 
.4],..., .4,,. We have that ip is satisfiable if and only 
if there is a winning strategy in the game (G,<p').     I 

Theorem 4.5 LTL(0,0, A) games are EXPTIME- 
complete. 

Proof. By   Theorem   3.5,    LTL(0,0, A)    has 
exponentially-sized deterministic generators, and 
hence, membership in EXPTIME follows. For the 
lower bound, we reduce the halting problem for 
alternating linear bounded automata. We briefly 
sketch the construction. Consider a Turing machine 
M that uses n tape positions over a tape alphabet 
T, and let Q be the set of control states that are 
partitioned into Qo and Q\ corresponding to the two 
players. The transitions of the machine are of the 
form (q,a,q' ,a' ,L/R) meaning that if control state 
is q and current symbol is a, then the machine can 
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overwrite the current cell with a', update control 
state to q', and move left (L) or right (R). If multiple 
transitions are applicable, then depending on whether 
the current control state belongs to Qo or Q\, one of 
the two players gets to choose the transition. The 
problem of deciding whether Player0 has a strategy 
to reach a specified control state, say q^, is EXPTIME- 

complete. Given such a machine M, we build a 
game graph GM as follows. For every tape symbol 
a and position i, GM has a vertex iv,i belonging to 
\\. For every control state q, tape symbol a and 
position i, GM has a vertex i>?iCT,i belonging to VQ 

if q is in Q0 and to V\ otherwise. For every control 
state q, and symbol a, GM has a vertex i>g,CT,L and a 
vertex vq^tR, both belonging to V\. For i < n, there 
is an edge from va^ to every ?v,z+i- There is an 
edge from tv,n to every f9,CT',i. For every transition 
(q,a,q',a',L/R) of M, there is an edge from every 
vq,a,i to vq,^',L/R- Finally, every vq^,L/R has an edge 
to every TV,I- The intuition is that Player\ chooses 
a sequence of vertices fCTl,i,... iv„,,i, denoting the 
tape content, followed by a vertex vq<aj, meaning 
that current control is in state q with head reading 
symbol a in position i. The next vertex of the form 
vq\a',L/R indicates the choice of the transition (and 
hence, new control state and new symbol in position 
i, and movement of the head), and is determined by 
one of the players depending on whether q belongs 
to Qo or Qi. Playero wins if either the control state 
qh is encountered or Playeri does not make the 
choices for encoding the configuration according to 
the intended interpretation. Assume that there are 
enough propositions to identify each vertex uniquely 
by a state predicate. Then, the winning condition for 
Playero is a top-level disjunction of several formulas 
that use only eventualities and conjunctions. For 
instance, a mistake in the encoding of the content of 
i-th tape position is described by the formula 

n — i + l n — i+2 n+2 
V<>KiA     O     Ug,CT,;A     O     Vq,ta,:L/Rh   O   lV'?£<r',«) 

Theorem 4.6 LTL(0,0, A, V) games are ExPSPACE. 

Proof.   Directly from Theorems 3.7 and 4.3. I 

5    Conclusions 

For the problem of solving infinite games with the 
winning condition specified by an LTL formula, we 

have studied the impact of different connectives on 
the complexity. In the same way as model checking 
(or satisfiability) is related to translation from LTL to 
nondeterministic w-automata, solving games is related 
to translation from LTL to deterministic w-automata. 
We have established that the longest distance, besides 
the size, of the automaton produced by the translation 
is an important parameter. The results are summa- 
rized in the table of Figure 2 for various fragments 2. 
As the table indicates the sources of complexity for 
games are different from the ones for model check- 
ing. The matching lower bounds for the games in 
the LTL fragments LTL(0, A,V), LTL(0,0, A, V), and 
LTL(U,0,A,V) are open problems, while the results 
on the corresponding deterministic generators are 
tight with respect to both the size and the longest dis- 
tance. We observe that LTL(ü, O, A, V) and thus LTL, 

formulas may not have deterministic Biichi generators, 
but it is known that they have doubly-exponential de- 
terministic Streett generators. 

Besides the classification of complexity of games for 
various fragments, the constructions of this paper can 
be used to solve synthesis problems for certain kinds of 
formulas more efficiently. In particular, the fragments 
LTL(0, A) and LTL(0, A, V) contains many commonly 
occuring specifications that are boolean combinations 
of safety and guarantee properties, and for these, we 
have provided a direct construction of deterministic 
generators in a modular manner. 
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Normalization by evaluation 
for typed lambda calculus with coproducts 

T. Altenkirchf P. DybjerJ M. Hofmann* P. Scott§ 

Abstract 

We solve the decision problem for simply typed 
lambda calculus with strong binary sums, equivalently 
the word problem for free cartesian closed categories 
with binary coproducts. Our method is based on the se- 
mantical technique known as "normalization by evalua- 
tion " and involves inverting the interpretation of the syn- 
tax into a suitable sheaf model and from this extracting 
appropriate unique normal forms. There is no rewriting 
theory involved, and the proof is completely construc- 
tive, allowing program extraction from the proof. 

1    Introduction 
In this paper we solve the decision problem for sim- 
ply typed lambda calculus with categorical coprod- 
uct (strong disjoint sum) types. While this calculus 
is both natural and simple, the decision problem is a 
long-standing thorny issue in the subject. Our solu- 
tion is based on normalization by evaluation (NBE) 
(also called "reduction-free normalisation") introduced 
by Martin-Löf [ML75] for weak typed lambda calcu- 
lus, and by Berger and Schwichtenberg [BS91 ] for typed 
lambda calculus with /^-conversion. The technique has 
been further refined by the authors and coworkers using 
category-theoretic methods [CD97, AHS95, CDS97]. It 
has also been extended to other systems, such as System 
F [AHS96]. As shown by Berger, Eberl, Schwichten- 
berg, and Danvy [BES98, Da96], NBE techniques yield 
fast normalization algorithms, with applications in inter- 
active proof systems [BBSSZ98] and type-directed par- 
tial evaluation [Da96, Da98, FilOl]. 

Here we show how to considerably extend the NBE 
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techniques to take into account type systems with strong 
sums. The NBE method involves constructing a model 
M and effectively "inverting" the evaluation of lambda 
terms in M and thereby extracting certain unique syn- 
tactic normal forms, from which a decision procedure 
easily follows (we outline the proof below). The proof 
uses no rewriting theory. 

Typed lambda calculi with (strong) sum types arise 
very naturally: 

• In programming language theory, coproducts 
model variant and enumerative types. The added 
categorical equation for coproducts corresponds to 
a kind of uniqueness for pattern matching or Case 
construction [AC98, Mit96, GLT89]. 

• In proof theory, under the Curry-Howard Iso- 
morphism, terms correspond to natural deduction 
proofs in intuitionistic propositional {A, V, =>, T} 
logic. One then considers terms (proofs) mod- 
ulo certain equations, which guarantee, for exam- 
ple, that the formula A V B acts as a coproduct 
type (with copairing), as well as including the the- 
ory of commutative conversions (cf [GLT89], pp 
80-81). In category theoretic terminology, such 
lambda theories correspond exactly to almost bi- 
cartesian closed categories, that is, cartesian closed 
categories with nonempty finite coproducts (gener- 
ated by a set of atomic types) [LS86]. 

• As proved by Dougherty and Subrahmanyam 
[DS95], a Friedman completeness theorem in Set 
holds for cartesian closed categories with binary 
coproducts. Therefore, the equality we decide 
is the natural extensional equality on proofs in 
intuitionistic propositional logic and on terms of 
the typed lambda calculus with sums. 

Much of traditional lambda calculus theory carries 
through unscathed when we add products (and even 
weak categorical data types) to the simply typed case. 
Unfortunately, the addition of coproducts is consider- 
ably more subtle. The difficulties with adding coprod- 
ucts are detailed in [Do93, DS95]: for example, the ana- 
log of Statman's 1-Section theorem fails in the presence 
of coproducts, confluence (of various standard rewriting 
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presentations) fails, and the proof of Friedman's com- 
pleteness theorem for the case of coproducts uses diffi- 
cult and involved syntactical arguments [DS95]. 

A decision procedure for cartesian closed categories 
with binary coproducts has been presented in Ghani's 
thesis [Gh95a] (see [Gh95b] for a summary) although 
the proof involves intricate rewriting techniques whose 
details are daunting. Our method described here is quite 
different and we believe conceptually simpler. 

An algorithm for type-directed partial evaluation for 
a call-by-value typed lambda calculus with sums has 
been given by Danvy [Da96, Da98] and Filinski [FilOl]. 
This algorithm uses continuations and is therefore also 
quite different from ours. In particular, it does not de- 
cide equality in cartesian closed categories with binary 
coproducts. 

Like Ghani and Dougherty and Subrahmamyam, we 
only consider the case of finite non-empty coproducts, 
that is, an initial object (empty type) is not part of the 
structure. We conjecture that the present approach can 
be extended to full bicartesian closed categories includ- 
ing initial objects. However, this complicates the struc- 
ture of our normal forms, and wc have not yet com- 
pletely checked that all properties hold for the extended 
language. 

Outline of Proof 
Let £ be a lambda theory. Our aim is to decide if 

define 

nf(e) = q([e](u(lr))) 

r \-e ct A, 

that is, if two possibly open terms c.\ and e> of type .4 
arc equal wrt £, where T is a type environment . We 
associate with each term c a normal form nf (e). In this 
paper, these normal forms are not themselves terms, but 
there is a function d mapping normal forms to terms in 
such a way that the following two properties hold (cf. 
[CD97, CDS97]): 

NF1   T \-e d(nf(e)) = e 

NF2   F \-£ ci = e-> implies nf(ej nf(r-2) 

This implies that F \-£ e\ = e2 if and only if 
nf(Pi) — nf{?■■>), so that comparing normal forms will 
yield a decision procedure for £. 

When £ = the typed lambda calculus with ßij- 
conversion, the authors and coworkers showed in 
[AHS95, CDS97] how to obtain a function nf by 
inverting the preshcaf interpretation of £. One defines 
two natural transformations qA : J.4J —> NF(.4) and 
uA : NE(,4) -* [.4], where NF(.4) is the preshcaf 
of normal forms and NE(.4) is the preshcaf of neutral 
terms of type A from £. Given a typing judgement 
r \-£ e : A,   where  Y = X\ : A\,... ,xn : An, we 

where lr is the sequence (x,\,... , xn) and wc omit type 
superscripts. Since [—]] is an interpretation, wc have im- 
mediately that r h ei = e2 implies [ei] = [e2], and 
hence NF2 follows and NF1 is proved by induction on 
e, using for example logical relations. 

How do we obtain a function nf when wc add strong 
sums to £? The problem is that although the category of 
presheaves has coproducts, a difficulty arises when wc 
try to invert the interpretation of coproducts. The maps 
q and u are defined by induction on types, so in par- 
ticular wc need to define u

Ao+A> jn terms of u/ln and 
uAl. But coproducts in presheaves are calculated point- 
wise; so, for example, how do we define u'4o+/1' (.s) £ 
[.40]r + |.4i]r for a neutral term fhs: .40 + -4i? 
Since variables are neutral terms, we must in particular 
define u'4o + '4' (x), but there is no sensible way to decide 
whether this should be in the first or the second disjunct. 

As we shall show, the solution of this problem is to in- 
troduce an appropriate Grothcndicck topology and con- 
sider the sheaves for that topology. This will give us a 
way to "amalgamate" the contributions of ul" and u1' 
in the definition of u-',0+-'1'. 

Plan of the paper 
In Section 2 we formally define the typed lambda calcu- 
lus with strong sums and show how it yields a free carte- 
sian closed category with binary coproducts. In Section 
3 we introduce our normal forms, and the auxiliary no- 
tions of pure normal forms and neutral terms. The main 
idea is to introduce a parallel case statement, and im- 
pose variable conditions and a condition of redundancy- 
freeness to obtain uniqueness of normal forms. In Sec- 
tion 4 we introduce the category of constrained envi- 
ronments, where objects are environments (type assig- 
ments) equipped with equational constraints. This will 
serve as the underlying category of our Grothcndicck 
topology which is defined in Section 5. There we also 
introduce the category of sheaves for this topology and 
its bicartesian closed structure. This yields a canonical 
interpretation of the syntax in the category of sheaves 
and in Section 6 wc show how to invert this interpreta- 
tion and obtain normal forms. 

2   Syntax 
We follow the treatment of sums in natural deduction, 
as in [GLT89, pp 80-81]. For case of presentation, wc 
restrict ourselves to one base type. 

Types are given by the grammar 

.4::=o|.4=>.4|.4x.4|TL4-l-.4 
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Terms are given by 

e    ::=    x \ Xx.e | ee | (e,e) 17To(e) | iri(e) \ {) \ 

io(e) | ti(e) | (5 (x.e) (x.e) e 

The Case term S (zo-eo) (xi-ei) e2 simultaneously 
binds xo in eo and x\ in ei. 

A fy/?e environment V is a finite function from vari- 
ables to types. The typing judgement rhe:i meaning 
e Aas fy/?£ A in type environment T is defined in the ob- 
vious way. For example, the rule for Case is: 

(r,Xj : Aj h g : C)ig{o,i}        r \- e : A0 + Ax 

r h <5 (zo.eo) (ii.ei) e : C 

Definition 2.1 Equality between terms in environment 
T, denoted r r- — = — : A, is the least (typed) congru- 
ence generated by the following rules (omitting types to 
improve readability): 

(ß) (\x.e0)ei=e0[ei/x] 
(j]) e — Xx.ex,   if x ^ FV(e) 
Projj 7ri((e0,ei)) = et 

SP e = (7T0(e),7ri(e)) 
Unit e = () 
In; 6 (x0.e0) (xi.ei) tj(e2) = ej[e2/:ci] 
Coprod      5 (x0.t.o(xo)) (^l-ti^i)) e = e 
Distrib      e (S (xo-eo) (zi-ei) 02) = 

6 (x0.ee0) (xi.eei) e2 

if 10,2; 1 $■ FV(e) 

We will refer to this equational theory as BiCCC. The 
key categorical axiom (Coprod) is dual to (SP) and guar- 
antees uniqueness of the co-pairing arrow out of a co- 
product. BiCCC entails all the usual commutative con- 
versions for sums, [GLT89], pp. 80-81. 

It can be shown (cf. [LS86, CDS97]) that the free 
almost bicartesian closed category Bo over one base ob- 
ject o can be obtained as the category whose objects are 
type environments and where a morphism from Y = 
xi : Ai,... , xm : Am to A = yi : Bi,... , yn : Bn is 
asequenceofterms(ei,... , e„), modulo BiCCC equal- 
ity, where T \- a : Bi. Freeness means that for 
each BiCCC B and object [o] G B we have a unique 
structure- and equation-preserving interpretation functor 
H : Bo -> B. 

3    Normal Forms 
Normal forms are defined simultaneously with pure nor- 
mal forms and neutral terms. Normal (and pure normal) 
forms are not genuine terms, but defined inductively by 
the clauses below. If T is a type environment we write 
T f-NF t : A, resp. T KPNF t '■ A, resp. F hNE t : A 
to mean that expression t is a normal form, resp. pure 
normal form, resp.  neutral term of type A.  We write 

FV(t) for the set of free variables occurring in t. We 
write Guards(i) for the set of guards of a normal form 
t; this will be defined below as part of the rule for form- 
ing normal forms. 

x G dom(r) T I~NE s : o 
T I~NE X : T(x) T hpNF 8 : o 

r r-pNF () : T 

T 1-pNF tp : A0        r 1-pNF h : Ai 

rhPNF (to,h) :A0 x Ai 

T hNE t : A0 x Ai 

T i~NE TTi(t) : A, 

T hpNF t : Ai 

ie{o,i} 

ie {0,1} 
ri-pNF ii(t) :A0+Ai 

r hNE S : A =» B        T 1-PNF t : A 

T 1~NE st : B 

T,x:A\-NF t: B 

r hpNF Xx.t : A=> B 

where in the last rule we have the variable condition that 
x G FV(s) for each s G Guards(i). 

We have two rules for forming normal forms: 

(a) 
r hpNFt : A 

n-NFt:i 
and    Guards(i) = 

(b) Let M = {si,..., sn} be a nonempty finite set of 
neutral terms (so we assume the s, are pairwise dis- 
tinct). For each / : M -> {0,1} we use the abbre- 
viation Tf = T,Xi:A1

f{si),...,xn:A'^{Sn). Define 

(rhNES,:^ + .4*)!e{i,...,n} 

{Tf hNF tf : C)/:M->{O,I} 

r\-NFC(M,(xi---xn.tf)f):C 

and        Guards(C(A/, (xi ■ ■ ■ xn.tf)f)) = M 

where (£/)/:M->{O,I} is a family of normal forms 
satisfying the following two side conditions: 

Variable-condition: for each s G Guards(£/) we 
have{ii,...,a:n}nFV(s)^0. 

Redundancy-freeness: The family (£/)/ is not re- 
dundant at any s* G M, where (£/)/ is redun- 
dant at Si whenever for all g : M \{si} -> 
{0,1}, tg[Si^o] and <9[Si^i] are equal and 
neither contains the variable Xi. 

The variables x\,...,xn become bound in the C- 
construct.   For brevity we shall often use the al- 
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ternativc notation C(M, (t'j)f), where the t1, range 
over abstractions x,\,..., xn.tf. 

The idea is that C performs a simultaneous case split 
over all the "guards". For example, £/[SK_>o] corresponds 
to a branch to be taken when s is of the form IQ{X). 

Example 3.1 The following examples show how the 
side-conditions ensure uniqueness of normal forms as 
computed by nf in Section 1. For simplicity let the vari- 
ables z (possibly with indices) in the examples below 
have type o, so that they are normal terms. 

1. The normal form of Xw.S (x\.zo) (x\.zi) y will 
be C({y], (xi.tf)f) where i^,-] = Xw.Zj. Note 
that the expression \w.C({y},(xi.tf)j), where 
t[y>-yi] = zi' violates the side condition for (pure) 
normal forms of A-form. 

2. The normal form of the term 

6 {xi.S (x2-zoo) {x-2-Zoi) y-i) 

(xi.S (x-2-Zio) {x2.zn) y2) 

will be 

4    Neutral constrained environments 
Like Dougherty and Subrahmanyam [DS95] and Fiore 
and Simpson [FS99] we need to supply our type envi- 
ronments with constraints. These will be the objects of 
a category of constrained environments J\f, where the 
morphisms will be injective renamings. The constraints 
are of the form s = ii{x,i) and express which branch 
a certain guard s takes. This is the idea behind our 
Grothendieck topology on N: a "covering" expresses 
case-splitting. This use of Grothendieck topologies is 
closely related to [FS99] where they were used for prov- 
ing a definability result for a language with coproducts. 

Definition 4.1 A neutral constrained environment, en- 
vironment for short, is a pair T | E where T is a type 
environment and E is a set of constraints of the form 
s — I.O(X,Q) or s = ii(a;i) where T I-NE s : A0 + A\ and 
x0 : A0 (resp. x\ : A\) is contained in T and moreover, 

• no two distinct constraints involve the same neutral 
term, for example, E cannot contain S=LQ{X,Q) and 
s=ii(x1) 

• no two distinct constraints refer to the same vari- 
able, for example, E cannot contain s = to^o) 
and s' = to(xo) unless s and s' arc identical. 

C({yi,y2},{xix2.tf)f) 

where ^J/lM.,i,y.,,_>j]    =   £,_;.     Note that the cx- 
prc^kmC({yi},{xl.C{{y2},{x2.tf1uh)h)fi)) is 
not a normal form since it violates the variable- 
condition: xi is not free in the guard y2 of the nor- 
mal form C({y2}, (x-2.tflUh)h). 

3. The normal form of'<5 (x.z) (x.z) y will be 2. Note 
that C({y}, {x.z);) is not a normal form as {x.z)j 
is redundant at y. 

4. Note however, that the normal form of 
S {z.z) (z.z) y will be C({y},(z.z)j) which 
is not redundant at y because of the variable 
condition in the definition of redundancy. 

Definition 3.2 The function d mapping T \~x t : ^4 with 
A' <E {NF,PNF,NE} to terms T H d(t) : A is defined 
in the following way: 

• d commutes with all the term formers except C (in 
particular, preserves variables). 

. d(C(M U {*},(*/)/)) = 6 (x0.e0) (*i.e,) d(s), 
where e,: = d(C(A/, (<s[sh_>i])s)). 

It is easy to see that up to BiCCC equality this does not 
depend on the choice of the witnessing term er and on 
the order of the guards. 

A morphism from environment A | $ to envi- 
ronment FIE is given by an injective function 
a : dom(r) —> dom(A) satisfying A(<T(X)) = r(x) 
and (T(s)—tj(a(x)) is in ^ for each constraint .s=/,(.x) 
in E. In this way the environments form a category Af 
in which composition is composition of functions. 

If A extends T and $ extends E then the inclusion 
a : dom(F) <—> dom(A) defines a morphism from A | "if 
to T I E which we call a. projection. 

We are interested in studying equality of terms rela- 
tive to a neutral constrained environment. The following 
definition is due to [DS95]. 

Definition 4.2 Let T | E be an environment and d be a 
list of dummy terms of the same length as E and of ap- 
propriate (to be explained) type. A (variable-binding) 
type environment C-    [ ] is defined as follows. 

Cr'0[] = [] 

T.x0:Ao I ~.s=in(xa)\ 
cl.d 

<J(a;o.Cjl=[])(a:i.diXi)d(a) 

l\f\:Ai I =.s=l i(Ti)r 1  _ 

d,d0 ,r|: <5(.r0.d0.r0)(z1.C(;-.
l"[])d(.s) 

-.r|: Note that C -    [el binds all variables mentioned in E. 
d 

306 



Given two terms T h e\ : C and T h e2 : C we write 
r I E h ei = e2 : C to mean that 

r'hc^[ei 
= Cj's[e2]:C 

in the theory BiCCC for all appropriate T' and d. Here 
d must be chosen such that the terms C- ~ [ei\ are type 
correct and V is obtained from T by removing the vari- 
ables mentioned in E and possibly adding^any extra free 
variables occurring in the dummy terms d. 
Remark 4.3 Note that ordinary type environments have 
no constraints but it follows immediately from the above 
definition that r|0 h ei = e2 implies T h e\ = e2. 

of 
5    Sheaves over environments 
We consider the functor category N = Sets 
presheaves and natural transformations between them. 
We recall the following definitions of the structure of N. 
A presheaf is given by a family of sets Fr \ 3 indexed by 
environments and for each morphism a : A | * —> T | E 
a function Fa : FT \ = ->■ FA | * such that JFI = 1 and 
FaoT = FT«Fa. Ifa € Fr|5 we may write a\A^ for 
Fa(a) in case a is clear from the context. This notation 
will in particular be used when a is a projection. 

A natural transformation from presheaf F to 
presheaf G is given by a family gT\z of maPs 

.9r 1 E : FT|S -> Gr\s such that Ga«gT\■= = 9A\<a°Fa 

(naturality). If a e Fr | = we may write g(a) for 
gr\s(a)- Naturality then readsg(a)fA|4, = 9(a|"r |E)- 

As any category of presheaves, the category N is bi- 
cartesian closed, that is, supports the interpretation of 
the type formers T, x, =>, +, (and _L). If we denote the 
interpreting presheaves with the same symbols thus writ- 
ing e.g. F =>■ G for the function space of presheaves, we 
have the following explicit constructions of the type for- 
mers in Sets M

op. 

Tr|E 
(FxG)r,H 

(F + G)r\E 

(F=i>G)r|E 

=    «)} 
=    Fr 1E x Gr 1 
=    Fr 1E + G 
=   M(X(-,T\E)xFG) 

However, as we mentioned in the introduction, we 
are not able to obtain normal forms by inverting this 
presheaf interpretation. Instead we shall consider the in- 
terpretation of terms in the category of sheaves over a 
certain topology, and show that this can be inverted. 

Recall that the basis of a Grothendieck topology is 
a collection of basic coverings, satisfying the axioms 
of identity, transitivity, and stability [MM92, p.l 11]. A 
covering of an object T | E in A^ is here a family of ar- 
rows with codomain T | E. Since the category M does 
not have pullbacks in general, we use a modified axiom 
of stability [MM92, p.156]. Moreover, like [FS99] we 

only require that the identity is a singleton covering, not 
that all isomorphisms are coverings. 
Definition 5.1 The basis K for a Grothendieck topol- 
ogy on M is inductively generated by the following 
clauses: 

• The identity covering containing only the arrow 
lr 1 s is a basic covering of T | E. 

• If T l-NE s : Ao + Ai and s is not mentioned in 
E, and if the family of projections from (Ti | Ej), 
forms a basic covering of T,x0 : Ao|E,s = to{xo) 
and the family of projections from (Tj \ Ej)j forms 
a basic covering of T, x\ : Ai |E, s = L\ (XI ), then 
the disjoint union of the projections from (Ti | Ej)i 
and (Tj | Ej)j forms a basic covering of T \ E. 

The general concept of sheaves for Grothendieck 
topologies need not be presented, since it here spe- 
cialises to the following rather digestible definition: 

Proposition 5.2 A presheaf F is a sheaf for K iff 
wheneverT \ E is covered by T,x0'-A0 | E,s=io(xo) and 
T,xi:Ai\E, s=n (xi), that is, T hNE s : A0 + A\ and 

/o      G      -FT,.T0:.4O|S,S=!O(ZO) 

/1.   G    -Fr.ijiA] |E,s=M(zi) 

then there exists a unique / £ Fr | E (called pasting) 
such that 

f\r,x0:Ao\E,s=L0{xo)      =      f° 

f\r,xv.Al\E,s=Li(x1)      =      /l 

The following result follows from general properties 
of Grothendieck topologies and will therefore not be 
proved, see [MM92] for an exposition. 

Proposition 5.3 

/.  The terminal object in Af is a sheaf, 

2. ifF, G are sheaves so is FxG (cartesian product), 

3. ifG is a sheaf and F is a presheaf then F =^ G is 
a sheaf (function space) 

4. for each presheaf F there exists a sheaf aF (the 
associated sheaf or sheafification) and a natural 
transformation 7/ : F -> aF such that whenever 
G is a sheaf and f : F -> G then there exists a 
unique /' : aF -> G with /8«r? = /. In other 
words, the sheaves form a reflective subcategory of 
M, 

5. The sheafification functor a preserves binary prod- 
ucts. 
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6. ifF, G are sheaves the coproduct F + G is in gen- 
eral not a sheaf, but a(F + G) is the coproduct of 
F and G in the suhcategory of sheaves. 

7.ifu,v:F-*G and F, G are sheaves then the 
equaliser ofu and v is a sheaf. 

We write T | E FNF t : A to mean that T hNF t : A 
and, moreover, none of the neutral terms mentioned in 
E is contained in Guards(f). Intuitively, this is because 
no case split is ever needed for a guard whose value is 
already known through the environment. Note that there 
is no need to define T | E FNE t : A and T | E f-pNF t : 

A, since all guards inside neutral and pure normal terms 
include variables bound by A's. Hence the constraints in 
E cannot affect t. 

For a type A we define the presheaves XF(.4), 
PNF(4), NE{A), Term(A) as follows: 

NFMns = {t | r | H I-.XF * : -4} 

PNF(.4)r|E = {t | rhPNFt:^} 

NE(.4)F|H = {t | rhlNES:.4} 

Term(.4)r,E = {t | F | E h r. : .4}/~h 

where t ~h t' stands for T | E I- t = f : A. 

Ha : A | <P -> T | E and T | E hNK t : A then 
NE(,4)a(«) G NE(.4)A | y is defined by replacing each 
free variable x in * by a(x). The morphism parts Tornv 
and PXFff are defined analogously. 

If« G NFr ,E(.4) then NF„(f) is defined by first re- 
placing each free variable x in t by rr(.r) and then plug- 
ging in all the constraints mentioned in $ by repeat- 
edly performing the following atomic restriction oper- 
ation (an analogous operation appears in Ghani's thesis 
[Gh95a] under the name "first and second residue"). 

Definition 5.4 Let t G XF(C)r)E and F hXE ,s : 
A0 + A]. Then we define the restriction t[s:=ij(x,)} 
oft to r, :r; : -4,|E, s=ij(x,) (along the projections) as 
follows. 

t[s:=t.j(x)]    =    tif.s-0Guards(r) 

C(MU {*},(*,),)[«:=,,(*,)]    =    C^M,^^,^) 

where C"f computes a normal form to be defined be- 
low. Note that we cannot simply replace Cnf by C be- 
cause the set of guards can become empty upon plug- 
ging in a constraint, new redundancies may be created, 
and the variable conditions may be violated. We de- 
fine C"f(0,{*}) to be t and C(M U {s}.{tf)f) to be 
6»( (x0.C"l(M,(tf[^0])f)) (xt.C'^MAtj^))) s. 

To compute S"{ (x0.t0) (xi.ti) s we first check 
whether tt depend on x\ and arc different (see the 
definition of redundancy). If not, we return r0(= <i), or 
otherwise, we return C({s} U A/0 U Mi, tg), where 

Mi = {Si e Guards^)!*,- i FV(.s,-)} 

for i = 0,1, and the family tg is adjusted accordingly. 

Proposition 5.5 d    defines   natural   transformations 
XF(.4)     -»     Term(.4),   PNF(.4)     ->    Term(,4), 
NE(/1) -> Term(,4). 

If / : B(A, F) is a morphism in the free BiCCC B, 
that is, a sequence of terms in type environment A, then 
[t] >-> [ft] defines a natural transformation Tcrm(/) : 
Term(A) -> Term(r). This makes Term(-) a functor 

from B to .V preserving T and cartesian products. 

Proposition 5.6 The presheaf Term(.4) is a sheaf. 

Proposition 5.7 The presheaf NF(.4) is a sheaf and 

is isonwrphic to the shcafification   o(PNF(.4))    of 
PNF(.4) with the embedding rj : PNF(.4) -> NF(.4) 
given by r]r \E(t) = t. 

If T h s : A0 + Ai, then the pasting of two normal 
forms tt G NF(.4)r,:ri...li(H_s=li{Ti) is the normal form 

<5"f(.7:0.r0)(.r1i1)seXF(.4)r|E.' 

Let us write Sh(Ar) for the full suhcategory of .V 
consisting of the sheaves. We know from Prop. 5.3 that 
Sh(.\') is a BiCCC. Since the category Bo of sequences 
of types and terms is a free BiCCC there is a unique 
interpretation functor |-] : #„ -> Sh(.V), determined 
by 

XFi 

Concretely, this functor is given by defining a canonical 
BiCCC structure on Sh{.\'). 

6    Inverting the interpretation function 
Wc will now define natural transformations 

qA : [.4] -> XF(.4) 
u-> : XE(.4) -> [,4J 

in such a way that for a term F h c : .4, 

nf(0=fqi?(W("!:(lr))) 

will satisfy NF1: 

• q° : XF(o) -> XF(r>) is the identity function. 

u° : XE(o) -> XF(o) is the injection from neutral 
terms to normal terms given by the obvious term- 
formation rules. 

• qT : T -> XF(T) is the constant function return- 
ing the normal form (). 

uT : XE(T) -> T is the constant function return- 
ing the element () G T. (As before we use the same 
signs for corresponding syntactic and semantic no- 
tions.) 
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• qA°xAi = pairnf°(qA° x qAl) where pairnf : 
NF(A0) x NF(Ai) -» NF(A0 X AI) is the unique 
map satisfying pairnf(ti,t2) = (t\, t2) for pure 
normal forms t\,t2- This map exists by Proposi- 
tion 5.7 and the fact that a preserves products. 

Proposition 6.1 In order to establish NF1, that is, e = 
d(qA([e](u(lr))) for T h e : A we define a family of 
subsheavesRA,S C [-A]r,s x Term(.A)r|E> suchthat 

(i) For all a £ {A} and r h e : 4: 

-A 

r|: 

oi?^|He=»r|Ehd(q^H(a)) = e 

Let 6  G   \A  =*   B]r|s   =  AA(Af(-,r|E) x (») ßra/Zs e NE(A)r 

M], [£]). Then 
Ur|3(a)Är|Sd(s) 

where <r is the projection from T, x : A\E to T | E. 
Here Anfa;.C(M, (x\ ... xn.tj)j) is obtained by di- 
viding M into two sets, Mo which contains the 
guards which do not depend on x, and Mi, which 
contains the guards which do. Then we return 

C(M0, (xi ...x„0.Ax.Cn (Mi,(xi. ..ini.t/0u/i)/i))/o) 

Compare also example 1 in 3.1. 

Let s  G  NE(A =S>  B)r|s-   Then u£j|B(s)   G 
[A => B]r 13 is defined by 

(ufJ||B(s))A|*(ff,0) = 

u£|lt(NECT(S)(qA^(a)))e[i?]A^ 

where a G Af(A | *, T | S) and a € [AJA | ^. 

^o-Mi is the unique map (arising from the coprod- 
uct property of IA0 + Ai}) satisfying 

q^+^(^h(a)) = tS
f(q^(a)) 

qAo+i4l(i;h(6)) =t?f(qi4l(6)) 

Here t0
h> 4ih are tne coproduct injections in Sh(Af) 

and tgf : NF(A0) -> NF(^0 + Ai) is the unique 
map satisfying tgf (t) = t0(i) for pure normal form 
t: A0. Similarly for t"f. 

To construct 

UA0+A1  e NE(ylo + M) ^ ^ + Aij 

considers 6 NE(^40+^i)r| ~: eithers = t0(x) G 
E in which case we put /r|=(s) = toh(ur?_(a;)), 
or s = ii{y) G S and we put fr\s(s) = 
t|h(upfH(y)), or s is not mentioned in E in which 
case we define /r | =(s) as the unique pasting of 

d_£f ,sh/ a0 = t; 

Oi 4if ,sh, 
r,x:Ao | E,s=t0(z) 
.^1 

'l vur,x:Ai |s,s=n(i) 

It follows by straightforward calculations that all these 
are indeed natural transformations. 

We can extend R to type environments by letting 
(ai,... ,a„) i?£|H (/i,... ,/„) iffaii?p]E /j for 1 < 
i < n, where r = x\ : A\,...xn : An. Similarly, we 
can extend q and u to type environments as well. 

Proposition 6.2 (Logical Relations Lemma) // 
r h e : C and a R^ , - / then 

lej(a)R^Be[f/xl 

where x are the variables in T. 

Theorem 6.3 The equational theory BiCCC is decid- 
able. 

Proof. The above shows that the normalisation function 
nf satisfies NF1, because by (ii) and d(lp) = lr, we 
know that 

uF(lr)i?Flr 

Hence by Proposition 6.2, we know that 

lej(ur
r(lT))RAe 

Hence, by (i) (cf. Remark 4.3) 

rhd(nf(e)) = d(qA([e]K(lr))))=e 

As we pointed out in the introduction NF2 holds auto- 
matically, and hence it follows that 

r h ei = e2   <=>  nf(ei) = nf(e2) 

This yields a decision procedure since equality of nor- 
mal forms is decidable. (Note that when writing the al- 
gorithm we represent the finite set of guards as a list 
or a tree, so that normal forms are only unique up to 
the ordering of the guards.) Furthermore, the interpre- 
tation in Sh(J\f) as well as the definition of q,u are 
clearly algorithmic. In fact, the whole development can 
be formalised in extensional Martin-Löf type theory us- 
ing standard methods for formalizing category theory 
in Martin-Löf type theory. This would be one way of 
demonstrating explicitly that all functions we construct 
by abstract mathematical means are computable.        Ü 
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Strong Normalisation in the 7C-Calculus 

(Extended Abstract) 

Nobuko Yoshida * Martin Berger * Kohei Honda 

Abstract 

We introduce a typed 7t-calculus where strong normali- 
sation is ensured by typability. Strong normalisation is a 
useful property in many computational contexts, including 
distributed systems. In spite of its simplicity, our type dis- 
cipline captures a wide class of converging name-passing 
interactive behaviour. The proof of strong normalisability 
combines methods from typed ^.-calculi and linear logic 
with process-theoretic reasoning. It is adaptable to systems 
involving state and other extensions. Strong normalisation 
is shown to have significant consequences, including 
finite axiomatisation of weak bisimilarity, a fully abstract 
embedding of the simply-typed X-calculus with products 
and sums and basic liveness in interaction. 

Strong normalisability has been extensively studied as a 
fundamental property in functional calculi, term rewriting 
and logical systems. This work is one of the first steps to 
extend theories and proof methods for strong normalisabil- 
ity to the context of name-passing processes. 

1. Introduction 

Background The formal study of types in programming 
languages and computational calculi has led to the under- 
standing that types can ensure a wide range of desirable 
computational properties, ranging from error-free execu- 
tion to logical specification of program behaviour. One im- 
portant property in this context, widely found in typed X- 
calculi, is strong normalisation (SN), which says that com- 
putation in programs necessarily terminates regardless of 
evaluation strategy. This is interesting from a logical view- 
point especially because, by the correspondence between 
proofs and programs, SN of certain ^.-calculi implies con- 
sistency of the corresponding logical systems. For this rea- 

* Department of Mathematics and Computer Science, University 
of Leicester, UK. E-Mail: nyll@mcs.le.ac.uk. 'Department of 
Computer Science, Queen Mary, University of London, E-Mail: 
{martinb, kohei}@dcs.qmw.ac.uk. Partially supported by EPSRC 
grant GR/N/37633. 

son functional calculi and logics have been the main focus 
in the study of strong normalisability so far. 

The significance of SN is, however, not limited to this 
traditional setting. SN is also interesting in the context 
of communicating processes. As an example, consider a 
distributed client-server interaction: when a client requests 
some service, s/he may naturally wish the computation on 
the server's side to terminate and return an answer. SN 
is thus a basic requirement for, say, interaction between 
banks and their customers. As another example, the re- 
source preservation guaranteed by SN has been one of the 
main reasons for Gunter and his colleagues to develop their 
typed programming language for active networks (PLAN) 
[15,33] on the basis of a simply typed ^.-calculus. Such 
languages require primitives for communication and con- 
currency. This suggests a systematic effort to extend the 
accumulated theories of functional SN types to the realm of 
interactivity is a worthwhile endeavour. 

We are thus motivated to reposition and study strong 
normalisability in the context of process theory. In par- 
ticular, is there a basic typed process calculus in which 
strongly normalising functional calculi are faithfully em- 
beddable? By faithful, we mean that typability of the en- 
coding automatically ensures strong normalisability of the 
source calculus. More ambitiously, can we obtain exact se- 
mantic correspondence, including full abstraction and full 
completeness? Obtaining affirmative answers to these ques- 
tions would not be of mere theoretical interest: as typed 
^.-calculi offer a basic theory of procedure calls, a funda- 
mental abstraction in programming, embeddability of SN 
functional calculi would capture interactive behaviour pow- 
erful enough to involve non-trivial procedural calls while 
maintaining SN. Exploration of strong normalisability in 
this broader context might also shed new light on typed 
functional computation itself. 

The present work is a trial in this direction, introduc- 
ing a typed 7t-calculus in which the first-order strongly nor- 
malising ^.-calculi are fully abstractly embeddable. The 
type discipline simply adds the minimum form of causal 
chains to the system introduced in [8] where we established 
a fully abstract encoding of PCF. This small addition radi- 
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cally changes the class of typable process behaviour, turn- 
ing possibly diverging computation into a strongly normal- 
ising one. As would be imagined by the embeddability 
of typed ^.-calculi, the proof of SN is non-trivial, defying 
naive structural induction. We adapt methods developed for 
strongly normalising ^.-calculi [6,13,37], combined with 
process-algebraic reasoning [8,30,32,36,40]. As far as wc 
know, this is the first time a compositional principle for en- 
suring SN has been established for name passing processes 
with non-trivial use of replication. The proof method for 
SN is applicable to extensions of the presented formalism. 
In the following, we outline key technical ideas and relate 
our work to the existing literature. 

The n-Calculus Following [8], we use an asynchronous 
variant of the rc-calculus [10,19]; computation in this cal- 
culus is generated by interaction between processes. 

x(y).P\x{v) —> P{v/y} 

Here y denotes a potentially empty vector vi...v„, | de- 
notes parallel composition, x(y).P is input, and x(v) is asyn- 
chronous output. Operationally this reduction represents 
the consumption of an asynchronous message by a recep- 
tor. The idea extends to a receptor with replication 

\x(y).P\x{v) lx(y).P\P{v/y}, 

where the replicated process remains in the configuration 
after reduction. As a simple example of a process, first con- 
sider the forwarder agent Fw(«/;) 

Fv(ab)= !a(.v).£(.v) 

which repeatedly inputs a value at a and outputs it imme- 
diately at /;. As another example, the following is a client 
which requests at a to have returned a value via a private 
name c 

ä(c)c(y).P 

where ä(c)c(y).P stands for (vc)(ä(c) \ c(y).P) with (vr) 
being a restriction operator. Using these agents, R below is 
a simple but interesting example of livelock 

R = Fv(aa)\ä{c)c(y).P 

since R causes an infinite reduction sequence and the recep- 
tor c(y).P waits forever for an answer at c. In an untyped 
setting, R is equal to a(c)c(y).P up to asynchronous bisim- 
ilarity, but the two are quite different regarding resource 
consumption. The next example shows how subtleties arise 
through new link creation of the 7i-calculus. 

a{x).Fw(bx) \a{c)Fw(cb) \b 

After a one step reduction via a, we obtain Fv(bc) | Fv(cb) | b 
which exhibits divergence. 

Type Discipline for SN The type discipline of this pa- 
per is a simple refinement of [8]. Concretely, the system is 
based on two central ideas: 

• Linear types [12, 26, 27,40], which ensure that a chan- 
nel is used exactly once for input/output and, for a 
replicated channel, an input occurs exactly once and 
output occurs zero or more times [8, 24,29, 32, 36]. 

• Action types with causality, where causality is repre- 
sented by edges in a directed graph whose acyclicity 
ensures the absence of circular dependencies [26,27, 
40], Transmission of causality is controlled by a form 
of cut elimination in action types. 

Let us illustrate these points by examples. First, Fv(ab) is 
typed as follows, assuming an appropriate environment V. 

ThFw(ab)>\a->lb 

Here \a -> '?/; indicates that the process repeatedly inputs 
at a and then outputs at b. Cut elimination occurs between 
input and output with the same name. For example, given 
an appropriate base T, wc can type (® being disjoint union): 

F h Fw(«i c) I Fv{a2c) | Fw(cb) t> !«r->?/> ® !ai->?/; ® !<—>?/> 

r> !«(.v).(£(.v) \b(x)) | !fo(.v).(r(.v) |F(.v)) > (!„ -> ?<•) ® (!/>->•>,-) 

We can detect a cyclic dependency such as Fw(ab) \ Fv(ba) 
by looking at their types \a -> lb and lb -> ?« [20, 24.40]. 

Proving SN for the re-Calculus To prove SN for typable 
processes, the first idea would be. in the light of the previ- 
ous examples, to show that reduction steps follow a non- 
circular ordering on free channels, e.g. the reductions of 
Ti(v)\Fv(ab)\Fw(bc) proceed at a, b and c in this order, but 
in Ti{v)\Fv(ab)\Fv(ba) arc repeated between a and b. How- 
ever, due to creation of new links and replication of terms, 
both crucial features of n-calculi, such reasoning is infeasi- 
ble. at least in its naive form. Consider the process 

!«(.v).(l(r,)|.v(v2)) \ü(c)Fv(cb) | lb(x).(ä{x)\ä(x))     (1) 

which has type !«® lb. The process owns reductions first at 
a. then at b, then at a again. Further, the number of redexes 
increases exponentially in its course, but the computation 
terminates. Such behaviour occurs when a process requests 
the same resource more than once in an interaction, e.g. in 
an encoding of the A.-term ?LVV:.((A\-)(V:)) [281. The diffi- 
culty in analysing (1) can be seen by considering the fol- 
lowing subterm of a one step descendant of (1). 

(vf)(F(v,)|F(v2>|Fw(rA>) 

It contains a chain !c- ->'?/;, which is difficult to determine 
before c is passed. In fact, if we naively represent causality 
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incorporating bound names in (1), there is a circular chain 
a —> c —> b —> a, although this cycle never arises in actual 
interaction. How can we then prove termination? Simple 
structural inductions would not be usable for the same rea- 
son they do not work in typed ^.-calculi [6,11]. 

The idea we use is suggested by SN proofs for typed 
^-calculi, due to, among others, Tait [37]. His method em- 
ploys a semantic interpretation of each type [[a]] as a col- 
lection of strongly normalising ^-terms, and shows that all 
typable terms are indeed in these sets. A key step is to prove 
that foe: G.M £ [[a -> TJ for each M : x (for which by induc- 
tion M £ [[TJ), which means, by definition, (foc.M)N £ [xj 
for each N £ [oj. But all semantic types have the prop- 
erty that M{N/x} £ [xj and (foc.M)N —► M{N/x] imply 
(foc.M)N £ |T], hence we have only to show M{N/x} £ [[xj. 
To be able to do this we strengthen the induction hypoth- 
esis M 6 [xj to M 6 [[xjp for each environment p, map- 
ping each variable of type a to some term in [[a]. Now 
the result is immediate. While we cannot use an identical 
framework due to the different nature of reduction in the 
Jt-calculus, a similar technique works "for the induction to 
go through". A key observation concerns the close corre- 
spondence between the substitution M{N/x} and the con- 
sumption of a message x(v) by a replicated process \x(y).Q. 
Thus, at each induction step, we prove that P\(R\\...\R„) 
converges for each possible "environment" R\\...\Rn which 
complements P. Termination behaviour is calculated via the 
extended reduction suggested by strong bisimilarity (which 
does not change termination) together with replication the- 
orems [8, 30,36]. Then acyclicity in causality yields strong 
normalisation. 

Summary of Contributions The following summarises 
main technical contributions of the present work. (3) solves 
an open problem in [28] for the simple type hierarchy. 

1. Introduction of a typed rc-calculus where strong nor- 
malisability is ensured by typability. SN has signifi- 
cant consequences for the calculus, including the finite 
axiomatisation of the weak bisimilarity and the basic 
liveness in interaction. 

2. Establishment of strong normalisability of typable pro- 
cesses combining ideas from traditional SN proofs for 
typed X-calculi with process-theoretic reasoning. 

3. Embedding, using Milner's encoding [28], of the 
simply typed X-calculus with sums and products 
(X_>.iXi+) into our typed 7t-calculus. The embedding 
is fully abstract w.r.t. the observational congruence of 
X._>iXi+, justifying all commutative conversions and in- 
equations [13] and automatically leads to SN in the 
source calculus. 

Related Work Strong normalisation in typed ^.-calculi 
has been studied extensively in the past; detailed surveys 

can be found in [6,11]. Abramsky extends the Curry- 
Howard correspondence to linear logic [12] using proof ex- 
pressions and proves SN [1], guiding our present usage of 
acyclicity in names. This programme is taken further with 
realisability semantics of linear logic in [5] where CCS pro- 
cesses act as realisers. The operational structure of [5] fol- 
lows his own rc-calculus encoding of proof nets [2]. The 
appeal of realisability lies in treating semantics and syntax 
uniformly on a logical basis. In the context of SN types for 
the 7t-calculus, sharing of names and dynamic link creation 
would make the framework in [1,5] hard to apply directly. 
In contrast, the present work offers a possibly basic type 
discipline that does not directly correspond to known log- 
ical systems but is based on simple operational principles, 
resulting in a new effective method to ensure SN for name 
passing processes. 

As our initial example of server-client interaction sug- 
gests, SN in processes is closely related to liveness proper- 
ties in interaction. Yoshida [40] presents a typed 7t-calculus 
with a local liveness property. Kobayashi and his col- 
leagues [23-26] propose several typing systems which en- 
sure a form of liveness (in [25] time quotas are assigned to 
communications for this purpose). Unlike the present work, 
these and other preceding typing systems for 7t-calculus 
[8,16,17,34,36] do not guarantee SN and the associated 
liveness properties for processes involving non-trivial use of 
replication. As a result, embeddability of, say, X_> in these 
systems does not guarantee the SN of the source calculus in 
these systems. 

Structure of the Paper Section 2 introduces the syntax 
and the type discipline. Section 3 proves the main result, 
the strong normalisability. Section 4 presents the complete 
axiomatisation of weak bisimilarity. Section 5 gives a fully 
abstract encoding of A,_>iX,+ . Section 6 briefly outlines fur- 
ther results. The technical details, including omitted proofs, 
can be found in the full version [41]. 

2. Processes and Typing 

2.1. Processes 

Following [8], we use the asynchronous version of the 7i- 
calculus [10,19] with bound output [35]. ' 

::=    x(y).P input 1   P\Q parallel 
1    *{y)P output 1    (vx)P hiding 
1       \x{y).P replication 1  o inaction 

The bound/free names are defined as usual and we assume 
the variable convention for bound names. The structural 
rules are standard except for omission of \P =\P\P and 

'The full syntax includes branching, which is discussed in Section 5.2. 
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for incorporation of congruence rules making output asyn- 
chronous [8]. 

x(z)(P\Q)    =    (x(z)P)\Q 

x{z)(vw)P   EE    {vw)x(z)P 

iffn(ß)n{2}=0 
if w g {xz} 

The reduction —> is generated by the following rules. 

x(y).P\x{y)Q 

\x{y).P\x(y)Q 
(vy)(P\Q) 
\x(y).P\(vy)(P\Q) 

The relation is defined over processes modulo = and is 
closed under parallel composition, restriction and output. 

2.2. TVpes 

Channel Types    The following pairs of action modes [8, 
20] prescribe how each channel is used in typed processes. 

4-     Linear input 
!      Replicated input 

Linear output 
Output to ! 

We also use _1_ to indicate the presence of both input and 
output at a linear channel. p,q,... range over action modes. 
For p ^ _L, we write ~p for the dual of p, a self-inverse map 
on the action modes such that 4- =t ar)d T — ?. The modes 
correspond to !|,?i, !m and ?u introduced in [8], except that 
the present modes indicate true linearity for linear channels 
(i.e. input and output occurs precisely once) and lack of di- 
vergence for replicated channels. 

Using action modes, we first define the set of channel 
types: they are assigned to names and indicate how channels 
would be used. 

a    ::=    (x, T) 

X    ::=    Ti  | To 

Xl 

x0 

(To)*      I      (To)' 

(X:)T     I     (X:)" 

In the first line f denotes the dual of x, which is the result of 
dualising all action modes; md(x) indicates the (outermost) 
action mode of T. A type of form (T,T), called a pair type, 
is an unordered pair of mutually dual types. 

Following [8] we only consider types where, in (T0)*, 

each T, has mode ? (and dually for (Xi)^). This constraint, 
which comes from game semantics, is not essential for SN 
but simplifies presentation and proofs. 

Action Types Channel types are assigned to free names 
of a process to specify possible usage of names. Action 
types, on the other hand, carry causality information [40] 
and witness the real usage of channels. Formally, an action 
type, denoted A,B,..., is a finite directed graph with nodes 
of the form px, such that: 

• no names occur twice; and 

I* 
tb 

© 

Id td 
te _Lb 

!a 
?b 

© 

?d 

.'e 

Figure 1. Composition of Action Types 

• edges are of the form !x —> ly or I x ->t y. 

If px is in A and for no )' we have qy —> px, then we say x is 
active in A. \A\ (resp. fn(/\), active(A), md(A)) denotes the 
set of nodes (resp. names, active names, modes) in A. A\x is 
the result of taking off nodes with names in x from A. Al+Iß 
is the graph union of A and B. 

Now define a symmetric partial operator 0 by: 1 © f= 
_L, ? © ? = ? and ! © ? = !. Write A~B iff: 

• whenever px G A and qx G B, pOq is defined; and 

• whenever p\X\ -> p2
x2, Pixi ->• T^-*'.^ ••• , Pn*n -> 

7?,r)|A'„;i in y4 l+f /? (/J > l),wehave,vi / x„. 

Then A OB, defined iff A x B, is the following action type. 

• px e \AQB\ iff either (1) px G \A\ and x g fn(ß) and 
the symmetric case, or (2) qx G \A\ and rx G \B\ and 
p = qQr. 

• px ->• qy in A 0 B iff both (1) px,qy G \A 0 B\ and (2) 
px = nz\ ->r2Z2,r2Z2^rT,Z},... ,r„z„->r„+lzn+\ = 
qy\nA\ilB(n > 1). 

We can easily check that 0 is a symmetric and associative 
partial operation on action types with unit 0. 

Example 2.1 Figure 1 shows examples of composition be- 
tween action types. In the linear case, ordering from/to node 
b disappears. On the other hand, in the replicated input 
case, we need to keep the original ordering because \b{y).P 
remains persistently. We can write down these examples 
syntactically as follows (shared ?-nodes are duplicated in 
syntax): 1 a -> (| b® t c)Q I b -> (t d® f e) =1 a -> (t 
c© t do t e) ® lb, and \a ->• (?/;©?c)0 \b -> {ld®le) 
= !o^ (?c©?J®?f)©!/?-> (?dO?e). 

2.3. Linear Typing 

We are now ready to present the typing rules. Sequents have 
the form T h P t> A where V is a finite map from names to 
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(Zero) 

rhOoO 

(Par) 

r\-Pj>Aj  (/=i,2) 
AixA2  

r\-pl\p2>AlQA2 

(Res) 

Tx: cchP>A 
px€ \A\ with pe{±,\} 

T\- (vx:a)Pi>A/x 

(Weak-_L) 

rhx:|,T 
r^p>A-x 

r\-p\>A®±x 

(Weak-?) 
Thx:? 
r\-Pt>A'x 

r h P > A <g> ?x 

(In4-) (C/y=ti4(8i?B) 
r h x: (x)4 

r-j:thPt>Cv 

rhx(y:x).Pi>(.|.x->A)<g>B 

(Out4) (C/y=A^x) 
rhrp)t 
r-j:xhPi>C 

(ln!) (C/y = U) 
Thx:(x)' 
r-y:xh P>CX 

r\-x(y:x)P\>AQtx rh!x(y : x).P> !x-M 

Figure 2. Linear Typing Rules 

(Out7) (C/y = Ax?x) 
rhx:(x)? 

r-y:x>P>C 

r h jcfj: x)P > A © ?x 

channel types, called a /rase. The typing rules are given in 
Figure 2. The following notation is used. 

A/x    A\x such that x; E active(A) for each x,- 
pA    A such that md(A) = {p} 
A'x    A such thatx^fn(A) 

Further, px —> A adds new edges from px to active nodes in 
A, A®B (resp. T-A) denotes the disjoint union of A and B 
(resp. r and A), and T h x : T denotes either x : x or x : (x,x) 
is in T. The sequent r h P > A is often abbreviated to V h P. 

We briefly illustrate the typing rules. In (Par), "x" con- 
trols composability, ensuring linearity of channels, and pre- 
vents circular dependency. In (Res), we do not allow -f, ? 
or ^-channels to be restricted since they expect their dual 
actions to exist in the environment (cf. [8, 17,20,26]). In 
addition to recording causality, (In4) ensures that x occurs 
precisely once (by C'x) and that no free input is suppressed 
under the prefix. (Out4) also ensures that x occurs precisely 
once but permits suppression by the prefix since output is 
asynchronous. (Irr) is the same as (In4) except that no free 
f-channels are suppressed (if a ^-channel is under replica- 
tion then it can be used more than once). (Out7) and (Weak- 
?) say that ?-channels occur zero or more times and do not 
suppress actions. 

Example 2.2 • A copy-cat copies all information from 
one channel to another [4,22]. We show, step by step, 

how [M ->• x]x =\u(a).x(b)b.a, the copy-cat from u to 
x, can be typed. Let x = (()4)!, r = a : ()4 • b : ()4 • 
«:x-x:x. Then: (l)rhO>0, (2) T h ä> | a, (3) 
r h b.a> I b ->t a, (4) T\b h x(b)b.ä > ?x® t a (by {I 
b ->f a)/b =t a) and finally (5) T\ab \-\u{a).x(b)b.a > 
\u -> ?x (by (?x® t a)/a = ?x). 

• Letcc= (04, ()4) andT = a:a-b:a-c:a-d:a. Then 
T\-a.{b\c)> la_-+ {tb®^c) andT\- b.d> lb^>td. 
By(Par)>n-a.(fc|c)|^>4.a->(tc®t^)i8>J-fc>and 
by (Res), rI- (vb)(a.(b\c) \b.d)> la^(1;c®td). 

• LctT = x: (x,x) -y: (x,x) ■ z: (x,x) andx= (()4)!. Then 
the connection of two links (copy-cats) is typed as: 

r I- [x -> y]T | [>■ -> z]T > (!x -». ?Z) ® (!y -> ?Z) 

with (!x -> ?)■) ©(!)■-> ?z) = (\x ->■ ?z) ® (!j ->■ ?2). 
However, [x -» x]T and [x ->• _y]T | [)• -» x]T are untypable 
under any environment by the side condition Cx in 
(In) and by definition of x, respectively. 

Next we list two properties of name usage in typed pro- 
cesses. Acyclicity becomes crucial in our SN proof later. 

Proposition 2.3 Let V h P > A. 

i. (linearity) If px e A SMCA r/?ar /? e {J.,t>!}. ?/ze" x oc- 
curs precisely once in P. 

ii. (acyclicity) G(P) denotes a directed graph s.L: (l) 
nodes are fn(P); and (2) edges are given by: x rv y iff 
P = (v?)(ß|P) such that Q~x(w).Qo orQ = lx(w).Q0 

where y occurs free in Qo, x <£ {z} and y $. {zw}. A 
cycle in G(P) is a sequence of form x rxy\... rxyn rxx 
(n > 0) with yi ^ x. Then G(P) has no cycle. 

Some notation which we use later: 

>*Q-H. • Pi^Q  U P 

• Pij-U 3Q.P Jj Q. Further, P ft U V« e N. P ■ 
• SN(P)   U 

def 

^11- 

• CSN(P)   m.   SN(P)A(P^ß,,2=>ßi=ß2). 

Proposition 2.4 Lef T K P t> A. 

i. (subject reduction) //P —>* Q then T h Q > A. 

ii. (one-step confluence) If P —> Qx (i =1,2) with Q\ ^ 
02 then there exists R s.t. Q, —> R (i = 1,2). 
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iii.  (determinacy)   (]) P—> f andSN(P') imply SfM(P). 
(2) P Ü, Qi (i =\,2) imply ß, = Qi-   And (3) P J| 

<S> SfM(P)  <£> CSN(P). 

(i,ii) is proved as in [8]. (iii) is standard [1] all using (ii). 

3. Strong Normalisation 

This section proves the following result. 

Theorem 3.1 (main theorem, strong normalisation) 
r\-Pt>A  =>   CSN(P) 

A few significant consequences of the theorem will be dis- 
cussed in Sections 4, 5 and 6. In the proof, we first intro- 
duce the extended reduction relation i->, which eliminates 
all cuts (mutually dual channels) in a typed process. Next 
we define semantic types [[r,/\]], which arc sets of typed 
terms that converge when composed with all necessary "re- 
sources" (i.e. complementary processes). Finally we prove 
that each typablc process is in the corresponding semantic 
type. This part is divided into two stages. We start with 
show all normal forms to be in their semantic types. Then 
we establish that each typable process combined with re- 
sources always reaches a normal form, which implies the 
strong normalisability of —>. In the second stage acyclic- 
ity (cf. Proposition 2.3) becomes crucial. 

3.1. Extended Reductions 

Definition 3.2 (extended reductions) We define n-i, H->r 

and H->g as the compatible relations on processes modulo 
= respectively generated by the following rules. 

C[x(y)P}\x(y).Q 
C[.v(y)P]|!.v(y).ß 

(v.v)!.v(j).e 

|->i 

>->o 

C[(vy)(P|ß)] 

C[(vy)(P\Q)}\ 
0 

!.v(v).ß 

del" Here C[] is an arbitrary context not binding x. Then 
(i—>i U I—>r U t->9) is the extended reduction relation. 

The idea of H-> is to capture known process-algebraic laws 
as one step reductions: H-»I, i~>r and >->g correspond to the 
ß/lincar law [16, 17,26,40], the replication law [8,32,36] 
and the garbage collection law, respectively. Immediately 
—>Ch->. P\),e, SIM(,(P) and CSN,,(P) are given as P J]., 
SN(P) and CSN(P), using ^ instead of —>. A ^t-redex is 
a pair of terms which form a redex for i-> in a given term. 
We say process P is prime with subject x if cither P is input 
with subject at x or P = x(y\ ..y„)n,G/P; such that each P, 
is prime with subject y, where n,<T/P, denotes the parallel 
composition of {P,},e/ (if / = 0 then n,e/P, = 0). We as- 
sume all prefixed terms to be primes throughout the rest of 
the section (which docs not lose generality up to =). NF, 

is given by {r h P,P >/>}. Note that a process is in NF, 
if it does not contain complementary input and output and, 
moreover, it docs not have substantial hiding (i.e. a hiding 
(VA)P such that x £ fn(P)). Thus we can see NF, is induc- 
tively generated by the following rules up to = (implicitly 
assuming typability): 

• 0 G IMF,, 

• P e NF, then x{y : x).P, \x{y : x).P, x{y : z)P G NF(,. 

• Pi G NF(, (/ e / ^ 0), Pi is a prime, and Pj\Pj ft (/' ^ j) 
then ri/e/P £ NF,. 

Proposition 3.3   Let all processes be typed below. 

i. Ifr\-P>A and P M- />' then F h P' t> A. 

ii.  (CR) IfP (->•* Qi then Q, ^>* R (i =1,2). 

iii.  (determinacy)   If P ^ P' and SN,(P') then SN,(P). 
ThusP^, iffSNc{P) iffCSN,,(P). 

Note that the Church-Rosscr property is no longer one-step. 
The proof proceeds by 'postponing' applications of i—>g. 

3.2. Semantic Types 

Semantic types arc provably strongly normalising typed 
terms of some kind. Wc need some preliminaries. 

• c{A) = ®/,,v,c.-t./.,,-{r,-.'}7J/-v'- 
• Let A x B and A © H = C® 1.x where 1 £ md(C). Then 

A-B = C. 

By c(A). called the complement of A, we indicate the (type 
of the) environment which gives complementary linear and 
replicated inputs for all free output channels in A. A-B is 
a "semantic version" of AQB, where wc forget inessential 
±-channcls. Wc write r h A if modes in A conform to T. 
Wc can now define semantic types. 

Definition 3.4 The semantic type [[r, A]] of a pair T and A 
such that V\- A, and the prime semantic type ((V, px)) for a 
pair T and px such that T h px with /; G {4-,!}, are defined 
by the rules in Figure 3. 

In Figure 3, V and TUT respectively denote the result of du- 
alising all types in V and the name-wise union of types. The 
rules are well-defined since the height of types decreases 
in effect. Note that we can always assume T in [[F, A}} is 
paired, i.e. contains only pair types, with no loss of gener- 
ality. Some observations: 

Lemma 3.5 

i. IfP £ [[r, A} then VhP>A and SN,,(P). 

ii. [[r, A}} c [[r, A®BI Also [[r, A ® i.v]] = [[r, A}}. 
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IT, A} 

«r, Ix)) 

def 

def 

def 

{ThP>A \\fQe((r,c(A))).P\Q^eRe((Tur,A-c(A)))} 

{x(y : x).P  | P G [[r-j:f, ®p,y,]]   with T hrfx)1 and p{ = md(T,-)} 

((r, !*»    ^    {\x(y :x).P \ PG \T-y:%, ®pm\ with Thx: (x)! and/>,• = md(x/)} 
def 

«r, ®ieiPiXi))   =   {n,e/p | ^ e <(r, />,*,»   (ie/)} 

Figure 3. None-Prime and Prime Semantic Types 

iii. Lef P h-> P'. T/ien P G [T, Aj ij^P' G [T, A]]. 

iv. Lef P, G ((r, p,x;)) (1 < i < n) such that X[,..,x„ are 
pairwise distinct. Then n,e/P G flr, ®,7?,x,]]. 

For the proof of (i), we use P\Q JJ.e implies P tye and Q i$.e. 
For (iii), "then" is trivial, while "if" is by H-> being CR. (iv) 
is because c(®/?,x,) = 0 in this case. 

3.3. Main Proofs 

First we show that all (typable) normal forms are semanti- 
cally typed. The difficult case here is output a(x)P to repli- 
cation \a(x).Q because after reduction ä{x)P\ \a(x).Q —> 
(vx)(P\Q)\ \a(x).Q,P may interact again with \a(x).Q. Our 
formulation of semantic types based on i—>■ makes the induc- 
tive augument possible. 

Lemma 3.6 lfT I- P > A and P G NFe then P G [[r, Aj. 

PROOF: By Lemma 3.5 (ii), it suffices to consider only min- 
imum action types. For brevity we write P(px) (p G {!,!}) 
for a process in normal form in a prime semantic type. Also 
throughout the proof we set in(A) = {a,} and fn(P) = {bj}. 
The proof proceeds by induction on the structure of P. We 
only list two cases, see [41] for the remaining cases. 

(Inaction). By c(0) = 0, if ß G ((r, c(0))), then Q = 0. 
Hence 0|ß = 0 JL. 0 G ((r, 0)) with c(0) -0 = 0, immedi- 
ately o G [[r, 0j. 

(Replicated Output). Assume P £ §T-y : x, C® ?xj with 
C/y =t A <g> 1B~X. We have to show x(y : x)P G [[r, A <g> 
P® ?*]]. First we note that c(A ® B® Ix) = c(C® ?x) = 
(A®P®!x). Assume Qe {(T, Ä®P®!x)). W.l.o.g. we 
can write Q =\x{y).Q'0 \QX\Q2 where \x{y).Q'0 G ((r, !*», 
ßi = n,-ßi,-(4.a,-> and ß2 = nfß2y(»,)- Then we have: 

Wlß —> (vjO(^lßo) I !*Ö0-ßo I ßi 102. 
By induction, P^ÖO-ß^ßilßz ^ P'|!x()0^|fi2 s.t. P' G 
[r-y : T, ®/?<}'; J with pi = md(t,) G {!,J,}. Hence we can 
write P' = nkRik(ut) \ Tlfaiiiw,) with {y} = {zw}. We also 
note that Q'0 G ((F-y-.x, ®p,;y,)). Hence, by assumption, 

(v^OC'lßo) ->* (v50(n//?2/<!*,)) -*S ° 

Now by CR, we have P | ß JL>(>0-ßo I 02 G ((T, P® !*)), 
as desired. ■ 

Corollary 3.7 7/r h P > px G NFe w/f/i /? G {4,!}, then 
Pe((T,Px)). 

We can now establish the main lemma below: given the 
Lemma 3.6, prefix and restriction become trivial, but paral- 
lel composition causes problems. Even if \a.b and (ä | \b.c) 
are in NFC, their composition (with environment !c.0) al- 
lows reductions. How can we prove termination? The key 
idea is to contract ^-redexes from the end of the order of 
names c-r\ b-^ a as: 

\a.b\ä\\b.c\\c.O    ^r    \aJ>\ü\ lb.0 | !c.O 
h->r    !a.O|ä|!fo.O|!c.O    ^r    !a.O j lb.0 | !c.O 

This reduction strategy always terminates due to acyclicity 
of names. Formally, we prove: 

Lemma 3.8 (main lemma) Suppose T h P > A. 
P\Q^eforeachQelT,c(A)}}. 

Then 

PROOF: By induction on the typing rules. (Zero) and 
(Weak-J_,-?) are trivial. For the prefix rules, by induction 
the body of each prefix converges, hence so does the whole 
term. Then we use Lemma 3.6 again. (Res) is similar, 
by Lemma 3.5 (ii). For (Par), suppose T h P; > A; with 
(' = 1,2 such that A\ a A2 and let A — A\ ©A2. By induc- 

tion hypothesis Pj JJ.e P[ and P2 J|e P'2. Let P = P[ \P'2. Then 
P = ßi \..\Qn where each Q\ is prime. If/; = 0 there is noth- 

ing to prove. Assume n > 0 and let X = {1,2,..,/?}. We 
define the relation \ on X as follows: 

def 
i\j  &  3x£in(Qi),y£ln{Qj).xrxy 

Since i \+ j \+ i implies the existence of a cycle x rx+ x 
in the sense of Proposition 2.3 (ii), \* is a partial order on 
X. We now define a series of sets X\ ,X2,.. as follows, writ- 
ing max(y, <) for the set of maximal elements of a partially 
ordered set Y. 

Xi =max(X,V) X/+,=fmax(X\U 1<7'<' *,V) 
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As X is finite, X\,..,X„, partition X for some m.  Now let 

Si = YljQXiQi for 1 < i < m. Then P = rii<,<mS; and S, £ 
NFt. for each i. Note the series S\,..,S„ is constructed so 
that outputs in 5,-+i are always complemented by inputs in 
Sj\Sj-\ |...|5i \R. Now let r h S, t> C, s.t. ©i<;<„,C; = /I and 

let Ej = c(Ci) © Ci © .. © C,-_ i for 1 < i < AH. Then £,- = 
c(C,) for each i. Note also £) = c(A) and £,„ = c(A) ©.4. 
Choose any R £ ((r, c(A))). We now show, by induction on 
1 < / < m + 1, that for some R, £ ((r, £/)) 

This proves the lemma when / = m + 1. For the base 
case, take R\ = R. For the inductive step, assume P\R h->* 
Nl<i<mSi\R[ such that /?/ £ ((r, £/)). By Lemma 3.6 
and by Si £ NF(, we know that St £ [[V, C/J. By £/ = 
c(Q) = c(C|)©Ci ©...©C,_i, this implies Si\R, tye R' £ 
((r, £/.,. i)). We can now set /?'=/?/+], as desired. ■ 

Theorem 3.9 (strong normalisability in H->) T h P \> A im- 
plies CSN,,(/°). 

By —>Ci~) and Proposition 2.4 (iii-3), we have now estab- 
lished Theorem 3.1. 

4. Characterisation of Bisimilarity 

As a striking consequence of the strong normalisability of 
typed processes, this section shows that weak bisimilarity 
has a finite axiomatisation. 

4.1. Typed Transitions and Typed Bisimulations 

Typed transitions describe the observations a typed observer 
can make of a typed process. Typed transitions are a proper 
subset of untyped transitions while not restricting T-actions: 
hence typed transitions restricts observability, not computa- 

tion. First, untyped transitions P —> Q, with labels t, .x(v) 
and x(y) arc generated by the following rules. 

x(y).P^\p m (v) 
x(z)P —> P    \x{y).P ^4 P\ \x{y).P 

The communication and contextual rules are standard ex- 
cept for closure under asynchronous output. 

P —>P' withfn(/)n{y} x(y)P A.vCv)/" 

Typed transitions, written T\~ P —> V-y.T h Q, where y:x 
assigns names introduced in / as prescribed by V, are gen- 
erated as follows, cf. Section 4.2 and Appendix E of [8]: 

r\-P-^r-y:x\- Q iff (1) T<r P>A, (2) P -A Q with 
bn(/) nfn(r) = 0, (3) if Lx£\A\ then fn(/) ^ x, and (4) if 
\x £ \A\ and active(/) = x then / is input. 

Using typed transitions, we define bisimulations. Let us 
say a relation over typed processes is typed if it relates only 
processes with identical base and action type. A typed re- 
lation is a typed congruence when it is a typed equivalence 
closed under typed contexts, contains = and allows weak- 
ening of bases in the standard way [8,32]. A typed relation 
R is a weak bisimulation, or a bisimulation, if T h PRQ im- 

plies: whenever F h P —> P1 then there is a typed transition 

sequence r h Q => Q' such that PRQ, as well as the sym- 

metric case. By replacing => with —>, we obtain a strong 
bisimulation. If T h PRQ for some weak (resp. strong) 
bisimulation R, we write r h P « Q (resp. r h P ~ Q). Fi- 
nally, K (resp. ~) is called weak (resp. strong) bisimilarity. 
The weak bisimilarity is often simply called bisimilarity. 

4.2. Characterisation 

Let <—> be the transitive, symmetric closure of H-> U =. Wc 
now show that <—» completely characterises bisimilarity. 

Definition 4.1 

• The relation  ='  is the least congruence such that 
=aC=', P\Q =' Q\P and (P\Q)\R =' P\(Q\R). 

• The relation t> is the least typed prccongrucncc 
containing   ='   such   that   P|0 E> P,      (vjt)O \> 0, 
(vx)(P\Q) > P\(vx)Q if x i fn(/>),     x{y){P\Q) > 
P\x{y)Q if fn(P) n {y} = 0 and (vz)x{y)P > x{y){vz)P 
if^{-v,v}. 

• P is in \>-normal form if P £ NF(. and P t> Q implies 
P=Q. 

Clearly >-normal forms arc representatives of NF(,, in fact 
precisely those generated by the rules in §3.1. 

Lemma 4.2      i. If TV- P>A then there is a t>-normal form 
Q such that P ^* Q. 

ii. Let P and Q be two typable t> -normal forms.   Then 
P^QiffP='QiffP^Q. 

The proof of Lemma 4.2 uses Theorem 3.9. The key obser- 
vation for the proof of (ii) is that >-normal forms are a class 
of processes where trace equivalence, ss and =' (hence also 
~ and =) coincide. 

Theorem 4.3 (characterisation ofzz) (i) K> C «, H->* C «; 
and (ii) <—> = K. 

The proof for (i) essentially proceeds by showing RUid to 
be a typed bisimulation where R is inductively generated by 
the following rules: 

C[x(y)P)\x(y).Q    R    C[(vy)(P\Q)} 

C[J(.y)P]|Lv(y).e    R    C[(vj)(P|ß)] | \x(y).Q 
{vx)\x{y).Q    R   0 
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Here C[] is an arbitrary context not binding x. 
To establish (ii), assume that P « Q. By Lemma 4.2 (i) 

we can find t>-normal forms P„f and Q„f of P and ß re- 
spectively such that P H->* P„/ and Q H>* ß«/. Hence by (i) 
Pi/ ~ on/- But Lemma 4.2 (ii) implies that « restricted to 
>-normal forms is contained in <—>, hence P H->* P„/-<—» Qnj 
and ß i->* ß„/ which means P <—» Q, as required. 

5. Fully Abstract Embedding of X,_>iX,+ 

5.1. The Functional Calculus 

We use the simply typed X-calculus with products and sums 
(^_>)Xj+ from now on) as a testbed for the expressiveness of 
the presented calculus. We have chosen X_>)Xi+ because of 
its rich type structures and non-trivial equational theory. For 
simplicity we omit base types other than unit. We review the 
syntax of types and terms below, with /ranging over {1,2}. 

T    ::=    unit | T\ -» T2 \ T\ x T2 j T\ + T2 

M    ::=    x\{)\Xx:T.M \{M,N)\n,{M) 
|      in,(yW) | case L of {iiii(.*;)-^/}/e{i,2} 

We write M =a N for the cx-equality on terms. A term is 
closed if no variables occur free. 

The reduction relation, written -~>, and the typing rules 
are standard [14, 31]. We write E h M : T when a term M 
is typable with type T under a base E. We write C[ ]j : T' 
for a (typed) context of type T' with one hole of type T. We 
often omit type annotations from terms and contexts. We 
write M|/V when M -w* N and N /». A normal form is a 
term which has no further reductions. 

Equality in ^->,x,+ is not as simple as it may look, due 
to the existence of sums [12]. To have a semantically mean- 
ingful equality, we use observation of "values", cf. [31]. 

Let true = ini(Q) and false = iri2(()), both of type 
def 

B — unit + unit. Then E \~ M =\ N : T when, for each 
context C[]T ■ B such that C[M] and C[N] are closed, we 
have [C[M] JJ. true <=> C[N] JJ. true). The same equality 
is obtained by taking observability at each sum type, justi- 
fying all commuting conversions and T|-rules. 

5.2. The 7r-Calculus: Extension with Branching 

The additional reduction rules are defined as: 

*[&,■$•).fl] |*in;()v)-ß- 

lx[&i(yi).Pi\\xiaj($j)Q- 

Mj)(Pj\Q) 

>\x[&im-Pi\\(vmPj\Q) 

Then i-> is defined similarly as Definition 3.2. The linear 
typing rules are given in Appendix A. All arguments and 
results in the preceding sections carry over to the full syntax 
without alteration.2 

Let us say A is closed when md(/l) C {!,!}. Now write 
r h P 4i when P JJ. (vy)(x±ni(z)Po\R) with x <£ {y} where 
r h P t> A® t x with A closed. We then define =sn as the 
maximum typed congruence such that if T h P =sn ß and 
r h P 4 then r h ß JJ-i (cf. [21,40]). We use the following 
two lemma about =sn, which is proved as in [8]. 

Lemma 5.1 (context lemma) Let V h Pj \> A (j = 1,2) with 
r paired. Then Pi ^sn P2 iff: P\ \R ^   <£• P2|P tyjor each 
T ■ x :\®\rf h R> B s.t. A ^ B. 

5.3. Embedding and Full Abstraction 

The encoding of Ä.->,x,+ is given in Figure 4. It adapts Mil- 
ner's call-by-name encoding [28] to our type structure by 
adding an indirection at each X-abstraction. The basic cor- 
respondence result follows. Note that in the second state- 
ment, there is an exact operational correspondence between 
~» and H* : ~» is simulated by \-> directly, not up to some 
semantic equality. 

Proposition 5.2 Let E\~ M :T below with fn(£) — {y}. 

i. E° -u:T°\- [[M : 7"]],, > \u -> ?y is well-typed. 

ii. M -> M'   =>   IM}}„ ^+ [A/'l„. 

Corollary 5.3 ^->,x,+ is strongly normalising. 

PROOF: By Theorem 3.9 using: if [[/Vi],, = [[N2]]„ with Nt 

in normal form then N\ =a N2. ■ 

The above corollary offers a faithful computational embed- 
ding of X_>iX)+: we now show that this also extends to se- 
mantics. First, by Proposition 5.2 and Corollary 5.3: 

Before the encoding, we extend the typed rc-calculus to its 
full syntax [8] by incorporating branching. Branching is 
necessary to represent sums in J,4|Xi+ and is also used for 
defining a reduction-based typed congruence [21,40]. 

P 

TO 

\x{&j(yr.Ti).Pi] | lx[&i(yr.v).Pi] \xim(y:T)P 
I [&,T,f I   [&/T/V 

3/T/l 

Lemma 5.4 (computational adequacy) Let M : B be closed. 
Then M JJ true iff [[M]]„ JJ, [[true]],,. 

Corollary 5.5 (soundness) [£hM: 7"]],, ^sn [[E\-N: T\, 
implies E\- M =\N :T. 

-A minor change is Proposition 2.3 (i):  for a t-channel, "precisely 
once" becomes, under a branching input, "precisely once in each branch". 
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def 
(Type)    unit" 1Ü (()t)!     (h ^ T2T  =  (T° (T^ )'■        (7, x Ti 

def 

(Base)    0°  =f 0 
def 

(E-x:T)°  = E°-x:T 

(Terms)        (if T2 = T|2 =>7*22 then z = z\z2 else z = z) 

llx:r]]„^'[«^.v]^ 

IMN : 7-2]]„ t
f !„(!).(v«W)([W : T^T2\)m | [[/V : r,]]„ | Arg(,™5>^; 

IX» : T, .M : 7, => r2]]„ ^
f!M(.VZ).Z(,»)[[W : T2]}m 

l(Mi,M2) : r, x r2]]„  =!„((•). r(,„,»,2)( [[M, : 7,]],,,, | |A/2 : r2]],„;) 

[[re, (M) : 7,]|„  =!«(?).(vm)(|W : 7, x 72]]„, | Proj, (mz)T<) 

def , 
: unit !«(.»)..» 

def, 
[[inl(M): 7, + 72]]„ = !»(c).cinl(m)[[W : 7,] 

[[case L of inl(.V|)W] or inr(.»2)A/2 : 7"]],, 
def, 

((777?)T) (7,+72)°   =   ([7-,oe7-2
0]t)! 

def_. Arg(mnz)1'^1- = m{n'c')([n' -> »]ri  | c'(«')-Con{«'z>r2 ) 

Proj,(m?)r   =  m(e)e(v\ v2).Con(v,z)r 

Sum(/c,(.v,)M,)r 

^ /(Od&Mf-v-j.fvraXIW, : 7-]]„, | Con(m;)7'°)) 

Con(.rv)m,d^f.v(?)nM->.v1f 

[, _> y]&,ft)' ^ .^(y,).?!^,)^^ -> v,,Fl 

[x _^ y]*,(T,)'  *Lf !,[&,K).yin,(Vi)ni/K/ -> vyF] 

^\u(z).(vl)([{L: 7, + 72]]/|Sum<r5,(.v,)M,}7~) 

Wc omit inr(A/) and TI2(/W). For the copy-cats of unary types we assume the indexing sets to be singletons 

Figure 4. Encoding of X >iXjJ 

For completeness, wc use a specific class of linear pro- 
cesses. Let us say P is sequential [8] if it is typable by 
the same system as Figures 2 and rules in Appendix A. aug- 
mented with the scqucntiality constraint in Figure 1 of [8]. 
A key lemma for completeness follows. 

Lemma 5.6 (sequential testability) Let E = y.S and 
E" -n:T° h P„ t> !H <g> ?y (n = 1,2). Then Pt =sn P2 iff: 

(njRj\Pi\Q)iyx   o (n,7?,-|ft_|ß)4i   (1 = 1,2) 

/<-;r ear/i sequential y; : 5° h /?y t> ! v, «m/ sequential 

u:T°,x: [®i,2]T h Ö t> ?H® t-V. 

For the proof, wc use Lemma 5.1, and by assuming, via 
Theorem 3.9, the context to be in NF,,, we obtain UjRj and 
Q of desired types. 

The final step is to show that each process with X ,jX|. - 
types is translatable to a canonical normal form [4, 22] 
(CNF) whose grammar is given below. 

F ::= () I .v I Xx.F \ (FUF2) | in,(F) [ 

let () = z in F | let x - zF in F1 

let (.v, v) = z in F | case x of {in, (A, )./•)} 

Wc omit the typing and reduction rules. CNFs are translated 
to X. >,x,+ -terms in the standard way without changing their 
compositional behaviour, which wc write F° (see [41] for 
definition). The range of this map exhausts all normal forms 
of X.>iX](. We can now prove: 

Proposition 5.7 (definability) Let E' -u : 7° h Pt> \u -> ?v 
sequential with fn(E) = {y}. Then P =sn [[/*'°)]„ for some 
£ h F : 7 

The proof is by induction on the si/.c of sequential processes 
under all X , , . -bases and types. We can now establish lull 
abstraction. 

Theorem 5.8 (full abstraction) £hM, =*x M2 : T iff 
f;j-((:7

0h[[M, :7]],,Ssn[[A-/2:7]],, 

PROOF: By Corollary 5.5. we only have to show the 
'"then" direction. Suppose M\ ~-K M2 but \M\\, ^sn 

jMi]],,. By the latter, take URj and Q as in Lemma 5.6 

s.t. (vvH)(n/?7-|[[M,-]]((|Ö') 4, M«. (1 =1,2) with Q' = 
\w(x).Q, bi = true and b2 = false. By Proposition 5.7, 
we have F and F' s.t. (Xy.F'°x)M,F° JJ. b, (/ =1,2). which 
contradicts Lemma 5.4, hence done. ■ 

6. Discussion and Further Work 

Summary The present study is part of our quest to ar- 
ticulate significant classes of computational behaviour us- 
ing typed K-calculi. Previous work [8] introduced affine, 

sequential types for the 71-calculus and established full ab- 
straction for an encoding of PCF. Using causality between 
names, the present text refines affine, sequential types into 
linear types to ensure strong normalisability and full ab- 
straction for X->JXIX. Figure 5 shows the relationship be- 
tween these results. 
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PCF FA A,~+xFC 
Aff+& + Seq        Aff+& + Seq + - 

Af'+& 

Aff Aff + 
determinacy SN 

Figure 5. A Family of Affine/Linear Systems 

• The addition of branching types is indicated by &, ->■ 
adds causality to action types, and Seq stands for the 
inclusion of the sequentiality constraints used in [8]. 

• Determinacy, SN and sequentiality are properties guar- 
anteed by each typing system. 

• FC denotes full completeness of the embedding of the 
corresponding ^.-calculus into the 7t-calculus (in the 
sense of [3]), while FA stands for full abstraction. 

For example, the linear typing system in § 2 corresponds to 
Aff + —>, its branching extension in §5 to Aff + & + —» and 
the sequential system in [8] to Aff + & + Seq. Note also that 
the development in § 5 shows that our encoding is already 
'almost' fully complete intensionally and indeed becomes 
fully complete by quotienting with the observational con- 
gruence. It is also notable that we could have used the call- 
by-value encoding in [28] to obtain exactly the same result, 
indicating the flexibility of the proposed calculus to encode 
functional SN behaviour. 

Liveness in Interaction A consequence of strong nor- 
malisability is liveness in interaction: if a typed agent calls 
another replicated typed agent and waits for its answer at 
a truly linear channel x, then an answer is guaranteed to 
eventually arrive at x, however complex intermediate inter- 
action sequences would be. Below see § 5.2 for the notion 
of closed action types. 

Proposition 6.1 (linear honesty) Let T h x: (z)' be such that 

md(t) =t- Suppose T h P o A with A closed. Then P 

implies P' —>* —> where I is an output at y. 

M P' 

We can strengthen Proposition 6.1 by incorporating the pos- 
sibility that the client itself interacts with the server towards 

the eventual answer [18]. The central point of the present 
liveness property is that, in spite of such nested, complex 
webs of procedure calls, each client is still guaranteed to 
receive an answer, strengthening preceding related type dis- 
ciplines, cf. [24,25,40]. 

State and Non-functional Control It is an important sub- 
ject of study to extend our typing system to allow incor- 
poration of state and non-functional control. The resulting 
calculi would be useful as a theoretical basis for the appli- 
cation of SN in a wider realm. Such a formalism might 
also be useful as a meta-language for logical systems with 
e.g. non-deterministic cut elimination procedures. 

So far we have verified that our proof method is also ap- 
plicable to SN for first-order stateful processes, albeit un- 
der a sequentiality constraint [8]. We foresee no fundamen- 
tal difficulty in extending the results to concurrent stateful 
computation, although the lack of the Church-Rosser prop- 
erty would make reasoning harder. 

Complex Causality The present work adds minimum 
causality to the system in [8] to ensure SN of replicated 
processes. However, our SN proof seems to be able to cope, 
without significant change, with more complex causality re- 
lations: for example, we could relax the channel type con- 
straints and extend action types to finite graph structures be- 
tween arbitrary linear nodes as in [40]. An even wider class 
of SN interactions would be typable if we further allowed 
edges of the more general form px —> qy, where p £ {4,t, ?} 
and q G {!,|,t} (i-e- replicated and linear nodes can be 
mixed). Diverse structures would be embeddable in such an 
extension, including full proof nets [7]. The status of strong 
reduction would become subtle in this setting, cf. [12]. 

Second-order and Other Extensions Can the presented 
results be augmented to cover more expressive notions of 
types studied in functional calculi? Adding recursive types 
[29,39] easily leads to a system that is not strongly nor- 
malising: for example, the encoding, following Figure 4, of 
(Xx.xx) (Xx.xx) would be typable. Regarding second-order 
types, our recent work [9] demonstrates that such extensions 
coexist harmoniously with SN, as they do in the correspond- 
ing functional calculi. In particular, the causality constraints 
formalised in the present paper are sufficient to encode Sys- 
tem F fully abstractly in the second-order extension of the 
present system. Other, more refined type structures would 
also be worth studying in the present context: the 7t-calculus 
offers a natural habitat to SN typing systems for stateful, in- 
teractive and mobile computation. 

Game Semantics In game semantics, "winning strate- 
gies" represent strong normalisation [3]. This representa- 
tion ensures, essentially by definition, that composition of 
two winning strategies will never go into infinite x-actions 
(which would make the strategy partial). This extensional 
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representation of SN does not directly suggest concrete type 
disciplines to ensure SN for mobile processes (although the 
liveness property discussed in Proposition 6.1 closely corre- 
sponds to the games-based characterisation of SN). On the 
other hand, the present work may offer new ways to formu- 
late the notion of SN in game semantics, where acyclicity 
conditions are explicitly incorporated into game types. 
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A. Appendix: Typing Rules for Branching 

(Bra!) (C,/y, = ?ß) 
rKv:[&,f,j' 
r-v,:T,h/>q- 

(Sei") (C,/y,=/lx?x) 

r>x:[e/x/]? 

r-y,:T,i-/-[>c 

r h .v[&,(y,: X,).P,] > !.v -> B V h xin(v,' : xi)Pi>A ©7x 

(Bra^) and (Sel^) are defined similarly. 
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A symbolic labelled transition system for coinductive subtyping of F^< types 

Alan Jeffrey 
DePaul University 

Extended Abstract 

Abstract. F< is a typed X-calculus with subtyping and 
bounded polymorphism. Typechecking for F< is known to 
be undecidable, because the subtyping relation on types is 
undecidable. F^< is an extension of F< with recursive types. 
In this paper, we show how symbolic labelled transition sys- 
tem techniques from concurrency theory can be used to rea- 
son about subtyping for F^<. We provide a symbolic labelled 
transition system for Fß< types, together with an an appro- 
priate notion of simulation, which coincides with the existing 
coinductive definition of subtyping. We then provide a 'simu- 
lation up to' technique for proving subtyping, for which there 
is a simple model checking algorithm. The algorithm is more 
powerful than the usual one for F<, for example it terminates 
on Ghelli's canonical example of nontermination. 

1    Introduction 

Symbolic labelled transition systems [11] have been used in 
concurrency theory to provide finite-state representations of 
infinite systems. They have been used to model-check sys- 
tems with data dependencies, where the riiave state space 
exploration technique would produce an infinite state space, 
and so not terminate. 

In this paper, we apply symbolic Its techniques to a new 
problem area: that of deciding subtyping for polymorphic X- 
calculi. 

Subtyping and polymorphism. Curien and Ghelli's [5] F< 
is a typed ^.-calculus with bounded polymorphism and sub- 
typing. It is based on Bruce and Longo's [2] development of 
Cardelli and Wegner's [3] Fun language. 

The most interesting rule in F< is that for subtyping of 
polymorphic types: 

rhr2<7"i   Y.X<T2^U1<U2 (Full F< 
r h (VX < Ti. U\) < (VX < T2 . u2 

This is a stronger rule than the rule used in Fun, which is: 

T.X<T\-Ui <U2 

r>(vx<7\t/i)<(vx<7.[/2; 
(Kernel F<) 

It is routine to develop an algorithm to check the subtyping 
property of Kernel F<, but subtyping for Full F< has turned 
out to be surprisingly complex. Curien and Ghelli [5] gave 
an algorithm for checking subtyping, with a correctness proof 
provided by Ghelli [7]. Later, Ghelli [9] showed that this al- 
gorithm is not guaranteed to terminate. Pierce [14] showed 
that Ghelli's example of nontermination can be generalized 
to code a Turing machine, and so subtyping (and hence type- 
checking) for F< is undecidable. 

Subtyping and recursive types. Recursive types are a 
common programming language feature, typified by ML's 
datatype construct. Amadio and Cardelli [17] investi- 
gated the relationship between subtyping and recursive types. 
Brand and Henglein [1] reformulated subtyping in terms of 
coinductive relations on types, which we will use here. The 
coinductive presentation of type systems for subtyping in 
the presence of recursive types has been used by Pierce and 
Sangiorgi [16] for the n-calculus, Turner [20] for Pict and 
Sewell [19] for a distributed 7t-calculus. A good introduction 
is by Gapeyev, Levin and Pierce [6]. 

Ghelli [8] has investigated the relationship between sub- 
typing, recursive types and polymorphic types, in the recur- 
sive extension to F<, called F^<. He has shown a number of 
surprising results: adding recursion to F< is not conservative, 
and F^< does not satisfy the transitivity elimination property. 
These results are for the inductive definition of subtyping, 
however, where here we look at the coinductive definition, 
which is much better behaved. Colazzo and Ghelli have pro- 
vided an algorithm for deciding subtyping of Kernel Fp< [4]: 
much of this paper is based on that algorithm. 

Symbolic labelled transition systems. Labelled transition 
systems are a form of nondeterministic automaton, where all 
states are considered to be accepting states. They were pro- 
posed by Milner [12, 13] as an appropriate model for con- 
current systems. They have since been used to model higher- 
order computation, for example Gordon's [10] Its model of 
the simply-typed ^.-calculus. 

0-7695-1281-X/01 $10.00 © 2001 IEEE 
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One problem with Its models is that they can produce in- 
finite models of systems which should be finite-state. For 
example, the process defined: 

P = in (x: int);out {x+\);P 

has transitions: 

(P) —* (out (n + 1);P)  ■ 1 (P) 

for every integer n and so is infinite-state. Hennessy and 
Lin [11] proposed using symbolic labelled transition sys- 
tems as an appropriate finitary representation. A symbolic 
Its includes free variables, so rather than having nodes being 
closed processes, and edges labelled with closed expressions, 
the nodes are processes together with their free variables, and 
the edges are labelled with open expressions. For example: 

(Fp)m(^(x:inthout(_v+l);p)out(fll)(A.:mthp) 

Unfortunately, this system is still infinite-state, since the con- 
text can grow unboundedly: 

in (,v:int) 
,v: int h out (,v+ \):P) 

x: int./ : inthout (/+ \);P) 

(h-P) 

(A- : int h 7) 

(x: int./ : int h P) 

For this reason, symbolic techniques often work 'up to 
garbage collection' where unneeded free variables can be re- 
moved from the context. For example, the above process can 
be given a finite symbolic representation as: 

in (.v:int 
v: inthout (,v+ \);P) 

out (.1+1) 

(.v:inthP) 

Symbolic lts's have been used to provide finite-state repre- 
sentations of systems that would otherwise be infinite-state. 

Contributions of this paper. In this paper, we apply the 
techniques of symbolic labelled transition systems to the 
problem of subtyping F^. In particular, we: 

• Give an alternative characterization of subtyping for 
Fp<, as polar simulation for an appropriate symbolic Its. 

• Use a variant of Milner and Sangiorgi's [18] bisimula- 
tion up to method to give a sound proof technique for 
subtyping. 

• Provide an algorithm for finding an appropriate polar 
simulation, if one exists. 

• Show that the algorithm is partially correct: if it termi- 
nates, it does so with the right answer. 

• Show that the algorithm is strictly more powerful than 
the standard algorithm for F<, and at least as powerful 
as Colazzo and Ghelli's algorithm for Kernel F^<. 

Acknowledgements. I would like to thank Benjamin 
Pierce, James Riely and Peter Sewell for useful discussions 
about this material. Donald Knuth's TrfX typesetting system, 
Leslie Lamport et al.'s LTgX document markup language, 
and Paul Taylor's diagrams package were used in the prepa- 
ration of this paper. 

2   The type system of F^< 

In this section, we review the types system used in 
Ghelli's [8] F/(<. There are some minor syntactic differences 
between the types presented here and Ghelli's, but they are 
equally expressive. We have added type constants such as int 
and real to the language, to make examples clearer, they are 
not required for any of the technical development. 

Let K range over a finite collection of type constants, such 
as int and real. The syntax of types is given: 

T.U.V    ::=    T -> U | Top | K | VX < T.U \ yTX . T | X 

Define \he free variables of a type as: 

fv(7)    =    fv^(7")Ufv-(r) 

where the polarized free variables are: 

fv=(7->£/) = fv=(r)Ufv=(L/) 

fv= (Top) = 0 

fv^(K) = 0 

fv=(VX<7.t/) = fv-(7)U(fv±(L/)\{X}) 

^(fj-X.T) = fv±(7')\W 

fv+W = {X} 

fv"(X) = 0 

A type context is a sequence of variables with type bounds: 

r.A   ::=   Xi<Tu....X„ <Tn 

where we ignore the order of bindings. The domain of a con- 
text dorn (T) is defined: 

dom(X, <Tl.....X„<T„)    =    {XU...,X„} 
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When X e dorn (r) we define T(X) as: 

(T,X<T){X)   =   7 

The well-formed context judgment r H o is defined: 

rnr 
-[X gdom(r)] 

©ho   r,x<ri-ol 

where the well-formed type judgment T \- 7 is defined: 

T\-T  rhu    rho     rho    r,x<T\-u 

A well-formed relation on types ü(_ is a relation ^, on well- 
formed types rhr such that if (Ti h TO ^ (T2 h 72) 
then ri = r2. We shall often write r t= 7i ^ 72 when 
(r h 71) ^. (r h 72). For example, the inductive subtyping 
relation < gives a well-formed relation on types: 

T\=T<U    iff   T\-T<U 

We regard well-formed relations on types up to cc- 
equivalence, so we can complete the diagram: 

T\-T-*U       ThTop     T\-K    Th\/X<T.U 

T,X<T\-O   r,x<Topi-r, 
T,X<ThX       Th/j+X.T 

-[X0fv-(7),7^y] 

(rhr) A {T\-U) 

Y/X Y/X 

(r h T')    (r h i/') 

as 

(ri-r) ^ 

£ 

(rht/) 

Y/X 

(r' h r') ~ (r' h t/' 

Note that we have required X to occur positively in 7 in any 
recursive type p.+X . T, and that we cannot form recursive 
types of the form /J+

X . Y. These restrictions do not limit the 
expressive power of the type system, since for any T(X) we 
can find T'(X,X') such that: 

T(X) = T'(X,X) 

X$fv-{T'(X,X'))    X'#fv+{T'(X,X')) 

then we can define: 

fjX.T(X)    =   {l+Xi.T'iXufi^.T'iX^Xt)) 

and we can give a greatest fixed point semantics fov/jX .T as: 

A well-formed relation on types ^ is sound for subtyping if, 
for every instantiated subtyping rule: 

r, H 7i < t/i r„ h Tn < U„ 

T\-T<U 

we have: 

if r, t= Tx %. U\ and ... and Y„ ^Tn%_ U„ then r t= 7 %, U 

A well-formed relation on types ^ is consistent with subtyp- 
ing if it is sound for subtyping, and whenever T \= 7 ^ U we 
can find an instantiated subtyping rule: 

n i- r, < [/, r„^,< £/„ 

/iX.y  = Top   ifX = y 
y       otherwise 

Th7<t/ 

such that: 
We define a-equivalence on well-formed types as (when 
F^dom(r)): 

Y/X 
{T,X < £/ h 7) = (T[Y/X],Y < U h T[Y/X]) 

We assume an ordering K\ < K2 on type constants, for ex- 
ample int < real. This is extended to an inductive subtyping 
judgment ThTi <To defined: 

r h 72 < 7,    T\-Ux<U2 

Th7<7     rh (7}->£/,) <(72-»£/2) 

        K{ < K2 

T h 7 < Top     rhKx<K2 

YhT2<Tx    T,X<T2hUi<U2     ThT(X)<T 

rh(VX<7i./7i)<(VX<72.C/2)       ThX<7 

r\-Tl[fa+X.Tl)/X]<T2     r h 7, < 72 [fr+X. T2)/X] 
Th(p+X.Tx)<T2 TH7i <(^+X.72) 

H 1= 7, ^ Ui and ... and r„ t= 7„ % f/„ 

Let the coinductive subtyping relation C be the largest rela- 
tion consistent with subtyping. 

Proposition 1 < is the smallest relation consistent with sub- 
typing, and so < C C. 

3    Motivation for the symbolic Its semantics for Fp< 

This paper provides an alternative characterization of subtyp- 
ing for Ffj<, using a symbolic labelled transition system. By 
recasting coinductive subtyping as an Its, it is possible to use 
existing tools from concurrency theory, notably Milner and 
Sangiorgi's bisimulation up to technique. 

The Its has well-formed types as nodes, and edges which 
reflect the structure of the type. For example, the Top type 
has no transitions: 

(rhToP)^(r'h7') 
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and the type constants have transitions with their name: 

(rhint) — (rhTop)    (rh real) ^ (rhTop) 

We can think of the subtyping relation as a simulation [13] 
relation: if T is a supertype of U then any transition of T 
must have a matching transition from U. For example we 
can complete the following diagram: 

(H real) A (h int) (h real) £» (h int) 

relation > is a polar simulation if it acts as a simulation on 
positive labels, and on negative labels we can complete the 
diagram: 

(n-r,) -A (n-7i>)        (n-ro -£» (ri- 7*2) 

as      cr 

(f i- r,') 
< 

(f h r/) ä (r' h- r2') 

real as      real real 

(h Top) (h Top) ~ (h Top) 

We define the 'matching transition relation' => formally 
in Section 4, for the moment we will just say that it includes 

but also includes: 

real 
(rhint) ==> (rhTop) 

This notion of a 'matching transition relation' is standard in 
process calculi, where it is used to define weak bisimula- 
tion [13]. In general, a simulation > is a well-formed relation 
on types where we can complete the diagram: 

To cope with recursive types, we allow silent actions X, where 
recursive types can silently unwind: 

(r hn+x. r) .1 (r h T\JJ
+
X . T/x]) 

For example, if we define: 

T = fi+X. int^X       1/=/i+r. int-» real->K 

then we have a polar simulation for T >U, since we define 
the matching transition relation to ignore x actions: 

int) (hint) 
dom dorn 

(hinter) 

fr i- 7-, (Fhr-o (rhL (n-7-. 

as 

(f h 7^ .,, (r'h7,') A (r'h^) 

Function types have domain and codomain transitions: 

dom cod 

cod 

— (h int —> real —> t/} 

cod 

(h7) —-*- (h real-»!/) 

(hint^7) ä (h realst/) 

(TV-T) (Tr-U) (hr) (he/) 

Since function types are contravariant in their first argument 
and covariant in their second argument, we introduce polar- 
ity to labels: dom is negative polarity, and cod is positive 
polarity. This is important when we consider the subtyping 
relation, for example: 

(h int —> real) 

dom 
cod 

(h real -> int) 

dom, 

(h real) 

(hint) ~ ((-real) 

> 

cod 

(hint) 

Note that after a dom transition, the subtyping relation is in- 
verted, but after a cod transition, it is not.   A well-formed 

Since we are giving a semantics for types with free vari- 
ables, we need to give variables transitions: they can either 
announce themselves, or behave like their bound: 

(I-hX) 

(rhTop) (rhrpo) 

For example, X < int N int > X since: 

(X< int hint) «£- (X<inthX) 

(X < int h Top) -Ö- (X < int h Top) 
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Finally, we are left with the meat of the problem: modelling   If we define: 
bounded polymorphism.   Modelling Kernel F^< is not too 
difficult, we just add transitions which reveal the structure of T„   =   X0 < G, X\ < X0, ■ ■., X„ < X„_ i 
a polymorphic type: 

(rhVX<7\£/) 
bound / \   VX<7" 

Gn   —   VX„+1 <X„.-Xn+i 

then r„ N Gn > Xn for every n since: 

(rh-r) {r,x<T\-u) 

For example, 1= (VX < int. int) > (VX < int. X) since: 

(hVX<int.int) 
bound 

VAX int 

- (hVX<int.X) 
bound„ 

(X< int hint) 

(hint) -Ö- (hint) 
> 

VAXint 

(X<inthX) 

In order to model Full /^<, however, we have to allow the 
bound of a polymorphic type to vary. We do this by adding 
an additional transition to the matching transition relation: 

(rhvx<r.t/)=^> (r.x<v\-u) 

For example, 1= (VX < int. int) > (VX < real.X) since: 

> 
(hVX < int. int) - 

bound 
V,Y<int 

- (KVX< real.X) 
bound 

(hint) ~ (hreal) 

VAXint 

(X < int hint) (X<inthX) 

In general, since bound is a negative label, it is easy to see 
that the following diagram models the Full F^< rule for sub- 
typing bounded polymorphism: 

(ThVX< T2.U2) 
bound 

V",Y<7"- 

(r.X <!->!-[/-> 

-jn- vx <Ti. ux; 
bound 

(r„ h Gn) *- 
bound 

(r„hx„) 

vx„^<xn 
bound 

(r„+i h -iX„+i) — 

dom 

(r„+i hx„+i) 

(rhxn)^(n-Top) 
> 

vx„+1<x„ 

(r„+i h -'G„+i) 

dom 

(r„+i h Gn+\) 

(n-r2) -*• (rhr,) 
> 

VAX 7"-. 

(r.x<r,h(y. 

As a final example, we consider Ghelli's [9] example of non- 
termination of the standard algorithm for f< subtyping: 

G  =  vx.-,(vr <X.-K) 

where we write -*T as shorthand for T -> Top, and VX . T as 
shorthand for VX < Top. T. Ghelli's example is to verify: 

Xo<CN(VX,<X0.-tfi)>Xo 

In particular, T0 h G0 > X0, which is Ghelli's example. Note, 
however, that in order to show this subtyping, we had to con- 
struct an infinite simulation: we cannot just use this Its di- 
rectly in a model checker to get an algorithm for deciding 
subtyping of F^<. We will return to this problem in Section 5. 

4    Definition of the symbolic Its semantics for F/J< 

We now provide formal definitions for the material discussed 
in Section 3. The syntax of positive labels a+, negative labels 
a- and labels a are given: 

a 

a" 

a 

=    T I dom I VX < T I X 

=    cod I bound 

=   a+ I a~ 

The symbolic Its — is defined: 

{r\-T->U) 

{ThT->U) 

(rhx) 

(rhVX<7\<7) 

(rhvx<7\t/) 

(FhX) 

(rhx) 

(rh H+
X.T) 

dom 

cod 

K 

bound 

VAXT  *- 
X 

x 

x 

(ri-r) 

(T\-U) 

(FhTop) 

(n-7) 

(T,X<T\-U) 

(rhTop) 

(rhr(x)) 

(rhr^+x.r/x]) 
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The symbolic Its — is defined: 

(rhr->i/) 

(T\-T-*U) 

(T\-K) 

{r\-vx<T.u) 

(rhvx <T.U) 

(r>x) 

(r>x) 

(rh^+x.7) 

(n-7-) 

dom 

cod 

K' 

bound 
 ►- 

vx<v 

(ri-r) 

(rh(/) 

(rhTop)    (when K < K') 

(rhr) 

(r,X<Vh£/) 

(rhTop) 

(r>r(x)) 

(rh-r^+x.r/x]) 

(rnr) 

We write for the transitive reflexive closure of 

(n-r) -^ ••• -^ (r'hr'j 
(rhr) (f h r 

a . . a     . . 
We wnte => for the transition  -*-  ignoring x actions 'on 

the left', and similarly for 

(n-7")=*- • -» (fhr')   (rhr) fr'hr'' 

5    Motivation for polar simulation up to polarized 
substitution 

We have now given an alternative characterization of coin- 
ductive subtyping of F^<, but this does not directly give us 
any benefits. We can now use standard model-checking tech- 
niques to check subtyping, but these only terminate when 
they find a finite polar simulation. As the Ghelli's example 
(discussed in Section 3) shows, we can construct types which 
generate an infinite polar simulation. 

In this section, we shall provide a proof technique based on 
Milner and Sangiorgi's [18] bisimulation up to methodology, 
which can be used to find finite representations of infinite 
polar simulations. It is based on the requirement to find fi- 
nite symbolic graphs for process terms in Hennessy and Lin's 

work [11]. 

Polar simulation up to garbage collection.    Define the 
garbage collection relation on well-formed types as discard- 
ing unused type variables, for example: 

(X<int.r <realhX) ^^ (X<inthX) 

We can use polar simulation up to garbage collection to pro- 
vide finite proofs of subtyping. for example if we define: 

7" = /i+X.VK<int.X        t/=/rX.W<real.X 

then we have a finite proof that h T > U given by: 

(rh7)=> (r'b-r (rhr)=^> (r'r-r) 

A polar simulation 'J[_ is a well-formed relation on types such 
that we can complete the diagram: 

(rhr,) ~ (rhr.)        (n-r,) *^ (n-7"2) 

as      a- 

(r'y-Tl) 

where we write 9(^ for: 

(V h 7",') -^ (f' h T{) 

{ThT)'Ji(rhU)       {ThT)'Ji{r\-U) 

(VhT)'JC {Vhu)   (r\-u)%r{r\-T) 

Let > be the largest polar simulation. 

Proposition 2 > is a pre order. 

Proposition 3 TtT >U iffTtU SIT. 

which provides us with a finite representation of the proof 
that h T > U. Polar simulation up to garbage collection is 
a sound proof technique, but it does not cope with Ghelli's 
example, since there are no unused type variables. 

Polar simulation up to substitution. Our next failed at- 
tempt to find a proof technique generalizes the notion of po- 
lar simulation up to garbage collection, by observing that one 
can often replace a type variable by its bound, for example: 

(X<int.K <XhX^K) l^^ll (Y <int hinWK) 
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We can try to use this to show subtypings, for example 
Ghelli's To 1= Go > XQ from Section 3 has a finite polar simu- 
lation up to substitution: 

and positive substitution in the subtype.   For example, we 
now have a valid finite proof of Ghelli's example: 

(r0Hx0) 

bound 

(r0i-vxi<Xo.-Xi)~- 
vx,<x0 

(r0KTop) 

bound 

(r0hx0) 

(r0hx0)*— 

bound 

(rohvxi^Xo.-Xj) 
VX,<X0 

(H h ^VX2 < Xi. -1X2) 

s(A-,<X0) 

► (r0r--vx,<Xo.^i) 

Unfortunately, polar simulation up to substitution is not a 
sound proof technique, for example: 

(!-VX<int.X) 
bound 

VX<int 

JhVX<int.int) 
bound, 

VX<int 
■iy 

{X < int I- X) (I- int) -0. (h int) (X < int h int) 

s(X<int) s(X<int) 
1 > * 

(h int) - ► (h int) 

As this example shows, we cannot always just replace type 
variables by their bounds, and expect to get a valid subtype 
relationship. 

Polar simulation up to polar substitution. The technique 
we adopt in this paper is a refinement of polar simulation up 
to substitution. The crucial observation is that polar simula- 
tion up to substitution is sound, as long as we only replace 
negative occurrences of variables in the supertype, and posi- 
tive occurrences of variables in the subtype. 

Define the positive substitution relation as replacing any 
positive occurrences of a type variable by its bound, and un- 
defined if there are any negative occurrences, for example: 

(X<int,F<XhF^X) s'(^int)
( (y<inthy-^int) 

(X<int,F<XhX->F) s+{xfmt). (F<inthint^F) 

and the negative substitution relation similarly (but note that 
we always substitute positively in the type context): 

{X<\nt,Y<X\-X->Y) S"(X-int.  (F< int hinter) 

Then a polar simulation up to polar substitution is one where 
we are allowed to use negative substitution in the supertype, 

(r0F-Top) 

bound 

(F0hX0) 

n t- -HVX2 < Xi. -.x2) 

s-(X,<Xo) 

(roh-vx^Xo.-x,) 

and the counterexample for polar simulation up to substitu- 
tion is no longer a counterexample, because it does not use 
substitution with the right polarity. 

Polar simulation up to polar substitution is the proof tech- 
nique we adopt for the rest of this paper. 

6    Definition of polar simulation up to polar 
substitution 

Let the garbage collection relation (T h T) 
gcA 

V \- n be: 

(r.Ar-r) ¥£ (ri-r)   (wnenri-r) 

Let ^ be a polar simulation up to garbage collection when- 
ever we can complete any diagram: 

(ri-7-,: 

(r h 7?) 

m Th7V 

(ri-r,) 

as    fr' h 77) 

gcA 

- (Th-T-,) 

gcA 

(r" h 7-,") £ (r" h r2" 

Define a polar substitution T[U/X^ as: 

r[[//X]±    =   T[U/X]    (whenX^fvT(r)) 

Define a polar context substitution T[A\± as: 

r[0]±  =  T 

TfaX^U]*    =    7'[t//X]±[A]±    (whenX^fv(A)) 

Define a polar substitution relation {TV- T) —► (I"' h- T') as 

(r.Ahr)^ (r[A]+1- r[A]±) 
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Note that polar substitution generalizes garbage collection: 

if (r h 7) ^ (V h V) then (r h 7) ^ (T h 7') 

Let ^ be a polar simulation up to polar substitution when- 
ever we can complete any diagram: 

(r\-Ti) *. (r h T2) 

(n-7\) & (rhr2) 

(r' h r/) 

as   (r' h r;)       (r' h r2') 

sxA 

(r h r,") ~ (r h 7 

We can then show that polar simulation up to polar substi- 
tution (and hence up to garbage collection) is a sound proof 
technique. 

Proposition 4 // !%_ is a polar simulation up to polar substi- 
tution and rN T HiU then Ti=T>U. 

7    An algorithm for finding polar simulation up to 
polar substitution 

Polar simulation ->D to polar substitution gives us a proof 
technique for s. owing subtyping. which can easily be con- 
verted into a model checking algorithm. Since Fp< is deter- 
ministic, a simple breadth-first search algorithm is sufficient. 
The algorithm is given in Figure 1. The invariants for the 
while loop in the algorithm are: 

1. Either r0 f= 70 ^ U0 or r0 f= 70 S U0- 

2. ^ is a polar simulation up to polar substitution mod S- 

3. Ifr0N7b>(/0then(^U5)C>. 

where ^ is a polar simulation up to polar substitution mod 5 
whenever we can complete any diagram: 

(rh-7. 

fr'h7,M 

(r>72 

[V\-Ti) 

as     (r' h 7,') 

£ 

s^A 

fr" H 7, //^     ^=U5= 

(rh72 

(r' h T{) 

s~A 

fr" h 7,") 

function suptype {YQ,TQ,UQ) { 

let %_ = 0; 

let5={r0t=705t/o}; 
while (5 ^ 0) { 

let 5' = 0; 
foreach(r, t=7"i 5I/i) { 

■    foreach (T, h 7) -^ (r21- 72) { 
if (a* = x) { 

add T2 \= 72 5' t/i to 5'; 

} else if (H F £/,) ^=> (r2 F t/2) { 

let A be the largest type context 

such that (r2 F 72) ^ (r3 H 73) 

and(r2h[/2) ^ (r3r-t/3); 

add r3 N 73 5'± [/3 to 5'*; 

} else { 

return false; 

} 

It is not too difficult to establish partial correctness of this 
algorithm, by establishing Invariants 1-3: 

} 
} 

S = S\!K:, 

} 
return true: 

Figure 1: The algorithm 

Proposition 5 For any To I- 7o and To F £/0 
we have: 

1. If suptype {TQ.TQ.UQ) returns true then TQ F TQ ■> f/o- 

2. If suptype (To. TQ, UQ) returns false then To N 7o ^ f/o. 

We can show that the algorithm is guaranteed to terminate in 
the case where r F 7 £ (7. 

Proposition 6 // T t= 7 ^ £/ f/;en suptype (T,T,U) termi- 
nates. 

We can also show that if there is a finite polar simulation 
up to polar substitution, then the algorithm will find it, and 
so will terminate. For example, this means the algorithm is 
guaranteed to terminate on Ghelli's example. 

Proposition 7 // there exists a finite polar simulation up 
to polar substitution %$ such that T F 7 %j U then 
suptype (T,T,U) terminates. 

330 



Using this, we can show that the algorithm is at least as strong 
as the standard algorithm for subtyping F<. We do this by 
showing that ifT\-T>U then we can construct a finite polar 
simulation % such that YVT %IJ. 

Proposition 8 If the standard algorithm for subtyping F< 
terminates, then suptype (Y,T,U) terminates with the same 
result. 

Since our algorithm is at least as powerful as the standard 
algorithm, but terminates on Ghelli's example, we have that 
our example is strictly more powerful. 

8 Kernel Fp< 

In [4], Colazzo and Ghelli provide an algorithm for subtyping 
of Kernel Fp<. Their algorithm: 

• Works directly on the structure of the types, rather than 
via an Its semantics. 

• Does not work 'up to a-conversion', which results in a 
more efficient algorithm, at the cost of extra complexity. 

We can easily modify our algorithm to check Kernel F^< sub- 
typing, by changing the matching transition rule for polymor- 
phic types to require bounds to be matched exactly: 

(r>vx<7\(/) ^E (r,x<ri-t/) 

We can show that this modified algorithm is as powerful as 
theirs (although probably not as efficient, depending on how 
a-conversion is handled), by showing that our algorithm ter- 
minates on Kernel F^<. 

Proposition 9 IfY\=T>U in Kernel F^<, then there is a 
finite polar simulation 5^ up to garbage collection such that 
Y^T S^U. 

Together with Proposition 7, this gives us that our algorithm 
is a decision procedure for subtyping of Kernel Fp<. 

Proposition 10 If T \= T > U in Kernel F^<, then 
suptype (r. T.U) terminates with true. 

9 Colazzo and Ghelli's benchmark examples 

We have already shown that our algorithm terminates on 
Ghelli's example of nontermination of the standard subtyp- 
ing algorithm for F<. 

Colazzo and Ghelli [4] provide two motivating examples 
for their algorithm for Kernel F^<, which act as useful bench- 
marks for our approach.   The examples make use of tuple 

types T x U, and a bottom type _L: these can easily be given 
an Its semantics: 

{YhTxU) (rhj.) 

fst/ X snd 

(ri-r) 
with matching transitions: 

(YhTxU) 

fst / \ snd 

(n-r) (r)-u) (rhTop) (r>±) 
For example, we can use this semantics to verify one of 
Pierce's [15] requirements for subtyping with 1, that any 
type variable bounded by _L is equivalent to _L: 

X<1NI>1       X<±\=±>X 

In the examples, we also use many syntactic abbreviations, 
such as defining equations, missing Top bounds, and ignor- 
ing some x steps. 

The first example is a benchmark which checks that the al- 
gorithm performs enough garbage collection to find a finite 
polar simulation up to garbage collection. It is given in Fig- 
ure 2. 

The second example checks that the algorithm does not 
produce false positives, caused by collapsing variables to- 
gether incorrectly. It is given in Figure 3. 

10    Conclusions and further work 

This paper describes an application of symbolic labelled tran- 
sition systems, which have previously been used to model 
concurrent languages, to modelling subtyping. This allows us 
to use the techniques from concurrency theory, such as sim- 
ulations, and 'simulation up to' to reason about subtyping. It 
also often makes proofs easier to read, even in the presence of 
quite complex types such as Colazzo and Ghelli's benchmark 
in Figure 2. 

This technique should generalize to other examples such 
as record subtyping, union types and intersection types. It 
may be that Gordon's [10] work on Its semantics for ^.-calculi 
could be applied here, to give a semantics of higher-order 
features such as functions of kind Type ->• Type. We leave 
the technical development of this to future work. 

The main result which is missing from the current work 
is a syntactic characterization of when the algorithm suptype 
terminates. Also, we have not discussed how a-conversion 
would be implemented: it should be possible to define a- 
conversion as a strong bisimulation, and then use polar sim- 
ulation up to strong bisimulation as a proof technique. We 
also leave these issues for future work. 
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fst 
snd 

(Xi.X2\-T3{Xi)) - ► (Xi.X.hl 

(X,.X2H±x(/3(X2)) 

snd 

(x,.x2Hr,) (X,.X2h(/3(X2)) 

snd 

gcX, gcA", 

(X2^h) 

V,Y, 

(x,.x2i-r2(Xi 

(X2f-t/3(X2)) 

(X,.X2h-t/4(X2) 

vT: 

gc 

(X|.X2.X{ >  (X|.X2.X^ 

Y,    \- h(Xi) x 7-,) **     h t/5(X2) x UAX2))gcX, 
snd 

(X|.x2hr3(x,)xri) 

fst 

(X,.X2h7-3(X,)) 

(X,.X2r^(X2)x6';,(X2)) 

fst 

- (Xi.X-.hU4X 
fst 

(X,.X2hXi 

snd 

(X,.X2hl) 

(Xi.X2hTop) (X|.X2HX2) 

def 
T{    

d=    VX,.72(Xi) 

r2(x,)   =  vx2.(r3(x,)x7-,; 

73(X,)    d=    XixTopx^lX,)        U3{Y2)    
d=    Wi.U^Y: 
def 

t/2   =   vr2.(ixf73(r2)) 

U,(Y2)    =    VY4.(U5(Y2)xU}(Y2)) 

U5{Y2)    =    ±xY2xU2 

Figure 2: Colazzo and Ghelli's first example: show that ^=T\>U\ 
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Abstract 

In this paper we give a topological proof of the follow- 

ing result: There exist 2N° lambda theories of the untyped 
lambda calculus without a model in any semantics based 
on Scott's view of models as partially ordered sets and 
of functions as monotonic functions. As a consequence 
of this result, we positively solve the conjecture, stated 
by Bastonero-Gouy [6, 7] and by Berline [10], that the 
strongly stable semantics is incomplete. 

1. Introduction 
Lambda theories arc consistent extensions of the lambda 
calculus that arc closed under derivation. They arise by 
syntactical considerations, a lambda theory may corre- 
spond to a possible operational (observational) semantics 
of lambda calculus (see e.g. [2, 3, 24]), as well as by se- 
mantic ones, a lambda theory may be the theory of a model 
of lambda calculus (see e.g. [3, 10]). Since the lattice of 
lambda theories is a very rich and complex structure (see 
e.g. [3, 10, 24, 25, 49]), syntactical techniques arc usually 
difficult to use in the study of lambda theories. Therefore, 
semantic methods have been extensively investigated. 

Computational motivations and intuitionsjustify Scott's 
view of models (see [44, 45]) as partially ordered sets (sets 
of observations or informations) and of computable func- 
tions as monotonic functions over these sets. After Scott, 
mathematical models of lambda calculus in various cate- 
gories of domains (see [1, 48]) were classified into seman- 
tics according to the nature of their rcprcsentable functions 
(sec [2, 3,4, 10, 16, 20, 25]). Scott's continuous semantics 
[45] is given in the category whose objects arc complete 
partial orders and morphisms are continuous functions. 
The stable semantics introduced by Berry in [11] and the 
recent strongly stable semantics introduced by Bucciarelli 
andEhrhard in [12] arc strengthening of the continuous se- 
mantics. The stable semantics is given in the category of 
DI-domains with stable functions as morphisms, while the 
strongly stable one in the category of DI-domains with co- 
herence, and strongly stable functions as morphisms. All 

these semantics are structurally and equationally rich in the 
sense that it is possible to build up 2N° models in each 
of them inducing pairwise distinct lambda theories (see 
[28, 29]). The problem of the equational richness is re- 
lated to the problem of the completeness/incompleteness 
of a semantics: are the set of lambda theories determined 
by these semantics equal or strictly included within the set 
of consistent lambda theories? 

The first incompleteness result was obtained by Hon- 
sell and Ronchi della Rocca [25] for the continuous seman- 
tics. They proved, via a hard syntactical proof, that the 
contextual lambda theory induced by the set of essentially 
closed terms does not admit a continuous model. Following 
a similar method, Gouy [21] proved the incompleteness of 
the stable semantics with a much harder syntactical proof. 
Other more semantic proofs of incompleteness for the con- 
tinuous and stable semantics can be found in [7]. Bastoncro 
[6] provides an incompleteness result for the hypcrcohcr- 
ence semantics. 

Bastonero [6, Section 6], Bastoncro-Gouy [7, Section 7] 
and Berline [10, Section 6.1] conjecture that the strongly 
stable semantics is also incomplete. In this paper we give a 
positive answer to this open question. We prove that any se- 
mantics of lambda calculus based on Scott's paradigmatic 
view of models as partially ordered sets and of computable 
functions as monotonic functions is incomplete if the par- 
tial order admits a bottom element. This incompleteness is 
due to 2K° distinct lambda theories. The main theorem of 
the paper unifies and subsumes incompleteness results for 
different classes of models that have been proved in differ- 
ent ways, using different approaches. 

The proof of incompleteness is based on a general the- 
orem of separation for topological algebras. We prove 
that under a very weak condition, called weak subtrac- 
tivity, a topological algebra admits two elements 0 and 1 
which can be Tn -separated (i.e., there exist two open 
neighbourhoods of 0 and 1 respectively whose closures 
have empty intersection). All models of lambda calculus 
based on Scott's paradigmatic view arc topological alge- 
bras with respect to the Alcxandroff topology generated 
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by the partial order over the model. Posets such as join 
semilattices, meet semilattices, complete partial orderings, 
lattices, posets with a least element, posets with a great- 
est element cannot have T2l/2-separated elements w.r.t. the 
Alexandroff topology. Then the incompleteness theorem 
is determined by proving that there exist 2N° semisensible 
lambda theories that admit only weakly subtractive models. 

2. Preliminaries 
To keep this article self-contained, we summarize some 
definitions and results that we will need in the subsequent 
part of the paper. With regard to the lambda calculus we 
follow the notation and terminology of Barendregt (see 
[3]). 

For the general theory of lambda calculus the reader 
may consult Barendregt [3] and Krivine [30]. For the gen- 
eral theory of universal algebras the reader may consult 
Burris and Sankappanavar [13], Gratzer [22], and McKen- 
zie, McNulty and Taylor [32]. The main references for 
topological algebras are Taylor [52,53], Gumm [23], Bentz 
[8] andColeman[14, 15]. 

2.1. Lambda theories 
A denotes the set of A-terms, while A0 denotes the set of 
closed A-terms, where a A-term is closed if it does not admit 
free occurrences of variables. 

Lambda theories are consistent extensions of the lambda 
calculus that are closed under derivation. Remember that 
an equation is a formula of the form AI = N with AI, N £ 
A. The equation is closed if AI and N are closed A-terms. 
If Tis a set of equations, then the theory X + T is obtained 
by adding to the axioms and rules of the lambda calculus 
the equations in T as new axioms. If T is a set of closed 
equations, T+ is the set of closed equations provable in A + 
T. T is a lambda theory if T+ = T (see [3, Def. 4.1.1]). 
As a matter of notation, T h M = A'' stands for A + T H 
M = A"; this is also written as AI =T N. [A/]f = {N E 
A" : T \~ A* = AI} denotes the equivalence class of the 
closed A-term AI. 

The lambda theory 'H, generated by equating all the un- 
solvable A-terms, is consistent [3, Thm. 16.1.3]. A lambda 
theory T is called semisensible [3, Def. 4.1.7(iii)] if T \f 
M = N whenever M is solvable and Ar is unsolvable. 

2.2. Combinatory algebras and A-models 
An algebra C = (C, •, k, s), where • is a binary opera- 
tion and k, s are constants, is called a combinatory algebra 
(Curry [17], Schönfinkel [43]) if it satisfies the following 
identities (as usual the symbol • is omitted, and association 
is to the left): kxy = x; sxyz = xz(yz). In the equational 
language of combinatory algebras the derived combinator 
1 is defined as 1 = s(ki). A function / : C -> C is called 

representable if there exists an element c E C such that 
cz = f(z) for all z £ C. If this last condition is satisfied, 
we say that c represents map / in C. 

Let C be a combinatory algebra and let c be a new sym- 
bol for each c £ C. Extend the language of lambda cal- 
culus by adjoining c as a new constant symbol for each 
c £ C. Let A°(C) be the set of closed A-terms with con- 
stants from C. The interpretation of terms in A°(C) with 
elements of C can be defined by induction as follows (for 
all M, AT £ A°(C) and c EC): 

|c|c = c; \{MN)\c = |M|c|AT|c; |Ai.M|c = lm, 

where m £ C is any element representing the following 
map / : C -¥ C: 

f(c) = \M[x:=c]\c,    for alle EC. 

The drawback of the previous definition is that, if C is an 
arbitrary combinatory algebra, it may happen that map / is 
not representable. The axioms of a subclass of combina- 
tory algebras, called \-models or models of lambda calcu- 
lus (Meyer [33], Scott [47], [3, Def. 5.2.7]), were expressly 
chosen to make coherent the previous definition of interpre- 
tation. For every A-model C, the set Th(C) = {AI = N : 
AI, N E A0, C |= M = N} constitutes a lambda theory. 
C is a model of the lambda theory T if T = Th(C). 

We would like to point out here that there exists an 
algebraic approach to the model theory of lambda calcu- 
lus, alternative to combinatory logic, that allows to keep 
the lambda notation and all the functional intuitions (see 
[34,35,36,40,41,42]). 

2.3. Topological algebras 
A topological algebra is a pair (A, r) where A is an alge- 
bra and r is a topology on the underlying set A with the 
property that each basic operation of A is continuous with 
respect to r. (We will occasionally avoid explicit mention 
ofr.) 

Let b be the closure of set {b}. For any (topological) 
space (A, r) a preorder can be defined by 

a <T b iff o. E 6 iff V/7 £ r{a £ U =>b£U). 

We have 

T is To iff <T is a partial order. 

For any T0-space A the partial order <T is called the spe- 
cialization order of r. Note that any continuous map be- 
tween To-spaces is necessarily monotone and that the or- 
der is discrete (i.e. satisfies a <T b iff a = 6) iff A is a 
T'i-space. 

Let (A, <) be a partially ordered set (poset). B C A is 
an upper (lower) set if b £ B and b < a (a < b) imply 
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a G B. We utilize the notation B\ (S|) for the least upper 
(lower) set containing a subset B of .4. We write «| for 
{o}t and a[ for {a}\.. 

Given a posct (A, <) we can find many To-topologies r 
on A for which < is the specialization ordering of r (see 
Johnstone [27, Section II. 1.8]). The Alexandroff topology 
and the weak topology defined below are the maximal one 
and the minimal one with this property. 

The Alexandroff topology T^\,<) '
S
 constituted by the 

collection of all upper sets in .4, i.e., 

U is an Alexandroff open iff U = t't- 

Then «| is the least open set containing a. A function is 
continuous w.r.t. the Alexandroff topology if, and only if, 
it is monotonic. The closure of the open set of is (rcfU- 

The weak topology w'(4,<) is constituted by the smallest 
topology for which all sets of the form oj. arc closed, i.e. 

the topology based by sets of the form ,4-(oi|U- • -U«A4). 

Let (A, <) be a poset, r be a topology on .4. Then r 
is 7o with specialization order < if, and only if, II\A,<) Q 

3. The topological theorem 
In this Section we prove a general theorem of separation for 
topological algebras. Under a very weak condition, called 
weak subtractivity, a topological algebra admits two ele- 
ments 0 and 1 which can be 7^ -separated. We were in- 
spired with Bent/. [8] and Coleman [14, 15] for the idea of 
this theorem and for the techniques used in its proof. In the 
last part of the Section we characterize the topological al- 
gebras with Alexandroff topology which cannot be weakly 
subtractivc. 

The notion of subtractivity in Universal Algebra was in- 
troduced by Aldo Ursini [54], A variety (equational class) 
of algebras is subtractivc if there exist a term s(.r.;/) and a 
constant 0 such that the identities 

s(x.x) = 0;     ,s(.r,0)=.r 

arc satisfied by every algebra in the variety. Term .s simu- 
lates part of subtraction: x minus x is equal to 0, while x 
minus 0 is equal to x. 

In this paper we introduce a weak form of subtractivity. 

Definition 3.1 An algebra A is weakly subtractive if there 
exist a term s(x, y) and two constants 0 and 1 in the simi- 
larity type of A such that 

s(x,x) = 0;     .s(l,0) = l;     1^0. 

Separation axioms in topology stipulate the degree to 
which distinct points may be separated by open sets or 
by closed neighborhoods of open sets.   In the following 

theorem we prove that in every weakly subtractive TQ- 

topological algebra the elements 0 and 1 can be Tn ri- 
separated. This means that there exist two open neighbour- 
hoods of 0 and 1 respectively whose closures have empty 
intersection. 

As a matter of notation, if .4 is a space then the closure 
of a subset V of .4 will be denoted by U. Recall that a G U 
iff" n V ^ 0 for every open neighbourhood V of a. 

Theorem 3.1 Let (A, r) be a weakly subtractive 7'n- 
topological algebra. Then there exist an open neighbour- 

hood V of\ and an open neighbourhood \V of() such that 
FnTr = 0. 

Proof: The proof is divided into claims. 

Claim 3.1 There exists an open neighbourhood V of 1 
such thatO £ {'. 

Assume, by the way of contradiction, that 1 <T 0, i.e., 
every open neighbourhood of 1 contains 0. Then by the 7i) 
hypothesis on r there exists an open neighbourhood / of 
0 such that 1 £ Z. Then we have 0 = .s(l. 1) G Z. By 
continuity in the second coordinate, there exists an open 
neighbourhood R of 1 such that ,s( 1, /?) C Z. By 1 <T 0 it 
follows that 0 G R. so that 1 = s( 1,0) G Z. Contradiction. 

Claim 3.2 There exist an open neighbourhood P of\ and 
an open neighbourhood W of() such that P HIT' = 0. 

By Claim 3.1 there exists an open neighbourhood (' of 
1 such that Ü £■ ('. From .s-(l.O) = 1 G I' and from 
the continuity of s it follows that there exist two open 
neighbourhoods \''AV of 1 and 0 respectively such that 
.s(l'', IP) C l\ If there is an element /; G V n 11'' then 
() = .s(/;. 6) G r that contradicts the hypothesis on Ir. Then 
we have PfllP = 0. 

We now provide the proof of the theorem. By Claim 
3.2 there exist two open neighbourhoods I'' and IP of 
1 and 0 respectively with empty intersection. Since .s is 
continuous and s( 1. 0) = 1 G V, there exist two other 
open sets I' and U" containing 1 and 0, respectively, such 
that s(V. \Y) C V. The sets V and U" will be the right 
sets for the conclusion of the theorem. Since .s is continu- 
ous the prc-image of V under the map .s is closed. From 
s(\\ IT) C V C V the prc-image of F7, that is closed, 
contains V x \V, so s(V, W) C V7. 

We now prove that 1; fl 11' = 0. Assume, by the 
way of contradiction, that there is (/ G V Pi 11'. Since 
«(FIT) C P it follows that 0 = fi[d,d) G P. But by 
definition of closure of a set this is possible only if for ev- 
ery open neighbourhood Z of 0, we have that Z C\ V ^ 0. 
But this contradicts our initial choice of V' and IP as two 
open neighbourhoods of 1 and 0 respectively with empty 
intersection. D 
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Connectedness axioms in topology examine the struc- 
ture of topological spaces in an orthogonal way with re- 
spect to separation axioms. They deny the existence of cer- 
tain subsets of a topological space with properties of sep- 
aration. For example, a space with no disjoint open sets 
is called hyperconnected, while a space with no disjoint 
closed sets is called ultraconnected (see Steen-Seebach [51, 
Section 4]). 

Definition 3.2 We say that a space is closed-open- 
connected, co-connected for short, if it has no disjoint clo- 
sures of open sets. In other words, if, for all open sets U 
and V, we have that VnU^%. 

We have the following implications: 

hyperconnectedness =>• co-connectedness => connectedness 

and 

ultraconnectedness => co-connectedness => connectedness. 

Then co-connectedness is a sort of meeting point between 
ultraconnectedness and hyperconnectedness. 

The following result is an easy consequence of 
Thm. 3.1. 

Corollary 3.1 There exists no weakly subtractive TQ- 

topological algebra (A,r) whose topology T is co- 
connected. 

We say that a poset (A, <) is co-connected if the 
Alexandroff topology T(A,<) is co-connected. This is 
equivalent to say that, for all a, b £ A, (at)| f~l (6f)| ^ 
0. The following posets are co-connected: join semilat- 
tices, meet semilattices, complete partial orderings, lat- 
tices, posets with a least element, posets with a greatest 
element. 

By definition a topology T\ is weaker than a topology r2 

if 7"!  C T2. 

Lemma 3.1 If the topology T\ is weaker than a co- 
connected topology T2, then T\ is also co-connected. 

Proof: The closure of a set grows up if there are less 
open (and closed) sets. D 

Theorem 3.2 There exists no weakly subtractive TQ- 

topological algebra whose specialization order is co- 
connected. 

Proof: Let (A,r) be a weakly subtractive T0- 
topological algebra whose specialization order < is co- 
connected. By Thm. 3.1 there exist an open neighbour- 
hood V of 1 and an open neighbourhood W of 0 such that 

V n W = 0. Then the topology r is not co-connected. 
The Alexandroff topology T^A,<) '

S
 the maximal topol- 

ogy T\ with the property that < is the specialization or- 
dering of TI (see Johnstone [27, Section II. 1.8]). Then r is 
weaker than the Alexandroff topology T( ,*,<)• By hypothe- 
sis the Alexandroff topology is co-connected. By applying 
Lemma 3.1 we get that r is also co-connected. This is a 
contradiction. ü 

4. The incompleteness theorem 
A class C of models of lambda calculus represents a 
lambda theory T if there is a model in C whose theory is 
exactly T■ A class of models is incomplete if it does not 
represent all the lambda theories. 

We now define a class of 2K° semisensible distinct 
lambda theories satisfying the following condition: if C is 
model of a lambda theory in the class, then C is a weakly 
subtractive combinatory algebra. 

Consider the (consistent and) semisensible lambda the- 
ory A axiomatized by 

Qxx = fi;    Qft3fi = ^3, 

where fi = (Xx.xx)[Xx.xx), £l3 = (Xx .x x x) (Xx .x x x). 
In the next theorem, the technically hardest part of the 

work, we prove that the lambda theory A does not equate 
Q and f^. This result implies that the term model of A is a 
weakly subtractive combinatory algebra. 

Theorem 4.1 
Al/ft = fi3- 

Proof: We provide an outline of the proof. Define 

fi3 = nn3n-,   (nn3n)* = o3. (i) 

The definition of a context, i.e., a lambda term with some 
holes in it, can be found in [3, Def. 2.1.18]. Let S be 
the least lambda theory satisfying the following condi- 
tions for every context C[ ], A-term TV, and element d £ 
{U3,QQ3Q}: 

(i) E h Qxx = Q; 

(ii) S h Q(C[d])N = fi implies E h Q(C[cT])TV = ft; 

(iii) E h nN(C[d]) = fi implies S h QN[C[d*]) = Q. 

E exists because the set of lambda theories satisfying the 
three above conditions is closed under arbitrary intersection 
and it is not empty (the lambda theory % equating all the 
unsolvable satisfies (i)-(iii)). 

E satisfies the following condition for all A-terms M, TV: 

E h M = TV E h QMN = Q. (2) 
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From E F M = N and 5] F QNN = ft it follows that 
S F ftMAf = ftvVN = ft. 
Let —>s be the following reduction rule: 

ÜA4N ->s ft (3) 

for every M and TV such that E F QMN = ft. The re- 
flexive closure of —>s satisfies the diamond property, and 
the relations -»^ and -»s commute. Then the reduction 
rule —ypz = —>yj U —>s is Church-Rosser by the Hindley- 
Rosen Lemma (see Berarducci-Intrigila [9, Thm. 3.4] and 
Barendregt [3, Prop. 3.3.5]). 

Then we prove that E is the lambda theory generated by 
conversion =ß^ from —^s, i.e., 

EhM = yViffMS^v N (4) 

The proof of (4) is obtained as follows. Since QMN —»s 
ft iff E F M\IN = ft, then it is obvious that M =/3S Ar 

implies E F M = N. For the opposite direction, we utilize 
conditions (ii)-(iii) in the definition of E to prove that, for 
every d 6 {ft3, ftft3ft} and every A-tcrm P, 

Pd S9S ft =>  Pd' ft. (5) 

Then wc use (5) to show that the conversion relation =jv 
satisfies conditions (i)-(iii) utilized in the definition of E. 
Since E is the least lambda theory satisfying conditions (i)- 
(iii) wc have the conclusion. 

From (4) it follows that 

E \f ft = ft., (6) 

since ft and ft3 do not have a common reduct w.r.t. —»,*v. 
The next step in the proof is to show that 

E + ftft3ft = ft3 F/ ft = ft3. (7) 

This result gives the conclusion of the theorem, i.e., A \f 
ft = ft3, since the axioms defining the lambda theory A 
arc contained in E + ftft3ft = ft3. In other words, A is in- 
cluded into the lambda theory generated by E + ftft3ft = 
f?3. The proof of (7) is obtained as follows. Assume, by 
the way of contradiction, that E + fiQ3Q = 9.3 h Q. = Q3. 
Wc apply the following version of Jacopini Lemma (see Ja- 
copini [26] and Kuper [31]). There exist closed A-terms 
Pi,..., P„, c 1,..., e„ (n > 0) such that the following 
conditions are satisfied (recall the definition of operator " 
from (1) above): 

(i) e,- £ {fi,3, iir23Q} for every i = 1,..., ?»; 

(ii) Shfi = Pjei; 

(iii) E h Prc' = Pr+ier+1 for r = 1,..., 7» - 1; 

(iv) sh/v; =Q3. 

From (4), (5) and (i)-(iv) above it follows that 

S h Pre* = !),     for every r = 1,.. .,7i, 

so that from (iv) it follows that 

Shft=fi3 

that contradicts (6). a 

The following theorem by Visser as formulated in [3, 
Thm. 17.1.10] will be used in Thm. 4.3 below. 

Theorem 4.2 (Visser [55]) Let T C T' be recursively enu- 
merable lambda theories such that T' F M — N and 
T \f M — N. Then there exists a lambda theory S such 
that 

TCSCT'andS\/M = N. 

Theorem 4.3 Let P. be the set of real numbers. There exists 
a family S — (Sr : r 6 E) of semisensible distinct lambda 
theories such that A C Sr and Sr \f Q = Q3forallr 6 R. 

Proof: Let n be the consistent lambda theory axioma- 
tized by Qxx = fi and ft = Q3. Then A C ü because 
n h nft3fi = nnn = n = n3 and A 1/ ci = n3. 
By Thm. 4.2 there exists a third lambda theory S such that 
A C S C n and 5 Xf Q = n3. Using Thm. 4.2 one 
can embed the rationals into the recursively enumerable 
lambda theories included between A and H (sec [3, Corol- 
lary 17.1.11]), i.e., construct a family {^>r}r6,Q, such that 

r < r' ->■ Sr C Sr< (8) 

holds for r, ?•' £ O. 
5,. = U{S,, : q < r 
for r, r' G E. 

Now define for a real number r £ E 
and q £ Q}. This clearly satisfies (8) 

a 

Theorem 4.4 Let T be any lambda theory such that A C 
T and T' \f Q = ft3. Then every model ofT is a weakly 
suhtractive combinatory algebra. 

Proof: Let C be a model of T. The interpretation of 
a closed A-term M is the clement |M|c of C (see Sec- 
tion 2.2). For the sake of simplicity, we write directly 
M for |.'W|c when there is no danger of confusion. We 
have to define a binary term s(x,y) and two constants 
0, 1 satisfying the conditions of Def. 3.1. Define 0 = ft, 
1 = ft3 and s(x,y) = Qxy. Since T F Q.xx. = ft and 
T F ftft3ft = ft3, then we have that C |= ftft3ft = ft3 

and C |= A.;.ft.r.;' = A.;-.ft. This last identity implies 
Qcc = {Xx.Qxx)c = (Xx.Q)c = ft for all c E C. So, 
C is weakly suhtractive if ft and ft3 denote different ele- 
ments of C. This is true because T 1/ ft = ft3 and then 
every model of T distinguishes ft and ft3. D 

A topological model of lambda calculus is any topolog- 
ical algebra (C, r) such that C is a A-model. 
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Corollary 4.1 Let T be any lambda theory such that A C 
T and T 1/ H = ^3. // (C, r) is a T0-topological model 
ofT, then both r and the specialization order of T are not 
co-connected. 

Proof: By Thm. 4.4, Cor. 3.1 and Thm. 3.2. D 

A T0-topological model (C, r) is called a partially or- 
dered A-model, apo-model for short, if r is the Alexandroff 
topology defined in Section 2.3. In such a case, the appli- 
cation operator is monotone w.r.t. the specialization order 
of T. 

Theorem 4.5 Let T be any lambda theory such that A C 
T and T 1/ fi = O3. Then T cannot be the theory of a 
po-model whose specialization order is co-connected. 

Proof: A partial order is co-connected if, and only if, the 
corresponding Alexandroff topology is co-connected. Then 
the conclusion follows from the definition of po-model and 
from Cor. 4.1. D 

The models of lambda calculus are classified into se- 
mantics according to the nature of their representable func- 
tions. A semantics is usually constituted by a class of suit- 
able po-models. This last condition is justified by Scott's 
view of models as sets of sets of observations (or informa- 
tions) and of computable functions as monotone functions 
over such sets (see [47]). 

Scott's continuous semantics [45] is the class of po- 
models whose specialization order is a complete partial or- 
dering and the representable functions are all the continu- 
ous ones w.r.t. the Scott topology. The graph model se- 
mantics (see [46], [19], [37], [38], [10, Section 5.5]) is a 
subclass of the K-semantics isolated by Krivine (see [30], 
[10, Section 5.6.2]) within the continuous semantics. The 
filter model semantics was defined by Coppo, Dezani, Hon- 
sell and Longo in [16] (see also [4]) within the continuous 
semantics. 

The stable semantics introduced by Berry [11] is the 
class of po-models whose specialization order is a DI- 
domain and the representable functions are all the stable 
ones. 

The strongly stable semantics introduced by Bucciarelly 
and Ehrhard in [12] is the class of po-models whose spe- 
cialization order is a DI-domain with coherence and the 
representable functions are all the strongly stable ones. The 
hypercoherence semantics introduced by Ehrhard [18] is a 
subclass of the strongly stable semantics. 

Stability and strong stability constitute restrictions of 
continuity to capture the notion of sequentiality. 

The first incompleteness result was given by Honsell 
and Ronchi della Rocca [25] for the continuous semantics. 
They proved that the contextual lambda theory induced by 

the set of essentially closed terms does not admit a continu- 
ous model. Following a similar method, Gouy [21] proved 
the incompleteness of the stable semantics. Other more se- 
mantic proofs of incompleteness for the continuous and sta- 
ble semantics can be found in [7]. Bastonero [6] provides 
an incompleteness result for the hypercoherence semantics. 

Bastonero [6, Section 6], Bastonero-Gouy [7, Section 7] 
and Berline [10, Section 6.1] conjecture that the strongly 
stable semantics is also incomplete. We give a positive an- 
swer to this open question in the following theorem. We es- 
sentially prove that any semantics of lambda calculus based 
on the concept of approximation of the information is in- 
complete because of Thm. 4.6(xii) below. 

Theorem 4.6 (The Incompleteness Theorem) The follow- 
ing semantics of the lambda calculus are incomplete. More 
precisely, there exist 2N° semisensible lambda theories 
which cannot have a model in the following semantics. 

(i) The graph model semantics. 

(ii) The K-semantics. 

(Hi) The filter model semantics. 

(iv) The continuous semantics. 

(v) The stable semantics. 

(vi) The hypercoherence semantics. 

(vii) The strongly stable semantics. 

(viii) The po-models with a structure of complete partial or- 
dering. 

(ix) The po-models with a structure of meet semilattice. 

(x) The po-models with a structure of join semilattice. 

(xi) The po-models with a structure of lattice, 

(xii) The po-models with a bottom element, 

(xiii) The po-models with a top element. 

Proof: All the above semantics are given in terms of 
po-models whose specialization order is co-connected. The 
conclusion follows from Thm. 4.5 and from Thm. 4.3.   G 

Recently we have found a simpler proof of the incom- 
pleteness theorem based on a more general topological the- 
orem and on the lambda theory axiomatized by the unique 
identity Clxx = Q. This new proof can be found in the 
Appendix. 
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5. Conclusions 
We have introduced a new technique to prove the incom- 
pleteness of a wide range of lambda calculus semantics (in- 
cluding the strongly stable one, whose incompleteness had 
been conjectured). Roughly, the technique used for proving 
that a class C of models is incomplete is the following: 

1. Find a (topological) property P verified by all models 

inf. 

2. Find a lambda theory whose models do not verify P. 

To begin with, we remark that the models of lambda cal- 
culus based on domains (continuous, stable, strongly sta- 
ble models in particular) are topological combinatory alge- 
bras w.r.t. the Alexandroff topology (the strongest topology 
whose specialization order is the order of the considered 
domain), and that they arc co-connected (i.e. that the clo- 
sures of two open sets cannot be disjoint). 

Then we define a class of topological algebras which arc 
not co-connected, the weakly subtractive topological alge- 
bras. 

What has to be shown next is that there exist lambda 
theories which admit only weakly subtractive combinatory 
algebras as models. We define a theory A and prove that 
all its models arc weakly subtractive, then by standard tech- 
niques we get, starting from A, a continuum of lambda the- 
ories with this same property. 

We are working to get a generalization of our incom- 
pleteness theorem. The open sets of the Alexandroff topol- 
ogy arc closed under arbitrary intersection. This implies 
that, for every subset V of aposct (.1. <), there exist a least 
open set V'|, a least closed set l'| and a least clopen (open 
and closed) set, all of them including W The minimal 
clopen sets constitute the partition of the space in connected 
components. It is possible to prove that every weakly sub- 
tractive 7'o-topological algebra with the Alexandroff topol- 
ogy admits a clopen set U such that Ü £ (' and 1 ^ f\ 
This result implies the incompleteness of every semantics 
of lambda calculus given in terms of po-modcls whose 
Alexandroff topology is connected (recall that a space is 
connected if there exists no proper clopen set). We conjec- 
ture that the semantics of lambda calculus given in terms of 
po-models whose Alexandroff topology has a finite number 
of connected components is also incomplete. 

Another interesting problem is related to the consistency 
of the lambda theory 5 axiomatized by 

Qxx = Q;    QxQ = x. 

We conjecture that c» is consistent. A po-model for £ is 
a subtractive combinatory algebra (sec [54]), where Q is 
not comparable with any other element in the model (i.e. 
a < il or fi < a imply a — iT). 

A partial order is trivial if it satisfies a < b iff« = 6. 
The problem of the incompleteness of the semantics of 
lambda calculus is also related to the open problem of the 
order-incompleteness of the lambda theories: docs it exist 
a lambda theory which cannot arise as the theory of any 
non-trivially partially ordered model? Selingcr [50] gave 
a syntactical characterization, in terms of so-called gener- 
alized Mal'cev operators, of the order-incomplete lambda 
theories. The problem of the ordcr-incomplctencss can be 
stated as follows: does it exist a sequence M\,..., M„ of 
closed A-tcrms such that the lambda theory T„. axioma- 
tized by 

.r = Muvyy; Mii;ry = Ml + ixy;/; Mnxxy - y (/ < n), 

is consistent? Plotkin and Simpson (sec [49]) have shown 
that 71 is inconsistent, while Plotkin and Selingcr (sec 
[49]) obtained the same result for T->- It is an open prob- 
lem whether 77, (n > 3) can be consistent. Order- 
incompleteness is also related to Plotkin's conjecture (sec 
[39, 49, 50]) about the existence of absolutely unordcrable 
combinatory algebras, where a combinatory algebra is ab- 
solutely unordcrable if it cannot be embedded in any order- 
able combinatory algebra. 
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Appendix 

We generalize the topological theorem of Section 3 and 
provide a simpler proof of the incompleteness theorem 
based on the lambda theory II axiomatized by the unique 
identity Qxx = Q. 

Definition 5.1 An algebra A is 3-weakly subtractive if 
there exist a term .s(,r. y) and two constants 0. I in the sim- 
ilarity type of A such that 

s(x.x) = 0:     1^0:     .s( 1.0)^0:     «(*( 1, 0). 0) ^ 0. 

Definition 5.2 A 3-weakly subtractive algebra A is 4- 
weakly subtractive if 

.s(.s(,(1.0).0).0)^0. 

Every weakly subtractive algebra is both a 3-wcakly and 
a 4-wcakly subtractive algebra. 

Theorem 5.1 Let (A,r) be a 3-weakly subtractive '!})- 
topological algebra. Then there exist an open neighbour- 
hood V of 1 and an open neighbourhood \ V of 0 such that 

rnir = 0. 
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Proof: The proof is divided into claims. Let 

c = s(l,0);    d=s(c,0). 

Claim 5.1 There exists an open neighbourhood R ofc such 
thatQ^R. 

By the To hypothesis on r the elements 0 and d are To- 
separated. We analyse two cases. 

(1) There exists a neighbourhood Z of 0 with d £ Z. 
Then 

Q = s(c,c)eZ. 

By continuity in the second coordinate, there exists an open 
neighbourhood/?,of csuch that s(c, ft) C Z. If 0 G -ft then 
d — s(c, 0) G Z that contradicts our hypothesis on Z. Then 
we have an open neighbourhood R of c such that 0 ^ R. 

(2) There exists a neighbourhood Z of d with 0 ^ Z. 
Then 

rf=s(c,0) GZ. 

By continuity in the first coordinate, there exists an open 
neighbourhood R of c such that s[R, 0) C Z. If 0 G R 
then 0 = s(0,0) G Z that contradicts our hypothesis on 
Z. Then we have an open neighbourhood R of c such that 
Ogf?. 

Claim 5.2 77?ere em? a« ope« neighbourhood V of I and 
an open neighbourhood IV o/O such that V D W = 0. 

By Claim 5.1 there exists an open neighbourhood ft of c 
such that 0^7?. From «(1, 0) = c G R and from the con- 
tinuity of s it follows that there exist two open neighbour- 
hoods V. \V of 1 and 0 respectively such that s(V. \V) C R. 
If there is an element b G V n \V then 0 = s(b. b) G ft that 
contradicts the hypothesis on ft. Then we have 1'nll' = 0. 

D 

Theorem 5.2 Let (A. r) be a 4-weakly subtractive T0- 
topological algebra. Then there exist an open neighbour- 
hood V of\ and an open neighbourhood \V ofO such that 
FnTf = 0. 

Proof: Let 

c=s(L0);     f/=s(c,0);     e = s(d,0). 

A is 3-weakly subtractive in two different ways. It is obvi- 
ous that the constant 1 satisfies the conditions of Def. 5.1. 
But the constant c also satisfies the conditions of Def. 5.1: 

c^O;    s(c, 0)^0;    s(s(c,0), 0) ^ 0. 

Then we can apply Thm. 5.1 to c to get an open neighbour- 
hood V of c and an open neighbourhood W of 0 such that 
V n W = 0. 

Since s is continuous and s(l, 0) = c G V, there exist 
two other open sets V and W containing 1 and 0, respec- 
tively, such that s(V, W) C V. The sets V and W will be 
the right sets for the conclusion of the theorem. Since s is 
continuous the pre-image of V under the map s is closed. 
From s(V, W) C V C V the pre-image of V, that is 
closed, contains V x W'', so s(V, W) C V. 

We now prove that V H W = 0. Assume, by the 
way of contradiction, that there is / G VOW. Since 
s{V,W) C V7 it follows that 0 = s(f,f) G V7. But 
by definition of closure of a set this is possible only if for 
every open neighbourhood Z of 0, we have that ZC\V ^ 0. 
But this contradicts our initial choice of V and W as two 
open neighbourhoods of c and 0 respectively with empty 
intersection. D 

Consider the semisensible lambda theory II axiomatized 

Qxx = Q. 
by 

Define 
t0 = n3;     tn+1=Q{t„)Q. 

Theorem 5.3 We have: 

n\ftn = Q for all n. 

Proof: Let —^n be the following reduction rule: 

QMN ->n ^ (9) 

for every M and N such that FI h M = YV. The re- 
flexive closure of ^n satisfies the diamond property, and 
the relations —»^ and -^n commute. Then the reduction 
rule —»OT = —>/5 U —>n is Church-Rosser by the Hindley- 
Rosen Lemma (see Berarducci-Intrigila [9, Thm. 3.4] and 
Barendregt [3, Prop. 3.3.5]). 

Then we prove that II is the lambda theory generated by 
conversion =gn from —^n, '-e-> 

II h M = N iff M -im N. (10) 

Since QMN ->n ft iff II h A/ = N, then it is obvious 
that ,1/ =pn N implies U h M = N. For the opposite 
direction, it is sufficient to consider that Qxx —>-ri ft for 
the unique axiom Qxx = ft of II. 

We now prove by induction that II \f tn = ft. First we 
have that II \f to = ft because t0 = &3 and ft do not have a 
common /ifl-reduct. By the way of contradiction, assume 
n h tn + 1 = ft, so thaUn+i = ft(*„)ft ^/in ft. Then 
there exists a reduction Q(tn)Q^ßnQ. This is possible 
only if ft(/„ )ft is a Il-redex i.e. if U \- tn = ft. But this 
contradicts the induction hypothesis. D 

Theorem 5.4 Every model of the lambda theory Ü is a 4- 
weakly subtractive combinatory algebra. 
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Proof: Let C be a model of II. We have to define a 
binary term s(x,y) and two constants 0, 1 satisfying the 
conditions of Dcf. 5.2. Define 0 = ft, 1 = ü:i and 
s(x,y) = Qxy. The proof of the theorem is now similar 
to that of Thm. 4.4 and it is omitted. □ 

Theorem 5.5 The lambda theory U cannot he the theory 
of a po-model whose Alexandroff topology is co-connected. 

Proof: It follows from Thm. 5.4 and from Thm. 5.2.   ü 

Corollary 5.1 The lambda theory H, axiomatized by 

Q.XX = il, cannot have a model in the semantics specified 
in Thm. 4.6. 
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Abstract 

As already known [14], the mu-calculus [17] is as ex- 
pressive as the bisimulation invariant fragment of monadic 
second order Logic (MSO). In this paper, we relate the ex- 
pressiveness of levels of the fixpoint alternation depth hier- 
archy of the mu-calculus (the mu-calculus hierarchy) with 
the expressiveness of the bisimulation invariant fragment of 
levels of the monadic quantifiers alternation-depth hierar- 
chy (the monadic hierarchy). 

From van Benthem 's result [3], we know already that the 
fixpoint free fragment of the mu-calculus (i.e. polymodal 
Logic) is as expressive as the bisimulation invariant frag- 
ment of monadic So (i.e. first order logic). We show here 
that the v-level (resp. the vp-level) of the mu-calculus hi- 
erarchy is as expressive as the bisimulation invariant frag- 
ment of monadic Si (resp. monadic T,o) and we show that 
no other level Ej. for k > 2 of the monadic hierarchy can 
be related similarly with any other level of the mu-calculus 
hierarchy. 

The possible inclusion of all the mu-calculus in some 
level £;. of the monadic hierarchy, for some k > 2, is also 
discussed. 

1    Introduction 

The propositional modal fixpoint calculus (or mu- 
calculus for short) introduced by Kozen [17] is considered 
in this paper. The mu-calculus was initially introduced as a 
specification formalism for processes modeled as states in 
transition systems. 

However, using the mu-calculus as a logic of processes 
has a major drawback : the model-checking problem, which 
is to decide if a (finite) model (given as input) satisfies a 
formula (also given as input), remains somehow difficult. 
More precisely, the best model checking algorithms known 

so far - see [16] for the lastest development - have (time) 
complexity 0((mn)fd/2l+1) where m is the size of the in- 
put graph, n is the size of the formula and d is the fixpoint 
alternation-depth of the formula which depends on the in- 
put formula. Moreover the restriction to mu-calculus for- 
mulas with a bounded fixpoint alternation-depth is (theo- 
retically) not an issue because it also strictly reduces the 
expressive power of the logic. Indeed, Bradfield [4] and, 
in some weaker sense, Lenzi [18], prove that the hierarchy 
induced by the fixpoint alternation-depth, (the mu-calculus 
hierarchy) is strict. 

In practice, temporal logics [6], which all belong to low 
levels of the alternation depth hierarchy, are often preferred 
to the full mu-calculus since in that case the model check- 
ing problem has a low degree polynomial (even linear) time 
complexity. 

It is also known that the model-checking problem be- 
longs to NPCico-NP [15]. From Fagin's famous corre- 
spondence between the class NP and the existential frag- 
ment of second order logic [7], this upper bound tells us 
that all mu-calculus formulas belongs to the level Si n 111 
of the second order quantifier alternation hierarchy. 

Since all mu-calculus formulas can be translated into 
monadic second order logic (MSO) one may ask whether 
similar descriptive complexity results are available for the 
monadic quantifier alternation hierarchy (the monadic hier- 
archy) which is known to be strict (even over finite models 
as shown by Matz and Thomas [20]). More precisely, since 
the mu-calculus is as expressive as (or equivalent to) the 
bisimulation invariant fragment of MSO [14], one may ask 
whether the full mu-calculus or any level of the mu-calculus 
hierarchy is equivalent to the bisimulation invariant frag- 
ment of some level of the monadic hierarchy. 

Van Benthem [3] already shows that the fixpoint free 
fragment of the mu-calculus (i.e. Polymodal Logic also 
called Hennessy-Milner logic among computer scientists) 
is equivalent to the bisimulation invariant fragment of 
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Levels of the mu-calculus 
Mu-calculus 

Polymodal Logic 
(/-level of the mu-calculus 

i//i-level of the mu-calculus 
Properties (all1) of arbitrary levels 

Levels of the monadic hierarchy 
Monadic Second Order Logic 

FOL 
monadic Ei 
monadic £•> 
monadic £•? 

Reference 
Janin-Walukicwicz 1996 

VanBcnthem 1976 
shown here 
shown here 
shown here 

Figure 1. Correspondance between levels of the mu-calculus hierarchy and levels of the bisimulation 
invariant fragment of the monadic hierarchy 

monadic E0 (i.e. FOL). 
Here, we complete the picture showing that: 

Theorem 1.1 The v-level (resp. the p-level) of the mu- 
calculus hierarchy is equivalent to the bisimulation invari- 
ant fragment of the level E, (resp. Ui) of the monadic hier- 
archy. 

and 

Theorem 1.2 The vp-level (resp. the pv-level) of the mu- 
calculus hierarchy is equivalent to the bisimulation invari- 
ant fragment of the level £•_> (resp. IT) of the monadic hier- 
archy. 

From Arnold's proof of the strictness of the mu-calculus 
hierarchy [21, we also show that : 

Theorem 1.3 For each integer k > 2 there exists a bisimu- 
lation invariant formula of monadic E3 that does not belong 
to the kth level of the mu-calculus hierarchy. 

In other words, no other equivalence similarly relates lev- 
els of the mu-calculus hierarchy with levels of the monadic- 
hierarchy. 

The question whether the mu-calculus is equivalent to 
the bisimulation invariant fragment of monadic Efr, for 
some integer k > 2, remains, strictly speaking, open. How- 
ever, the following theorem, which is a consequence of the 
work of Courccllc [5], shows that, on a quite general class 
of graphs (or the class of all graphs1), this is already true 
with monadic £:!. 

Theorem 1.4 Over the class of graphs of bounded degree 
(or bounded tree-width) all mu-calculus formulas can be 
translated into monadic E3 formulas. 

Figure 1 above summarizes all these results. One must 
be aware that, for these results, we are considering arbitrary 
finite and infinite models. Rosen [28] shows that van 
Benthcm's result still holds over finite models only. All 
other statements mentioned in Figure 1 are open problems 
over finite models. 

'provided, as in MS2 in [5], quantification over edges is available ! 

Allthough these new results essentially have a theoretical 
flavor they can also be seen as a general toolkit to analyse, 
from syntax, the model-checking complexity of logics of 
programs. Indeed, most logics of programs arc (implicitly 
defined as) particular fragments of the bisimulation invari- 
ant fragment of MSO. The result above says that, as soon 
as these logics can be translated into monadic A! (resp. 
monadic A2) then the model checking complexity is linear 
(resp. quadratic) in the size of the input program. 

Related works 

The study of various bisimulation invariant fragments of 
logical formalisms leads to some other results. 

Following Hafer and Thomas [10] logical characteri- 
zation of CTL* over the binary tree, Möller and Rabi- 
novich [21] obtain a similar characterization of CTL* over 
arbitrary trees : CTL* is as expressive as the bisimulation 
invariant fragment of MSO over trees with path quantifiers 
instead of general set quantifiers. 

With a more expressive language than the mu-calculus, 
Grädel. Hirsch and Otto show the expressive completeness 
of the guarded lixpoint calculus w.r.t. the bisimulation in- 
variant fragment of guarded second order logic [9[. 

Over finite models, Otto gives a fixpoint characterization 
of bisimulation invariant PTIME [25]. 

In his PhD thesis [11], Hollenberg also characterizes the 
bisimulation invariant fragment of MSO via bisimulation- 
quantifiers [8]. It is an open question whether his approach 
extends to the bisimulation invariant fragment of monadic 
Ei or monadic E->. 

Investigating bisimulation invariance inside MSO also 
leads to apply works on MSO over trees. The pioneer- 
ing works of Rabin [26][27] on the monadic second or- 
der theory of the binary tree (S2S) arc obviously relevant 
here. Also the many automata characterization of various 
mu-calculi over trees which starts in the early 80's with the 
results of Niwinski [24] or Street and Emerson [32] among 
others arc fundamental. In this paper, we use one of the last 
and most achieved extension of these techniques and results 
obtained by Walukiewicz [33], 
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Note however, Theorems 1.1 and 1.2 are not immediate 
consequences of these results. 

For the analysis of bisimulation invariance inside 
monadic Si, the restriction to trees is even misleading 
since, with properties definable in monadic Si, bisimula- 
tion invariance over trees is less restrictive than bisimula- 
tion invariance over arbitrary graphs. Indeed, the monadic 
Si formula 3xp(x), although bisimulation invariant over 
trees, would mean, as a bisimulation invariant property over 
graphs, that there is a directed path from a distinguished ver- 
tex (the root of the graph) to some vertex x where p holds. 
This property is at least as difficult to express as directed 
reachability which, as shown by Ajtai and Fagin [1], is not 
expressible in monadic Si. 

For the analysis of bisimulation invariance inside 
monadic S2, it is true that bisimulation invariance over trees 
or graphs coincides. But then, there is no real characteriza- 
tions of FOL or monadic Si logic of trees so no simple in- 
ductive proof is available. To prove Theorem 1.2, we shall 
extend to all trees a new similar result of Lenzi [19], re- 
proved by Skurcziriski [31] in a more automata theoretical 
way, which says that, on the binary tree, languages defin- 
able in monadic S2 are exactly the languages recognizable 
by tree automata with Büchi conditions. 

Overview 

The paper is organized as follows. First we recall the 
definition of bisimulation equivalence. Then, in relation 
with it, we present the notions of «-expansions which pro- 
vide, in some sense, canonical representatives of bisimula- 
tion equivalences classes of graphs. 

In the third part, we recall the definitions of Monadic 
Second Order Logic and the modal and counting mu- 
calculus. We also recall most of the known results relating 
these languages. 

In the fourth part, we give a definition of tree automata 
which, with various acceptance criteria, will constitute the 
main technical tools to prove our results. 

In the fifth and sixth parts, bisimulation invariance in 
monadic Si and in monadic S2 are analyzed. Sketch of 
proofs for Theorem 1.1 and Theorem 1.2 are given. 

In the last part, the case of levels S/t for k > 2 is consid- 
ered and Theorem 1.3 and Theorem 1.4 are proved. 
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2   Graphs, Bisimulation and Expansion 

We recall here the notions of transition systems, bisim- 
ulation equivalence and expansion of transition systems. 
Since a transition system is simply a directed graph with 
a distinguished vertex called its source or root, we use in 
the following the vocabulary of (directed) graphs. 

Also, in order to simplify statements and proofs, we only 
consider here unlabeled directed graphs (built over a single 
binary relation symbol). One can check that all the results 
presented here can easily be generalized to (finitely) labeled 
directed graphs, i.e. graphs built over a finite set of binary 
relation symbols. 

Let Prop be a set of unary predicate symbols and let R 
be a binary relation symbol. A graph with a root, simply 
called graph in the sequel, is a tuple: 

M=(SM,rM,RM,{pM}peProp) 

with a set SM of vertices, a root rM G SM, a binary suc- 
cessor relation RM C SM x SM and for each p G Prop, a 
subset pM CSM. 

Graphs M and N are called bisimilar when there exists a 
relation R C SM x SN, called a bisimulation relation, such 
that (rM, r1*) G R and for every (s, t) G R and p G Prop, 
s G pM iff t G pN, and whenever (s, s1) G RM for some s', 
then there exists t' such that (t, £') G RN and (s', t') G R, 
and whenever (t, t') G RN for some t', then there exists s' 
such that (s, s') G RM and (s', t') G R. 

Given any set K (disjoint from SM), a n-indexed path in 
M is a non empty finite or infinite word iv G 5A/

.(K.5
M

)
OC 

such that whenever w = u.s.k.s'.v with u G (5
A/

.K)*, 

s G SM, k G K, s' G Sm and v G (K.S
M

)°° one has 
(s,s') G RM. The length \w\ of K-index path w is defined 
as the number of occurrences of elements of SAI in w, e.g. 
when w = so.ki.si. ■ ■ ■ -kn.sn we put \w\ = n + 1. In this 
case, we say So is the source of w, sn is the target of w and 
w is a (/c-indexed) path from so to sn. 

Remark that (up to isomorphism) the notion of K-indexed 
path only depends on the cardinality of K. In particular, 
when K is a singleton, K-indexed paths are nothing but the 
usual (directed) paths in a graph. 

The K-expansion TK(M) of system M is defined as fol- 
lows : set ST"(M) is the set of all finite «-indexed paths 
of M with root rM, the root rT"(M) equals rM, relation 
fjTK(M) js tne set 0f aj[ pajrs 0f tne form (u.s,u.s.k'.s') G 
ST«(M) x ST-(M) with u £ (SMmKyf s and j £ gM and 

k' G K such that (s,s') G RM, and, for any p G Prop, 
pT"(M) js t^e set Qf a|| K_indexecj path 0f tne form u.s G 

Sr"(M> with u G (S
M

.K)* and s G pM. 
Any «-expansion is a tree. Moreover, when K is a single- 

ton, the /t-expansion of M, from now on denoted by T(M), 
is nothing but what is usually called the unwinding or un- 
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raveling of graph M from its root rAI. Vertices of T(M) 
are all finite paths from the root. 

When M is a tree, i.e. when M and T(M) are isomor- 
phic, we shall use the notation <M for the order relation 
induced by the tree-structure of M, i.e. relation <M is the 
reflexive and transitive closure of relation RM. 

The notion of K-expansion gives in some sense canonical 
representatives of equivalence classes under bisimulation as 
illustrated by the following fact. 

Fact 2.1 For any infinite set n and for any graphs M and N 
of cardinality at most \K\, M and N are bisimilar iffTK(M) 
andTK{N) are isomorphic. 

3   First order and monadic second order logic 
and the propositional //-calculus 

In this section we define first order logic (FO) and 
monadic second order logic (MSO) and two variants of 
the propositional //-calculus [17]. All logics arc inter- 
preted over transition systems. Note that a transition sys- 
tem 71/, as defined above, is a FO-structure with domain 
dom(M) = SA! on the vocabulary {r, 7?} U Prop with r a 
constant symbol standing for the root, R a binary relation 
symbol and Prop a set of unary relation symbols. 

3.1    FO and MSO 

Let var = {./:, y, • • •} and Var = {X.Y, • ■ •} be respec- 
tively some disjoint sets of first order and monadic second 
order variable symbols. 

First order logic over the vocabulary {r, /?} U Prop can 
be defined as follows. The set of FO formulas is the small- 
est set containing formulas p(t), t = t', R(t,t'), X(t) for 
p G Prop, X G Var and t G var U {/} and closed under 
negation ->, disjunction V, conjunction A and existential 3 
and universal V quantifications over FO variables. 

Monadic second order logic over the vocabulary {r, R] U 
Prop can be defined as follows. The set of MSO formulas is 
the smallest set containing all FO formulas and closed under 
negation -i, disjunction V, conjunction A and existential 3 
and universal V quantifications over set variables. 

For any MSO formula, we use the notation 
(fi{x[, ■ ■ ■ ,xm, Xi, ■ ■ ■ ,Xn) for the formula p with 
free first order variables among {x\, • • ■, xm } and free set 
variables among {A'I, • • ■, A',,}. For any graph M, any 
elements su ..., sm G SA/, any sets Si, ..., S„ C SA/, 
we use the notation 

71/ |= ip(si,---,sm,Si,---,Sn) 

to say that formula ip is true in M, or 71/ satisfies <p, under 
the interpretation of each FO variable :r, by the vertex ,s, 

and each set variable Xj by the set Sj. We do not repeat 
here the definition of this satisfaction relation. 

A class C of graph is said MSO definable when there 
exists a sentence p G MSO, i.e. a formula with no free 
variable, such that M G C iff M \= ip. A class C of tran- 
sition systems is bisimulation closed (resp. closed under 
unwinding) if whenever 71/ G C and M' is bisimilar to M 
then M' G C (resp. if for any M,M G C iff T(M) G C). 
A sentence ip is bisimulation invariant (resp. unwinding in- 
variant) if the class of transition systems it defines is bisim- 
ulation closed (resp. closed under unwinding). Remark that 
bisimulation invariance implies unwinding invariance since 
any graph M is bisimilar to its unwinding T(M). 

The notion of bisimulation invariance (or unwinding in- 
variance) extend to arbitrary formula <p{Xi, ■ ■ ■, Xn) with 
no free FO variable considering graphs over the set of pred- 
icate symbols Prop' = Prop U {Xt, ■ ■ ■, Xn). Since fix- 
point formulas, which we will consider later, may have free 
set variables, we shall implicitly consider this extension of 
graph to Prop' whenever there is no ambiguity. 

Finally, the monadic quantifier alternation-depth hierar- 
chy is defined as follows. The first level E0 = IIo is defined 
as the set of all formulas of first order logic. Then , for each 
integer k, level Ej.+ i (resp. level uj.+i) is defined as the 
set of all formulas of the form 3Arj • • • 3Xnip with <p G II*. 
(resp. VA'i ■ • ■ VX„<p with ip G £*■). The bisimulation in- 
variant (resp. unwinding invariant) fragment of the level £*. 
of MSO formulas is defined as the set of all bisimulation in- 
variant (resp. unwinding invariant) formulas of E*. with no 
free first order variables. 

3.2    Modal and counting //-calculus 

The set of the modal /z-calculus formulas is the smallest 
set containing Prop U Var which is closed under negation, 
disjunction and the following formation rules: 

• if a is a formula then Oa and Da arc formulas, 

• if a(X) is a formula and A^ occurs only positively 
(i.e. under even number of negations) in a(X) then 
pX.a(X) and vX.a(X) are formulas. 

The set of counting //-calculus formulas is defined as above 
replacing standard modalities O and □ by counting modal- 
ities 0* and □*• for any integer k. 

Wc use the same convention as for MSO with free set 
variables, i.e. we denote by Q(A'I , • • •, Xn) a formula with 
free variables among {A"i, ■ ■ ■, A',,}. For convenience, we 
may also omit these free set variables in formula a consid- 
ering then implicitly that graphs have been built over the set 
of unary predicate symbols Prop' = Prop U { A'i, • • •, X„}. 
In the sequel, we call fixpoint formula any formula of the 
modal or counting //-calculus. 
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Atomic formulas: ifp =p{r),  (px =X(r), 
Boolean connectives: <PaAß = <Pa A ß,    ipaVß = Wa V ß and yj-,Q = -upa 

Modalities : ipoa = 3z R(r, z) A <pa[z/r], ip0a = Vz R{r, z) => <pa[z/r] 
Counting modalities : ipoka = 3z1,---,zk diff(zi, ■ ■ ■, zk) A f\i(-[lk] R{r, Zi) A ipa[zi/r] 

and </>□,« =\/zir--,zk (diff(zu ■ ■ ■ ,zk) A Aie[1 k] R{r,Zi)) =* Vi6[i k] <£<* hM 
Fixpoints: VnXMX) = VX(Vzipa{X)[z/r} => X(z)) =* X(r) 

and <pvX.a(X) = 3X(VzX(r) =^> pa{X)[z/r}) A X{r) 

Figure 2. Semantics of fixpoint formulas 

The meaning of a fixpoint formula a in a transition sys- 
tem M can be defined as an MSO formula ipa with no free 
first order variables and with the same free set variables. 
The inductive definition of ipa is described in Figure 2 be- 
low. In this figure, dijf[z\, • ■ •, zk) is the quantifier free FO 
formula stating that ZJ ^ Zj for all i ^ j, a and ß are ar- 
bitrary formulas, k is any integer, X any second order vari- 
able, and z,z\, ..., zk any FO variables. Formula ipa[z/r] 
is the formula obtained from ipa by replacing any occur- 
rence of r by z, provided FO variable z has been chosen 
in such a way it is never captured by a FO quantification 
during this replacement. 

Remark that one can choose FO variables in such a way 
that, for any modal mu-calculus formulas a, formula ipa is 
defined using at most two FO variables and, for any count- 
ing mu-calculus formulas a, ipQ is defined using at most 
k + 1 variables where k is the greatest integer such that 
modality Ok or Dfr occurs in a. 

For any fixpoint formula a, we shall write M |= a when 
M \= ipQ. We say that an MSO formula ip is equivalent to 
a fixpoint formula a when (= ipa o- ip. 

The following fact follows from the above definitions : 

Fact 3.1 For any fixpoint formula, if a is a modal (resp. 
counting) mu-calculus formula then ipa is bisimulation in- 
variant (resp. unwinding invariant). 

The following theorems show that the above invariance 
properties characterize in some sense the expressive power 
of these fixpoint calculi. 

Theorem 3.2 (from Walukiewicz [33]) A MSO sentence 
is invariant under unwinding iff it is equivalent to some 
counting mu-calculus formula. 

and 

Theorem 3.3 (Janin-Walukiewicz [14]) A MSO sentence 
is invariant under bisimulation iff it is equivalent to some 
modal mu-calculus formula. 

Finally, the (modal or counting2) fixpoint alternation- 
depth hierarchy defined as follows. The first level ./V0 = M0 

is defined as the set of all (modal or counting) fixpoint free 
formula with negation only applied to propositional con- 
stants of Prop. Then, for each integer k, level Nk+i (resp. 
level Mk+i) is defined as the closure of Nk UMk under dis- 
junction, conjunction, substitution - provided no free vari- 
able becomes bounded during the substitution process - and 
greatest fixpoint construction (resp. least fixpoint construc- 
tion). In the sequel, we shall also call ^-level (resp. /x-level) 
or i//z-level (resp. /Ui/-level) of the fixpoint hierarchies, the 
level Ni (resp. Mi) or N2 (resp. M2). 

Theorem 3.4 (Bradfield [4]) For each integer k there is a 
modal mu-calculus formula a € Nk which is not equivalent 
to any modal mu-calculus formula in Nki with k' < k. 

Arnold [2] shows that the above result still holds restricted 
to the binary tree. From this stronger result we also have : 

Theorem 3.5 (From Arnold [2]) For each integer k there 
is a counting mu-calculus formula a £ Nk which is equiva- 
lent to no counting mu-calculus formula in Nk' with k' < k. 

Proof. Observe first that the binary tree is definable in the 
counting mu-calculus with a formula of JVi. Moreover, over 
the binary tree (with distinct left and right successors) the 
counting and the modal mu-calculus are - level by level - 
equally expressive. So Arnold's result extends to the count- 
ing fixpoint hierarchy. D 

4    Infinite tree automata 

We define here tree automata that characterize the ex- 
pressive power of the two mu-calculi defined above. Al- 
though the main ideas and proof techniques go back to, 
at least, the work of Streett and Emerson on the mu- 
calculus [32], it took some times for these techniques to 

2depending on the modalities one allows 
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be really understood and generalized to wider settings than 
the non emptiness or the model checking problem for the 
modal mu-calculus alone. In this section, we more or less 
follow Walukiewicz's general approach [33]. 

In the sequel, the alphabet E is defined as the powcrsct 
V(Prop) of Prop. The intuition behind this is that a vertex 
x in a tree M is labeled by the "letter" X(x) G £ defined as 
the set A(.-r) = {p G Prop : x G pAI}. 

An alternating counting tree-automaton is a tuple 

A = (Q,X,q0,Sl,6) 

for a finite set of states Q, the finite alphabet E, an initial 

state qo G Q, a parity index function Q : Q —» IN and 
the transition function S : Q x E -> L(Q) where L(Q) 
is the set of positive FO sentences, called transition specifi- 
cations, built on the vocabulary Q where each state q G Q 
is seen as a unary predicate, i.e. the least set of FO for- 
mulas containing formulas q(x), x = y, x ^ y, and closed 
under conjunction, disjunction, existential and universal FO 
quantifications. 

Remark that here counting means that the automaton is 
capable, via equality and inequality inside transition speci- 
fications, to count up to some bound the number of succes- 
sors of vertices. 

A tree-automaton A is called an alternating modal tree- 
automaton when, for each q G Q, each a G E. the FO 
formula S(q, a) is built without the atomic formulas .r = y 
and .7: ^ y. 

A tree-automaton A is called a non deterministic count- 
ing tree-automaton when, for each q G Q, a G E. S(q. a) is 
a disjunction of formulas of the form 

3:('i, • • • , xk.diff{x{, ■■■ , xk) A qh (.c,) A • ■ • A q,k (.rA.) A 

i'eQ' 

with any states </,-,, ..., qik. not necessarily distinct and any 
Q' C Q where, again, cliff predicates only says that each 
variable is distinct from any other. 

Note that non dcrministic modal automata can also be 
defined (see [ 13]) but, apart for the non emptiness problem, 
they don't have all the interesting properties of usual notions 
of non deterministic automata such as, for instance, closure 
under projection. This comes from the fact the modal mu- 
calculus (or even polymodal logic) is not closed under set 
quantifiers as shown by the "formula" 3A'(OA' A O-iA"). 

Given a graph M, a run of A over M is a graph p which 
set of vertices V is some subset of the set of pairs (s, q) G 
SAI x Q with (rM,q0) G V and which set of edges E» C 
V x V is such that : for any pair {s,q) G Vp, given 
the local structure Lp

s over the vocabulary Q defined by 

dovi{LPq) = {s1 G 5'A/  : («,«') G RM} and, for each 

p G Q,pL'- = {.s' : ((.s,g), (.<>■») G E"}, one has 

LS,,M(7.A(.s)) 

A run p is caWcd functional when, for any s G 5A/ there is 
at most one q G Q such that (.s, 7) G V'. 

A run p of .4 over A/ is an accepting run when, for each 

infinite path n in p of the form 7r = (rA',<7o)-(sii'7i )• • • • 
the minimum min{0((7,) : ]{;' G W : qi — qj}\ = oc} is 
even. 

The next lemma shows that, although runs arc defined 
over arbitrary graphs, these automata implicitly "read" trees 
as input. 

Lemma 4.1 For each graph M there is an accepting run of 
A over M iff there is an accepting run of A over T(M). 

Proof. From left to right just notice that the unwinding of 
an accepting run of A over M is an accepting run of A over 
T(M). The converse, less immediate, can be proven within 
parity game theory, the existence of an accepting run of A 
over M being equivalent to the existence of a mcmoryless 
winning strategy in some parity game built from A and M. 
D 

For the next lemmas and theorems, we shall concentrate 
on trees. 

Given an automaton .4. we denote by L{A) the class 
of all trees M such that there exists an accepting run of 
*4 over M. The class L(A) is called the language of trees 
recognized by A. 

The following theorem can be obtained from the results 
presented in [33]. It also follows from [ 12]. 

Theorem 4.2 For each class of tree L. the following state- 
ments are equivalent: 
1. L is definable with an MSO sentence, 
2. L is definable with a counting mu-calculus formula. 
3. L = L(A) for some alternating counting tree automa- 
ton A. 
4. L = L(A) for some non deterministic* counting tree 
automaton A. 

and the next one follows from [32] and [ 14] 

Theorem 4.3 For each class of tree L. the following state- 
ments are equivalent: 

L L is definable with a bisimulation invariant MSO sen- 
tence. 

2. L is definable with a modal p.-calculus formula. 
3. L = L(A) for some modal tree automaton A. 

Some particular subclasses of tree-automaton that will 
be useful in the sequel.  Automaton A = (Q, E, q{), fi.,6) 

■'possibly with more parity indices 
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is called a v-automaton (resp. vp-automaton or Biichi au- 
tomaton) when fi(Q) = {0} (resp. when O(Q) = {0,1}). 

These automata characterize the i/-levels and z/^-levels 
of the counting and modal mu-calculi in the following 
sense. 

Lemma 4.4 (Expressiveness) A class of tree L is recog- 
nized by a (counting or modal) v-automaton (resp. v-- 
automaton) iffL is definable by a (modal or counting) mu- 
calculus formula of the v-level (resp. of the vp-level). 

Proof. This lemma is a particular case of the well-known 
correspondence between level of the mu-calculus hierarchy 
and the number of parity indices needed in alternating tree- 
automata. This correspondance was first achieved, in the 
case of the binary tree, by Niwiriski [24]. See [33] for a 
proof in the counting mu-calculus case. D 

This implies in particular that the classes of languages 
recognized by i/-automata or i//x-automata are closed under 
union and intersection. 

For counting automata more properties are available : 

Lemma 4.5 The class of languages recognizable by count- 
ing v-automata (resp. by counting vp-automata) is closed 
under projection. 

Proof. This lemma follows from the next two. D 

Lemma 4.6 (Simulation) A language recognized by a 
counting v-automaton (resp. a counting v p-automat on) 
is also recognized by a non deterministic counting v- 
automaton (resp. a non deterministic counting vp- 
automaton). 

Proof. Extension to arbitrary trees of (a part of) Müller and 
Schupp's simulation theorem [23] for alternating tree au- 
tomata over the binary tree. D 

and 

Lemma 4.7 (Projection) The projection of a language rec- 
ognized by a non deterministic counting automaton is also 
recognized by a non deterministic automaton with the same 
set of states and parity function. 

Proof. When A is non deterministic counting one can re- 
strict runs (over trees) to be functional without changing 
the language recognized by A. Closure under projection 
immediately follows from this restriction. D 

To conclude this section on automata, we recall here the 
heart of the bisimulation invariance result presented in [14] 
as the following lemma which will be used in the sequel: 

Lemma 4.8 For each non deterministic counting tree au- 
tomaton A there exists a modal automaton B, with the same 
set of states and parity function, such that, for each tree M, 
any infinite set K, T

K
{M) £ L(A) iff M € L(B). 

Proof. See [14] for a complete proof. The main idea is to 
define B as the automaton obtained from A by replacing all 
equalities or inequalities in the FO formula of 6 by some 
true formula. 

D 

5   Bisimulation invariance in monadic £i 

In this section, we prove theorem 1.1. For this, we first 
prove the analogue for unwinding invariance, from which, 
applying Lemma 4.4 and Lemma 4.8, we obtain the desired 
result. 

So our goal is to prove the following theorem : 

Theorem 5.1 The unwinding invariant fragment of the 
level Ei (resp. Hi) in the monadic hierarchy equals the 
v-level (resp. the p-level) of the counting mu-calculus hier- 
archy. 

Proof. By duality, it is sufficient to prove the result 
for monadic Si. Moreover, it is a classical result, from 
Lemma 4.4 stated above, that properties definable in the v- 
level of the counting mu-calculus are definable in monadic 
Si. So it remains to prove that: 

Lemma 5.2 Any unwinding invariant formula of monadic 
Ei is equivalent to a formula of the the v-level of the count- 
ing mu-calculus. 

In order to do so, one must understand that, as stated in 
the introduction, it is not sufficient to restrict our analysis 
to trees - although an unwinding invariant property is fully 
determined by its models among trees - because over trees, 
monadic Ei is strictly more expressive than the //-level of 
the counting mu-calculus as the (even FO) formula 3xp(x) 
shows. 

First, remark that an unwinding invariant property only 
speaks about the vertices reachable from the root because 
any graph M has the same unwinding as the subgraphs in- 
duced by these vertices. This leads to the following defini- 
tions. Let c(rn,i) be the set of all vertices which are reach- 
able from the root TM via a (directed) path (called in the 
sequel the directed connected component induced by r/v/). 
For each MSO sentence ip, let us define ipc as the formula 
ip relativized to the directed connected component c(r) of 
r, i.e. (pc is obtain from if replacing any first order or set 
quantification by quantifications over vertices or subsets of 
c(r). With this definition and the previous remark it appears 
that if ip is invariant under unwinding then ip is equivalent 
to ipc; in particular, if f is in monadic Ei then fc is also 
(definable) in monadic Ei. 

So let f be an unwinding invariant monadic Ei formula. 
By the Gaifman normal form theorem for first order logic, 
there is some integer k such that ip is of the form 

ip = 3Z.tpi 
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with Z a finite vector of sets variables and ipi is a finite 
boolean combination of FO formulas G(Z) of the form 

G(Z) = 3ul,...,ui.6(u1,...,uhZ) 

where 9(ui,... ,u/, Z, Y) is a formula stating that for all 
distinct indices s and t among [1,1], dist(us,ut) > 2k 
and Ball(us,k) \= ips{Z) for some FO formulas jj>s(Z), 
with dist(x, y) defined as the length of the shortest undi- 
rected path from x to y and Ball(x,k) is defined as the 
substructure of M induced by the set of all vertices y such 
that dist(x,y) < k. 

For notational simplicity we assume that ip is of the form 

<p = 3Z.G(Z)A-<G'(Z) 

with G{Z) of the form 3u9(u, Z) and G'{Z) of the form 
3u'6'(u', Z). One can check that this proof easily extends 
to the general case. 

The rclativization ipc of tp to the strongly connected com- 
ponents of r is then given by : 

^ 3Z.GC(Z)A-<G'C(Z) 

with GC{Z) given by 3u e c(r).9c(u, Z) and G'C(Z) given 
by3u' er(r).e,c(u',Z). 

Now, we know that the formula ipc cannot have for ar- 
bitrarily large integers n a model AIn, where the points of 
c(r) satisfying Bc have (directed) distance more than n from 
r. Otherwise, the ultraproduct of the Mns modulo any non 
principal ultralilter, would not satisfy ipc, contrary to the Si 
definability of ipr and Los ultraproduct theorem (sec for in- 
stance [29]) which says that the class of models of any Ej 
formula is closed under ultraproduct. 

So given integer n such that no model Mn for n > n 
satisfies ipc, it turns out that formula ipc is equivalent to for- 
mula 3Z.->G"'{Z) A G"(Z) with 

G"{Z) = 3uecK{r).er(n,Z) 

and cw(r) the set of all points directly accessible from r in 
at most n steps. 

Now it is not difficult to see that ~^G'C{Z) is a fixpoint 
formula of the /./-level over trees (i.e. unwindings) and 
Gn(Z) is even a fixpoint free formula on unwindings as 
well. By unwinding invariance, this says that if is equiva- 
lent to some formula of the form 3Z(pai (Z) with o' £ Ari. 

Then, over trees, Lemma 4.5, ensures 3Z<pa>(Z) is 
equivalent to some ipa for some a in the //-level as well 
hence, again by invariance under unwinding, <p is equiva- 
lent over arbitrary models to tpa. D 

6   Bisimulation invariance in monadic E2 

In this section, we prove theorem 1.2. For this, again, 
we first prove the analogue for unwinding invariance, from 

which, applying Lemma 4.4 and Lemma 4.8 we obtain the 
desired result. So our goal is to prove the following theo- 
rem : 

Theorem 6.1 The unwinding invariant fragment of the 
level £9 (resp. II2J in the monadic hierarchy equals the 
vfi-level (resp. the [iv-level) of the counting mu-calculus 
hierarchy. 

Proof. By duality, it is again sufficient to prove the result for 
monadic E2. Moreover, it is again a classical result, from 
Lemma 4.4, that properties definable in the ////-level of the 
counting mu-calculus are definable in monadic E2. So it 
remains to prove that: 

Lemma 6.2 Any unwinding invariant formula of monadic 
£2 'S equivalent to a formula of the the ufi-level of the 
counting mu-calculus. 

Proof. Somehow, the proof in the case of £2 is simpler than 
£1 for it is true that, over trees, any monadic £2 formula is 
equivalent to a ///i-formula which remains to be shown. 

For this, we use definability in weak monadic second 
order logic as an intermediate step. Remember that weak 
monadic second order logic is monadic second order logic 
with set quantification restricted to finite sets. 

A priori, using weak MSOL doesn't make sense. In- 
deed, over arbitrary trees, weak MSOL is incomparable 
with MSOL. However, Theorem 4.2 and the definition of 
tree automata show that analyzing MSOL over trees can bc 
made over finitely branching trees only. In fact any MS for- 
mula satisfiable over the class of trees has a model which is 
finitely branching, i.e. with finitely many successors from 
each vertex. 

For this reason, we can restrict our study to finitely 
branching trees and then weak MSOL is a fragment of 
MSOL since, in this case, finite sets are definable in MSOL. 

The sketch of the proof is then the following. First we 
prove 

Lemma 6.3 Any language of (finitely branching) trees de- 
finable in monadic £1 is definable in weak MSOL. 

Then, by closure of weak MSOL under negation, this shows 
that monadic IL is also included into weak MSOL. Hence 
monadic £0 is included into the existential projection of 
weak MSOL. Now, because the class of languages de- 
finable by ////-automaton is closed under projection (sec 
Lemma 4.5) we prove 

Lemma 6.4 Any languages of (finitely branching) trees de- 
finable in weak MSOL is recognizable by a i/fi-automaton. 

which conclude the proof of Lemma 6.2. G 

In order to prove Lemma 6.3 we can adapt the work of 
Len/.i [19], to the case of finitely branching trees. Another 
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approach, following the idea of Skurcziriski [31], is to use 
weak j//i-automaton as an intermediate step. 

We recall here that a tree automaton A is a weak au- 
tomaton when, for any q G Q, any a £ E, for each states q' 
occurring in formula 5(q, a), fl(q) < Q(q'). 

Then, adapting the proof presented in [30] for the k-ary 
case, one has : 

Lemma 6.5 Any FO definable tree languages is recogniz- 
able by a weak strongly non deterministic vfi-automaton. 

But then, since languages recognizable by strongly non de- 
terministic weak ^-automaton are closed under projection, 
it is sufficient to show that 

Lemma 6.6 Any languages of (finitely branchinbg trees) 
recognizable by a weak automaton is definable by a weak 
MSOL formula. 

And this last lemma is an adaptation of similar result, by 
Mostowski [22], over the binary tree. □ 

For Lemma 6.4, it shall be clear that it can be proved ex- 
tending, in a quite straightforward way an analogous proof 
due to Rabin [27] in the binary case. 

This concludes the proof of Theorem 6.1 for, applying 
Lemma 4.4, languages recognizable by i//z-automata equal 
languages definable by (counting) fixpoint formulas of the 
!//i-level. □ 

7   Above the level S2 

In this section, we prove Theorem 1.3 and Theorem 1.4. 
For this, we assume that the reader has a general knowledge 
of the theory of parity games4. If not, Jurdziriski's [16] gives 
an appropriate, and up to date, overview of the topic. 

From [4] we know that, given an integer k, expressing 
the fact that a position in an arbitrary parity game with sets 
of parity indices [0, k] cannot be done with any mu-calculus 
formula of the level Nk- From [2] we know that this is still 
the case restricted to games of degree two. 

Remark that in monadic second order logic, this may 
also be difficult to express because in some sense it requires 
some, at least implicit, construction of a (memory less) strat- 
egy for player 0 which is winning for any plays starting in 
the distinguished position. And winning strategies are pe- 
culiar sets of edges which are, in general, not even definable 
in MSOL. 

Still we prove Theorem 1.3 redefining binary games on 
graphs (over a more complex signature) on which guessing 
a winning strategy will become possible with a single ex- 
istential set quantification.  The main difficulty is only to 

4with the winning criteria defined as an even minimal index met in- 
finitely often...! 

ensure that such a definition leads to bisimulation invariant 
class of parity games. 

More precisely, given some integer k > 2, given Prop 
defined by Prop = {pi,pr,Por •• ,Pk}> any graph M such 
that both {p,M, pf } and {p^, ■ • ■, p£f } are partitions of the 
set of vertices SM reachable from the source r - which is a 
bisimulation invariant property - is from now on interpreted 
as a parity game as follows : 

1. any position (reachable from the root) is a position of 
player 0, 

2. a move from such a position is made as follows: player 
0 chooses one predicate px G {pi,pr} and then player 
1 chooses the new position y G SM such that y G 
pM{y) and (x,y) G RM, 

3. disjoint predicates po, ...,Pk encode the parity indices 
of each of these positions. 

Theorem 1.3 is then a consequence of the following lemma: 

Lemma 7.1 For each integer k > 2, the class WQ of (en- 
coded) games over the set of indices [0, k] where the root is 
a winning position for player 0 is bisimulation closed, de- 
finable with a monadic £3 formula and not definable in the 
level Nk of the mu-calculus. 

Proof. First observe that any bisimulation relation relates 
winning positions for player 0 to winning position for player 
0 so the class WQ is indeed bisimulation closed. 

Then, it is clear that any binary game can be encoded in 
such a way. Moreover, computing with a mu-calculus for- 
mula the fact that the root r is a winning positions for player 
0 in this encoding is as difficult - in terms of number of al- 
ternations of least and greatest fixpoints - as computing the 
fact that the root r is a winning position for the same player 
in binary games so, following the result of Arnold [2], it 
requires at least k + 1 alternations of least and greatest fix- 
points. 

Now, to conclude the proof it is sufficient to show that 
the class WQ is definable in monadic S3. But this can eas- 
ily be achieved as follows : first, with some existential set 
quantifier, one can guess a winning strategy for player 0, 
e.g. guessing the set of positions X from which player 0 
chooses predicate pr. Then it is clear that a /^-formula of 
the mu-calculus (henceforth a monadic II2 formula) is suffi- 
cient to check that this set X is indeed a winning strategy for 
player 0 in any plays that start at the root. Indeed, one has to 
check the minimal parity condition on any cycle reachable 
from the root when player 0 follows the strategy given by set 
A". In the intended /«/-formula, one least fixpoint enables 
us to reach any of these cycles and then, one nested greatest 
fixpoint enables us to check that the minimum parity index 
met on each of these cycles is even. 
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Guessing a winning strategy and checking that it is win- 
ning for player 0 can thus be expressed in monadic E3.    G 

The proof of Theorem 1.4 is also almost done. Indeed, 
from the proof of previous lemmas it is clear that with one 
existential quantification over sets of edges the winning po- 
sition for player 0 can be expressed as a monadic E3 unary 
predicate. But it also follows from Lemma 4.4 that checking 
a fixpoint formula on a graph can be done via a monadic Ej 
transduction which leads to computing winning positions 
with as many parity indices as the alternation depth of the 
formula. Moreover, if the input graph is of bounded de- 
gree (or bounded tree-width) then the resulting parity game 
is also of bounded degree (or bounded tree-with). Now 
Courccllc shows that over graphs with bounded degree (or 
tree-width) quantification over edges can be "simulated" by 
quantifications over vertices via, again, a monadic Ei trans- 
duction. Altogether, this says that over graphs of bounded 
degree (or bounded tree-width) mu-calculus formulas can 
be translated into monadic E3 formulas. This concludes the 
proof of Theorem 1.4. D 
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Abstract 

We introduce a simple game theoretic approach to satisfi- 
ability checking of temporal logic, for LTL and CTL, which 
has the same complexity as using automata. The mecha- 
nisms involved are both explicit and transparent, and un- 
derpin a novel approach to developing complete axiom sys- 
tems for temporal logic. The axiom systems are naturally 
factored into what happens locally and what happens in the 
limit. The completeness proofs utilise the game theoretic 
construction for satisfiability: if a finite set of formulas is 
consistent then there is a winning strategy (and therefore 
construction of an explicit model is avoided). 

1    Introduction 

tomata. The mechanism involved, the use of a "focus", 
is both explicit and transparent, and underpins a novel ap- 
proach to developing complete axiom systems for temporal 
logic. The axiom systems are naturally factored into what 
happens locally and what happens in the limit. The com- 
pleteness proofs use the game theoretic construction for sat- 
isfiability: if a finite set of formulas is consistent then there 
is a winning strategy (and therefore construction of an ex- 
plicit model is avoided). 

Although the origin of these games is model checking 
CTL* [12], it remains to be seen if the game technique 
extends to satisfiability checking of CTL* and modal /.i- 
calculus. Moreover, it remains to be seen if the technique is 
practically viable for testing satisfiability of LTL and CTL. 

2   LTL 

The automata theoretic approach to satisfiability check- 
ing for temporal logic is very popular and successful [6,17]. 
However there is a cost with the involvement of automata 
mechanisms and in particular the book keeping implicit in 
the product construction, when a local automaton is paired 
with an eventuality automaton. While this is not an imped- 
iment for checking satisfiability it appears to be for other 
formal tasks such as showing that an axiomatisation of a 
temporal logic is complete. When proving completeness, 
one needs to establish that a finite consistent set of formulas 
is satisfiable. It is not known, in general, how to plug into 
such a proof automata theoretic constructions (such as prod- 
uct and determinisation) for satisfiability. Instead standard 
completeness proofs either appeal to "canonical" structures 
built from maximal consistent sets [ 15, 8] or tableaux which 
explicitly build models from consistent sets, as illustrated 
by the delicate proofs of completeness for CTL* [14] and 
modal //-calculus [18], and even the proofs of completeness 
for LTL [7,13] (future linear time logic) and CTL [5] (com- 
putation tree logic). 

In this paper we introduce a simple game theoretic ap- 
proach to satisfiability checking of temporal logic, for LTL 
and CTL, which has the same complexity as using au- 

We present LTL [7] in positive form, where only atomic 
formulas are negated. Let Prop be a family of atomic propo- 
sitions closed under negation, where ->-iq = q, and contain- 
ing the constants tt (true) and f f (false). Formulas of LTL 
are built from Prop using boolean connectives V and A, the 
unary temporal operator X (next) and the binary temporal 
connectives U (until) and its dual R (release). 

We assume a usual w-model for formulas, consisting of 
an infinite sequence of states which are maximal consistent 
sets of atomic formulas. A state s therefore obeys the con- 
dition that for any q e Prop, q £ s iff -i</ ^ s, and tt e s 
and f f ^ s. The semantics inductively defines when an u- 
sequence of states o satisfies a formula $, written a |= $. 
In the case of q e Prop, a \= q iff q is in the initial state of 
a. The clauses for the boolean connectives are as usual. If 
a = s0si ... and i > 0 then ol = SjSj+1 ... is the zth suffix 
of a. The remaining clauses are as follows. 

iff 
iff 

a \= $##    iff 

a1 h$ 
3i > 0. a1 \= * and 

Vj : 0 < j < i. a* \= $ 
Vz > 0. ai \= * or 

3j ■ 0 < j < i. oj \= $ 
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Wc assume that F* (eventually *) abbreviates tt£/\T/ and 
its dual G'i1 (always \I/) abbreviates f f Rty. The meanings 
of U and R arc determined by their fixed point definitions, 
$C/$ is the least solution to a = $ V (<J> A AT a) whereas 
<I>F\I> is the largest solution of a = * A ($ V XQ). 

A formula $ is satisfiable if there is a model <r such 
that a |= <I>. In the naive tableau approach to deciding 
satisfiability, one constructs an "or" decision tree. The 
root is a finite set of initial formulas, and the decision 
question is whether their conjunction is satisfiable. Child 
nodes arc produced by local rules on formulas. A node 
T U {<I> A *} has child F U {$, *}. A node T U {$ V *} 

has two children TU {$} and T U {*}. Formulas $17* and 
$#<]/ arc replaced by their fixed point unfolding, * V (<£ A 

X($Uy)) and * A ($ V X($R$)). After repeated appli- 
cations of these rules, a node without children has the form 
{<7i,...,</n,X<I>i,...,X<I>m}, where each q, e Prop. If 
the set P = {//],... ,qn} is unsatisfiable then the node 
is an unsuccessful leaf. If P is satisfiable and m = 0 
then the node is a successful leaf. Otherwise a new child 
{<I>i,.... $,„} is produced, which amounts to moving to a 
new state. 

Nodes with until or release formulas may continually 
produce children, and therefore one also needs another cri- 
terion for when a node counts as a leaf. An obvious candi- 
date is when a node is a repetition, contains the same for- 
mulas as an earlier node (and in between there is at least 
one application of the new state rule). Whether or not such 
a leaf is successful will depend on whether formulas are the 
result of the fixed point unfolding of a release or an until 
formula. A repeat of <I>F\I/ should be successful whereas a 
repeat of <i>U^ is unsuccessful. 

Consider the following example decision tree, where set 
braces are dropped (and tt and f f arc dispensed with and 
so the unfolding of FVI' is * V XFty and the unfolding of 
G* is vp A XGV). 

Fq. XGFq 

q\J XFq.XGFq 

q. XGFq 

GFq 
Next 

XFq.XGFq 

Fq. GFq 
Next 

Fq A XGFq 

Fq. XGFq 

Fq. Fq A XGFq 

Fq. XGFq 

Next labels a transition to a new state. Both leaves in this 
tree are repetitions of the root. However the left leaf should 
count as successful because the formula Fq at the initial 
node is "fulfilled" in the left branch, giving the model sfi 
where q e SQ. In contrast Fq is not fulfilled in the right 
branch and is thereby "regenerated", and therefore the right 
leaf should count as unsuccesful. 

The problem of which fixed points are regenerated dis- 
appears in the automata theoretic approach to satisfiability 
[17]. Roughly speaking, the decision tree is then only part 
of the story. It is captured by the "local" automaton and one 
also needs to factor in the "eventuality" automaton which 
automatically deals with regeneration of fixed points, and 
therefore the problem docs not arise. However the cost is 
the use of the product construction between the two au- 
tomata. While this is not an impediment for checking satis- 
fiability it appears to be for other formal tasks such as show- 
ing that an axiomatisation of a temporal logic is complete. 

We now show that a simple game theoretic approach to 
satisfiability checking, where the mechanisms arc both ex- 
plicit and transparent, has the virtue that it also leads to very 
simple proofs of completeness for both LTL and CTL. 

3    Games for LTL 

In the naive tableau approach to satisfiability there are 
"or" choices but there are no "and" choices. Recasting as a 
game, "or" choices are 3-choiccs for the player 3 and "and" 
choices are V-choices for the player V. The role of player 3 
is that of verifier, "I want to show that the initial set of for- 
mulas is satisfiable" whereas the role of V is that of rcfutcr, 
"I want to show that the initial set of formulas is unsatisfi- 
able". In a position T, $i V$2 player 3 chooses the disjunct 
<I>,, and play continues from the position F, <F,. The idea is 
that 3 (V) has a winning strategy iff the initial set of formu- 
las is satisfiable (unsatisfiable). 

We need to force player V to make choices. A new com- 
ponent, the "focus", is introduced into a set of formulas for 
this purpose. One of the formulas in a position is in focus. 
Wc write [<I>]. T to represent the position F U {<I>} when <I> 
is in focus. Player V chooses which formula is in focus. If 
it is an "and" formula then V chooses which subformula to 
keep in focus. During a play V may also change mind, and 
move the focus to a different formula. 

Given a starting formula <f>o (the conjunction of the ini- 
tial formulas) we will define its focus game G((I>o). The 
set of subformulas of $o> Sub(<I>o), is defined as expected 
but with the requirement that the unfolding of an until 
\I> V ($ A X(<&U<S>)) is a subformula of $[/\I> and the un- 
folding of a release * A ($ Vl(M*)) is a subformula of 
$>Rfy. A position in a play of G($o) is an clement [$},T 

where <I> 6 Sub(*o) and F C Sub($0) - {$}• A play 
of the game G($u) is a sequence of positions PQP\ ■ ■ ■ Pn 

where FQ is the initial position [<f>0], and the change in po- 
sition Pi to F, + i is determined by one of the moves of Fig- 
ure 1. They are divided into three groups. First arc rules for 
3 who chooses disjuncts in and out of focus. Second arc the 
moves for player V who chooses which conjunct remains in 
focus and who also can change focus with the rule change. 
Finally, there are the remaining moves which do not involve 
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Player 3 

Player V 

[$0v$i],r     [$],$0v$i,r 
N,r [$],$<, r 

[$oA$i],r     [$],tt,r 
[$i],$i_i,r    [*],$.r 

Other moves 

[$17*], r 

change 

[$'],$c/#,r 
[* v ($ A *($[/*))], r    [$'].* v ($ A x($[/*)), r 

[$i?*]T [$'],$#*, r 

So 3 wins if player V is unable to focus on a X formula 
so that next can be applied when the atomic formulas are 
satisfiable. The other two conditions cover repeat positions. 
First is the case if the repeat position has the same release 
formula in focus, and second is the case of a repeat when 
the same formula is in focus and change has been applied 
between the repeat positions. The following upper bound 
on the length of a play is obvious. 

Fact 1 Even' play of G($0) has finite length less than 
|Sub(*0)| x 2lSub<*°)l. 

A player wins the game G($0) if the player is able to win 
every play of the game, that is has a winning strategy1. The 
following is a simple consequence of Fact 1 and the fact that 
the winning conditions are mutually exclusive. 

[* A ($ v X($J?.*))], r    [$'], * A ($ v x($/?.*)). r      Fact 2 Every game G($o) has a unique winner 

[$],$„ A $i,r        [X$1],...,X$m,ql,...,qn 

[$].*0,$i,r [$l]....,$,: 

next 

Figure 1. Game moves 

any choices, and so neither player is responsible for them. 
These include the fixed point unfolding of until and release 
in and out of focus, the removal of A out of focus and the 
next state rule, next, where the focus remains with the sub- 
formula of the next formula in focus. It is therefore incum- 
bent on V to make sure that an X formula is in focus when 
next is applied. 

The next ingredient in the definition of the game is the 
winning conditions for a player, when a play counts as a 
win. 

Definition 1 Player V wins the play P0,.... Pn if 

1. Pn is [</]. T and (q is ff or -*q g T) or 

2. Pn is [$[/*]. T and for some i < n the position P, 
is [$[/*]. F and between P,■ ... Pn player V has not 
applied the rule change. 

Therefore V wins if there is a simple contradiction or a re- 
peat position with the same until formula in focus and no 
application of change between the repeats. 

Definition 2 Player 3 wins the play P0,.... Pn if 

1. Pn is [qi],... ,qn and {</1;... .qn} is satisfiable or 

2. P„ is [$J?*]. T and for some i < n the position P% is 
[$#*], Tor 

3. Pn is [$],r and for some i < n the position Pt is 
[$], T and between Pr. ..Pn player V has applied the 
rule change. 

Next we come to the game characterisation of satisfiabil- 
ity, which we split into two halves. 

Proposition 1 If 3 wins the game G($0) then $0 is satisfi- 
able. 

Proof: Assume 3 wins the game G($0)- Consider the 
play where V uses the following optimal strategy. Let 
$it/*! ..., $„£/*,, be a priority list of all until subfor- 
mulas of $o, in decreasing order of size. We say that 
<&[/* is present in a position P if either $£/* g P or 
* V ($ A X($[/*)) e P or X(W*) g P. Player V 
starts with the focus on <J>0. If the formula in focus is a 
release formula <E>fi* and * contains an until subformula 
then V chooses * when the release formula is unfolded. If 
the formula is a conjunction then V chooses a conjunct with 
an until subformula. If the focus remains on a release for- 
mula or ends up on a member of Prop then V changes focus, 
if this is possible, to the until formula which is present in the 
position and which is earliest in the priority list. If the focus 
is on an until formula $,[/*, then V keeps the focus on it 
until it is "fulfilled", that is until player 3 chooses *j when 
it is unfolded. This until formula is then moved to the end 
of the priority list. Player V then changes focus to the ear- 
liest until formula in the priority list which is present in the 
position, if this is possible. This argument is then repeated. 
By assumption player 3 wins against this strategy, and the 
play has finite length. It is now straightforward to extract 
an eventually cyclic model from the play, where every until 
formula present in some position will be fulfilled. D 

Next we prove the converse of Proposition 1. One proof 
is to show how a winning strategy for 3 can be extracted 

'Formally a winning strategy, see for example [9], for player 3 is a set 
of rules 7r of the form, if the play so far is PQ .. . Pn and Pn is [$oV<f>i].r 
([*], $o V *!,r) then choose [*i],T ([<*>]. <J>i, T). Similarly for player 
V. A play obeys IT if all the moves played by the player obey the rules in 
■K. A strategy 7r is winning for a player if she wins every play in which she 
uses 7T. 
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from a model of <E>o- However we provide an alternative 
proof whieh is the key to obtaining a complete axiom sys- 
tem. We utilise an observation from fixed point logics about 
least fixed points. Given Park's fixed point induction prin- 
ciple (1) below and that a fixed point is equivalent to its un- 
folding (2), Lemma 1 below holds (as observed by a num- 
ber of researchers, for instance [10, 15, 19]). Standard sub- 
stitution is assumed, ^{«D/Y} is the replacement of all free 
occurrences of Y in $ with <I>. Moreover we write |= $ to 
mean <I> is valid (true everywhere in all models). 

(1) if |= *{$/Y} -> i> then  |= [iY. * -> $ 

(2) |=/iY.tf «-»«{//y.tf/y} 

Lemma 1 IfY is not free in <I> and <I> A pY. \f is satisfiablc 

then the formula $ A ^{{ßY. -*$ A *)/Y} is satisfiablc. 

Proof: Suppose <I> A pY. \t/ is satisfiablc, but (= 
*{(//Y. -.$ A *)/Y} -» --$. Therefore (= *{(//Y. -$ A 
*)/Y} -► -.$ A ${(//.Y-,$ A *)/Y}. Hence by (2) 
^= *{(MY -<I> A #)/Y} -> ^Y. -n$ A * and so by (1) 
|= pY. * —> -1$ which contradicts that <I> A /;Y * is satis- 
fiablc. a 

Lemma 1 sanctions the following property of until un- 
folding. 

Lemma 2 //<I>' A (<I> [/<]>) /.v satisfiablc then <!>' A («I» V (<I> A 
X((<I> A -.ö')C7(* A -•$')))) ;'.v satisfiablc. 

Proof: Assume <I>' A (<I>C/vp) js satisfiablc. So there is a 
model a such that <r |= <I>' and a |= «I>[/$, and therefore 
a1 |= * and a' |= <I> for j : 0 < j < •/, for some ;' > 0. 
Also assume <I>' A (* V (<I> A A"((<I> A ^<b')U(<S> A -''I»')))) is 
not satisfiablc, and so the following validity holds |= <I>' —- 
(-.vpA(-<I>VX((-i<I>V<I>')tf(-#vV)))). Because a (= <I>' 
therefore cr \= ^ A (-.<!> V A'((-<I> V <I>')/?(-^]> V <I>'))). 
So a |= -i* and because a |= <I>[AP it follows that a (= 
<I>. And so rr |= X ((-><!> V $')/?(->* V <I>')), and therefore 
CT

1
 |= (-,<]> v <I>')/?(-.* V <I>'). And so a1 |= -.<£ V <I>' and 

CT
1
 |= -,cI)V<I>'V.Y((-1<I>V€)')ß(-'*V<I»')). IfV f= <I>'then 

a1 \= —'SI/ by the valid formula above, and so a1 |= -ity 
and because (T1 |= <I>(/^ it follows that a1 \= <I>, and so 
a1 \= X((-.$ V $')/?(^I' V $')). The argument is now 
repeated for subsequent aJ, j > 0, which contradicts that 
a |= $(7*. D 

Proposition 2 //' <I>o is satisfiablc then player 3 wins the 

game G(<I>o). 

Proof: Assume that <I>o is satisfiablc. We show that 
player 3 wins the game G($o). The idea is that 3 al- 
ways chooses a move which preserves satisfiability (and 
V has to choose moves which preserve satisfiability). If 
T A (<I>o V $i) is satisfiablc then T A $, is satisfiablc for 
at least one i   6   {0,1}, and so player 3 chooses such 

an i. If the position is [<!>£/v£],r where the until for- 
mula is in focus then player 3 adorns the interpretation 

of it when it is unfolded, [* V ($ A A(<I>-,[-[/>]> _,r))]> r 

where <J>^p and 'I'^r are to be understood as <I> A -> /\F 
and ty A ^/\T. This adornment, which is justified by 
Lemma 2. is repeated as long as the until formula is in fo- 
cus. Whenever V changes mind, an adorned until subfor- 

mula 5>^ri A...A-.r„ t/^-ri A...A^P„ loses its adornment and 
is returned to its intended interpretation <I>[/\I/. Now it is 
easy to see that V can never win. Condition 1 of the win- 
ning condition for V can not be reached because 3 preserves 
satisfiability. And condition 2, the repeat position, cannot 

occur because (= <I)^r1A...A-,r„^vI'-r1A...A^r'„ -* _,Ari- 
D 

Proposition 3 The complexity of deciding the winner of 

G($0) is in PS PACE. 

Proof: Consider the tree of all plays in G(<I>o) where the 
position of the focus is completely determined by the strat- 
egy described in the proof of Proposition 1, above. Player 
3 wins G(<I>o) iff there exists a path in this tree such that 3 
wins the play of this path. An algorithm P can nondctcrmin- 
istically choose this path. The required space is polynomial 
in the size of the input. P only has to store a counter and 
two configurations: the actual one which gets overwritten 
every time a new game rule is applied, and the one which is 
repeated in case 3 wins the play with her winning condition 
2 or 3. The latter can be chosen nondcterministically, too, 
and gets deleted every time the rule change is applied. The 
counter is needed to terminate the algorithm if it did not lind 
a repeat after |Sul)(<I>o)! * o^"1'1'1'"" configurations. Notice 
that the size of the counter also is polynomial in the length 
of the input I'I'oj. Hence by Savitch's Theorem the problem 
can be solved in PSPACE. ü 

4 A complete axiomatisation for LTL 

The game theoretic characterisation of satisfiability of- 
fers a simple basis for extracting a complete axiom sys- 
tem for LTL. Given an axiom system A a formula <I> is A- 
consistcnt if A Y/ -i<I>. The axiom system A is complete 
provided that for any <I> if <I> is A-consistcnt then <I> has a 
model. In this framework this becomes 

(*) if <I> is A-consistent then 3 wins the game G(<I>). 

The axiom system A for LTL is presented in Figure 2. The 
axioms and rules were developed with the proof of (*) in 
mind. Axioms 1-6 and the rules MP and XGcn provide "lo- 
cal" justifications for the rules of the focus game for LTL, 
and axiom 7 and the rule Rel capture 3's winning strategy. 

Theorem 1 The axiom system A is sound and complete for 
LTL. 
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Axioms 

1. any tautology instance 

2. $[f$->tf V($AX($t/*)) 

3. $#* -> * A ($ V X($fi*)) 

4. X-$ ♦-+ ->X$ 

5. I$AI*^I($A$) 

6. X($ ^ *) ^ X$ ^ X* 

7. -.($Ä¥) «-> -.$[/-.<& 

Rules 

MP if h $ and h $ —> \£ then h * 

XGen ifr-$thenr-X$ 

Rel if 1- $' -» (* A ($ V X(($ V $')Ä(¥ V $')))) 
then h $' -> ($##) 

Figure 2. The axiom system A 

Proof: Soundness of A is straightforward. Each axiom is 
valid and each rule preserves validity. The interesting case 
is the rule Rel, whose soundness was proved in lemma 2 
of the previous section. For completeness of A we es- 
tablish (*), if $o is A-consistent then 3 wins the game 
G($o)- The proof is similar to Proposition 2 of the pre- 
vious section. Given a finite A-consistent set of LTL for- 
mulas we show that any player V move or other move in 
Figure 1 preserves A-consistency, and that player 3 can pre- 
serve A-consistency when she moves. If F, $i V $2 is 
A-consistent then T, $j is A-consistent for some i by ax- 
iom 1, and the rule MP. Axioms 2 and 3 are needed for the 
fixed point unfolding moves. Axioms 4-6 and rule XGen 
are required for the next move. If $i,..., $m is not A- 
consistent then A h $i A ... A $m_i —> -><E>m and so 
A h X$, A ... A X$m_! -> -^X$m using XGen and 
axioms 6, 5 and one half of 4. Finally rule Rel is used to 
capture 3's winning strategy. If the position is [$Lf\I>],r 
and T, $<7\1> is A-consistent then by rule Rel, the other half 
of axiom 4 and axiom 7 T, * V ($ A X($^rf/\I>^r)) is A- 
consistent. D 

In [7] soundness and completeness of the following ax- 
iom system DUX for LTL is proved using maximal consis- 
tent sets of formulas2. 

2 A4, A5 and U2 as presented here differ slightly from their original 
form which is due to the different semantics of the G and U operator used 
there. 

Al.  fffl($ -> *) -> (ffi?$ _> ffßvf) 

A2.  X(--$) <-> ~X$ 

A3. X($ ->¥)-> (X$ -> X*) 

A4. ff.R$->$AX(ff.R$) 

A5. f f i?.($ A X$) -> ($ -» f f Ä$) 

Ul. $C/*^F* 

U2. $[/* ~ # V ($ A X($t/vT/)) 

Rl. any tautology instance 

R2. if 1- $ and h $ -► * then h * 

R3. if I- # then h f f Ä* 

Soundness of DUX and completeness of A ensure that, 
if DUX h $ then A I- <J>. However, it is also interesting to 
compare the two axiomatisations in details. 

Axioms and rules A2, A3, U2, Rl and R2 are present in 
A. A4 is an instance of axioms 3 and Ul simply reflects an 
abbreviation. R3 can be simulated in A as follows. Suppose 
there is a proof using R3. Then there is a shorter proof of 
^ in DUX for which by hypothesis there is an A-proof, too. 
Instantiate Rel with $' = tt and $ = ff. This proves 
h ffRty if h y A Xtt is provable. But this can be done 
using the hypothesis, axiom 1 and rule XGen. 

The remaining axioms Al and A5 are more complicated 
to prove in A. A simple way is to show that V wins the focus 
game on the negations of these axioms. The game rules 
and winning conditions resemble the axioms and rules of A 
which are needed for the proof. We show this for A5. The 
negation of this axiom is $ A (f f i?($ M$)) A (tt [/-.$). 
Let $' = $ A (f f Ä($ A X$)). 

 $,fffl($AX$),[ttt/-.$]  
$, X$, X(f f R{$ A X$)), [-.$ V Xjtt^U^^,} 

$, X$, X(f ffl($ A X$)), [X(tt^l/^$-^] 
$, f f Ä($ A X$), [tt^*. tf-.$-,*,] 

The game rules used are the unfolding of R, the adorned 
unfolding of U, the disjunctive choice and the next rule. 
Player V wins with winning condition 2. Therefore the ax- 
ioms and rules needed to prove A5 are 1 and MP (for V), 
2 and 3 (for the unfoldings), 4-6, XGen (for next), 7 (to 
reason about the negation of A5), and Rel to describe the 
winning condition. 
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5    CTL 

In this section wc define focus games for CTL. Again we 
present CTL in positive form. Formulas of CTL are built 
from Prop, the boolean connectives V and A, the two unary 
temporal operators QX and the four binary temporal op- 
erators Q(...U...),Q(...R...) where Q e {E,A}. E 
is the "some paths" quantifier and A is the "for all paths" 
quantifier. 

A Kripke model for CTL formulas consists of a set of 
states S, a binary transition relation R which is total (for 
all s G S there is a t G S such that sRt) and a valuation 
which assigns to each state s G S a maximal consistent set 
of atomic formulas in Prop. The semantics defines when 
a state s satisfies a formula $, s \= $, and it appeals to 
full paths from a state so which is an w-sequence of states 
s0si ... such that s,;Rs,-+i for each i > 0. In the case of q e 
Prop, s |= q iff q belongs to the valuation of s. The clauses 
for the boolean connectives are as usual. The remaining 
clauses are as follows. 

s |= £X<I> iff 3t. sRt and t |= $ 
s \= AXi> iff Vr. if sRt then t (= $ 
s0 \= E(<I>t/#) iff 3 full path s0si ... 3?' > 0. s, [= «P 

and Vj : 0 < j < i. Sj j= $ 
s0 \= A($UV) iff Vfull paths so-si ... 3i > 0. ,s, |= * 

and Vj : 0 < j < i. Sj |= <I> 
s0 |= £($7?tf) iff 3 full path .s0.si ... Vi > 0. .s, \= * 

or 3; : 0 < j < i. sj \= $ 
.s„ |= ,4($[/*) iff Vfull paths ,s'0.si . .. Vi > 0. s, f= * 

or 3] : 0 < j < i. Sj (= <!> 

The semantics of until and release formulas are determined 
by their fixed point definitions. QföUty) is the least solu- 
tion to n = vp V (<I> A QXa) and Q(<I>/?*) is the largest 
solution to n = \I' A (<I> V QXa). 

Wc now define the focus game G'(<I>0) for a CTL for- 
mula <I>(). As with the LTL game, a position in a play 
of G'(<I>o) is an element [<I>].r where <D e Sub(<I>0) and 
T C Sub(<I>()) - {<I>}, and a play is a sequence of posi- 
tions PtyP\ ... P„ where P0 is the initial position [<J>0]. The 
change in position P, to P,+i is determined by one of the 
moves of Figure 3. Again they are divided into three groups. 
First are rules for 3 who chooses disjuncts in and out of 
focus. Second are the moves for player V who chooses 
which conjunct remains in focus and who also can change 
focus with the rule change. Player V also chooses the next 
state when an AX formula is in focus, by choosing a sin- 
gle EXfyj, if there is one: we include here the case where 
I = 0 and V does not have any choice. Finally, there are 
the remaining moves which do not involve any choices, and 
so neither player is responsible for them. These include the 
fixed point unfolding of until and release in and out of fo- 
cus, the removal of A out of focus and the next state rule 

Player 3 

Player V 

[$0v$i],r    [$],$0v$i,r 
Pi],r [*],$*, r 

[$i],$i-i,r    [*],$,r 
change 

[AX$i],..., AX$n,EX*u ... EX^i,gi, ...,</„ 

(4>i],...,*n,^ 

Other moves 

next 

[Q($t/tt)],r 
[#v($AQX<3($r/*))],r 

[&],Q{$uv),r 
[$'],* V($ A QXQ($C/#)),r 

[Q(S/NQ],r 
[$A($VQIQ(M*))],r 

[$'],Q(<Ei?$);r 
[$'],* A (<I> V QXQ{<t>RV)), r 

[$],$„ A $i,r 
[$],*o,*i,r 

[EX*!] EXVt. AXQi AX<ln,gu.. .,qm 

[*l],$l ■ ■■,$,. 

Figure 3. CTL Game moves 

next 
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when an EX formula is in focus. The winning conditions 
for a player are almost identical to the LTL game. 

Definition 1 Player V wins the play PQ ,..., Pn if 

1. Pn is [q],T and (q is f f or -if; G F) or 

2. Pn is [Q($C/\I/)],r and for some i < n the position 
P is [Q($C/*)], T and between P... Pn player V has 
not applied the rule change. 

Definition 2 Player 3 wins the play PQ, ... ,Pn if 

1. Pn is [<7i],..., <j>n and {gi,..., g„} is satisfiable or 

2. P„ is {Q($Rty)], T and for some i < n the position Pt 

is[Q($i?*)],ror 

3. Pn is [$].T and for some i < n the position P, is 
[$], r and between P, ... Pn player V has applied the 
rule change. 

Facts 1 and 2 of Section 3 also hold for CTL games. A 
main result is again the game characterisation of satisfiabil- 
ity. 

Proposition 1 3 wins the game G'(<E>o) iff'&o is satisfiable. 

Proof: Assume 3 wins the game G'(<J>o). The proof 
is similar to that of Proposition 1 of Section 3, ex- 
cept that all "next" state choices are examined, and so 
we have a tree of plays instead of a single play. Let 
<3i($it/*i).. ...Qn($'nUWn) bean initial priority list of 
all until subformulasof $o in order of decreasing size. Each 
play in the tree of plays has its own associated current prior- 
ity list. Player V starts with the focus on <3>o- Once the focus 
is on an until formula, Q,($J (7 <]>■), player V keeps the fo- 
cus on it until it is fulfilled (player 3 chooses \tj) or there 
is branching. At an application of next a play splits into all 
choices, each with its own priority list. If the focus is on 
a formula AX<$>\ then it will be on $i in all these plays 
and they each have the same priority list. If the position is 
[£X#i]...., EXVL,AX<S>U. .., AX^n,qi,..., qm and 
/ is the current priority list then the focus remains on \I>i in 
the play with this subformula with list I. Otherwise for each 
i > 1 there is the play where V changes focus for the posi- 
tion *,,$!,... .$„. If*! is E^'jUVj) then this formula 
is moved to the end of the priority list li and V chooses as 
focus the earliest until formula in /,; present in the position 
EX$,,AX$)..... AX$n, if this is possible. This argu- 
ment is repeated. By assumption player 3 wins the finite 
tree of plays. It is now straightforward to read off a Kripke 
model from this tree of plays where $o is true at the initial 
state. 

For the converse assume that $o is satisfiable. We show 
that 3 has a winning strategy for the game G'(<3>o). We use 

the fact that for each Q e {A,E} if $'AQ($C/*) is satisfi- 
able then $' A (tfv($ AQXQ($ A-.$'£/# A-.$'))) is sat- 
isfiable. So the interpretation of Q($lJfy) can be adorned 
whenever it is unfolded in focus as with Proposition 2 of 
Section 3. ü 

One important difference with LTL is the complexity of 
checking the winner of a game G'($o)> because of branch- 
ing choices for V. 

Proposition 2 The complexity of deciding the winner of 
G'($o) is in EXPTIME. 

Proof: The proof is very similar to that of Proposition 3 of 
Section 3. However, the tree of all plays is now an and-or 
tree because of player V's choices using rule next. There- 
fore the polynomial space algorithm deciding the winner of 
G'($o) is alternating instead of nondeterministic. By [3] 
the problem is therefore in EXPTIME. D 

6 A complete axiomatisation for CTL 

The game theoretic characterisation of CTL satisfiabil- 
ity also allows one to extract a sound and complete axiom 
system for CTL, the system B in Figure 4. 

Theorem 1 The axiom system B is sound and complete for 
CTL 

Proof: Soundness of B is straightforward. The most in- 
teresting cases are soundness of ARel and ERel rules, and 
in the case of ERel the rule captures "limit closure". For 
completeness of B, the proof is similar to Theorem 1 of 
Section 4. If <&o is B-consistent then player 3 wins the 
game G'($o)- Given a finite B-consistent set of formu- 
las, any move by player V or other move in Figure 1 pre- 
serves B-consistency. The important cases are the next state 
rules. Assume <3>i, • • •, ^n* ^j is not B-consistent, and so 
Bh$] A...A$„-» -ivfj. So by AXGen and axioms 9,8 
and 6 B h AX$i A ... A AX$n -> ^EX^j (and using 
7 instead of 6 one deals with the case when I = 0). Finally 
the ARel and ERel rules are used to capture 3's winning 
strategy. D 

In [5] soundness and completeness of the following ax- 
iom system for CTL is proved using tableaux. 

Axl. any tautology instance 

Ax2. EF$ w £(ttf/$) 

Ax3. AF<$> <-> A(ttU$) 

Ax4. PX($ V *) ^ EX§ V EX<i> 

Ax5. AX$ w -nEX^<f> 

Ax6. E($t/tf) <-> * V ($ A EXE($U*)) 
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Axioms 

1. any tautology instance 

2. E($UV) -> tf v ($ A EXE($UV)) 

3. A($UV) -* $ V (<I> A ^AM^t/tf)) 

4. £($/?*) -> * A ($ V EXE($IW)) 

5. A($RV) -► * A («I) V >1X.4($7?*)) 

6. 4X-.$ <-» -£A<I> 

7. 4AT-<I> -> -IAX® 

8. /1A<I> A AX$> -> AX(i> A *) 

9. AX(® -+ *) -> ,4A<I> -> .4A* 

10. -vl(<I>/N/) <-+ £(^<I>f/-,vi<) 

11. -i£(<I>7?vp) w A{^MJ^V) 

Rules 

MP if I- <I> and I- <I> -^ <I» then h * 

AXGen ifh <I> then h .4A<I> 

ERcl ifh <I>' -> (* A (<I> V £A£((<I> V <I>')/?($ V <I>')))) 
thenh <I>' -» £(<I>7?<]>) 

ARel  ifh <I>' -» (tf A (<I> V .4A.4((<I> V <I>')/?(f V <!>')))) 
then h <I>' -> /l(<I>/?vp) 

Figure 4. The axiom system B 

Ax7. .4($[/*) <- * V (<I> A AXA(^U^)) 

Ax8. £A'tt A AXtt 

Rl. ifh $ -> # then h EX® -> £A# 

R2. if h $' — # A EX® then h ® -> £($7?$) 

R3. if h $'--># A >1A($' V /!($/?*)) 
then h ® -> >!($/?$) 

R4. if h <£> and h $ -> $ then h ty 

The same arguments for comparing the two LTL axioma- 
tisations also hold for the two axiomatisations of CTL. Ax 1, 
Ax5 - Ax7, and R4 are already present in B. Ax2 and Ax3 
are covered by the abbreviation of F. Ax4 can be proved by 
a combination of 6 - 9, 1 and MP. 1, AXGen, 7, MP and 6 
establish Ax8. Rule Rl is simulated using AXGen, 9, MP, 
7 and the hypothesis of having a shorter proof of <I> -+ $ in 
B. R2 is simulated in the following way. Suppose there is a 
B-proof of <I>' -> # A EX®. Then, by 4, 1, and MP there is 
also a proof of $' — * A ($ V£A£((<I> V $')/?(* V<I>'))) 
for any <I>. Using ERel yields a proof of <I>' —> £(<I>/?vp). 
Simulating R3 is similar. 

7    Conclusion 

We have introduced a game theoretic approach to satis- 
fiability checking of LTL and CTL. It remains to be seen 
if focus games extend to richer logics such as CTL* and 
modal //-calculus. In [12] it was shown that focus games 
can also be used to solve the model checking problem for 
CTL*. The game trees arising there are very similar to the 
tableau structures used in [2. I ]. However, in order to tackle 
the problem of deciding whether fixed point constructs are 
regenerated or reproduced these authors pursue a different 
strategy. Take the unfolding of 'MAP for example. While 
the focus highlights the case that player 3 always chooses 
the term in which <I>£AP occurs again, a path in the tableaux 
of [2] is successful if *P never occurs after <I>t/\P. The dif- 
ference seems to be a point of view only. In the focus games 
it is checked whether a fixed point construct is regenerated, 
therefore it is never fulfilled. In the tableau approach it is 
checked whether it is never fulfilled, therefore it is regener- 
ated. 

In [1] the authors define Tableau Biichi Automata which 
are essentially the same as the tableaux of [2]. As with the 
focus games, this enables the authors to handle the regener- 
ation problem of fixed points implicitly. Instead of explic- 
itly requiring tableaux to be processed with a depth-first- 
search, the solution to the regeneration problem is encoded 
in an acceptance condition, which is in that case a gener- 
alised Biichi condition. However, this small difference is 
the key to the strengthening lemma (Lemma 1 of Section 3) 
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which underpins the proofs of completeness of the axioma- 
tisations. 

A more recent automata theoretic approach to satisfi- 
ability and model checking employs alternating automata 
[16, 11]. Although these appear to be very game theoretic, 
they rely upon automata over trees which capture the "and" 
branching, both in the case of the boolean "and" and in 
the case for CTL of branching through next states. In both 
cases of LTL and CTL formulas are states of the automata, 
and transitions are determined by maximal consistent sets 
of atomic propositions. The acceptance conditions decide 
acceptable fixed point regeneration. It is not clear if this ap- 
proach can underpin sound and complete axiomatisations. 
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Abstract 

We extend the Alpern and Schneider linear time char- 
acterization of safety and liveness properties to branching 
time, where properties are sets of trees. We define two clo- 
sure operators that give rise to the following four extremal 
types of properties: universally safe, existentially safe, uni- 
versally live, and existentially live. The distinction between 
universal and existential properties captures the difference 
between the CTL path quantifiers A (for all paths) and E 
(there is a path). We show that every branching time prop- 
erty is the intersection of an existentially safe property and 
an existentially live property, a universally safe property 
and a universally live property, and an existentially safe 
property and a universally live property. We also examine 
how our closure operators behave on linear time properties. 

We then focus on sets of finitely branching trees and show 
that our closure operators agree on linear lime safety prop- 
erties. Furthermore, if a set of trees is given implicitly as 
a Rabin tree automaton, B, we show that it is possible to 
compute the Rabin automata corresponding to the closures 
of the language of B. This allows us to effectively com- 
pute Bsafc end Banc such that the language of B is the in- 
tersection of the languages of Bsa;e and Buvc. As above, 
Bsa;c eind Bu„r can be chosen so that their languages are 
existentially safe and existentially live, universally safe and 
universally live, or existentially safe and universally live. 

A    Introduction 

Pnueli and Hard introduced the concept of a reactive 
system, a system whose behavior is characterized by non- 
termination and on-going interaction with an environment 
over which the system has little control [14]. Many safety 
critical systems, such as on-board controllers and network 
protocols, can be modeled as reactive systems and, there- 
fore, the problem of specifying and verifying the correct 
behavior of reactive systems has become a very active area 

of research. Linear time properties of reactive systems have 
been grouped into three categories by Lamport [19]: safety 
properties, liveness properties, and properties which are nei- 
ther. Informally, safety properties assert that nothing bad 
ever happens while liveness properties assert that something 
good happens eventually. This distinction plays an impor- 
tant role in the analysis of reactive systems since the proof 
methods employed to check safety properties differ from 
those used to check liveness properties. For example, proofs 
of liveness properties frequently require the construction of 
well-founded relations while safety properties arc usually 
proven by induction on the transition relation. Furthermore, 
liveness properties often cannot be handled by the auto- 
matic proof techniques available for safety properties, e.g., 
in some infinite state systems it is possible to automatically 
determine if a safety property can be violated, whereas the 
existence of a fair computation cannot be determined auto- 
matically [ 1]. 

In the linear time framework, where properties and the 
semantics of programs are sets of infinite strings, the dis- 
tinction between safety and liveness is well understood. 
Alpern and Schneider [2] give a topological characteriza- 
tion in which safety properties arc closed sets and live- 
ness properties arc dense sets. They also show that every 
linear time property can be given as the conjunction of a 
liveness property and a safety property. These results are 
well know and now appear in introductory textbooks on dis- 
tributed systems. The topological characterization has been 
extended by various researchers, e.g., Gumm has stated the 
notions of safety and liveness in the more abstract setting of 
Boolean algebras [13]. 

In the branching time framework —which includes pro- 
cess algebra and logics such as CTL [7] (which is used by 
many model checkers and is of great practical importance), 
CTL* [10], and the p-calculus [21, 17, 9]—properties and 
the semantics of programs are sets of infinite trees. While 
there has been some work on characterizing safety and live- 
ness for the branching time framework [6, 18], we present 
the first characterization that distinguishes between the CTL 
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path quantifiers A and E, an essential distinction. In ad- 
dition, we allow infinitely branching trees; such trees are 
closely related to considerations of fairness [5, 12, 4] and 
are useful for modeling input and programs with statements 
such as a; :=? (i.e., non-deterministically assign a number to 
variable x). We define two closure operators which satisfy 
the conditions of Gumm [13]. Interestingly, we show that 
one of the operators defines a topology and the other does 
not. The closures give rise to four extremal types of proper- 
ties: universally safe, universally live, existentially safe, and 
existentially live. Universally safe properties are those that 
correspond to linear time safety properties over all compu- 
tations while existentially safe properties are those which 
guarantee at least one safe computation. In a similar man- 
ner, universally live and existentially live properties distin- 
guish between linear time liveness properties over all and 
over some computations. For example, the CTL properties 
AGP —along every computation all states satisfy P— is a 
universally safe property, while EGP —there is a compu- 
tation along which all states satisfy P— is an existentially 
safe property. 

The paper is organized as follows: in the next section the 
basic notations and some preliminaries are given. Section 3 
contains a review of the linear time results as well as the 
definitions of prefixes of trees, our closure operators, and 
safety and liveness in branching time. Section 3 also in- 
cludes the results regarding the decomposition of properties 
into the extremal properties as well as some examples taken 
from Rem [22]. In Section 4 we consider finitely branching 
trees and show that for any linear time safety property h, 
Ah and Eh are both universally safe and existentially safe. 
In addition, for any linear time liveness property h, Ah is 
universally live and Eh is both universally live and existen- 
tially live. We further specialize our results to properties 
expressible as Rabin tree automata and show that if a set of 
trees is given implicitly as a Rabin tree automaton, B, it is 
possible to effectively compute Bsafe and Buve such that the 
language of B is the intersection of the languages of Bsafe 

and Biive, where Bsa;e and Biwe can be chosen so that their 
languages are existentially safe and existentially live, uni- 
versally safe and universally live, or existentially safe and 
universally live. Finally, Section 5 contains a brief conclu- 
sion and comparison with other work. 

2   Preliminaries 

N and u both denote the natural numbers, i.e., 
{0,1,...}. [i..j] denotes the set {k G N : i < k < j}; 
Dom.f denotes the domain of function /. Function ap- 
plication is sometimes denoted by an infix dot "." and is 
right associative. (Qx : r : b) denotes a quantified expres- 
sion, where Q is the quantifier, x the bound variable, r the 
range of a; (true if omitted), and b the body. V(S) denotes 

the powerset of S. For a relation R, we write R\s for R 
left-restricted to the set S, i.e., R\s = {{a,b} : ((a,6) 6 
R) A (a £ S)}. S* denotes the set of finite sequences 
over S; Su denotes the set of infinite sequences (functions 
from w) over 5; S°° = S* U Sw. Suppose s,t G S°°, #s 
denotes the length of s or, equivalently, the cardinality of 
Dom.s; s is a prefix of t (s X t) iff Dom.s C Dom.t and 
for all i e Dom.s, s.i = t.i; s is a proper prefix of t (s -< t) 
iff s ^ t and s ^ t. A set U C 5°° is prefix-closed iff for 
all u G U and for a\\t<u,te U. 

From highest to lowest binding power, we have: paren- 
theses, function application, binary relations (e.g., sBw), 
equality (=) and membership (G), conjunction (A) and dis- 
junction (V), implication (=>), and finally, binary equiva- 
lence (=). Spacing is used to reinforce binding: more space 
indicates lower binding. 

Throughout this paper S denotes a fixed alphabet, a non- 
empty set of symbols. An unlabeled tree is a prefix-closed 
subset of N*. A tree w is a pair (W,w) where W is an 
unlabeled tree and w : W -» E. A tree (W, w) is total 
if W T^ 0 and for all a G W, there exists p G W such 
that a- < p. A tree (W, w) is finite-depth if there exists 
n G M such that for all a G W, #cr < n. By Atot, Ant, and 
Af we denote the set of total, non^total, and- finite-depth 
trees, respectively. The set of trees is denoted by Aalt; note 
Aall   =   Atot uAnt  mdAf   c   Ant^   Let t  =   (W, w) be 3 

tree. A p C W is a path in t iff p is a totally ordered (by 
■<), prefix-closed subset of W. Given a tree (W, w) and a 
node a G W we define the path a = {a1 G W : a' ■< a). 
We extend w to paths: given path p = p0Pi • • •, w(p) = 
(w.p0)(w.pi)---. 

We briefly describe CTL, CTL*, and LTL [20] formulae 
(see [8] for complete details). LTL formula are formed from 
propositions, boolean connectives and the temporal opera- 
tors X (next time), F (eventually), G (always) and U (un- 
til). LTL formulae define sets of infinite strings of (sets 
of) propositions. CTL* adds the universal and existential 
branching operators A and E to the LTL syntax. CTL is 
formed similarly with the restriction that each LTL temporal 
operator appear paired with its own path quantifier. CTL* 
and CTL formulae define sets of infinite depth trees labeled 
with (sets of) propositions. 

3    Safety and Liveness 

For the linear time framework, Alpern and Schneider 
define a closure operator on S" and show that it defines 
a topology [2]. Their closure operator, Id : V{T,U) ->■ 
P(SW), is defined as follows: Icl.T = {( E S" : (Vz : 
x -< t : (3t' G T :: x ■< £'))}. Properties are subsets of 
E"\ Safety properties are defined to be the closed sets in- 
duced by Id and liveness properties are defined to be the 
dense sets. It is shown that any property P is the intersec- 
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tion of Icl.P, a safety property, and Pö-^(lcl.P), aliveness 
property. Gumm defines safety and liveness in the more ab- 
stract setting of Boolean algebras [13]. Given Bi and E>2, 
two V-complete Boolean algebras, and tp : B\ —> B2, a V- 
preserving map, the closure ä of a € B\ is defined as V{a; £ 
B\ : <p.a = tp.x}. For element e £ B\, e is a safety element 
iff e — e and e is a liveness element iff e = 1 (1 is the unit 
(top) element of Bi). It is proved that every element of B\ 
is the conjunction of a safety element with a liveness ele- 
ment. We obtain the Alpern Schneider result by setting B\ 

to <?>(£"), E",0,u,n,-i), B2 to (?(£*),E*,0,u,n,-), 
and tp.T = {x £ E* : (3a £ T :: x < a)}. 

To define safety and liveness properties for branching 
time, wc start by defining what it means to concatenate trees 
and use this notion to define what it means for one tree to be 
a prefix of another. We then define two prefix operators cor- 
responding to ip above. The closure, safety elements, and 
liveness elements are defined as above. We then explore the 
consequences and show that our characterization captures 
the intuitive notions of safety and liveness in the branching 
time framework. 

3.1    A Partial Order for Trees 

Given trees w and x, we define a preliminary notion of 
tree concatenation, denoted w ■ x. 

Definition 1 Let xu = (W, w) and x = (X, x) be trees, 
w ■ x = (W U X, w U (x|X\W)). 

Note that w ■ x is a tree and that this notion of concate- 
nation amounts to superimposing x on w. Unfortunately, 
the above notion of concatenation turns out not to be what 
we need. The problem is that it allows us to extend w at 
non-leaf nodes. Below, we define what it means to be a leaf 
and then introduce the notion of concatenation we require, 
where w concatenated with x is denoted by wx. 

Definition 2 Let w = (W,w) be a tree. leaf(z,w) = 
z S W   A   -i(3y £ W :: z -< y). 

Definition 3 Let w = (W,w) and x = (X, x) be trees. Let 
X' = {yeX : y £ W V (3z : leaf(z, w) : z -< y)}. Let 

x' = (X',x|x'). wx = w ■ x'. 

Note that wx is a tree; the proof amounts to showing that 
x' is a tree. We now define what it means for one tree to be 
a prefix of another. 

Definition 4 x C y     =     (ßz :: xz = y) 

Notice that when restricted to sequences, C agrees with 
the usual notion of prefix. 

Lemma 1 x C. y wx C. wy 

Lemma 2 C is a partial order. 

Note that, due to space restrictions, some of the proofs 
are omitted. 

Elements of V{Atot) are the branching time prop- 
erties. Note that (V(Atot), Atot,®,U,n,^} and 
(P{Aa"), Aa",(D, U, n, -1) are Boolean algebras. 

3.2 Prefixes and Closures 

We define the non-total and finite-depth prefix operators, 
npref and fpref, functions from V{Atot) to V{Aa"), as 
follows. 

Definition 5 npref .p = {x £ Ant : (3y £ p :: x C y)} 

Definition 6 fpref .p = {x £ A? : (3y £ p :: x C. y)} 

The prefix operators correspond to ip, the V-prcscrving 
map described above. The induced closure functions, from 
r{Atot)[oV{Atot),arc: 

Definition 7  ncl.p =  L){q C A,ot : npref .q = npref .p) 

Definition 8 fcl.p =  U{<? C A1"' : fpref .q = fpref .p} 

The closure functions have the following properties. 

Lemma 3  ncl.p = { y £ A'"'   :   {Vx £ A"' : x C y : x € 
npref .p) } 

Lemma 4 fcl.p = { y £ A'"'   :   (V.r £ Af : x C. y : x £ 

fpref-p) } 

After expanding the definitions of the prefix operators in 
the above two lemmas, notice that the characterizations of 
ncl and fcl arc very similar to the definition of lei. 

Lemma 5 p C ncl.p and p C fcl.p 

Lemma 6 ncl. ncl.p = ncl.p and fcl. fcl.p = fcl.p 

3.3 Safety 

We say that a property is a safety property if the property 
is equal to its closure. Since wc have two types of closures, 
wc have two types of safety properties: cxistentially safe 
(ES) and universally safe (US). The intuition is that the 
cxistentially safe properties guarantee at least one compu- 
tation along which nothing bad happens. The universally 
safe properties guarantee that nothing bad happens during 
any computation. This type of distinction is made with the 
CTL operators E, which cxistentially quantifies over paths, 
and A, which universally quantifies over paths. In the se- 
quel, we implicitly extend functions on sets to functions on 
formulae, be applying the functions to the sets of trees or 
strinsis which the formulae define. 
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Definition 9 (Existentially Safe) p G ES     =    p = ncl.p        3.4    Liveness 

Definition 10 (Universally Safe) p € US     =     p = fcl.p 

Lemma 7 ncl.p C /d.p 

Proof The domain of the quantifier in the definition of fcl, 
A*, is a subset of Ant, the domain of the quantifier in the 
definition of ncl. D 

Lemma 8 p G US p£ES 

Proof p G   US     =     p - fcl.p, but p C   ncl.p and 
nc/.p C fcl.p, sop = nd.p, i.e., p G £5.  D 

Lemma 9 ncl.fcl.p = fcl.p 

Proof fcl.p C  ncl. fcl.p C fcl. fcl.p = fcl.p  D 

We note that fcl.ncl.p = ncl.p does not hold, for exam- 
ple, when p = EGa (there exists a path such that every node 
in the path is labeled by an a), we will see that ncl.p = p, 
but fcl.p T^ p. 

Lemma 10 p C q    =>    nd.p C nd.g   A   fcl.p C /c/.g 

Recall that an operator c : V(X) ->• 7>(X) defines a 
topology on X with closed sets {a C X : c.a = a} iff the 
following four conditions hold [15]: 

• a C c.a 

• c.c.a = c.a 

• c(aU b) = c.aU c.6 

Therefore, the following lemma shows that fcl defines a 
topology. 

Lemma 11 fcl.pUfcl.q   =   fcl.(p\Jq) 

Since ncl.(pUq) C ncl.p U ncl.q is not a theorem, ncZ 
does not define a topology. This does not cause us any tech- 
nical difficulties, but it is interesting because lei, the closure 
operator in the linear time case, does define a topology. We 
have the following, however. 

Lemma 12 ncl.p U ncl.q   C   ncl.(pl>q) 

We will now define what it means for a property to be a 
liveness property. A liveness property is one whose closure 
is the set of all trees. Given our two notions of closure, we 
have two notions of liveness. 

Definition 11 (Existentially Live) p G EL     =     ncl.p = 
Atot 

Definition 12 (Universally Live) p £ UL      =     fcl.p = 
Atot 

Lemma 13 p G EL pe UL 

Proof p G EL    =    ncl.p = Atot, but since ncl.p C fcl.p, 
fcl.p = Atot, i.e., pe UL a 

Lemma 14  US D UL   =   { Atot } 

Proof p G (US n C/L)       =       p = fcl.p   A   /c/.p = 
.4tot     =     p = yl4oi  D 

Lemma 15 £5 n EL   =   { Atot } 

Lemma 16  US D EL   =   { Atot } 

Proof p G {US DEL) p = fcl.p   A    ncl.p = 
p = ncl.p A rad.p = A tot 

=   p       Atot D 

Note that ES n UL = { Atot } does not hold, e.g., 
(AFa means along all futures a eventually holds) let p = 
ncl.AFa, then p = ncl.p and fcl.p = Atot, but p / ,4*°*. 

On account of Lemma 10, we have the following two 
properties:. 

Lemma 17 p C q   A  p E EL    =>    q G EL 

Lemma 18 p C q   A   p e UL    =>    q G UL 

Lemma 19 (pU -mcl.p) G ££ 

Proof nd.(p U -mcl.p)     D     nc/.p U ncl.(-^ncl.p)    D 
ncl.pl)-<ncl.p = ^4*°*  D 

Lemma 20 (p U -n/c/.p) G UL 

Theorem 1 Every'property is the intersection of: (I) an ex- 
istentially safe and an existentially live property, (2) a uni- 
versally safe and a universally live property, and (3) an ex- 
istentially safe and a universally live property. 
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Proof (1). ncl.p G ES and (p U -<ncl.p) G £X; their 
intersection yields ncl.pD (pL)-<ncl.p) = ncl.p Dp = p. 
(2). fcl.p G US and (p U -ifcl.p) G [/£; their intersec- 
tion yields fcl.p fl(pU -'fcl.p) = fcl.p Dp = p. (3). 
ncl.p G £5 and (p\J-<fcl.p) G f/L; their intersection yields 
ncl.p D (p U ->fcl.p) = (nc/.p fl p) U (nc/.p D-i/c/.p) = 
p U (ncl.p Pi -'fcl.p)  = p, since nc/.p C fcl.p.   D 

The next theorem shows that certain properties do not 
correspond to the intersection of a universally safe and an 
existcntially live property. 

Theorem 2 [16] Let Q be a subset of Atot such that 

fcl.Q — Atot and ncl.Q ^ Atot. There do not exists 
sets S,L C Atot such that fcl.S = S, ncl.L = Atot, and 
SDL = Q. 

Proof Suppose S H L = Q, fcl.S = S, and ncl.L = Atot, 
then Q C S, which gives Atot = fcl.Q C fcl.S and hence 
S = Aiot. Since Q = S n L, then L = Q which implies 
that ncl.Q = Atot.  D 

We will sec shortly that the set of trees satisfying the 
CTL formula AFp satisfies the preconditions on the previ- 
ous theorem. 

Our decomposition of a property into a safety property 
and a liveness property is extreme in the following sense. 

Lemma 21 lf(q £ ES V q G US) andp = (qC\ r). then 
ncl.p C q and r C (p U -inc/.p). 

Proof For the first part note that p = (q n r) => p C 
q => ncl.p C nc/.g A nc/.g C /c/.g => nc/.p C g, 
as by assumption g = nd.g   V   g = fcl.q. 

For the other part, we have (g n r) = p, which by 
ncl.p C g (the first part) implies (ncl.p D r) C p, which, 
if wc union -mcl.p to both sides and simplify the left, 
implies (-mcl.p U r) C (p U -^ncl.p), which implies 
r C (pU -incl.p)  D 

Theorem 3 Lef /(/?<? an LTL formula which is a safety prop- 
erty, then fcl.Ah = ncl.Ah = Ah and ncl.Eh = Eh. 

Proof Suppose t G Atot, t = (T,r), t G fcl.Ah, and t g 
Ah. Then there is some path x in t such that T(X) # h. 
Since h is a safety property, Icl.h = h, this implies that for 
some i G N, r(£0 • • ■ %i) cannot be extended to a string in 
h. Hence for any u G Af such that u C t and includes 
zo • • ■ Xi, u cannot be extended into a tree v such that v G 
Ah. Hence there is no such t and fcl.Ah = Ah. We also 
have Ah C ncl.Ah C /c/.A/i = A/i, so ncl.Ah = Ah. 

Suppose t  G  i4fof, <  =   (T,T), and <   G   ncl.Eh and 
<  ^  Eft.   Since t  $  Eh then for no full path, y, in t is 

r(j/) G h. Let a; be a path whose prefix T(X0 ••■Xi) cannot 
be extended to a string in h. Let u G Ant be the tree 
obtained from t by making Xi a leaf (i.e., removing all 
its descendants). Then u cannot be extended into a tree 
v such that v G Eh and hence t $ ncl.Eh. Therefore 
ncl.Eh = Eh.   D 

The following property shows that/c/ is not an appropri- 
ate closure operator for existentially quantified safety prop- 
erties of paths. That is, a safety property to which existential 
quantification is added is not necessarily closed under/c/. 

Lemma 22 fcl.EGP^EGP 

Proof Consider a total tree whose root has an infinite 
number of children, but every other node has exactly one 
child. Furthermore, the path through the first child is 
labeled by a(-^a)w. The path through the second child is 
labeled by aa(-ia)'" and so on. No path in the tree satisfies 
Ga, so the tree is not in EGa, but any finite depth prefix of 
the tree can be extended to a tree in EGa.   D 

Theorem 4 Let h he an LTL formula which is a liveness 
property, then fcl.Ah = Atot and ncl.Eh = fcl.Eh = Atot. 

Proof h is a liveness property implies that Icl.h = {a G 
Ew}. 

Let t G Atot, t = (T, T), and u C t such that u G Af. 
Consider any full path x in u. T(X) is a prefix of some 
a G Icl.h, hence, x can be extended to a path y such that 
r(y) G h. Therefore u G fcl.Ah. Hence fcl.Ah = Atot. 

Let t G Atoi, t = (T, T), and u C t, such that u G Ant. 
If u contains a path a such that r(a) G h then t G ncl.Eh. 
Else, consider any full finite path x in u. As in the first 
proof above, x can be extended to an infinite path y £ h 
and hence t G ncl.Eh. Therefore ncl.Eh = Atot. We also 
have Atot = ncl.Eh C fcl.Eh, hence, fcl.Eh = Atot.  D 

The following property shows that ncl is not an appropri- 
ate closure operator for universally quantified liveness prop- 
erties of paths. That is, given a liveness property of paths, 
adding universal quantification and taking the ncl closure 
does not necessarily result in the set of all trees. 

Lemma 23 ncl.AEP jt Atot 

3.5    Examples 

We now take a moment to consider the ramifications of 
our approach by comparison with Martin Rem's [22] exam- 
ple properties, listed below. Rem's examples are formulated 
as predicates on t, an infinite (S) sequence. 
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pO:    false (corresponds to 0); 
pi:    the first symbol of t is a; 
p2:    the first symbol of t differs from a; 
p3:    the first symbol of t is a, and t contains a 

symbol that differs from a; 
p4:    the number of a's in t is finite; 
p5:    the number of a's in t is infinite; 
p6: true (corresponds to Ew). 

If we are dealing with sequences, pO, pi, p2, and p6 are 
safety properties. The (linear) closure of p3 is pi, so p3 is 
not a safety property. The closures of p4 and p5 are both 
£"; so they are not safety properties, but they are liveness 
properties. 

Note that if we restrict t to infinite sequences, then both 
fcl and ncl agree with lei. In order to examine the above 
properties in a branching time framework, we will write 
them down in LTL [20] and CTL*. Note that in translating 
the above examples to properties over trees there is some 
ambiguity. In particular, we have translated p4 into both 
qAa and qAb and in fact neither of these translations cap- 
tures the notion that there are only a finite number of a's in 
a tree but rather that there are a finite number of a's on a 
path (on all paths) in the tree. 

gO: false false (corresponds to 0); 
gl: a a; 
g2: ->a -■a; 
g3a: a A F-ia A(a A F-ia)     =     a A AF->a 
qib: E(a A F->a)     =     a A EF->a 
g4a: FG -i<2 A(FG -a); 
qAb: E(FG^a); 
g5a: GFa A(GFa); 
q5b: E(GFa); 
g6: true true (corresponds to Atot). 

Below we give an informal translation of the above 
CTL* sentences, gl is true of any tree whose root is labeled 
with a; similarly for g2. q2>a is true of the trees whose root 
is labeled with a and along each path have a node labeled 
with ->a. g36 is true of the trees whose root is labeled with 
a and along some path have a node labeled with -ia. g4a is 
true of the trees where along each path, eventually all nodes 
are labeled with ->a. qAb is true of the trees where along 
some path, eventually all nodes are labeled with -ia. g5a 
is true of the trees where along each path, infinitely many 
nodes are labeled with a. q5b is true of the trees where along 
some path, infinitely many nodes are labeled with a. 

It is not difficult to show that gO, gl, g2, and g6 are uni- 
versally safe (and hence existentially safe). 

fcl.qSa = gl, as before, but ncl.qSa ^ gl (consider 
a tree that has at least two paths such that along one of the 
paths a always holds; this tree is not in ncl.qZa). ncl.qia ^ 
g3a (trees can be sequences, so {y : y £ Sw} C ncl.qia). 
ncl.qib = gl and/c/.g36 = gl. 

fcl.qAa = Atot, as before, but ncl.qAa / Atot (consider 

a tree that has at least two paths such that along one of the 
paths a always holds; this tree is not in ncl.q4a). ncl.qia ^ 
qAa (trees can be sequences, so {y : y £ £"} C ncl.qAa). 
ncl.qAb = Atot, so fcl.qAb = Atot. 

fcl.qba = Atot, as before, but ncl.q5a ^ Atot (con- 
sider a tree that has at least two paths such that along one 
of the paths ->a always holds; this tree is not in ncl.q5a). 
ncl.qba ^ g5a (trees can be sequences, so {y : y € Ew} C 
ncl.qSa). ncl.qSb = Atot, so fcl.q5b = Atot. 

4   Finite Branching Trees 

In the previous sections we studied sets of trees that in- 
cluded infinitely branching trees. However, many systems 
do not have such trees and it is interesting to see what bene- 
fits are obtainable when considering only bounded branch- 
ing structures. 

Let k £ N. A tree (W, w) is a fc-branching tree iff for 
all a £ W there exists exactly k unique elements of N, 
ao,...,a&_i, such that aao,..., crak-i £ W. In what 
follows we consider sets of trees which are /c-branching. 
By Ak'tot and Ak'* we denote, respectively, the set of jfc- 
branching trees and the set of finite trees whose non-leaf 
nodes have exactly k successors. We carry over the defini- 
tions of ncl and fcl from the previous sections, restricted 
now to fc-branching trees over finite alphabets. Below we 
show that ncl and fcl agree on linear time safety properties 
(recall that ncl.p C fcl.p). 

Theorem 5 Suppose h is a safety property over Sw then 
fcl.Eh = ncl.Eh = Eh and fcl.Ah = ncl Ah — Ah. 

Proof We have that Eh C fcl.Eh. So suppose t = (T, r) £ 
fcl.Eh, this means that for all u £ Ak'*, «Cf implies there 
is a t' £ Ak-tot such that u C. t' and t' £ Eh. 

We will show that t contains a path p such that r(p) (= h. 
Consider the tree v = (V, <p)  £ AaU defined as follows: 
V = {a £ T : (3y £ Sw :: r{ä)y (= h)} and cp.a = r.a. 
V has an infinite number of nodes as any prefix of t can 
be extended to a tree in Eh. V is also finitely branching, 
thus, by König's lemma, has an infinite path. For any such 
infinite path p, r(p) \= h because h is a safety property. 
Since v C (, p is a path in T, hence, t £ Eh. 

The rest of the proof is along the lines of the proof of 
Theorem 3.   D 

For linear time liveness properties, however, fcl and ncl 
do not agree, e.g., fcl.AFP = Ak'tot whereas ncl.AFP ^ 
Ak'tct. We do have the following. 

Lemma 24 Suppose h is a liveness property over Ew then 
fcl.Eh = ncl.Eh = Ak<tot and fcl Ah = Ak'tot. 
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The close relationship between properties of programs 
and automata has been well documented [24, 8]. In partic- 
ular, given a finite state Biichi automaton, B, over infinite 
strings (recall that Biichi automata recognize regular lan- 
guages of w-strings), it is possible to decompose B into au- 
tomata Bs and BL such that the set of strings accepted by 
Bs is a safety property and the set of strings accepted by BL 

is a liveness property [3], Furthermore, the set of strings ac- 
cepted by B is equal to the intersection of the set of strings 
accepted by Bs and BL- We show that a similar result for 
Rabin tree automata is possible to achieve (recall that Rabin 
automata recognize regular languages of w-trees). That is, 
we show that any set of trees recognizable by a Rabin tree 
automaton is decomposable into the intersection of: a uni- 
versally safe set and a universally live set, an existentially 
safe set and an existentially live set, and an existentially safe 
set and a universally live set, all of which are Rabin tree au- 
tomata definable. 

A Rabin tree automaton B = (E, Q,qo, 5, $) on fc-ary 
infinite trees is defined as follows: E is a finite alphabet, 
Q is a finite set of states, q0 £ Q is the start state, S : 
Q x E —> V(Qk) is the transition relation, and <£ is the 
accepting condition. 

Let t = <W,w) £ AkJot. A run of B on t is a Q 

labeled tree r = (W, p) £ Akfot such that p.X = q0 

and for all a £ W and successors aa(),..., aa^-i £ W, 
(p.aao,... ip.aa^-i) £ ö(p.a,w.a). Run r is accepting 
iff for all infinite paths p in W, p(p) \= $. C(B) = {t £ 
AkJot : there is an accepting run of B on t} is the lanizuaszc 
ore. 

The accepting condition, $, is given by specifying pairs 
of sets (greenj, red,) £ (V(Q))2 for i £ [0..m], for some 
m. $ holds on a path if for some i, some green state is vis- 
ited infinitely often and all red states are visited finitely of- 
ten,/.«'., $ = Vie[i..m][(Vse9m.„.GF3)A(Ar6rerf,FG-.r)]. 

For notational convenience, given a Rabin automaton 
B = (T,,Q,q0,5, $) we will refer to B(q), q £ Q. as 
the automaton given by (E,Q,q,6,$). Given automaton 
B = (E,Q,g0,<5,$) such that C.B ^ 0, note that C.B = 
C.{E,Q',qa,6',*) where Q' = {q £ Q : C(B(q)) ± 0} 
and 5' is S restricted to Q'. We define the finite depth 
closure, rfel, of an automaton as follows: if C.B = 0, 
rfcl.B = B; otherwise, rfcl.B = (E,Q',q0,6',&) where 
$' = VQ£Q'GFq is a condition that holds along all paths 
and is generated from {(Q1,0)}. 

Lemma 25 C{rfcl.B) = fcl.C{B). 

Proof If C.B = 0, then C(rfcl.B) = fcl{C.B) = 0, so we 
assume C ^ 0. 

Suppose t = (W,w) G C(rfcl.B) then there is an ac- 
cepting run r = (W, p) of rfcl.B on t. Consider any 
u = (U, v) £ Ak'f such that u\Zt\r' = (U, p\u) is a par- 
tial run of rfcl.B on u. By the construction of rfcl.B, each 

leaf node a 6 U of r' is labeled by a node p.a £ Q'. This 
means, however, that C.B(p.a) ^ 0 and therefore that each 
leaf node is extendible into some tree which is accepted by 
the automaton node labeling the leaf. This implies that for 
some tree t' £ C.B, u C t' and hence t £ fcl(C.B). 

Suppose t £ fcl(C.B), then for all tx C t, where t% 

denotes the subtree of t up to level i, there exists m such 
that t' C m and ut £ C.B, hence, there exists run r; 
of B on Uj. We now define a run, r, of rfcl.B on t. r\ 

the subtree of r up to level i, is defined recursively as 
follows. For the base case, r° labels the root by q0 and 
R0 = to. For the recursive case, choose r'+1 so that 
for infinitely many j £ R,,rj labels ti+1 by r':+1 and 

Ri+i = Ri \ {j £ Ri : r)+l ^ ri+1}. Note that for all 

i, Rt is an infinite set such that for all j £ Ri,r* — rl. 
This is true for R0 as all runs label the root q0. Assuming 
it is true for Rt, then by definition, if Ri+1 contains j, 
rlj+l = r'+1. Since the number of possible labclings 

of tl+1 is finite, by the pigeon-hole principle, an infinite 
subset of Ri indexes runs that assign the same labeling to 
t'. Since the acceptance condition for rfcl.B is trivially 
satisfied, we have show that r is a run of rfcl.B on t.   D 

The consequence of this is the following: 

Theorem 6 For any Rabin tree automaton, B. there exist 
effectively derivable Rabin automata Bs„f, and ß/,-,,,. such 
that C.B = C.Bsnfr n C.Biiv, and C.Bsnfr is universally 
safe while C.Bi,,., is universally live. 

Proof Recall that non-emptiness of Rabin tree automata is 
decidable and Rabin automata are effectively closed under 
complementation and union [24], Thus. Bsnf,. = rfcl.B 
and Bu„, = B U (Ak-,ot \ rfcl.B) can be effectively 
derived from B. That Bsnfv is safe follows from the 
above lemma and ß;„,( is live because for any property P, 
PU(Aktut\rfcl.P) is live.   D 

Similarly, it is possible to define the non-total closure of 
a Rabin automaton, which gives rise to the following theo- 
rem. 

Theorem 7 For any Rabin tree automaton, B, there e.xist 
effectively derivable Rabin automata Bsaft. and Z?/,,,,, such 
that C.B = C.Bs„fl: n C.Bu„c and C.B„„],.. is existentially 
safe (existentially safe) while C.Bn,,,. is existentially live 
(universally live). 

5    Conclusion 

We have given a computation-tree based semantic char- 
acterization of the intuitive notions of safety and liveness. 
Our characterizations arc given in terms of the closures of 
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sets of trees in a manner analogous to Gumm's [ 13] general- 
ization of the work of Alpern and Schneider for linear time 
[2]. In fact, our results when restricted to sets of strings are 
identical since in that case ncl.p = fcl.p = Icl.p. Our ap- 
proach and examples draw heavily on Rem's very readable 
presentation [22] of the Alpern and Schneider results. 

Decomposing branching time properties into four ex- 
tremal classes, viz., universally safe, universally live, ex- 
istentially safe, and existentially live, has allowed a charac- 
terization of safety and liveness properties which respects 
the branching time temporal operators A and E of CTL. In 
contrast, the work of Bouajjani et al. [6] is restricted to 
the regular trees1 and does not distinguish between existen- 
tially and universally safe. They consider only a single clo- 
sure operator and choosing either fcl or ncl as that operator 
results in either EGP not being a safety property or AFP 
not being a liveness property. In particular, it is possible to 
show that EGP is not definable by the class of safety recog- 
nizers (a restricted class of Rabin tree automata) —see the 
appendix for a proof— and therefore is not classified as a 
safety property as defined by Bouajjani et al. even under 
the restriction of finitely branching regular trees. 

Possible directions for future work include defining sub- 
classes of safety and liveness formulae and syntactically 
characterizing them, as has been done in the linear time 
framework by Sistla [23]. Another question is whether there 
are efficient model checking algorithms for branching time 
safety properties (see Kupferman and Vardi [18]). 
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A    Appendix 

All definitions and terminology in the appendix are taken 
from Bouajjani et al. [6] 

Definition 13 A Kripke tree is a tuple K = (Q, E, go, R, tr) 
where Q is a countable set of states, q0 is the initial state, 
R C Q x Q is the transition relation (having no cycles 
and enforcing finite branching), E is a finite alphabet and 
IT : Q —> E is the labeling function. 

Definition 14 A safety recognizer is a tuple S = 
(T,,W,wo,p) where W is a finite set of states, w0 is the 
initial state and p C W x E x V{W) is the transition rela- 
tion. 

Definition 15 A safety recognizer S = (T,,W,wo,p) ac- 
cepts Kripke tree K = (Q,Y,,q0, R,n) iff there exists 
A : Q —> W such that A(g0) = u;0 and for all q £ Q, 
there exists F C W such that (\(q),ir(q),r) G p and 
{X(q'):(q,q')eR}CT. 

Lemma 26 There is no safety recognizer S such that, S 
accepts K iff K satisfies EG P. 

Proof Assume, to the contrary, that there is such an S = 
CS,W,WQ,P). 

Let K = (Q, E, qo, R, TT) be defined as follows, {q : 
(qu,q) G R} = {91,92}- Furthermore, 7r(g0) = n(q2) = P 
and 7r(gi) = -<P. Also, suppose K is a total tree and K 
has one full path (through q2) which satisfies GP. Since K 
satisfies EGP then by assumption K is accepted by S and 
there exits A : Q -» W such that A (go) = w0 and for all 
q G Q, there exists T C W such that (\(q),ir(q),T) G p 
and {X(q') :(q,q') G ß} C T. 

Consider K' = (Q',T,,q0,R',TT') defined as follows. 
Intuitively, K' consists of the root of K, the subtree of K 
rooted at q\ plus another copy of the subtree rooted at q± in 
place of the subtree rooted at q2 which has been completely 
excised. Formally, let Qi = {q G Q : q is a descendant 
of qi in A'}. Then Q' = {q0j U Qx U {q1 : q G Qi}. 
(a, b) G R' iff 

• a = go and b = q\ or q[ or 

• a, b G Qi and (a, b) G R or 

• g,r G Qi, (g,r) £ R,a — q', and 6 = r'. 

7r' is defined as follows: 7r'(g0) = K{QO)\ for g G Qi, 
7r'(g) = 7r(g); for g G Qi,7r'(g') = 7r(g). Clearly, K' 
does not satisfy EGP. 

Consider A' : Q' -> W defined as follows. A'(g0) = 
A(g0). For all g G Qu A'(g) = A(g) and A'(g') = A(g). 
Then A'(g0)  = A(g0)  =  w0.   Also, (A(g0),7r(g0),r)  G 

p  and   {A(gi),A(g2)}    C    T,   for some  T.      Hence, 
{A'(<7i),A'(gi)} C Tand (A'(g0),7r'(g0),r) G p. 

Suppose g G <5i- (A(g),7r(g),r,) G p for some T, 
and that {A(r) : (g,r) G R} C T,. This implies that 
(A'(g),7r'(g),rg) G p and that {A'(r) : (g,r) G R'} C r,. 
Furthermore (A'(g'),7r'(g'),r„) G p and that 
{A'(r') : (g,r) G Ä'} C TJ. Hence, 5 accepts K', 
contradicting the assumption that 5 accepts only those 
trees satisfying EGP.  D 
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Semistructured Data: from Practice to Theory 

Serge Abiteboul 

Abstract 

Semistructured data is data that presents some regu- 
larity (it is not an image or plain text) but perhaps not 
as much as some relational data or some ODMG data 
(the standard of object databases). Such data is be- 
coming increasingly important and, with XML, should 
become the standard for publishing data on the Web. 
With XML, the Web is turning into a worldwide, het- 
erogeneous, distributed database. In this paper, we 
briefly discuss typing and languages for semistructured 
data and some new issues arising from the context of 
data management on the Web. 

1    Introduction 

The amount of data of all kinds available electron- 
ically has increased dramatically in recent years. The 
data resides in different forms, ranging from unstruc- 
tured data in file systems to highly structured in rela- 
tional database systems. Data is accessible through a 
variety of interfaces including Web browsers, database 
query languages, application-specific interfaces, or data 
exchange formats. A lot of information can already be 
found on the Web, sometimes hidden behind forms (the 
deep Web) or protected by passwords and fire walls. 
Some of this data is raw data, e.g., images or sound. 
Some is text (e.g., in HTML) allowing access to in- 
formation via search engines. A lot of this informa- 
tion has some structure, e.g., documents in HTML or 
XML (the extensible Markup Language), the forthcom- 
ing semistructured standard of the Web. 

Semistructured data was first studied in the context 
of integration of a large volume of data from heteroge- 
neous sources. Data exchange formats, essentially syn- 
tax for semistructured data, naturally arose in a num- 
ber of fields that felt uncomfortable with the lack of 
flexibility of traditional database systems, e.g., ASN.l. 
With the popularity of the Web and the choice of XML, 
such a model, for replacing HTML, the area gained a 
lot of momentum. Indeed, I like to think of the Web 
of tomorrow as a gigantic, distributed semistructured 

database. This is somewhat the vision followed in the 
Xyleme Project that we initiated at INRIA [20] which 
aims at building a dynamic warehouse of XML data 
found on the Web. 

The main goal of the present paper is to discuss 
essential aspects of semistructured data and consider 
proposals for foundations for such data. We will see 
that these borrow a lot from computer science theory: 
database theory, logic and computer science, automata 
and language theory, type theory. 

The paper is organized as follows. In Section 2, we 
define semistructured data. In the next two sections, 
we discuss typing and query languages. The separation 
between these two sections is somewhat arbitrary since 
the topics are obviously closely related. Most works 
on typing and queries for semistructured data have fo- 
cused on single documents or small collections of doc- 
uments. In a last section, we discuss new challenges 
that arise from moving to the scale of the Web. 

Although the area is rather young, it is very active 
and the literature it generates keeps growing. For in- 
stance, I found 74 references in the DBLP Anthology 
[8] for "semistructured" and 54 for "semi-structured" 
(which is why I am using the spelling "semistruc- 
tured"). I will provide here only few references. Many 
more can be found in the book [1]. More references 
on the theory of semistructured data can be found in 
Vianu's nice survey [17]. One might also want to look 
at the tutorial on semistructured data and XML by Su- 
ciu at VLDB99 [14]. References for databases can be 
found in [15, 16, 2]. A good entry point for XML (and 
everything on it) is W3C, the WWW Consortium [18]. 

2    Semistructured Data 

In this section, we make more precise the notion 
of semistructured data, how such data arises, and de- 
scribe its main aspects. 

Semistructured data is data that presents some reg- 
ularity (it is not an image or plain text) but perhaps 
not as much as some relational data or some ODMG 
data (the standard of object databases). Clearly, this 
definition is imprecise.  For instance, would a BibTex 
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file be considered structured or semistructured? In- 
deed, the same piece of information may be viewed as 
unstructured at some early processing stage, but later 
become very structured after some analysis has been 
performed. The first use of the term semistructured 
(to my knowledge) is in the OEM model [12]. Essen- 
tially the same model was proposed simultaneously in 
[11]. The most popular example of semistructured data 
today is XML [18]. We will focus on XML here, and 
present it next (in simplified form). 

An example of an XML document is the text given in 
Figure 1, left. There is an alternative vision of the same 
document as a tree, also given in the figure. Ignoring 
details XML has three main components: 

Ordered tree (elements and text nodes): An XML 
piece of data is a tree where leaves are called 
text nodes (grey discs in the figure) and other 
nodes, the element nodes (white discs) may have 
an unbounded number of ordered children. Each 
node has a value (a string) attached to it. The 
value of an element is called a label or a tag. 

Attributes nodes: Element nodes may also have at- 
tributes (represented by a square in the figure). 
Each node may have at most one attribute with a 
given label. Furthermore, the attributes of a node 
arc viewed as unordered. 

Graph: A standard trick allows to move to a graph 
representation. Sec Figure 2. Some nodes are 
given identifiers and references to these identifiers 
may be used in other places of the document. 

Ignoring attributes and text, i.e., focusing on the 
core syntax of XML (i.e., tags), leads to a particular 
class of context-free languages, see [6]. Let A be the set 
of opening tags (e.g., (title)) and .4 the set of closing- 
tags (e.g., (/title)). Then a well-formed XML docu- 
ment is a string of tags of the form a...a for some tags 
a, that is correctly parenthesized. Thus, a strong con- 
nection exists between the XML world and languages 
known in formal language theory under the name of 
the set of Dyck primes. 

What is exactly XML? Three alternative viewpoints 
are shown in Figure 1. 

1. A word: A piece of XML data is a word in some 
standard language. This is a giant step: one needs 
only one parser, one browser, one editor, etc. 

2. A tree: The same data may be viewed as a tree, 
the parse tree of the word. 

3. An object: It may also be viewed as an object 
with an interface, e.g., a method getjparent, in a 

standardized application programming interface, 
namely DOM for Document Object Model (the 
main interface to program applications with XML 
data). 

XML provides three more viewpoints: 

1. A document: Data may be displayed with stan- 
dard Web browsers. For that, we attach a style- 
sheet (in a format called XSL) to an XML string 
to provide it with a presentation. The simple (and 
old) idea of separating the data and its presenta- 
tion is finally coming to the Web. 

2. Type data: a type (in a format called DTD - Docu- 
ment Type Definition) or a schema (XML-schema) 
can be attached to some XML data. (See Section 
3.) Now, this is the Web, so one should not expect 
everybody to use the same tag (e.g., address) for 
the same concept, or the same type for a given tag. 

3. Semantics: Once typed information is provided, 
one can attach semantics to it and describe that 
semantics. For instance, the Resource Description 
Framework (RDF) is a standard for publishing se- 
mantic descriptions of Web resources. This is lead- 
ing to the realm of "semantic Web". 

Thus XML is reconciling many worlds. In particular, 
one can view it as the convergence of databases and 
(hypertext) documents. Viewing XML as text and pre- 
sentation is central for document management but will 
be little considered here. We are more concerned with 
viewing XML as data, or knowledge. Furthermore, we 
are primarily interested in considering the knowledge 
available on the Wei) as a distributed XML database 
that can be queried like any centralized database. 

Given this worldwide, distributed, heterogeneous 
database of semistructured data, a first, issue is its man- 
agement. Can database technology be used? Observe 
that database systems have been successful because 
they are easy to use and very efficient. There are many 
reasons for this: in database system, (i) data is very 
structured and rigid: (ii) data has a precise known loca- 
tion, generally centralized: (iii) a cost model for queries 
is available (even if most of the time, it is very rough) 
to perform optimization: (iv) data can be trusted and 
is non-contradictory. Every single of these points is 
defeated for semistructured data on the Web. A sec- 
ond issue is that of formal foundations. Can database 
theory be used? What else can be used? 

3     Typing 

We consider in this section the issue of typing 
semistructured data. 
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<bibliodate="2001"> 
<book key="U"> 

<title>DBMS</title> 
<author>J.D. Ullman</authoi> 
</book> 

<book key="AHV"> 
<title>DBTheory</title> 
<author>Abiteboul</author> 
<author>Hull</auhor> 
<author>Vianu</author></book> 

<book key="ABS"> 
<not entered/> 
</book></biblio> 

Text View 

'     node interface 

get_tag_name 
get_parent 
get_root 
get_attribute_list 
get_first_child 
get_childrem_by_tag 
get_type 

Object View 

ook 

title 

DBMS     Ullman      U        DBTheory Abiteboul    Hull       Vianu     AHV ABS 

Tree View 

Figure 1. XML and trees 

O       © ©   o 
sue sueid johnid   '-    John johnid       /sueid iueid joh'Did 

Figure 2. XML and graphs 
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First, wo shall stress that types should not be too 
constraining in this context. For instance, it is accept- 
able to have an XML document without type or XML 
data with portions that are typed and others that are 
not. More precisely, although the document has some 
structure, the structure may be irregular (e.g., missing 
data) and may even violate the type that it is sup- 
posed to obey. In traditional databases, data may be 
large and rapidly evolving whereas types are supposed 
to be relatively small and stable. This is not true for 
semistructured data. Indeed, the almost religious dis- 
tinction between schema and data found in databases 
is blurred here. Underlying all these aspects is a need 
for flexibility. Flexible typing is not a new notion. For 
instance, parameterized records have been studied in 
the context of typed functional languages that allow to 
type functions applying to records with variable collec- 
tions of attributes. So, for instance, we may want to 
see the "type" of a book as: 

[title, author, editor?, year, more] 

where the question mark means that editor is not a 
compulsory attributes and more means that other la- 
bels are acceptable there as well . 

We next develop some (light) formalism for 
semistructured data and XML typing. As already men- 
tioned, XML is a syntax. Recall that it is based on 
opening tags in .4 and closing tags in A with proper 
parenthesizing. A grammatical approach can be used 
to define the type of a document. More precisely, one 
can specify that a particular document is valid with 
respect to a certain Document Type Definition (DTD). 
DTDs may be viewed as particular context-free gram- 
mars. (An example of a possible DTD for the data 
in Figure 1 and of the same type in a richer for- 
malism, namely XML-schema are given in Figure 3.) 
These grammars are special in that each word gener- 
ated by one such grammar (almost) encodes its parse- 
tree. More precisely, a DTD specifies for each tag o, 
a regular expression Ra which tells what can be found 
between a and a. An example of DTD (using formal 
language notation and not XML notation) is as follows: 

Xa —> a(X*\Xc)(i   Xe —► e.Xce    Xc —> cc 

where, for instance, the regular expression defining 
what may be found between a and ä is X*\XC. A valid 
word for this DTD is, for instance, a e cce e ccea. 

An XML-language is the set of valid words for a 
given DTD. It is a context-free language. However, 
XML-languages enjoy many properties that do not hold 
in general for context-free languages. For instance, it 
is not complicated to show that XML-languages are 

closed under intersection [6]. Note however that the 
situation is a bit more confusing because the field is 
still changing rapidly. There are proposals to extend 
DTDs (e.g., X-schemas) that may modify the kind of 
results that hold for DTDs as they now stand. 

To continue with the issue of semistructured data 
typing, we may also think of XML as data and adopt 
a more database-like approach. We may first try to 
use what is known from the relational database world. 
It is easy to represent XML data in tables (although 
this is probably not a good idea for storing it). See 
Figure 4 for a relational representation of the XML 
tree of Figure 1. Like in relational dependency theory, 
first-order logic can be used to express properties on 
these tables. For set-oriented properties, this is a rather 
convenient formalism. So, for instance, consider the 
following DTD rule: 

book —> (book)title(author)*year(/'book) 

Ignoring positions, this can be captured by simple for- 
mulas in the style of: 

Vb(book(b) => 3t{title(t) A E(b,t))) 
V&, t, t'(book(b) A title(t) A title(t')A 

E(b,t)AE(b,t')=>t = t') 
Vb,x(book(b) A E(b,x) => (title.(x)\l 

author(x) V year(x))) 

As already mentioned, this works fine for set- 
oriented properties. On the other hand, in a relational 
representation, the ordering of the children of a node 
is captured by position and the list of these children is 
not directly available. Furthermore, the tree structure 
has been encoded/buried into this flat structure. So, 
many useful properties and queries that typically re- 
fer to paths in the tree cannot be directly captured in 
first-order terms. Following are two examples: 

1. regular expressions on the children of a node: 
DTDs allow to state that, for instance, the 
sequence of children labels for a node of label a 
is a word in the language bc*d. This simple fact is 
not easy to state in first-order terms. 

2. regular expressions for a downward path: given a 
document d, it is natural to ask for all the elements 
o such that the labels on the path from the root to 
o is, e.g., a word in the language c"(e\f)e. Indeed, 
such features are supported in a language called 
XPATH that allows to specify complex paths in 
XML data and is used, in particular, for document 
presentation. This is also not easy to state in first- 
order terms. 
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DOCTYPE biblio   [ 
element biblio  (book)*> 
element book  (title,   (author)*)I(\#PCDTA)> 
element title  (\#PCDATA)> 
element author  (\#PCDATA)> 
attlist book key \#PCDATA> 
attlist biblio date \#PCDATA> ]> 

Figure 3. Typing XML with DTD 

source ti biblio title 
&0... &0 &1 1 &0... &2... 

value &1 &2 1 
&3        DBMS &2 &3 - book author 
&5        Ullman &1 &4 2 &1... &4... 

&4 &5 —... 

Figure 4. Relational Representation 

This naturally suggests the need for recursion and ap- 
proaches based on fixpoints or proofs (e.g.. logic pro- 
gramming and deductive databases). 

The two examples we used for illustrating the lim- 
itations of first-order logic were based on regular lan- 
guages. Indeed, approaches based on regular languages 
and automata techniques seem appropriate in this con- 
text and have been investigated. For instance, one 
can describe paths in the XML tree corresponding 
to a given DTD with regular languages. This has 
been used to provide user-friendly graphic interfaces 
to query such data (in the style of Query-by-Example 
for relational data). The user navigates through the 
documents, choosing which set of nodes to visit next 
by selecting a path. It is also natural to describe the 
type of a document by a tree or a graph. This sug- 
gests a definition of typing based on graph homomor- 
phism in the style of graph simulation used, e.g., in 
program analysis. Last but certainly not least, there 
have been a series of works on using tree automata 
to define semistructured data types. Since we will en- 
counter tree automata in the context of queries as well, 
we postpone their discussion to the next section. 

Between all these approaches, there is no clear win- 
ner yet and there is still a long way until an analog 
for semistructured data to dependency theory for re- 
lational databases is obtained. The context is much 
richer and it is likely that foundations for semistruc- 
tured data typing will be more complex and borrow 
from several of these approaches. To conclude this dis- 
cussion on types, we consider two critical use of types 
in the Web context: 

1. Type integration: In a particular application do- 
main, say biology, if each single person publishing 
his data on the Web uses untyped XML or her own 
DTD, the construction of a global view of all the 
information of the Web in the biology domain will 
have to rely on expensive AI techniques and will 
probably remain an elusive goal for a long while. 
On the other hand, if everyone agrees on one DTD 
(or a small number of DTSs), this integration be- 
comes feasible, see, e.g., [20]. 

2. Type discovery: As already mentioned, types are 
often not specified in data found on the Web. 
However, it is important to be able to understand 
the structure of data (discover its type) for a num- 
ber of reasons ranging from query optimization, to 
explaining the data to users. 

4    Logic and Queries 

There are many relationships between logic and 
computer science. One may argue that the most im- 
pressive practical application of logic in computer sci- 
ence as of today is relational databases, primarily ow- 
ing to the algebraization of first-order logic. In a 
nutshell, this result brings to millions of relational 
database users an interface to state first-order formu- 
las over a finite structure and get the bindings of vari- 
ables as answers. Relational database technology has 
revolutionized access to information. The next revolu- 
tion may come from query languages for semistructured 
data, when such data becomes the Web of tomorrow. 
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Before considering various approaches to query lan- 
guages for semistructured data, one should note some 
desired functionalities. First, declarative languages 
are preferable. The old duality of relational calculus 
(declarative) vs. relational algebra (operational) sur- 
vives when we move to semistructured data. How- 
ever, the distinction is not as clear cut since fea- 
tures like regular expressions (for describing paths) 
may be viewed both as declarative and procedu- 
ral/navigational. Then, the language should support 
information-retrieval-style features such as keyword 
search. Also, as standard in such context, the lan- 
guage should blur the distinction between schema and 
data. Finally, since the Web keeps changing, query 

languages should allow to query these changes. In re- 
lational databases, notions such as versions and tem- 
poral queries are often supported, see, e.g. [13]. In the 
Web context, there is growing activity around query 
subscriptions and continuous queries. An example of 
(simple) query subscription is "let me know when a 
page of this particular site changes". Such services arc 
becoming available on the Web. The underlying tech- 
nology is related to triggers and active databases [19]. 
An example of continuous query is "send me, every 
Wednesday, the list of movies showing in Paris". 

We next consider various approaches that have been 
proposed for querying semistructured data. Every- 
thing does not have to be built from scratch. Lan- 
guages for hierarchical data have been studied for many 
years. Some of this work has focused on extensions of 
first-order logic with some controlled second-order fea- 
tures, allowing the quantification over sets of values. 
("Controlled" here is essential so that query evalua- 
tion remains feasible.) From an algebraic/functional 
viewpoint, this amounts to extending relational alge- 
bra (projection, selection, join, etc.) with new oper- 
ators such as filter, map, comprehension. Logics and 
algebras have been studied for trees (nested relations) 
or graphs (complex objects) that can be adapted to 
semistructured data. For instance, a typical operation, 
called nest, is as follows. Suppose R contains a set of 
pairs. For each value a, we can group the correspond- 
ing values with a nest operation. This corresponds to 
the second-order formula: 

{x,Y | 3y(R(x,y)) A Vy(R(x,y) ejel')) 

Several query languages (typically using an SQL fla- 
vor) have been proposed for semistructured data. For 
XML alone, there is a flurry of recent competing pro- 
posals. Many of them, originating in academia, are ar- 
guing in favor of extending OQL [7], a reasonably clean 
functional language that was adopted as the standard 
for object databases.   Others, mostly from industry, 

lobby for ad-hoc (one might say inelegant or dirty?) 
extensions of SQL. At the core of these extensions, one 
finds tree-pattern matching and tree rewriting. Indeed, 
one can view these languages as extensions of first- 
order logic with tree-pattern matching and some form 
of regular path expressions. Lorel [3] was, I believe, the 
first OQL extension proposed for semistructured data. 
An example of query, using a Lorel-like syntax, is: 

select X/title,  X/author 

from      X  in MyBibliography/biblio/book 
where    X/author="Ullman" and X/year="1986" 

The pattern here is a tree with two branches. A match- 
ing pattern consists of a root (the given document My- 

Bibliography labeled biblio), a child labeled book with 
two children labeled author and year with appropriate 
values, "Ullman" and "1986", respectively. Each such 
pattern that is found produces an element of the answer 
with a title and an author. As previously mentioned, 
regular expressions and keyword search may come into 
the picture as in, for instance: 

select X/title,  X/author 

from      X  in MyBibliography/biblio/book 
where    X/author="Ullman" and 

X/text//example contains  "XML" 

This asks for the books by Ullman that mention the 
word XML in an example. In the query, the symbol 
"/" is used to denote children of a node whereas "//" 
is used for descendants. 

Another line of investigation for query languages is 
based on structural recursion. For instance, XSLT, a 
transformation language supported by the Web con- 
sortium, allows to specify iterators and tree rewriting 
patterns to apply on a given document. (It has been 
claimed recently that XSLT is Turing complete.) 

Finally, two related approaches have been recently 
considered: tree transducers (see, e.g., [10]) and k- 
pebble transducers [9]. 

Tree transducers The starting point is the view 
of an XML document as a tree. This suggests us- 
ing devices over trees and in particular tree transduc- 
ers. The transducers that are considered are not quite 
standard in that trees have unbounded fan-out (the of- 
ficial terminology is unranked) and a query does not 
accept/reject the tree but returns a result, typically a 
set of nodes in the tree. The automaton uses top-down 
and bottom-up state transitions. A node is selected 
depending on the state of the automaton when visit- 
ing the node and the label of the node. This approach 
is interesting also because of the equivalence of tree 
automata and monadic second-order logic. 
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K-pebble transducers These devices subsume 
most aspects of query languages and typing previously 
introduced for semistructured data. They are varia- 
tions of tree automata that we will not define here. 
Intuitively, a k-pebble transducers performs a compu- 
tation on a tree. It uses a stack of pebbles to describe 
the state of the computation so far. The pebbles are 
installed on tree vertices. At some point of the compu- 
tation, the transducer may span several parallel com- 
putations for the different children of the current node 
and put them in charge of computing different parts of 
the result. Figure 5 gives an intermediary state of a 
computation. Two parallel computations are going on. 
Each is in charge of computing one subtree of the root 
of the result. 

5    In Place of Conclusion 

Essential differences with traditional databases arise 
from the nature of the Web: (i) its size; (ii) its dis- 
tributed nature; (iii) the absence of centralized control. 
This suggests new research directions. To conclude, we 
mention next (somewhat arbitrarily) five such direc- 
tions. 

Complexity: the complexity of relational queries has 
been extensively studied. Theory has gone a long 
way from showing logspace and AC0 bounds for 
relational algebra to, for instance, obtaining many 
results for recursive languages (datalog, fixpoint). 
What is new? A lot when we consider the Web. 
Logspace at the scale of the Web is simply too 
much. There is clearly a need for new notions of 
feasibility in this context. 

Computability: Consider a Web crawler. It is essen- 
tially an infinite computation. By the time it takes 
to read the entire Web, a large portion of the data 
that has been read has already changed, some has 
disappeared, new data arrived. So, strictly speak- 
ing, some queries such as give me the list of URLs 
pointing to my homepage at the exact instant can 
simply not be answered. Thus, even the notion of 
computability has to be reconsidered, see [5] and 
should encompass infinite computations. 

A world of changes: The Web changes all the time. 
Furthermore, as already mentioned, users are of- 
ten directly interested in changes. So, they would 
like a paradigm that allows to discuss change, and 
yes, this brings us back to the notions of tem- 
poral queries, continuous queries and subscription 
queries (infinite computations for the last two). So 
the new name of the game is infinite computation 

in a changing world vs. finite computation in a 
static one. 

A world of uncertainly and incompleteness: 
By the nature of the Web, the information that 
can be acquired is incomplete and cannot be com- 
pletely trusted (e.g. dangling pointers, changing 
or disappearing data). Query languages have to 
deal with this. (See, e.g., [4].) 

Concurrency control: A major achievement of 
database technology has been concurrency control 
ensuring correct simultaneous interaction with the 
database by multiple users. This works fine in a 
centralized database with locks. It is still an elu- 
sive goal in the context of the Web. There is a need 
to develop more flexible notions of correctness and 
the corresponding theory. 
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Abstract 

In system synthesis, we transform a specification 
into a system that is guaranteed to satisfy the specifi- 
cation. When the system is distributed, the goal is to 
construct the system's underlying processes. Results 
on multi-player games imply that the synthesis prob- 
lem for linear specifications is undecidable for general 
architectures, and is nonelementary decidable for hi- 
erarchical architectures, where the processes are lin- 
early ordered and information among them flows in 
one direction. In this paper we present a significant 
extension of this result. We handle both linear and 
branching specifications, and we show that a sufficient 
condition for decidability of the synthesis problem is 
a linear or cyclic order among the processes, in which 
information flows in either one or both directions. We 
also allow the processes to have internal hidden vari- 
ables, and we consider communications with and with- 
out delay. Many practical applications fall into this 
class. 

1     Introduction 

In system synthesis, we transform a specification 
into a system that is guaranteed to satisfy the speci- 
fication. Early work on synthesis consider closed sys- 
tems. There, a system that meets the specification 
can be extracted from a constructive proof that the 
specification is satisfiable [MW80, EC82]. As argued 
in [ALW89, Dil89, PR89a], such synthesis paradigms 
are not of much interest when applied to open sys- 
tems, which interact with an environment. While syn- 
thesis that is based on satisfiability assumes no envi- 
ronment or a cooperative one, synthesis of open sys- 
tems should assume a hostile environment, and should 
generate a system that satisfies the specification no 

•Work partially supported by BSF grant 9800096. Address: 
School of Computer Science and Engineering, Jerusalem 91904, 
Israel. Email: orna@cs.huji.ac.il 

tWork partially supported by NSF grants CCR-9700061 and 
CCR-9988322, BSF grant 9800096, and a grant from the In- 
tel Corporation. Address: Department of Computer Science, 
Houston, TX 77251-1892, U.S.A. Email: vardi@cs.rice.edu 

matter how the environment behaves. The work in 
[ALW89, PR89a] formulated the synthesis problem in 
terms of a game between the system and the envi- 
ronment, and is closely related to Church's solvability 
problem [Chu63]. Given sets I and O of input and 
output signals, respectively, we can view a system as 
a strategy P : (21)* -> 2° that maps a finite sequence 
of sets of input signals (the behavior of the environ- 
ment so far) into a set of output signals (the reaction 
of the system to this behavior). 

When P interacts with an environment that gener- 
ates infinite input sequences, it associates with each 
input sequence an infinite computation over 2/u°. 
We say that a specification ip is realizable iff there 
is a strategy all of whose computations satisfy r/>, 
in case V is a linear specification, or a strategy 
whose induced computation tree satisfies xj), in case 
ip is a branching specification. Synthesis of ip then 
amounts to constructing such a strategy. Solutions 
for the realizability and synthesis problems for spec- 
ifications in the linear temporal logic LTL are pre- 
sented in [ALW89, PR89a]. The solutions are ex- 
tended in [PR89b, Var95] to asynchronous systems 
and in [KV99] to systems with incomplete informa- 
tion and specifications in the branching temporal logic 
CTL*. Methods developed for synthesis of open sys- 
tems are applicable also for supervisory control, where 
instead of hostile environments we consider collabora- 
tive controllers of nondeterministic systems [RW89]. 

While the transition to open systems has signifi- 
cantly broaden the scope of synthesis to real-life de- 
signs, it is still limited to settings in which the open 
system consists of a single process. In a more real- 
istic setting, that of a distributed system, the input 
to the synthesis problem consists of both the spec- 
ification and an architecture, which may consist of 
more than one process and describes the communi- 
cation channels between the different processes. More 
formally, we assume a setting with n processes, with 
process i referring to sets /,, Ot, and Hi, of input, 
output, and hidden (internal) signals (input signals 
may be external; i.e., generated by the environment), 
and we want to construct for each process a strat- 

389 
0-7695-1281-X/01 $10.00 © 2001 IEEE 



egy Pi : (27i)* -> 2°iUH' so that the composition of 
the strategies satisfies the specification. The architec- 
ture is given by a set of conditions like 02 U O4 C I3 

("the only channels to P3 are from P2 to Pi"). The 
exact definition of the composition of the strategies 
then depends on assumptions on the communication 
(e.g., whether communication involves a delay). If, for 
example, we want to synthesize five dining philoso- 
phers [Dij72], we can specify in temporal logic the 
mutual exclusion and non-starvation requirements for 
the philosophers, specify a two-way ring with five pro- 
cesses, and ask the synthesis procedure to construct 
appropriate strategies for the processes. Clearly, a so- 
lution for the dining philosophers that refers to a single 
process is not of much interest. 

There are two possible ways to approach the syn- 
thesis problem for distributed systems. One approach 
is to use a synthesis procedure for a single process, and 
then decompose the process according to the given ar- 
chitecture [EC82, MW84]. While this approach has 
a computational advantage, known decomposition al- 
gorithms are not complete in the sense that a speci- 
fication may be realizable with respect to a given ar- 
chitecture yet the decomposition algorithm would fail 
[PR.90]. Thus, one can view decomposition as a heuris- 
tic for the synthesis problem, which is not guaranteed 
to work. The second approach is to refer to the archi- 
tecture of the distributed system from the outset and 
construct the underlying processes directly [PR.90]. 

R.esults on multi-player games imply that the real- 
izability problem for general distributed systems is un- 
decidable [PR.79, PR90] (the results in [PR.79] refer to 
multiple-person alternating Turing machines and are 
extended in [PR90] to the synthesis setting). Essen- 
tially, there is an architecture fl (in fact, a very simple 
architecture, consisting of two independent processes 
Pi and P> that interact with the same environment; 
that is h n {O2 U H2) = 0 and I2 n (Oj U Hi) = 0) 
such that for every deterministic Turing machine M, 
there is an LTL formula T/J/I/ such that M halts on 
the empty tape iff V->A/ is realizable in fl. The reduc- 
tion is heavily based on Pi and P2 being independent, 
and it fails, for example, if we assume that P> gets 
its input from Pi (i.e., 0\ C I2). Indeed, it is shown 
in [PR79, PR90] that once we consider hierarchical ar- 
chitectures, in which the processes are linearly ordered 
and information flows in one direction, the realizability 
problem is nonelementary decidable for specifications 
in LTL. 

The decidability result in [PR90] suffers from two 
limitations. First, when we synthesize a system from 
an LTL specification %j>, we require ip to hold in all the 

computations of the system. Consequently, we can- 
not impose possibility requirements on the system (cf. 
[DTV99]). In the dining-philosophers example, while 
we can specify in LTL mutual exclusion, we cannot 
specify deadlock freedom (every finite interaction can 
be extended so that a philosopher eventually eats). In 
order to express possibility properties, we should spec- 
ify the system using branching temporal logic, which 
enables both universal and existential path quantifi- 
cation [EH86, Eme90]. Second, and more crucially, 
the algorithm in [PR90] is not applicable for architec- 
tures that are not hierarchical, and real-life designs 
are rarely based on hierarchical architectures. We do 
not count the nonelementary complexity as a limita- 
tion, as it is accompanied by a matching lower bound 
and, as we discuss further in Section 6, the worst-case 
complexity rarely appears in practice. 

In this paper we remove both limitations. We con- 
sider specifications in the branching temporal logic 
CTL* (which subsumes LTL), and we handle all archi- 
tectures in which there is a linear or cyclic order among 
the processes, in which information flows in either one 
or both directions. Thus, our architectures can be ei- 
ther chains or rings with both one-way and two-way 
communication channels. In addition, we allow the 
processes to have internal hidden variables, and we 
consider communications with and without delay. We 
show that the realizability problem stays decidable in 
all these cases. The solution we present is based on 
alternating tree automata, which separate the logical 
and algorithmic aspects of the problem: given a spec- 
ification xj> and an architecture fl, we construct an au- 
tomaton An,f sucn that t]> is realizable in d iff .4^.0 is 
not empty. To check realizability, the automaton has 
to be tested for nonemptiness [E.I88, PR89a, KV98]. 
The nonemptiness algorithm also synthesizes the pro- 
cesses in H that together realize ij>. 

We argue that the results in the paper significantly 
extend the scope of synthesis for distributed systems, 
as commonly used architecture belong to the class of 
architectures we handle [Tan87]. Examples of applica- 
tions of these architectures include various communi- 
cation protocols in which communication proceeds in 
layers. For example, the so-called OSI model consists 
of a seven-layer protocol stack (Application, Presen- 
tation, Session, Transport, Network, Data link, and 
Physical layers), where every layer communicates with 
the layer above it and the layer below it. The envi- 
ronment talks to the top layer and the bottom layer 
[Man99]. Architectures with two-way communication 
channels are common in scientific computations, say 
when we iterate in order to solve a differential equa- 
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tion and each process works on part of the computed 
domain. Then, it is useful to divide the domain to 
layers so that in each iteration every layer updates its 
neighbors with its results from the previous iteration 
[PTVF92]. 

2    Preliminaries 

2.1    Trees and labeled trees 

Given a finite set T, an T-tree is a set T C T* such 
that if x ■ v G T, where x G T* and v G T, then also 
x G T. When T is not important or clear from the 
context, we call T a tree. When T = T*, we say that 
T is full. The elements of T are called nodes, and the 
empty word e is the root of T. For every x G T, the 
nodes x ■ v G T where v G T are the children of x. 
Each node x of T has a direction, dir(x) in T. The 
direction of e is u°, for some designated v° G T, called 
the root direction. The direction of a node x ■ v is v. 

Given two finite sets T and £, a H-labeled T-tree is 
a pair (T, V) where T is an T-tree and V : T -> £ 
maps each node of T to a letter in E. When T 
and E are not important or clear from the context, 
we call (T,V) a labeled tree. For a E-labeled T- 
tree (Y*,V), we define the memoryfull version of 
(T*,V), denoted mem((T*,V)) as the E+-labeled T- 
tree {T* ,V) where V'(e) = V(e), for v G T we have 
V'(v) = V{e) ■ V{v), and for all x G T+ and v G T 
we have V'(x ■ v) = V'(x) ■ V(v). Thus, the label of 
a node x in mem({T*,V)) is the word obtained by 
concatenating the labels of all the prefixes (including 
e) of a; in (T*,V). 

For a E-labeled T-tree (T*,V), we define the x-ray 
of (T*,V), denoted xray({T*,V}), as the (T x £)- 
labeled T-tree (T*, V) in which each node is labeled 
by both its direction and its labeling in (T*, V). Thus, 
for every i£T*,we have V'(x) - (dir(x),V(x)). Es- 
sentially, the labels in xray((T* ,V)) contain informa- 
tion not only about the surface of (T*, V) (its labels) 
but also about its skeleton (its nodes). 

For a E-labeled T-tree (T*,V), we define the delay 
of (T*,V), denoted delay {{T*,V)), as the E-labeled 
T-tree (T* ,V) in which V'{e) = V(e) and for all x G 
T* and v G T, we have V'(x ■ v) = V(v0 ■ x), where 
v0 = dir(e) is the root direction of T. Intuitively, the 
delay of (T*, V) describes the label node x would have 
when the sequence of directions leading to x arrives 
with a delay, thus the last direction in x is missing 
and x is prefixed by the root direction. 

Consider a set X x Y of directions. For a node 
T G (XxY)*, let hideY(r) be the node in X* obtained 
from r by replacing each letter (x,y) by the letter 

x. For example, the node (0,0) • (1,0) of the 4-ary 
({0,1} x {0, l})-tree corresponds, by hide^0^, to the 
node 0-1 of the {0, l}-tree. Note that the nodes (0,0) • 
(1,1), (0,1) • (1,0), and (0,1) • (1,1) of the 4-ary tree 
also correspond, by hide^^, to the node 0 • 1 of the 
binary tree. For a Z-labeled X-tree (X*, V), we define 
the Y-widening of (X*,V), denoted widey {(X* ,V)), 
as the Z-labeled (X x y)-tree {{X xY)*, V) where for 
every r G (XxY)*, we have V'{T) = V(hideY (r)). As 
we explain further in Section 3, nodes TX and r2 with 
hidey(Ti) = hidey(T2) = r are indistinguishable in 
widey {{X*,V)) by someone that does not observe Y. 
Indeed, for such an observer, both nodes are reached 
by traversing r and are labeled by V(T). 

2.2    Alternating automata 

Alternating tree automata generalize nondeterministic 
tree automata and were first introduced in [MS87]. An 
alternating tree automaton A — (T,,Q,q0,S,a) runs 
on full E-labeled T-trees (for an agreed set T of direc- 
tions). It consists of a finite set Q of states, an initial 
state go G Q, a transition function S, and an accep- 
tance condition a (a condition that defines a subset of 
Qw). For a set T of directions, let ß+(TxQ) be the set 
of positive Boolean formulas over TxQ; i.e., Boolean 
formulas built from elements in T x Q using A and 
V, where we also allow the formulas true and false 
and, as usual, A has precedence over V. The transi- 
tion function 5 : Q x E -» B+(T x Q) maps a state 
and an input letter to a formula that suggests a new 
configuration for the automaton. For example, when 
T = {0,1}, having 6(q, a) = (0, qi) A (0, q2) V (0, q2) A 
(l,c/2) A (1,(73) means that when the automaton is in 
state q and reads the letter a, it can either send two 
copies, in states q\ and o2, to direction 0 of the tree, or 
send a copy in state g2 to direction 0 and two copies, 
in states g2 and g3, to direction 1. Thus, unlike nonde- 
terministic tree automata, here the transition function 
may require the automaton to send several copies to 
the same direction or allow it not to send copies to all 
directions. 

A run of an alternating automaton A on an in- 
put E-labeled T-tree (T,V) is a tree (Tr,r) in which 
the nodes are labeled by elements of T* x Q. Each 
node of Tr corresponds to a node of T. A node in 
Tr, labeled by (x,q), describes a copy of the automa- 
ton that reads the node x of T and visits the state 
q. Note that many nodes of Tr can correspond to 
the same node of T; in contrast, in a run of a non- 
deterministic automaton on (T,V) there is a one-to- 
one correspondence between the nodes of the run and 
the nodes of the tree.   The labels of a node and its 

391 



children have to satisfy the transition function. For 
example, if (T, V) is a {0, l}-tree with V(e) — a and 
<J(9ö,a) = ((0,gi)V(0,g2))A((01g3)V(l)g2)),thenthe 
nodes of (Tr,r) at level 1 include the label (0,(71) or 
(0,92)1 and include the label (0, q%) or (1, q-?). Each in- 
finite path p in (Tr, r) is labeled by a word r(p) in Q". 
Let inf(p) denote the set of states in Q that appear 
in r{p) infinitely often. A run (Tr,r) is accepting iff 
all its infinite paths satisfy the acceptance condition. 
In Rabin alternating tree automata, a C 2^ x 2^, 
and an infinite path p satisfies an acceptance condition 
Q = {(Gi,ßi),...,(Gfe,ßfc)} iff there exists 1 < i < k 
for which inf(p) n G; ^ 0 and inf(p) D Bt = 0. We 
refer to the number of pairs in a as the index of A. An 
automaton accepts a tree iff there exists an accepting 
run on it. We denote by C{A) the language of the 
automaton A; i.e., the set of all labeled trees that A 
accepts. We say that an automaton is nonempty iff 
C(A) ^ 0. For an acceptance condition a over Q and 
a set S, we denote by a x 5 the acceptance condition 
over Q x S obtained from a by replacing each set F 
participating in a by the set F x S. For example, if 
a is the Rabin acceptance condition {(G, 73)}, then 
axS = {(GxS,BxS)}. 

Nondeterministic tree automata can be viewed as a 
special case of alternating tree automata, where the 
formulas in ß+(T x Q) are such that if a formula 
is rewritten in disjunctive normal form, then for ev- 
ery direction v £ T, there is exactly one element of 
{v} x Q in each disjunct. While nondeterministic tree 
automata are not less expressive than alternating tree 
automata, they are exponentially less succinct: 

Theorem 2.1 [MS95] An alternating Rabin tree au- 
tomaton with m states and k pairs can be translated to 
an equivalent nondeterministic Rabin tree automaton 
with ?;?°'"'A'' states and 0(mk) pairs. 

3    Architectures    and    the    synthesis 
problem 

Given sets 7 and O of input and output signals, 
respectively, we can view a process P as a strategy 
f : (21)* —> 2° that maps a finite sequence of sets 
of input signals into a set of output signals. We of- 
ten refer to the strategy / as the 2°-labcled 27-tree 
((27)*,/). Let i0 be the root direction of 21. When 
P interacts with an environment that generates in- 
finite input sequences, it associates with each infi- 
nite input sequence i\,i-2, ■ ■ •, an infinite computation 
{io} U /(e), {h} U /(ii), {»'2} U /(Ü • i2),... over 2/u°. 
The interaction of P with all possible input sequences 
induces  the   (2/u°)-labeled  27-tree  xray{{{2')*, /)). 

The environment may have hidden internal signals, 
which are not readable by P. Let 77 denote the set of 
hidden signals. Then, a strategy for P is still a func- 
tion / : (27)* -» 2°, but the interaction of P with an 
outcome of the environment induces an infinite com- 
putation over 2/u0u//, and its interaction with all pos- 
sible outcomes induces the (2/u0uH)-labclcd (2,vH)- 
tree xray(wide^2n)(((2r)*, /)))• Each node in this tree 
has 2l/u//! children1, corresponding to the 2'/u//' pos- 
sible assignments to 7 U 77. Note that since P cannot 
see the signals in 77, and thus cannot distinguish be- 
tween children that agree on their assignment to sig- 
nals in 7, the tree above is the 2//-widening of the 
interaction between P and its environment as seen by 
P. 

In a setting with n processes Pi,..., Pn, where pro- 
cess Pi reads 7,, writes O;, and has hidden internal 
signals Hi, a strategy for P, is a function /; : (2/')* —► 
2o,u//, We denote (j1<i<n Ii by I, and similarly for O 
and H. The n processes Pi,..., P„ interact with each 
other and may also interact with an environment. We 
denote by Ocnv the output signals of the environment 
(that is, the external input to the n processes), and de- 
note by Henl. the hidden signals of the environment. 

Different architectures induce different communica- 
tion channels between the processes. We consider here 
four classes of architectures (see figure next page). In 
all classes, each signal can be written by a single pro- 
cess (that is, O, n Oj = 0 for all / ^ j), but can be 
read by several processes (that is, possibly Iifllj ^ 0). 

• In a one-way chain, Pi reads from the environ- 
ment. P„ writes to the environment, and all the 
other processes read from the process to their 
left, and write to the process to their right. For- 
mally, I\ = Of„,., and for all 2 < i < n we have 
F = Oj-i. Note that P, cannot read the in- 
ternal signals of the process to its left and that 
7UO = /UO„ = 7, UO. 

• A one-way ring extends a one-way chain by a 
communication channel from P„ to Pi. Thus, Pi 
reads from both P„ and the environment (i.e., 
7i = On U Oe,!r)i and P„ writes to both Pi and 
the environment. 

• In a two-way chain, Px reads from both P> and 
the environment and writes to P), P„ reads from 
P,,_i and writes to both Pn-\ and the environ- 
ment, and all the other processes read from the 

'\Vc consider synthesis with respect to maximal environ- 
ments, which provide all possible input sequences. An extension 
to non-maximal environment is possible, using the same tech- 
niques as in [KMTV00]. 

392 



processes to their left and right, and write to 
the processes to their left and right. Formally, 
h = Oenv U 02, for all 2 < i < n — 1 we have 
J, = Oi-i U Oi+i, and /„ = On_i. 

• A two-way ring extends a two-way chain by 
a communication channel between Pn and Pi. 
Thus, Pi reads from P2, Pn, and the environment 
(i.e., 7i = Oenv U02 U0n), and writes to both P2 

and P„, and P„ reads from both Pi and P„_i and 
writes to both Pi, P„_i, and the environment. 

Note that in all the four classes, and for all i and 
j with i < j, the process Pt has complete informa- 
tion about the input to Pj, thus Pi can simulate Pj 
and have complete information also about its output2. 
This means, for example, that in a two-way chain, 
we could give up the channel from P2 to Pi, letting 
Pi compute the information along this channel, and 
similarly for the other right-to-left channels. While 
this would not change the answer to the realizability 
question, it may significantly increase the sizes of the 
synthesized processes. 

One-way chain Two-way chain 

One-way ring Two-way ring 

For all the architectures, we define the composition 
of strategies /i,...,/„ as a function / : (2°'"")* -» 
2°uH that describes the joint behavior of the processes 
on an infinite sequence of external input signals. The 
exact definition of a composition depends on the par- 
ticular architecture as well as on assumptions on the 
communication (e.g., whether communication involves 
a delay). We define several compositions in Section 5. 
In [PR90], Pnueli and Rosner study one-way channels 
(called "hierarchical architectures" there) where com- 
munication involves no delay. In this setting, com- 
positions are defined as follows.    For the strategy 
<(2*)*,/i>, let «2*)*,/;> = mem«(2*)*,/i». Re- 
call that in a one-way chain, Oenv = I\. Then, / : 
(2oe„„)* _> 2outf is such that for eyery a € (20.-.)», 

2Indeed Pj, for j > i, generates also hidden signals, but these 
signals are generated by a strategy that is known to P;, since our 
framework assumes that the processes are collaborative, while 
the environment is adversarial. 

we have 

f(a) = /i(a) U /2(/i(a)) U f3(W[(a)))U 
■■•U/„(/^(---(^(/f(«7)))...)). 

Intuitively, for all i, the output of Pt (and, conse- 
quently, the contribution of fa to /), depends on the 
history of the outputs of P*_i, namely the memory- 
full version of /*_!, which by itself depends on the 
memoryfull version of /i_2, and so on. 

The compo- 
sition / induces the computation tree of Pi,...,P„, 
which is the (2Iu0uHuH— )-labeled (2°— u//— )-tree 
xray{wide(2»^v){{{2°"lvY,/))). The transition from 
the composition to the computation tree involves two 
transformations. First, while the composition / cor- 
responds to the composition as seen by the processes, 
and thus ignores the signals in Henv and the nonde- 
terminism induced by them, the computation tree cor- 
responds to the composition as seen by someone that 
sees all signals, which involves a 2Hcnv -widening. In 
addition, as the signals in Oenv and Henv are repre- 
sented in the widening of the composition only in its 
nodes and not in its labels, we employ xray and obtain 
a tree whose labels refer to all signals. 

Given a CTL* formula ip over I UOUH U Henv, 
and an architecture fi with processes Pi,...,Pn, we 
say that ip is realizable in fl iff there are strategies 
for Pi,..., Pn whose composition induces a compu- 
tation tree that satisfies ip. The synthesis problem is 
then to construct these strategies. The synthesis prob- 
lem for one-way chains with complete information is 
introduced and solved in [PR90] for specifications in 
the linear temporal logic LTL (which is a strict sub- 
set of CTL*). The synthesis problem for CTL* for 
an architecture with a single process with incomplete 
information is introduced and solved in [KV99]. In 
this paper, we solve the synthesis problem for CTL* 
for the four classes of architectures introduced above. 
Our solution is based on automata on infinite trees. 
For our purposes, the crucial feature of CTL* is the 
following translation of CTL* formulas to alternating 
Rabin tree automata. 

Theorem 3.1 [KVWOO] Given a CTL* formula ip 
over a set AP of atomic propositions and a set T of 
directions, there exists an alternating Rabin tree au- 
tomaton Ar,i, over 2AF'-labeled T-trees, with 20(-W> 
states and two pairs, such that C{Ar,^) is exactly the 
set of trees satisfying ip. 

4    Useful automata constructions 

Let X, Y, and Z be finite sets, and let z0 be the root 
direction of Z. For an (X x relabeled Z-tree (Z*,f), 
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we say that (Z*, f) is a composition of an A-labeled Z- 
trce (Z*,fx), where mem.{{Z\ fx)) = {Z*,f'x), and 
a F-labeled A-tree (X*, fY) iff for every z\ and z2 in 
Z and for every <r E Z*, we have 

• m = fx(e)UfY(€). 

• /(*i) = /x(*o)U/y(.fr(<0)- 

• /(ff • zi • z2) = /x(z0 ■ o" • 21) U fy(f'x(z0 ■ o-)). 

We then say that f = fx+fr- For a set Tof (X x Y)- 

labeled Z-trecs, the set shapeX(T) consists of all Y- 

labeled A-trees (X*,fy) for which there exists an A"- 
labeled Z-trce {Z*,fx) such that the (A x relabeled 

Z-tree (Z*,fx + fv) is in T. 

Theorem 4.1 Let X, Y, and Z be finite sets. Given 
a nondeterministic tree automaton A over (X x 
Y)-labeled Z-trees, we can construct an alternating 
tree automaton A' over Y-labeled X-trees such that 
C(A') = shape X(C(A)) and the automata A' and A 
have the same, size and index. 

Proof: Let A = (X x Y, Q,q0, 6, a). Then, A' = 
(Y,Q,qo,S',a), where for every q & Q and y 6 Y, we 
have 

<*'(<7,2/)=      V    (a;,si) A(.T,S2)A...A(X,S|^|). 

»E.V, 

<«i,*2 S|z|>6<5(r;,(.x,y)) 

Consider first the case where q = qo and A' reads the 
root of the input tree (X*,fY). The letter y read at 
the root is fY{(). Since in /.\- 4- /y the root is labeled 
(/.v(f), /y (e)), we proceed according to 6(q0, (x, ?/)) for 
some x which is our guess for /.v(c)- By the definition 
of S', each copy of A that is sent to direction z 6 Z 
and visits state s induces a copy of A' that is sent to 
direction x and visits the state s. Since the choice of 
x is joint to all z e Z, all the copies of .4' induced 
as above are going to read the same letter, which is 
our guess for fY{fx{())- Consider now a copy of A 
that reads a node z £ Z and visits state s. Recall 
that the automaton A' then has a copy that reads 
the node fx(e), visits the state s, and the letter y 
read by this copy (and all the other copies that read 

the node fx{e)) is our guess for /y(/.v(e))- Since in 
fx + /y the node z is labeled (fx(z0),fy{fx(e))), we 
proceed according to 6(s, {x,y}), for some x which is 
our guess for fx(zo)- Each copy of A that is sent 
to direction z' £ Z and visits state s' then induces a 
copy of A' that is sent to direction x and visits the 
state s'. All these copies are going to read the same 
letter, which is our guess for fY(f'x(z0)).   The same 

idea repeats in further levels: a copy of A that reads 
a node a ■ z\ ■ z2 € Z* and visits state s is associated 
with a copy of A' that reads the node f'x (z0 ■ a) and 
visits the state s. The letter y read by this copy (and 
all the other copies that read the node f'x(zo ■ cr)) is 
our guess for fY{f'x(z0 ■ a)). Since in fx + fY the 
node a-zi-z-2is labeled (fx(z0■ a■ zx), fy(f'x(z0■ a))), 
we proceed according to S(s, (x,y)) for some x which 
is our guess for fx(zo • o ■ z\). All the copies sent to 
direction x are going to read the same letter, which is 
our guess for fY(f'x(z0 -<r-zi)). D 

Given a nondeterministic tree automaton A, let 
shapeX(A) denote the corresponding automaton A' 

constructed in Theorem 4.1. Note that while 
shapeX(A) returns an alternating tree automaton, it 
is defined for a nondeterministic tree automaton A. 
Thus, successive applications of shape require an in- 
termediate application of the exponential alternation- 
removal procedure in Theorem 2.1. 

The construction described in Theorem 4.1 will help 
us to solve the realizability problem by successively 
reducing the number of processes in the architectures. 
The two constructions below will handle the external 
input to the system and the incomplete information, 
and they are presented in [KV99], where they are used 
for the synthesis of a single process with incomplete 
information. 

Theorem 4.2 Given an alternating tree automaton 
A over (T x 12)-labeled T-trees, we can construct an 
alternating tree automaton A' over 12-labcled T-trees 
such that A' accepts a labeled tree (T*, V) iff A accepts 
xray((T*,V)), and the, automata A' and A have the 
same size and index. 

Theorem 4.3 Let X, Y, and Z be finite sets. Given 
an alternating tree automaton A over Z-labeled (X x 
Y)-trees, we can construct an alternating tree automa- 
ton A' over Z-labeled X-trees such that A' accepts a 
Z-labeled tree (X*,V) iff A accepts the Z-labeled tree 
wideY {{X*, V)), and the automata A' and A have the 
same size and index. 

Finally, since we want our algorithm to be applica- 
ble also for settings in which communication involves 
a delay, we need a construction that handles such a 
delay. 

Theorem 4.4 Given an alternating tree automaton 
A over 12-labeled t-trees, we can construct an alter- 

nating tree automaton A' over 12-labeled T-trees such 
that A' accepts a labeled tree (T*,V) iff A accepts 
delay((T*,V)), and the automata A' and A have the 
same size and index. 
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Given an alternating tree automaton A, let 
cover (A), narrow y (A), and wait (A) denote the cor- 
responding automata A' constructed in Theorems 4.2, 
4.3 (for a set Y of directions), and 4.4, respectively. 

5    Solving the synthesis problem 

In this section we study the synthesis problem for 
the architectures described in Section 3. We show 
that for all the four classes, the problem is decid- 
able, with a nonelementary complexity. Thus, given 
a CTL* formula ip, a class C (one-way chain, two-way 
chain, one-way ring, or two-way ring), and an integer 
n, the complexity of constructing n strategies for n 
processes in an architecture of class C that satisfies ip 
is n-exp(\ip\).3 

One-way chain We assume that communication in- 
volves a delay. Thus, the input to P;+1 at time t is 
the output of P, (or the environment, when i = 0) at 
time t — 1. Accordingly, we define the composition f 
of /i,.. •, fn as follows. For a string a = z$ • z\ ■ ■ ■ zk 

and i > 0, let z0 ■ z\ ■ ■ ■ Zk-i be either the prefix of 
length k — i + 1 of a. in case k — i > 0, or e, in case 
k — i + l<0. Also, let z0 be the root direction of 2!l. 
Then, / : (2h)* -> 2°uH is defined as follows. 

• /(e)=/i(e)U---U/„(e). 

• For a e (2h )* with a = z\ ■ ■ ■ zk, we have f(a) = 
/l (z0 ■ Z! ■ ■ ■ 2A._i) U f2{f{ (z0 ■ zx ■ ■ ■ zk-2)) U ■ • ■ U 
fn{f'n-\(zo -zi ■■■zk-„)). 

Consider a CTL* formula ip over IUOUHUHenv. 
Recall that in a one-way chain, we have IUO = h UO. 
In order to solve the realizability problem, we build the 
following tree automata. 

• A$\ an' alternating Rabin tree automaton that 
accepts a (2hu0uHuH— )-labeled (2IiUH—)-tvee 
((2/lUH—)*,/) iff it satisfies ip [see Theorem 3.1]. 

• Ao- the alternat- 
ing Rabin tree automaton wait(A^). Thus, Ao 
accepts a (2/lUOu/fu^"»)-labeled (2/lU//—)-tree 
((2/lU""-)*,/) iff delay (((2'^H^)*J)) satis- 
fies ip [see Theorem 4.4]. 

AH- the 
Rabin tree automaton narrow (2"e 

A' ■ the alternating Ra- 
bin tree automaton cover(Ao)- Thus, A'0 accepts 
a (2°uff)-labeled (2hKjH— )-tree ((2IlUH"">)*,f) 
iff delay(xray({(2huH"">)*,f))) satisfies ip [see 
Theorem 4.2]. 

A'0' accepts a (2°u")-labeled 21 

iff delay(xray(wide(2H'i'>){{(211) 
ip [see Theorem 4.3]. 

For 1< i < n - 1, 

alternating 
M'o). Thus, 

-tree <(2/')*,/> 
\/))))  satisfies 

3n-exp{k) is a stack of n exponents with k on the top; i.e.. 
l-exp(k) = 2°(fc), and (i + l)-exp(A;) = 2'-exP(kh 

- Aim. a nondeterministic Rabin tree au- 
tomaton equivalent to A"_1 [see Theo- 
rem 2.1]. Note that the automaton 
Ai runs on (20iUHiUOi+^uH^u-u0-uH")- 
labeled 2°i-1-trees, where we take O0 = h- 

- A\: the alternating Rabin au- 
tomaton shape(2O;UH;)(.4J). Thus, A\ runs 
on (2°<+>u^+iu-u°"uH")-labeled (2°iUHi)- 
trees and it accepts a tree ((2°iUHi)*,}) 
iff there is a (2°-uHi)-labeled 2°«-1-tree 
<(20i-i)*,/'> such that <(2°"-i)*,/ + /') is 
accepted by Ai [see Theorem 4.1]. 

- A": the alternating Rabin automaton 
narrow (2H i^A'i). Thus, A" accepts 

a (2°<+iu".+iu-u0«utf")-labeled 2°'-tree 
<(2°0*,/> iff ^e(2Hi)(((2°0*,/)) is ac- 
cepted by A\ [see Theorem 4.3]. 

Intuitively, in each iteration 1 < i < n, we as- 
sume that the strategies of P\,...,Pi-\ are given 
(they are encapsulated in the transition function of 
Ai) and the automaton Ai accepts all the composi- 
tions of Pi,... Pn that together with the given strate- 
gies satisfy ip. Thus, the transition from Ai to Ai+i 
involves an encapsulation of the possible strategies of 
Pi (and how they affect the behavior required from 
Pi+i, ■ ■ -,Pn in order to satisfy ip) into the transition 
function of Ai- 

Lemma 5.1 ip is realizable iff A'n_1 is not empty. 

The construction of Ai goes via i iterations. Each 
iteration involves two automata transformations. One 
transformation (narrow) gets and returns an alternat- 
ing tree automaton. The other transformation (shape) 
gets a nondeterministic tree automaton and return an 
alternating tree automaton. While all the transforma- 
tions involve no blow-up in the size of the automata, 
the fact that shape handles nondeterministic automata 
requires the application of an additional transforma- 
tion, namely the translation of an alternating tree au- 
tomaton to a nondeterministic one. This transforma- 
tion involves an exponential blow-up, leading to an 
overall nonelementary blow-up. 

395 



Theorem 5.2 The synthesis problem, for CTL* and 
one-way chains is nonelementary decidable. 

Proof: It follows from the constructions described in 
Section 4 that the size of ,4"_i is (n-l)-exp(\ip\). The 
nonemptiness problem for -4"_i can then be solved in 
time n-exp{\%j}\) [MS95, KV98]. Lemma 5.1 then im- 
plies that the realizability problem for if> can be solved 
in time n-ea;p(|V->|). The nonemptiness algorithm can 
be extended to produce a witness for the automaton 
being nonempty (in fact, a witness that is a memory- 
less strategy [Tho95]). A witness for the nonemptiness 

of -4"_i induces a strategy /„ for Pn. In order to get 
a strategy for P„_i, we combine A"_2 with /,, and 
get an automaton that is guaranteed to be nonempty 
and whose witness induces a strategy /„_i for Pn-\. 
We continue similarly until strategies for all processes 
are synthesized. □ 

A matching nonelementary lower bound is proved (for 
LTL formulas) in [PR90] (cf. [PR79]). This lower 
bounds applies also to the other architecture. 

With appropriate simple modifications (skipping 
the "wait construction" and redefining the "shape con- 
struction" to ignore the delay), the method described 
above can handle one-way channels in which commu- 
nication involves no delay (the definition of composi- 
tion then coincides with the one of [PR90]). As we 
describe below, the method can also be extended to 
handle the other classes of architectures described in 
Section 3. The differences among the architectures in- 
fluence the sets of labels and directions of the trees 
over which the automata are defined (for example, in 
a one-way ring A$ runs on (2°cn"u0" )-trees, and in 

ot„„u02uo„ )-trees), in- a two-way ring, it runs on (2 
fluence the definition of composition, and accordingly 
influence the definition of shape X(T) and the "shape 
construction" that handles. For all the architectures, 
however, the idea is similar: a successive reduction in 
the number of processes, where in each step we omit 
a process and encapsulate its possible strategies into 
the transition function of intermediate automata. 

One-way ring. Recall that in a one-way ring, the 
process Pi reads signals from both P„ and the envi- 
ronment. We suggest two alternative modifications to 
the method presented for one-way chains. The first is 
rather simple: all the intermediate automata we con- 
struct maintain (in their alphabet) the input that Pi 
reads from Pn. Then, in the last automaton, which 
corresponds to Pn's strategy, we close the ring by re- 
quiring the output of Pn to agree with the maintained 
input. The second approach is cleaner (and it also has 

a computational advantage), yet it requires a more 
substantial modification. The idea is to start with Pj 
and proceed in both directions, encapsulating two pro- 
cesses in each iteration. The two directions meet at 
the automaton As., whose nonemptiness witnesses a 
strategy for P« that satisfies the tasks inherited to PIL 

by both the processes to his left and these to his right. 

Two-way chain. The two-way chain architecture is 
much richer than that of a one-way chain. Since the 
difficulties imposed by incomplete information are or- 
thogonal and are handled by the narrow construction, 
we describe here the solution for systems with com- 
plete information, thus H(,„v U H = 0. In a two-way 
chain, the process Px reads both 0,_i and 0;+i, so 
its strategy is a function /, : (2°'-iu°'+i )* -> 2°'. 
Accordingly, while in the case of a one-way chain 
the reduction of the process p involves a transition 
from an automaton that runs on (20'u0'+'u'u0" )- 
labeled 2°'-*-trees to an automaton that runs on 
(2°'+lU-u0-)-labeled 2°'-trees, here the reduction of 
p should involve a transition from an automaton that 
runs on (2°'u0' + 'u'"u0-)-labeled (2°-|UO' + ')-trces 
to an automaton that runs on (2°'+lU "u°")-labeled 
(20,u0'+2)-trees. In order to see the modifications 
that are therefore needed in the shape construction, 
let us first redefine the predicate shape and the com- 
position operator it involves. 

Let A',_i, Xj, A'1+i, A',+2, and A' be finite sets, 
and let z0 

and z'0 be the root directions of A',_i and 
A', + i respectively. For our application, Xj stands 
for 2°', and A stands for 2°'+:'u-u°". For an 
(A', x A",-+i x A',-+2 x A)-labeled (A',_i x A',+i)-tree 
<(AVi x A'i+1 )*,/), we say that <(A,„i x A',-+,)*,/) 
is a composition of an AVlabeled (A',-_i x A',+1)- 
tree ((AVi x A,+i)*,/i) and an (A,+ i x A,+2 x AV- 
labeled (Xj x A",+o)-tree ((A', x Xi+->y, f-2) iff for ev- 
ery (z\,z[) and (22,22) in AVi x A',+i and for every 
a G (A';-i x A',-+i)*, we have (/' and /{ are the mem- 
oryfull versions of / and /'): 

• M = <Me),Me)). 

• f((zi,z[)) = (M(zo,z'0)),f2(fl{f))). 

. /(a  •  {zuz\)  ■  (Zl,z[))     =     (/1((2ü,2^)   •  a  ■ 
(^,^)),/2(/1'((2ü,2^-Cr)©/'((2o,2^-(7)|A-, + 2)), 
where © is bitwise concatenation (e.g., 1/1 ■ 1/2®3/3 ■ 
2/4 = (i/i, 2/3) ■ (2/2,2/4)) and r|.Yi+2 is the projection 
of T on A'j+2- 

We then say that / = f\ + f\. Intuitively, / de- 
termines its AVelement according to f\  and deter- 
mines the (Xi+i x A i+2 A')-element by applying 
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f2 on an interleaving of an application of f[, which 
gives the Xi element and an application of /' on a 
strict prefix of the input, which returns an element in 
Xi x Xi+i x Xi+2 x X and is then projected on X;+2. 
In addition, since we assume that communication in- 
volves a delay, / ignores the last letters in a sequence 
and refers instead to the root directions. 

For a set T of (Xi x Xi+1 x Xi+2 x X)-labeled 
(Xj_! x X;+i)-trees, the set shape x.xX.+2(T) con- 
sists of all (Xi+i x Xi+2 x X)-labeled (Xi x Xi+2)- 
trees ((Xi x Xi+2)*,f2) for which there exists an X{- 
labeled (Xj_i x X,+i)-tree ((X_i x Xi+i)*,fi) such 
that ((Xi-! x Xi+1)*,/! + f2) is in T. 

The shape construction in Theorem 4.1 can be mod- 
ified to handle the definition of shape above. Essen- 
tially, while in the current construction the automaton 
A' guesses in each transition a direction x to proceed 
with, in the new construction A' needs to guess two 
elements, corresponding to both Xi and Xi+2, and it 
should remember the Xi+2 element for the projection 
described above. 

Two-way ring. The solution for two-way rings is 
based on the modified shape construction described 
for two-way chains and the "two-direction reasoning" 
described for one-way rings. 

The important common property of the four classes 
we handle is the fact that there are no two processes 
both reading input from the envirponmrnt. Conse- 
quently, the processes can be linearly ordered accord- 
ing to the signals they know. More architectures fall 
in this category. For example, it is possible to replace 
a single processes in a chain by a group of processes 
that share the same knowladge, and adjust the synthe- 
sis algorithms accordingly. An exact characterization 
of architectures for which the synthesis problem is de- 
cidable is an open problem. 

6    Discussion 

One of the most significant developments in the 
area of system verification over the last decade is the 
development of algorithmic methods for verifying tem- 
poral specifications of finite-state systems [CGP99]. 
This derives its significance both from the fact that 
many synchronization and communication protocols 
can be modeled as finite-state systems, as well as from 
the great ease of use of fully algorithmic methods. A 
frequent criticism against this approach, however, is 
that verification is done after significant resources have 
already been invested in the development of the pro- 
gram. Since systems typically contain errors, verifica- 
tion simply becomes part of the development process. 

The critics argue that the desired goal is to use the 
specification in the system development process in or- 
der to guarantee the design of correct systems. This 
is exactly what synthesis algorithms do. Despite this 
criticism, synthesis tools are not as popular in the in- 
dustry as verification tools. There are several reasons 
for that: the scope of synthesis algorithms has been 
quite limited, their complexity is high, and they do not 
always produce practical systems, where practicality 
is measured in a variety of ways, such as optimality 
(say, number of latches required for implementing the 
system in hardware, or number of messages needed to 
be passed between the underlying processes), testabil- 
ity (the ability to test hardware without access to all 
the internal variables), and the like. 

In this paper, we significantly extended the scope 
of synthesis to include many practical applications. 
We claim that the high complexity of the problem is 
not really a serious objection to the potential useful- 
ness of synthesis. First, we note that experience with 
verification shows that nonelementary algorithms can 
nevertheless be practical, since the worst-case com- 
plexity does not arise often. For example, while the 
model-checking problem for specifications in second- 
order logic has nonelementary complexity, the model- 
checking tool MONA [EKM98, Kla98] successfully ver- 
ifies many specifications given in second-order logic. 
Second, we argue that synthesis is not harder than 
verification. This may sound as a wishful thinking, as 
it contradicts the known fact that while verification is 
easy (linear in the size of the model and at most ex- 
ponential in the size of the specification), synthesis is 
hard (nonelementary). There is, however, something 
misleading in this fact: while the complexity of synthe- 
sis is given in terms of the specification, the complexity 
of verification is given with respect to both the speci- 
fication and the (much bigger) system. In particular, 
in a distributed setting, it is shown in [Ros92] that 
there are LTL specifications ipn, of length 0(n), and 
architectures with k processes such that the smallest 
strategy that realizes ipn in the given architecture has 
k-exp(n) states. What is the complexity of verifying 
whether a system satisfies ?/>„? Even if verification is 
linear in the size of the system, it would be nonele- 
mentary in n for correct systems, just as the synthesis 
problem, since such systems necessarily have at least 
k-exp(n) states! 

In summary, we believe that the real challenge that 
synthesis algorithms and tools face in the coming years 
is mostly not that dealing with computational com- 
plexity, but rather that of making automatically syn- 
thesized systems more practically useful. 
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Abstract 

We propose a natural subclass of regular languages 
(Alphabetic Pattern Constraints, APC) which is ef- 
fectively closed under permutation rewriting, i.e., 
under iterative application of rules of the form ab —> 
ba. It is well-known that regular languages do not 
have this closure property, in general. Our result 
can be applied for example to regular model check- 
ing, for verifying properties of parametrized linear 
networks of regular processes, and for modeling and 
verifying properties of asynchronous distributed sys- 

tems. 
We also consider the complexity of testing mem- 

bership in APC and show that the question is com- 
plete for PSPACE when the input is an NFA, and 
complete for NLOGSPACE when itisaDFA. More- 
over, we show that both the inclusion problem and 
the question of closure under permutation rewriting 
are PSPACE-complete when we restrict to the class 

APC 

1    Introduction 

Regular languages in their various representations 
(finite state automata, regular expressions, monadic 
first or second order logics, temporal logics, etc) are 
extensively used for modelling and verifying prop- 
erties of concurrent systems. The main reason is 
that regular languages enjoy important closure and 
decidability properties. They were used for mod- 
elling behaviors of systems in form of sets of compu- 
tational sequences, often modulo some abstraction 
relation [6, 14, 23]. Recently, regular model check- 
ing was proposed as a technique of symbolic rep- 
resentation of sets of configurations in the analysis 

of infinite state systems like pushdown automata, 
fifo-channel systems, and parametrized networks of 
processes, see e.g. [1, 3, 4, 5, 11, 19, 24]. A fun- 
damental problem which appears in all these areas 
is then the following one: Given a regular language 
L and a relation 1Z on sequences given either by a 
transducer or a rewriting system, we want to com- 
pute - if possible- the set Tl*(L), which is the 11- 
closure of L [TV denotes the reflexive, transitive 
closure of 1Z). Since unrestricted rewriting systems 
have full computational power, we have to impose 
restrictions on the rewriting rules and on the reg- 
ular languages we consider, in order to be able to 
compute TZ*(L). In this paper we consider permu- 
tation rewriting rules of the form ab —► 6a, where 
a,b are letters of a given alphabet E. Such rewrit- 
ing rules are usually called semi-commutation rules 
in Mazurkiewicz trace theory [7]. Our primary goal 
is to determine a suitable subclass of regular lan- 
guages for which we can effectively compute the H- 
closure, for any semi-commutation rewriting system 

n. 
The problem of computing the closure of a lan- 

guage under a semi-commutation rewriting systems 
appears naturally in several areas. For instance, 
partial-order reduction methods [9, 17, 22] applied 
in traditional model-checking rely on the fact that 
the property we want to verify does not distinguish 
different linearizations of the same partial order. 
This allows to perform an improved, reduced ex- 
ploration of large systems. In the simplest setting, 
a partial-order property means that the property is 
closed under partial commutation rules, i.e., (sym- 
metric) rules of the form ab <-> 6a, meaning that two 
actions a and 6 are causally independent. However, 
it is often much more convenient to express a prop- 
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erty (or its negation) as a set of behaviors (or bad 
behaviors), regardless of all possible interlcavings 
between independent actions. Therefore, if a given 
property <j> is not a partial-order property, then we 
can first compute its closure Tl*{<j>). The interest in 
doing this is that closing <f> is in general much less 
expensive than a full exploration of the system. 

In the context of regular model checking [5, 11, 
19], a set of configurations is represented as a regu- 
lar language and the actions of a system are mod- 

eled as a rewriting system 11. Then, the verification 
problem amounts to compute the 7?.-closure U"(L) 
for a given set of initial configurations L. This al- 

lows for instance to analyze parameterized systems 
with arbitrarily many identical finite state processes 
which are connected linearly. Here, a configuration 
is a sequence of control states of individual pro- 
cesses, the i-th element of the sequence being the 
state of the ?'-th process.   Thus, sets of configura- 
tions of arbitrary lengths, corresponding to systems 
with arbitrary number of processes,  are described 
by a regular language. This allows a uniform veri- 
fication, i.e., for any number of processes. In proto- 
cols based on information exchange between neigh- 
bors (e.g., token exchange, mutual exclusion, leader 
election), certain transitions can be modeled by semi- 
commutation rewriting rules of the form ab -> ha. 
Being able to compute the ft-closure W(L) allows 
for instance to compute the effect of meta-transitions 
corresponding to the semi-commutation rewriting 
rules.   Take as an example a simple mutual exclu- 
sion protocol, where linearly ordered processes can 
exchange a token which gives the right to enter a 
critical section.    Suppose that the state of a pro- 
cess is 1 if it owns the token, and 0 otherwise. The 
initial configuration is then the regular expression 
10* (note that the number of processes is not fixed). 
An (abstract) transition rule of the system can be 
represented by the semi-cornmutation one-rule sys- 
tem U =  {10 -> 01}.   We can now compute the 

reachable set of configurations 7?.* (10*) = 0*10* and 
check for instance that the intersection with the set 

of bad configurations (0 + 1)*1(0 + 1)*1(0 + 1)* is 
empty. 

Thus, given a regular language L and a srmi- 
commutation relation 7v, we want to compute the 
reflexive, transitive closure 7v*(L). However, it is 
not hard to see that semi-commutation rewriting 
does not preserve regularity. In our setting we would 
like to have a subclass of regular languages which is 
effectively closed under several operations, such as 

union,   intersection and semi-commutation  rewrit- 
ing.    Closure under these operations allows us to 
perform automatically a sequence of operations as 
required  for example in the iterative fixed  point 
computations of regular model checking.   Clearly, 
we want a subclass of regular languages with a de- 
cidable membership problem.    The solution  pro- 
posed by this paper is the class of Alphabetic Pat- 

tern Constraints (APC), which appears naturally in 
many contexts of verification of concurrent systems. 
APC corresponds to finite unions of languages of 
the form E^E* • • -anS*, where every E,- denotes 
a subset of the alphabet E and every «,- G S denotes 

a single letter. For instance, the regular expressions 
in the token ring example above are APC expres- 
sions. APCs can be used for example for (negated) 
safety properties expressing the presence of patterns 
within computations or configurations, such as re- 
quired for mutual exclusion. The class of APCs ac- 
tually corresponds to the E2-leveI of the quantifier- 
alternation hierarchy of the first-order logic of se- 
quences [21].   We show that this class satisfies all 
the closure properties stated above.   In particular, 
our first  main result  is that APC! is closed under 
semi-commutation rewriting and we provide an ef- 
fective algorithm that computes the closure 7v*(/,), 
given a semi-commutation system V and an APC! 
language- f.. 

For regular mode] checking we consider also cir- 
cular semi-commutation rewriting. Indeed, the sim- 
plest interconnection topology in distributed com- 
puting is the ring topology. A (parameterized) con- 
figuration corresponds then to a circular word, i.e. a 
word .j'! ■■-.»■„ with the understanding that j-\ fol- 
lows .)■„. This means that .r, ■ • • x„ and its conju- 
gat<d words x,:.rk + ] ■ ■ -.)■„ j'i • • • xk_{ represent the 
same configuration. Thus, the set of configurations 
of a ring network is a set of words /, which is closed 
under conjugacy, i.e. L = Conj(/,). For instance, for 
the Token Ring Protocol the set of initial configu- 
rations on a ring is Conj(10*) = 0*10*. Our second 
main result shows that for any semi-commutation 
rewriting system 7v., the circular 7v.-closure (Conj o 
1Z*)'(L) of any language L C E* can be computed 
as long as the reflexive, transitive closure 7v* (/,) is 
computable. Por this we show that (Conjo7v*)* (L) = 
(Conjo7?.*)2lsl(L). This implies that for each APC 
language /. the circular ft-closurc (Conj o ■£*)*(/,) 
is in APC and can be effectively computed. 

In the last part of this paper we establish com- 
plexity bounds for basic problems concerning the 
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class of APC languages. We show that deciding 
whether a regular language belongs to APC is com- 
plete for PSPACE when the language is given by 
a non-deterministic automaton, respectively com- 
plete for NLOGSPACE, when the input is a de- 
terministic automaton. Moreover, we show that 
testing whether an APC language is closed under 
a semi-commutation rewriting relation, as well as 
the inclusion problem for APC, are both PSPACE- 
complete problems. These results suggest that APC 
is as "hard" as the whole class of regular languages, 
which means in some sense that APCs are expres- 
sive enough for specifying interesting properties. It 
is also interesting to note that APCs correspond to 
the smallest level in the quantifier-alternation hi- 
erarchy of first-order logic which has this "hard- 
ness property". Indeed, languages in Ej and 111 
correspond respectively to upward and downward 
subword-closed sets. For example, 111 is precisely 
the class SRE [1], for which it can be shown that 
inclusion can be checked in polynomial time. 

Related work: Problems related to closure of lan- 
guages under semi-commutations have been studied 
in the community of trace theory (see e.g. chap- 
ter 12 in: [7] for a survey). However, the prob- 
lems addressed here and our results have a differ- 
ent flavor. Our aim is to identify subclasses of 
regular languages which are closed under all semi- 
commutation rewriting relations, whereas classical 
results of trace theory aim at providing for a given 
semi-commutation relation 1Z sufficient conditions 
on regular languages L ensuring that the 7^-closure 
of L remains regular. Moreover, these conditions 
on the languages always depend on the relation 7£. 

APC languages have been intensively studied in 
logic and algebra. As mentioned above, they corre- 
spond to the E2-level of the quantifier-alternation 
hierarchy of first order logic, i.e., to formulas of the 
form 3*V*0, where <j> is quantifier-free. The class 
APC has also an algebraic characterization, it corre- 
sponds to level 3/2 of Straubing's concatenation hi- 
erarchy of star-free sets. Moreover, it is the largest 
hierarchy level known to be decidable [18]. 

The complexity of deciding whether a regular 
w-language is closed under commutation rewriting 
was considered in [16, 20]. Several works on regular 
model checking deal with the problem of computing 
the closure of a regular language under a rewriting 
system [2, 5, 8, 10, 19]. However, the techniques 
proposed in these papers are not complete, in gen- 

eral. Moreover, they do not cover the case of semi- 
commutation rewriting. 

2    Alphabetic Pattern 
Constraints 

In this section we define the class of Alphabetic Pat- 
tern Constraints (APC) and show that APC is closed 
under union, intersection and conjugacy, but not 
under complementation. 

Definition 2.1 Let'S be a finite alphabet. An atomic 
expression over E is either a letter a ofS or a star 
expression (a1+a2-|-- • -+an)*, where ai, a2,... , a„ £ 
E.  The set of star expressions is denoted by 5(E). 

A product p over E* is a (possibly empty) con- 
catenation e\e2 ■ ■ ■ en of atomic expressions e\,... , 
en over E.   We use e to denote the empty product. 

An Alphabetic Pattern Constraint (APC) over 
E* is an expression of the form Pi + - ■ -+pn, where 
p\,... , pn are products over E*. By APC(E) we de- 
note the set of regular languages described by some 
APC over E*. 

In the rest of the paper we will not distinguish 
between a regular expression and the language that 
it defines. However, the input for our algorithms in 
Sections 3, 5 will be an APC expression. 

It can be easily noted that the class of APCs 
is not closed under complementation. Consider for 
example the alphabet E = {a, 6} and the APC lan- 
guage E*aaE* + E*66E* + 6E* + S*a. It is not dif- 
ficult to check that its complement (ab)* does not 
belong to APC. 

Let us introduce some notations which will be 
used in the analysis of operations on APCs. Let p = 
ei ■ ■ -e„ be a product, then the length of p, denoted 
l(p) = n, is the number of atomic expressions in 
p. Let e = YliPi be an APC expression, then the 
length of e is defined as /(e) = max; l(pi). The size 
of an expression is the sum of the lengths of its 
products. For a language L we denote by a(L) the 
set of letters of E appearing in L. As usual, \L\ 
denotes the cardinality of L. For a string w £ E* 
and a letter a £ E, we denote by |u>|a the number 
of occurrences of a in w. 

We recall that two words x and y £ E* are called 
conjugated if x = uv and y = vu for some u, v £ 
E*. For a language L, we denote by Conj(L) the 
set {uv £  E*   |  vu £  L} of conjugates of words 
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from L. For a class of languages C to be closed 
under conjugacy we require that L £ C implies that 
Conj(L) EC. 

We conclude this section by stating some straight- 
forward closure properties of APC The proofs are 
not difficult and can be found in the full version of 
the paper. 

Proposition 2.1 The class APC is closed under 

union, intersection and conjugacy. 

Remark 2.1 While union and conjugacy are poly- 

nomial operations, computing the intersection of two 
APC languages yields an expression of exponential 
size. The luorst-case is indeed exponential, as shown 
by the following example. Consider the products 
pn = b*(ab*)n andq„ = [a*b)"a* each ofsize2n + l. 
Then {w £ (a + 6)* | |u>|a = |u>|b = n} = pn n q„ 
is a finite set with the property that every APC ex- 
pression for pn Pi qn is of exponential size. 

3    Semi-Commutation Rewrit- 
ing and APC 

Semi-commutations are a natural way of expressing 
causal independence in concurrent systems in an al- 
gebraic way. The original notion was proposed in 
the late 70's by Mazurkiewicz [12] for the semantics 
of Petri nets. Mazurkiewicz traces and semi-traces 
are a model of true concurrency with nice algorith- 
mical properties, which can be exploited for auto- 
matic verification methods. 

A semi-commutation relation TZ. defined over an 
alphabet E of actions is an irrcfiexive binary rela- 
tion, i.e., a subset of S x E \ {(a, a) \ a £ S}. The 
idea is that two actions a,b with (a.b) £ TZ are 
(partially) causally independent, in the sense that 
we can rewrite ab into ba in every context. In many 
cases the relation TZ. is asymmetric, for instance in a 
producer-consumer model we may rewrite cp —> pc, 
but not the other way round. 

It is not difficult to see that semi-commutation 
rewriting does not preserve regulairty. Consider for 
example the set L = {ab)* and the semi-commutation 
system TZ = {ba —>• ab}. Then. TZ*(L) is the (non- 
regular) set of all words having the same number of 
o's and 6's, and such that all their prefixes contain 
at least as many a's as 6's. Therefore, we cannot 
hope to represent the relation TZ* by a finite trans- 
ducer, in general. 

We associate with each semi-commutation rela- 
tion TZ a rewriting relation pn C E* x E", which is 
defined by (iv,w') £ p-jz if there exist wi, w2 £ E* 
and a, b £ E such that (a,b) £ TZ, w — w\abw2, 
and w' — wibau>2. As usual, we denote by p*^ the 
reflexive, transitive closure of p-R. For a language 
L C E*, we denote its U-closurt {v £ E* | 3M £ 
L,(u,v)ep*n} by 1l*(L). 

The notation of semi-commutations can be ex- 
tended to sets by letting for each subsets X, Y C E: 

(A', Y) £ n if x x y c n. 

Let TZ be a semi-commutation relation, then we de- 
note by 6-R the value 

STZ = max{|y| |yCE such that (a, Y) £ ft} . 

We will assume throughout the paper that TZ ^ 0, 
thus STZ > 0. 

Our first main result is stated in the theorem 
below. The remaining of this section consists in 
describing the algorithm underlying Theorem 3.1. 
Several proofs are omitted and can be found in the 
full version of the paper. 

Theorem 3.1 For each APC expression L, the 7Z- 
closurc 7v.*(L) belongs to APC and can be computed 
effectively. Moreover, the length of the computed 
expression is in Ü[(SR + 1)"   '). 

Since L £ APC(E) is a finite union of prod- 
ucts, its closure 7v*(L) is the union of closures of 
its products. Hence, it suffices to show how to com- 
pute effectively 7v*(p) for a given product p. For 
this we use the TZ—shuffle operation defined be- 
low. The idea is to compute TZ*(c\ ■••en) recur- 
sively, i.e., computing first T\*{e-) ■ ■ -e„) and using 
that ^"(fi) = ei. The recursive step means that 
we need to compute TZ'(cL), for an 7v-closed APC 
expression L and an atomic expression e, an oper- 
ation which will be performed also recursively. For 
our computations we need the following notations: 

Definition 3.1 LetTZ be a semi-commutation illa- 
tion. Given two words x and y o/E*, the TZ—shuffle 
of x and y, denoted by x UI-R y, is the set of words 
of the form xiyi ■ ■ -xnyn with x = x\ ■ ■ -xn, y — 

y\ • • • Vn ■ Xi: Vi £ S* for all 1 < i < n and such that 
(a{xj), a{yj)) £ TZ. for all j < i. 

The TZ.-shuf}le extends to sets X, Y C E* by let- 

ting 

X Uln Y = {x Hin y\z£ X, y £ Y}. 
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Note that for all 1,1/ 6 S*, we have TZ*(xy) = 
TV (x) III-/? TV{y). The next lemma shows how to 
compute TV{LK) when L and K are already Tl- 
closed. 

Lemma 3.1 Let L and K be two Tl-closed sets, 
i.e., we suppose that we have both TV{L) = L and 
n*{K) = K.  Then we have TV{LK) = L mn K. 

Since any atomic expression is 7v-closed we can 
state the following lemma: 

Lemma 3.2 Let t\, e.o,... ,en be atomic expressions 
and let p = e\e2 ■ ■ ■ en be a product, then we have: 

Tl*{p)=el HI* (e2mK (•••(en_1 mwe„) ■••))• 

By the preceding lemma we can compute Tl*(p) 
recursively. Lemma 3.3 and Proposition 3.1 below 
are the basic cases of our algorithm. 

Lemma 3.3 Let E be a subset of E and let a G E 
be a letter, then we have: 

E* HI* a = Tl*{E*a) = E*aE'* , 

where E' = {x G E \ [x, a) E Tl.}. 

Example 3.1 Consider the product p = (e + / + 
g)*d, and the semi-commutation relation Tl\ = 
{(f>d),(g,d)}.  Then the previous lemma yields 

n\ (p) = (e + /+</)* III d = (e + / + g)*d(f + g)* . 

The next proposition is the main technical result 
needed for the proof of Theorem 3.1. It shows that 
the 7v-closure of the product of two star expres- 
sions belongs to APC. In particular, note that the 
length of the products in the expression given below 
is bounded above by a constant which is polynomial 
in S and TZ. 

Proposition 3.1 Let E and F be two subsets o/E, 
then E* U1K F* = U*{E*F*) equals 

Y,E*(El + Fly---(En+Fn)*F\ 

where the sum is taken over all subsets E, and F,- 
of E satisfying the following conditions: 

• %^EnC---CElCE, 

• 0 / Fi C • • • C Fx C F, 

• (E{, Fj) E Tl for all 1 < j < i < n. 

Proof. The first equality can be inferred as previ- 
ously from Lemma 3.1 since E* and F* are closed 
under Tl. 

Let us consider now the second equality. It is ob- 
vious that F*(Fi+Fi)*... (En+Fn)*F* CTV{E*F* 
whenever F,- and F,- satisfy (E,,Fj)  E Tl for all 

j < i- 
Conversely, let w G E* EI-R F* = TV{E*F*). 

We can write w = u\V\U2V2 ■ ■ ■ umvm with w,- G 
E*, Vj E F*, and such that (Q(WJ), a(vj)) E Tl holds 
for all j < i. Clearly, we can assume that U{,Vj ^ e 
for all i ^ 1 and j ^ m. 

Consider the sequences (fc,-)i<j<ni (F,)i<,-<n and 
(F,)i<,<n defined inductively by: 

• ki = 1, k{ = min{j I A;,-_i  < j < m,Vj £ 

• Ei = a(uki+1 ■■■um), 

• Fi = {y€F\Vxe Et, (x, y) G 7?.}. 

By definition we have F!+i C F,- C F, hence F,- C 
F+1 C F for all i. Moreover^F,-, F) G Tl holds for 
all i, therefore (F,-, Fj) E Tl for all j < i. Finally, we 
note that uk,+\ ■ ■ -uk,+1 E E* and vk, ■ ■ -ffc1+1-i G 
F*, which yields the result. 

D 

Remark 3.1 Note that the cardinality of E\ is at 
most ö<R , since we require that F\ / 0 and (E\,Fi) G 
Tl.. Moreover, since there is a strict inclusion be- 
tween the Ei 's, the length of the products in the ex- 
pression for Tl* (E*F*) is at most 8-R +2. 

Example 3.2 Consider the product p = (a + b + 
c)*(e+ / + </)* > and the semi-commutation relation 
Tl-2 = {(a, e), (c,g), (b, e), (6, /)}. From the proposi- 
tion above it follows thatTl^(p) = (a + 6 + c)* IH-K2 

{e + f +9)* = (a + b + c)*{c"+gy(e + f + g)* +(a + 
b+c)*(a + b + e)*(b + e + f)*(e + f + g)*. 

We are now going to compute effectively Tl* (p) = 
TV{e\e2- ■ -en) and show that it belongs to APC. 
By Lemma 3.3 and Proposition 3.1 we have shown 
the result for n = 2. Suppose now that Tl*(e2 ■ ■ -e„) 

— ]C /1 /2 """ /fc 1 with fi denoting atomic expres- 
sions, and let us show that 7J*(eie2 • • -en), which 
equals J2 ei IIIn (/1/2 • • ■ fk), also belongs to APC. 
Thus, we only need to compute ej III^ (/1/2 • • • fn) 
and to show that it is of the required form. To do 
this we will distinguish two cases, depending on ej 
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being a letter or a star expression. The first case is 
straightforward: 

Lemma 3.4 Let a £ E and f\ 
expressions, then 

, fn   be atomic 

a HI7? (fih ■ ■ -fn) = Y!h ■ ■ -gjahjfj + x ■ ■ ■ fn 

j 

such that, for all i < j we have: 

• if fi £ 5(E),   then 9i £ 5(E)   with a(gi) = 

{x€a(fi) \(a,x)eK}, 

• if f,■ = b £ S and (a, b) £ 7v, then <]; = b. 

Moreover, hj = fj when fj £ 5(E) and hj = s 
when fj £ E. 

Example 3.3  LetTZ^ be the semi-commutation re- 
lation H3 = {(h,a),(h,e)}.  Then the previous lemma 
implies that h HI-/?, (a + b + c)* (a + b + e)* (b + e + 
/)* = a*h(a + b + c)'{a + b + e)* (b + e + /)* + (a + 
eyh(a + b+e)*{b + e+f)'. 

The next proposition generalizes Lemma 3.3 and 
Proposition 3.1. 

Proposition 3.2 Let E and F be two subsets o/E. 
a £ E a letter, and L be a language o/E*. then we 
have: 

1. E"   III*   («/,)   =   (F*   III,;   a){E'~   \\\R   L). 
where E' = {be E \ (b,a) £ V}. 

2. E" III R (F'L) equals 

Y      (E' UIK F'')(E'' mn L). 
(E',F')€K 

E'CE .F'CF 

Corollary 3.1 Let E and F be two subsets of E. 
and let L be a language o/E*, then F* III* (F'L) 
equals: 

Y/E
t{E1+Flr(E2 + F2y ■■■{£,+ Fk)'(El til* L) 

where the union is taken over all subsets E\ and F,- 
of E satisfying: 

• F,. C • • • C Fj C F, 

. 0 ^ Fi C • • • C Fk C F, 

• (E{, Fj) £ Tl for all 1 < j < i < k. 

Proof. The inclusion from right to left is straight- 
fonvard. By Proposition 3.2 it remains to show that 

(F* III* F'*)(F'* III* L) C 

Y E'(Ei + FiY ■ ■ ■ (Ek + F,)*(F* III* L), 

where £" C F and F' C F are subsets satisfying 
(F',F') E 7v. This can be obtained from Proposi- 
tion 3.1 applied to E" III* F'*, by noting that the 
sequence of (F;),- can be chosen such that each F; 
is maximal with the property that (a, 6) £ 7v for all 

a £ Ej.b £ Fi. HCIKT, F' C F,- for all i yields the 
claimed expression. 

D 

Example 3.4 Let 1\..\ be the semi-commutation re- 
lation nA = {(a,e).{c.g).{b,e),(bj),{a.d)}. Then 
from the last proposition and from example 3.2 it 
follows that 
(a + b+ c)' III*., (e + f + g)*d{f + ,,)" = 

(fl + 6 + c)'{c + g)'(c + / + g)'d(f + g)' + 
(a + b+c)-(a + b + e)'{b + c + f)-{c + f+!i)'d(f+n)' + 
[a +b+c)-(a + b + e)'da'{f + //)" . 

Proposition 3.2 and Corollary 3.1  yield the re- 
cursive step for computing E" 111 R (/I/J • • • /»): 

Proposition 3.3  Let  E   C   E   and let f\ /„ 
be atomic <xpressions. Then E" III* (f\f>---f„) 
equals 

1. For a star <xpnssion f\: 
EF*(F1+F1)*--(F,+F,)-(/':- III* /,■■■/„). 
where the union is taken over all subsi ts /-.',, /•',■ 
satisfying F, + 1 C F; C F, 0 ^ L\ C Fi+l  C 
Q(/I ) and (E,,Fj) £ K for all j < i. 

2. For a single litter f\ = a: 

F*«(F'*III* /,-■•/„). 

We can now describe the algorithm for comput- 
ing the closure of an APC expression ^ c i • • • e„ un- 
der a semi-commutation rewriting relation 7v. We 

compute recursively 7v*(f 2 • • •€„) = ]T fi ■■■fk- Tlic^ 
recursive step is given by Lemma 3.4, if e 1 is a let- 
ter. Otherwise, for fi = F* we apply Proposition 
3.3, which is itself a recursive algorithm. It is easily 
seen that each step preserves containment in APC. 
This shows Theorem 3.1. 
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Remark 3.2 We note that for a product p of length 
n the length of the products of the expression com- 
puted for 1Z* (p) is at most 0((5n + l)n). Moreover, 
since there exist 21s' + |£| different atomic expres- 
sions, it follows that the size of1Z*{p) is at most 
2o(|E|(«TC+i)")_ 

4    Applications 

As mentioned in the introduction, we can use our re- 
sults for applying partial-order reduction techniques 
in model-checking, even if the original property is 
not a partial-order property. This idea can be used 
for example in the validation of scenarios described 
by High-Level Message Sequence Charts (HMSC). 
HMSCs are a graphical specification language for 
communications protocols, standardized by the ITU 
and integrated in UML. An HMSC scenario is a 
partial-order model for asynchronous fifo message 
exchange of concurrent processes. Assume for ex- 
ample that we have a system S including two pro- 
cesses P and Q and that we want to verify that P 
cannot send more than two messages to Q before 
getting an acknowledgement back from Q. Let us 
denote the set of possible actions by E, the send 
action of P to Q by s, the receive action of Q from 
P by r and let EP (resp. EQ) denote events on 
P (resp. on Q). Hence, a bad scenario contains 
for example an occurrence of the sequence srsr, 
which means that two messages have been transmit- 
ted from P to Q without an acknowledgement be- 
tween them. So, let <f> = E*srsrE* be the set of se- 
quences containing this bad subsequence, and sup- 
pose we want to verify that an HMSC system S sat- 
isfies -i<j>. Clearly, <f> is not a partial-order property, 
since <f> does not contain for example the sequence 
ssrr. We can consider the semi-commutation rule 
rs —> sr which expresses that communication is 
asynchronous. By applying our algorithm with suit- 
able rules such as 72. = {rs —> sr] we obtain the 
partial-order property 7l*(<f>): 

E*s(E \ EP)*r(E \ (£P U EQ))*s(E \ EQ)VE* 

+E*s(E \ Ep)*sE*r(E \ EQ)*rE*. 

Now, for verifying that S satisfies -xj) we can con- 
sider a succinct representation of the system S, which 
corresponds to the transition system underlying S 
and which is polynomial in the size of the given 
HMSC system, and then check that S DTI*((f)) is 
empty.  Since we consider an 7^-closed property, it 

is not necessary to compute the closure of the sys- 
tem S, which is an expensive operation, and even 
impossible in general (linearizations of HMSCs are 
not regular [13]). The same holds also in the case of 
"positive reasoning": for verifying that S satisfies a 
property <f>, it suffices to construct the 7£-closure of 
4> and check that 5 C 11* (<j>). 

Further examples showing that APC properties 
occur naturally in the verification of concurrent sys- 
tems is the so-called "matching with gaps" prob- 
lem in HMSCs [15], which is a kind of weak model- 
checking. Other examples from distributed comput- 
ing are negations of (some) safety properties when 
APCs are used to express bad patterns (scenarios) 
like in the examples shown above. Furthermore, in 
the context of regular model checking, it turns out 
that the reachability sets of many infinite-state sys- 
tems and parameterized systems, including commu- 
nication protocols like the alternating bit and the 
sliding window, and parameterized mutual exclu- 
sion protocols such as the token ring, Szymanski's, 
Burns', or Dijkstra's protocols, are all expressible as 
APCs. Being able to compute the 72-closure 71* (L) 
for a semi-commutation system TZ allows us to com- 
pute the effect of meta-transitions corresponding to 
the semi-commutation rules, and hence to acceler- 
ate the process of computing the set of reachable 
configurations. 

5     Circular Rewriting 

In this section we consider the problem of comput- 
ing TV (L) when L consists of circular words. This 
amounts to assume that L is closed under conju- 
gacy, L = Conj(L). Recall that Conj(L) = {vu \ 
uv 6 L] denotes the closure of L under conjugacy. 
The question of computing the 72-closure in this 
framework arises naturally in regular model check- 
ing when processes are ordered circularly in a ring. 

Let 7?. C E x E be a semi-commutation relation 
over E. We associate with 1Z the circular rewriting 
relation TZC C E* x E* defined as follows. For any 
pair of words x and y in £*, we define (x, y) £ 1ZC 

if we can write 

uv 6 1Z*(x) and y £ Tl*(vu), 

for some u,v G £*. Note that the circular rewriting 
relation Ttc is the composition of the (rewriting) 
relations TV o Conj o TV, As usual, 1Z*C denotes the 
reflexive, transitive closure of 1ZC-   For a language 
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L we denote by ft*(L) the circular It-closure of L, 
defined as the set: 

ft*(L) = {«£E' |3wGLsuch that (u,t>) G ft*}. 

We will show in this section that the circular 
ft-closure ft*(L) of any language L (not neces- 
sarily regular) can be obtained by applying alter- 
natively conjugation and permutation rewriting a 
finite number of times. 

The main result of this section can be stated as 
follows: 

Theorem 5.1 Let L C £*, thenWc{L) = ftc|S|(L). 

As a first corollary, we obtain the closure of the 
class APC under circular rewriting. 

Corollary 5.1 Let L be a APC expression, then 
ft*(L) is in APC and is effectively computable. The 
length of the expression computed for 1Z"(L) is at 

most(Sr. + lfi!{L)^). 

Proof. This follows directly from ft* (L) = ft.?|S|(L) = 
(ft.*oCon.joft*)2lsl(L), together with and APC(S) 
being closed under semi-commutation rewriting and 
conjugacy (Theorem 3.1 and Proposition 2.1).      D 

In the remaining of the section we show Theorem 
5.1. The proof uses ideas from [7][Ch. 3]. It gen- 
eralizes (and simplifies) the proof given there for 
the case where ft is a symmetric relation. As in 
[7] we need a second relation C-R, called conjugacy 
relation, which is defined as follows for x.y £ 5]*: 

(•!-, y) € C-R if 3 z G E* such that zy G TZ'(xz) . 

Lemma 5.1 ftc C C-R and Cn if> reflexive and tran- 
sitive. 

Proof. For the first claim let x,y G £* be such 
that (x,y) G ftc. By definition, there exist u and 
v G E* such that uv G ft*(.r) and y G ft*(e»), then 
uy en'(uvu) C ft* (.!■«). 

For the second claim it is easy to see that C-R 

is reflexive. Let now x,y,z G E* be such that 
(x, y) G C-R and (y, z) G CR. Let then w and / G E* 
be such that wy G 1l*{xw) and tz G ft*(</0- Then, 
[urt)z G Ti'{wyt) C 1Z"(x(wt)), which shows that 

{x,z)€Cn. D 

Theorem 5.2 Let x, y G E*. Suppose that z £ T,* 
is such that zy £ TZ'(xz). Then there exist rn < 

2|£|, and words tQ, • • • ,tm G E* satisfying the fol- 
lowing properties: 

• t0 ■ ■ -tm £ ft*(x-), 

• 2/€ ft*(*m ■■•to), 

• {a(tj),a(ti)) £11 for all j > i + l. 

Proof. We only sketch the proof idea. We suppose 
that zy £ 7Z*(xz). Then a combinatorial lemma 
(Levi's Lemma for semi-traces, see [7][Ch. 12]) im- 
plies that there exist words u,v,p,q £ E* such 

that up £ ft*(x), qv £ ft*(z), z £ ft*(ur/), and 
y £ ft'(pv), such that (a{p),a(q)) £ ft. Since 
qv £ K'[uq) and |u| + |<?| < M + |~| if a: is nonempty, 
we can apply induction on |o-| -f \z\ in order to ob- 
tain the result. G 

Corollary 5.2 ft*. 
olvl 

nv '. 
2|S| Proof. First, we show that C-R C ft;1"'. Let (x,y) £ 

C-R with zy £ ft'(j-r) for some z. Let to, ■ ■ ■ ,tp be 
as stated in the Theorem 5.2. It suffices to show 
that {t0---tr,tp---t0) £ ft?|S|.  This is clue to the 
fact that {t01p ■■■tut,, 

i£{l....,p-l}: 

■to) £ ft.r and that for each 

(1o---1i1P---ii+i,ta---U-iir---ti)€Kc 

since 

■1,-itr ■ti£-R'(tP---ti+lto---1i) 

Indeed, to obtain the word to ■ ■ ■ ti-\tp ■ ■ ■ /; from 
tP ■ ■ ■ tj+ito ■ ■ -ti by applying ft, we start by moving 
/{+i from left to right, then /,+2, etc. 

From Lemma 5.1 we obtain that ft* C C-R. Since 

Cr. C ft 
D 

2|E| 
rlude finally that, ft* ft^l 

6     Complexity results 

In this section we consider basic complexity ques- 
tions concerning languages in APC. First, we ob- 
tain that both the problem of testing inclusion (or 
universality) and the problem of deciding whether a 
language in APC is closed under a semi-commutation 
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relation are PSPACE-complete. Clearly, these are 
basic operations when we want to perform model- 
checking on APC properties. For example, we might 
ask whether an APC property <j>i is covered by an- 
other property fa, i.e., whether <j>i C <j>2. The test 
for 7^-closure is important when we want to know 
whether a property <j> is already closed under semi- 
commutation rewriting, since it avoids computing 
the 7£-closed expression which has products of ex- 
ponential size. Moreover, in the fixed point compu- 
tations of regular model checking we check whether 
we have already computed the set of all reachable 
configurations by an equality test. 

For lack of space we omit all proofs of the section 
and refer to the full version of the paper. 

Theorem 6.1 The following problem is PSPACE- 
complete: 
Input: An APC expression L over'S*. 
Question: /sL = S*? 

Corollary 6.1 Deciding inclusion for languages in 
APC is PSPACE-complete. 

Theorem 6.2 The following problem is PSPACE- 
complete: 
Input:   An APC expression L over S and a semi- 
commutation rewriting system RCSxS, 
Question: Does W{L) - L hold? 

Next, we show that the membership problem for 
the class APC is PSPACE-complete when we are 
given a non-deterministic automaton. The same 
question is NLOGSPACE-complete, hence polyno- 
mial, when the input is a deterministic automaton. 
These two last results rely on the characterization 
of languages in APC by positive varieties given in 
[18]. It is worthnoting that the algorithm obtained 
in [18] has complexity in 0(|.4| • 21s'), i.e., it is lin- 
ear in the size of the automaton and exponential in 
the size of the alphabet. Theorem 6.4 below im- 
proves the result by giving an algorithm which is 
polynomial in both \A\ and |E|. 

Theorem 6.3 Deciding whether a regular language, 
given by a regular expression or a non-deterministic 
automaton, is an APC language, is a PSPACE- 
complete problem. 

Theorem 6.4 Deciding whether a regular language, 
given by a deterministic automaton, is an APC lan- 
guage, is an NLOGSPACE-complete problem. 

7    Conclusion 

We have identified a class of regular expressions 
which appears naturally in many contexts, in par- 
ticular in modeling and verifying concurrent sys- 
tems and in regular model checking, and we have 
studied its closure properties and its complexity. 

In particular, we have shown that the class of 
APCs is effectively closed under semi-commutation 
rewriting (for any such rewriting system). As far 
as we know, this is the first time that a non-trivial 
subclass of regular properties has been shown to en- 
joy this property. As mentioned previously, APCs 
correspond to level 3/2 in Straubing's concatena- 
tion hierarchy, and to level £2 in the quantifier- 
alternation hierarchy of first-order logic. It is inter- 
esting to note that this is the largest class in both 
hierarchies which is closed under semi-commutation 
rewriting. However, this raises the question of find- 
ing other subclasses of regular languages which have 
the same closure properties as APC. A minimal 
requirement on such classes is that Parikh images 
of their languages should correspond to Presburger 
formulas where linear constraints do not involve 
more than one free variable. It can be seen for in- 
stance that this property does not hold for (ab)' 
whereas it holds for all APC languages. 

Another novel contribution of our paper is to 
show that APCs are also closed under circular semi- 
commutation rewriting. Actually, our proof holds 
for any class of languages which is effectively closed 
under semi-commutation rewriting and conjugacy, 
since we show that for any system TZ, computing 
the circular 7v-closure reduces to a finite iteration 
(two times the size of the alphabet) of the com- 
putation of the 7v-closure in alternation with con- 
jugacy. Our result on the closure of APC under 
semi-commutation rewriting can be applied in mod- 
eling and verifying automatically parametrized net- 
works having a ring topology, where information is 
exchanged between neighbors. Then, an interest- 
ing problem is to extend this work to similar sys- 
tems with other kinds of topologies such as trees 
and grids. 
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Abstract 

A temporal logic query checker takes as input a 
Kripke structure and a temporal logic formula with a 
hole, and returns the set of propositional formulas that, 
when put in the hole, are satisfied by the Kripke struc- 
ture. By allowing the temporal properties of a system 
to be discovered, query checking is useful in the study 
and reverse engineering of systems. 

Temporal logic query checking was first proposed 
in [2]. In this paper, we generalize and simplify Chan's 
work by showing how a new class of alternating au- 
tomata can be used for query checking with a wide range 
of temporal logics. 

1     Introduction 

As pointed out by Chan in [2], model checking is as 
often used for understanding a design as for verifying 
its correctness. One rarely begins the study of a design 
with a complete specification in hand. Instead, one 
identifies a few key properties, expresses them in tem- 
poral logic, and checks them against the design. Some 
of the properties usually fail to hold, so the properties 
(and possibly the design) are revised and rechecked. 
As this process iterates one develops a more detailed 
picture of the properties the design satisfies or should 
satisfy. 

To speed the process of design understanding, Chan 
proposed temporal logic query checking [2]. Here one 
works with a temporal logic formula containing a place- 
holder, or hole. A query checker returns the strongest 
propositional formula that, when put into the hole, is 
satisfied by the design. For example, given a design 
and the CTL query AG?, the query checker will return 
the strongest invariant of the system; i.e. the strongest 
propositional formula that is satisfied in every state of 

the design. Thus, a query checker allows the mecha- 
nization of much of the trial-and-error work done while 
analyzing a design. 

The aim of this paper is to extend and simplify 
Chan's work. Chan studied CTL query checking, and 
was interested in queries for which a single strongest 
solution exists, called valid queries in [2]. He showed 
that it is expensive to determine whether a CTL query 
is valid, and identified a syntactic class of CTL queries 
such that every formula in the class is valid. His query- 
checking algorithm works only with queries in this 
class. In contrast, we are interested in all CTL queries, 
even those that have multiple maximally-strong solu- 
tions. Furthermore, we do not restrict our attention 
to CTL. Our query-checking approach is defined for an 
arbitrary temporal logic. 

We simplify Chan's work by showing that query 
checking can be accomplished by adapting existing 
model-checking algorithms. In particular, we show how 
to adapt the automata-theoretic approach to model 
checking of Kupferman, Vardi and Wolper [8] to solve 
the query-checking problem. 

In the following section of the paper we define 
the query-checking problem and compare it to model 
checking. In Section 3, we present some properties of 
lattices that are central to understanding the solution 
space of query checking. In Section 4, we outline our 
approach to query checking and introduce a new class 
of alternating automata. In Section 5, we show how 
a query-checking algorithm can be obtained for any 
logic having a translation to alternating automata, and 
we describe the application of this approach to CTL 
queries. In Section 6 we present some examples. Proofs 
of most theorems are omitted in this extended abstract. 
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2    Problem Statement 

In this section we define the query-checking prob- 
lem. Our definition is relative to any temporal logic 
that is interpreted on Kripke structures and that allows 
atomic propositions as formulas. We write (A, s) |= 0 
if state s of Kripke structure A satisfies temporal logic 
formula 0. 

A query is an expression obtained by replacing a sin- 
gle atomic proposition in a temporal logic formula by 
the symbol ?, which is referred to as the "placeholder 
(or hole) of the query. Substituting the placeholder 
of a temporal logic query by a propositional formula 
(i.e., a formula built only from atomic propositions 
and boolean operators) yields a temporal logic formula. 
We write <j>[ip] for the formula obtained by substituting 
propositional formula T/> for the placeholder in query <j>. 
We also accept temporal logic formulas themselves as 
queries. If 0 is a temporal logic formula, then 0[-0] is 
identical to 0. 

A propositional formula rp is a solution to a query 
0, relative to state s of Kripke structure A, if (A', s) \= 

0[# 
A positive query is a query 0 that is monotonic with 

respect to its placeholder: if -ip\ =>■ V'2 then 0[V']] => 
0['02] (where => denotes logical implication). In what 
follows we consider only positive queries. With such a 
query it makes sense to compute only maximally strong 
solutions, because from these solutions all others can 
be inferred1. Formally, let PF(P) stand for the set of 
prepositional formulas that can be built from a set P of 
atomic propositions. The ordering < on set PF(P) is 
defined as -01 < -02 iff 4>\ => V;2- The resulting ordered 
set (PF(P),<) is a boolean lattice, which we refer to 
as Lp. For any ordered set (A,<) and B C .4, we 
define min(B) by {b € B | W 6 B.b' < b => V = b}. A 
subset B of A is minimal if min(B) = B. 

Definition 1 Let P be a set of atomic propositions, 
and let P' be a subset of P. Let K be a Kripke struc- 
ture containing state s, and let 0 be a query, both 
defined over P. The query-checking problem is to com- 

pute the set min{V; <E PF(P') \ (K,s) (= 0[V']} of 
strongest solutions to 0. ■ 

We write [(A', .s), <f\p>, or [(A', s), 0] for short, for the set 
of strongest solutions to query ip relative to state s of 
Kripke structure A and set P' of atomic propositions. 

'Our restriction to positive queries does not reduce generality. 
Suppose we had a query with a negated placeholder. We could 
compute the solution set for this query by removing the negation 
on the placeholder, computing the solution set. for the resulting 
query, negating each formula in this set, and then interpreting 
the result as the set of weakest solutions to the query. 

For a query 0 without a placeholder, query check- 
ing reduces to model checking. If (A, s) ^ 0, then 

(A, s) \£ (t>bl'] f°r aM propositional formulas if), and 
hence [(A, s),0] — 0. Otherwise (A, s) \= 0, so 
(A, 5) |= <j>[i/j] for all propositional formulas, and hence 
[(A, s), 0] = {false}. Since query checking is a general- 
ization of model checking, it is at least as hard. Con- 
versely, it is easy to show that query checking itself can 
be reduced to several model-checking problems. 

Theorem 2 Given a fixed set P' of atomic proposi- 
tions and a temporal logic TL, the query-checking prob- 

lem and the model-checking problem for TL have the 

same complexity in the size of the Kripke structure and 

in the size of the query/formula. 

Proof:    A naive query-checking algorithm for solving 

[(A', s), 4>]p' consists of enumerating all L = 22 pos- 
sible solutions ip, checking whether (A, s) |= </>[i/>] for 
each such ip, and then returning only the minimal ele- 
ments from that set. Query checking is thus reduced to 

at most 22 model-checking problems with a formula 
of length at most \4>\ +0(2lp'l). ■ 

Since there can be 0(22 ) minimal solutions to a 
query-checking problem, parameter P' provides a way 
to control the complexity of query checking in practice, 
by specifying the atomic propositions that will appear 
in solutions computed for the query. 

In the remainder of this paper, we develop a 
constructive algorithm for solving the query-checking 
problem that can converge directly to its minimal so- 
lutions, instead of guessing and checking exponentially- 
many individual potential solutions one by one as done 
with the above naive algorithm. 

We illustrate the query-checking problem and our 
ideas to solve it by presenting examples of queries in 
the temporal logic CTL [5, 10]. Let p range over a set 
P of atomic propositions. The abstract syntax of CTL 
is defined from state formulas <j> and path formulas ip 
as follows: 

(j>    ::=    p    -ip \ 4>i A 02 \ <t>i V 02 | A'ij> \ Ei/) 

4>    ::=    X(f> U4>2 Ufa 

A CTL formula is a state formula. The closure of a 
CTL formula 0, written cl(<j>), is defined as the set of 
all state subformulas of 0. The size |0| of a formula 0 
is defined as the number of elements of c/(0). 

A CTL formula is interpreted with respect to a 
Kripke structure K = (P, 5, So, R, L) where P is a finite 
set of atomic propositions, S is a finite set of states, s0 

in S is the initial state, R C S x S is a total transi- 
tion relation on states, and L : S —* 2    is a labeling 
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{p} {p} 

(q) {p} {q} (P,q) 

Figure 1. Example Kripke structures Kx and K2 

function that maps each state to a set of atomic propo- 
sitions. A path w = So, si,... of a Kripke structure is 
an infinite sequence of states such that (s;,s;+1) £ R 
for all i > 0. We write wl for the ith state of path w, 
with w° the first state. Also, we write paths(s) for the 
set of all paths w in K such that w° is s. 

Given a Kripke structure K — (P,S,s0,R,L), a 
state formula 0 satisfies a state s of K, and a path 
formula ijj satisfies a path w of K, according to the 
following inductive definitions. 

(K,s)\=p 

(K, s) \= -vp 

(A» Ml   A   02 

(AT, a) Mi V 02 

(K,S)\=ATI> 

(K,S)\=E1> 

(K, w) \= Ar0 

def 

def 

def 

def 

def 

def 

def 

def 

peL(s) 

{K, s) \= 02 and (K, s) \= 0 

(K, s) \= 4>i or (K, s) \= cj>2 

Vw £ paths(s).(A, w) (= iß 

3w s paths(s).(A', w) \= 4> 

(K, w)\=4>iU 02     =     3i.(üf,»') |= 02 and 

Vj<i.(ürV)Mi 
(X, w) (= 0x W 02     =

f    Vi.(K, w') |= 02 or 

3j < i.(A',wJ) (= 0x 

The class of CTL queries we allow are those for 
which negation is not applied to the placeholder. All 
such queries are positive. 

Consider the CTL query A{falseUl) (sometimes 
written AC.) and Kripke structure K\, which is shown 
on the left of Figure 1. The formula A(false U 0) holds 
if formula 0 holds everywhere along all paths of a struc- 
ture. A solution to the query is therefore a maximally- 
strong propositional formula that holds everywhere in 
the Kripke structure. Informally, the strongest solution 
of true U ? for the left path in the example is p / q, and 
strongest solution for the right path is p A -<q. There- 
fore, the strongest solution that holds for all paths is 

Consider the same query and Kripke structure K2- 
Here the strongest solution on the left branch is p ^ q 

and the strongest solution on the right branch is p. The 
strongest solution for both paths is therefore p V q. 

Now, consider the CTL query E(trueU?) (some- 
times written EF1) and Kripke structure K\. A solu- 
tion to this query is a maximally-strong propositional 
formula that holds anywhere in the Kripke structure. 
This query on K\ has two maximally-strong solutions: 
p A -15 and q A ->p. The same query evaluated on K2 

has three maximally-strong solutions: p A ->g, q A -ip, 
and p A q. 

3     Solutions to Queries 

In model checking with alternating automata, con- 
junction and disjunction operations are performed on 
truth values. In our algorithm for query checking, anal- 
ogous operations are performed on sets of maximally- 
strong propositional formulas. These operations are 
defined as the meet and join operations of a lattice. In 
this section we define this lattice and show properties 
of the meet and join operations. 

To begin, recall that we write -01 < V'2 f°r propo- 
sitional formulas tpi and tp2 if ipi => ip2. Also, given 
a set P of atomic propositions we write Lp for the 
boolean lattice (PF(P), <) having as its elements the 
propositional formulas built from elements of P. The 
left-most lattice of Figure 2 is Lp, where P contains 
only the single atomic proposition p. 

Before going directly to the definition of a lattice 
on sets of maximally-strong propositional formulas, we 
will define a related lattice. Consider the set of all so- 
lutions to a query, not just the minimal ones. Because 
our queries are positive, the set of all solutions to a 
query is a set of propositional formulas that is closed 
under "going-up" with respect to <. In other words, 
if some propositional formula belongs to the the set, 
then so does every weaker formula. Given an ordered 
set (A, <) and a subset B of A, we define 

]B =f {a G A I 36 £ B.b < a} 

A subset B of A is an up-set if ]B = B. We write 
U(A) for the set of all up-sets of A. Lattice theory (see 
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{false,p,~p,true} _ 

true 

false 

-p,truc} -P) 

Figure 2. Lattices LP, Lp, and Z/P"'n for P = {p} 

Sec. 8.20 of [6]) tells us that if A is finite then U(A) is 
a finite, distributive lattice, with elements ordered by 
set inclusion. It is easy to see that the meet and join 
operations of U(A) are just set intersection and union. 

Given a set P of atomic propositions, let Lp be the 
lattice U(PF(P)), which is finite and distributive, but 
not boolean (see Lemma 8.21 of [6]). The middle lat- 

tice of Figure 2 is Lp for P = {/>}. Each element 
of this lattice is a possible set of solutions to a query 
in which the set of atomic propositions contains only 
atomic proposition ;;. Although not evident from Fig- 
ure 2, lattice Lp grows much faster than Lp as the set 
P of atomic propositions grows. 

Each element of Lp can be represented by its min- 
imal elements. Recall from Section 2 that min(.4) 
stands for the minimal elements of an ordered set .4. 

Proposition 3 Let, {A, <) be. an. ordered set. with 
D,C C A.   Then 

Proposition 4 Let, A, B, and C be elements of L™'". 
Then 

min( ]B)    = 

min(B Li C)    = 

min(B) 

min(min{B) U min(C)) 

From Lp we get an isomorphic lattice L'p
in by ap- 

plying min to each element. Each element of Lp'n 

represents a set of maximally-strong prepositional for- 
mulas, i.e., a candidate set of solutions to a query. The 
ordering of L"p"

n is derived from the ordering of Lp: 

A < B in Lp if \A C }B. Similarly, the meet and join 
operations of Lp"" (which we write as _A_ and _V_) arc 

derived from L„. 

AA_B    c=     min(T/ln IB) 

Ay_B    c=     min (TAU "\B) 

The right-most lattice of Figure 2 is Lp'n for P = {p}. 
Defining _A_ and _V_ as the meet and join operations 

of a distributive lattice is helpful because we immedi- 
ately learn some properties of _A_ and _V_. 

AA_B 

Ay_B 

.4A(ßAC) 

Ay_(By_C) 

.4A(ßvC) 

.4V(BAC) 

BA_A 

By_A 

(.4Aß)AC 

(Ay_B)y_c 

(A_ALB)y_{Aj^C) 

(Av_B)A.Uy-C) 

It is awkward to compute AA_B and AV_B using 
the definitions of _A_ and _V_ directly because they first 
expand .4 and B to |.4 and }B. The following charac- 
terizations allow _A_ and _V_ to be computed directly 
using minimal sets. 

Theorem 5  Let A and B be elements of £,'/,"'".   Then 

AA_B     =     min({(i V b\ a E A and b € B}) 

AV_B    =     min(AuB) 

4     Extended Alternating Automata 

Inspired by the automata-theoretic approach to 
model checking of [8], we propose the following ap- 
proach to query checking. Given a temporal logic query 
4> and a Kripkc structure A', we (1) build an alternating 
automaton representing (f>, (2) compute the product of 
this automaton with A', and finally (3) check whether 
the language accepted by the product automaton is 
empty. A key step in developing this approach is to 
discover a kind of alternating automaton appropriate 
for representing a temporal logic query. In this sec- 
tion we introduce a new type of alternating automata 
for this purpose, which we call extended alternating au- 
tomata (EAA). 

The novel aspect of alternating automata [3] is that 
the transition function maps an automaton state and 
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X3 respectively on the right-hand side are replaced by 
{false}, since the state is accepting. Then, the values 
for X2 and x$ are computed by applying the definition 
of _A_: one obtains X2 — {q A -ip} and x3 = {p A -*q}. 
The algorithm then backs up to X\ and computes the 
value of xi, which is {p ^ q}. This value is the solution 
to the query [(K\, sQ), A(false U ?)}. 

7    Discussion 

We have presented a general automata-theoretic ap- 
proach to temporal logic query checking. The approach 
is general in the sense that if one has a translation from 
queries to EAA in the sense of Theorem 7, then check- 
ing nonemptiness of the product automaton gives the 
solution to the query. For CTL we showed how this 
translation can be derived directly from the transla- 
tion of CTL to alternating automata. Translations for 
queries in other temporal logics (such as the modal mu- 
calculus) can be derived similarly. 

We have defined EAA relative to an arbitrary finite 
lattice, although for query checking we need only EAA 
based on a lattices of the form Upln. A general defini- 
tion for EAA was chosen because it is simpler, and also 
because we can imagine other uses for the more gen- 
eral form. For example, EAA could be used for model 
checking multi-valued temporal logics [7, 1, 4]. 
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Abstract 

Motivated by the need to export relational databases 
as XML data in the context of the Web, we inves- 
tigate the typechecking problem for transformations 
of relational data into tree data (XML). The prob- 
lem consists of statically verifying that the output of 
every transformation belongs to a given output tree 
language (specified for XML by a DTD), for input 
databases satisfying given integrity constraints. The 
typechecking problem is parameterized by the class 
of formulas defining the transformation, the class of 
output tree languages, and the class of integrity con- 
straints. While undecidable in its most general for- 
mulation, the typechecking problem has many special 
cases of practical interest that turn out to be decid- 
able. The main contribution of this paper is to trace 
a fairly tight boundary of decidability for typechecking 
in this framework. In the decidable cases we exam- 
ine the complexity, and show lower and upper bounds. 
We also exhibit a practically appealing restriction for 
which typechecking is in PTIME. 

1    Introduction 

Since Codd [8], databases have been modeled as 
first-order relational structures and database queries 
as mappings from relational structures to relational 
structures. This captured well relational databases, 
where both data and query answers are represented 
as tables. 

Today's technology trends require us to model data 
that is no longer tabular. The World Wide Web Con- 
sortium has adopted a standard data exchange for- 

*Work supported in part by the U.S.-Israel Binational Sci- 
ence Foundation under grant number 97-00128. 

t Post-doctoral researcher of the Fund for Scientific Re- 
search, Flanders. 

*This author supported in part by the National Science 
Foundation under grant number IIS-9802288. 

mat for the Web, called Extended Markup Language 
(XML) (see [1]), in which data is represented as a 
labeled ordered tree, rather than as a table. XML 
is rapidly becoming the de facto data format on the 
Web, and many industries (e.g. financial, manufac- 
turing, health care) are migrating their application- 
specific formats to XML. All major database vendors 
offer now tools for exporting relational data as XML, 
thus making it easier for companies to define XML 
views of their relational data and share it with busi- 
ness partners over the Web. An important aspect 
of XML is that it allows users to define types. A 
type is a tree language, and the current standards 
for XML types (DTD and XML-Schema) correspond 
to restricted regular tree languages. XML data ex- 
change is always done in the context of a fixed type: 
a community (or industry) agrees on a certain type, 
and subsequently all members of the community cre- 
ate XML views of their relational data that are of 
that type. 

In this paper we study the problem of mapping 
relational data into tree data, specifically addressing 
the typechecking problem. Given a mapping and a 
type for the output tree, we wish to automatically 
check whether every database is mapped to a tree of 
the desired output type. As explained, this is a crit- 
ical problem in XML data exchange. In addition, as 
we show here, this problem is also technically inter- 
esting and non-trivial from a theoretical perspective. 

We define a language, TreeQL, expressing map- 
pings from relational structures to trees. A map- 
ping m in TreeQL is specified as a tree where each 
node is labeled by a logical formula, possibly with 
free variables, and a symbol from a finite alphabet 
S. An ordered relational structure is mapped into a 
E-tree whose nodes consists of all tuples that satisfy 
some formula in the tree, and whose edges are defined 
based on the edges in m. In the typechecking prob- 
lem we are given a regular tree language, called the 
output type, and a set of integrity constraints, and are 

0-7695-1281-X/01 $10.00 © 2001 IEEE 
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asked to check whether every input structure satisfy- 
ing the constraints is mapped into a tree in the output 
type. Solving the typechecking problem boils down 
to checking whether the strings generated by the or- 
dered sets of tuples satisfying a sequence of logical 
formulas belong to some regular language. The type- 
checking problem is parameterized by the fragment 
of TrecQL, the class of output types, and the class of 
integrity constraints. 

The typechecking problem in its various instanti- 
ations requires an understanding of the interaction 
between logic and tree languages. We found this in- 
teraction interesting, and had to develop distinct ap- 
proaches for the different instances of the typecheck- 
ing problem, combining techniques from finite-model 
theory, language theory, and combinatorics. 

It is easily seen that typechecking becomes unde- 
cidable when arbitrary first-order logic (FO) formulas 
are allowed in the mapping, due to a reduction from 
the FO finite satisfiability problem. Hence, we fo- 
cus our investigation on the particular case when the 
formulas arc conjunctive queries. When the output 
types are further restricted to star-free regular lan- 
guages, typechecking is decidable. When the output 
type is an arbitrary regular expression, typecheck- 
ing is still decidable for projection-free conjunctive 
formulas (the proof uses a combinatorial argument 
based on Ramsey's theorem). On the other hand, 
we show that even small extensions to the basic de- 
cidable cases lead to undecidability of typechecking. 
Thus, our results provide a fairly tight boundary of 
decidability of typechecking. A side benefit is new 
insight into the subtle interplay between constraints, 
query languages, and output tree types. 

Related work. Type inference is a well-studied 
topic in functional programming languages [15]. A 
type inference system consists of a set of inference 
rules that can be used to check whether a function 
(program) is type safe. This means that during exe- 
cution the program will never get into a state where it 
attempts to apply an operator to operands of wrong 
types. The problem we consider here is differentWe 
are checking a semantic property, namely whether ev- 
ery input database is mapped to an output tree of 
the right type, which is in contrast to the syntactic 
nature of applying the type inference rules. In our 
setting type checking rapidly becomes undecidable if 
we allow the transformation language or the output 
types to be too expressive. In contrast, type inference 
for functional programming languages (that are Tur- 
ing complete) is usually decidable for powerful type 
systems but is only sound. 

Our work is motivated by the practical need to 
typecheck  XML   views   from   relational   databases. 

SilkRoute [10] is a research prototype enabling an 
XML view to be defined from a relational database 
using a declarative language. The language TreeQL 
used in the present paper is an abstraction of the 
language used by SilkRoute. 

A different but related problem is that of type- 
checking tree transformations. In previous work [14] 
a subset  of the  authors studied the typechecking 
problem for transformations of unranked trees ex- 
pressed by fc-pebble transducers,  and showed that 
typechecking is decidable.   The unranked trees con- 
sidered there are labeled over a fixed, finite alphabet 
S. So they do not take into account the data values 
present in XML documents.  In subsequent work [3] 
we considered trees with labels from an infinite al- 
phabet, that model more closely XML trees where 
internal nodes have labels from a known, fixed al- 
phabet, while leaves contain data values from an in- 
finite domain. We showed that typechecking quickly 
becomes undecidable, even if one considers very re- 
stricted transformations. However, typechecking be- 
comes decidable for several restrictions on the class of 
transformations and/or the tree types. While some of 
the techniques in   [3] are similar in flavor to those in 
the present paper, there are considerable differences 
in the two settings. Relational structures can be en- 
coded as XML. but the integrity constraints do not 
have an analog in XML. Conversely, the DTDs that 
constrain XML documents cannot be expressed by 
the relational constraints we consider. However, some 
of the lower bound results in the present paper can 
be transferred to the XML context and strengthen 
results from [3].   A more detailed comparison is de- 
ferred to the full version of this paper. 
Organization The paper is organized as follows. 
The first section develops the basic formalism,  in- 
cluding our abstraction of XML documents, DTDs, 
and the variant of TreeQL used as transformation 
language. Section 3 presents the decidability results; 
Section 4 the complexity analysis; and Section 5 the 
undecidability results. The paper ends with brief con- 
clusions.   Due to space limitations, some proofs are 
only sketched or omitted entirely. 

2    Basic Framework 

We introduce here the basic formalism used through- 
out the paper, including our abstraction of XML doc- 
uments, DTDs, and the query language TreeQL. 

Trees. Trees are our abstraction of XML docu- 
ments [1], They capture the nesting structure of XML 
elements and their tags. We refrain from modeling 
data values as they are not relevant w.r.t. typecheck- 
ing.   Indeed, output types only constrain the struc- 
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ture of the output tree not the data values at the 
leaves. We consider ordered trees with node labels 
from a finite alphabet E. We also refer to such trees 
as E-trees. We denote by nodes(t) the set of nodes of 
a tree t; for a node v, we denote by lab(v) the label of 
v. There is no a priori bound on the number of chil- 
dren of a node; we therefore call these trees unranked. 
We denote the empty tree by e and the set of all trees 
over E by 7s- By root(i). we denote the root of t. 
To define the semantics of TreeQL programs we also 
need the notion of a forest which is just a sequence 
of trees. We employ the following notational conve- 
nience. By o-(h, ...,tn), where ii, ..., tn are trees, 
we mean the tree where the root is labeled with a 
and the i-th subtree is t\. 

Types and DTDs. DTDs and their variants pro- 
vide a typing mechanism for XML documents. We 
use several notions of types for trees. For C a class 
of string languages over E, a DTD over E w.r.t. C is 
a mapping from E to languages in C. We denote the 
class of all such DTDs by DTD(C). Let d G DTD(C). 
Then, a E-tree t satisfies d, if for every node v 
of t with children vi,...,vn, lab(ui) • • • lab(vn) G 
d(lab(v)). Note that, if n = 0, then s should be- 
long to <i(lab(f)). The set of trees that satisfy d is 
denoted by L(d). 

Obvious examples of classes C are the regular lan- 
guages (REG), the star-free regular languages (SF), 
and the context-free languages (CFL). When C are 
the regular languages our notion of DTDs corre- 
sponds closely to the DTDs proposed for XML docu- 
ments. Star-free regular languages are defined by the 
star-free regular expressions, which are build from 
single symbols and e, using concatenation, union, and 
complement. They correspond exactly to the lan- 
guages defined by first-order logic (FO) over the vo- 
cabulary {<, (OCT)CT(=E} where < is a binary relation 
and every Oa is a unary relation [13, 18]. A string 
w — (J\ .. ■ an is then represented by the logical struc- 
ture ({1,..., n}; <, (OtT)tTGE) where < is the natural 
order on {1,..., n}, and for each i,i G Oa iff c,  = a. 

We will consider an even simpler class of DTDs, 
which specify cardinality constraints on the tags of 
children of a node, but does not restrict their order. 
Such DTDs are useful either when order is irrelevant, 
or when the order of tags in the output is hard-wired 
by the syntax of the query and so can be factored out. 
We use a logic called SC, inspired by [16]. The syntax 
of the language is as follows. For every er G E and nat- 
ural number i, a=l and a-1 are atomic SC formulas; 
true is also an atomic SC formula. Every atomic for- 
mula is a formula and the negation, conjunction, and 
disjunction of formulas are also formulas. A string w 
over E satisfies an atomic formula o=l if it has ex- 

actly i occurrences of a, and similarly for a-1. Fur- 
ther, true is satisfied by every string. x Satisfaction 
of Boolean combination of atomic formulas is defined 
in the obvious way. As an example, consider the 
SC formula co-producer-1 —> producer-1. This ex- 
presses the constraint that a co-producer can only oc- 
cur when a producer occurs. One can check that lan- 
guages expressed in SC correspond precisely to prop- 
erties of structures over the vocabulary {<, (O^gs} 
that can be expressed in FO without using the order 
relation, <. Thus, SC forms a natural subclass of the 
star-free regular expressions. 

We have so far defined DTDs and several restric- 
tions. We next consider an orthogonal extension of 
basic DTDs, also present in more recent DTD propos- 
als such as XML-Schemas [4, 5]. This is motivated 
by a severe limitation of basic DTDs: their definition 
of the type of a given tag depends only on the tag 
itself and not on the context in which it occurs. For 
example, this means that the singleton {t} where t is 
the tree a(b(c),b(d)) cannot be described by a DTD, 
because the "type" of the first b differs from that of 
the second b. This naturally leads to an extension 
of DTDs with specialization (also called decoupled 
types) which, intuitively, allows defining the type of 
a tag by several "cases" depending on the context. 
Formally, we have: 

Definition 2.1. For a class of languages C, a 
specialized DTD over E w.r.t. C is a tuple r = 
(E,E',d, fx) where (i) E and E' are finite alphabets; 
(ii) d is a DTD over E' w.r.t. C; and (Hi) \x is a 
mapping from E' to E. A tree t over E satisfies a 
specialized DTD T, ifte fi{L(d)). We denote the set 
of all such specialized DTDs by S-DTD{C). 

Intuitively, E' provides for some a's in E a set of 
specializations of a, namely those a' G E' for which 
li(a') = a. We also denote by p the homomorphism 
induced on strings and trees. Interestingly, it turns 
out that the class S-DTD(REG) is precisely equiv- 
alent to the class of regular tree automata over un- 
ranked trees [7, 17]. This is more evidence that spe- 
cialized DTDs are a robust and natural specification 
mechanism. 

Logic. Consider some fixed relational vocabulary S. 
A database over S is just an S-structure defined in 
the usual way [2, 9]. We denote the domain of a 
database A by dom(A). Further, let £ be a logic 
over S. Then we denote the free variables occurring 
in ip G C by Free(ip). In the sequel, C will usually 
be the set of conjunctive queries over S, denoted by 

:The empty string is obtained by Acres <T=° and the emPty 
set by -"true. We, hence, use e and 0 as shorthands in SC 
formulas. 
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CQ. Formally, a conjunctive query is a positive exis- 
tential first-order logic formula <p(xi,... ,xn) having 
conjunctions as its only Boolean connective, that is, 
a formula of the form 3yi • ■ • 3ymip(y, x), where ip is a 
conjunction of atomic formulas over S (so, no equal- 
ities). By CQ with superscripts in {=,-■} we mean 
CQ where ip can contain equality and negations of 
atomic formulas, respectively. A conjunctive query 
is projection-free when there are no leading existen- 
tial quantifiers. Another logic frequently referred to 
in the sequel consists of the FO formulas of the form 
3x\/yip(x,y) with ip quantifier-free. We denote this 
class by FO(3*V*). 

In relational databases, one usually considers 
databases satisfying some integrity constraints [2]. 
These are sentences in a specific logic. A database 
A satisfies a set of constraints $, if A f= <p for ev- 
ery f e <t. We mainly consider constraints specified 
in FO(3*V*). Note that they encompass functional 
dependencies (FDs), but not, for instance, inclusion 
dependencies (IDs). Recall that FDs are expressions 
of the form X —> Y where X and Y are sets of coor- 
dinates of a relation, and X —> Y holds in a relation 
if whenever two tuples agree on X they also agree on 
Y.   IDs are of the form R{il ik] C S[ji jk] 
where R and S are relation symbols, and i].-..,U- 
and ji,. .. ,jk are natural numbers less than or equal 
to the arity of R and S, respectively. A database sat- 
isfies the above inclusion dependency iff 7rM      H (/?) C 
ftjx jk{S) where n denotes projection as usual. An 
inclusion dependency is unary when k = 1. A set $ 
of dependencies is cyclic iff either one of the following 
holds 

• $ contains a dependency of the form R[i] C R[j] 
with i 7^ j; or 

TreeQL programs are trees in TsX£. In the next def- 
inition, denote by formula(c) the formula associated 
to a node v. 

Definition 2.2. A TreeQL(£,E) program is a 

tree P e T^xc such that Frec(formv,la(v)) C 
Free(formula(v')), for all nodes v and v' where, v' is a 
descendant of v; in addition, the formula in the label 
of the root is equivalent to true. 

If £ or £ are clear from the context or not im- 
portant, we sometimes omit them. Sometimes, we 
abbreviate the label (er, true) simply by er. 

Let ^1 be a database over S, < a total order on 
dom(.4), and P a TreeQL program. 

Definition 2.3. The tree P(A, <) generated by P 

from A and < is defined as follows. Its nodes consist 
of pairs of the form (v. 8) where v is a node of P and 8 

an x-substitution (where x = Frec(formula(u))) such 
that A f= tp[6] for every formula ip labeling v or label- 
ing an ancestor of v in P. The root is (root(P),()) 
and nodes are ordered component-wise, using the node 
order in P for v and the lexicographic order < on 8. 
The edges in P(A. <) are ((v. 6). (v',8')) such that v' 
is a child of v in P and 8' is an extension of 8. Fi- 
nally the label of o node (v. 8) is the £ label of v in 
P. 

Example 2.4. Consider the TrccQL(CQ) program 

P = '-'oO-'i- i'2.'':i) (i-C- the tree has root node 
i\) with children V1.V2.V3) and lab(i'()) = {a. true), 
labivi) = (b.R(x.y)AR(y.x)). lab(v2) = (c.R(x.y)). 
Inb(v-.i) = (d.R(x.y)AR(u.v)). and consider database 
A in which R = {(i.j) | 0 < i < j < <)}. and the nat- 
ural order <  on {0 ,9}.   Then P(A. <) is a tire 
whose root has 10 children labeled b followed by 55 

i>   contains   dependencies    i?if?i]     C     R->[J>}.     children labeled c and followed by 552  = 3025 chil- 

R2H C R3\j3], .... Rm[i,n) C kljt}. "   '       drr.n labeled d. 

A set of dependencies is acyclic when it is not cyclic. 
We denote the class of acyclic inclusion dependencies 
by AcIDs. 

Finally, we recall the following technical notion. 
For a finite set of variables X. an X-substitution 8 
for A is a mapping from X to dom(.4). Let x be 
variables not occurring in X and let 5 be as many 
elements of dom(.4). Then 8\J {x ^ a} denotes the 
(X U {.x})-substitution that maps each x, to a, and 
every y e X to %). 

TreeQL. The transformation language we consider, 
mapping databases to trees, is an abstraction of 
RXL [10]. We refer to it as TreeQL. The queries 
are tree patterns where nodes are labeled with label- 
formula pairs. Therefore, denote by E x £ the set of 
pairs (<r,tp(x)) with a 6 E, and ip{x) a formula in C. 

We remark that RXL [10], the language TreeQL is 
an abstraction of. also allows to output data values 
occurring in the input database as labels of leaves in 
XML documents. However, as we study typechecking 
and output types do not constrain these data values 
we chose to omit them from the formalism. 

An extension: TreeQL with virtual nodes. We 
will use an extension of TreeQL that allows programs 
to define "temporary" nodes, called virtual that are 
eliminated in the final answer. To see why this is 
useful, consider an input binary relation R providing 
titles and speakers of talks (ordered alphabetically 
by title). Suppose we wish to output a tree listing 
under the root the ordered title/speaker pairs. This 
cannot be defined by a TreeQL program, because 
it cannot group the titles and speakers as required. 
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However, suppose we can use temporary nodes, 
identified by a special label #. Consider the query 
root((#, R(t, s)){{title, R(s, t)), {speaker, R(s, t)))). 
This produces one node labeled # for each tuple in 
R, whose children are the corresponding title and 
speaker. The ordered sequence of title/speaker pairs 
can now be obtained by a "flattening" operation 
that eliminates the # nodes and concatenates their 
children. 

More formally, let # be a special symbol not oc- 
curring in E. We denote by E# the set Eu{#}. The 
symbol # will be used to specify virtual nodes. De- 
fine the function A# which maps trees to forests by 
eliminating #-labeled nodes, recursively as follows. 
Let t be the tree <r(ii,... ,tn). Then 

M*)-{ A#(tl)>.. 
...,A#(i„))    ifa^#; 
,X#(tn)        if o- = #. 

Definition 2.5. A TreeQL(£, E) program P with 
virtual nodes is a TreeQL(£, E#) program where 
lab(root(P)) ^ {#} x £. We denote the set of all such 
programs by TreeQLvlrt(£, E). The tree generated by 
P from A and < is defined as \#(P(A, <)), and de- 
noted, by slight abuse of notation, also by P(A, <). 

Typechecking. We next formalize the central prob- 
lem of this paper. 

Definition 2.6. A TreeQL program P typechecks 
with respect to a set of constraints $ and an output 
type d iff P(A, <) C L(d) for every database A that 
satisfies <E> and every total order < on dom(A). 

Example 2.7. Continuing with Example 2.4, con- 
sider the DTD defined by the mapping d : 
{a, b, c, d} —> REG given by: 

d(a) = (b* .(c.c)* .(d.d)*) I (b* .(c.c)* x.(d.d)* .d) 

and d(b) = d(c) = d(d) = e. The type says that there 
are an even number ofc's and d 's or an odd number of 
both under nodes labeled a. Then the TreeQL program 
P in Example 2.4 typechecks w.r.t. this DTD. 

The typechecking problem is parameterized by (1) 
the fragment of TreeQL; (2) the output type; and (3) 
the integrity constraints. Therefore, we denote by 

TC[ft, V, 1C], 

the above decision problem where 72. is a fragment 
of TreeQL or TreeQLVIrt, V is a class of output 
types, and TC is a class of integrity constraints. 
To reduce notation, we abbreviate TreeQL(£) and 
TreeQLvirt(£) by £ and £virt, respectively; and, we 
abbreviate DTD(C) and S-DTD(C) by C and Cspec, 
respectively. 

Clearly, TC[£, V, XC] is undecidable for any logic 
£ for which satisfiability is undecidable. Indeed, for 
a sentence <p e £, consider the program result((a, ip)) 
with an output type d that maps d(result) to {e}. 
Then ip is satisfiable iff the program does not type- 
check w.r.t. d. 

In the sequel we focus on conjunctive queries, 
which correspond to the widely used select-project- 
join queries in SQL. As shown in Section 5, the type- 
checking problem quickly becomes undecidable. Nev- 
ertheless, as shown in the next section, we obtain de- 
cidability and even tractability for a large class of 
transformations. 

3    Decidability 

We present in this section our decidability results on 
typechecking TreeQL queries: 

(i) When restricting output DTDs to star-free lan- 
guages we show that typechecking is decidable 
for TreeQL(CQ='") programs and integrity con- 
straints in FO(3*V*). The proof gives a CO- 
NEXPTIME upper bound. In Section 4, we pro- 
vide the matching lower bound. 

(ii) By restricting the queries to projection-free CQs 
and the integrity constraints to FDs, we show 
that typechecking w.r.t. DTDs with full regu- 
lar expressions is decidable. The proof is based 
on Ramsey theory and yields a non-elementary 
upper bound. It is open whether this can be 
improved. 

In Section 5, we show that the above results are es- 
sentially optimal: slight increase of the power of the 
DTDs or the integrity constraints lead to undecidabil- 
ity. However, it remains open whether in (ii) above, 
the restriction to projection-free CQs is required. We 
first consider star-free output types and integrity con- 
straints in FO(3*V*). 

Theorem 3.1. TC[CQ= 
NEXPTIME. 

SF, FO(3*V*)] is in co- 

Proof. The decidability is shown by bounding the 
size of inputs that need to be checked to detect a vio- 
lation of the output DTD. Let R be a TreeQL(CQ='",) 
program, let d e DTD(SF), and let <E> be a finite set 
of FO(3*V*) sentences. 

We start by stating a technical lemma. Extend the 
star-free regular expressions by the constructs a=l 

and <7-\ These denote the languages {a1} and {<xJ | 
j > i}, respectively. 

Lemma 3.2. Let r be a star-free regular expression. 
Then r n a\ ■ ■ ■ <r*  is equivalent to a disjunction pr 
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of expression of the form, cr*1*1 • • -cr*"*"  where each Recall that if we find such an .4, R does not type- 
*j G {=>>} and ij € N.  Moreover, i\,...,in < \r\, check w.r.t. d. The overall algorithm consists of two 
the size of pr is exponential in \r\ + n, and pr can be stages: (i) For every node v labeled with a and with 

computed in time exponential in \r\ + n. children (Si,ipi(x,yi)), ..., (5n,i>n(x,yn)): compute 
„ . .    , , ._ the normal form for ->d(a) D St ■ ■ ■ 5* as specified in 

Note that R does not typecheck w.r.t. am T „ „   „,       ■      ,. ,       r      , i Jt^ Lemma 3.2. I here is a linear number of nodes, so al- 

• there is a path vi, ..., vk in R where (i) together we need exponential time, (ii) Subsequently, 
vi is a child of the root; (ii) lab(t>,) = guess a path i»i,..., vk, a disjunct D, and a structure 
(ai,ipi(xi,...,Xi)), for i £ {l,...,fc}; (in) A such that the above holds. As described above this 
Vk has precisely n children with labels can all be done in NEXPTIME. O 

(SI,MT-,VI)), ..-, (6nMx,yn)) and in that or-        The following result ghows that  decidability of 

er' an typechecking holds even when DTDs use full regular 

• there is an A with elements ä := ält.. .,äk such languages, as long as the conjunctive queries in the 
that (i) A\=<$>; (ii) A \= <pi(äi,... ,a,) for each TreeQL program are restricted to be projection-free 
i = l,...,fc; and (Hi) ^■■■6][' i d(ak) with and the constraints are FDs. The proof is non-trivial 
|{6 | A |= ipj(ä, b)}\ = ij for all j = 1,..., n. and is based on Ramsey's theorem.   It is similar to 

the proof of an analogous but harder result in [3]. A 
Let d(ak) be represented by the star-free regular self.contained proof will be provided in the full paper. 

expression r. So, 8\l ■ ■ ■ S1^ g" L(r). Since for each A, 
this string will be of the form 6[ ■■ ■<$*, it suffices to Theorem   3.3.   TC[projection-free   CQ=",   REG, 
restrict attention to -r D 6$ ■ ■ ■ 6*.   By Lemma 3.2, FD] is decidable. 
->r n St ■ ■ ■ 8* is equivalent to a disjunction, of expo- 

,.  ,   .        c ■ r ,i     r r*iji       c*  j It remains open whether the proiection-free restric- 
nential size, of expressions or the form o,      • • • o„' * '    J 

, ,        ,_   r     ._ i        i   ■   ^  i  i    T   4.   n u tion can be removed or whether the class of con- 
where each *,■ €  { = ,>} and ],  < \r\.   Let D be a 

...      ,. .       .   ,-tiii       r* 'j \ 4.1   j. ,i        • straints can be extended, particular disjunct dl 
J   ■ ■ ■ d*"-7" such that there is a 

structure A with elements ä := ä\,..., ä.k with 

(i) A \= $ and A |= if,(äl:... ,ä() for each j; and 4    Complexity 

(2)  \{b\ A |= V'i(ä, b)}\ *, ji for i = 1...., n. Theorem 3.1 provides an upper bound of CONEXP- 
... „    r   . , TIME on the complexity of type-checking.   We show 

We next show there is a structure B ot size polv- .    ,, .        ,.      ,. \ il .   .   ^. ,'      -. c . ,   .     , „.       , „       .,.        . r .       ,..        ,   /rT\ in this section that this is tight.  Our proof requires 
nonnal  m   \R\ + \d\ +   $    satisfying   (1)   and   (2). ^. . . v*.    ■    ™     u u 

, .'   '       '. '      , "       1L. „ nesation and inequality in CQs.   However, we show 
lo  see  this,   we  introduce  some  notation.      Sup-      , • ■ , .        i     i ■ ■ 

i i  -,_„>,-^     ,-r,  -r,\        i \ that even without these,  typechecking remains m- 
pose  $   =   (\e3x?Vy?ac(x?,y?),   f,(xx x,)   = ^ .. .   ,'    Jy,      l2   \.       i.   . 
i,.^    , ^(    -LS

C
C
K  n^Jii]   r>\   i ./ tractable,   more  precisely DP-hard/     Nevertheless, 

3-'':i 7I"(
;I;

I x,.xj).   for  each   z   =    l....,A',   and ^ , 
'_  _ _w,  '   I  _   _^, by further restricting the structure of CQs and S£- 

ft(x, fii) = 3.x,. ßi(x, y1,xl ), for each i = 1...., n. formulas we obtain a PTIME algorithm for typecheck- 
For  each  I,   pick   a  tuple  ä?   such   that   A   \= .        To thig end define 5£r ^ the fragment of S£ 

Vj/?af (Ö», j/?).   Let £, be the set of these elements. whprp therp arp nQ occurrcnces of the form ff=i and all 

Next,  pick fll    .. ,a„  and for each i   e   {1,... ,*} occurrencPS of the form a>r are such that j e {0, l}. 
pick a tuple äf such that ^   |=   7l(ai)..., a,, a, ). Wp abbreviate a>i simply by ff.   This fragment a]. 
Let E2 be the set of these elements.    Further, for ready suffices tQ obtajn the npxt bwer bound 

i = 1,..., n, pick j, tuples 6, and for each such tuple 
pick a tuple öf such that A \= ß,(ai,... ,a,.fc,,äf). Theorem 4.1.  TC[CQ"'=, SC, 0] is /iard for CO- 
Let £3 be the set of these elements.   Note that the NEXPTIME. 
size of E :— E\ U E2 U £3 is at most polynomial in 
\R\ + \d\ + |$|. Clearly, \{b \ A\E N 1>j{ä,b)}\ *iji for Proof-   The Proof consists of a reduction from the 
i = l,...,n. Moreover. A[E \= *■ The latter follows satisfiability problem of FO(3*V*) sentences without 
by a standard argument (see, e.g., [61).   Indeed, for equality, which is known to be hard for NEXPTIME 

each £, (A, £1) |= Vy2aj(x2,yf), where the elements (see- e-g-. I6})- to tho complement of the typechecking 

in E\ are taken as constants. As these resulting sen- problem, 
fences are universal, (A^^Ey) |= Vyfae(x?,y?) for        Let      V      be      a      formula      of      the      form 
each L  Hence, A\E |= 3x?Vy?at(x?,yf) for each L 3*i x^Vi ymrp(x,y)    over    the    relations 
Then take B as A Ri,---,Rk  without equality.     The input database 

Hence, to look for a database that satisfies the dis- 2
Reca„ that DP pi.operties are of the form t7l A &2 where 

junct D it suffices to guess one of exponential size. o\ e .\p and a2 6 CO-NP. 
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for the TreeQL program consists of the relations 
D\,... ,Dn,R\,... ,Rk. The sets D\, ..., Dn will 
be singletons and will serve as the interpretations for 
the variables x\,... ,xn. 

We have to check whether there is a database A 
with a tuple d such that A \= Myib{d,y). We test 
the converse, that is A ^ Vyi/'(J, y) or equivalently 
A \= 3y^iß(d,y). Assume that -^iß is of the form 
\lj=\Lj(x,y) where each Lj(x,y) is a conjunction 
/\ C of atomic formulas and negations thereof. Thus, 
each Lj is a projection-free query in CQ". We define 
a TreeQL program as follows: the root is labeled with 
'result' and has exactly one child labeled with 

n 

(D, /\ Dt(xt)) 

giving the required interpretation to the x^s. Further, 
D has the following children 

1. for each i = l,...,n. (two,, 3zi3z'i(Di(zi) A 
D^z'^AZi ^ z'j)), indicating that £>j has at least 
two elements; and 

2. for each j = 1,..., k. (@j.Lj(x, y)). 

The   output   DTD   d   is   of   the   following   form 
d(result) := true and 

d(D) := V two, V V @j 
!=1 J=l 

Suppose the TreeQL program R does not typecheck. 
Then at least one D and none of the two,s appear. 
That is, all D, are singleton sets. Let Dj = {d,} 
for each i. Further, none of the @,-s appear. Hence, 
A ¥= 3y-np(d,y). Hence, A \= 3xVyiß and ip is sat- 
isfiable. Conversely, if A is a model of if and we 
instantiate Dlv .., Dn with the witnesses for the ex- 
istential quantifiers then R does not typecheck for 
A\J{Du...,Dn}. D 

Although it is unclear whether in Theorem 4.1, 
negation or inequality can be dispensed with, we show 
that in any case the complexity of the problem, even 
for the standard case, remains intractable. Indeed, 
one can easily reduce the containment of conjunc- 
tive queries and prepositional validity to typecheck- 
ing. CQ7^ denotes CQ with inequality. 

Proposition 4.2.     1. TC[CQ, <SZ7,0] is DP-hard. 

2. TC[CQ^, S£r,0] isUp
2-hard. 

The proof of Proposition 4.2 implies that, in or- 
der to have a PTIME algorithm for typechecking, we 

must at least restrict the queries so that testing con- 
tainment is in PTIME and that validity of the SCT 

formulas used must be in PTIME. We present one 
set of restrictions that leads to a PTIME typecheck- 
ing test. Let CQk denote the conjunctive queries in 
FOfc, i.e. the set of conjunctive queries using at most 
k variables. Such queries can be evaluated in com- 
bined complexity PTIME [11, 20]. We restrict TreeQL 
programs as follows: there exists some k such that, 
for each node v in the program, the conjunction of 
all queries of nodes along the path from root to v is 
in CQk. Furthermore, no distinct siblings v,v' in the 
query tree have labels (a, </?) and (a, <//) for the same 
a £ E. We call such a program k-bounded and denote 
the set of /c-bounded TreeQL programs by TreeQLfc. 
Finally, we also need a restriction on the SCr formu- 
las used in the DTD: they are in conjunctive normal 
form. We call such SCr formulas conjunctive. 

Theorem 4.3. TC[CQfc, conjunctive SCr, 0] is in 
PTIME for TreeQLh programs. 

Proof. Let R be a TreeQLfc program and let d be 
a DTD using conjunctive SCr formulas. We assume 
w.l.o.g. that every bound variable occurs only once 
and is different from any free variable. For every non- 
leaf node v of R with children Vi,. we do the 
following. Let d(l&b(v)) = ipv, where ipv = A, Ct 

and each C, is a disjunction of positive or negated 
aj's. Further, let 7 be the conjunction of the formulas 
occurring in labels along the path from root to v. The 
program typechecks w.r.t. v if for every input, the 
sequence of children of v in the output satisfies each 
of the Cj's. So it is enough to typecheck separately 
with respect to each of the CVs. Each Ct is of the 
form ai V ... V afe V -161 V ... -i6m. For each a 6 E, let 
ißa denote the formula associated to the unique child 
of v labeled with a. There are three cases to consider: 

1. k  >  0 and m  >   0.    Then Ct is (61 A ... A 
bm)   —>   («i V ... V a/j). We must check that 

3(lpbl A ... A Vb,„ A 7) 

-»   3((W A7)V V«V A 7)) 

where the 3 quantify all variables on the left, 
resp. righthand sides. From standard conjunc- 
tive query techniques it follows that the above 
holds iff there exists j such that 

3(ipbi A ... ißbm A 7) -> 3(V>ai A 7). 

This in turn holds iff the result of evaluating the 
conjunctive query 3{ipai A 7) on the canonical 
structure associated to the matrix of 3(i/'61 A... A 
ipb„, A 7) is true. Since 3(^a. A 7) is in CQk, this 
can be checked in PTIME. 
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2. rn — 0. This amounts to testing that 3((</>ai A 
7) V ... V (ipak A 7)) is true on every input. This 
is false on the empty input, so the program does 
not typecheck. 

3. k = 0. Since 3(ipiH A ... A ^(,,„ A 7) is always 
satisfiable, this never typechecks. □ 

result 

(A'i,.ci 

(X2,;i'i =.ri A.r2 = x-2 

5    Undecidability Results 

We have seen in the previous section that 
TC[CQ'"'-=, SF, FO(3*V*)] is decidable. This is a 
fairly tight bound. Indeed, we next show that even 
minor extensions lead to undecidability. We con- 
sider several extensions of the output DTDs, TreeQL 
queries, and integrity constraints. Specifically, we 
consider (i) specialization, (ii) virtual nodes, and 
(Hi) acyclic inclusion dependencies (AcID), and show 
that typechecking becomes undecidable with each of 
these extensions. Another parameter in the formal- 
ism is the class of string languages used by DTDs. 
Recall that decidability still holds if we replace SF 
by REG when restricting to projection-free CQs and 
omit integrity constraints. We show that this most 
likely cannot be extended beyond REG: allowing de- 
terministic. CFLs (DCFL) in DTDs loads to undecid- 
ability. 

We first consider the impact of augmenting DTDs 
with specialization. 

Theorem 5.1. TC[projection-free CQ. SC1'^,. 0] is 
undecidable. 

Proof. We use a reduction from satisfiability of 
first-order logic formulas over graphs without equal- 
ity, which is well known to be undecidable (see, e.g.. 
[6]). The satisfiability problem is to check, given 
an FO formula (/-S whether there is a non-empty 
graph A such that A \= 4>. Let tp be the negation 
of ip. We give the reduction by example Assume 
ip — 3.TiV:r.'23.T;j<5(:ri, x^, .T3), where S is quantifier-free 
and in disjunctive normal form, that is, of the form 

Vili Lj, where each L, is of the form P' A A'/=i J\' 

where P1 is a conjunction of atomic formulas and each 
N* is the negation of a single atomic formula. For a 
negated atomic formula N we denote the unnegated 
formula by N. Recall that atomic formulas can only 
be of the form E(xi,Xj). 

Consider the TreeQL(CQ) program R depicted in 
Figure 1. By L, we denote the sequence 

{Pi,Pi)(N\,Ni)...(Nini,N;ni). 

Recall that the first component of the pair is a label 
while the second one is a formula.  Intuitivelv. evorv 

Figure 1: The TreeQL program Ft. 

occurrence of an X, in the output tree represents a 
value assignment for the variable x,. The specialized 
DTD then takes care of the quantification pattern of 
if. Indeed, it should verify that there is an Xj-node 
such that for all its AVchildren there is an A'j-node 
that satisfies d. To this end let £' = {F,.X, | i € 
{1, . . . .n}} U {result}. Intuitively, whenever a node 
is labeled Y,. this indicates that the path from 1 he 
root to this node can he extended to a satisfiable 
path. Define (/(result) := Y", V-, d(Yx) := Y2 A -..X2. 
d(Y>) := YA. and t/(Xi) := d(X2) ■= d(XA). Hen-, s 
makes sure the empty graph typechecks. Finally, set 
for each i. //(A',) := A', and /i(Y,) :— A',. Clearly, 
Ft typechecks w.r.t. d iff A \--r ^ for every non-empty 
structure A. 

One can get rid of equality in the CQ's by intro- 
ducing a relation containing all elements in the active 
domain. Details omitted. G 

The next result shows that typechecking becomes 
undecidable when queries can use virtual nodes. The 
proof is similar to the proof of Theorem 5.1 and is 
omitted. 

Theorem 5.2. TC[projection-free CQ,,,-,.,, SF, 0] is 
■undecidable. 

Remark 5.3. The undecidability result in Theo- 
rem 5.5 requires DTDs using SF formulas. The next 
proposition shows that restricting the DTD language 
to SC renders typechecking decidable. even when vir- 
tual nodes are allowed. 

Proposition 5.4. TC[CQ;;=, <S£, FO(3*V*)] is de- 
cidable. o 

Next, we consider the effect of the constraints on 
decidability. We show that even the usually well- 
behaved unary AcIDs (which are not definable in 
FO(3*V*)) render typechecking undecidable. 

Theorem 5.5. TC[CQ~" = , SCr, unary AcIDs] is un- 
decidable. 
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Proof. We consider the fragment of FO consisting of 
formulas of the form Vxip(x) where ip is a quantifier- 
free formula over the vocabulary of two unary func- 
tions / and g. It is well-known that it is undecidable 
whether there is a non-empty structure A such that 
A \= Vxip(x) (see e.g. [6]). The schema of the in- 
put database consists of the two binary relations F 
and G (representing the functions / and g), and a 
unary relation D representing the active domain of 
the structure. Using D will allow to get rid of circu- 
lar dependencies. 

First, we have to make sure that F and G are in- 
deed functions, that their domain is D, and their 
range is included in D. These are specified by the 
cyclic unary inclusion dependencies 

(a) F[l] C D[\] (e) D[l] C F[l] 
(b) G\\) C D[l] (/) D[l] C G[l] 
(c) F[2] C D[l] 
(d) G[2] C D[l]. 

However, we will only keep the dependencies (e) and 
(/): we show that (a)-(d) can be expressed by the 
TreeQL program itself. We next describe this TreeQL 
program in detail. We first check whether the inclu- 
sion dependency (a) holds. If not we generate the 
flag (a)_does_not_hold. 

result 

((a)_does_not_hold, 3x3y(F(x, y) A -<D(x))). 

The same is done for the dependencies (b)-(d). Next 
we have to check whether F is indeed a function and 
not a relation. For instance, both (a, b) and (a,c), 
with 5/c, could belong to F. This can be detected 
as follows 

result 

(vrong„F,3x3y3z(F(x, y),F(x, z)Ay^z)). 

The same is done for G. In particular, if G is a re- 
lation and not a function then the flag wrong.G is 
raised. 

We test whether A   ty=  Vxip(x),  that is,  A   \= 
3x-i(p(x). We can rewrite 3x->ip(x) to 

y(3x)Li, 

where each Lt is of the form /\™I1 Cj where each Cj 
is an equality or an inequality between terms. For 
instance, Cx = fgx = ffx (parenthesis omitted for 
clarity) or C2 = fgx ^ ffx.   Obviously, there is a 

canonical way to associate a CO.-'"1 with each C. For 
instance, 

Vcx (x) = 3y2,2/3, z2, z3(G(x, y2) A F(y2, y3) 

A F(x, z2) A F(z2, z3) A y3 = z3), 

and 

yc2(a:) = 3V2,V3, Z2,z3(G(x,y2) A F(y2,y3) 

A F(x, z2) A F{z2, z3) A 2/3 ^ z3). 

Further, we define <pLi as <pc< (x)A.. -AipCi (x). The 
just described part of the TreeQL query is then of the 
form: 

result 

(Li,3a;^Ll(x)) (Ln,3xipLn(x)). 

Hence, A ^ \/xtp{x) whenever one of the error flags 
Lj is raised. 

Finally, we have to make sure that D is non-empty. 
Therefore we have 

result 

(D-not.empty, 3zD(z)). 

The final TreeQL program is the concatenation of 
the previous programs (that is, the concatenation of 
all children under one result node). Note that a non- 
empty input structure for which A |= Vxip(x) simply 
generates the tree result(D-not_empty). The output 
DTD d then maps result to D-not_empty —> error, 
where error is the disjunction over all error flags. If 
R does not typecheck w.r.t. d, then there is an A and 
an ordering < such that R(A,<) $ L(d). By con- 
struction, A is non-empty and no error flag is raised. 
Therefore, A\D \= (\/x)ip(x). Conversely, if there is 
an A such that A \= Vx(p(x) then for every ordering 
<, R(A U D, <) & L(d), where D is interpreted by 
the active domain of A. O 

Theorem 3.3 showed that typechecking remains de- 
cidable even for DTDs using full regular languages, 
as long as the queries are restricted to be projection 
free. As shown next, going beyond regular languages 
quickly leads to undecidability. 

Theorem 5.6. TC[projection-free CQ, DCFL, 0] is 
undecidable. 

Proof. The proof is a reduction from Hilbert's tenth 
problem, diophantine equations, well-known to be 
undecidable [12].  We consider the following variant. 
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For a polynomial P(x\,... ,xn) with integer coeffi- 
cients, are there positive integers i\,..., in such that 
P(i\,...,in) = 0? We only give the reduction by 
example. The general case is a straightforward gen- 
eralization. Consider, for instance, the polynomial 
2xy — x2 + 1. The input database consists of two sets 
X and Y where the cardinalities of X and Y stand 
for the numbers x and y, respectively. We describe 
a TreeQL program that generates from X and Y se- 
quences of a's and 6's. A positive term in P generates 
a's while a negative one generates 6's. Hence, an a 
stands for +1, and a 6 stands for — 1. The output 
DTD states that the number of a's differs from the 
number of 6's. This holds iff \X\ and \Y\ do not form a 
solution to P, and the language specified by the DTD 
can easily be recognized by a deterministic PDA. The 
TreeQL program is a tree of depth one. For the ex- 
ample polynomial, the nodes under the root are: 

(a,X(x)AY(y))-{a,X(x)AY(y)) 

■{b,X(Xl)AX(x2)) 
■ (a, true). 

Here, the first two symbols correspond to the term 
2xy and generate a's as the term is positive; similarly, 
the third and the fourth symbol correspond to —x2 

and +1, respectively. The output generates sequences 
of a's and 6's. The deterministic PDA accepts when 
the number of a's is different from the number of 
6's. Hence, the TreeQL program typechecks iff the 
diophantine equation has no positive solution. Ü 
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A Model-Theoretic Approach to Regular String Relations* 

Michael Benedikt Leonid Libkin§        Thomas Schwentick1       Luc Segoufin'l 
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Abstract 

We study algebras of definable string relations - 
classes of regular n-ary relations that arise as the defin- 
able sets within a model whose carrier is the set of all 
strings. We show that the largest such algebra - the col- 
lection of regular relations - has some quite undesirable 
computational and model-theoretic properties. In con- 
trast, we exhibit several definable relation algebras that 
have much tamer behavior: for example, they admit 
quantifier elimination, and have finite VC dimension. 
We show that the properties of a definable relation al- 
gebra are not at all determined by the one-dimensional 
definable sets. We give models whose definable sets are 
all star-free, but whose binary relations are quite com- 
plex, as well as models whose definable sets include all 
regular sets, but which are much more restricted and 
tractable than the full algebra of regular relations. 

1     Introduction 

In the past 40 years, various connections between 
logic, formal languages and automata have been ex- 
plored in great detail. The standard setting for con- 
necting logical definability with various properties of 
formal languages is to represent strings over a finite al- 
phabet E = {ai,..., an} as first-order structures in the 
signature (Pai,...,Pan,<), so that the structure Ms 

for a string s of length k has the universe {1,..., k}, 
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with < being the usual ordering, and Pai being the 
set of the positions / such that the /th character in s 
is a;. Then a sentence $ of some logic C defines a 
language L($) = {s G E* | Ms f= $}. Two clas- 
sical results on logic and language theory state that 
languages thus definable in monadic second-order logic 
(MSO) are precisely the regular languages [8], and the 
languages definable in first-order logic (FO) are pre- 
cisely the star-free languages [25]. For a survey, see 
[28, 29]. 

An alternative approach to definability of strings, 
based on classical infinite model theory rather than fi- 
nite model theory, dates back to [8, 10]. One considers 
an infinite structure M consisting of (E*,f2), where Q 
is a set of functions, predicates and constants on E*. 
One can then look at definable sets, those of the form 
{a | M (= <p(a)}, where ip is a first-order formula in the 
language of M. A well-known result links definabil- 
ity with traditional formal language theory. Let VlTeg 

consist of unary functions la, a £ E, binary predicates 
e\(x,y) and x <y, where la(x) = x ■ a, e\(x,y) states 
that x and y have the same length, and x <y states 
that a; is a prefix of y. Let S\en be the model (E*, fireg) 
(we will explain the notation later). Then subsets of 
E* definable in S\en are precisely the regular languages 
[8, 10, 9]. 

An advantage of the "model-theoretic approach" is 
that one immediately gets an extension of the notion 
of recognizability from string languages to n-ary string 
relations for arbitrary n. One gets an algebra of n-ary 
string relations for every n, and these algebras auto- 
matically have closure under projection and product, 
in addition to the boolean operations. In the case of 
the model Sien above, this algebra is not new: in fact, 
the definable n-ary relations are exactly the ones rec- 
ognizable under a natural notion of automaton running 
over n-tuples [10, 15]. 

An obvious question to ask, then, is whether new 
algebras of string relations arise through the model- 
theoretic approach. In particular, if we restrict the 
signature ft to be less expressive than fireg, do we get 
new relation algebras lying within the recognizable re- 
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lations? 

A natural starting point would be to find a signa- 
ture that captures properties of the star-free sets. Here 
again, a simple example leaps out: consider the signa- 
ture figf = (^,(i0)aeE), and let S = (E*,fisf). One 
can easily show that the definable subsets of E* in S 
are exactly the star-free ones. Furthermore, we will 
show that the definable n-ary relations of this model 
are exactly those definable by regular prefix automata 
(cf. [1]) whose underlying string automata are counter- 
free. 

Just as there is a significant difference between the 
complexity-theoretic behavior of regular languages and 
star-free languages, we find that the model S is much 
more tractable, in terms of its model-theory and its 
complexity than Sien- In particular, we show that S has 
quantifier-elimination in a natural relational extension, 
while Sicn does not. 

It would be tempting to think of S and S\en as canon- 
ical extensions of the notions of regularity and star-free 
to n-ary relations. However, we will show that in fact 
there are many choices for Q. that, share the same one- 
dimensional definable sets (either star-free or regular). 
Furthermore, algebras of definable sets may be iden- 
tical in terms of the string languages they define, but 
differ considerably in the n-ary string relations in the 
definable algebra. We thus say that an algebra of de- 
finable sets based on (E*, fi), with fi C J7rcg is a regular 
algebra of definable sets if the subsets of E* in it (i.e 
the one-dimensional definable sets of (E*,fi)) are ex- 
actly the regular sets. We likewise say that the algebra 
based on definable sets for (E*, fi) is a star-free algebra 
of definable sets if the subsets of E* in the algebra are 
exactly the star-free sets. 

The rest of the paper studies new examples of reg- 
ular and star-free definable algebras. We give an ex- 
ample of a star-free algebra with considerably more ex- 
pressive power than the basic star-free algebra S. This 
model, which we denote by Sieft (as it allows one to add 
characters on the left of a string), shares most of the de- 
sirable properties of S: in particular, it has quantifier- 
elimination in a natural language, and membership test 
in this algebra has low complexity. 

More surprisingly, perhaps, we give examples of reg- 
ular algebras (which we denote Sreg and Sreg,ieft) that 
are strictly contained in S\en = (E*,£)reg). Although 
the one-dimensional sets in these algebras are still the 
regular sets, the algebra as a whole shares many of the 
attractive properties of the star-free languages. In par- 
ticular, we give quantifier-elimination results for these 
algebras. 

One   key   motivation   for  our   work   comes   from 

the field of databases, in particular, the study of 
query languages with interpreted operations [3, 5, 19], 
and constraint databases [23]. In those settings, 
quantifier-elimination gives one closed-form evaluation 
for queries; it says that one can evaluate queries whose 
input is a quantifier-free definable set and get a closed 
form solution as another quantifier-free definable set. 
This approach has generally been applied to numerical 
domains over the reals, since there are several pow- 
erful quantifier-elimination results available there. It 
is natural to extend this approach to databases over 
strings: the string datatype, after all, is ubiquitous in 
database applications, and languages such as SQL al- 
ready give some capability of manipulating star-free 
sets (via the LIKE predicate) defined from the in- 
put data within queries. But in order to extend the 
constraint-database approach to the string context, we 
are first required to find definable algebras that ad- 
mit quantifier-elimination in some natural yet power- 
ful language. (Some of the previous results in this di- 
rection considered query languages over undccidable 
structures [20], or decidable ones but not capable of 
expressing some very basic operations on strings [14].) 
The quantifier-elimination results here thus yield new 
examples where the constraint approach can be ap- 
plied. In fact, the results we present here were used 
in [7] to give expressiveness and complexity bounds for 
the database query languages that arise from several 
algebras of definable sets. 

Our approach was also motivated by the study of 
automatic structures [22, 9], which are a subclass of 
recursive structures [21], and were introduced recently 
as a generalization of automatic groups [16]. In an 
automatic structure M = (E*,fi), every predicate in 
Q is definable by a finite automaton. More precisely, 
an n-ary predicate P is given by a letter-to-letter n- 
automaton [15, 18]. Such an automaton is a usual 
DFA whose alphabet is (E U {#})", # $ E. An n- 
tuplc of strings S\,..., s„ can be viewed as a word of 
length max; |s,| over the alphabet E U {#}, where the 
jth letter is the tuple (s\,..., sf,); here s{ is the jth 
letter of s*, if \sk\ < j, and # otherwise. We then say 
that a predicate P C (E*)" is definable by a letter-to- 
letter n-automaton .4 if (si,..., sn) G P iff A accepts 
Si,...,Sn. 

It is known [10, 9] that a structure is automatic iff 
it can be interpreted in the structure Si011; hence S]Cn 

is in some sense the universal automatic structure. It 
is interesting then to look at subclasses of automatic 
structures definable within S\Bn that are significantly 
more restrictive, and that might have stronger model- 
theoretic or computational properties than a rich struc- 
ture like S\cn.   One dividing line we focus on is be- 
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tween automatic structures that do admit quantifier- 
elimination in a natural relational language, and those 
that do not. 

Our first result gives a partial answer to open ques- 
tion 0 in [26], which asks whether Sien itself has 
quantifier-elimination in a reasonable signature. We 
show that it does not have quantifier-elimination in 
any relational signature of bounded arity but does have 
quantifier-elimination in a signature containing binary 
functions. The other structures that we study — S, 
Sreg, Sieft and Sreg,ieft — do admit such a quantifier- 
elimination. A second dichotomy is between automatic 
structures that admit star-free definable algebras ver- 
sus those that have regular algebras. We show that the 
models S and S]eft have star-free definable algebras, 
while the model Sreg does not. Our results indicate 
that the class of automatic structures that admit star- 
free definable algebras is richer than one might have 
guessed. 

Organization Section 2 introduces the notation. 
Section 3 explores the motivating example, the model 
Sien, and proves a set of results concerning its limita- 
tions. In Section 4 we turn to the minimal example of a 
star-free algebra, the model S, and prove a quantifier- 
elimination result for this model that contrasts with 
the negative result proved for S\en. Section 5 extends 
the results of the previous section to a more complex 
example of a star-free algebra, the model S]eft- Sec- 
tion 6 gives a restriction of S\en that admits a regular 
algebra, and proves a quantifier elimination result for 
this model. The section also connects this model to 
the minimal model S. Section 7 gives an additional ex- 
ample of a regular algebra, which contains each of the 
previous examples. Section 8 gives conclusions. All 
proofs are in the full version [6]. 

2    Notations 

Throughout the paper, £ denotes a finite alphabet, 
and £* the set of all finite strings over £. We consider 
a number of operations on £*: 

• x ■ y - concatenation of two strings x and y. 

• x < y - x is a prefix of y. 

• la(x), a 6 £, is x ■ a (adds last character). 

• fa{x), a £ E, is a ■ x (adds first character). 

• | a; | is the length of string x. 

• x H y is the longest common prefix of the strings x 
and y. 

• x — y - the string z such that y ■ z = x, if it exists, 
and e otherwise. 

Note that |a;| does not return a string, so it is not 
an operation of E*. Instead, we often consider the 
predicate el(x,y) which is true iff \x\ = \y\. 

We shall consider several structures on E*. The ba- 
sic one is the structure S = (E*, ^, (/a)ags). We could 
equivalently use unary predicates La, where La(x) is 
true for strings of the form x' ■ a. Note that in the 
presence of ■<, la and La are interdefinable, and we 
thus shall use both of them. 

We further consider a number of extensions of S. 
In one of them characters can be added on the left 
as well as on the right.  This structure is denoted by 

Sieft = (E*, <, (Does, (/a)ags)- Another extension, 
denoted by S\en, adds length comparisons via the el 
predicate (note that using < and el one can express 
various relationships between lengths of strings, e.g. 
M{=, 7^, <, >}\y\, \x\ = \y\ + k for a constant k, etc.). 
To summarize, we mainly deal with the following struc- 
tures: 

.  S = (E*,^,(/0)ae£>; 

• Sieft = (E*,^,(/0)a6S>(/a)a€s); 

. Sie„ = <£•,;<, (/a)aeE,el). 

Once we consider regular algebras, we introduce two 
more structures; however, operations in them will be 
motivated by quantifier-elimination results for S and 
Sieft and thus those structures will be defined later. 

There is a very close connection between Sien and 
an extension of Presburger arithmetic. Assume that 
E = {0,1}. Let val(n), for n £ N, be n in binary, 
considered as a string in E*. Let V2(n) be the largest 
power of 2 that divides n. Then P C Nfc is definable in 
(N, +, Vb) iff {(val(m),..., val(n*)) | (m,..., nk) £ P} 
is definable in S)en [8, 10]. 

Model theory background Let Q be a finite or 
countably infinite first-order signature, and M a model 
over Ü. By FO(Af) we denote the set of all first-order 
formulae in the language of Ü. The (complete) theory 
of M, Th(M), is the set of all sentences in FO(M) true 
in M. Two models M and M' over Q are elementary 
equivalent if Th(M) = Th(M'). 

We say that M admits quantifier elimination (QE) if 
for every formula ip(x) in FO(M) there is a quantifier- 
free formula ip'(x) such that VäT ip(x) «->• <p'(x) is true 
in M. 

For a tuple a and a model M over fi, we let tpM(a) 
be the type of a in M (the set of all formulae of FO(M) 
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satisfied by a), and atpM(a) be the atomic type in M 
(the set of all quantifier-free formulae of FO(M) satis- 
fied by a). If A is a subset of M, tpM(a/A) is the type 
of o over A in M (the set of all FO-formulae over flUA 
satisfied by a). 

A ui-saturated model M over Q is a model such that 
each consistent type over a finite set A in FO(M) is 
satisfied in M. It is known [11] that every model M 
over fi has an elementary equivalent w-saturated model 
M*. 

Isolation, VC-dimension Let T be a theory over 
Q and M be a model of T. A subset A of M is said 
to be pseudo-finite if (M, A) |= F(T,P), where P is a 
unary predicate, and F(T, P) is the set of all formulae 
of FO(0 U P) satisfied by all finite sets of elements in 
any model of T. 

If p is a type over A in M, a subset q of p isolates 
p if p is the only type over A in M containing 5. A 
complete theory T over fl is said to have the strong 
isolation property if for any model AI of T and any 
pseudo-finite set A and any element a in AI, there is 
a finite subset .4o of A such that tp^j(a/Ao) isolates 
tpAi(a./A). We say that it has the isolation property if 
a countable AQ exists as above. 

Isolation is an interesting property in the database 
context because it implies certain collapse results for 
query languages [3, 17] and it is used for that purpose 
in [7]. Here we use it to provide bounds on the VC- 
dimension of definable families. 

For a family C of subsets of a set U, and a set F C U, 
we say that C shatters F if {F n C \ C € C) is the 
powerset of F. The VC-dimension of C is the maxi- 
mum cardinality of a finite set shattered by C (or 00, 
if arbitrarily large finite sets arc shattered by C). This 
concept is fundamental to learning theory, as finite VC- 
dimension of a hypothesis space is equivalent to learn- 
ability (PAC-learnability) [2, 4]. 

Now consider a structure AI = (£*,fi), and a 
FO(Af) formula <p(x,y). For each a, let ip(a, AI) = {b \ 
AI \= <p(a,b)}. The family of sets ip(a,M), where a 
ranges over all tuples over 71/, is called a definable fam- 
ily. We say that M has finite VC-dimension if every 
definable family has finite VC-dimension. In particu- 
lar, this implies learnability of concepts defined in FO 
over AI. 

3    Regular algebra based on Sien 

As mentioned in the introduction, Sie„ is the canoni- 
cal automatic structure, and relations definable in S\eu 

are precisely the regular relations, that is, fc-ary de- 
finable relations are precisely those given by letter-to- 
letter fc-automata [9, 10]. In particular, this gives a 
normal form for Sien-formulae. We introduce a new 
type of length-bounded quantifiers of the form 3|x| < |y| 
and V|x| < |y|. A formula 3|x| < \y\tp is meant as 
an abbreviation for 3x(|x| < \y\) A <p. Since every fi- 
nite automaton can be simulated by a length-bounded 
FO(Sien) formula, we conclude that each FO(Sien) for- 
mula is equivalent to a length-bounded FO(Sien) for- 
mula. Note that this result can also be shown by a 
straightforward Ehrenfeucht-Frai'sse game argument. 

The universal property of Sien mentioned above in- 
dicates that Sien may be "too rich" in relations for 
many applications. We present evidence for this by 
addressing the open question of [12, 26] whether S\en 

has quantifier elimination in a reasonable signature. 
One first needs to define what "reasonable" means here. 
Clearly, every structure has quantifier elimination in a 
sufficiently large expansion of the signature: add sym- 
bols for all definable predicates, for example. One can 
thus take reasonable to mean a finite expansion, but 
this is not satisfactory: for example, Presburger arith- 
metic has quantifier elimination in an infinite signature 
(+, <,0,1, (mod fc)j(.>i). Note however that in this ex- 
ample, the maximum arity of the predicates and func- 
tions is 2. In fact, it appears to be a common phe- 
nomenon that when one proves quantifier elimination 
in an infinite signature, there is an upper bound on the 
arity of functions and predicates in it. 

We thus view this condition as necessary for a signa- 
ture to be "reasonable". In general, a reasonable signa- 
ture might contain relation symbols as well as function 
symbols. Nevertheless, we can rule out the possibility 
of a reasonable, purely relational signature for which 
Sien has quantifier elimination. This is in contrast to 
the weaker structures that we consider, all of which 
have quantifier elimination in a relational signature of 
bounded arity. Let S,^ be the expansion of SiCI1 

with all definable predicates of arity at most n, and 
definable functions of arity m. We show the following: 

Theorem 1   (a) For any n > 0, and m = 0,1, S1(^ 
does not have QE. In particular, there is a property 
definable in Sic„ which is not a Boolean combina- 
tion of at most n-ary definable predicates in S\cn. 

(b) S]cn   , the expansion of Sien with all unary predi- 
cates and binary functions, has QE. 

Proof sketch. For (a), the property is whether for an 
Ar-tuple of strings, for sufficiently large TV, there is a 
position i such that the ith symbol of all N strings is 
0. For (b), we show a stronger result, assuming that E 
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contains {0,1}. We prove QE in a signature that con- 
tains the bitwise and, or, and not functions, left and 
right shifts, and the following two families of functions. 
Filer (iu) has a 1 at position i iff w[i] = a and a 0 other- 
wise, and Patj^(w) has the same length as w and has 
a 1 at position i iff i mod k = j and a 0 otherwise, 
where j < k. 

In cases of both (a) and (b), the proofs are based on 
automata representations of definable sets, cf. [9].     □ 

Our next result shows another model-theoretic and 
computational shortcoming of Sien: namely, a single 
formula ip(x, y) can define a widely varying collection of 
relations as we let the parameter x vary. We formalize 
this through the notion of VC-dimension. 

Proposition 1 There are definable families in Sien 

that have infinite VC-dimension. G 

4    Star-free algebra based on S 

We now turn to the most obvious analog of Sien 

for the star-free sets. This is the model S, which is 
the most basic model among those studied in the pa- 
per. We show that it has remarkably nice behavior: 
it admits effective QE in a rather small extension to 
the signature. This immediately tells us that definable 
subsets of E* are precisely the star-free languages. We 
then characterize the n-dimensional definable relations 
in S by their closure properties, and by an automaton 
model. 

Note that S is very close to strings considered as 
term algebras, that is, to (S,e, {la)ae^). It is of course 
well-known that the theory of arbitrary term algebras 
is decidable and admits QE [24]. However, adding the 
prefix relation is not necessarily a trivial addition: for 
arbitrary term algebras with prefix (subterm), only the 
existential theory is decidable, but the full theory is un- 
decidable [30] (similar results hold for other orderings 
on terms [13]). The undecidability result of [30] re- 
quires at least one binary term constructor; our results 
indicate that in the simpler case of strings one recovers 
QE with the prefix relation. 

We start with a result that gives a normal form for 
formulae of FO(S). Given a set S of strings , we let 
Tree(S') be the tree (i.e. the partially-ordered struc- 
ture) generated by closing 5 U {e} under n. In other 
words, Tree(S) is the poset ({xlly | x,y £ 5u{e}}, -<). 
(Note that for any set of strings si,...,Sk, there are 
two indices i,j<k such that si n ... I~l s* = Sj n Sj.) 

A complete tree-order description of a vector w of 
variables is the atomic diagram of Tree(uT) in the lan- 
guage of e, ^,n.   In other words, it is a specification 

of all the :< relations that hold and do not hold in 
Tree(w). 

For each L C £*, let PL be the set of pairs (x,y) of 
strings such that x < y and y - x £ L. The following 
lemma is obvious, since it is well-known that star-free 
sets are first-order definable on string models [25]. 

Lemma 1 For each star free language L, there is a 
formula tpi(x,y) in FO(S) which defines PL- □ 

We now give a normal form result for FO(S). 

Proposition 2 Every formula ip(x) in FO(S) can 
be effectively transformed into an equivalent formula 
which is a disjunction of formulae of the form 

j(x) A 8{x) 

where j(x) is a complete tree-order description over 
x and 5(x) is a conjunction of formulae of the form 
ipL,(t(x),t'(x)), where L is star-free, t(x) andt'(x) are 
either e or a term of the form XiHxj, and j(x) implies 
that t(x) is an immediate successor oft'(x) in the tree- 
order. 

Proof is by induction on the structure of i\). D 

Let S+ be the expansion of S to the signature that 
contains e, (1 and a binary predicate PL for each star- 
free language L. Note that S+ is a definable expansion 
of S, as all additional functions and predicates are de- 
finable. From the normal form we now immediately 
obtain: 

Theorem 2 S+ admits quantifier elimination. 

Remark. As mentioned above there is no need 
to nest the n-operator. Therefore, S+ can be 
turned into a relational signature that admits quan- 
tifier elimination as follows. For each star-free L let 
P'L be the set of tuples (si,S2,«3,S4) of strings for 
which -Pz,(n(si,s2),n(s3,s4)). Note, that n(si,s2) < 
n(s3,s4) can be expressed as Pj> (n(si,s2),n(s3,s4)). 
It is straightforward to check that this signature admits 
quantifier elimination. In the same way, the quantifier 
elimination results in the remainder of the paper can be 
turned into quantifier elimination results in a relational 
signature. 

Note also that S+ could be considered as an expan- 
sion of S with either functions la or predicates La in 
the signature. In the latter case, predicates La are not 
needed as La(x) iff Ps*a(e, #)■ 

Another corollary of the normal form is that in the 
language of S, it suffices to use only bounded quan- 
tification. That is, we introduce bounded quantifiers of 
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the form 3x <y and Vx < y (where 3x < y ip means 
3x x ■< y A ip), and let FO(,(S) be the restriction of 
FO(S) to formulae <p{yi,---,yk) in which all quanti- 
fiers are of the form Qx < yi. From the normal form 
and the fact that each <pi can be defined with bounded 
quantifiers, we obtain: 

Corollary 1 F06(S) = FO(S). D 

Finally, we characterize S-definable subsets of E* 
and (E*)*. Given a subset R C (E*)fc and a per- 
mutation 7T on {l,...,fc}, by ir{R) we mean the set 

{(s„(i),...,s„(fc)) | {si,...,sk) G R}. 

Corollary 2 

a) A language L C E* is definable in S iff it is star- 

free. 

b) The class of relations definable over FO(S) is the 
minimal class containing the empty set, {e}, {a} 
a G E, <, n, and closed under Boolean operations, 
Cartesian product, permutation, and the operation 
* defined by L\ * L2 = {(.si, si • ,s>) | .si G L\, s> G 

L,} forLuL2 CE*. 

Proof, a) S+ formulae in one free variable are Boolean 
combinations of P[y(e,x). for L star-free, and thus they 
define only star-free languages. 

b) For one direction notice that f, {a}, -<, n are 
definable in FO(S), and that FO(S) is closed under 
boolean operations, permutation and Cartesian prod- 
uct. The closure under * is an easy consequence of 
Lemma 1 as L\ * L2 corresponds to {(x, y) \ i^/,, (f, x) A 
<pi2{x,y)}. The otlier direction follows from the nor- 
mal form. □ 

Note that the projection operation is not needed in 
the closure result above. 

Automaton We now give an automaton model char- 
acterizing definability in FO(S). This automaton 
model corresponds exactly to the counter-free variant 
of regular prefix automaton as defined in [1]. 

Let us recall the definition of regular prefix automa- 
ton. Let A be a finite non-deterministic automaton on 
strings with state set Q, transition relation S and ini- 
tial state ry0. We construct from .4 an automaton .4 = 
(E, Q, qo,F, 5) accepting n-tuples w = (wi, • • •, wn) of 
strings in the following way. F is a subset of Q" which 
denotes the accepting states of A. Let prefix(iü) be the 
set of all prefixes of all w,. A run of /I over «7 is a 
mapping h from prefix (u7) to Q which assigns to every 

node Q £ prefix(iv) a state q G Q such that h(e) — qo 
and, ß = la(a) implies h(ß) € S(h(a),a). The run is 
accepting if (h(uii), • • •, h(wn)) G F. The n-tuple iv is 
accepted by A if there is an accepting run of A over w. 

See [1] for more details. 

For each finite non-deterministic automaton A the 
corresponding automaton A is called regular prefix au- 
tomaton (RPA). The subset of (E*)n, n G N, it defines 
is called a regular prefix relation (RPR). 

If the automaton A is counter-free then we say that 
the corresponding automaton A is counter-free (CF- 
PA). The following shows that the relations definable 
in FO(S) are exactly those recognizable by a CF-PA. 

Proposition 3 A relation is definable in FO(S) if and 

only if it is definable, by a counter-free prefix automa- 

ton. □ 

It should be noted that FO(S) can also be character- 
ized by means of counter-free deterministic bottom-up 
automata. 

VC-dimension and Isolation In addition to quan- 
tifier elimination, S has some further model-theoretic 
properties that distinguish it from S|(,„. 

Proposition 4 Th(S) has the strong isolation prop- 
erty. □ 

As a corollary of the isolation property, we prove 
that, unlike for S]0n. the definable families for S are 
learnable. First, we need the following. 

Proposition 5 Let M be a model with the isolation 
property. Then its definable families have finite VC- 
dimension. 

We give two proofs of this result in the full version: one 
is a complexity-theoretic argument, the other model- 
theoretic. □ 

It follows that the model S, unlike Sj,,„, has learnable 
definable families. 

Corollary 3 Every definable family in S has finite. 
VC-dimension. O 

5    Star-free algebra based on S loft 

We now study an example of a star-free algebra, 
one where the n-ary relations in the algebra are more 
complex than  those definable- over  S.     Recall  that 
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Sieft = (S*,^,(/a)o6S,(/a)a6E>; that is, in this struc- 
ture one can add characters on the left as well as on 
the right. 

Without the prefix relation, this structure was stud- 
ied in [27], where a quantifier-elimination result was 
proved, by extending quantifier-elimination for term 
algebras (in fact [27] showed that term algebras with 
queues admit QE). However, as in the case of S, which 
differs from strings as terms algebras in that it has the 
prefix relation, here, too, the prefix relation compli- 
cates things considerably. 

We start with an easy observation that FO(Sieft) ex- 
presses more relations that FO(S). Indeed, the graph 
of fa, Fa = {(x,a ■ x) | x e £*} is not expressible in 
FO(S), which can be shown by a simple game argu- 
ment. More precisely, given a number k of rounds, let 
n = 2k + l and consider the game on the tuples (0n, 10") 
and (0n+1,10"). By Corollary 1 it is sufficient to play 
on the prefixes of the participating strings. The dupli- 
cator has a trivial winning strategy on the strings 10" 
and a well-known winning strategy on 0" versus 0"+1. 

Let Sj£ft be the extension of S]eft with the same (de- 
finable) functions and predicates we added to S+ (that 
is, a constant e for the empty string, the binary function 
n for the longest common prefix, the predicate PL(X, y) 
for each star-free language L), and the unary function 
x H-> x — a, for each a 6 E (which is also definable). 

Theorem 3 Sj^ft admits quantifier elimination. 

Proof sketch.    Let fls+  and Qc+    be the first-order 
3left 

signatures of S+ and S^ft. Let M be an w-saturated 
model over fts+ elementary equivalent to Sj^ft. It suf- 
fices to prove quantifier elimination in M. Note that 
M can have both finite and infinite strings. To prove 
QE, we must show that every two tuples of elements 
of M that have the same atomic type, have the same 
type. Define a nice term of 0«+   as a term of the form 

°left 

t(x) = x-a + b, where a and b are finite strings. Given 
two tuples c and d of the same length over M, define 
two relations on them: 

• c = d iff for all sequences i\,..., ik from {1,..., n} 
(where n is the length of c) and all sequences 
ti,... ,tk of nice terms: 

atps+itiia,),..., tk{cik)) 
=    atps+(*i(dii),---,ifc(dij) 

• (c',c) =i (d',d) iff for all sequences ii,...,ik 

from {1,..., n) and all sequences t\,..., tk of nice 
terms: 

atPs+(c,,ti{cil),...,tk(cik)) 
=    afps+Cd',*!^),...,^^)) 

Of course, (c',c) = (d',d) implies (c\c) =x (d',d), 
as the identity is a nice term. We then prove the main 
lemma, which shows that these two relations coincide; 
that is, if {c',c) =j {d',d), then also (c',c) = (d',d). 

Using this, we show that = has the back-and-forth 
property in M (which is actually stronger than what 
is needed for quantifier-elimination). The theorem 
follows from the lemma, as each type of the form 
a^Ps+(*i(cii), ■• -,tk(cih)) is also an atomic type of 
S[£ft. Hence, the atomic types determine the types. 
For details, see the full version [6]. D 

From the previous theorem we get the following 
corollaries. First, the back-and-forth property of =i 
gives us the following normal form for FO(S^ft) for- 
mulae. 

Corollary 4 For every FO(S]eft) formula p(x, y) there 
is an FO(S) formula p'{x,z) and a finite set of nice 
^ieft *erms t such that 

Vxy p(x,y) <r> p'(x,t(y)) 

holds in Sieft. □ 

Then Corollary 4 for the empty tuple y and Corol- 
lary 2 imply: 

Corollary 5 Subsets of T,* definable over Sieft are pre- 
cisely the star-free languages. □ 

For formulae in the language of Sieft (as opposed 
to S,+ft), we can show that bounded quantification 
suffices, although the notion of bounded quantifica- 
tion is slightly different here from that used in the 
previous section. Let Np(s) be the prefix-closure of 
{s - sx + s2 | |si|, \s2\ < p}. Clearly Np{s) is definable 
from s over Sieft. We then define FO»(Sieft) as the class 
of FO(Sieft) formulae ip(x) in which all quantification 
is of the form 3z e Np(xi) and Vz 6 Np(xi), where Xi 
is a free variable of tp and p > 0 arbitrary. 

Corollary 6 FO,(Sleft) = FO(Sleft). D 

Isolation and VC-dimension We now show that 
the results about isolation and VC-dimension extend 
from S to Sieft. 

Proposition 6 Th(Sieft) has the isolation property. D 

Since the argument for corollary 3 actually shows 
that isolation implies finite VC-dimension, we con- 
clude: 

Corollary 7 Every definable family in S]eft has finite 
VC-dimension. D 
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6    Regular algebra extending S 

The previous sections presented star-free algebras 
with attractive properties. We now give an example of 
a regular algebra that has significantly less expressive 
power than the rich structure Sien, and which shares 
some of the nicer properties of the star-free algebras in 
the previous sections. 

This algebra can be obtained by considering two pos- 
sible ways of extending FO(S): the first is by adding 
the predicates Pi for all regular languages L\ that is, 
predicates Pi(x,y) which hold for x < y such that 
y — x £ L, where L is a regular language. The sec- 
ond extension is by using monadic-second order logic 
instead of only first-order logic. It turns out that these 
extensions define exactly the same algebra. We show 
this, and also show that the resulting regular algebra 
shares the QE and VC-dimension properties of the star- 
free algebras defined previously. 

Let Sreg = (£*,:<, (Za)o6S,(Pj,)L regular)- Since il 

defines arbitrary regular languages in £*, it is a proper 
extension of S. Every FO(Sreg)-definable set is defin- 
able over Sicn, because the predicates Pi are definable 
in S|e„ (the easiest way to see this is by using the char- 
acterization of Sic definable properties via letter-to- 
lettcr automata). Thus, we have: 

Proposition 7 Subsets of E* definable over S 
precisely the regular languages. 

reg 

G 

Let S+ be the extension of Srog with e and IT Most 
of the results about S and S+ from Section 4 can be 
straightforwardly lifted to Srcg and S+g. For example, 
the normal form Proposition 2 holds for Sreg if one 
replaces "star-free" with "regular": the proof given in 
Section 4 applies verbatim. From this normal form we 
immediately obtain: 

Theorem 4 S+    admits quantifier elimination.        Ü 

The normal form result also shows that neither the 
functions /„ nor the predicate el are definable in Sreg 

(the former can also be seen from the fact that Sreg has 
QE in a signature of bounded arity, and Sinn does not; 
for inexprcssibility of /„ it suffices to apply the normal 
form results to pairs of strings of the form (1 • 0A, 0A')). 
One can also show, as in the case of S, that bounded 
quantification over prefixes is sufficient. 

Our next aim is to show that FO(Sreg) gives us ex- 
actly the same algebra of definable sets as MSO(S). 

Notice first that each relation definable in FO(Srcg) 
is already definable in MSO(S) because each predicate 

Pi is definable in MSO. We will show in the following 
that the converse implication also holds. 

The proof relies on a lemma which essentially shows 
that the monadic second-order type of a tuple of strings 
only depends on its tree-order type and the monadic 
second-order types of the paths between the strings and 
their common prefixes. 

For a sequence a = (ai,...,an) of strings, let Tg be 
the structure (E*, ;<, (LQ)ae£,a). 

For each string w € E*, let lw be the finite structure 
(Iw,<,(Ra.)aex,l,\w\) where /„, is {1,..., |iu|}, < is 
the usual order and, for each a G E, Ra is the set of all 
positions of w that carry the letter a. For two strings 
u,!)£E*,we write u =s

k v if Xu =MSO». %V 

Lemma 2 For each k > 0, there is k' > 0 such 
that the following holds. Let a = (m,... ,an),b — 
(bi,... ,bn) be sequences of strings for which there is 
a tree isomorphism h : Tree(a) —> Tree(b) such that 

(i) for each i 6 {1,... , n}, /i(n,) = bi, and 

(ii) whenever u is the immediate predecessor of v in 
Tree(o) then v — u =s

k h(v) — h(u). 

Then Ts =Msot 
Th- a 

As both conditions (i) and (ii) of the Lemma are 
expressible in FO(Sreg), we obtain: 

Theorem 5 FO(Sr MSO(S). D 

The bounded monadic second-order quantifier 3X < 
y is defined as follows. A formula 3X < y if holds 
if and only if 3X(VxX(x) —> x ^ y) A tp holds. We 
define MSO),(S) by binding all first-order and monadic 
second-order quantifiers. 

From Theorem 5 we can easily derive the following 
corollaries. 

Corollary 8 

• MS06(S) = MSO(S) 

• Subsets o/E* definable in MSO(S) are exactly the 
regular languages. 

Automata model, isolation, and VC dimension 
It was proved in [1] that Regular Prefix Relations 
(RPR) (those definable by Regular Prefix Automata 
(RPA), introduced in Section 4) are exactly those de- 
finable in MSO(S). Thus Theorem 5 together with the 
results of [1] gives a new characterization of FO(Sreg). 
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Figure 1. Relationships between S, Sieft, Sreg, Sreg,ieft, and S 'len- 

Corollary 9 The relations definable in FO(Sreg) are 
exactly the RPR relations. Thus each relation definable 
in FO(Sreg) is recognizable by a RPA. Q 

The proof of the isolation property for S (Proposi- 
tion 4) is unaffected by the change from star-free Pi 
to regular PL- Thus, we obtain: 

Corollary 10 Th(Sreg)   has   the   isolation  property, 
and   definable   families 
dimension. 

of   Sreg    have   finite VC- 
G 

7    Regular algebra extending S]eft 

We now give a final example of a regular algebra. 
Let Sreg,left be the common expansion of Sieft and Sreg, 
that is, (E*,^,(Za)oeE,(/a)o€E,(P£,)Lregular). Since 
Sreg cannot express the functions fa, and Sieft cannot 
define arbitrary regular sets, we see that Sreg,ieft is a 
proper expansion of Sreg and S]eft- Furthermore, all 
Sreg,left-definable sets are Sien-definable; the finiteness 
of VC dimension for Sreg,ieft, shown below, implies that 
this containment is proper, too. 

Let S+ left be the common expansion of Sj£ft and 
Sreg, that is, the expansion of Sreg,ieft with e and FT 
The techniques of the previous sections can be used to 
show the following: 

Theorem 6 Sf   |eft has quantifier-elimination. Fur- 
thermore, Th(Sreg,ieft) has the isolation property, and 
definable families in Sreg,ieft have finite VC-dimension. 
D 

Similarly to Sieft, we derive from the proof of Theo- 
rem 6 the following normal form for Sreg,ieft formulae: 

Corollary 11 For every FO(Sreg,ieft) formula p(x,y) 
there is an FO(Sreg) formula p'(x,z) and a finite set 

of nice S^ft terms t such that 

Vxy p(x,y) <-> p'(x,t(y)) 

holds in Sreg,ieft- G 

We conclude this section with a remark show- 
ing that arithmetic properties definable in structures 
S, Sieft, Sreg, Sreg,left are weaker than those definable in 
Sien- As we mentioned earlier, under the binary encod- 
ing, Sien gives us an extension of Presburger arithmetic; 
namely, it defines + and V-2, where V2 (x) is the largest 
power of 2 that divides x. But even Sreg,ieft is much 
weaker: 

Proposition 8 Neither   successor,    nor   order,    nor 
addition,    are   definable   in   Sreg,ieft   (and   hence   in 
S, Sreg, Sieftj. Q 

8    Conclusion 

There has been significant interest in theoretical 
computer science in understanding the structure of the 
regular languages, and in identifying subclasses of the 
regular languages that have special properties [29, 28]. 
Our work can be seen as an extension of this program, 
where we consider subclasses of the regular n-ary re- 
lations rather than the regular sets. In our approach, 
however, we do not focus on properties that hold of one 
particular regular relation by itself, but rather look at 
some desirable properties of a whole algebra of relations 
lying within the structure Sien- 

We have shown a sharp contrast between the behav- 
ior of the full algebra of regular relations of Sien, and 
those of various submodels such as S, Sieft, Sreg, and 
Sreg,left- We show that the latter are more tractable in 
many respects. Furthermore, we show that the behav- 
ior of an algebra of relations is not at all determined by 
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the one-dimensional sets (subsets of £*) in the algebra: 
for example, one can have fairly complex binary rela- 
tions definable, yet still maintain the property that all 
definable subsets of E* are star-free. Figure 1 summa- 
rizes the relationships between the star-free and regular 
algebras we considered here. 

A key question is how many relations one can add 
to the models Sieft or Sreg and still have the attrac- 
tive properties like QE and finite VC-dimension. Is 
there a model that is somehow maximal with respect 
to these properties? We would very much like to know 
the answer to this question. There are also several nat- 
ural candidate models that would seem amenable to the 
approach taken here, and where one would expect the 
same results to go through: for example, if one allows 
the operation concatenating a fixed sequence "in the 
middle" of a string, rather than on the left or on the 
right, is the resulting model still tractable? 
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