
PROCEEDINGS

v ■'■

16-19 JUNE 2001 BOSTON, MASSACHUSETTS

IEEE

COMPUTER
SOCIETY

/ Sponsored by IEEE Computer Society Technical Committee on Mathematical Foundations of Computing

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour par response, including the time for reviewing instructions, search.ng existing data solves, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden esBmates or any other «^^^StaL Suite
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operabons and Reports, 1215 Jefferson Dav.s Highway, Surte
1204, Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Proiect (0704-0188,)JVa^gton^UL^ZUSO^
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

March 31, 2001
TITLE AND SUBTITLE

2001 IEEE Conference on Logic and
Computer Science (LICS 2001)

6. AUTHOR(S)

Joseph Halpern (Editor)
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

IEEE LICS

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr. Ralph Wächter
ONR
6 Ballston Tower One
800 North Quincy Street

3. REPORT TYPE AND DATES COVERED

Final
5. FUNDING NUMBERS

N00014-01-1-0568

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Arlin
11. SUPPLEME

igton, VA
iNtÄRY NOTES

22217

12 a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The LICS Symposium is an annual internationa
practical topics in computer science that re
sense. Topics of interest include: automata
concurrency, constraint programming, databas
finite model theory, formal methods, hybrid
linear logic, complexity, artificial intelli
modal and temporal logics, model checking, s
rewriting, specifications, type theory, and

1 forum on theoretical and
late to logic in a broad
theory, category theory,

e theory, domain theory,
systems, language calculi,
gence, logic programming,
emantics, security,
verification.

14. SUBJECT TERMS

Logic, Computer Science,automata,language calculi,
concurrency, formal methods, model checking,
security, specifications, verification

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

441

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500
89)

ANSI Std. 239-18

Standard Form 298 (Rev.2-
Prescribed by

298-102

fiFNFRAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used for announcing and cataloging reports It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements. , —

Block 1. Aaencv Use Only (Leave blank)

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g.
1 Jan 88). Must cite at least year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable enter inclusive report dates (e.g.
10Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from the part of the
report that provides the most meaningful and complete information.
When a report is prepared in more than one volume, repeat the
primary title, and volume number, and include subtitle for the
specific volume. On classified documents enter the title
classification in parentheses.

Block 5. Funding Numbers. To include contract and grant
numbers; may include program element number(s) project
number(s), task number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE - Program

Element

PR - Project
TA- Task
WU - Work Unit

Accession No.

Block 6. Author(s). Name(s) of person(s) responsible for writing
the report, performing the research, or credited with the content of
the report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report number(s)
assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Aoencv Name(s)
and Addressfes) Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number, {if known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as; prepared in
cooperation with....; Trans, of...; To be published in.... When a
report is revised, include a statement whether the new report
supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any availability
to the public. Enter additional limitations or special markings
in all capitals (e.g. NORFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

See DoDD 4230.25, "Distribution
Statements on Technical
Documents."
See authorities.
See Handbook NHB 2200.2.
Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA
NTIS

Leave Blank
Enter DOE distribution categories
from the Standard Distribution for
unclassified Scientific and Technical
Reports
Leave Blank.
Leave Blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subject in the report.

Block 15. Number of Pages
number of pages.

Enter the total

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Block 17. -19. Security Classifications. Self-
explanatory. Enter U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. I imitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (Unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Proceedings

16th Annual IEEE Symposium on

Logic in Computer Science

Proceedings

16th Annual IEEE Symposium on

Logic in Computer Science

16-19 June 2001 • Boston, Massachusetts

Sponsored by

IEEE Computer Society Technical Committee on

Mathematical Foundations of Computing

IEEE VA'»

COMPUTER
SOCIETY

Los Alamitos, California
Washington • Brussels • Tokyo

Copyright © 2001 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page.
They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented
and without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number PRO 1281
ISBN0-7695-1281-X

ISSN: 1043-6871

IEEE Computer Society
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1314
Tel:+ 1714 821 8380
Fax: + 1 714 8214641
http://computer.org/
csbooks@computcr.org

Additional copies may be ordered from:

IEEE Service Center
445 Hoes Lane
P.O.Box 1331
Piscataway, NJ 08855-1331
Tel: + 1 732 981 0060
Fax:+ 1 732 9819667
http://shop.ieee.org/store/
customer-service® ieec.ore

IEEE Computer Society
Asia/Pacific Office
Watanabe Bklg., 1-4-2
Minami-Aoyama
Minato-ku, Tokyo 107-0062
JAPAN
Tel: +81 3 3408 3118
Fax:+ 81 3 3408 3553
tokyo.ofc@computcr.org

Editorial production by A. Denise Williams

Cover graphic design by Alvy Ray Smith

Cover art production by Joseph Daigle/Studio Productions

Printed in the United States of America by The Printing House, Inc.

IEEE

COMPUTER
SOCIETY

Table of Contents
16th Annual IEEE Symposium on Logic in Computer Science

Foreword x

Conference Organization xi

Additional Reviewers xii

Invited Talk

Chair: Joseph Y. Halpern

Probabilistic Polynomial-Time Precess Calculus and Security Protocol Analysis 3
J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague

Session 1

Chair: Jean-Pierre Jouannaud

Definitions by Rewriting in the Calculus of Constructions 9
F. Blanqui

Deconstructing Shostak 19
H. Rueß and N. Shankar

A Decision Procedure for an Extensional Theory of Arrays 29
A. Stump, C. Barrett, D. Dill, and J. Levitt

On Ordering Constraints for Deduction with Built-in Abelian Semigroups,
Monoids and Groups 38

G. Godoy and R. Nieuwenhuis

Invited Talk

Chair: Jean-Pierre Jouannaud

Successive Approximation of Abstract Transition Relations 51
S. Das and D. Dill

Session 2

Chair: Pawel Urzyczyn

A Bound on Attacks on Payment Protocols 61
S. Stoller

A Dichotomy in the Complexity of Propositional Circumscription 71
L. Kirousis and P. Kolaitis

Relating Semantic and Proof-Theoretic Concepts for Polynomial Time
Decidability of Uniform Word Problems 81

H. Ganzinger

Session 3

Chair: Radha Jaghadeesan

Semantics of Name and Value Passing 93
M. Fiore and D. Turi

A Fully Abstract Game Semantics of Local Exceptions 105
J. Laird

A Universal Characterization of the Closed Euclidean Interval 115
M. Escardo and A. Simpson

Invited Talk

Chair: Gordon Plotkin

Logician in the Land of OS: Abstract State Machines in Microsoft 129
Y. Gurevich

Session 4

Chair: Michel de Rougemont

Eliminating Definitions and Skolem Functions in First-Order Logic 139
J. Avigad

On the Decision Problem for the Guarded Fragment with Transitivity 147
W. Szwast and L. Tendera

The Hierarchy inside Closed Monadic Ii Collapses on the Infinite
Binary Tree 157

A. Arnold, G. Lenzi, and J. Marcinkowski

On Definability of Order in Logic with Choice 167
T. Huuskonen and T. Hyttinen

Invited Talk

Chair: Erich Graedel

The Engineering Challenge for Logic
Wolfgang Thomas

Session 5

Chair: Erich Graedel

A Second-Order System for Polytime Reasoning Using Graedel's Theorem 177
S. Cook and A. Kolokolova

The Crane Beach Conjecture 187
D. Barrington, N. Immerman, C. Lautemann,
N. Schweikardt, and D. Therien

An n! Lower Bound on Formula Size 197
M. Adler and N. Immerman

VI

Session 6

Chair: Nevin Heintze

Light Affine Lambda Calculus and Polytime Strong Normalization .'. 209
K. Terui

Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory 221
F. Pfenning

Dependent Types for Program Termination Verification 231
H.Xi

Short Paper Session

Chair: Joseph Y. Halpern

The Dolev-Yao Intruder is the Most Powerful Attacker
/. Cervesato

Semantics of Machine Instructions at Multiple Levels of Abstraction
G. Tan and A. Appel

A Proof-Carrying Authorization System
L. Bauer, M. Schneider, and E. Feiten

Recursive Programming Languages for Complexity Classes
E. Covino and G. Pani

Interior-Point Approach to Parity Games
V. Petersson and S. Vorobyov

Recent Progress in Proof Mining
U. Kohlenbach

On the Complexity of Confluence for Ground Rewrite Systems
A. Hayrapetyan and R. Verma

Computing the Density of Regular Languages
M. Bodirsky, M. Gaertner, T. von Oertzen, and J. Schwinghammer

Integrating Simplification Techniques in SAT Algorithms
/. Lynce and J. Marques-Silva

Basic Completion Modulo with Simplification
C. Lynch and C. Scharff

Finite Visit Sequential Deterministic Tree Automata
S. Lindell

Invited Talk

Chair: Ron van der Meyden

Foundational Proof-Carrying Code 247
A. Appel

Vll

Session 7

Chair: Parosh Abdul I a

Intuitionistic Linear Logic and Partial Correctness 259
D. Kozen and J. Tiuryn

Perturbed Turing Machines and Hybrid Systems 269
E. Asarin and A. Bouajjani

From Verification to Control: Dynamic Programs for Omega-Regular Objectives 279
L. de Alfaro, T. Henzinger, and R. Majumdar

Deterministic Generators and Games for LTL Fragments 291
R. Alur and S. La Torre

Session 8

Chair: Adolfo Piperno

Normalization by Evaluation for Typed Lambda Calculus with Coproducts 303
T. Altenkirch, P. Dybjer, M. Hofinann, and P. Scott

Strong Normalisation in the 7C-Calculus 311
N. Yoshida, M. Berger, and K. Honda

A Symbolic Labelled Transition System for Coinductive Subtyping of F/;<
Types 323

A. Jeffrey

A Continuum of Theories of Lambda Calculus without Semantics 334
A. Salibra

Session 9

Chair: Hubert Comon

Relating Levels of the Mu-Calculus Hierarchy and Levels of the Monadic
Hierarchy 347

D. Janin and G. Lenzi

Focus Games for Satisfiability and Completeness of Temporal Logic 357
M. Lange and C Stirling

Safety and Liveness in Branching Time 366
P. Manolios and R. Trefler

Short Papers

Self-Verifying Systems, the Incompleteness Theorem and the Tangibility
Reflection Principle

D. Willard

Repairing the Interpolation Theorem in First-Order Modal Logic
C. Areces, P. Blackburn, and M. Marx

A Game involving Epistemic Logic and Probability
A. Pogel, G. Voutsadakis, and M. Gehrke

A Theory of Advanced Transactions in the Situation Calculus
/. Kiringa

Vlll

Invited Talk

Chair: Michel de Rougemont

Semistructured Data: From Practice to Theory 379
S. Abiteboul

Session 10

Chair: Ranee Cleaveland

Synthesizing Distributed Systems 389
O. Kupferman and M. Vardi

Permutation Rewriting and Algorithmic Verification 399
A. Bouajjani, A. Muscholl, and T. Touili

Temporal Logic Query Checking 409
G. Bruns and P. Godefroid

Session 11

Chair: Ron van der Meyden

Typechecking XML Views of Relational Databases 421
N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu

A Model-Theoretic Approach to Regular String Relations 431
M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin

Author Index 441

IX

Foreword

It's hard to believe that this is already the 16th LICS. It doesn't seem all that long (at least to
me!) since the conference started. The program chair of the first LICS was Albert Meyer. This
year, one of the workshops associated with LICS is the Symposium on Complexity, Logic, and
Computation, in honor of Albert.

From the 104 submissions received, the Program Committee selected thirty-six papers. Many
worthy abstracts had to be rejected due to the time constraints of the conference. These papers
are preliminary reports of ongoing research. Most will appear in more polished and complete
form in scientific journals. There are also six invited talks that are represented in the
proceedings. Finally, the titles of fifteen short talks are listed. These are mainly announcements:
in some cases, full papers are available from the authors; in other cases, the research is so
preliminary that there is no paper yet.

Many people put in a great deal of time and effort into selecting the program. First and
foremost, there was the Program Committee. These days, program committee meetings are
virtual; they are conducted asynchronously by email. That means that "meetings" take place over
a 10-day period. Program committee members had to read email at all times of the day just to
keep up. Fortunately for me, this was a very active program committee, and they seemed to be
willing to do that. Even better, we were able to converge to a program that we were all
comfortable with in a remarkably smooth manner. This year we put a special emphasis on having
papers where the relevance to computer science was clear and which would be accessible to
nonexperts. These proceedings should attest to how well we succeeded.

Another one of our tasks was to choose the best student paper(s) for the Kleene award. This
year there are two winners: Frederic Blanqui for "Definitions by Rewriting in the Calculus of
Constructions," and Kazushige Terui for "Light Affine Lambda Calculus and Polytime Strong
Normalization." I'd like to congratulate them both.

The people involved with the conference organization, the program committee, and the
(many!) outside reviewers used by the program committee members are all listed on the
following pages. I'd like to thank them all; the conference could not have happened without their
efforts. I'd like to add a special note of thanks to someone whose name is not listed so
prominently: Jon Riecke. Jon kept up the submissions software, housed at Lucent, even after he
left Lucent for a startup.

I hope you will find that the contents of these Proceedings were worth the effort required to
create them.

Joe Halpern

LICS 2001 Program Chair

Conference Organization

Conference Chair
Harry Mairson, Boston University

Publicity Chair
Martin Grohe, U. Illinois, Chicago

General Chair
Samson Abramsky, Oxford U.

Organizing Committee

Martin Abadi
Samson Abramsky (chair)

Alok Aggarwal
Marc Bezem

Edmund Clarke
Robert Constable

Nachum Dershowitz

Josep Diaz

Harald Ganzinger
Fausto Giunchiglia

Martin Grohe
Daniel Leivant
Leonid Libkin

Giuseppe Longo
Donald A. Martin

John Mitchell

Eugenio Moggi
Vaughan Pratt

Jon Riecke
Simona Ronchi della Rocca

Jerzy Tiuryn
Moshe Y. Vardi

Jeffrey Vitter

Glynn Winskel

Program Committee

Parosh Abdulla, Uppsala U.
Ranee Cleaveland, SUNY Stony Brook
Hubert Comon, CNRS—ENS Cachan

Thomas Eiter, T. U. Vienna
Erich Grädel, RWTH Aachen

Joseph Halpern, Cornell U. (chair)
Nevin Heintze, Bell Labs

Radha Jagadeesan, Loyola U.
Jean-Pierre Jouannaud, U. Paris-Sud

Patrick Lincoln, SRI International
David McAllester, AT&T Labs

Ron van der Meyden, U. New South Wales
Adolfo Piperno, U. Roma "La Sapienza "

Gordon Plotkin, U. Edinburgh
Michel de Rougemont, U. Paris-II
Thomas Streicher, T U. Darmstadt

Pawel Urzyczyn, U. Warsaw
Pierre Wolper, U. Liege

Martin Abadi

Serge Abiteboul

Samson Abramsky

Mariangiola Dezani

LICS Advisory Board

Joseph Halpern

Russell Impagliazzo

Dexter Kozen

John Mitchell

Leszek Pacholski

Andre Scedrov

Dana Scott

Jeanette Wing

XI

Additional Reviewers

Foto Afrati
Thorsten Altenkirch

Mathias Baaz
Arnold Beckmann
Franco Barbanera
Stefano Berardi

Dietmar Berwanger
Frederic Blanqui

Achim Blumensath
Michele Boreale
Ahmed Bouajjani

Anna Bucalo
Antonio Bucciarelli

Olivier Carton
Didier Caucal

Patrick Cegielski
Pietro Cenciarelli

Juliusz Chroboczek
Christopher Colby
Evelyne Contejean
Bruno Courcelle

Mats Dam
Vincent Danos
Olivier Danvy

Stephane Demri
Rocco De Nicola

Mariangiola Dezani-Ciancaglini
Dan Dougherty
Arnaud Durand
Nancy Durgin

Uwe Egly
Kai Engelhardt
Chris Fermüller
Francois Fages

Maribel Fernandez
Andrzej Filinski

Jean-Christophe Filliatre
Alain Finkel

Harald Ganzinger
Philippa Gardner

Simon Gay
Andreas Goerdt
Georg Gottlob

Bernhard Grämlich
Herman Geuvers

Etienne Grandjean
Martin Grohe

David Gross
Stefano Guerrini
Bruno Guillaume

Vineet Gupta
Hugo Herbelin
Miki Hermann
Colin Hirsch

Martin Hofmann
Furio Honseil
Martin Hyland

Benedetto Intrigila
S. Purushothaman Iyer

David Janin
Bengt Jonsson

Fairouz Kamareddine
Alex Kurz

Alan Jeffrey
Marcin Jurdzinski
Claude Kirchner

Jan Krajicek
Daniel Krob

Stephan Kreutzer
Anna Labella
Yves Lafont

Jens Lagergren
Yassine Lakhnech
Richard Lassaigne
Jean-Marie Lebars
Ugode'Liguoro
John Longley

Thomas Lukasiewicz
Ian Mackie

Frederic Magniez
Janos Makowsky

Pasquale Malacaria
Luc Maranget

Jean-Yves Marion
Michel Mauny
John Mitchell

Gopalan Nadathur
Damian Niwinski
Bengt Nordstroem
Sven-Olof Nyström

Ichiro Ogata
Luke Ong

Jaap van Oosten
Martin Otto

Sam Owre
Catuscia Palamidessi
Prakash Panangaden

Francesco Parisi-Presicce
Joachim Parrow
Justin Pearson
Paul Pettersson

Sylvain Peyronnet
Andreas Podelski

Randy Pollack
Riccardo Pucella

Grigore Rosu
Simona Ronchi Delia Rocca

Paul Ruet
Harald Ruess
Eike Ritter

Giuseppe Rosolini
Kostis Sagonas
Matteo Salina
Ivano Salvo

Andrea Schal
Philippe Schnoebclen
Thomas Schwentick
Geraud Senizergues
Natarajan Shankar
Anatol Slissenko
Riccardo Silvestri

Julien Stern
Karel Stokkermans

Colin Stirling
Jürgen Stuber

Vanessa Teague
Ashish Tiwari
Hans Tompits

Jerzy Tyszkiewicz
Xavier Urbain
Helmut Veith
Björn Victor

Sergey Vorobyov
Andrei Voronkov

Johannes Waldmann
Victoria Weissman
Benjamin Werner

Thomas Wilke
Mihalis Yannakakis

Wang Yi
Marisa Venturini Zilli

Xll

Invited Talk

Probabilistic polynomial-time process calculus
and security protocol analysis

(short summary)

J. Mitchell^ A. Ramanathan*
Stanford University

A. Scedrov**
University of Pennsylvania

V. Teague*
Stanford University

Abstract

We describe properties of a process calculus that has
been developed for the purpose of analyzing security proto-
cols. The process calculus is a restricted form of'n-calculus,
with bounded replication and probabilistic polynomial-time
expressions allowed in messages and boolean tests. To
avoid problems expressing security in the presence of non-
determinism, messages are scheduled probabilistically in-
stead of nondeterministically. We prove that evaluation may
be completed in probabilistic polynomial time and develop
properties of a form of asymptotic protocol equivalence that
allows security to be speciied using observational equiva-
lence, a standard relation from programming language the-
ory' that involves quantifying over possible environments
that might interact with the protocol. We also relate pro-
cess equivalence to cryptographic concepts such as pseudo-
random number generators and polynomial-time statistical
tests.

1 Introduction

A variety of methods are used for analyzing and reason-
ing about security protocols. The main systematic or formal
approaches include specialized logics such as BAN logic
[BAN89, DMP01], special-purpose tools designed for cryp-
tographic protocol analysis [KMM94], and theorem prov-
ing [Pau97b, Pau97a] and model-checking methods using
general purpose tools [Low96, Mea96, MMS97, Ros95,
Sch96]. Although these approaches differ in significant
ways, all reject the same basic assumptions about the way
an adversary may interact with the protocol or attempt to de-
crypt encrypted messages . In the common model, largely

'Partially supported by DoD MURI "Semantic Consistency in Infor-
mation Exchange," ONR Grant N00014-97-1-0505, and DARPA Contract
N66001-00-C-8015

+ Additional support from NSF Grant CCR-9629754.
t Additional support from NSF Grant CCR-9800785.

derived from [DY81] and suggestions found in [NS78] (see,
e.g., [CDL+99]), a protocol adversary is allowed to non-
deterministically choose among possible actions. This is
a convenient idealization, intended to give the adversary a
chance to £nd an attack if there is one. In the presence
of nondeterminism, however, the set of messages an adver-
sary may use to interfere with a protocol must be restricted
severely. For example, if the adversary may perform bit
manipulation on data, then a nondeterministic adversary
may guess any possible secret key. Therefore, the com-
mon "Dolev-Yao assumptions" only allow an adversary to
construct new messages from indivisible data that are either
known from the start or found in messages overheard on the
network. Although the Dolev-Yao assumptions make proto-
col analysis tractable, they also make it possible to "verify"
protocols that are in fact susceptible to simple attacks that
lie outside the adversary model. Another limitation is that a
deterministic or nondeterministic setting does not allow us
to analyze probabilistic protocols.

This invited talk will describe some general concepts
in security protocol analysis, mention some of the com-
peting approaches, and describe some technical properties
of a process calculus that was proposed earlier [LMMS98,
LMMS99] as the basis for a form of protocol analysis that
is formal, yet closer in foundations to the mathematical
setting of modern cryptography. The framework relies on
a language for defining probabilitic polynomial-time func-
tions [MMS98]. The reason we restrict processes to proba-
bilistic polynomial time is so that we can reason about the
security of protocols by quantifying over all "adversarial"
processes definable in the language. In effect, establish-
ing a bound on the running time of an adversary allows us
to relax other simplifying assumptions. Specifically, it is
possible to consider adversaries that might send randomly
chosen messages, or perform sophisticated (yet probabilis-
tic polynomial-time) computation to derive an attack from
messages it overhears on the network. A useful aspect of
our framework is that we can analyze probabilistic as well
as deterministic encryption functions and protocols. With-

0-7695-1281-X/01 $10.00 © 2001 IEEE

out a probabilistic framework, it would not be possible to
analyze an encryption function such as ElGamal [E1G85],
for which a single plaintext may have more than one ci-
phertext.

The work has been carried out in collaboration with P.
Lincoln, M. Mitchell, A. Scedrov, A. Ramanathan, and V.
Teague. The main ideas are outlined in [LMMS98], with
the term language presented in [MMS98] and further ex-
ample protocols considered in [LMMS99]. The closest
technical precursor is the Abadi and Gordon spi-calculus
[AG99, AG98] which uses observational equivalence and
channel abstraction but does not involve probability or com-
putational complexity bounds; subsequent related work is
cited in [AF01], for example. Prior work on CSP and secu-
rity protocols, e.g., [Ros95, Sch96], also uses process cal-
culus and security specifications in the form of equivalence
or related approximation ordcrings on processes.

Although our main long-term objective is to base pro-
tocol analysis on standard cryptographic assumptions, this
framework may also shed new light on basic questions in
cryptography. In particular, the characterization of "se-
cure" encryption function, for use in protocols, does not ap-
pear to have been completely settled. While the definition
of semantic security in [GM84] appears to have been ac-
cepted, there are stronger notions such as non-malleability
[DDN91] that are more appropriate to protocol analysis. In
a sense, the difference is that semantic security is natural
for the single transmission of an encrypted message, while
non-malleability accounts for vulnerabilities that may arise
in more complex protocols. Our framework provides a set-
ting for working backwards from security properties of a
protocol to derive necessary properties of underlying en-
cryption primitives. While we freely admit that much more
needs to be done to produce a systematic analysis method,
we believe that a foundational setting for protocol analysis
that incorporates probability and complexity restrictions has
much to offer in the future.

Slides from this talk will be available on the first author's
web site at http://www.stanford.edu/lcm.

Acknowledgements: Thanks to M. Abadi, D. Boneh,
R. Canetti, C. Dwork, R. van Glabbeek, A. Jeffrey, S. Kan-
nan, B. Kapron, P. Lincoln, R. Milner, M. Mitchell,
M. Naor, and P. Panangadcn for helpful discussions and ad-
vice on relevant literature.

References

[AFOl] M. Abadi and C. Fournet. Mobile values, new
names, and secure communication. In 28th
ACM Symposium on Principles of Program-
ming Languages, pages 104-115, 2001.

[AG97] M. Abadi and A. Gordon. A calculus for cryp-
tographic protocols: the spi calculus. In Proc.
4-th ACM Conference on Computer and Com-
munications Security, pages 36-47, 1997. Re-
vised and expanded versions in Information
and Computation 148(1999): 1-70 and as SRC
Research Report 149 (January 1998).

[AG98] M. Abadi and A. Gordon. A bisimulation
method for cryptographic protocol. In Proc.
ESOP'98, Springer Lecture Notes in Computer
Science, 1998.

[AG99] M. Abadi and A. Gordon. A calculus for cryp-
tographic protocols: the spi calculus. Informa-
tion and Computation, 143:1-70, 1999. Ex-
panded version available as SRC Research Re-
port 149 (January 1998).

[AR00] M. Abadi and P. Rogaway. Reconciling two
views of cryptography (The computational
soundness of formal encryption). In IFIP In-
ternational Conference on Theoretical Com-
puter Science, Sendai, Japan, 2000. Full paper
to appear in J. ofCryptology.

[BAN89] M. Burrows, M. Abadi, and R. Ncedham. A
logic of authentication. Proceedings of the
Royal Society. Series A, 426(1871):233-271,
1989. Also appeared as SRC Research Report
39 and, in a shortened form, in ACM Trans-
actions on Computer Systems 8, 1 (February
1990), 18-36.

[CanOO] R. Canetti. A unified framework for an-
alyzing security of protocols. Cryptol-
ogy ePrint Archive: Report 2000/067; sec
http://eprint.iacr.org/2000/067/, 2000.

[CDL+99] I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C.
Mitchell, and A. Scedrov. A meta-notation for
protocol analysis. In 12-th IEEE Computer Se-
curity Foundations Workshop. IEEE Computer
Society Press, 1999.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Non-
malleable cryptography (extended abstract). In
Proc. 23rd Annual ACM Symposium on the
Theory of Computing, pages 542-552, 1991.

[DMP01] N.A. Durgin, J.C. Mitchell, and D. Pavlovic.
A compositional logic for protocol correctness.
In IEEE Computer Security Foundations Work-
shop, page (to appear), 2001.

[DY81] D. Dolev and A. Yao. On the security of
public-key protocols. In Proc. 22nd Annual

IEEE Symp. Foundations of Computer Science,
pages 350-357, 1981.

[E1G85] T. ElGamal. A public-key cryptosystem and a
signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, IT-
31:469-^72, 1985.

[GM84] S. Goldwasser and S. Micali. Probabilistic en-
cryption. J. Computer and System Sciences,
28:281-308, 1984.

[KMM94] R. Kemmerer, C. Meadows, and J. Millen.
Three systems for cryptographic protocol anal-
ysis. J. Cryptology, 7(2):79-130, 1994.

[LMMS98] P.D. Lincoln, M. Mitchell, J.C. Mitchell, and
A. Scedrov. A probabilistic poly-time frame-
work for protocol analysis. In M.K. Reiter, ed-
itor, Proc. 5-th ACM Conference on Computer
and Communications Security, pages 112-
121, San Francisco, California, 1998. ACM
Press.

[LMMS99] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and
A. Scedrov. Probabilistic polynomial-time
equivalence and security protocols. In J.M.
Wing and J. Woodcock and J. Davies, editor,
Formal Methods World Congress, Vol. I, pages
776-793, Toulouse, France, 1999. Springer
LNCS 1708.

[Low96] G. Lowe. Breaking and £xing the Needham-
Schroeder public-key protocol using CSP and
FDR. In 2nd International Workshop on Tools
and Algorithms for the Construction and Anal-
ysis of Systems. Springer-Verlag, 1996.

[Lub96] M. Luby. Pseudorandomness and Crypto-
graphic Applications. Princeton Computer
Science Notes, Princeton University Press,
1996.

[Mea96] C. Meadows. Analyzing the Needham-
Schroeder public-key protocol: a comparison
of two approaches. In Proc. European Sym-
posium On Research In Computer Security.
Springer Verlag, 1996.

[MMS97] J.C. Mitchell, M. Mitchell, and U. Stern. Auto-
mated analysis of cryptographic protocols us-
ing Muri/3. In Proc. IEEE Symp. Security and
Privacy, pages 141-151, 1997.

[MMS98] J.C. Mitchell, M. Mitchell, and A. Scedrov.
A linguistic characterization of bounded ora-
cle computation and probabilistic polynomial

time. In Proc. 39-th Annual IEEE Symposium
on Foundations of Computer Science, pages
725-733, Palo Alto, California, 1998. IEEE
Computer Society Press.

[NS78] R. Needham and M. Schroeder. Using en-
cryption for authentication in large networks
of computers. Communications of the ACM,
21(12):993-9, 1978.

[Pau97a] L.C. Paulson. Mechanized proofs for a
recursive authentication protocol. In 10th
IEEE Computer Security Foundations Work-
shop, pages 84-95, 1997.

[Pau97b] L.C. Paulson. Proving properties of security
protocols by induction. In 10th IEEE Com-
puter Security Foundations Workshop, pages
70-83, 1997.

[PW00] B. Pftzmann and M. Waidner. Composition
and integrity preservation of secure reactive
systems. In 7-th ACM Conference on Com-
puter and Communications Security, Athens,
November 2000, pages 245-254. ACM Press,
2000. Preliminary version: IBM Research Re-
port RZ 3234 (# 93280) 06/12/00, IBM Re-
search Division, Zürich, June 2000.

[Ros95] A. W. Roscoe. Modelling and verifying key-
exchange protocols using CSP and FDR. In
CSFW VIII, page 98. IEEE Computer Soc
Press, 1995.

[Sch96] S. Schneider. Security properties and CSP. In
IEEE Symp. Security and Privacy, 1996.

[Yao82] A. Yao. Theory and applications of trapdoor
functions. In IEEE Foundations of Computer
Science, pages 80-91, 1982.

Session 1

Definitions by Rewriting
in the Calculus of Constructions

Frederic Blanqui

LRI, bat. 490, Universite Paris-Sud, 91405 Orsay Cedex, France

tel: +33 (0) 1 69 15 42 35 fax: +33 (0) 1 69 15 65 86

blanqui@lri.fr

Abstract : The main novelty of this paper is to con-
sider an extension of the Calculus of Constructions
where predicates can be defined with a general form of
rewrite rules.

We prove the strong normalization of the reduction
relation generated by the ß-rule and the user-defined
rules under some general syntactic conditions includ-
ing confluence.

As examples, we show that two important systems
satisfy these conditions : a sub-system of the Calculus
of Inductive Constructions which is the basis of the
proof assistant Coq, and the Natural Deduction Modulo
a large class of equational theories.

1 Introduction

This work aims at defining an expressive language al-
lowing to specify and prove mathematical properties
in which functions and predicates can be defined by
rewrite rules, hence enabling the automatic proof of
equational problems.

The Calculus of Constructions. The quest for
such a language started with Girard's system F [19]
on one hand and De Bruijn's Automath project [18] on
the other hand. Later, Coquand and Huet combined
both calculi into the Calculus of Constructions (CC)
[10]. As in system F, in CC, data structures are defined
by using an impredicative encoding which is difficult
to use in practice. Following Martin-Löf's theory of
types [24], Coquand and Paulin-Mohring defined an
extension of CC with inductive types and their asso-
ciated induction principles as first-class objects : the
Calculus of Inductive Constructions (CIC) [2(3] which
is the basis of the proof-assistant Coq [17].

Reasoning Modulo. Defining functions or predi-
cates by recursion is not always convenient. More-
over, with such definitions, equational reasoning is un-
easy and leads to very large proof terms. Yet, for

decidable theories, equational proofs need not to be
kept in proof terms. This idea that proving is not
only reasoning (undecidable) but also computing (de-
cidable) has been recently formalized in a general way
by Dowek, Hardin and Kirchner with the Natural De-
duction Modulo (NDM) for first-order logic [12].

Object-level rewriting. In CC, the first exten-
sion by a general notion of rewriting is the Ai?-cube
of Barbanera, Fernandez and Geuvers [1]. Their
work extends the works of Breazu-Tannen and Gal-
lier [8] and Jouannaud and Okada [21] on the com-
bination of typed A-calculi with rewriting. The no-
tion of rewriting considered in [21, 1] is not restricted
to first-order rewriting, but also includes higher-order
rewriting following Jouannaud and Okada's General
Schema [21], a generalization of the primitive recur-
sive definition schema. This schema has been reformu-
lated and enhanced so as to deal with definitions on
strictly-positive inductive types [5] and with higher-
order pattern-matching [3].

Predicate-level rewriting. The notion of rewriting
considered in [1] is restricted to the object-level while,
in CIC or NDM, it is possible to define predicates by
recursion or by rewriting respectively. Recursion at
the predicate-level is called "strong elimination" in [26]
and has been shown consistent by Werner [31].

Our contributions. The main contribution of our
work is a strong normalization result for the Calcu-
lus of Constructions extended with, at the predicate-
level, user-defined rewrite rules satisfying some general
admissibility conditions. As examples, we show that
these conditions are satisfied by a sub-system of CIC
with strong elimination [26] and the Natural Deduc-
tion Modulo [13] a large class of equational theories.

So, our work can be used as a foundation for an ex-
tension of a proof assistant like Coq [17] where users
could define functions and predicates by rewrite rules.
Checking the admissibility conditions or the convert-

0-7695-1281-X/01 $10.00 © 2001 IEEE

ibility of two expressions may require the use of exter-
nal specialized tools like CiME [16] or ELAN [15].

Outline of the paper. In Section 2, we introduce
the Calculus of Algebraic Constructions and our no-
tations. In Section 3, we present our general syntactic
conditions. In Section 4, we apply our result to CIC
and NDM. In Section 5, we summarize the main con-
tributions of our work and, in Section 6, we give future
directions of work. Detailed proofs can be found in [4].

2 The Calculus of Algebraic
Constructions (CAC)

2.1 Syntax and notations

We assume the reader familiar with the basics of
rewriting [11] and typed A-calculus [2].

Sorts and symbols. Throughout the paper, we let
5 = {*, □} be the set of sorts where * denotes the
imprcdicative universe of propositions and O a pred-
icative universe containing *. We also assume given a
family T = {T^^ of sets of symbols and a family

.V = (.Y'')''€,-s of infinite sets of variables. A symbol
/ € T^ is said to be of arity a; = n and sort s. Ts.
Tn. T and .1' respectively denote the set of symbols
of sort ,s, the set of symbols of arity n, the set of all
symbols and the set of all variables.

Terms. The terms of the corresponding CAC are
given by the following syntax :

1 ::= s \ ;■ \ f(f) \(.v:t)t \[x:t]t \ It

where s G 5, x G .V and / is applied to a vector / of n
terms if/ G T„. [x:U]1 is the abstraction and [x:U)\'
is the product. A term is algebraic if it is a variable
or of the form /(/) with each U algebraic.

Notations. As usual, we consider terms up to o-
conversion. We denote by FY(t) the set of free vari-
ables of/, by FV'[i) the set Fl'(r)n.Vs, by t{x ^ a)
the term obtained by substituting in t every free oc-
currence of.!' by it, by dom(O) the domain of the sub-
stitution 0, by dotn(O) the set dom(0)C\X\ by Pos(i)
the set of positions in / (words on the alphabet of pos-
itive integers), by t\P the subtcrm of / at position p.
by t[u]r the term obtained by replacing /|;, by u in /.
and by Pos(f,l) and Pos(.vJ) the sets of positions in
/ where / occurs and x freely occurs respectively. As
usual, we write T -» U for a product [x :T)U where
x $ FV(U).

Rewriting. We assume given a set R. of rewrite rults
defining the symbols in T. The rules we consider are

pairs / -> r made of two terms / and r such that /
is an algebraic term of the form /(/) and FV(r) C
FV(l). They induce a rewrite relation ->TC on terms
defined by / —^ /' iff there are p G Pos(t), I -> r G
R and a substitution a such that t\p = la and t' =
t[ra]p (matching is first-order). So, 7v can be seen as
a particular case of Combinatory Reduction System
(CRS) [23] (translate [x :T)u into A(T,[x]u) and {x :
T)U into Yl(T,[x]U)) for which higher-order pattern-
matching is not necessary.

Reduction. The reduction relation of the calculus
is —> = —>-7j U —>ß where —>^ is defined as usual by
[x:T]u I -tß u{x (-)■ /}. We denote by ->* its reflexive

and transitive closure, by <->* its symmetric, reflexive
and transitive closure, and by / |* w the fact that /
and u have a common reduct.

2.2 Typing

Types of symbols. We assume given a function r
which, to each symbol /, associates a term TJ , called

its type, of the form (.? : T)U with |.?| = aj. In
contrast with our own previous work [5] or the work
of Barbanera, Fernandez and Geuvers [1], symbols can
have polymorphic as well as dependent types, as it is
the case in CIC'.

Typing. An environment T is an ordered list of pairs
Xj-.l) saying that Xj is of type Tj. The typing relation
of the calculus, h, is defined by the rules of Figure 1
(where s. s' G S).

An environment is valid if there is a term typable in
it. The condition F h v : V in the (synib) rule insures
that T is valid in the case where n = 0.

Substitutions. Given two valid environments F and
A, a substitution 0 is a well-typed substitution from
T to A, written 0 : T -4 A, if, for all x G riom(F),
A h xO : xVfl, where jT denotes the ty])c associated
to .;■ in F. With such a substitution, if F f- t : T then
Ar-tfl: TO.

Logical consistency. As usual, the logical consis-
tency of such a system is proved in three steps.

First, we must make sure that the reduction relation
is correct w.r.t. the typing relation : if T h / : T and
i —> 1' then F h /' : T. This property, called subject
reduction . is not easy to prove for extensions of C('
[31. 1]. In the following subsection, we give sufficient
conditions for it.

The second step is to prove that the reduction rela-
tion —> is weakly or strongly normalizing, hence that.
every well-typed term has a normal form. Together
with the confluence, this implies the decidability of the

10

Figure 1: Typing rules

h*: a

(symb)

(weak)

(prod)

(abs)

(app)

f€?t,Tf=(x :f)U, 7 = {*-►*-}
hr;:s T\-v:V Vi, T h *,- : Ti7

r I" /(*) : £'7

rhT:s a;GP\(fom(r)

r,i:Thi :T

T\-t:T T\-U:s xeA's\dom{T)

r, x : U \~ t : T

T\-T:s T,x:ThU :s'

rh (x:T)U :s'

T,x:T<ru:U T h (x:T)U : s

ri- [x:T]u: [x:T)U

T\-1:(x:U)V T h u : U
r h <w : V'{a- >->. u}

rhf :T T 4* T' rhf:s'

r h / : T

typing relation which is essential in proof assistants.
In this paper, we will study the strong normalization
property.

The third step is to make sure that there is no nor-
mal proof of _L = (P:-k)P in the empty environment.
Indeed, if _L is provable then any proposition P is prov-
able. We will not address this problem here.

2.3 Subject reduction

Proving subject reduction for -*g requires the follow-
ing property [4] :

{x:U)V <r+* (x:U')V U <->* V A V O* V

It is easy to see that this property is satisfied when
—> is confluent, an assumption which is part of our
admissibility conditions described in the next section.

For —»■■£, the idea present in all previous works is
to require that, for each rule / —> r, there is an en-
vironment T and a type T such that T h / : T and
T \- r : T. However, this approach has an important
drawback : in presence of dependent or polymorphic
types, it leads to non-left-linear rules.

For example, consider the type list : * —> * of poly-
morphic lists built from nil : (A:*)list(A) and cons :

(.4 :-k)A —y list(A) -> list [A), and the concatenation
function app : (A:*)list(A) ->■ list (A) -> list (A). To
fulfill the previous condition, we must define app as
follows :

app(A,nil(A),l) -> £
app(A,cons(A, x, £),£') -> cons(A, x, app(A,£,£'))

This has two important consequences. The first one
is that rewriting is slowed down because of numer-
ous equality tests. The second one is that it may be-
come much more difficult to prove the confluence of
the rewrite relation and of its combination with —>/g.

We are going to see that we can take the following
left-linear definition without loosing the subject reduc-
tion property :

app(A,nil{A'),£) -> £
app(A, cons(A',x, £),£') -> cons(A,x,app(A, £,£'))

Let / = app(A, cons(A', x, £),£'), r = cons(A,x,
app(A, I, I')), T be an environment and a a substitu-
tion such that F h la : list(Aa). We must prove that
F h i'tr : list(Aa). For T \- la : list(Aa), we must have
a derivation like :

(symb)

(conv]

r h A'a : * T h xa : A'a V h la : list(A'a)

r h cons(A'a, xa, ta) : list (A'a)
list(A'<r) I' list(Aa) T h list(Aa) : *

(symb)

r h cons(A'a, xa, la) : list(Aa)
r h Aa : * TV- I'a : list(Aa)

T\- la : list(Aa)

Therefore, A!a I" Aa and we can derive T h xa
Aa, r b (a : list(Aa) and :

(symb)
rb.4<7:* F \-la : list{Aa) ("a : list(Aer)

F h app{Aa, la, I'a) : list(Aa)
T\- Aa:-k T b xa : Aa

(symb)
r h ra : //stUa)

The point is that, although / is not typable, from any
typable instance la oil, we can deduce that A'a * Aa.
By this way, we come to the following conditions :

Definition 1 (Type-preserving rewrite rule)
A rewrite rule / —> r is type-preserving if there is
an environment T and a substitution p such that, if
/ = /(f), Tf = {x : f)U and 7 = {x >-> 1} then :

(51) dom(p) CFV{l)\dom(T),

(52) T\-lp:Uip,
(53) rhr: £/7/0,
(54) for any substitution a, environment A and type

T, if A h /o- : T then <r : T -» A,

11

(S5) for any substitution a, environment A and type
T, if A h ler : T then, for all x £ dorn{p), xa \.'
XpCT.

In our example, it suffiees to take T = A:*,.v:A,(:
list{A), C':list{A) and p = {A' ^ A}.

One may wonder how to check these conditions. In
practice, the symbols are incrementally defined. So.
assume that we have a confluent and strongly normal-
izing CAC built over T and 7v and that we want to add
a new symbol g. Then, given T and p, it is decidable
to check (SI) to (S3) in the CAC built over TU {y}
and 7v. since this system is confluent and strongly nor-

malizing. In [4], we give a simple condition ensuring
(54) (T simply needs to be well chosen). The condition
(55) is the most difficult to check and may require the
confluence of —h

3 Admissibility conditions

3.1 Inductive structure

Until now, we made few assumptions on symbols or
rewrite rules. In particular, we have no notion of in-
ductive type. Yet, the structure of inductive types
plays a key role in strong normalization proofs [25].
On the other hand, we want rewriting to be as general
as possible by allowing matching on defined symbols
and equations among constructors. This is why. in
the following, we introduce an extended notion of con-
structor and a notion of inductive structure which gen-
eralize usual definitions of inductive types [26]. Note
that, in contrast with our previous work [5], we allow
inductive types to be polymorphic and dependent, as
it is the case in CIC.

Definition 2 (Constructors) For (/ C T, let 'Re, be
the set of rules defining the symbols in Q, that is. the
rules whose left-hand side is headed by a symbol in Q.
The set of fnt symbols is CT = {f £ T \ 7?.u} = 0}.
The set of defined symbols is VT = Jr\CJr. The set of
constructors of a free predicate symbol C is Co(C') =

{feT* \T, = (y:Ü)C(Ü)™d\y\ = af}.

The constructors off' not only include the construc-
tors in the usual sense but every defined symbol whose
output type is C. For example, the symbols 0 : int.

s : hit. —> hit, p : hit —> hit, + : in I —>• int —> int and
x : int. —> int —>■ hit defined by the rules $(p(x)) —> x.
p(s(x)) —> x and others for + and x are all construc-
tors of the type int of integers.

Definition 3 (Inductive structure) An inductive
structure is given by :

• a quasi-ordering >jr on T, called precedence , whose
strict part, >jr, is well-founded.

• for each C £ CT° such that TC = (x : 7')*, a set
Ind(C) C {i £ {l....QC} | Xj £ .1'°} of inductive:
positions.

• for each constructor r, a set Acc(c) C {1,..,(>,.} of
accessible positions.

The accessible positions allow the user to describe
which patterns can be used for defining functions, and
the inductive positions allow to describe the arguments
on which the free predicate symbols should be mono-
tone. This allows us to generalize the notion of posi-

tivity used in CIC.

Definition 4 (Positive and negative positions)
The sets of positive positions Pos+('[') and negative
positions Pos~(T) of a term T are mutually defined
by induction on T as follows :

- Pos+(s) = Pos+(F(f)) = Pos+(X) = {;},
- Pos-{s) = Pos-[F(t)) - Pos-(.X) = 0.
- Poss((xA')\V) = l.Pos-s(V)U-2.Poss{\Y),
- Pos6 ([.(•: I']II") = 1.Pos(\') U 2.Poss (IF),
- PosS(\-u) = \.Pos6 [V)U2.Pos{u),
- PosS(YC) = l.Pos6(Y).

- Pos+((■({)) = {s}u\J{i.Pos+(ti) | / £ Ind(C)},
- Pos-(C(f)) = {j{i.Pos-(l,) | / £ Ind(C)}.

where S £ {-.+}. -+ = -, = +.

For example, in (x:A)P, B occurs positively while
.4 occurs negatively. Now. with the type list, of
polymorphic lists. .4 occurs positively in list(A) iff
lnd{list) = {1}.

Definition 5 (Admissible inductive structure)
An inductive structure is admissible if, for all

C eCT° with TV = (.? :7> :

(11) V/£ Ind(C), i-i £ ,VD,

and for all c with rc = (if : U)(.'(r) and j £ Acc(c) :

(12) VZ £ lnd(C). Pos(v,.Uj) C Pos+{l-j),

(13) VDeCF°.D=rC=>Pos{D.Vj)CPos + (Uj),
(14) \/D £ CT°,D >? C => Pos{D, Uj) = 0,
(15) VF £ VTa. Pos(F, Uj) = 0.
(IG) VA £ FI-D(r,).3/A-£{!....nr}, r,v = A.

For example, with the type //.s7 of polymorphic lists,
Ind(list) - {1}. Aec(nil) = {1} and Acr(cons) =
{1.2.3} is an admissible inductive structure. If we
add the type tree : * and the constructor node :
list(tr(() —> tree with Acc(nod() — {1}, we still have
an admissible structure.

The condition (1(5) means that the predicate-
arguments of a constructor must be parameters of the

12

type they define. One can find a similar condition in
the work of Walukiewicz [30] (called 'Vdependency")
and in the work of Stefanova [27] (called "safeness").

On the other hand, there is no such explicit restric-
tion in CIC. But the elimination scheme is typed in
such a way that no very interesting function can be
defined on a type not satisfying (16). For example,
consider the type of heterogeneous non-empty lists (we
use the CIC syntax here) listh = Ind(X : *){Ci|C2}
where d = (A : *){x : A)X and C2 = {A : *)(x : A)
X —* X. The typing rule for the non dependent elim-
ination schema (Nodep*,*) is :

r h £ : listh r K Q : • Mi, T h /; : d{listh, Q)
T^Elim{£,Q){f1\f2}:Q

where Ci{listh, Q} = (A : *)(x : A)Q and
d{Hsth,Q] = (A :*)(x : A)listh -» Q -t Q. Since
Q, /i and fa must be typable in T, the result of f\
and fa cannot depend on A or on i. This means that
it is possible to compute the length of such a list but
not to use an element of the list.

Definition 6 (Primitive, basic and strictly pos-
itive predicates) A free predicate symbol C is :
• primitive if, for all D —^ C, for all constructor d of

type Td = (y : U)D(w) and for all j £ Acc(d), Uj is
either of the form E(i) with E <? D and E basic,
or of the form E(i) with E =T D.

• basic if, for all D =jr C, for all constructor d of
type Td = (y : U)D(w) and for all j £ Acc(d), if
E =yr D occurs in Uj then Uj is of the form E(t).

• strictly positive if, for all D =? C, for all con-
structor d of type Td = (y : U)D(w) and for all
j £ Acc(d), if E =jr D occurs in Uj then Uj is of

the form (z : V)E(t) and no occurrence of D' —? D

occurs in V.

For example, the type list of polymorphic lists is
basic but not primitive. The type listint of lists of
integers with the constructors nilint : listint and
consint : int —¥ listint —> listint is primitive. And the
type ord of Brouwer's ordinals with the constructors
0 : ord, s : ord —>■ ord and lim : [not —» ord) —> ord is
strictly positive.

Although we do not explicitly forbid to have non-
strictly positive predicate symbols, the admissibility
conditions we are going to describe in the following
subsections will not enable us to define functions on
such a predicate. The same restriction applies on CIC
while the system of Walukiewicz [30] is restricted to
basic predicates and the Ai?-cube [1] or NDM [13] are
restricted to primitive and non-dependent predicates.
However, in the following, for lack of space, we will
restrict our attention to basic predicates.

3.2 General Schema

The constructors of primitive predicates (remember
that they include all symbols whose output type is a
primitive predicate), defined by usual first-order rules,
are easily shown to be strongly normalizing since the
combination of first-order rewriting with —»^ preserves
strong normalization [8].

On the other hand, in the presence of higher-order
rules, few techniques are known :

• Van de Pol [28] extended to the higher-order case
the use of strictly monotone interpretations . This
technique is very powerful but difficult to use in
practice and has not been studied yet in type sys-
tems richer than the simply-typed A-calculus.

• Jouannaud and Okada [21] defined a syntactic crite-
rion, the General Schema, which extends primitive
recursive definitions. This schema has been refor-
mulated and enhanced to deal with definitions on
strictly-positive types [6], to higher-order pattern-
matching [3] and to richer type systems with object-
level rewriting [1, 5].

• Jouannaud and Rubio [22] extended to the higher-
order case the use of Dershowitz's recursive path
ordering. The obtained ordering can be seen as a
recursive version of the General Schema and has
been extended by Walukiewicz [30] to the Calculus
of Constructions with object-level rewriting.

Here, we present an extension of the General Schema
defined in [5] to deal with type-level rewriting, the
main novelty of our paper.

The General Schema is based on Tait and Girard's
computability predicate technique [19] for proving the
strong normalization of the simply-typed A-calculus
and system F. This technique consists in interpret-
ing each type T by a set [T] of strongly normalizable
terms, called computable, and in proving that t £ fTj
whenever F h t : T.

The idea of the General Schema is then to define,
from a left-hand side of rule /(/), a set of right-hand
sides ?■ that are computable whenever the /,'s are com-
putable. This set is built from the variables of the
left-hand side, called accessible, that are computable
whenever the /,'s are computable, and is then closed
by computability-preserving operations.

For the sake of simplicity, two sequences of argu-
ments of a symbol / will be compared in a lexico-
graphic manner. But it is possible to do these com-
parisons in a multiset manner or with a simple combi-
nation of lexicographic and multiset comparisons (see
[4] for details).

13

Definition 7 (Accessibility) A pair (u.U) is ac-
cessible in a pair {t,T), written (t.T) >i («,['), if
(t,T) = (c(u),C{v)-r) and (u,U) = (vj,Uj-y) with c

a constructor of type rc — (y : f)C'(v), 7 = {y ►-» ;7}
and j G /lcc(c).

For example, in the definition of app previously
given, A', x and C are all accessible in t =

cons{A',x.() : (/,//.s/(.4)) Oj (A',*), (t,list{A)) >i

(x',.4') and <U''s/(-4)) t>i (f,//s/(.4')).

Definition 8 (Derived type) Let < be a term of the

form la with / = /(/) algebraic, 77 = (,? : T)U and

7 = {a? H-> /}. Let p G Pos(I) with p ^ s. The subterm
<|p of 2 has a derived type, r(t,p), defined as follows :

- if p = i then r(t,p) = T^/cr,

- if p = /ry and 17 ^ e then r(t,p) = r(tj,q).

Definition 9 (Well-formed rule) Let R = (I ->• r,

F,p) be a rule with / = /(/"*), 77 = (.? : f)(r and

7 = {x i->- /}. The rule /? is well-formed if, for all
;r £ rfom(r), there is / < o/■ and pj. G Pos(xJj) such
thai (li,!}'/) >i (x,T(l,ipr)) and r(/, /p.r)p = JT.

Definition 10 (Computable closure) Let /? =

(/ -> r, Fn,p) be a rule with / = /(/*), 77 = (.? : f)V

et 7 = {.? M- /}. The order > on the arguments of /
is the lexicographic extension of r>j". The computable
closure of R is the relation hc. defined by the rules of
Figure 2.

Definition 11 (General Schema) A rule (/(/) —>

7', T,p) with 77 = (x : T)U and 7 = {,? H-> /} satisfies
the General Schema if it is well-formed and r \~c r :

Uip.

It is easy to check that the rules for app are well-
formed and that F hc eons{A, x,app(A, t, (')) : list(A).
For example, we show that F hc app(.4, /', C) : l ist (A) :

T r-c -4
r h * : D F h list(A) : • ...

T f-c. A : * fhj: list(A) F hc (> : list {A)
(cons(A',x.(),list{A)) > ((.lisi(A))

Fr-Capp(,4.f,f)

3.3 Admissibility conditions

Definition 12 (Rewrite systems) Let Q be a set of
symbols. The re writ (system (Q ,'Rc,) is :

• algebraic if :

Figure 2: Computable closure

r0 r-c -KFO : s x £ dorn'(T0)

To Fc x : 1T0

(ax)
To Fc • : D

aeT;l,rg = (y:U)V\j={i/^v}
, l<4 <7<^/ rr-c7-3:.s V/, T hc «,- : f/,-7
(symbv)

T hc <,(«) : v7

<7 G ^, rg = (3/ : 17) V, 7 = {</ ^ u}
9 =T f T r-c 77 : s V/, T hc u,- : £77

, ,-, (lfl0)>{u.XJi)
(symb)

(var)

(weak)

(prod)

(abs)

(app)

(com)

The 9(u) Vl

T hc T : s x G Xs \ FV(l)

r,x :Thc r :T

r \-c t: T r r-c U : s x G X' \ FV(l)

r,x- ■ Vh t : T

r hc r: s r,.c: ThV : s'
rhc x:T) U : s1

r,j':Thc i(: 1
—

1

h(x:T)U:s

Fr-C[,r: Tj« : (x:T)U

r hc / : [x : U)V r t-c u : V
Fhc 1i : V'{, •!->■[/}

r r-c / : r 1 I' V T hc V : s'
T hc / : T

- (7 is made of predicate symbols or of constructors
of primitive predicates,

- all rules of'Rc, have an algebraic right-hand side;
• non-duplicating if, for all /—»/•£ 7v.ti, no variable

has more occurrences in r than in /;
• primitive if, for all rule / -> r G 7vo, r is of the

form [.F : T]y(u)v with r/ belonging to Q or // being
a primitive predicate symbol;

• simple if, for all //(/) —> r G Tv.^ :

- all the symbols occuring in / are free,
- for all sequence of terms /, at most one rule can

apply at the top of y(t),

- for all rule //(/) -> ;■ G Rc, and all }" G FV°(r),
there is a uni<|ue Ky such that /Kv = V";

• positive if, for all / —> /• G Kii and all // 6 Q,
Pos(y,r) C Pos + {r);

14

• recursive if all the rules of TZg satisfy the General
Schema;

• safe if, for all (g(l) —>■ r, T, p) £ TZg with rg = (x : T)

U and 7 = {x >->■ /} :

- for all A" £FVD(TU), Xjp £ c/oma(r),

- for all X,X'eFVa(TU), X1P = X'1P => X = X'.

Definition 13 (Admissible CAC) A CAC is ad-
missible if :

(Al) —>•=—>TI U —>ß is confluent;
(A2) its inductive structure is admissible;

(A3) (VTD,7lvr°) is either :
- primitive,
- simple and positive,
- simple and recursive;

(A4) there is a partition Ta W Fna of VT (algebraic
and non-algebraic symbols) such that :

- [Fa'Ufa) i's algebraic, non-duplicating and
strongly normalizing,

- no symbol of Tna occurs in the rules of lZra,
- (Fna,TZjrna) is safe and recursive.

The simplicity condition in (A3) extends to the case
of rewriting the restriction in CIC of strong elimination
to "small" inductive types, that is, to the types whose
constructors have no predicate-arguments except the
parameters of the type.

The safeness condition in (A4) means that one can-
not do pattern-matching or equality tests on predicate-
arguments that are necessary for typing other argu-
ments. In her extension of HORPO to the Calculus
of Constructions, Walukiewicz requires similar condi-
tions [30].

The non-duplication condition in (A4) ensures the
modularity of the strong normalization. Indeed, in
general, the combination of two strongly normalizing
rewrite systems is not strongly normalizing.

Now, for proving (Al), one can use the following
result of van Oostrom [29] (remember that TZ-Dß can be
seen as a CRS [23]) : the combination of two confluent
left-linear CRS's having no critical pairs between each
other is confluent. So, since —>ß is confluent and 7v and
ß cannot have critical pairs between each other, if 7v is
left-linear and confluent then —>^ U —>ß is confluent.
Therefore, our conditions (SI) to (S5) are very useful
to eliminate the non-linearities due to typing reasons.

We can now state our main result. You can find a
detailed proof in [4],

Theorem 14 (Strong normalization) Any admis-
sible CAC is strongly normalizing.

The proof is based on Coquand and Gallier's exten-
sion to the Calculus of Constructions [91 of Tait and

Girard's computability predicate technique [19]. As
explained before, the idea is to define an interpreta-
tion for each type and to prove that each well-typed
term belongs to the interpretation of its type.

The main difficulty is to define an interpretation for
predicate symbols that is invariant by reduction, a con-
dition required by the type conversion rule (conv).

Thanks to the positivity conditions, the interpreta-
tion of a free predicate symbol can be defined as the
least fixpoint of a monotone function over the lattice
of computability predicates.

For the defined predicate symbols, it depends on the
kind of system (VTa ,TZ-DT°) is. If it is primitive then
we simply interpret it as the set of strongly normaliz-
able terms. If it is positive then, thanks to the posi-
tivity condition, we can interpret it as a least fixpoint.
Finally, if it is recursive then we can define its inter-
pretation recursively, the General Schema providing a
well-founded definition.

4 Examples

4.1 Calculus of Inductive Construc-
tions

We are going to see that we can apply our strong nor-
malization theorem to a sub-system of CIC [26] by
translating it into an admissible CAC. The first com-
plete proof of strong normalization of CIC (with strong
elimination) is due to Werner [31] who, in addition,
considers ^-reductions in the type conversion rule.

In CIC, one has strictly-positive inductive types and
the corresponding induction principles. We recall the
syntax and the typing rules of CIC but, for the sake
of simplicity, we will restrict our attention to basic in-
ductive types and non-dependent elimination Schemas.
For a complete presentation, see [4],

• Inductive types are denoted by Ind(X : A){C]
where the CVs are the types of the constructors.
The term .4 must be of the form [x : A)* and the

CVs of the form (r : B)Xin.
• The /-th constructor of an inductive type / is de-

noted by Constr(i, I).

• Recursors are denoted by Elim[I,Q,a,c) where /
is the inductive type, Q the type of the result, a the
arguments of / and c a term of type la.

The typing rules for these constructions are given in
Figure 3. The rules for the other constructions are the
same as for the Calculus of Constructions.

If d = (:: B)Xm then C,-{/, Q} denotes (z: B){? :

B{X i—> Q}) Qifi. The reduction relation associated to

15

Figure 3: Typing rules of CIC

Vt, r,A" :.4hC; :*
(IncU) =

rh Ind(X:A){C] : A

T\- 1= Ind(X:A){C) : A
(Const.r) —

(Nodep*

T\-Const.r[i.J) : d{X-> 1}

The: la T b Q : (x : A)s

V/, rh/,-:Q{/,Q}

T\- Elim(I,Q,a, c){f] : Qa

Elim is called i-reduction and is defined as follows :

Elim{I, Q, a, Constr(i, I') b){f} ->, /,- b b'

where, if d = (~:B)Xm, then b) = Elim(I,Q,a'.bj)
if Bj = A'a', and 6^ = 6/ otherwise.

Now, we consider the sub-system CIC- obtained by
applying the following restrictions :

• In the typing rules (Ind*) and (Constr). we assume
that T is empty since, in CAC, the types of the
symbols must be typablc in the empty environment.

• In the rule (Nodep*,*) (the one for weak elimina-
tion), we require Q to be typable in the empty en-
vironment.

• In the rule (Nodep*,o) (the one for strong elimina-

tion), instead of requiring T b Q : (.? : A)0 which is
not possible in the Calculus of Constructions since
D is not typable, we require Q to be a closed term
of the form [x : A]K with A" of the form (y : U)*.

• We assume that every inductive type satisfies (16).

Theorem 15 CIC- can be translated into an admis-
sible CAC, hence is strongly normalizing.

We define the translation () by induction on the
size of terms :

• Let / = Ind(X:A){C}. We define (/) = [x : (.4)]

Indi(x) where Indj is a symbol of type (.?: (.-1))*.

• By assumption, d = {z : B)Xm. We define

(Cons1r(i,I)} = [:: B]C on si r\{z) where Constr)

is a symbol of type (5*: (B))Indj((m)).

• Let Ti = Ci{I,Q). If Q = [x : .4]A" then we de-

fine (FMm(I,Q,a,c){f)) = SElimf((f),(S),{c))

where SElinij is a symbol of type (f:(T)) (x:(A))

(A). Otherwise, we define (EIim(I.Q.d,c){f}) =

WEHn>,{(Q),(f),(a),{c)) where WEIini; is a sym-

bol of type (Q:(A))(f:(f))(7:(Ä))(Q)r.
• The other terms are defined recursively (((/(') =

<«><!'>. ■■■)■

The /-reduction is translated by the following rules :

SEIimf(f,a.Constr){b}) ->■ /,- b //

\\EIiw,{Qj.d.Constr){b)) -> /,-6 6'

where, iff; = (=": B)Xm, then b'j = SElhv?(f, a', bj)

(or \VElhnj{Q,f,(7.bj)) if Bj = Xd', and b) = bj

otherwise.

Now, we are left to check the admissibility :

(Al) —>-,}, is orthogonal, hence confluent [29].
(A2) The inductive structure defined by / <? J if / is

a subterm of,/, Ind(Indj) = 0. Acc(Consfr)) =

{1,.., |5|} if C'i = (~ : ß)A'ffl, is admissible.
(A3) The rules defining the strong recursors form a

simple (they are defined by case on each construc-
tor and only for small inductive types) and re-
cursive rewrite system (they satisfy the General
Schema).

(A4) The rules defining the recursors form a safe (ex-
cept for the constructor, all the arguments are
distinct variables) and recursive rewrite system
(they satisfy the General Schema).

4.2 Natural Deduction Modulo

NDM for first-order logic [12] can be presented as an
extension of Natural Deduction with the additional in-
ference rule :

n- P
r\-Q if P = Q

where = is a congruence relation on propositions. This
is a powerful extension of first-order logic since both
higher-order logic and set theory with a comprehension
symbol can be described in this framework (by using
explicit substitutions).

In [13], Dowek and Werner study the termination of
cut-elimination in the case where = is induced by a
confluent and weakly-normalizing rewrite system. In
particular, they prove the termination in two general
cases : when the rewrite system is positive and when
it is quantifier-free. In [14], they provide an example
of confluent and weakly normalizing rewrite system for
which cut-elimination is not terminating. The problem
comes from the fact that the elimination rule for V
introduces a substitution :

ITVj'.Pl.r)

rh P(t)

Thus, when a predicate symbol is defined by a rule
whose right-hand side contains quantifiers, its coinbi-

16

nation with ß may not preserve normalization. There-
fore, a criterion for higher-order rewriting is needed.

Since NDM is a CAC (we can define the logical con-
nectors as inductive types), we can compare in more
details the conditions of [13] with our conditions.

(Al) In [13], only -+n is required to be confluent. In
general, this is not sufficient for having the con-
fluence of-j-Tj U -*ß. However, if H is left-linear
then -+Ti U ->ß is confluent [29].

(A2) NDM types are primitive and form an admissi-
ble inductive structure if we take them equivalent
in the relation <?.

(A3) In [13], the termination of cut-elimination is
proved in two general cases : when {VTn,TZv^n)
is quantifier-free and when it is positive.
Quantifier-free rewrite systems are primitive. So,
in this case, (A3) is satisfied. In the positive case,
we require that left-hand sides are made of free
symbols and that at most one rule can apply at
the top of a term. On the other hand, we pro-
vide a new case : {VTa,Uvra) can be simple
and recursive.

(A4) Quantifier-free rules are algebraic and rules with
quantifiers are not. In [13], these two kinds of
rules are treated in the same way but the counter-
example given in [14] shows that they should not.
In CAC, we require that the rules with quantifiers
satisfy the General Schema.

Theorem 16 A NDM system satisfying (Al), (A3)
and (A4) is admissible, hence strongly normalizing.

4.3 CIC + Rewriting

As a combination of the two previous applications, our
work shows that the extension of CIC- with user-
defined rewrite rules, even at the predicate-level, is
sound if these rules follow our admissibility conditions.

As an example, we consider simplification rules on
propositions that are not definable in CIC. Assume
that we have the symbols V:*—>■*—>•*, A:*—»*—>■*,
-> :*->■*, J_ : •, T : *, and the rules :

TVP ->
PVT ->

LAP
P M -»

1
_L

iT 1
T

-"(PAQ) -»-.PV-.Q (PVQ) -+-PA^Q

The predicate constructors V, A, ... are all primitive.
The rewrite system is primitive, algebraic, strongly
normalizing and confluent (this can be automatically
proved by CiME [16]). Since it is left-linear, its combi-
nation with -*ß is confluent [29]. Therefore, it is an ad-
missible CAC. But it lacks many other rules [20] which

requires rewriting modulo associativity and commuta-
tivity, an extension we leave for future work.

5 Conclusion

We have defined an extension of the Calculus of Con-
structions by functions and predicates defined with
rewrite rules. The main contributions of our work are
the following :

• We consider a general notion of rewriting at the
predicate-level which generalizes the "strong elimi-
nation" of the Calculus of Inductive Constructions
[26, 31]. For example, we can define simplification
rules on propositions that are not definable in CIC.

• We consider general syntactic conditions, including
confluence, that ensure the strong normalization of
the calculus. In particular, these conditions are ful-
filled by two important systems : a sub-system of
the Calculus of Inductive Constructions which is the
basis of the proof assistant Coq [17], and the Natu-
ral Deduction Modulo [12, 13] a large class of equa-
tional theories.

• We use a more general notion of constructor which
allows pattern-matching on defined symbols and
equations among constructors.

• We relax the usual conditions on rewrite rules for
ensuring the subject reduction property. By this
way, we can eliminate some non-linearities in left-
hand sides of rules and ease the confluence proof.

6 Directions for future work

• In our conditions, we assume that the predicate
symbols defined by rewrite rules containing quan-
tifiers ("non-primitive" predicate symbols) are de-
fined by pattern-matching on free symbols only
("simple" systems). It would be nice to be able
to relax this condition.

• Another important assumption is that the reduc-
tion relation ->-=->TC U -+p must be confluent. We
will try to find sufficient conditions on 7v in order
to get the confluence of -^ U -¥p. In the simply-
typed A-calculus, if 7v is a first-order rewrite system
then the confluence of 7v is a sufficient condition [7].
But few results are known in the case of a richer type
system or of higher-order rewriting.

• Finally, we expect to extend this work with rewrit-
ing modulo some useful equational theories like as-
sociativity and commutativity, and also by allowing
^-reductions in the type conversion rule.

17

Acknowledgments : I would like to thank Daria
Walukiewicz, Gilles Dowck, Jean-Pierre Jouannaud
and Christine Paulin for useful comments on previous
versions of this work.

References
[1] F. Barbanera, M. Fernandez, and H. Geuvers. Mod-

ularity of strong normalization in the algebraic-A-
cube. Journal of Functional Programming. 7(6):613-
660, 1097.

[2] H. Barendregt. Lambda calculi with types. In
S. Abramski, D. Gabbay, and T. Maibaum, editors,
Handbook of logic in computer science, volume 2. Ox-
ford University Press, 1992.

F. Blanqui. Termination and confluence of higher-
order rewrite systems. In Proc. of RTA '00, LNGS
1833.

F. Blanqui. Theorie des Types et Reecriture
(Type Theory and Rewriting). PhD thesis. Uni-
versite Paris-Sud (France), 2001. Available at
http://www.lri.fr/~blanqui. An english version
will be available soon.

F. Blanqui, J.-P. Jouannaud, and M. Okada. The Cal-
culus of Algebraic Constructions. In Proc. of RTA '99.
LNGS 16.31.

F. Blanqui, J.-P. Jouannaud, and M. Okada.
Inductive-data-type systems. Theoretical Computer
Science. 277, 2001.

V. Breazu-Tannen. Combining algebra and higher-
order types. In Proc. of LICS'88. IEEE Computer
Society.

V. Breazu-Tannen and J. Gallier. Polymorphic rewrit-
ing conserves algebraic strong normalization. Theoret-
ical Computer Science. 83(1):3 28, 1991.

T. Coquand and J. Gallier. A proof of strong
normalization for the Theory of Constructions
using a Kripke-like interpretation, 1990. Pa-
per presented at the 1st Int. Work, on Logical
Frameworks but not published in the proceedings.
Available at ftp://ftp.cis.upenn.edu/pub/papers/
gall ier/sntoc. dvi. Z.

T. Coquand and G. Hurt. The Calculus of Construc-
tions. Information and Computation. 7G(2-3):95-120.
1988.

N. Dershowitz and J.-P. Jouannaud. Rewrite sys-
tems. In J. van Leeuwen. editor, Handbook of Ihiorct-
ical Computer Science, volume B, chapter 6. North-
Holland, 1990.

G. Dowek. T. Hardin. and C. Kirchner. Theorem
proving modulo. Technical Report 3100. INRIA Roc-
quencourt (France), 1998.

G. Dowek and B. Werner. Proof normalization mod-
ulo. In Proc. of TYPES'98. LNGS 1G57.

[3]

M

[5]

[6]

m

[10]

[11]

[12]

[13]

[14] G. Dowek and B. Werner. An inconsistent
theory modulo defined by a confluent and ter-
minating rewrite system, 2000. Available at
http://pauillac.inria.f r/~dowek/.

[15] C. Kirchner et al. ELAN, 2000. Available at
http://elan.loria.fr/.

[16] C. Marche et al. CiME, 2000. Available at
http://www.lri.fr/"demons/c ime.html.

[17] C. Paulin et al. The Coq Proof Assistant Reference
Manual Version 6.3.1. INRIA Rocquencourt (Fiance),
2000. Available at http://coq.inria.fr/.

[18] H. Geuvers, R. Nederpelt, and R. de Vrijer, editors.
Selected Papers on Automath, volume 133 of Studies
in Logic and the Foundations of Mathematics. North-
Holland, 1994.

[19] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and
Types. Cambridge University Press, 1988.

[20] J. Hsiang. Refutational theorem proving using term-
rewriting systems. Artificial Intelligence, 25:255-300,
1985.

[21] J.-P. Jouannaud and M. Okada. Abstract Data Type
Systems. Theoretical Computer Science, 173(2):349-
391. 1997.

[22] J.-P. Jouannaud and A. Rubio. The Higher-Order
Recursive Path Ordering. In Proc. of LICS'99, IEEE
Computer Society.

[23] J. W. Klop, V. van Oostrom. and F. van Raamsdonk.
Combinatory reduction systems : introduction and
survey. Theoretical Computer Science, 121:279-308,
1993.

[24] P. Martin-Löf. Intuitionistic type theory. Bibliopolis,
Napoli. Italy. 1984.

[25] N. P. Mendler. Inductive Definition in Type Theory.
PhD thesis, Cornell University, United States, 1987.

[26] G. Paulin-Mohring. Inductive definitions in the sys-
tem Coq - rules and properties. In Proc. of TLCA '93,
LNGS 664.

[27] M. Stefanova. Properties of Typing Systems. PhD
thesis. Nijmegen University (Netherlands), 1998.

[28] J. van de Pol. Termination of higher-order rewrite sys-
tems. PhD thesis, University of Utrecht, Nederlands,
1991.

[29] V. van Oostrom. Confluence for Abstract and Higher-
Ordir Rewriting. PhD thesis, Vrije Universiteit,
Netherlands. 1991.

[30] D. Walukiewicz. Termination of rewriting in the Cal-
culus of Constructions. In Proc. of LFM'00.

[31] B. Werner. L'nc Theorie des Constructions Inductives.
PhD thesis. Universite Paris VII, France, 1994.

18

Deconstructing Shostak*

Harald Rueß and Natarajan Shankar
Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

{ruess,shankar}@csl.sri.com

Phone: (650)859-5272
Fax: (650)859-2844

Abstract

Decision procedures for equality in a combination of
theories are at the core of a number of verification sys-
tems. Shostak's decision procedure for equality in the
combination of solvable and canonizable theories has
been around for nearly two decades. Variations of this
decision procedure have been implemented in a num-
ber of systems including STP, EHDM, PVS, STeP, and
SVC. The algorithm is quite subtle and a correctness
argument for it has remained elusive. Shostak's algo-
rithm and all previously published variants of it yield
incomplete decision procedures. We describe a variant
of Shostak's algorithm along with proofs of termina-
tion, soundness, and completeness.

1 Introduction

In 1984, Shostak [Sho84] published a decision pro-
cedure for the quantifier-free theory of equality over
uninterpreted functions combined with other theories
that are canonizable and solvable. Such algorithms
decide statements of the form T h a = 6, where T
is a collection of equalities, and T, a, and b contain a
mixture of interpreted and uninterpreted function sym-
bols. This class of statements includes a large fraction
of the proof obligations that arise in verification includ-
ing those involving extended typechecking, verification
conditions generated from Hoare triples, and inductive
theorem proving. Shostak's procedure is at the core of
several verification systems including STP [SSMS82],
EHDM [EHD93], PVS [ORS92], STeP [MT96, Bj099],
and SVC [BDL96]. The soundness of Shostak's algo-
rithm is reasonably straightforward, but its complete-

"This work was supported by SRI International, and by NSF
Grant CCR-0082560, DARPA/AFRL Contract F33615-00-C-
3043, and NASA Contract NAS1-0079.

ness has steadfastly resisted proof. The proof given
by Shostak [Sho84] is seriously flawed. Despite its sig-
nificance and popularity, Shostak's original algorithm
and its subsequent variations [CLS96, BDL96, BJ099]
are all incomplete and potentially nonterminating. We
explain the ideas underlying Shostak's decision proce-
dure by presenting a correct version of the algorithm
along with rigorous proofs for its correctness.

If the terms in a conjecture of the form T h
a = b are constructed solely from variables and un-
interpreted function symbols, then congruence clo-
sure [NO80, Sho78, DST80, CLS96, Kap97, BRRT99]
can be used to partition the subterms into equivalence
classes respecting T and congruence. For example,
when congruence closure is applied to

f(x) = f(x) h f5(x) = f(x),

the equivalence classes generated by
the antecedent equality are {x},{f(x),f3(x),f5(x)j,
and {f2(x), f4{x)}. This partition clearly validates the
conclusion f5(x) = f(x).

In practice, a conjecture T h a = b usually con-
tains a mixture of uninterpreted and interpreted func-
tion symbols. Semantically, uninterpreted functions
are unconstrained, whereas interpreted function are
constrained by a theory, i.e., a closure condition with
respect to consequence on a set of equalities. An ex-
ample of such an assertion is

/(:r-l)-l = x+l, f(y) + l = y-l, y + 1 = x h false,

where +, -, and the numerals are from the theory of
linear arithmetic, false is an abbreviation for 0 = 1,
and / is an uninterpreted function symbol. The con-
tradiction here cannot be derived solely by congruence
closure or linear arithmetic. Linear arithmetic is used
to show that x - 1 = y so that f(x - 1) = f(y) follows
by congruence. Linear arithmetic can then be used to
show that x + 2 = y - 2 which contradicts y + l = x.

0-7695-1281-X/01 $10.00 © 2001 IEEE
19

Nelson and Oppen [N079] showed how decision pro-
cedures for disjoint equational theories could be com-
bined. Since linear arithmetic and uninterpreted equal-
ity are disjoint, this method can be applied to the
above example. First, variable abstraction is used
to obtain a theory-wise partition of the term uni-
verse, i.e., the subterms of T, a, and b, in a con-
jecture T I- a = b. The uninterpreted equality the-
ory Q then consists of the terms {f{u),f(y),w,z} and
the equalities {w = f{u),z = f(y)}, and the linear
arithmetic theory L consists of the terms {u,x,y,x -
l,w - l,x + l,z + l,y - l,y + 1} and the equalities
{u = x - l,iu - 1 = x + l,z + 1 - y - l,y + 1 = x}.
The key observation is that once the terms and equal-
ities have been partitioned using variable abstraction,
the two theories L and Q need exchange only equalities
between variables. Thus, linear arithmetic can be used
to derive the equality u = y, from which congruence
closure derives w = z, and the contradiction then fol-
lows from linear arithmetic. Since the term universe
is fixed in advance, there are only a bounded number
of equalities between variables so that the propagation
of information between the decision procedures must
ultimately converge.

The Nelson-Oppen combination procedure has some
disadvantages. The individual decision procedures
must carry out their own equality propagation and the
communication of equalities between decision proce-
dures can be expensive. The number of equalities is
quadratic, in the size of the term universe, and each
closure operation can itself be linear in the size of the
term universe.

Shostak's algorithm tries to gain efficiency by main-
taining and propagating equalities within a single con-
gruence closure data structure. Equalities involving
interpreted symbols contain more information than
uninterpreted equalities. For example, the equality
y + 1 = x cannot be processed by merely placing y + l
and x in the same equivalence class. This equality
also implies that y = x - 1, y - x — -1, x - y — 1,
y + 3 = x + 2, and so on. In order to avoid processing
all these variations on the given equality, Shostak re-
stricts his attention to solvable theories where an equal-
ity of the form y + 1 = x can be solved for x to yield
the solution x = y + 1. If the theories considered arc
also canonizable, then there is a canonizer a such that
whenever an equality a = b is valid, then a (a) = a(b),
where = represents syntactic equality. A canonizer for
linear arithmetic can be defined to place terms into an
ordered sum-of-monomials form. Once a solved form
such as x = y + 1 has been obtained, all the other con-
sequences a = b of this equality can be obtained by
a {a') = cr(b') where a' and b' are the results of sub-

stituting the solution for x into a and b, respectively.
For example, substituting the solution into y — x - 1
yields y = y + 1 - 1, and the subsequent canonization
step yields y = y.

The notion of a solvable and canonizable theory is
extended to equalities involving a mix of interpreted
and uninterpreted symbols by treating uninterpreted
terms as variables. For the conjecture,

/(z-l)-l =i+l, /(?y) + l = y-l, y + l = x h- false,

Shostak's algorithm would solve the equality f(x -1) -
1 = x + 1 as f(x - 1) = x + 2, the equality f(y) + 1 =
y - 1 as f(y) = y - 2, and y + 1 - x as x = y +
1. Now, f(x - 1) and f(y) are congruent because the
canonical form for x - 1 obtained after substituting
the solution x - y + 1 is y. By congruence closure,
the equivalence classes of f(x - 1) and f(y) have to
be merged. In Shostak's original algorithm the current
representatives of these equivalence classes, namely x +
2 and y - 2 are merged. The resulting equality x +
2 = y - 2 is first solved to yield x = y - 4. This is
incorrect because we already have a solution for x as
x = y + 1 and x should therefore have been eliminated.
The new solution x = y - 4 contradicts the earlier one,
but this contradiction goes undetected by Shostak's
algorithm. This example can be easily adapted to show
nontermination. Consider

f(v) = v,f(u) l,i/ = vh false.

The merging of u and v here leads to the detection of
the congruence between f(u) and f(v). This leads to
solving of v. - 1 = v as u = v + 1. Now, the algorithm
merges v and v + 1. Since v occurs in v + 1, this causes
v + 1 to be merged with v + 2, and so on.

An earlier paper by Cyrluk, Lincoln, and
Shankar [CLS96] gave an explanation (with minor cor-
rections) of Shostak's algorithm for congruence clo-
sure and its extension to interpreted theories. Though
proofs of correctness for the combination algorithm are
briefly sketched, the algorithm presented there is both
incomplete and nonterminating. Other published vari-
ants of Shostak's algorithm used in SVC [BDL9G] and
STeP [Bjo99] inherit these problems.

In this paper, we present an algorithm that fixes the
incompleteness and nontermination in earlier versions
of Shostak's algorithms. In the above example, the in-
completeness is fixed by substituting the solution for
x into the terms representing the different equivalence
classes. Thus, when f(x - 1) and f(y) are detected to
be congruent, their equivalence classes are represented
by y + 3 and y - 2, respectively. The resulting equality
y+ 3 = j/-2 easily yields a contradiction. The nonter-
mination is fixed by ensuring that no new mergeable

20

terms, such as v + 2, are created during the processing
of an axiom in T. Our algorithm is presented as a sys-
tem of transformations on a set of equalities in order to
capture the key insights underlying its correctness. We
outline rigorous proofs for the termination, soundness,
and completeness of this procedure. The algorithm
as presented here emphasizes logical clarity over effi-
ciency, but with suitable optimizations and data struc-
tures, it can serve as the basis for an efficient imple-
mentation. SRI's ICS (Integrated Canonizer/Solver)
decision procedure package [FORS01] is directly based
on the algorithm studied here.

Section 2 introduces the theory of equality, which
is augmented in Section 3 with function symbols from
a canonizable and solvable theory. Section 3 also in-
troduces the basic building blocks for the decision
procedure. The algorithm itself is described in Sec-
tion 4 along with some example hand-simulations. The
proofs of termination, soundness, and completeness are
outlined in Section 5.

2 Background

With respect to a signature consisting of a set
of function symbols F and a set of variables V, a
term is either a variable x from V or an application
f{ai,...,an) of an n-ary function symbol / from F
to n terms ai,...,an, where 0 < n. The metavari-
able conventions are that u, v, x, y, and z range over
variables, and a, b, c, d, and e range over terms. The
metavariables R, S, and T, range over sets of equali-
ties. The metatheoretic assertion a = b indicates that
a and b are syntactically identical terms. Let vars(a),
vars{a = 6), and vars(T) return the variables occur-
ring in a term a, an equality a - b, and a set of equal-
ities T, respectively. The operation [a] is defined to
return the set of all subterms of a.

Some of the function symbols are interpreted, i.e.,
they have a specific interpretation in some given theory
r, while the remaining function symbols are uninter-
preted, i.e., can be assigned arbitrary interpretations.
A term f(ai,...,an) is interpreted (uninterpreted) if
/ is interpreted (uninterpreted). A term e is non-
interpreted if it is either a variable or an uninterpreted
term. We say that a term a occurs interpreted in a term
e if there is an occurrence of a in e that is not prop-
erly within an uninterpreted subterm of e. Likewise, a
occurs uninterpreted in e if a is a proper subterm of an
uninterpreted subterm of e. solvables(a) denotes the
set of outermost non-interpreted subterms of a, i.e.,

those that do not occur uninterpreted in a.

solvables(f (a!,..., an)) = \Jsolvables(ai),
i

if / is interpreted

solvables(a) = {a}, otherwise

The theory of equality deals with sequents of the
form T \- a = b. We will insist that these sequents be
such that vars(a = b) C vars(T). The proof theory
for equality is given by the following inference rules.

1. Axiom:
T\-a = b

-, for o = b G T.

2. Refiexivity:

3. Symmetry:

T h a — a

Tha
T\-b

4. Transitivity: T\-a = b T\-b = c

5. Congruence:
T h Qi = bi

Th

• T h an = bn

T\- /(ai,...,an) = /(&!,...,&„)

The semantics for terms is given by a model M
over a domain D and an assignment p for the vari-
ables so that M{x\p = p(x) and M{f(au.. .,an)Jp =
M(/)(M[a1]/9,...,M[an]p), and M[a]p G D for all
a. We say that M,p f= a = b iff M[aJp = M{b}p,
and M \=a = biSM,p\=a = b for all assign-
ments p over vars(a = b). We write M,p \= S
when \/a,b : a = b G S D M,p (= a = 6, and
M,p[=Tha = b when {MlP\=T) D{M,p\=a = b).

3 Canonizable and Solvable Theories

Shostak's algorithm goes beyond congruence closure
by deciding equality in the presence of function sym-
bols that are interpreted in a theory r [Sho84, CLS96].
The algorithm is targeted at canonizable and solvable
theories, i.e., theories that are equipped with solvers
and canonizers as outlined below. We write \=T a = b
to indicate that a = b is valid in theory r. The canon-
izer and solver are first described for pure r-terms, i.e.,
without any uninterpreted function symbols, and then
extended to uninterpreted terms by regarding these as
variables.

Definition 3.1 A theory T is canonizable if there is a
canonizer a such that

21

1. \=T a = b iff a (a) = a(b).

2. a{x) = x.

3. vars{a{a)) C vars(a).

4- a {a {a)) = a (a).

5. If a (a) = f(bi,...,bn), then a(bt) = 6; for 1 <
i <n.

For example, a canonizer a for the theory of linear
arithmetic can be defined to transform expressions into
an ordered-sum-of-monomials normal form. A term a
is said to be canonical if a(a) = a.

Definition 3.2 A model M is a CT-model if M (= a —
a(a) for any term a, and M \£ a = b for distinct
canonical, variable-free terms a and b.

Definition 3.3 A set of equalities S and a = b are
er-equivalent iff for all a-models M and assignments p
over the variables in a and b, M, p \= a = b iff there
is an assignment p' extending p, over the variables in
S,a, and b, such that M,p' \= S.

Definition 3.4 A canonizable theory is solvable if
there is an operation solve such that, solve(a = b) = !
if a = b is unsatisfiable in any a-model, or S =
solve(a = b) for a set of equalities S such that

1. S is a set of n equalities of the form x,- = e,- for
0 < n where for each i, 0 < i < n,

(a) x-i G vars(a = b).

(b) Xj $ vars(ej), forj, 0 < j < n.

(c) x,i ^ Xj, for i ^ j and 0 < j < n.

(d) a{e,) = et.

2. S and a = b are a-equivalent.

A solver for linear arithmetic, for example, takes an
equation of the form

c + ai.Ti + ... + a„xn = d + b\X\ + ... + bnx„,

where Oi ^ b\, and returns

xi = a{ (d-c)/{ai - &i)
+ {(b-> - a>)/(ni - h)) * x2

+ ...
+ {(bn -a„)/(ai -bx)) *xn).

In general, solve(a = b) may contain variables that do
not occur in a = b, and vice-versa.

There are a number of interesting canonizable and
solvable theories including linear arithmetic, the the-
ory of tuples and projections, algebraic datatypes like

lists, set algebra, and the theory of fixed-sized bitvec-
tors. In many cases, the canonizability and solvabil-
ity of the union of theories (with disjoint signatures)
follows from the canonizability and solvability of its
constituent theories.1 We do not address modularity
issues here but instead assume that we already have a
canonizer and solver for a single combined theory.

The solvers and canonizers characterized above are
intended to work in the absence of uninterpreted func-
tion symbols. They are adapted to terms containing
uninterpreted subterms by treating these subterms as
variables. Canonizers are applied to terms containing
uninterpreted subterms by renaming distinct uninter-
preted subterms with distinct new variables. For a
given term a, let 7 be a bijective mapping between a
set of variables X that do not appear in a and the
uninterpreted subterms of a. The application of a sub-
stitution 7 to a term a, written 7(0], is defined so that
7[a] = /(7[m],...,7[an]) if a = /(ai,... ,a„), where
/ is interpreted. If a is in the domain of 7, then
-y[a] = 7(a), and otherwise, 7(0] = a. Then a(a) is
7[a(7^H)].

For solving equalities containing uninterpreted
terms, we introduce, as with a, a bijective map 7 be-
tween a set of variables X not occurring in a or b, and
the uninterpreted subterms of a and 6, such that

solve(a = b) = 7[so/);e(7_; [a] = 7~;[b])] ■

When uninterpreted terms are handled as above, the
conditions in Definitions 3.1 and 3.4 must be suitably
adapted by using solvables(a) instead of vars(a).

The proof theory for equality is augmented for can-
onizable, solvable theories by the proof rules:

1. Canonization:
T \- a = a (a)

-, for any term a.

2. Solve:
T\-a = b TöSh- c = d

if S =
TV- c = d

solvc(a = b) -fi _L and vars(c = d) C vars(T).

3. Solve-!: —=-;—7—, , if solvefa = b) = _l_.
1 h false

A sequent T h c = d is derivable if there is a proof
of T h c = d using one of the inference rules: axiom,
reflexivity, symmetry, transitivity, congruence, canon-
ization, solve, or solve-!. We say that T h 5 is deriv-
able if T \- c = d is derivable for every c = d in S.
The sequent T, 5 h c - d is just T U S h c = d. The
weakening and cut lemmas below are easily verified.

1 The general result on combining solvers claimed by
Shostak [SI108I] is incorrect, but. there are some restricted re-
sults on combining equational unifiers [BSOfi] that, can be applied
here.

22

Lemma 3.5 (weakening) If T C T' and T h a = b
is derivable, then T' \- a = b is derivable.

Lemma 3.6 (cut) //T' h T and T h a = b is deriv-
able, then X" h a = b is derivable.

Theorem 3.7 (proof soundness) If T \- a = b is
derivable, then for any a-model M and assignment p
over vars(T), M,p\=T\- a = b.

Proof. By induction on the derivation of T h a =
b. The soundness of the solve rules follows from the
conditions in Definition 3.4. ■

A set of equalities S is said to be functional (in
a left-to-right reading of the equality) if whenever a =
b e S and a = b' G S,b = b'. For example, the solution
set returned by solve is functional. A functional set
of equalities can be treated as a substitution and the
associated operations are defined below. S(a) returns
the solution for a if it exists in S, and a itself, otherwise.
If a = b is in S for some b, then a is in the domain of
5, i.e., dom(S).

S(a) =
b if a = b€S
a otherwise

dom(S) = {a \ 3b. a = b G 5}.

The operation a ~ b checks if a is congruent to b
in S, i.e., a = f(au ..., a„), b = f{bu ..., bn), and
S(ai) = S(bi) for 1 < i < n. A set of equalities S is
said to be congruence-closed when for any terms a and

b in dom(S) such that a ~ b, we have S(a) = S(b).
S[a] replaces a subterm b in a by S(b), where b 6

solvables(a).

S[f(ai,...,an)] = f(S[ai},...,S[an}),

if / is interpreted

S[a] = S(a), otherwise.

norm(S)(a) is a normal form for a with respect to 5
and is defined as cr(S[a}). The operation norm does not
appear in Shostak's algorithm and is the key element
of our algorithm and its proof. With S fixed, we use a
as a syntactic abbreviation for norm(S)(a).

norm(S)(a) <r(S[a]).

Lemma 3.8 // solve(a = b) = S ^ _L, then
norm{S){a) = norm(S)(b).

Proof. By definitions 3.3 and 3.4(2), for any a-
model M and assignment p1', we have M,p' (= S <=»
M,p' \=a = b. Let a1 = S[a] and b' = S[b]. By induc-
tion on a, M,p' \= a = a', and similarly M, p' \=b = b'.

Hence, M, p' (= a' = b'. Then, since M is a cr-model, by
Definition 3.2, it must be the case that <j(a') = <r(6'),
and therefore norm(S)(a) = norm(S)(b). *

The definition of the lookup operation uses Hilbert's
epsilon operator, indicated by the keyword when, to
return S(/(&i,..., &„)) when b\,...,bn satisfying the
listed conditions can be found. If no such bi,...,bn

can be found, then lookup(S)(a) returns a itself. We
show later that the lookup operation is used only when
the results of this choice are deterministic.

lookup{S){f{ai,...,an)) = S(f(h,...,bn)),

when bi,...,bn :

f{bi,...,bn) £ dom(S),

and üi = S(bi),

for 1 < i < n

lookup(S)(a) = a, otherwise.

can(S)(a) is a canonical form in which any uninter-
preted subterm e that is congruent to a known left-
hand side e' in 5 is replaced by S(e'). It is analogous
to the canon operation in Shostak's algorithm. We use
a as a syntactic abbreviation for can(S)(a).

can(S){f(a1,...,an)) = lookup(S){f(aT, ■ ■ ■ ,ö^)),

if / is uninterpreted

can(S)(f {a!,..., an)) = CT(/(OT, ... ,0^)),

if / is interpreted

can(S)(a) = S(a), otherwise.

Lemma 3.9 (cr-norm) // S is functional, then
norm(S)(a(a)) = ä and can(S)(a(a)) = a.

Proof. We know that h a (a) = a. Then for b' =
S[a(a)] and b = S[a], the equality b' = b is valid in
every cr-model. Then by Definition 3.2, cr(S[er(a)]) =
a(S[a}), and hence the first part of the theorem.

The reasoning in the second part is similar. If we let
R = {b = b | b G [a]}, then can(S){a) = norm{R)(a).
We can therefore use the first part of the theorem to
establish the second part. ■

We next introduce a composition operation for
merging the results of a solve operation into an existing
solution set. When RoS is used, S must be functional,
and the result contains a — b for each equality a = b
in R in addition to the equalities in S.

RoS = {a = b\a = be R}US.

The following lemmas about composition are given
without proof.

Lemma 3.10 (norm decomposition) If R U S is
functional, then

norm(R o S)(a) = norm(S)(norm(R)(a)).

23

process({a — b, T})

process{%)

asseri(a = b, _L)

assert (a = b, S)

expand(S, a, b)

new(S, a, 6)

merge(a, b, S)

merge(a, b, S)

cc(l)

cc{S)

= assert{a = b,proeess{T))

= 0.

= _L

= cc(mergc(a,b, S+)), where.

S+ = expand {S,H,b).

= S U {e = e | e e new(S, a, b)}.

= ([a = b} - dom{S).

= _L, if solve(a = b) = _l_

= S o solve(a — b), otherwise.

= 1

cc(merge(S(a), S(b), S)),

w/ien a, b :

a,b £ dom(S)

a ~ 6, and 5(a) ^ S(6)

cc(5) = 5, otherwise.

Figure 1: Main Procedure: process

Lemma 3.11 (associativity of composition) If
Q U R U S is functional, then

(Q°R)oS = Qo(RoS).

Lemma 3.12 (monotonicity) If RuS is functional,
then if R{a) = R(b), then (R o 5)(«) = (Ro S)(b), for
any a and b.

4 An Algorithm for Deciding Equality
in the Presence of Theories

We next present an algorithm for deciding T \- c =
d for terms containing uninterpreted function sym-
bols and function symbols interpreted in a canoniz-
able and solvable theory. The algorithm for verify-
ing T h c = d checks that can(S)(c) = can(S)(d).
where S = process(T). The process procedure shown
in Figure 1, is written as a functional program. It is
a mathematical description of the algorithm and not
an optimized implementation. The state of the algo-
rithm consists of a set of equalities 5 which holds the
solution set. We demonstrate as an invariant that S is
functional. Two terms a and b in dom(S) are in the
same equivalence class according to 5 if S(a) = S(b).

The operation process(T) returns a final solution
set by starting with an empty solution set and suc-

cessively processing each equality a = b in T by in-
voking assert(a = b,S), where S is the state as re-
turned by the recursive call of process. The invocation
of assert (a = b. S) is executed by first reducing a and
b to their respective canonical forms ci and b. Next,
S is expanded to include e = e for each subterm e
of ö = b where c $ dom(S). This preprocessing step
ensures that S contains entries corresponding to any
terms that might be needed in the congruence closure
phase in the operation cc.1 The merge operation then
solves the equality a — b to get a solution'' S", and
returns S ° S' as the new value for the state 5. As
we will show, this new value affirms a = b, but it is
not congruence-closed and hence does not contain all
the consequences of the assertion a = b. The step
cc(S) computes the congruence closure of S by repeat-
edly picking a pair of congruent terms a and b from
dom(S) such that S(a) ^ S(b) and merging them us-
ing mergc(S(a), S(b), S). Eventually either a contra-
diction is found or all congruent left-hand sides in S
are merged and the cc operation terminates returning
a congruence-closed solution set.

The above algorithm fixes the nontermination and
incompleteness problems in Shostak's algorithm by in-
troducing the norm operation and the composition op-
erator R o S to fold in a solution. The norm, opera-
tion ensures that no new uninterpreted terms are in-
troduced during congruence closure in the function cc,
as is needed to guarantee termination. The composi-
tion operator It o S ensures that any newly generated
solution 5 is immediately substituted into R and the
algorithm never attempts to find a solution for an al-
ready solved non-interpreted term.

We first illustrate the algorithm on some examples.
The first example contains no interpreted symbols.

Example 4.1 Consider the goal /5(:r) = x,f3(x) =
.T \- f(x) = x. The value of 5 after the base case is
0. After the preprocessing of /3(x) = .r in assert, S
is {x = x,f(x) = f{x),f-(x) = f2(x),p(x) = f(x)}.
After merging f3(x) and x, S is {x — x,f(x) =
f{*),r-(z) = P(■'■), P(x) = x). When f'{x) = x
is preprocessed in assert, can(S)(f5(x)) yields f~{x)
since 5(/3(.r)) = x, and S is left unchanged. When
f2(x) and x have been merged, S is {x = x,f(x) —

f(x),p(x) = x,p(x) = x}. Now /(,;) £ f(x)
and hence /(.;:) and x are merged so that S is now
{x = x,f(x)=x,r-(x)=x,p(x)=x}.

2Artua!Iy, the interpreted subternis of a — b need not all be
included in dom(S). Only those that are immediate Kubterms of
uninterpreted subterms in « = b are needed.

■'Any variables occurring in solve.{a — b) and not, in vars(a —
b) must be fresh, i.e., they must not occur in the original con-
jecture or be generated by any other invocation of solve.

24

The conclusion f(x) = x easily follows since
can(S)(f(x)) = x = can{S){x).

Example 4.2 Consider y + 1 = x, f(y) + 1 = y -
1, f(x — 1) — l = x + lh false which is a permutation
of our earlier example. Starting with S = 0 in the
base case, the preprocessing of f(x — 1) — 1 = 2 + 1
causes the equation to be placed into canonical form
as -1 + /(—1 + x) = 1 + x and 5 is set to

{ 1 = 1, — 1 = — l,x = x, — 1 + x = — 1 + x,
/(-l + x) = /(-l + x), 1 + x = 1 + x}.

Solving -l + /(-l+z) = l+x yields f(-l+x) = 2+x,
and 5 is set to

{ 1 = 1, — 1 = — l,x = x, — 1 + x = — 1 + x,
/(-l + x) = 2 + x, 1 + x = 1 + x).

No unmerged congruences are detected. Next, f(y) +
1 = y — 1 is asserted. Its canonical form is 1 + f(y) =
-1+2/, and once this equality is asserted, the value of
5 is

{ 1 = 1, — 1 = — l,x = x, — 1 + x = — 1 + x,
/(-l + x) = 2 + x,l+x = l + x,y = y,
f(y) = -2 + y,-l + y = -l + y,
l + f(y) = -l + y}.

Next y + 1 = x is processed. Its canonical form is
1 + y = x and the equality l + y = l + yis added to 5.
Solving y + 1 = x yields x = 1 + y, and 5 is reset to

{ 1■ = 1,-1 = -l,x= l + y,-l + ar = y,
/(-l + x)=3 + y,l + x = 2 + y,y = y,
f(y) = -2 + y,-l + y = -l + y,

i + f{y) = -i + y,i + y = i + y}-

The congruence close operation cc detects the congru-
c

ence /(l — y) ~ /(s) and invokes merge on 3 + j/ and
-2 + j/. Solving this equality 3 + y = -2 + y yields _L
returning the desired contradiction.

5 Analysis

We describe the proofs of termination, soundness,
and completeness, and also present a complexity anal-
ysis.

Key Invariants. The merge operation is clearly the
workhorse of the procedure since it is invoked from
within both assert and cc. Let U(X) represent the set
{o € X | a uninterpreted} of uninterpreted terms in
the set X. Let A be solvables(a), B be solvables(b),

and S" = merge(a,b,S), then assuming U(AuB) C
dom(S) and for all c e A U B, S(c) = c, the following
properties hold of £" if they hold of S:

1. Functionality.

2. Subterm closure: 5 is subterm-closed if for any
a £ dom(S), [a] C dom(S).

3. Range closure: 5 is range-closed if for any a €
dom(S), U(solvables(5'(a))) C dom(S), and for
any c G solvables(S(a)), S(c) = c.

4. Norm closure: 5 is norm-closed if 5(a) =
norm(S)(a) for a in dom(S). This of course holds
trivially for uninterpreted terms a.

5. Idempotence: 5 is idempotent
if 5[5(a)] = S{a), norm(S){S(a)) = S(a), and
norm(S)(norm(S)(a)) = norm(S){a).

These properties can be easily established by in-
spection. Since whenever merge(a, 6,5) is invoked in
the algorithm, the arguments do satisfy the conditions
U(A UB)C dom(S) and for all c € A U B, S(c) = c,
it then follows that these properties are also preserved
by assert and cc, and therefore hold of process (T). We
assume below that these invariants hold of 5 whenever
the metavariable 5 is used with or without subscripts
or superscripts.

Lemma 5.1 (merge equivalence) Let
A = solvables (a) and B = solvables (b). Given that
U(A U B) C dom(S) and for all c £ A\JB, S{c) = c,
if S' = merge(a, b, 5) ^ ±, then

1. norm(S')(a) = norm(S')(b).

2. U(dom(S')) = U{dom(S)).

Proof. Let it! = solve (a = b). By definition,
merge(a, 6, 5) = S o R. By Lemma 3.8, norm(R)(a) =
norm(R)(b). Since S(c) = c for c e 4 U B,
norm(S)(a) = a and norm(S)(b) = b. Hence, by norm
decomposition, we have norm(S')(a) = norm(S')(b).

By Definition 3.4, dom(R) C i U ß, hence
t/(dom(5')) = U(dom(S)). m

Termination. We define #(5) to represent the
number of distinct equivalence classes partitioning
U(dom(S)) as given by P(S).

E(S)(a) = {b£U(dom{S))\S{b) = S{a)}

P(S) = {E(S)(a)\aeU(dom(S))}

#(5) = \P(S)\

25

The definition of cc(S) terminates because the mea-
sure #(5) decreases with each recursive call. If
in the definition of cc, merge(S(a), 5(6), 5) = -L,
then clearly cc terminates. Otherwise, let S' —
merge(S(a), 5(6), 5) ^ _L, for a and 6 in dom(S) such

that S(a) ^ 5(6) and a ~ b. In this case a and b must
be uninterpreted terms since for interpreted terms a

and 6, if a ~ 6, then 5(a) = 5(6) by norm closure. By
merge equivalence, norm(S')(S(a)) = norm(S')(S(b))
and U(dom(S')) = U(dom(S)). By monotonicity,
for any c and d such that 5(c) = S(d), we have
5'(c) = S(d), and therefore #(5') < #(5). However,
by norm c/o.s?/re, S'{a) = S'{b) so that #(5') < #(5).

Soundness. The following lemmas establish the
soundness of the operations norm and can with re-
spect to 5. Substitution soundness and can soundness
are proved by a straightforward induction on a, and
norm soundness is a simple consequence of substitu-
tion soundness.

Lemma 5.2 (substitution soundness)
// vars(a) C vars(T U 5), then T,S \~ a = a' w dcrn;-
o,6/e, /or a' = S[a].

Lemma 5.3 (norm soundness)
// vars(a) C vars(T U 5), then T, 5 h « = a w deriv-
able.

Lemma 5.4 (can soundness)
// vars(a) C vars(T U 5), £/?,en T, 5 h a = S is deriv-
able.

Lemma 5.5 (merge soundness)
// 5' = mc.rge(a, b, 5) / _L, then if T,S \~ a = b, and
T,S' \- c = d with vars(c — d) C vars(T U 5), £/ten
T, 5 h c = d. Otherwise, merge(a,b, 5) = _L, and
T,Shi.

Proof. If 5' = merge(a,b,S) £ 1, then let R =
solve(a = 6). By norm soundness, S, R h 5', and
hence by c«f, T, 5, i? h c = d is derivable. By the solve
rule, T, 5 h c = d is derivable.

If m,crge(a, b, 5) = JL, then by similar reasoning us-
ing the solve-1 rule, T, S h /aZ.se is derivable. ■

Lemma 5.6 (cc soundness) // 5' = cc(5) ^ L,
T,S' \- a — b for vars(a = 6) C vars(T,S), then
T,S \- a = b is derivable. Otherwise, cc(S) = _l_, and
S \- false is derivable.

Proof. By computation induction on the definition
of cc using merge soundness. m

Lemma 5.7 (process soundness)
If S = process(T,) ^ _L, 7\ C T2, and T2,S h c =
d /or vars(e = d) C vars(T2), then T2 \~ c = d is
derivable. Otherwise, process(T1) — ±, andT\ \- false
is derivable.

Proof. By induction on the length of 7\. In the
base case, 5 is empty and the theorem follows triv-
ially. In the induction step, with T\ — {a = 6,7^'} and
5' — process(T1,), we have the induction hypothesis
that T2 h c = d is derivable if T2, 5' h c = d is deriv-
able, for any c, d such that vars(c = d) C vars(Ts).
We know by can soundness that T2,5' h 5 = a and
T2,5' h 6 = 6 are derivable. When S' is augmented
with identities over subterms of a and 6 to get 5'+, we
have the derivability of T2,S' \- S'+. By cc soundness,
we then have the derivability of T2,S'+ h c = d from
that of T2,5 h c = d. The derivability of T2,5' h c = d
then follows by CM£ from that of T2,5'+ h c = d, and
we get the conclusion T2 \- c = d by the induction
hypothesis.

A similar induction argument shows that when
proeess(Ti) = _1_, then T2 h /a/.se. ■

Theorem 5.8 (soundness) If S — process(T) ^ L,
vars(a = 6) C vars(T), and ä =b, then T \- a = b is
derivable. Otherwise, process(T) = _L, and T h /a/,se
is derivable.

Proof. If 5 = process(T) ^ ±, then by can sound-
ness. T,S \~ a — ä and T, S h 6 = 6 are derivable.
Hence, by transitivity and symmetry, T,S \- a = b is
derivable. Therefore, by process soundness, T h a = b
is derivable.

If process(T) = ±, then already by process sound-
ness, T h false. m

Completeness. We show that when 5 = process(T)
then can(S) is a er-model satisfying T. When this is
the case, completeness follows from proof soundness.
In proving completeness, we exploit the property that
the output of process is congruence-closed.

Lemma 5.9 (confluence)
If S is congruence-closed and [/(ftt"fl) C dorn(S), then
can(S)(a) = norm(S)(a).

Proof. The proof is by induction on a. In the
base case, when a is a variable, can(S)(a) = S(a) =
norm(S)(a).

If a is uninterpreted and of the form /(«i,..., o„),
then can(S)(a) = lookup(S)(f(aJ, ■ ■ ■ ,oJ7))- Since 5 is
subterm-closed, by the induction hypothesis and norm
closure, we have oj = fl, = 5(o,) for 0 < i < n. Then

26

there must be some b of the form f{bi,...,bn) such
that S(bi) = S(a,i), for 0 < i < n, since a itself is such
a b. Then by congruence closure and norm closure,

ä = S(b) = S(a) = a, since o ~ b.
If a is interpreted, by the induction hypothe-

sis and subterm closure, ä = a(f(a\,... ,a^)) =
<r{f{di,...,dn)) =ä. u

Lemma 5.10 (can composition) If S' — S o R and
S' is congruence-closed, then can(S')(can(S)(a)) =
can(S')(a).

Proof. By induction on a. When a
is a variable. can(S)(a) = S(a). If a $
dom(S), then S(a) = o, and hence the conclu-
sion. Otherwise, by range-closure, U(fS(a)1) C
dom(S) C dom(S'). Then, by confluence, norm
decomposition, and idempotence, can(S')(S(a)) =
norm(S')(S(a)) = norm(R)(norm(S)(S(a))) =
norm(R)(norm(S){a)) = norm(S')(a) = can(S')(a).

In the induction step, let a = /(ai,... ,an). If a is
uninterpreted, then if

f(au...,an) ~ /(&i ,M
for some f(b\,...,bn) e dom(S), then ä =
S(f(bi,... ,bn)). The reasoning used in the base
case can then be repeated to derive the conclusion.
Otherwise, 5 = f (a~[,... ,a~^) and by the induction
hypothesis and the definition of can, can(S')(a) =
/ootup(5')(/(con(5')(oi),..., can(S'){an))) =
can(S')(a).

When a is interpreted, by the induction hypothesis
and the a-norm lemma,

can(S')(a)
= can(5')(cr(/(ß7, ...,ö^)))
= a{f{can(S'){äJ),...,can(S'){ä^)))
= can(S')(a).

■
Lemma can composition with 0 for R yields the

idempotence of can(S) for congruence-closed S so that
we can define a a-model Ms in terms of can(S). The
domain D of Ms consists of {a\can(S)(a) = a}. The
mapping of functions is such that Ms (/)(ai,..., an) =
lookup(S)(f(sL1,... ,an)), if / is uninterpreted. If / is
interpreted Ms(/)(ai,... ,an) = cr(/(a1;... ,an)). If
p[x] = p(x) and p[}{au ..., an)\ = f{p[ai],... ,p[an]),
then by the idempotence of can(S), Msla}p is just
can(S)(p[a]). Lemma c-norm can then be used to show
Ms \= a(a) — a. Ms is therefore a a-model. Corre-
spondingly, for a given set of variables X, pg is defined
so that pg (x) = can(S)(x) for x E X.

Lemma 5.11 (can a-model) If S — process(T) ^
_L and X = vars(T), then Ms,p$ |= a = 6 for any
a = beT.

Proof. Showing that Ms,Ps \= a = b is the
same as showing that can(S)(a) = can(S)(b). The
proof is by induction on T. In the base case, T
is empty. In the induction step, T = {a = b,T'}
with X' = vars(T'). Let 5' = process(T'). By
the induction hypothesis, Ms>,Ps> |= T''. With
S'+ = expand(S,a',b') for o' = can(S')(a) and b' =
can{S')(b), let So = merge(a,b,S'+), hence by merge
equivalence, norm(So)(a') = norm(So){b'). By asso-
ciativity of composition, it can be shown that there
is an R such that S = So ° R and an R' such that
S = S'+ o R'. Hence by monotonicity, norm(S)(a') =
norm(S)(b'). Since S is congruence-closed, by con-
fluence, can(S)(a') = norm(S)(a') and can(S)(b') =
norm(S)(b'). Hence, can(S)(a') = can(S)(b').

It can also be shown that can(S'+)(a) = can(S')(a),
and similarly for b. Therefore, by can composition, we
have can(S)(a) = can(S)(b), and hence Ms,p§)= a =
ö. A similar argument shows that for c = d G T", since
can(S')(c) = can(S')(d), we also have can(S)(c) =
can(S)(d). ■

When T h /a/se is derivable, we know by proof
soundness that there is no cr-model satisfying T and
hence by the can a-model lemma, process(T) must be
_L.

Theorem 5.12 (completeness)
If S = process(T) ^ ± and T h a
can(S)(a) = can(S)(b).

b, then

Proof. Since Ms,Ps \= T by can a-model for Ar =
vars(T), we have by proof soundness that can(5)(a) =
can(5)(&). ■

Complexity. We have already seen in the termina-
tion argument that the number of iterations of cc in
process is bounded by the number of distinct equiv-
alence classes of terms in dom(S) which is no more
than the number of distinct uninterpreted terms. We
will assume that the solve operation is performed by
an oracle and that there is some fixed bound on the
size of the solution set returned by it. In the case of
linear arithmetic, the solution set has at most one el-
ement. Let n represent the number of distinct terms
appearing in T which is also a bound on \S\ and on
the size of the largest term appearing in 5. The com-
position operation can be implemented in linear time.
Thus the entire algorithm has 0{n2) steps assuming
that the a and solve operations are length-preserving
and ignoring the time spent inside solve.

27

6 Conclusions

Shostak's decision procedure for equality in the
presence of interpreted and uninterpreted functions
is seriously flawed. It is both incomplete and non-
terminating, and hence not a decision procedure. All
subsequent variants of Shostak's algorithm have been
similarly flawed. This is unfortunate because decision
procedures based on Shostak's algorithm are at the
core of a number of widely used verification systems.
We have presented a correct algorithm that captures
Shostak's key insights, and described proofs of termi-
nation, soundness, and completeness.

Acknowledgments: We are especially grateful to
Clark Barrett for instigating this work and correct-
ing several significant errors in earlier drafts, and to
Jean-Christophe Filliätre for his oCaml implementa-
tion which yielded useful feedback on the algorithm
studied here. The presentation has been substantially
improved thanks to the suggestions of the anonymous
referees and those of Nikolaj Bj0rner, David Cyrluk,
Bruno Dutertre, Ravi Hosabettu, Pat Lincoln, Ursula
Martin, David McAllester, Sam Owre, John Rushby,
and Ashish Tiwari.

References

[BDL96] Clark Barrett, David Dill, and Jeremy Levitt.
Validity checking for combinations of theo-
ries with equality. In Mandayam Srivas and
Albert Camilleri, editors, Formal Methods in
Computer-Aided Design (FMCAD '96), volume
1166 of Lecture Notes in Computer Science,
pages 187-201, Palo Alto, CA, November 1996.
Springer-Verlag.

[BJ099] Nikolaj Bjorner. Integrating Decision Proce-
dures for Temporal Verification. PhD thesis,
Stanford University, 1999.

[BRRT99] L. Bachmair, C. R. Ramakrishnan, I.V. Ra-
makrishnan, and A. Tiwari. Normalization via
rewrite closures. In International Conference
on Rewriting Techniques and Applications, RTA
'99, Berlin, 1999. Springer-Verlag.

[BS96] F. Baader and K. Schulz. Unification in the
union of disjoint equational theories: Combin-
ing decision procedures. J. Symbolic. Computa-
tion, 21:211-243, 1996.

[CLS96] David Cyrluk, Patrick Lincoln, and N. Shankar.
On Shostak's decision procedure for combina-
tions of theories. In M. A. McRobbie and J. K.
Slaney, editors, Automated Deduction — CADE-
13, volume 1104 of Lecture Notes in Artificial

Intelligence, pages 463-477, New Brunswick,
N.I, July/August 1996. Springer-Verlag.

[DST80] P.J. Downey, R. Sethi, and R.E. Tarjan. Vari-
ations on the common subexpressions problem.
Journal of the ACM, 27(4):758-771, 1980.

[EHD93] Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA. User Guide for the
EIIDM Specification Language and Verification
System, Version 6.1, February 1993. Three vol-
umes.

[FORS01] J-C. Filliätre, S. Owre, H. Rueß, and
N. Shankar. ICS: Integrated canonizer and
solver. In CAV 01: Computer-Aided Verifica-
tion. Springer-Verlag, 2001. To appear.

[Kap97] Deepak Kapur. Shostak's congruence closure as
completion. In H. Comon, editor, International
Conference on Rewriting Techniques and Appli-
cations, RTA '97, number 1232 in Lecture Notes
in Computer Science, pages 23-37, Berlin, 1997.
Springer-Verlag.

[MT96] Zohar Manna and The STeP Group. STeP:
Deductive-algorithmic verification of reactive
and real-time systems. In Rajeev Alur and
Thomas A. Henzinger, editors, Computer-Aided
Verification, CAV '96, volume 1102 of Lec-
ture Notes in Computer Science, pages 415
418, New Brunswick, N,I, July/August 1996.
Springer-Verlag.

[N079] G. Nelson and D. C. Oppen. Simplification by
cooperating decision procedures. ACM Trans-
actions on Programming Languages and Sys-
tems, l(2):245-257, 1979.

[NO80] G. Nelson and D. C. Oppen. Fast decision pro-
cedures based on congruence closure. Journal
of the. ACM, 27(2):356 364, 1980.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS:
A prototype verification system. In Deepak Ka-
pur, editor, 11th International Conference on
Automated Deduction (CADE), volume 607 of
Lecture Notes in Artificial Intelligence, pages
748-752, Saratoga, NY, June 1992. Springer-
Verlag.

[Sho78] Robert E. Shostak. An algorithm for reasoning
about equality. Communications of the ACM,
21(7):583 585, July 1978.

[Sho84] Robert E. Shostak. Deciding combinations of
theories. Journal of the ACM, 31(1):1-12, Jan-
uary 1984.

[SSMS82] R. E. Shostak, R. Schwartz, and P. M. Melliar-
Smith. STP: A mechanized logic for specifica-
tion and verification. In D. Loveland, editor,
6th International Conference on Automated De-
duction (CADE), volume 138 of Lecture Notes
in Computer Science, New York, NY, 1982.
Springer-Verlag.

28

A Decision Procedure for an Extensional Theory of Arrays

Aaron Stump, Clark W. Barrett, and David L. Dill
Computer Systems Laboratory

Stanford University, Stanford, CA 94305, USA
E-mail: {stump,dill,barrett} @cs.stanford.edu

Jeremy Levitt
O-In Design Automation, Inc.

San Jose, CA 95110, USA
Email: levitt@0-ln.com

Abstract

A decision procedure for a theory of arrays is of inter-
est for applications informal verification, program analy-
sis, and automated theorem-proving. This paper presents a
decision procedure for an extensional theory of arrays and
proves it correct.

1. Introduction

A decision procedure for a theory of arrays is of interest
for applications in formal verification and program analy-
sis. Such a procedure is also of value for theorem-provers.
The PVS theorem-prover [11] has an undocumented deci-
sion procedure for a theory of arrays [12], and HOL has
some automatic support for a theory of arrays via a library
for finite partial functions [3].

Two kinds of array theories have been studied previously.
Extensional theories require that if two arrays store the same
value at index i, for each index i, then the arrays must be
the same. Non-extensional theories do not make this re-
quirement. This paper is the first to present a procedure for
checking satisfiability of arbitrary quantifier-free formulas
in an extensional theory of arrays and prove its correctness.

2. Theories of arrays

Decision procedures for various theories of arrays have
been studied previously. Most of these theories can be di-
vided into extensional and non-extensional varieties. In this
section, several families of array theories are axiomatized
in classical first-order multi-sorted logic with equality. The
theory Arr decided in this paper is then presented and com-
pared to previously decided theories.

2.1. The language

Sorts The language has a basic sort I for indices into
arrays. It also has value sorts, which are the sorts of indi-

viduals that may be stored in arrays. The sort V is the sort
for primitive values stored in arrays. The set of value sorts
is defined to be the least set X satisfying

• Vex

• r 6 X -> arrayT 6 X

Every value sort except V is an array sort. The value sorts
together with I are all the sorts of the language. V and I
need not be distinct.

Definition 1 (dimensionality of a value sort) The dimen-
sion dim(r) of a value sort r is defined by

• dim{V) = 0

• dim(arrayT) = dim(j) + 1

Terms The language has countably infinitely many
variables and constants, with countably infinitely many of
each distinct sort. The constants are uninterpreted, in the
sense they will not occur in any axiom or axiom scheme.
The function symbols of the language are

• readT of type (arrayT —> / —► r), for every value sort
T

• writeT of type (arrayT —>■ I —> r —> arrayT), for every
value sort r

Subscripts on read and write will generally be omitted. In-
formally, read(a, i) will denote the value stored in array a at
index i, and write(a, i, v) will denote an array which stores
the same value as a for every index except possibly i, where
it stores value v.

Terms are built up in the usual way from constants and
variables using the function symbols. Terms whose sort is
an array sort will be called array terms. Terms whose sort
is I will be called index terms. The dimension dim(a) of
an array term a is the dimension of its sort. If dim(a) = n,
array a is said to be n-dimensional. If n > 1, a is also said
to be multi-dimensional.

0-7695-1281-X/01 $10.00 © 2001 IEEE
29

Formulas The atomic formulas of the language are the
equations between terms of the same sort. Formulas are
built up from atomic formulas using propositional connec-
tives and quantifiers in the usual way. A formula is closed if
it has no free variables. A literal is an atomic formula or the
negation of an atomic formula. A theory is a set of closed
formulas.

2.2. Theories

Some theories restrict which array sorts are allowed. If a
theory allows array sorts of dimension at most n, it is said to
have just n-dimensional arrays. If a theory allows all array
sorts, it is said to have multi-dimensional arrays.

The following scheme, which is schematic in a value
sort T, is called the read-over-write axiom scheme. Infor-
mally, it says that for all arrays a, indices i and j, and val-
ues v of suitable type, reading the value stored at index j of
write(a,i,v) is v if the two indices are equal and read(a,j)
if they are different.

Axiom scheme 1 (read-over-write)

\/a:arrayT.\/i:I.Vj iI.Vv.V.

{i = j -> read(write(a, i, v),j) = v) A

(J ¥" 3 ~* read(write(a, i, v), j) = read{a,j))

The following scheme, which is schematic in a value sort
r, is called the extensionality axiom scheme. Informally,
it expresses a principle of extensionality for arrays: if two
arrays store the same value at index i, for each index i, they
are equal.

Axiom scheme 2 (extensionality)

Vo : arrayT . V6 : arrayT .

(Vi : I. read(a, i) = read(b, i)) —> a = b

The extcnsional theories are those axiomatized by the
read-over-write and extensionality axiom schemes. The
non-extensional theories are those axiomatized by just the
read-over-write axiom scheme. Note that since a theory is a
set of closed formulas, quantifier-free array theories have no
variables; all 0-ary symbols are (uninterpreted) constants.

2.3. The theory Arr

The theory Arr decided in this paper is the quantifier-
free fragment of the extcnsional theory with multi-
dimensional arrays where sort V is defined to be sort I. So
indices are the values stored in 1-dimensional arrays.

The restriction to the quantifier-free fragment is justi-
fied by the fact that the fully quantified theory is undecid-
able, even in the absence of the function symbols writeT

and the read-over-write scheme. This is because single-
sorted first-order theories with function symbols and equal-
ity may be translated into this array theory in such a way
that a first-order formula is valid iff its translation is. The
translation maps constant symbols to index constants, n-
ary function symbols to n-dimensional array constants,
and terms like /(z'i,...,i„) to nested read expressions
read(... read{read{f ,i\),i'2)... ,i'n), where f',i[,... ,i'n

are the translations of /, i\,..., in. The undecidability re-
sults for classical first order logic with just function symbols
and equality (see, e.g., [5]) can then be applied to show that
even quite restricted quantified fragments of the extensional
theory of arrays are undecidable.

A decision procedure for Arr may be useful even for
applications which require a fully quantified logic. Many
theorem provers, such as the widely used PVS [11], pro-
vide strategies to reduce goals to subgoals in decidable frag-
ments of their logic.

2.4. Comparison with related work

In this section, related work is summarized by describing
which theories are decided. These theories often use axiom-
atizations different from but equivalent to that of Arr. All
the theories decided are quantifier-free. Kaplan is the only
one to distinguish the sorts V and /. Many of the previous
theories allow arithmetic operators or uninterpreted func-
tions over sort / to be used in addition to the symbols read
and write. The restriction here to just the essential theory of
arrays is justified by the fact that, as will be shown in Sec-
tion 6 below, the satisfiability procedure for Arr is suitable
for incorporation into a framework for cooperating decision
procedures [2]. In such a framework, separate decision pro-
cedures for arithmetic and uninterpreted functions may be
combined with the decision procedure for Arr to decide the
combined theory.

The first two works present axioms but no decision pro-
cedure for their theories. With the exception of Levitt's
work, the others give decision procedures for theories that
are strictly weaker than Arr, cither because they restrict the
form of formulas in the theory (e.g., to just equations), dis-
allow equations between arrays, or arc non-extensional.

McCarthy In [8], McCarthy introduces the function
symbols read and write and gives an informal semantics for
an extensional theory of arrays based on them.

Collins and Syme Collins and Syme present in HOL
a theory of finite higher-order partial functions similar to a
theory with multi-dimensional arrays [3].

Kaplan In [6], Kaplan gives a decision procedure for a
non-extensional equational theory with just 1-dimensional
arrays. He considers equations between index terms only,
which is reasonable since his theory contains no non-trivial
equations between arrays. He then shows how to extend his

30

procedure to decide an extensional equational theory, where
the equations may be between array as well as index terms.
He imposes the restriction that distinct variables of sort I
must receive distinct interpretations.

Suzuki and Jefferson In [15], Suzuki and Jeffer-
son present a decision procedure for a theory with just 1-
dimensional arrays, where equations between arrays are not
allowed. The theory has axioms for extensionality and the
existence of constant arrays (arrays that store the same value
at all indices), but these appear to be included for technical
reasons only; the theory decided is equivalent to the one
without those axioms under the restrictions they impose.
They extend their procedure to decide a theory with a new
predicate symbol PERM, where PERM(a, b) holds iff the
multiset of the values stored in a is contained in the mul-
tiset of the values stored in b. Sentences of the theory are
restricted to the form P -¥ PERM(a,b), where P is any
(quantifier-free) sentence not containing PERM. Arr does
not have the PERM predicate, but inspection of the way
Suzuki and Jefferson extend their algorithm to treat PERM
shows that it could just as easily be used to extend the algo-
rithm for Arr, as long as their restriction disallowing equa-
tions between array terms were retained.

Downey and Sethi In [4], Downey and Sethi present
a decision procedure for an extensional equational theory
with just 1-dimensional arrays. Equations between array
terms are allowed. They prove that determining the invalid-
ity of an equation in their theory of arrays is NP-complete.

Nelson and Oppen In [10], Nelson and Oppen describe
an extensional theory of arrays. Their theory allows multi-
dimensional arrays. They do not present their satisfiabil-
ity procedure for the extensional theory, but in [9], Nelson
gives a detailed presentation of a satisfiability procedure for
a non-extensional theory.

Levitt In Chapter 5 of his PhD thesis [7], Levitt presents
a decision procedure for an extensional theory of arrays
based on solving equations and canonizing terms, in the
style of Shostak [13]. A detailed proof of correctness is
not given, and has proved elusive to the authors. In con-
trast, a detailed proof of correctness is given below for the
procedure for Arr.

3. The satisfiability procedure for Arr

Arr is decided by a refutation procedure. The procedure
decides satisfiability of conjunctions of literals, which are
equations and disequations between terms. Deciding satis-
fiability of arbitrary boolean combinations of atomic formu-
las can be reduced to this problem by well-known means.
A conjunction of literals whose satisfiability is to be tested
will be called a goal. Comma will be used to denote con-
junction. Two goals are said to be equisatisfiable when one
is satisfiable iff the other is.

3.1. Informal overview

The procedure works in two phases. In the first phase,
the original goal is transformed into a set of subgoals such
that (i) no subgoal contains write and (ii) the original goal
is satisfiable iff one of the subgoals is. Eliminating write
expressions is straightforward except when they occur as
the left or right hand side of an equation. How to eliminate
such occurrences of write expressions is the crucial insight
of this algorithm.

Definition 2 (=_)

a—%b ^def Vi : I. i 0 1 —> read(a, i) = read(b, i)

Formulas of the form a =% b with 1 ^ 0 are called partial
equations.

The crucial observation is that

write(a,i,v) = 6 <=> (a =^y 6 A read(b,i) = v).

write expressions occurring as sides of equations may thus
be eliminated by introducing partial equations.

The second phase of the procedure is based on the ob-
servation that in the absence of write, arrays behave like
uninterpreted functions and read behaves like function ap-
plication. So in the absence of write, a congruence closure
algorithm (cf. [1]) could be used to decide the theory. The
algorithm must be modified to work with partial equations
as well as equations, but this can be done. For simplicity, the
very simple congruence closure algorithm described in [14]
is used, but it should be possible to modify a more complex
algorithm.

3.2. Formal presentation

Figure 1 presents our procedure as a proof system. The
proof system determines a non-deterministic procedure,
where rules are applied bottom-up to analyze a goal into
one or more subgoals. The system may be thought of as
a rewrite system, where, for each rule, the goal below the
line is rewritten to the subgoals above the line. The sys-
tem resembles a Gentzen-Schiitte system where only left
rules of the corresponding sequent system are used (i.e., a
sequent system where sequents are restricted to be of the
form T =>■ _L). The derivable objects of this system are sets
of literals. It is intended that a set of literals be derivable iff
their conjunction is unsatisfiable. A deduction of a goal is a
tree obtained by applying the proof rules bottom-up to that
goal. A goal to which no rule can be applied is said to be
normal.

31

Phase 1:

F, read(a, k) ^ readib, k)
(ext) pq -j—, k is not free in the conclusion; a and b arc arrays r, of &

r\v], i = j YWeadia. j)], i ^ j
(r-over-w) —l-^- J l v 'J;h r J

(w-elim)

T[read(write(a, i,v),j)]

r, a =2 b: i £ X r, a —itx b, read(b, i) = v, i 0 X
T, write(a, i, v) =x b

r, b=T a
(w-elim-helper) —p T— 6 is a write expression, and a is not

1 , a —j 0

Phase 2:

r, a —x b, read(a, i) = read(b, i), i $ X T, a =j b, i 6 X
(partial-eq)

T, a =x b
where a > b; X ^ 0; read(a, i) occurs in T

,, , T, a=i6, a =r c, 6 =IUI' c
(trans) = ; 2^0 and I 7^

T, o =1 b, a =x> c

r[y], x = y
(subst) p, 1 — x > y, x ^ y,x not in r[]

r, y —1 x
(symm) -r= x -< ?/

T, X =x y

Both phases:

T. i = j r, i £ X T, i $ 1, i 7^ j
(G-split) —^—■ ^ 1 ■ T\ (^-expand) r,»e(j,J) v^"~ r,^(j,i)

(e-empty) ffl (ax)
r, i G 0 y ' T, x^ X

Figure 1. The decision procedure as a proof system

32

The system has two phases. Some rules may be applied
in just one phase, while others may be applied in either
phase. The rules of phase 1 are applied to a goal until no
rule applies, and then the rules of phase 2 are applied. The
procedure stops and reports that the original conjunction is
satisfiable if it encounters a normal subgoal. Otherwise, it
reports that the original goal is unsatisfiable. As mentioned
before, phase 2 is a modified congruence closure algorithm.
The core congruence closure algorithm consists of just the
rules (symm) and (subst) [14].

The set-theoretic operators have their usual meanings;
note that i,l denotes {i} U X, where I does not contain
i. T[] denotes a context, which is an expression contain-
ing one or more occurrences of a single free variable. The
expression obtained by substituting the term t for the con-
text's free variable is written T[t]. In the rule (subst), since
the side condition requires that T[] contain no occurrences
of the term x, applying (subst) replaces all occurrences of a:
in T[x] with the term y. = denotes syntactic identity. The
symbol -< denotes an ordering on terms by size, which is
defined on terms in the usual way. Let x ^ y iff x and y are
such that the size of x is less than or equal to the size of y.
The variants -< and ^ are derived from ^ in the usual way.

3.3. Avoiding non-termination in phase 2

In phase 2, applications of (partial-eq) and (trans) must
be restricted to avoid certain sources of non-termination.
There is nothing preventing (partial-eq) and (trans) from be-
ing applied repeatedly with the same partial equations, be-
cause for both rules, the partial equations are retained in the
goal. For (partial-eq), this form of non-termination may be
prevented by adding a side condition to the rule that pre-
vents it from being applied if, informally, read(a,i) and
read(b, i) are already known to be equal or if i is already
known to be equal to an element of I. Formally, the proce-
dure can test whether or not t and t' are already known to
be equal by applying all the rules of phase 2 except (partial-
eq) and (trans) to the current goal with t ^ t' added, and
seeing whether or not that goal is reported unsatisfiable. If
neither (G-split) nor (^-expand) applies to the current goal,
then this is equivalent just to comparing normal forms as de-
termined by the core congruence closure algorithm. So in
an implementation, this non-termination may easily be pre-
vented. A similar approach can be used to prevent (trans)
from being applied repeatedly to the same formulas. The re-
quired machinery, however, has been omitted from the proof
system for simplicity.

4. Correctness of the Procedure

A satisfiability procedure is sound iff when it reports a
goal unsatisfiable, the goal is indeed unsatisfiable. A pro-

cedure is complete iff when it reports a goal satisfiable, the
goal is indeed satisfiable. A procedure is correct iff it ter-
minates on all inputs, and it is sound and complete. In this
section, a detailed proof of completeness for the satisfiabil-
ity procedure for Arr is given. The proof of termination is
routine and omitted for lack of space. The following theo-
rem implies soundness.

Theorem 1 (equisatisfiability) The conclusion of each
rule of the system is satisfiable iff one of its premises is sat-
isfiable.

Proof: The proof is routine. Consider just the rule (trans).
If a =x b and a =z' c are true in some model, then it is
easy to see by the definition of =_ that b —JUT C is also
true in some model. If c agrees with a at every index except
those in I' and a agrees with b at every index except those
in I, then clearly i g lul' implies that c agrees with a at
i and also that a agrees with b at i. Hence, c agrees with b
at i. For the other direction, if the premise has a model, so
does the conclusion, since the conclusion is a subset of the
premise. G

Recall that a normal goal is one to which no rule applies.
By the equisatisfiability theorem, to prove completeness of
the algorithm it suffices to show that any normal goal is
satisfiable. This may be done by constructing a model for a
normal goal. The following lemma is easily established.

Lemma 1 (effect of phase 1) A goal that is normal with
respect to phase 1 of the algorithm contains no write ex-
pressions and no disequations between array expressions.

4.1. A convenient form for normal goals

In preparation for constructing a model, several trans-
formations, which are not actually performed by the algo-
rithm, are applied to a normal goal to give an equisatisfiable
normal goal F, which is in a more convenient form. If the
normal goal contains equations of the form x = x, clearly
they may be removed and the result will be equisatisfiable.
Next, modify the goal by doing the following. Let G be the
goal as it currently stands. If there is a term of the form
read(a, i) in G that is not the left hand side of any equation
in G, choose a constant symbol c not occurring in G, and
modify G by replacing read(a, i) everywhere in it with c
and adding the equation read{a, i) = c to it. If there is no
such term read(a, i) in G, stop. It is easy to show that the
resulting goal is normal and equisatisfiable with the original
normal goal. This resulting goal consists of formulas of one
of the following four forms, where x, y, and z are constant
symbols:

I. read(x,y) = z

33

II. x^y

III. x =2 y, where every element of 2 is a constant symbol

IV. x = y

Since this resulting goal is normal, no formula x = y of
the form (IV) has its left hand side appearing anywhere else
in the goal, since otherwise (subst) would apply. Let T be
this resulting goal, except without the equations of the form
(IV). T will be said to be in convenient normal form. Any
model M of T may be extended to a model of T with those
equations of the form (IV) by giving the same interpretation
for the constant x as for the constant y, if M interprets y,
and a single arbitrary interpretation for both x and y other-
wise.

• The chain is denoted (ai i?x, 02 Rx2 ... Rin_x an).

• n is the length of the chain.

• The union along the chain is defined to be \Jl<: <n2j.

• The chain is said to be from x to y iff a\ = x and
an = y-

b

b a

a

4.2. Construction of a model

In this section, a kind of term model for the goal F in
convenient normal form is constructed. Several definitions,
in terms of T, are required. The fact that the core congru-
ence closure algorithm (rules (subst) and (symm)) is correct
is used (sec [14] for the proof).

Definition 3 (—>_ and «— _) Let —>_ and <— _ be the ternary
relations defined, respectively, by

« ->ib iff (ft =xb) GT

a^xb iff (b =1 a) G T

Note that for any 2, -»j and —»2 need not be symmetric,
since (a =2 b) £ F does not imply (b =2 a) 6 T.

Definition 4 (ss_) Let «_ be the least ternary relation sat-
isfying

1. a «0 a, for every array constant a appearing in F

2. (a -*■! b) V (b ->i a) 4 o «2 i

* * Definition 5 («_) Let K_ be the least ternary relation con-
taining RJ_ and satisfying

* *
(3 c. a «2 c A c «j/ b) -> a ~iui' b

* *
Definition 6 (^) L^/1 äS /?<? the binary relation defined by

* *
a w 6 jj^ 31. a Kx b

* * *
The context will help distinguish ss_ and ta. Note that ss

is an equivalence relation.

Definition 7 (chains) A chain of applications of a ternary
symbol R, like K_ or —>_, called an R-chain, is defined to
be a conjunction of the form (a\ Rjl n2) A (a2 Ri2 a3) A
... A (a;l_i i?2T,_i (in), with n > 2.

Figure 2. Standard forms for ss.-chains

Lemma 2 (standard form for chains) Suppose a «2 b,
with 2^0. Then one of the following is true:

i. there is a —>_-chain from a to b or from b to a, where
the union along the chain is 2

ii. for some c, there is a —> -chain from a toe and another
from b to c, where the union of the unions along the two
chains is I.

Figure 2 shows the possibilities.

Proof Let C be a ss_-chain a\ «2, • • • ~Z„-i o-n from
a to b, with 2 = Ui<i<„-i^- Assume C is of mini-
mal length of all such chains. For every i with 1 < i <
n — 1, let Hj be either —>j{ or <—2,, and suppose we
have ai H, ... «-»„-I an. It is easy to prove that if
this latter chain is not of one of the forms described in
(i) and (ii), there must be an i with 1 < i < n — 1
such that «-)•;_ 1 is <—2,_i and «->,- is —>x{. So we have
ßi-i <-z,-i a; ->ij a;+i- So both a; =2,_, a,;-i and
ft; =1, fti+i are in F. It must be the case that both 2;_[and
2, arc non-empty, since otherwise (subst) would apply to re-
place the left hand side of one of those equations by the right
hand side of the other. No rules can apply, since T is nor-
mal. Since both 2,_i and 2,- are non-empty, (trans) would
be applicable, unless the conditions described in Section 3.3
for preventing non-termination were keeping it from being
applied. This implies that cither «,_i =2,_iUi, «;+i or
ß,+i =2i_1uz, fli-i is in T, since a.\ and a> must be their

34

own normal forms as determined by the core congruence
closure algorithm. Hence, we have a*_i «z^ux,- ai+i.
So the chain (n ssi1 ... ßj_i «i^uz,- ai+i... «!„., an,
whose union is I, has smaller length than C. This contra-
dicts the assumption that C is of minimal length of such
chains. D

Now an interpretation, given as a function |_] from the
constant and function symbols of T to their interpretations,
is defined. [_J is defined to map every constant symbol a
of basic type I to a itself. [_] will map array constants to
functions. To satisfy extensionality, functions that give the
same value for every input are required to be equal. First

let Lc be a new symbol not occurring in T, for every fa-
equivalence class C. Define {read} to be the operation of
function application, except that when it is given Lc, it may
just return Lc- Intuitively, for an array constant a, [a] will
be a function mapping all but a finite number of inputs to a

default value Lc- Formally, suppose a is in «-equivalence
class C. Define [a] to be the function that returns Lc for
every input, except those assigned values by the following:

Definition 8 (interpretation of array constants)
for every constant symbol b of the same type as a,

for every set 2 such that a RJJ b,
for every index constant i not appearing in X,

ifread(b,i) = x £ T for some x, then
the value of [aj for input [i] is defined to be \x\

Notice that the body of Definition 8 may specify the
value for [a] on input i more than once. So for [] to be well-
defined, if the value of [a] on input i is specified to be [xj

and [x2], we need [xi] = [x2]. So if a «i b and a «i- c
with i not in 2 and not in 2', then for [] to be well-defined,
it must be the case that if read(b, i) — x\, read(c, i) = x2 £

T, then \x\\ = \x-2~\- Since the conditions a «2 b, a «1» c,

i not in 2, and i not in X' together imply b «IUZ' c and i
not in IU 2', the following lemma suffices to prove that []
is indeed well-defined.

Lemma 3 (well-definedness of []) If a KT b, i not in X,
and read(a, i) = x\, read(b, i) = x2 £ T, then X\ = x2.

The proof of this lemma relies on the following sub-
lemma.

Lemma 4 (certain reads equal along chains) Suppose
Oi,... ,an, andi are such that a\ —»j, ... -^jn_l anfor
some Ii,... ,I„_i, where i is not in Ui<j<n-i "^i- ^UP'
pose there is a constant x such that reacfta^, i) = x £ F.
Then read(an ,i) =x eT.

Proof The proof is by induction on n. The base case is triv-
ial. For the induction case, suppose read(a,\ ,i) = x € T.

Since T is normal, no rules can apply. So we must have
X\ 7^ 0, since otherwise (subst) would apply with a\ — a2

and read(ai,i). Furthermore, since (partial-eq) cannot
apply, it must be the case that the conditions of Section 3.3
for preventing non-termination are what is prohibiting its
application with a,\ =%1 a2 and read{a,i). In particular,
it must be the case that read(a2,i) is already known to
be equal to read(a\,i). The other possibility, namely that
i is known to be equal to an element of X, is excluded
because i is not in 2 by hypothesis, and correctness of
the core congruence closure algorithm would require i to
appear in 2 in a normal goal if i were known to be equal
to an element of 2. For read{a\,i) and read(a2,i) to have
the same normal form with respect to the core congruence
closure algorithm, we must have read(a2,i) = x £ T;
this follows from the definition of convenient normal form.
Now the induction hypothesis may be applied to conclude
that read(an, i) = x E T. D

Proof (of Lemma 3) Suppose a KX b and suppose
2^0. Then by Lemma 2, there is either a ->_-chain
from a to 6 or from b to a, or there is a constant c
such that there is a ->_-chain from a to c and another
from b to c. By Lemma 4, in the first case either
read(b, i) = x\ € V or read(a, i) = x2 £ T, and in the sec-
ond, read(c, i) = Xi, read(c, i) = x2 £ I\ Since T is nor-
mal, for all x, y, and z, read(x,i) = y, read(x,i) = z eT
implies y = z, since otherwise (subst) would apply.
So in either case, x\ = x2. If 2 = 0, then it must be
the case that a = b, since read(a,i) and read(b,i) are
both in F; otherwise, (subst) would apply. But again,
read(a, i) = x, read(a, i) = y £ T implies that x = y. □

Lemma 5 (correctness of the constructed model) The
model constructed in the previous section satisfies every
formula of the goal T in convenient normal form.

Proof Consider the types (I), (II), and (III) of formulas
from the list in section 4.1; recall that goals in convenient
normal form consist of formulas of just these types.

Case I: read(x, y) = z Since x is an array constant,
x sag x, and so the construction of Definition 8 will assign
the value that function [x] takes on argument [y] to be [z].
Hence [read(x,y)j = (zj.

Case II: x ^ y Since all disequations in T are between
index expressions, x and y must be index constants. Hence,
[xj = x and [y] = y, by construction. If x = y, then the
goal would not be normal, because (ax) would apply. So the
interpretation satisfies x ^ y.

Case III: x =x y It must be shown that for every
index constant not in [2], [x] and [y] give the same value.
[x] and [y] have the same default value since they are in the

*
same «-equivalence class. For those index constants i not

35

in I that appear in a formula of the form read(y, i) = z £ T,
they store the same values, by Definition 8. □

From the fact that a model has been constructed for a
normal goal, the main result now follows.

Theorem 2 (completeness) The satisfiability procedure
for Arr is complete.

5. Complexity analysis

Observe that each application of (w-elim) or (partial-eq)
leads to one new subgoal for each element of the indexing
set 2 in the rule. The size of 1 is easily seen to be bounded
by the size TV of the original goal T. So any deduction from
T may be viewed as a tree with branching factor no more
than N. It is not hard to show, in fact, that N is an upper
bound on the number of branching nodes in the tree, so there
are at most 0{NN) = 0{2Nl^N) branches. Each branch
can be shown to be of polynomial length, so the algorithm
runs in worst-case exponential time.

Theorem 3 (NP-completeness) The problem of testing a
conjunction of literals for satisfiability in Arr is NP-
complete.

Proof Downey and Sethi showed that a subproblem of
the problem decided here is NP-hard [4]. To show that the
problem is in NP, observe that the size of the model con-
structed in the previous section for a goal F in convenient
normal form is polynomial in the size of T. The conver-
sion of a normal goal to convenient normal form incurs at
most a polynomial expansion of the goal. So the size of the
model constructed is polynomial in the size of the normal
goal. Hence a model can be nondeterministically guessed
in polynomial time. Checking whether or not a conjunction
of literals is satisfied by a model can be done deterministi-
cally in polynomial time. So satisfiability of a conjunction
of literals can be checked nondeterministically in polyno-
mial time. □

6. Extensions

In this section, several extensions to the refutation pro-
cedure for Arr are considered. Due to lack of space, cor-
rectness proofs are omitted.

6.1. Propagating all entailed equations

Full incorporation of the satisfiability procedure into the
framework for cooperating procedures of [2] requires that
the procedure can discover all equations between terms oc-
curring in a satisfiable goal that are entailed by that goal.

The procedure for Arr always does this for index terms but
not always for array terms. If the rules of Figure 3 are added
to phase 2, however, it can be shown that if t and t' are ar-
ray terms in a normal goal that are entailed to be equal, then

t «„ t'.

(trans2)

(patch)

r, a b. b -T c, a =xur c
T, a=xb, b =x> c

where I ^ 0 and T ? 0

r, -nft, a =j, xb r, </>, a =x b
T, a-itXb

where <f> is read(a, i) = read(b, i)

Figure 3. Rules to propagate entailed equa-
tions

6.2. Propagating properly entailed disjunctions

Definition 9 (proper entailment of disjunctions) A dis-
junction that is entailed when neither of its disjuncts is
entailed is said to be properly entailed.

Incorporating the procedure into the framework of [2] also
requires it to have the following property. Let tp and iji be
equations whose sides appear in goal T. If the procedure re-
ports F satisfiable, then F cannot properly entail ft V ip. The
original procedure for Arr does not have this property; an
example is the normal goal a ={,j b, a ={j] b, read(b, i) =
v, read(b,j) = v', which entails i = j V a = b but nei-
ther i = j nor a = b. It can be proved, however, that the
modified procedure of section 6.1 does have this property.

6.3. Allowing constant arrays

Constant arrays arc arrays that store a single value for
all indices. The language is extended with function sym-
bols constT for each value sort r, and the following axiom
schema is added:

V x : T . V i : I. read(const(x), i) = x

The procedure of section 6.1 is modified to obtain a pro-
cedure for this extended theory by adding the rules of Fig-
ure 4. (const-eliml) is added to both phases, and (const-
symm) and (const-elim2) are added to phase 2. To ensure
that the conclusion of (const-elim2) entails its premise, the
simplifying assumption is made that the interpretation of the
type I of indices is infinite. With this modified procedure,
goals that arc normal with respect to phase 2 may fail to be
normal with respect to phase 1. For example, the applica-
tions of const in the goal const(write(a,i,v)) = const(b)

36

are removed using (const-elim2) in phase 2, but this adds
the equation write(a,i,v) = b to the goal, which could be
analyzed with the (w-elim) rule of phase 1. So it is neces-
sary to repeat the phases.

(const-eliml)
T[x]

T[read(const(x), i)}

T, a =2 const(x)
T, const(x) =i a

where a is not of the form const{y)

 r, x = y
T, const(x) =i const(y)

Figure 4. Rules to treat constant arrays

(const-symm)

(const-elim2)

7. Conclusion

A refutation procedure for an extensional theory of
multi-dimensional arrays has been presented and proved
correct. The theory Arr decided essentially subsumes all
previously decided array theories. The procedure is suitable
for incorporation into a framework for cooperating decision
procedures.

8. Acknowledgements

We thank the anonymous reviewers for their very help-
ful criticism. The first author was supported during part of
this work by a National Science Foundation Graduate Fel-
lowship. Support was also provided in part by NSF contract
CCR-9806889-002 and ARPA/AirForce contract F33615-
00-C-1693. This paper does not necessarily reflect the po-
sition or the policy of the U.S. Government; no official en-
dorsement should be inferred.

References

[4] P. Downey and R. Sethi. Assignment Commands with Array
References. Journal of the ACM, 25(4):652-666, Oct. 1978.

[5] E. Borger, E. Grädel, and Y. Gurevich. The Classical Deci-
sion Problem. Springer, 1997.

[6] D. Kaplan. Some Completeness Results in the Mathematical
Theory of Computation. Journal of the ACM, 15(1): 124—34,
Jan. 1968.

[7] J. Levitt. Formal Verification Techniques for Digital Sys-
tems. PhD thesis, Stanford University, 1999.

[8] J. McCarthy. Towards a Mathematical Science of Computa-
tion. In IFIP Congress 62, 1962.

[9] G. Nelson. Techniques for Program Verification. Technical
Report CSL-81-10, Xerox PARC, June 1981.

[10] G. Nelson and D. Oppen. Simplification by cooperating de-
cision procedures. ACM Transactions on Programming Lan-
guages and Systems, 1(2): 245-57, 1979.

[11] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Veri-
fication System. In D. Kapur, editor, 11th International Con-
ference on Automated Deduction, volume 607 of Lecture
Notes in Artificial Intelligence, pages 748-752. Springer-
Verlag, 1992.

[12] H. Ruess. Private communication. 2000.
[13] R. Shostak. Deciding combinations of theories. Journal

of the Association for Computing Machinery, 31(1):1-12,
1984.

[14] A. Stump, D. Dill, J. Giesl, and C. Barrett. On
a Very Simple Abstract Higher-Order Congruence Clo-
sure Algorithm. In preparation, 2000. Available from
http://verify.stanford.edu/~stump/.

[15] N. Suzuki and D. Jefferson. Verification Decidability of
Presburger Array Programs. In Proceedings of a Confer-
ence on Theoretical Computer Science, 1977. University of
Waterloo, Waterloo, Ontario, Canada.

[1] L. Bachmair and A. Tiwari. Abstract Congruence Clo-
sure and Specializations. In D. McAllester, editor, 17th
International Conference on Automated Deduction, volume
1831 of Lecture Notes in Artificial Intelligence, pages 64—
78. Springer-Verlag, 2000.

[2] C. Barrett, D. Dill, and A. Stump. A Framework for Co-
operating Decision Procedures. In D. McAllester, editor,
17th International Conference on Computer Aided Deduc-
tion, volume 1831 of Lecture Notes in Artificial Intelligence,
pages 79-97. Springer-Verlag, 2000.

[3] G. Collins and D. Syme. A Theory of Finite Maps. In Con-
ference on Higher Order Logic Theorem Proving and its Ap-
plications, 1995.

37

On Ordering Constraints for Deduction with Built-in Abelian Semigroups,
Monoids and Groups*

Guillem Godoy and Robert Nieuwenhuis
Dept. LSI, Technical University of Catalonia,

Jordi Girona 1, 08034 Barcelona, Spain
E-mail: {ggodoy, roberto}@lsi .upc . es

Abstract

It is crucial for the performance of ordered resolution or
paramodulation-baseddeduction systems that they incorpo-
rate specialized techniques to work efficiently with standard
algebraic theories E.

Essential ingredients for this purpose are term orderings
that are E-compatible, for the given E, and algorithms de-
ciding constraint satisfiability for such orderings.

Here we introduce a uniform technique providing the
first such algorithms for some orderings for abelian semi-
groups, abelian monoids and abelian groups, which we be-
lieve will lead to reasonably efficient techniques for prac-
tice.

The algorithms are optimal since we show that, for any
well-founded E-compatible ordering for these E, the con-
straint satisfiability problem is NP-hard even for conjunc-
tions of inequations, and our algorithms are in NP.

Keywords: symbolic constraints, term orderings, auto-
mated deduction.

1 Introduction

It is crucial for the performance of ordered resolution
or paramodulation-based deduction systems that they incor-
porate specialized techniques to work efficiently with stan-
dard algebraic theories E, like abelian semigroups (AC, for
associative and commutative) abelian monoids (ACO), or
abelian groups (AG).

Essential ingredients for this purpose are reduction (i.e.,
well-founded and monotonic) orderings >- on ground terms

•Both authors arc partially supported by the ESPRIT Basic Research
Action CCL-II, ref. WG # 22457. and the Spanish CICYT project
HEMOSS ref. TIC98-0949-C02-01. The first author is supported by De-
partament d'Universilats, Recerca i Societal de la Informaciö de la Gen-
eralität de Catalunya. A version of this paper with all proofs is available
from www. lsi .upc . es/~roberto .

that are E-compatible for the given E, i.e., s =E s' y t' —Et
implies s y t, and algorithms deciding the satisfiability of
ordering constraints for such orderings. Such ordering con-
straints are used to express ordered strategies in automated
deduction at the formula level [8]. This allows one to re-
duce the search space by inheriting the ordering restrictions
while keeping completeness [13, 15].

An ordering constraint is a quantifier-free first-order for-
mula built over terms in T(T, X) and over the binary predi-
cate symbols '=' and '>'. These constraints arc interpreted
over the domain of ground terms, where = and > are in-
terpreted, respectively, as a congruence sa and a reduction
ordering >- such that >- is total up to cs, i.e., for all ground
terms s and 1 either s y t or t y s or t & s. Hence
a solution of a constraint C is a substitution a with range
T[T) and whose domain is the set of variables of C such
that Ca evaluates to true when interpreting = as sa and >
as y. Then we say that <r satisfies C.

The first practical applications of ordering constraints
gave rise to the distinction between fixed signature seman-
tics (solutions are built over a given signature T), and ex-
tended signature semantics (new symbols arc allowed to ap-
pear in solutions). The latter semantics is in some cases
easier to check, and is used in applications like the compu-
tation of saturated sets of ordering constrained clauses that
can be used for deduction with other clauses containing ar-
bitrary new (e.g., Skolem) symbols, but it is less restrictive
and hence less powerful for refutational theorem proving.
The satisfiability problem for ordering constraints was first
shown decidable for the well-known recursive path order-
ings (RPO) introduced by N. Dcrshowitz [4], for fixed sig-
natures [2, 7] and extended ones [13, 12]. NP algorithms
(fixed and extended signatures) were given in [12, 11]. For
the Knuth-Bcndix ordering (KBO) this result has only re-
cently been obtained (for fixed signatures) in [9].

Ordered strategies and ordering constraint inheritance
can be used without loosing completeness with built-in al-
gebraic theories E, like AC [14, 18] or AG [6]. An ad-
ditional advantase of constraints in this context is that in

0-7695-1281-X/01 $10.00 © 2001 IEEE
38

each inference only one conclusion is generated, instead of
one conclusion for each E-unifier. This can have dramatic
consequences. For example, there are more than a million
unifiers in mguAC{f{x, x, x), f{yu y2, y3, Vi))- But, prob-
ably due to the lack of adequate orderings and constraint
solving algorithms, these ideas have not been put into prac-
tice yet. For example, McCune found his well-known AC-
paramodulation proof of the Robbins conjecture [10] by still
computing complete sets of AC-unifiers, and adding one
new equation for each one of them (although heuristics were
used to discard some of the unifiers).

Indeed, of the many, rather complex, AC-compatible re-
duction orderings that have been defined in the literature,
only for the AC-RPO ordering of [16] a constraint solving
algorithm exists [3]. But, unfortunately, this algorithm is far
from practical due to its conceptual and computational com-
plexity, and moreover, it only deals with extended signature
semantics.

However, in many practical cases one has to deal with
only one single associative and commutative symbol, and
then a simple version of the RPO on flattened terms, which
we will call FRPO, fulfills all requirements. The same
FRPO can be used as an ingredient for an AG-compatible
reduction ordering AG-RPO that satisfies all requirements
of [6], by using it to compare AG-normal forms of ground
terms. Finally, it turns out that an ACO-compatible order-
ing AC0-RPO is obtained in a similar way by considering
normal forms w.r.t. the rule x + 0 —> x.

Here we introduce a uniform technique providing the
first constraint solving algorithms for fixed signature se-
mantics for AC compatible orderings. More precisely, we
give NP algorithms for FRPO-based orderings for abelian
semigroups, abelian monoids and abelian groups. We be-
lieve that the new techniques will lead to reasonably effi-
cient practical algorithms for these orderings, and give new
insights for the development of constraint solving methods
over fixed signatures for other E-compatible orderings.

This paper is structured as follows. After the basic defi-
nitions of Section 2, in Section 3 we deal with FRPO con-
straints. For explanation purposes, we start with constraints
built with a single unary symbol /, a constant symbol 0
and the AC symbol +, and later extend it to arbitrary sig-
natures. After explaining the relatively simple extension to
AC0-RPO in Section 4, in Section 5 we deal with the hard-
est part of the paper, namely the techniques for AG-RPO.

It is obvious that the satisfiability problems we deal with
are NP-hard, because as subcases they include the AC, ACO
and AG-unifiability problems which are all NP-hard. As a
consequence, since our algorithms are in NP, they are op-
timal, and the problems are NP-complete. But one may
wonder whether there exists any ordering at all for these E
such that at least the satisfiability problem for positive con-

junctions of inequations (by which one cannot always en-
code unification) is in P. In Section 6, we answer this ques-
tion negatively: we show that for any well-founded total
E-compatible ordering for each one of these E, the problem
is NP-hard even for conjunctions of positive inequations.

Finally, in Section 7 we give some conclusions and di-
rections for further work.

2 Basic Definitions

We use the standard notation and terminology for terms and
constraints of [5] and [15]. The rewrite system RAG con-
sists of the following five rules:

x + 0 -)• X

— X + X -> 0
-(-*) -> X

-0 ->■ 0
{x + y) -> (- ■X + (-y)

By AG we denote the set of seven equations consisting of
these five rules (seen as equations) plus AC, the associativ-
ity and commutativity axioms for +. By ACO we mean AC
U Ro = {x + 0 -» x). By =E we denote the congruence
on terms generated by a set of equations E. In this paper,
rewriting with a set of rules R is always considered mod-
ulo AC, that is, when writing —>RAO, we mean the (con-
vergent) relation =AC ->RAG =AC. and terms will always
be considered in flattened form w.r.t. AC: we consider e.g.
+ (a, b, c) instead of +(a, + (b, c)). Furthermore, + is writ-
ten in infix notation: a + b + c.

Let us first recall the definition of RPO, which allows for
variadic symbols (hence we can cope with flattened terms).
We assume given a precedence > on T, and, for each
/ G T, a status which is either multiset or lexicographic.
In the following, a symbol will have the multiset status if,
and only if, it is variadic. Below, the relation =mul has to
be understood modulo permutations of the direct subterms
of any symbol whose status is multiset. More precisely,
for every permutation n, if status(/) = multiset, then, for
all terms *!,...,*„, f(h,...,tn) =mul /(^(1),.. .tn{n)).
Then RPO is defined as follows: s = /(si,..., sn) yr

g{ti,...,tm) = t iff

1. 3 i G {1,. ..,?)•} Si yrpo t or s,- =mul t, or

2. / > g and s yrpo U for all i = 1,..., m or

3. / = g and status(/) = multiset, and {si,...,s„} >-™'
{ti,.. .,tm} where >-™' is the multiset extension of
rrpo Or

4. / = g and status(/) = lexicographic, and
(si,..., s„) y\f0 (tu ...,tn) where ^x

0 is the lexi-
cographic extension of yrpo.

rpo

39

In the following, we call the RPO on flattened terms FRPO:
we define s yfrpo t iiflat{s) yrpo flat{t). FRPO is not
monotonic in general:

Example 1 //+ > a > b then b + b yjrpo a but a +
a yjrpo b + b + a. Also, if a> + > / then f(a) +
/(a) yjrpo /(/(«)) but f(a) + f(f(a)) yfrpo f(a) +
f(a) + f(a). Similar non-monotonicities occur if there is
more than one AC symbol. O

However, we have the following result:

Lemma 2 ([1]) // + is the only AC symbol and either +
is the smallest symbol in the precedence, or else only the
smallest constant is smaller than +, then FRPO is an AC-
compatible reduction (i.e., monotonic and well-founded) or-
dering on ground terms that is total up to =AC.

Let us now define the ACO-RPO and AG-RPO orderings.
Given two ground terms s and t, we define

S ~>~acO- rpo

s y ag — rpo t

if "//?„(s) y/rpo nfRo(t)
and
if nfRAG(s)>-f>-ro"fRAa{t)

where nfR(s) denotes the normal form w.r.t. R of s.
The following is not difficult to prove (see also [6]):

Lemma 3 ACO-RPO (AG-RPO) is a total ACO-compatible
(AG-compatible) reduction ordering on ground terms in
normal form w.r.t. —>Ro (—>RAa) if+ is the only AC sym-
bol and the precedence is of the form ...> + > 0
(. ..>-> + > o;.

In the following, we will consider these precedences.

3 FRPO Constraint Solving

For explanation purposes, we present here the simple
subcase where the signature contains only +, 0, and a unary
function symbol /, with the precedence / > + > 0.

Let C be an ordering constraint built over /, + and 0, and
let Tc be the set of all (sub)terms of C that are: variables,
sides of relations > or = in C, terms headed with /, or
terms t such that f(t) occurs in C. A linear constraint for
C is a constraint S of the form

<1,1 = ■■■-tl,ki > •••> /,,..! n,k„

where all tij arc distinct and
{ti,u ■ ■ • ■ ti,kl,..., /n,i,..., /„,*„} = Tc U {0}.

We denote by =,$ the equivalence relation generated by the
equalities in S and by >s the smallest strict ordering re-
lation on T{T, X) compatible with =5 and containing the
inequalities of .5'.

Each constraint C can be expressed as an equivalent (i.e.,
with the same solutions) finite disjunction of linear con-
straints ,5' for C (see below); similarly, in what follows we
will also make the following assumptions:

Al. W.l.o.g. we can assume S to be of the form

•Pl='l,l = - • • = 'l,fci > • • • > xn =tji,l — ■ ■ • = tn,k„

where {^i,.. .,xn} = vars(S) and all <;i7- arc distinct
non-variable terms. Indeed it is sufficient to insert a
new (existcntially quantified) variable in each equiv-
alence class without any variables, or to merge two
equal variables into one if necessary (merging of equal
variables, which will be done more often in this paper,
can be recorded separately if one wants to reconstruct
a solution for the original constraint rather than to de-
cide its satisfiability).

A2. W.l.o.g. we may assume that each <,-j is either: a sum
of variables, or the term 0, or of the form f(x) where
x is a variable. This is accomplished by replacing non-
variable arguments / by the variable x with x =<,• /.

A3. W.l.o.g. we may also assume that in each equivalence
class Xi = /;,i = ... = tjtk, either all /,,,- arc headed
by + or else the class is simply ,r, = f(x) or ,T, = 0
or X{. This is the case since equalities between terms
headed with different top symbols are trivially unsat-
isfiable, and linear constraints (to which the previous
transformations have been applied) containing equali-
ties f(x) = /(.(/) are satisfiable only if .;• and 1/ arc the
same variable. The rightmost equivalence class can be
assumed to be xn = 0: otherwise S is trivially unsat-
isfiable.

A4. Again w.l.o.g.. for comodity of explanations, S can be
assumed to be of the form x = f(z) > A con-
straint ,;'i = /i,i = ... = /1./,.j > ... can be trans-
formed, by adding an additional leftmost equivalence
class, into x0 = f(x1) > x1=t1A-... = tij-1 > ...

A5. Every variable x occurring as a proper subtcrm in S
can w.l.o.g. be assumed to have another occurrence to
the right of it in S at top level (i.e., not as a proper
subterm of another term). Otherwise, S is trivially un-
satisfiable.

A6. One may assume that if /(.;■) >,<,- /(.'/), then also x ><,-
(/. Otherwise, S is again trivially unsatisfiablc.

A7. If we have y\ + ... + yk >s /(;/), then, for some /
in 1 ... k we have m >s /(//)• Otherwise, S is again
trivially unsatisfiablc.

Example 4 Let the constraint C be f(x + :) > y A : >
/(.r). One of its linear constraints is y = /(.;■ + :) >
/(■'■)> x + : > x = ; = 0. Enforcing the assumptions, it
becomes y = f(ir2) > »!i = f(x) > w-z = x + x > x = 0
by adding new variables t/'i and w? for the classes of f(x)
and x + z respectively, and merging x and z. However, it

40

is in contradiction with our initial constraint C. Another
linear constraint is f(x + z)>x + z>z — y> f(x) >
x = 0, which becomes w\ = f(w2) >W2 = x + y>y>
w3 = f[x) > x = 0. This linear system satisfies all our
assumptions and it is not in contradiction with C. □

Lemma 5 ([2,12]) Each constraint C can be transformed
into a finite disjunction of linear constraints satisfying the
previous assumptions, and such that C is satisfiable if and
only if one of the linear constraints is.

3.1 Segments and the splitting transformation

A term u is a summand if it is headed with a symbol
different from +. It is a top-level summand of a term t if t
is of the form u or u +t'. A segment T of a linear constraint
5 is a subsequence of S of the form

xo = f(s) > xi=titl = ... = tiikl > ... > xt =
U,l — --- — ti,ki > Xi + i=t

where t is 0 or headed with / and all t{j are sums of vari-
ables. The variables x\,..., a;,-+i are said to be the defined
variables of T, and their occurrences as single variables in
their equivalence classes are their definitions.

In such a segment T, every variable occurring in some
tij is defined either in T itself or in some other segment
to the right of T. Now our aim is to transform S in such
a way that the latter kind of variables are removed from T,
while preserving satisfiability. On the other hand, as a re-
sult of this transformation, terms f(v) where v is a sum of
variables may appear in S.

The idea is as follows. Let a be some arbitrary solu-
tion of 5, let x be a variable defined in T, and let y be the
variable defined in the equivalence class immediately be-
low x, that is, x is Xj with 1 < j < i, and y is Xj+\. Then
xa >- ya > ta. Therefore, for at least one of the top-level
summands u of xa we have u y ta. Hence, if Ux is the
sum of all top-level summands u of xa with u > ta, and
ux is the (possibly empty) sum of the smaller ones, then xa
is of the form Ux + ux or of the form Ux. Similarly, ya
can be of the form Uy + uy or Uy. Furthermore, either (i)
Ux >- Uy, or else, if ux is non-empty, (ii) Ux = Uy and uy

is empty or ux >- uy. In the former case, we say that x > y
due to the "large" sumands, and in the latter case due to the
"small" summands.

According to these ideas, S will be transformed by the
following splitting transformation, treating one whole seg-
ment T at the same time, segment by segment from left to
right, except for the rightmost segment, that does not need
any treatment. One can assume that in segments V to the
left of T, all variables not below / are defined in V. Let T
be:

xo = f{s) > xi=ti,\ = ... = htitl > ••• > X{ =
ti,l = --- = U,ki > Xi+i=t

1. Guess a subset of split variables of {xi.. .xi] such
that whenever x =5 yi + • ■ • + yit, then x is split if,
and only if, at least one of the y,- is split or defined in
a segment to the right of T (intuitively, x is split if it is
guessed to have at least one "small" summand).

2. If x is a split variable, then introduce two new vari-
ables X and x', and everywhere in S replace x by
X + x'. In this case we say that x is split into X + x'
(intuitively, the X is for the large summands and the
x' for the small ones). If a; is a non-split variable of
{x\.. .Xi+i\, replace x by anew variable X.

3. After this, the equivalence classes e in the segment are
either of the form Vi+fi = ... = Vk+Ok or of the form
Vi = ... — Vfc, where the \\ are sums of upper case
variables and the v\ are sums of lower case variables
and variables defined in segments to the right of T.
If e is such an equivalence class, we denote by E the
equivalence class V\ = ... = Vk and by e' the class
v\ = ... = Vfc (if it exists for e). Then we can write
T as XQ = f(s) > €\ > ... > e,+i and we can guess,
for each relation e,j > eJ + 1 whether (i) it is due to
the large summands or (ii) to the small ones (note that
case (ii) applies only if e' is non-empty). Accordingly,
replace T by the new segment T:

x0 = f{s) > £i# ... #£,+!

Furthermore, insert each e'- in a segment to the right of
T, adding it to an existing equivalence class or creating
a new one, in such a way that, whenever Ej =?• -Ej+i,
either e'- > e'+1 ore'+1 does not exist.

This transformation does not increase the number of seg-
ments of S and only a polynomial number of variables are
split: each variable can only lead to k splittings, where k is
the number of segments.

Example 6 (Example 4 continued) Let us apply the split-
ting transformation to the result tui = /(1Ü2) > «'2 =
x + y > y > u»3 = f(x) > x = 0 of Example 4. First we
treat the leftmost segment W\ = f(w2) > w>2 = x + y >
y > W3 = f(x). The possible variables to be split are ti'2
and y. We guess to split only u>2 into W2 + w'2, obtain-
ing wi = f(W2 + w'2) > W2 + w'2 = x + y > y >
W3 = f{x). Now, for the relation W2 + w'2 > y we guess
W2 = y. After removing w'2 from this segment and insert-
ing it, for example, in the equivalence class of 0, we obtain
wi — f(y + x) > y > w3 = fix) > x = 0. For the
segment «13 = f(x) > x — 0 no splitting is needed. D

Definition 7 We say that two sums of variables A'i + ... +
Xk and Yi + .. . + Yi are compared by segments in S' if:

• For all i in 1.. .k — 1 the segment where Xi+i is de-
fined is to the right of the segment where Xi is defined,
and the same for the Yi 'sfor i in 1... / — 1.

41

• There exists an i in 1... k such that Xj =5 Yj for all j
withj < i, and either i — l+l ori < I andXi >s F;.

If x >s y and S' is obtained from S by the splitting
transformation, then the occurrences of f(x) and f(y) in S
become f{X + X' + X" + ...) and f(Y + Y' + Y" + ...)
in S', respectively, where the sums A' + X' + X" +... and
Y + Y' + Y" + ... are compared by segments in S'.

3.2 Diophantine systems

Assume 5 is the result of applying the splitting transfor-
mation to a linear system. Now we can define a system of
diophantine equations and inequations Ds for ,5' as follows.
For each segment T in S of the form

£o = /(s) > x1=thi = ... = tlfkl > ... > x,=
:U,k, > Xi + l=t

the system Ds contains the equations and inequations:

1. Xi > X2, X2 > X3, ... , X'i > Xi+i

2. Xj = tjfk, for all j in {1... i}, and all k in {1... kj}

3. the equation z!+1 = 1.

Example 8 (Example 6 continued) The system of diophan-
tine equations for «>i = f(y + x) > y > u>3 = f{x) >
x = 0 is

U»l = 1 !/ > W'3 l/\3 =1 X = 1

We obtain a solution 9 for it by defining yO = 2. Below we
will see that from each such a 0 one can build a solution a
for the linear constraint from right to left. We have xa — 0
and hence 10317 = /(0). Now for each variable v with rO =
n, we define va = < + ..."'+ /, where t is the summand
at the lower end of its segment; e.g., we define ycr to be
/(0) + /(0). Finally, we have wxa = /(/(0) + /(0) + 0).
// one desires to reconstruct the solution for the original
constraint of Example 4: w'2a is 0, and za is /(0) + /(0).
D

The following simple result will be used below when
solving ordering constraints on multisets of several ele-
ments as multisets over a single element:

Lemma 9 Let C be a set {cn,..., c0} with an ordering y
where e„ y ... y CQ. Then for any decreasing sequence of
finite multisets over (.'

Mo >y ...yy Mm

there exists a weighting function f : C —> X' with f(co) =
1 such that

F(M0)>...>F(Mm)

where the extension to multisets F of f is defined
F({al...,ak}) = f(a1) + ... + f(uk).

Proof: Let k be n0 + ... + nm. Then, for instance, the
function/(e,) = k' fulfills the requirements. D

Lemma 10 Let Si ... Sm be the resulting systems of ap-
plying the splitting transformation to a linear constraint S
over the signature / > + > 0. Then S is satisfiable for
FRPO if and only if some Ds, is satisfiable in the positive
natural numbers.

Proof: <^: Assume Ds> is satisfiable for some S' in
{Si .. .5,,,}. Let 0 be a solution for DS'. We can build
a solution a for S' as follows. For each segment T in S of
the form

2'0 = /(s) > Zl=<l,l = ... = *l,fc, > ... > Xj =

U,l=--- = ti,k, > Xi+i=t

assume a (partial) solution a has already been defined for
all segments to the right of T. Then, for the variables x,j
defined in this segment we define Xjcr to be ta + ..."' + to-
where n — Xj6 (note that if T is the rightmost segment, then
/ is 0). Clearly, a satisfies all equality relations in 5", that
is, ua =AC va for all u and v with w =5/ v. Furthermore, it
also satisfies the relations XJ<J >- Zj + icr with j in {1... i}
for such segments T.

Hence it only remains to be checked that a satisfies
f(s)a >- x,i<j. Since Xicr is of the form ta + ... + ta
and / > +, it suffices to check that f{s)a y tcr, where t is
headed with / (the case where t is 0 is trivial). Then f(s)
is of the form /(A + A"' + A" + ...) and / is of the form
f(Y + Y' + Y" + ...), as a result of the splitting transfor-
mation applied to terms f(x) and f(y).

But by assumption A6, if f(x) >s f(y), then also
x >5 y. Therefore, our result follows: after the splitting
transformation, the sums A', A'', A'",... and V, Y', Y",...
are compared by segments in S', and a assigns one different
summand to each segment, and in the correct order.

Once we have this solutions for S', it can be extended to
a solution for S by recursively defining xa to be Xa + x'a,
for each splitting of a variable x into A' + x'.

==>: Assume S is satisfiable. Now we prove that Dg> is
satisfiable as well for some S' in {,S'i .. .5,,,}. Let ubca
solution of S. Let S' be the system obtained by applying
the splitting transformation according to a, that is, if x is
defined in a segment T of 5 of the form

•>'o = f{s) > xi=titi = ... = tuki > ... > xt =
U.l = • • - = U.k, > ■>'i + i=t,

then x is split into A" + x' if xa contains any summands
smaller than ta; we proceeed similarly for the other guess-
ings, and a is extended conveniently for the new variables.
The extended substitution a is a solution for S'. More-
over, in a segment of .5" like the previous one, for all j in
{1 ...?'+ 1} we have that xja contains only top-level sum-
mands greater than or equal to la.

Now let C = {»0 ,»n} be all the different top-
level summands of these variables, where 1/,, >- M„_I >-

42

... >- Mo and Mo is tcr. Every Xjcr and tjjcr can be seen
as a multiset on these summands (the multiset of its top-
level summands). By Lemma 9 there exists a function
f : C -¥ M" such that its extension F to multisets sat-
isfies F(x1cr) >->- ... >->- F(xi+i<r), and F(xi+i<r) =
/(MO) = 1. Moreover, since Xja and tjjer are the same
multiset, if tjj is oftheformx-jj +... + Xjt, then F(xjcr) =
F(tjja) = F(XJ1(T) + ... + F(xjlcr). Therefore, the as-
signment Xj = F[xjcr) satisfies the equations of Ds> cor-
responding to T. D

Theorem 11 The satisfiability problem for FRPO con-
straints over the signature f > + > 0 is in NP.

Proof: Generating one of the linear constraints S of the dis-
junction equivalent to C consists of a polynomial number
of guessings of the relations between all the subterms in C,
and the size of 5 is polynomial w.r.t. the size of C. The
splitting transformation consists of a polynomial number of
guessings. By Lemma 10 S is satisfiable if and only if there
exists a sequence of guessings, in the splitting transforma-
tion, giving a linear constraint S', such that Ds' is satisfi-
able. Checking whether DS' is satisfiable is again in NP
[17]. D

3.3 More function symbols

We consider now the case where the signature contains
any finite number of function symbols with arbitrary arities.
The precedence is now of the form ...> + > 0.

W.l.o.g., the following additional assumptions w.r.t. the
linear constraint generated from the initial constraint may
be assumed (otherwise the linear constraint is again trivially
unsatisfiable):

A8. If f(xi,...,xn) >s g{yi,...,ym) and g > /, then
xi >s g{y\,- • •, Dm) for some i in 1...n.

A9. If f(xi,...,xn) >s /(yi,..., M,,) then either
xi >s f(yi, ■ ■ ■, Vn) for some / in l...n or else
(x!,...,xn) >'s

er (yi,...,yn).

Segments are defined as before, except that now the
function symbols at the begining and at the end of it may
be different: a segment T of a linear constraint 5 is a sub-
sequence of S of the form

x0 = s > x1 = titl = ... = tljkl > ... > Xi = titi =

■ ■ • = ti,k, > xi + l =t

where s and t are not headed with + and all tij are sums of
variables. The splitting transformation and the diophantine
system are defined exactly as before.

Lemma 12 Let S\... Sm be the resulting systems of ap-
plying the splitting transformation to a linear constraint S.
Then S is satisfiable if, and only if some Ds, is satisfiable.

Theorem 13 The satisfiability problem for FRPO con-
straints is in NP.

4 ACO-RPO Constraints

In this section we consider ACO-RPO constraints over
arbitrary signatures of the form ...>/> + > 0. Observe
that all terms of the form 0 + ... + 0 are equivalent to 0 in
this setting and that hence the second smallest term w.r.t. the
ordering y is /(0,..., 0). Therefore we can add, w.l.o.g.,
an aditional assumption to our linear constraints:

A10 All linear constraints S are of the form S' > x =
f(y,..., y) > y = 0 and no term of the form t + y
occurs in S.

With this additional assumption, it is easy to see that the
whole rest of the steps described in the previous section di-
rectly suffice for ACO-RPO constraints. Minor details are
that, during the splitting process, the new assumption A10
has to be preserved, and then, no small variables result-
ing from a splitting can be inserted in the rightmost seg-
ment. Moreover, in the diophantine system it is not neces-
sary to create the equations corresponding to the rightmost
segment.

Observe that the basic idea of the splitting process is
that solutions for the linear constraint are transformed into
new solutions where, at every segment, the variables that
appear in it contain only top-level summands of this seg-
ment. Therefore, 0 does not appear in segments that are not
the rightmost one, and hence everything behaves like in the
FRPO case, again solving the diophantine equations over
the positive natural numbers. This gives us the following
result.

Theorem 14 The satisfiability problem for ACO-RPO con-
straints is in NP.

5 AG-RPO Constraints

In this section we consider AG-RPO constraints over ar-
bitrary signatures of the form ...> — > + > 0. In this
context summands are terms headed with some symbol dif-
ferent from 0, + or -.

Let us first consider some examples over the signature
/>o> — > + >0 where / is unary and a is a constant.

Example 15 Then the smallest terms over this signature in
increasing order w.r.t. >- are:

0, a, a + a, a + a + a, ..,, -a, -a —a, -a — a —
«,•••, /(0), f(0)+a

f(0)+a + a, ..., /(0)-a, /(O)-a-a, ..., /(0) +
/(0), /(0) + /(0)+a, ...,-/(0)

43

where —a is the smallest limit ordinal u, /(O) is 2u>, /(O) —
a is 3w, /(O) + /(O) w 4w, -/(O) « w2, anrf /(«) « 2w2.
G

Example 16 We have f(f(a)) y f{a - /(0) + f(a - a))
since

nfRAG(f(f(a))) = f(f(a)) yFRPo /(«) =
nffl^(/(a-/(0) + /(«-«))). Ü

Example 17 7e/7H.r can be smaller than their subterms:
a \= x > f(x-f(a)) ifxa = f(a), since nfRAG(f(a)) =

f(a) yFRPO /(0) = nffl>lo(/(/(a)-/(a))). D

Since, as wc have seen in the previous example, a linear
constraint such that x appears to the right of the segment

where it is defined may be satisfiable, assumption A5 will
not be made in this section. Similarly, the following exam-
ple shows us that terms headed with / may become equal
to terms headed with + or —. Hence assumption A3 is also
dropped in this section:

Example 18 a (= x — y = f(z) if we have xcr = f(a) +
f(a), ya = f(a), za = a. D

An other difficulty to be taken into account is that, after
the splitting transformation, contrarily to what happened in
the previous sections, a solution for a linear constraint may
need more than one different top-level summand for some
segments:

Example 19 Suppose that we have a signature of the form
/> — > + > 0 where f is unary. Then the smallest terms
are ordered like:

0, /(0), /(0)+/(0), /(0)+/(0) + /(0)
-f(0), -/(0) - /(0), -/(0) - /(0) -

/(0), .-., f(f(0)).
The linear constraint /(/(0)) > —z > ; > y > —y >
/(0) is unsatisfiable: since we need to satisfy y > —y, nec-
essarily ycr is a sum of negative f(Q)'s. Therefore zcr is
of the form — /(0) — ... — /(0), with some more negative
/(0) 's. But then —z>z is not satisfied by a.

However, the linear constraint /(/(/(0))) >—;>;>
y > — y > /(0) has the solution a where ycr = — /(0) —
f{0)andzcr = /(/(0)) + /(/(0)). It has no solution where
ycr and zcr are built from one single summand. □

5.1 Only unary symbols

For explanation purposes, in this subsection we first as-
sume that all the non-constant function symbols have arity
one. Our signature is of the form ...>/?>ci>...>
d > — > + > 0, where /; is the smallest non-constant
function symbol, i.e., all the c; are constants.

Then wc have the following ordering on summands
(from which the ordering on ground terms is easily de-
rived). If / = 0 then the smallest summands are, in
increasing order: /i(0), h(h{0)), h(h(h(0))),... If
/ ^ 0 then the smallest summands are, in increasing

order: Q, ..., c\, /i(0), MQ), /'(<"' +
c/), h(ci + ci + ci) These summands will be denoted
by sumi, sum-2, simij,...

Note that the successor summand of a summand of the
form h(s) is h(s + sunii) if s is not of the form s' — sumi,
and h(s — sumi) otherwise. The successor summand of a
summand f(s) with / > h is always h(f(s)). We write
svccsunik(u) to denote the A--th successor summand of u.

5.1.1 Conditions for the linear constraints.

As before, we generate a disjunction of linear con-
straints, and apart from the assumptions Al — Ad, except,
as said, A3 and A5, wc need:

All. W.l.o.g. one can assume that all the constants r, and
the terms sumi, sum-2 and h(Q) appear in S, and in
the correct order. We will refer to the segment between
sum2 and sumi as the base segment.

Al2. Every variable .;■ is defined to the right of all occur-
rence of the form f{x).

Al 3. There is no /(.;•) =5 <j{y) for / ^<j or x ^5 ;/. There-
fore we may assume that each equivalence class is of
the form x; — tiA = ... = Z,,^ or .;•,■ = /,.j = ... =
tiki = /(.r/), where all /,,/ arc sums of positive and
negative variables.

A14. All linear constraints arc of the form S' > J; = ... =
sumi > ,'/=••• = 0 and no term of the form t + y
occurs in S.

In all assumptions, the symbols / and y refer always to
functions different from + and —. Conditions A12 and Al 3
arc weaker versions of conditions A5 and A3 respectively.
Condition A14 is a modification of condition A10: in the
class of 0, sums of variables defined to the left of it may
appear; in a solution for the constraint, these variables will
contain summands that cancel each other out.

In this setting, a sum of variables is, in fact, a sum of
positive and negative variables, and all assumptions have
to be interpreted accordingly. For example, condition A7
implies that no term of the form — x is in a segment to the
left of the segment where x is defined.

5.1.2 The splitting transformation.

The splitting transformation is essentially as before, with
some differences. For example, when wc guess that some

44

relation is due to the small summands, the small terms can-
not be inserted in the class of 0. Therefore, it makes no
sense to do any splitting of variables in the base segment.
Another difference with the previous cases is that after split-
ting and removing small variables from a segment T, some
variables defined in T may appear to the right of T. For this
reason, we need to introduce the so-called associated equa-
tions, a set of equations associated to each segment, but that
is not inserted in the linear constraint. During the splitting
transformation, just after removing the small variables of a
segment T, equations are associated to T as follows. Let s
be a term in an equivalence class to the right of T, and sup-
pose that s is of the form M + m or f(M + m), where M
is a sum of positive and negative variables defined in T (i.e.
upper case variables at this point), and m does not contain
any of these variables. Then clearly in any solution a the
term Ma must be equivalent to 0. Therefore, for each such
s, the part M is removed from s, and M = 0 becomes an
associated equation of T (if the part m of s is empty, then
M is replaced by x, the variable of the class of 0).

Finally, for explanation purposes, we want the rightmost
class of each T to be of the form x = t, for some term t not
headed by + (remember: since condition A3 is dropped,
there can be other terms headed with + in this class). This
can be accomplished as follows. Assume after splitting, this
class is of the form x = T, + t[= ... = 7} + t\ = t,
where the T, are the "large" sums, i.e., the sums of the pos-
itive and negative variables defined in T. Then the class
t[= ... = t\ necessarily has to be inserted in the class
of 0. Furthermore, the T;'s are removed as well, and the
equations x — Ti = 0 are added as additional associated
equations of T.

By processing the segments in this manner, from left to
right, when we arrive to the segment containing the class of
0, it is of the form x = sumi > x = 0, since the rest of
variables cannot appear in this segment, at this point.

Example 20 Let us consider the signature h > — > -f >
0. Suppose during the splitting transformation just after
splitting the variables of the leftmost segment we obtain:

z = h(x3) > x3 > x2 > xi > x0 = x3-x2-xi+y2-

2/1-2/1 = h(yi) >
2/3 = X2-xi-x0+y2+yi > 2/2 > 2/1 > H™) > w = 0.

At this point, if we assume that this splitting of variables
has been done according to a solution a, then, all the Xicr
contain top-level summands bigger than or equal toh(yi)a,
and all the yi<r contain top-level summands smaller than
h{yi)a. Since (x3 — x2 — Xi + y2—yi—yi)o must coincide
with h{yi)<T, the summands below the yi<r's must cancel
each other, i.e. [y2 — j/i - 2/i)c must be 0. Therefore, we

remove y2-y\-yi from the sum x3-x2-xi + y2-yi-yi,
and add it to the class o/0, obtaining:

z = h(x3) > x3 > x2 > xi > xo — x3-x2-xi =

%i) >

2/3 = x2-x1-x0 + y2 + y1 > y2 > yi > h(w) > w =

2/2-2/1-2/1 = 0
Now, in order to leave the treated segment in a normalized
form x0 = h(yi), we remove the x3 — x2—x\ and we add
XQ — X3 + X2-\-X\ = 0 to the set of associated equations of
this segment.

Finally, since the term x2—x\—XQ-\-y2-\-yi is to the right
ofh(yi), and hence it must contain only summands smaller
than h(yi)a, we have to force the a;,- 's to cancel each other.
We remove X2 — X\ — XQ andwe addx2 — x\—xo — 0 to the
associated equations of the leftmost segment. Note that this
is a different treatment with respect to what was done with

2/2 — 2/i — 2/i before. But remember that the aim is to remove
variables of the treated segment from the other segments to
the right of it. In fact, this y2—yi-yi added to the class o/O
will be removed from this class when we will treat the next
segment, since none of the yi's is defined in the rightmost
segment.

Just after finishing the treatment of the leftmost segment
we obtain:

z = h(x3) > x3 > x2 > xi > x0 = h(yi) >

2/3 = 2/2+2/1 > 2/2 > 2/1 > h(w) > Zü = j/2-2/1-2/1 = 0
where the leftmost segment contain the associated equations
Xo — x3-\-X2-\-x\=üandx2 — xi—xo=0. G

5.1.3 Diophantine equations.

Example 19 shows that now in solutions more than one
summand may be needed in a single segment. But only a
certain number of summands play an important role in the
comparisons.

Example 21 If a > b > c, in the inequation a+a+a+b+b+
c >- a+a+a—c—c—c the summand b will be called the decisive
summand, since it is the greatest sumand that appears in
both terms with a different number of occurrences. G

Let s be a term and u a summand. The number of oc-
currences of u in s (notation #(u, s)) is the integer n such
that s =AG nu + s', where u is not a top-level summand of
s'. For instance #(a, f(a + b)—a — a) =-2. Let s and t be
two ground terms such that s y t. The decisive summand
of the inequation s y t is the top-level summand u such
that for all summands v y u, #(v, s) = #(v, t), and either
(i) #(«,«) > #(«,t) > 0or(ii)#(«,s) < #(«,/) and

#(«,*) <0.
Once the splitting transformation has been applied to S,

we can define a system of diophantine equations and in-
equations Ds for 5 as follows. For each segment T in S of
the form

x0 = s > Xi=titi = ... = tiikl > ... > Xi=tijl =

■■■ = ti,k, > Xi+i=t

with associated equations q\ — 0,..., qi = 0, several guess-
ings are necessary. First, the number ndec of the segment

45

is guessed. Intuitively, for a given a, the number ndec
is the cardinality of dec(Ta) U {ta}, where dec(Ta) is
the set of different decisive summands in the inequations
Xjcr y Xj+iv with j > 0. Hence one can guess ndec to be
between 1 and i + 1. There are some cases where it must
be exactly 1, which is when we know that for all a we have
sa = succ sum\(tcr):

• sis some Cj and t is Cj+\, or

• tisci and s is /i(0), or

• t is sum\ and s is sum,2, or

• t is headed with some / with / > h and s is /)(.rI+1).

In the following, the elements of dec(Ta) U {ta} are de-
noted (and ordered) by unc[ec >-...>- «i. Note that always
ta is i/i (if the splitting has been done according to a).

Now, for every variable Xj with 1 < j < i + 1 we
create ndec integer variables Xj^i,..., Xj,ndec, representing
the number of occurrences of each decisive summand in Xj.
For the segments where ndec is 1 (as for the base segment)
we preserve the same variable name Xj for the correspond-
ing integer variable.

Example 22 Consider f > /; > — > + > 0 and suppose
that after the splitting transformation we have:

;.! = /)(«;i-f .r2) > i<!6=-u>5 > w5 > «>., =-M'3 > u>3 >

tr2=-J"'i > «'i = /(;.3) >
-3 = h{x3) > j/4 =-2/3 > 2/3 > 2/2 =-2/i > J/i =

fc(*2) >

r2 = /'(-i'i) > x3> x-2 > a;i = /?(ri) > ri=0
/Vow, we WA«/ to find a solution a such that for every vari-
able it contains summands greater than or equal to the
rightmost term of the segment where it is defined. We may
guess that the number of decisive summands for the leftmost
segment is 3. Therefore, we need to guarantee that at least
two summands between f(z3)a and h(wi+X2)a exist. Ob-
serve that the successor summand of f[z3)a is h(f(z3))a
and the next one is h(f(z3)+h(Q))a. Since X2 is a variable
in the base segment, we need x-ia to be at least /i(0)+/i(0).
Here appears the need of adding, to the diophantine sys-
tem, either an equation of the form X2 > 2 or one of the
form X2 < 0, since—/(0) is greater than any sum of posi-
tive f(0)'s.

Later on, we may decide that the number of decisive sum-
mands for the segment z3= h(x3) > 2/4=—2/3 > 2/3 > 2/2 =

"i/i > 2/1 = h(x2) is 2. We need to guarantee that there
exists at least one summand between h{x3)a and h(x2)a.

Observe that x3 and x.2 are defined in the base segment. If
we guess X20- to be h (0)+.. .+h (0), then either x3a is also
of the form h(0) + .. , + h(0) with at least two more h(0)'s
than x2a, or x3a is of the form —h (0) — ... — /> (0). If we
guess that x2a is—h(Q) — ...—h(0), then x3a also has to be

—h(0) —... — h(0), but with at least two more—h(0) 's than
X2a. D

We now impose some more diophantine equations en-
suring that there will be enough space for the decisive sum-
mands between sa and ta, when ndec > 1. Assume
ndec > 1 and let y and z be variables defined in the base
segment:

1. If s is of the form h(y + s') and t is of the form h(z +
s'), it has to be guessed whether one adds either the
equations (i) y > z + ndec and z > 0, or the equations
(ii)jy < z-ndec and z < 0, or the equations (iii) y < 0
and z > 0.

2. If s is of the form h(y+s') and t is of the form h(s'),

there is another choice between the equation (i) y >
ndec, and the equation (ii) y < 0.

3. If s is of the form h(xi+i+y) and t is of the form f{t'),
either the equation (i) y > ndec — 1 or (ii) y < 0 is
added.

The following equations are added to the system Ds in or-
der to express for which inequation which decisive sum-
mand is decisive, and whether it decides positively or nega-
tively:

1. For each j between 1 and i, we guess which index sum-
mand k between 1 and ndec is the decisive one for the
inequation xj > Xj+\. Now, for all k' > k we add the
equation x.jtk' = zy+i,*'- In order to decide in which
manner the A'-th summand is decisive, we guess adding
either (i) XJ^ > Xj+i,k > 0 or (ii) Xjtk < Xj+i^ and
xj,k < 0.

2. Let tjj be the result of replacing in tjti every variable
Xji by Xji^k, the integer variable corresponding the the
k-lh decisive summand. Now in order to make sure
that the number of occurrences of the k-ih summand at
each side of the equality coincides, add x,j^ = tk-,, for
all j in {1... /}, and all k in {1.. .ndec}, and all / in
{1... kj}. We proceed identically with the associated
equations.

3. We add a',+i,i = 1, and for all k in {2.. .ndec} we
add xi+hk = 0.

Theorem 23 The satisfiability problem for AG-RPO con-
straints restricted to signatures with functions of arity 0 or

1 is in NP.

5.2 Arbitrary arities

The extension to arbitrary signatures is obtained
analogously to the AC case. What has to be

46

taken into account is that succsumi(f(si,...,Sk)) is
ft(0,...,0,/(si,...,Sfc)), and succsum1(h(si, ...,Sk))
is h(si,..., Sft + sumi) if s^ is not of the form s' — sumi,
and /i(si,..., Sk—sumi) otherwise.

Theorem 24 The satisfiability problem for AG-RPO con-
straints is in NP.

6 Hardness

Obviously, the satisfiability problems we deal with are
NP-hard, because as subcases they include the AC, ACO and
AG-unifiability problems. But one may wonder whether
there exists any ordering at all for these E such that at least
the satisfiability problem for positive conjunctions of in-
equations (by which one cannot always encode unification)
is in P. Here we answer this question negatively (by reduc-
ing l-in-3-sat with only posive literals), even if monotonic-
ity of the ordering is not required.

Theorem 25 Let E be AC, ACO, or AG, and let >- be any
arbitrary well-founded E-compatible ordering on ground
terms that is total up to —B Then the constraint satisfiabil-
ity problem for y and =E is NP-hard even for constraints
that are conjunctions of positive inequations.

7 Conclusions and further work

Constraint solving algorithms have been defined for
FRPO-based orderings for abelian semigroups, abelian
monoids and abelian groups. We believe that the new tech-
niques will lead to reasonably efficient practical algorithms
for these orderings. This, as well as building an implemen-
tation, is one of the directions for further research in the
context of the PhD. Thesis of the first author.

Finally, we expect that the ideas given here will provide
new insights (to us or to others) for the development of con-
straint solving methods over fixed signatures for other E-
compatible orderings.

References

[1] L. Bachmair and D. A. Plaisted. Termination orderings for
associative-commutative rewriting systems. Journal of Sym-
bolic Computation, 1:329-349,1985.

[2] H. Comon. Solving symbolic ordering constraints. In-
ternational Journal of Foundations of Computer Science,
1(4):387-411,1990.

[3] H. Comon, R. Nieuwenhuis, and A. Rubio. Orderings, AC-
Theories and Symbolic Constraint Solving. In 10th IEEE
Symposium on Logic in Computer Science (LJCS), pages
375-385, San Diego, USA, June 26-29, 1995.

[4] N. Dershowitz. Orderings for term-rewriting systems. The-
oretical Computer Science, 17(3):279-301,1982.

[5] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In
J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B: Formal Models and Semantics, chap-
ter 6, pages 244-320. Elsevier Science Publishers B.V., Am-
sterdam, New York, Oxford, Tokyo, 1990.

[6] G. Godoy and R. Nieuwenhuis. Paramodulation with built-
in abelian groups. In 15th IEEE Symposium on Logic in
Computer Science (LICS), pages 413-424, Santa Barbara,
USA, June 26-29,2000. IEEE Computer Society Press.

[7] J.-P. Jouannaud and M. Okada. Satisfiability of systems of
ordinal notations with the subterm property is decidable. In
18th International Colloquium Automata, Languages and
Programming (ICALP), LNCS 510, pages 455-468, Madrid,
Spain, July 16-20 1991. Springer-Verlag.

[8] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction
with symbolic constraints. Revue Frangaise d'Intelligence
Artificielle, 4(3):9-52, 1990.

[9] K. Korovin and A. Voronkov. A decision procedure for the
existential theory of term algebras with the knuth-bendix or-
dering. In 15th IEEE Symposium on Logic in Computer Sci-
ence (LICS), pages 291-302, Santa Barbara, USA, June 26-
29, 2000. IEEE Computer Society Press.

[10] W. McCune. Solution of the Robbins problem. Journal of
Automated Reasoning, 19(3):263-276,Dec. 1997.

[11] P. Narendran, M. Rusinowitch, and R. Verma. RPO con-
straint solving is in NP. In G. Gottlob, E. Grandjean, and
K. Seyr, editors, 12th Int. Conference of the European Asso-
ciation of Computer Science Logic (CSL'98), LNCS 1584,
pages 385-398, Brno, Czech Republic, Aug. 23-28, 1999.
Springer-Verlag.

[12] R. Nieuwenhuis. Simple LPO constraint solving methods.
Information Processing Letters, 47:65-69, Aug. 1993.

[13] R. Nieuwenhuis and A. Rubio. Theorem Proving with Or-
dering and Equality Constrained Clauses. Journal of Sym-
bolic Computation, 19(4):321-351, April 1995.

[14] R. Nieuwenhuis and A. Rubio. Paramodulation with Built-
in AC-Theories and Symbolic Constraints. Journal of Sym-
bolic Computation, 23(1):1-21, May 1997.

[15] R. Nieuwenhuis and A. Rubio. Paramodulation-based the-
orem proving. In J. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning. Elsevier Science Pub-
lishers (to appear), 2000.

[16] A. Rubio and R. Nieuwenhuis. A total AC-compatible
ordering based on RPO. Theoretical Computer Science,
142(2):209-227,May 15, 1995.

[17] A. Schrijver. Theory of Linear and Integer Programming.
John Wiley and Sons, New York, 1987.

[18] L. Vigneron. Associative Commutative Deduction with con-
straints. In A. Bundy, editor, 12th International Conference
on Automated Deduction (CADE), LNAI 814, pages 530-
544, Nancy, France, June 1994. Springer-Verlag.

47

Invited Talk

Successive Approximation of Abstract Transition Relations

Satyaki Das and David L. Dill
Computer Systems Laboratory,
Stanford University, CA 94305

satyaki@theforce.stanford.edu, dill@cs.stanford.edu

Abstract

Recently we have improved the efficiency of the predicate
abstraction scheme presented in [7). As a result the number
of validity checks needed to prove the necessary verification
condition has been reduced. The key idea is to refine an ap-
proximate abstract transition relation based on the counter-
example generated. The system starts with an approximate
abstract transition relation on which the verification condi-
tion (in our case this is a safety property) is model checked.
If the property holds then the proof is done. Otherwise the
model checker returns an abstract counter-example trace.
This trace is used to refine the abstract transition relation if
possible and start anew. At the end of the process the system
either proves the verification condition or comes up with an
abstract counter-example trace which holds in the most ac-
curate abstract transition relation possible (with the user
provided predicates as a basis). If the verification condition
fails in the abstract system then either the concrete system
does not satisfy it or the abstraction predicates chosen are
not strong enough. This algorithm has been used on a con-
current garbage collection algorithm and a secure contract
signing protocol. This method improved the performance
on the first problem significantly and allowed us to tackle
the second problem which the previous method could not
handle.

1 Introduction

Abstraction is emerging as the key to formal verification
of large designs, especially those that are not finite-state.
Predicate Abstraction provides the potential for combining
the generality of theorem proving with the ease-of-use of
model checking by automatically mapping an unbounded
system (called the concrete system) to a finite state system

'This work was supported by NASA contract NAS1-98139 and
DARPA contract OO-C-8015. The content of this paper does not neces-
sarily reflect the position or the policy of the Government and no official
endorsement should be inferred.

(called the abstract system). The states of the abstract sys-
tem correspond to truth assignments to a set of abstraction
predicates, which can be supplied by the user or derived
from the problem using heuristics [4].

The user must supply a verification condition that is to
be proved. Throughout this paper, the verification condi-
tion is assumed to be an invariant. Of course more complex
safety properties can be checked by augmenting the system
description with history variables, and specifying an invari-
ant over the history variables. Either the system extracts ap-
propriate predicates or uses user provided abstraction predi-
cates to automatically construct an abstract system from the
concrete system description.

Model checking techniques can then be used to check
whether the abstract system satisfies the verification con-
dition. The abstraction is conservative, meaning that if a
property is shown to hold on the abstract system, there is a
concrete version of the property that holds on the concrete
system; however, if the verification condition fails to hold
on the abstract system, it may or may not hold on the con-
crete system.

The prototype system described here handles more
complex system descriptions than methods previously de-
scribed. It uses two existing libraries: SVC [2], an
implementation of decision procedures for quantifier-free
first-order logic, and Boolean Decision Diagrams (called
BDDs), an efficient representation for Boolean functions.
The use of these efficient libraries is crucial for the success
of the system. For example, SVC is typically called tens of
thousands of times during verification.

The prototype works in two phases: it first produces a
representation of a finite-state machine that is a conserva-
tive abstraction of the concrete system. Creating a good
abstract machine is expensive, so an over-approximation
of the abstract transition relation is computed. In the sec-
ond phase, the verification condition is checked on this ma-
chine using a variant of standard BDD-based model check-
ing algorithms. If the verification condition holds then the
proof is complete. Otherwise an abstract counter-example
trace is generated. This counter-example is checked to see

0-7695-1281-X/01 $10.00 © 2001 IEEE
51

whether it is an artifact of the approximation during the first
phase. If it is, then the abstract transition relation is re-
fined (by adding constraints to the transition relation) so as
to eliminate the spurious counter-example and the verifica-
tion condition is model checked once again. This process
is repeated until the verification condition is proved or a
valid abstract counter-example is generated. This counter-
example guided refinement phase is essential to speed up the
predicate abstraction process.

The technique has been applied to a concurrent garbage
collection algorithm and a contract signing protocol. The
new technique was able to verify the garbage collection al-
gorithm much faster than the technique used by Das, Dill,
and Park in 1999 [7], which was the first and still only at-
tempt to verify it using predicate abstraction. The original
method could not even prove the contract signing protocol
because the proof obligations generated were too difficult
for the decision procedure.

Related work

The use of automatic predicate abstraction for model
checking infinite-state systems was first presented by Graf
and Saldi in 1997 [9]. Their method represented the abstract
states as monomials (monomials are conjunctions of ab-
stract state variables or their negations). Compared with the
original method of Das, Dill, and Park, and the new method,
the use of monomials may result in more false errors and
failed proofs. However their method also requires fewer va-
lidity checks. The original Graf/Sai'di method computes the
reachable state set as part of the abstraction process. Our
work uses some of the ideas present in the Graf/Sai'di ab-
straction scheme [9] and [7].

The creation of the initial abstract transition relation is
similar to the abstraction method presented by Sai'di and
Shankar [15]. In that work the authors construct an accu-
rate abstract transition relation that is used in model check-
ing. If the desired invariant does not hold, then new pred-
icates are added. In their paper, refinement is used to con-
struct the new abstract transition relation from the original
relation. Their method computes the exact abstract transi-
tion relation which can be expensive. In contrast our strat-
egy of successive approximation is more efficient because
it attempts to compute the least accurate approximation that
gives a definitive answer.

Colon and Uribe have also described a method that first
generates an abstract transition system, then model checks
it [6]. The transition relation generated is less accurate than
that presented here.

The idea of counter-example-guided refinement is a gen-
erally useful technique in model checking, which has been
used before, by Kurshan et al. [13] for checking timed au-
tomata, Balarin et al [1] for language containment and

Clarke et al [5] in the context of verification using abstrac-
tion for different variables in a version of the SMV model
checker. Counter-example guided refinement has even been
used with predicate abstraction by Lakhnech et al. [18].
However, their method refines by discovering new predi-
cates to add, an idea that is quite different from refining the
use of a given set of predicates in the abstract system.

We believe that the present method can handle signifi-
cantly larger problems than previous methods. So far as we
know, the original method of Das, Dill and Park is able to
handle more difficult problems than any of the other meth-
ods described above, and the new method is much more
efficient.

2 Abstraction Method

This section summarizes the theory of conservative ab-
straction. Since the theory behind this is well known and
descriptions of this can be found in previous papers on this
subject (for instance in [9]), the important properties of the
abstraction will mostly be stated without formal proof. In
stating and proving the claims, we have found that using
logical formulas uniformly, instead of a mix of set and logic-
notation, eliminates a certain amount of confusion. Hence
initial states, transition relations and reachable state sets are
represented as predicates.

The key idea in conservative abstraction is that the ab-
stract state machine yields a superset of the reachable con-
crete states. This means that if the verification condition
holds in the superset of the reachable concrete states then it
will also hold in the concrete system.

The concrete transition system consists of initial states
represented by the predicate IQ. IC{X) is true iff x is
an initial state. The transition system is represented by
Rc(x.y). Rc(x,y) is true iff y is a successor of x.

The concrete system is mapped to an abstract tran-
sition system. If there are 7V abstraction predicates,
4>i, (f>->, ■ ■ ■ 0Ar, then the abstract state space is the subset of
all bit-vectors of length N, which can be modeled as fol-
lows. IfF={a:e/V|0<3;< TV}, then the type of these
bit-vectors is P —» {0,1}. In what follows 1 and 0 shall be
interpreted as true and false in the obvious way. The initial
states and the transition relation for the abstract system are
constructed later in the section.

The abstraction can be formalized as a standard Galois
connection, having an abstraction function, a which maps
concrete states to bit-vectors, and a concretization function,
7 which is essentially the inverse image of a. Specifically,
a(x) is a bit-vector whose i'h bit has the truth value </>;(x)
while 7(s) is a predicate on concrete states that hold on x
when for every i £ P the ith bit of s matches <f>i(r).

Definition 1 The abstraction and concretization functions,

52

a : C -> (P -> {0,1}) W 7 : (P -»• {0,1}) ->• C are
defined as,

a(x)(i) =4>i{x)

j(s)(x) = [\<j)i{x) = s(i)
i<EP

(= is the biconditional)

The definition of a and 7 can be extended to work on
the predicates defined over the concrete states and abstract
states respectively. These extended definitions are as fol-
lows:

Definition 2 Given predicates, Qc and QA over concrete
and abstract states respectively, the abstraction and con-
cretization functions are extended as follows:

a(Qc)(s) = 3x. Qc(x) A f\ ^(x) = s(i)
ieP

J(QA)(X) = 3s.QA(s)A f\Mx)=s(i)
i€P

Predicates are used to describe sets. So the set of all ab-
stract states are defined by the predicate, 3x. ~/(s)(x). Then
for any arbitrary predicates S and X defined on the abstract
and concrete states respectively it can be easily proved that,

A-->7(a(X))

(3x.7(S)(z))-^(S = a(7(S)))

These two results show that the abstraction scheme is in-
deed a Galois connection.

Definition 3 The set of abstract initial states, I A is defined
to be a(Ic).

Notice that a has been used on a concrete predicate and so
the second definition of a is to be used. It may be shown
that the concrete and abstract initial states satisfy the inclu-
sion relation, IQ -* J(IA)

Definition 4 The abstract transition relation is represented
by a predicate RA with two states, s and t as arguments.
The transition relation is defined as,

RA{S, t) = 3x, y. 7(a)(1) A 7(t)(y) A Rc(x, y)

The abstract transition system so defined is a conserva-
tive abstraction of the concrete system. Let the predicate
SA (s) hold if s is an abstract state that is reachable from
an initial state after k transitions. Similarly let the predicate
SQ(X) hold if a; is a concrete state that is reachable from an
initial state after k transitions. Assuming that

Vs. Sk
c(x) -+ j(Sk

A)(x) (1)

holds it can easily be shown that

Vs. Sk
c
+1(x)^7(Sk

A
+1)(x)

where the reachable concrete and abstract states after k + 1
transitions are given by

Sc+1(y) = Sk
c(y) V 3x. Sk

c(x) A Rc(x,y)
Sk

A
+1(t) = SA(t)V3s.SkA(s)ARA(s,t)

Then by induction it may be concluded that (1) holds for
all k. Since the abstract system is finite, the fixed point of
abstract reachable states exists and the concretization of the
abstract reachable states must include all concrete reachable
states. This shows that any invariant that holds in the con-
cretization of the abstract reachable states must also hold in
the concrete system. Thus the abstract system is a conser-
vative abstraction of the concrete system.

3 Counter-Example Guided Refinement

Now that the abstract system has been defined, a method
is presented to compute the abstract system efficiently and
with the necessary accuracy. Usually, computing the exact
abstract transition relation defined in the previous section
requires excessive time for all but the most trivial of sys-
tems. Also typically the set of abstract reachable states is
extremely sparse. So most of the abstract states are un-
reachable. Hence computing the full transition relation is
not necessary.

Assume that the successive approximation process starts
with an over-approximation, R0, of the exact abstract tran-
sition relation. If a state t is a successor of s in the ex-
act transition relation then t is also a successor of s in the
over approximated transition relation as well. R0 is used
to model check the verification condition. If the verifica-
tion condition holds then the proof is complete. Otherwise
the model checker generates an abstract counter-example
trace which violates the verification condition. The abstract
counter-example trace is a finite sequence of abstract states,
s0,si,...sn such that IA(so) holds and R0(si,si+i) holds
for every i € [0,n). Also sn violates the verification con-
dition. Now, for each pair of consecutive abstract states,
(si,Si+i), check ifiZJ4(sj,Sj+i) holds. In this case, a valid
abstract counter-example has been found. Otherwise R0,
can be refined to eliminate the generated counter-example.
This process of model checking followed by refinement is
repeated till the verification condition is proved or a valid
counter-example is found.

We now explain how the refinement process works. Sup-
pose R is the an over approximated abstract transition rela-
tion and that the abstract counter-example trace found after
model checking has two consecutive states, Sj and Sj+i,
such that RA(SJ,SJ+I) is false. The algorithm tries to find

53

PROVE-VERIFICATION-CONDITION(propcrty)
begin

I A '■= Initial State predicate
RA '■= true
while (true)

trace := model check property in abstract system, (IA , RA)
if empty (trace) then

return PROPERTY.PROVED
else

for each pair of successive states Sj, Sj+i in trace do
if "/(sj)(x) A y(sj+i)(y) A Rc(x,y) is unsatisfiable
then

Rorig '•— RA
RA := RA A REFINE-TRANSJlELisj^j+i)
break

endif
end
if RA = -Roris return trace

endif
end

end

REFINEJ^RANSJRELisj, sj+i)
/* The function returns the constraint C */
begin

X:=7(*i)(*)A7(sj + i)(y)
for each conjunct, p in A' do

remove p from Ar

if satisfiable(X A Rc{x,y)) then
add p back to A

endif
end
return -IQ(A')

end

Figure 1. Abstract State Machine Refinement

a constraint, C(s,t), such that i?/i(s,t) -» C(s,t) and
C(sj, Sj+i) is false. Then the abstract transition relation,

fl'(M) = fi(s,l)AC(s,f)

is also a conservative abstract transition relation. Since
i?^(sj,Sj+i) is false, this means that 7(SJ)(X) A
j(sj+\)(y) A Rc(x, y) is unsatisfiable for every a: and ev-
ery y. From the definition of 7, it follows that j(sj)(x) A
7(sj+i)(y) is a conjunction of abstraction predicates, 0,(a:)
and 4>i(y) and their logical complements. We wish to find a
minimal subset of these predicates that is unsatisfiable when
conjoined with Rc(x,y). The heuristic in the present sys-
tem is a simple greedy algorithm. It is explained in Figure
1.

The following theorem shows that this construction re-
sults in a new conservative abstract transition relation. The
key point to note is that at the end of the algorithm the con-

junction of the remaining conjuncts and Rc(x,y) is unsat-
isfiable. The bit-vectors Cj and Cj+\ determine which con-
juncts have been removed. Wherever c,j(k) is false, the con-
junct involving <f>h{x) has been removed from ~f(sj)(x) in
the added constraint, C(s,t). Similarly, if Cj+i(k) is false,
then the conjunct involving <pk{]l) has been removed from

l{sj+i){y).

Theorem 1 Let the initial abstract transition relation, R
satisfy Vs,£. RA(s,t) —> R(s,t) and Sj, Sj+\ be abstract
states and c,j and Cj+\ are bit-vectors such that

f\cj{i)^{sj{i)=<}>x{x))

ieP

A A C
J+I(

2
') -* (

S
J+I(

J
') = <i>i{y))f\Rc{x,y)

i€P

is unsatisfiable, then the new transition relation defined by,

R'(s,t) = R(s,t)A

-i[/\cj(i)^(s(i) = Sj(i))A

i£P

A C
J+I (o->wo = *i+i(0)]

teP

satisfies
Vs,t. RA{s,t) -» R'(s,t)

Proof To prove the theorem assume that RA {S, t) holds for
some arbitrary s and t.

Since i?^(s,i) —> R(s,t), it may be concluded that
R(s,t) holds as well. Also by definition of RA,

3x,y. 7(.s)(x) A -y(t)(y) A Rc(x,y)

Existential instantiation of the quantifier and using the defi-
nition of 7 yields,

A s(i) = <j>i(x0) A A *(*) = <t>iiVo) A Rc(x0,yo) (2)
i€P i&P

Because of the condition that cj and c.j+\ satisfies,

-{3x,y. A C
J(*) "► (sj(t-) = ^(-r)) A

ieP

A cJ+l(i) -»• (Sj-+1(i) = Mv)) A Rc(x,y)}
ief

Simplifying the expression and then instantiating with XQ

and ?;o yields,

[\Jcj(i)A{Sj(i)2<t>i(xo))]
ieP

V [Vcj+i(i)A(flj+i(i)£&(?A>))]
ieP

V ->Rc{xo,yo)

54

Using the expressions for 0j(a:o) and 4>i(y0) from (2) yields,

ieP

V \J cj+1(i) A (sj+1(i) ^ t(i)) (3)
ieP

Now from the definition of R',

R'{s,t) = R(s,t)A

ieP

/\ cj+i(i)-> {t(i) = sj+1(i))]
i€P

Simplifying the above definition and using that R(s,t)
holds,

R'(s,t) = [\/ Cj(i)A(s(i)jtSj(i))V
ieP

\J cj+1(i)A(t(i)^sj+1(i))} (4)
ieP

The combination of (4) and (3) shows that R'(s,t) holds.
This completes the proof of the theorem. D

As mentioned above, the approximate abstract system is
model checked, and then refined if necessary. This process
is repeated until one of the following happens:

1. The verification condition holds.

2. A counter-example trace in which for any two succes-
sive states, Sj and Sj+i,

3x,y. l(sj)(x) A-y{sj+1)(y) ARc{x,y)
holds.

It is easy to see that the process will necessarily terminate
in one of these situations. Every refinement must remove at
least one pair of abstract states from the transition relation.
Since the abstract system is finite, the number of times the
refinement can be carried out is bounded.

In the first scenario the desired invariant holds in an over-
approximation of the exact abstract transition relation and
so would also hold in the exact transition relation. Thus
the desired invariant has been proved correct. In the second
case the counter-example generated would also hold in the
abstract machine with transition relation RA. So further re-
finement of RA would be useless. This is proved in the next
theorem.

Theorem 2 If an abstract transition system with transition
relation, R such that RA -> R and initial state set, IA has
a counter-example trace, so,Si,...sn such that for each

j £ [0, n) there are concrete states x and y (not necessarily
the same for different values of j) such that,

l(sj)(x) A -y(sj+1)(y) A Rc(x, y)

is satisfiable, then s0, Si,... sn is also a counter-example
trace in the abstract transition system where the transition
relation is RA and the initial state set is I A-

Proof Since s0, Si,... sn is an execution trace in the ap-
proximate transition system,

IA(S0) (5)

Now for every j £ [0, n),

RA(SJ,SJ+1) =3x,y. -f(sj)(x) A-y(sj+1)(y)

A Rc{x,y) (6)

Existential instantiation of the precondition of the theorem
yields,

7(si)(a;o) A 7(si+i)(y0) A RC(x0,y0)

Using this with (6) implies that RA{sj,sj+i) is true and
so Sj+i is a successor of Sj. Using this fact in conjunction
with (5) proves that s0, si,... sn is a counter-example trace
in the exact abstract system. D

Thus, if a counter-example is generated, either the set of
predicates provided are not rich enough to prove the desired
verification condition or the invariant does not hold in the
concrete system.

4 Prototype Implementation and Results

A prototype verifier based on the preceding ideas was
implemented to evaluate efficiency on real problems. The
decision procedure, SVC was used to do the satisfiability
checks. Binary Decision Diagrams were used to represent
the abstract transition relation and to model check the ver-
fication condition on the abstract system. The user has to
provide the predicates used to construct the abstract system.

An obvious choice for the initial approximate abstract
transition relation is the completely unconstrained abstract
transition relation. The decision procedure, SVC, did not
perform well when this was the case, so the prototype pro-
duced an initial approximation by heuristically collecting
small sets of predicates with many common variables, and
building a abstract transition relation using only those pred-
icates.

Unlike the preceding discussion, the prototype creates
abstraction predicates on the next-state variables by substi-
tuting transition functions for current state variables in the
abstraction functions (this is the method used in most pre-
vious papers on predicate abstraction).

We have used two examples to evaluate the successive
approximation method presented here. The examples are:

55

• On-Thc-Fly Garbage Collection

• GJM Secure Contract Signing Protocol

On-The-Fly Garbage Collection

The on-the-fly garbage collection algorithm was pro-
posed by Dijkstra, et al. [8]. This algorithm is widely
acknowledged to be difficult to get right, and difficult to
prove. A more detailed discussion of the subtlety of this al-
gorithm and subsequent variations can be found in a paper
by Havelund and Shankar [10].

The algorithm was simplified by Ben-Ari [3] to involve
two colors instead of three. This also led to a simpler ar-
gument of correctness. Alternative justifications of Ben-
Ari's algorithm were also given by Van de Snepscheut [17]
and Pixley [12]. However it must be remembered that these
proofs were informal pencil and paper proofs.

Later this modified algorithm was mechanically proved
by Russinoff [14] using the Boyer-Moore theorem prover.
A formulation of the same algorithm was also proved by
Havelund and Shankar m PVS [10]. The authors give an es-
timation of the complexity and size of the proof. The proof
needed 19 invariant lemmas and 57 function lemmas and
took about two months. So far as we know, no one has me-
chanically proved the original algorithm of Dijkstra, et al.

In the garbage collection algorithm, the collector and the
user program, the mutator, may be regarded as a concur-
rent system with both processes working on shared mem-
ory. The memory is abstractly modeled as a directed graph
with each node having at most two outgoing edges. A sub-
set of these nodes are called roots and they are special in the
sense that they are always accessible to the mutator. Also
any node that can be reached from one of the roots by fol-
lowing edges is also accessible to the mutator. The mutator
is allowed to choose an arbitrary node and redirect one of
its edges towards another arbitrarily chosen accessible node.
Each memory node also has a color field which the collec-
tor uses to keep track of the accessible nodes. The collector
also maintains a free-list which is a list of nodes that are
not being used by the mutator. The mutator can request
nodes from the collector which the collector satisfies from
the free-list. The collector collects garbage nodes (that is
nodes which are no longer accessible to the mutator) and
adds them to the free-list.

The garbage collection algorithm must satisfy two prop-
erties for it to be correct. First it must guarantee that no node
accessible to the mutator is ever added to the free-list. The
second property is that if some node becomes inaccessible
to the mutator it is eventually added to the free-list. The first
property makes sure that no data which would be used by
the user program is ever freed. The second property makes
sure that there are no memory leaks in the system. We have
proved that the first property holds for the algorithm using

predicate abstraction. The proof of correctness needs some
auxiliary graph properties which arc treated as axioms by
the predicate abstraction tool.

GJM Abuse-Free Contract Signing Protocol

The abuse-free contract signing protocol provides a
mechanism for signing contracts between two parties and
guarantees some correctness properties. A contract can be
thought of as reciprocal promises between the involved par-
ties. For instance if Alice is buying a car from Bob then she
promises to pay Bob the negotiated price while he promises
to give her the car.

A very basic correctness condition is fairness. For a con-
tract signing protocol to be fair it must be the case that after
the protocol terminates either both parties have a contract
or neither party has a contract. In the previous example if
Alice promises to pay the price of the car she should have a
promise from Bob that he would give her the car. Otherwise
the protocol violates fairness.

Other correctness properties of the protocol are account-
ability and abuse-freeness. We have not proved these prop-
erties.

The protocol we have studied here was introduced
in [11]. The protocol depends on a trusted third parry to
resolve conflicts. The protocol works in two phases. In the
first phase the participants exchange messages and try to ar-
rive at a contract. If something goes wrong (cither because
messages were lost or because of foul play) the trusted third
party resolves the contract. The protocol has been exhaus-
tively analyzed for weaknesses using a model checker [16]
with a finite number of concurrent contract signings. A
problem was discovered during this and was fixed. We have
looked at the fixed protocol and proved that it maintains fair-
ness with any number of concurrent contract signings.

Results

For each example, the execution times on a 800MHz
Pentium processor are reported. In the table below the ab-
straction time is the time required to compute the initial ap-
proximate transition relation. The model checking time is
the time required to repeatedly model check and refine the
abstraction. The time required is compared to the approach
presented in implicit predicate abstraction [7].

One reason that the current method works much bet-
ter than implicit predicate abstraction is that it never has
to check the satisfiability of similar expressions repeatedly.
To sec why this can be a problem with implicit predicate
abstraction consider the following example. Assume that
we have abstraction predicates 4>\ = a > b and fa =
b > a (where a and b arc concrete state variables). It is
obvious that both predicates can not be true at the same

56

Abstraction time
(in hnmin)

Model checking time
(in min)

GC(implicit)
GC(current)

2:25
0:09

N/A
1

GJM(implicit)
GJM(current)

24hr+
0:13

N/A
4

time. In the implicit abstraction scheme, expressions, which
are unsatisfiable because they are conjunctions containing
4>i{x) A fa(x), are checked for satisfiability repeatedly. In
the current method this will be recognized the first time a
counter-example has both predicates true. After that the ab-
stract transition relation will be suitably modified so that a
counter-example is never generated which has both predi-
cates asserted simultaneosly.

Another interesting observation is that the set of reach-
able abstract states is usually extremely sparse. So the cur-
rent method will perform much better than systems which
naively compute an exact abstract transition system.

If the verification condition can be proved with the pro-
vided abstraction predicates then the current method will in-
deed be able to prove the verification condition. Thus if the
proof fails then that means that the set of abstraction pred-
icates is not enough to prove the verification condition. In
systems which construct a weaker abstraction, a failed proof
has to be investigated to determine if the proof failed be-
cause the abstraction predicates are insufficient or because
the approximation lost information.

5 Conclusion

This paper demonstrates that using counter-example
guided refinement with predicate abstraction can reduce the
computational difficulty of formally verifying systems with
unbounded numbers of states. However, we have only done
a few examples of any size, and there are obviously many
additional problems that would need to be solved before
predicate abstraction could be used as routinely as model
checking is currently.

The most obvious issue at this point is the need to find
good candidate predicates automatically, instead of requir-
ing the user to provide them. This problem has been ad-
dressed to some extent by others (as discussed in section
1), but it is not clear that the techniques would scale up
to the size of problems in the previous section. Automat-
ically deriving excessively complex predicates or too many
irrelevant predicates could make the computational part of
predicate abstraction too difficult. Another important issue
is how to find good candidate predicates containing quan-
tifiers, which are needed for the examples in the previous
section.

Another difficult issue is how to discover when there are

design errors. A good pragmatic step would be to model
check a finite instance of the problem before applying pred-
icate abstraction. But feasible finite instances may not ex-
hibit the errors (which is the motivation for doing predi-
cate abstraction in the first place). In the system described
here, errors will result in valid abstract counter-examples,
but there is no algorithmic way to determine if these corre-
spond to a concrete counter-example, which is what the user
really needs to determine whether the problem is a design
error or an inadequate abstraction. Of course, the problem
is undecidable, so there is no perfect solution, but there may
be good heuristics for finding useful counter-examples.

References

[1] F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative
approach to language containment. In 5th International
Conference on Computer-Aided Verification, pages 29-40,
1993.

[2] C. Barrett, D. Dill, and J. Levitt. Validity checking for
combinations of theories with equality. In M. Srivas and
A. Camilleri, editors, Formal Methods In Computer-Aided
Design, volume 1166 of Lecture Notes in Computer Science,
pages 187-201. Springer-Verlag, November 1996. Palo
Alto, California, November 6-8.

[3] M. Ben-Ari. Algorithms for on-the-fly garbage collection.
ACM Transactions on Programming Languages and Sys-
tems, 6(3):333-344, July 1984.

[4] S. Bensalem, Y. Lakhnech, and S. Owre. Invest: A tool for
the verification of invariants. In 10th International Confer-
ence on Computer-Aided Verification, pages 505-510, 1998.

[5] E. etal. Clarke. Counterexample-guided abstraction refine-
ment. In 12th International Conference on Computer-Aided
Verification, pages 154-169, July 2000.

[6] M. A. Colon and T. E. Uribe. Generating finite-state ab-
stractions of reactive systems using decision procedures. In
Conference on Computer-Aided Verification, volume 1427
of Lecture Notes in Computer Science, pages 293-304.
Springer-Verlag, 1998.

[7] S. Das, D. L. Dill, and S. Park. Experience with predicate
abstraction. In 11th International Conference on Computer-
Aided Verification. Springer-Verlag, July 1999. Trento, Italy.

[8] E. W. Dijkstra, L. Lamport, A. Martin, C. S. Schölten, and
E. F. M. Steffens. On-the-fly garbage collection: An exercise
in cooperation. Communications of the ACM, 21(11):966—
75, November 1978.

[9] S. Graf and H. Sai'di. Construction of abstract state graphs
with PVS. In O. Grumberg, editor, Conference on Computer
Aided Verification, volume 1254 of Lecture notes in Com-
puter Science, pages 72-83. Springer-Verlag, 1997. June
1997, Haifa, Israel.

[10] K. Havelund and N. Shankar. A mechanized refinement
proof for a garbage collector. Available at http://ic-
www.arc.nasa.gov/ic/projects/amphion/people/havelund,
1997.

[11] M. J. J. A. Garay and P. MacKenzie. Abuse-free optimistic
contract signing. In Proc. Advances in Cryptology - Crypto
'99, pages 449-466, 1999.

57

[12] C. Pixlcy. An incremental garbage collection algorithm for
multi-mutator systems. Distributed Computing, 3(1):41—50,
1988.

[13] R. K. R. Alur, A. Itai and M. Yannakakis. Timing verifica-
tion by successive approximation. Information and Compu-
tation 118(1), pages 142-157, 1995.

[14] D. M. Russinoff. A mechanically verified incremental
garbage collector. Formal Aspects of Computing, 6(4):359-
390, 1994.

[15] H. Sai'di and N. Shankar. Abstract and model check while
you prove. In 11th International Conference on Computer-
Aided Verification. Springer-Verlag, July 1999. Trcnto, Italy.

[16] V. Shmatikov and J. C. Mitchell. Analysis of abuse-free con-
tract signing. In Financial Cryptography, 2000. Anguilla.

[17] J. van de Sncpscheut. Algorithms for on-thc-fly garbage
collection revisited. Information Processing Letters,
24(4):211-16, March 1987.

[18] S. B. Y. Lakhncch, S. Bensalem and S. Owre. Incremental
verification by abstraction. In Tools and Algorithms for the
Construction and Analysis of Systems, 2001.

58

Session 2

A Bound on Attacks on Payment Protocols

Scott D. Stoller*
Computer Science Dept., SUNY at Stony Brook, Stony Brook, NY 11794-4400 USA

Abstract

Electronic payment protocols are designed to work cor-
rectly in the presence of an adversary that can prompt hon-
est principals to engage in an unbounded number of con-
current instances of the protocol. This paper establishes an
upper bound on the number of protocol instances needed to
attack a large class of protocols, which contains versions
of some well-known electronic payment protocols, includ-
ing SET and 1KP. Such bounds clarify the nature of attacks
on and provide a rigorous basis for automated verification
of payment protocols.

1. Introduction

Many protocols, including electronic payment protocols,
are designed to work correctly in the presence of an adver-
sary (also called a penetrator) that can prompt honest prin-
cipals to engage in an unbounded number of concurrent in-
stances of the protocol. Payment protocols should satisfy at
least two kinds of correctness requirements: secrecy, which
states that certain values are not obtained by the penetra-
tor, and agreement, which states that a principal executes
a certain action only if appropriate other principals previ-
ously executed corresponding other actions (e.g., a payment
gateway approves a charge to customer C's account only if
customer C previously authorized that charge).

Allowing an unbounded number of concurrent protocol
instances makes the number of reachable states unbounded.
The case studies in, e.g., [13, 6, 19, 10, 17] show that state-
space exploration of security protocols is feasible when
small upper bounds are imposed on the size of messages
and the number of protocol instances. In most of those case
studies, the bounds are not rigorously justified, so the results
do not prove correctness of the protocols. Rigorous auto-
mated verification of these protocols requires either sym-
bolic state-space exploration algorithms that directly ac-
commodate these infinite state spaces or theorems that re-
duce correctness of these protocols to finite-state problems.

This paper presents a reduction for a large class of pro-
tocols. It uses the strand space model [24]. A regular strand

* The author gratefully acknowledges the support of NSF under Grant
CCR-9876058 and the support of ONR under Grants N00014-99-1-
0358 and N00014-01-1-0109. Email: stoller@cs.sunysb.edu Web:
http://www.cs.sunysb.edu/-stoller/ Phone: 631-632-1627

can be regarded as a thread that runs the program corre-
sponding to one role of the protocol and then terminates. A
central hypothesis of our reduction is the bounded support
restriction (BSR), which states that in every history (i.e., ev-
ery possible behavior) of the protocol, each regular strand
depends on at most a given number of other regular strands.
Our notion of dependence, embodied in the definition of
support, is a variant of Lamport's happened-before relation
[15], modified to handle freshness of nonces appropriately.
BSR is not easily checked by static analysis, so we propose
to check it by state-space exploration, while checking the
correctness requirements. With statically checkable restric-
tions alone, it seems difficult to find restrictions that are both
strong enough to justify a reduction and weak enough to be
satisfied by well-known protocols.

To check BSR by state-space exploration, we need a re-
duction for it. We prove: if a protocol satisfies its correct-
ness requirements and BSR when appropriate bounds are
imposed on the number of regular strands in a history, then
the protocol also satisfies its correctness requirements and
BSR without those bounds.

Most existing techniques for automated analysis of sys-
tems with unbounded numbers of concurrent processes,
such as [9, 11,2,3, 14], are not applicable to payment pro-
tocols, because they assume the set of values (equivalently,
the set of local states of each process) is independent of the
number of processes, whereas payment protocols generate
fresh values, so the set of values grows as the number of
processes (strands) increases.

Roscoe and Broadfoot use data-independence techniques
to bound the number of nonces needed for an attack [20].
Their result assumes that each trustworthy principal partic-
ipates in at most a given number of protocol instances at a
time. Our reduction does not require that assumption; in-
deed, our goal is to justify such assumptions. Lowe's re-
duction [16] has similar goals as our reduction and provides
tighter bounds in its domain of applicability, but it does not
handle agreement requirements and does not apply to the
variants of SET and 1 KP described in Section 2.1.

The reduction embodied in Theorems 2 and 3 handles se-
crecy and agreement requirements and applies to simplified
versions of SET [21] and 1KP [4]. It extends the reduc-
tion in [22] in several significant ways. The class of pre-
served properties is extended to allow protocol-specific se-
crecy properties (roughly, any non-cryptographic value can

0-7695-1281-X/01 $10.00 © 2001 IEEE 61

be designated as a secret) and to allow use of more gen-
eral predicates to characterize the desired relationship be-
tween actions in agreement properties. The class of proto-
cols is extended by allowing hash functions, allowing ar-
bitrary nesting of hashing and encryption in protocol mes-
sages, and relaxing the restriction that the recipient of a
message be able to recognize the entire structure of the mes-
sage.1 These extensions necessitate substantial changes to
the statement and proof of Theorem 1. That theorem is the
crux of the proof of our reduction: it provides a statically-
calculated bound on a "dynamic" quantity (i.e., a quantity
defined by a maximum over all possible executions of the
protocol); that quantity is the dependence width, defined in
Section 4.

Our results implicitly describe a simulation relation be-
tween systems with bounded-size histories and systems
with unbounded-size histories. It would be interesting to
see whether similar results could be obtained more easily in
a process-algebraic framework, such as Spi calculus [1].

2. Model of Protocols

We use the strand space model [24], with minor modifi-
cations.

The set of primitive terms is Prim = TextuKey, where
Text is a set of values other than cryptographic keys, and
Key = {kcy(x,y) \ x,y 6 Namer\x 7^ y}U{pub(x) | x 6
Name} U {pvt(x) | x £ Name). Informally, key(x, y) is a
symmetric key intended for use by x and y, and pub(x) and
pvt(x) represent x's public and private keys, respectively,
in a public-key cryptosystem. Name is the subset of Text
containing names of principals. Nonce is the subset of Text
containing nonces.

The set Term of terms is defined inductively as follows.
(1) All primitive terms arc terms. (2) If t and t' are terms
and k £ Key, then encr(t, k) (encryption of t with k, usu-
ally written {£}*■), pair(t,t') (pairing of t and t', usually
written t.-t'), and h(t) (hash of t, where h represents a one-
way collision-resistant hash function [18]) arc terms.

inv 6 Key —> Key maps each key to its inverse: de-
crypting {£}<• with inv(fc) yields t. For a symmetric key A:,
'mv(k) = k. We usually write inv(fc) as k~l.

\Avvt(:v) abbreviates t ■ {h(t)}pvl(x), i.e., t signed by .7:.
A ciphertext is a term whose outermost operator is encr.

A hash is a term whose outermost operator is /;.. A term t'
occurs in the clear in t if there is an occurrence of t' in t
that is not in the scope of encr or //.

Let clom(/) denote the domain of a function /. A se-
quence is a function whose domain is a finite prefix of the
natural numbers. Let hn(a) denote the length of a se-

1 Session keys are not used in the examples in this paper, so we omitted
them from the framework. They can be handled roughly as in [22].

quence a. ((a, b,...)) denotes a sequence a with cr(0) = a,
a{\) — b, and so on.

A directed term is +t or —t, where t is a term. Positive
and negative terms represent sending and receiving mes-
sages, respectively. We sometimes refer to directed terms
as "terms" and treat them as terms, for instance as having
subterms.

A trace is a finite sequence of directed terms. Let Trace
denote the set of traces.

A trace mapping is a function tr € dom(ir) —> Trace,
where dom(tr) is an arbitrary set whose elements are called
strands.

A node of tr is a pair (s, i) with s E dom(ir) and 0 <
i < len(ir(s)). Let Mtr denote the set of nodes of tr. We
say that node (s,i) is on strand s. Let nodesjr(s) denote
the set of nodes on strand s in tr. Let strand((s,i)) = s,
index((s,i)) = i, and term(r((s,i)) = tr(s)(i).

let
The local dependence relation is: (si,ii) -> («2,^2) iff

Si = s-2 and i2 = i\ + 1.
A term t originates from a node (s,i) in tr iff (s, i) is

positive, t is a subterm of term(r((s,i)), and t is not a sub-
term of texmtr((s,j)) for any j < i.

A term t uniquely originates from a node n in tr iff it
originates from n in tr and not from any other node in tr.
Typically, nonces are uniquely-originated. This is the strand
space way of expressing freshness.

For S C Mtr, let term<r(S) = {term(r(n) | n G S}.
For symbols subscripted by the trace mapping, we elide the
subscript when the trace mapping is evident from context.

2.1. Roles, Protocols, and Penetrator

A role is a parameterized sequence of directed terms. As-
sociated with each parameter is a type, i.e., a set of allowed
terms. Some parameters with type Nonce may be desig-
nated as uniquely-originated; informally, this means that
the value of that parameter must be uniquely-originated.
Uniquely-originated parameters arc designated by underlin-
ing in the parameter list. We require that for every role r,
for every parameter x of r with type Nonce, x is uniquely-
originated iff the first occurrence of x in r is in a positive
term. Let r.x denote parameter x of role r. For exam-
ple, n(u£ ■ Nonce) = ((+nc)) defines a role B with one
uniquely-originated parameter nc with type Nonce.

A trace for role r is a prefix of a trace obtained by
substituting for each parameter x of r a term in the type
of .r. A role r and a trace a for r uniquely determine
a mapping, denoted args(r,a), from the set of parame-
ters of r that appear in r(0),r(l),... ,?-(len(rj) — 1) to
Term. For example, for role R(xi : Name, x? : Name) =
((+:/•,,+.T2)) and a = ((+A)), <lom(args(R:o)) = {.X'I}

and args(R,a)(xi) — A.

62

A protocol II is a set of roles, together with a set
U.Secret C (Text \ (Name U Nonce)) of terms that are
"secrets" (i.e., terms that should not be revealed to the pen-
etrator). Excluding names here implies that the penetrator
knows all names. Specialized notions of secrecy are used
for keys and nonces, as described in Section 2.5.

The penetrator model is parameterized by a set Keyp C
Key of keys initially known to the penetrator. The set
Up(Keyp) of penetrator roles contains:

Pair: P(x : Term, y : Term) = ((—x, —y, +x-y))
Separation: S(x : Term, y : Term) — ((—x-y, +x, +y))
Encryption: E(k : Key, x : Term) = ((-k, -x, +{x}k))
Decryption: D(k:Key, x: Term) = ((-k~1, -{a;}*;, +x))
Message: M(x : Text U Nonce) = ((+£»
Key: K(k : KeyP) = ((+k))
Hash: H(x : Term) = ((-x, +h(x)))

Typically, Keyp = {key(x,y) £ Key | x = P V y = P]
U {pvtkey(P)} U {pubkey(x) \ x £ Name}.

2.2. History

A history of protocol II is a tuple h = (tr, '^4S, role),
where tr is a trace mapping, "^ is a binary relation on Aftr,
and role £ dom(ir) ->■ (II U UP(KeyP)) such that

1. For all ni,n-2 £ Mtr-, if "i ^4-9 n2, then there ex-
ists t £ Term such that term<r(ni) = +t and
termer(n2) = —t. This represents that n\ sends t,
and n-2 receives t.

2. For all ri\ £ MtT, if term<r(ni) is negative, then there
exists exactly one n2 € Mr such that n-2 "^ n\.

3. ^/j is acyclic and well-founded (i.e., does not have infi-
nite descending chains), where -<h is the reflexive and

transitive closure of ("^ U A). Note that -<h is a
partial order, first defined by Lamport [15].

4. For all s £ dom(£r), £r(s) is a trace for role(s). A
regular strand is a strand s with role(s) £ II. A pen-
etrator strand is a strand s with role(s) £ Ylp(Keyp).
Nodes on regular and penetrator strands are called reg-
ular nodes and penetrator nodes, respectively. (For
convenience, we assume II n Up(Keyp) = 0.)

5. For all s £ dom(ir), for all x £ dom(args(role(s),
tr(s))), if parameter x is uniquely-originated,
then args(role(s), tr(s))(x) uniquely originates from
(s,i), where i is the index of the first term in r that
contains x.

6. For all t £ II.Secret, t originates only from regular
nodes.

Note that a history may contain multiple traces for the
same role with identical bindings for parameters that are
not uniquely originated.

To reduce clutter, we sometimes use a history instead of a
trace mapping as a subscript; e.g., for a history h = (tr, "^
, role), we define Mh = Aftr-

The set of predecessors of a node n in a history h is
predsft(n) = {n1 € Aft | n' <h n A n' ^ n}.

Let Hist(II) denote the set of histories of a protocol II.
A set S of nodes is backwards-closed with respect to a

binary relation R iff, for all nodes n\ and n^, if n2 £ S and
ni i? n2, then m £ 5.

Given a history /i of a protocol II, a set S of nodes of h
that is backward-closed with respect to <h can be regarded
as a history, denoted nodesToHist^S'), in a natural way.

2.3. Examples

Consider a payment protocol IISET based closely on [5]
and reminiscent of SET [21], including the use of a dual-
signature technique, so that the customer produces only one
digital signature. Let Order C Text and PayDesc C Text
denote sets of order and payment descriptions, respectively.
Let Price C Text and Result C Text denote sets of prices
and results (e.g., "approved"), respectively. Let Namec,
Namem, and Name9 be disjoint subsets of Name not con-
taining P. For a set S of terms, let Hash(S) = {h(t) | t £
5}. The roles of protocol IISET appear in Figure 1, and
risET-'S'ecrei = 0, for reasons given below. We use let
expressions to avoid repetition of large subterms. We allow
Cust.m = P and Gate.m = P to model malicious mer-
chants; similarly for malicious clients and gateways. There
is no reason to allow the "me" variable of each role (namely,
Cust.c, Mrch.m, and Gate.g) to equal P, because P's ac-
tions are modeled by penetrator strands.

Use of Hash(PayDesc) instead of the set of all hashes
as the type for Mrch.hpd requires some justification, be-
cause a merchant cannot determine whether the hash re-
ceived in hpd is the hash of a payment description or, say,
a ciphertext. Attacks involving terms that are not of the ex-
pected type are called type flaw attacks. Use of the types
Hash(PayDesc) and Hash(Order) can be justified by re-
sults like those in [12], which show that type flaw attacks
can be prevented by using type tags in the protocol imple-
mentation. Extending their results to accommodate hashing
and to accommodate the slightly larger class of agreement
properties introduced below is fairly straightforward.

As another example, consider a version of the 1KP pro-
tocol [4] based closely on [8]. Following [8], we assume
the customer account number (CAN) is secret and hence
(for brevity) omit the PIN. We also omit the date field,
since it does not affect the secrecy or agreement proper-
ties of IIIKP given below, assuming nonces are uniquely-

63

Cust(c : Namec, m : Namem U {P}, g : Nameg U {P}, nc : Nonce, nm : Nonce,
price : Price, od : Order, pd : PayDesc, result : Result) =

let trans = c-m-g-nc-nm-price-h(od)-h(pd) in
((+c-m, (* 1. to merchant *)

—nm, (* 2. from merchant *)
+ [trans]pvt{c)-{od}pub(m)-{pd}pnh{g), (* 3. to merchant *)
— [result-h(trans)]pvt(g))) (* 4. from gateway *)

Mrch(c : Namec U {P}, m : Name,,,, g : Nameg U {P}, nc : Nonce, run : Nonce,
price : Price, od : Order, hpd : Hash(PayDesc), epd : Term, result : Result)

let trans = c-m-g-nc-nm- price- h(od)-hpdin
((—c-m, (* 1. from customer *)

+nm, (* 2. to customer *)
-[trans]pvt{c)-{od}puh{m)-epd, (* 3. from customer *)
+ \trans pvt(c) \trans\ pvt[m) ■epd,

resu dt-h{trans)]pvt(g)))
(* 4. to gateway *)
(* 5. from gateway *)

Gate(c : Namec U {P}, m : Namem U {P}, g : Nameg, nc : Nonce, nn
price : Price, hod : Hash(Order), pd : PayDesc, result : Result)

let trans = c-m-g-nc-nm-price-hod-h(pd) in
((-[trans]pvt{c)-[trans}pvt{m)-{pd}pub{g) (* 1. from merchant *)

+ [i-esult-h(trans)]pvt(g)}) (* 2. to merchant *)

None

Figure 1. Roles for nSEr- Comments indicate step number and intended source or destination of
message.

originated. Let AcctNurn C Text be a set of account
numbers. To model dishonest customers (i.e., customers
that collude with the penetrator), wc partition AcctNurn
into two sets, AcctNurn^ and AcctNum\, which contain
account numbers of honest and dishonest customers, re-
spectively. Let Order, Result, Name,,,, and Nameg be as
above. Wc assume these subsets of Text arc disjoint. lKP
is designed for settings where the gateway has a private key
with a well-known public key, but the customer and mer-
chant do not. Consequently, 1KP provides few guarantees
if the gateway is dishonest, so we do not include P in the
types of Cust.0 and Mrch.g. The roles of protocol ILKF

appear in Figure 2, and ILKP.Secret = AcctNumo-

2.4. Derivability

Informally, a term t is derivable (by the pentrator) from a
set S of nodes if the penetrator can compute t from tenn(S)
and Keyp. A formal definition follows.

For a nonce g that uniquely originates in a history /;, let
ox\gmh{g) denote the node from which g originates in h.

For a set S of nodes in a history h = (tr, —> ,
role) of a protocol Ü, let uniqOrigReqrd,, (S) denote the
set of nonces g such that there exists (s,i) £ S and
x £ dom(args(role(s), tr(s))) such that parameter r is

uniquely originated and args(role(s), tr(s))(x) = g and
origin,, {g) = (s,i).

For a directed term t, the absolute value of t, denoted
abs(£), is t without its sign. For T C Term, abs(T) =
{abs(f) | t £ T], and the role Srcr is defined by Srcr(x :
T) = «+.r».

A term t is derivable (by the penetrator) from a set S
of nodes of a history // of a protocol II, denoted S I-',1 t,

if there exists a history It' = (tr', "^' , role') of the proto-
col {Srcal)s(t(,rnl/i(.S))} such that: (1) arguments of strands
for Message in /(' arc not in uniqOrigRoqrd,, (5); and (2)
there exists a node n G .\'ir> with t(Tiii(r'(n) = +t. This
relation is equivalent to the derivability relation in [7] and
can be computed using the approach in [7].

2.5. Correctness Requirements

Wc consider the following kinds of correctness require-
ments. For a correctness requirement <p, wc say that a pro-
tocol II satisfies <ft iff every history of II satisfies <f>.

Long-Term Secrecy. A history h of a protocol II satis-
fies long-term secrecy iff, for every r £ U.Secret U (Key \
Keyr),".\fh V)\ t.

64

Cust(od : Order, price : Price, saltc : Nonce, R± : Nonce, CAN : AcctNum0,
IDm : Namem U {P}, TIDm : Nonce, noncem : Nonce, g : Nameg, YesNo : Result) =

let cid = h(Rc ■ CAN)
and common = price-IDm-TIDm-noncem-cid-h(od-saltc)
and clear — IDm- TIDm-noncem-h(common)
and slip = price-h(common)-CAN-Rc in
((+saltc-cid,

— clear

+ {slip}pub(g),
-YesNo-[h(YesNo-h(common))]pvt(g)))

(* 1. to merchant *)
(* 2. from merchant *)
(* 3. to merchant *)
(* 4. from merchant *)

Mrch(od: Order, price : Price, saltc : Nonce, cid : Hash(Nonce x AcctNum), IDm : Namem,
TIDm : Nonce, noncem : Nonce, g : Nameg, YesNo : Result, eslip : Term) =

let common = price-IDm-TIDm-noncem-cid-h(od-saltc)
and clear = IDm- TIDm-noncem-h(common) in
((-saltc ■ cid, (* 1. from customer *)
+ clear, (* 2. to customer *)
-eslip, (* 3. from customer *)
+ clear-h(od-saltc)-eslip, (* 4. to gateway *)
- YesNo-[h(YesNo-h(common))]pvt(g), (* 5. from gateway *)
+ YesNo-[h(YesNo-h(common))]pvt(g))) (* 6. to customer *)

Gate(price : Price, Rc : Nonce, CAN : AcctNum, IDm : Namem U {P},
TIDm : Nonce, noncem : Nonce, g : Nameg, hodsalt : Hash(Order x Nonce), YesNo : Result)

let cid = h{Rc ■ CAN)
and common = price ■ IDm ■ TIDm ■ noncem ■ cid ■ hodsalt
and clear = IDm- TIDm-noncem-h(common)
and slip = price -h(common)- CAN -Rc in
((-clear-hodsalt-{slip}pub(g), (* 1. from merchant *)

+ YesNo-[h(YesNo-h(common))}pvt(g))) (* 2. to merchant *)

Figure 2. Roles for n 1KP-

Nonce Secrecy. Informally, nonce secrecy says: the val-
ues of specified nonce parameters are not revealed to
the penetrator. A nonce secrecy requirement has the
form "r.x is secret unless r.y e S", where r e II,
x and y are parameters of r, and S C Text (typi-
cally, 5 C Name). A history h = (tr,"^,role)
of a protocol II satisfies that requirement iff, for ev-
ery strand s G dom(ir), if role(s) = r and y 6
dom(args(role(s), tr(s))) and args(role(s),tr(s))(y) £
S, thenA/fr V™ args(role(s),tr(s))(x).

Agreement. Informally, agreement says: if some strand
executed a certain role to a certain point with certain argu-
ments, then some strand must have executed a correspond-
ing role to a corresponding point with corresponding argu-
ments. An agreement requirement has the form "(r2, len2)
satisfying x2 £ S2 is preceded by (ri, len{) satisfying h =
t2", where x2 is a parameter of r2, S2 is a subset of Text,

and t\ and t2 are terms containing parameters of ri and r2,
respectively, as free variables. A history h = (tr, "^, role)
of a protocol II satisfies that agreement requirement iff, if h
contains a strand s2 such that role(s2) = r2, \en(tr(s2)) >
len2, and args(r2, tr(s2))(x2) 0 S2, then tr contains a
strand Si for role rx such that len(ir(si)) > len\ and t\
instantiated with the arguments of s\ equals t2 instantiated
with the arguments of s2.

One of Bolignano's requirements for IISET is that the
gateway has proof of transaction authorization by the mer-
chant [5, p. 12]. This can be expressed as an agreement
requirement: (Gate, 1) satisfying Gate.m ^ {P} is pre-
ceded by (Mrch, 4) satisfying

let transm = Mrch.c-Mrch.m-Mrch.nc-Mrch.nm
• Mrch.price -h(Mvch.od) ■ Mich.hpd

and transg = Gate.c-Gate.m-Gate.nc-Gate.nm
• Gate.price• G&te.hod-h(G&te.pd) in

transm = transg A Mrch.g — Gate.g

65

This requirement applies even if Gate.c = P, i.e., even
if the customer is dishonest.2 SET is designed to pro-
vide secrecy for order and payment descriptions. IISET

as defined above does not provide such secrecy, because,
e.g., a customer strand with Cust.m = P can reveal an
order description to the penctrator. This is why we take
U.SET-Secret = 0. To express secrecy of order descrip-
tions from gateways, we use a variant IIgET in which mer-
chants are assumed to be honest; specifically, IIgET differs
from IISET

as follows: the type for Cust.m is Namem, and
n§ET.5ecre< = Order. Dishonest gateways are modeled
by penctrator strands (the types of Cust.i? and Mrch.p con-
tain P), so if order descriptions are not known to the pen-
etrator, then they are not known to dishonest gateways, so
they are not known to honest gateways. Secrecy of payment
descriptions from merchants can be expressed similarly.

Requirements for 1KP can be expressed similarly; for
details, see [23]. 1 KP also has a nonce secrecy requirement:
Cust.i?c is secret unless Cust.g G {P}.

3. Support

Informally, a set S' of nodes of a history tr supports a
set S of nodes of tr if 5' D S and S' contains all of the reg-
ular nodes on which regular nodes in S depend. A formal
definition follows.

For T C Term, the set of nonces that occur in T is
nonccs(T) = {g G Nonce | 3t G T : g occurs in t}.

Let 1ZN tl denote the set of regular nodes in history h of
protocol n.

A set S' of nodes is a support for a set S of nodes in a
history h of a protocol II if:

1. Mh D S" D S.

2. S' is backwards-closed with respect to Id

3. For all negative nodes n in 5', preds/l(n) fl S' f)
UM]] h? term;».

4. For all g G nonccs(term/>(S')) Pi D, where

D = uniqOrigRoqrd"(A/'ft) \ uniqOrigRoqrd"(5'),

g occurs in the clear in term/,(origin^g)). (This con-
dition ensures the compositionality property expressed
in Lemma 2.)

For a strand s, if S' supports nodes(s), we say that S1 sup-
ports s.

For example, consider the following history of a generic
payment protocol. Suppose sc,i, sm)1, and sS)i are cus-
tomer, merchant, and gateway strands, respectively, that in-
teract without interference from the penetrator. Let g be a
nonce that uniquely originates on smi and is revealed to
the penetrator (e.g., the value of Mrch.nm in IISET)- The
penctrator then behaves as a merchant, interacting with a
customer strand sc,2 and a gateway strand sfli2, except that
the penctrator uses g instead of a fresh nonce. A support for
sc,2 or Sg,2 need not contain nodes on sm,i or sC)i. In that
sense, sf,2 and sSi2 do not depend on sniii, even though the
chain of messages that conveys g means that there is causal
dependence between those nodes in the classical sense of
Lamport [15]. Informally, that classical dependence can be
ignored here because the penetrator could generate a nonce
g' and replace g with g' in the terms of nodes on sCi2 and
ss,2. The careful treatment of unique origination in the def-
inition of derivability allows such inessential classical de-
pendencies to be ignored. The following lemma says that a
support can be transformed into a history by adding pene-
trator nodes, without adding or changing regular nodes.

For a set S of nodes, let strand(S) = {strand(n) | n G
S). For a trace mapping tr, a strand s G dom(£r), and a
set S of nodes of tr that is backwards-closed with respect to

-4, S contains nodes on a prefix of tr(s); let prefixir(s, S)
denote that prefix.

Lemma 1. Let Ü be a protocol. If S" is a support for 5 in a
history h — (tr, —> , role) of IT, then there exists a history

h' = (tr1, "-^ , role') of II such that

(V.sGstrand(S') :sGdom(rr') A tr'(s) = prefi.xlr(s,S')
A role'(s) = role(s))

A (V.s G dom(tr') \strand(S') : role {s) G YlP{KeyP))
.. . f-,. msq1. Tnsg .

A (Vni,n-2 Go : n\ —$ n2 => n\ -> 112)
(1)

2Bolignano's version of the protocol omits g from trans and conse-
quently violates the conjunct Mrch.p — Gato.g (in his presentation,
this conjunct corresponds to st'.nicht.gateway = G in the second filter
function on p. 12).

Proof: /(' is constructed by combining nodes in S with his-
tories that witness the derivability of terms (as required by
item 3 in the definition of support). For details, see [23]. I

Lemma 2. If S'0 and S[support So aid S\, respectively, in
a history h = (tr, "^, role) of a protocol II, then S0 U S[
supports So U Si in history /(of II.

Proof: The only complication is dealing with nonces
in uniqOrigReqrdJ^So) \ uniqOrigReqrd,, (S[) or
imiqOrigReqrd"(S;) \ uniqOrigR(;qrd"(S^). The fourth
condition in the definition of support ensures that such
nonces arc available to the penctrator even if they arc
uniquely-originated. For details, sec [23]. I

66

3.1. Bounded Support Restriction

A strand count for a protocol II is a function from the
roles of n to the natural numbers. A set S of nodes has
strand count f iff, for each role r, S contains nodes from
exactly f(r) strands for r. If Mh has strand count /, then
we say that history h has strand count /. Let /i (r) = 1 for
every role r. We define a partial ordering -<sc on strand
counts for a protocol; <sc is simply the pointwise exten-
sion of the standard ordering on natural numbers.

A history h satisfies the bounded support restriction, ab-
breviated BSR, iff for each regular strand s in h, there exists
a support for s in h with strand count at most /i. A protocol
satisfies BSR iff all of its histories do.

IISET and IIIKP satisfy BSR. We proved these re-
sults manually; the proofs are similar to the proof in [22]
for Lowe's corrected version of the Needham-Schroeder
public-key authentication protocol. Theorem 2 in Section
5 shows that in principle, these results can be obtained
automatically by state-space exploration of histories with
bounded strand counts; an algorithm like the one in [22]
can be used to compute a (small) support for a given set of
nodes. The current bounds probably need to be decreased
somewhat before this is feasible, e.g., by finding a tighter
bound on the dependence width (see Section 4).

4. Dependence Width

Informally, the dependence width of a negative term r(i)
in a role r of a protocol II, denoted DW((r,i),II), is the
maximum number of "additional" positive regular nodes
needed in any history h of II to provide the penetrator with
enough knowledge to produce the term received by any
node (s,i) of h such that role(s) = r. "Additional" here
means "beyond those needed for the penetrator to produce
negative terms that occur earlier in the same strand". The
dependence width of a protocol II, denoted DW(II), is the
maximum over all negative terms r{i) in roles r in II of
DW((r, i), II). The concept of dependence width is used in
the proof of Theorem 2 in Section 5 to bound the number of
strands involved in a violation of BSR.

Let n be a negative node of a history h of a protocol II,
and let t be a subterm of term/; (n). A revealing set for t
at n in h is a set S of positive regular nodes of tr such that
S C preds/l(n) and S h£ t.

For a set S of numbers, let min(S') and max(S) denote
the minimum and maximum element of S, respectively. We
define min(0) = 0 and max(0) = 0.

The revealing set min-size oft at (s, i) in h is

Nodes in R that are on the same strand as n are not
counted in the revealing set min-size (and hence not in
the dependence width), because in the proof of Theorem
2—specifically, in equation (5)—those nodes appear in
support^ (so) and hence are excluded from the index set of
the rightmost union, and the dependence width is designed
to bound the size of that index set.

Note that, if there are no revealing sets for t at n in h
(i.e., t is not known to the penetrator at that point), then
rvlSetMinSz(f,n,/i) = 0.

Let r be a role in a protocol II, and let i be the index of a
negative term in r. The dependence width of (r, i) in II is

DW«r,»>,n) =
max({rvlSetMinSz(term<r((s,2)), (s,i), (trj-?, role)) \

(tr, ™9, role) G Hist(II) A (s, i) 6 Ntr

A role(s) = r})
(3)

The dependence width of a protocol II is

rvlSet,MinSz(t, (s,i),h) =
min({size(i?\ nodesft(s)) |

R is a revealing set for t at (s, i) in h})
(2)

DW(n) = max({DW«r, i), II) | (4)
r £ II A r(i) is a negative term})

The proof of Theorem 2, and therefore also the proof
of Theorem 3, rely on an upper bound on the dependence
width of the protocol. If the protocol might send terms
of the forms {g}kl, {h}^, {k2}k3, ■ ■., {ki-i}ki, h,
then i + 1 terms are needed to reveal g to the penetrator.
Our long-term secrecy requirement prohibits such behavior.
Secrecy-limited dependence width, abbreviated SL depen-
dence width and denoted DWSL> is defined in the same way
as dependence width, except that the maximum over histo-
ries is restricted to histories satisfying long-term secrecy.

Let II be a protocol, and let t be a term, possibly
containing parameters. nSecreto(t,II) is a bound on the
number of subterms of t that are not known to the pene-
trator, ignoring keys and values of parameters; formally,
nSecret0(i,II) = Nc + Nh + Nprim, where Nc is the
number of subterms of t whose outermost operator is encr,
ignoring those whose second argument is always in Keyp
(based on parameter types), Nh is the number of subterms
oft with outermost operator h, and A^prjm is the number of
elements of NonceLiU.Secret that occur in t. In computing
Nc and Nh, identical subterms are counted only once. For
a parameter r.x of a role r of II, nSecret(r.:r, II) —
max({nSecret0(i,n) | t is in the type of r.x}).
Let nSecret((r, i),II) = nSecret0(r(i),II) +

£xeParams(r(i))nSecret(r-x>n)> where params(i) is
the set of parameters that occur in t.

Theorem 1. Let r(i) be a negative term in a role r of a
protocol n. DWSL((r,i),n) < nSecret((r,i),II).

Proof: Consider a strand s for r in a history h for
II. We consider each subterm t\ of term/l((s,i))

67

and show that each hash, ciphertext, and element
of uniqOrigR,eqrd"(A//l) U U.Secret, that occurs in
term/i((s,i)) contributes at most 1 to DWSL((?',i),II).
The number of such subterms is bounded by
nSecret((7-,i),U). Other subterms contribute nothing.
The definition of dependence width implies that terms
not derivable by the penetrator contribute nothing to the
dependence width (because such terms have no revealing
sets), so in computing the bound, we conservatively assume
all subterms are derivable by the penetrator. Consider cases
based on the type of t\.

case \: t\ E Key. Long-term secrecy implies that no keys
are revealed, so keys contribute nothing to DWSL ((r, i), II).

case 2: tx € uniqOrigReqrd"(A/ft) U Jl.Secret. The def-
inition of history implies that tx originates from a regu-
lar node in h and (according to the conservative assump-
tion discussed above) is derivable by the penetrator (using
strands for Separation and Decryption), so there is a posi-
tive regular node n such that t\ occurs in term/, (n) either in
the clear or encrypted only with keys known to the penetra-
tor. Long-term secrecy implies that those keys (if any) arc
in Keyp. Thus, t\ is derivable from {n}, so t\ contributes
at most 1 toDWsL((r,i),n).

case 3: tx € Text\(umqOngReqrd™{Ar
h)Uli.Secret). tx

is directly available to the penetrator through the Message
role, so t\ contributes nothing to DWSL((T", i), Ü).

case 4: t\ is a pair. Revealing a pair is equivalent to reveal-
ing its two components, so proper subterms of t\ contribute
toDWsL((r,i),II), butti itself does not.

case 5: tx is a ciphertext or hash, and t\ originates from a
penetrator node in preds/l((s, i)). The penetrator performs
the encryption or hashing to construct its copy of t\, so
proper subterms of t\ contribute to DWSL((T", i), II), but
t\ itself does not.

case 6: t\ is a ciphertext or hash, and t\ does not originate
from a penetrator node in preds,, ((s, i)). Then t\ origi-
nates from a regular node, and the argument is the same
as in case 2. Note that it is not necessary for proper sub-
terms of t\ to contribute to DWgL((?',i)) n). Our bound on
DWsL((r, i),U) might be loose because it docs not attempt
to exploit this observation; exploiting it is left for future
work.

Now we justify ignoring, in the definition of Nc in
nSccrcto, occurrences of encr whose second argument is
always in Keyp. Let {£'}/,■ be such a ciphertext.

case 1: 0 \-]\ t'\ in other words, t' contains no se-
crets. Then 0 h" {£'}A-, SO {r/}*. contributes nothing to
DWSL«r,i),II).

case 2: 0 I/" t'; in other words, t' contains one or more
secrets. Thus, subterms of t' contribute at least 1 to our
bound on DWSL ((r, i), Ü).

case 2.1: preds,, ((.s,i)) hj,1 t'. The penetrator
can perform the encryption to construct its copy
of {t'}i;, so proper subterms of {t'}k contribute to
DWsL((r,i),n), but {£'}/;• itself docs not, so ignor-
ing {t'}i; in Nc is safe.

case 2.2: prods,,((.s, i)) l/£ t'. The ciphertext {t'}k

must originate from a regular node and be revealed to
the penetrator. The ciphertext actually contributes 1 to
DWSL((?', i)>n) (cf. case 6 above), and its subterms
actually contribute nothing. Our bound counts 0 from
the ciphertext but counts at least 1 from subterms of t'.
Thus, although the bookkeeping might seem skewed,
the sum of the contributions is sufficient. I

We simplify IISKT and IIIKP as follows. Parameters
epd and eslip arc used to forward messages in a trivial way
(specifically, all occurrences of these parameters arc unen-
crypted), and TID,„ is redundant because it always appears
together with nonce,,,. Thus, eliminating these parameters
has no impact on correctness. Let nsl.;T and II'1Kp refer
to versions of the protocols in which these parameters have
been eliminated. Theorem 1 implies DWsL(nsET) < 6
and DWsi.(II'1KI,) < 7. In both protocols, the first term of
Gate has the largest dependence width.

The bound on DWSL provided by Theorem I can some-
times be decreased by replacing a negative term of the form
—ti -t-2 in a role with the sequence of terms —t\, —t>. For
example, let ns'KT denote the protocol obtained from nsKT

by splitting the first term of Gate into a sequence of three
terms. Theorem 1 implies DWSL(ÜS'ET) < 5. This trans-
formation preserves all correctness requirements, provided
the lengths in agreement requirements arc adjusted appro-
priately.

5. Reduction for BSR and Long-Term Secrecy

The following lemma says, roughly, that constructing a
history h' from a support S' of a set S of nodes of a history
/(does not create new supports for S.

Lemma 3. Suppose So supports S in a history /; of a pro-
tocol II. Let /;' be a history of Ü whose existence is implied
by Lemma 1 applied to So- Suppose Si supports S in his-
tory /(' of TI. Then Si fl 7vLYrJ' supports S in history /(, of
n.

Proof: The proof is similar to that of Lemma 3 in [22]. I
For a protocol Ü, define a strand count ß(U) by

ß(U)(r) = DWSL(II) + 1.

68

Theorem 2. A protocol II satisfies BSR and long-term se-
crecy iff all histories of II with strand count ß(U) do.

Proof: The forward direction (=>) of the "iff" is easy. For
the reverse direction (<=), we prove the contrapositive, i.e.,
we suppose there exists a history h of II that violates BSR
or long-term secrecy, and we construct a history of II with
strand count at most ,8(11) that violates the same property.

BSR and long-term secrecy are safety properties satisfied
by histories with zero nodes, and <h is well-founded, so
there exists a ^-minimal node n0 such that

1. nodesToHist"(predsft(n0)) satisfies BSR and long-
term secrecy.

2. nodesToHist"(predsft(n0)) U {n0} violates BSR or
long-term secrecy.

Let h0 = nodesToHist"(predsh(n0)). Let s0 —
strand(no) and i0 = index(n0). Note that in h0, s0 does
not include n0. For a strand s in a history h! that satis-
fies BSR, let support^ (s) denote a support for s in h! with
strand count at most fi. The definitions of BSR and long-
term secrecy imply n0 is a regular node. Consider cases
based on the sign of no.

case: n0 is a negative node. n0 cannot cause a violation
of secrecy, so it causes a violation of BSR. Suppose i0 > 0.
n0 directly depends on (s0,io - 1) and on a revealing set
R for term(n0) at n0 in h; more precisely, for all S", if 5'
supports {{s0,io - 1)} U R in h, then S" U {n0} supports
{n0} in h. h0 satisfies long-term secrecy, so Theorem 1
implies size(i? \ nodesho(so)) < DWSL(II). Let

Si = {n0} U support^ (s0)
u U„6i?\nodes(ro(So) support^ (strand(n)).

(5)
h0 satisfies BSR, so each of the supports in (5) has strand
count at most /x, so 5X has strand count at most ß(U) (note
that n0 is on s0, so {n0} U supportfto(.s0) contributes at
most /i to the strand count of Si).

Lemma2 implies that Si \{n0} supports {(s0,i0-1)}U
R in h; thus, Si supports {n0} in h. Lemma 1 implies that
Si can be transformed into a history hi of II by adding pen-
etrator nodes. Adding penetrator nodes does not affect the
strand count, so hi has strand count at most ß(U). We show
by contradiction that n0 also causes a violation of BSR in
hi. Suppose n0 does not cause such a violation. Then there
exists a support S' for {n0} in hi with strand count at most
/i. Lemma 3 implies that S' n ftJV", is a support for {n0}
in h with strand count at most /1; a contradiction.

Suppose i0 = 0. The proof is similar to the case
io > 0, except n0 does not depend on the non-existent node
(s0, io - 1), so we omit support^ (s0) from the definition
of Si, and Lemma Lemma 2 implies that Si \ {n0 } supports
R'mh.

case: n0 is a positive node. n0 cannot cause a vio-
lation of BSR, so it causes a violation of long-term se-
crecy. predsft(n0) satisfies long-term secrecy, so there is
some t £ U.Secret U (Key \ KeyP) such that t appears in
term/j(n0) either in the clear or encrypted only with keys
in KeyP. Suppose i0 > 0. Let 50 = support^(s0)
and Si = {n0} U 50. h0 satisfies BSR, so S0 and Si
have strand count at most /i (note that n0 is on s0, and
so 6 strand(So), so n0 does not increase the strand count
of Si). Si can be transformed into a history hi by adding
penetrator nodes; this follows from Lemma 1 and the obser-
vation that n0 is positive and is an immediate successor of
the last node on s0 in h0. It is easy to show that adding pen-
etrator nodes does not change the strand count or destroy
the violation of long-term secrecy. Thus, hi is a history of
II with strand count at most ß(U) that violates long-term
secrecy. Suppose i0 = 0. Then predsft(n0) = 0, and the
history containing only node n0 has strand count at most fx

and violates long-term secrecy. I

6. Reduction for Nonce Secrecy and Agree-
ment

Define a strand count f-2 by: f2(r) = 2 for every role r.

Theorem 3. Let <f> be a nonce secrecy or agreement re-
quirement. Suppose all histories of a protocol II with strand
count ß(U) satisfy BSR and long-term secrecy. II satisfies
<p iff all histories of II with strand count /2 do.

Proof: The forward direction (=>) of the "iff" is easy. For
the reverse direction («=), we prove the contrapositive, i.e.,
we suppose there exists a history h = (tr, "^?, role) of II
that violates <f>, and we construct a history of II with strand
count at most /2 that violates <j>. Nonce secrecy and agree-
ment requirements are safety properties satisfied by histo-
ries with zero nodes, and <h is well-founded, so there exists
a ^/,-minimal node n0 such that

1. nodesToHist"(predsft(n0)) satisfies 0.

2. nodesToHist"(predsft(n0)) U {n0} violates 0.

Let so = strand(n0).
By hypothesis, all histories of II with strand count ß(U)

satisfy BSR and long-term secrecy, so Theorem 2 implies
that n satisfies BSR. For s e dom(h), let supportA(s) de-
note a support for s with strand count at most /i.

Suppose 0 is a nonce secrecy requirement. <f> has the
form "r.x is secret unless r.y 6 5". n0 is a posi-
tive regular node, and there is a regular strand sg such
that args(role(sg),tr(sg))(y) £ S and predsft(n0) \f^
g and predsh(n0) U {n0} h^ g, where g =
args(role(s), tr(s))(x). By the same reasoning as in case

69

2 of the proof of Theorem 1, this implies that {no} \~^ g.

Let Si = supporth(50) Usupporth(ss). Lemma 2 implies
that Si is a support for nodes/,(so) U nodes/,(.s9). Lemma
1 implies that Si can be transformed into a history h\ by
adding penetrator nodes. Note that Si and hi have strand
count at most f2. It is easy to see that no causes a violation
of nonce secrecy in hi.

Suppose 0 is an agreement requirement. 0 has the form:
"(r2, len2) satisfying x2 £ S2 is preceded by (ri ,len\) sat-
isfying t\ — t2". no causes a violation of 0, so SQ is a strand

for r2 and args(r2, tr(s2))(x2) $ S2 and index(n0) =
len2. Lemma 1 implies that supportft(sn) can DC trans-
formed into a history ho of II with strand count at most

f\. Note that n0 G N"h0- Removing nodes in J\fh \ Airho

and adding penetrator nodes preserve the lack of a node
(si, leni) such that role(s\) = n and such that ti instan-
tiated with the arguments of s\ equals t2 instantiated with
the arguments of so. Thus, ho violates 0.1

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Information and Computation,
143:1-70, 1999.

[2] P. A. Abdulla and B. Jonsson. Verifying networks of timed
processes. In Proc. 4th Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS).
Springer-Verlag, 1998.

[3] K. Baukus, K. Stahl, S. Bcnsalem, and Y. Lakhncch. Ab-
stracting wsls systems to verify parameterized networks. In
Proc. 6th Intl. Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 188-203.
Springer-Verlag, 2000.

[4] M. Bellarc, J. A. Garay, R. Hauscr, A. Hcrzbcrg.
H. Krawczyk, M. Steiner, G. Tsudik, E. V. Herreweghen,
and M. Waidner. Design, implementation and deployment
of a secure account-based electronic payment system. IEEE
Journal on Selected Areas in Communications, 18(4):611-
627, 2000.

[5] D. Bolignano. Towards the formal verification of elcctronic
commercc protocols. In Proc. 10th IEEE Computer Secu-
rity Foundations Workshop (CSFW). IEEE Computer Soci-
ety Press, 1997.

[6] D. Bolignano. Integrating proof-based and model-checking
techniques for the formal verification of cryptographic pro-
tocols. In A. J. Hu and M. Y. Vardi, editors, Proc. Tenth Int'l.
Conference on Computer-Aided Verification (CAV), vol-
ume 1427 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

[7] E. Clarke, S. Jha, and W. Marrero. Using state space ex-
ploration and a natural deduction style message derivation
engine to verify security protocols. In Proc. IEIP Working
Conference on Programming Concepts and Methods (PRO-
COMET), June 1998.

[8] E. Clarke, W. Marrero, and S. Jha. A machine check-
able logic of knowledge for specifying security properties

of electronic commerce protocols. In Proc. IFIP Working
Conference on Programming Concepts and Methods (PRO-
COMET), June 1998.

[9] E. M. Clarke, O. Grumbcrg, and S. Jha. Verifying parameter-
ized networks using abstractions and regular languages. In
Proc. Sixth Int'l. Conference on Concurrency Theory (CON-
CUR), 1995.

[10] B. Donovan, P. Norris, and G. Lowe. Analyzing a li-
brary of security protocols using Casper and FDR. In
Proc. 1999 Workshop on Formal Methods and Secu-
rity Protocols, July 1999. Available via http://cm.bcll-
labs.com/cm/cs/who/nch/fmsp99/.

[11] E. A. Emerson and K. S. Namjoshi. Automated verification
of parameterized synchronous systems. In Proc. 8th Int'l.
Conference on Computer-Aided Verification (CAV), 1996.

[12] J. Heather, G. Lowe, and S. Schneider. How to prevent type
Maw attacks on security protocols. In Proc. 13th IEEE Com-
puter Security Foundations Workshop (CSFW). IEEE Com-
puter Society Press, 2000.

[13] N. Heintze, J. D. Tygar, J. Wing, and H.-C. Wong. Model
checking electronic commerce protocols. In Proc. USENIX
1996 Workshop on Electronic Commerce, 1996.

[14] B. Jonsson and M. Nilsson. Transitive closures of regu-
lar relations for verifying infinite state systems. In Proc.
6th Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 220-234. Springer-
Verlag, 2000.

[15] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-564, 1978.

[16] G. Lowe. Towards a completeness result for model checking
of security protocols. The Journal of Computer Security,
7(2/3):89-146, 1999.

[17] D. Marchignoli and F. Martinelli. Automatic verification
of cryptographic protocols through compositional analy-
sis techniques. In Proc. 5th Intl. Workshop on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), pages 148-162. Springer-Verlag, 1999.

[18] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstonc.
Handbook of Applied Cryptography. CRC Press, 1997.

[19] J. C. Mitchell, V Shmatikov, and U. Stern. Finite-state anal-
ysis of SSL 3.0. In Seventh USENIX Security Symposium,
pages 201-216, 1998.

[20] A. W. Roscoe and P. J. Broadfoot. Proving security protocols
with model checkers by data independence techniques. The
Journal of Computer Security, 7(2/3), 1999.

[21] SET: Secure Electronic Transaction Specification, version
1.0, May 1997. Available from www.sctco.org.

[22] S. D. Stoller. A bound on attacks on authentication proto-
cols. Technical Report 526, Computer Science Dept., Indi-
ana University, July 1999. Submitted for journal publication.

[23] S. D. Stoller. A bound on attacks on payment protocols.
Technical Report 537, Computer Science Dept., Indiana
University, February 2000. Revised April 2001. Available
via http://www.es.sunysb.edurstollcr/.

[24] F. J. Thaycr Fabrega, J. C. Herzog, and J. D. Guttman.
Strand spaces: Why is a security protocol correct? In Proc.
18th IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society Press, 1998.

70

A Dichotomy in the Complexity of Prepositional Circumscription

Lefteris M. Kirousis*
Computer Engineering and Informatics

University of Patras
GR-265 04 Patras, Greece.

kirousis@ceid.upatras.gr

Phokion G. Kolaitisf

Computer Science Department
University of California, Santa Cruz

Santa Cruz, CA 95064, U.S.A.
kolaitis@cse.ucsc.edu

Abstract

The inference problem for propositional circumscrip-
tion is known to be highly intractable and, in fact, harder
than the inference problem for classical propositional logic.
More precisely, in its full generality this problem is In-
complete, which means that it has the same inherent com-
putational complexity as the satisfiability problem for quan-
tified Boolean formulas with two alternations (universal-
existential) of quantifiers. We use Schaefer's framework of
generalized satisfiability problems to study the family of all
restricted cases of the inference problem for propositional
circumscription. Our main result yields a complete classifi-
cation of the "truly hard" (Ilf-complete) and the "easier"
cases of this problem (reducible to the inference problem
for classical propositional logic). Specifically, we establish
a dichotomy theorem which asserts that each such restricted
case either is Yi\ -complete or is in coNP. Moreover, we pro-
vide efficiently checkable criteria that tell apart the "truly
hard" cases from the "easier" ones.

1 Introduction and Summary of Results

During the past three decades, researchers in artificial in-
telligence have investigated in depth various formalisms of
nonmonotonic reasoning. Circumscription, introduced by
McCarthy [McC80], is perhaps the most well-known and
extensively studied such formalism. It enjoys high expres-
sive power and thus is suitable for modeling a wide variety
of problems requiring nonmonotonic reasoning. Moreover,
propositional circumscription has been shown by Gelfond et
al. [GPP89] to coincide with reasoning under the extended
closed world assumption (ECWA), which is one of the main
formalisms for reasoning with incomplete information.

•Research partially supported by the Research Committee of the Uni-
versity of Patras and by the Computer Technology Institute.

+ Research partially supported by NSF Grants No. CCR-9610257 and
No. CCR-9732041

A fundamental problem in every logical formalism is in-
ference, i.e., the problem of deciding whether, given two
formulas <p and ip, the formula ip can be inferred from ip in
the context of the logical formalism at hand. Intuitively, ip
represents a knowledge base, while ip represents a statement
that we are interested in deciding whether it can be inferred
from the knowledge base. In the case of classical proposi-
tional logic, inference amounts to tautological implication
if \= ip, i.e., to the problem of deciding whether ip is sat-
isfied by every truth assignment that satisfies <p. Conse-
quently, inference in classical propositional logic is a coNP-
complete problem and thus considered to be intractable. In
the case of propositional circumscription, inference turns
out to have even higher inherent computational complex-
ity. Indeed, as shown by Eiter and Gottlob [EG93], the
inference problem for propositional circumscription is II2-
complete. Recall that the class n^ constitutes the second
level of the polynomial hierarchy PH and thus contains both
NP and coNP as subclasses. Moreover, the prototypical nf -
complete problem is IT2 -SAT, i.e., the satisfiability problem
for quantified Boolean formulas of the form Vx3y6(x,y),
where x, y are tuples of propositional variables and 9{x, y)
is a CNF-formula (see [Pap94]).

Classical propositional logic is concerned with all mod-
els of a given formula, i.e., with all truth assignments that
satisfy the formula. In contrast, propositional circumscrip-
tion is concerned with the minimal models of a given for-
mula, i.e., with those satisfying truth assignments for which
there is no smaller satisfying truth assignment with respect
to the coordinate-wise partial order between truth assign-
ments. Consequently, in its full generality, the inference
problem for propositional circumscription can be stated as
follows: given two CNF-formulas ip and ip, is ip true in ev-
ery minimal model of ipl A moment's reflection reveals
that this problem is polynomial-time equivalent to the spe-
cial case in which ip is simply a clause (i.e., a disjunction of
literals), since ip can be inferred from ip under propositional
circumscription if and only if each clause of ip can be so in-
ferred. Moreover, Eiter and Gottlob [EG93] established that

71
0-7695-1281-X/01 $10.00 © 2001 IEEE

the inference problem for propositional circumscription re-
mains 11-2-complete even when </? is a 3CNF-formula and
the clause tj> consists of a single negated variable.

Are there restricted classes of propositional formulas on
which the inference problem for propositional circumscrip-
tion has complexity lower than IIj-complete? To make
this question precise, one can consider restrictions on both
the formulas representing knowledge bases and the formu-
las representing statements to be inferred. Since clauses
arc the syntactically simplest propositional formulas, it is
natural to consider restrictions on the formulas represent-
ing knowledge bases only. Thus, for every class T of
propositional formulas, we let iNF-ClRC(^) denote the fol-
lowing decision problem: given a formula (f € T and a
clause ij), is ij> true on every minimal model of 1/5? The
question then is to analyze the computational complexity
of lNF-ClRC(Jr) for different classes T of propositional
formulas and identify classes T for which the complexity
of lNF-ClRC(Jr) is lower than ü^-complete. Even before
the II2 -completeness of the full problem was established,
this question was studied by Cadoli and Lenzerini [CL94],
where lNF-ClRC(Jr) was shown to be in P or to be coNP-
complete for several different classes T of propositional
formulas. Specifically, Cadoli and Lenzcrini observed that
if a class T of propositional formulas is such that testing
satisfying truth assignments for minimality is in polyno-
mial time, then lNF-ClRC(J") is in coNP. Since minimality
testing is in polynomial time for the classes of Horn for-
mulas, dual Horn formulas and 2CNF-formulas, it follows
that lNF-ClRC(Jr) is in coNP, when T is one of these three
classes. Moreover, if T is the class of all Horn formulas,
then INF-CIRC(^) is solvable in polynomial time, since ev-
ery satisfiablc Horn formula has a minimum (unique mini-
mal) model that can be computed in polynomial time. In
[CL94], it was also proved that INF-CIRC(7") is actually
coNP-completc, when T is the class of all dual Horn for-
mulas or the class of all 2CNF-formulas.

The aforementioned results identify several interesting
cases where the complexity of the inference problem in
propositional circumscription is lower than IT? -complete.
Nonetheless, they do not provide a complete classification
of the "truly hard" (II? -complete) and the "easier" cases
of this problem. In particular, except for the class of all
CNF-formulas and the class of all 3CNF-formulas, no other
interesting classes T of propositional formulas for which
lNF-CiRC(^r) is rij-complete were known prior to the
work reported here. This should be contrasted with the
state of affairs concerning the complexity of the inference
problem for classical propositional logic, where a com-
plete classification can be derived from the pioneering work
by Schaefcr [Sch78] on the complexity of GENERALIZED

SATISFIABILITY problems. In order to describe Schaefer's
work and relate it to the inference problem, we need to in-

troduce some terminology and notation.

A logical relation (or generalized connective) R is
a non-empty subset of {0,1}A\ for some k > 1. If
5 = {/?i,... ,i?m,...} is a set of logical relations,
then an ^r(5)-formula is a conjunction of expressions
(called generalized clauses or, simply, clauses) of the form
R,(.ri,.... .T/;.), where each R, is a relation symbol repre-
senting the logical relation /?; in 5 and each Xj is a Boolean
variable. Furthermore, an JTc(5)-formula is a formula ob-
tained from an .F(5)-formula by substituting some of the
variables by the constant symbols 0 and 1. Each set S
of logical relations gives rise to the following GENERAL-
IZED SATISFIABILITY problem SATC(5): given an .Fc(S')-
formula ip, is 9 satisfiablc? In a similar manner, one ob-
tains the family of SAT(S) problems by considering J-(S)-
formulas, instead of jrc.(5)-foimulas.

In [Sch78], four conditions were isolated and the follow-
ing remarkable classification theorem for the family of all
GENERALIZED SATISFIABILITY problems SATC(5) was
established: if the set S satisfies at least one of these four
conditions, then SATo(S) is solvable in polynomial time;
otherwise, SATO(S) is NP-complcte. These four conditions
arc: (1) every relation in S is the set of models of a Horn
formula; (2) every relation in S is the set of models of a dual
Horn formula; (3) every relation in 5 is the set of models of
a 2CNF formula; (4) every relation in S is the set of models
of an affine formula, i.e., a conjunction of formulas built us-
ing the 0 (exclusive or) connective. It should be noted that
each of these conditions turned out to be efficiently check-
able. Schaefcr also obtained a classification theorem for
the family of SAT(S) problems, which involves two addi-
tional conditions that trivially give rise to polynomial-time
solvable SAT(S) problems. Note that the NP-complctencss
of POSITIVE I-IN-3-SAT, NOT-ALL-EQUAL 3-SAT and
other well known variants of SAT is an immediate conse-
quence of Schaefer's results. Morover, the above results
constitute the first instance of a dichotomy theorem for a
family of decision problems in NP, i.e., results that con-
cern an infinite family C of decision problems and assert
that certain problems in C arc NP-complcte, while on the
contrary all other problems in C arc solvable in polynomial
time. It should be pointed out that the a priori existence of
dichotomy theorems cannot be taken for granted, since Lad-
ner's theorem in [Lad75] asserts that if P ^ NP, then there
are problems in NP that arc neither NP-complcte nor in P.

The inference problem in classical propositional logic
is polynomial-time reducible to the satisfiability problem.
Using this fact, it is easy to sec that Schaefer's dichotomy
theorem for satisfiability problems yields a dichotomy the-
orem for the inference problem in classical propositional
logic. Specifically, if 5 is a set of logical relations that
satisfy at least one of the four aforementioned conditions,
then the inference problem in classical propositional logic

72

for .Tx: (^-formulas is solvable in polynomial time; other-
wise, it is coNP-complete. In addition, a similar dichotomy
theorem can be derived for the inference problem in classi-
cal propositional logic for ^r(5)-formulas.

In this paper, we use Schaefer's framework to investi-
gate the computational complexity of the inference prob-
lem in propositional circumscription. Our main result
asserts that, for every set S of logical relations, either
iNF-ClRC^c^)) is LT^-complete or INF-CIRC(^"C(5'))

is in coNP. In other words, our main result tells that each
restricted cases of the inference problem for propositional
circumscription either is as hard as the general case or is re-
ducible to the inference problem for classical propositional
logic. Moreover, it provides efficiently checkable criteria
that, given a finite set 5 of logical relations, distinguish the
two possibilities for the complexity of INF-CIRC(JC(5)).

This constitutes a dichotomy theorem for the inference
problem in propositional circumscription, since results by
Ladner [Lad75] imply that if II2 ^ coNP, then there are
decision problems in nf that are neither PI^-complete nor
in coNP. It should also be pointed out that the boundary in
the dichotomy separating nf -completeness from member-
ship in coNP turns out to be different from the boundary in
the dichotomy theorem for the inference problem in classi-
cal propositional logic.

Our main result is established in two stages. In the
first stage, we prove a dichotomy theorem for the family
of lNF-ClRC(^b(5')) problems, where S is a set oil-valid
logical relations, i.e., each relation in S contains the all-ones
tuple (1,..., 1). In the second stage, we use this restricted
dichotomy theorem as a stepping stone to derive the di-
chotomy theorem for the full family of lNF-ClRC(Jrc(5'))
problems, where S is an arbitrary set of logical relations.
To this effect, we apply the restricted dichotomy theorem
to the set S* of all 1-valid logical relations obtained from
relations in 5 by replacing some variables by 0. A two-
stage approach was used for the first time in a recent paper
[KK01], where a dichotomy theorem for minimal satisfia-
bility problems was established. With some extra work, we
can also obtain a dichotomy theorem for the family of all
INF-CIRC(T(S)) problems, where S is a set of logical rela-
tions. Due to space limitations, this result will be presented
in the full version of the present paper.

Since the publication of the original dichotomy theo-
rem by Schaefer [Sch78], researchers have obtained several
other dichotomy theorems for certain variants of satisfia-
bility problems (see, for instance, [Cre95, KSW97, CH96,
CH97, KS98, RV00, KK01]). The results reported here
provide the first dichotomy between II2 -completeness and
membership in coNP. At the technical level, the proofs
make extensive use of Schaefer's expressibility theorem
[Sch78, Theore 3.0], as well as of a definability result by
Creignou and Hebrard [CH97] and other special-purpose

definability results established here.
Finally, we conjecture that a trichotomy theorem

holds for the complexity of propositional circumscrip-
tion. Specifically, we conjecture that, for every set
5 of logical relations, exactly one of the following
three alternatives holds: (1) lNF-ClRC(Jr

c(5)) is In-
complete; (2) lNF-ClRC(Jr

c(S')) is coNP-complete; (3)
lNF-ClRC(Jrc(S)) is solvable in polynomial time. Note
that if this conjecture is confirmed, it will yield the first
trichotomy theorem for a family of natural decision prob-
lems in a complexity class beyond NP In view of the di-
chotomy theorem established here, it remains to establish a
dichotomy theorem for those INF-CIRC(J"C(5')) problems
that are in coNP Although the results in [CL94] yield parts
of this conjectured dichotomy, much more remains to be
done in order to complete the picture.

2 Preliminaries and Background

This section contains a minimum amount of the neces-
sary background material on the complexity of GENERAL-

IZED SATISFIABILITY problems from [Sch78].
Let S = {i?i,..., Rm,...} be a set of logical relations

of various arities. As stated in Section 1, an ^(S) -formula
is a finite conjunction of clauses built using relations from
S and propositional variables, while an Jrc(5')-formula is
a formula built using relations from 5, propositional vari-
ables, and the constant symbols 0 or 1. Recall also that
SAT(S') is the following decision problem: given an ^"(5)-
formula </?, is it satisfiable? (i.e., is there a truth assignment
to the variables of <p that makes every clause of ip true?) The
decision problem SATc(5) is defined in a similar way.

Clearly, for each finite set S of logical relations, both
SAT(S) and SATC(5) are problems in NP. Several well-
known NP-complete problems can easily be cast as SAT(S)

problems for particular sets 5 of logical relations. For ex-
ample, 3-SAT coincides with the problem SAT(S), where
S = {R0,RUR2,R3} and R0 = {0, l}3 - {(0,0,0)} (ex-
pressing the clause (xVyV z)), R1 = {0, l}3 - {(1,0, 0)}
(expressing the clause (->x Vi/V z)), R2 = {0, l}3 -
{(1,1,0)} (expressing the clause (-ix V ->y V z)), and
R3 = {0, l}3 - {(1,1,1)} (expressing the clause (->x V
-iy V -12)). Similarly, the NP-complete problem POSITIVE-

I-IN-3-SAT ([GJ79, L04, page 259]) is precisely the prob-
lem SAT(S), where S is the singleton consisting of the re-
lation Ä1/3 = {(1,0,0), (0,1,0), (0,0,1)}.

Recall that a Horn formula is a conjunction of clauses
each of which is a disjunction of literals such that at most
one of them is a variable. Similarly, a dual Horn formula is
a conjunction of clauses each of which is disjunction of lit-
erals such that at most one of them is a negated variable. As
mentioned in Section 1, an affine formula is a conjunction of
subformulas each of which is an exclusive disjunction © of

73

literals or a negation of an exclusive disjunction of literals.

Definition 2.1: Let R be a logical relation and S a finite set
of logical relations.

R is 1-valid if it contains the tuple (1,1,..., 1), whereas
R is 0-valid if it contains the tuple (0,0,..., 0). We say
that S is l-valid (0-valid) if every member of S is 1-valid
(0-valid).

R is 2CNF (Horn, dual Horn, or affine, respectively) if
there is a propositional formula p which is 2CNF (Horn,
dual Horn, or affine, respectively) and such that R. coincides
with the set of truth assignments satisfying p.

S is Schaefer if at least one of the following four condi-
tions hold: every member of 5 is 2CNF; every member of
S is Horn; every member of S is dual Horn; every member
of S is affine. Otherwise, we say that S is non-Schaefer. I

There are efficient criteria to determine whether a logical
relation is 2CNF, Horn, dual Horn, or affine. In fact, a set
of such criteria was already provided by Schaefer [Sch78];
moreover, even simpler criteria for a relation to be Horn or
dual Horn were given by Dechter and Pearl [DP92], Each
of these criteria involves a closure property of the logical
relations at hand under a certain function. Specifically, a
relation R is 2CNF if and only if for all <i, t-2, £3 £ R, we
have that (^ Vi2)A (t2 V t3) A {tx V £3) e R, where the
operators V and A are applied coordinate-wise to bit tuples.
R is Horn (respectively, dual Horn) if and only if for all
ti, t-2 € R, we have that t\ A t-2 e R (respectively, t\ V f2 €
R). Finally, R is affine if and only if for all t\, to, £3 G R,
we have that t^ © t2 © h G R.

If S is a 0-valid or a 1-valid set of logical relations, then
SAT(S) is a trivial decision problem (the answer is always
"yes"). If S is an affine set of logical relations, then SAT(S)

can be solved in polynomial time using Gaussian elimina-
tion. Moreover, there are well-known polynomial-time al-
gorithms for the satisfiability problem for the class of all
2CNF formulas (2-S AT), the class of all Horn formulas, and
the class of all dual Horn formulas. Schacfer's seminal dis-
covery was that the above six cases are the only tractable
cases of SAT(S); furthermore, the last four arc the only
tractable cases of SATC(S).

Theorem 2.2: [Dichotomy Theorems, [Sch78]]
Let S be a finite set of logical relations.

If S is 0-valid or 1-valid or Schaefer, then SAT(S) is
solvable in polynomial time; otherwise, it is NP-complete.

IfS is Schaefer, then SATC(S) is solvable in polynomial
time; otherwise, it is is NP-complete.

Theorem 2.2 immediately implies that POSITIVE-l-lN-3-
SAT is NP-complete, since this is the same problem as
SAT(/?]/3), and R\/;i is neither 0-valid, nor 1-valid, nor
Schaefer, as can be seen by applying the aforementioned
closure properties.

To obtain the above dichotomy theorems, Schaefer had
to first establish a result asserting that every non-Schaefer
set S has extremely high expressive power, in the sense
that every logical relation can be defined from an Tc{S)-
formula using existential quantification.

Theorem 2.3: [Expressibility Theorem, [Sch78]]
Let S be a finite set of logical relations. If S is non-

Schaefer, then for every k-ary logical relation R. there is an
Tc{S)-formula p>{x\,... ,x/,., z\,... ,zm) such that R co-
incides with the set of all truth assignments to the variables
xi,... ,x/t that satisfy the formula (3z)tp(x, z).

3 Propositional Circumscription

In circumscription, properties are specified in some log-
ical formalism, a natural partial order between models of
each formula is considered, and the focus is on models that
are minimal with respect to this partial order. Minimal mod-
els are preferred because they have as few "exceptions" as
possible and thus embody common sense. In propositional
circumscription, properties are specified using propositional
formulas and the focus is on models that arc minimal with
respect to the coordinate-wise partial order between truth
assignments, as defined below.

Let A- > 1 be an integer and let a = (rti,..., a*.), ß =
(&i,..., bk) be two /c-tuplcs in {0, l}k. We write ß < a to
denote that, for every i < k, we have that 6, < a; (as usual,
0 < 1). Also, 8 < a means that ß < a and ß ^ a. If tp
is a propositional formula and a is a truth assignment to the
variables of ip, then we say that Q is a minimal model of tp
if a satisfies ip and no truth assignment ß < a satisfies <p.

Let p and iji be two propositional formulas in CNF. We
say that V' can be inferred from p under propositional cir-
cumscription, and write p NciRC ^;' '^ ^' 's truc 'n ev~
ery minimal model of p. Clearly, if ij> is a conjunction
A"ii ci °f clauses c;, then p NciRC ^ ^ anc^ on'y ^
p |=QRC a, for every i < in. Thus, the inference problem
for propositional circumscription can be stated as follows:
given a propositional formula p in CNF and a clause ip, docs

v Nc IRC Since testing a truth assignment for mini-
mality is in coNP, it follows that the inference problem for
propositional circumscription is in W\. As mentioned ear-
lier, in [EG93] this problem was shown to be Ft2 -complete,
even when p is a 3CNF-formula and if> is just a negative
literal -m. Our goal is to investigate the complexity of the
inference problem for propositional circumscription in the
context of Schacfer's framework. More precisely, each set
5 of logical relations gives rise to the following decision
problem lNF-ClRC(JFc:(5)): given an Jrc:(5)-formula p
and a clause ij>, does p (=QRC ^ ^nc ncxt proposition
asserts that each of these decision problems is equivalent to
a special case of it.

74

Proposition 3.1: For every set S of logical relations,
lNF-ClRC(Jx;(5)) is equivalent to the following decision
problem: given an Tc{S)-formula p and a negative clause
(-1U1 V • • • V ->un), does <p (=CIRC (~'ui v "'' v "1"n) ?

Proof: Given an .Fc-formula p and a clause (xi V • • • V
a;m V -iui V • • • V ->u„), let </?' be the Tc -formula obtained
from <p by replacing each occurrence of xit 1 < i < m, by
0. It is easy to verify that p |=QRC (

X
I

V
 '''v xm V -^I V

••• V->y„) if and only if <p' ^=ClRC (-.ui V---Vun).|

Consider the following restricted case of
lNF-ClRC(Jrc(S')): given an TQ(S)-formula ip and a posi-
tive clause (xi V- • -Vxm), doesp !=CIRC (xiV---Vxm)?
This problem is in coNP, because it is easy to check that
V NciRC (^iV---Va;m)ifandonlyif<y9 (= (xxV---Vxm).
Thus, the inference of clauses with negative literals is es-
sential in establishing that certain INF-CIRC(J"C(5))

problems are 11% -complete.
We are now ready to state the main results of

this paper. These results classify the complexity
of all INF-CIRC(J

7
C(5')) problems and, in particular,

give efficiently checkable criteria that characterize when
lNF-ClRC(Jrc(*5)) is a II2-complete problem. As men-
tioned in Section 1, we first establish a dichotomy theorem
for lNF-ClRC(Jr

c(5')), where 5 is assumed to be a 1-valid
set of logical relations, i.e., every relation in 5 contains the
all-ones tuple (1,1,..., 1).

Theorem 3.2- Let S be a 1-valid set of logical relations.
IfS is Schaefer, then lNF-ClRC(Jr

c(S')) is in coNP; oth-
erwise, it is U% -complete. Actually, if S is non-Schaefer,
then even the following special case o/TNF-ClRC(7"c(5))
is ri? -complete: given an Tc(S)-formula ip and a negative
literal ->u, does p |=QRC ->U?

Moreover, there is a polynomial-time algorithm to de-
cide whether, given a finite 1-valid set of logical relations,
INF-CIRC(Tc(S)) is in coNP or U%-complete.

An outline of the proof of Theorem 3.2 is presented in
Section 4. The following examples illustrate the preceding
Theorem 3.2 and provide new instances of restricted cases
of the inference problem for propositional circumscription
having the same inherent complexity as the general case.

Example 3.3: Consider the ternary logical relation K =
{(1,1,1), (0,1,0), (0,0,1)}. Using the closure properties
that characterize when a logical relation is 2CNF, Horn,
dual Horn, or affine, it is easy to see that K is none of
the above. For instance, K is not Horn because (0,1,0) A
(0,0,1) = (0,0,0) £ K. Consequently, Theorem 3.2 im-
plies that lNF-ClRC(J"c({iv})) is n^-complete. I

Example 3.4: Consider the 1-valid set 5 = {R0,Ri,R2},
where R0 = {0,1}3 - {(0,0,0)} (expressing the clause

(xVyV z)), Ri = {0,1}3 - {(1,0,0)} (expressing the
clause (-.xVy Vz)), R2 = {0, l}3 - {(1,1,0)} (expressing
the clause (->x V ->y V z)). Using the closure properties, it is
easy to verify that Ri is neither 2CNF, nor Horn, nor affine,
and that R2 is not dual Horn. Consequently, Theorem 3.2
implies that lNF-ClRC(Jr

c(5)) is Il^-complete. I

As mentioned in Section 1, Theorem 3.2 can be used as
stepping stone to obtain a dichotomy theorem for the family
of all lNF-ClRC(Jr

c(S')) problems, where S is an arbitrary
set of logical relations. To this effect, we use the following
crucial concept, which was first introduced in [KK01].

Definition 3.5: Let R be a fc-ary logical relation. We say
that a logical relation T is a 0-section of R if either T is
the relation R itself or T can be defined from the formula
R(xi,..., Xk) by replacing at least one, but not all, of the
variables Xi,..., Xk by 0.1

To illustrate this concept, consider the logical relation
Riß = {(1,0,0), (0,1,0), (0,0,1)}. Then the logical re-
lation {1} is a 0-section of Riß, since it is definable by
#1/3(zi, 0,0). In fact, it is easy to see that {(1)} is the only
logical relation that is both 1-valid and a 0-section of Riß.

Theorem 3.6: Let S be a set of logical relations and let
S* be the set of all logical relations P such that P is both
1-valid and a 0-section of some relation in S.

If S* is Schaefer, then lNF-ClRC(Jb(5)) is in
coNP; otherwise, it is U^-complete. Actually, if S*
is non-Schaefer, then even the following special case of
lNF-ClRC(7b(5)) is Ul-complete: given an TC{S)-
formula p and a negative literal ->u, does p t=ClRC -lU-?

Moreover, there is a polynomial-time algorithm to de-
cide whether, given a finite set S of logical relations,
lNF-ClRC(Jb(5)) is in coNP or 11%-complete.

The proof of Theorem 3.6 will be given in the full paper.
We now present several different examples that illustrate the
power of Theorem 3.6. The first shows how the main result
in [EG93] can be easily derived from Theorem 3.6.

Example 3.7: Recall that 3-SAT coincides with SAT(S),

where S = {R0,RUR2,R3} and RQ = {0,1}3 -
{(0,0,0)} (expressing the clause (iVjV z)), Ri =
{0, l}3 - {(1,0, 0)} (expressing the clause (->x V y V z)),
R2 = {0, l}3 - {(1,1,0)} (expressing the clause (-ix V
-ny V z)), and R3 = {0, l}3 - {(1,1,1)} (expressing the
clause (-ix V ->y V ->z)).

Since the logical relations RQ, Rx, R2 are 1-valid, they
are members of S*. It follows that S* is not Schaefer, since
Ri is not 2CNF or Horn or affine, and R2 is not dual Horn.
Theorem 3.6 immediately implies that lNF-ClRC(Jr

c(S))
(i.e., INF-CIRC(3CNF)) is n^-complete. I

75

Example 3.8: Consider the set S = {Ro,R^}, where R0

and i?3 are as in the preceding Example 3.7. In this case,
SAT(S) is the problem MONOTONE 3-SAT, that is to say,
the restriction of 3-SAT to 3CNF-formulas in which every
clause is either the disjunction of positive literals or the dis-
junction of negative literals. It is well known that this prob-
lem is NP-complete (this can also be derived from Schae-
fer's Dichotomy Theorem 2.2). It is not hard to verify that
every relation in S* is dual Horn (for instance, 5* contains
i?o, which is dual Horn). Consequently, Theorem 3.6 im-
plies that INF-CIRC(.FC(S)) is in coNP. I

The preceding example reveals that the boundary in the
dichotomy for the inference problem in classical proposi-
tional logic is different than that in the dichotomy for the
inference problem in propositional circumscription. Sev-
eral other instances of this phenomenon are provided by the
final example of this section.

Example 3.9: If m and n are two positive integers with
m < n, then Rm/n is the n-ary logical relation consisting
of all n-tuples that have m ones and n — m zeros. It is
easy to see that Rm/n is not Schaefer. Consequently, if S
is a set of logical relations each of which is of the form
Rm/n f°r some m and n with m < n, then SAT(S) is NP-
complctc. On the other hand, S* is easily seen to be Horn
(and, hence, Schaefer), since every relation P in S* is a
singleton P = {(1,..., 1)} consisting ofthc77?-ary all-ones
tuple for some m. Consequently, Theorem 3.6 implies that
lNF-CiRC(7b(5))isincoNP.

This family of examples contains POSITIVE-1 -lN-3-
SAT as the special case where S = {R1/3}. I

4 Outline of Proof of Theorem 3.2

In this section, we present an outline of the dichotomy
theorem for INF-CIRC(.F(S)), where S is a 1-valid set of
logical relations. Due to space limitations, we have to con-
fine ourselves to stating the main technical steps and to
making a few high-level comments.

Assume first that 5 is Schaefer. In this case, is easy
to sec that there is a polynomial-time algorithm to decide
whether a given model of an .FcCS)-formula is minimal.
From this fact, it follows immediately that if S is Schaefer,
then lNF-ClRC(Jr

c(5')) is in coNP.
Towards the EI2 -hardness result, assume that S is not

Schaefer. Using Schacfcr's Expessibility Theorem 2.3,
the following decision problem can be shown to be n''-
complcte: Given a J"(5)-formula ip(x,y,w0,w\), decide
whether the sentence Vx3yip{x,y,0/u>o, l/w'i) is true. Our
goal is to show that this problem has a polynomial-time re-
duction to lNF-ClRC(7"(5)). One of the key steps in the
reduction is the following lemma, which was inspired from
a result in [EG93]. A proof can be found in the Appendix.

Lemma 4.1: Let S be 1-valid set and let ip(x, y, w0,wi)
be an T(S)-fornuda, where x = {x\,... ,xn), y =
(yi,..., ym), wo and w\ is the list of its variables. Let u,
x' = (x\,..., x'n) and z = {z\,..., zn) be new variables,
and let \-(u, x, z, x,', y) be the following formula

<p{x',y,u/u!0,l/wi) A (f\{xi t z,) I A

/\(«->y;)j A (fXix'^iuVx,))).

Then the formula V.f3;y^(.T;,y, 0/w0,1/wi) is true if and
onlyifx(u,x,z,x',y) f=ciRC ~lU-

Although ip is an Tc(S)-formixh, the formula x 'n tnc

preceding lemma is not an JTc(5)-formula, because it con-
tains elementary connectives, such as =, —>, and V. So, the
task now is to construct an JFC (S)-formula 9 in polynomial

time such that \ ^QRC
_"' 'f anc^ on'v 'f ^ NciRC ""'■ ^

is now natural to apply Schacfcr's Exprcssibility Theorem
2.3 again and express each of the above elementary con-
nectives using an 3J"c(5')-formula, i.e., a formula of the
form 3ü>C- where (is an .Fc(S)-formula. After these steps
arc completed, we obtain an 3J"c'(-S,)-formu'a 3vx' with the
same free variables as x such that \ |=C[RC "'W if and only

if 3vx' he IRC At this point, one may be tempted
to simply drop the existential quantifiers 3v, focus on the
3Jc(S)-formula \', and claim that \ hciRC _"/ ''" anc'
only if x' t=ClRC ~n/- ^ne ^aw 'n tms argumcnt 's triat

Schacfcr's Exprcssibility Theorem 2.3 gives no explicit in-
formation about the possible values of the existential quan-
tifiers in 3J/rc(5)-formulas expressing logical relations. As
a result, the witnesses to the variables v in the existential
quantifiers 3v may not give rise to minimal satisfying truth
assignments of x', hence the claimed equivalence may fail.

To bypass this serious obstacle, we must give up apply-
ing Schacfcr's Exprcssibility Theorem 2.3 and instead have
to use certain exprcssibility lemmas to the effect that all nec-
essary elementary connectives are definable by 3JTC:(5)-
formulas with explicit information about the witnesses to
the existential quantifiers. The first of these lemmas, due
to Creignou and Hebrard [CH97], concerns the definability
of the connectives —> and V; it also brings out the impor-
tance of the logical relation A' introduced in Example 3.3.
In what follows. T\ (S) denotes the class of all formulas ob-
tained from 7"(S)-formulas by substituting some variables
by the constant 1.

Lemma 4.2: (Creignou and Hebrard [CH97]) Let S be a
1-valid, non-Schaefer set of logical relations. Then at least
one of the following two statements is true.

1. There exists an T\ (S)-fonnula e(x, y) with the prop-
erty that (x -> y) = e(x.y).

76

2. The logical relation K = {(1,1,1), (0,1,0), (0,0,1)}
is in !Fi(S), i.e., there exists an T\{S)-formula
K(X, y, z) which is satisfied only by the three truth as-
signments (1,1,1), (0,1,0) and (0,0,1). Therefore:

(i) (x -> y) = (3z)K,(x,y,z); moreover,
(3Z)K(X, y, z) has the additional property that 1 is the
only witness for the variable z under the truth assign-
ment (1,1) to the variables (x, y).

(ii) (x V y) = (3z)n(z,x,y); moreover,
(3Z)K(Z, x, y) has the additional property that 1 is the
only witness for the variable z under the truth assign-
ment (1,1) to the variables (x, y).

The second expressibility lemma concerns the definabil-
ity of the connective =.

Lemma 4.3: Let S be a l-valid, non-Schaefer set of log-
ical relations. Then there exists a three-variable Fi(S)-
formula K'(X, y, z) that is satisfied by the truth assignments
(1,1,1), (1,0,0) and (0,0,1) but is not satisfied by the
truth assignment (1,0,1) (no information about the remain-
ing four possible assignments is required). Moreover, if we
set X(x', u, z, z') to be the formula

(u -> x') A (x' Vz)^(z^ z') A (u -► z') A K'(X',U, Z'),

we have the following properties:
(i) the formula x' = (u V ->z) is logically equivalent to

the formula (3z')X(x' ,u, z,z');
(ii) the only witnesses z' for each of the four assignments

(x' = l,u = l,z = 0),(x' = l,u = 0,z = 0),(x' =
1, u = 1, z = 1) and (x1 = 0, u = 0, z = 1) that satisfy the
formula (3z')X(x', u, z,z') are z' = l,z' = 0, z' = 1 and
z' = 1, respectively.

The proof of Lemma 4.3 can be found in the Appendix,
which also contains a self-contained proof of Lemma 4.2,
since that proof is used in the proof of Lemma 4.3.

We are now ready to return to the proof of
Theorem 3.2. As stated earlier, our goal is to
show that the following problem has a polynomial-
time reduction to INF-CIRC(().FC(S)): given a T(S)-
formula ip{x,y,wo,w\), decide whether the sentence
Vx3y<p(x,y,0/w0,l/wi) is true. Towards this goal, we
start with the formula x described in Lemma 4.1 and then
adjust x in six successive steps I = 1,...,6 (enumer-
ated below). At the last step, we will have constructed
an Jrc(5)-formula for which the desired reduction holds.
More formally, at each step / = 1,..., 6, we will construct
a formula xi such that for all/ = 0,..., 5 (assuming that xo
is x), the set of free variables of xi is going to be a subset
(not necessarily proper) of xi+i and, in addition, the formu-
las xi will satisfy the following three requirements:

Rl: Every truth assignment that satisfies xi can be ex-
tended to a truth assignment that satisfies xi+i-

R2: The restriction of every truth assignment that satis-
fies xi+i to the variables of xi also satisfies xi-

R3: Let a and a' be two satisfying truth assignments of
Xi such that a(u) = 1 and a' < a. If ß is an extension of
Q to a satisfying truth assignment of xi+i, then there is an
extension ß' of a' to a satisfying truth assignment of xi+i
such that ß' < ß.

It is easy to see that once we prove the above three re-
quirements, then for each I > 0, xi has a minimal satisfying
truth assignment with u = 1 if and only if xi+i does. From
Lemma 4.1 and the fact that the formula constructed at the
last step will be in Fc(S), it follows that the reduction will
be complete.

Notice first that if xi and xi+i have the same set of free
variables, then the above three requirements are equivalent
to asserting that xi and xi+i are logically equivalent.

Step 1: In x, replace each connective x\ = (uVij), for
i = 1,... ,n, with x\ = (u V -iZj). The formula xi has
the same variables as x and it is equivalent to x, since the
conjunct /\"=1 (xt ■£ zt) appears in both x and xi Therefore
the requirements R1-R3 are satisfied.

Step 2: In xi, replace each connective x\ = (u V -IZJ),

for i = l,...,n, by X(x'i,u,zi,z{), where the z\, for
i = l,...,n, are new variables and A is the formula
described in Lemma 4.3. Because of the equivalence of
x\ = (u V -izj) with (3z'i)X(x'i,u,zi,z'i), we can imme-
diately conclude that the requirements Rl and R2 are satis-
fied. To prove requirement R3, observe that because only
the variables x\,u,Z{, for i = l,...,n, are involved in
the connectives that are replaced at the current step, and
because we have associated a different witness z\ for each
triple of variables x't, u, zt, we can restrict our attention to
assignments to the three variables x[,u and zt only (for an
arbitrary but fixed i). Suppose that a and a' are two assign-
ments to x[,u and Zi such that a' is less than or equal to
a and u = 1 in a. Then first observe that because of the
conjunct x[= (u\f -i^), x\ = 1 in a. Also observe that
because of the conjunct x, ^ ziy the values of Zi in a and
a' are equal (recall from the proof of the Key Lemma 4.1
that we express this fact by saying that the value of zt, as
well as x^ remain "fixed"). The proof of this step can then
be completed by distinguishing two cases according to the
common value of z; in a and a'. The details will appear in
the full paper.

Step 3: In X2, replace each connective x\ V Z{ (that ap-
pears as part of the formula X(xl

i,u,zi,z'^) by x» ->• x\.
The satisfaction of the requirments R1-R3 is proved exactly
as in Step 1.

Observe that, apart from the conjunct /\"=1(xi ^ Zi),
the only logical connectives that have not yet been replaced
by an Jrc(5')-formula are connectives of the form x -» y

11

(x and y arc used as generic names of variables), where x
is either u or z; or z; for some i. In the next two steps, we
deal with these connectives. Notice first that if the relation
K = {(1,1,1), (0,1,0,(0,01)} is not in Fi{S), then we
are in Case 1 of Lemma 4.2, therefore there is an T\ (S)
formula e(x,y) equivalent to x —> y. In this case, in one
step that subsumes the following two steps, we just replace
every occurrence of x -> y with e(x,y). So in the next
two steps, we assume that the relation K is in T\{S), and
therefore we are in Case 2 of Lemma 4.2.

Step 4: In X3> replace each connective u —> x (x is
again a generic name for variables) with K(U, x, x'), where
x' is a new variable distinct for each x and K is the formula
described in Case 2 of Lemma 4.2. The validity of the re-
quirements Rl and R2 is immediate. As for requirement
R3, restrict attention to the variables u and x, for an arbi-
trary but fixed variable x. The validity of R3 then follows
from the witness property (i) established in Lemma 4.2.

Step 5: Notice first that we cannot imitate Step 4 and re-
place the connectives of the form X{ —> x with K(XJ,X, X'),

since in two models a and a' of x,i —> x such that a' is less
than or equal to a, the value of Xi remains fixed, while it is
the value of x that may drop from 1 in o to 0 in a'. There-
fore, the witness property (i) of Lemma 4.2 does not suffice
to prove R3 for the case when xi — 0. Instead, we first sub-
stitute x.i -> x with zi V x and then substitute the latter with
K(X', Zi,x). If we use the witness property (ii) in Lemma
4.2 for the connective z,- V x, everything goes through, for
both possibilities z; = 1 and z-, = 0, as it can be easily seen.
We deal similarly with the connectives of the form z, —► x.

Step 6: By Schacfcr's Expressibility Theorem 2.3, there
is an !Fi(S) formula, say £(x, y, t\,..., ts, wo), such that
for each i = l,...,n, the connective Xj ^ Z; is log-
ically equivalent to (3t)C{xj/x, Zj/y, t,0/w0). To con-
struct \6< replace in \5 the connectives Xj ^ z, with
((xj/x,zi/y,x"A/t1,...,x"s/t,s,0/iuo), where x"r for
i = 1,... ,7i and r = 1,..., s arc new variables. It is not
hard to sec that requirements R1-R3 can be proved in this
case with no special properties for the witnesses. Notice
that xa is 'n ^c{S) (and that the constant 0 was only used
in the last step).

This concludes the outline of the proof of Theorem 3.2.

Acknowledgments: We are grateful to Georg Gottlob for
bringing to our attention his work with Thomas Eiter on the
complexity of circumscription [EG93] and for raising with
us the question of a dichotomy in the inference problem
for propositional circumscription. We also wish to thank
Moshe Y. Vardi for valuable feedback on an earlier version
of this paper.

References

[CH96] N. Creignou and M. Hermann. Complexity of
generalized satisfiability counting problems. In-
formation and Computation, 125(1):1-12, 1996.

[CH97] N. Creignou and J.-J. Hebrard. On generating
all solutions of generalized satisfiability prob-
lems. Theoretical Informatics and Applications,
31(6):499-511,1997.

[CL94] M. Cadoli and M. Lenzerini. The complex-
ity of closed world reasoning and circumscrip-
tion. Journal of Information and System Sci-
ences, pages 255-301, 1994.

[Cre95] N. Creignou. A dichotomy theorem for maxi-
mum generalized satisfiability problems. Jour-
nal of Computer and System Science, 51 (3):511 -
522, 1995.

[DP92] R. Dechter and J. Pearl. Structure identification
in relational data. Artificial Intelligence, 48:237-
270, 1992.

[EG93] Th. Eiter and G. Gottlob. Propositional circum-
scription and extended closed-world reasoning
arc IT^ -complete. Theoretical Computer Sci-
ence, 114:231-245, 1993.

[GJ79] M. R. Garcy and D. S. Johnson. Computers and
Intractability - A Guide to the Theory of NP-
Completeness. W. H. Freeman and Co., 1979.

[GPP89] M. Gelfond, H. Przymusinska, and T Przy-
musinksi. On the relationship between circum-
scription and negation as failure. Artificial Intel-
ligence, 38:273-2Z7, \989.

[KK01] L.M. Kirousis and Ph.G. Kolaitis. The complex-
ity of minimal satisfiability problems. In Proc. of
the 18th Annual Symposium on Theoretical As-
pects of Computer Science - STACS 2001, vol-
ume 2010 of LNCS, Springer 2001.

[KS98] D. Kavvadias and M. Sideri. The inverse satis-
fiability problem. SIAM Journal of Computing,
28(1): 152-163, 1998.

[KSW97] S. Khanna, M. Sudan, and D.P. Williamson. A
complete classification of the approximability of
maximization problems derived from Boolean
constraint satisfaction. In Proc. of the 29th An-
nual ACM Symposium on Theory of Computing,
pages 11-20, 1997.

78

[Lad75] R. E. Ladner. On the structure of polynomial
time reducibility. Journal of the Association for
Computing Machinery, 22(1): 155—171,1975.

[McC80] J. McCarthy. Circumscription - a form of non-
monotonic reasoning. Artificial Intelligence,
13:27-39, 1980.

[Pap94] C. H. Papadimitriou. Computational Complex-
ity. Addison-Wesley Publishing Company, 1994.

[RV00] S. Reith and H. Vollmer. Oprimal satisfiability of
propositional calculi and constraint satisfaction
problems. In 25th Int. Symp. on Mathematical
Foundations of Computer Science - MFCS 2000,
volume 1893 of LNCS, pages 640-649. Springer,
2000.

[Sch78] T.J. Schaefer. The complexity of satisfiability
problems. In Proc. 10th ACM Symp. on Theory
of Computing, pages 216-226, 1978.

Appendix: Proof of Lemmas 4.1, 4.2, and 4.3

Lemma 4.1: Let S be 1-valid set and let p(x,y,wo,wi)
be an .F^-formula, where x = (xL,... ,xn), y =
(?/i,..., ym), w0 and Wi is the list of its variables. Let u,
x' = (x[,..., x'n) and z = {z\,..., zn) be new variables,
and let x(u, x, z, x',y) be the following formula

<p(x',i/,u/iuo,l/wi) A f\(xi j£ zi) J A

A("->w) A(A^ = (wV^))j-
Then the formula Vx3yip(x,y, 0/w0,1/wi) is true if and
on\y[fx(u,x,z,x',y) |=QRC ~'

U
-

Proof: For the if part, consider an assignment a to the vari-
ables x that satisfies the formula \/y->ip(x,y, O/wo, l/^i).
Extend a to an assignment ß of all variables of the formula
X by letting u = 1, x\ = 1 for i — 1,... ,n, yj = 1 for
j — 1,..., m, and by giving to each zt, for i = 1,..., n, the
opposite value of xt. Because <p is 1-valid, it is easy to see
that ß satisfies x- We will show that ß is actually a minimal
satisfying assignment of x- First observe that the conjuncts

A"=i (x< ^ zi) ensure that none of the variables x or z can
get a different value at a satisfying assignment of x strictly
smaller than ß (we express this fact by saying that the values
of x and z are fixed). Also, the conjuncts f\"lzl{u -» yj)

and /\"=1 (x\ = (u V re;)) ensure that the values of y and x'
are bound to be 1 at any assignment satisfying x and with
u = 1. All we have to prove is that u cannot get the value

0 at a satisfying assignment of x smaller than ß. Assume it
did and let 7 < ß be be a satisfying assignment of x with
u = 0. Then, observe that in 7, because of the conjunct

AlLifai — (u v xi))' tne values of x' would be equal to
the corresponding values of x. Therefore, because of the
first conjunct of x> and because u = 0 in 7, the values of
x and y in 7 would satisfy ip(x, y, 0/w0,1/iui). Now ob-
serve that 7 and ß coincide on x, because the value of x
is "fixed". Therefore 7 and a also coincide on x, since by
construction ß extends a. This is a contradiction, because
we assumed that a satisfies Vy-np(x, y, 0/w0, l/ioi).

To prove the converse, consider a minimal assign-
ment a of x with u = 1 and also consider the assign-
ment ß induced by a on x. We claim that ß satisfies
Vy-«p(x,y:0/wo,l/wi). If not, then there is an assign-
ment of values to y which combined with ß forms an assign-
ment 7 that satisfies tp(x, y, 0/wo, 1/wi). Extend 7 to an
assignment Ö of all variables of x by setting u = 0, x\ = Xi
for i = 1,..., n, and by giving to each Zj for i = 1,..., n
the opposite value of a;,. It is easy to see that S satisfies x
and is strictly smaller than a, which is a contradiction. I

Lemma 4.2: (Creignou and Hebrard [CH97]) Let S be a
1-valid, non-Schaefer set of logical relations. Then at least
one of the following two statements is true.

1. There exists an T\(S)-formula e(x,y) with the prop-
erty that (x —» y) = e(x, y).

2. The logical relation K = {(1,1,1), (0,1,0), (0,0,1)}
is in Ti(S), i.e., there exists an T\{S)-formula
K(X, y, z) which is satisfied only by the three truth as-
signments (1,1,1), (0,1,0) and (0,0,1). Therefore:

(i) (x —> y) = (3z)K,(x,y,z); moreover,
(3Z)K(X, y, z) has the additional property that 1 is the
only witness for the variable z under the truth assign-
ment (1,1) to the variables (x, y).

(ii) (x V y) = (3Z)K(Z, X, y); moreover,
(3Z)K(Z, x, y) has the additional property that 1 is the
only witness for the variable z under the truth assign-
ment (1,1) to the variables {x, y).

Proof: Since S is a 1-valid, non-Schaefer set of logical rela-
tions, it must contain a 1-valid logical relation R that is not
affine. As shown in [CH96], there must exist two /c-tuples
s,t e R such that 1 © s © t 0 R, where I is the all-ones
fc-tuple (1,... ,1) and k is the arity of R. Letxi,... ,xk be
propositional variables and let R! be a relation symbol of
arity k that will be interpreted by R. For (i,j) e {0, l}2,
let Vij be the set of all variables xp, 1 < p < k, such
that the p-th coordinate of the tuple s is equal to i, and the
p-th coordinate of the tuple t is equal to j. Let x,y,z,w
be four new propositional variables and let <pi(x,y,z,w)

79

be the 7"(5)-formula R' {x /Vm,y /Vl0, z /V0l,w /V^) ob-
tained from the formula R'{x\,...,Xk) by substituting
the variable x for all occurrences of the variables in Too,
and similarly for the variables y, z, and w. Also let
<p-2(x,y,z) be the T\(S)-formula ipi(x,y,z,l/w). Now
observe the following: (1) the truth assignment (1,1,1,1)
satisfies (pi(x,y,z,w), since 1 G R; (2) the truth assign-
ment (0,1,0,1) satisfies ipl(x,y,z,w), since s G R; (3)
the truth assignment (0,0,1,1) satisfies the <pi (x, y, z, w),
since t G R; (4) the truth assignment (1,0,0,1) docs not
satisfy tpi(x,y,z,w), since 1 © s © t £ R. Therefore,
(1,1,1), (0,1,0) and (0,0,1) satisfy ip2{x,y,z), while
(1,0,0) does not.

Wc have no information as to whether or not the remain-

ing four assignments (1,1,0), (0,1,1), (1,0,1), (0,0,0)
satisfy ip2(x,y,z). Thus, we have sixteen possibilities to
examine regarding the satisfiability of (^(x, y, z) by these
four truth assignments. We start by branching on the two
possibilities for the truth assignment (0,0,0):

Case A: (0,0,0) satisfies (p2(x,y, z). We distinguish
two subcases: Subcase A.l: (0,1,1) satisfies ip2(x,?/,2).
Then set e(x,y) = ip2{x,y,y). Subcase A.2: (0,1,1)
docs not satisfy ip2(x,y,z). One more branching: Sub-
case A.2.1: (1,0,1) satisfies (p2(x,y,z).Then set e(x,y) =
ip2(y,x,l). Subcase A.2.2: (1,0,1) does not satisfy
<p-2(x,y,z). Then set e(x,y) = ip-y[x,y,x). This completes
the examination of Case A.

Case B: (0,0,0) does not satisfy y>2(x,2/, z). Consider
the following branching: Case B.l: None of the three
assignments (1,1,0), (1,0,1), (0,1,1) satisfies <p2(x,y, z).
Then n(x,y,z) = <p2(x,y,z). Case B.2: At least one
the three assignments (1,1,0), (1, 0,1), (0,1,1) satisfies
ifi2{x,y, z). We make a three-way branching depending
on which of these three assignments satisfies ^(x, y, z)-
Case B.2.1: (1,1,0) satisfies tp2(x,y,z). Then observe
that (x V y) = <p-2(x,x,y). Wc postpone for a while the
continuation of this case where we have already established
that (x V y) is defined by an Jri(5)-formula. Case B.2.2.:
(1,0,1) satisfies ^(x, y, z). Then observe that (x V y) =.
(f-2{x,y,x). Again, we postpone the continuation of this
case. Case B.2.3: (0,1,1) satisfies ip2(x,y,z). Since wc
have already examined B.2.2, wc may assume that (1,0,1)
does not satisfy <p-2(x,y,z). Then set e(x,y) = (p2(x,y, 1).
At this point all we are left to deal with is the case where
(x V y) is defined by an T\ (S)-formula. We examine this
case below.

Since not every element of 5 is a dual Horn relation. S
must contain a logical relation Q for which there are tuples
s,t G Q such that sVt^Q (here we use the closure prop-
erty that characterizes dual Horn relations). By arguments
similar to the preceding ones, wc can construct an !Fc(S)-
formulai/>2(x,iy,z) that is satisfied by (1,1,1), (0,1,0) and
(0, 0,1), but it is not satisfied by (0,1,1). Let TI>3{X, y, z)

be the JTf,(5)-formula i/;2(x, y, z) A (y V z). Observe that
V;3(x, y, z) is satisfied by (1,1,1), (0,1,0) and (0,0,1), but
it is not satisfied by (0,1,1), (1,0,0), (0,0,0). Wc arc now
left with the triples (1,1,0) and (1,0,1) about which there
is no information as to whether they satisfy ij>3(x,y,z) or
not. We consider the following three exhaustive cases:

(1) If (1,1,0) satisfies i{>:i(x,y,z), then set e(x,y) =
ij>3(y,l,x); (2) if (1,0,1) satisfies ^^{x.y.z), then set
e(x.y) = il>3{y,x,l); (3) if neither (1,1,0) nor (1,0,1)
satisfies ij)3(x,y,z), then K.(x,y,z) = ij':i(x,y, Z). This
completes the proof of the Lemma 4.2.1

Lemma 4.3: Let S be a \-valid, non-Schaefer set of log-

ical relations. Then there exists a three-variable s~_{S)-

formula K'(X, y, z) that is satisfied by the truth assignments
(1,1,1), (1,0,0) and (0,0,1) but is not satisfied by the

truth assignment (1, 0,1) (no information about the remain-
ing four possible assignments is required). Moreover, if we
set X(x',u, z. z') to be the formula

(w -> x1) A (x1 V z) A (z -> z') A (u -+ z1) A K'(X',U,Z'),

we have the following properties:
(i) the formula x' = (?/ V -e) is logically equivalent to

the formula (3z')\(x', v, z, z')\
(ii) the only witnesses z' for each of the four assignments

(x1 = 1,1/ = 1,2 = 0),(.r' = l,w = 0,2 = 0),(:;:' =
1, u = 1,2= 1) and (.?:' = 0,1/ = 0, z = 1) that satisfy the
formula (3z')X(x', u, z, z1) are z' = l,z' = 0, z' = 1 and
z' = 1, respectively.

Proof of Lemma 4.3
Let K'(.T, y. z) be the formula V'L'O/, X, Z) constructed in the
last part of the proof of Lemma 4.2 (notice the inversion
of x and y in i/'a)- From the properties of XJH, it immedi-
ately follows that K' is satisfied by the truth assignments
(1,1,1), (1,0,0) and (0,0,1) but is not satisfied by the
truth assignment (1,0,1). To prove the properties (i)-(ii),
wc essentially do exhaustive case analysis for all the pos-
sible assignments to the variables x',z,u. We can imme-
diately check that the formula x' = (?/ V -12) is satisfied
by the assignments (1,1,0), (1,0,0), (1,1,1) and (0,0,1)
(each bit in each assignment is assigned to x',u and 2
in this order), while it is not satisfied by the assignments
(0,1,0), (0,0,0), (0,1,1) and (1,0,1). Now by plugging
into the formula (3z')X(x', it. 2, 2') the latter four assign-
ments, one after the other, wc can check that they do not
satisfy it. In the same way we can check that the former
four assignments (1,1, 0), (1, 0, 0), (1,1,1) and (0,0,1) do
satisfy (3z')X(x', u, z, 2'). During the check that the above
four assignments arc indeed satisfying, we also determine
all possibilities for the witness 2', in order to verify that the
uniqueness properties required from z' are indeed true (wc
will only need some of these uniqueness properties). |

80

Relating Semantic and Proof-Theoretic Concepts
for Polynomial Time Decidability

of Uniform Word Problems

Harald Ganzinger
Max-Planck-Institut für Informatik, Saarbrücken, Germany

hg@mpi-sb.mpg.de

Abstract
In this paper we compare three approaches to polyno-

mial time decidability for uniform word problems for quasi-
varieties. Two of the approaches, by Evans and Burris, re-
spectively, are semantical, referring to certain embeddabil-
ity and axiomatizability properties. The third approach is
more proof-theoretic in nature, inspired by McAllester's
concept of local inference. We define two closely related
notions of locality for equational Horn theories and show
that both the criteria by Evans and Burris lie in between
these two concepts. In particular, the variant we call stable
locality will be shown to subsume both Evans' and Burris'
method.

1 Introduction
This paper relates two strands of results about polynomi-

al^ decidable uniform word problems for quasi-varieties.
A quasi-variety is a class of algebras satisfying a particu-
lar (in this paper always finite) set K of equational Horn
clauses. Given /C, the uniform word problem for K. is to de-
cide whether or not an equational, variable-free Horn clause
C, the query, is entailed by fC: the antecedent of C are the
defining relations for the generators (fresh constants) ap-
pearing there; the succedent of C is the word problem to be
solved for that presentation.

One line of research leading to decidability criteria goes
back to work by Skolem (Skolem 1920). Skolem consid-
ered the variety of lattices and investigated relational en-
codings by function-free clauses which we also call Datalog
clauses today. Given a Horn theory K, one can flatten the
clauses such that all equations in the transformed clauses
are of the form f{x\,... ,Xk) ftsx or xzzy with variables x,,
x, y. Next one can replace functions / by relations (repre-
senting their graphs) rf, so that equations f(x\,... ,Xk) &x
become atoms rf{x\,... ,Xk,x). Datalog also allows one to
express that equality is an equivalence and that relations are
compatible with equality. Moreover, one can specify that
function graphs represent partial functions, for example, by
saying rf(x,y),rf(x,z) ->j«z. The "only" property that

is lost in the relational encoding is that functions are total.
However, if one can show that all finite relational models
of the encoding can be extended (maintaining K.) so that the
functions become total, the uniform word problem becomes
(poly nomially) decidable. For if the relational version C* of
a flat clause C cannot be proved from the Datalog encoding
K.D of K there will be a finite counter model for K,D U ~^C*
(there are no function symbols other than the constants from
C*), and if that model can be extended to one in which func-
tions are total, this yields a model of K. in which C is false.
Skolem presented this technique for the special cases of lat-
tices and for certain axiomatizations of projective geometry,
but not for varieties in general. His algorithm for lattices
resulting from a dynamic programming implementation of
the function-free encoding was rediscovered later by Cos-
madakis (1988) and by Freese (1989).1

Independently of Skolem's methods, Evans (1951)
proved a somewhat stronger result for varieties in general.
As Evans' original proof is based on quite different tech-
niques,2 it is not surprising that Skolem's work is not even
mentioned in his paper. Later, Burris (1995) realized that
one might, in fact, view Evans' result as a generalization
of Skolem's techniques. One of Burris' observations was
that a weak form of definedness requirements for the partial
functions can also be expressed in Datalog. (For instance,
one can require r^(x,y) —> rK(x,y), expressing a relativized
definedness property for the function g in terms of the de-
finedness properties of/.) Evans' result is that the uniform
word problem is (polynomially) decidable whenever all fi-
nite partial algebras "satisfying" K. can be injectively em-
bedded into a total /C-algebra, where his notion of valid-

'This is how Burris (1995) puts it. Looking at the papers, however, the
connections to Skolem's work are not so obvious.

2Evans' algorithm is ground completion — before the concept of com-
pletion was invented by Knuth & Bendix (1970) — of the antecedent of
the query together with certain ground instances of the theory clauses dy-
namically derived from subterms of the query. Using auxiliary constants to
name subterms, Evans' procedure is closely related to recent presentations
of congruence closure algorithms such as the one by Bachmair & Tiwari
(2000).

0-7695-1281-X/01 $10.00 © 2001 IEEE
81

ity for equations in partial algebras includes precisely those
relativized defincdness requirements expressible in Datalog
(cf. Section 2 below). Having seen the connection between
Skolem's and Evans' ideas, it was not difficult for Burris
(1995) to extend Evans' result to quasi-varicties. In the
same paper he then also presented an even more general
criterion for polynomial decidability that refers to the finite
axiomatizability of certain classes of substructures of the
relational versions of the AC-algebras. We will return to this
criterion in Section 7 below.

The approaches of Evans and Burris emphasize the role
of partial algebras (constructed from the subterms and the
equations in the antecedent of a query) for the decid-
ability of uniform word problems. An approach that is
based on confining deduction to subterms of the query is
represented by the concept of local inference systems in
(Givan & McAllester 1992, McAllester 1993). Local the-
ories are sets of Horn clauses AC such that AC |= C, for
variable-free Horn clauses C, only if already ACc |= C, where
ACc is the set of instances of AC in which all terms are
subterms of ground terms in either AC or C. Givan and
McAllester dealt with non-equational logic whereas we are
interested in the equational case. As we shall see below,
the main results about non-equational local theories given
in (Givan & McAllester 1992, McAllester 1993, Basin &
Ganzingcr 2001) can be easily extended to the equational
case. In particular, the uniform word problem for local
equational theories is decidablc in polynomial time. A
slightly more general variant of this concept is obtained by
allowing in local entailment all instances ACrq of AC by sub-
stitutions sending the variables in AC-clauscs to subterms of
the ground terms of Cor AC. We call AC stably local if already
AC[C] |= C whenever AC (= C.

The main results of this paper establish close rela-
tionships between the approaches by Evans, Burris and
McAllester. We show that both Evans' and Burris' cri-
teria lie in between the two variants of locality. The in-
clusions arc (mostly) proper. In particular stable locality
is shown to subsume Burris' (and hence Evans') method.
We also show for a the subclass of superficial presenta-
tions (McAllester 1993) AC that locality and embeddability
coincide.

From these results we may conclude that all three crite-
ria for polynomial decidability of uniform word problems
arc essentially equivalent. In the end, this might not be so
surprising given that all three approaches arc based on ideas
of exploiting the algebraic and deductive structure, respec-
tively, induced by the linearly many query subterms. More-
over it is known that any P-timc inference problem can be
encoded as a local Horn theory. However, as we shall sec
below, to clarify the precise relationships induces a number
of technical complications mainly related to Evans' specific
notion of validity in partial algebras.

2 Basic Notions and Notation
Our investigation assumes an arbitrary, but fixed signa-

ture Z of function symbols to be given, containing an infi-
nite subset C of constants that are used to denote the gener-
ators in the formulation of word problems. An equational
Horn clause is an implication of the form e\,... ,e^ —> en,
k > 0, with equations e-, = (.?,~f,) over Z. We consider
the object language symbol "«" for formal equality also*
syntactically as symmetric, so that sK,t at the same time
also denotes tK,s. Sometimes we also take a relational
view of functions. Then, given a signature Z, by Z* we
denote the corresponding relational signature where each
n-ary function symbol / in Z is replaced by a n + 1-ary re-
lation symbol r?. If C is an equational Horn clause with all
equations of the form f{x\,... ,;q.) «x or x~)\ with vari-
ables jc,-, JC, y, by C* we denote its relational form, the Z*
clause resulting from C by replacing any equation of the
form /(JCI,... ,Xk)zix by an atom r}{x\,... ,Xk,x). (Equa-
tions between variables remain unchanged.)

Let AC be a finite set of clauses, called the theory. For
technical simplicity we assume that the only terms in AC
which are ground are constants. In equational logic this
restriction can always be satisfied by flattening transfor-
mations, cf. section 4. The uniform word problem for AC
is to decide if AC (= C, for ground Horn clauses C (called
queries), where "(=" denotes implication in first-order logic
with equality.

A partial (IL)-algebra is a structure (A, {//\}/ei), where
A is a non-empty set, and for every / £ Z with arity n, fa
is a partial function from A" to A. 3 Where no confusion
about the interpretation of the function symbols can arise,
we identify the algebra with its carrier A. For partial alge-
bras the notion of evaluating a term t with respect to a vari-
able assignment ß for its variables, yielding a value ß(t) in
A, is the same as for total algebras, except that this evalu-
ation is undefined, if / = f(t\,... ,t„) and cither one of the
ß(tj) is undefined, or else (ß(t\),... ,ß{t,,)) is not in the
domain of fa- If the term t is ground, the evaluation is in-
dependent of any variable assignment, and its value will be
denoted by f^. If A C B are partial Z-algebras, B is called
an expansion of A \{ fa = /ß|/i, the restriction of the partial
function /# to the subset A. A is called a (total) algebra
whenever all functions are total. Under the relational view,
if ,4 is a (partial or total) Z-algebra, by A* we denote its rela-
tional variant, the Z*-structure for which rA,{ci\,... ,a„,a)
is true if, and only if, fa(a\, ... ,a„) = a.

Given a set AC of equational Horn clauses, by AC we also
denote the quasi-variety represented by AC, that is, the class
of all total algebras that satisfy (in the usual sense of first-
order logic with equality) the clauses in AC. A partial AC-
algebra A is a partial algebra satisfying all the clauses in

-'This also includes the possibility for a constant symbol to not bo de-
fined in A.

82

K. Hereby a clause s\ sa t\,... , sk «f* -»• s «f w satisfied (is
va/W) in A, if for all assignments j3 of elements in A to the
variables in the clause, whenever the ß(sj) and /}(?,-) are all
defined and J3(J,-) = J3(f,-), then

(i) if j3(5) and j3 (f) are both defined then ß{s)=ß(t); and
(ii) if j = f(uu... ,«„), n > 0, and if all terms j3(w,-) and

0(f) are defined, then j8(j) is also defined.4

We say that a partial algebra weakly satisfies /C, if only re-
quirement (i) is satisfied for any clause in K,. In a partial /C-
algebra, requiring that an equation be satisfied also induces
certain definedness requirements for the functions that ap-
pear in the equation. Sometimes we speak of strong sat-
isfaction when we want to emphasize that both (i) and the
definedness requirements (ii) are fulfilled.

This specific concept of validity for clauses in partial al-
gebras was introduced by Evans. Its definedness require-
ments may appear ad hoc at first sight. Viewed relationally,
however, one observes that this is the strongest notion of
relative definedness that can directly be expressed in Data-
log. For instance an equation f(g(x))« h(x) can be encoded
by writing the two clauses rg(x,y),rJ(y,z) -» rh(x,z) and
rl!(x,y),rh(x,z) -» r^(y,z), where these two clauses imply
both the equality and the definedness requirement associ-
ated with the equation. In other words, the natural encoding
of conditional equations into Datalog induces the relativized
definedness requirements in Evans' definition.

As an aside, many more notions of validity have been
considered in the literature, usually motivated by a partic-
ular application. One of the more prominent choices is
to consider existential equality, where an equation sxt is
interpreted as "s and t are defined and are equal". Ex-
istential equality appears to be useful for applications to
the semantics of programming languages and to intuition-
istic logic (Scott 1979). The treatment of partial algebras
by Burmeister (1986) is also based on existential equality
since most of the other notions of validity can be encoded
in existential equality.

A (total) mapping h : A -> B between partial S-algebras
A and B is called a (weak) (I.-) homomorphism if whenever
fA(a],...,ak) is defined, then so is fB(h(a\),... ,h{ak)),
and h(fA(au...,ak)) = fB(h{ai),... ,h(ak)). A partial I-
algebra A is said to weakly embed into K, if there exists a
(total) /C-algebra B and an injective (weak) homomorphism
from A to B.

Evans' result (which was later extended to quasi-
varieties by Burris) refers to partial algebras with defined-
ness requirements:

THEOREM 2.1 (EVANS 1951, BURRIS 1995) Let £ be a
finite set of Horn clauses. If every finite partial /C-algebra

4Remember that symmetry of x is built into the notation so that the
same property is also assumed to hold when exchanging s and t.

weakly embeds into K, then the uniform word problem for
/C is decidable in polynomial time.

A proof of this theorem, via the relational encoding, was
outlined in the introduction.

3 Local Equational Theories
Let *F be a set of ground terms and C a clause. By ICy we

denote the set of ground instances of K. in which all terms
are in XV. We say that K. entails C with respect to y¥, and
write £ f=y C, if £4, (= C.

If S is a clause or a set of clauses, by st[S] we denote the
set of all ground (sub)terms appearing in S or in £. (We
use this notation when £ is fixed by the context. Note that
we have restricted theory presentations £ to only contain
constants as ground terms.) A theory £ is called local if for
every ground Horn clause C we have £ |= C if, and only if,
^st[c] t= C. Whenever £strq |= C we say that C is locally
entailed by £. The following presentation Int of integers
with successor and predecessor is local (at the end of this
section we will briefly explain why):

p(x)&y -> s(y)mx

s(x)tzy -> p(y)&x

p(x)&p(y) -» XKy

s(x)xs(y) -> x&y

For a local theory to decide a word problem represented by
C it suffices to generate all ground instances of the theory
K. in which all terms are either subterms of C or constants
in K. and to check whether C is entailed by those ground
instances. For example, the query p(s(z))taz is entailed
in equational logic by the instance s(z)&s(z) -> p(s(z))&z
of the second clause in Int.5 In that clause, all terms are
subterms of the query. The third and fourth clauses of Int
are consequences of the first two clauses. For example,
s(u)&s(v) -)• usiv follows from S(U)KS(U) -» p(s(u))xu
and 5(v)«j(v) ->■ p(s(v))xv. However, in this derivation
there appear terms (such as p(s(u))) which are not admit-
ted in local entailment. Hence, although the injectivity
clauses are entailed by the other clauses, for the presenta-
tion to be local they cannot be deleted. This is a general
phenomenon. For a presentation to be local, sufficiently
many consequences must be present — in particular those
consequences which are not entailed by local implication.
Clearly, locality is a property of a presentation rather than a
property of the quasi-variety.

If the size of K is considered as a constant, the set £strq
is a finite set of equational ground clauses the size of which
is polynomially bounded by C. In the non-equational case

5 Note that z is formally a constant here. But since it does not oc-
cur anywhere else, proving p(s(z))xz is the same as showing Int f=
Vz(/7(,(z))«z).

83

when « is interpreted as an arbitrary binary relation sym-
bol, applying the result of Dowling & Gallier (1984), wc
observe that entailment of queries for local theories is dc-
cidable in polynomial time. We will show that this result
can be extended also to the equational case as local impli-
cation is independent of whether or not equality is internal
or external.

Let us use (= and |=neq to denote implication in logic
with equality and without equality, respectively. In logic
without equality, « is an arbitrary binary relation symbol.
Let EQ denote the set of equality axioms consisting of rc-
flexivity, symmetry, transitivity and congruence axioms

x\Rsyi,...,xkxsyk -» f{xu... ,**)«/(yi,... ,yk)

for each k-ary function symbol / in the signature. In first-
order logic equality can be internalized since AC (= C if, and
only if, K-UEQ |=neq C. This carries over to local implica-
tion, the main reason being that EQ itself is a local theory
(in logic without equality):

PROPOSITION 3.1 (GIVAN & MCALLESTER 1992) For
any ground Horn clause C we have EQ (=neq C if, and only

if. EQst[C] l=neq C.

A consequence of this result is that congruence closure,
that is, the uniform word problem for the class of all X-
algcbras, is dccidable in polynomial time, a result that was
first proved by Kozcn (1977) and later shown to be in
0(Hlog«) by Downey, Sethi & Tarjan (1980).

PROPOSITION 3.2 Let S be a set of Horn clauses in which
all terms are contained in a subtcrm-closed set 4* of ground
terms. For equalities e between terms in 4* we have S \= e
if, and only if, SUEQy |=neq e.

Proof. The direction from right to left is trivial. Conversely,
suppose that S \= e in equational logic. Then \jtT^{%) u

EQ |=neq e, with 77s the immediate consequence operator
sending interpretations / to

{<?o | lUEQ |=neq e-„ for some clause e\,... ,ek -> eo in S}.

From Proposition 3.1 we infer that löEQ |=neq e, only if
/ U EQyt |=neq e-„ where 4\ is the set of all subtcrms in / or
in e\. These terms are all in 4' for those / obtained as T$(%),
as an easy induction shows. Therefore, S UEQy f=neq e. □

As an immediate consequence wc obtain:

THEOREM 3.3 Let S be a set of Horn clauses. Then S is a
local theory in logic with equality if, and only if, SUEQ is
local in logic without equality.

This property of equational logic allows us to extend the
results by Givan & McAllester (1992), McAllester (1993)
and Basin & Ganzingcr (2001) to local equational theo-
ries: Any language in P can be encoded as a uniform
word problem for a local theory, that is, the method is
complete for polynomial time. The set of local equa-
tional Horn theories is co-recursively enumerable but un-
decidable (McAllester 1993). Recursively enumerable ap-
proximations of the class of local theories as given in
(McAllester 1993, Basin & Ganzingcr 2001) can be easily
adapted to the equational case. In particular wc may use the
Saturate system (Ganzingcr, Nieuwcnhuis & Nivcla 1994)
to saturate non-local presentations as described in (Basin
& Ganzingcr 2001). The locality of the Int example was
demonstrated by Saturate by checking that all ordered res-
olution inferences between the clauses in IntUfß arc re-
dundant in that the respective consequences of IntU EQ
are entailed by smaller instances of IntUfß. This was
checked for all total and well-founded extensions of the
subtcrm ordering so that by the criterion given in (Basin
& Ganzingcr 2001) the locality of Int U EQ follows.

Queries C for local equational theories AC arc dccidable
in polynomial time by applying dynamic programming ä la
Dowling & Gallier (1984) to the clauses in {SU EQ)st[q.
Note however that this implementation method will always
give at least cubic complexity as Iföstfcil 's m £2("3) >'
/; is the number of terms in C. For practical applica-
tions, in particular to problems arising in program anal-
ysis (McAllester 1999), more efficient equational reason-
ing is required. Recent results into this direction, ex-
tending the congruence closure method of Downey et al.
(1980) to conditional equations, arc given in (Ganzingcr &
McAllester 2001).

4 Flattening and Linearity
A quasi-variety AC is local if queries C arc implied al-

ready by those ground instances of AC in which all terms arc
subtcrms of C or AC. In the equational case this property,
if it is true, has to be invariant under transformations of C
modulo equality. In particular,//«/^'/;//?,? transformations of
C, replacingC[/(...,/,...)] by C = c?S/VC[/(... ,r,...)],
where c is a fresh constant, do not affect entailment from AC,
but will change the set 4* of terms allowed in a local proof.

A ground clause is called flat if its terms have depth
at most 2. A flat ground clause is called linear if when-
ever a constant occurs in two functional terms in the
clause, the two terms are identical, and if no term con-
tains two occurrences of a constant. Hence the clause
cKf{a,b) -> f(a,b)Kf(b,a) is flat but not linear. If the
clause occurs as a query, an equivalent linear query would
be aKa'.b^b',cKf(a.b) -> f{aJ?)mf{b',a'), where a'
and // are fresh constants. For theory clauses the definition
is essentially the same, with variables playing the role of

84

constants: We say that a theory clause in JC is flat, when-
ever function symbols (including constants) only occur as
arguments of the equality symbol, but not as arguments of
function symbols. A flat theory clause is called linear if
whenever a variable occurs in two functional terms, the two
terms are identical, and if no term contains two occurrences
of a variable. Hence f{x,y)paf(x,a) is neither fiat nor lin-
ear. An equivalent flat and linear clause is x' ?ax,z&a -»
f(x,y) «/(x',z), where x' and z are fresh variables. Clearly
all clauses, queries as well as theory clauses, can be flat-
tened (and linearized) by the introduction of auxiliary con-
stants and variables, respectively. If JC is a Horn theory, by
/Cfiin we denote the set of flat and linear instances (not neces-
sarily ground) of the clauses in JC. Clearly, a non-flat clause
cannot have any flat instances. A flat but non-linear clause
such as amf{x,y) -> bmf(x',y) has the flat and linear in-
stance a« f(x,y) ->b&f(x,y). Therefore, if JC is finite and
if subsumed clauses are ignored, /Cfnn is also finite.

PROPOSITION 4.1 (i) If /C is a local theory then JCm„ is
also local. In this case, for any query C, it holds that JC \= C
if, and only if, JCf\m (= C.
(ii) If JC locally entails any flat and linear query C that is

entailed by JC, then JC is local.

Proof, (i) Suppose that K is local. If JC \= C then K \=
flin(C), where flin(C) is the result of flattening and lin-
earizing C. Since JC is local, we obtain JC^> \= flin(C), with
»F = st[flin(C)] the set of ground subterms in flin(C) and JC.
As all terms in *F are flat and linear, and no constant occurs
in more than one functional term, the clauses in JC^> are flat
and linear: Therefore JC^> C {JCn\n)^>, hence ACy = (/Cfim)^-
Consequently {JCn\n)^ |= C and JCf\\„ is a local theory.

(ii) Suppose that JC \= C. We show that JCst[C] |= C. We
may flatten and linearize C into C by using auxiliary, pair-
wise different constants c, not occurring in JC or C, to de-
note the subterms t of C. Specifically, we may assume that
for any original subterm t = f(t\,... ,t„) in C, C contains
the negative equation c/(ri ^ «/(c,,,... ,ct„) defining the
constant as an abbreviation for the respective term, and that,
apart from these definitions, no other equation in C con-
tains a functional term. Since JC (= C", by assumption we
also have /CV |= C", where 4" is the set of ground terms
in C or JC. The only terms that may occur in JC^i are
the constants ct, the constants in JC, and terms of the form
/(c,,,... ,ctn) such that/(fi,... ,tn) is a subterm in C. Re-
placing the c, in JC^i by t, therefore, yields clauses in /Cst[q
which entail C. G

In particular, if JC is local, the quasi-varieties JC and JCn\n

coincide as JCn\„ also implies those instances of JC which
are not in £«;„. (The latter are trivially implied by JC.) Part
(ii) says that it is sufficient to show local entailment for flat,

linear queries in order for a theory to be local. The rele-
vance of this proposition is that when investigating locality
for Horn theories it is sufficient to restrict attention to flat
and linear theories and queries.

Flattening transformations for theory clauses that trans-
form a clause C[f(... ,/,...)] in JC into C = x$t V
C[/(... ,x,...)], where x is a fresh variable, neither change
the class of total nor the class of partial /C-algebras.
The same holds for linearization transformations, replac-
ing C[/(... ,y,...)], with y a variable, by C = xj&yV
C[f(... ,x,...)], where x is a fresh variable. However re-
placing r -»/(...) «f by r,xsj/(...) -> jc«r, although
not affecting the class of total /C-algebras, only preserves
weak satisfaction in partial algebras. Strong satisfaction
which might induce that certain /-terms be defined, are
made void when this kind of transformation is performed.

5 Stably Local Theories
The proposition 4.1 also suggests that the definition of

locality is sometimes too strong. In fact, the following
less restrictive form of locality, where we allow arbitrary
query subterms to be instantiated for the variables in theory
clauses, will also be useful. Let /C[C], for C a ground clause,
denote the set of ground instances of clauses in JC where
variables are mapped to terms in st[C], that is, to subterms
in C or constants in JC. Considering /C[C], we also have in-
stances of JC at our disposal in which there are terms not in
st[C]. For example, if C = aztb and if f{x,y)«/()',JC) is
in JC then f(a,b)K,f(b,a) is in JC[C] but not in /Cstrq, since
f{a,b) is not a term in C. We say that JC is stably local if for
every ground Horn clause C we have IC \= C if, and only if,
JC[c] \= C. This presentation Int' of integers with successor
and predecessor is stably local even without the presence of
the injectivity clauses for s and p:

p(x)s

S(x)t p(y)>

'X

iX

In fact, s(u)« s(v) -> u K V, say, follows from S(U)KS(U)-+

P(S{U))KU and j(v)«.s(v) -» p(s(v))fav, where these in-
stances of Int' are admitted in stably local entailment but
not in local entailment. Rewriting the clauses of Int' into

S(p(x))t

p(s{x))(

gives another stably local (non-flat) presentation Int" of the
integers. For example, p(u)fa v -> s(v)« u is stably locally
entailed by the instance s{p{u))fau of the first clause in
Int".

Locality is a special case of stable locality since /Cst[q =
Plstfcr Stab'e locality is insensitive towards flattening

of goals in that for every theory JC we have JC^n \= C iff
^-[fiin(c)] N flin(C). Like locality, stable locality also implies

K

85

that the uniform word problem is decidable in polynomial
time.

THEOREM 5.1 Let AC be a given theory the size of which is
considered constant. If AC is stably local and if Cis aground
clause then AC |= C can be decided in time 0{nik) where /? is
the size of C and k the maximal number of variables in any
clause in AC.

Proof. Let C = V —> e. By stable locality we have AC (= C if,
and only if, AC[q UT |= e. From Proposition 3.2 we infer that
the latter is equivalent with AC[C] uru£<2st[K;.f]]ust[c] Keq e-

As the number of terms appearing ACrq is in 0{nk), the size
of this set of propositional Horn clauses is in 0(nik). □

As Int" is stably local we obtain a cubic upper bound for
the uniform word problem for integers with s and p.

Refined complexity bounds can be obtained by more pre-
cise analysis of the term structure in AC. Although impor-
tant in practice, this is not our concern here. Also, with a
specialized treatment of equality one can get a better com-
plexity bound in many cases. Using congruence closure to
directly decide ACrq U T |= e would yield a much better com-
plexity of 0(nlog/;) forAC = lnt"\

6 Locality and Weak Embeddability
In this section we establish the main relationships be-

tween Evans' embeddability criterion and locality. We will
show that Evans' criterion is weaker than stable locality but
stronger than locality. For a large subclass of presentations,
locality and Evans' criterion coincide. We also show that
the weaker form of Evans' criterion with satisfaction re-
placed by weak satisfaction is equivalent with locality.

Looking at the proofs in (Evans 1951) it is not surpris-
ing that some sort of relation exists between embeddability
and locality. However the precise details are not so straight-
forward, the reason being that Evan's notion of validity, in-
volving a semantic notion of defincdncss, is not so easily
captured proof-theoretically. A special case is the defincd-
ncss of theory constants. In this section we will addition-
ally require that for a partial algebra A in order to satisfy,
or weakly satisfy, a theory AC, every constant appearing in
AC is defined in A. With this, Evans' criterion becomes even
stronger as fewer partial algebras need to be embedded. The
restriction will only be needed for the proof of Theorem 6.1
and its applications in Section 7.

6.1 Locality Implies Embeddability
In the following theorem, under the assumption of local-

ity, the embeddability property is even shown for infinite
partial algebras that need only weakly satisfy AC.

THEOREM 6.1 Let AC be a local set of fiat Horn clauses.
Then every partial algebra which weakly satisfies AC weakly
embeds into AC.

Proof. We prove the contrapositive of the theorem. Let A be
a partial algebra weakly satisfying AC that does not weakly
embed into AC. We will show that then AC is not local. With-
out loss of generality we may assume that A C C, that is, the
elements of A are generators in Z, but no constant occurring
in AC is a member of A. Moreover let T^ be the "table" of
the function definitions in A, that is, the set of equations of
the form f(a\,... ,a„)«a with a, aj in A and / a function
symbol in I, such that/^ai,... ,a„) is defined and equal to
a. Suppose / is a I-algebra satisfying AC and also the equa-
tions in T,4. The mapping /; sending a in A to its value a/
in / is a weak S-homomorphism as / satisfies T^. By as-
sumption, A does not weakly embed into / so that there are
two different elements a and a' of A for which / |= ama'.
Hence whatever model of AC U T^ one chooses, it will iden-
tify two constants corresponding to different elements in A.
In other words, ACuT/i |= \J a^a,ama'. Since ACUT^ is a
Horn theory, one of the disjuncts must be entailed, that is,
ACUT/i (= atza', for two different elements a and a' in A.
Compactness of first-order logic ensures that only finitely
many equations in T^ are needed to deduce a «a'. We have
shown that there is a (finite) Horn clause C = F —> ama'
such that AC |= C, and with T true, but ax a' false in A.

Suppose that already ACy |= T -» a «a', with *F the set
of ground terms in AC or C. By assumption, A weakly sat-
isfies AC. Moreover, all the terms occurring in ACy and
r are defined in A. Therefore, every equation in defined
ground terms that is true in the least congruence gener-
ated by AC>p U r is also true in A.6 But this implies that a
and a' are equal in A which is not the case. Consequently,
ACH' Y1 T —> a ma', hence AC is not a local theory. □

Hence locality is subsumed by Evans' criterion. This
subsumption relation is proper. For the presentation Int'
one can show that every finite partial Int'-algcbra weakly
embeds into Int'. (In any partial Int'-algcbra, s [p] must be
defined on all p [s] images. Therefore both partial functions
have to be injective.) However, as we have seen before, Int'
is only stably local but not local.

In the proof of the above theorem it is crucial that theory
constants are defined in partial algebras that weakly satisfy
AC. Suppose wc have AC consisting of the two clauses

a ma —> am b

amb —> amc .

Since AC is equivalent to the two ground equations amb and
amc. AC is a local theory. But if F is a partial algebra in
which a is undefined and b and c are defined but different, F
vacuously satisfies AC (including defincdncss requirements),
yet cannot be weakly embedded into AC.

6If a partial algebra A satisfies a set S of ground Horn clauses and if
every term in S is defined in A, then if S f= ,?«f. with s and t defined in A,
then A \= sRit. As equality is a local theory, cf. Proposition 3.1, cquational
reasoning can he confined to the subterms in .V which are all delined in F.

86

6.2 Embeddability Implies Locality
THEOREM 6.2 Let /C be a set of fiat, linear Horn clauses.
Suppose that every finite partial algebra which weakly sat-
isfies /C weakly embeds into /C. Then /C is local.

Proof. Using the proposition 4.1, part (ii), we have to show
that, under the given assumptions, if /C |= C, then /Cst[Cj (=
C, for flat and linear ground clauses C. Let 4* be shorthand
notation for st[C]. As C and the clauses in K. are flat, a term
in 4* is either a constant, or else of the form f(c\,... ,c„),
with constants c,, n > 0. Let C = s\fat\,...,static-^ smt,
and let us assume, for the purpose of deriving a contradic-
tion, that C is not entailed by /C^. Then there exists an
algebra / satisfying /Cy and the equations s,- «r,-, but.? and t
are different in /, that is, / satisfies sftt. From this we will
now construct a finite, partial algebra F satisfying 5,«?, and
sftt and weakly satisfying /C.

Let F = {?/ | f a term in ¥}, and let the functions / in Z
be defined by fF{au... ,a„) =/(c1;... ,c„)/, with n > 0,
whenever there exist constants c,- in 4* such that a,- = c,/, for
1 < i < n, and /(ci,... ,c„) is also a term in 4*. Let //■ be
undefined in all other cases. We now show that F weakly
satisfies /C. (By construction, F satisfies the st■ «r,- as well as
■??£?.) Clearly, the constants appearing in K. are defined in
F. Now let D = u\Kv\,... ,umazvm —> UKV be a clause in
/C and let ß be an assignment of elements in F to the vari-
ables in D such that the j3(w,-) = j3(v,-), with all these terms
defined. We can now find a substitution a of the variables in
D by terms in 4* such that for every term w in D, whenever
ß(w) is defined then wo is a term in 4* and (wa)i = ß(w).
For instance, if a w is of the form f(x\,... ,x„), choose x/G
to be a constant Cj in 4* such that CJJ = ß(x/), for 1 < j < n,
and f(c\,... ,c„) is also a term in 4*. (Note that the argu-
ments to / have to be pairwise distinct variables.) By the
definition of fp, such constants can be found whenever fp
is defined on the j3(.v,-). With this, f(x\,... ,x„)o is in fact
a term in 4/. As the entire clause D is linear in that no vari-
able occurs in two different functional terms, the a for the
individual occurrences of functional terms can be combined
into a single substitution. For variables y which do not occur
in a functional term in D, the substitution can be an arbitrary
term s in 4* such that s/ — ß(y).

We have to verify the condition (i) in the definition of
satisfaction for clauses in partial algebras. Suppose that
J3(«) and j3(v) are both defined. By the construction of
a we have that ua and va are in 4*, and (ua)/ = ß(u),
[va)i = j3(v). With this, Da is in /Cy. Therefore / satisfies
Da so that ua/ = vo/, and hence /3(H) = J3(V). Now that
F has been shown to weakly satisfy /C, according to the as-
sumption there exists a total /C-algebra /' into which F can
be weakly embedded. This algebra /' satisfies s;rat;, as F
does, and since the embedding is injective, /' also satisfies
ssfct. Altogether, /' ^ C, which contradicts the assumption
that K. r= C. D

Hence we see that the weaker form of Evans' criterion with
satisfaction replaced by weak satisfaction implies locality.
For a large subclass of presentations, the distinction be-
tween the two forms of satisfaction is inessential. Lets us
call a presentation K. superficial, if every term that occurs
positively (in the head) of a clause in /C also occurs as a
subterm negatively (in the body) the same clause.

THEOREM 6.3 Let K be a set of flat, linear, and superficial
Horn clauses. Then K. is local, whenever every finite partial
/C-algebra weakly embeds into /C.

Proof. The definedness requirements for partial /C-algebras
are void, if every positive functional term also appears neg-
atively in the same clause. In that case, any partial algebra
which weakly satisfies K. is a partial /C-algebra, and the the-
orem follows from Theorem 6.2 D

For arbitrary presentations, the existence of weak em-
beddings for finite partial /C-algebras implies stable local-
ity.

THEOREM 6.4 Let /C be a set of Horn clauses. Suppose
that every finite partial /C-algebra weakly embeds into /C.
Then /C is stably local.

Proof. Let C be a ground clause. We have to show that,
under the given assumptions, if /C |= C, then /C[Cj f= C. Let
C = s\ «fi,... ^kKtk -> sxst, and let us assume, for the
purpose of deriving a contradiction, that C is not entailed
by /C[C]. Then there exists an algebra / satisfying /C[q and
the equations .?;«/,, but .? and t are different in /, that is,
/ satisfies sq&t. From this we will now construct a finite,
partial /C-algebra F satisfying s-xK,t\ and s^t. The main
difference to the proof of Theorem 6.2 will be that more
terms are going to be defined in F.

Let F = {ti | t a term in st[C]}, and let the functions /
in Z be defined such that / is an expansion of F. In other
words, a function application fp(a\,... ,a„) in F is defined
and yields a as result, iff f/(a\,... ,a„) = a with a in F. By
construction, F satisfies the equations s-, K, t, as well as s■ft t.
Let D = u\ « V),...,um RJ vm —> uRJ V be a clause in /C and
let ß be an assignment of elements in F to the variables.
Then the pair D,ß corresponds to at least one instance of
D in /C[c]. And, since function application fp (a \,... ,a„) in
F is defined whenever the evaluation fi(a\,... ,an) of the
application in / yields a value in F, F satisfies /C such that
both conditions (i) and (ii) in the definition of satisfaction
are met. In other words, F is a partial /C-algebra. Hence,
there exists a total /C-algebra /' into which F can be embed-
ded. This algebra /' satisfies the equations st: ssr,-, as F does,
and since the embedding is injective, /' also satisfies sftt.
Altogether, /' Y= C, which contradicts the assumption that
/C(=C. D

87

The preceding theorem, in connection with Theorem 5.1,
strengthens Theorem 2.1 by also providing us with a con-
crete complexity bound. It also shows that Evans' approach
is subsumed by stable locality. This subsumption is proper.
Consider Int' ' given as

p(x)Ky,s{y)',
s(x)~y,p(y)- -»

Like Int', the presentation lnt(' is stably local. How-
ever, the two-element algebra A = {a,b} with sA(a) =
sA(b) — a and pA = 0, the totally undefined function, triv-

ially (strongly) satisfies Int' ' but cannot be weakly embed-
ded into Int' ' where s has to be injective.

7 Locality and Axiomatizable Classes of Re-
lational Substructures

Burns' results are based on the view of partial alge-
bras as relational structures. Remember that for a signa-
ture Z without predicate symbols, by Z* we denote the cor-
responding relational signature where each ;;-ary function
symbol / in Z is replaced by a n + 1-ary relation sym-
bol r-L X*-clauses are formed from the predicate sym-
bols in Z*, the equality symbol, and variables. Similarly,
if A is a Z-algcbra, by A* we denote its relational variant,
the £*-structure for which rl

A„(a\,... ,a„,a) if, and only if,
//[(ai,... ,a„) = a. If C is an cquational Horn clause with
all equations of the form f(x\,... ,A>)SSA- or ,v«v, with
variables x,, x, y, by C* we denote its relational variant
where all equations f(x\,... ,xk) KX are replaced by atoms
rf (x[,... ,A^,.V). If K is a class of total Z-algcbras, by S(K*)
we denote the class of full substructures of members of K*,
that is the class of Z*-structures A* for which there exists
an algebra B in K such that B* is an expansion of A*. On
the other hand, by S(K*) we denote the class of weak sub-
structures of members of K*. This class coincides with
the class of Z*-structures that weakly embed into K, that
is, with {P* | P weakly embeds into an algebra A £ AT}. By
construction we have S(IC*) C S(IC). (A full substructure
is obtained by intersecting the graphs of the functions in
a total algebra with the chosen subset of its carrier. Weak
substructures arc obtained from full substructures by mak-
ing the functions even less defined. Hence there arc more
weak substructures than full substructures.)

THEOREM 7.1 (BURRIS 1995) Let /C be a quasi-varicty
over Z such that there is a finite set of Horn clauses H over
Z* with 5(/C*) C//C 5(/C*). Then the uniform word prob-
lem for K, is dccidable in polynomial time.

The criterion says that if some subclass of relational weak
substructures of fC which includes all full substructures is
finitely axiomatizable, the uniform word problem is dccid-
able in polynomial time. We will show constructively that

this criterion implies the existence of a stably local presen-
tation, and that, conversely, from a local presentation a suit-
able H can be effectively constructed.

It is not surprising that in comparing Burris' criterion
with locality we encounter the same technical problem with
constants as we did in Section 6. Hence from now on in
this section we restrict the classes S(IC*), H (the models of
//), and 5(/C*) to structures in which the relations r" are
nonempty, for every constant a appearing in K,. In other
words, if A is a partial algebra for which A* is in any of
these classes, we again require that the constants in K- be
defined in A.

Given a set H of Z*-clauses, by //, we denote the set of
equational Z-clauses obtained from H by replacing atoms

,x„,x) by equations f(x\,... ,xk)KX. Clearly, //, rf(xi
is a flat set of clauses. Note that if A is a partial Z-algcbra,
then A* satisfies H if, and only if, A (strongly) satisfies
//,. A has to satisfy the definedncss requirements im-
plied by //, in order for A* to satisfy H. For example, if
p"{x),ph{\) —¥ r1(x.y) is a clause in //, the corresponding
clause in //» will be aKx,bzzy —> f(x) « v. In order for A*
to satisfy p"(x),ph(y) -» r1 (x.y), fA has to be defined on aA

with fA(aA) =bA.

THEOREM 7.2 Let H be a set of Z*-clauses with S(/C*) C
H C S(/C*). Then //» is a stably local presentation of the
quasi-variety K-.

Proof. First wc show that the class of algebras satisfying
Ht coincides with K.. If A \= H, then A* \= H, and there-
fore, A* is in S(/C*). Hence A can be weakly embedded
into an /C-algebra B. In other words, A is isomorphic to a
/C-subalgebra, hence is a AJ'-algebra itself.

Conversely, suppose that A is in K.. Then A* is in 5(/C*),
so that A* |= H, hence, A \= H,.

Now wc show that //, is stably local. According to Theo-
rem 6.4 wc have to show that every finite partial //»-algebra
A weakly embeds into //,. Let such an algebra A be given.
As A* \= H and as H C S(/C*), the embedding property for
A follows. Ü

Conversely, from a local theory K. wc can obtain a finite
axiomatization HK satisfying S(K') C HK C S{K.*). We
may assume that K. is flat and linear. (Otherwise, apply-
ing Proposition 4.1, wc may replace K. by ICi\\„, with K.w„
the set of flat and linear instances of K'..) Now define H/c
to be the union of K* and the set of uniqueness clauses
r'(.v,. v«c for the relations.

THEOREM 7.3 With HK as defined above, if K. is a local
theory, then S(K.') C HK C S{K*).

Proof. Clearly, all full substructures of /C* satisfy //^-.
Moreover, it' A* (= //^-, then A is in particular a partial K'.-

88

algebra. By Theorem 6.1, any such A weakly embeds into
/C, henceA is in 5(/C*). □

8 Conclusion and Further Remarks
In this paper we have established close relationships be-

tween the approaches by Evans, Burris and McAllester to
capture polynomial time computation in the context of uni-
form word problems. The criteria by Evans and Burris are
essentially semantic, relating functional and relational mod-
els of given presentations. Local inference (McAllester's
approach) and stable locality (our variant of this concept)
are notions which are more proof-theoretic in nature. It
was interesting to see how closely related these approaches
are. We have shown that both Evans' and Burris' criteria lie
in between the two variants of locality. The inclusions are
proper (at least for Evans' approach, for Burris' we do not
know yet). In particular the concept of stably local theories
subsumes Burris' method (which in turn subsumes Evans'
method), and the subsumption is strict for the Evans case.

8.1 Explicit Definedness Predicates
The reason why [stable] locality and the other two ap-

proaches are not quite equivalent is intimately related to the
definedness requirements for partial functions that partial
/C-algebras or full substructures of /C* have to satisfy. For
the subclass of presentations for which the definedness re-
quirements are void, we were able to establish equivalence
of locality and Evans' criterion. Definedness, however, is a
semantic concept that is not so easily captured syntactically.
Only those clauses for which the antecedent is satisfiable
contribute to definedness properties.

The following approach should work to simulate some
of these effects in the framework of stable locality. Trans-
form any given K. by replacing clauses such as stat ->
/(") ^g{v) by (read "D(x)" as "x is defined")

D(s),D(t),D(u),D(g(v)),s*t -► D(f(u))

D(s),D(t)Mu),D(f(u)),sKt -» D(g(v))

D(s),D(t)Mf(u))Mg(v)),SKt -+ f{u)^g{v)

internalizing the notion of satisfaction for partial algebras.
(The general case of the transformation should be obvious.)
Let KP denote the result of that transformation. Call K.
"Evans"-local if for every ground clause C = T -> e we have
K,D[C] liruD[C] \= e whenever K\=C, with D[C] the set
of facts D(t), for each subterm t in C and constant t in K,.
Like in stable locality, we may use substitution instances of
theory clauses where variables are sent to subterms of C or
constants in /C. However, because of using the transformed
clauses, we may additionally only compute with those terms
in /C[q that are semantically equal to a subterm of the query
or to a constant in K. Int' is an example of a presentation
that is Evans-local.

Evans-locality should be equivalent to Evans' criterion,
but since its definition is somewhat awkward and since it
is not clear how to design good recursively enumerable ap-
proximations of the concept, we have not yet investigated
this claim in more detail.

8.2 Applications
It might be possible to exploit the relation between the

semantic and proof-theoretic concepts for mutually trans-
ferring further techniques. In particular, certain (yet to be
established) amalgamation properties for algebras would in-
duce combination results for local theories over disjoint vo-
cabularies.

Let P be any partial /C-algebra. Let T(P) = TL(P)/EP,
that is, the free (total) Z-term algebra generated over P,
modulo the congruence £> generated by the identities in P,
that is, the equations a0 ~/(ai,... ,a„) such that a, is in P
and ao = fp(a\,...,a„) holds in P. We can turn T(P) into a
/C-algebra by dividing by the intersection K of all kernels of
homomorphismsh:T(P)^AelC. LetF(P,K.) = T(P)/K.
A specific case of a much more general result proved by
Burmeister (1986) is this universal property of F(P,IC):

THEOREM 8.1 (BURMEISTER 1986) F{P,K) is a K-
algebra, and for any weak homomorphism h from P
into a /C-algebra B there is a unique homomorphism
h : F(P,fC) -» B such that h = hon, with n : P -» F(P,K.)
the canonical weak homomorphism sending any element of
P to its congruence class under K.

The theorem asserts that F{P,K) is the free (total) K-
algebra generated by the partial Z-algebra P.

COROLLARY 8.2 If P weakly embeds into K. then the
canonical weak homomorphism n : P ->• F{P,K) is injec-
tive.

Hence, whenever a partial algebra P weakly embeds into
K it specifically also weakly embeds into its free extension
F{P,K), a fact already observed by Evans (1951).

Suppose now that we have two flat, linear, and superfi-
cial local theories K\ and K-2 over disjoint signatures Z] and
Z2 respectively. We want to show that the union K\ UIC2 is
also local. One way to do this is to utilize the methods in
(Nelson & Oppen 1979) for combining decision procedures.
An algebraic proof might be obtained via an amalgamation
construction similar to the one given by Baader & Schulz
(1998) for proving decidability of the combination of cer-
tain unification problems.

We need to show that every finite partial K\ U/C2-algebra
P weakly embeds into K\ U/C2, and then apply the theo-
rem 6.3, Given P, forget the operations in I2 and Zi, re-
spectively, yielding a partial K\ -algebra P{ and a partial
/C2-algebra P2. As the given theories are local, these al-
gebras weakly embed into the free constructions F(PufC\)

89

and F(P2,K,2), respectively. We believe that one can now
amalgamate F(P[,JCi) andF(P2,K.2) into a single/Ci U/CT-

algebra into which P weakly embeds to, but the details have
not been worked out yet.

Acknowledgments I am arc grateful to Sergei Vorobyov
for directing my attention to Burris' paper and to Viorica
Sofronie-Stokkermans for fruitful discussions.

References
Baader, F. & Schulz, K. (1998), 'Combination of constraint

solvers for free and quasi-free structures', Theoretical
Computer Science 192, 107-161.

Bachmair, L. & Tiwari, A. (2000), Abstract congruence clo-
sure and specializations, in D. McAllester, ed., Au-
tomated Deduction - CADE-17, 17th International
Conference on Automated Deduction', LNAI 1831,
Springer-Verlag, Pittsburgh, PA, USA, pp. 64-78.

Basin, D. & Ganzinger, H. (2001), 'Automated complexity
analysis based on ordered resolution', J. Association
for Computing Machinery 48(1), 70-109.

Burmeister, P. (1986), A Model Theoretic Approach to Par-
tial Algebras. Introduction to Theory and Application
of Partial Algebras, Part. 1, Akademie-Verlag, Berlin.

Burris, S. (1995), 'Polynomial time uniform word prob-
lems', Mathematical Logic Quarterly 41, 173-182.

Cosmadakis, S. (1988), 'The word and generator problem
for lattices', Information and Computation 77, 192-
217.

Dowling, W. F. & Gallier, J. H. (1984), 'Linear-time al-
gorithms for testing the satisfiability of propositional
Horn formulae', J. Logic Programming 3, 267-284.

Downey, P. J., Sethi, R. & Tarjan, R. E. (1980), 'Variations
on the common subexpressions problem', J. Associa-
tion for Computing Machinery 27(4), 771-785.

Evans, T. (1951), 'The word problem for abstract algebras',
J. London Math. Soc. 26, 64-71.

Frecse, R. (1989), 'Finitely presented lattices: canonical
forms and the covering relation', Trans. Amer. Math.
Soc. 312, 841-860.

Ganzinger, H. & McAllester, D. (2001), A new meta-
complexity theorem for bottom-up logic programs,
in 'Proc. International Joint Conference on Auto-
mated Reasoning', Lecture Notes in Computer Sci-
ence, Springer-Verlag. To appear.

Ganzinger, H., Nieuwenhuis, R. & Nivela, P. (1994), The
Saturate system. System available at http://www.mpi-
sb.mpg.de/SATURATE/.

Givan, R. & McAllester, D. (1992), New results on local in-
ference relations, in 'Principles of Knowledge Repre-
sentation and reasoning: Proceedings of the Third In-
ternational Conference (KR'92)', Morgan Kaufmann
Press, pp. 403-412.

Knuth, D. & Bendix, P. (1970), Simple word problems in
universal algebras, in J. Leech, ed., 'Computational
Problems in Abstract Algebra', Pergamon Press, Ox-
ford, pp. 263-297.

Kozen, D. (1977), Complexity of finitely presented alge-
bras, in 'Proc. 9th STOC, pp. 164-177.

McAllester, D. (1993), 'Automatic recognition of tractabil-
ity in inference relations', J. Association for Comput-
ing Machinery 40(2), 284-303.

McAllester, D. (1999), On the complexity analysis of static
analyses, in A. Cortesi & R. File, eds, 'Static Analy-
sis — 6th International Symposium, SAS'99', LNCS
1694, Springer-Verlag, Venice, Italy, pp. 312-329.

Nelson, G. & Oppcn, D. C. (1979), 'Simplification by co-
operating decision procedures', ACM Transactions on
Programming Languages and Systems 2(2), 245-257.

Scott, D. (1979), Identity and existence in intuitionis-
tic logic, in M. Fourman, ed., 'Durham proceedings
(1977), Applications of Sheaves', Vol. 753 of Lecture
Notes in Mathematics, Springer Verlag, pp. 660-696.

Skolem, T. (1920), 'Logisch-kombinatorische Unter-
suchungen über die Erfüllbarkeit und Beweisbarkeit
mathematischer Sätze nebst einem Theorem über
dichte Mengen', Skrifter utgitt av Videnskapsselskapet
i Kristiania 1(4), 1-36. Also in: Th. Skolem, Selected
Works in Logic (Jens Erik Fcndstad, ed.), Scand. Univ.
Books, Universitetsforlaget, Oslo, 1970, pp. 103-136.

90

Session 3

Semantics of Name and Value Passing

Marcelo Fiore*
Computer Laboratory

University of Cambridge

Daniele Turit

LFCS, Division of Informatics
University of Edinburgh

Abstract

We provide a semantic framework for (first order)
message-passing process calculi by combining categorical
theories of abstract syntax with binding and operational
semantics. In particular, we obtain abstract rule formats
for name and value passing with both late and early inter-
pretations. These formats induce an initial-algebra/final-
coalgebra semantics that is compositional, respects substi-
tution, and is fully abstract for late and early congruence.
We exemplify the theory with the ir-calculus and value-
passing CCS.

Introduction

A complete description of the semantics of a program-
ming language requires both an operational semantics de-
scribing the behaviour of programs in terms of elementary
steps and a more abstract denotational semantics describing
the meaning of a program in terms of its components [32].
In the study of process calculi for concurrency (such as
CCS [25], CSP [19], and ACP [4]) less emphasis is placed
on denotational models and more on notions of behavioural
equivalence, and on bisimulation equivalence [25] in partic-
ular. Still, for the operational semantics to be well-behaved,
one requires that the chosen notion of behavioural equiva-
lence be a congruence with respect to the constructs of the
language.

To establish congruence results for behavioural equiva-
lences it is convenient to define the operational semantics in
terms of structural rules, i.e., Plotkin's SOS rules [29]. Cor-
respondingly, much work has been done in order to iden-
tify SOS rule formats [10, 6, 17, 14] for which (strong)
bisimulation is a congruence - the most well-known be-
ing GSOS [6]. However, such formats are hard to find and
even harder to extend. Little or no success at all has been
gained, e.g., in obtaining formats for more sophisticated
process calculi than the above mentioned ones - process

•Research supported by an EPSRC Advanced Research Fellowship.
t Research supported by EPSRC grant R34723.

calculi with variable binding (like value-passing CCS [26]
and the 7r-calculus [27]) in particular. The present paper
addresses this very problem.

The solution we offer is based on understanding the
mathematical structure underlying syntax and semantics of
message passing processes. The formats we obtain are ab-
stract and require a fair amount of category theory. How-
ever, concrete, syntactic formats can be distilled from them
and this, indeed, will be the next step of our investigation.

The starting point for our work lies in [35], where a cat-
egorical rule format is defined in terms of functorial notions
E and B of syntax and behaviour familiar from initial alge-
bra [16] and final coalgebra [1, 36] semantics. This format
is given by transformations

E(X x BX)-^BTX (1)

natural in the parameter X (to be thought of as a generic
set of meta-variables used in the rules), where T is the term
monad associated to the signature E, i.e., TX = pY. X +
EY.

The type in (1) arises from giving to each operator of
arity n of the signature a natural transformation

(X x BX)n —*- BTX (2)

describing the overall behaviour of the operator in terms of
the behaviour of its arguments. This abstract format corre-
sponds to GSOS when B is taken to be the functor on Set
whose coalgebras are finitely branching labelled transition
systems, i.e.,

BX = Pf(L x X) (3)

where L is a finite set of labels and P{ is the finite powerset
functor. In this case, the domain (X x Pf(L x X))n and
the codomain Pf(L x TX) of the map in (2) correspond,
respectively, to the premises and the conclusions of GSOS
rules for the operator. Interestingly, naturality accounts ex-
actly for the GSOS restrictions on the occurrences of vari-
ables in the rules.

Any natural transformation of type (1) has the property
that the coalgebraic behavioural equivalence associated to
B (which in the above case coincides with bisimulation [2])

0-7695-1281-X/01 $10.00 © 2001 IEEE
93

is a congruence with respect to the operators of the syntax
E. This is a corollary of the more general fact that rules
in the format (1) induce a denotational semantics which is
adequate in the sense that it is fully abstract with respect to
behavioural equivalence.

The above result is independent from the choice of cat-
egory and functors, provided they have enough structure
and properties. Here we exploit this generality in order to
find formats for process calculi with variable binding. To
this end, we first had to give a functorial notion of syntax
with binding. This was one of the main motivations for
the work in [13], where we moved from sets to variable
sets. There, variable sets are taken to be functors (called
covariant presheaves) from a category of contexts to Set;
the category of contexts used is the category F of finite car-
dinals (i.e., sets of variables) and all functions (i.e., renam-
ings). Most importantly, there exist a distinguished prcsheaf
V of variables and a differentiation functor 5 = (_)v on
presheaves. The latter is used to model variable binding
with arity V: for a prcsheaf X, the elements of 5X in con-
text n are simply the elements of X in the context n + 1
containing an extra variable - the variable to be bound.

We have now to find the right notions of behaviour B for
name and value passing. Let us start from name passing,
where the two most natural notions of behavioural equiv-
alence are late and early bisimulation [27]. These are not
congruences for the 7r-calculus though; one then consid-
ers the late and early congruences instead [27], obtained by
closing bisimulation under renamings (i.e., the maps of F).

Previous (implicitly) coalgcbraic work on name pass-
ing [12, 33] was based on a functor B whose associated
behavioural equivalence turns out to be late bisimulation.
This functor B lives in the category of presheaves over the
category I of name contexts allowing only injective renam-
ings. Surprisingly, the natural extension of such B to the
category of presheaves over F yields a new behaviour B
whose associated equivalence is exactly late congruence.

We arc also able to solve the problem left open in [12, 33]
of giving a denotational semantics fully abstract with re-
spect to early bisimulation by introducing a new behaviour
whose associated equivalence is early bisimulation'. The
extension of such behaviour to the presheaves over F has
early congruence as associated equivalence. Therefore, the
desired formats for early and late congruences live in the
category of presheaves over F and, for instance, rules for
unary binding will be of type

(X x BX) BTX (4)

where B can be the extended behaviour for either late or
early congruence.

'See also [28] for a different coalgebraic approach to early (and late)
bisimulation and [8] for a domain equation for early bisimulation in the
framework of presheaf models.

For value passing, we also give late and early behaviours,
which are variations (cf. [20]) of the behaviour in (3). How-
ever, in order to model input rules we have to take into
account the substitution structure present in value-passing
calculi, i.e., the homogeneous substitution of messages in
messages and the heterogeneous substitution of messages
in processes. (For name passing this is not needed because
substitution is just renaming, hence it is already, though im-
plicitly, part of the category of presheaves over F)

The categorical framework for homogeneous substitu-
tion was developed in [13]. One considers a monoidal struc-
ture on presheaves '•' with unit V. A presheaf X • Y can
be thought of has having elements given by pairs of an ele-
ment of X together with a substitution consisting of a tuple
of elements of Y. One then takes the notion of homoge-
neous substitution on a presheaf M to be a monoid structure
V —- M ■*— M • M.

Here, in order to model the heterogeneous substitution
of elements of a monoid M in elements of a presheaf X,
we need to go one step further and consider monoid ac-
tions X • M —>■ X. Correspondingly, the modelling of
rules takes place in the category of actions of the monoid of
messages. Therefore, we need then to lift signatures with
binding E and extend behaviours B to functors E and B on
such category.

In general, we have primitive notions E and B living in
different categories, of syntax S and behaviour B respec-
tively, while the rules live in yet another category A of sub-
stitutions (e.g., monoid actions). These categories are re-
lated by adjunctions:

B

A -

s

S

U
o
B (5)

The lifting of the E on S to a E on A is done by means of a
distributive law over the monad induced by the monadic ad-
junction A T

? S, while the behaviour B on A is ob-
tained by (right) extending B on B along the composite
adjunction A T B. These constructions yield lift-
ings/extensions as follows:

E-Als-

A-

E-Alg B-Coalg

11

■S A

B-Coalg

-*~B

The abstract rule format ensuring that behavioural equiv-
alence is a congruence consists then of natural transforma-
tions of type

E(Ix BX)-+BTX (6)

94

For name passing the actions of the monoid of variables
are simply presheaves on F, hence E is equal to E. For
the original GSOS case of [35], with no variable binding,
all three categories collapse to the category of sets, hence S
and B are equal to S and B respectively and we recover (1).

The next obvious step for our work is to characterise the
categorical rule formats for name and value passing pro-
posed in this paper in elementary syntactic terms. The rule
formats so obtained will certainly not be as in [5], where
binding and substitution are defined within the rules rather
than treated at the syntactic level. For value passing, our
categorical rule format seems to be related to a syntactic
format proposed in [30]. The relationship with the format
of [15] for which a conservative extension property holds
should also be investigated.

Another aspect we would like to consider is recursion.
At present we would deal with guarded recursion follow-
ing [34], but it would be interesting to deal with unguarded
recursion along the lines of [31], hence working with vari-
able epos instead of variable sets.

Finally, there seems to be a tight correspondence be-
tween the coalgebras of our new behaviour for early bisimu-
lation and the indexed labelled transition systems of [7]. We
would like to investigate this for sheaves (in the Schanuel
topos) rather than presheaves over I.

1. Basic syntactic and semantic structures

1.1. Expressions

Syntax. Consider the following abstract grammar of ex-
pressions for integers

e ::— x | z | ei plus e2 \ e\ minus e2 (7)

where x ranges over a countable list of variables x, (i € N)
and z over the set of integers Z.

Following [13], we consider terms in a context, so that
we can stratify expressions into a family { En }n£N of sets
indexed by natural numbers (indicating the number of vari-
ables in the context). The set En consists of the expressions
with at most n (canonical) free variables (typically denoted
by Xi,..., xn). Thus, { En }n6N is the least solution of the
equations

{Xn — {xi,... ,xn} + Z + Xn + Xn }n6p (8)

Semantics. We write £[e]„ for the interpretation of an ex-
pression e in the context x\,..., xn; that is, for the function

Zn —>- Z defined compositionally as follows:

1. £[x,]„ = 7Ti (ith projection, 1 < i < n)

2. Sfzjn — Xx.z (constant function z)

3. £[ei plus e2]„ = \x.(£{ei\n(x) + £[e2]„(f))

4. £[ei minus e2]„ = \x.{£\ei\n(x) - £{e2\n{x))

(9)

This interpretation is an initial algebra semantics. In-
deed, the semantic domain given by

{Set(Zn,Z)}„eN (10)

where Set(5, S') denotes the set of functions from a set S
to a set S', has a (pointwise) algebra structure given by the
evident maps

and

{x1,...,xn}-^Set(Zn,Z)

Z-^Set(Zn,Z)

Set(Zn, Z)2 3* Set(Zn, Z2) —*- Set(Z", Z)

Set(Zn, Z)2 S Set(Z", Z2) —^ Set(Z", Z)

£ = { £[_]„ : En -» Set(Z", Z) }„eN

(11)

(12)

is the unique algebra homomorphism from { En }ngN to
{Set(Zn,Z)}n6N.

1.2. Presheaves

Categorically, families { Xn }„en of sets are functors

X : N —>- Set

where N is the discrete category of natural numbers or,
equivalently, finite cardinals. Since we regard a finite cardi-
nal n as a context of n variables, a function p : n —>■ m can
be seen as a renaming of variables. In order to model weak-
ening, contraction, and exchange rules for contexts we need
to use, instead of the discrete category N, the category F
of finite cardinals and all functions (cf. [13]). Correspond-
ingly, we consider functors

X :¥■ Set

i.e., (covariant) presheaves over F. Thus, we will be work-
ing with families { Xn }ngN of sets equipped with an action
that associates every x 6 Xn (i.e., an element of X at stage
n) and every renaming p : n —»- m with

x[P] = X(p)(x) e Xm

Presheaves over F form a category SetF, with natural trans-
formations as morphisms.

95

Syntax. The family { En }nt=n with action

e{p]=e[x<«/Xl,...*-/Xii] (p:n-~m)

given by variable renaming defines a presheaf E : F ->■ Set.
This presheaf is the least solution of the equation

X = V + Kz + X2 + X2

in Set (cf. (8)), where the presheaf of variables

V:F-*Set, Vn = n * {xu ... ,xn }

is the inclusion of F into Set and K.z is the constantly Z
presheaf. Hence E is the free E-algcbra pY. V + TY over
the presheaf of variables V, where

E : SetF ->- SetF , EX = Z + X2 + X2

is the endofunctor on presheaves associated to the operators
on expressions.

Semantics. Also the semantic domain for expres-
sions (10) has a presheaf structure. Indeed, for any object
C of a cartesian category C, we have a functor

(C,_) :C-^SetF, (C,D)n =C(Cn,D) (13)

The presheaf (C, D) can be thought of as the presheaf of
mappings from environments of type C to results of type
D. Formally, at stage n, it consists of the set of morphisms
in C from Cn to D with action

f[p} = fo (TTPI ,..., 7rpn) (p:n—*-m)

In particular, taking C — Set and C = D = Z we obtain
the presheaf (Z, X) with underlying family of sets as in (10).

The copairing of the maps in (11) gives a E-algcbra
structure

E(Z,Z) = /CZ + (Z,Z)2+(Z.Z)2—^(Z,Z) (14)

on (Z, Z) that induces the initial algebra semantics

£ :£—»(Z,Z)

of (12). Note that the naturality of £ amounts to the identity

= £\e\n(Zpl
(15)

Syntax with binding. In the algebraic treatment of bind-
ing of [13], binding operators are modelled using the differ-
entiation operator

S : Set" SetF , (SX)n — Xn+i

(For details, including initial algebra semantics, con-
sult [13].)

Pi-calculus. The following grammar for (a fragment of) the
7r-calculus

r::=0 | h\t2 \ x(y).t \ xy.t \ (x)t | [x = y]t

corresponds to the signature endofunctor

E.Y = 1 + XxX + VxSX + VxVxX
6X + V x V x X

6)

uF on Set . Indeed, its initial algebra

TO ^ 1+ TO xTO + V x sro + V xV x TO
+ STO + V x V x TO

is the presheaf of --calculus terms: at stage n it is the set of
(o-cquivalcnce classes of) terms with at most n (canonical)
free variables, with action given by variable renaming.

Value-passing CCS. We will consider the following frag-
ment of CCS passing expressions c as in (7) along a finite
set of channels c e C:

r ::=0 | ri|f2 j c!{x).t I c\(c).t | [r,=p2]f

This grammar has associated signature endofunctor

Y,,.X = l + X x X + K-c x fiX
+ K.c x E x X + E x E x X

on Set", where K-c is the constantly C presheaf.
More generally, we have a signature bifunctor E :

SetF x SetF —9- SetF

(17)
E(M. X) = 1 + X x X + K-c x ÖX

+ K.c x M x X + M x M x X

parametric in the presheaf of messages being passed.

1.3. Substitution

Clones. We have seen that besides the operators, the se-
mantics £ also respects variable renaming (sec (9) and (15)).
However, £ respects substitution in the stronger form of sat-
isfying the semantic substitution lemma:

for all p : n- ■ m.

£Hri/*,> ■■■-'" Ar,,]Jm
= £[r]„o (%,]„„...,£[,:„]„,)

(18)

96

In other words, £ is not only an algebra homomorphism but
also, as we explain below, a clone homomorphism.

Recall that an {abstract) clone [9, page 132] X, consists
of a family { Xn }ngN of sets, a family

{ u\n) € Xn | 1 < i < n }„6N

of distinguished elements, and a family

I Mm • Xn X (Xm) —*■ Am }n,m£N

of operations such that, for every element t of Xn, every
n-tuple u = (ui,..., un) of elements of Xm, and every
m-tuple v of elements of Xi, the following three axioms
hold:

ßm{Vi;Ü)=Ui Hn{t;Vi,...,Un) = t

pt(pm(t;u);v) = ne(t; pe(ui;v),..., M(un;v))
(19)

An homomorphism h : X —*- X' between clones is a fam-
ily { hn : Xn —*■ X'n }nen of functions that respects the
clone structure.

The clone structure on the family { En }„6N of expres-
sions is given by the variables Zj (1 < i < n) in En and by
the simultaneous substitution of expressions for expressions

En x (Em)n

^6, C\, . . . , CJI)

En

/Xl)
6" /x„]

(The three axioms in (19) amount to the familiar proper-
ties of substitution.) For the semantic domain (Z, Z), the
clone structure is given by projections and function compo-
sition (together with pairing). In fact, for every object C
of a cartesian category C, one can form the clone of oper-
ations (C, C) on C, with v\n' given by the ith projection
iTi : Cn in) C and fim by the map

C(Cn,C) xC(Cm,C)n

\J) Jli ■ ■ ■ 5 Jn)

C(Cm,C)
/°(/l,---,/n)

Thus, with respect to the above clone structures, the re-
quirement that the semantics £ be a clone homomorphisms
amounts to the identity (9.1) and the semantic substitution
lemma (18).

Monoids. The clone structure has equivalent representa-
tions as either of the following: finitary monads on Set,
Lawvere theories, substitution algebras [13, Theorem 3.3],
or, most importantly for this work, monoids in the monoidal
closed category (SetF, •, V) [13, Proposition 3.4], where
the monoidal product is denned by the following coend:

(X • Y)r,
/n€F

Xn X \Ym (m e F) (20)

This tensor product and variations thereof play a crucial role
in this paper; they arise from the following general situa-
tion (see, e.g., [23,1.5]):

Setr

(21)

where C is cartesian and cocomplete and where C# denotes
the cartesian extension of C.

Proposition 1.1 1. For C and V cartesian and cocom-
plete categories, and F : C —>- V a cartesian functor
with a right adjoint, we have a canonical natural iso-
morphism

»FC^F(»C)

for all C eC.

2. For a cartesian and cocomplete category C such that,
for all C e C, the functor _ x C is cocontinuous, we
have the following equivalence of categories

C ~ CarCoc(SetF,C)
C h^ _*C

FV ^H F

where CarCoc is the category of cartesian and cocon-
tinuous functors, and natural transformations. O

Corollary 1.2 For every X e SetF and C e Setc, there
are canonical natural isomorphisms as follows

(-•X)»C = _»(X»C)

(X,(C,_)) 3* (X.C,_) D

In this paper we will exclusively consider the above ten-
sor construction when C = Setc, for some small category
C (see [23, VII.2 and VIII.4] for a general discussion in the
context of topos theory). In this case, the tensor X • C (for
X e SetF and C € Setc) has the following elementary
description

(meC)
(X.C)m = Jn6FXn x (Cm)"

= (U„€N^x(^m)n)/=

where « is the equivalence relation generated by

(x;cpi,...,cpn) ~ (x[p];ci,...,cn>) (p : n + n')

Note that in particular taking C = F and C = Y e SetF

we obtain the tensor (20) on SetF. We will also use the case
where C = 1 (the terminal category), hence C = Set and
C is a set 5:

X»S =
n€F

XnxSn

97

As mentioned above, the categories of clones and
monoids in (SetF, •, V) arc equivalent, hence the seman-
tics £ : E —>■ (Z,Z) is both a E-algcbra homomor-
phism and a monoid homomorphism. In fact, by Theo-
rem 4.1 of [13], the presheaf of expressions E is the initial
object in the category of T,-monoids (consisting of compat-
ible E-algcbra and monoid structures with corresponding
homomorphisms). And, as the E-algcbra structure in (14)
for the clone of operations (Z.Z) is compatible with the
clone/monoid structure of (Z,Z), the semantics £ is the
unique E-monoid homomorphism from E to (Z.Z).

1.4. Categorical operational semantics

It is shown in [35] that operational rules of the form (1)
for signature and behaviour endofunctors E and B on a bi-
cartesian category C induce a compositional semantics hav-
ing the (full abstraction) property that two terms have the
same meaning if and only if they are bisimilar, provided
that (/) the forgetful functor B-Coalg —*■ C has a right ad-
joint (hence a final coalgebra exists), and (/<) the behaviour
B preserves weak pullbacks. The main tool we use to es-
tablish (/) for the behaviours in the present paper is the fol-
lowing.

Proposition 1.3 (Sec [24, 3]) For a finitary (rcsp. ac-
cessible) endofunctor B on a locally finitely presentable
(resp. accessible) category B, the forgetful functor
B-Coalg —>■ B has a right adjoint. D

The above mentioned (coalgcbraic) notion of bisimula-
tion is due to [2]. In this paper, we will consider it in the
following form: a B-bisimulation between two coalgebras
h : X —>- BX and k : Y —>- BY is a relation (i.e., equiv-
alence class of monos) R ^—^ X x Y between the carriers
X and Y which lifts to the coalgebras in the sense that the
diagram

X* R ^Y

BX BR BY

commutes for some coalgebra structure on R. For the be-
haviour in (3) B-bisimulation is (strong) bisimulation.

2. Message passing bisimulations

2.1. Value passing

Late bisimulation. To model value-passing CCS, with re-
spect to a set of values V and a finite set of channels C, we
consider the behaviour endofunctor

BS = Pf (C xSv + CxVxS + S) (22)

on Set, where the components of the sum respectively
model input, output, and silent actions. (Cf. [20].)

With respect to this behaviour functor, coalgcbraic
bisimulation corresponds to late bisimilarity. Indeed, a
coalgebra h : S —>• BS induces the late transition relation

s -^L f iff (c, /) e h(s) (ceC,seS,f G Sv)
c!<i.)

*■ s' iff (c, v, s') e h{s) (c e C, v G V, s, s' G 5)

s-Wiffs'€ h(s) (s,s'€A)

that provides a characterisation of coalgebraic bisimulation
in familiar terms (see [21]) as follows.

Proposition 2.1 The following data are equivalent.

1. A coalgebraic bisimulation for a coalgebra on S.

2. A symmetric relation R C S x S such that SQ R S'0

implies

• if s0 -
, c?()

s0 »

?()
>■ f then there exists /' such that

if so

-/'and/(i;) Rf'(v) for all v G

c\{v)
s then there exists s' such that

\(v)

'0 >- s' and s' R s0;

• if so
and s R s'

s then there exists s' such that s'0 -^- s'
D

To appreciate the way in which (22) models the late in-
terpretation of input, it is instructive to use the isomorphism
Pf(5 + S') = Pf(S) x Pf(S') and consider the behaviour
in the following form

BS ^ Pf(5
v)c x Pf(V x Sf x Pf(5)

from which, as observed by Gordon Plotkin, one can read
the late interpretation off the first component of the product
corresponding to "first choosing a derivative and then re-
ceiving a value". To model the early interpretation of input,
corresponding to "first receiving a value and then choosing
a derivative", one thus needs to reverse the role of the type
constructors for non-determinism and inaction, and input.

Early bisimulation. Noticing the following decomposi-
tion of the finite powerset functor

Pf ^ 1 + P+
f

where Pf is the non-empty finite powerset functor, a natural
behaviour for the early interpretation is then the endofunc-
tor

BS = (1 + Pf(5)v)f; x Pf(V x Sf x Pf(5)

98

which we will consider below in the following uniform form

BS

x (C^-Pf (V x 5))

x (l^Pf(5))

(23)

Set is the partial-

—»- PS induces the

where _^._ : pSetop x pSet —>■
exponential functor (see e.g. [11]).

In this setting, a coalgebra h : S
early transition relation

s ^-l s'iff s' e-Ki{hx){c){v) (c&C,veV,s,s' eS)
c\(v)

*■ s' iff (v, s') e n2{hx)(c) (ceCveV, s, s' € S)

s-Wiffs'e7r3(/ix)() (s,s'eS)

that provides a characterisation of coalgebraic bisimulation
in familiar terms as follows.

Proposition 2.2 The following data are equivalent.

1. A coalgebraic bisimulation for a coalgebra on S.

2. A symmetric relation R C 5 x S such that s0 R s'0

implies

• if so

s' C?

c?{v)
*- s then there exists s' such that

5o —>- s' and s R s':

• if so
\(v)

>- s then there exists s' such that

' C'{V} 'AD' s0 >■ s and s R s ;

• if So —*- s then there exists s' such that s'0 —i- s'
and sfis'. D

2.2. Name passing

Following [12], we will consider notions of behaviour
for the 7r-calculus in the category of (variable sets) Set1,
where I is the category of finite cardinals and injections.
However, all the constructions involved are also meaning-
ful for pullback-preserving presheaves in Set" and so, fol-
lowing [33], we also obtain notions of behaviour in the
Schanuel topos (see e.g. [23, pages 155 and 158]).

Late bisimulation. The constructions needed to model
late bisimulation [27] as in [12] are:

• The type of names N € Set1 with identity action
A^ = n.

• The power type Pf : Set1

action (PfP)n = Pf(Pn).
Set with pointwise

• Products (x) and coproducts (+) given pointwise by
(P x Q)n = PnxQn and (P + Q)n = Pn + Qn.

• The exponential PN with action given by (PN)n

(Pn)
n x Pn+1 and P(i)(f,p) = (f,p') where

/'(*)
(/a) [A] if x — La , _ , ,
p[i,x] otherwise ^ '

• The dynamic allocation type 5 : Set —>■ Set
with action given by (6P)n = Pn+\ and (5P)(L) =
P(L + 1).

The behaviour functor for late bisimulation of [12, 33] is

BP = Pf(N xPN + NxNxP + Nx5P + P) (24)

on Set1. Hence we have that

BPn= Pf(nx(Pn)
nxPn+1

+ n x n x Pn + n x Pn+\
+ P„)

in Set.
A coalgebra h : P —>■ BP induces the late transition

relation

P -^ f,p' iff (a, f,p') e hn(p)
(aen,P£Pn,fe {Pn)

n,p' € P„+i)

P —^ P' iff (a, b,p') € hn(p)

p—^p'iff (a,p') e hn{p)

(a, b e n,p,p' G Pn)

(aen,pe Pn,p' e Pn+1)

p-^p' iff p' e hn(p)
(p.p'ePn)

that provides a characterisation of coalgebraic bisimulation
in familiar terms (see [27]) as follows.

Proposition 2.3 The following data are equivalent.

1. A coalgebraic bisimulation for a coalgebra on P.

2. A family of symmetric relations

{ Rn C Pn x Pn }n6N

such that, for every n G N,

(a) p Rn q implies p[t] Rm q[i], for all L : n >—>- m
in I;

(b) p Rn q implies

a?()
• if p *- f.p then there exist g,q' such

a?()
that q >- ^, g , and /(a) Pn g(a) (for all
o s n) andp' Pn+i g';

• if p 5- p then there exists q such that
a-{b} 'AID q ^ q' and p' Rn+1 q'\

99

• if p
a!()

p' then there exists q' such that
o!()

q ^q' andp' Rn+i q'\

• if p —>- p' then there exists q' such that

p' —^~ q' and p' Rn q'. D

Early bisimulation. The definition of a behaviour functor
for early bisimulation (left open in [12, 33]) requires the
introduction of a new type constructor.

• For a mono-preserving presheaf P : I —>■ Set we
define P=^_ : Set —>■ Set as the functor mapping
a presheaf Q to the presheaf P^Q with action given
by (P ^ Q)n = Pn ^ Qn and

(P^Q)(0 = P(i)^Q(0 : " ^ Q(0 o u o P(,.)R

where P{i)R{q) = p iff P(i)(p) = q (see [11]).

This construction extends that of products in that we
have an injection P x Q >—>■ P^-Q given by:

Pn x Qn

p,q
Pn^Qn

pR^q
(25)

where (pR=^q)(x) = (if x = p then q)

In the vein of the treatment of early bisimulation for
value-passing CCS given in (23), we consider the follow-
ing behaviour functor

BP =,{N^P+
{{P)N)

x (N^P^(N x P)) x (N-=±P+
f{8P)) (26)

x (l^Pf(P))

in Set", where the components of the product respectively
model input, free and bound output, and silent actions. (The
role of the constructor N^>_ in this behaviour functor is
analogous to the one of the topped tensor product N &T _
in the model of [18].)

Note that because of the following isomorphisms

P((P + Q) = Pf(P)xPf(Q)

Pf{N x P) ^ N^P^(P)

P((P) ^ i^p+(p)

the late behaviour functor (24) can be written in the follow-
ing form

(N^P^{PN))

x (N^P^N x P)) x (yV^Pf (SP))

x (l^P+(P))

which makes clear that the late and early interpretations of
free and bound output, and of silent actions are the same.

Considering the pointwise early behaviour

BPn = (V^(P^Pn)" X PfPn+1)

x (ri-=M??(7ixP„))

x (n=M?P„+i)

x (l^PfP,)

a coalgebra h : P —>- BP induces the early transition
relation

P ^-^ p' iffp' G 7T1(7r1(/in7;)(«))(6)

07()

P *-p' iff p' £ 7T2(7ri(/l„p)(o))

p^—^p' \ff{b.p') G 7r2(/i„p)(a)

o!()
p *~p' iffp' e K-s(hnp)(a)

(a,be n,p,p' G Pn)

)
(a. G n,p& Pn,p' G P„+i)

)
(a, foe n,p,p' e Pn)

(o. G n,p6 Pn,p' e Pn+i)

p-^-p'iffp' G 7T.i(/lnp)()

(/>,//eP„)
that provides a characterisation of coalgebraic bisimulation
in familiar terms (see [27]) as follows.

Proposition 2.4 The following data are equivalent.

1. A coalgebraic bisimulation for a coalgebra on P.

2. A family of symmetric relations

{Rn QPn XP„}„€N

such that, for every n G N,

(a) p Rn q implies p[t] Rm q[t], for all /, : n >—*- m
in I;

(b) p Rn q implies

• if p *- p then there exists q such that

q >• q and p R„ q ,

• if p *- p' then there exists q' such that

q ^q and/; Rn + \ q ;

• if p >■ p' then there exists q' such that

q *- q and/; K„ c/ ;
n!()

• if /; >- // then there exists q' such that
a!() ,

<?■ r/and// P„ + i r/;

if /> —»- // then there exists q' such that

q -^ q' and // R„ q'. D

100

3 Semantics of name passing

To model the structural operational rules for the
7r-calculus using natural transformations of type (1), we are
faced with the fact that the signature £ is an endofunctor
on SetF (see (16)) while the behaviour B (for both the
late (24) and the and the early (26) interpretations) is an
endofunctor on Set1. Far from being a problem, this dis-
parity allows for the desired compositionality result to hold.
Indeed, both late and early bisimulations are not congru-
ences. What we need are thus behaviour functors for late
and early congruences instead. These behaviours can be ob-
tained by (right) extending the B's on Set" along an adjunc-
tion Set < T a Set1 obtaining new endofunctors B's on

Set . Moreover, a natural transformation of type

Z(X x BX) -»- BTX (27)

in SetF will be suitable to model the desired structural op-
erational rules for the 7r-calculus.

Late and early congruences. The adjunction we need be-
tween SetF and Set1 is an instance of the adjunction in (21)
taking C = Set1 and C = N:

Set*
W_>

• TV

Set1
(28)

Alternatively, one can describe this adjunction as the essen-
tial geometric morphism (see, e.g., [23, page 360]) associ-
ated to the inclusion I —-»- F. Thus, we have a canonical
natural isomorphism

X • TV * \X\ (29)

(essentially given by the action Xn x mn —>- Xm of X)
where |_| : SetF -^ Set1 is the forgetful functor given by
precomposing with the inclusion I —*- F.

We can now define, for every endofunctor B on Set1, an
endofunctor

BX = (N,B\X\)

i.e., the right Kan extension of (N,B_) along (N,_).
Using_ the isomorphism (29) and the adjunction (28),
the ß-coalgebras are in bijective correspondence with
.B-coalgebras \X\ —*■ B\X\. In other words, 5-coalgebras
are B-coalgebras on presheaves with an action along all re-
namings (rather than only on injective ones). This makes a
crucial difference in terms of coalgebraic bisimulation.

Proposition 3.1 For B as in (24) [resp. (26)], the following
data are equivalent.

1. A coalgebraic B-bisimulation for a coalgebra
X^BX.

2. A family of symmetric relations {Rn C Xn x Xn}n€N

as in Proposition 2.3 (2) [resp. Proposition 2.4 (2)]
(with respect to the transposed B-coalgebra
\X\ —>■ B\X\) where the closure condition (a)
is generalised to

p Rn q implies p[p] Rm q[p], for all p : n —>- m
inF. a

Proposition 3.2 1. The functors (J)N : Set1 —^ Set1

and Nn^_ : Set1 -*■ Set1 (n € N) are finitary.

2. For B as in (24) and (26), the lifted functors B are
finitary (hence the forgetful functor B-Coalg —^ SetF

has a right adjoint) and preserve weak pullbacks.
D

Therefore, every natural transformation of type (27), with B
the late (early) behaviour functor, induces a compositional
semantics fully abstract with respect to late (early) congru-
ence.

Categorical rules. We sketch how the 7r-calculus opera-
tional rules [27] are modelled by a natural transformation
of type (27). For brevity, we only consider the operational
rules of the binding operators (input and restriction); the
operational rules for the other operators are modelled along
the lines of [34] using the isomorphisms

(C,D1)x{C,D2)^(C,,D1 xD2)

8{C,D)^(C,DC)

satisfied by the functors in (13) with C cartesian closed, and
the map

V xX^{N,N^\X\) (30)

obtained by transposing |VxX| = Nx\X\>—*- iV^ |X|,
where the injection is given by (25).

Input. For input, the rule is modelled by a map of type

V x 5{X x BX) -»- (N, B\TX\)

Using (30) and projecting out the components that do not
contribute to the rule we can focus on defining a map of
type

ÖX-+(N,\X\N)^Ö(N,\X\)

The required map is 8 applied to the unit X >—^ (N, \X\)
of the adjunction (28); that is,

Xn+i
x

Set'(iVn+1,|Jüf:|)
{Xp€mn+1.x[p}}m€l

Note that this map can be used both for the late and
early cases by precomposing it with suitable maps respec-
tively arising from the injections \X\N>—^ P\(\X\N) and
\X \N ■{P\\X\) N

101

Restriction. For restriction, the rule is modelled by a map of
type 8(X x BX) -^ {N, B\TX\) in SetF which, in fact,
comes from a map of type

5B\X\ B\TX\ in Set"

For instance, the core of this latter map corresponding to the
following two rules

ob ox
P > 0 P —*- 0

(RES) — x£a,b (OPEN) x ^ a
(x)P-^-(x)Q (x)P —■>■ Q

is the map

SNxSNx S\X\ ^2- pt(N x N x |TX| + N x <5|TX|)

defined, using the internal language (see [12]), as follows:

RO(a,6,<7)
case a of

old(a') => let r/ = Srjq
in case 5 of

old(fc')
new

{(«', b'. uq')}

new

where T? : |X| -»■ |TA"| and u : <5|TX| —>- \TX\ (in
Set") arc respectively the (underlying maps of the) unit and
the restriction operator (in Set/) of the free E-algebra TX
onX.

4. Semantics of value passing

Actions. We have seen in § 1.1 that the homogeneous sub-
stitution of expressions for variables in expressions can be
modelled as monoids. For the heterogeneous substitution
of expressions for variables in terms we can use monoid ac-
tions as follows. Every monoid M — (M.fi.v) in Set"
defines a monad _ • M on SetF. The category of al-
gebras of this monad A/-Act, consists of (right) actions
A»M —>• A [22, VII.4]. In elementary terms, this amounts

to a family { o
ations such that

(«) :An x (M„ Am }„.„I6N ofoper-

om (a; v\,...,u„) -a

QC(om(a; u);v) = a((a; ,i((ui; v),..., H(\un: v))

for all a in A„, ü in (Mm)n, and v in (M()
m. (Note the

occurrence of// in the second law.)
For examples of actions consider the following.
A V-action A • V —*- A is forced, by the unit law, to be

the canonical isomorphism A»V = A. Thus, the category

K-Act is isomorphic to Set ; which explains why, for name
passing, we can do without extra substitution structure.

For objects C and D in a cartesian category C, the
monoid (C, C) has a canonical action on the prcsheaf
(C, D) given by (pairing and) composition in C.

As in any bicompletc monoidal closed category
(cf. [23, VII.3]), a monoid homomorphism M' —>- M in-
duces a reindexing functor A/-Act —>- M'-Act with both
left and right adjoints. Thus, the semantics of expressions
E —>• (Z,Z) and the unique homomorphism V —>• M
induce the following adjoint situations

(A/,_

(Z.Z)-Act ->- £-Act, M-Act Setf

• A/

where, on the right hand side, X • M has action given by
multiplication and (M, X) has action given by multiplica-
tion and evaluation.

Syntax. The substitution of expressions in terms involves,
in turn, a substitution of expressions in expressions. Thus,
the signature bifunctor for value-passing CCS needs to be
parametric in a monoid of messages. Accordingly, we let
E be the bifunctor Mon(SetF) x SetF —*- SetF given
by (17).

For a monoid M, we write T,M for the functor
£(Jl/,_) : SetF —^ SetF. One can lift EA/ to the category
M-Act of i\/-actions by means of a distributive law

A:EA/(-)*A/ -M\ M)

of the endofunctor EA; over the monad induced by the
monadic adjunction M-Act Set"'. This distributive
law is essentially the strength described in [13, page 200],
with the extra use of the multiplication of the monoid M in
the fourth and fifth summand of EA/. The resulting endo-
functor

Y.A!(A»M-^A)

= (EA/(4) • M ^ UM (A • M) Ä Y.A)

on M-Act has as algebras preshcaves A with both a
E-algebra structure and an M-action compatible with each
other in the sense that the evident diagram

EA/(^).M EA/(.4.M) ■XM(A)

A • M

w

A

commutes. We denote the corresponding category of
E~A/-algcbras by EA/-Alg. The associated forgetful func-
tor EA/-Alg —>- M-Act has a left adjoint; and the induced

102

monad is denoted by TM, as it is a lifting of the monad TM

induced by EM.

Moreover, every monoid homomorphism M' —*■ M in-
duces a reindexing functor EM-Alg —*- Ejv/'-Alg, which is
a lifting of the reindexing functor M-Act —>■ M'-Act. In
particular, the reindexing functor £<z,z)-Alg —>- Eg-Alg
induced by the semantics of expressions E —»- (Z,Z) al-
lows us to turn every interpretation for T<Z]Z>(0) into one
forT£(0).

Semantics. Let M be a monoid of messages in SetF; a
typical example being the clone of operations (V, V) on a
set of values V.

We have the following situation (cf. (5))

M-Act

u
<M,_>

-*=
T
T Set F ^r~ Set

•o

where the adjunction on the right can be alternatively de-
scribed as the essential geometric morphism associated to
the functor (0) : 1 —>■ F; hence

X • 0 ^ X0

for all X £ SetF.
To have both syntax and behaviour on the same category,

we will proceed as in the previous section and (right) extend
behaviour functors B on Set along the composite adjunc-
tion A/-Act < T > Set to B on M-Act. To do this easily,
we need a lemma.

Lemma 4.1 For C cartesian and cocomplete, the compos-

ite adjunction M-Act ^
<M.->

l-l -'C

• C : M-Act ^T7 C : (M • C,

<c,_)
Set c T ? C is given by

D

It follows that the extension of a behaviour functor B on
Set is along the adjunction

I |o : M-Act ^T7 Set : <A/0,_) (31)

where M0 is the set of ground messages, yielding B on
M-Act to be given by

BA = (M0,B(Ao))

Late and early congruences. As operational models for
value passing we take B-coalgebras

A-^(M0,B(A0))

in M-Act where B is either of the two endofunctors on Set
of (22) and (23). The adjunction (31) allows us to express
these operational models in terms of coalgebras on Set. In-
deed, they are in bijective correspondence with functions

A0^B(Ao)

where A carries an M-action. Moreover, B-coalgebra ho-
momorphisms are action homomorphisms which at stage 0
are also B-coalgebra homomorphisms:

A»M- ■+A A0 B(A0)

Ä »M + A' A', B(A'o,

Proposition 4.2 For B as in (22) [resp. (23)], the following
data are equivalent.

1. A coalgebraic ß-bisimulation for a coalgebra
A-+BA.

2. A family of symmetric relations {Rn Q Anx An}neN

such that

(a) R0 is as in Proposition 2.1 (2) [resp. Propo-
sition 2.2 (2)] (with respect to the transposed
ß-coalgebra A0 —^ B(A0)).

(b) For every n G N, s Rn s' implies

am(s;v) Rm am(s';v), for all iTin (Mm)n. D

Proposition 4.3 1. The category of actions M-Act is lo-
cally finitely presentable.

2. For B as in (22) and (23), the extended func-
tors B are accessible (hence the forgetful functor
ß-Coalg —>■ Af-Act has a right adjoint) and preserve
weak pullbacks. D

Categorical rules. Natural transformations in M-Act of
type _ __

T,(A x BA) —»- BTA (32)

with B the late (early) behaviour functor with set of val-
ues V = Mo, are suitable to model structural operational
rules for languages with value passing and give a categori-
cal format inducing fully-abstract compositional semantics
with respect to late (early) congruence.

Input. The most interesting rule to model is the axiom for
input. As for the 7r-calculus, the core of this rule (both for
the late and early behaviour) lies in the map

SA-+(V,AoV)^~6(V,Ao)

obtained by applying 5 to the unit of the adjunction (31),
namely:

An+\
a

Set(Vn+1,ylo)
\v€ Vn+1.a0(a;w)

103

Acknowledgements. We gratefully acknowledge discus-
sions with Gian-Luca Cattani, Gordon Plotkin and Davide
Sangiorgi.

References

[1] P. Aczcl. Non-well-founded sets. Number 14 in Lecture
Notes. CSLI, 1988.

[2] P. Aczcl and P. F. Mcndler. A final coalgcbra theorem. In
D. H. Pitt, D. E. Rydehcard, P. Dybjer, A. M. Pitts, and
A. Poigne, editors, Proc. Category Theory and Computer
Science, volume 389 of LNCS, pages 357-365. Springer-
Verlag, 1989.

[3] J. Adämck and J. Rosicky. Locally Presentable and Acces-
sible Categories, volume 189 of London Mathematical Soci-
ety Lecture Note Series. Cambridge University Press, 1994.

[4] J. A. Bcrgstra and J. W. Klop. Process algebra for
synchronous communication. Information and Control,
60:109-137, 1984.

[5] K. Bernstein. A congruence theorem for structured opera-
tional semantics of higher-order languages. In Proc. 13"'
LICS Conf., pages 153-164. IEEE, Computer Society Press,
1998.

[6] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can't be
traced. Journal of the ACM, 42(l):232-268, 1995.

[7] G.-L. Cattani and P. Scwell. Models for name-passing pro-
cesses: Interleaving and causal. In Proc. 15"' LICS Conf,
pages 322-333. IEEE, Computer Society Press, 2000.

[8] G.-L. Cattani, I. Stark, and G. Winskcl. Preshcaf models for
the 7r-calculus. In E. Moggi and G. Rosolini, editors, Proc.
Category Theory and Computer Science, volume 1290 of
LNCS, pages 106-126. Springer-Verlag, 1997.

[9] P. Cohn. Universal Algebra. Harper & Row, 1965.
[10] R. de Simone. Higher level synchronising devices in MEIJE-

SCCS. Theoretical Computer Science, 37:245-267, 1985.
[11] M. Fiorc. Axiomatic Domain Theory in Categories of Par-

tial Maps. Distinguished Dissertations Series. Cambridge
University Press, 1996.

[12] M. Fiorc, E. Moggi, and D. Sangiorgi. A fully-abstract
model for the 7r-calculus. In Proc. I /"' LICS Conf, pages
43-54. IEEE, Computer Society Press, 1996. (Full version
to appear in Information and Computation).

[13] M. Fiorc, G. Plotkin, and D. Turi. Abstract syntax and vari-
able binding. In Proc. 14"' LICS Conf, pages 193-202.
IEEE, Computer Society Press, 1999.

[14] W. Fokkink and R. van Glabbeek. Ntyft/ntyxt rules reduce
to ntrec rules. Information and Computation, 126(1): 1-10,
1996.

[15] W. Fokkink and C. Verhoef. A conservative look at oper-
ational semantics with variable binding. Information and
Computation, 146(l):24-54, 1998.

[16] J. Gogucn, J. Thatcher, and E. Wagner. An initial algebra
approach to the specification, correctness and implementa-
tion of abstract data types. In R. Yeh, editor, Current Trends
in Programming Methodology, volume IV, pages 80-149.
Prentice Hall, 1978.

[17] J. Grootc and F. Vaandrager. Structured operational seman-
tics and bisimulation as a congruence. Information and
Computation, 100(2):202-260, 1992.

[18] M. Henncssy. A fully abstract denotational semantics for
the 7r-calculus. Technical Report 4, COGS, University of
Sussex, 1996. To appear in Theoretical Computer Science.

[19] C. A. R. Hoare. Communicating sequential processes. Com-
munications of the ACM. 21(8):666-677, 1978.

[20] A. Ingölfsdöttir. A semantic theory for value-passing pro-
cesses, Late approach, Part I: A denotational model and its
complete axiomatization. Report Series RS-95-3, BRICS,
Department of Computer Science, University of Aarhus,
1995.

[21] A. Ingölfsdöttir. A semantic theory for value-passing pro-
cesses. Late approach, Part II: A behavioural semantics and
full abstractness. Report Series RS-95-22, BRICS, Depart-
ment of Computer Science, University of Aarhus, 1995.

[22] S. Mac Lane. Categories for the Working Mathematician.
Springer-Verlag, 1971.

[23] S. Mac Lane and I. Moerdijk. Sheaves in geometry and
logic: A First Introduction to Topos Theory. Springer-
Verlag, 1992.

[24] M. Makkai and R. Pare. Accessible Categories: The Foun-
dations of Categorical Model Theory, volume 104 of Con-
temporary Math. Amer. Math. Soc, 1989.

[25] R. Milncr. A Calculus of Communicating Systems, vol-
ume 92 of LNCS. Springer-Verlag, 1980.

[26] R. Milncr. Communication and Concurrency. International
Series in Computer Science. Prentice Hall, 1989.

[27] R. Milncr, J. Parrow, and D. Walker. A calculus of mobile
processes, I and II. Information and Computation, 100(1): 1 —
77. Sept. 1992.

[28] U. Montanari and M. Pistorc. 7r-calculus, structured coal-
gcbras and minimal HD-automata. In Mathematical Foun-
dations of Computer Science 2000, volume 1893 of Lecture
Notes in Computer Science. Springer-Verlag. 2000.

[29] G. Piotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Department of Computer
Science. Aarhus University, 1981.

[30] G. Plotkin. Binding algebras: A step from universal algebra
to type theory. Slides of a lecture at RTA'98, 1998.

[31] G. Plotkin. Bialgebraic semantics and recursion. Invited
talk at 4lh Workshop on Coalgehraic Methods in Computer
Science. Genova, Italy, 2001.

[32] D. Scott. Outline of a mathematical theory of computation.
In Proc. 4"' Annual Princeton Conference on Inf. Sciences
and Systems, pages 169-176, 1970.

[33] I. Stark. A fully abstract domain model for the 7r-calculus.
In Proc. II"' LICS Conf, pages 36-42. IEEE, Computer So-
ciety Press. 1996.

[34] D. Turi. Categorical modelling of structural operational
rules: case studies. In E. Moggi and G. Rosolini, editors,
Proc. Category Theory and Computer Science, volume 1290
of LNCS. pages 127-146. Springer-Verlag, 1997.

[35] D. Turi and G. Plotkin. Towards a mathematical operational
semantics. In Proc. /2,h LICS Conf, pages 280-291. IEEE,
Computer Society Press, 1997.

[36] D. Turi and J. Ruttcn. On the foundations of final coalgc-
bra semantics: non-well-founded sets, partial orders, met-
ric spaces. Mathematical Structures in Computer Science,
8(5):481-540, 1998.

104

A Fully Abstract Game Semantics of Local Exceptions

J. Laird
COGS, University of Sussex

jiml@cogs.susx.ac.uk

Abstract

A fully abstract game semantics for an extension of
Idealized Algol with locally declared exceptions is pre-
sented. It is based on "Hyland-Ong games", but as well
as relaxing the constraints which impose functional be-
haviour (as in games models of other computational ef-
fects such as continuations and references), new struc-
ture is added to plays in the form of additional pointers
which track the flow of control. The semantics is proved
to be fully abstract by a factorization of strategies into
a 'new-exception generator' and a strategy with local
control flow. It is shown, using examples, that there is
no model of exceptions which is a conservative exten-
sion of the semantics of Idealized Algol without the new
pointers.

1 Introduction

All practical programming languages provide some
means of manipulating the flow of control, primarily
to recover from errors and deal with other exceptional
eventualities. Dynamically bound, locally declared ex-
ceptions are a simple, elegant and effective way to do
this, making them a key part of ML and Java, for
example. Despite their ease of use for programmers,
however, these exceptions are not 'easy' from a seman-
tic point of view; no denotational model of a language
containing them has hitherto been described. Stati-
cally bound exceptions can be implemented using call-
with-current-continuation, but fail to account for one
of the most important features of exceptions — that
the same error may be handled in different ways if it
occurs in different contexts On the other hand, dy-
namically bound global exceptions have been modelled
abstractly via the exceptions monad [13], but this ap-
proach has not been applied to locally exceptions. It
may be argued that local exceptions have proved re-
sistant to the efforts of semanticists in part because
they are a kind of hybrid effect. Their main purpose

is to give access to the flow of control, but dynamic
binding distinguishes them from statically bound con-
trol constructs such as call/cc, whilst locality gives
rise to some of the identity-related issues which appear
with reference variables. But since continuations and
store have traditionally been modelled by (very differ-
ent) constructions, simply piling them on top of a func-
tional basis is likely to lead to a complicated semantics
which is not fully abstract.

The basis for a possible solution to these problems
can be found in the 'intensional hierarchy' [4] of games
models of various effects such as state [1,3], first-class
continuations [11] and higher type references [5]. These
all extend the basic model of PCF described by Hyland
and Ong [9], and Nickau [14], by relaxing, one-by-one,
the constraints on games and strategies which oblige
them to behave in a purely functional way. This 'direct'
approach to modelling side-effects means that they can
often be combined simply (and fully abstractly) by re-
laxing the relevant combination of constraints.

However, even in the context of game semantics, the
dynamic nature of exceptions has significant ramifica-
tions. Rather than simply weakening the appropriate
constraints on the model of PCF, it proves necessary
to to add significant new structure — in the form of
additional 'contingency pointers' — to the traces which
represent the states of a game, in order to describe the
dynamic binding of exceptions. These pointers give an
explicit representation of control flow in the model, al-
lowing a move to be played as if it immediately follows
an earlier move which is not actually its immediate
predecessor.

The main contribution of this paper is therefore to
define a new category of games by adding contingency
pointers to HO-style games, to show that this cate-
gory contains a model of locally declared, dynamically
bound exceptions, and — by a full abstraction result
— to show precisely how these combine locality with
manipulation of control-flow. Using this analysis, it
will show that the contingency structure really is neces-
sary to interpret exceptions in HO games. Because the

105
0-7695-1281-X/01 $10.00 © 2001 IEEE

games models of references and continuations do not
have this structure, this suggests that exceptions can-
not be expressed using continuations and references.

Acknowledgements

The work reported here was supported by several
UK EPSRC grants. I am grateful to Guy McCusker in
particular for his comments.

2 Idealized Exceptions

The language which will be modelled — Idealized
Algol [16] with (idealized) exceptions, or IAx for short
— is a typed call-by-name A-calculus with locally
declared ground-type references and a pared down
call-by-name version of the simple exceptions (based
on ML exceptions) described by Günther Remy and
Riecke [7]. IAx types are generated from the base
types 0 (empty), comm (commands), nat (natural
numbers), var (natural number references) and exn
(exceptions).
T ::= 0 | comm | nat | var | exn \ T => T.
Terms are formed according to the grammar:

M ::= x | skip | 0 | succ M | pred M | IFO 71/ |
Xx.M | MM | YM \M;M \
new_exnA/ | mkexn M M | raise M | handle M M \
new M | mkvar A/ M | M := M | !A/.

Typing judgements extend those for IA as follows
(B = 0 | comm | nat):

rhA/:exn=»i?
rt~new_exn M:B

ri-A/:exn
ThraiseM:/?

rhM:0=>comm T\-N:0
Thmkexn M N:exn

ri-7\/:exn rhA:0
rt-handle 71/ Ar:comm

The "big step" operational semantics for the impera-
tive fragment of IAx is given in Table 1. Evaluation
takes place in an environment consisting of a set of ex-
ception names £, a set of variable names or locations C,
and a store S — a partial mapping from £ to natural
numbers. By convention, mention of the environment
is omitted where possible. The new_exn and new con-
stants evaluate in the same way; each generates a new
name which is added to the environment, and supplied
to its argument. Similarly, the mkvar construct for gen-
erating "bad variables" [15, 1] has a precise analogue in
the mkexn operation for constructing "bad exceptions";
terms of exception type which may not have the correct
raising and handling behaviour.

Programs are evaluated to a final form D, which
is either a value V or an exception E = raise h for
some name h; the latter are propagated through the
program until they are caught. The handler is simply

an operation for capturing a named exception. Because
there are no values of type 0, TV : 0 can only evaluate
to an exception raised, so handle h TV compares the
names h and k and evaluates to skip if they are equal
and propagates the exception raise k if they are not.
Unlike ML exceptions, in which the use of a universal
type of exceptions results in recursive behaviour, the
much more restrictive typing of IAx prevents this.

Proposition 2.1 For any program M of IAx — {Y},
there is some D such that M -IJ. D.

A standard notion of observational equivalence can be
defined.

Definition 2.2 Terms M,N : T are observationally
equivalent (written M ~ N) if for any closing context
C[-] : comm, C[M] Jj. skip if and only if C[N] JJ. skip.

Idealized exceptions fit well with the block structure of
Idealized Algol and, despite their apparent simplicity,
arc quite expressive. For instance, although exceptions
in Java (and to a lesser extent ML) are more sophis-
ticated in that one handler can be used to trap differ-
ent exceptions using subtyping, the basic behaviour of
Java's try and catch operations can be captured by
defining (for M,N : comm, H : exn):
try A/ catch H TV =y new_exn Xk.
handle k ((handle H (A/; raise fc)); TV; raise k).
This executes the command 71/; if this is completed
then the catch block is discarded, but if the exception
H is raised whilst running A/, then it is caught and the
command N is executed.

Exceptions in ML can carry values; this "storage"
aspect of exceptions has not been included in IAx be-
cause it seems peripheral to the more significant fea-
tures of exceptions (control-flow manipulation and lo-
cal declaration) and can be simulated very easily using
explicit store; for example, in IAx exceptions carry-
ing natural numbers as values can be represented using
(var => (exn => comm)) => comm as the type of natural-
number-carrying exceptions as follows:
new_exn M =df new_exn A.r.new \y.{M Xg.(g y) x)
raise M Ar : B =dj (71/ (Xxy.y := TV; raise x)); ttB

handle M TV =(lf

new Xz.(M Xxy.(handle y TV); z : = \x); \z.

3 Control Games

The games constructions which will be used to
model IAx are based on those given by Hyland and
Ong [9] and Nickau [14], in which states of the game
are represented as justified sequences of moves. Sev-
eral developments of this basic framework will be used

106

vw
Mh,CU{x}ij.D

new M,£JJ.£>

Mtye

x g C

MW N1J.D
M;N$D

Mh,£ö{h}ij.D
new_exn M,£tyD

MW

h$£

raise MtyE

NW
M:=NW

MW A^raisee
handle M iV-lj-raise e e^h

raise MJJ-raise e

Lij.n MJJ-mkvar Ni N2 NmtyD MJJ-mkvar Nx N2 N2W
M:=HJP> \MW

N,SWS M,S'W,S"
M:=N,Styskip,S"[x^n}

M,SW,S' S'(x)=n

M^mkexn Nt N2 Nx

handle M Lij-D
LW M^mkexnN1N2 N2W

raise MW

MW MW
handle M NW M-NW

MW NW
M:=NW

MW
\MW

MW iVJ|raise/i
handle M A^skip

Table 1. Operational semantics of exceptions and store

here — in particular the relaxation of constraints to
define a model of Idealized Algol [1, 5]. However, it
has also been necessary to enrich more significantly
the structure on which the games are based — justified
sequences — by adding a new notion of 'contingency
pointer' to track the flow of control. Fortunately, this
fits in relatively smoothly with the original construc-
tions and developments aforementioned.

The structure of a game (the moves, their labels,
how they are related) is specified by its arena, defined
essentially as in [9]. An arena A is a triple:
(MA,\-AC {MA), x MA,XA : MA -> {Q,A}): where
MA is a set of tokens called moves,
h^C (MA)* x MA is a relation called enabling.
which allows a unique polarity for moves to be inferred
by the following rule — m is an O-move if it is initial
(i.e. * h m), or enabled by a P-move,
m is a P-move if it is enabled by an O-move,
XA ■ MA ->• {Q, A} is a function which labels moves as
answers (A) or questions (Q), such that every answer
has a unique enabling move which is a question.

A justified sequence over an arena A is a sequence
of elements of MA in which each occurrence of a non-
initial move comes with a justification pointer to a pre-
ceding occurrence of an enabling move. The transitive
closure of justification is referred to as hereditary justi-
fication. A sequence is alternating if Opponent moves
are always followed by Player moves, and vice versa.

In order to capture the control behaviour of excep-
tions in a compositional way, additional pointers of a
very similar kind will be added to justified sequences.

(The key difference is that there is no structure con-
straining these pointers analogous to the enabling re-
lation.)

Definition 3.1 A contingency pointer for a move in a
justified sequence is a pointer (distinct from its justifi-
cation pointer) to a preceding question. A move is con-
tingent if it has such a pointer. A control sequence is a
justified sequence in which contingency pointers satisfy
the same conditions as justification pointers: i.e.

• every Player move is contingent on some Oppo-
nent move,

• every contingent Opponent move is contingent on
a Player move,

• every answer move is contingent on its enabling
question.

The set of alternating control sequences over the arena
A will be written CA • If a can be reached by follow-
ing contingency pointers back from c, then c is said to
be hereditarily contingent on a. To avoid ambiguity
caused by multiple occurrences of the same move, we
shall sometimes say that in the sequence tb, b is con-
tingent on the prefix sa C tb instead of saying that b is
contingent on a.

3.1 A Category

A category of arenas and strategies can now be de-
fined using the standard constructions [9, 12].

107

Product For any set-indexed family of arenas
{Ai | i G I}, form the product .4 = Il!g/.4; as
follows:

• (m,i) \-nie!Ai (n,j) if i = j and m \-Ai n,
and * hn,6,/t, (n,j) if * \-Aj n,

• Xnf€IA,((m^)) = A.4,(H-

For finite k, the product of k copies of the arena
A will be written Ak.

Function Space For arenas A\, A2

• MAI=>A, = MAl +MAl,

• (m,i) \~A=>B (n,j) if i = j and m \- n
or m 6 Mß, n G M^, * hß m and * hß n,
* h (771, i) if 771 G Mß and * hß m,

• A^B((m,i)) = XA^B{m).

The arena with a single question move is written o.

Definition 3.2 A (deterministic.) strategy over an
arena A is a non-empty even-prefix-closed set of even
length alternating justified sequences which is evenly
branching: sa,sb£a =>• b = c.
A control-strategy on A is a strategy consisting of
control-sequences (i.e. a subset ofCA).

The control-strategies will be referred to simply as
strategies where the context is clear.

Composition of control-strategics is a straightfor-
ward extension of 'parallel composition with hiding'
[6] to control sequences.
If s G CAl=>(A2^A3) then s\(Ai,Aj) is a sequence with
contingency pointers (not necessarily a true control se-
quence) defined as follows:
e\{Ai,Aj) = e,
sa\{Ai,Aj) = s\(Ai,Aj) if a £ AhAh

sa\(Ai,Aj) = {s\{Ai,Aj))a if a £ AhAh

where a is justified by the most recently played move
from Ai or Aj which hereditarily justifies a in s (if any)
and a is contingent on the most recent move from .4,
or Aj on which it is hereditarily contingent.

Definition 3.3 For a : A\ -+ A2,T : A-> —> .43
a\T = {s G CAl,A3 I 3i G C((-4,=>.42)=M3)-
t\(A1,A2) €o/\t\(A2,A3) er/\t\Ai,A3 = s}.

As usual, canonical morphisms are copycat strategies
which just copy Opponent moves between different
parts of a game. However, contingency pointers (unlike
justification pointers) are not copied; to define copycat
control-strategies requires the notion of pending ques-
tion.

Definition 3.4 Define the "pending question prefix"
of a justified sequence as follows:
pending(e) = e,
pending(sn) = sa. if a is a question,
pending(so^6) = pending(.s), if b is an answer to a.

Definition 3.5 For any arena A, define the identity
control-strategy \dA : A => A to be the least subset of
CA=>A containing e and closed under the condition:
If s G id^ and sab\A+ = s\A~ and b is contingent on
(the last move in) pending(so) then sab G \dA-

So, for example, in the play of id0=>0 represented in
Figure 1, the last move is contingent on its immedi-
ate predecessor, but justified by the initial move. As

(o => 6) => (o => o)

O

P

Figure 1. A play of id0=>0 (with contingency
pointers)

for general strategies [12], arenas and control-strategies
form a SMCC which can be refined to a CCC of well-
opened strategies.

Definition 3.6 The thread of the last move in a non-
empty control sequence is defined as follows:
thread(*o) = a, (a initial)
thread(.saffr) = thread(sn)?;. (a is the last move in sat
justified by the same initial move as b).
b is contingent on the most recent move, in thread(.sft)
on which it is hereditarily contingent in satb.
A strategy a is well-opened if every control sequence in
o contains at most one initial move.
If T : A is a well-opened strategy, then r' : A is the
least subset of CA containing e and closed under the.
condition:
if s G T*, and thread(.s'«6) G r, then sab G rh

The well-opened identity is the restriction of id.4 to
well-opened sequences.

Thus we have two cartesian closed categories of
games, both of which have arenas as objects and well-
opened strategies over the function-space A => B as
morphisms from .4 to B, with composition defined
a ■ T = r^; IT:

108

6,1, x,=> — the category of games, which has (gen-
eral) strategies as morphisms — and C6,1, x, =>■ — the
category of control games which has control-strategies
as morphisms.

Apart from exception-declaration and handling, the
semantics of IAx is given by an embedding which takes
the semantics of IA in 6 [1] to CG- To define this
embedding requires the notion of well-bracketing.

Definition 3.7 A strategy a in 6 is well-bracketed if
every answer played by a is justified by the pending
question. A control-strategy a in CG is well-bracketed
if every move made by a is contingent on the pend-
ing question: i.e. if sa € a, then b is contingent on
pending(sa).

The well-bracketed strategies form cartesian closed
subcategories of 6 and CG, which will be written GWB

and CGWB- All of the strategies required to interpret
IA [1] are well-bracketed.

Definition 3.8 For any control sequence s, let \s\ be
the underlying justified sequence obtained by forgetting
the contingency pointers.
For a control-strategy a, let \a\ = {\s\ : s G a}. Say
that a is control-blind if \a\ is a deterministic strategy.

Proposition 3.9 There is an embedding of GWB into
CG, which has as its image the well-bracketed and
control-blind strategies.

PROOF: For any a : A e GWB define a to be the least
subset of CA containing e and closed under the follow-
ing condition:
If s e a, and \sab\ € a and b is contingent on
pending(sa) then sab £ a.
Then a is a well-bracketed strategy (well-bracketedness
of a implies that every answer is contingent on its jus-
tifying question) and (_) is compositional and preserves
cartesian closed structure. For any r € 6WB, \T\ = r,
and for any well-bracketed and control-blind a e CG,
\a\ = a. D

4 Semantics of Exceptions

The interpretation of locally bound exceptions given
here is based on viewing elements of exception type
h : exn as 'objects' defined by their 'methods' — in
this case raise h : conun and handle h : comm => comm.
This was suggested as an interpretation for reference
types by Reynolds [15] and followed in a game seman-
tics setting in [1, 5].

The type exn is interpreted as the arena exn =
=4> [comm]) x [0] (where [comm] is the arena with

one question and one answer, and [0] is the arena o
with just a question). The initial questions in the two
components [0] =>• [comm] and [0] will be referred to
as handle and raise respectively. The answer to handle
will be referred to as caught, and the question enabled
by handle as ok. The handle and raise methods are the
first and second projections from exn; mkexn is pairing.

[r h handle MN] = ([T h M];7r,, [r h iV]>; App

[F h raise M : B] = {V h M];irr; Wk[B]

[r h mkexn M N] = ([T I- M], [T h Nj)

(Where Wk^ : o =>■ A is the strategy which responds
to the initial question in A with the unique question
in o.) Thus the only part of IAx which is not repre-
sented by a control-blind and well-bracketed strategy is
new-exception declaration. This is defined using com-
position with a strategy xcell (similar to the strategy
cell which gives the denotation of new [1]) that uses
contingency pointers in an essential way to match up
raises and handles appropriately, via the notion of an
open question.

Definition 4.1 The set of prefixes of a control se-
quence which terminate in an open question is defined
by induction on length, as follows:
open(e) = {},
open(sa) = {sa}, if a is not contingent,
if b is contingent on a, then:
open(satb) = open(s) if XQA(b) = A,
open(satb) = open(sa) U {sa ■ tb}, otherwise.

[0 => comm]

s handle

ok \

/
/

caught..

[0]

N raise

Figure 2. A typical play of xcell

A "typical play" of xcell is depicted in Figure 2 (ar-
rows are contingency pointers). Its behaviour can be
described informally as follows.

• If Opponent plays a handle move then xcell re-
sponds with an 'ok' move, justified by (and con-
tingent on) it.

109

• If Opponent plays a raise move and some handle
moves are open, then xcell answers the most re-
cently played one. If there is no open handle ques-
tion, then xcell does nothing — this represents di-
vergence caused by an uncaught exception.

Definition 4.2 Let the strategy xcell : exn be, the least
subset ofCexn containing e and closed under the follow-
ing conditions:
if s £ xcell, then s ■ handle • ok £ xcell (where ok is con-
tingent on s ■ handle,),
if t £ xcell, and s ■ handle £ open(t ■ raise), and for all
r ■ handle £ open(t • raise), r C s, then t ■ raise ■ caught £
xcell, where caught is contingent on s ■ handle.

[r h new.exn M] = ([r h M] x xcell); App.

4.1 Soundness

Soundness of the interpretation with respect to the
operational semantics can now be established; the only
novel feature of the proof is that it requires meanings
to be assigned to programs which raise exceptions.
Given M : comm or M : nat, £ = ei,...e„,
£ = x.\,...xm, and k < m such that S(x{) I if and
only if i < k, let new £ := S in M =df
newAxi ...newAx,„.a;i := S(x'i);. •. ;xk := S{xk); M.
Then \M,£,C,S\ is the unique maximal-length
sequence in [ei,..., en b new £ := S in M] such that
sfexn" £ xcell".
Soundness is proved (by induction on derivation,
using standard facts about the model together with
analysis of xcell) with respect to the following binary
approximation relation (~):
\M,£,C,S} ~ [M',£',C',S'\ if the last move
in \M,£,C,S\ is the same as the last move in
lM',£',C',S'l

Proposition 4.3 // M,£,C,$ JJ D,S',C',S' then
[M,£,C,S)~[D,£',C',S'l

The interpretation is also adequate. This follows di-
rectly from soundness and termination of all evalua-
tions of Y-free terms (Proposition 2.1).

Proposition 4.4 For any IAx program M : comm,
[A/] /li/ and only if M JJ skip.

PROOF: The proof of completeness is by induction on
the number of occurrences of Y in M. Suppose [A/| 7^
J_. By proposition 2.1 AI JJ D for some D, and D =
skip by soundness. If M — C[YAr] for some Y-free Ar,
then C[YN] = U,€wIC'[An]l ? -1 (whore A'0 = n, and
Nk+l = N Nky Hcnce CjArA] ^ ± fol. somn k e w and

by induction C[Nk] JJ. and an induction on derivations
shows that C[YN] JJ. D

5 A Fully Abstract Model

An adequate model of IAx with exceptions has been
described which is not fully abstract because it lacks
the following 'definability property'.

Definition 5.1 A model M of IAx has the definabil-
ity property if for every context V and type T, every
(com,pact) f : |T] —> [T] in M is definable; i.e. there
exists an IAx term Mj such that f = \T \- Mj :T\.

In this section, the category of control games will be cut
down so that all compact strategies are definable in IAx
by giving a series of semantic definability criteria, and
hence a full abstraction result will be achieved. The
criteria are based on constraining three aspects of be-
haviour on control games; which moves Player's contin-
gency pointers can point to (a variant of the bracketing
condition), which moves Player's justification pointers
can point to (a variant of the visibility condition [9])
and a new condition governing which of Opponent's
contingency pointers can be observed by Player.

Definition 5.2 (Weak Bracketing) A strategy a is
weakly bracketed if every Player move in a is contin-
gent on an open question — i.e. if sb £ a where b is
contingent on ta C. sb then ta £ open(s).

The notion of view, defined for justified sequences in [9],
extends to control sequences in line with the intuition
that when Player makes a move contingent on an earlier
move it may be regarded as if they ocurred in direct
succession.

Definition 5.3 (View) The Player-view of a control
sequence is defined as follows:
rsa~l = a, if a is initial.
rsatb~l = rsa~]b if b is an O-move justified by a,
rsatb~l = rsonb if b is a P-question contingent on a,
rsatb~l = rs~1 if b is a P-answer to a.

This accords with the original notion of views given
in [9] in that for any well-bracketed strategy a £ CQ,
s £ a implies that rs~l = r|*i~'. It "dualizes" to a notion
of (9-view (1 1) as in [9].

Definition 5.4 (Visibility) A strategy (in CQ or Q)
satisfies the visibility condition if for every s £ a,
r.sn is a well-defined justified sequence. The cartesian
closed subcatr.gory Q of well-bracketed strategies satis-
fying visibility will be written Q\B-

A (well-bracketed) strategy a satisfies visibility if and
only if \a\ satisfies visibility. Hence the embedding of
Gun into CQ restricts to G\B-

The third definability criterion limits the power of
Player to observe contingency pointers. (It corresponds

110

to the fact that in IAx the only way to observe excep-
tion handling is by raising and handling a competing
exception.)
Let satb be a control sequence in which b is a P-move
contingent on a, and let re C. satb where c is a O-move.
Then c is prematurely closed by b if re £ open(sat) and
re $ open (so). Player's perspective on a control se-
quence is obtained by deleting the contingency point-
ers which are not attached to O-questions prematurely
closed by some P move. It can be defined concisely
(for extensions to control-sequences) as follows:
\e] = e,
If b is contingent on a, then \satb] = \s]a\i]b, where
the pointer from b to a is included if and only if a is a
P-question, and all of the pointers from a\t\ into s are
omitted.

Definition 5.5 A strategy is control-innocent if when-
ever sab,t £ a and \sab] = \tab], then tab £ a.

Proposition 5.6 // a is well-bracketed and control-
innocent then a is control-blind.

PROOF: If a is a well-bracketed strategy, then \s\ = \s\
as a closes only pending O-questions. D

Hence the image of the embedding of GVB into CQ con-
sists of the well-bracketed strategies satisfying visibil-
ity and control-innocence. The following proposition is
just a straightforard extension of the definability theo-
rem for IA [1] to include the base type exn.

Proposition 5.7 All finite strategies in GVB over
IAx - {new_exn} type-objects are definable in IAx -
{new_exn}.

Corollary 5.8 The (compact) definable strategies of
IAx - {new.exn} are the well-bracketed and control-
innocent finite strategies which satisfy visibility.

5.1 Factorization and Definability

The finite, weakly-bracketed, visibility-satisfying
and control-innocent strategies can now be identified
as the compact IAx-definable morphisms by showing
that they are obtained by composing xcell with the
well-bracketed and and control blind strategies.

Definition 5.9 Define CG/XCe\\ to be the cartesian
closed subcategory of control games in which morphisms
are finite strategies f : A ->■ B such that there exists
k £ to and a well-bracketed strategy g : A x exn^ —> B
such that id x xcell*;g = f.

Proposition 5.10 The compact elements of CG which
are definable in IAx are precisely the morphisms of
CG/xce\\ ■

PROOF: It is straightforward to establish by structural
induction on M that every [r h M : T] is the least up-
per bound of a chain of approximants in CG/XCe\\ ■
Conversely, if a : [r] -> [T] is a morphism in
CG/xce\\ then there is a well-bracketed — and hence
IAx - {new.exn} definable — strategy a : |rj x exnfc -»
(A =>- B) such that a = idjrj x xcell*;?, and hence
a = [r h new.exn Xxi ... new.exn \xk-Ma\. D

Proposition 5.11 A strategy is inCG/XCe\\ if and only
if it is finite, weakly-bracketed, control-innocent and
satisfies visibility.

Proof of this proposition comes in two parts; first it is
shown that if a : exn -> A satisfies weak-bracketing,
control-innocence and visibility then so does xcell; a,
which is a consequence of the following two lemmas.

Lemma 5.12 Suppose a : exn =>• A and sa £ a is
such that a is a move in A, and s fexn £ xcell. Then
open(sa)fMj4 = open(sa\A) and rsa~l\A = rsa\A1.

Lemma 5.13 Suppose a : exn =£• A is control-
innocent, and sab,t £ a where sfexn,£fexn £ xcell
and b is a move in A such that \sab\A] = \tab\A].
Then tab £ a.

The second part of the proof of Proposition 5.11 is to
show that all weakly-bracketed strategies can be ob-
tained from well-bracketed strategies by composition
with xcell (so in fact the stronger result that every com-
pact strategy can be defined using a single exception
variable is established). This is achieved by methods
similar to the factorizations described in [1, 10, 5, 8],
in this case using the jump in control between the raise
and caught moves of xcell to generate all of the control
jumps in a weakly-bracketed strategy. The complicat-
ing factor is that the properties of control-innocence
and visibility must be maintained. In particular, forc-
ing Opponent to close questions instead of Player hides
their contingency pointers — as has already been ob-
served, well-bracketed strategies cannot observe any
pointers at all. So it is necessary to make all of the
information carried by the perspectives of a manifest
as explicit exception handling.

The factorization of a strategy a : B to a : exn -> B
by adding handle, ok and raise, caught moves in exn (see
Figure 3), can be informally described as follows.

• Immediately before playing a question in A, a
plays a handle move (contingent on the pending
question), to which Opponent responds with ok.

• If a responds to sa by playing a move b which
prematurely closes n Opponent moves then a re-
sponds to sa by playing n raise moves — each of

111

which is caught by a handler corresponding to one
of the O-moves which are closed by b — until all of
these O-moves have been closed. If b is an answer
then a plays b contingent on the pending question;
if b is a question, then a plays a handle (as above)
and then plays b pointing to the pending question.

Note that as all of the contingency pointers from the
control-view of a are used to match up the raises and
handles, they are now observable as play in the premiss
exn.

Proposition 5.14 (Control Factorization) // a :
A is a finite, weakly-bracketed and control-innocent
strategy (satisfying visibility) then there is some finite,
well-bracketed strategy a : exn —> A (satisfying visibil-
ity) such that xcell; a = a.

PROOF: is by defining a = {t Ccl"'" s \ s £ a}, where

(_) : CA ->• Cexn=>A is a translation on even-length con-
trol sequences such that:

• s\A = s and s[exn £ xcell,

• every Player move in s is contingent on the pend-
ing question,

• if rsn is well-defined then so is rsn,

• |"s] = |~£] if and only if s = t.

For an even-length sequence ,s, let ij)(s) be the number
of O-questions prematurely closed by the last move in
.s. Now define s by induction on sequence length:
£ = £,

spq = %)(raisecaught)''''(s'"7)(handleok)7,
spa = %)(raisecaught)"'-'(sp',)a,
where XQA(q) = Q, and XQA(a) = A. D

5.2 Full Abstraction

In a now-standard fashion, definability for the com-
pact elements of the model of IAx yields full abstrac-
tion for its "intrinsic preorder collapse". Moreover, this
fully abstract model can be described directly, showing
that it is effectively presentable.

Definition 5.15 Given strategies a,r : A, a <,\ r if
for every well-bracketed strategy
p : A -» [comm], a;p ^ {e} implies r; p ^ {e}.
a = T if a < AT and T <A a.

Theorem 5.16 (Full Abstraction) For any closed
term,s M, N : T, \MjCg = {Njcg if and only if M ~ Ar.

commj x [0] .4

OQ

/ handle _ _

i

ok

/ handle __
^u - - -*- - -

OQ

OQ

raise

\ caught

\
\ N raise

caught ~ -

PA

Figure 3. Factorization of a control jump

In fact, the equationally fully abstract model can be
directly presented simply by including visibility and
bracketing in the definition of a legal play.

Definition 5.17 An alternating control sequence .s
over an arena A is legal if both Player and Oppo-
nent satisfy the weak-bracketing and visibility condi-
tions: i.e.
sa £ LA if and only if s £ L\ and if a is contingent, on
b then b £ open(s), and rsa'1 and L.SOJ are both well-
formed justified sequences.
For a : A, write L(a) for a C\ L.\ ■

Lemma 5.18 For any a.r : A, L(a) C L{T) if and
only if a <A r.

PROOF: To prove the implication from right to left
(showing that control-innocence does not affect the in-
trinsic preorder) suppose L(a) 2 L(T). Let sb £ a be a
minimal-length control sequence such that sb $ r. Let
q be the initial question in comm and « its answer), and
define:

p:A-> {t £ CA \\t]a""-" \qsba]}

Then p is by definition a control-innocent strategy such
that p; a ^ {e}. Moreover, p\ T = {e} --■ if sc £ p then

112

either \sc\ ^ \sb\ or c and b are contingent on different
moves, and hence \qsca] ^ \qsbd]. D

6 Contingency and Expressiveness

The complex structure of control games provokes
the question: Are contingency pointers really neces-
sary to model exceptions? The category Q contains
models of a wide range of sequential features, includ-
ing both references [1, 5] and call/cc [10, 11] at all
types. Might there not be a semantics of exceptions in
Ql Part of the interest in this question arises because
it is closely related to a problem which is both inde-
pendent of semantics, and an area of current research
interest: When can one combination of programming
language features be macro-expressed in terms of an-
other [17, 18]? For example, it is "folklore" [18] that
exceptions may be expressed in terms of continuations
and references. As both of the latter can be modelled
in G, if the folklore were true then a semantics of ex-
ceptions in Q could be given by factoring through this
interpretation. On the other hand, given a model of
exceptions, continuations and references in Q it should
be possible to use the a combination of the definability
results for references and continuations to extract an
encoding of exceptions.

In fact, it is not possible to give a semantics of ex-
ceptions which is a conservative extension of the model
of IA in Q, and hence it is not possible to macro-express
exceptions using continuations and references. A paper
is in preparation which contains formal proofs of the
latter claim, using syntactic counterexamples extracted
from the game semantics of exceptions, continuations
and references. This section will sketch a proof of the
former claim, showing how differences in contingency
structure can cause differences in observable behaviour.
A starting point is the observation there are strategies
which contain the same underlying justified sequences,
but are observationally distinct because they have dif-
ferent contingency pointers. A simple arena in which
this may be observed is (o =>■ o) =£■ (o =>■ o)) which will
be called A\ for short; it is the denotation of the type
I\ = (0 =$> 0) => (0 => 0). Recall that in the identity
strategy ono^o (Figure 1) Player moves are always
contingent on the preceding O-move.

Proposition 6.1 There is a weakly bracketed,
visibility-satisfying and control-innocent strategy
notJd : A\ such that | not.id | = |id0=>0| but id ^ not.id.

PROOF: Let notJd be the strategy consisting of the
even prefixes of the play depicted in Figure 4. Then
|not.id0=J.0| = |id0=>0| but notJd ^ id by Lemma 5.18.

D

Moreover (as the definability and full abstraction
results imply) notJd and id are the denotations of
terms which are not observationally equivalent:
id = [A/./], notJd = [NOTJD] where NOTJD =
A/.A.x.new.exn Xh.(handle h (/ raise h))\ x.
NOTJD g£ A/./; let ID.TEST : li => comm =
Ag.new.exn k.handle k (((g Abhandle k x) raise k);Q):
ID.TEST NOTJD Jj skip and ID.TEST A/./ f skip.

The distinction between not.id and id can be used
to show that there is no model of I Ax in Q.

Definition 6.2 Define the Q-strategy idtrunc : A\ —►
A1 = {t € LA-^A+ | t G \dAl A t\A^ = t\A+ G id0^0}

As the definability result of [1] entails, idtrunc is defin-
able as a term of Idealized Algol:
TRUNC = \g : T.newXz.Xf.Xx.z := 0;((9Mi)M2),
where Mt = Xy.IFO \z then (z := 1; {f y)) else Ü) and
M2 = IF0 \z then ft else x.

Lemma 6.3 For all a : A\ in Q, a; idtrunc <^t \d0=$0

PROOF: This is direct by definition of idtrunc. D

In CG, notJd; idtrunc = not.id ^^ id0=>0 — and this
fact can be exploited to prove the following.

Proposition 6.4 There is no adequate model of IAx
in G which conservatively extends the semantics of I A.

PROOF: Suppose there is such an interpretation.
Then ID.TEST (TRUNC NOTJD) JJ. skip im-
plies that [ID.TEST (TRUNC NOTJD)]g ± _L,
and hence ([NOT.ID]e; idtrunc); [ID_TEST]g ^ _L.
By Lemma 6.3, [A/./]5; [ID.TEST]e ^ JL, and so
[ID.TEST Xf.fjg ^ ±. But this contradicts adequacy,
as ID.TEST Xf.f ^ skip. D

6.1 Further Directions

By demonstrating that the games semantics of ex-
ceptions requires new structure, unlike the models of

(o =► o)

P ^

o)

O
* A

I

o

Figure 4. A typical play of not.id

113

references and continuations, we have shown the lim-
itations of the "semantic cube" [4] of models of pro-
gramming language features based simply upon relax-
ing constraints on the original model of PCF. But the
basic analyis implicit in the cube is strengthened by
the new structure — in effect, we have added an extra
dimension to it. The extra degree of freedom available
in the category of control games can be exploited to
give a thorough analysis of the interactions between
exceptions, continuations and references. The latter
can be modelled by dropping the "visibility condition"
in the style of [1] to reach a fully abstract semantics
of "core ML". (It is straightforward to move to a call-
by-value perspective by using, for instance, the Fam(C)
construction [2].)

To allow call/cc to be interpreted, the weak brack-
eting condition is relaxed. In this model, throwing a
continuation and and handling an exception both cor-
respond to playing a move which is not contingent on
the pending question; the distinguishing feature of ex-
ceptions is that they allow contingency pointers to be
observed. The most interesting feature of the model is
that (unlike the model of continuations in Q [11]) it is
not an example of continuation-passing-style construc-
tion; it contains observably distinct strategies which
represent terms which are equivalent in all cps models.
These terms constitute a further counterexample to the
claim that exceptions can be expressed using continu-
ations, which can be presented wihtout recourse to the
game semantics.

References

[1] S. Abramsky and G. McCusker. Linearity, Sharing
and State: a fully abstract game semantics for Ideal-
ized Algol with active expressions. In P. O'Hearn and
R. Tennent, editors, Algol-like, languages. Birkhauser,
1997.

[2] S. Abramsky and G. McCusker. Call-by-value games.

In M. Neilsen and W. Thomas, editors, Computer Sci-

ence Logic: ll'' Annual workshop proceedings, LKCS,

pages 1-17. Springer-Verlag, 1998.

[3] S. Abramsky and G. McCusker. Full abstraction for

Idealized Algol with passive expressions. To appear in
Theoretical Computer Science, 1998.

[4] S. Abramsky and G. McCusker. Game semantics. In
H. Schwichtenburg and U. Beiger, editors, Logic and

Computation: Proceedings of the 1997 Marktoberdorf

Summer School. Springer Verlag, 1998.

[5] S. Abramsky, K. Honda, G. McCusker. A fully ab-
stract games semantics for general references. In Pro-

ceedings of the 13th Annual Symposium on Logic In

Computer Science, LICS '98, 1998.

[e;

[8

[9

[io;

in

[12

[13

[14

[15

[16

[17

[18]

S. Abramsky, R. Jagadeesan. Games and full com-
pleteness for multiplicative linear logic. Journal of

Symbolic Logic, 59:543-574, 1994.
C. Gunter, D. Remy, and J. Riccke. A generaliza-
tion of exceptions and control in ML like languages.
In Proceedings of the ACM Conference on Functional

Programming and Computer Architecture, pages 12-
23, 1995.
R. Harmer and G. McCusker. A fully abstract games
semantics for finite non-determinism. In Proceedings of

the Fourteenth Annual Symposium on Logic in Com-

puter Science, LICS '99. IEEE press, 1998.
J. M. E. Hyland and C.-H. L. Ong. On full abstraction

for PCF: I, II and III, 1995. To appear in Theoretical

Computer Science.

J. Laird. Full abstraction for functional languages with

control. In Proceedings of the Twelfth International

Symposium on Logic In Computer Science, LICS '97,

1997.
J. Laird. A Semantic. Analysis of Control. PhD the-

sis, Department of Computer Science, University of
Edinburgh, 1998.
G. McCusker. Games and full abstraction for a func-

tional metalanguage with recursive types. PhD thesis,
Imperial College London, 1996.
E. Moggi. Notions of computation and monads. In-
formation and Computation, 93(1), 1991.
H. Nickau. Hereditarily sequential functionals. In
Proceedings of the Symposium on Logical Foundations

of Computer Seicnce.-.Logie at, St. Petersburg, LNCS.
Springer-Verlag, 1994.
J. Reynolds. Syntactic control of interference. In

Con/. Record 5 ' ACM Symposium on Principles of
Programming Languages, pages 39-46, 1978.
J. Reynolds. The essence of Algol. In Algorithmic
Languages, pages 345-372. North Holland, 1981.
J. Riecke and H. Thielecke. Typed exceptions and
continuations cannot macro-express each other. In
J. Wiedermann, P. van Emde Boas and M. Nielsen, ed-
itor, Proceedings of ICALP '99, volume 1644 of LNCS,
pages 635 -644. Springer, 1999.
H. Thielecke. On exceptions versus continuations in
the presence of state. In Proceedings of ESOP 2000,

volume 1782 of LNCS. Springer, 2000.

114

A Universal Characterization of the Closed Euclidean Interval
(EXTENDED ABSTRACT)

Martin H. Escardö
School of Computer Science, University of Birmingham

M.Escardo@cs.bham.ac.uk

http://www.cs.bham.ac.uk/~mhe/

Alex K. Simpson*
LFCS, Division of Informatics, University of Edinburgh

Alex.Simpson@dcs.ed.ac.uk

http://www.des.ed.ac.uk/home/als/

Abstract We propose a notion of interval object in a cat-
egory with finite products, providing a universal property
for closed and bounded real line segments. The universal
property gives rise to an analogue of primitive recursion for
defining computable functions on the interval. We use this
to define basic arithmetic operations and to verify equations
between them. We test the notion in categories of interest.
In the category of sets, any closed and bounded interval of
real numbers is an interval object. In the category oftopo-
logical spaces, the interval objects are closed and bounded
intervals with the Euclidean topology. We also prove that an
interval object exists in any elementary topos with natural
numbers object.

1 Introduction

In set theory, one can implement the real numbers in
many ways. For example, one can use Dedekind sections or
equivalence classes of Cauchy sequences of rational num-
bers. But what is it that one is implementing? Assuming
classical logic, either implementation produces a complete
Archimedian field and, moreover, any two such fields are
isomorphic. In fact, for the purposes of classical analysis,
one never uses a particular mathematical implementation of
the reals. One relies instead on the specification of the real-
number system as a complete Archimedian field and works
axiomatically. The only purpose of particular implementa-
tions is to be reassured that there is at least one such field.

Unfortunately, when one tries to carry out such a pro-
gramme in other foundational settings, difficulties arise.
One obstacle is that the categoricity of this axiomatization
relies on the principle of excluded middle, which is not al-
ways available, particularly in settings that are relevant to
the theory of computation. Further, one may criticize the
axiomatization on the grounds that, although it is aiming
to characterize the real line, which is fundamentally a geo-
metric structure, it makes essential use of abstract concepts,

♦Research supported by EPSRC grant GR/K06109

such as suprema of bounded sets of points, whose geomet-
ric meaning is unclear. In addition, the field axioms involve
operations, such as multiplication and reciprocation, which
one might rather see as derived from more primitive con-
structions.

A further objection to the field axiomatization is its lack
of explicit computational content. To develop a theory
of computability in the sense of Turing [32], one has to
start by effectively presenting a particular implementation
of the field of real numbers. For example, one can imple-
ment real numbers as Cauchy sequences of rational num-
bers with fixed rate of convergence [3]. Then one has to ar-
gue that the basic field operations are computable and that
various methods of defining new functions from old pre-
serve computability—see e.g. Weihrauch [34]. With this
approach, computability arguments involve heavy manipu-
lation of Gödel numberings, which are detached from the
usual practice of real analysis.

The above contrasts with the natural numbers, where
primitive recursion, the basic computational mechanism, is
not only embodied in their usual Peano axiomatization but
can also be taken as their defining property. An elegant for-
mulation of such an axiomatization was given by Lawvere
in his definition of a natural numbers object [22]. This style
of axiomatization has been adopted for other inductively de-
fined data types, such as lists and trees, which admit canon-
ical forms of recursion that reflect their characterization as
initial algebras. Dually, infinite data types, such as streams,
are characterized as final coalgebras, with corresponding
forms of corecursion. This formulation of data types has
been convincingly exploited by Bird and de Moor in their
algebraic approach to programming [2].

To place the real numbers into the above framework, one
requires a notion of real number data type whose defining
property embodies primitive mechanisms for recursion over
the reals. In this paper, we present such an axiomatization
for closed and bounded line segments, or interval objects
for short. We characterize interval objects by a universal
property that captures a basic geometrical notion and si-

115
0-7695-1281-X/01 $10.00 © 2001 IEEE

multaneously provides a computational notion of recursion.
Thus, remarkably, our axiomatization reconciles geometri-
cal and computational conceptions of the line.

In brief, our axiomatization:

(i) is based on elementary geometrical considerations,

(ii) has direct computational content,

(iii) applies in a wide variety of settings,

(iv) gives what one would expect in specific examples.

Regarding (i), we take a midpoint operation as the ba-
sic structure of line segments, with four axioms that corre-
spond to intuitive geometric properties. We define a convex
body as a midpoint algebra in which the midpoint operation
can be infinitely iterated, in a precise sense discussed in the
technical development that follows. Then an interval object
is defined to be a free convex body over two generators, its
endpoints. Geometrically, the free property amounts to the
fact that any two points of a convex body are connected by
a unique line segment.

Regarding (ii), the free property gives rise to an analogue
of primitive recursion for defining computable functions on
the interval. In particular, we use this to define basic arith-
metic operations and to verify equations between them.

Regarding (iii), we make as few ontological commit-
ments as possible by formulating our definitions in the gen-
eral setting of a category with finite products. Nevertheless,
to make the paper accessible to readers who are uncomfort-
able with category theory, we use, as far as possible, stan-
dard algebraic notation, so that everything we say can be
easily understood in familiar mathematical terms. Indeed,
when specialized to categories such as sets and topological
spaces, our definitions assume rather concrete meanings.

Regarding (iv), we have: (1) In the category of sets, any
closed and bounded interval of real numbers is an inter-
val object (Theorem 1). (2) In the category of topologi-
cal spaces, any closed and bounded interval under the usual
Euclidean topology is an interval object (Theorem 2). Thus,
our axiomatization of line segments exhibits the Euclidean
topology as intrinsic rather than imposed structure, because
it is this topology that gives rise to an interval object. This
is interesting in connection with the often cited fact that the
computable functions on the reals are continuous. (3) In
any elementary topos with natural numbers object, an inter-
val object is given by the Cauchy completion of the inter-
val of Cauchy reals within the Dedckind reals (Theorem 3).
In many cases this coincides with the Cauchy or Dedckind
intervals; but, in general, we seem to be identifying an in-
triguing new intuitionistic notion of real number. For details
see Section 9. Some other possible settings arc discussed
briefly in Section 10.

For lack of space, all proofs are omitted from this ex-
tended abstract.

Related work This paper has its origins in the first au-
thor's work on exact real number computation [10, 11]. In
this approach, real numbers arc represented by concrete
computational structures such as streams, allowing com-
putations to be performed to any desired degree of accu-
racy [35, 6, 4, 5, 33]. Of particular relevance to our work
is the issue of obtaining an abstract data type of real num-
bers, in which the underlying computational representation
is hidden [5, 8, 10, 11].

In the programming language Real PCF [10], the ab-
stract data type is based on simple real number construc-
tors and destructors. Mathematically, the constructors arc
unary midpoint operations i^Offi x and x H-> X (D 1 on
the unit interval [0,1], where x © y = (x + y)/2 is the
binary midpoint operation. These primitives are used by
Escardo and Streicher [11] to characterize the interval data
type by a universal property, from which structural recur-
sion mechanisms for real numbers arc obtained. Thus, this
work achieves many of the aims of the present paper. How-
ever, it crucially relies on general recursion and the conse-
quent presence of partiality. Indeed, the interval data type
includes partial real numbers as essential ingredients of its
characterization, and the characterization only works in a
domain-theoretic setting.

The goal of the present work is to obtain a characteriza-
tion of the real numbers that applies to a variety of compu-
tational settings, including those, such as intuitionistic type
theory [25], in which only total functions arc available. Al-
though such a programme has not been undertaken previ-
ously, algebraic and coalgebraic techniques, similar to the
ones used in the present paper, do occur in previous axiom-
atizations of the reals.

Higgs [14] defines magnitude algebras and proves that
the interval [0, oc] endowed with the function x \-> x/2 and
the summation operation ^ : [0, oo]"' ->• [0, oc] is the mag-
nitude algebra freely generated by 1. His definition is purely
cquational and is based on binary expansions of numbers.
Although our work has some connections with Higgs', es-
pecially regarding the idea of using an infinitary operation,
there are some important differences. Firstly, in the cate-
gory of topological spaces, the free magnitude algebra over
one generator is the interval [0, oc] with the topology of
lower semicontinuity rather than the Euclidean topology.
Indeed, the infinitary summation operation is not continu-
ous with respect to the Euclidean topology. Secondly, in
general, the Dedckind or Cauchy [0, oo] intervals in an el-
ementary topos arc not magnitude algebras, let alone free
ones, as there arc toposes, such as Johnstonc's topological
topos [17], in which these objects do not support the sum-
mation operation.

Motivated by the stream implementations of real num-
bers, Pavlovic and Pratt [29] consider coalgebraic defini-
tions of the reals. However, they do not make connections

116

with the computational and geometrical requirements dis-
cussed above. Peter Freyd [12] considers a more geomet-
rical coalgebraic approach. In fact, he also places empha-
sis on midpoint algebras, although the midpoint operation
is derived rather than primitive. His approach does appear
to have some computational content, but this has yet to be
elaborated.

2 Convex bodies and interval objects

This section presents the main definitions of this paper,
the notions of abstract convex body and interval object.

As discussed in the introduction, we define the interval
as the free convex body over two generators. To do this,
we require an abstract notion of convex body that makes
no reference to real numbers. We achieve this by viewing
convex bodies as algebraic structures.

The algebraic structure we identify is that associated
with the basic ruler-and-compass construction of bisecting a
line. Given two points in a convex body A, this construction
finds the point midway between them. It thus corresponds
to a binary midpoint operation m : A x A -> A. We begin
by axiomatizing the equational properties of such midpoint
operations.

Let C be a category with finite products.

Definition 2.1 (Midpoint algebra) A midpoint algebra

in C is a pair (A,m), where A x A m > A is any mor-
phism, satisfying:

the work of Kermit [20]. They have also recently been pop-
ularized by Peter Freyd in his investigations of (co)algebraic
properties of the interval [12].

1. m(x,x) = x

2. m(x,y) =m(y,x)

(idempotency)

(commutativity)

3. m(m(x,y),m(z,w)) = m(m(x,z),m(y,w))
(transposition)

A midpoint algebra is said to be cancellative if it satisfies:

4. m(x, z) = m(y, z) implies x = y (cancellation)

A homomorphism from (A,m) to (A',m') is a morphism

A' such that f(m(x,y)) = m'(f(x),f(y)). We
write MidAlg(C) for the category of midpoints algebras and
their homomorphisms.

In order to understand such ordinary algebraic notation in an
arbitrary category with finite products, the variables must
be interpreted as generalized elements. Thus, for exam-
ple, the homomorphism equation states: for all general-
ized elements x,y : Z » A (where Z is any object),
fomo(x,y) = m'o(fox, Joy). In this case, the condition
simplifies to the (unquantified) equation fom = mo(fxf).

The equations of midpoint algebras are not new. For ex-
ample, they have appeared as the axioms of medial means in

Example 2.2 The set]
under the function © :

is a cancellative midpoint algebra
'xEMM" defined by

x©y = (x + y)/2.

This yields a whole range of cancellative midpoint algebras
given by subsets A C Rn closed under ©. We call such
midpoint algebras standard midpoint subalgebras of Rn.
Examples are: the set of dyadic rational points; the set of
rational points; the set of algebraic points; any convex set.

These examples show that the midpoint axioms are still
far from capturing the full power of convexity, which re-
quires one to be able to fill in an entire connected line be-
tween any two points. Intuitively, we need to express some-
thing like a notion of Cauchy completeness for midpoint al-
gebras. However, Cauchy completeness itself cannot be the
appropriate notion, as midpoint algebras do not necessarily
carry a metric structure. More fundamentally, we cannot
use the notion of metric space to define the interval, be-
cause axiomatizing metric spaces already begs the question
of what the real numbers are. Instead, we need a method
of axiomatizing the completeness of midpoint algebras in
terms of their algebraic structure alone.

Consider an arbitrary sequence of points x0, x\,... in an
ordinary Euclidean convex body A. Let z be any point of A
and consider the derived sequence

m(x0,z), m(x0,m(xi,z)), m(x0,m(x1,m(x2,z))), ...

If A is bounded then this is a Cauchy sequence whose
unique limit point lies in A and is independent of z.
Thus, any sequence XQ,X\, ..., determines a unique point
m(x0,m(xi,m(x2,...))) obtained by infinitely iterating
the binary operation m over the sequence. Our notion of
completeness for a midpoint algebra A is to ask that such
infinite iterations always exist.

In the category of sets, such a requirement can be ex-
pressed directly, albeit clumsily—see Proposition 3.1. Re-
markably, there is a very concise formulation in purely cat-
egorical terms. Infinite sequences of elements of A are nat-
urally expressed using coalgebras for the functor (A x (-)),
i.e. morphisms of the form (h, t) : X Ax X. Indeed,
any such coalgebra determines an object X of sequences
of elements of A, as specified by the head and tail maps
h : X ► A and t : X ►• X respectively. We can
now state the property of being able to iterate the midpoint
operation m over any sequence so specified.

117

Definition 2.3 (Iterative algebra) A midpoint algebra
(A,m) is iterative if it satisfies the iteration axiom: for

every map X >- Ax X, there exists a unique A' ► A
such that the diagram below commutes.

AxX
id x

Ax A

X A.

In other words, (A,m) is iterative if, for any coalgebra
c — (h,t) : X A x X, there exists a unique u satis-
fying u(x) = rn(h(x),u(t(x))).

The above definition states that a midpoint algebra
(A,m) is iterative if it is final as an (A x (-))-algebra
with respect to coalgebra-to-algcbra homomorphisms from
(A x (—))-coalgebras. Interestingly, the dual notion of a
coalgebra being initial with respect to arbitrary algebras has
arisen in recent work of Taylor [31, Section 6.3] and Eppen-
dahl [9].

We arc now in a position to formulate our abstract notion
of convex body.

Definition 2.4 (Abstract convex body) An abstract con-
vex body is a canccllativc iterative midpoint algebra.

We henceforth omit the word abstract, except when re-
quired to avoid confusion due to alternative notions of
convex body being available (for example, in Euclidean
space, where ordinary convex bodies arc convex sets with
nonempty interior). We write Conv(C) for the full subcate-
gory of MidAl(j(C) whose objects arc convex bodies.

Example 2.5 Continuing from Example 2.2, any bounded
convex subset of R", considered as a standard midpoint
subalgcbra of K" , is an abstract convex body. Indeed, given
functions h : X —> A and t : X —> X, where X is any
set, the unique function u : X —>• .4 determined from the
coalgebra (h, t) : A —> A x A' by the iteration axiom is

u .T = -(i+i)

;>o
/t(/(z)). (1)

An important point is that the boundedness of A is crucial
for u to be well-defined. In fact, a standard midpoint subal-
gcbra of K" is an abstract convex body if and only if it is a
bounded convex subset of K" ; and, given a bounded convex
subset B of K", a function / : .4 -» D is a homomorphism
of abstract convex bodies (i.e. a homomorphism w.r.t. ©) if
and only if it is affine. Sec Section 3 for details.

Example 2.6 Let A be any bounded convex subset of En

endowed with the Euclidean topology. Then © also ex-
hibits A as a convex body in the category Top of topo-
logical spaces. Indeed, given any continuous (A x (—))-
coalgebra (h,t) : X —> A x X (where X is any space),
the function u defined in (1) is again the unique map re-
quired by the iteration axiom. The interesting fact here is
that u is continuous. This example will be expanded upon
in Section 8.

As motivated in the introduction, the interval will be de-
fined as the free abstract convex body over two generators.
This amounts to being an initial object in a suitable category
of bipointed convex bodies.

A bipointed convex body is a structure (A, m, a, b)
where {A,m) is a convex body and a,b : 1 ►- A arc
global points. Homomorphisms between bipointed convex
bodies are required to preserve the points as well as the bi-
nary algebra structure; i.e. / : A ► A' is a homomor-
phism from (A,m,a,b) to (A',m',a',b') if and only if it is
a homomorphism from (A,m) to (A',m') and a' = f o a
and b' = f o b. We write BiConv(C) for the category of
bipointed convex bodies and their homomorphisms.

We can now give the main definition of the paper.

Definition 2.7 (Interval object) An interval object in C is
an initial object in BiConv{C).

Example 2.8 In Set, any closed interval [a, b] C R, with
a < b, gives an interval object ([a,b],Q),a,b). Of course
the choice of a and b makes no difference. For future con-
venience, we take the interval I = [—1,1] as our standard
closed interval and (I, ffi, — 1,1) as our standard interval ob-
ject. This example is discussed in more detail in Section 3.

Example 2.9 In Top, (I, ©, — 1,1) is again an interval ob-
ject when I is equipped with the Euclidean topology. This
is discussed further in Section 8.

3 Interval objects in the category of sets

In this section wc study abstract convex bodies in the
category Set of sets, and we show that the interval object
in Set is indeed (I, ffi, —1, l),as claimed in Example 2.8.

The least familiar aspect of the definition of convex body
is the notion of iterative algebra. We begin by showing that,
in Set, iterative algebras are exactly algebras supporting an
additional operation of countably-infinite arity that satisfies
certain characterising properties relating it to the binary op-
eration. In general, this reformulation provides the most
straightforward method of showing that an algebra is itera-
tive.

118

Proposition 3.1 Let (A, m) be a midpoint algebra in Set.

1. (A, m) is iterative if and only if there exists a function
M : Au -» A satisfying:

(a) M(x0,xi,x2,...) = m(x0,M(xi,x2,X3,...))

(b) If 2/0 = m(x0,yi), yx = m(x1,y2), y2 =
m{x2,y3), ...thenyo = M(x0,x1,x2, ■ ■.).

Moreover if (A, m) is iterative then there is a
unique M satisfying (a).

2. If {A, m) and (A1, m') are iterative midpoint algebras
then any homomorphism f : A -> A' is also a homo-
morphism with respect to the associated infinitary M
and M'; i.e. for every sequence Xo,Xi,...,

f(M(x0,x1,...)) = M'(f(x0),f(x1),...).

With an appropriate reformulation, the above proposition
generalizes from the category of sets to any category with
finite products and a parameterized natural numbers objects.

It is useful to identify additional equational properties
satisfied by the the associated infinitary operations. We use
Mj(xj) as a shorthand for M(x0,xi,x-2, ■ ■ ■)■

Proposition 3.2 For any iterative midpoint algebra (A, m)
in Set, with infinitary M : Au -> A,

1. x = M(x,x,x,...),

2. m(x,y) = M{x,y,y,y,...),

3. MiiMjixij)) = MjiMiixji)),

4. Mi(m(xuyi)) = m(Mi(xl),Ml{yi)).

For an iterative midpoint algebra to be a convex body it
must also be cancellative. We have yet to see any techni-
cal consequence of this property. In fact, for iterative mid-
point algebras, cancellation is equivalent to an important
approximation property. To formulate this, we write mn

for the (n + l)-ary operation defined by mo(x) = x and
m„(x0,...,xn) = m(xo,mn_i(xi,...,xn)) for n > 1.
Thus mi is just m itself.

Proposition 3.3 For an iterative midpoint algebra (A,m)
in Set, the following are equivalent.

1. (A, m) is cancellative.

2. The associated M : A" —> A satisfies the following
approximation property.

If for all n > 0, there exist zn,wn € A such that
mn(x0,...,x„_i,zn) = mn(y0,...,yn-i,wn) then

M(x0,xi,...) - M{y0,yi,...).

This is far from immediate and is used crucially in the proof
of Theorem 1.

Having obtained a good understanding of what the dif-
ferent aspects of the definition of convex body mean in Set,
we return to Examples 2.5 and 2.8.

Proposition 3.4 If A is a standard midpoint subalgebra
ofW1, then A is an abstract convex body if and only if it
is a bounded convex subset ofW1.

Suppose A CW1 and A' C Km are convex sets. Recall
that a function / : A -> A' is said to be affine if it preserves
so-called convex combinations, i.e., for Ai,..., A* G [0,1]
with Ei=l xi = 1.

k k

/(^AiXi) = 2>/(Xi).
t=i »=i

The next proposition demonstrates the naturalness of homo-
morphisms between abstract convex bodies.

Proposition 3.5 For bounded convex sets A C E" and
A' C Rm, a function f : A -> A' is affine if and only if
it is a homomorphism with respect to ©.

An example due to Peter Freyd [12], which uses the ax-
iom of choice, can be used to show that the boundedness
assumption is essential for Proposition 3.5 to hold.

Theorem 1 (I, ©, -1,1) is an interval object in Set.

4 Parameterized interval objects

It is well known that Lawvere's elegant definition of a
natural numbers object, which works very well in cartesian
closed categories, is not powerful enough in categories with
weaker structure. Instead, a modified parameterized defini-
tion is needed [21, 7]. In a category with finite products, the
notion of parameterized natural numbers object supports the
definition of functions by primitive recursion. Moreover, in
a cartesian closed category, any ordinary natural numbers
objects is automatically parameterized. Much the same sit-
uation arises for interval objects.

Definition 4.1 (Parameterized interval object) A param-
eterized interval object is a bipointed convex body
(/,©,—1,1) such that, for any convex body (A,m) and

morphisms Ar —>- A and X —9—* Am C, there exists

a unique morphism X x / (I/-sl) A satisfying

l[f,gUx,y®z) = m{1[f,gD(x,y),M,gti{x,z)),

d/,fl])(^-l) = fix),
fl/.ffJOM) = g(x),

i.e. there is a unique right-homomorphism of bipointed con-
vex bodies from X x / to A.

119

By instantiating X to the terminal object, it is easily seen
that any parameterized interval object is indeed an interval
object. The converse holds when C is cartesian closed:

Proposition 4.2 // C is cartesian closed then any interval
object is parameterized.

Henceforth in this section, let C be a category with finite
products and parameterized interval object (/,©,—1,1).
The basic arithmetic operations on / can be defined by

1 — / = (-1)0(1),

/— J = ([1,-1]),

1x1-^*1 = d-, id;]).

More explicitly, the above defines multiplication as the

unique morphism I x I I satisfying

x x {y ® z) - {xxy)®(xxz),

X X (-1) = -X,

X X I = X.

Importantly, the universal property of /, stated in Defi-
nition 4.1, suffices to establish the basic equations between
the above operations.

Proposition 4.3 x = x,
x x y = y x x,
x x (y x z) = (x x y) x z,
-0 = 0,
x (I) -x = 0,
-(x(By) = (-x)©(-y),
1x0 = 0,
x x —y = — (x x y).

The most entertaining proof is that of the commutativity of
multiplication.

5 Primitive interval functions

In this section we give some preliminary results on the
power of the notion of interval object with respect to defin-
ing functions on the interval. As mentioned above, any pa-
rameterized natural numbers object supports definition by
primitive recursion. Here we investigate the definitional
mechanisms supported by parameterized interval objects.

In fact, a parameterized interval object supports two
complementary styles of definition. On the one hand,
the universal property of parameterized initiality gives one
mechanism for defining functions, used above to define
negation and multiplication. On the other, the couniver-
sal property of the iteration axiom supports another type of
definition, needed, for example, to define non dyadic ra-
tional numbers. Parameterized interval objects allow any

combination of these two styles. We investigate the power
of such combinations for the purpose of defining functions
on I in Set.

Definition 5.1 (Primitive interval functions) The primi-
tive interval functions on I are the functions in the smallest
family {Tn C I"->■ I}„>0 satisfying:

(i) -l,l£fo.

(ii) If / G Tm and </i,... ,g,„ € Tn then the composite
f° (0\,---,9m) e T„.

(iii) If /,g e Tn then the function h defined below is in
Tn+\'-

H^y) = \(i-v)f(x) + \(i + v)g(x).

(iv) If /i ,...,/„, g e Tn then the unique function h satis-
fying the equation below is in Tn:

h(x) = \g(x) + \h(h(x),...,f „(*)).

Here (iii) corresponds to the parameterized initiality of I,
with respect to I" as the object of parameters, and (iv) cor-
responds to the iteration axiom, as induced by the coalgc-
bra (.9, /],...,/,,): I" -> II x I". Note that property (ii)
means that tuples of primitive interval functions between fi-
nite powers of 1 form a category. This category has finite
products because the projections arc definable, using (iii).

The function defined by (iv) is given explicitly by

h(x) = ^2-"+1).ry((/1,...,/,l)'(x)).

A natural generalization is to replace the sequence
(g ° (/ii ••• i/n)')i of composite functions with an arbi-
trary sequence of (already defined) n-ary functions.

Definition 5.2 (Countably-primitive functions) The
countably-phmitive interval functions on I are the func-
tions in the smallest family {Tn C I" -> I}„>o satisfying
(i)-(iii) of Definition 5.1 and also

(iv)' Given /n, f\,... £ Tn, the function /» defined below
is in T,,:

Mx) £*- (1+1) /i(x).
<>o

Clearly every primitive interval function is a countably-
primitive interval function. The converse docs not hold
as there are continuum many countably-primitive inter-
val functions, but only countably many primitive interval
functions. Indeed, every element of I gives a countably-
primitive interval function of arity 0 (i.e. a constant). Al-
though this cannot hold for the primitive interval functions,
we do at least have the followine.

120

Proposition 5.3 Every rational in]
val constant.

gives a primitive inter-

The proof makes crucial use of property (iv).
As in Section 4, we have ffi, -, x as primitive interval

functions. Thus every n-variable ©-polynomial (i.e. poly-
nomial where © replaces the usual +) with rational coeffi-
cients is an n-ary primitive interval function.

We are not sure how much further definability can be
pushed with the primitive interval functions, as we now
show that even the countably-primitive interval functions
are very limited.

Proposition 5.4 If f is an n-ary countably-primitive in-
terval function, and x0,..., xn-i, Vo, ■ ■ ■, 2/n-i £ I are
such that yi = x* whenever Xj € {-1,1}, then
/(x0,...,x„_i) G {-1,1} implies f{y0,...,yn-i) =
f(x0,...,xn-i).

This is proved by induction over the defining properties of
the countably-primitive interval functions.

Thus if / is a unary countably-primitive interval function
and /(x) € {-1,1} for some x in the interior (-1,1) then
/ is a constant function. Clearly then, the following trun-
cated double function is not a countably-primitive interval
function.

f 1 ifl/2<x,
d{x) = I 2x if-1/2 < x < 1/2,

[-1 ifx < -1/2.

Accordingly, define the d-primitive interval functions to be
the smallest class of functions containing d and closed un-
der (i)—(iv). Define the countably-d-primitive interval func-
tions analogously. The reason for selecting d amongst the
non-countably-primitive interval functions is:

Proposition 5.5 The n-ary countably-d-primitive interval
functions are exactly the continuous functions In ->• I.

The proof uses the Stone-Weierstrass approximation theo-
rem [30].

Thus including d as a basic function enormously in-
creases definability. It is our hope that this increase in de-
finability also means that the d-primitive interval functions
form a useful class, somewhat analogous to the primitive
recursive functions on N. Although we have yet to under-
take any systematic investigation of this class, we do have
one important result. Recall the standard notion of an n-ary
computable function on I [34].

Proposition 5.6 Every n-ary d-primitive interval function
is an n-ary computable function on I.

This result follows from Theorem 3 of Section 9 below,
by interpreting it in a realizability topos in which the mor-
phisms on the interval are exactly the computable functions.

However, in the next section, we outline a direct proof, by
showing that the computable functions are closed under the
defining properties of the d-primitive interval functions.

6 An interval data type

In Proposition 3.1, we have seen that, in the category of
sets, the iteration axiom is captured by the existence of an
infinitary version M of the midpoint operation m. More-
over, a function of convex bodies is a homomorphism with
respect to m if and only if it is a homomorphism with re-
spect to M. Additionally, Proposition 3.2 shows that m is
easily defined from M. This suggests that one might con-
sider the w-ary operation M as the primitive algebraic op-
erator on convex bodies, rather than m. In this section, we
exploit this idea to base a data type for the interval I on the
term algebra of an w-ary operation M and two constants -1
and 1.

We outline an implementation using a functional pro-
gramming notation similar to ML [28] and Haskell [1] (it
is not important whether an eager or lazy language is used).
Our data type I is defined as follows.

datatype I = -1 | 1 | M of Nat -> I

Within the interval type I, we single out the w-branching
well-founded trees as those data elements representing
points of the interval. Such trees are precisely the elements
of the term algebra mentioned above. To interpret a tree as
representing an element of I, the infinitary operator M is
interpreted as the iterated midpoint operation

M(x0,Xi,X2,...)

oo

i=0

using which any w-branching well-founded tree evaluates to
a unique point in I. Thus, by this interpretation, I is given as
a quotient of the set of all w-branching well-founded trees.

The iteration axiom of Definition 2.3, in the concrete
form given in Example 2.5, corresponds to the following
corecursion combinator.

corec : (X -> I) -> (X -> X) -> (X -> I)

corec h t x = M (\i -> h(t"i(x)))

In this definition, \i->t is typewriter notation for the
lambda expression Xi.t and we use the evident notation for
function iteration.

The initiality of I, as in Definition 2.7, is exhibited by the
following recursion combinator.

rec : ((Nat -> A) -> A) -> A -> A -> A)

rec Nab -1 = a
rec Nab 1 = b
rec Nab (M s) = N (\i -> rec Nab (si))

121

In this definition, the first argument N is the infinitary mid-
point operation of a given bipointed convex body A, and the
second and third arguments a and b are the distinguished
points. We have not built any explicit type of parameters
into the type of rec, because parameterization is induced
automatically by the functional language. For example,
negation and multiplication are defined as in Section 4, us-
ing the recursion combinator.

neg : I -> I
neg = rec M 1 -1

mul : I -> I -> I
mul x = rec M (neg x) X

The recursion and corecursion combinators correspond to
conditions (iii) and (iv) of Definition 5.1 respectively. The
truncated double function can also be implemented using
the datatype I, but this is surprisingly tricky. However, cu-
riously, an algorithm for doing this occurs fairly explicitly
in our (omitted) proof of Theorem 3 below. It follows that
the d-primitive interval functions arc definable on our inter-
val datatype I.

Because we are using a non-standard representation of
the interval, based on the infinitary midpoint operation, it is
important to show that our representation is interconvertible
with the standard representations used in exact real number
arithmetic. One such representation, signed binary, uses
a data type I' of infinite sequences of the three digits -1,
0 and 1—see [35]. It is trivial to convert from signed bi-
nary sequences to our representation I, using the facts that
0 = AI(— 1,1,1,1,...) and that a signed binary expansion
Q.dQ(i\d-2 ... is the same as AI (do,d\,do,...). To translate
in the other direction, one first defines the iterated midpoint
operation M' : (Nat->I') ->I' (an interesting program-
ming exercise), and then the conversion function I->I' is
simply rec M' (\i -> -1) (\i -> 1).

Although we have written this section using a functional
language with general recursion, we remark that our rep-
resentation of the interval can be implemented even more
directly using intuitionistic type theory [25]. Indeed, by for-
mulating the recursive definition of the data type I as a W-
typc, one obtains precisely the well-founded w-branching
trees over —1 and 1, and our recursion combinator is sim-
ply the recursor for this type.

7 Basic categorical properties

In this section, we turn our attention to general proper-
ties of convex bodies and interval objects arising from their
categorical definitions. This general investigation will be
useful in Sections 8 and 9, in which we study examples in
categories other than Set.

One benefit of having simple abstract definitions of con-
vex body and interval object is that it is easy to prove that

these notions are preserved by various categorical construc-
tions and functors. In this section, we state basic results of
this nature. The proofs are all routine.

As in Section 2, let C be a category with finite products.

Proposition 7.1 The forgetful functors Conv(C)
BiConv(C) —> C create limits.

C and

In particular, if (A, m) and (A' ,m') are convex bodies then
so is A x A' endowed with

(Ax A') x (Ax A') -=~ (AxA)x(A'xA') ^^ Ax A'

and an analogous statement holds for bipointed convex bod-
ies. One simple consequence of this result is that, for any
interval object (7, ©,o, 6), the n-dimcnsional cube In has
an induced convex body structure.

As well as being closed under limits, convex bodies arc
also closed under internal powers.

Proposition 7.2 If (A, m) is a convex body then so is

B AB „ AB - . {A", Au xA (A x A) B m _ \B A")

for any exponentiable object B.

Again, the analogous result holds for bipointed convex bod-
ies.

It is also straightforward to establish conditions under
which (bipointed) convex bodies arc preserved by functors.
Suppose V is a category with finite products, and the func-
tor F : C —> T> preserves finite products. Then there is a
functor F : MidAlg(C) -» MidAlg(V) whose action on
objects is:

F(A,m) = (FA, FA x FA F(A x A) — FA)

and whose action on morphisms is inherited from F.

Proposition 7.3 Suppose that F has a left adjoint.

1. The functor Fj MidAUj(C) ->■ MidAlg(D) cuts down
to a functor F : Conv(C) —> Conv(T>). Similarly,
by extending the action of F to bipointed objects, a
functor F : BiConv(C) —> BiConv(T>) is obtained.

2. If F :_C ->■ V also has a right adjoint G : V -> C
then G : Conv(T>) —» Conv(C) is right adjoint
to the functor F : Conv(C) —> Conv(D), and
G : BiConv(T>) —> BiConv(C) is right adjoint to
F : BiConv(C) —> BiGonv(D). Thus, in particular,
F : C —» V preserves interval objects.

It follows from 1 above that if C is a full reflective sub-
category of T> and if T> has an interval object (I, (B, —1,1)
where I is an object of C then (7, 0, —1,1) is also an inter-
val object in C.

122

A special case of statement 2 is that interval objects are
preserved by the inverse image functors of essential ge-
ometric morphisms between elementary toposes. Thus if
/ : £ -> £' is an essential geometric morphism and £' has
an interval object then its image under /* gives an interval
object in £. In particular, by Theorem 1, every presheaf
topos Set has an interval object obtained as A (I) — re-
call that the constant presheaf functor, A : Set -> Setc°P,
is the inverse image functor of an essential geometric mor-
phism [24]. More generally, in Section 9, we show that any
elementary topos with natural numbers object has an inter-
val object.

8 Interval objects in the category of
topological spaces

In this section we return to the claims made earlier in Ex-
amples 2.6 and 2.9, investigating abstract convex bodies and
interval objects in the category Top of topological spaces.

Proposition 3.1 generalizes to Top with the requirement
that M : Au -» A be continuous with respect to the product
topology. It follows that, for a bounded convex A CM", the
midpoint algebra (A, ©) with the discrete topology is not an
abstract convex body in Top , because this topology does
not make the iterated midpoint operation into a continuous
function. Thus the notion of abstract convex body forces
one to consider more reasonable topologies on (.4, ©).

Proposition 8.1 For any bounded convex subset A C W
endowed with the Euclidean topology, (A, ©) is an abstract
convex body in Top.

This result is derived from Proposition 3.4, by proving that
the infinitary midpoint operation is continuous. Certain
other basic information about convex bodies in Top can
be inferred using Proposition 7.3. The forgetful functor
U : Top —> Set has both a left adjoint A (giving the
discrete topology) and a right adjoint V (giving the indis-
crete topology). Thus, both U and V preserve convex bod-
ies. As U does, we see that, by Proposition 3.4, under any
topology whatsoever, for a standard midpoint subalgebra A
of ln to be a convex body in Top, A must be a bounded
convex set. Also, for any bounded convex set, (A, ffi) with
the indiscrete topology is a convex body in Top.

Also, by Proposition 3.4, if an interval object exists in
Top then U preserves it. In fact, we have already claimed in
Example 2.9 that (I, ffi, -1,1) is an interval object in Top
when given the Euclidean topology. As Top is not cartesian
closed, it is appropriate to show that this is a parameterized
interval object in the sense of Section 4.

Theorem 2 (I, ®, -1,1) with the Euclidean topology is a
parameterized interval object in Top.

By Proposition 7.3.1, (I,©,-1,1) with the Euclidean
topology is a parameterized interval object in any full reflec-
tive subcategory of Top that contains the closed Euclidean
interval. Thus, for example, it is a parameterized interval
object in the category of compact Hausdorff spaces.

9 Interval objects in an elementary topos

In this section we prove that an interval object exists in
any elementary topos with natural numbers object. There
are at least two reasons to be interested in such a result.
Firstly, elementary toposes include all Grothendieck and re-
alizability toposes, of which there are numerous examples
with direct geometrical and/or computational significance.
Indeed, we have already mentioned that the results of this
section can be used to prove Proposition 5.6.

Our second motivation is to study the notion of interval
object using an intuitionistic background logic. It is well
known that intuitionistic logic draws sharp distinctions be-
tween different, though classically equivalent, definitions of
real number. To better understand our notion of interval ob-
ject, we compare it to the competing intuitionistic accounts
of the interval. Somewhat surprisingly, rather than obtain-
ing one of the established notions, interval objects give rise
to an apparently new intuitionistic notion of real number,
albeit one that coincides with extant notions under the mild
assumption of number-number choice.

Let £ be an elementary topos with natural numbers ob-
ject N. Among the alternative notions of real number avail-
able, two are considered as being the most natural, the
Dedekind reals Rß and the Cauchy (or Cantor) reals Rc-
Both are defined using the object of rationals Q and its as-
sociated ordering. The reader is referred to [16] for details.

A basic fact is that one has inclusions

Q C Rc C RD.

We say that a subobject X C RD is Cauchy complete
if every Cauchy sequence in A'N (with modulus) has a
limit in X. It is easy to see that the Dedekind reals
are Cauchy complete. Obviously, the rationals are not
Cauchy complete. The Cauchy reals partially rectify the
non-completeness of Q by adding all limits of Cauchy se-
quences of rationals. Given N-N-choice, this suffices to
make Rc itself Cauchy complete. However, it seems that,
in general, Rc is not Cauchy complete, as, given a Cauchy
sequence of Cauchy reals, there is no mechanism for se-
lecting representative rational sequences from which the re-
quired limiting sequence of rationals can be extracted.

The possible failure of Cauchy completeness for Rc
makes it natural to introduce another object of reals, namely,
the Cauchy completion o/Q within R#. This object, which
we call the object of Euclidean reals R#, is defined as the

123

intersection of all Cauchy complete subobjects of RD con-
taining the rational numbers.

We have identified three objects of reals

Rc C RE C R/>

In the case that £ satisfies N-N-choice, both inclusions are
equalities. The Grothendieck topos of sheaves over the Eu-
clidean line is a simple example in which the second inclu-
sion is strict. To our embarrassment, we do not know an
example in which the first inclusion is strict. Thus we do
not know if the envisaged failure of the Cauchy complete-
ness of Rc is actually possible—although we arc sure that
it must be.

Each notion of real number object determines a corre-
sponding notion of interval object; for example,

ID = {ieRcj-Ki<l}
IE = {ieRE|-l<i<l} = RE n ID.

The reason for introducing the Euclidean reals in the first
place is the following.

Theorem 3 (Iß, ©, -1,1) is an interval object in 8.

Our proof is very long and makes crucial use of Pataraia's
intuitionistic fixed-point theorem for monotonic endomaps
of directed complete partial orders [27].

10 Concluding remarks

We have provided an axiomatization of the interval, by
means of a geometrically motivated universal property that
supports the definition of computable functions. Moreover,
we have investigated this axiomatization in a number of set-
tings.

Many other settings remain to be investigated. In the cat-
egory of setoids over intuitionistic type theory [15, 26], it
can be shown that any of the usual constructions of a closed
real interval gives an interval object. In the category of lo-
cales over any topos, we conjecture that the standard localic
interval [18] is an interval object.

By definition, an interval object is a free convex body
over two generators. Freely generated convex bodies over
different generating objects coincide with other familiar
mathematical structures. Interesting examples occur in the
category of topological spaces: (1) The free convex body
over Sierpinski space is the interval with the topology of
lower scmicontinuity. (2) The free convex body over the flat
domain of booleans under the Scott topology is the interval
domain studied in [11] with its pointwisc midpoint struc-
ture. (3) The free convex body over a finite discrete space of
cardinality n is an /(-simplex. In particular, the free convex
body over three and four generators arc the triangle and the
tetrahedron. All the above examples arc applications of the

left adjoint to the forgetful functor from topological convex
bodies to topological spaces, which exists by Freyd's Ad-
joint Functor Theorem [23].

There arc intriguing connections between midpoint alge-
bras and the probabilistic algebras that arise in the study of
probabilistic powerdomains—sec the axiomatizations dis-
cussed by Hcckmann [13]. It is plausible that the free
convex body over a sufficiently nice domain may be noth-
ing but the probabilistic powcrdomain of normalized valua-
tions [19].

References

[1] R. Bird. Introduction to Functional Programming us-
ing Haskell. Prentice Hall Press, 2nd edition, 1998.

[2] R. Bird and O. de Moor. Algebra of programming.
Prentice Hall Europe, London, 1997.

[3] E. Bishop and D. Bridges. Constructive Analysis.
Springer-Verlag, Berlin, 1985.

[4] H.J. Boehm. Constructive real interpretation of nu-
merical programs. SIGPLAN Notices, 22(7):214-221,
1987.

[5] H.J. Boehm and R. Cartwright. Exact real arithmetic:
Formulating real numbers as functions. In Turner. D.,
editor. Research Topics in Functional Programming,
pages 43-64. Addison-Wcsley, 1990.

[6] H.J. Boehm, R. Cartwright, M. Rigglc, and M.J.
O'Donnel. Exact real arithmetic: A case study in
higher order programming. In ACM Symposium on
Lisp and Functional Programming, 1986.

[7] R.L. Crole. Categories for Types. Cambridge Univer-
sity Press, Cambridge, 1993.

[8] P. Di Gianantonio. A functional approach to com-
putability on real numbers. PhD thesis, University of
Pisa, 1993. Technical Report TD 6/93.

[9] A. Eppendahl. Coalgcbra-to-algcbra morphisms.
Electronic Notes in Theoretical Computer Science, 29,
1999.

[10] M.H. Escardri. PCF extended with real numbers. The-
oretical Computer Science, 162(1):79-115, 1996.

[11] M.H. Escardri and Th. Streicher. Induction and recur-
sion on the partial real line with applications to Real
PCF. Theoret. Comput. Sei, 210(0:121-157, 1999.

[12] P. Freyd. Public communications to the cat-
egories mailing list. http://www.mta.ca/
~cat-dist/categories .html, 1999-2000.

124

[13] R. Heckmann. Probabilistic domains, pages 142-156.
Springer, LNCS 787, 1994.

[14] D. Higgs. A universal characterization of [0, oo]. Ned-
erl. Akad. Wetensch. Indag. Math., 40(4):448^t55,
1978.

[15] M. Hofmann. Extensional constructs in intensional
type theory. Springer-Verlag London Ltd., London,
1997.

[16] P.T. Johnstone. Topos Theory. Academic Press, Lon-
don, 1977.

[17] P.T. Johnstone. On a topological topos. Proceedings of
the London Mathematical Society, 38:237-271,1979.

[18] P.T. Johnstone. Stone Spaces. Cambridge University
Press, Cambridge, 1982.

[19] C.Jones. Probabilistic Non-determinism. PhD the-
sis, Laboratory for Foundations of Computer Science,
University of Edinburgh, January 1990.

[20] S. Kermit. Cancellative medial means are arithmetic.
Duke Math J., 37:439-445,1970.

[21] J. Lambek and P.J. Scott. Introduction to Higher Or-
der Categorical Logic. Cambridge University Press,
Cambridge, 1986.

[22] F.W. Lawvere. An elementary theory of the category
of sets. Proc. Nat. Acad. Sei. U.S.A., 52:1506-1511,
1964.

[23] S. Mac Lane. Categories for the Working Mathemati-
cian. Springer-Verlag, 1971.

[24] S. Mac Lane and I. Moerdijk. Sheaves in geometry
and logic. Springer-Verlag, New York, 1994. A first
introduction to topos theory.

[25] P. Martin-Löf. Intuitionistic type theory. Bibliopolis,
Naples, 1984.

[26] I. Moerdijk and E. Palmgren. Wellfounded trees in
categories. Ann. Pure Appl. Logic, 104(1-3): 189-218,
2000.

[27] D. Pataraia. A constructive proof of Tarski's fixed-
point theorem for depo's. Presented in the 65th Peri-
patetic Seminar on Sheaves and Logic, in Aarhus,
Denmark, November 1997.

[28] L.C. Paulson. ML for the working programmer. Cam-
bridge University Press, Cambridge, 1991.

[29] D. Pavlovic and V Pratt. On coalgebra of real num-
bers. Electronic Notes in Theoretical Computer Sci-
ence, 19, 1999.

[30] G.F. Simmons. Introduction to Topology and Modern
Analysis. McGraw-Hill, New York, 1963.

[31] P. Taylor. Practical foundations of mathematics. Cam-
bridge University Press, Cambridge, 1999.

[32] A. Turing. On computable numbers, with an appli-
cation to the Entscheindungproblem. Proceedings of
the London Mathematical Society, 42:230-265,1936.
See also 43:544-546,1936.

[33] J. Vuillemin. Exact real computer arithmetic with con-
tinued fractions. IEEE Transactions on Computers,
39(8):1087-1105,1990.

[34] K. Weihrauch. Computable analysis. Springer-Verlag,
2000.

[35] E. Wiedmer. Computing with infinite objects. Theo-
retical Computer Science, 10:133-155, 1980.

125

Invited Talk

Logician in the land of OS:
Abstract State Machines in Microsoft

Yuri Gurevich
Microsoft Research

http://research.microsoft.com/~gurevich

Abstract

Analysis offoundationalproblems like "What is compu-
tation?" leads to a sketch of the paradigm of abstract state
machines (ASMs). This is followed by a brief discussion on
ASMs applications. Then we present some theoretical prob-
lems that bridge between the traditional LICS themes and
abstract state machines.

1 Introduction

This talk was prompted by Joe Halpern's invitation letter:
"My hope this year is that the invited talks will showcase the
relevance of logic to the rest of CS. It seems that some dis-
cussion of abstract state machines (and their potential impact
on Microsoft) would be a great theme ..."

I always had a taste for foundational questions. That is
why I went to logic (from algebra) in the first place. In 1982
Michigan hired me, a logician, on the promise to become a
computer scientist. Contrary to mathematical logic where
the foundational questions had been more or less settled,
the foundational questions of computer science were wide
open. What is it that we study in computer science? What
is computation? What are the peculiar dynamic systems of
computer science? Thinking about these questions, I arrived
at the notion of abstract state machine (ASM) as a formal-
ization of the notion of computer system at any given level
of abstraction.

The operational approach of ASMs went against the pure
declarative fashion of the formal methods of the time. Many
formal-methods experts still think that any operational ap-
proach is necessarily low-level and that an executable spec-
ification is a contradiction in terms. But ASMs were suc-
cessful in applications. The ASM community grew and with
it grew the diversity of applications; see the ASM academic
website [23] where you will find in particular a bibliogra-
phy [13] and Egon Börger's surveys [11, 12]. While much
of ASM activity takes place in academia, it is not confined

to academia. Good ASM work has been done in Siemens.
There is an active ASM group in Microsoft. There are
even two small ASM-based start-ups, http://www.modeled-
computation.com and http://www.montages.com/.

The rest of this talk is organized as follows.

Section 2 A version of our original analysis of the funda-
mental questions mentioned above.

Section 3 A sketch of the ASM paradigm.

Section 4 A few words on what ASMs are good for.

Section 5 A few words on our Microsoft experience.

Section 6 Some theoretical problems related to ASMs.

Section 7 Postlude.

I showed a draft of this talk to my former student Quisani
which resulted in some Q & A inserted in the text.

Acknowledgment

1 am grateful to Andreas Blass, Mike Barnett, Uwe Glässer,
Nikolai Tillmann and Margus Veanes for comments on this
article which was written a little too quickly.

2 What is computation?

A computation can be defined as a run of a computer
system. The notion of computer system should be general
enough to account for future computer systems and for more
abstract computations that you encounter, e.g., in the speci-
fication stage of software development. We proceed to make
our notion of computer system a little more precise

2.1 Levels of abstraction

A computer system has a hierarchy of levels of abstrac-
tion. For example, you can view the execution of a C pro-
gram on the level of the source program or on the level of

129
0-7695-1281-X/01 $10.00 © 2001 IEEE

the executable code. These arc two different abstraction lev-
els. Here we are interested in computations of a computer
system with a fixed level of abstraction.

The need to fix a particular level of detail is well under-
stood in software engineering. To this end, for example,
APIs (application programming interfaces) enable the pro-
grammer to give precise syntactic information about a com-
ponent— method names, typing information, etc. Typically
the intended semantics is only hinted at. (And so you may
want to use ASMs to fill in the gap.)

2.2 The program

A computer system is governed by a fixed program. Hu-
man society for example is not a computer system. The more
focused theory of computer systems should be deeper than
General System Theory.

A programmed system does not have to be closed. It can
be highly interactive.

Q: Is Internet a computer system in your sense?

A: I guess this depends on the chosen level of ab-
straction. Even a complex system, like Internet,
can be algorithmic on some levels of abstraction.

Q: Shouldn't this apply to human society as well?

A: You arc right; it should.

Q: Suppose that my program has loaded a bunch
of classes from some library. Does this change the
program of my computer system?

A: Not necessarily. Again, this depends on the
chosen level of abstraction. One possible view is
this. Loading new classes changes only a part of
your state; in particular the set of methods avail-
able to your program. The methods themselves
can be seen as part of the active environment.

Q: Maybe you should say "algorithmic system"
rather than "computer system".

A: Maybe. I used to say "algorithm" instead of
"computer system" but there is a tendency to in-
terpret the term "algorithm" too narrowly. Let's
stick to the term "computer system" for the time
being.

Q: There arc so-called non-von-Neumann systems
which change their programs as they run.

A: I saw some of them. Here is my understand-
ing of how they work. There are fixed rules how
to change the alleged program. Those rules con-
stitute the real program. The alleged program is
data.

2.3 The state

In general, a computer system is a dynamic system; it has
a state that evolves in time.

Q: Can a computer system be static? If yes, docs
it still have a state?

A: Yes, and yes. Consider a sorting algorithm
at the abstraction level where you abstract from
everything except the input-output function that
takes a given sequence to the sorted one. At that
level of abstraction, no dynamics remains; the sys-
tem still has a state (including the sorting function)
but the state docs not evolve in time.

2.4 So what is computation?

Computation is evolution of the state.

Q: I guess you are talking about computations of
a computer system at a fixed level of abstraction.

A: Yes, I am.

Q: This definition is not a mathematical definition.

A: Right. It is a philosophical speculation.

Q: I am skeptical about philosophical specula-
tions. Give me one example of a philosophical
speculation that proved to be useful.

A: Turing's speculative proof of his thesis [27].

3 The ASM paradigm

The notion of abstract state machine (ASM) formalizes
our notion of computer system given at a fixed abstraction
level.

The ASM Thesis Let A be any computer system at a fixed
level of abstraction. There exists an abstract state machine
B that simulates A step-for-step.

Q: How is this thesis different from Turing's the-
sis?

A: In many ways. In particular, a Turing machine
would simulate A on the level of single bits while
an ASM simulates A on the given abstraction level.

The "step-for-step" requirement is crucial. In distributed
computing, typically only single steps arc guaranteed not
to be interrupted by other agents. If B simulates A step-
for-step then it can substitute for A in distributed situations.
Even if B makes only two steps to simulate one step of A,
some other agent can intervene between the steps of B and
mess up the simulation.

130

In [20], we proved the thesis for the case of sequential
algorithms, more exactly for sequential-time algorithms with
uniformly bounded parallelism.

Q: Is it a mathematical proof or another philo-
sophical speculation?

A: It is a mathematical proof.

Q: How can you prove a thesis? The notion of
sequential algorithms is informal.

A: We formalize the notion of sequential al-
gorithms by means of three postulates: the
Sequential-Time Postulate, the Abstract-State
Postulate, and the Bounded-Exploration (that is
stepwise uniformly bounded exploration) Postu-
late.

Work on more general versions of the thesis is in progress.
Instead of defining ASMs here, we just sketch the ASM
paradigm. The standard reference for the ASM syntax still
is [19]; a new guide is in preparation.

Let A be a computer system at a fixed level of abstraction.

3.1 States as structures

States of A are first-order structures.

Q: Why first-order? Why not second-order or
higher-order?

A: Second-order and higher-order and other kinds
of logical structures can be viewed as special first-
order structures. See for example article [10]
where weak higher-order structures are treated as
first-order structures.

Q: Why should it be any kind of logic structure?

A: The vast experience in applications of math-
ematical logic seems to confirm that any static
mathematical reality can be adequately described
as first-order structure.

Q: It can be, I guess, adequately described in arith-
metic.

A: Arithmetization requires excessive encoding
while structure representation is virtually free
from encoding.

All states of A have the same vocabulary. The vocabulary
reflects the invariant aspects of the algorithm. Further the
base set of the state does not change during the evolution.

Q: Many graph algorithms acquire new nodes as
they run.

A: But where do they take those new nodes from?
We assume that the initial state has an infinite re-
serve of elements to be used as nodes or whatever.
A special import (called also create) operator
is used to fish out elements from the reserve and
bring them to the foreground.

The set of states of A is closed under isomorphisms. Intu-
itively, isomorphic structures are representations of the same
state. The details of representation should not matter.

Q: If computation is state evolution and states are
structures then computation is structure evolution.

A: That is why abstract state machines used to be
called evolving structures or evolving algebras.

Q: Why algebras?

A: An algebra is a structure whose vocabulary con-
sists of function symbols. In logic, relations are
different from functions because their values live
outside the structure. We tweaked the definition
of first-order structures so that the Boolean values
are always inside and thus our states are algebras.

3.2 State as a memory

In logic or algebra, structures are static. Our structures
are dynamic. A state X is a memory (or store). If / is a
function symbol of arity j in the vocabulary of X and if ö is
a j-tuple of elements of X then the pair (/, ä) is a location
of X. The content of that location is the element /(a).

3.3 Actions

An atomic update of a state X changes the content of one
location of X. Since the vocabulary of A is fixed and the
base set of the state does not change during the evolution,
the set of locations does not change either. It follows that
any transition from one state to another is characterized by
an update set, a set of atomic updates.

The ASM syntax provides means to program atomic up-
dates as well as various update sets. For example, if <p is
a Boolean-valued term and R is an ASM rule generating
an update set U at a state X then the rule if <p then
R generates either U or 0 over X depending on whether cj>
evaluates to true or to false over X.

Q: I guess state changes should respect isomor-
phisms of structures.

A: Of course. In [20], this is apart of the abstract-
state postulate.

131

3.4 Runs

You have in general a number of computing agents exe-
cuting their programs. It is convenient to think in terms of a
global state. A move by an agent changes only a finite set of
locations of the global state. Concurrent moves of different
agents produce consistent changes. A run is a partial order
of moves of various agents.

Q: Your global state is some kind of shared mem-
ory.

A: It is not a conventional shared memory.

Q: Consider a distributed system, say a network
of computers. To make it more interesting, let us
assume that different computers are located on dif-
ferent planets so that, by the relativity theory, the
whole system does not have a global time. The
computers exchange information via messages.
Arc there meaningful states of the system?

A: Yes, they are mathematical abstractions [19].

Further, agents themselves arc represented in the state.
The computation can destroy agents and create new ones.
There could be various relations and functions involving
agents [19].

3.5 ASMs and set theory

In a 1993 Dagstuhl conference, Andreas Blass said the
following about formalizing algorithms as ASMs: "after a
while it becomes clear that any 'reasonable' algorithm can
be written as an ASM, just as any 'reasonable' proof can
be formalized in ZFC." This observation is analyzed and
developed further in the chapter "ASMs and Set Theory" of
his article "Abstract State Machines and Pure Mathematics"
[4].

4 What are ASMs good for

The most obvious use of ASMs is to write executable
specifications. Here is a sorting example.

You don't need ASMs to specify that a sorting algorithm
should sort. But suppose that, for some reason, e.g. security,
you need that your sorting is in-placc so that you only swap
elements of the given array. Suppose further that you can
do only one swap at a time. There are numerous ways to
implement such sorting: quicksort, bubble sort, etc. Here is
an ASM spec of in-place onc-swap-a-time sorting. Suppose
that a is an array with the set / of indices.

choose i,j in I with i<j and a[i]>a[j]
do in-parallel

a[i]:=a[j]
a[j] :=a[i]

This rule is supposed to be executed over and over again until
the computation halts (when the choice set becomes empty).
This is the most general in-place one-swap-a-timc sorting
(such that every swap makes the array more sorted). You can
employ various choice strategics and thus get more refined
sorting algorithms; a refinement like quicksort is much more
efficient than the spec. But the spec is executable as is, and
appropriate ASM tools can execute it.

Q: Your notion of specification is very broad.

A: Yes. Whenever you have a pair of algorithms
A and B so that B refines A, A is a spec for B.
This includes the case when A is static and so the
spec is declarative.

Q: Why is it important that specifications arc ex-
ecutable?

A: Imagine that you have designed a cool product
with many interesting features. Developers code
it; this may take a while. Eventually testers may
discover that the design was flawed and needs to
be changed. You wish you could have played with
your design before coding.

There arc many more kinds of applications of ASMs; sec
[23] where you will find in particular a bibliography [13]
and Egon Börgcr's surveys [11, 12].

5 ASMs in Microsoft

Jim Kajiya at Microsoft Research realized the potential of
ASMs. In late summer of 1998, he invited me to start a new
group, and I accepted. The ASM project had become more
and more engineering, and I could use help. In addition,
I was tired of analyzing old software and excited about the
possibility to participate in the development of new software.

The new group was called Foundations of Software En-
gineering (FSE). By now we have a strong and busy ASM
team that never seems to find time to dress up its outside
window [14]. Our first priority is to develop a good tool to
write and execute ASMs. A number of such tools have been
developed in academia; sec [23]. Two of these tools, ASM
Workbench and ASM Gopher, have been successfully used
at Siemens. However none of the tools was a good fit for
the software development environment of Microsoft, and in
particular for COM, Microsoft's Component Object Model
[24]. We had to start from scratch.

Q: What is COM?

A: I quote from [2]: "Microsoft software is usu-
ally composed of COM components. These are
really just static containers of methods. In your
PC, you will find dynamic-link libraries (DLLs); a

132

library contains one or more components (in com-
piled form). COM is a language-independent as
well as machine-independent binary standard for
component communication. An API for a COM
component is composed of interfaces; an interface
is an access point through which one accesses a set
of methods. A client of a COM component never
accesses directly the component's inner state, or
even cares about its identity; it only makes use
of the functionality provided by different methods
behind the interface (or by requesting a different
interface)."

• Verification isn't everything. Verification is great
... when it is feasible. A spec is a basis not only for veri-
fication but also for testing, documentation, etc. Partial
improvements can have a big impact

• Stay relevant. A spec must be testable and up-to-date.

• Integration is crucial. Without integration your tool
may be useless. Integrate with the relevant developer
environment (in our case, it is Microsoft Visual Studio).
Integrate with the relevant run-time environments (in
our case, they are COM, .NET and various libraries).

The tool development in the group is headed by Wolfram
Schulte, my first hire, who came to Microsoft in the sum-
mer of 1999 from the University of Ulm in Germany after
completing his ASM-related habilitation there. Our main
tool is called AsmL (ASM Language). It is an executable-
specification language.

Q: What does it mean? Another high-level pro-
gramming language?

A: It is a high-level programming language that
implements the ASM paradigm. Accordingly it is
highly parallel.

Q: What about that COM?

A: AsmL is COM compliant. You can specify
a component, and the spec will have full COM
connectivity. For example, a spec of a debugger
may be much more concise and abstract than a real
debugger, but it will be treated as a debugger by
other COM components.

Q: Is AsmL optimized for efficiency or expressiv-
ity?

A: It is a pragmatic compromise but typically ex-
pressivity comes first.

Q: Are there product groups within Microsoft that
use ASM technology?

A: Yes.

Q: Name one.

A: Universal Plug and Play.

This seems to be a wrong place to go into the details of our
work. (A bunch of our papers should appear later this year
in the Proceedings of ASM'2001 in Springer Lecture Notes
in Computer Science. A few additional papers are headed
elsewhere. Weil try to keep the website [14] current.) In-
stead let me share a few lessons that the group learned during
its short existence.

6 On ASM-related theoretical problems

I was asked more than once about ASM-related theoreti-
cal problems. Many appetizing foundational problems arise
in applications. For example, what are objects and classes
[21] ? But let me keep closer to more traditional LICS themes
(with hope to bridge between those themes and ASMs).

6.1 Fine complexity classes

The notion of polynomial time is very robust. The usual
computation models including the Turing model give the
same notion of polynomial time. In [22], we show that the
usual computation models other than the Turing model give
the same notion of nearly linear (that is linear times poly-
log) time. Linear time is much more sensitive to the choice
of computation model, and there are numerous versions of
linear time in use. One example is the linear time of com-
putational geometry. The ASM model may have enough
parameters to take care of all these versions of linear time
— maybe. I did not investigate this.

In [6], we proved the linear-time hierarchy theorem for
ASMs (that asserts that, as c varies, the classes of functions
computable in time c • n form a proper hierarchy). As we
wrote there, "One long-term goal of this line of research is
to prove linear lower bounds for linear time problems".

If you work with linear time and consider simulations, it
is natural to require that simulation is lock-step, that is there
exists a fixed k such that the simulator spends at most k steps
to simulate one step of the simulatee. In [6], we used lock-
step simulations with preprocessing to construct a diagonal-
izing machine and thereby proved the linear-time hierarchy
theorem. Lock-step simulation deserves to be studied in its
own right. To this end, Andreas Blass constructed a more
involved diagonalizing machine that avoids preprocessing
(unpublished).

It seems that the study of fine complexity classes was held
back by the absence of an appropriate computation model.
We hope that ASM can serve as such a model.

133

6.2 Computations with abstract structures

Contrary to conventional computation models, like Tur-
ing machines or random access machines, ASMs accept ab-
stract structures as inputs. For example, an input could be a
graph rather than a string (or adjacency matrix) representa-
tion of the graph.

Q: Why is this important? Real computers do not
accept abstract structures as inputs.

A: You routinely abstract from representation de-
tails when you do specifications. But such abstrac-
tion is not confined to specifications. Suppose for
example that I have a database in my computer
and I ship it to you. You store it in your computer
but the representation of the database in your com-
puter will surely differ from that in mine. A query
to database should not depend on the representa-
tion. To this end, popular query languages abstract
from the representation, so that abstract databases
are treated as inputs to queries. This is an impor-
tant issue in database theory and practice [1].

In [18], I conjectured that there is no logic (or computa-
tion model) for polynomial-time computations with abstract
structures; the conjecture implies P^NP and remains open.

Q: I do not understand your conjecture. How can
you quantify over logics?

A: I assume that every logic satisfies some minimal
requirements, in particular that the set of well-
formed formulas is recursive.

In [10], ASMs were used as a computation model
(and logic of a sort, called BGS) for a rich natural class
of polynomial-time computations with abstract structures.
Later Shelah proved the zero-one law for BGS [26, 5]. In
particular, we show in [10] that counting is not available in
BGS and that BGS cannot decide whether a bipartite graph
admits a perfect matching. Later it was shown in [9] that if
one adds counting to BGS then the perfect matching problem
for bipartite graphs becomes expressible. It remains open
whether the perfect matching problem for arbitrary graphs
is expressible in BGS with counting. It is also open whether
BGS with counting captures polynomial time. Other spe-
cific problems along these lines are discussed in [9]. In [16],
ASMs were used to study logspace computations with ab-
stract structures.

The complexity theory of computations with abstract
structures deserves to be developed further.

6.3 Metafinite models

In [17], I preached finite model theory because many
structures naturally arising in computer science are finite. In

particular (the states of) relational databases are finite. But
are they really finite in all cases? A database may use real
numbers for example; where do those numbers "live"? Now
consider the world of, say, the C programming language. It
has arrays, records, arrays of records, records of arrays, and
so on. It is convenient to model states of computer systems
as infinite structures where only a finite part is active. To this
end, we defined and studied metafinite structures in [15]. A
metafinite structure has a finite primary part and possibly
infinite secondary part.

In the case of a program state, the primary part reflects
the active foreground and the infinite part reflects the passive
background. One example is [10] where the background is
the collection of hereditarily finite sets over the elements
of the input structure. In general, background structures
contain all the material (like maps of sets of sequences of
maps) that the program may need. The notion of background
was formalized in [7].

Metafinite structures are really ubiquitous and deserve
more attention.

6.4 Interesting logics

What are logics appropriate to metafinite structures? That
question has been addressed in [15]. Basically, you can
quantify over the primary part only. The secondary part may
have powerful operations. In the case of reals, for example,
you may have multiset operations like sum, product, average,
median. But you can't quantify over the secondary part.

The choice operator of ASMs (illustrated above, in Sec-
tion 4) is typical for computer science. It is an independent-
choice operator: different invocations of it produce indepen-
dent choices. It differs from the epsilon operator of Hubert,
the classical choice operator of mathematical logic; different
invocations of the epsilon operator over the same set produce
the same result. In [8], we investigated the logic of the ASM
choice operator. We found that this fascinating logic is much
weaker than the logic of the epsilon operator.

There are other ASM-related logics waiting to be inves-
tigated. One example is first-order logic with undef, a
special element that allows you to turn partial functions into
total ones. This undef is different from diverges of
recursive-function theory. An ASM program can refer to
undef explicitly; in particular wc allow tests like x =
undef, and the equality undef = undef holds. This
explicit use of undef makes the logic of undef more pow-
erful than the other first-order logics of partial functions that
I am aware of.

Until now we spoke about static logics. Once one intro-
duces state transitions, new challenging issues appear.

What is the logic of the import operator mentioned above
in Section 3? Unlike the choice operator, the import operator
produces a different element every time it is invoked.

134

In the sequential-time case, an ASM program describes
a single step (to be iterated). The state changes only at the
end of the step, not at the middle. There are no side effects
during the execution of one step. This feature of the ASM
paradigm should allow one to develop clean logics to reason
about at least one step of the program.

One may want also to use automated and partially auto-
mated systems, including model checking systems, to rea-
son about the behavior of abstract state machines. The ASM
community has some experience in this direction; see [25,3]
and the section on Mechanical Verification in [23]. We have
a long way to go though.

7 Postlude

Logic that we use and apply in computer science is math-
ematical logic developed originally to build foundations of
mathematics and to solve the problems in foundations of
mathematics that arose in the beginning of twentieth cen-
tury. Logicians distinguish clearly between syntax and se-
mantics and strive to clarify both syntactical and seman-
tical issues. Computer science applications of logic are
much different from mathematical applications. Some of
the strongest methods of mathematical logics, like the prior-
ity method and forcing, have not found direct applications
in computer science. But the foundational tradition of logic
is of great value to computer science at this stage of its de-
velopment.

But computer science is not a purely mathematical disci-
pline. It is an engineering discipline as well. In applications,
it does not suffice to prove that the problem is decidable or
even polynomial-time decidable. You may need a program
that works reasonably fast on real computers. Some engi-
neering compromises have to be made. It is not only syntax
and semantics that we should worry about. It is also prag-
matics. It may mess up your clean constructions, but it may
also enhance them and make them work for the benefit of
many.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] M Barnett, E. Borger, Y. Gurevich, W. Schulte, and M.
Veanes. Using Abstract State Machines at Microsoft: A Case
Study. In Y. Gurevich et al., editors, Abstract State Machines:
Theory and Applications (Proceedings of ASM'2000), vol-
ume 1912 of LNCS, pages 367-379. Springer-Verlag, 2000.

[3] D. Beauquier and A. Slissenko. A First Order Logic for
Specification of Timed Algorithms: Basic Properties and a
Decidable Class. Annals of Pure and Applied Logic, to
appear.

[4] A. Blass. Abstract State Machines and Pure Mathematics. In
Y Gurevich et al., editors, Abstract State Machines: Theory

and Applications (Proceedings of ASM'2000), volume 1912
of LNCS, pages 9-21. Springer-Verlag, 2000.

[5] A. Blass and Y Gurevich. Strong Extension Axioms and
Shelah's Zero-One Law for Choiceless Polynomial Time, to
appear.

[6] A. Blass and Y. Gurevich. The Linear Time Hierarchy The-
orem for RAMs and Abstract State Machines. Journal of
Universal Computer Science, 3(4):247-278, 1997.

[7] A. Blass and Y Gurevich. Background, Reserve, and Gandy
Machines. In P. Clote and H. Schwichtenberg, editors, Pro-
ceedings ofCSL'2000, volume 1862 of LNCS, pages 1-17.
Springer-Verlag, 2000.

[8] A. Blass andY Gurevich. Logic of Choice. Journal of Sym-
bolic Logic, 65(3):1264-1310, 2000.

[9] A. Blass, Y Gurevich, and S. Shelah. On Polynomial Time
Computation Over Unordered Structures, to appear.

[10] A. Blass, Y Gurevich, and S. Shelah. Choiceless Polynomial
Time. Annals of Pure and Applied Logic, 100(1-3):141-187,
1999.

[11] E. Borger. Why Use Evolving Algebras for Hardware and
Software Engineering? In M. Bartosek, J. Staudek, and
J. Wiederman, editors, Proceedings of SOFSEM'95, 22nd
Seminar on Current Trends in Theory and Practice of Infor-
matics, volume 1012 of Lecture Notes in Computer Science,
pages 236-271. Springer, 1995.

[12] E. Borger. High Level System Design and Analysis using Ab-
stract State Machines. In D. Hutter, W. Stephan, P. Traverso,
and M. Ullmann, editors, Proceedings of FM-Trends'98,
Current Trends in Applied Formal Methods, volume 1641 of
Lecture Notes in Computer Science, pages 1^-3. Springer,
1999.

[13] E. Borger and J. K. Huggins. Abstract State Machines 1988-
1998: Commented ASM Bibliography. Bulletin of European
Association for Theoretical Computer Science, 1998. Num-
ber 64, February 1998, pp. 105-128.

[14] Foundations of Software Engineering Group at Microsoft Re-
search, http://research.microsoft.com/fse.

[15] E. Grädel andY Gurevich. Metafinite Model Theory. Infor-
mation and Computation, 140(1):26-81, 1998.

[16] E. Grädel and M. Spielmann. Logspace Reducibility via Ab-
stract State Machines. In J. Wing, J. Woodcock, and J. Davies,
editors, Proceedings ofFM'99, volume 1709 of LNCS, pages
1738-1757. Springer-Verlag, 1999.

[17] Y Gurevich. Toward logic tailored for computational com-
plexity. In M. Richter et al, editors, Computation and Proof
Theory: Logic Colloquium 1983, volume 1104 of LNCS,
pages 175-216. Springer-Verlag, 1984.

[18] Y Gurevich. Logic and the Challenge of Computer Science.
In E. Borger, editor, Current Trends in Theoretical Computer
Science, pages 1-57. Computer Science Press, 1988.

[19] Y Gurevich. Evolving Algebra 1993: Lipari Guide. In
E. Borger, editor, Specification and Validation Methods,
pages 9-36. Oxford University Press, 1995.

[20] Y Gurevich. Sequential Abstract State Machines Capture
Sequential Algorithms. ACM Transactions on Computational
Logic, 1(1):77-111, July 2000.

[21] Y Gurevich, W. Schulte, and M. Veanes. A Richer ASM Lan-
guage (tentative title). In E. Borger and U. Glässer, editors,
Proceedings of ASM'2001, LNCS. Springer-Verlag, 2001. to
appear.

135

[22] Y. Gurcvich and S. Shelah. Nearly linear time. In Symposium
on Logical Foundations of Computer Science, volume 363 of
LNCS, pages 108-118, Springer-Verlag, 1989.

[23] J. K. Huggins. Michigan Wcbpage on Abstract State Ma-
chines, http://www.eecs.umich.edu/gasm/.

[24] D. Rogerson. Inside COM. Microsoft Press, 1997.
[25] G. Schellhorn and W. Ahrendt. Reasoning about Abstract

State Machines: The WAM Case Study. Journal of Universal
Computer Science, 3(4):377-413, 1997.

[26] S. Shelah. Choiceless Polynomial Time Logic: Inability to
Express. In P. Clote and H. Schwichtenberg, editors, Pro-
ceedings of CSU 2000, volume 1862 of LNCS, pages 72-125.
Springer-Verlag, 2000.

[27] A. Turing. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of London Mathe-
matical Society (2), 42:230-236, 1936-37. Correction, ibid.
43, 544-546.

136

Session 4

Eliminating definitions and Skolem functions
in first-order logic

Jeremy Avigad
Department of Philosophy

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

In any classical first-order theory that proves the exis-
tence of at least two elements, one can eliminate definitions
with a polynomial bound on the increase in proof length.
In any classical first-order theory strong enough to code fi-
nite functions, including sequential theories, one can also
eliminate Skolem functions with a polynomial bound on the
increase in proof length.

1 Introduction

When working with a first-order theory, it is often con-
venient to use definitions. That is, if ip{x) is a first-order
formula with the free variables shown, one can introduce a
new relation symbol R to abbreviate ip, with defining axiom
Vx (R(x) «->• <p{x))- Of course, this definition can later be
eliminated from a proof, simply by replacing every instance
of R by ip. But suppose the proof involves nested defini-
tions, with a sequence of relation symbols R0,..., R/. ab-
breviating formulae ip0,... •, ipk, where each ipi may have
multiple occurrences of i?0, -■ •, -Rj-i- In that case, the
naive elimination procedure described above can yield an
exponential increase in the length of the proof.

In Section 2,1 show that if the underlying theory proves
that there are at least two elements in the universe, a
more careful translation allows one to eliminate the new
definitions with at most a polynomial increase in length.
The proof is not difficult, but it relies on the assumption
that equality is included in the logic. A similar trick has
been used by Solovay in simulating iterated definitions ef-
ficiently, as discussed in [11, Section 3.2]. Consequently,
the result proved here may be folklore, but to my knowl-
edge it has not appeared in the literature, and it is needed in
Section 3.

It is also sometimes convenient, in a first-order setting,
to introduce Skolem functions. If ip(x, y) is any formula

with the free variables shown and / is a new function sym-
bol, one can add an axiom, Vx, y (ip(x,y) —> (f(x,f(x)),
asserting, in words, "if any y satisfies ip(x, y), f{x) does."
There is an easy model-theoretic proof of the fact that this
does not alter the set of consequences in the original lan-
guage: any first-order model of the original theory can be
expanded to a model where / denotes such a choice func-
tion. Explicit syntactic proofs of this fact are, however,
somewhat more difficult. The first such proof appears in
Hubert and Bernays' Grundlagen der Mathematik [8], us-
ing the epsilon substitution method; a proof by Maehara us-
ing cut-elimination is discussed in [14]; and another proof
due to Shoenfield is found in [13] (see also the discussion
in [12]). All these procedures are, unfortunately, worse than
exponential.

In Section 3, I show that if the underlying theory al-
lows for a modicum of coding, one can also eliminate
Skolem functions with at most a polynomial increase in
proof length. The idea is to use an internal, iterated forcing
argument to add the new functions. The forcing conditions
involved are finite approximations to the Skolem functions
being added, so the constraint on the underlying theory is
that it provides an adequate representation of finite func-
tions. The specific requirements are spelled out below; any
sequential theory of arithmetic meets these criteria. While
forcing methods have been used to establish lower bounds
in proof complexity (see [1, 9, 10]), here they are used to
establish upper bounds; similar forcing arguments can be
founding, 3,4, 5].

The question as to whether or not definitions can be elim-
inated efficiently from prepositional proof systems is a ma-
jor open question in the field of proof complexity. The
results here show that the answer is "yes" for most first-
order proof systems, though the most general statement of
the problem is equivalent to the prepositional version. Is-
sues related to Skolem functions are similarly important to
computer science, since most automated search procedures
use Skolemization in one form or another. The question
as to the increase in proof length when eliminating a sin-

0-7695-1281-X/01 $10.00 © 2001 IEEE
139

gle Skolem function from a proof in pure first-order logic
is listed as open problem 22 in [6]. Once again, though
the results here do not settle the most general statement of
the problem, they show that for many natural theories such
an efficient elimination is possible. In Section 4, I discuss
some questions that remain.

2 Eliminating definitions

If d is a proof of a sentence ip from a set of axioms T in
first-order logic, then \d\ denotes the length of d, according
to the number of symbols. Krajicek [9] and Pudläk [11]
provide good general references on the lengths of proofs.

In this section and the next I will show that in certain
circumstances one can eliminate definitions and/or Skolem
functions from a proof d in such a way that the length of the
resulting proof is bounded by a polynomial in |d|. In doing
so, I will not make an effort to compute the exact polyno-
mial; rather, I will repeatedly appeal to the fact that the set
of polynomials in \d\ is closed under addition, multiplica-
tion, and composition. It will be clear from the proofs that
in fact all the translations considered can be carried out in
polynomial time.

By "first-order logic," I mean first-order logic with
equality, in any of the standard natural deduction calculi,
Hilbert-style calculi, or sequent calculi with cut described
in [15]. By a theorem due to Krajicek, up to polynomial-
time equivalence it does not matter whether we take proofs
to be given by trees or sequences of lines (see [11, Section
4], or [9, Section 4.5] for the propositional case). In fact,
the proof of Theorem 2.2 only assumes that there is a rep-
resentation of ip —> ip which uses <p only once. If f-> is
assumed to be one of the basic connectives, one can sim-
plify the central argument somewhat; but the proof below
works in either case.

I will use the following conventions: x and t denote se-
quences of variables and terms, respectively, and typically
their lengths can be inferred from the context. Introducing
a formula as <p(x) only serves to distinguish the sequence
of variables x, after which <p(t) denotes the result of simul-
taneously substituting t for x, renaming bound variables in
<p if necessary.

Definition 2.1 Let T be a set of first-order sentences in a
language L. Say that T has an efficient elimination of def-
initions if there is a polynomial p(x) such that the follow-
ing holds: whenever R0(x0):..., /^.(xV) are new relation
symbols of various arities, ifa(xo), ■ ■ • i Vfr(^A-) are formu-
lae suchthat each <pi is in the language L\J{R0,... ,i?,_i},
and d is a proof of a formula i}) in Lfrom

ru{Vx0(i?0(f0)ov3o(fo)),.-.,

then there is a proof d! of '«/> from T using only formulae in
L,with\d'\ <p{\d\).

This definition is monotone in T: if T has an efficient
elimination of definitions and T' D T then, by the deduc-
tion theorem, T' has an efficient elimination of definitions
as well. The main theorem in this section is the following:

Theorem 2.2 {3x,y (x ^ y)} has an efficient elimination
of definitions.

Proof. The proof will occupy most of this section. Let
i?o,... ,Rk,(fo, ■ ■ ■ ,<fk, V;. an<J d be as in the definition.
We can assume that each of the defining axioms occurs at
least once in the proof, since if the axiom for Rt docs not
occur in the proof we can replace each occurrence of Rj
by an arbitrary sentence, say V:r (x = x). As a result, we
can assume that k and \ip0\,...t \ipk\ arc all less than \d\,
and so it suffices to bound the length of the final proof by a
polynomial in these values.

Let a and b be new constant symbols. It suffices to find a
short (i.e. polynomially bounded) proof of ij) from {a ^ b}.
For, if we can find a short proof of a ^ b —> xj), we can
replace a and b by variables and obtain a short proof of-0
from 3.T, y (x ^ y).

First, note that without loss of generality we can assume
that all the definitions arc given by prencx formulae. If the
propositional connectives are among {A,V,—>,->} this is
so because any formula involving these connectives can be
proved equivalent to one that is prencx, with a proof whose
length is bounded by a polynomial in the length of the origi-
nal formula. On the other hand, if, say, O is a propositional
connective, one can introduce additional definitions to ab-
breviate subformulae and ensure that all the definitions arc
prencx. Alternatively, one can first use definitions to elim-
inate <-> as in the proof of Corollary 2.5, and then proceed
as before.

In the following argument, if 8 is a formula with a rela-
tion symbol R(ij) and t)(y) is a formula with the free vari-
ables shown, it will be convenient to write 8[q/R] for the
result of replacing each atomic formula R(f) by))(f). At
other times, I will write 6[R{t\,..., tm)] to indicate that
an atomic formula R(ti,..., r,„) occurs in the quantifier-
free formula 8; thereafter, 8[ij] denotes the result of replac-
ing R(t\,... ,tm) by T). While this notation is potentially
problematic, the intention should always be clear from the
context.

For notational convenience, we may assume that all of
the relations /?, have the same arity. We will need a way
of representing the numbers 0,.... k. Let z0,..., zk be a
sequence of variables, write Ü for the sequence «, b, b, b,...,
1 for the sequence b, a. b,b,..., and, more generally, j for
the sequence of length k + 1 that has an a in the jth position
and b's elsewhere.

140

Our strategy will be to define a sequence of formulae
tpo(z,u,x),.. .(pk(z,u,u), with length bounded by a poly-
nomial in |d|, such that for each i < k the following equiv-
alences are all provable from a^b:

• <f>i(j, a, x) <-» (fii-i (j, a, x), for each j < i

• <pi(j, b, x) <-» -i<pi-i {j,a, x), for each j < i

• W{<pi(i,a,x) -H- <pi(x)[<pi-i(Ö,a,x)/Ro,...,
<Pi-i(i- l,a,x)/Ri-i])

• W{tpi(i,b,x) <H- -K/3j(f)[(pi_i(Ü,a,x)/i?o,---,
tpi-i{i - l,o,f)/Äj_i]).

In other words, for each i and j < i, (pi(j,a,x) is an ef-
ficient representation of Rj, and (pi(j,b,x) is an efficient
representation of -<Rj. The idea is to use quantifiers and
equality so that only a single instance of <pi is used in the
definition of (pi+i. Note that the clauses above imply that
for each i and j < i, we have <ßi(j, a, x) o -«pi{j, b, x).

The sequence <p>o, • ■ •, <fk is defined recursively. Start by
taking <po(z, u, x) to be the formula

(u = a —> <^o(^)) A (u = b —>• ->y>o(äO)-

For i > 0, assuming (^0, ■ • ■, <£i-i have been defined, the
following shows how to determine (pi. Since we are assum-
ing that all the definitions are prenex, ipi (x) is of the form

QlVl ■■■QmVm if>{Ro{iofl),...,Ro{to,lo)i---,

Ri-l{ti-l,o), ■ ■ ■ , -Ri —1 (*i —l,/i_!)],

where <p is quantifier-free and the sequence in square brack-
ets shows all instances of atomic formulae in (p involving
Ro,..., Ri-\. In general, the sequences of terms t^p de-
pend on the quantified variables yi, ■ ■ ■ ,ym as well as the
free variables x of <pi, but I will not display these variables
explicitly. Our task is to write down a formula <pi(z,u,x)
such that

1. for each j < i, <pi(j,a,x) is equivalent to
<^_i(j,a,x);

2. for each j < i, ipt(j,b,x) is equivalent to
-><Pi-i(j,a,x);

3. ifi(ita,x) is equivalent to the displayed formula
above, with each Rj(tjiP) replaced by fii-i (j, a, i}iP);

4. <pi(i, b, x) is equivalent to the negation of the formula
just described; and

5. in the definition of ipi, <f>i-i is used only once.

In order to do 3 and 4 simultaneously, we need duplicate
copies of some of the variables and terms. Let Q\,..., Q'm

denote the quantifiers dual to Q\,..., Qm. Pick a new se-
quence of variables y[,..., y'm, and let

P P P P

denote the sequences of terms obtained by replacing the
2/i, • • •, ym by y[, ■ • ■, y'm in each fjiP. Finally, let

W0,0)-- -,Votl0, .. .,Vi-ifi,.. .,Vi-itii_1

w0,0' • • • >U0,/0' • • • 'Wi-1,0> • • • >Ui-l,(;_i

v'i,...,v'U

be sequences of new variables. We will use the variables
VjiP to represent the truth values of (pi-\ (j, a, ij,p), the vari-
ables v'j to represent the truth values of (pi-\(j, a,E),
and the variables v'j to represent the truth values of
ifi-i(j, a, x), where the "truth value" is a if the correspond-
ing formula is true, and b if it is false.

The formula <pi(z, u, x) is defined to be

Qij/i • • • Qmym Q'IV'I ■ ■ ■ Q'mVm Vv, &, «"

(Eval(v,if,if') ->

A (iT = j A u = a —>■ n" = a) A
j<i

f\ (z =] A u = b ->■ v'j ^ a) A

(f=iAii = fl-> <p[wo,o = a,..., v0,i0 = a,

• • ■, Vi-ifi = a,..., Uj-i,/;,! = a]) A

(z = i A u = b -> -><^K,o = a, • ■ •, ^o,;0 = a:

•••.^-1,0 = a,...,u-_lj,._1 =a])J

where Eval(v, v1, v") is the formula

Vr Vs £ {o,6} Vw (<pi-\(r,s,w) —>

f\{r = j hw = x -> v'j = s) A

A /\{r =] Aw = tj,p -)• Uj,p = s) A
j<ip</j

/\ /\(r=jAw = ^>->^p = S)).
i<j p<;;-

Here Vs 6 {a, 6} 0 abbreviates Vs (s = a V s = 6 -> #).
Note that Eval(v, v1, v") also depends on the free variables
x, y, y1 (because the terms tjtP and t'- do), but I will con-
tinue to leave these variables implicit.

First, let us check that each <pi(xi,u) satisfies the right
equivalences, and then let us worry about the length. Induc-
tively we know, for each j < i — 1, that

Vf (<fi-i(j,a,x) «• -><£;_].(j,6,£))

141

->

is provable from a ^ b. We can use this to show

Vx,y,yl 3v, v1 ,v" Eval(v,if,v")

as well as

Vx, y, ff,v, v*,v" (Eval(v,v',v

f\(v'j -a <->• ipi_i(j,a,x))A

A A (^> = °- ^ ^'-1 fr a> *J>)) A

j<jp</j

A A KP = a ° ^-i(7.a.*lp)))-
j<i p</j

But then, going back to the definition of <£,-, we see that
for j < i, tßi(j,a,x) is equivalent to <£i-i(j,a,x), and
tpi(j,b,x) is equivalent to ->ipi--[(j,a,x). Also, ipt(i,a,x)
is equivalent to

Qi2/i • • • QmVm^i-i (Ö, a, f0,o), ■ • •,

^i_i(Ü,a,to,/0)i- ■■ ,<Pi-\{i - l,a,£-i,o),

...,(p,_i(?; - 1, a, f;-i,/,_,)]

and so we have

<Pi(i,a,x) <r> <pi(x)[<pi-l(Ö,a,x)/R0,...,

<£,--i(z- l,a,f)/i?,_i];

and (^j(i, 6, x) is equivalent to

Qiyl---QmyJ„^[^-i(ö,a,4o).---.
iPi-i(Ö,a,?0ti0),...,ipi^(i - l,a,f;_1-0),

...,^-_1(i- 1, a, ?;_!,,._,)]

and so we have

(fi(i,b,x) O -.(/),(f)[(/)i_1(Ö;n,f)/7?o,...,

ifi-i(i- l,a,x)/Ri_1],

as required.
As far as length is concerned, it is not hard to check that

the number of symbols occurring in <p, apart from the in-
stance of (pi-\ can be bounded by a polynomial in |rf| (in
fact, even a linear one). In other words, there is a polyno-
mial p such that for each i we have 1^,1 < p(\d\) + \^,-\ |,
and hence |<£,-| < (i + l)p(\d\) < \d\p{\d\). Similarly, it
is not hard to find polynomial bounds on the lengths of the
proofs of the needed equivalences, and there are only poly-
normally many of them.

This completes the proof of Theorem 2.2. D

We have handled the case where there are at least two
elements in the universe. On the other hand, on the assump-
tion that there is only one element of the universe, we arc
reduced to propositional logic.

Proposition 2.3 {Vx,y (x = y)} has efficient elimina-
tion of definitions if and only if the corresponding assertion
holds for propositional logic.

Proof. Assuming Vx,y (x = y), every atomic formula
R(t\ ,...,tk) is equivalent to R(c,..., c), where c is the
only element of the universe; t\ = t2 is always true; and
quantifiers have no effect. To be more precise, let "the
propositional simplification of ip" denote the result of delet-
ing all the quantifiers in rj), replacing all atomic formulae
R(ti,..., tk) by a propositional variable R, and replacing
ti = h by a fixed tautology. Then any first-order proof of
Vx, y (x = y) -> V; can be translated efficiently to a propo-
sitional proof of the propositional simplification of ij), and
vice-versa. D

This implies that the general problem of eliminating def-
initions from proofs in pure first-order logic is as hard (and
as easy) as the propositional case.

Theorem 2.4 0 has an efficient elimination of definitions if
and only if the corresponding assertion holds for proposi-
tional logic.

Proof. It is a straightforward exercise to check that {</? V
?/;} has an efficient elimination of definitions if and only
if {i^} and {i/'} both do. In particular, 0 has an efficient
elimination of definitions if and only if {\fx,y (x = y)}
and {Bx.y (x =t y)} do. D

As a corollary of Theorem 2.2, we have that one can
eliminate O from standard proof systems with at most
a polynomial increase in proof length. For propositional
proof systems the proof (due to Reckhow, using a method
by Spira; see [9]) is considerably more difficult.

Corollary 2.5 With any of the standard proof systems for
first-order logic with equality given in [15], one can elimi-
nate the propositional connective -H- with at most a polyno-
mial increase in proof length.

Proof. By Theorem 2.2, it suffices to show that one can
eliminate -H- efficiently in the corresponding proof systems
with definitions. Use definitions to translate formulae in
the language with f-> to the language without: translate

tp(ic) o ^z) to (J?>7) -> Äc.(f))A(^,(f) -» RAw)),
where i?() and 7?i are defined to be equivalent to the trans-
lations of ip and xji, respectively. By induction one can show
that each axiom and rule of inference can then be simulated,
with polynomial bounds on the lengths. D

142

3 Eliminating Skolem functions

The following is the analogue of Definition 2.1 for
Skolem functions.

Definition 3.1 Let Y be a set of first-order sentences
in a language L. Say that T has an efficient elim-
ination of Skolem functions if there is a polyno-
mial p(x) such that the following holds: whenever
fo{xo),..., fk(xk) are new function symbols of various ar-
ities, ip0 (f0, y),..., tpk [xk, y) are formulae such that each
ifi is in the language L U {/0)..., fi-i}, and d is a proof
of a formula ip in Lfrom

ru{Vf0,y (yo{xo,y) -» <p(xo,fo(x0))),-.-,

Vxk,y (yk(xk,y) -> <p(xk,fk(xk)))},

then there is a proof' d! of 'ip from T using only formulae in
L,with\d'\ <p(\d\).

Right off the bat, we have the following.

Proposition 3.2 {Vx,y {x = y)} has an efficient elimina-
tion of Skolem functions.

Proof. Roughly speaking, if c is the only element of the uni-
verse, every term can be replaced by c. D

By way of motivation, note that is not hard to show that,
say, Zermelo-Fraenkel set theory has an efficient elimina-
tion of Skolem functions. Argue as follows. Suppose d is
a proof of a formula ip from the axioms of ZF and some
Skolem functions. Let k be a bound on the complexity of
the formulae occurring in this proof. In ZF, one can prove
that the set of true sentences of complexity at most k + 1
is consistent, and hence has a countable model. This count-
able model has Skolem functions, which can then be used
to interpret the proof d.

This example suggests that one way to proceed is to try
to determine how little one can get away with in carrying
out an internal semantic argument of this kind. The answer
turns out to be: very little.

Definition 3.3 Say a set of sentences T codes finite func-
tions (efficiently) if for each n there are

• a definable element, "0n ";

• a definable relation, "z0, • • • ,zn-i G domn(p)";

• a definable function, "evaln(p,x0, ■ ■ ■ ,a;n_i)"; and

• a definable function, "p ©n (x0,..., zn_i i-* y)"

such that, for each n, T proves

• x $■ dom{$n)

• w£ dom(p © (ä? i-> y)) -B- (w G dom(p) Vtc=i)

• evaln(p®n(xi->y),x)=zy

•w/^-> ev aln (p ©n (xt-ty),w) = evaln (p, w),

and such that the lengths of all the definitions and proofs
are bounded by a polynomial in n.

Of course, the intuition is that elements of the universe are
assumed to code finite partial functions p; 0n is the function
that is nowhere defined; evaln(p,x) returns the value of p
at x; p®n (x i-> y) is the modification of p which maps
x to y; and so on. One could, more generally, assume that
the codes are elements of a definable set; but then nothing is
lost by taking the other elements of the universe to code the
empty function. If one wants polynomial-time translations
(and not just bounds on the lengths of proofs) one needs to
add the constraint that the definitions and proofs above are
polynomial-time computable in n.

These requirements are not strong ones. For example,
any sequential theory of arithmetic (in the terminology of
[7, 9, 11]) codes finite functions, since one can take such
functions to be sequences of tuples (x,y). Below I will
drop the subscripts n in 0n, domn, etc. and I will write p(x)
instead of eval(p, x). Clearly it does not hurt to assume that
all these are actually given by symbols in the language.

Theorem 3.4 Suppose T codes finite functions. Then V has
an efficient elimination of Skolem functions.

Proof. The proof will occupy most of the remainder of this
section. By Proposition 3.2 we can assume that there are at
least two elements in the universe, and so, by Theorem 2.2,
we can use definitions freely. By way of exposition, I will
first focus on the case where k = 0, i.e. there is only one
Skolem function to eliminate. (This part does not require
definitions.) Then I will discuss the steps necessary to elim-
inate multiple, possibly nested instances Skolem functions.
(This is the part that requires definitions.)

Suppose we want to eliminate the use of a single
Skolem function, with defining axiom Vf, y (<p(x, y) ->
<p(x, f{x))). Let Lf denote the language L U {/}. I will
define a forcing relation in L, for formulae in Lf. I will then
show that T proves that the Skolem axiom is forced; and that
anything in the original language is forced if and only if it is
true. Given a proof d of ip from T together with the Skolem
axiom, then, F proves that ip is forced, and hence true.

Now for the details. Let the formula Cond(p) in the lan-
guage L assert that p is a finite approximation to a Skolem
function for <p, that is,

Vf G dom(p) Vy (<p(x,y) -> ip(x,f(x))).

143

Let t be a term in Lf, and let p be a variable not occurring
in f. Inductively we will define a term tp in the language
of L, whose free variables are those of t together with p.
Intuitively, tp is the value of f, when / is interpreted by p.
At the same time, we will define a relation "£p is defined,"
asserting that the value of V makes sense. Let

• xp = x, for each variable x (other than p),

• (g{to,---,tm))p = g(tp,...,tp
n), for each function

symbol g of L, and

. (/(<o,...,«n))p=p(C...,^).
Define "tp is defined" inductively as follows:

• "xp is defined" is always true.

• "(g{to, ■ ■ ■ ,tm))p is defined," where g is a function
symbol of L, is true if and only if tp0,..., t

p
n are all

defined.

• "(/(*o, ■ • • ,tn))p is defined" is true if and only if
ig,..., tpn are all defined and tp,..., fp G dom(p).

Up and q are conditions, say p -< q, "p is stronger than or
equal to q", if p extends q as a function:

Vif (x G dom(q) —> x G dom{p) A p(f) = q(x)).

Now we can define the relation p \\- 9 inductively. We can
assume that the language has connectives A, —>, V, and ->,
with 3 and V defined from these in the usual way.

1. p Ih R(to,.... tm) if and only if Vg ■< p 3r < q
(tr0,..., tr

m are all defined and R{trQ,..., f;'„)).

2. p Ih 0 A 7/ if and only if p Ih 0 and p Ih ;/.

3. plh 0 -» 7j if and only if Vq ^ p {q Ih 0 -» 9 Ih 7/).

4. p Ih -.0 if and only if Vq ^ p q 1/ 0.

5. p Ih V.r 0 if and only if V.r p Ih 0.

The quantifiers involving q and r above are intended to
range over conditions; so, for example, Vq ■< p ... ab-
breviates V(/ (Cond(q) A q ■< p -» ...). For each 0, the
relation p Ih 0 is a formula in the language of L whose free
variables are those of 0 together with p. Note that the length
of p Ih 0 can be bounded by a polynomial in |0| (as well as
in \ip\, which is being held fixed for the moment).

The phrase "0 is forced" and the notation Ih 0 abbrevi-
ate Vp (Ccmd(p) -> p Ih 0). In the lemmata that follow,
p,q,r ... are assumed to range over conditions. Most of
the proofs arc routine and standard, modulo the additional
notes provided below. It is important to recognize that the
lengths of all the proofs alluded to in the statement of the
lemmata can be bounded by a polynomial in the length of
the assertion being proved, but having stated this up front, I
will not bother to repeat it each time.

Lemma 3.5 (monotonicity) For each formula 0 of Lf, F
proves

p Ih 0 A q -< p -> <7 Ih 0.

Lemma 3.6 For each formula 0 ofLj, T proves

p Ih 0 o V<7 < p 3r ^ q r Ih 0.

Corollary 3.7 For each formula 0 of Lj, T proves

plh (0O-.-.0).

Lemma 3.8 For any term t of Lj, V proves

V<7 3r ■< q (tr is defined).

Proof. Use induction on the term t. The only interesting
case is where t is of the form /(.so,..., s*). By the induc-
tion hypothesis, we can find an r' ^ q such that sr0 ,..., .s[.
are all defined. If sr0 ,..., .s£ G dom(r'), take r = r'. Oth-
erwise, if 3y <p(s£,..., s[', y), let r = r' CD (s£,..., .s[.' »-»
y), for any such y; and if Vy ~«P{SQ ,... ,sr

k , y), let r =
s'i- h^ ?/)• f°r any V at a"- D

The next two lemmata arc proved by induction on .s and
0, respectively.

Lemma 3.9 Iff and ,S(.T) arc any terms of Lf, T proves

t" = z -> w = s(z)")

Lemma 3.10 If0{x) is any formula ofLj and t is any term
of Lj then T proves

(t>> is defined A tp = z) -> (p Ih 9{t) <* p Ih 9(z)).

Lemma 3.11 For each formula 9 of Lf, if 8 is provable in
classical first-order logic, then T proves Ih 0.

Proof. The proof is for the most part standard and routine,
though one has to be a little bit careful with the quantifier
axioms and rules since terms might not always be "defined."
To show V.r 0(.c) —>• 0(f) is forced, let us argue in first-
order logic from assumptions in F. Suppose p Ih V.r 6(x).
By Lemma 3.6 it suffices to show V<y ■< p 3r -< q 0(f). So
suppose q < p. and by Lemma 3.8 let r ■< q be such that V
is defined. Let z = tr. By monotonicity, r Ih V.r 0(.r), so
r Ih 9{z). By Lemma 3.10, rlh 0(f). D

A formula in the original language is forced if and only
if it is true.

Lemma 3.12 For each formula 9 of L. F proves (p Ih 0) <->

144

Proof. Induction on 6. D

The next lemma is the important one: it asserts that the
Skolem axiom is forced.

Lemma 3.13 T proves lh Vöf, y {ip(x, y) -> ip(x, /(£)))•

Proof. Once again, argue in first-order logic, from T. Sup-
pose for some x,y we havep lh <p(x,y). By Lemma 3.12,
tf(x,y). By Lemma 3.6, it suffices to show Vg < p 3r -<
q q \\- ip(x,f{x)), so suppose q < p. If x G dom(q), the
fact that q is a condition guarantees y>(:r, /(£)), and we can
take r = g; otherwise, take r = q © (f i-+ y). Either way,
as above, we have r lh ip(x, f(x)), as required. D

Proof of Theorem 3.4, for a single Skolem function f. Sup-
pose there is a proof d of a formula ^ in the language L
from finitely many sentences in Fu {Vif, y (y(f, y) ->
<p(x,f{x)))}. By Lemma 3.11, T proves that this impli-
cation is forced. By Lemmata 3.12 and 3.13, T proves that
all the hypotheses are forced, so T proves that ip is forced
as well. By Lemma 3.12, T proves ip.

Since each the length of each component of the deriva-
tion just described can be bounded by a polynomial in \d\,
so can the entire proof. □

To extend the proof to arbitrary nested definitions of
Skolem functions, we need to iterate the forcing definition.
A similar iteration was used in [2]; the situation here is eas-
ier, since we only have to deal with finite iterations.

Let d, /o,... ,fk,<Po, ■ ■ ■ ,<Pk be as in Definition 3.1. For
each i < k, we will define the notion of an i-condition,
an ordering <i on «-conditions, and a forcing relation
Ihj between i-conditions and formulae 6 in the language
L U {/o,..., fi}. An i-condition consists of a sequence
Po,...,Pi of finite functions, with arities corresponding to
those of /o,..., fi. As expected, p0,...,Pi <t q0,..., qi
means that each pj extends <?_,, as above.

The notions Condi and I hi are defined simultaneously,
by recursion on i. Cond0(p) and p lh0 9 are defined as
above, in the case where there is only one Skolem function.
Assuming Condi and lh, have been defined, the relation
Condi+i (p0,..., pi+1) is defined by

Condi(p0, ...,Pi)Ap0,-..,Pi lh Vfi+1,y

(xi+i e dom{pi+1) A ip(xi+1,y) -» <p(xi+1,p(x))).

In the atomic case, assuming t0,...,tm are terms in the lan-
guage of Lu{/0,..., fi+i}, the relationp0,... ,pi+1 lhi+1

A(to, • ■ -, tm) is defined by

Vq<p3r< q(4,... ,C are defined and A(t%,... ,4)).

The forcing relation is then extended to arbitrary formulae
in the language as above. Notice that the relation Ihj is used

in the definition of Condi+i, which is in turn used to de-
fine lhi+1. By introducing new relation symbols to repre-
sent the definitions of Cond0,..., Condk, we can bound
the lengths of all the formulae involved by a polynomial.

Lemma 3.14 For each i < k, Lemmata 3.5-3.11 hold for
i-conditions, <i, andWi.

Lemma 3.15 For each i < k, if 6 is in the language L U
{/o,..., fi], then T proves the following:

Po,- ,Pk Ihfc 6 4r>p0,...,Pi Ihj 6.

Lemma 3.16 For each i < k,T proves that the ith Skolem
axiom is k-forced.

Once again, the lengths of the relevant proofs can be
bounded by a polynomial in \d\. The proof of Theorem 3.4
now follows exactly as in the case of a single Skolem func-
tion. □

If a and b are distinct and / is a Skolem function for
{f{x) A y = a) V (-"p(x) A y = b), then f(x) = a serves
as a definition for ip(x). As a corollary to Theorem 3.4 we
have the following:

Corollary 3.17 Suppose T codes finite functions and
proves 3x,y (x / y). Then one can eliminate arbitrary
nested instances of definitions and Skolem functions from
proofs in T, with a polynomial bound on the increase in the
lengths of proofs.

4 Questions

In standard terminology (e.g. [9, 11]), Section 2 shows
that one can eliminate definitions from proofs in first-order
logic in polynomial time if and only if extended Frege sys-
tems for propositional logic can be p-simulated by Frege
systems. Of course, whether or not this is the case is still a
major open question. Section 2 shows that Theorem 2.2 and
Corollary 2.5 hold for first-order logic with equality. What
can one say in the absence of equality?

It is also still open as to whether one can efficiently elim-
inate even a single Skolem function from proofs in pure
logic, or from theories that do not code finite functions.

The elimination of definitions in Section 2 used the law
of the excluded middle. As a result, it is open as to whether
one has an efficient elimination of definitions in intuitionis-
tic first-order logic. (See also [12] for a discussion of choice
functions in the intuitionistic setting.)

This work has been partially supported by NSF grant DMS
0070600.1 am grateful to Samuel Buss for advice and sug-
gestions.

145

References

[1] M. Ajtai. The complexity of the pigeonhole principle. Pro-
ceedings of the IEEEE 29th Annual Symposium on Founda-
tions of Computer Science, pages 346-355, 1988.

[2] J. Avigad. Formalizing forcing arguments in subsystems of
second-order arithmetic. Annals of Pure and Applied Logic,
82:165-191, 1996.

[3] J. Avigad. Interpreting classical theories in constructive
ones. Journal of Symbolic Logic, 65:1785-1812, 2000.

[4] J. Avigad. Algebraic proofs of the cut-elimination theorems.
To appear in the Journal of Logic and Algebraic Program-
ming.

[5] J. Avigad. Weak theories of nonstandard arithmetic and
analysis. To appear in S. Simpson, editor, Reverse Math-
ematics 2001.

[6] P. Clotc and J. Krajfcek. Arithmetic, Proof Theory, and Com-
putational Complexity. Oxford University Press, Oxford,
1993.

[7] P. Hajek and P. Pudldk. Metamathematics of first-order
arithmetic. Springer, Berlin, 1993.

[8] D. Hubert and P. Bernays. Grundlagen der Mathematik, vol-
ume 2. Springer, Berlin, second edition, 1970.

[9] J. Krajfcek. Bounded Arithmetic, Propositional Logic, and
Complexity Theory. Cambridge University Press, Cam-
bridge, 1995.

[10] J. Paris and A. Wilkic. Counting problems in bounded arith-
metic. In Methods in Mathematical Logic, Lecture Notes
in Mathematics, v. 1130, pages 317-340. Springer, Berlin,
1985.

[11] P. Pudläk. The lengths of proofs. In S. Buss, editor. The
Handbook of Proof Theory, pages 547-637. North-Holland,
Amsterdam, 1998.

[12] H. Schwichtenbcrg. Logic and the axiom of choice. In
M. Boffa ct al, editor, Logic Colloquium '78, pages 351-
356. North-Holland, Amsterdam, 1979.

[13] J. R. Shocnficld. Mathematical Logic. Addison Wesley,
Reading, Massachussets, 1967.

[14] G. Takeuti. Proof Theory. North-Holland, Amsterdam, sec-
ond edition, 1987.

[15] A. S. Troelstra and H. Schwichtenbcrg. Basic Proof Theory.
Cambridge University Press, Cambridge, 1996.

146

On the decision problem for the guarded fragment with transitivity *

Wieslaw Szwast and Lidia Tendera
Institute of Mathematics

Opole University, Oleska 48, 45-052 Opole, Poland
{szwast,tendera}@cs.uni.opole.pi

Abstract

The guarded fragment with transitive guards,
[GF+TG], is an extension of GF in which certain re-
lations are required to be transitive, transitive predi-
cate letters appear only in guards of the quantifiers and
the equality symbol may appear everywhere. We prove
that the decision problem for [GF+TG] is decidable.
This answers the question posed in [11]. Moreover,
we show that the problem is 2EXPTlME-complete.
This result is optimal since satisfiability problem for
GF is 2EXPTlME-complete [12]. We also show that
the satisfiability problem for two-variable [GF+TG]
is NEXPTIME-/mrd in contrast to GF with bounded
number of variables for which the satisfiability problem
is EXPTIME-complete.

1 Introduction

Modal logic, that in medieval times was studied by
philosophers, in the last decades became a subject of
interest for computer scientists. Modal logic has ap-
plications in many areas of computer science includ-
ing artificial intelligence [5, 21], program verification
[8, 24, 23], database theory [7, 20] and distributed com-
puting [6, 16].

Propositional modal logic possesses useful model-
theoretic and good algorithmic properties, like finite
axiomability, Craig interpolation, Beth definability and
decidability for validity. The tractability of modal logic
was partially explained when D. Gabbay [10] showed
that modal logic can be embedded in FO2, the fragment
of first order logic with two variables, that is decid-
able. The decidability of FO2 was studied by D. Scott
[25] who proved that the satisfiability problem for FO2

without equality is decidable, by M. Mortimer [22] who
proved that FO2 with equality has a finite model prop-

*This research was supported by KBN grant 2 P03A 018 18

erty, and by E. Grädel, Ph. Kolaitis and M. Vardi [13]
who proved the exponential model property for FO2.
The last result together with the result by H. Lewis
[19] implies that the satisfiability problem for FO2 is
NEXPTIME-complete.

FO2 can be used as a representative language also
for a number of knowledge representation logics (de-
scription logics) [2]. Moreover, many extensions of
modal logics that are not fragments of FO2 can easily
be embedded in some extensions of FO2, for example,
CTL and the ^-calculus can be treated as FO2 with a
fixed-point operator [28] and many powerful variants
of the description logics can be embedded in C2, the
extension of FO2 with counting quantifiers, or in C2

with transitivity [4].
Although the translation of modal logic to FO2 ex-

plains some good properties of modal logic, it does not
work in the same way for distinct extensions of modal
logic. In particular, CTL has an EXPTIME-complete
validity problem but FO2 with a fixed-point operator
was shown to be undecidable [14]. Similarly, Immer-
man and Vardi proved [17] that CTL can be embedded
in FO2 with a transitive closure operator that is again
undecidable. In addition, FO2 has a very poor proof
theory so it cannot be seen as a natural fragment of
predicate logic extending modal logic and capturing
all nice properties of modal logic. The model theoretic
reason for the nice behavior of modal logic was recently
given in [28] where Vardi answers the explicitly asked
question 'Why is modal logic so robustly decidable?'

The guarded fragment. In 1996, H. Andieka,
J. van Benthem and I. Nemeti [1] introduced the
guarded fragment of first-order logic, GF, in order to ex-
plain and generalize the good properties of modal logic.
GF consists of first-order formulas where all quantifiers
are appropriately relativized by atoms but neither the
pattern of alternations of quantifiers nor the number
of variables is restricted. Andreka et al. showed that
modal logic can be embedded in GF and they argued
convincingly that GF inherits the nice properties of

147
0-7695-1281-X/01 $10.00 © 2001 IEEE

modal logic. The nice behavior of GF was confirmed
by Grädel [12] who proved that the satisfiability prob-
lem for GF is complete for double exponential time
and complete for exponential time, when the number
of variables is bounded.

In order to express certain properties of temporal
logic, GF was later generalized by van Benthem [27] to
the loosely guarded fragment, LGF, where all quanti-
fiers are relativized by conjunctions of atoms. Most of
the properties of GF generalize to LGF.

In [28] Vardi argued that one of the main reasons
for the nice behavior of modal logics is the tree model
property. It was proved [12] that both GF and LGF
also have a tree-model property analogous to the tree-
model property for modal logic; in addition, GF has
the finite model property. So, having proved several
good properties of the guarded fragment one could ex-
pect that the same will hold for some extensions of
GF, similarity to the basic modal logic that remains
decidable and of fairly low complexity under the ad-
dition of a variety of operators and features, such as
counting modalities, transitive closure modalities and
conditions on the accessibility relation. In [15] Grädel
and Walukiewicz proved that extending GF with fixed
point operators one gets still a decidable logic. More-
over, they proved that the satisfiability problem for GF
with fixed points can be decided in the same time as
for pure GF. The same is true for GF with bounded
number of variables.

The transitivity constraints. The extension of
the guarded fragment by transitivity seems to be a nat-
ural representative language e.g. for multi-modal logics
of type K4, S4 or S5. These multi-modal logics are used
to formalize epistemic logics [9]. Unfortunately, Grädel
[12] proved that

• GF3, the three-variable fragment of GF, with tran-
sitive relations (or with counting quantifiers) is un-
decidable.

The three-variable guarded fragment may be too
strong to represent modal logics, since, as it is men-
tioned at the begining, two variables suffice. How-
ever, in [11], besides other results, H. Ganzinger, C.
Meyer and M. Veanes improved the result by Grädel
[12] showing that even

• GF2 with transitive relations and without equality
is undecidable.

In [11] Ganzinger et al. studied decidability issues for
the extension of GF with transitivity constraints and
they proposed a logic that is an extension of GF in
which transitive predicate letters appear only in guards

of the quantifiers whereas non-transitive predicates and
the equality symbol may appear everywhere. In this
paper we denote it by [GF+TG] and we call it the
guarded fragment with transitive guards. [GF+TG] is
powerfull enough to be used as a representative lan-
guage for multi-modal logics of type K4, S4 or S5, since
when encoding them in the first order logic the predi-
cate letters corresponding to accessibility relations oc-
cur only in guards. By [GF2+TG] we denote the
two-variable fragment of [GF+TG] and by monadie-
[GF2+TG] - the fragment of [GF2+TG] in which all
non-unary predicate letters may appear in guards only.
Ganzinger et al. [ll]gave a nice proof of theorem that

• monadic-[GF2+TG] is decidable.

and they asked the following two questions:

1. What is the complexity of monadic-[GF2+TG]?
(The proof in [11] proceeds through a reduction to
the monadic theory of a tree, SkS, and hence no
special complexity bound has been given there.)

2. Is satisfiability of the full [GF+TG] decidable?

This paper. We prove that the satisfiability of
[GF+TG] can be decided in deterministic double ex-
ponential time. Since [GF+TG] is an extension of
GF we immediately get that [GF+TG] is 2EXPTIME-
complete. So, similarly to GF with fixed point opera-
tors, we do not have to pay more for adding transitive
guards and this makes [GF+TG] the right counterpart
of certain extensions of modal logics.

We also prove that the satisfiability problem for
monadic-[GF2+TG] with equality is hard for nondc-
terministic exponential time. This is proved by a re-
duction of F02-sentences to [GF2+TG]-scntcnces that
preserves satisfiability. This reduction is based on an
observation that in monadic-[GF2+TG] we are able
to define cliques that are big enough to enclose mod-
els for F02-sentences. Then NEXPTIME-hardness of
[GF2+TG] follows from NEXPTIME-hardness of FO2.
This result has been recently improved by E. Kieroriski
[18] who showed that monadic-[GF2+TG] even with-
out equality, is hard for EXPSPACE. These results are
rather surprising since both GF and GF with fixed
point operators when restricted to bounded number of
variables are EXPTIME-complete and as we show in
the main part of the paper the complexity for the full
[GF+TG] is exactly the same as for GF.

It is worth noticing that [GF+TG] and [GF2+TG]
are strictly more expressive than the monadic sub-
class. As an example of a [GF2+TG]-sentence that
cannot be expressed in monadic-[GF2+TG] one can

148

take the sentence defining cliques since, as we observed
in [26], every satisfiable monadic-[GF2-t-TG] sentence
has a model without symmetric edges.

The proof of the decidability is very technical. To
obtain the decision procedures we apply new tech-
niques inspired by the standard methods of modal logic
that were used for establishing positive results for GF
and its extensions, namely the tree-model property and
bisimulation.

As the first step we observe that the size of cliques
of elements connected with transitive relations in mod-
els of [GF+TG]-sentences can be bounded. Using this
observation, we define ramified structures that have
cliques of exponential size (with respect to the signa-
ture), and that have only disjoint transitive paths for
distinct transitive predicate letters. Then, for a fixed
element a of a ramified structure, we define a flower
that contains information about the cliques of the ele-
ment a and the colors of elements connected with a by
non-symmetric edges.

As the next step we observe that the set of flowers
realized in a ramified model for a [GF+TG]- sentence
satisfies some properties, for example, if two distinct
elements are connected with a non-symmetric, tran-
sitive predicate, then every color connected with the
first element has to be connected with the second one.
We collect several such properties in the definition of
a special set of flowers named a carpet and we show
that these properties are necessary and sufficient for
existence of a model for a [GF+TG]-sentence. In the
proofs we do not construct models that explicitly pos-
sess the tree-model property but the models are " tree-
controlled:" during the construction every element is
added as a child of an element on a fixed level of a
tree. The proof that a (ramified) structure is a model
for a [GF+TG]-sentence can be seen as an application
of bisimulation but where at every moment we need to
care about a big set of cliques of elements that lay on
one transitive path.

The final step is based on the facts that the size of
a flower is exponential and the number of all flowers is
double exponential, and this allows us to build an al-
ternating test for satisfiability for [GF+TG]-sentences
that uses exponential space.

2 Preliminaries

By FOfc we denote the class of first order sen-
tences with k variables over a relational signature. The
guarded fragment, GF, of first-order logic with no func-
tion symbols of arity greater than 0, is defined as the
least set of formulas such that

(1) every atomic formula belongs to GF,

(2) GF is closed under logical connectives -i,V,A,->-,

(3) if x,y are tuples of variables, a(x, y) is atomic
and i/j(x,y) is a formula of GF with free variables
contained in {x,y}, then the formulas

Vya(x,y) -> tp{x,y),

3ya(x,y) Ai/>(x,y)

belong to GF.

The atom a(x, y) in the above formulas is called the
guard of the quantifier.

In this paper we admit conditions stating that some
binary predicate T is transitive, we express these condi-
tions by "T is transitive" and we let Trans[Ti,..., Tm]
stand for the condition that each Ti is transitive. In
this case we also say that T is a transitive predicate let-
ter. Denote by [GF+TG] the set of sentences contained
in GF with all transitive predicate letters appearing in
guards only and where the equality symbol can appear
everywhere and let [GFfc+TG]=FO*n[GF+TG].

Let a be a relational signature. If x is a sequence of
variables (xi,... ,2;*), then a k-type t(x) is a maximal
consistent set of atomic and negated atomic formulas
over a in the variables of x. A type t is often identified
with the conjunction of formulas in t. If not stated
otherwise, 1-types are types of the variable x and 2-
types are types of the variables x and y.

Let T/>(X) be a quantifier-free formula in the variables
of x. We say that a type t satisfies ^ if 1/) is true under
the truth assignment that assigns true to an atomic
formula precisely when it is a member of t and this is
denoted by t \= ip.

A Ar-type s is a reduction of an m-type t, if there
exists a substitution p : {1,..., A;} H-» {1,..., m} such
that t(x1,...,xm) \= s(xp(lh...,xp{k)). A k + 1-typet
extends a fc-type s if s C t and a k + 1-type t properly
extends a fc-type s if t extends s and for every i < k, t
contains the formula a;, 7^ x^+i ■

If 21 is a cr-structure with the universe A, and if
a £ Ak, then we denote by £pa(a) the unique fc-type
realized by a in 21. If B C A then 2l|\B denotes the
substructure of 21 restricted to the universe B.

If 21 and 03 are cr-structures, a £ A and b 6 B
then,we write (21,a) = (03,6) to say that there is an
isomorphism / of the structures 21 and 03 such that
f(a) = b.

3 The normal form

In [12] Grädel showed a reduction that transforms
each GF-sentence to a sentence in normal form that

149

preserves satisfiability. In this section we show a sim-
ilar reduction that additionally keeps the number of
variables and the arity of predicate letters of the input
sentence.

Definition 3.1 A [GF+TG]-sentence A is in normal
form iff it is a conjunction of sentences of the following
form:

(nl) 3x(a(x) A ij>(x)),

(n2) VX(Q(X) -> 3y(/?(x, y) A ^(x, y))),

(n3) VX(Q(X) -> ^(x)),

where y PI x = 0, a and ß are atomic formulas, 1(1 is
quantifier-free and it contains no transitive predicate
letter.

We have the following lemma.

Lemma 3.2 With every [GF*' +TG]-sentence T of the
length n over a signature r one can effectively associate
a set A of [GFk +TG}-sentences in normal form over
an extended signature a, A = {Ai,..., Ad}, such that

(1) T is satisfiable if and only if\/i<d A; is satisfiable,

(2) d < 0(2n) and for every i < d, |A,| = O(nlogn),

(3) A can be computed deterministically in exponen-
tial time and every sentence A, can be computed
in polynomial time with respect to n.

4 An example

In this section we give an example of a sentence in
[GF2+TG] defining cliques. Hence the class [GF2+TG]
is strictly more expressive than GF and monadic-
[GF2+TG] since, as we observed in [26], every satisfi-
able monadic-[GF2+TG]-sentence has a model without
symmetric edges.

Let a(k) = {T, C/i,..., {/*•}, where T is a transitive
predicate letter and [/; are unary predicate letters and
let F(k) be the conjunction of the following clauses.

(el) VrfyCTOT;,,,) A Af=1 tAÜ/)):

(e2) Vx3y(T(y,x)A/\k:^Ui(y)),

(e3) Vx,y T(x,y) -+ (V|=1(^) ** ^U,(y)) V x = y),

(e4) Trans[T).

Note that T(k) is a GF-sentencc since every sentence
of the form: Vx3y(a(x,y) Aij)(x,y)) can be written as
\/x((x = x) -t 3y(a(x,y) A if>(x,y))). One can check
that T(k) is satisfiable and in every model for T(k), T
is an equivalence relation with equivalence classes of
cardinality bounded by 2k.

In [13] Grädel, Kolaitis and Vardi prove that FO2

has the exponential model property: there is a con-
stant c such that every satisfiable F02-sentence $ has
a model of cardinality at most 2<-l*L

Let $ be a F02-sentence over a signature r in Scott's
form Vx,y <f>{x,y)Af\i"ix3y <pi(x,y), where <j)(x,y) and
<j>i(x, y) are quantifier-free. Let T be a new binary pred-
icate letter and let $' be the following sentence:

Vx,y (T(x,y) -> </>{x,y)) A/\Vxly (T(x,y) Acj>t{x,y)).
i

Define the sentence $ over the signature a — rUa(k):
$ = $' A T(k), where k = c ■ |$| and c is given by the
exponential model property for FO2. We have

(1) * is satisfiable if and only if $ is satisfiable,

(2) |*| = 0(|$| log(|<5>|)) and * is computable in poly-
nomial time with respect to |$|,

So, we have proved:

Theorem 4.1 SAT([GF2+TG]) is NEXPTIME-/mnf.

5 The two-variable case

In this section we are concerned with the signature
a = {U\,..., [/?, B\,..., Bi}, where £/; is a unary
predicate letter, Z?, is a binary predicate letter. We
do not allow Boolean predicates, function symbols and
constants. Assume that T\,...,Tm are all the transi-
tive predicate letters of a. Let M = {1,..., m}.

We reserve the letter T to denote transitive predi-
cates. So, when the predicate letter T or T{ appears
in a sentence, then the sentence includes as a conjunct
Trans[T] or Trans[Tj], even if this is not written ex-
plicitely. Additionally, we allow only 2-typcs t(x,y)
which contain the formula (x ^ y) and we consider
structures that have at least two elements.

Remark Although we do not allow predicate letters
of arity greater than two, it is possible to transform
every two-variable sentence that use these predicate
letters to a sentence over a signature containing predi-
cate letters of arity at most two (cf [13]). Moreover, the
main part of the new sentence has the same form as the
original one and every conjunct that was added during
the transformation is a GF2-sentence with binary pred-
icate letters only. So, with respect to satisfiability, the
language a can be bounded without loss of generality.

150

In this section we assume that the conjuncts of a
[GF2+TG]-sentence in normal form have the following
form (cf. Definition 3.1):

(nl) 3xip(x),

(n2) \/x(a(x) -> 3y(ß(x,y) A ip(x,y))),

(n3) VxVy(a(x,y) -> i(){x,y)).

5.1 Ramified models for [GF2+TG]-sentences

In Section 4 we proved that [GF2+TG]-sentences
can define cliques. In this section we show that the
size of cliques of elements connected with transitive re-
lations can be bounded. Using this observation, we
define ramified structures that have cliques of expo-
nential size (with respect to the signature), and that
have only disjoint transitive paths for distinct transi-
tive predicate letters.

Definition 5.1 (1) A 2-type t(x,y) is single-
transitive if there exists exactly one transitive
predicate letter T such that t (= T(x,y) V T(y,x).
In this case we also say that t is T-single-
transitive. Additionally, if t \= T(x,y) A T(y,x)
then t is symmetric, otherwise, t is oriented.

(2) A 2-type t(x,y) is transitive-less if all the two-
variable formulas of t(x,y) containing transitive
predicate letters are negated.

(3) Let v(x),w(y) be 1-types. A negative link of v,w,
denoted by v, w, is the unique 2-type containing
v(x), w(y) and no atomic two-variable formula.

Definition 5.2 Let 'Si be a a-structure, B be a binary
predicate letter in a and € be a substructure o/2l. We
say that € is a .B-clique if for every a,b £ C we have
(a,b)eB*.

Let a £ A. We denote by [a]g the maximal B-clique
containing a, provided it exists and B is a transitive
predicate letter. In other cases, [a]^ is the one-element
structure 21 f{a}.

Observe that the structure [a]® need not be a clique
even in the case when B is a transitive predicate letter.
This happens when there is no element b £ 21 such that
(a,b)£B<ä.

Definition 5.3 Let A be a [GF2+TG]-senience in
normal form over a. A a-structure fR is a ramified
model for A if the following conditions hold:

(1) <R |= A,

(2) for every a,b £ R such that a ^ b, tpiR(a,b) is
either a single-transitive or a transitive-less type,

(3) for every i,j £ M such that i ^ j, for every
a,b,c £ R, b ^ a,c ^ a, if b £ [a]^. and c £ [a]^.

then tpm(b, c) = tpm(b),tp^(c),

(4) for every a € R, for every T £ a, the cardinality
of[a]% is bounded by 2°(card^\

In the above definition we have introduced one of the
key notions for this paper. We have the following the-
orem.

Theorem 5.4 Every satisfiable [GF2+TG)-sentence
A in normal form has a ramified model.

As we will see later, a ramified model is tree-
controlled, what means, that if we want to build it, we
are able to treat the model as a tree, i.e. the universe is
partitioned into levels and all the witnesses of elements
lying on a given level are their immediate successors.

Before giving the proof we present technical lemmas
and introduce some notions that will be useful later.

Definition 5.5 Let t be a 2-type over a and B be a
binary predicate letter in a.

A .B-slice of t, denoted by t,B, is the unique 2-type
obtained from t by replacing every atomic formula of
the form Ti(x,y) and Ti(y,x), where Ti ^ B, by the
formula ~^Ti(x,y) and ->Ti(y, x), respectively.

Let T be a set of types. We denote by T = {v :

v{x) £ T}U {Co : t(x,y) £ T and B £ a} U {vyw :
v(x),w(x) £ T}.

Note, that if B is not a transitive predicate letter,
then t, B is a transitive-less type. On the other hand,
when considering t/T, the only possible appearance of
an atomic formula containing a transitive predicate let-
ter is T(x,y) and/or T(y,x), provided the type t con-
tains T(x,y) and/or T(y,x).

Definition 5.6 Let A be a [GF2+TG]-senience and
let T be a set of 1-types and 2-types. We say that T is
A-acceptable if

(1) T is closed under reductions,

(2) for every conjunct of A of the form (nl) 3x^(a;)
there exists a 1-type s £ T such that s \= ip{x),

(3) for every 1-type s £ T, for every conjunct of A of
the form (n2) Wx(a(x) ->■ 3y(ß(x,y) A if)(x,y))),
there exists t £ T such that t extends s and t (=
a(x) ->• {ß(x,y) hip{x,y)).

151

(4) for every 2-type t £ T, for every conjunct of A of
the form (n3) \/xVy(a(x,y) -> ib{x,y)), we have
t |= (a(x,y) -+ijj{x,y))A(a(x,x) -nj>(x,x)),

The following observation is an easy consequence of
the above definitions.

Proposition 5.7 Let A be a [GF2+TG]-sentence in
normal form,, 21 be a a-structure and T^ be the set of
all the 1- and 2-types realized in 21.

(1) 21 |= A if and only if T*a is A-acceptable, every
element of 21 has a witness for every conjunct of
the form (n2) and every T £ a has a transitively
closed interpretation in 21.

(2) For every set of types T, T is A-acceptable if and
only ifT is A-acceptable.

Definition 5.8 Let A be a [GF2 +TG]-sentence in
normal form, let 21 be a model for A and let p £ A.

We say that a a-structure £> is a T-petal of \p]j if
there exists a function G such that G : D i-> [p]^1. and
the following conditions hold:

(pi) card{D) = 2°^card^\

(p2) every 1-type realized in [p]^ is also realized in £>
and the function G preserves 1-types,

(p3) there is an element de D such that G{d) — p,

(p4) every 2-type realized in £> is a T-slice of some type
realized in [p]^,

(p5) for every a £ D, for every conjunct 70/i of the.
form (n2)Vx(a(x) ->• 3y(ß{x, y) A xh{x, y))), where
ß contains T, if there exists a witness of G(a) for
7 in \p]j, then there exists a witness of a for 7 in
£>.

For a predicate letter B that is not transitive, a
structure £> is a £?-pctal of [p]^ if 5) = [p}%.

Lemma 5.9 Let A be a [GF2 +TG]-sentence in nor-
mal form, let 21 be a model for A and let p £ A.

Then, for every binary predicate letter B, there ex-
ists a B-petal of [p]#.

Proof (Sketch) The case when B is not a transitive
predicate letter is obvious.

The construction of the required £?-petal in case
when B is a transitive predicate letter is a subtle mod-
ification of the construction given in [13] in the proof
that every first-order two-variable sentence has a model
of exponential size with respect to the length of the
sentence; we give it here for the sake of completeness.

Let A be a [GF2+TG]-sentence in normal form and
let T be a transitive predicate letter. To explain the
idea of the proof we will use the following notions.

If € is a cr-structure, then a T-local King of (* is an
element of E with the unique 1-type realized in (£, a T-
local Noble of (£ is an element b of E which is necessary
for a local King a £ E with respect to a conjunct of
the form (n2) Vx(o(.r) ->• 3y(ß(x,y) A ij>{x,y))), where
ß(x, y) contains T, and T-local Plebeians are the rest
of elements of E.

Let 21 be a model for A and let p 6 A. The set

D = KÜNOP1OP2ÜP3

will be defined as the universe of the required structure
I) - the T-petal of [p]y-. The above sets will be the sets
of T-local Kings, Nobles and Plebeians of £>; they will
play the role of T-local Kings, Nobles and Plebeians
of [p]^. Moreover, the set Pt (P> and P3) consists of
elements that are necessary for elements of iV (Pi,P2)
with respect to a conjunct of the form (n2) Vz(n(:r) ->
3y(ß(x, y) A ij>(x. ?/))), where ß(x, y) contains T. ■

To simplify the presentation of the technical proofs
we will use the following special notation.

Definition 5.10 7/21 and 23 are a-structures, a £ A,
b G B and <p5l(o.) = tp^ib), then we denote by 2l(«) o
23(6) the partially defined structure 9\ with the universe
.4Uß\ {6} such that for every c,d£ R

• if c,d G .4 then tp*(c,d) = tpm(c.,d),

• if c,d G B, c ^ b, d / b, then tp°\c,d) =
tp^ic.d),

• if c£ B, cj£ b, then tp*(a,c) = fp'B(6,c),

• if c £ A, d £ B, c ^ a, then tpm(c,d) is not
defined.

Now, we are ready to give the proof of Theorem 5.4.
Proof of Theorem 5.4.
Let A be a [GF-'+TGJ-sentence in normal form, let

21 (= A, let T-1 bc_the set of 1- and 2-types realized
in 21 and let T = T%. By Proposition 5.7, the set T is
A-acceptable.

We will construct a ramified model of A, !R, in which
every 2-type is taken from the set T■ Every element
of R will have a corresponding element in .4 realizing
the same 1-type. The correspondence will be given by
a function H. H : R i-t A, that preserves 1-types and
witnesses, i.e. tp^ia) = tp2{(H(a)) and if b is a witness
of « in <H for a conjunct of A of the form (n2), then
H(b) is a witness of H(a) in 21 for the same conjunct.

The structure 2i will be built in stages. In every
stage k the structure fH^-i constructed in stage A; - 1

152

will be extended to Ü\k by adding new elements to the
k-th level of <H, Lk, as witnesses of all the elements of
Lk-i for the conjuncts of the form (n2). If a £ Lk-\
and there is no witness b G D\k of a for a conjunct 7 of
the form (n2), then we add a new element b and put
H{b) as a witness of H(a) for 7 in 21. The element b is
added to Lk together with a structure 35 - a B-petal of
the clique [i/(6)]|, and the function H is extended for
elements of D by the function G given by Definition
5.8. Additionally, to ensure that the same cliques are
not added more than once for the same element, when
an element a is added to 9\ together with its B-clique,
then o is canceled with respect to B.

So, in every stage k, the following conditions will
hold:

(ml) fHfc |= 7, for every conjunct 7 of the form (nl),

(m2) every 2-type realized in UK* is in T,

(m3) for every o 6 L*-i, for every conjunct 7 of the
form (n2), there is a witness of a for 7 in <Hfc,

(m4) for every Tea, the interpretation of T in D\k is.
transitive,

(m5) for every a, b G *Rk

• tp*«(a)=tp*(H(a)),

• if 6 is a witness of a in D\k for 7 of the form
(n2), then H(b) is a witness of H(a) in 21 for
7,

• for every B e a, if 9\k |= j?(q, 6) and a ^ 6

then *p** (a, 6) = tp* (H (a), H (b)), B,

(m6) for every a e Rk, for every b e Lk, for every
T 6 cr, if ft is not canceled with respect to T,
then fpKt (a, 6) is either transitive-less or T-single-
transitive oriented,

(m7) for every i,j e M such that i ± j, for every
a, b, c 6 At, 6 ^ a, c ^ a, if b G [affi and c G [o]?'

then ipm*{b, c) = tp^{b),tp^(b),

(m8) for every a £ Rk, for every T e <r, if a was canceled
with respect to T in stage i, i < k, then [a]*' is a
T-petal of [H(a)]* and [a]^ = [a]**.

Observe that if it is possible to construct a structure
fH that satisfies the conditions (ml) -(m4) then, by part
1 of Proposition 5.7, the structure 9* will be a model
for A and additionally, by (m2), (m7) and (m8), it will
be a ramified model.

The following procedure builds the required struc-
ture in a possibly infinite number of stages.

Stage 0. Let L0 = R0 = 0.

1. For every conjunct 7 G A of the form (nl) 3xip(x),

(a) find dy e A such that 21 |= V(d7),

(b) add a new element b to L0,

(c) put H(b) = dy and put tp*°(b) = tp*(H(b)).

2. For every a,b G SH0,a ¥" b, put tpm°(a,b) =
tpa(a),tpa(6).

After performing stage 0 condition (ml) holds since
elements of L0 were chosen in an appropriate way. Con-
dition (m2) holds since the negative links tp^(a), tp%{b)
are in T by part 2 of Proposition 5.7. Conditions (m3)
- (m8) are obvious.

Stage A;, (k > 0) Put «H* = <Rk-i,Lk = 0.

1. For every a G I^-i, for every transitive predicate
letter T G a, if a was not canceled with respect to
T, then

(a) Creation of a T-petal of a:
Let 35 be a T-petal of [H(a)]% and let G be
the function given by Definition 5.8,
find d G D such that G{d) = #(a),
put 9\k = mk(a)oT)(d) and add to Lk all the
elements of D except d,
for every b G £>, put #(&) = G(&).

(b) Transitive closure for the T-petal of a:
For every b G D \ {a} and c G Rk \ D,
if tp^-jca) \= T(x,y) V T{y,x) then put

tp9,*(6,c) = *pa(fr(6),ff(c)),T.
(c) Other types:

For every 6 G 25 and c G 2^ \ 25, if tpmk (6, c)
is not defined, then put tpKk{b, c) =
tpmk(b),tpm>i(c) and cancel b with respect to
T.

2. For every a G Lk-X, for every 2? G a, for every
conjunct 7 G A of the form (n2): Vx(a(x) ->
^y{ß{x,y) A ijj{x,y))) such that /?(z,y) contains
2?, if there is no witness of a for 7 in [a]^*, then

(a) Witness of a for 7:
Find a witness dy of H(a) for 7 in 21,
add a new element b to L* and put H{b) —
d-y j,7,

put tpX«{a,b) = tp%(H(a),H{b)),B.

(b) Transitive closure for the witness:
If 2? is a transitive predicate letter, say
T, then for every c G Rk, c ^ a,
c £ b, if either tpm><(c,a) (= T(a;,y)
and tp*»(a,b) |= T(x,y) or *?**(<:, a) (=
r(ar,j/) and tpmk{a,b) \= T(xy), then put

tp*> (6, c) = tp*(H{b),H(c)),T.

153

(c) Other types:
For every c e Rk, if tp^k(b,c) is not denned,
then put tp*k (b, c) = tp^ (b), tp*>< (c).

Comments. (lb.) Note that tp^k(b,c) =

tp%(H(b),H(c)),T is well-defined since H(b) £ H{c).
Towards a contradiction, assume H(b) = H{c). Since
b G £>, so, by condition (m5), H(b) G [H(a)]%. Then
H(c) G [ff(a)]a.,sotpg(//(c),ff(a)) |= T(x,y)/\T(y,x)

and then tp*(H(c),H(a)),T is T-single-transitive sym-
metric. Since a is not canceled then, by (m6), tp^k (c, a)
is single transitive oriented. But by (m5), tp*k(c,a) =

tp*(H(c),H(a)),T, a contradiction.
(lc.) After performing this step condition (m7)

holds. Additionally, (m8) holds, since in steps 1(b)
and 1(c) only transitive-less or T-single-transitive ori-
ented types are put.

Observe that after performing step 1 all the condi-
tions (ml)-(m8), except condition (m3) hold.

(2a.) Note that by (m8) , [a]% is a B-petal of
[H(a)]%. So, by condition 4 of definition 5.8, d-, $
[H(a)]% and so in case B is a transitive predicate letter,
tp^(H(a),d-t) fiB(x,y)AB(y x). Since H(a) ? H(b),

so the type tp^{H(a), H'(b)), B is well defined and, in
case B is a transitive predicate letter, it is a B-single-
transitive oriented type, else it is a transitive-less type.

(2b.) Note that tp* (H '(b), H'(c)),T is well-defined
since H(b) ^ H(c). Towards a contradiction, as-
sume H(b) = H(c). Assume, as one of two sym-
metric cases, tpmk(c,a) |= T(x,y) and tpyik(a,b) \=
T(x,y). Then, by (m5), tpg(H(c), tf (a)) |= T(x,y)
and tp»(H(b),H(a)) \= T(y,x), so, tp*(H(b), H(a)) \=
T(x,y) A T(y,x). By (m5) , tp*>(b,a) =

tp:i(H(b),H(a)),T, so tp*k(a,b) is T-single-transitive
symmetric which is a contradiction with the observa-
tion made in the previous step.

After performing this step T is transitive in 9\k,
since T was transitive in %■ before performing step
2(b) and the pair (b, c) is in the transitive closure of T
if and only if the pair (a, c) is in the transitive closure.

(2c.) Observe that conditions (m6) and (m8) hold,
since in steps 2(a) - 2(c) only transitive-less or single-
transitive oriented types are put.

After performing step 2 it is ensured that condition
(m3) holds. So, by inductive hypothesis and by the
comments given in steps 2(a) - 2(c), all the conditions
(ml) - (m8) hold. ■

5.2 Flowers

In this section we introduce the notion of a flower
which contains information about cliques and col-

ors of elements non-symmetrically connected with a
fixed element of a ramified model. We observe that
the set of flowers realized in a ramified model for a
[GF2+TG]-sentence satisfies several properties that are
collected in the definition of a carpet. We show in The-
orem 5.13 that these properties are necessary and suf-
ficient for satisfiability of a [GF2+TG]-sentence.

Recall that m is the number of transitive predicate
letters in a and M = {1,..., m}.

Definition 5.11 A flower F is a triple F =
(pF,{T»f}ieM,{Inf}ieM), where

(l)^i£,!Df = {pF),

(2) 3f = [pF]®/ and card(DF) = 2°^card^\ for
every i G M,

(3) for every i G M, for every a,b G DF,a ^ b, the

typctp®' (a.b) is T;-single-transitive,

(4) InF is a set of 1-types, for every i G M.

The element pF is called a pistil of the flower F, the
structures ©f are petals of F.

Note that it follows from the definition that the in-
tersection of two distinct petals is a one-element set
containing the pistil. We write tp(pF) to denote the
type tpVi(pF)(=tp*>(pF)).

Definition 5.12 Let A be a [GF2 +TG]-sentence in
normal form, let, T be a set of types and let T be a set
of flowers. We say that the pair (T, T) is a A-carpet
if the following conditions hold:

(cl) T is A-acceptable and T = T,

(c2) for every F G T, for every i G M, we have

(a) for every a, b G Df we. have tpt>i (a, b) G T,

(b) for every v G Inf there, is a Ti-single-
transitive oriented 2-type t G T such that
t\=tp(pF)(x)Av(y)ATt(y,x),

(c) for every a G Df there exists a flower W G T
such that (2>f ,a) = (®]V ,pW) and Inf =
InF,

(c.3) for every conjunct 7 of A of the form (nl) :
3x(o(x) A tl'(x)) there exists a flouier F G T such
that tp(pF) }= a(x) A tj)(x),

(c4) for every F G T, for every i G M, for every con-
junct 7 of A of the form (n2): 7 = Vx(a(x) -)■
3y(ß(x,y) Aij>(x,y))), if there is no witness of ph

for 7 in any petal 35 f then there exists a flower
\V G T and a 2-type t G T such that

154

(a) t \= tp(pF)(x) Atp(pw){y) Aß(x,y) AxP{x,y),

(b) if ß = Ti(y,x) then

i. t is T{-single-transitive oriented,
ii. tp(pw) £ Inf,

in. Inf 2 InV u {tP^id) :de2j"}>
(c) if ß — Ti(x,y) then

i. t is Ti-single-transitive oriented,
ii. tp(pF) £ Inf,

in. Inf i Inf U {tp°? (d):de®f}, .

(d) if ß does not contain a transitive predicate
letter then t is transitive-less.

Theorem 5.13 A [GF2+TG]-sentence A in normal
form is satisfiable if and only if there exists a A-carpet.

5.3 Complexity

Theorem 5.14 The satisfiability problem for
[GF2+TG] is in 2EXPTIME.

Proof Let T be a [GF2+TG]-sentence over a signature
r and let n be the length of T. Let V be the set of
[GF2+TG]-sentences in normal form over a signature
a given by Lemma 3.2. Then, F is satisfiable if and only
if there exists a satisfiable sentence A £ V. Moreover,
card(er) = 0(n) and the length of A is linear with
respect to n.

By Theorem 5.12, a sentence A £ V is satisfiable if
and only if there exist a set of 1- and 2-types T and a
set of flowers T such that (T,!F) is a A-carpet.

Every type of the set T can be written using 0(n)
space and card(T) < 24nl°sn. Define TV (A) as the
number of all flowers. Since every flower can be written

using 2cnlogn space, iV(A) < 22C" ° ", for a constant c.
The following alternating exponentially space-

bounded algorithm is a satisfiability test for
[GF2+TG]- sentences.

Input: a [GF2+TG]-sentence T;
Compute the set X>;
guess a sentence A £ T>;
Compute N(A);
guess a set of types T;
if T does not satisfy condition (cl) then reject;
universally choose a conjunct 7 £ A of the form

(nl) 3x(a(x) A ip(x));
guess a 1-type t £ T and a flower F;
if tp(pF) ^ t or t \£ a(x) A ip(x) then reject;
for j = 1 to JV(A) do

universally choose the Case:
Case 1 Condition (c2)

universally choose i € M;

if F does not satisfy (c2a)-(c2b) then reject;
universally choose a £ Df;
guess a flower W;
if (V(,a) £ (V?,pw) or Inf # Inf
then reject;
F:= W;

Case 2 Condition (c4)
universally choose i £ M and a conjunct 7

of A of the form
(n2) Vx{a(x) -> 3y(ß(x, y) A </>(z, y))) ;

if there is no b £ Df such that
Di |= a(pF) -)• /3(pF,6) A V(PF,^) then
begin

guess a flower W and a 2-type t 6 T;
if conditions (c4a) - (c4d) do not hold
then reject;

end;
F:=W;

od;
accept

It is well known (see [3]) that for all functions f(n) >

logn, ASPACE(/(n)) = UC6N TIME(2
C
^")). In par-

ticular AEXPSPACE = 2EXPTIME. ■

6 The general case

The ideas and methods used for [GF2+TG] can be
extended to obtain the analogous results for the whole

[GF+TG].

References

[1] H. Andreka, J. van Benthem, and I. Nemeti.
Modal languages and bounded fragments of pred-
icate logic. ILLC Research Report ML-1996-03, Uni-
versity of Amsterdam, 1996. Journal version in:
J. Philos. Logic, 27 (1998), no. 3, 217-274.

[2] F. Baader, H. Bürckert, B. Hollunder, A. Laux,
and W. Nutt. Terminologische logiken. KI,
3/92:23-33, 1992.

[3] J. Balcäzar, J. Diaz, and J. Gabarrö. Structural
Complexity II. Springer. 1990.

[4] A. Borgida. On the relative expressiveness of de-
scription logics and predicate logics. Artificial In-

telligence, 82:353-367, 1996.

[5] R. Brafman, J. C. Latombe, Y. Moses, and
Y. Shoham. Knowledge as a toll in motion plan-
ning under uncertainty. In R. Fagin, ed., 'Theo-
retical Aspects of Reasoning about Knowledge: Proc.

155

Fifth Conference', pages 208-224. Morgan Kauf-
mann, 1994.

[6] M. Burrows, M. Abadi, and R. Necdham. Authen-
tication: a practical study in belief and action. In
Proc. Second Conf. on Theoretical Aspects of Reason-
ing about Knowledge, pages 325-342, 1988.

[7] J. M. V. Castilho, M. A. Casanova, and A. L. Fur-
tado. A temporal framework for database specifi-
cation. In Proc. Eigth Int. Conf. on Very Large Data
Bases, pages 280-291, 1982.

[8] E. M. Clarke and E. A. Emerson. Design and syn-
thesis of synchronization skeletons using branch-
ing time temporal logic. In Proc. Workshop on Logic

of Programs, volume 131, pages 52-71. Springer-
Verlag, 1981.

[9] R. Fagin, J. Halpcrn, Y. Moses, and M. Vardi.
Reasoning about Knowledge. The MIT Press, Cam-
bridge, MA, 1990.

[10] D. Gabbay. Expressive functional completeness in
tense logic. In U. Mönnich, ed., 'Aspects of Philo-
sophical Logic', pages 91-117. Reidel, 1971.

[11] H. Ganzinger, C. Meyer, and M. Veanes. The
two-variable guarded fragment with transitive re-
lations. In Fourteenth Annual IEEE Symposium on
Logic in Computer Science, pages 24-34, 1999.

[12] E. Grädel. On the restraining power of guards. J.
Symbolic Logic, 64:1719 1742, 1999.

[13] E. Grädel, P. Kolaitis, and M. Vardi. On the de-
cision problem for two-variable first-order logic.
Bull, of Symb. Logic, 3(l):53-69, 1997.

[14] E. Grädel, M. Otto, and E. Rosen. Undecidability
results on two-variable logic. In Utth Symposium
on Theoretical Aspects of Computer Science, volume
LNCS 1200, pages 249-260, 1997. to appear in
Archive for Mathematical Logic.

[15] E. Grädel and I. Walukiewicz. Guarded fixed point
logic. In Fourteenth Annual IEEE Symposium on
Logic in Computer Science, pages 45-54, 1999.

[16] J. Y. Halpcrn and Y. Moses. Knowledge and
common knowledge in a distributed environment.
Journal of the ACM, 32:137-161, 1985.

[17] N. Immerman and M. Y. Vardi. Model check-
ing and transitive-closure logic. In Lecture Notes
in Computer Science, volume 1254, pages 291-302.
Springer Verlag, 1997.

[18] E. Kieroiiski. private communication, 2000.

[19] H. R. Lewis. Complexity results for classes of
quantificational formulas. J. Cornp. and System
Sei., 21:317-353, 1980.

[20] W. Lipski. On the logic of incomplete information.
In Proc. Sixth Int. Symp. on Matli.ematie.al Founda-
tions of Computer Science, volume 53, pages 374-
381. Springer Verlag, 1977.

[21] J. McCarthy and P. J. Hayes. Some philosophi-
cal problems from the standpoint of artificial in-
telligence. In D. Michie, ed. 'Machine Intelligence',
volume 4, pages 463-502. Edinburgh University
Press, 1969.

[22] M. Mortimer. On languages with two variables.
Zeitsc.hr. f. Logik und Grundlagen d. Math., 21:135-
140, 1975.

[23] A. Pnueli. The temporal logic of programs. In
Proc. 18th IEEE Symposium on Foundations of Com-
puter Science, pages 46 57, 1977.

[24] V. R. Pratt. Semantical considerations on floyd-
hoare logic. In Proc. 17th IEEE Symposium on Foun-
dations of Computer Science, pages 109 121, 1976.

[25] D. Scott. A decision method for validity of sen-
tences in two variables. J. Symb. Logic, 27:477,
1962.

[26] \V. Szwast and L. Tendera. On the complexity of
the monadic guarded fragment with transitivity,
unpublished manuscript.

[27] J. van Benthem. Dynamics bits and pieces. ILLC
Research Report LP-97-01, University of Amster-
dam. 1997.

[28] M. Y. Vardi. Why is modal logic so robustly decid-
able? DIM ACS Series in. Discrete Mathematics and
Theoretical Computer Science,, 31:149 184, 1997.

156

The hierarchy inside closed monadic Ei collapses on the infinite binary tree

Andre Arnold Giacomo Lenzi*

Laboratoire Bordelais de Recherche en Informatique,
Universite de Bordeaux 1,351, cours de la Liberation,

33 405 Talence cedex, France
{arnold,lenzi}@labri.u-bordeaux.fr

Jerzy Marcinkowski*

Institute of Computer Science,
University of Wroclaw,

Przesmyckiego 20,51151 Wroclaw, Poland,
jma@tcs.uni.wroc.pl

Abstract

Closed monadic Si, as proposed in [AFS98], is the ex-
istential monadic second order logic where alternation be-
tween existential monadic second order quantifiers and first
order quantifiers is allowed. Despite some effort very little
is known about the expressive power of this logic on finite
structures. We construct a tree automaton which exactly
characterizes closed monadic Si on the Rabin tree and give
a full analysis of the expressive power of closed monadic S i
in this context. In particular, we prove that the hierarchy in-
side closed monadic Si, defined by the number of alterna-
tions between blocks of first order quantifiers and blocks of
existential monadic second order quantifiers collapses, on
the infinite tree, to the level 2.

1 Introduction

The monadic second order logic (MSOL) has long been
studied by computer scientists in at least two contexts: de-
scriptive complexity on finite structures (the Fagin context)
and theory of finite automata on infinite trees (the Rabin
context). Although the results of this paper concern infinite
trees, rather than the finite structures, the class considered
in this paper (the closed Si hierarchy) originates from the
descriptive complexity area.

1.1 Previous works

In the Fagin context, the expressive power of MSOL
on finite structures is studied. The motivation comes from
the fact that a property of finite structures is in the class
NP if and only if it is expressible by an existential second
order sentence ([F74]). The question if NP equals co-NP

* Supported by an Italian CNR grant
t Supported by Polish KBN grant 2 P03A 018 18

is in this way reduced to the one if Si, the set of proper-
ties expressible by existential second order sentences equals
to IIi, the set of properties expressible by universal sec-
ond order sentences. But the last question is far beyond
the techniques we have. That is why, as suggested by Fa-
gin ([F75]) we first study the monadic counterparts of the
complexity questions. The monadic NP is the set of prop-
erties expressible by a formula with the quantifier prefix
of the form 3*(va)* (where 3 and V are monadic sec-
ond order quantifiers while 3 and v are first order quan-
tifiers). It is not very hard to prove ([F75]) that monadic
NP does not equal monadic co-NP: graph connectivity be-
longs to the second of these classes but not to the first. In
last decade a number of deep techniques was developed to
show non-expressibility results: in [S94] Schwentick devel-
oped sophisticated strategies for Ehrenfeucht-Frai'sse games
to prove that graph connectivity is not in monadic NP even
in the presence of a built-in order. In [AF90] Ajtai and Fa-
gin used complicated probabilistic argument to show that
reachability in directed graphs is not in monadic NP (also
[AF97]). Finally, Matz and Thomas ([MT97]) constructed
an automata theory based proof of the theorem that monadic
hierarchy, the counterpart of Stockmeyer polynomial hier-
archy, is strict. The last means that for every natural n there
is a property of finite structures expressible by a formula
with quantifier prefix of the form (3* V*)n+1(av)* but not
by one with (3* V*)"(av)*. Their proof, as we said, is
automata theory based. Let us sketch it here. The struc-
tures they consider are colored rectangular grids. They treat
such a grid as a word of columns. So each property of grids
can also be viewed as set of words. For each formula <j> of
monadic second order logic they construct a finite word au-
tomaton A((j>) which recognizes exactly the set of colored
grids in which cj> is valid. It is easy to construct A{ 30): the
set of states remains the same as in A{cj)) and the transition
function becomes "more nondeterministic". But it turns out
that A(\/<f>) can only be constructed as A(-< 3-K/>), which
requires computing a complement of the original automa-

0-7695-1281-X/01 $10.00 © 2001 IEEE
157

ton (via dcterminisation) and leads to exponential explo-
sion of the number of states. Then they use the number
of states argument, and the fact that they are considering 2-
dimensional grids rather than words, to get the separation
result.

It could appear at this stage that we were able to answer
every interesting question about the Fagin world. But in
[AFS98],[AFS00] Ajtai, Fagin and Stockmeyer noticed that
monadic NP is not the most general monadic subclass of
NP: they defined closed monadic NP as the class of prop-
erties definable by a formula with the prefix of the form
(3*(av)*)*. In their paper they prove that such possibility
of alternation between first order quantifiers and monadic
second order existential quantifiers increases the expressive
power of the language. Closed monadic NP docs not share
the obvious pathologies of monadic NP: connectivity and
directed reachability are definable now, the first of them by
a prefix of the form vv 3*(va)*, the second by 3v 3(va)*.
To show that the increase of expressive power is indeed
substantial the authors define a property V2, definable by
3*(av)* 3*(av)* but (and this proof is the main techni-

cal contribution of [AFS98]) not by any boolean combina-
tion of formulae with the prefix of the form (va)* 3*(va)*.
Some natural questions are stated in the paper: is closed
monadic NP equal to closed monadic co-NP ? Does there
exist any property in monadic hierarchy but not in closed
monadic NP ? Another very natural question one can ask
here is if the hierarchy inside closed monadic NP defined
by the number of blocks of monadic second order quanti-
fiers is strict (the n-th level of the hierarchy are here the
properties definable by (3*(av)*)").

All the above questions seem to be hard. It is amazing,
but despite some effort ([AFS00],[M99],[JM01]) we are not
even able to show that there is any property in monadic hi-
erarchy but not on level 2 of the hierarchy inside closed
monadic NP, (i.e. not definable by a formula with the pre-
fix of the form 3*(av)* 3*(av)*). One could think that a
positive answer to the last questions should follow from the
Matz-Thomas technique, but this is not the case: it turns
out that the construction of the finite automaton for v</; leads
to the same kind of exponential state explosion as the con-
struction of A(V(/;). The property expressible with a prefix
(3* V*)" + '(av)* but not with (3* V*)"(av)* constructed
with the Matz-Thomas method is in fact expressible also
by a formula with the prefix 3*(a*v*)" + 1 3*(av)*, which
means that it is on the second level of the hierarchy inside
closed monadic NP. It seems possible that understanding the
difference between the increase of the complexity of a rec-
ognizable language induced by first order universal quantifi-
cation and by monadic second order universal quantification
may lead to the answer to some of the open questions from
[AFS98]. In this paper we show that at least in the Rabin
context all those questions can be answered in this way.

In the Rabin context, one considers finite automata and
MSOL on infinite trees. The subject was pioneered by
Rabin in his seminal paper [R69], where he proves that
MSOL over the infinite binary tree (also known as ,525', the
monadic second order theory of two successors) collapses
to £3 and is decidable. This deep result has been later used
as a tool to solve many other decision problems by reduc-
tion to 525'.

The main tool of Rabin's proof are what we call today
Rabin automata, which characterize MSOL on Rabin trees.
Rabin's proof is difficult to understand, and in particular the
proof that Rabin automata are closed under complement is
very complicated; so, many papers have been devoted to ex-
plain what is really going on in the complementation proof.
Many sorts of tree automata have been defined in order to
simplify the construction including Müller automata (orig-
inally considered for infinite words [M63]), and Strcett au-
tomata. [S82]. But the real progress came only as late as
in [GH82] with the introduction of games on trees. Games
correspond to automata and they arc easy to complement
(by determinacy). A related concept are alternating tree au-
tomata, which generalize usual, nondcterministic automata
[MS87]: an accepting run of such an automaton looks much
like a winning strategy in a game. After thirty years of stud-
ies there is still research under way which gives us better un-
derstanding of tree automata, for instance in [A94] a fully
"algebraic" proof of the complementation lemma is given,
in [Z98] the author proposes a proof of the lemma via infi-
nite games on graphs; and [EJ99], where the complexity of
the satisfiability problem on tree automata is investigated.

A very natural class of automata traditionally studied in
this context are Biichi automata, originally introduced in
[B60] for infinite words. The expressive power of automata
of this class on the infinite tree is extensively studied in Ra-
bin's paper [R70]. Among other things, Rabin shows that
Biichi definable sets form a proper subclass of MSOL de-
finable sets, and that they have a number of closure proper-
ties (including closure under weak universal quantification).
One of the closure properties proved by Rabin (Theorem 9
in [R70]) gave us some inspiration for the construction per-
formed in the present paper. Biichi automata, despite of
their simple definition which makes them a much nicer ob-
ject of studies than Rabin automata, are also not fully under-
stood yet. For example, only recently in [L01], it has been
shown that Biichi automata express exactly the properties in
£2 on the binary tree.

1.2 Our contribution

We give complete analysis of the structure of closed
monadic NP (which here should be rather called closed
monadic £1) in the world of Rabin. Our original goal was
to look for techniques that would establish the strictness of

158

the hierarchy inside closed monadic Si in this context.

Our first result was the one from Appendix 3 that the
property EGFP (the last is a CTL* formula saying that there
is a path on which the predicate P occurs infinitely many
times) is expressible by a formula with the prefix of the form
3*(av)* 3*(av)* but not by a Si formula. But it turns out

that EGFP is even harder: as we prove in Section 2.4 it
is not expressible by any boolean combination of formulae
with the prefix of the form (va)* 3*(va)* and in this way
it is a counterpart, in the Rabin world, of the property V2
from [AFS98].

Then we tried different kinds of nesting of CTL* formu-
lae to construct properties in closed monadic Si but not on
its second level. All the attempts failed: to our great sur-
prise the hierarchy inside closed monadic Si collapses in
the Rabin world. As we prove in Section 3 it collapses to
level 2, the same mysterious level 2 that we are not able to
move beyond in the Fagin context. Our proof technique is
based on automata. We define a kind of a finite tree automa-
ton which we call search automaton (to guess how such an
automaton should be defined was the most difficult part of
our research). Search automaton is a kind of Biichi automa-
ton with additional simple requirements on accepting con-
ditions. The class of languages recognizable by search au-
tomata contains Si and is closed under existential monadic
second order quantification (this is not hard to prove) and
under universal first order quantification. But the class is
not closed under universal monadic second order quantifi-
cation! In Section 2.3 we show that the property AFP (on
every path there occurs P), clearly expressible by a formula
of monadic second order logic with the quantifier prefix of
the form V(v3)* is not recognizable by any search automa-
ton and thus not in closed monadic Si. This means that our
search automata, unlike Rabin automata, and unlike finite
automata on words are sensitive to the difference between
first and monadic second order universal quantification.

In Section 2.1 we show that if a property is recognizable
by a search automaton then it is expressible by a Si for-
mula using an additional predicate <, where the meaning
of x < y is x is a prefix ofy. The last formula, for fixed x
and y can be defined by additional existentially quantified
monadic relation, and as a result we get a formula with the
prefix of the form 3*(av)* 3*(av)*.

1.3 Remark on Si(TC)

There is another unexpected link between our two
worlds: not only, as we said in Subsection 1.1, no monadic
property in the Fagin world is known which could be proved
not to be expressible on the level two of the hierarchy in-
side closed monadic NR In fact we do not even know a

monadic property provably not in Si (TC)1 where TC is
the simplest possible version of the transitive closure op-
erator: TC(<p,x,y), where 0 is a first order formula with
two free variables, means that there is a finite path x —
xi, X2, ■ ■ ■ %k — y such that (f>(xi,Xi + 1) holds for each i.
The formula <p is generalized graph edge, and it is as hard
to define the TC operator as to define graph reachability.
This means that all properties in Si (TC) are, in the Fa-
gin world, definable by a formula with a prefix of the form
(3*(av)*)3. Could it be possible that closed monadic NP
in the Fagin world is exactly Si(TC)? It follows from our
results that the classes are equal in the Rabin world.

2 Technical part, the easy fragment

We consider MSOL over trees. By a tree we mean a
structure whose domain is {0,1}*. The signature consists
of two functions left son and right son, mapping each w to
wQ and wl respectively, and of some finite set V of monadic
predicates. Sometimes (when explicitly mentioned) the sig-
nature will also contain the prefix ordering relation <, with
the natural meaning. When talking about automata we of-
ten think that a tree is rather a function from {0,1}* to some
alphabet X than a structure. Since X can be viewed as the
powerset of V the two definitions are equivalent. A. path in a
tree is an infinite sequence xi,x2 ■ ■ ■ of words from {0,1}*
such that each xi+\ equals to XjO or to Xjl.

2.1 Search automata

A search automaton over an alphabet X is a tuple
A = (Q, Q0, R, {FUF2,... Fk}) where Q is a finite set
of states, Qo Q Q and R is a finite set of rules which are
constructs of the form (q,a) —> (qo,qi), with q,qo:qi € Q
and a e X. Ft are subsets of Q and satisfy the following
condition:

(L) For any rule (q, a) —> (q0, q{) from R and for any
i : 1 < z < k, if q $ Fit then there exists de {0.1}
such that qd e Fi.

For a tree T with alphabet X a run of the automaton A
on T is such a function p : {0,1}* —> Q that for each
w € {0,1}* (p{w),T(w)) -> {p(w0),p(wl)) is a rule
from R. A run p is initial if p(e) e Qo and is accepting if:

(C) for any path Wi,w2,... and any i, p(wj) € Fi
for infinitely many numbers j.

We say that A recognizes the tree T if there exists an initial
accepting run of A on T.

'The properties constructed by Matz-Thomas method are also in this
class

159

Lemma 2.1 If A is a search automaton, then the set of trees
recognized by A is definable by a formula in Ei (<).

Proof: In presence of the condition (L), it is easy to
see that (C) is equivalent to the first order condition:

(C) For any i and any u e {0,1}* such that p(u) ^ F,
there exists v > u such that p(v0) € Fn p(vl) e F,
and Vw e {0,1}*, (u < w < v -> p(w) g F,.

In order to prove this equivalence consider, for given ?'
and for given u e {0,1}* such that p(u) <£ Fu the set
A = {w e {0,1}* : u < w A p(w) (£ Fi A Vu < v <
w p(v) g Fj}. By the condition (L) the set A is a path
(finite or not). This path is finite if and only if it contains
a word v such that p(v0) e F, and p(vl) e F,. And the
condition (C) means that for every u and every i the set A
is finite. ■

2.2 Main result

Theorem 2.2 Consider the following six classes of proper-
ties of trees:

(i) Closed monadic Ei (7.e. the set of properties definable
by a formula ofMSOL with the quantifier prefix of the
förm(3*W)*).

(ii) Second level ofclosed monadic Ei (i.e. the set of prop-
erties definable by a formula ofMSOL with the quan-
tifier prefix of the form 3*(va)* 3*(va)*).

(Hi) Monadic Ei(<) (i.e. the set of properties definable
with the use of prefix ordering relation < by a for-
mula of MSOL with the quantifier prefix of the form
3>3)*).

(iv) The properties recognizable by search automata.

(v) Monadic üj (i.e. the set of properties definable by a
formula ofMSOL with the quantifier prefix of the form
V*(V3)*).

(vi) First order closure of T,i (i.e. the set of properties de-
finable by a boolean combination of formulae ofMSOL
with the quantifier prefix of the form (va)* 3*(va)*

Then: (i)=(ii)=(iii)=(iv) and (v)^ (iv)and(vi) ^ (ii).

Proof: (v) T^ (iv) is proved in Section 2.3, (vi)^ (ii) is
proved in Section 2.4, (ii)C (i) is obvious, also (iii)C (ii) is
easy to show, (iv)C (iii) was proved in the previous Section.
For the proof of (i)C (iv) see Section 3 ■

Let us remark that it follows from Theorem 2.2 that
closed monadic Ei (<) on the Rabin tree is exactly monadic
Ei(<), the possibility of alternating first and second order
quantifiers docs not give any additional power here.

2.3 AFP is not in closed monadic E]

Lemma 2.3 Let P be a monadic predicate. The property
that on every infinite path from the root there is a P (defined
by the CTL formula AFP), is definable by a formula with
quantifier prefix of the form V*(av)* (is in monadic ÜJ
but is not recognizable by a search automaton.

Proof: Suppose A were a search automaton for AFP,
over the alphabet {P.-^P}, with a set Q of states and k
accepting conditions F\...., Fk- Let / = |Q|. Then con-
sider a natural number m which is sufficiently large, say
rn = 2(1 + l)k + 2. Let M be the tree where P is inter-
preted as the set of all words of length m. Obviously, M
has the property AFP. Let p be an accepting run of A on M.
Since A is a search automaton, there exists a sequence of
(/ + l)k words:

W'l.l < < w1M < < '"'(+1.1 < < W[+l.k

such that for each pair i.j it holds that wtj has length less
than 7/), that p(ii',.j) £ Fj, and that the distance between
each two consecutive elements of the sequence is 1 or 2.
Now, we find i < i' < I + 1 such that p(w,i) = /?(«>,<,i)
and apply a "pumping" argument: let M' be a tree with
predicate P defined as:

(i) If (/',.i is not a prefix of w then w € P holds in M' if
and only if it holds in M.

(ii) Let iy be such that »',.i?y = «y.i. If w is of the form
(/',.\ij*.r where y is not a prefix of ,r then w € P holds
in M' if and only if «',.1.7: e P holds in M.

In an analogous way define the run p' of A on M'. Then
M' docs not have the property AFP: words being prefixes
of some word of the form w,,\;j* form an infinite path with-
out P. But p' is an accepting run of A on M'. ■

2.4 Monadic Ei is much less than closed monadic
Si

Let us consider the following property of infinite binary
trees colored with a monadic relation P:
(*) there is an infinite sequence x 1. x^. .T,J ... of vertices
such that x 1 < r,+ i and P(x,) hold for each i .

In the notation of the temporal logic CTL* the property
(*) can be expressed as EGFP.

It is easy to see that (*) is expressible in monadic Ei (<).
Our original elementary proof of the fact that EGFP is not in
monadic Ei can be found in the Appendix. But it turns out
that with the use of a new result from [L01] we can easily
have something more:

160

Theorem 2.4 Property (*) is not expressible by any
boolean combination of formulae with the prefix of the form
(V3)* 3*(V3)*.

Proof: It is easy to see that if some property is express-
ible by any boolean combination of formulae with the pre-
fix of the form (va)* 3*(va)* then it is also expressible by a
formula with the prefix of the form (va)* 3* V*(va)*. It is
proved in [L01] that if a property is in monadic E2, that is
expressible by a formula with the prefix 3* V*(va)*, then
it is recognizable by a Biichi automaton. But the class of
properties recognizable by Biichi automata is closed under
universal first order quantification ([R70]) and under exis-
tential first order quantification. So if a property is express-
ible by a boolean combination of formulae with the prefix
of the form (va)* 3*(va)* then it is recognizable by a Biichi
automaton.

If property (*) were expressible by a formula like in the
theorem then its complement:

(**) On each path there are only finitely many P
would also be expressible in this class, and thus would be
Biichi. But the last is not the case as proved in [R70]. ■

3 Technical part, the harder fragment

In this technical section we prove that search automata
recognize all the properties in closed monadic Ei. We leave
it for the reader as an easy exercise to prove that they recog-
nize all the properties in monadic Ei, and that the class of
recognizable properties is closed under existential quantifi-
cation, first order and monadic second order. What remains
to be proved is:

Lemma 3.1 Let A be a search automaton, over some al-
phabet E x {x,x}. For a given tree T over E and for
v e {0,1}* define Tv as the tree over E x {x,x}, with
Tv(y) = (T(v),x) ifv = yandTv(y) = (T(v),x) oth-
erwise. Then there exists a search automaton vA over the
alphabet E such that \/A accepts a tree T if and only if A
accepts every Tv for »£{0,1}*.

From now on A = (Q,Q0,R, {FUF2,... Fk}} is a
fixed search automaton.

3.1 Multiruns

Let us assume that the tree T over E is such that each Tv

is recognized by A. Then for each v there is an initial ac-
cepting run p° on Tv. For any v and w in {0,1}* such that
w £ v, the subtree T£ ofTv defined by T^(u) = Tv{wu)
is over the alphabet E x {x} (more precisely, T%(u) =
(T(wu), x}), and pv induces an accepting run pv

w of A on
Tl defined by pv

w(u) = pv(wu).

The initial accepting runs of vA on T must allow us to
retrieve a family (p")„6{0,i}- • In particular, they must con-
tain in an encoded form, a sufficiently large set of runs pv

w,
called multirun.

Definition 3.2 For a tree T over E we define T as the tree
over E x {x} with f(w) = (T(w),x). IfT is a tree and
u e {0,1}*, then we define Tu as the "subtree ofT rooted
in u": Tu(y) = T{uy) for each y.

Definition 3.3 Let T be a tree over E. A multirun of the
automaton AonT is a partial function \t whose arguments
are pairs (w,q) (where w e {0,1}* and q e Q), such that
for each element {w, q) of its domain ty(w, q) is a run of A
on Tw, with the state q in the root w offw. A multirun * is
accepting if all the runs ^{w, q) are accepting.

For convenience, instead of considering ty(w, q), which
is a total mapping, we consider the partial mapping
of domain w{0,1}*, denoted by ^>w<q and defined by
^w,q{wu) = $(w, q)(u), so that if ty(w, q) is pv

w then
(E) *„,,,(M) = 9(w, q)(u) = pl(u) = pv(wu).

Multiruns are a way of remembering the whole interest-
ing knowledge about possible accepting runs of A on such
subtrees of T x {x, x} which do not contain the (universally
quantified) variable x. This interesting information is where
we can start such a run and in which state we can start it:

Definition 3.4 Two multiruns on T are equivalent // they
have the same domain.

We want to store the information as a run of our new
automaton vA But s/A can only store finite piece of infor-
mation in each of the nodes of {0,1}*. This motivates:

Definition 3.5 A multirun <3> is uniform // for each
wi,w2,y,z e {0,1}* and qi,q2 € Q the following im-
plication holds:
(wi<y< z)A(w2 < y) A *„,,.,, (2/) = ^W2.q2 (y) implies

So a multirun is uniform, if each time when two of its
runs agree on some node y they remain equal on all the
successors of y.

Of course not every multirun is uniform, but it turns out
that:

Lemma 3.6 For every accepting multirun * onT there ex-
ists an equivalent accepting multirun \I>' which is uniform.

The tool we need to prove Lemma 3.6 is:

Lemma 3.7 Let T be a tree over E and let p be an ac-
cepting run of A on some Tw. Let B be an antichain (with
respect to the prefix ordering <) of nodes ofTw, and for
each y e B let py be an accepting run of A on some sub-
tree ofT containing Ty. Suppose for each y € B it holds
that py(y) = p(y). Then the function Q defined as:

161

(i) g(z) = py(z) ify G B and z > y,

(ii) g(z) = p(z) if z G Tw but z g" Tyfor any y G B,

is an accepting run of A on Tw. ■

Now, let <3/ be an accepting multirun. Let -< be any fixed
total order on Q. We define the following ordering C on
dom(ty):

(i) (w,q)c(w',q')\{\w\(\w'\,

(ii) (w.q) (Z (w',q') if \w\ — \w'\ and w is smaller than
w' in the lexicographic ordering of words,

(iii) (w,q) C (w,q') iff/ -< q'.

Obviously, C is a total order and if dom($) is infinite
then the type of c is u>. Now, we define a multirun \I>' by
induction on C. Suppose, for some pair (w,q) G dom(ty)
the runs ty'w, , are already defined for all pairs (w'q') C
(w,q). Let V be the set of such nodes z of Tw that there
exists (w',q') C (w,q) such that V'w, q,(z) = $w,q(z),
and let B be the set of minimal elements of V with respect
to the prefix ordering <• Then, by Lemma 3.7 the function
ty'w defined as:

(i) %lKl](z) = ¥„,.,,<(*) ifyefl and *'u,,.,,(y) =

*iu.<j(?y) and z > y

(ii) *;„,(2) = $„...,(2) if 2 € T,(, but r £ Ty for any
yeB,

is an accepting run of A on T,,,. It is also easy to see that
ty'w (w) = q, so \I/' as we just defined it is an accepting
multirun and is equivalent to \I>. We leave it as an exercise
for the reader to show that yt' is indeed uniform. ■

In order to construct a family {pv)ve{o.i}- n 's not

enough to know a multirun. This is because only the val-
ues p"{w) where w jt v are kept in a multirun. To get the
values of pv(w) where w < v, we need an additional piece
of information:

Definition 3.8 For a given multirun ^ its co-multirun,
which will be denoted as coty is a function with domain
{0,1}*, whose values are subsets of Q, defined by induc-
tion as:

(i) «jtf (e) = Q0;

(ii) f/o G co^(wQ) if and only if there exist q G co^(w)
and f/i G Q such that (wl.qi) G domfö) and

(q, (T(w),x)) -» (f/o-f/i) is a rule of A;

(iii) f/i G c.o^{wl) if and only if there exist q G co^(w)
and f/o G Q such that (wQ.qo) G dom(ty) and
(f/, (T(w),.?:)) -> (f/o, f/i) is a rule of A.

Notice that coty only depends on the domain of ^: if
<£ and 1i' are equivalent then co$ equals to coty'. So, by
Lemma 3.6 for every multirun there exists a uniform one
with the same co-multirun.

The following lemma says that the information carried
by a multirun and its co-multirun is indeed everything we
need:

Lemma 3.9 Let A be a search automaton, over an alphabet
E x {x, x}. Let T be a tree over £ and let Tv be defined
like in Lemma 3.1. Then the following two conditions are
equivalent:

(i) For every v G {0,1}* the automaton A accepts the
tree Tv.

(ii) There exists an accepting multirun $ on T such that:
(X)for every v G {0,1}* there exist q, q0, q\ such that
both (vO, f/o) and (vl, q\) are in the domain ofty, that

q G co^{v) and that (q.(T(v),x)) —> (f/o,f/i) is a
rule from R.

Notice that by Lemma 3.6 and by the remark just above
the last lemma we could equivalently write "exists an ac-
cepting uniform multirun" in the first line of the second item
in the lemma.

Proof: (ii)=>(i). Let * be a multirun as in (ii) and let v G
{0,1}*. We need to define an accepting initial run pof A on
Tv. There are q, f/o, f/i such that q G co^(v), both (vO, f/o)
and (rl.f/i) arc in the domain of ^ and (f/, (T(v),x)) —>
(f/o.f/i) is a rule from R. Define p(v) = q. For w > vO
define p(w) as ^vo.qil{w) and for w > vl define p(w) as
^ri.qi (■"')■ Now, if v = E then what we defined is already
an initial accepting run. If not, let v — yO for some y (the
case when v = yl is obviously symmetric). From the fact
that q G co^(v) and from the definition of coty we get
that there are qy and qy\ such that (yl,qy\) G doin(^) and
(f/,;. (T(y),x)) -> (q. f/yi) is a rule of A. Define p(y) = qy

and for w > yl define p{w) = ^yi.q,n{w). Then continue
this process until the root of the tree is reached. It is not
hard to check that the defined function p is indeed a run as
needed.

(i)=Kii). For each v let pv be an initial accepting run
of A on Tv. We first define the domain of ty as the set of
all pairs {w.q) such that there exist at least one v such that
pv{w) = q and v ^ w. Then, for each (w.q) G d,om(^)

we fix one such v and define ^u-,q(y) = pv(y) for y > XL>.

It is obvious that ^ is an accepting multirun. To prove that
$ satisfies condition (X) we need:

Lemma 3.10 pv(w) G co^(tv) for each v G {0,1}* and
each w < v.

Proof: By item (i) of Definition 3.8 this is true for w = e.
Then use induction on the leneth of w. ■

162

Now, to finish the proof of Lemma 3.9 we notice that
the triple pv(v), pv(vO), pv(vl) of states from Q is a cor-
rect candidate for the triple q,qo,qi whose existence is
postulated by condition (X): (vO,pv(vO)) and (vl,pv(vl))
are in the domain of *, by the last lemma we have that
pv(v) € coty(v) and, since pv is a run of A on Tv, we have
that (pv(v), (T(v),x)) -» (pv(vO),pv(vl)) is a rule from
R. m

3.2 An intermediate step

As an intermediate step between multiruns and automata
we consider ranked multiruns:

Definition 3.11 Let ty be a uniform multirun. Then the rank
on \I> is a function <p such that:

(i) The domain of § are all the tuples (w, q, v) such that
(w, q) is in the domain offy and w < v;

(ii) The values of <p are natural numbers from the set
{1,2,...2|Q|};

(Hi) ^Wuqi(v) = ^W2,q2(v) if and only if 4>(wi,qi,v) =
(p(w2,q2,v);

(iv) <j>(w,q,v) >
4>(w,q,vl);

6(w,q,v0) and (f>(w,q,v) >

(v) If<j){w, q,v) = k and 4>(w, q, vO) < k then there is no
pair (w', q') such that <p(w', q', vO) = k. The same for
vl: if4>(w,q,v) = k and <j>(w,q,vl) < k then for no
pair (w', q') it can be that 4>(w', q'.vl) = k.

Ranks are a way how we are going to organize the mem-
ory of vA to store a uniform multirun: <j)(w, q. v) — k can
be understood as "in the node v the run tyw<q is kept in the
register k". If two runs VWl,qi and ^W2,q2 are equal on
some v then they remain equal forever (on the whole tree
Tv) and we do not need to make a difference between them
any more. This is why we rank them as equal on v, thus
keeping them in the same memory register (item (iii)). It
may also happen that two runs ^Wuqi and $W2,q2 were not
equal on some v yet, but they are equal on vO (or vl), and
thus remain equal on Tv0 (Tvl). Then, while moving from v
to vO, we change the number of the register where one of the
runs is remembered. Item (iv) gives us a hint how this will
be done: we change the rank of the run which was ranked
higher so far. But since we only can decrease the rank of a
run, such a change can only happen (on a fixed path) finitely
many times. This observation can be formalized as:

Lemma 3.12 Suppose wx, w2,... is a path, the pair (w, q)
is an element of the domain of a uniform multirun *,
w < w\ and cfi is a rank on ^>. Then the sequence:
4>{w,q,wi),4>(w, q,w2),^{w, q,w3)... is non-increasing
and thus constant from some point.

Let us also explain the role of the last item in Definition
3.11. It is possible that some run *Wl,Ql has rank k on some
v, and then, on v' > v it already has rank k' < k. But
the memory register k must be reused: there is another run
^w2,q2 which has rank k on v'. We need to give vA a chance
of seeing that ^Wuqi and ^W2,q2, despite being kept in the
same memory register, are two different runs. The way we
do it (in item (v)) is that we secure that there is a node v"
between v and v' when the register k is empty: no run has
rank k on v".

This subsection would be incomplete without:

Lemma 3.13 For every uniform multirun ~$> of A there is a
function 4> which is a rank on $.

Proof: Use the same kind of inductive construction as in
the proof of Lemma 3.5. The only new thing here is that
we must show that it is enough to have only 2\Q\ different
ranks. But since two runs which are equal on v have the
same rank on v we actually only need \Q\ different numbers
to rank them. The remaining \Q\ are needed because of item
(v) of the definition of rank. ■

3.3 The automaton v^4

Now we are ready to define the automaton vA The set
Qv of the states of v^ consists of all possible tuples of the
form: (5, si,s2,.. -S2\Q\), where S C Q and each s, is ei-
ther _!_ or is itself a tuple (qjoji) where q e Q and j0, j\
are natural numbers from the set {1, 2,... i). This defini-
tion hardly comes as a surprise for a reader who understood
the two previous subsections: the tuples Sj are the registers
where vA will remember the runs of some uniform multirun
*. If Sj = (q,joJi) in some node w then q is the value on
w of all the runs with rank i, and j0, ji are ranks of the runs
on wO and tol. Finally, S is where coty is going to be kept.

Having this explanation on mind it is easy to guess that:
((5,si,s2,...s2|Q|),a) ->
((S°:S<i,sl...s

0
2lQl),(S\slsl...slm))

is a rule from the set i?v of the rules of vA if the follow-
ing conditions hold:

(i) If Sj = (q, jo, ji) then neither s°jo nors^ is 1. If s°o =
(g0,m0,mi)ands]i = {qi,n0,ni) then (q, (a,x)) -*
(qo, q\) is a rule of the automaton A.

(ii) If st = (q,jo,ji) and j0 < i then s° = _L And also,
if st = (q,Jo,ji) and ji < i then s} = ±.

(iii) <7i e Sl if and only if there is q G S and s° =
(qo,jo,ji) such that (q,(a,x)) -> (q0,qi) is a rule
of the original automaton A. Symmetrically, q0 € 5°
if and only if there is q e S and sj = (qi,j0,ji) such
that (q, (a.x)) -> (qo,qi) is a rule of A

163

(iv) There exist q £ S, s® = (qo,no,ni), and s], =
(qi,n'0,ni) such that (q,(a,x)) —* (qo-q\) is a rule
of A

To end the construction of the automaton vA we define
Qo to be the set of such states (S, si, s2, ■ ■ ■ S2\Q\) G QV

that S = Qo and for each accepting condition F,, G
{Fi, F2 ■ ■ ■ Fk} of the automaton ,4 we define 2\Q\ ac-
cepting conditions F/, F? ... Ft of the automaton vA
where (5, Si,s2, • ■ • S2|Q|) € F/ if and only if Sj = -L or
Sj = (q,Jo,ji) andq g F,.

It is easy to check that wl satisfies the
condition (L) and therefore is a search au-
tomaton: If ((5,si,S2,...s2|Q|),a) -♦
(($'

0 0 „0
1 *li*2' S2IO|}' W 'Sl' S2 '2|Q|)) ^ rule

»■ - • 'wi"

and if i is such that s;, s°, and sj are not equal to J_,
then Si - (<7,jo,ji), and, by item (ii), i = jQ = jY. By
item (i), 5° = (go,"-0,^1) and s,' = (r/i, rr?o, rrii) where
(q,(a,x)) —> (qo-qi) is a rule of the automaton A It
follows that one of the states q, q0, qi is in F3 and thus one
of Si, s°, sj is in F-.

Now, Lemma 3.1 will follow from Lemma 3.9 and from:

Lemma 3.14 For every tree T over £ the two conditions
are equivalent:

(i) There exists an initial and accepting run /;v ofvA on
T.

(ii) There exists an accepting multirun ty on T satisfying
the condition (X)from Lemma 3.9

Proof: (i)=>(ii). Let pv be an initial and accepting
run of vA on T. Let co^(w) be S where pv(w) —
(S, si, A'2, • ■ • S2\Q\). Define domfö) as the set of all pairs
(w,q) such that there exists i,jo,j\ such that pv("') =
(S,S1IS2,...S2\Q\) and s, = (qjo-ji). We need to
show how to extract the run tyu,.q from pv. First de-
fine ^n, q(w) = q. Notice that if now pv(irO) =
(5°,.s?,s°,...sO|Q1),andpv(U;l) = (S\ ,sj, s2,... s2|Q|)

then (by item (i) of the definition of a rule from /?v) we have
that ,Sj(| = (qo,no,ni) and s^ = (q\.mo.m\) for some
<?o,9i,?k)!«i:'»o, mi. Thus we can define <]/„..,(</'()) = g()

and tyWtfl(wl) = qi, and then, by induction, we can define
in this manner \tw,q(v) for any v > w, so that ty(-u\ q) is a
run of A on Tw. By definition of QQ and by item (iii) the
three conditions of Definition 5 hold and, by item (iv), the
multirun \T/ satisfies the condition (X). What still needs to be
shown is that it is accepting. In order to prove it we fix ir. q
and show that ty(w, q) is an accepting run of A on Tw. Con-
sider a path X], x-2, X3 ..., where x\ > w and an accepting
condition Fj from the set of accepting conditions of A We
want to show that elements from Fj occur infinitely many
times in the sequence ^w.q{^i),^w.q(

x2)^ iv.qi^i)

But by the construction of tyw.q there exists, for each i, a
number h1 such that pv(x,) = (Sl, s\, s2,... SLQ,), and

sj, = i^/w.qi^i), ?'ö-ni) f°r some n'Q, n\ < h,. It also fol-
lows from the construction that hj+\ either equals to nl

0 or
to 72j, so that h, + \ < h,. The last observation implies that
the sequence h\. h2- '<3 • • • stabilizes: there exist numbers
?'o and h such that h, — h if / > ?o. To finish the proof we
consider the sequence .sj" . sj!1 + 1 . sj"+2 ,..., which is, as

1 'ii(l 'ii0i-i ■ "1,1 + 2'

we said, the same as sj". sj" + 1, s),"+'2,.... None of the ele-
ments of the last sequence is J_, so, since pv is accepting we
get (by the accepting condition Fj) that infinitely many of
the elements of the last sequence arc of the form (q', n, m)
where q' g Fj.

(ii)=>(i). Let ^ be an accepting multirun on T satisfying
the condition (X) from Lemma 3.9, and let </> be a rank on
$. Define pv(w) as a tuple (S. si, .s'2, ■ ■ • S2\Q\) such that:

(i) 5 = co^(w)

(ii) s, = (q.jo-ji) if there exist q' g Q and v < w
such that ^tKq'(w) = q and <f>(v,q',w) = i and also
(p(c.q'.wO) = ja and<f>(v,q',wl) - jt

(iii) s, = ± if such v. q' as above do not exist.

It is easy to check that what we defined in this way
is indeed an initial run of Av. What still needs to be
shown is that it is an accepting run. In order to prove it
we consider a path XI.XJ.XJ ... and an accepting condi-
tion Fj. from the set of accepting conditions of vA Let
pv(.r,) = (S'..s\.s'2... .s'2|Q|). What we need to sh ow

is that the sequence sj. sf. sf ... contains infinitely many
± symbols or it has infinitely many elements of the form
(q. v. m) with q g F/,.. Suppose there arc only finitely many
± symbols among the clement of the sequence. So there is
?'o such that none of the .sj, where i > ?'o, is a 1. By the item
(i) of the definition of rank this implies that there exist w, q
such that 6(ii'.q..r,) = I for i > ?'(l. Since \I\,,.f; is an ac-
cepting run of A, we have that infinitely many of V^,,..,,(•':,)
arc in F^. But if only i > ?'o then sj = {fyw.q(x,). 11,. in,)
for some n ,.m,. ■

164

References

[AF90] M.Ajtai, R.Fagin Reachability is harder for di-
rected than for undirected finite graphs, Journal of
Symbolic Logic, 55(1):113-150,1990;

[AF97] S. Arora, R. Fagin On winning strategies in
Ehrenfeucht-Frai'sse games, Theoretical Computer
Science, 174:97-121,1997;

[AFS98] M.Ajtai, R.Fagin, L.Stockmeyer The Closure of
Monadic AfV, (extended abstract of [AFS00]) Proc.
of 13th STOC, pp 309-318,1998;

[AFS00] M.Ajtai, R.Fagin, L.Stockmeyer The Closure of
Monadic AfV, Journal of Computer and System Sci-
ences, vol. 60 (2000), pp. 660-716;

[A94] A. Arnold An initial semantics for the p-calculus
on trees and Rabin's complementation lemma Theoret.
Comput. Science 148 (1995), 121-132.

[B60] J. Biichi, On a decision method in restricted sec-
ond order arithmetic, in: Proc. of the International
Congress on Logic, Methodology and Philosophy of
Science 1960, Stanford University Press, Stanford
(CA, USA), 1962,1-11;

[EJ99] A. Emerson, C. Jutla The complexity of tree au-
tomata and logics of programs SIAM J. Comput. 29
(1999), 132-158.

[F74] R. Fagin Generalized firsts-order spectra and poly-
nomial time recognizable sets, Complexity of com-
putation, SIAM-AMS Proceedings, Vol 7 (R.M.Karp
ed.)pp 43-73, 1974;

[F75] R. Fagin Monadic Generalized spectra, Zeitschrift
fuer Mathematische Logik und Grundlagen der Math-
ematik, 21 ;89-96, 1975;

[GH82] Y. Gurevich, L. Harrington Automata, trees and
games, in: Proc. 14th. Ann. ACM Symp. on the The-
ory of Computing (1982) 60-65;

[JM01] D. Janin, J. Marcinkowski A Toolkit for First Order
Extensions of Monadic Games, Proceedings of STACS
2001, Springer LNCS 2010, pp 353-364

[L01] G. Lenzi A new logical characterization of Biichi au-
tomata, Proc. of STACS 2001, Springer LNCS 2010,
pp 467-477;

[MT97] O. Matz, W. Thomas The monadic quantifier al-
ternation hierarchy over graphs is infinite, Proc. 12th
IEEE LICS 1997, pp 236-244;

[M63] D. Müller Infinite sequences and finite machines, in:
Proc. 4th IEEE Symp. on Switching Circuit Theory
and Logical Design (1963) 3-16;

[M99] J. Marcinkowski Directed Reachability: FwmAjtai-
Fagin to Ehrenfeucht-Fraisse games, Proceedings of
CSL 99, Springer LNCS 1683, pp 338-349;

[MS87] D. Müller, P. Schupp Alternating automata on infi-
nite trees, Theoret. Comput. Sei. 54 (1987), 267-276;

[R69] M. Rabin Decidability of second-order theories and
automata on infinite trees, Trans. AMS 141 (1969),
1-35;

[R70] M. Rabin Weakly decidable relations and special au-
tomata, in: Y. Bar Hillel, ed., Mathematical Logic and
Foundations of Set Theory, North-Holland, Amster-
dam, 1970, 1-23;

[S94] T. Schwentick Graph connectivity and monadic AfV,
Proc of 35th FOCS: 614-622,1994;

[S82] R. Streett Propositional dynamic logic of looping
and converse, Inform, and Control 54 (1982), 121—
141.

[Z98] W. Zielonka Infinite games on finitely coloured
graphs with applications to automata on infinite trees
Theoret. Comput. Sei. 200 (1998), 135-183.

4 Appendix: An elementary proof of the fact
that EGFP is not in monadic Ej

We begin the proof with a definition:

Definition 4.1 Let x be a vertex of a infinite binary tree T
colored with some monadic relations P\, P?, ■. ■ Pi- Sup-
pose k is some fixed natural number.

(i) By the vertex type of x we will mean the set u{x) C
{1, 2 .. .1} such that Pi(x) holds if and only if i g
u{x).

(ii) By the neighborhood type ofx we mean the triple

U(x) = {u(x), u(x0), u(xl))

of the vertex types ofx and its both children.

(Hi) A tree type U is a function whose arguments are
neighborhood types and values are natural numbers
0,1,... k.

165

(iv) A tree T colored with Pi, P2,... Pi has the tree type
U(T) if for each neighborhood type U the number of
vertices of this type in T is k-equal to (U(T))(U). Two
numbers are understood to be k-equal if they are equal
or if they are both greater or equal to k (in the last case
one of them, or both, may be infinite).

(v) A perfect tree type is a pair {U, U), where U is a tree
type and U is a neighborhood type. A tree T has per-
fect tree type (U,U) ifU is its tree type and U is the
neighborhood type of its root.

By locality of first order logic and by acyclicity of the
infinite tree, in order to prove Theorem 2.4 it is enough to
show:

Lemma 4.2 For every natural number k there exists an in-

finite monadic tree T° colored with Pi in a way satisfying
property (*) such that for every T1 being an extension ofT°
by monadic relations P2, P3 ... Pj there is a monadic tree
T2 colored with the same relations as T1, not satisfying
property (*) and of the same perfect tree type as T]

Proof of Lemma 4.2 will occupy the rest of this section.
For two tree types Ui and U2 let Ui -< U> mean that

Mi(U) < U2(U) for every neighborhood type U. Notice
that for fixed I and k there is only some finite number of
tree types. So the partial order < is well-founded.

Definition 4.3 Let T be the infinite monadic tree colored
with monadic relations Pi, P2. Pi ... Pi, let T1 be another
tree of this kind and let x be a vertex ofT. Then: T[x

Lemma 4.8 Let xi,X2,z-3 ■ ■ ■ be an infinite sequence of
vertices of some T such that x, < x, + i for each i and let
no be such a number that all TXn for n > no have the same
ultimate tree type U (such a number exists by Lemma 4.7).
Then there exists ni > no such that if n > n\, ifT1 is a
tree such thatU(Tl) -< U and if the vertex type of the root
ofT1 is the same as vertex type of xn then the perfect type
ofT is equal to the perfect type ofT[xn «— X"1].

It is time now to define the tree T° from Lemma 4.2. In
order to do it it is enough to specify the predicate P1# Let m
be the number of distinct vertex types. Then we put Pi =

{0mk : k e M). Obviously T° satisfies the property (*).

Now consider some fixed tree T1 being an extension ofT0

by monadic relations P2, Pi ... Pi. We need to show that
there is a monadic tree T2 colored with the same relations
as T1, not satisfying property (*) and of the same perfect
tree type as T1.

Let x, = 0' and let ??i be the constant from Lemma 4.8.
We consider two numbers jo < ji, both greater than n\,
and such that:
(i) the vertices 0-"' and (F1 have the same vertex type in T1

(ii) if n. — 0 mod m then either n < jo or ji < n.
Notice that the last condition implies that if x is on the path
from 0j" to CF1 then x £ P\.

Now, define TA as the tree where x £ Pt if and only if
the following condition holds:
x = 0r'J1"-'"\y for some y, 0J>~J" is not a prefix of y, and
0J"ye P, holds in T1.

Obviously the vertex type of the root ofT3 is the same

T1} is "T with Tx substituted with Tl " or, to be more as the vertex type of the root of Tj(]. It is also easy to see

precise, the infinite binary tree colored with monadic re-
lations Pi, P2, P3 ... Pi in such a way that P,(y) holds in
nxt-T^if:
(i) Pi(y) holds in T and x is not a prefix of y or
(ii) Pj(z) holds in Tl and y = xz

It is easy to sec that:

Lemma 4.4 // x, y are two vertices of a colored tree T,
such that y < x then U(Ty) < U{TX).

The last lemma and wcll-foundcdncss of -< give:

Lemma 4.5 Let .T1.X2, .T3 . .. be an infinite sequence of
vertices of some T such that x, < x,+i for each i. Then
there is a number JIQ such that for eveiy n > no U(TXn) =
w(rIri).

Definition 4.6 A tree type U will be called ultimate if for
every neighborhood type U either U(U) = 0 orU{U) = k.

Lemma 4.7 Let .TI,.T2,.T;J ... be an infinite sequence of

vertices of some T such that x, < x, +1 for each i and let 77 0
be the number from Lemma 4.5. Then the tree type U(TXn)
is ultimate.

that U{TA) < U(TjJ. So by Lemma 4.8 the tree T2

r1
T } has the same perfect type as T . To finish

the proof of Lemma 2.4 we observe that since Pi docs not
occur in T3 there are only finitely many vertices in predicate
Pi in T2 so the property (*) docs not hold in T2. ■

166

On Definability of Order in Logic with Choice

Taneli Huuskonen* Tapani Hyttinen*

Department of Mathematics
P.O.Box 4

FIN-00014 University of Helsinki
Finland

E-mail: {huuskone, thyttine}@helsinki . f i

Abstract

We will answer questions due to A. Blass and Y. Gurevich
on definability of order in the first-order logic with Hubert's
epsilon operation. E.g., we will show that a linear ordering
is almost surely definable in models with random choice.

There is a well-known discrepancy between computa-
tional and descriptive complexity in finite models. For in-
stance, a finite automaton can check whether the number of
elements in any given finite set is even or odd, even though
this property is not expressible in either monadic T\ or
IFP (inflationary fixpoint logic). The difference apparently
arises from the fact that the data in a computer's memory are
always linearly ordered, even if the ordering is random. In
the presence of a linear ordering, there is a much nicer cor-
respondence between computational and descriptive com-
plexity classes. In particular, parity becomes definable in
both monadic £} and IFP. It is natural to ask if a similar de-
scriptive strength can be obtained with weaker extensions
of the various logics.

In recent years, several people have introduced strength-
enings of the first-order logic by a choice operation in de-
scriptive finite model theory, see the witness operation by
S. Abiteboul and V. Vianu in [1] and Hilbert's epsilon oper-
ation, introduced by D. Hubert and P. Bernays in § 8 of [4]
in a restricted context, and discussed by A. Blass and Y.
Gurevich in [2], Choice operations are easy to define from
a global linear ordering and hence easy to compute. More-
over, they are a natural concept in programming.

In this paper we study the expressive power of Hilbert's
epsilon operation. In [2], the e-logic is defined as follows.
The syntax of the e-logic is defined as that of the first-order
logic with the following additional rule: If <f>{vi,y) is a for-
mula of the e-logic, then evi<j)(vi,y) is a term. An e-model
(A, E) is a model A together with a choice operation E,

•Research partially supported by the Academy of Finland, grant 40734,
and the Mittag-Leffler Institute (both authors)

i.e., E is a function from the power set of A to A such that
for all non-empty X C A, E{X) £ X. Then the inter-
pretation of evi<f>(vi,a) in an e-model (A,E) is defined to
be E((p(A,a)). Otherwise the semantics of the e-logic is
defined as the semantics of the first-order logic.

Very little is known about the expressive power of the
e-logic (in finite models). However, it is known that the
e-logic is more expressive than the first-order logic by the
work of M. Otto ([6]). In [2], the following three questions
were asked among others:

1. Is the standard order uniformly definable in e-logic?
2. Is the last element of the standard order uniformly

definable in e-logic?
3. Is some linear ordering uniformly definable in e-

logic?
By the standard order we mean the usual ordering one gets
from a choice-function: For finite e-models (A,E) and
n < u, we define An so that A0 = A and An+1 =
An — {E(An)}. Then a is smaller or equal to b in the
standard order if for all n < u>, a G An implies b £ An.
The existence of such an ordering shows that all e-models
are inherently rigid.

In this paper, we will give a negative answer to the first
two questions (even) in finite e-models. Notice that the stan-
dard order is easily definable in FO+e+IFP, see [3], and no-
tice further that this means that FO+e+IFP is the same as
PTIME.

The third question appears to be much harder, and our
partial result stems from a failed attempt to solve it by a very
straightforward random choice argument. Contrary to our
expectations, we found out that there is an e-formula which
almost surely defines a linear ordering in finite e-models.
This leaves open an interesting question. Our result im-
plies that any property which is almost surely definable on
randomly ordered structures is also almost surely definable
on e-structures with a random choice. On the other hand,
any property that is definable on all finite e-structures is de-
finable on all linearly ordered finite structures. We do not

167
0-7695-1281-X/01 $10.00 © 2001 IEEE

know whether either of these implications can be reversed.
The reversibility of the latter implication is, of course, the
question we originally tried to answer.

1 Almost surely definable ordering

In this section wc will sketch a proof of the fact that a
linear ordering is almost surely definable in e-logic.

We shall start the proof of the main theorem of this sec-
tion (Theorem 1 below) by first explaining the general out-
line and looking at some of the details afterwards. In the
more informal part, expressions such as "with high proba-
bility" mean that the limit probability of the claim holding
in a random e-model is 1. Our techniques resemble those
that Matt Kaufmann used in [5] to handle monadic second-
order logic, and his article gave us some ideas for simplify-
ing ours.

We will use the following notion repeatedly. If A C B,
x £ B and R C B2, we write AR[x\ for the set {y £
A\R(x, y)}, and we say that x R-codes the set AH[x] in A.

Without loss of generality, we can assume that the vocab-
ulary of our e-models is empty. So, suppose we arc given a
random e-model 9JI' = (M\ E'). Wc define a new random
e-model 9)1 = {M,Lm\ E) inside 9tt\ with a certain fixed
vocabulary L that contains everything needed in the rest of
the proof.

In the new model there is a random unary function F.
With high probability, there is a point a whose preim-
agc under F is somewhat smaller than log |7\/|, but larger
than 2 log log |A/|. Let .4 be the prcimagc of a. There is
a subset B C A of size logarithmic in |.4| such that a bi-
nary relation R is a linear ordering on B. Moreover, it is
very likely that there is a parameter b £ M that V'o-codcs B
in A, where V0 is a random binary relation. Hence, we have
a parameter definable set B with a definable linear ordering
such that \B\ > log log log m + 1.

Every x £ M \\ -codes a subset of B, where \\ is an-
other random binary relation. With the help of the choice
operator, we can pick a set Bt such that for each C C B
coded by some x £ M there is exactly one y E Bi that
V\ -codes C in B. On the other hand, the ordering of B in-
duces, in a natural way, a linear ordering on By. With high
probability, \B\\ > log log m. We can iterate this construc-
tion, this time looking at subsets of Bx that are V2-coded by
elements of 71/. This way, we get definable sets B2 and B3,
each of them with a definable linear ordering. Moreover,
with high probability, B3 = M; hence the whole model
carries a definable linear ordering. Finally, we show how to
get rid of the parameters that we used in the construction.

After this overview, we will state the claim and give the
proof in more detail.

The formula

AVxyv({<p(x,y) /\ip(y,u)) -> <p(x,u)),

expressing the condition that tp(x, y, z) defines a linear or-
dering, is denoted by Lin^(f), where z is a (possibly empty)
sequence of parameters. For n £ N, let 6„ be the set of all
e-modcls (7\/; E) such that M = {0,..., n - 1}.

Theorem 1 There is an e-formula tp(x, y) which defines a
linear ordering in a random finite e-model with limit prob-
ability 1, that is,

lim
|e„| = l.

Proof. The theorem will follow from the sequence of lem-
mas proved below. D

Assume that 9)1' = (M',E') is a finite e-modcl with
the empty vocabulary such that |7U'| = m + 9 for
some m > 1. Wc first define another model M =
(M, F, R, V'o, l'i, V2, V3;E) within 9)1' such that |M| = m,
F is a unary function, R is a tournament, i.e., an irrcflcxivc
binary relation such that exactly one of R(x, y) and R(y, x)
holds, and the Vu i = 0,1,2,3, arc arbitrary binary rela-
tions. Moreover, if E' is chosen randomly, then F, V0, V\,
V-2, V3 and E arc random and mutually independent. The
tournament R, on the other hand, is directly defined from E,
since we do not need to assume it to be random.

Firstly, define a0, ■ ■., o.8 to be the first nine elements in
the standard linear ordering. That is, let o() = E'(AI'),
a, = E'(M' \ {a0}), a-, = E'(M' \ {n0,m}), and so
on. Then, let M = 71/' \ {a0,..., o8}, and let E = E' \
V{M). Further, for o e M, let F'(a.) = E'{{a0} U 71/ x
{a}, and let

F(a) =
a, if F'(n) =

otherwise.
«o,

Define /? by (x,y) £ R O E({x,y}) ^ y. (This implies,
in particular, that R is irrcflcxivc.) Finally, for x,y £ 71/,
i = 0,1,2,3, define \)(x,y) to hold iff either x ^ y
and E({x,y,a-2i+i, «21+2}) £ {x,o2,-+i}, or .r = y and
E({x,a2l+i}) =x.

It is fairly easy to see that these definitions have the de-
sired properties. For independence, it suffices to check that
all of the defined relations depend on the values of E on
different sets.

Since 9)1 is definable inside 9H' without parameters and
so arc all elements of M' \ 71/, it is clearly sufficient to
define a linear ordering in Wl. So, from now on, we work
in 9H. Throughout the rest of the section, in = |7l/|.

Lemma 2 Let F : 71/ -> M be a random function. Then
with probability approaching I as m —¥ 00, there is a £ M
such that

\/xy{x = y o {v{x,y)Aip(y,x)))A\/xy{ip(x,y)Vip(x,y)) where kn

(LW2J
IF"1 HI

a^A'j < m < (2k„ \n„

168

Proof. A much stronger result is known, but we sketch a
simple argument sufficient to prove this weaker claim we
need.

Firstly, the number of ways to choose a subset X C M
such that \X\ = k and an element i G Mis m(™)- Each
such pair (X,x) satisfies the condition X C F

-1
[:E] with

probability mTk. Hence the probability that there exists
x G M such that \F~l[x}\>k\s at most

m i-jfc m
< m/k\ -> 0,

if Lfc/2jLfc/2J > m. So, with limit probability 1, the first
inequality is true for all a G M.

On the other hand, let M0 U ... U Mk-i, be a partition
of M into k equal parts, supposing for simplicity that k di-
vides m. Let Di = F[Mi). If there is some M* such that
\Di\ < \Mi\/k = m/k2, then there must be some a G Di
such that \F-l[a] n Mj| > k. If not, let £, = ni<:iDi-
It can be shown by induction on i that \E{\ > m/(3k/2)21

with probability approaching 1. In particular, Ek-i ^ 0.
Fora G Ek-ulF-^aW > k.

The exact details of this proof are rather tedious and un-
interesting, and we omit them. D

Lemma 3 Let n £ N, let A be a set such that \A\ > 2n,
and let R C A2 be a tournament. Then there is a set B C A
such that \B\ = n + 1 and R \ B is a strict linear order.

Proof. Easy Ramsey-type induction on n. For n = 0, the
claim is trivial. Assume then that the claim holds for n = k,
and consider a set A such that \A\ > 2k+1. Choose an
arbitrary element a £ A, and let A0 = {x G A : R(x,a)}
and Ai = {x € A : R(a,x)}. Now A0 U Ax = A \ {a},
and hence there is i € {0,1} such that \At\ > 2k. By the
induction hypothesis, there is a subset B' C At such that
|i?'| = k + 1 and i? f 23' is a linear order. Now the set
B = B' U {a} witnesses the claim for n = k + 1. D

Lemma 4 Le/ A fee a .su/we? o/M «<c/! //w? |A| = k with
L&/2J L*/2J < m, let BCA, and let V0 CM2 be a random
binary relation. Then with probability approaching 1, there
isb£ M such that B = AVo [b].

Proof. A single element y e M fails to satisfy the condition
with probability 1 - 2~k, independently of others. Hence
the probability that no element satisfies the condition is

(l-2"fc)m <e-m/2" ->0,

Corollary 5 Let a be as in Lemma 2 and let A = F~x [a].
Then with probability approaching 1, there are a parame-
ter b G M, a set B C A and a linear ordering <B on B
such that B and <B are e-definable from the parameters
a and b and that m < (2^B\)2 .

Proof. Let B C A be as in Lemma 3, define x <B y iff
R(x,y), for x,y G B, and let b G M be such that B =
AVo[b].a

Lemma 6 Let U, V be finite nonempty sets such that \U\ =
u, \V\ = v, and let f : U —> V be a random function.

(i) The function f is one-to-one with probability at least 1 —
u2/v.

(ii) The function f is onto with probability at least 1 —
— u/v ve

Proof. Easy. D

We will define sets Bi and linear orderings <i on them,
respectively, for i = 0,1,2,3, by recursion on i. Let B0 =
B, <O=<B- Assume then that Bi and <, have been de-
fined. Firstly, for a; G M, let [x]i = {j/€ M\(Bi)Vi+l[y] =
(Bi)Vi+1[x}}, and let Bi+1 = {x G M\x = EQx]i)}-
Then, for x,y G i?i+i, define x <»+i y iff there is some
z G Bi such that Ri(x, z) but not Rt(y, z) and that for all
u <i z, we have Ri{x, z) «-» Ri(y, z).

Lemma 7 The sets Bi and the relations <, are definable
from the same parameters, a and b, as the set B and its
ordering <B is. Moreover, each <, is a linear ordering
on Bj.

Proof. Easy induction on i.
Clearly, £?i+1 is £-definable from the same parameters

as Bi. Moreover, <j+i is the partial ordering corresponding
to the lexicographic ordering of V(Bi). Since Bi+i con-
tains exactly one element from each equivalence class [a;],-,
the ordering <i+1 is actually linear. D

Lemma 8 For i = 0,1,2,
with limit probability' 1.

\Bi+1\ >min(2l^l,(logm)2)

asm-> oo. D

Proof. Consider the function /, : M -4 V(Bi), fi(x) =
(Bi) vi+1 [a;]. The set Bi+\ contains exactly one element for
each different value of ft. If 2lB;l < log2 m, then /, is
onto with limit probability 1, according to Lemma 6, and
hence |.Bi+1| = 2lßiL Otherwise, it has at least (logm)2

different values. D

Corollary 9 With limit probability 1, \B2\ > (logm)2.

Proof. Since m < (2lB°l)2iBo1, we get m < |ßi|!ßll,and
hence |i?2| log |£?2| > rn, which implies the claim for large
enough m. D

169

Lemma 10 With limit probability 1, B3 = M.

Proof. Let f-2 : M -> V(B2) be as in the proof of Lemma 8.
By Corollary 9 and Lemma 6, /2 is one-to-one with limit
probability 1. Hence it gets \M\ different values, and so
j#3| = |A/|,thusß3 = M. a

Now we have a linear order <3 of the whole of M, but
it is defined from two parameters. At this point, we can
eliminate them with the epsilon operator.

Lemma 11 Let £(x, y, z) be an e-formula and neM pa-
rameters such that £(x, y, ä) defines a linear ordering in 9)1.
Then there is a formula £'(x, y) such that £' defines a linear
ordering in 9JI without parameters.

Proof. By induction on the number of parameters. If
there arc no parameters, there is nothing to prove. Let
then £(.T, y, z0,..., zk) be a formula with k + 1 parame-
ters, k £ N. Let i/)(z0,..., z<.) be the formula asserting that
£ defines a linear ordering, and let £o(x, y, z\,..., zk) be
the formula

£(.T, y,eu(^(u, zu..., zk)),zi,..., zk).

Now £o defines a linear ordering with k parameters, and
therefore, by induction hypothesis, there is £'Q(x, y) defining
a linear ordering in 9JI without parameters. D

This lemma finishes the proof of Theorem 1.

2 Standard order is not definable in c-logic

In this section we sketch a proof of a negative answer
to the first question from [2]. We are forced to start prov-
ing everything from the definition of the e-logic since there
are no useful characterizations for the equivalence in the e-
logic. In fact, it seems very difficult to find e.g. a useful
Ehrcnfeucht-Frai'ssc style characterization for equivalence
in the e-logic. Especially, this is the case if one restricts the
equivalence to those sentences of the e-logic which are in-
dependent from the choice of the choice operation (which
is the most interesting fragment of the e-logic).

The idea in the proof is simple (it will be tricky to find
the right inductive hypotheses, though): We define two suit-
ably different linear ordcrings < and <* on a set .4. Then
we define a choice operation E on -4 so that < will be the
standard order but otherwise, whenever possible, E chooses
<*-lcast elements. Then, using the suitable difference be-
tween < and <*, we show that if a set is definable in (.4, E)
by a formula of the e-logic, then it is essentially definable in
(.4, <*) by a first-order formula of roughly the same quan-
tifier rank. Then we finish the proof by observing that next
to nothing on < is definable in (.4, <*) by a first-order for-
mula.

Above, in the phrase "essentially definable", the word
"essentially" plays an important role. E.g. the second ele-
ment in the canonical order is definable in (A, E) by a for-
mula of the e-logic but it will not be definable in (.4, <*)
by any first-order formula of reasonable quantifier rank.

In order to make the number of cases in the proofs small,
we assume that all ^-formulas are in a form in which the
quantifiers 3 and V do not appear. This is possible by the
following observation.

Fact 12 For every e-formula (j>(y) there is an e-formula
\l;(y) such that the quantifiers 3 and V do not appear in ip
and for all e-models A and sequences ä £ A,

A |= <t>(ä) & A\= ij)(ä).

By the quantifier rank qr(<f>) of an e-formula <j> we mean
the number of appearances of e in 0 (this definition, al-
though unusual, will turn out to be convenient). We say
that an e-formula <j> is e-free if qr(<j>) = 0.

Let TV < UJ (and so TV = {n < u\ n < TV}). By AN =
(AN,E) we mean the following e-model: AN = TV x TV.
By AN

n we mean the set of those (a, b) £ AN such that
b < n. By < wc mean the lexicographic order of AN, i.e.,
(a,b) < (a',b') if a < a' or a = a' and b < b'. Notice
that the pairs (a, b) £ AN may be considered as natural
numbers a TV + b, in which case < is the usual ordering of
the natural numbers. The ordering <* is defined as follows:
(a, b) <* (a1, b') if b < b' or b = b' and a < a'. Notice that

i<" if x £ .4^" and?/ e AN-A~p,\hcnx <* y. For A' C AN,
wc define E(X) as follows: If for some a < TV — 1 and
b < TV, X = {x £ AN\ x > (a,b)}, then E(X) = (a,b)
and otherwise E(X) is the <*-least member of A', if one
exists, and 75(0) = (0,0)(= e(AN))- The subsets of AN

of the form {x E AN\ x < (a, &)}, a < TV - 1, arc called
standard (so, e.g., {x e TV x TV| x < (TV - 1,0)} is not
standard, this is important). Notice that < is the standard
order of AN- By A*N we mean the structure (AN, <*)•

By a <*-formula we mean a first-order formula in the
similarity type {<*} and the quantifier rank for such a for-
mula is defined in the usual way. For a, b £ AN, WC

write («4^,a) =„ (A*N,b) if ö and b satisfy the same <*-
formulas up to quantifier rank n.

We will show that < is not definable in AN by an e-
formula of quantifier rank < n assuming that TV is large
enough, say N > 2'1'1+5. So all the time wc assume that
n and Ar are such that TV > 2'1"+5. The following well-
known fact is the reason for the choice of TV (we state the
fact in the form it will be used):

Fact 13 Let n < UJ and A = (.4, <*) be a linear ordering,
(i) For i < 4, let o, be a sequence of elements of A, for

i £ {0,2}, let «, be the <* -largest element ofTi-, and for
i £ {1,3}, let o; be the <*-smallest element ofa\. As-
sume that «o <* fli. 02 <* ß.i. in both intervals there

170

are at least 2n — 1 elements or the same number of ele-
ments, (-4,öo) =n (-4,02) and (A,ä\) =n (^,a3). Then
(A,ä0,ä~i) =„ {A,ä2,ä3).

(ii) Suppose a,b G A are such that there are > 2n — 1
elements which are <*-smaller than both a and b and >
2n — 1 elements which are <*-greater than both a and b.
Then (A,a) =n (A,b).

Definition 14 (1) We say that a sequence a = (ao,..., ap)
of elements of AN is (k,m)-good if for all i < p, a^ G
AN

m implies a; G AN . Then we write cPk mfor (a; | a^ G

AN) anda\mfor (OJ| a^ G AJV - Ajym+1). We say thatä
is (k,m,W)-goodifais (k, m)-good and ä\ m = (a^| i G
W).

(2) Let k,m,p < N. We say that (k, m)-goodsequences
ä and b of elements of AN are (k,m,p)-equivalent if the
following holds:

(a)(A*N,a) =p (A*N,b),
(b) for alii < lg(a), if at G AN or bt G A ,<k then

üi = bi.

Instead of a°k and a\ we write usually just ö° and
a1, k and m are always clear from the context.

We define F:N->Nso that F(0) = 3 and F(n + 1) =
2F(n) + 1 (i.e. F{n) = 2n+2 - 1).

Proposition 15 For all k,n < ui and N > 24n+5, if a
and b are finite sequences of AN and they are (k, k +
F(n),2n)-equivalent, then {AN,£,O) is equivalent in e-
logic to (AN, E, b) up to quantifier rank n.

For fixed N < u>, we will prove the proposition by in-
duction on n for those n for which TV > 24n+5, and we will
do this in a series of lemmas. However, in order to keep the
induction going, we need to prove more. Let us repeat that
from now on N is fixed.

To avoid notational difficulties we will give the following
precise definition for A \= 0(a), where a = [oi)i<ig(ä) ar|d
0(17) is either an e-formula or a <*-formula: We assume
that all the variables in the formulas are from the set {vi\i <
UJ} and A \= 0(a) holds if 0 is true in A when each free
variable vt G y is interpreted as a,. In addition, we assume
that y always denotes a sequence of the form (vj)j<i.

In the following definitions we define formulas whose
existence will be proved later.

Definition 16 Let 4>(vi,y) be an e-formula of quantifier
rank r. For all W C lg(y), k, n > r and finite se-
quences c of elements of AN' we write ipp^ w(vi,y) for
a <*-formula such that

{I) i'k'Xw^i'V) is of quantifier rank < 2r,
(2) for all (k,k + F{n),W)-gooda G AN, ifa° = c,

then

4>{AN,a)-AN
k+F(n)-1 = i>H w(AN,a)-AN

<k + F(n)-l

Definition 17 (f>(vi, y) be an e-formula of quantifier rank

r. For all W C lg(y), k, n > r, A C ^4^ w and finite
sequences c of elements of AN we write 9f'n ^ (y) for a
<* -formula such that

(1) ®kn W (y) *s of quantifier rank < 2r,
(2) for all (k,k + F{n),W)-gooda G AN, if a? = c,

then AN N 6*^(0) iff<t>(AN,ä) n AN
k+F(n) = A.

The following definition gives our induction assumption
i.e. by induction on r we will show that every e-formula
of quantifier rank < r is essentially equivalent to a <*-
formula.

Definition 18 Let 4>(vi,y) be an e-formula of quantifier
rank r. We say that 0 is essentially equivalent to a <*-
formula if for all k and n > r such that N > max(/c +
F(n) + 3,24n+5), and for all W C lg(y), A C AN

k+F{n),
and finite sequences c of elements of AN the following
holds:

(})^k',n,w(Vi^y) existS'

(2) et^'w(y) exists>
(3) if ä is (k, k + F(n), W)-good, C C ^4^ is standard

and either (P(AN, a) = C or -I0(J4JV, a) = C, then C C
,<k+F{n)

If only (1) and (2) hold, then we say that <j>(vi,y) is weakly
essentially equivalent to a <* -formula.

Notice that if C C AN
k+F(n) is standard, then C C

{(a,b) G AN\ a = 0, b < k + F(n)} (assuming N >
k + F(n) + l).

The following lemma gives the means to handle the
problem of standard sets. Notice that the empty set is stan-
dard.

Lemma 19 Assume that <f>(vi,y) is an e-formula of quanti-
fier rank r.

(i) If<p(vi,y) is weakly essentially equivalent to a <*-
formula, then <p(vi,y) is essentially equivalent to a <*-
formula.

(ii) Assume that <f>(vi,y) is essentially equivalent to a
<*-formula. Let n > r and k be such that N > max(fc +
F(n) + 3, 24n+5). Suppose S and b are (k, k + F(n),W)-

good, (k, k + F(n), 2r + l)-equivalent, 5° = b = c and
4>(AN,CL) is standard. Then 4>(AN,a) = <p(AN,b).

Proof, (i): Let k, n > r and W C lg(y) be as in Defini-
tion 18 and let a be (A;, k + F(n), W)-good. By Fact 13,
for all b, c G AN

k+F{ - A <k+F(n)-l
N (A*N,b,a) =2r

(A*N,c,a). So by Definition 18(1),
(*)AN h 0(6,0) O0(C,S).

But by the definition of a standard set C, C f~l (AN
k+F{n) -

A^+Fin)-l} ^ A<Nk + F(n) _A^+F(n)-1 ^ Jf Q R

171

(AN
k+F{n) - 4A-fF(")-1) = 0, then C C A%k+FW~l.

With (*), this implies the claim.

(ii): We show that </>{AN,b) - AN
k+F{n) = 0, the rest

is easy. Assume not. Let d witness this. Since n is (k, k +
F(n))-good and (A*N,a) =2r+i (A*N,b), we can choose,

by Fact 13 (i), d' £ AN - AN
k+F{n) so that ä~(d') and

b (d) arc (fc,A; + F(n)-l,2r)-equivalent. But then A*N \=
ipf'n w(d' ,a), a contradiction. D

We skip the proof of the following lemma.

Lemma 20 (i) If <j> is an e-free atomic formula, then it is
essentially equivalent to a <*-formula.

(ii) If e-formula 0 is essentially equivalent to a <*-
formula, then so is -i</>.

(Hi) If e-formulas 4>(vi:y) and <j)'{vj,y) are essentially
equivalent to a <*-formula, then so is 0 A 0'. D

Lemma 22 If e-formulas <j>(vi,Vj,y) and <j>'(vj,Vj,y) are
essentially equivalent to <*-formulas, then so is 0* =
{evi<t>(vi, Vj, y) = ev,0' (?;,, vj, y)). D

Proof of Proposition 15. Follows from Lemmas 20, 21
and 22. D

Conclusion 23 The standard order is not uniformly defin-
able in E-logic.

Proof. For a contradiction, assume that the standard order is
definable by an e-formula of quantifier rank n. Let N < UJ

be such that N > 2An+h. Then by Fact 13, it is easy to sec
that ((N - 2, N - 3), (N - 3, TV - 2)) is (1,1 + F{n), 2n)-
equivalent to {(N - 2, N - 3), (N - 2, N - 2)) but (N -
2, N - 3) > (N -3,N-2) and (iV -2,N-3)<(N-
2, N - 2). By Proposition 15, we have a contradiction. D

Lemma 21 If an e-formula 4>{vuvj,y), y = {yi)l<lg{Jl),
is essentially equivalent to a <*-formula, then so is <\>' =
(evi<j)(vi,Vj,y) = z), where z = vj or yt for some I <
ig(y)-

Proof. Without loss of generality we may assume that j =
lg(y) and i = j + 1. Let 0 be of quantifier rank p. We
assume that z = Vj, the other case is similar (and easier).

Let k, n, m, W, c and A C A^I
k+F{") be as in Definition 18

for r = p + 1. Assume that ü and b are (A-, k + F(n),2r)-

equivalent, and ö° = 6° = c. If c E Afr
k+F{n) is such that

£Vi(j>(vi,c,a) = c holds then by_the induction assumption
and Lemma V), also evi<t>(vi,c,b) = c holds (sequences
a~(c) and b (c) are always either (k, k + F(n - 1), W U
{j})-good or {k + 1 + F(n - 1), k + 1 + 2F(n - 1), W)-

good). With this one can see that Ofr'Aviv) exisls. i-e. (2)
in Definition 18 holds.

For item (1) in Definition 18, we notice that by the induc-
tion assumption, if c $ A~k+F{n)~1, a is (k,k + F(n))-
good and -XJ>(AN,C, a) is standard or <j)(A^, c. Ti) is empty,
then evi(j)(vi ,c,a) ^ c. Then one can check that

el+±C,n-i,wu{j}(vJ>y)A

3v'^'i',n-l,\Vu{j}(V>^j,y) A V, = Vj)h

VvM'tn~i,wu{j}(vi>vJ>y) -> (-■(".■ <* Vj) VT/(I;,-,C)))

is as wanted, where rj(vi:c) says that for some / < lg(c).
there arc less than 22p - 1 elements x such that c.\ <* x <*
Vi and if c is the empty sequence, then r](vj) says that there
are less than 22p - 1 elements <v,.U

The following lemma can be proved using ideas from the
proof of Lemma 21.

Conclusion 24 The last element in the standard order is
not uniformly definable in e-logic.

Proof. We define an ordering <+ to AN as follows: x <+

y, if either x <* y and x 6 AN
N"2 orx,y e AN-A^N~'2

and y <* x. Also a new choice operation E+ is defined.
This is defined exactly as E using <+ in place of <*. Then,
as above, we can see that if a,b € AN - AN

2+k (,,), N >
2in + '°, are such that (.4A-,<+,a) =2n (AN, < + , b), then
(AN,E

+
,ü) is equivalent in e-logic to (AN,E

+
,1>) up to

quantifier rank n. This implies the claim (the last element in
the standard order is the < + -first clement of AN-A^N~2).
D

References

[1] S. Abitcboul and V. Vianu, Nondeterminism in logic-
based languages, Annals of Mathematics and Artifi-
cial Intelligence, vol. 3, 151-186.

[2] A. Blass and Y. Gurevich, The logic of choice, Journal
of Symbolic Logic, vol.65, 1264-1310,2000.

[3] H.-D. Ebbinghaus and J. Flum, Finite Model Theory,
Springer, 1995.

[4] D. Hilbcrt and P. Bernays, Grundlagen der Mathe-
matik I, Springer, 1934.

[5] M. Kaufmann, A counterexample to the 0-1 law for
existential monadic second-order logic, manuscript.

[6] M. Otto, EpsiIon-logic is more expressive than first-
order logic over finite structures, Journal of Symbolic
Logic, vol. 65, 1749-1757, 2000.

172

Invited Talk

Session 5

A second-order system for polytime reasoning using GrädePs theorem*

Stephen Cook and Antonina Kolokolova
University of Toronto

{sacook,kol} @cs.toronto.edu

Abstract

We introduce a second-order system V\ -Horn of bounded
arithmetic formalizing polynomial-time reasoning, based
on Grädel's [15] second-order Horn characterization of P.
Our system has comprehension over P predicates (defined
by Grädel's second-order Horn formulas), and only finitely
many function symbols. Other systems of polynomial-time
reasoning either allow induction on NP predicates (such as
Buss's Si or the second-order V±), and hence are more
powerful than our system (assuming the polynomial hier-
archy does not collapse), or use Cobham 's theorem to in-
troduce function symbols for all polynomial-time functions
(such as Cook's PV and Zambella 's P-def). We prove that
our system is equivalent to QPV and Zambella's P-def. Us-
ing our techniques, we also show that V\ -Horn is finitely
axiomatizable, and, as a corollary, that the class of VEj
consequences of S\ is finitely axiomatizable as well, thus
answering an open question.

1 Introduction

1.1 Bounded Arithmetic

Here Bounded Arithmetic loosely refers to a collection
of weak formal theories of arithmetic connected to the com-
plexity classes P (polynomial time) and PH (the polynomial
hierarchy) (see [3, 17, 20, 6, 2]). Study of these theories
is motivated partly by the fundamental questions in com-
plexity theory: Does P ^ NP? Does PH collapse? An
early example is the equational theory PV (for "Polynomi-
al^ Verifiable") [8], which includes function symbols for
all polynomial-time functions, defining equations for them
based on Cobham's theorem, and a proof rule implementing
induction on binary notation. The idea is that an equation is
provable in PV iff it can be uniformly verified using only
polytime concepts.

* An expanded version of this paper is available as ECCC report number
TR01-024 [7].

Later Buss [3] introduced a hierarchy of first-order theo-
ries (^2,5|, 5|...) corresponding to the levels of the poly-
nomial hierarchy. In particular S\ corresponds to poly-
nomial time, in the sense that a function / : N -» N
is polynomial-time computable iff there is a so-called Ej
formula A(x,y) defining the graph of / such that S% r-
Vx3yA(x,y). Here E* formulas are certain bounded for-
mulas which semantically represent precisely the NP predi-
cates. Sj includes PIND (induction on notation) axioms for
all Sj formulas.

We define QPV (quantified PV) to be the first-order
theory with the same language as the equational theory PV,
and whose axioms are the theorems of PV. Buss [3] proves
that every VE^ theorem of Si is a theorem of QPV. How-
ever [21] proves that the induction axioms for 5.] (which are
not VEj formulas) are not all theorems of QPV, unless PH
collapses. (Complexity theorists generally assume that PH
does not collapse.) The theory Vi-Horn that we introduce
in this paper turns out to be equivalent of QPV (rather than
S^), as explained below.

An important open question is whether the union theory
52 of Buss's hierarchy (5|) of theories is finitely axiomati-
zable. As shown in [21, 5, 31], this happens iff S-2 proves
that PH collapses. Since each of the theories Si, is finitely
axiomatizable, it is immediate that 52 is finitely axiomati-
zable iff the hierarchy (5|) collapses. Thus the hierarchy
(S'2) collapses iff 52 proves that PH collapses.

The theory S^ is finitely axiomatizable because it has a
finite language, and its infinite induction scheme for T,\ for-
mulas follows from finitely many induction axioms, includ-
ing one for a formula representing an NP-complete predi-
cate. It does not make sense to ask whether QPV is finitely
axiomatizable, because it has infinitely many function sym-
bols. However [3] shows that PV is equivalent to the Ej
consequences of S^, so it makes sense to ask whether the
latter are finitely axiomatizable. We answer this affirma-
tively in this paper by showing that our theory Vi-Horn is
finitely axiomatizable (essentially by Ej formulas) and is
equivalent to QPV.

Buss [3] introduced two hierarchies of so-called second-
order theories, including a theory for polynomial space and

0-7695-1281-X/01 $10.00 © 2001 IEEE
177

one for exponential time. (AH "second-order" theories that
we discuss arc actually two-sorted first-order theories; with
one sort for numbers and the other for finite bit strings.)
Razborov [26] argues at length that a related second-order
theory called V/ can nicely formalize existing lower bound
proofs on the complexity of explicitly given Boolean func-
tions, and points out that by the "RSUV isomorphism"
[25, 29], Vj1 is equivalent to the first-order theory 5.] and
hence captures polynomial-time reasoning.

Zambclla [31] introduced an elegant presentation for
second-order theories such as V/, and we use this style
here to present our theory Vi-Horn. One of Zambella's
second-order theories, P-dcf, has function symbols for all
polynomial-time functions, and can be shown to be equiv-
alent to the first-order theory QPV by the RSUV isomor-
phism. We show that Vi-Horn is equivalent to P-def, in the
sense that every theorem of V'i-Horn is a theorem of P-def,
and every theorem of P-dcf can be translated into a theorem
of Vi-Horn by replacing function symbols by their defini-
tions in Vi-Horn.

1.2 Descriptive Complexity

The first connection between finite model theory and
complexity theory goes back to Fagin's 1974 result [13]
showing that a language is in NP iff it corresponds to the
set of finite models of an existential second-order formula.
Later Stockmeycr [28] extended this result, characterizing
the polynomial hierarchy as the class of sets of finite mod-
els of all second-order formulas.

Finding an elegant descriptive-style characterization of
P proved more illusive. One such characterization of P
uses the first-order logic augmented with the successor re-
lation and the least fixed-point operator [30, 18]. Later
Leivant [22, 23] found a second-order characterization of
P using the notion of "controlled computational formula",
which is related to Horn formula. (The motivation for
using Horn formulas comes from the existence of a sim-
ple polynomial-time algorithm for solving the satisfiability
problem for propositional Horn formulas.) Finally Grädel
[14, 15] found an elegant descriptive characterization of P
using 503-Horn (second-order existential Horn) formulas
with successor.

1.3 Outline

In Section 2 we give the syntax and intended seman-
tics of second-order formulas and show that certain syn-
tactic classes of formulas represent the relations in cer-
tain corresponding complexity classes. In particular, the
Ef -Horn (second-order existential Horn) formulas repre-
sent the polynomial-time predicates (by Grädel's theorem).
We define various second-order theories in Section 3, in-

cluding our theory Vi-Horn and the theory V° correspond-
ing to the complexity class AC0. The theory V'i-Horn uses
a comprehension axiom scheme for the Ef-Horn formu-
las. In Section 4 we show that Vi-Horn proves the equiva-
lence of each formula in several broad syntactic classes to
a Ef-Horn formula. Section 5 contains the description of
the main tool needed for later sections, namely representing
the Horn satisfiability algorithm in Vi-Horn by a Ef-Horn
formula and proving its correctness in Vi-Horn. In Sec-
tion 6 we construct a conservative extension V\ -Horn(FP) of
Vi-Horn by introducing function symbols for polynomial-
time functions, and show the equivalence of this and Zam-
bella's P-def[31]. Finally, in Section 7 we demonstrate
that both V° and V'i-Horn are finitely axiomatizable, and
show that this implies that the VEj consequences of S\ arc
finitely axiomatizable.

2 Second-order formulas and complexity
classes

The prototype for the underlying language of Vi-Horn
is the language of second-order bounded arithmetic intro-
duced by Buss [3]. However our language is closer to the
nicer second-order language introduced by Zambclla [31],
in that we eliminate the superscript terms t tagging second-
order variables X' and instead introduce a bounding func-
tion |A|.

Our language C\ has two sorts, called first-order and
second-order. (The intention is that first-order objects arc
natural numbers and second-order objects arc finite sets of
natural numbers, or finite binary strings.) First-order vari-
ables are denoted by lower case letters a,b,i,j,...,x,y,z,
and second-order variables arc denoted by upper-case let-
ters P, Q,.... A', Y, Z.

The first-order function and predicate symbols of C\
are the standard symbols {0,1, +, ■; <, =} of Pcano Arith-
metic. To these we add the unary length function symbol
| |, which takes second-order objects to first-order objects,
and the binary membership predicate symbol G.

For every second-order variable X we form a first-order
term |Ar| called a length term. The first-order terms of CA

arc built from 0, 1, first-order variables, and length terms
using the function symbols + and •. The only second-order
terms are second-order variables.

The atomic formulas of C2
A have one of the forms ,s =

t, ,s < t.t f_ X, where ,s and t arc first-order terms and X is
a second-order variable. Wc usually write X(t) instead of
/ 6 A'. Formulas arc built from atomic formulas using the
propositional connectives A, V, ->, the first-order quantifiers
V.r, 3.r and the second-order quantifiers VA", 3X.

We use the usual abbreviations s ^ t. for -is = t and
,s < t for s<(As/ t. Bounded first-order quantifiers get
their usual meaning: V.x < t<f> stands for \/.r(x <£—></>)

178

and 3a; < ^stands for 3x (x < t/\(f>). We also use bounded
second order quantifiers: VX < tcfr stands for VX(|X| <
t -> <(>) and 3X < tcj) stands for 3X(\X\ <tAcj>).

In the standard model for C\ first-order variables range
over N, and second-order variables range over finite subsets
of R If X is the empty set, then \X\is interpreted as 0,
otherwise \X\ is interpreted as one more than the largest
element of the finite set X. The symbols 0,1,+ •, £ get there
usual interpretations.

In complexity theory a member of a language is often
taken to be a binary string, but from our "second-order"
point of view we take it to be a finite subset X of N. To
relate this to the string point of view we code a finite set
X by the binary string X', where X' is the empty string if
X is the empty set, and otherwise X' is the binary string
x0xi,...,xn-i of length n = \X\ such that xt = 1 4=4> i 6
X, 0 < i < n - 1. (Thus all nonempty string codes end in
1.) If L is a set of finite subsets of N, then the correspond-
ing set of strings is V = {A" | X e L}. If c is a standard
complexity class such as AC0, P or NP, then our second-order
reinterpretation of C is {L | V G C}. Since the complexity
classes considered here are robust, this reinterpretation will
come out the same for any reasonable string coding method.

The role of first-order objects in our theories is that of
members of second-order objects, or equivalently as po-
sition indices for binary strings. Thus in determining the
complexity of a set of natural numbers we code a natural
number i using unary notation; that is as a string i' of 1 's of
length i.

Definition 2.1, If <p(z,Y) is a formula of C?A whose
free variables are among zu...,zk,Yu...,Yt then <p rep-
resents a k + £-ary relation R& as follows. If ai,...,ak

are natural numbers and Bu....Be are finite sets of nat-
ural numbers, then (au ..., ak, Bu ...,Be) satisfies R* iff
4>{ai, ...,ak,Bi, ...,B() is true in the standard model.

If C is a complexity class, then we make sense of the
statement ".R* is in C" using the string encodings described
above. In particular, a relation R{xu ...,xk,Yu ...,Ym) is
in P iff it is recognizable in time bounded by a polynomial
m{xl,...,xk,\Yl\,...,\Ym\).

We now define the classes Ef and Ef of bounded
second-order formulas. (A formula is bounded if all its
quantifiers are bounded.) E^ and ITf both denote the class
of bounded formulas with no second-order quantifiers. We
define inductively £f_x as the least class of formulas con-
taining Uf and closed under disjunction, conjunction, and
bounded existential second-order quantification . The class
Uf+1 is defined dually.

The classes Ef and Uf are the formulas in our (Zam-
bella's) simplified language C2

A which correspond to the
classes E^' and U]'b in Buss's prototype second-order
language [3, 20]. They are the second-order analogs of

the first-order formula classes £* and II*, where sharply-
bounded quantifiers correspond to our bounded first-order
quantifiers.

The formulas Ef represent precisely the NP relations,
and more generally for i > 1 the Ef formulas represent
the £? relations in the polynomial hierarchy and uf rep-
resent the IT? relations [3, 20]. The formulas E^ represent
precisely the uniform AC0 relations, which are the same as
the class FO (First Order) of descriptive complexity [1] (see
Chapter 1 of [19]).

We now define the formulas corresponding to polyno-
mial time. Recall that a CNF (conjunctive normal form)
formula is a conjunction of clauses of the form (Li V ... V
Lm),m > 1 where each Lt is a literal; that is an atomic
formula or a negated atomic formula.

Definition 2.2. A formula <f> of L\ is Horn with respect to
the second-order variables Pi,...,Pk if 0 is quantifier-free
in CNF and in every clause there is at most one positive
literal of the form Pi(t) (called the head of the clause) and
no terms of the form |P|. (We do allow length terms \X\
and any number of positive literals X(t), where X is not
among {P1, ...,Pk}.) A formula is Ef-Horn if it has the
form

3P1..3PkVx1 < tx..Mxm <tm(/> (1)

where k,m > 0 and <f> is Horn with respect to Px,...,Pk,
and the bounding terms U do not involve xx, ...,xm. More
generally a formula is YP-Horn if it has the above form
except that each second-order quantifier can be either 3 or
V. A formula is V\ Horn with respect to P1:...,Pk if it has
the form (1) with the existential quantifiers omitted.

Notice that our definition of Ef-Horn is somewhat dif-
ferent from Grädel's original definition of second-order ex-
istential Horn formula, as explained before Theorem 2.3.
Also note that the second-order quantifiers in Ef-Horn and
EB-Horn formulas are not bounded. However, since no oc-
currence of \Pi\ is allowed, each such formula is equivalent
in the standard model to one in which every quantifier 3Pt

or VPj is bounded by a term t which is an upper bound
on all terms u such that P,;(u) occurs in the formula. On
the other hand, if occurrences of \Pt\ were allowed, then an
unbounded quantifier 3Pt can code an unbounded number
quantifier 3|Pj| and hence undecidable relations would be
representable.

It is often convenient to treat second-order objects
as multi-dimensional arrays, instead of one-dimensional
strings or sets. An easy way to do so is to use a pairing
function < •, ■ >, defined by

<x,y >= (x + y)(x + y + l) + 2ij (2)

This function is a one-one map from NxN into N, and it is
represented by a term in our language. It is easily general-

179

ized to fc-tuples by defining (x±,..., xk) by the recursion

(x)=x, (xi,...,xk+i) = ((xi,...,xk),xk+i) (3)

Thus, any finite set P can be treated as a set of fc-tuples of
variables; P(xi, ...,£*■) is defined to be P(< x\, ...,xk >).

The theorem below is similar to part of Gradcl's Theo-
rem 5.2 [14] (see also Chapter 7 of [27]), which is stated
in the context of descriptive complexity theory. There are
technical differences: Gradcl's language is more general in
that it allows predicate symbols of arbitrary arity, but these
can be simulated by the pairing function as just explained.
On the other hand our language is more general in that it
allows interpreted function symbols + and • and terms \\\\,
as well as universally quantified number variables whose
range goes up to any polynomial in the size of the inputs.
However none of these generalizations takes us outside the
polynomial-time relations.

Theorem 2.3. A relation R,(z\,..., zk, Y\,..., Ym) is in P
iff it is representable by a Ef -Horn formula $. Further $
can be chosen with only one existentially quantified second-
order variable, and only two universally quantified first-
order variables.

Example. (PARITY(A)) This is a Sf -Horn formula which
is true for strings A' that contain an odd number of l's. It
encodes a dynamic-programming algorithm for computing

parity of A': P0<M(?') is truc (anü" Pcren(i) is false) iff the
prefix of X of length i contains an odd number of 1 's.

3PeVF„3PoddVi < |A|

Pf(,cn(0)A-Porfrf(0)APO(M(|A|)

A(-.Pe^n(t + l)V-.Porff/(i + l))

A(Pe„tn(i)A.Y(!)-»Porf(,(i + l))

A(Porfd(i) A X{i) -» Peven{i + 1))

A(Pe„e„(t') A ->X{j) -> Pevcnii + 1))

A(Porfrf(i) A -.A'(i) -> Podd{i + 1))

Proof of theorem (outline). For the if direction, let ${z, Y)
be a Sf-Horn formula which represents R(z,Y). Then $
has the form

3P1..3PrW.i < ti...Vxs < t,(l>(x,P,z,Y (4)

where (j> is Horn with respect to P\,...,Pr. We outline a
polynomial-time algorithm which, given numbers a{,.... ak

(coded in unary) and finite sets B\,...,Bm (coded by bi-
nary strings) determines whether \P(o,J3) is truc in the
standard model. First note since ö and D are given,
each first-order term u in <j>(x,P,ä,B) becomes a poly-
nomial u(x\, ...,.<:/,). Each P, can occur only in the con-
text Pi(u(x)) for some such term u, and the terms t\,..., ^5

bounding the x,'s evaluate to constants. The algorithm
proceeds by computing for each possible x-value b =
(bi, ...,bs),0 < b, < tt, a simplified form <j>\b] of the in-
stance <f>(b, P, 5, B) of 0. In this form all first-order terms
and all atomic formulas not involving the P,'s are evaluated,
and the result is a Horn formula <f>[b] all of whose atoms
are in the list P(0), ...,Pj(T),i = 1, ...,r, where T is the
largest possible argument of any Pj in any instance. By tak-
ing the conjunction over all /; of these instances, we obtain
a prepositional Horn formula PROP[0, ö, B). This formula
is tested for satisfiability using a standard algorithm.

The proof of the only-if direction resembles the proof
of Cook's theorem that SAT is NP-complctc, and of Fagin's
theorem of finite model theory that second-order existential

formulas capture NP. The idea is to represent the computa-
tion of a Turing machine M by a two dimensional array P,
where the f-th row represents the tape configuration of M

(including state and scanned-symbol information) at time
i. The two existential second-order quantifiers arc 3P3P,
where P is intended to be ->P. The two universally quanti-
fied variables x.\, x? represent the co-ordinates of P. A cru-
cial observation is that if M is deterministic, then the condi-
tions on P and P can be expressed with Horn clauses. D

Note that above proof also shows that every NP- relation
can be represented by a E{* formula of the form (4), except
that d> is not Horn.

Example. (3C()LOR(//, P))This is a Ef formula asserting
that the graph with edge relation E on nodes {0,1,..., n— 1}
is three-colorable. We write E(x,y) like a binary relation,
although it can be coded as a unary relation using the pairing
function as explained above. The three colors are P, Q, and
P.

3P3Q3PV.;: < nVy < n{P(x) V Q{x) V R(x))

A(-uE(z,?y) V -.P(:r) V -P(;iy))

*hE(x,y)V-,Q(x)V-,Q(y))
A(-£(.T,2/)V-J?(.r)V-i?(j7))

This formula is Ef-Horn except for the first clause. Since
graph 3-colorability is NP-complete, it cannot be repre-
sented by a E[*-Horn formula unless P= NP. This example
illustrates why we cannot allow bounded first-order exis-
tential quantifiers after the universal quantifiers in E{!-Horn
formulas, since the first clause could be replaced by 3i <
3P(i, x) where now P(0,.;:), P{l,x), P(2,:;:) represent the
three colors.

3 \ \ -Horn and other second-order theories

Our second-order theories use the language C\ de-
scribed in the previous section. They all share the set 2-

180

Robinson's theory Q axioms
BLar+l^O B2: x + 1 = y + 1 -+x = y
B3:a; + 0 = :r B4: x + (y + 1) = (x + y) + 1
B5:x-0 = 0 B6:x-(y + l) = (x-y)+x

Axioms for <
B7: 0 < x
B8 : x < x + y
BlLz < yVy <x

B9: x < y Ay < z ^ x < z
BIO : (x <y Ay < x) —> x = y
B12 : x <y<-t x <y + l

Predecessor axiom
B13: a;#0-> 3y(y + 1 = x)

Length axioms
LI :X{y)^y < \X\
L2:y+l = \X\-+X(y)

Table 1. The 2-BASIC Axioms

BASIC of axioms in Table 1, which are similar to the ax-
ioms for Zambella's theory 6 [31] and form the second-
order analog of Buss's first-order axioms BASIC [3]. The
set 2-BASIC consists essentially of the axioms for Robin-
son's system Q, together with axioms for <, and two ax-
ioms defining the length terms \X\.

The underlying logic for our theories is that of two-
sorted first-order predicate calculus. Any standard proof
system for predicate calculus, such as Gentzen's system
LK, can be adapted to a two-sorted system simply by rein-
terpreting the notion offormula to be that defined in Section
2.

In addition to 2-BASIC, each system needs a compre-
hension scheme for some set FORM of formulas.

FORM - COMP : 3X < y\/z < y{X(z) *■> $(z)) (5)

Here, $ is any formula in the set FORM with no free oc-
currence of X.

We denote by V1 the theory axiomatized by 2-BASIC
and Ef -COMP. For i > 0 V{ is essentially the same as
Zambella's E? - comp [31]. For i > 1 V1 is essentially
the same as V{ [20]. (The latter restricts comprehension to
E0' formulas, but allows induction on E*' formulas. How-
ever Theorem 1 of Buss [4] shows that V{ proves the E*'6

comprehension axioms.) Thus for i > 1 V1 is a second-
order version of 5|. In particular, the Ef-definable func-
tions in V1 are precisely the polynomial-time functions [9].
The Ef-definable functions in V° are the uniform AC0 func-
tions [9] (called rudimentary functions in [31]). The first-
order analog of V° is S% with a comprehension scheme for
sharply-bounded formulas.

Definition 3.1. Vi-Horn is the theory axiomatized by 2-
BASIC and Ef-Horn-COMP.

Although 2-BASIC does not include an explicit induc-
tion axiom, L2 asserts that a nonempty set has a largest ele-

ment. This can be turned into a least number principle, from
which induction follows.

Lemma 3.2. The least number principle is a theorem of
Vi-Horn, and of V{ ,i > 0.

LNP: 0 < \X\ -t 3x < \X\(X(x) A Vy < x->X(y))

Proof By the comprehension schema there is a set Y such
that|F| < |X|andforallz < \X\

y(z)^Vi< \X\{X(i)->z<i)

Thus the set Y consists of those elements smaller than every
element in X. We claim that \Y\ satisfies the LNP for X;
that is (i) |y| < \X\, (ii) X(\Y\) and (iii) Vy < \Y\^X(y).
First suppose that Y is empty. Then |F| = 0 by B13 and
L2. By assumption 0 < \X\, so (i) holds in this case. Also
X(0), since otherwise Y(0) by B7 and the definition of Y,
so (ii) holds. Since ->y < 0 by B7 and BIO we conclude
(iii) holds vacuously.

Now suppose Y{y) for some y. Then y < \Y\ by LI, so
|F| ^ 0 so by B13 |F| = z + 1 for some z and hence Y(z)
by L2. Then -Y{z + 1) by LI. Thus X(z + 1) by Bll,
B12 and the definition of Y, so (ii) holds. Also -<X(z),
so (i) holds. Finally (iii) holds by the definition of Y and
BIO. D

Lemma 3.3. Induction on length of a string is a theorem of
Vi-Horn, andofV\> 0.

IND: (X(0) A Vy < z(X(y) -> X(y + 1))) -> X(z)

The proof of induction is a formalization of the standard
proof LNP—► IND. It can be generalized to allow induction
with an arbitrary A; as a basis, not just k = 0.

If follows from the above Lemma that each of the theo-
ries that we have presented proves an induction axiom for
each formula in its comprehension scheme. In particular,
for V'i -Horn we have

Corollary 3.4. V\ -Horn proves the Hf-Horn Induction ax-
ioms.

($(0) A Vy < z(*(j/) -> $(y + 1))) -»■ $(z)

where $ is any Ef -Horn formula.

Standard arguments show that induction on open formu-
las using axioms Bl to B13 is enough to prove simple alge-
braic properties of + and • such as commutativity, associa-
tivity, distributive laws, and cancellation laws involving +,
•, and <. Hence all of our theories prove these properties,
and in the sequel we take them for granted. These simple
properties suffice to prove that the tupling function defined
in (2) and (3) is one-one, so these theories all prove

(xi,...,xk) = (x'1,...,x'k) -> (xi = x[A...Axk =x'k)

181

Notation. We use pt6l to denote the "6-th row" when P is
being used as a 2-dimensional array. If 4>(P) is a formula
with no occurrence of \P\, then rfj(P^) is obtained from
(j){P) by replacing every atomic formula P(t) by P(b, t)
(i.e. P{(b,t)): see (2)).

Other useful properties provable in Vi-Horn include a k-
ary comprehension and replacement.

Lemma 3.5 (k-ary Comprehension). If $(a,'i,...,xk) is
a Ef -Horn formula with no free occurrence of Y, then
Vi-Horn proves the k-ary comprehension formula

Ey <<&!,...AJVn <h...Mxk<bk (6)

{Y{xl:...,xk) <-> $(xu...,Xk)),

Lemma 3.6 (Replacement). Ifcj)(y,P) is a IlJ Horn for-
mula with respect to P and t is a term not involving y, then
V\ -Horn proves

My < t3P(f>(y,P) «■ 3PMy < t<p(y,pM)

where PM js p[y\ ..., p[y\ Further the RHS is a Ef-Horn
formula.

The replacement scheme is a corollary of the following
lemma:

Lemma 3.7. If \\-Hom proves that 3PMy < b$(y,P) is
equivalent to some Ef -Horn then \\-Horn proves

My < &3P$(?y,P) <-► 3PMy < b$(y,pM).

4 Formulas provably equivalent to Ef -Horn

Our goal now is to show that every Ef formula and every
Ef-Horn formula, i £ N, is provably equivalent in \\ -Horn
to a Ef-Horn formula, and hence can be used in the com-
prehension and induction schemes. Later, we also show that
the class of formulas provably equivalent to Ef-Horn is
closed under -i, A, V and bounded first-order quantification
(sec 5.3). We start with a simple observation.

Lemma 4.1. lf§\ and <I>2 are Ef -Horn formulas, then
$i A $2 in logically equivalent to a Ef -Horn formula.

Notation. If P is a second-order variable, then P denotes a
second-order variable whose intended interpretation is -P.

We now introduce the Horn formulas SEARCH^, which
arc II; Horn with respect to all of their second-order vari-
ables and which will allow a Ef-Horn formula to rep-
resent 3z < bX(y,z). Assuming that X <-> -iAr,
SEARCH*. (6,6, S, S,X, X) asserts that S(y,i) holds iff
X(y,z) holds for some z < i, where b stands for b\, ...,bk,
and y stands for y\,...,yk. We use y < b for y\ <
bi A ... Ay*. < bk.

Definition 4.2. For each k > 1 SEARCH*, (b, b, S, S, X, X)
is the U\ Horn formula

Vj/<6Vi<6(-.S(j/,0)A5(j/,0))

A(-15(j/,i + l)V-.5(y,t + l))

A(5(y,0->5(j/,t + l))

A(X{y,i)->S(y,i + l))

A(%i)A%f)4%i + l))

We can prove in Vi-Horn that this definition of SEARCH
corresponds to a bounded existential quantifier in the above
limited sense.

4.2 The Ef formulas are provably equivalent to
Ef-Horn

Consider a Ef formula Oi?A < &i -QA?7A < bkcf>(y),
where each Qi is cither V or 3. We can shows how to con-
join copies of SEARCH(...) to define arrays So,..., Sk such
that Si(yi,...,yk-i) «->• Qk-i+lyk-i+l < bk-i+i^(y).
These are used to form an equivalent Ef-Horn formula.

The proof of this fact proceeds by induction. For the base
case, we define SQ(0) = <j>{y) and 5()(0) = ->0(j7) (we can
negate a quantifier-free formula). For the induction step, to
get the arrays S,+i and S,+i we search the values of 5, and
S, for cither a witness or counterexample, based on whether
the ?"' quantifier of the original formula is 3 or V.

Corollary 4.3. Every Ef formula is provably equivalent in
\\-Horn to a Ef -Horn formula.

Proof. Take a suitable prencx form of $i A $2. D 4.3 Collapse of V'-Horn to V'i-Horn

4.1 Simulating first-order bounded existential
quantification

A major inconvenience of Ef-Horn formulas is lack of
first-order existential quantifiers. In general we cannot al-
low such quantifiers without increasing the apparent ex-
pressive power of the formulas, as pointed out in the 3-
colorability example. However, it is possible to introduce
bounded existential quantifiers in some contexts.

Grade! [14] showed that it is possible to represent a
503-Horn formula preceded by alternating SO quanti-
fiers by a 503-Horn formula, which implies the collapse
of SO-Horn hierarchy to 503-Horn. We can formalize
Griidel's proof in Vi-Horn, showing that Ef-Horn formu-
las are closed under second-order quantification. That is, a
Ef-Horn formula preceded by a sequence of (possibly al-
ternating) second-order quantifiers is equivalent (provably
in Vi-Horn) to a Ef-Horn formula.

182

5 Encoding the Horn SAT algorithm by a
Sf-Horn formula

Here we show that a run of the Horn satisfiability algo-
rithm described in the proof of Theorem 2.3 can be repre-
sented by a Sf-Horn formula RUN. This result is needed
for sections 6 and 7. A simple corollary is that the negation
of a Sf-Horn formula is provably equivalent to a Sf -Horn
formula. In other words, Vi-Horn proves that P is closed
under complementation.

Theorem 5.1. Let $ be a Sf-Horn formula which does
not involve R or R. Then there is a formula RUN<j,(.R, R)
whose free variables include those of $ in which the only
atomic subformulas involving R and R are R(0) and R(0)
and such that 3R3RRVN$(R,R) is a Sf -Horn formula
and V\ -Horn proves the following:

(i) 3R3RRVN$(R,R)

(«) RUN*(fi,Ä) -» [(Ä(0) ** $) A (i?(0) «• -.$)]

In the proof of this theorem, it is sufficient to consider
only Sf-Horn formulas with one existential second-order
quantifier.

Corollary 5.2. //$ is Sf -Horn, then -i$ is provably equiv-
alent in Vi-Horn to a Sf -Horn formula NEG$.

Corollary 5.3. The class of formulas provably equivalent
in Vi-Horn to a Sf -Horn formula is closed under -., A, V,
and bounded first-order quantification.

This follows from lemmas 3.6 and 4.1, and corollary 5.2.
Theorem 5.1 can be generalized to the case in which ar-

rays R(y) and R(y) code values of $(£/) and ~>$(y).

Corollary 5.4. Let $(y) be a Hf-Horn formula which
does not involve R or R. Then there is a formula
RUN$(y) (b, R, R) which does not have yfree but whose free
variables include any other free variables of $ such that
3i?3fiRuN<I,{5) (R, R) is a Sf -Horn formula and \\ -Horn
proves the following:

{%) 3R3RRuNi,{5)(b,R,R)

(ii)RuN*m(b,R,R) ->

\/y < b[(R(y) O $(y)) A (R(y) O -n$(y))]

The algorithm we wish to represent has two main steps
(see the proof of Theorem 2.3): First create a propositional
Horn formula HORN[$] (which depends on the values for
the free variables in $), and second apply the Horn Sat al-
gorithm to determine whether HORN[$] is satisfiable. We
encode $ in HORN[$] using an array Q, and we will present
a Sf-Horn formula PROP$(Q,<3) which defines this ar-
ray and its negation. Besides the indicated free variables,
PROP$ also has as free variables the free variables of $.

For the second step we present a Sf-Horn formula
HORNSAT(a,&,Q, <§,#,£) (with all free variables indi-
cated) which is independent of $ and which sets the result
variable R(0) true iff HORN[$] is satisfiable. The encoding
Q consists of three parts: C(x,v),D(x,v) and V(x). The
first two assert that a clause x contains a positive (resp. neg-
ative) literal v; the last states that the clause x is true. All
formulas defining Q and Q are S^.

We can now choose RUN$(i?, R) to be a Sf-Horn for-
mula such that

RUN*(i?,.R) o

3Q[PROP*(Q) A HORNSAT(a, b, Q, R, R)]

In fact we take RUN<j>(.R, R) to be a suitable prenex form
of the right hand side.

5.1 Definition of PROP$(Q, Q)

We define three Sjf formulas
tpc(x,v),tljD(x,v),ij;v(x) which characterize the three
arrays C, D, V.

Lemma 5.5._ PROP<j>(<3) can be defined in such a way that
3QPROP$ (Q) is T,f-Horn and \\ -Horn proves

(i) 3QPROP<J,(Q)

(ii) PROP$(Q) -> Vv < a\/x < b

[(C(x,v) <-» ipc(x,v)) A (C(x,v) <-> ^c(x,v))

A (D(x, v) «-» il>D(x, v)) A {D(x, v) o ->tpD(x, v))

A (V(x) <-> xf)V{x)) A {V{x) o -iipv(x))}

5.2 Definition of HORNSAT(ü, b, Q, Q, R, R)

Although the Horn satisfiability algorithm is easy to de-
scribe informally, it is not straightforward to formalize in
V'i-Horn. The propositional Horn satisfiability problem is
complete for P, [16], and hence cannot be represented by a
Sjf formula.

The algorithm represented by
HORNSAT(a,b,Q,Q,R,R) attempts to find a satisfy-
ing assignment to the Horn formula HORN[$] described by
the parameters a, 6, Q. This is done by filling in an array
T(t.v), where T(t,v) is the truth value assigned to the
atom P(v) after step t,0<t,v<a. Initially T(0,v) is
false, and at step t + 1, T(t + 1, v) sets each P(v) true such
that P(v) occurs positively in some clause not satisfied
after step t. Once P(v) is set true, it is never changed to
false.

Defining TDEF to be the formula encoding the truth as-
signment array T and SAT a formula stating that the result-
ing truth assignment T^ satisfies HORN[$], the rest of the

183

algorithm is encoded by

noRNSAj(a,b,Q,R,R) =

3T3T[7DBV{a,b,Q:T,f)A (7)

3WSAT*{1, R, R, W, Q, TH, fW)]

with a formula expressing the comprehension axiom for
some predicate which is complete for P under uniform AC0

reductions. Hence the finite axiomatizability of Vi-Horn
should follow from that for V°. In our proof of Theorem
7.5 below, that predicate is the Horn satisfiability problem,
which is complete forP [16].

Lemma 5.6 (Correctness of HORNS AT). VX -Horn proves Theorem 7.1. V° is finitely axiomatizable.

HORNSAT(a, b, Q, /?, R) A NEG ->•

{R(0) ^BTiSAlia^Q,^))

A(fi(0) «■ -<3TiSAJ{a,b,Q,Ti)),

where NEG states that Q «-> -iQ.

Full details can be found in [7].

6 Equivalence of Vi -Horn, P-def and QPV

The first-order theory QPV (called PV1 in [20]) has
function symbols for all polynomial-time computable func-
tions, and the axioms include defining equations for these
functions (based on Cobham's Theorem) and induction on
the length of numbers. The theory has been extensively
studied [8, 3, 12, 20, 10] and shown to robustly capture
the notion of "polynomial-time reasoning". Zambclla's [31]
theory P-dcf is a second-order version of QPV, and can
shown to be equivalent to QPV by the method of RSUV iso-
morphism (see [20]). We show that Vi-Horn js equivalent
in power to P-dcf. This implies that Vi-Horn is equivalent
in power to QPV, but is most likely not as powerful as 5.]
(sec Section 1).

We add function symbols to Vi-Horn by defining
their bit graphs by Ef -Horn formulas, obtaining a sys-
tem V'i-Horn(FP) of the same power as V'i-Horn. Then,
we prove the equivalence (provable both in P-dcf and
Vi-Horn(FP)) of functions defined with Ef-Horn formu-
las and function defined by Cobham's theorem. Finally, we
show that the classes of theorems of I'i-Horn(FP) and theo-
rems of P-def coincide. The main result of this section is:

Theorem 6.1. P-def is a conservative extension of\\ -Horn.

7 Finite Axiomatizability

Here we show that both V° and Vi-Horn are finitely ax-
iomatizable, and that the VEf consequences of Vi-Horn
and the VE} consequences of S\ are each finitely axiom-
atizable. (Theorem 10.1.2 of [20] states that the VEj con-
sequences of S-2 arc finitely axiomatizable for j > 2 and
i > 1.)

Since V° defines the uniform AC0 functions, it seems
plausible that V'i -Horn could be axiomatized by V*° together

Proof. We must show that all Ejf-COMP axioms follow
from finitely many theorems of V° (see section 3).

Let 2 - BASIC+ (or simply D+) denote the 2 -
BASIC axioms along with finitely many theorems of V°
asserting basic properties of + and • such as commutativ-
ity, associativity, distributive laws, and cancellation laws
involving +, •, and <. These can be proved from the
2 — BASIC axioms by induction on ZZQ formulas, as dis-
cussed in Section 3.

It suffices to show that fc-ary comprehension (6) for all
Y.Q formulas follow from B+ and finitely many such com-
prehension instances. We use the notation $[«, Q]{x) to in-
dicate that the E^ formula <I> can contain the free variables
S, Q in addition to .f = x\,..., :rfr. Then COMP,i>{ä, Q, b)
denotes the comprehension formula

BY < (V...A)V.r, < 6,...Vx, < h(Y(x) O *(£))

We can show that there arc only 12 formulas <I>i,..., <3?i2

for which we need instances COAIP,i> of comprehension
scheme. For example, $1, $2 and <f>;j arc:

$ 1 (.T ,, x->) = By < x 1 (;r 1 = (:/:•_>, y))
$2(:ri.x2) = Bz < x^xi = (z,x-,))
*s[C?i, Q2](*i , x-2) = By < *, (Q, (.r,, y) A Q2(y, *■>))

In the following lemmas, we abbreviate COMP4,,■(...)
by Cj. The lemmas state that projection, terms and finally
atomic formulas can be defined using finitely many axioms
ofV°.

Lemma 7.2. For each k > 2 and 1 < i < k let

*iA.(jy, z) = Bxl <y... Bx^i < yBxi+l <y... 3xk < y

(y = {xi....,x,-i,z.xl+i,...,xk))

Then
B+,CuC-2,Cz hCOil/P*

Lemma 7.3. Let t(x) he a term which in addition
to variables x may involve other variables a, Q. Let
*,[(,., Q}(x.y) = y = t(x).Then

B+,C\-..., C0 h COMP*, {a. Q, b, d)

Lemma 7.4. Let 1i{x),t->(x) be terms with variables
among x, ci. Q. Suppose

184

*i[ö,Q](i) = h(x) = t2(x)
*2[ä,Q](x) =t1{x)<t2(x)
*3[ä,Q,X](x) = X(t!(x))

ThenB+,d,...,C9 h COMPy^fori = 1,2,3.

Now we can complete the proof of the theorem. Lemma
7.4 takes care of the case when $ is an atomic formula. Let

$io[Q](x) = ->Q(x)
^n[Qi,Q2](x)=Q1(x)AQ2(x)
$l2[Q,c](x) =yy<cQ{x,y)

Now by repeated applications of COMP$,w and
COMP$11 we handle the case in which $ is quantifier-
free.

Now suppose $(x) = Vy < t(x)(f>(x,y). We assume as
an induction hypothesis that we can define Q satisfying

Vx < 6Vy < *(&) + l[Q(x,y) ^ (y < t(x) -> 4>(x,y)}

Then C_OMP^{b) follows from COMP$12{Q,c,b) with
c <-i(6) and& «-(&i,...,6jfe). D

Theorem 7.5. V\-Horn is finitely axiomatizable.

Proof. It suffices to show that Corollary 5.4 (i) and (ii) can
be proved for any Ef-Horn formula $(y) using finitely
many theorems of Vi-Horn as axioms. We first will show
how to do this for Theorem 5.1 (i) and (ii), and then explain
how to modify the proof to get the corollary.

First note that for each Ef-Horn formula $ we can de-
fine a version of PROP* such that (i) and (ii) in Lemma 5.5
are theorems of V°. Thus we include the finite set of ax-
ioms for V° from Theorem 7.1 among the finite axioms for
Vi-Horn. The proof of Theorem 5.1 depends on Lemma 5.5
(which we have established) and some properties of HORN-

SAT. Since HORNSAT is independent of $, we can take
these properties as axioms.

To generalize the proof of Theorem 5.1 in order to prove
Corollary 5.4, we incorporate the variable y in $(y) as an
argument of each of the arrays C, D, V, C, D, V to define
the formula PROP<J>(?/) in a modified Lemma 5.5. Then y is
not free in PROP$(y) (although it could be free in PROP<J,).

The definition (7) of HORNSAT is modified so that the pa-
rameter y is incorporated as an argument of each of the ar-
rays R,R,T,f. Then Corollary 5.4 follows in the same
way as Theorem 5.1. D

Theorem 7.6. V\-Horn is axiomatized by its VEf conse-
quences.

Proof. It suffices to show that each Ef-Horn compre-
hension axiom is a consequence of VEf theorems of
Vi-Horn. First we show that the second-order quantifiers
in Ef-Horn formulas (1) can be bounded. That is, for each
Ef-Horn formula $ there is a Ef formula $B such that

VEf Vi-Horn (-($«■ $ß). To construct $s replace each
second-order quantifier 3P in $ by a bounded quantifier
3P < t, where t is a provable upper bound on all terms
u such that P(u) occurs in $. The equivalence of $ and
$ß requires only \t-COMP instances for formulas $ with
no second-order quantifiers, and these instances are VEf
formulas.

The comprehension axiom (5) for $(2) follows from
Corollary 5.4 (i) and (ii). The Ef form of (i) we need is

3R<y3R<yRus'^{z)(y,R,R)

where RUN^ > has suitable bounds on its second-order
quantifiers. For (ii) we do not need the clause involving
R. If we replace $ by $ß then a suitable prenex form of
the result is VEf. D

Corollary 7.7. The VEf consequences of V\-Horn are
finitely axiomatizable. The VEj consequences of S\ are
finitely axiomatizable.

Proof. The first sentence follows by compactness from
Theorems 7.6 and 7.5. Since V"1 is VEf conservative over
P-def [31], it follows from Theorem 6.1 that the VEf conse-
quences of V1 and of Vi-Horn are the same, and hence are
finitely axiomatizable. The second sentence of the Corol-
lary is equivalent to asserting that the VEf consequences
of V1 are finitely axiomatizable, by the RSUV isomor-
phism. D

8. Conclusion

The original motivation for this paper was to make a con-
nection between descriptive complexity and bounded arith-
metic. Specifically we use Grädel's theorem that a predicate
is polynomial-time iff it corresponds to the finite models of
some second-order Horn formula, and define a second-order
theory based on a comprehension axiom scheme essentially
over the second-order Horn formulas. The resulting theory
Vi-Horn turns out to have the same power as the previously-
defined theories QPV and P-def but the proof of equiva-
lence is nontrivial and requires formalizing the Horn satis-
fiability algorithm in Vi-Horn. Unlike QPV and P-def, our
theory Vi-Horn turns out to be finitely axiomatizable, and
this has consequences for the important theory S].

It seems plausible that characterizations of other com-
plexity classes in descriptive complexity can be used to de-
fine related theories. In particular, Grädel[15] uses second-
order Krom formulas to characterize NL (nondeterministic
log space), and this might serve a basis for a theory of log
space reasoning.

Although we do not exploit them in this paper, bounded
arithmetic has important connections with propositional

185

proof complexity (sec [20]). The main goal of the lat-
ter is to establish super-polynomial lower bounds on the
lengths of proofs in various propositional proof systems. (If
this could be done for all "reasonable" such systems then
NP ^ coNP and hence NP ^ P [11].) [8] showed that every
theorem of PV can be expressed as a family of tautolo-
gies with polynomial size proofs in a so-called Extended-
Frcge proof system. A host of similar results has been
proved since. In the case of some weak theories T the cor-
responding propositional proof system is sometimes weak
enough that super-polynomial lower bounds arc provable,
and then independence results for T follow [24]. We know
indirectly from [8] that the E^ theorems of Vj-Horn trans-
late into tautology families with polynomial-size Extended-
Frcge proofs. It might be instructive to carry out this transla-
tion directly, possibly shedding light on the central and very
difficult problem of proving superpolynomial lower bounds
for Extended-Frcge systems.

References

[1] D. M. Barrington, N. Immcrman, and H. Straubing. On uni-
formity within NC1. Journal of Computer and System Sci-
ences, 41(3):274 - 30, 1990.

[2] S. Buss. Collection of papers. URL:
"ftp://euclid.ucsd.edu/pub/sbuss/rcscarch/".

[3] S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.
[4] S. Buss. Axiomatizations and conservation results for frag-

ments of bounded arithmetic. Contemporary Mathematics,
106:57-84, 1990.

[5] S. Buss. Relating the bounded arithmetic and polynomial
time hierarchies. Annals of Pure and Applied Logic, 75:67-
77, 1995.

[6] S. Buss, editor. Handbook of Proof Theory. Elsevier, Ams-
terdam, 1998.

[7] S. Cook and A. Kolokolova. A second-order system
for polynomial-time reasoning based on Gracdcl's theo-
rem. Electronic Colloquium on Computational Complexity
(ECCC),7RQ1-024, 2001.

[8] S. A. Cook. Feasibly constructive proofs and the proposi-
tional calculus. In Proceedings of the Seventh Annual ACM
Symposium on Theory of Computing, pages 83 -97, 1975.

[9] S. A. Cook. CSC 2429S: Proof Complexity
and Bounded Arithmetic. Course notes, URL:
"http://www.cs.toronto.edu/~sacook/csc2429h", Spring
1998.

[10] S. A. Cook. Relating the provable collapse of P to A'C1

and the power of logical theories. DIMACS series in Dis-
crete mathematics and theoretical computer science, 39:73-
91, 1998.

[Ill S. A. Cook and A. R. Rcckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic Logic.
44(l):36-50, 1979.

[12] S. A. Cook and A. Urquhart. Functional interpretations of
feasibly constructive arithmetic. Annals of Pure and Applied
Logic, 63*2): 103 -200. 1993.

[13] R. Fagin. Generalized first-order spectra and polynomial-
time recognizable sets. Complexity of computation, SIAM-
AMC proceedings, 7:43-73, 1974.

[14] E. Grädel. The Expressive Power of Second Order Horn
Logic. In Proceedings of 8th Symposium on Theoretical As-
pects of Computer Science STACS '91, Hamburg 1991, vol-
ume 480 of LNCS, pages 466-477. Springer-Verlag, 1991.

[15] E. Grädel. Capturing Complexity Classes by Fragments
of Second Order Logic. Theoretical Computer Science,
101:35-57, 1992.

[16] R. Grecnlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Par-
allel Computation. Oxford University Press, 1995.

[17] P. Hajck and P. Pudläk. Metamathematics of First-Order
Arithmetic. Springer, Berlin, 1998.

[18] N. Immcrman. Relational queries computable in polytime.
Information and Control, 68:86 -104, 1986.

[19] N. Immcrman. Descriptive complexity. Springer Verlag,
New York, 1999.

[20] J. Krajicek. Bounded Arithmetic, Propositional Logic, and
Complexity Theory. Cambridge University Press, New York,
USA, 1995.

[21] J. Krajicek, P. Pudlak, and G. Takeuti. Bounded arithmetic
and the polynomial time hierarchy. Annals of Pure and Ap-
plied Logic, 52:143-153, 1991.

[22] D. Leivant. Characterization of complexity classes in
higher-order logic. In Proceedings of the Second Annual
Conference on Structure in Complexity Theory, pages 203-
217, 1987.

[23] D. Leivant. Descriptive characterizations of computational
complexity. Journal of Computer and System Sciences,
39:51-83, 1989.

[24] J. Paris and A. Wilkie. Counting problems in bounded arith-
mctcs. In Methods in mathematical logic, volume LNM
1130, pages 317 - 340. Springer Verlag, 1985.

[25] A. Razborov. An equivalence between second-order
bounded domain bounded arithmetic and first-order
bounded arithmetic. In P. Clotc and J. Krajicek, editors,
Arithmetic, proof theory and computational complexity,
pages 247-277. Clarendon Press, Oxford, 1993.

[26] A. Razborov. Bounded arithmetic and lower bounds in
boolean complexity. In P. Clote and J. Remmcl, editors, Fea-
sible Mathematics II, pages 344-386. Birkhauscr, 1995.

[27] U. Scheming and R. Pruim. Gems of theoretical computer
science. Springer, Berlin, 1998.

[28] L. J. Stockmcyer. The polynomial-time hierarchy. Theoret-
ical Computer Science, 3:1-22, 1977.

[29] G. Takeuti. RSUV isomorphism. In P. Clotc and J. Krajicek,
editors. Arithmetic, proof theory and computational com-
plexity, pages 364-386. Clarendon Press, Oxford, 1993.

[30] M. Vardi. Complexity of relational query languages. Infor-
mation and Control, 68:137 -146. 1986.

[31] D. Zambclla. Notes on polynomially bounded arithmetic.
The Journal of Symbolic Logic, 61(3):942-966, 1996.

186

The Crane Beach Conjecture

DAVID A. Mix BARRINGTON *
Computer Science Department

University of Massachusetts
barring@cs.umass.edu

CLEMENS LAUTEMANN

Institut für Informatik
Johannes Gutenberg-Universität Mainz
cl@informatik.uni-mainz.de

NEIL IMMERMAN *
Computer Science Department

University of Massachusetts
immerman@cs.umass.edu

NICOLE SCHWEIKARDT

Institut für Informatik
Johannes Gutenberg-Universität Mainz

nisch@informatik.uni-mainz.de

DENIS THERIEN *
School of Computer Science

McGill University
denis@cs.mcgill.ca

Abstract 1 Introduction

A language L over an alphabet A is said to have a neutral
letter if there is a letter e £ A such that inserting or deleting
e 'sfrom any word in A* does not change its membership (or
non-membership) in L.

The presence of a neutral letter affects the definability of a
language in first-order logic. It was conjectured that it ren-
ders all numerical predicates apart from the order predicate
useless, i.e., that if a language L with a neutral letter is not
definable in first-order logic with linear order, then it is not
definable in first-order logic with any set Af of numerical
predicates.

We investigate this conjecture in detail, showing that it fails
already for Af = { + , *}, or, possibly stronger, for any set Af
that allows counting up to the m times iterated logarithm,
\g-m', for any constant m.

On the positive side, we prove the conjecture for the case
of all monadic numerical predicates, for Af = {+}, for
the fragment BC(Y,i) of first-order logic, and for binary
alphabets.

•Supported by NSF grant CCR-9988260.
t Supported by NSF grant CCR-9877078.
^Supported by NSERC and FCAR.

Logicians have long been interested in the relative expres-
sive power of different logical formalisms. In the last
twenty years, these investigations have also been motivated
by a close connection to computational complexity theory
— most computational complexity classes have been given
characterisations as finite model classes of appropriate log-
ics, cf. [Imm98]. In these investigations it became apparent
that in order to describe computation over a finite structure,
a formula has to be able to refer to some linear order of the
elements of this structure. Given such an order, the universe
of the structure, i.e., the set of its elements, can be identified
with an initial segment of the natural numbers. In a logic
with the capability to express induction we can then define
predicates for arithmetical operations such as addition or
multiplication on the universe, and use them in order to de-
scribe operations on time or memory locations. In weak
logics, however, e.g., first-order logic, defining an order re-
lation does not automatically make arithmetic available. In
fact, even over strings, the expressive power of first-order
logic varies considerably, depending on the set of numerical
predicates that can be used.

As an example, if the order is the only numerical rela-
tion then the only regular languages that can be defined
in first-order logic are the star-free languages. If, how-
ever, for every p £ N we have available the predicate modp

(which holds for a number m iff m = 0 (mod p)) then
we can express regular languages that are not star-free,

187
0-7695-1281-X/01 $10.00 © 2001 IEEE

such as (000 + 001)*. In fact, with these predicates we
can express all the first-order definable regular languages,
cf. [Str94]. Thus, even very powerful relations (arithmetical
relations, or even undecidable ones) are of no further help
in defining regular languages. On the other hand, with ad-
dition, we can express languages that are not regular, such
as{0nri/nGN}.

First-order logic with varying numerical predicates can also
be thought of as specifying circuit complexity classes with
varying uniformity conditions [BIS90], The language de-
fined by a first-order formula is naturally computed by a
family of boolean circuits with constant depth, polynomial
size, and unbounded fan-in (called "AC0 circuits"). The
power of such a family depends in part on the sophistication
of the connections among the nodes. A formula with only
simple numerical predicates leads to a circuit family where

these connections are easily computable. These are called
"uniform circuits", and how uniform they are is quantified
by the computational complexity of a language describing
the connections. A formula with arbitrary numerical predi-
cates leads to a circuit family with arbitrary connections —
the set of languages so describable is called "non-uniform
AC°'\

There are languages, such as the PARITY language, for
which we can prove no AC0 circuit exists [Ajt83, FSS84].
A major open problem in complexity theory is to develop
methods for showing languages to be outside of uniform cir-
cuit complexity classes even if they are in the corresponding
non-uniform class. This is an additional motivation for the
study of the expressive power of first-order logic with vari-
ous numerical predicates, as this provides a paramctrization
of various versions of "uniform AC°'\

In an attempt to obtain a better understanding of this expres-
sive power, Thcrien considered the concept of a neutral let-
ter for a language L, i.e., a letter e that can be inserted into
or deleted from a string without affecting its membership in
L. Since, in the presence of such a letter, membership in L
cannot depend on specific (combinations of) letters being in
specific (combinations of) positions, it seemed conceivable
that neutral letters would render all numerical predicates,
except for the order, useless. With this in mind, Thcrien
proposed what was later dubbed the Crane Beach Conjec-
ture:

If a language with a neutral letter can be defined
in first-order logic using some set Af of numerical
predicates then it can be so defined using only the
order relation.

One particular example of a language with a neutral letter is
PARITY, consisting precisely of those 0-1-strings in which
1 occurs an even number of times. PARITY is not definable
in first-order logic - no matter what numerical predicates

are used (cf. [Ajt83, FSS84]). The Crane Beach conjecture
would imply this result, since PARITY is a regular language
known not to be star-free.

In this paper, we investigate the Crane Beach conjecture in
detail. We first show that in general it is not true — in fact,
it already fails for Af = {+,*}. However, we also show
that the conjecture is true in a number of interesting special
cases, including the case of addition, i.e., when Af = {+}■

This work is closely related to a line of research in data
base theory which is concerned with so-called collapse re-
sults (cf. [BLO0]). Here one considers a finite data base
embedded in some infinite, ordered domain, and then looks
at locally generic queries, i.e., queries which are invariant
under monotone injections of the data base universe into the
larger domain. In this setting, a language with a neutral let-
ter is the special case of a locally generic (Boolean) query
over monadic databases with background structure (N,Af),
and the conjecture then can be translated into a collapse for
first-order logic.
We will come back to this in connection with Theorem 3.12.

Acknowledgements
We arc indebted to Thomas Schwcntick for bringing the
data base theory connection to our attention. He also took
an active part in many discussions on the subject of this pa-
per. In particular, the first proof of Theorem 3.9 was partly
due to him. The first author in particular would like to thank
Eric Allendcr. Pierre McKenzie, and Howard Straubing for
valuable discussions on this topic, many of which occurred
at a Dagstuhl workshop in March 1997. Much important
work on this topic also occurred at various McGill Invi-
tational Workshops on Complexity Theory, particularly on
excursions to Crane Beach, St. Philip, Barbados.

2 Preliminaries

2.1 First-Order Logic

A signature is a set a containing finitely many relation, or
predicate, symbols, each with a fixed arity. A a-structurc
21 = (U"[, cr2') consists of a set W51, called the universe of
21 and a set a"{ that contains an interpretation R"[C (U°[)k

for each fc-ary relation symbol R £ a.

In this paper, vvc are concerned almost exclusively with
first-order logic over finite strings. In this context, for an

alphabet A we use the signature a A '■— {Q„ / a £ ^1}
and identify a string w = w\ ■ ■ ■ wn € A* with the struc-
ture w = ({1,... ,n}, <J%), where aA' = {(?,"' / a<EA} and
Qn ~ {* < n I w, = a}, i.e. i € Q™ <^=> w, = a, for all
a e A.
In addition to the predicates Qn we also have numerical
predicates. A k—ary numerical predicate P has, for every

188

n 6 N, a fixed interpretation Pn C {1,... , n}k. Our prime
example of a numerical predicate is the linear order rela-
tion <. Where we see no danger of confusion (i.e., almost
everywhere) we will not distinguish notationally between a
predicate and its interpretation.
An atomic a-formula is either of the form xi = X2,
or P(xi,... ,Xk), where xi,X2,- ■ ■ ,Xk are variables and
P £ a is a fc-ary predicate symbol. First-order cr-formulas
are built from atomic cr-formulas in the usual way, using
Boolean connectives A, V, ->, etc. and universal (Vx) and
existential (3 x) quantifiers.
For every alphabet A, and every set Af of numerical predi-
cates, we will denote the set of first-order a A U A'-formulas
by FO[Af]. We define semantics of first-order formulas in
the usual way. In particular, for a string w 6 A* and a for-
mula <p G FO[Af] without free variables (i.e., variables not
bound by a quantifier), we will write w \= <p if cp holds on
the string w. If x\,... ,Xk are the free variables of cp, and
if pi,... ,pk < \w\, w \= tp(pi, ■ ■ ■ ,pk) indicates that cp
holds on the string w with Xi interpreted as Pi, for every
i < k.
Every formula cp 6 FO[Af] without free variables defines
the set Lv of those yl-strings which satisfy cp. We say
that a language L C A* is definable in FO[N~\, and write
L e FO[Af], if L = Lv, for some <p e FO[Af]. We will
use analogous notation for subsets of FO[Af], in particular,
we will consider the set £i[A/*] of formulas which are of the
form 3xi ■ ■ ■ 3xrip, for some quantifier-free ip £ FO[Af],
and its Boolean closure, BC(Ei[Af]). (One can define a
complete hierarchy of classes Ei[yV] and II i [A/-] along with
their Boolean closures, using the hierarchy of first-order for-
mulas given by the number of quantifier alternations. But in
this paper we will have need only for BC(T,i[Af\).

2.2 Ehrenfeucht-Fraisse Games

One of our main technical tools will be (various versions
of) the Ehrenfeucht-Fraisse game. In our context, the
Ehrenfeucht-Fraisse game for a set of numerical predicates,
Af, is played by two players, Spoiler and Duplicator, on two
strings u,v £ A*. There is a fixed number k of rounds, and
in each round i

• first, Spoiler chooses one position, en in u, or a position
bi in v,

• then Duplicator chooses a position in the other string,
i.e., a bi in v, if Spoiler's move was in u, and an a^ in
u, otherwise.

After k rounds, the game finishes with positions a,\,... , au
chosen in u and &i,... , b^ chosen in v. Duplicator has won
if the mapping a; H-> bi, i = 1,... , k, is a partial a A U M-
isomorphism, i.e., if

• for every i,j < k,a,i = a,j 4=> bi — bj,

• for every i < k, a,i and bi carry the same letter, i.e.,
uai = Vbi. and

• for every m-ary predicate P € Af, and every
h, • • • , im < k, it holds that P(üii,... , a,m) ^=>
P(bh,---,bim).

If Duplicator has a winning strategy in the k-round game
forM on two strings u and v, we write u =jf v. The funda-
mental use of the game comes from the fact that it charac-
terises first-order logic (c.f., e.g., [EFT94]). In our context,
this can be formulated as follows:

2.1 Theorem (Ehrenfeucht, Frai'sse)
A language L C A* is definable in FO[Af] iff there is a
finite subset Af' of Af and a number k such that, for every
u € L,v $ L, Spoiler has a winning strategy in the A;-round
game for Af' on u and v. D

We will also use the following variant of the game:
In the single-round Ai-game for Af on two strings u, v

• first, Spoiler chooses k positions ai,
&1,... A in^;

, a/, in u, or

• then Duplicator chooses k positions in the other string,
i.e., positions bi,... , bk in v, if Spoiler's move was in
u, a\,... , a,k in u, otherwise.

Again, Duplicator wins iff the mapping <2j *-^ bi, i =
1,... ,k, is a partial isomorphism. Clearly, if Duplicator
has a winning strategy for the single-round fc-game on u
and v, then she also has one for the single-round /i-game,
for all h < k.
This game characterises the expressive power of
BC(SiM):

2.2 Theorem
A language L C A* is definable in BC{Hi[Af]) iff there
is a finite subset Af' of Af and a number k such that, for
every u 6 L, v £ L, Spoiler has a winning strategy in the
single-round fc-game for Af' on u and v. D

3 The Crane Beach Conjecture

Intuitively, since numerical predicates can only talk about
positions in strings, it seems that they can only help ex-
press properties that depend on certain (combinations of)
letters appearing in certain (combinations of) positions. The
Crane Beach Conjecture (named after the location of its
first, flawed, proof) is an attempt to make that intuition pre-

189

3.1 Definition (Neutral letter)
Let L C A*. A letter e £ A is called neutral for L if for
any u, v £ .4* it holds that uv £ L <^=> uev £ L. D

Thus membership in a language with a neutral letter cannot
depend on the individual positions on which letters are: any
letter can be moved away from any position by insertion or
deletion of neutral letters. It seems therefore conceivable
that for every such language, if it can be defined at all in
first-order logic then it can be defined using the linear order
as the only numerical relation.

3.2 Definition (Crane Beach Conjecture)
Let Af be a set of numerical predicates. We say that the
Crane Beach conjecture is true far Af, iff every language
L £ FO[<,Af] that has a neutral letter is also definable in
FO[<}. D

It turns out that the conjecture is true for some sets of nu-
merical predicates, but not for all. In fact, it fails for the set
Af — { + ,*}■ This set of predicates is particularly important
because FO[+, *] corresponds to the most natural uniform
version of the circuit complexity class AC0 [BIS90].
Our counterexample to the Crane Beach conjecture makes
use of the well-known but somewhat counterintuitive ability
of FO[+, *] formulas to count letters up to numbers poly-
logarithmic in the input size:

3.3 Definition (Definability of Counting)
Let f(n) < n be a nondecreasing function from N to N. We
say that a logical system can count up to f(n) if there is a
formula <p such that for every n and for every w £ {0,1}",

N v(c) c</(«)Ac=#,H

where #i (u>) is the number of ones in w.

We will need to consider two functions with similar nota-
tion. We write the base-two logarithm of n as lgn, the
fc'th power of this logarithm as (lgn)*, and the fc'th iter-
ated logarithm as lg'*' n. For example, lg'2' n is the same
aslg(lgn).

3.4 Proposition ([AB84, FKPS85, DGS86, WWY92J)
The system FO[+, *] can count up to (lgn)* for any A'. If
f(n) = (lgn)w(1), and M is any set of numerical predi-
cates, then FO[<,Af] cannot count up to f(n).

3.5 Theorem
There is a language L with a neutral letter that is definable
inFO[+,*]butnotin FO[<).

Proof:

We define a language A on alphabet {0,1, a} as follows.
For each positive integer k, A will contain a string con-
sisting of the 2* binary strings of length k, in order, sep-
arated by a's. The total length of the k'lh string in A is thus
2k(k + 1) - 1. The first three strings in A arc thus Ool,
OOaOlolOoll.and

OOOaOOlaOlOaOllolOOalOlallOalll.

Our desired language B has alphabet {0,1, a, e} and is sim-
ply the set of strings w over this alphabet such that the string
obtained by deleting all the e's in w is in A. Clearly B has
a neutral letter e, as inserting or deleting e's cannot affect
membership in B. Clearly B is not regular, so it cannot be
in FO[<\. It remains for us to prove:

3.6 Lemma
B is definable in FO[+, *].

Proof:
We need to formulate a sentence of FO[+, *] that will hold
for a string exactly if it is in B, that is, exactly if its non-
neutral letters form a string in A. Recall that a string w is in
A exactly if for some number k, w consists of the 2'" binary
strings of length k, in order, separated by a's.
Our sentence will assert the existancc of a number k such
that the input string, with e's removed, is the k'lh string
in the language A. Since the length of the k'lh string in
A is exponential in k, and a valid input string must be at
least as long, any valid k must be at most lgn. Therefore by
Proposition 3.4, the system FO[+, *] is able to count letters
in any interval in the input string up to a limit of k.
We first assert that there are exactly k 0's and no l's before
the first a, exactly k 0's and l's between each pair of a's,
exactly k l's (and no 0's) after the last a. It then remains to
assert that each string of 0's and l's between two a's is the
successor of the previous one. To do this, we assert that for
every position y containing a 0 or 1:

• If there is a position w left of y such that there is a 0 or
1 at y and exactly k — 1 0's and l's between w and y,

• Then w has the same letter as y unless

• x has the unique a between x and y, z has the next a
to the right of x or is the rightmost position if there is
no such a,

• w has 1, there arc no 0's between w and x, y has 0, and
there are no l's between y and z, or

• w has 0. there arc no 0's between w and x, y has 1, and
there are no 0's between y and z.

This proves Lemma 3.6 and thus Theorem 3.5. D

190

Theorem 3.5 now follows immediately. D

The construction above crucially uses the fact that we can
count up to lgn in FO[+, *]. We can strengthen the con-
struction so that it provides a counterexample using only
counting up to lg'm' n, the m times iterated logarithm of n.
However, we do not yet know whether this strengthening is
non-trivial — it may be that any set of numerical predicates
that allows counting up to lg'm' n also allows counting up
to lgn.

3.7 Proposition
If the system FO[<,Af] can count up to lg(m) n for some
m, then there is a language L with a neutral letter that is
definable in FO[<, A/] but not in FO[<].

Proof:
We must show that counting up to lg^ n suffices to pro-
vide a counterexample to the Crane Beach conjecture. We
give the construction in some detail for m = 2, indicating
how to generalize it to arbitrary values for m. Take the al-
phabet {a, 6,0,1, e} and for every k consider strings of the
form (6(0 + l)*(a(0 + l)k)*)*b. Finally, add e as a neutral
letter, a and 6 are used as markers, and we interpret the 0-
1-substring between any two successive markers as the bi-
nary representation of some number between 0 and 2k - 1.
If x is any position, we define block(x) to be the interval
between the two markers nearest x, and num(x) to be the
number represented by the 0-1 subsequence in block(x).
Using a formula that can count up to k and the construction
from the proof of Theorem 3.5 we can write formulas ex-
pressing num(x) = num(y) and num(x) + 1 = num(y),
respectively. We can now express easily that between ev-
ery successive occurences of two 6's each number from 0 to
2k — 1 is represented precisely once. In other words, this
formula stipulates that the {a, 0, l}-substring between two
6's represent a permutation of the numbers 0,... , 2k - 1.
Finally, we write a formula that expresses that all permuta-
tions are represented. Altogether, our formula defines the
set of those strings which consist of a sequence of permuta-
tions of the numbers 0,... , 2fc —1, for some k, containing
every permutation at least once. In particular, every such
string has length fi(2fc!), whereas counting is only required
uptofc = 0(lglg(2*!)).
To be more precise, the formula forces all permutations to
be present as follows. It says that for every represented
permutation n (starting, say, with a 6 at position p), and
every pair of positions i,j within that permutation (i.e.,
p < i < j < p', where p' is the smallest position > p
that carries a b), there is a permutation p (between 6's at q
and q', say) which is equal to TT, except that num(i) and
num(j) are swapped. In what follows we will use abbre-
viations first(x) and last(x) for formulas which express

that x lies in the first, respectively last, block of some per-
mutation; next(x) will denote the first position in the block
directly to the right of block(x). Our formula for i and j
now expresses the following for all r, s such that p < r < p'
and q < s < q':

• num(r) = num(s) —> num(next(r)) =
num(next(s))
unless last(r) or {num(r),num(next(r))} l~l
{num(i), num(j)} ^ 0

• (num(r)—nuTn(s) A num(next(r))=num(i)) —>
num(next(s))=num(j)

• (num(r)=num(s) A num(next(r))=num(j)) —>
num(next(s))=num(i)

• (num(s)=num(j) A ->last(s)) ->•
num(next(s))=nurn(next(i))

• (num(s) = num(i) A-ilast(s)) -> num(next(s)) =
num(next(j))

• (first(r) A first(s) A num(r) ^ num(i)) ->
num(r) = num(s)

• (first(r) A first(s) A num{r) = num{i)) —►
num(s) = num(j).

Thus we can construct the desired formula for m = 2.
We can then iterate this process, using an additional marker
symbol c. The resulting formula stipulates that our string
represent all permutations of all the permutations of the
numbers 0,... , 2k - 1. This will guarantee that string to
beoflengthfi(((2fc)!)!),etc. D

It is not difficult to code the languages above using only
two non-neutral letters: just apply the homomorphism
{a, b, 0,1, e}* -> {0,1, e}* which maps e to e, a to 010,
6 to 0110, 0 to OHIO, and 1 to 011110, for example. How-
ever, with only one non-neutral letter there is no way of
defeating the conjecture.

3.8 Theorem
If |i4| = 2 then for every set M of numerical predicates and
every language L C A* with a neutral letter it holds that
L e FO[<,Af] => L e FO[<].

Proof:
Let L be a language on {l,e} with e as a neutral letter.
Consider the set of numbers n such that ln is in L and ln+1

is not. If this set is finite, it is easy to see that L is regular
and definable in FO[<]. Otherwise, we will show that no
family of unbounded fan-in circuits with constant depth and
polynomial size can recognize L — it follows from [BIS90]
that L is not definable in FO[<,Af] for any J\f.

191

For these particular values of n, any circuit deciding
L on strings of length 2n would compute a symmet-
ric function of the inputs saying yes on inputs with n
l's and no on inputs with n + 1 ones. Following the
construction of [FKPS85], a constant-depth poly-size
combination of these circuits can be used to compute
the parity function on inputs of this size. If the circuit
deciding L had constant depth and polynomial size, then
this new circuit would compute the parity function in AC0

for infinitely many input sizes, violating [Ajt83, FSS84]. D

Since PARITY is a non-star-frcc regular language over
{0,1}* and has a neutral letter, Theorem 3.8 implies the
nonexprcssibility of PARITY in first-order logic with arbi-

trary numerical predicates (i.e., AC0). Note, however, that
it directly uses the existing proofs of the nonexprcssibility
of PARITY to get this result.

On the other hand, the following special case of the Crane
Beach conjecture can be proved directly:

3.9 Theorem
The Crane Beach conjecture holds for the set of all monadic
relations.

Proof:
Let L be a language with a neutral letter that is not definable
in FO[<}. This means that for any number of moves k
there must be two strings y £ L and z g" L such that the
Duplicator wins the fc-movc game (using only <) on y and
z. By adding neutral letters we can make y and z have the
same length m.

Now let Af be any monadic predicate. We will show that
L is not definable in FO[<, Af] as follows. We will use Af
to construct two strings u £ L and v g" L from y and z by
suitable padding with neutral letters. (The length of u and v
will be a suitably large number n to be defined below.) Then
we will show how the Duplicator can win the fc-move game
on u and v, with both < and Af as numerical predicates.
The predicate Af may be regarded as a coloring of the in-
put positions from 1 to n, with finitely many colors. If r
and s arc input positions, consider the colored string given
by the interval from r to s, with each input position hold-
ing a neutral letter. For any two such strings, consider the
fc-move game with only < as numerical predicate and the
colors considered as the input. Let two strings be consid-
ered equivalent iff the Duplicator wins this game on them.
Since the language defined by this game is regular, there are
only a finite number of equivalence classes. We now define
a colored undirected graph whose vertices are these n input
positions and where the color of the edge from position r
to position s represents the equivalence class of the colored
string for that interval.
By the Erdos-S/.ckercs Theorem [ES35], as long as n is
greater than md where d is the number of edge colors, there

must be a monochromatic path in the graph of length at least
m. We create u from y, and v from z, by placing the letters
of the shorter strings in the locations given by the vertices
of these path (the "special locations"), and making all other
letters neutral. We must now explain how the Duplicator
can win the game with < and Af on the strings u and v (the
"Big Game").
The Duplicator will model the Big Game by a series of
"small games", where she already has a winning strategy
for each. One small game is played on the strings y and
z using only <, and there is another small game (using <
and color only) for each interval between special locations.
Whenever the Spoiler moves in the Big Game, the Dupli-
cator translates this move into the y-z small game by mov-

ing to the position matching the next special position to the
right. She also translates it into the small game for that inter-

val. The Duplicator's reply in the Big Game is determined
by her correct move in the y-z game, and her correct move
in the special small game for that particular interval.
After k moves Delilah must win the original Small Game
and all the interval Small Games, as she has made at most
k moves in each. It is easy but tedious to look at the input
predicates, order, equality, and position color in the Big
Game and verify that Delilah has won that as well. D

We can use Theorem 3.9 to derive the following interest-
ing generalization of the nonexprcssibility of PARITY. But
again, we do not get an independent proof of this fact be-
cause the existing proofs are used crucially to obtain the
results in [BCST92].

3.10 Corollary
The Crane Beach conjecture holds for all regular languages.
That is, for every set Af of numerical predicates and every
regular set L with a neutral letter it is true that that L 6
FO[<,M] =>£€ FO[<).

Proof:
This follows from Theorem 3.9 and the fact, proven
in [BCST92], that every regular language definable in
FO[<,Af\ (using any set Af of numerical predicates) is
definable in FO[<, {modp / p G N}], where mod,,(i) is
true iff i = 0 mod p. O

Although according to Theorem 3.9 the Crane Beach con-
jecture holds for the set of all unary relations, it is not true
for all binary relations, since FO[<,+,*] - FO[<,Bit],
c.f., [Imm98], In fact, it already fails for the set of all unary
functions, or for the set of all linear orderings. This follows
from the existence of a unary function / : N -> N (see
the proof of Theorem 3 in [Sch97]) and a set Ö of linear or-
derings (in fact, four order relations suffice, ef.[ScSc]) such
thatFO[<,+,*] = FO[<,B;f] =FO[<J] = FO[<,0}.

192

We can also consider special cases of the Crane Beach con-
jecture based on restrictions on the type of logical formulas
allowed. For example, with arbitrary sets of numerical rela-
tions the conjecture does hold for Boolean combinations of
Ei-formulas:

3.11 Theorem
Let Af be a set of numerical predicates, and let I be a
language with a neutral letter that is definable in the class
ßC(Ei[<,7\/l). ThenL e BC(Ei[<]).

Proof:
We must show that for any set Af of numerical predicates
and any language L with a neutral letter, L is definable in
.BC(Ei[<, Af]) iff it is definable in 5C(Ei[<]).
Using Theorem 2.2, we first show the proposition for the
special case Af = {sue, min, max}, where sue is the suc-
cessor relation suc(n,m) iff m = n+1, (w,n) \= min(n)
iff x=l, and (w,n) |= max(n) iff n = \w\.
Let e be the neutral letter, and assume that L g BC(T,1 [<]).
Then, for every k, there are strings u E L,v g" L such that
Duplicator wins the single-round /c-game for < on u,v.
We can assume u and v to be of the same length m (if
not, append \v\+k e's to u and \u\+k e's to v). We con-
struct strings U from u and V from v such that U G L,
V £ L, and Duplicator wins the single-round fc-game
for {<,suc,min,max} on U,V. Then L g" BC(E\[<
, sue, min, max]), which proves the assertion, by contrapo-
sition.
In order to construct U, insert 2k—1 e's between each pair
of adjacent positions in u, as well as at the beginning and
the end of u. More precisely, U = U\ • • ■ Um2k+2k-\> with
Uj2k = Uj, and Uj2k+i — e, for any j < m, i < 2k.
Similarly, we construct V from v. Since e is neutral, we
have U € L, V g L.
Assume that Spoiler chooses positions a\,... , ak in U (the
other case is symmetric). Some (possibly all, or none) of
the Uaj will be neutral letters, others will be from A \ {e}.
For the sake of notational simplicity we will assume, with-
out loss of generality, that Uai, ■ ■ ■ , Uaq G A \ {e}, and
Uaq+1 = • • ■ = Uak = e. Then each a,j with j < q is of
the form Sj2k, for some Sj € {1,... , m}. Now Duplica-
tor simulates a move of Spoiler in the game for <on«,»
in which Spoiler pebbles si,... , sq on u, and finds her re-
ply, s[,... ,s'qon v, according to her winning strategy. She
then sets, for each j from 1 through q, bj to be s'j2k. Then
for each j, j' <qit holds that

• bj ^ bji+1 and Oj ^ a,v + l,

bj < bj*

Vbi = v.; =

a, < a,', and

Sj V Qj ■

To complete this move, Duplicator has to define
bq+i,... ,bk such that Vbq+1 — ■ ■ ■ = V\,k — e, and that
for all j, j' < k

bj < bj,

bj = bj. + l

bj = l

üj < a ,ji,

a.jt+1, and

CLj = 1, bj = \V\ aj = \u\.

Such bq+i,... ,bu can easily be found, since between any
two different bj,bj with i,j < q, there are at least 2fc-l
positions p where Vp = e.

Now let M be an arbitrary finite set of numerical predicates
and assume that L $ 5C(Ei[<]). From what we have
just shown it follows that, for every k, we can find strings
u & L, v g L of the same length m such that Duplica-
tor has a winning strategy in the single-round 2A;+2-game
for <, sue, min, max on u, v. We want to construct strings
U and V by inserting neutral letters into u and v, respec-
tively, in such a way that the original letters of u and v
are moved onto positions ii,... ,im which are, in a cer-
tain sense, highly indistinguishable. To this end, we define,
for every number n, a coloring of subsets of size h < 2k of
{1,... , n}. This coloring was inspired by the one used by
Straubing in [StrOl], in his proof of Theorem 8. There he
used the following extension of Ramsey's theorem, which
will also help us here:

Theorem Let m, k, ci,... ,ck > 0, with k < m. Let n
be sufficiently large as a function of m and the e's. If all
fo-element subsets of {1,... , n}, with 1 < h < k, are col-
ored from a set of Ch colors, then there exists an m-element
subset T of {1,... ,n} such that for each h with 1 < h < k
there exists a color KH such that all h-element subsets of T
are colored K/J. D

Let T = {TI, ... , Tq} be the set of all atomic formulas over
Af, < on variables x\,... ,xk,yi,... ,yh. The Af, <-type
of a tuple r = (n,... ,rjt) E {1,... ,n}k with respect
to a /i-element set S = {pi < • • • < ph}, a(r, 5), is the
set of all those formulas of T that are satisfied when n is
interpreted as r;, and yj as pj, fori<k and j < h.
We now color, for each number n and every h < 2k, every
/i-element set S = {pi < • • • < ph} C {1,... , n} with
the set of all those a C T for which there is a fc-tuple r
over {1,... ,n} such that r has A/'-type a with respect to
5. Clearly, for every h < 2k there is a fixed number of
possible colors, independent of n. The extension of Ram-
sey's theorem stated above tells us that for large enough n
we can find numbers i% < ■ ■ ■ < im < n such that, for
every h < 2k, all /i-element subsets of {ii,... ,im} have
the same color. We now insert neutral letters into u in such
a way that in the resulting string U we have Uj3 = us, for
s = 1,... , m, and Uj — e for all i $ {ii,... , im}. In the

193

same way we construct V from v. Let us calh'i,... , im the
special positions.

We now show that Duplicator has a winning strategy in the
fc-game for <,Af on U,V. Assume that Spoiler chooses
a = ai,... ,Ofc in U (again, the other case is symmet-
ric). Then Duplicator finds, for every a,j the next small-
est special position iSj, i.e, is. < a,- < is +i- Let
S = {iSj,iSj+x j j = 1,... , k}. Duplicator now simulates
a move of Spoiler in the 2fc+2-gamc for <, sue, min, max
on u,v, in which Spoiler plays all the points Sj and Sj + 1,
for j — 1,... , k on u, as well as min and max. Using
her winning strategy in this game, Duplicator finds a reply

with which she wins the game for <,suc. Therefore, we
can safely call these points tj, tj + 1, for j = 1,... ,k, and

we know that uSj = vtj, for j = 1,... , k. Let T be the
set {itj,itj+1/j = l,...,k}. \T\ = \S\ = h < 2k, so

S and T have the same colour, and this implies that there is
a tuple b — (bi,... ,bk) with the same TV-type as a, and
with uj(b,T) = ui(a,S). Duplicator now puts her pebbles
on bi,... ,bk in V. We have to check the winning condi-
tions. By construction, a(a, S = a(b, T). In particular, this
implies that

• {au... ,ak) and (&i,...

• a,j < ciji <=$> bj < bji.

, 6/t) have the same /V-type,

for all j, j',

if aj = iSj then bj = itj hence Ua. = uSj = vtj

Vt,r If cij is not of this form then is. < cij < is .H

consequently, it. < bj < itj+1 and Uaj = Vbj - e.

D

As we have seen, with addition and multiplication first-
order logic has enough expressive power to defeat the neu-
tral letter. Addition alone is, in many ways much weaker
than addition and multiplication together. For example,
this is witnessed by the fact that the first-order theory of
the natural numbers with + and * is undccidable, whereas
Prcsburger arithmetic, the first-order theory of the natural
numbers with addition only, can be decided using quantifier
elimination. Also note that at least our technique for pro-
ducing a counterexample cannot work with addition only,
since it is well known (sec, e.g., page 12 of [Lyn82]) that
FO[<, +] cannot count up to any non-constant function.
It is therefore more than conceivable that addition alone is
too weak to make the conjecture fail, and we now show that
this is indeed the case.

3.12 Theorem

Every language L £ FO[<, +] that has a neutral letter is
definable in FO[<].

As indicated in the introduction, this theorem follows from
collapse results for first-order queries over finite databases

(e.g., Theorem 5.5 in [BST99]). However the terminology
in which these results are formulated is rather alien to our
setting here, so we will instead use a recent collapse result
on infinite databases in [LS01]. First, however, let us give
an intuitive explanation of the main idea behind the proof.

For simplicity, we concentrate on 0-1-strings u, v of the
same (large) si/x and discuss what Duplicator has to do in
order to win the fc-round -I—game on u and v. Let A be the
set of indices a for which ua = 1, similarly, B = {b /' Vb —
1}. As in previous proofs, we will work with a set Q of
indistinguishable positions, and choose u and v such that
A,BCQ.

Assume that, after i-\ rounds a(1',.. ,a(i_1) have been

played in u, and 6(1),.., 6(i_1) in v. Let Spoiler choose
some clement a(i) in u. When choosing 6(i) in v, Du-
plicator has to make sure that any Spoiler moves for the
remaining k-i rounds in one structure can be matched in
the other. In particular, this means that any sum over the
a'J' behaves in relation to A exactly as the corresponding
sum over the b(^ behaves in relation to B. For instance, for
any sets J,J' C {l,..,i}, it should hold that there is some

a e A that lies between Y,jeJ a{j) and Y.yaj< aijl) if and

only if there is some b G B that lies between J2eJ ^

and J^j'e.r ^<J '• But 'l is not enough to consider simple
sums over previously played elements. Since with 0(r)
additions it is possible to generate s ■ a(,) from a(l), for any
s < 2r', we also have to consider linear combinations with
coefficients as large as this. Furthermore, since Spoiler is
allowed to choose cither structure to move in each time,
it is necessary to deal with even more complex linear
combinations. One can only handle all these complications
because, as the game progresses, the number of rounds left
for Spoiler to do all these things decreases. This means, for
instance, that the coefficients and the length of the linear
combinations we have to consider decrease: after the last
round, the only relevant linear combinations are simple
additions of chosen elements.
All the technical details necessary to make this strategy
work are worked out in [Lyn82] in order to prove that
for each first-order formula with addition ip there is a set
Q C N such that ip cannot distinguish between subsets of
Q if they are of equal cardinality, or both large enough.
Drawing on Lynch's theorem, in [LS01] the authors
prove a theorem, which, specialised to our setting can be
formulated as follows.

Theorem ([LS01], Theorem 3.2)
For every k £ N there exists a number r(k) e N
and an order-preserving mapping q : N —> N such
that, for every signature a the following holds: If
au and av are interpretations of a over N, and if
n,m £ N with (N,au,n) =f(k) {N,av,m), then

{N,q(au,n))=+ (N,q(av,m)).r D

194

Here, q(au,n) is short for aq'U,q(n), where aq'U =
{W>u /Re a}, and R9-u = {q{i) / i £ Ru}.

Proof of 3.12, using the above theorem:
Assume that L g FO[<], and let u = u\---un G L,
v = vi.. .vm g- L, such that u =ftk\ v. We construct
strings U 6 L, V g L from u and v, respectively, by in-
serting neutral letters in such a way that Uq^ = U{ and
Vq(j) — Vj, fori = 1,... , n, j = 1,... , m, where q is as in
the theorem, u and u define o^-interpretations au

A and a^,
respectively, and the winning strategy of Duplicator on u
and v can easily be extended to (N, au, n) and (N, av, m):
If Spoiler plays a position a; < n on (N, au ,n), this cor-
responds to a move on u, and Duplicator can choose her
answer according to her winning strategy on v. If Spoiler
plays a position a» > n on (N, au ,n), then Duplicator
replies with 6* := m+(aj-n). (The case where Spoiler
plays on (N, av, n) is completely symmetric.) Clearly, this
defines a winning strategy for Duplicator. Application of
the theorem above gives us a winning strategy for Duplica-
tor in the k round game for {<,+} on (N,q(au,n)) and
(N, q(av ,m)). From this, we obtain a winning strategy for
Duplicator in the k round game for {<, +} on U and V:
Every move of Spoiler in U is translated into a move on
(N,q(au,n)), and Duplicator's reply on (N, q(av ,m)) is
translated back into a move on V. The winning condition
of Duplicator on (N,q(au ,n)) and (N,q(av ,m)) directly
translates into the winning condition for Duplicator on U
and V, thus proving that U =t V. D

4 Discussion

Much of the above can be generalised from strings to arbi-
trary relational structures over the natural (or real) numbers.
This programme is pursued in [LS01]. With regard to the
questions here, the following problems remain open.

• It would be very good to have a proof of Theorem 3.8
that does not rely on [Ajt83, FSS84]. However, since
Theorem 3.8 implies the nonexpressibility of PARITY,
we expect this to be very difficult.

• What is the status of the conjecture for FO[<,*]7
There is a construction of Julia Robinson [Rob49]
defining addition from multiplication and the succes-
sor operation, but in our context this only suffices to
define addition on some numbers (those less than n1//4)
from multiplication and order on all numbers. We con-
jecture that some variant of this construction will suf-
fice to disprove the Crane Beach conjecture for FO[<
, *], perhaps by showing it equivalent to FO[<, +, *].

• Can we find a set of numerical predicates that allows
us to count up to lg(m) n, but not to lgn? What about

counting up to even smaller functions? We conjecture
that the Crane Beach conjecture is true of a system iff
it cannot count beyond a constant.

• Within FO[<,+,*}, we can consider the subclasses
of formulas based on the number of quantifier alter-
nations. The lg-counting operation requires S3, and
the construction of the counter example adds a few
more levels. This leaves a gap between the upper
bound of something like £5 in Theorem 3.5, and a
lower bound of ßC(Si) in Theorem 3.11. Since in
JBC(S2), counting is only possible up to a constant
(cf., [FKPS85]), it is conceivable that the lower bound
can be improved.

• Theorem 3.12 places limits on the power of a partic-
ular uniform circuit complexity class, an "addition-
uniform" version of AC0. Can we use these tech-
niques to place limits on the power of more power-
ful uniform versions of AC0 (without using the non-
uniform lower bounds) or on addition-uniform ver-
sions of more powerful classes? This has been done
for one such class, an addition-uniform version of
LOGCFL, by Lautemann, McKenzie, Schwentick, and
Vollmer [LMSV99].

• It would also be of interest to study the conjecture for
certain extensions of FO, such as FO with unary count-
ing quantifiers or FO with modulo counting quanti-
fiers. These each have various versions depending on
the numerical predicates available.

References

[AB84] M. Ajtai and M. Ben-Or. A theorem on proba-
bilistic constant depth computations. Proc. 16th
ACM STOC (1983), 471 -474.

[Ajt83] M. Ajtai. Ej-formulae on finite structures. An-
nals of Pure and Applied Logic, 24:1—48, 1983.

[BCST92] D.A.M. Barrington, K. Compton, H. Straub-
ing, and D. Therien. Regular languages in
NC1. Journal of Computer and Systems Sci-
ences, 44A7S-499, 1992.

[BIS90] D.A.M. Barrington, N. Immerman, and H.
Straubing. On uniformity within NC1. J.
Comp. Syst. Sei. 41:3 (1990), 274-306.

[BL00] M. Benedikt and L. Libkin. Expressive power:
The finite case. In G. Kuper, L. Libkin, and
J. Paredaens, editors, Constraint Databases,
pages 55-87. Springer, 2000.

195

[BST99] O.V. Belegradck, A.P. Stolboushkin, and M.A.
Taitslin. Extended order-generic queries. An-
nals of Pure and Applied Logic, 97:85-125,
1999.

[DGS86] L. Dencnbcrg, Y. Gurevich, and S. Shelah.
Definability by constant-depth polynomial-size
circuits. Inf. and Control 70 (1986) 216-240.

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas.
Mathematical Logic. Springer-Verlag, New
York, 2nd edition, 1994.

[ES35] P. Erdös and G. Szekeres. A combinatorial
problem in geometry. Compositio Math. 2
(1935), 464-470.

[FKPS85] R. Fagin, M. Klawc, N. Pippenger, and L.J.
Stockmeyer. Bounded-depth polynomial size
circuits for symmetric functions. Theoretical
Computer Science, 36:239-250, 1985.

[FSS84] M.L. Fürst, J.B. Saxe, and M. Sipser. Parity, cir-
cuits, and the polynomial-time hierarchy. Math-
ematical Systems Theory, 17:13-27, 1984.

[Imm98] N. Immerman. Descriptive and Computational
Complexity. Springer-Verlag, New York, 1998.

[LMSV99] C. Lautemann, P. McKenzie, T. Schwcntick,
and H. Vollmer. The descriptive complexity
approach to LOGCFL. In STACS 1999: 16th
Annual Symposium on Theoretical Aspects of
Computer Science, Lecture Notes in Computer
Science 1563, Springer Verlag (1999), 444-454.

[LS01] C. Lautemann and N. Schweikardt. An
Ehrenfeucht-Fra'fsse approach to collapse re-
sults for first-order queries over embedded
databases. In STACS 2001: 18th Annual Sym-
posium on Theoretical Aspects of Computer Sci-
ence, Lecture Notes in Computer Science 2010,
Springer Verlag (2001), 455-466.

[Lyn82] J. F. Lynch. On sets of relations definable by
addition. Journal of Symbolic Logic, 47:659-
668, 1982.

[Rob49] J. Robinson. Definability and decision prob-
lems in arithmetic. Journal of Symbolic Logic
14(1949), 98-114.

[Sch97] Th. Schwcntick. Padding and the expressive
power of existential second-order logics. In
Mogens Niclson and Wolfgang Thomas, edi-
tors, Proceedings of the Annual Conference of

the European Association for Computer Sci-
ence Logic, Lecture Notes in Computer Science,
pages 461-477, 1997.

[ScSc] N. Schweikardt and Th. Schwcntick. In prepa-
ration.

[Str94] H. Straubing. Finite Automata, Formal Logic,
and Circuit Complexity. Birkhäuscr, 1994.

[StrOl] H. Straubing. Languages defined with modular
counting quantifiers. Information and Compu-
tation, 2001. To appear.

[WWY92] I. Wegcner, N. Wurm, and S.-Z. Yi. Symmetric
functions in AC0 can be computed in constant
depth and very small size, in Boolean Function
Complexity, ed. M. Patcrson, London Mathe-
matical Society Lecture Notes 169 (1992), 129-
139.

196

"An n! Lower Bound On Formula Size"

Micah Adler

Computer Science Dept.
UMass, Amtierst, USA

http://www.cs.umass.edu/~micah

Neil Immerman*

Computer Science Dept.
UMass, Amherst, USA

http://www.cs.umass.edu/~immerman

Abstract

We introduce a new Ehrenfeitcht-Fraisse game for prov-
ing lower bounds on the size of first-order formulas. Up
until now such games have only been used to prove bounds
on the operator depth of formulas, not their size. We
use this game to prove that the CTL+ formula Occurn =
E[Fpi A Fp2 A • • • A Ypn] which says that there is a path
along which the predicates p\ through pn occur in some or-
der, requires size n\ to express in CTL. Our lower bound is
optimal. It follows that the succinctness of CTL+ with re-
spect to CTL is exactly 0(n)!. Wilke had shown that the
succinctness was at least exponential [WU99].

We also use our games to prove an optimal Q(n) lower
bound on the number of boolean variables needed for
a weak reachability logic {TIC") to polynomially embed
the language LTL. The number of booleans needed for
full reachability logic TIC and the transitive closure logic
F02(TC) remain open [1V97, MOO].

1 Introduction

We introduce a new Ehrenfeucht-Frai'sse game for prov-
ing lower bounds on the size of first-order formulas. Previ-
ous such games only proved lower bounds on the quantifier
depth of formulas.

We use this game to prove that the CTL+ formula,

Occur„ = E[Fpi A Fp2 A • ■ • A Fpn] (1.1)

requires size n! to express in CTL. The formula Occur„ says
that there exists a path such that each of the predicates pt

occurs somewhere along this path. (E is the existential path
quantifier: there exists a maximal path starting from the cur-
rent point. F is the modal quantifier: somewhere now or in
the future along the current path.)

This offers a quite different proof and improves the expo-
nential lower bound on the succinctness of CTL compared

'Research supported by NSFgrant CCR-9877078.

with CTL+ [Wil99]. We thus prove that the succinctness of
CTL+ with respect to CTL is exactly 9(n)!.

We prove that the parse tree of any CTL formula express-
ing Occur« has at least n! leaves. This bound is exactly op-
timal because the following formula expresses Occur„ and
has n! leaves in its parse tree. Here we use [n] to denote
{l,2,...,n}.

<fn
ii€[n]

V EFU A V EF(PJ2

i2e[n]-{ii}

V EF(... AEFPJ„).
!3e[n]-{«l,i2}

The main contribution of these results is not so much
the introduction of the new formula-size games, as their
effective use proving a new and optimal result. Standard
Ehrenfeucht-Frai'sse games are played on a single pair of
structures A, B. They are used to prove lower bounds on
the quantifier depth of a formula <p needed to distinguish A
from B. Our new game works on a whole set of structures
A, B where all of A satisfies ip and all of B satisfies -*p. In
a standard game, the pair of structures A and B may differ
on a disjunction: ip = a V ß. In this case they differ on a or
they differ on ß and the "or" may be discarded. However,
in the formula- size game, the set of structures A must be
split into two portions: Ai satisfying a and A2 satisfying ß.
All of B satisfies ->a and -■/?. Thus the game on (A, B) is
shifted to a pair of games, {Ai,B) and (A2,B).

There are extensive connections between the computa-
tional complexity of a problem and its descriptive complex-
ity, i.e., how complex a formula is needed to describe the
problem. Descriptive complexity is measured via the size,
number of variables, operator depth, etc. of the requisite
formulas as a function of the size of the input structures be-
ing described [Imm99].

The formula-size games introduced here generalize stan-
dard EF games. They are also related to the communica-
tion complexity games that Karchmer and Wigderson used

0-7695-1281-X/01 $10.00 © 2001 IEEE
197

to prove lower bounds on the depth of monotone circuits
[Kar89]'. In the past, EF games have been useful in prov-
ing bounds on operator depth and number of variables, but
they have not been used to prove lower bounds on the size
of formulas. This has been a crucial lack, which the present
paper takes a step in correcting.

The added complication of formula-size games means
that we must build up considerable machinery to use them
to prove lower bounds. Such lower bounds were heretofore
unattainable for general first-order formulas. We believe
that this game and the corresponding methods will have
many applications.

In another application of formula-size games we show
that Q(n) boolcans are needed to translate an LTL formula
of size n to a polynomial-size formula of the reachability
logic, TZCW.

This paper is organized as follows: In §2 we provide the
necessary background in logic including the introduction of
transitive closure logic (FO(TC)) which provides the gen-
eral setting for the games that we present. In §3 we review
Ehrenfeucht-Fraisse games and present the new formula-
size games for FO(TC). In §4 we present the formula-size
game for CTL. In §5 we define the graphs Gn over which wc
prove our lower bound. In §6 we prove our main result, the
optimal u.l lower bound on the succinctness of CTL+ with
respect to CTL. In §7 wc prove an £l(n) lower bound on the
number of boolean variables needed for TZCW to express
Occur,, in polynomial size. In Appendix A wc describe the
language CTL and in Appendix B we describe reachability
logic {TIC).

2 Background

In this section wc review some basic definitions con-
cerning finite model theory and transitive closure logic
[Imm99].

The language C consists of first-order logic with unary
relation symbols {;;„ : n e N}, and binary relation symbol,
R. By the size of a formula, we mean the number of nodes
in its parse tree, i.e., the number of occurrences of logical
connectives, quantifiers, operators, and atomic symbols.

For our purposes, a Kripkc structure is a finite labeled
graph:

K. (S;p* : iiEN;^) (2.1)

'Karchmer and Wigderson gave general games for proving lower
bounds on circuit depth; but they proved lower bounds only using a mono-
tone version of their games. They cast their games as a communication
game in which two sets of structures differ on some property. Through
successive bits of communication, each of which divides one of the sets of
structures in half, eventually the sets are reduced to a collection of pairs
where each pair differs on a particular bit. This is analogous to the closed
nodes of our formula size game, in which each pair differs on a particular
atomic formula.

(2.2)

where 5 is the set of states (vertices), each p1^ Q 5 is a
unary relation on S, and RK C S2 is the edge relation.

First-order logic £ does not suffice to express such sim-
ple formulas as,

"There is a path from where we arc (.T)

to a vertex where pn holds."

For this reason we add a transitive closure operator to
first-order logic to allow us to express reachability [Imm87].

Let the formula ip(xi, ■ ■ .Xk,Ui, ■ ■-yk) represent a bi-
nary relation on fc-tuples. We express the reflexive, transi-
tive closure of this relation using the transitive-closure op-
erator (TC), as follows: TCj^ip. Let FO(TC) be the clo-
sure of first-order logic under the transitive-closure opera-
tor. For example, the following formula expresses Equation
2.2:(3y)[(TCr.yR(x,y))(x,y) A Pl7(y)}.

3 Ehrenfeucht-Fraisse Games

We assume that the reader is somewhat familiar with
classical Ehrenfeucht-Fraisse (EF) games [Ehr61, Fra54,
Imm99]. Typically there is a pair of structures A, B and
two players. Samson chooses vertices, trying to point out a
difference between the two structures, and Delilah replies,
trying to keep them looking the same. Typical games have
a certain number of pebbles corresponding to variables, and
rounds corresponding to the depth of nesting of quantifiers
and other operators such as TC.

The typical fundamental theorem of EF games is that De-
lilah has a winning strategy for the fc-pcbblc, r?i-movc game
on A. B iff A and B agree on all A-variablc, depth-m formu-
las. EF games are used to show noncxpressivity of a prop-
erty $ as follows: Delilah chooses a pair of structures A, B
that disagree on $ but such that she has a winning strategy
for the ??7-move, A-pebble game. It then follows that <I> is
not expressible via a A'-variable, depth-?)! formula.

Wc now present new games for proving lower bounds on
formula size rather than depth. We first define the formula-
size game for the language F02(TC) — first-order logic
with 2 variables and the transitive closure operator. Wc
chose this logic because it is simple, expressive, and quite
general. It is easy to see how to generalize the game and
its corresponding fundamental theorem to most reasonable
logics by adding more variables and other operators. In the
sequel wc will specialize the F02(TC) game to a less gen-
eral language, CTL, where wc will prove our main results.

Definition 3.1 (F02(TC) Formula-Size Game) In the
formula-size game. Delilah starts by picking two finite sets
of structures: A0. B0. The root of the game tree is labeled
AQ. BQ. (The intuitive idea is that there is some property <I>
such that every structure in A0 satisfies <I> {AQ \= <I>) and no
structure in Bu satisfies <I> (B0 |= -><I>).)

198

At each move, Samson may play on any of the open
leaves of the current game tree. (One of Samson's possi-
ble moves will be to close a leaf.) Suppose that the leaf that
Samson chooses to play on is labeled with the pair of sets
A,B.

"not" move: Samson switches the two sets letting the cur-
rent leaf have a unique child labeled B, A.

"or" move: Samson splits A into two sets: A = A' U A".
He lets the current leaf have two children labeled A', B
andA",B.

3 move: Samson chooses a variable v e {x,y}. He then
assigns a value for v to every structure A £ A. De-
lilah then answers by assigning a value for v to every
structure B <E B. Let A', B' be the two sets of struc-
tures with the new assignments for v. The current leaf
is then given a child labeled A', B'.

TC move: Samson chooses a pair of previously assigned
variables v,v' e {x,y}. For every structure A € A,
Samson then chooses a sequence of vertices from A:
vA = ao, öi, ci2,.... of = v'A. Delilah then answers
by choosing for every structure B e B a similar se-
quence, vB = bo,bi,b2,...,at' = v'B. Samson then
chooses a single consecutive pair bi,bJ+\ for each B
and assigns x to 6(and y to 6j+i. The current leaf is
then given a child labeled A', B' where B' is the result
of these new assignments for each structure in B. A'
consists of multiple copies of each structure A € A,
one for each consecutive pair aj.Uj+i in the sequence
for A chosen by Samson and with x assigned to a, and
y assigned to a,j+\.

The idea behind this move is that Samson is assert-
ing that every structure in A satisfies TCx,y(5)(v.v')
and no structure in B does. He thus presents what he
claims is a d-path from v to v' for each structure A in
A. Delilah answers with a supposed S path from v to
v' for every B in B. Samson must then challenge one
pair bi, bl+\ in each of Delilah's supposed 5 paths. He
is in effect saying "-6(bi,bi+i)". At the end of this
move, every structure in A' should satisfy S(x,y) and
no structure in B' should.

atomic move: Samson chooses v, v' G {x, y) and an
atomic formula a(v,v'). (a can be v = v', R(v.v')
or Pi(v).) Samson can only make this move if every
structure in A satisfies a(v, v') and no structure in B
does. In this case, the current leaf is closed.

The object of the game for Samson is to close the whole
game tree while keeping it as small as possible. Delilah on
the other hand wants to make the tree as large as possible.

Delilah may make multiple copies of the structures in B
before any of her moves. For this reason, there is an obvious
strategy for Delilah that is optimal, namely do everything:
in answer to an existential move, make a copy of B for each
vertex in B and reply with that vertex. Similarly, in answer
to a TC-move, Delilah can make enough copies of B and
answer with all possible sequences without repetitions from
v to v'. O

The reason that Delilah is allowed to make multiple
copies in the size game is that otherwise Samson need not
play relevant parts of the minimal formula separating A and
B. For example, suppose that A = {A} and B = {B}
each consist of a single structure. Suppose that the smallest
formula true of A but not B is,

3x3y(pi(x) ^pi{y) A p2(x) <-> p2(y) A

■•• A pn(x) ^Pn(y)),

i.e., A has two points agreeing on all n predicate symbols,
but B does not. If Delilah could not make duplicates, then
Samson could just choose the relevant x and y in A and
Delilah would have to answer with a single pair from B.
Then either the x's or the y's would differ on some predicate
symbol pi and Samson could close a game tree of size 3,
rather than n.

The fundamental theorem of the formula-size game is:

Theorem 3.2 Samson can close the game started at AQ , BQ

in a tree of size s iff there is a formula <p e F02(TC) of size
at most s such that every structure in AQ satisfies p and no
structure in Bo does.

Proof: Suppose that <p of size s separates AQ and B0. Then
Samson can "play ip" and a closed game tree of size s will
result. Playing ip means the following. Suppose that A (= ip
and B \= -up.

ip = -<ip: Samson plays the "not" move. In the resulting
leaf A' \=tp and B' \= -mp.

ip = ip V p: Samson plays the "or" move letting A' be the
subset of A satisfying ip, and A" the subset satisfying
p. Thus one child differs on ip and the other differs on
P-

ip = (3v)ilr. Samson plays the 3 move assigning v to a
witness for i/> in every structure of A. Thus, whatever
Delilah answers we have that A' j= -ip and B' (= ->ip.

if = TCx,y(5)(v,v'): Samson plays the TC move and
as argued in the discussion after the definition of this
move, A' \= 6 and B' \= -^5.

ip is atomic: Samson plays the atomic move, using ip and
succeeds in closing this leaf.

199

Conversely, suppose that Samson has succeeded in clos-
ing the game in size s and that Delilah has played optimally.
It follows that the resulting game tree is a size s formula sat-
isfied by all of Ao and none of BQ.

This can be seen inductively from the leaves of the closed
game tree. For closed leaf, (A,B), A \= a and B (= -no,
where a is an atomic formula, i.e., has size one.

Inductively, assume that (A. B) has children (A,,Bi)
each differing on a formula fa of size s, where i = 1 for
"not", 3 and TC moves and i — 1,2 for the "or" move. Here
Si is the size of the subtree rooted at (A,. Bt).

"not" move: A |= -vt/>i, B |= V;i and thus they differ on a
formula of size s\ + 1.

"or" move: A |= i/;i V fa2, B \= ->(V>i V fa2) and thus they
differ on a formula of size s\ + s2 + 1.

3 move: A \= (3v)oi, B \= -I(3ü)Q1, and thus they differ
on a formula of size si + 1. Note that since Delilah
plays optimally, if it were the case that some B £ B
satisfies (3v)c\\, then Delilah would have chosen the
appropriate witness for this B and it would not have
been the case that B\ \= -IQI.

TC move: A \= TCT.y(o1)(c.r'), B \=
-iTC:rij/(ai)('t;.t/), and thus they differ on a for-
mula of size s\ -f 1. By the definition of the TC move,
since A\ |= o i, we know that for every A £ A, there
is an ni-path from vA to v'A. Furthermore, if there
were an Oj-path from vB to v'B, for some B € B, then
Delilah would have played it for one of her copies of
B. Therefore, no matter which consecutive pair in this
path Samson challenged, it would satisfy oi.

Thus AQ and BQ differ on a formula of size s. □

4 Definition of the CTL Game

For a definition of CTL sec the appendix or [CGP99].
We now define the CTL formula-size game2. This is a re-
striction of the F02(TC) formula-size game (Definition 3.1)
as follows.

• There is only a single pebble name: x.

• The "not" and "or" moves are unchanged.

• The atomic move is unchanged except that it is played
only using atomic formulas/;,.

2It is easy to generalize this also to the CTL* formula-size game, but
we leave this to the reader.

• The 3 and TC moves arc replaced by the following,
played on a leaf, (, labeled with the pair of sets A, B,

EX move: For each A € A, Samson reassigns x to a
child of the current ,T. Delilah answers by first making
as many copies of each B e B as she wishes. For each
copy B £ B she assigns x to a child of the current
.T. The resulting node labeled A', B' becomes the only
child off.

EU move: For each A € A, Samson chooses a path
of length zero or more: x.A = (IQ, a\,..., ar. Delilah
answers as above with a path :rß = 6(), bi,..., bs for
each copy she makes of each B € B. Samson is trying
to assert that (A.x) |= E(oUß), i.e., that (A,a,) (= a
for i < r, and (A, a,) \= ß. Presumably this holds for
all of Samson's chosen paths and none of Delilah's.

In the second half of the move, Samson divides the
paths chosen by Delilah into two sets. For the first
set he assigns x to some b, with i < s and puts these
structures into B\. For the second set he assigns x to bs

and puts these structures into Bi. Delilah answers by
making enough copies so that she can assign x to each
possible point in Samson's paths. When she assigns x
to the final point b,. in a path, she puts that structure
in A>. When she assigns :?• to a non-final point she
puts that structure into A\. The node (now has two
children labeled ,4]. B\ and A?. #2 respectively.

Intuitively what has happened in the second half of this
move is that for those paths chosen by Delilah whose
final points do not satisfy fl, Samson chooses this point
and puts the structure into B). For those paths one
of whose non-final points docs not satisfy o, Samson
chooses this point and puts the structure into B\. At
the end of the move we have that A\ \= o, B\ \=
->o, A2 |= ß, and B2 (= -■/?. If the set B{ or B2

should happen to be empty then that node is considered
closed.

AU move: This is similar to the EU move except
that the first half of the move now has two parts: (a)
Samson chooses a maximal path for each structure in
B, and Delilah makes copies and chooses a maximal
path for each copy of each structure in A; (b) Samson
chooses a finite initial segment of each path chosen by
Delilah and then Delilah chooses a finite initial seg-
ment of each path chosen by Samson. Delilah may
make copies of the paths chosen by Samson in order to
choose more than one initial segment from each path.
The second half of the move is the same as for the EU
move.

It should be clear from the above definition and the proof
of Theorem 3.2 that the following theorem holds:

200

Theorem 4.1 Samson can close the CTL formula-size
game started at Ao, Bo in a tree of size s iff there is a for-
mula ip G CTL of size at most s such that every structure in
Ao satisfies if and no structure in BQ does.

5 Setting Up the Playing Field

In this section we describe the graphs on which we will
play the CTL game to prove our main lower bound, Theo-
rem 6.1. For each n > 1, we will build two sets of graphs
A0,Bo such that Ao \= Occurn and Bo \= -Occur«. For
each of the n! possible paths that might satisfy Occur«, AQ

will include one graph that contains this path. Furthermore,
we give each graph in A0 and B0 copies of all permuta-
tions of length n — \. This will help make Ao and B0 very
difficult to distinguish.

For any fixed n > 1 consider the following directed
graph, Gn = (Vn,En). Let II[n] be the set of all permu-
tations IT on any nonempty subset of [n] and let IIn be the
set of permutations on the full set [n]. The vertices of Gn

consist of the union of two sets, Vn =T„UF„,

Tn = {t-K | 7T G n[nj}; Fn = {/* I n G n[n]}

We represent the permutation TT G II[n] as a 1:1 map,

TT : [|rng(7r)|] -> rng(7r) C [n] .

For any such permutation n on at least two elements, define
its tail, tail(7r) : [|rng(7r)| - 1] —> rng(7r) - {7r(l)} where
tail(7r)(i) = 7r(z + l). For ease of notation, let TT

2
 = tail(7r),

and in general, 7rfc+1 = tailfc(7r), i.e., the permutation TT

starting from item k + 1.
For all 7T G Il[ra], the relation Px(i) holds of vertex tv.

Also, if TT is a permutation on at least two elements then
p,r(i) holds of vertex /„..

The node fv has edges to the following successors
nodes:

• ta G T„ where rng(a) C rng(7r) - {j}, for some j G
rng(7r),j ^ TT(1)

fa G Fn where rng(cr) C rng(7r)
rng(?r)

{j}, for some j G

The node tv has edges to all the successors of fn together
with the additional successor tv2. Furthermore, every ver-
tex in Vn has an edge back to itself.

Consider the following sets of vertices and structures,

Yn -- - it G T \ TT e nn}
Nn ~- = {UeFn TT en„}

Ao -- - {{Gnitx) *TT ^ *nj

B0 -- ~ {{Gntf-ir) | f* e Nn}

The idea behind Gn is that for each TT G nn, tn and fv

are very difficult to distinguish. However, observe that,

Lemma 5.1 For any TT G Un,

{Gn,tv) \= Occur«; but (Gn,/ff) |= -.Occur«

6 Playing the CTL Game

In this section we prove the following,

Theorem 6.1 The formula Occurn (Equation J.]) cannot
be expressed in a CTL formula of size less than n\. Thus,
there is a CTL+ formula of size 0(n) whose smallest equiv-
alent CTL formula has size n\.

Corollary 6.2 The succinctness of CTL+ with respect to
CTL is exactly Q(n)\?

By Lemma 5.1 we have that A0 \= Occurn and So |=
-iOccurn. To prove Theorem 6.1 it suffices to show the fol-
lowing,

Lemma 6.3 Samson cannot close the CTL-game on
(AQ, Bo) in a game tree with fewer than n\ leaves.

We will prove Lemma 6.3 through a series of additional
lemmas. Since there is only one structure namely Gn on
which we are playing and the only thing that matters is
where x is assigned, we will abbreviate the structure A for
which xA = a by the point a. Thus a tree node will be
labeled A, B with A and B boths sets of vertices from Gn.

We say that a pair (a, b) occurs at a node v of a game
tree if v is labeled (A, B) and a G A, b G B. The following
lemma is obvious but useful:

Lemma 6.4 If a pair (a, a) occurs anywhere in a game
tree, then that tree can never be closed.

Let T be a closed game tree whose root is labeled
(Yn,Nn) and on which Delilah and Samson have both
played perfectly. We will argue that T has at least n\ leaves.

Lemma 6.5 Let IT G IIn. Then there is a branch in T from
root to leaf along which the following pairs occur (in this
order),

Proof: By definition of Yn,Nn, (tff, /w) occurs at the root.
Suppose inductively that (tvk, /„.t) occurs at node Vk (and
is preceded by (t„i, f^j) for all j < k); and vk is the low-
est node at which (tnk,fvk) occurs. If k = n, then the
lemma is proved. Suppose that k < n. In this case, Vk is an

3See Emerson and Halpern [EH85] for the upper bound.

201

open node since t^k and /Kt both satisfy the same predicate
symbol, p^k).

From now on, let us assume that there are no "not"
moves, but that instead Samson may play on the left or
on the right. This may slightly decrease the size of T by
removing "not" moves, but the number of leaves is un-
changed. Note that an "or" move on the right is really an
"and" move, and an E move on the right is really an A move.

Observe that if Samson plays an "or" move at Vk, then
the pair (t^k,fvk) would still occur at one of vk's children.
Furthermore, Samson cannot close Vk- Thus, Samson must
play one of the following moves: EX, EU, AU.

Recall that every path from /„. is also a path from t„.
Thus if Samson plays on the right, stepping off f* to some
descendant d, then t^ has the identical descendant d which
Delilah will play. It follows from Lemma 6.4 that, Samson
must play on the left at i//..

If Samson plays EX then he must move from t^k to one
of its successors. The only successor of t„.* that is not a suc-
cessor of fnk- is t^k + i. Thus, Samson must move to r^+i
and Delilah will move to all successors of /„.«.■, including
/,n-i. Thus (/jMi, fnk + i) occurs in the child of vk as de-
sired.

Suppose that Samson plays AU. Samson starts by choos-
ing a maximal path for each structure on the left. Delilah an-
swers by choosing the infinite loop on the current vertex for
each structure on the right. Recall that Gn has a self-loop
at each vertex. Now, Samson chooses an initial segment of
each infinite self-loop. Delilah responds by choosing the
initial segments of length zero from Samson's paths. The
right child of Vk is thus labeled exactly the same as ;•/,.. Thus
it is not useful for Samson to play AU.

Finally, suppose that Samson plays EU. He chooses a
path from t^k to some descendant (/. Note that if d / t~>. -1
then d is also a descendant of /^ . Thus Delilah will answer
with the path consisting of a single step from /ri to d. If
Samson challenges f^k then we have made no progress. If
Samson challenges d, then the right child of Vk contains
the pair (d, d) and thus Delilah wins. Thus, Samson must
play the path from tnk to f^1. Delilah will answer among
others with the path from /„.i- to fnk~\ and (f^-i./ln-i)
occurs at a child of Vk as desired. D

The path of permutation TT which is guaranteed by
Lemma 6.5 to occur along at least one branch of T may
in fact occur along several branches. For each permutation
IT we would like to choose a particular branch as the repre-
sentative branch of TT. If (t^k. /,.<,) occurs at v along this
branch, and (t1,k,f1.k) still occurs at one of u\ children,
then we follow this child, i.e., we take a branch that avoids
making progress if possible. If both steps make progress, or
neither do, we follow the left child.

Let n, (T be distinct elements of Il„. In the next lemma
we prove that the branches of TT and a must diverge at some

point in T. By this we mean that the branches start together
at the root, but eventually separate and end at distinct leaves.
It will then follow that there are at least as many leaves of
T as elements of Yn and Lemma 6.3 and Theorem 6.1 thus
follow.

Lemma 6.6 Let TT, a be distinct elements ofU.n. Then the
branches ofir and a diverge.

Proof: Let us assume for the sake of a contradiction that the
branches of TT and a coincide. Let k be the first place that TT

and a differ, i.e., n(i) = o{i) for i < k and n(k) ^ a{k).
We know that (**,/*) and {ta,f„) both occur at the root.

The branches for TT and a may be moving down in lock
step, i.e., (t„i, f^i) occurs at the same node as {tai, fas) or
one may be ahead of the other, e.g., (^7r, + i,/7r, + i) occurs
at the same node as (ta,, /„,}. Let us assume that they arc
in lock step, or TT is ahead of a when (rCTi + i, /CTMI) first
occurs. Let Vk be the lowest node on the branch at which
(tak, fak) occurs. Since (tak, fak) does not occur as a child
of Vk, Sampson must play either EX or EU at the node Vk-
There are two cases.

Case 1: (f^ . f^k) also occurs at Vk- Thus Samson must
step from t~k to („in and from tak to fai- + i at this step.
Since Tr(k) ^ <r(/,-), f_t *i is a descendant of fak (and/CTi- + i
is a descendant of/^O- If Samson challenges cither of these
descendants, then we have the same point on both sides of
a node in T and Delilah wins. If Samson challenges nei-
ther, then (tl7k.fak) occurs at a proper dcsccndcnt of Vk,
contradicting our assumption.

Case 2: (1^,./^,) occurs at Vk for j > k. Samson must
step from tak to tak ■ i and cither leave tnJ fixed, or step
from t,-! to (.,+ i. Let d be the not-ncccssarily-propcr de-
scendant of r_, that Samson steps to. Delilah answers with
the path from f„k to d. Since we have assumed that progress
on a is made at this node, Samson cannot challenge fak.
Thus he must challenge d and the pair (d,d) occurs at the
left child of Vk- This contradicts our assumption that T is
closed.

Thus we have proved that the branches of TT and o cannot
remain together after the second one has moved past level
k. D

7 Lower Bound on Booleans in Reachability
Logic

In this section we give an interesting application of
formula-size games to characterize the number of boolean
variables needed in a reachability logic. In [IV97] it is
shown that CTL* is linearly embcdablc in the transitive clo-
sure logic F02(TC). Furthermore in [AIOO] a sublanguage
of FO~(TC) called reachability logic (TZC) is described.

202

CTL* remains linearly embedable in TZC. The complex-
ity of checking whether a Kripke structure, /C, satisfies an
TZC formula, p, is 0(|/C||^|2n'') where nb is the number of
boolean variables occurring in TZC. Both TIC and FO2 (TC)
may contain boolean-valued variables in addition to their
two domain variables. Since the time to model check is
linear in the size of the formula and the size of the struc-
ture, but exponential in the number of booleans, information
about how many booleans are needed is important.

The boolean variables are not needed to embed CTL;
however in the linear embeddings of CTL* in TIC and
FO (TC) at most a linear number of boolean variables may
be used. It was left open in [IV97] whether any such
booleans are actually needed. It was shown in [AIOO] that
at least one boolean is needed to embed CTL* at all in
F02(TC) or TIC. Whether more than one such boolean
variable is needed remains open.

In this section we use a size game for a weakened ver-
sion of TZC which we call TZCW. The main result of this
section is that for the formulas Occurn to be translated to
polynomial-size formulas in TZCW, Q(n) boolean variables
are needed. The main weakness of TZC" is that we do not
allow new unary relations to be defined. We also require
weak adjacency formulas to imply R{x, y) as opposed to
R(x, y) V R(y, X)VI = J, but this is just for convenience.
It can be shown that LTL C TZCW but CTL g TZCW. Due
to lack of space we do not give a full explanation of TZC,
directing the reader instead to [AIOO], (We do provide the
definition of TZC and a few examples in Appendix B.)

Our original motivation in trying to prove lower bounds
on the formula Occurn was to characterize how many bool-
ean variables are needed in the translations of CTL* to
FO (TC) and TZC. In this section we are only able to prove
a good lower bound for translations to the weaker language
TZCW. We believe that even this partial result is of interest,
and we suspect this approach will lead to a similar lower
bound for the full TZC.

Definition 7.1 A weak adjacency formula S(x. b. y, b') is
the conjunction_of R(x, y) with a boolean combination of
the booleans b, b' and the unary relations px(x), Pi(y). De-
fine TZCW to be the smallest fragment of F02(TC) that sat-
isfies the following:

1. If p is a unary relation symbol then p G TZCW.

2. lfip,ip€ TZCW, then -vp e TZC" and ^Aipe TZCW.

3. If p e TZCW and 5(x, b. y, b') is a weak adjacency for-
mula then the following formulas are in TZCW:

(a) REACH(d")v?

(b) CYCLER)

Semantics of TZCW :

P = P(x)

REACH((J)v> = 3y(TC8){x,Ö,y,T)/\tp[y/x])

CYCLER) = (1C6)(x,Ö,x,T)

□
As an example, we translate Occurn to TZCW as fol-

lows: Occurn = REACH (<5n)true where<5n(:r,6, y, b') =

The idea is that boolean variable bi keeps track of
whether predicate pt has ever been satisfied in the current
path. We can reach a point where all the booleans are one
iff Occurn holds.

The TZCW formula-size game is very similar to the CTL
formula-size game. In the Reach move, Samson asserts that
REACH(<5)</J holds for all the vertices v0 € A. For each
such VQ he produces a path:

(v0,¥), &!,¥),...,&,¥)

where 6° = 0, br = T, and R(v^vl+i) holds for all i < r.
Delilah answers with a similar path,

{wo,0),{wi,c1), (Ws,l),

for as many copies as she wishes of each u>0 € B. For
each of Delilah's paths, Samson either challenges the fi-
nal point, ws, and puts it in £?2> or he challenges some
pair ((wi,c

i),(wl+i,ci+1)) and puts it in B\. Then Deli-
lah lets A2 contain all the vr's and Ai contains all pairs,
{(i'i, b1), (vl+i,bi+1)}. If originally A and B differed on
REACH(5)p then after the move, A\ and £?i differ on S
and A2 and £?2 differ on (p. Note that S is quantifier free and
only concerns the booleans together with the unary predi-
cates true at the two points of each pair. In the game we
consider below Delilah will only play pairs that correspond
to pairs played by Samson, so Samson will never challenge
a pair, but rather the endpoint of each of Delilah's paths.

The Cycle move is similar to the Reach move. Since
the graphs we will play on below are acyclic, it will not be
useful for Samson to play the Cycle move. Let the TZC™
game be the TZCW game in which the tuples of booleans are
of size at most k.

We next define the graph Hn on which we will play the
TZCW game. These are simpler than the Gn from Section 5
because we only need an exponential lower bound, not an
n! lower bound. Thus we only need consider all subsets of
the n propositional variables, not all possible paths through
them.

Let Xn be the set of all proper subsets of the n pred-
icates. For any element e of Xn, let 5(e) be a path that
visits every predicate of e exactly once, and then visits a
blank vertex. Let F(e) be a path that visits every predicate

203

of e exactly once. The order of the predicates in F(e) and
5(e) does not matter.

Hn contains 2n - 1 "true" vertices, te, one for each e e
Xn. Node t.e starts with the path S(e), and then from the
last (blank) vertex — call it be — there is an edge to each
first vertex of F(f), for any / € Xn such that eU// [n]
and also to F(e) where e — [n] - e.

Hn also contains 2n — 1 "false" vertices, fe, one for each
e £ Xn. Node /e starts with the path 5(e), and then from
the last (blank) vertex — call it b'e — there is an edge to each
first vertex of F(f), for any / € Xn such that eU// [n].

Let Tn = {te | e e X„}; Fn = {/£ | e € Xn\.
Clearly Tn \= Occurn and Fn \= ^Occurn.

Lemma 7.2 Samson cannot close the HC™ game on
(Tn,Fn) in a game tree with fewer than 2" /2k nodes.

Proof: Note that the paths from tc and fe arc identical
through the blank vertices bc.b'e at the bottom of their start-
ing paths, 5(e), and the only difference after that is that bt

has an edge to F(e). Thus, to close the game tree, Samson
must play a scries of Reach moves from fc to be, and then
into F(c.) for each c g Xn.

The key observation is that while we are standing on b(,
all that we know is what node of the game tree we are in,
plus the current values of our k booleans. Indeed, we prove
that Samson cannot play a REACH move that includes a
path in which (&,,, e) is an intermediate node, and also in-
cludes a path in which (b0,c) is an intermediate node, for
distinct subsets e ^ g and the same /r-tuplc of booleans c. It
follows that Samson can move through at most 2k different
6,,'s at the same time. Our lower bound will then follow.

Suppose for the sake of a contradiction that for distinct
subsets e,cj £ Xn, Samson plays a Reach move that in-
cludes a step from from bc and from b(J at the same node of
the game tree and that the booleans associated with bc and
bg are identical.

Since e/jwe may assume that e U g ^ [n], otherwise
interchange e and g. Delilah answers with a Reach path
from fe to b'e that lirst copies the booleans on Samson's path
from te to bc. Delilah continues this path to F(g) copying
Samson's path from bg to F(g). Since each step in Delilah's
spliced path is identical to a step in one of Samson's paths,
Samson cannot challenge any of the steps. Thus, Samson
must challenge the bottom of Delilah's path. However this
is identical to the bottom of Samson's path from tg.

Thus our assumption was false, so at most 2*'' ft-'s can
move from their blank vertices, be, at the same node of the
game tree. Thus there must bc at least (2" — l)/2fc inter-
mediate nodes of the game tree. Since there are at least
n leaves, the total number of nodes is at least 2"/2A' as
claimed. □

Corollary 7.3 Q(n) booleans are required to express the
CTL+ and LTL formula Occurrl as a polynomial-size for-
mula ofTLCw.

8 Conclusions and Future Directions

In this paper we have introduced Ehrenfcueht-Fra'i'sse
games on the size of formulas rather than their operator
depth. We have used these games to prove a new, opti-
mal bound which exactly characterizes the succinctness of
CTL+ with respect to CTL. We have also used these games
to prove an Q(n) lower bound on the number of booleans
needed to translate LTL to 1ZCW.

The formula-size games introduced here offer promise in
settling many conjectures in descriptive complexity. In par-
ticular, questions about true complexity involve languages
where an ordering relation on the universe is present. In the
presence of ordering, we can express complex properties
using low operator depth, with huge disjunctions over all
possible input structures of a given size. Thus bounds on op-
erator depth arc not helpful here. Bounds on size would bc
extremely helpful. The formulas involved must bc large, as-
suming wcll-belicvcd complexity-theoretic conjectures. Al-
though the size game is combinatorially complex, wc expect
that the methods introduced in this paper will help make
progress towards lower bounds for languages with ordering.

We expect that the lower bounds from Section 7 can
bc extended to the full reachability logic, TIC. Another
open problem was suggested by one of the referees: Wilkc
showed his exponential lower bound for the alternation-free
//-calculus which properly contains CTL [Wil99|. Can our
Theorem 6.1 bc similarly extended to the alternation-free
//-calculus?

Acknowledgments: Thanks to Natasha Alcchina and
Thomas Wilkc for many helpful comments and suggestions.

References

[AIOO] N. Alcchina and N. Immerman, "Reachability
Logic: An Efficient Fragment of Transitive Closure
Logic," Logic Journal of the IGPL 8(3) (2000), 325-338.

[CE81] E.M. Clarke and E.A. Emerson, "Design and Syn-
thesis of Synchronization Skeletons Using Branching
Time Temporal Logic," in Proc. Workshop on Logic of
Programs, LNCS 131,1981, Springer-Verlag, 52-71.

[CGP99] E. Clarke. O. Grumberg and D. Peled, Model
Checking. 1999, M.I.T. press,

[Ehr61] A. Ehrenfeucht, "An Application of Games to the
Completeness Problem for Formalized Theories," Fund.
Math. 49 (1961), 129-141.

204

[EH85] E.A. Emerson and J.Y. Halpern, "Decision Pro-
cedures and Expressiveness in the Temporal Logic of
Branching Time," J. Comput. Sys. Sei. 30(1) (1985), 1-
24.

[EI95] K. Etessami and N. Immerman, "Tree Canonization
and Transitive Closure," to appear in Information and
Computation . A preliminary version appeared in IEEE
Symp. Logic In Comput. Sei. (1995), 331-341.

[EW96] K. Etessami and T. Wilke, "An Until Hierarchy
for Temporal Logic," IEEE Symp. Logic In Comput. Sei.
(1996).

[Fra54] R. Frai'sse, "Sur les Classifications des Systems de
Relations," Publ. Sei. Univ. Alger I (1954).

[Imm99] N. Immerman, Descriptive Complexity, 1999,
Springer Graduate Texts in Computer Science, New
York.

[Imm87] N. Immerman. Languages that capture complex-
ity classes. S1AM Journal of Computing, 16(4):760-778,
1987.

[IV97] N. Immerman and M.Y. Vardi. Model Checking
and Transitive Closure Logic. Proc. 9th Int'l Conf. on
Computer-Aided Verification (CAV'97), Lecture Notes
in Computer Science, Springer-Verlag 291 - 302, 1997.

[Kar89] M. Karchmer, Communication Complexity: A New
Approach to Circuit Depth, 1989, M.I.T. Press.

[SC85] A. P. Sistla and E. M. Clarke. The Complexity
of Propositional Linear Temporal Logics. JACM, 32(3),
733-749,1985.

[Wil99] T Wilke, "CTL+ is Exponentially More Succinct
than CTL", Foundations of Software Technology and
Theoretical Computer Science: 19th Conference, (1999),
110-121.

A Background on CTL

Definition A.l (Syntax of CTL*) State formulas S and path
formulas V of CTL* are the smallest sets of formulas satis-
fying the following:
State Formulas, S:
the boolean constants true and false are elements of S;
for i e N, pi e S;
if<p€ V, thenE(/3 e S.

Intuitively, Ep means that there exists a maximal path
starting at the current state and satisfying tp.
Path Formulas, V:
if a £ S then a e V;
if p,ip £ V, then -up, <p A ip, X(p, and iplJip are in V.

Intuitively, Xp means that ip holds at the next time and
ip\3%p means that at some time now or in the future, ip holds,
and from now until then, p> holds. D

Next, we formally define the semantics of the above op-
erators. In this paper all structures will be finite and acyclic
except perhaps for self-loops. Thus all paths will be finite,
except perhaps for an infinite loop on the final point. A max-
imal path p = pi, p2,... pe is a mapping from [£} to states
in /C such that for all i < £, K, \= R(pi,pi+i) and such
that pe either has no successors or it has a self-loop. We use
the notation pl for the tail of p, with states p\,p2, ■ ■ ■, Pi-i
removed.

Definition A.2 (Semantics of CTL*) The following are in-
ductive definitions of the meaning of CTL* formulas:
State Formulas:

(K.,s) \=pi iff K. \=Pi(s)

(£, s) |= Eyj iff (3 path p s.t. p0 = s)(/C p) \= <p

Path Formulas:

{K,p)\=a iff (K.,po)\=a; forae<S

(!C,p)\=<fiAl> iff (IC, p) ^y and (IC, p) ^ i'

{K,P)\=^V iff {>C,p)\£ip

{K.,p)\=X<p iff {lC,pl)\=v

(/C,p)^UV> iff (3i)(/C,pJ)^A(Vj<z)(/CV)h=v?

A popular and quite expressive language for Model
Checking is computation tree logic CTL* [CGP99]. Here
we briefly describe CTL* together with some of its sublan-
guages: CTL C CTL+ c CTL* and LTL C CTL*. CTL
and CTL+ express the same set of formulas, but CTL+ is
more succinct. CTL and LTL are incomparable.

CTL* has two kinds of formulas: state formulas, which
are true or false at each state, and path formulas, which are
true or false with respect to a maximal path through some
Kripke structure, K. The following is an inductive defini-
tion of the state and path formulas of CTL*.

It is convenient to introduce a few other operators com-
monly used in CTL* all of which may be defined from the
above:

Ap = -IE-I</3

F(/3 = trueU<£>
Gp = -IF-I</?

for All paths
some time in the Future
Globally, i.e., for all times in the future

The language CTL is the restriction of CTL* so that path
quantifiers (E, A) and temporal operators (X, U) are always

205

paired. That is, the allowable operators are EU,AU,EX4.
The importance of CTL is that unlike CTL* it admits linear-
time model checking [CE81]. The language CTL+ allows
boolean combinations of the temporal operators to be paired
with the path quantifiers. CTL+ is no more expressive than
CTL but it is more succinct [Wil99]. Our main result shows
exactly how succinct. The language LTL (linear temporal
logic) consists of CTL* formulas that have exactly one path
quantifier E or A and that begin with this path quantifier.

B Background on TZC

Here we give the definition of Reachability Logic {TZC).
See [AIOO] for proofs of the theorems and much more mo-
tivation and discussion.

Definition B.l An adjacency formula (with booleans) is
a disjunction of conjunctions where each conjunct contains
at least one of x = y, Ra(x, y) or Ra{y, x) for some edge
label a; in addition, the conjuncts may contain expressions
of the form (-.)(6i = b2), (by = 0), (61 = 1) and p(x),
where by and b2 are boolean variables. G

Definition B.2 TZC is the smallest fragment of F02(TC)
that satisfies the following:

1. If p is a unary relation symbol then p E TZC; also
T,I e nc.

2. If <p, (/' € UC, then ^ip E TIC and -p A i/' E TIC.

3. If if £ TZC and b is a boolean variable, then 3bp E
nc.

4. If ip, tj> E TZC and q is a new unary predicate symbol,
then (let q = p in ijt) is in TZC.

5. If <p E TZC and 6(x, b, y, b1) is an adjacency formula (a
binary relation between two n-tuples (x, 61,..., 6„_i)
and (y, b[,..., b'n_y)), then the following formulas are
inTZC:

(a) REACH((5)(p

(b) CYCLER)

Semantics of TZC : The semantics of TZC is defined as
follows. In each case below assume that 6(x,b,y,b') is an
adjacency formula.

(let q = p in >\j>) = 4'[p/q]

REACH(% = 3y(TCS)(x,Ö,y.T)Ap[y/x])

CYCLE(S) = (TC
S
ö")(.T.Ö,.T,T)

D

Here are some examples of formulas in TZC:

• REACH(d> where S(x,by,b2,y,b[,b'2) is
{Ra(x,y) A byb2 = 00 A b[b'2 = 01) V (Rb{x,y) A
6162 =01 Ab'yb'2 = ll)(thisis(a;6)pofPDL).

• ify =REACH(i?)p(EFpofCTL*);

• <p2 = REACH((J)CYCLE(<J), where S is R{x,y) A
q(x)(EGqofCTL*);

• (let q = tfy in if2) (EGEFp of CTL*).

TZC is a logical language and it is a fragment of
F02(TC). However, because of the 'let' construct, when
we talk about size in the representation of TZC, we are re-
ally talking about circuits. Thus the size of an 7££-circuit
may be logarithmic in the size of the smallest equivalent
F02(TC) formula. This allows the linear size embedding of
CTL* which presumably does not hold for F02(TC) (with-
out a circuit representation or an extra domain variable cf.
[IV97]).

Boolean variables however add extra complexity, which
is not surprising since model checking CTL* is PSPACE
complete [SC85].

Theorem B.3 There is an algorithm that given a graph G
and a formula <f(x) E TZC marks the vertices in G that
satisfy p. This algorithm runs in time 0(\G\\<p\2n'') where
ii\, is tf>e number of boolean variables occurring in ip.

Theorem B.4 There is a linear-time computable function
g that maps any CTL* formula ip to an equivalent formula
g{p) £ TZC. While g{<p) has only two domain variables, it
may have a linear number of boolean variables.

4We do not need AX because it is equivalent to -IEX-*

206

Session 6

Light Affine Lambda Calculus and Polytime Strong Normalization

Kazushige Terui*
Department of Philosophy, Keio University

2-15-45 Mita, Minato-ku, Tokyo 108, Japan.
E-mail: terui@abelard.flet.keio.ac.jp

Abstract

Light Linear Logic (LLLJ and its variant, Intu-
itionistic Light Affine Logic (1LALJ, are logics of
the polytime computation. It has been proved that all
polynomial time functions are representable by proofs
of these logics (via the proofs-as-programs correspon-
dence), and conversely that there is a specific re-
duction (cut-elimination) strategy which normalizes
a given proof in polynomial time (the latter may well
be called the polytime "weak" normalization theorem).

In this paper, we introduce an untyped term cal-
culus, called Light Affine Lambda Calculus fALA,),
generalizing the essential ideas of light logics into an
untyped framework. It is a simple modification of A-
calculus, and has ILAL as a type assignment system.
Then, in this generalized setting, we prove the poly-
time "strong" normalization theorem: any reduction
strategy normalizes a given ALA term (of fixed depth)
in a polynomial number of reduction steps, and indeed
in polynomial time.

1 Introduction

In [9, 10], Girard introduced Light Linear Logic
(LLL) as an intrinsically polytime logical system: ev-
ery polynomial time function is representable by an
LLL proof, and every LLL proof1 is normalizable,
via cut-elimination, in polynomial time. Later on,
in [2], Asperti introduced a simplified system, called
Light Affine Logic, by adding the full (unrestricted)
weakening rule to LLL. Its intuitionistic fragment
(ILAL) has been particularly well investigated (see
[3]), since it allows a compact term notation for proofs
and has clear relevance to functional programming is-
sues.

These light logics provide a purely logical insight
into the polytime computation. In contrast with
other polytime logical (type) systems, e.g., [15, 13,
11, 8, 14], light logics do not contain any built-in

data type, and the characterization result is about
the complexity of cut-elimination, which has been a
canonical measure for estimating the complexity of a
logical system in proof theory. Also notably, light log-
ics are endowed with various semantics ([12, 4, 18]),
which could lead to a semantic understanding of poly-
time.

An important problem remains to be settled, how-
ever. By inspecting the normalization theorem given
by [10], one observes that what is actually shown
in that paper is the polytime weak normalizability,
namely, that there is a specific reduction strategy
which normalizes a given LLL proof in polytime. The
same is true of ILAL ([2, 20, 3]). It has been left
unsettled whether the polytime strong normalizabil-
ity holds for these light logics, namely, whether any
reduction strategy normalizes a given proof in poly-
time. The primary purpose of this paper is to give a
solution to this problem.

Having such a property will be theoretically im-
portant in that it gives further credence to light log-
ics as intrinsically polytime systems. It will be prac-
tically important, too. Through the Curry-Howard
correspondence, each proof of light logics may be con-
sidered as a feasible program, which is executable in
polytime, and whose bounding polynomial is specified
by its type (formula). In this context, the property
will assure that the polytime executability of such a
program is not affected by the choice of an evaluation
strategy. It will also provide a good starting point for
pursuit of efficiency in normalization.

For our purpose, it is reasonable to begin with
ILAL, because it is much simpler than LLL. How-
ever, the term calculi proposed for ILAL so far either
have a complicated notion of reduction defined by a
large number of rewriting rules ([2, 20]), or involve
notational ambiguity ([19, 3]).2 Therefore, we first
need to devise a simple and accurate term calculus for

'Research Fellow of the Japan Society for the Promotion of
Science.

1 Of lazy conclusions, i.e., those free from 3 and &.

2 See the remark in 9.1 of [3]. Instead, the latter paper
presents a proofnet syntax for ILAL, based on which several
computational properties are investigated.

0-7695-1281-X/01 $10.00 © 2001 IEEE
209

ILAL which is suitable for our investigation. Such a
simple calculus will also provide a better understand-
ing of the computational aspects of light logics. This
is our secondary purpose.

In this paper, we introduce a new term calculus,
called Light Affine Lambda Calculus (ALA), which em-
bodies the essential mechanisms of light logics in an
untyped setting. It amounts to a simple modification
of A-calculus with modal and let operators, having
very simple operational behavior defined by just 5
reduction rules with the standard notion of substitu-
tion. It satisfies the subject reduction and Church-
Rosser properties. ALA is an untyped calculus, but re-
markably, all its well-formed terms are polytime nor-
malizable. ILAL is then re-introduced as a Curry-
style type assignment system for ALA. There are a
number of reasons for adopting this presentation.

1. First of all, to design a truly polytime (rather
than just polystep) polymorphic calculus, one
must give up a Church-style term syntax with
embedded types: a universal quantifier may
bind an arbitrary number of type variable occur-
rences, and thus iterated type instantiations (A
reductions) may easily cause exponential growth
in the size of types.3

2. An untyped polytime calculus deserves investi-
gation in its own right. (This program was ad-
vocated in the appendix of [10], but has not been
developed so far.)

3. The notion of well-formedness, rather than ty-
pability, neatly captures the syntactic conditions
for being polytime normalizable.

4. Last but not least, typability in ILAL is pre-
sumably intractable,4 while well-formedness is
checked very easily (in quadratic time).

Then, in this generalized setting, we prove

• The Polystep Strong Normalization Theorem:
every reduction sequence in ALA has a length
bounded by a polynomial in the size of its ini-
tial term (of fixed depth).

3 Proofnets (of LLL) contain formulas. Hence proofnets
themselves are not polytime normalizahle. A solution sug-
gested by [10] is to work with untyped proofnets (with for-
mulas erased) in the actual computation. When the conclu-
sion is lazy, the formulas can be automatically recovered after
normalization, and such formulas are not exponentially large.
Our approach is somewhat similar, in that we work with an
untyped formalism in the actual computation and supply it
with a type assignment, system.

4 The problem is undecidable for System F in the Curry stvle
([22]).

• The Polytime Strong Normalization Theorem:
every reduction strategy (given as a function or-
acle) induces a normalization procedure which
terminates in time polynomial in the size of a
given term (of fixed depth).

It follows that every term typable in ILAL, which can
be viewed as a structural representation of an ILAL
proof (with formulas erased), is polytime strongly
normalizable. It is very likely that essentially the
same holds for LLL.

The rest of this paper is organized as follows. We
introduce ALA in Section 2 and ILAL (as a type as-
signment system) in Section 3. In Section 4 we give
the main part of the polystep strong normalization
theorem. The theorem itself appears in Section 5,
as well as its direct corollaries, namely the Church-
Rosser property and the polytime strong normaliza-
tion theorem. In Section 6 we discuss the polytime
strong normalizability of LLL. We also discuss the
interpretability of polytime type systems based on
safe recursion in ALA.

2 Light Affine Lambda Calculus

In this section we set up ALA. We begin by giving
the set VT of pseudo-terms (in 2.1). Our goal is to
define the set T of well-formed terms (in 2.2) and the
notion of reduction (in 2.3).

2.1 Pseudo-terms

Let x,y,z ... range over term variables.

Definition 2.1 The set VT of pseudo-terms is de-
fined by the following grammar:

t.u ::= x | \x.t | tu | It | let u be \x in t

| §i | let u be §.r in t.

In addition to the standard constructs such as A-
abstraction and application, we have two boxes, \t
and §£, and two let operators. Boxes induce a strati-
fied structure on expressions. Interaction of boxes is
enabled by let operators.

In the sequel, symbol \ stands for either ! or
§. Pseudo-terms (Xx.t) and (let u be t x in t) bind
each occurrence of x in t. As usual, pseudo-terms
are considered up to o-equivalence, and the variable
convention (see [5]) is adopted for the treatment of
free/bound variables (namely, the bound variables
are chosen to be different from the free variables, so
that variable clash is never caused by substitution).
Notation t{u/x} is used to denote the pseudo-term
obtained by substituting u for the free occurrences of

210

Ax.let !x be !y in yy
E

let !x be !y in yy 0

A
/ \

!x yy

1 A
00

\
01

A 1 / \
x y y 000

/ \
010 on

Figure 1: Term Tree and Addresses

x in t. FV(t) denotes the set of free variables in t.
FO(x, t) denotes the number of free occurrences of x
in t and FO(t) denotes the number of free occurrences
of all variables in t.

As usual, each pseudo-term t is represented as a
term tree, and each subterm occurrence u in t is
pointed by its address, i.e., a word w £ {0,1}* which
describes the path from the root to the node corre-
sponding to u in the term tree. For example, the term
tree for (Ax.let !x be \y in yy) and the addresses in it
are illustrated in Figure 1.

The size \t\ of a pseudo-term t is the number of
nodes in its term tree. Since our terms are untyped,
\t\ is not significantly different from the length of its
string representation. Given a pseudo-term t and an
address w, the depth of w in t is the number of !-
boxes and §-boxes enclosing the subexpression at w.
The depth of t is the maximum depth of all addresses
in it.

A context $ is a pseudo-term-like expression with
one hole •. If $ is a context and t is a pseudo-term,
then $[£] denotes the pseudo-term obtained by sub-
stituting t for • in 3>.

2.2 Terms

Before giving the formal definition of well-formed
terms, we shall informally discuss the critical issues.

Firstly, we assume that variables are (conceptu-
ally) classified into three groups: undischarged, !-
discharged, and §-discharged variables. These are to
be bound by A-abstraction, let-! operator and let-§
operator, respectively.

The fundamental concept of light logics is to en-
force a stratified structure on proofs/terms and to pre-
serve it in the course of reduction. Concretely, light
logics deny the following principles of Linear Logic
which destroy the stratified structure:

• Dereliction: \A —o A,

• Digging: \A—o\\A.

We achieve the stratification by the following mech-
anisms:

• In default, a variable is undischarged, and a vari-
able is made (either !- or §-,) discharged when a
box is built around it. This condition corresponds
to the prohibition of the dereliction principle. It
is expressed in our term syntax as:

dereliction(x) := let x be \y in y,

whose effect is to open a !-box:

dereliction(lt) —► t.

It is ruled out, since variable y is undischarged,
but is illegally bound by a let-! operator. On the
other hand, the following term corresponding to
the canonical map \A —o %A is legitimated:

let x be \y in §j/.

• A box may be built around a term only when
it contains no discharged variable. This corre-
sponds to the prohibition of the digging princi-
ple. It may be expressed as:

digging(x) := let x be \y in V.y,

whose effect is to embed a !-box into a deeper
layer:

digging{\t) >!!£.

It is also ruled out, since it attempts to build a
!-box \\y around another box \y, but the latter
contains a discharged variable y.

Another fundamental property of light logics is, as
in Linear Logic, that only duplicable are contents of
.'-boxes. It is maintained by the following condition:

• Among three binders, only let-/ may bind multi-
ple occurrences of (/-discharged) variables.

Duplication takes place when a !-box meets a let-!
operator; for example,

let \t be \x in (§xx)!x (§«)!*■

To avoid potential exponential growth caused by du-
plication, we need a further constraint on !-boxes:

• A \-box may be built around a term only when it
contains at most one free variable.

211

Hence term constructions like

... let \zz be \y in (let \yy be \x in \xx),

which cause exponential growth are prohibited.

To compensate for this, we need another kind of
boxes, namely §-boxes. They are not duplicable. In-
stead they may contain an arbitrary number of free
variables.

All these design concepts (and more) are realized
in the following formal definition, which is written in
a style inspired by [1].

Definition 2.2 Let X, Y, Z range over the finite sets

of variables. Then the 4-ary relation t £ T\,Y,Z

(saying that t is a (well-formed) term with undis-
charged variables X, [-discharged variables Y and §-
discharged variables Z) is defined as follows (in writ-

ing t £ TX,Y,Z,
we implicitly assume that A", 1' and

Z are mutually disjoint):

1. x G TX,Y,Z <=> x £ X.

2. Xx.t £ TX,Y,Z <=^
t & TXU{T}<Y,Z, x#X, FO{x,t) < 1.

3. tu£Tx,Y,z «=>• t£Tx,Y,z, u£Tx.Y,z-

4. \t G TX,Y,Z *=> t £ TYA0, FO(t) < 1.

5- §* G 7X,Y,Z "<=> t £ TYuz.ß,9-

6. let t be \x in u £ TX,Y,Z <=>

t £ TX,Y,Z, u £ TX,YU{T},Z,
X
 $ Y-

7. let t be §x in u G TX,Y,Z ^=^ t £ TX.Y,Z,

u £ TXiYtZu{x}, x t'z, FO(x,u) < 1.

Finally, t is a (well-formed) term (t G T) if t £

T~X,Y,Z for some X, Y and Z.

Example 2.3

1. UJLA = Ax.(let x be \y in %yy) G T,

2. For each natural number n, we have Church nu-
meral n £ T defined by

n = Ax.(let x be \z in §Ay. (z ■ ■ ■ (z y) ■ ■ •)).

n times

3. For each word w
w £ T defined by-

Jo ■ in £ {0,1}*, we have

w = Xx0xi.(\et xn be \z0 in (let xi be \z\ in

§A2/.(2l,1---(2l„y) •••)))•

Observe that these n's and w's are all of depth

1.

We have the following basic properties:

Lemma 2.4 Let t G TX.Y,Z-

1. IfX C A', r C Y' and Z C Z',

then t £ Tx'.Y1 ,Z' •

5. //.x- 0 FV'(0, t/tfin * G TX\{,},y\{,},z\{,.}.

3. Let x £ FV(t). Then x occurs at depth 0 iff
x £ X. x occurs at depth 1 iff x £ Y U Z.
x never occurs at depth > 1.

Lemma 2.5 (Substitution)

1- t £ Txu{x},Y,z, * & X and u G TX,Y,Z

=> t{u/x} £TX,Y.Z.

2- t £ TX,YU{T}.Z, * <t Y u £ Ty-,0,0 and FO{u) < 1
=> t{u/x) £ Tx,Y,z-

3- t £ TX.Y.ZU{T}, x & Z and u G TYuz,n,,0
=> t{u/x} eTA-r.z.

Remark 2.6 As discussed by Asperti [2], a naive use
of box notation causes ambiguity, and in conjunction
with naive substitutions, causes a disastrous effect on

complexity.

Asperti fixed the by using a more sophisticated box

notation of the form §(f)['"i/-'rii • • ■ i "/>/-r»]> w"il(- om'
solution is more implicit and is based on the concep-
tual distinction between discharged and undischarged
variables.

Asperti's box §(tei.T2)[;i//.f'i, ?y/.r2] (with y of !-
type) corresponds to (let y be !.r in §(txx)) in our
syntax. Observe that variable y, which is external
to the §-box, is contracted in the former, while vari-
able x, which is internal to the §-box, is contracted in
the latter. This is parallel to the difference between
the contraction inference ruh1 of Asperti's ILAL and
that of Girard's original formation of LLL; the for-
mer contracts [-formulas, while the latter contracts
discharged formulas.

Remark 2.7 There is a quadratic time algorithm
checking whether a given pseudo-term is well-formed:
Let t be a pseudo-term, and A" and Y be the sets of its
free variables at depth 0 and at depth 1, respectively.
Then t is well-formed iff t £ TXY,® (by Lemma 2.4
and the fact that t G FXy,z implies t £ TXYUZ,QI)-

The latter can be recursively checked with at most \t\
recursive calls, and each call involves a variable occur-
rence check at most once (corresponding to Clauses
2, 4 and 7 of Definition 2.2). Thus the algorithm runs
in time (){n2), given a term of size n.

212

Name Redex Contraciitm

(ß) (Xx.t)u t{u/x}

(§) let §u be §i in t t{u/x}
(!) let \u be \x in t t{u/x}

(com) (let u be f x in t)v let -u be f x in (*v)
let (let w be f x in £) be f y in v let u be f £ in (let t be j 2/ in v)

Figure 2: Reduction Rules

2.3 Reduction

Definition 2.8 The reduction rules of ALA are those
listed in Figure 2. We say that t reduces to u at

address w by rule (r), and write as t -!—> u, if t =
$[ui], u = $[v2], the hole • is located at w in $, and
Vi is an (r)-redex whose contractum is v2-

Note that the address w uniquely determines the
rule (r) to be used. When either the address w or
the rule (r), or both, are irrelevant, we use notations

t —> u, t —> u and t —> u. The depth of a reduction
is the depth of its redex.

A finite sequence a of addresses wo,.. .,wn-\ is
said to be a reduction sequence from t0 to tn, written
as to —?tn, if there are pseudo-terms to,..., tn such
that

r0 —► tl —► • • • —> tn-

If every reduction in cr is the application of (r), then
c is called an (r)-reduction sequence and written as

io ——>*tn (or simply as to
denoted by \a\.

ftn). The length of a is

Remark 2.9 The stratified structure of a term is
preserved by reduction. In particular, the depth of
a term never increases, since in reduction rules (ß),
(§) and (!) a subterm u is substituted for a variable
x occurring at the same depth.

Reduction rules (/?) and (§) strictly decrease the
size of a term, since they never involve duplication.
(com) just reorganaizes the structure of a term with-
out changing its size. The only reduction rule which
causes duplication is (!). When applied at depth i,
it possibly increases the sizes at depths > i, while it
strictly decreases the size at depth i.

The terms are closed under reduction:

Proposition 2.10 If t £ T~x,Y,z and t

u £ TX,Y,Z-

u, the

Proof. For example, if t is a (!) redex

let \u be \x in v, then v £ Tx,Yu{x},z^ u € 7y,0,0 and

FO(u) < 1. Hence v{u/x} G Tx,Y,z by Lemma 2.5.
For the general case, show that a term u 6 TX,Y,Z

can be replaced with another v G Txy,z m a context
without losing well-formedness, whenever FO(x, v) <
FO(x,u) for each x € X U Z. All reduction rules
u —> v meet the latter condition. ■

Example 2.11 The term Q.LA is a light affine ana-
logue of Q = (Xx.xx)(Xx.xx), which is not normaliz-
able in A-calculus. However,

&LA = ^LA^LA
(ß)

(ß)

(let \uLA be \y in §yy)

&LALOLA

§(let uiLA be \y in §yy).

The last term cannot be reduced anymore.

3 Type Assignment System

We introduce ILAL as a type assignment system
for ALA. Our formulation is, however, different from
Asperti's in that we use Girard's discharged formulas.

Let a,ß range over the type variables.

Definition 3.1 The types (formulas) of ILAL are
given by the following grammar:

A,B :: A -o B I Va.A I \A I SA

An [-discharged type is an expression of the form [A\\.
An ^-discharged type is an expression of the form [A]§.

In the sequel,]n A abbreviates t''' t A

n times

A declaration is an expression of the form x: A or
x: [A]f. A finite set of declarations is denoted by T,
A, etc.

Definition 3.2 The type inference rules of ILAL are
those given in Figure 3. We say that a pseudo-term
t is typable in ILAL if T h t: A is derivable for some
F and A by those inference rules.

213

x:A h x:A
Id

T\-t:C
A,Tht:C

Weak

r,hu:yli x:A2,r2 hi:C

TLi/iAj-Oilz.ral-^j/u/a:}^

::A{B/a},T\-t:C

x:\/a.A,r\-t:C
VI

x:[A]uT\-t:C

y :!i4,ri- let y be \x in t:C

x:[A]hT\-t:C

y: § A, T h let y be §x in t: C

TII-M:A i:i,r2ht:C

r!,r2l-t{u/i}:C

x:[A},,y:[A]uTr-t:C

z:[A)uT\-t{z/x,z/y}:C

x:AuT\-t:A2

V h Ax.t:Ai -o A2

Cw«

Cntr

ri-t:Va.i4
Vr, agFV(r)

x\ :Bi,...,xm:Bm h t:>1

ii^Bi]!,...,!«,:^]!!-!*:!^
!r, 0 < ra < 1

X! :i?i,... ,xm:Bm,yi :C1;... ,yn:Cn V- t:A

xi: [Bi],, ...,xm: [Bm]i,yi: [Ci]§, ...,yn: [Cn]§ (-§<:§>!
§r, 7n, n > 0

Figure 3: Type Assignment System ILAL

Remark 3.3 Observe that if x:A,T h t:C, namely
x is of undischarged type, then it occurs at most once
in t. Therefore, no duplication is caused by the sub-
stitutions used in (Cut) and (—o/) rules, which always
operate on undischarged types. That is a reason why
we can do away with explicit substitutions of [2].

Discharged types act as a barrier to substitution
into boxes, in the same way as Wadler[21]'s patterns

act in his term syntax for Intuitionistic Linear Logic;
we could alternatively use the latter to obtain the
same effect.

As expected, we have:

Theorem 3.4 Every typable pseudo-term is a term.
More exactly, if

S:A,y:[B],,z:[C]%\-t:D,

then t G 7"{iT},{£},{=-}-

Proof. By induction on the length of the typing
derivation. In the cases of (Cut) and (—o/), apply
Lemma. 2.5(1). ■

Theorem 3.5 (Subject Reduction) If T h t : A
and t —> u, then T \- u:A.

Example 3.6 Let int = Va.\(a—oa)-o§(a—cm) and
bint = Vcv.!(rt —o a)—o\(a —o a) —o §(o —o a). Then

we have h n : int for each n £ N and h w: bint for
each w & {0,1}*.

An example of untypable terms is VILA- TO see the
reason, define the erasure of a term of ALA to be a
A-term obtained by applying the following operations
as much as possible:

fu i—► u,

let u be f x in t i-> t{u/x}.

If a term is typable in ILAL, then its erasure is ty-
pable in System F (in the Curry style, see [6]). Now,
QLA cannot be typed in ILAL, since the erasure of
QLA is 0> a term which cannot be typed in System
F.

Remark 3.7 Types are not necessary for the poly-
time normalizability. Nevertheless, they are useful in
several ways.

• Types are used to avoid deadlocks, such as (]t)u

and let (Xx.t) be f x in v..

• Some types, typically data types such as int and
bint, constrain the shape of normal forms: ev-
ery normal term of type int is of the form n (or
A.r.(let x be \z in §z), which may be seen as an 7;-
variant of 1). In general, for k > 0, every normal

214

term of type §fcint is of the form §kn (or an i\-
variant of §fcl). Similarly, all normal inhabitants
of bint are of the form w.

• More generally, all lazy types, including int and
bint, constrain the depths of normal forms: Say
that a type is lazy if it does not contain a neg-
ative occurrence of V. If a term t is normal and
of lazy type A, then it means that h t : A can
be derived without using the (V7) inference rule,
which has an effect of hiding some information
on derivations. Thus all uses of the ! and § in-
ference rules in the derivation are recorded in A.
Hence the depth of t is immediately bounded by
the depth d of A.

• The above suggests that in order to normalize
a term of lazy type A we do not have to fire
redices at depth > d, which will be removed by
reductions at lower depths before arriving at the
normal form. In this way, lazy types give us
useful information on normalization.

The expressive power of ILAL, hence of ALA, is
witnessed by:

Theorem 3.8 (Girard[10], Roversi[19])
Every function f : {0,1}* —> {0,1}* which is com-
putable in time 0(nd) is represented by a term of type
bint -^§rf+6bint.

(See [3] for a good exposition. See also [17] for an-
other proof).

The converse will be taken up in Section 5 after
the polytime normalizability of ALA has been proved.

Remark 3.9 We are rather free in the choice of type
systems; for example we can enrich ILAL with naive
set theory or fixpoints of types (as in [10]), still pre-
serving the polytime normalizability and the logical
consistency (i.e., having no inhabitant of 0 = Va.a).
To put it the other way round, any logical system
which is cut-free consistent (i.e., with no normal in-
habitant of 0) is consistent, in so far as it can be used
as a type system for ALA and satisfies the properties
of Theorems 3.4 and 3.5.

4 Proving the Polystep Strong Nor-
malization Theorem

The key step toward the polystep strong normal-
ization theorem is the standardization, i.e., to trans-
form a reduction sequence into an outer-layer-first
one without decreasing the length (in 4.2). To achieve

this, we first need to extend ALA with explicit weak-
ening and to give a translation of reduction sequences
in ALA into this extended calculus (in 4.1). Finally we
show that the length of a standard reduction sequence
thus obtained is polynomially bounded (in 4.3).

4.1 An extended calculus with explicit
weakening

The set VTW of extended pseudo-terms is de-
fined analogously to VT, but each extended pseudo-
term may contain a subexpression of the form
let £ be _ in u (explicit weakening). To define the
well-formedness, we give a new 4-ary relation t G

T~XYZ by modifying Definition 2.2 as follows.

(1) Replace clause 2, 6, and 7 with:

2' Xx.t G TX,Y,Z
<^=> * £ TXu{x},Y,z>

xgX, FO{x,t) = 1.

6' let t be \x in u G T~x,Y,z ^=> t G TX,Y,Z>

U£TX,YU{X},Z, x#Y,FO(x,u)>l.

7' let t be §x in u € Tx.y,z ^^ t G Tx,y,z,
u G TX,Y,ZU{X}, x g Z, FO{x,u) = 1.

(Namely, we require that each binder must bind at
least one variable occurrence.)

(2) Add the following clause:

8' let t be _ in u G TX,Y,Z

u G TX,Y,Z-

teT} X,Y,Z,

We say that t is a (well-formed) extended term

(t G Tw) if t G TX,Y,Z
for some x> y> Z-

The reduction rules in Figure 2 are extended to
VTW with the following modifications:

• Generalize {com) so that it is also applicable to
the new let operator for explicit weakening.

• Add a new reduction rule (_):
let u be _ in t —> t.

Reduction rules other than (_) are called proper.
A reduction sequence is proper if every reduction in
it is proper.

Lemmas 2.4 and 2.5 hold for Tw, too. In addition,
we have:

(r)
Proposition 4.1 If t £ 1~XYZ> * —* u an<^ (r) *s

proper, then u G TXY Z-

215

Now we consider a translation of ALA into the ex-
tended calculus.

Lemma 4.2 For each term t, there is an extended

term tw such that tw -X*t and \tw\ < 4|t|.

Proof. By induction on t. If t = Xx.u and
FO(x,u) = 0, let tw = A.T.(let x be _ in M

U
'). If

t = (let v be \ x in u) and FO(x,u) - 0, let tw =
let v be f x in (let §x be _ in uw). ■

Theorem 4.3 (Translation into the extended
calculus) Let to be a term and let

t0 —> ti

be a reduction sequence in ALA. Then there are ex-
tended terms t'0, t\ and a proper reduction sequence

T such that \a\ < \r\, \t'0\ < 4|t0| and

(-) (-)

t' t\.

Proof (Idea). By Lemma 4.2, there is an extended
term tl0" such that

tu
tn 't,.

By permuting it suitably, we can obtain

*,/ (-),
*i,

such that r is proper and \T\ > \a\. For example, a
reduction sequence of the form

(let v be . in (\x.t))u -H (Xx.t)u ^i t{u/x)

can be transformed into the following longer one:

(let v be _ in (Xx.t))u —> let v be _ in ((Xx.t)v)

—> let v be _ in t{u/x} —^-> t{v/x}.

In more detail, we use the following two lemmas
for each step of permutation, which are shown by
exhaustive case analyses. ■

Lemma 4.4 Let t0 € VTW. If t0 -H f, (^' U
then

B,(com)„ , (_)

for some t\ and \a\ > 1.

Lemma 4.5 Let t0 £ PT'". // £0 ^ *i -^ t2,
where (r) i.s neither (corn) nor (_), i/ten

(""■),.; (r) „ (-),
%

/or some t\ and t".

4.2 Standardization theorem

A reduction sequence rr is standard \i it can be par-
titioned into subsequences a0;crl;... ;o"2,;, such that,
for i < d, 02i + i consists of (!)-rcductions at depth i
and a2i consists of other reductions at depth i.

Theorem 4.6 (Standardization) Let t0 be an ex-

tended term and a be a proper reduction sequence

t a ft

Then there is a standard proper reduction, sequence r

to > t\

such that \a\ < \T\.

Proof (Idea). The proof is again based on permu-
taion of reduction sequences. For example, let u be a
(ß) redex and </' be its contractum, and consider the
following nonstandard reduction sequence:

let !» be \.r in v ——> let !</ be !.r in v ——> v{u'/x}.

Here the first reduction is at depth 1 and the second
at depth 0. It can be standardized as follows:

(!) "Ali),
let !?/ be \x in v —> v{u/.r) ——>*<;{i/'/x}.

Since (let !i; be !.r in v) is an extended term, we have
FO(x,v) > 1. Hence v{u/x] contains at least one
occurrence of the (ß) redex v. so j<x| > 1. Therefore
the length of a reduction sequence never decreases by
this permutation. ■

4.3 Bounding lengths of standard reduc-
tion sequences

For each extended term t its partial size st(t) at
depth i is defined in Figure 4 (where i ranges over the
numbers > 1).

We define s(t) to be £^0 .s,-(r). The only differ-
ence between \t\ and s(t) is that the size of a box
]t in the latter sense also counts the number of free
variable occurrences in t. Note that |i| < s(t) < 2\t\.

The theorem below is essentially due to [10, 2]. In
our case, however, the length of a reduction sequence
may slightly exceed the size of its final term, since we
have the commuting reduction rule (cam).

216

s0{x) = 1 Si(z) = 0
so(Xx.t) = a0(t) + l Si(Aa;.t) = Si{t)

s0(tu) — s0(t) + s0(u) + 1 Si(tu) = Si(t) + Si(u)

ao(t*) = FO(t) + l Si(tO = Si-lW
50(let t be f x in u) = S0(t) + S0(u) + 1 s;(let t be f i in u) = S,(t) + Sj(u)

s0(let t be _ in w) = s0(t) + s0(u) + 1 5i(let t be _ in w) = Si(t) + Si{u)

Figure 4: Partial Sizes

Theorem 4.7 (Polynomial bounds for stan-
dard reduction sequences) Let t0 be an extended
term of depth d and a be a standard proper reduc-

tion sequence to —>*u. Then s(u) < s(i0)
2 and

\a\<s{t0)
2 .

Proof. The first claim is proved by iteratively ap-
plying Lemma 4.8 below, starting from depth 0 and
ending with depth d. See also Remark 2.9. The sec-
ond claim follows by Lemma 4.9. ■

Lemma 4.8 Let a be a reduction sequence t —>*t'
which consists of (!) reductions at depth i. Then we
have Sj(t') < Sj(t) ■ Si(t) for each j > i.

Proof (Idea). For simplicity, let us assume i = 0
and j = 1. To estimate the potential size growth
caused by (!) reductions, we make the following def-
inition. For each extended term t, its unfolding is an
extended pseudo-term $t £ VTW which is obtained
by hereditarily replacing each subterm of the form
(let \t be !a: in u) at depth 0 with

let \t\t---\t be \x in)jw,

n times

where n = FO(x,$u). (Intuitively, we perform all
possible "contraction reductions" in advance.)

Then we can show

(1) FO(tv)<s0(v),

(2) s1(v)<s1($v)<s0{v)-s1(v),

by induction on v. (The property that each !-box
contains at most one free variable is crucial here.)
Moreover, we can also show that

(3) if v -^W at depth 0, then Si(t)v') < s^v).

The lemma follows from (2) and (3):

si(t') < Sl(U') < s^t) < s0(t) ■ Sl(t).

Lemma 4.9 Let a be a reduction sequence t —►*£'
which consists of reductions at depth i. Then we have

\<r\<Si(t)2.

Proof (Idea). For simplicity, assume that i = 0. Let
v be an extended term. For each occurrence of a let
subterm u = (let U\ be * in U2) at depth 0 in v, where
* is either _ or fa;, define

com(u,v) := s0(v) - s0(u2).

Define com(v) to be the sum of all com(u,v)'s with
u ranging over all such occurrences of let-expressions.
Then we claim:

(1) SQ(V) + com(v) < SQ(V)
2.

(2) If v —> v1 by a reduction at depth 0, then
SQ(V') + com(v') < s0(v) + com(v).

The lemma follows from these two. ■

5 Main Results

Now we are in a position to state the main results
of this paper. From Theorems 4.3, 4.6 and 4.7, it
follows:

Theorem 5.1 (Polystep strong normalization)
For every term to of size s and depth d, the following
hold:

(i) every reduction sequence from to has a length

bounded by 0(s2);

(ii) every term to which t0 reduces has a size bounded

byO(s2").

Corollary 5.2 (Church-Rosser property) If to is
a term and t\ <—* i0 —^^2, then t\ —>*ts <—* £2
for some term £3.

Proof. By showing local confluence, which is
straightforward. ■

217

To make precise what we mean by polytime strong
normalization, we give the following definitions. A
reduction strategy for T is a partial function / : T —►
{0,1}* such that /(£) gives an address of a redex of
t whenever t is reducible and is undefined otherwise.
We can think of a Turing machine normalize/ with
function oracle /, described as follows:

input t
loop

query to oracle / to obtain f(t)
if/(0 is defined

then let t := t' such that t —► t'
else output t and halt

end loop.

Now we have:

Corollary 5.3 (Polytime strong normaliza-
tion) For any reduction strategy f for T, normalize/

terminates in time 0(s2), given a term to of size
s and depth d as input. It outputs the normal form

of t0.

Proof. Observe that each step of reduction t —> t' is
carried out in quadratic time: the worst case, namely
the case of (!)-reduction, consists in substituting a
subterm of size < |t| for at most \t\ variable occur-
rences. Therefore the total runtime is roughly esti-

mated by 0(f = 0(s2

Finally let us mention the converse of Theorem 3.8.
(This is essentially due to [10, 2], but we include it
here for self-containedness.)

Theorem 5.4 Every term t of type bint —o §rfbint
represents a function f : {0,1}* —> {0,1}* which is

computable in time 0(n2).

Proof. Recall that all «J's are of depth 1, so that fw
is of constant depth for every w £ {0, 1}*. Without
loss of generality, we may assume that the depth is
equal to the depth of §rfbint, i.e., d+1 (just ignore the
deeper layers, which do not contribute to the normal
form; see Remark 3.7). By Corollary 5.3, the nor-

mal form of tw is computed in time 0(|fi77|2), thus

in time 0(|w|2) (by taking a reasonable reduction
strategy of low complexity). The normal form should
be of the form §rfw', and such w' is unique by the
Church-Rosser property. ■

Corollary 5.5 (Characterization of the Poly-
time Functions) A function f : {0,1}* —> {0,1}*

is polytime computable if and only if it is represented
by a ALA term of type bint —o §rfbint for some d.

Observe, however, that there is an exponential gap
between the representability (a function computable
in time 0(n) is representable by a term of depth
d + 7) and the normalizability (a term of depth d is

normalizable in time 0{n2)).

6 Concluding Discussion

We have introduced an untyped term calculus ALA,
which has ILAL as a type assignment system, and
showed the polytime strong normalization theorem
for ALA. It follows that every term typable in ILAL,
which can be considered as structurally representing
an ILAL proof, is polytime strongly normalizable.

Strong polytime normalization for LLL. Before
turning to LLL, let us consider decompositions of the
(!) reduction rule:

(!i) let \u be !x in <J>[x] —> let \u be \x in $[«];

(!2) let \u be !x in t—► t, if x £ FV(t).

Clearly the (!) reduction rule is simulated by these
two. With this modification, we still have the poly-
time strong normalization theorem. Note that these
rules are natural counterparts of Girard[10]'s reduc-
tion rules for the exponential boxes: (!j) corresponds
to the contraction reduction and (!2) to the weaken-
ing reduction.

Given this, it is quite plausible that we can apply
our technique to LLL to show the strong polytime
normalization theorem for the proofnets of LLL(with
formulas erased). There is, however, a limitation that
additives should be treated in a lazy way, because
eager reductions of additive boxes cost exponential
time.

On weakly polytime programs and interpre-
tation of safe recursion. Let us consider poly-
time programs in functional programming in general.
Since execution of such programs depends on reduc-
tion strategics, it makes sense to classify them into
the strongly polytime programs (which are polytime
executable by any strategy) and the weakly polytime
ones (which arc polytime executable only by some
strategy). ALA accepts only strongly polytime pro-
grams. By contrast, most polytime type systems
based on safe recursion ([7, 16]) accept weakly poly-
time programs, too (see, e.g., [15, 11, 8]). Typically
they allow the following conditional

cond(a:) := if p(x) then f\{x) else /2(.T)

218

to be iterated when the argument x is safe. It is
easy to see that iteration of cond is weakly polytime
but not strongly, since unfolding the iteration without
computing the conditional yields a term of exponen-
tial size. (By the way, observe that iteration of this
kind of conditionals is the key to encode Turing ma-
chine computations: think of p as discriminating the
current configuration and /j and fy as transforming
it accordingly. Being strongly polytime systems, light
systems do not allow conditionals like above to be it-
erated, at least in full generality. That is why the
encoding of Turing machines is so delicate in light
systems (see [19, 3])).

An interesting consequence is that there cannot be
a "reasonable" embedding of those type systems of
safe recursion into ALA which preserves the reduction
relation. To be more precise, there is no inductive
embedding such that

• it maps numerals of the former systems to ALA

terms of polynomial size and of constant depth,
and

• whenever t one-step reduces to u in the former
systems, the translation of t reduces to that of u
in several (but not zero) steps in ALA.

Therefore there is a limitation on the interpretabil-
ity of safe recursion; although there still remains
a possibility to have an non-reduction-preserving
embedding which prunes exponential reduction se-
quences in the original system so that a weakly poly-
time program is transfigured into a strongly polytime
one. (This remark is complementary to the result
of [17], which shows that safe recursion with rwn-
contractible safe variables is interpretable in ILAL.)

We leave the following to future work:

• Pursuit of efficiency in normalization. The poly-
nomial time bound given in this paper describes
the complexity of the worst reduction strategy
among all possible ones. It seems likely that we
can significantly improve it by specifying a wiser
strategy (perhaps a deeper-layer-first one). In
particular we would like to know if it is possible
to fill the exponential gap mentioned in the last
of the previous section.

• Incorporation of inductive data types as primi-
tives, while keeping the polytime upperbound for
normalization; it will make ALA more accessible
to programmers.

• Extension of the light logical approach to other
complexity classes, such as polynomial hierarchy
and polynomial space.

References

[1] S. Abramsky. Computational interpretations
of linear logic. Theoretical Computer Science,
111:3-57, 1993.

[2] A. Asperti. Light affine logic. In Proceedings of
LICS'98, 1998.

[3] A. Asperti and L. Roversi. Intuitionistic light
affine logic (proof-nets, normalization complex-
ity, expressive power, programming notation).
Submitted, 2000.

[4] P. Baillot. Stratified coherent spaces: a denota-
tional semantics for light linear logic. Presented
at the Second International Workshop on Im-
plicit Computational Complexity, 2000.

[5] H. P. Barendregt. The Lambda Calculus: Its
Syntax and Semantics. Elsevier North-Holland,
1981.

[6] H. P. Barendregt. Lambda calculi with types.
In S. Abramsky, Dov M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Com-
puter Science, Volume 2, pages 117-309. Oxford
University Press, 1992.

[7] S. Bellantoni and S. Cook. New recursion-
theoretic characterization of the polytime func-
tions. Computational Complexity, 2:97-110,
1992.

[8] S. Bellantoni, K.-H. Niggl, and H. Schwichten-
berg. Ramification, modality and linearity in
higher type recursion. Presented at the First
International Workshop on Implicit Computa-
tional Complexity, 1999.

[9] J.-Y. Girard. Light linear logic, manuscript,
1995.

[10] J.-Y. Girard. Light linear logic. Information and
Computation, 14(3):175-204, 1998.

[11] M. Hofmann. Type Systems for Polynomial-
Time Computation. Habilitationsschrift, Tech-
nical University of Darmstadt, 1998.

[12] M. Kanovitch, M. Okada, and A. Scedrov. Phase
semantics for light linear logic. Theoretical Com-
puter Science, to appear. An extended abstract
appeared in Proceedings of MFPS'97.

219

[13] D. Leivant. A foundational delineation of poly-
time. Information and Computation, 1994.

[14] D. Leivant. Applicative control and computa-
tional complexity. In Proceedings of CSL '99,
pages 82-95. Springer-Verlag, LNCS 1683, 1999.

[15] D. Leivant and J.-Y. Marion. Lambda calculus
characterizations of poly-time. Fundamenta In-
formaticae, 19:167-184, 1993.

[16] D. Leivant and J.-Y. Marion. Ramified recur-
rence and computational complexity I: Word re-
currence and poly-timc. In P. Clote and J. Rem-
mel, editors, Feasible Mathematics II, pages 320
- 343. Birkhauser, 1994.

[17] A. S. Murawski and C.-H. L. Ong. Can safe re-
cursion be interpreted in light logic? Presented
at the Second International Workshop on Im-
plicit Computational Complexity, 2000.

[18] A. S. Murawski and C.-H. L. Ong. Discreet
games, light affine logic and ptime computa-
tion. In Proceedings of CSL2000, pages 427-441.
Springer-Verlag, LNCS 1862, 2000.

[19] L. Roversi. A P-time completeness proof for light
logics. In Proceedings of CSL'99, pages 469 483.
Springer-Verlag, LNCS 1683. 1999.

[20] L. Roversi. Light affine logic as a program-
ming language: a first contribution. Intcrnati-
nal Journal of Foundations of Computer Science.
11(1):113 152, March 2000.

[21] P. Wadler. A syntax for linear logic. In Proceed-
ings of MFPS'93. Springer Vorlag. LNCS 802.
1993.

[22] J. B. Wells. Typability and type-checking in the
second-order calculus are equivalent and unde-
cidable. In Proceedings of LICS'94. pages 176
185. IEE:E, 1994.

220

Intensionality, Extensionality, and Proof Irrelevance
in Modal Type Theory

Frank Pfenning*
Department of Computer Science

Carnegie Mellon University
fp@cs.emu.edu

Abstract

We develop a uniform type theory that integrates inten-
sionality, extensionality, and proof irrelevance as judgmen-
tal concepts. Any object may be treated intensionally (sub-
ject only to a-conversion), extensionally (subject also to
ßrj-conversion), or as irrelevant (equal to any other object
at the same type), depending on where it occurs. Modal re-
strictions developed in prior work for simple types are gen-
eralized and employed to guarantee consistency between
these views of objects. Potential applications are in logical
frameworks, functional programming, and the foundations
of first-order modal logics.

Our type theory contrasts with previous approaches that
a priori distinguish propositions (whose proofs are all
identified—only their existence is important) from specifi-
cations (whose implementations are subject to some defini-
tional equalities).

1 Introduction

In the development of type theory, there has been con-
siderable debate about the degree of extensionality or inten-
sionality that should be inherent in its formulation. In an ex-
tensional theory such as the one underlying Nuprl [4] type-
checking is undecidable. In a non-extensional theory1 such
as later versions of Martin-Löf's type theory [17], we distin-
guish.a definitional equality (also called judgmental equal-
ity) which is not extensional and decidable, from a proposi-
tional equality which is extensional and undecidable. There
are a number of tradeoffs, both from the philosophical and
pragmatic points of view. In an undecidable, extensional
theory, programs are significantly more compact than in a

This work was partially supported by NSF Grant CCR-9988281.
'Such type theories are often called intentional, but this is somewhat

misleading since the meaning of objects is still subject to some conversion
rules.

decidable, non-extensional theory. On the other hand, we
need external arguments to validate the correctness of pro-
grams, defeating at least in part the motivations underly-
ing the separation of judgments from propositions [11, 12].
Furthermore, the development of extensional concepts in a
non-extensional type theory is far from straightforward, as
can be seen from Hofmann's systematic study [10].

Related is the issue of proofirrelevance, which plays an
important role in the development of mathematical concepts
in type theory via subset types or quotient types. For exam-
ple, the type {x:A | B(x)} should contain the elements M
of type A that satisfy property B. If we want type-checking
to be decidable, we require evidence that B(M) is satisfied,
but we should not distinguish between different proofs of
B(M)—they are irrelevant.

In this paper we present a type theory that internalizes
the concepts of intensionality, extensionality, and proof ir-
relevance via distinctions familiar from modal logic. We
strictly follow Martin-Löf's separation of judgments from
propositions and both type-checking and definitional equal-
ity are decidable.

At the heart of our modal type theory are three judgments

M :: A M is an expression of type A,
M : A M is an term of type A, and
M -f- A M is a proof of type A,

constructed from the same set of objects M and types A.
Expressions are treated intensionally: they are subject only
to a-conversion. Terms are treated extensionally: they
are additionally subject to ß and reconversion. Proofs are
treated as if irrelevant: any two proofs of the same type
are identified. All these are part of the definitional equality
of the type theory, which therefore combines intensional-
ity, extensionality, and irrelevance into a single system in a
coherent way.

It is a critical property of our type theory that the dis-
tinction between expressions, terms, and proofs is not made
at the time the constituent constants are declared, but at the

0-7695-1281-X/01 $10.00 © 2001 IEEE
221

time those constants arc used. Any type A can be seen as
the type of an expression, the type of a term (= a specifi-
cation), or the type of a proof (= a proposition). Similarly,
an object M may be seen as an expression, as a term, or as
a proof, depending only on whether some conditions on its
free variables are satisfied. We believe that this flexibility is
an inherent advantage of our approach compared to a priori
separating propositions (inhabited by proofs that are always
irrelevant) from specifications (inhabited by terms that are
never irrelevant). This is the approach mostly taken in the
literature (see, for example, [18] or, allowing even for some
classical reasoning, [2]).

Our system is also interesting in its relation to intuition-
istic modal logic when we ignore the objects. Our default
judgment M : A can be interpreted as "A is true". The
judgment M :: A can be read as "A is valid". The judg-
ment M 4- A can be read as "A is provable", hiding the
proof object. These can be seen as modes of truth, and the
work presented here is an extension of prior work on proof
term calculi for the modal logic S4 [20] where validity cor-
responds to necessary truth.

In a type theory as a foundation for functional program-
ming, irrelevant objects (that is, proofs) arc erased be-
fore execution without affecting the observable outcome.
From this point of view, our type system internally captures
a notion of dead-code elimination (see, for example, [1]
for a survey and position paper on related type-based ap-
proaches). However, we need to extend our type theory with
first-class modal operators in order to use it in the context
of a complete functional language. Two non-dependent the-
ories in this style are given in [20], explaining an intuition-
istic modal logic with necessity (DA) and possibility (OA).
A proper treatment of the fully dependent version of these
theories would seem to require an equational theory with
commuting conversions and is therefore left to future work.
Fortunately, it is possible to develop a consistent and useful
type theory where these judgments arc considered primarily
as hypotheses. Instead of internalizing them as modal op-
erators, we internalize the corresponding hypothetical judg-
ment as function types. Such a restriction is not new—it
goes back to similar treatments of linear logic [9] and linear
type theory [3] with similar motivations.

In the remainder of the paper we present our type theory,
investigate its properties, and sketch some further develop-
ments and potential applications.

2 A Modal Type Theory

Our modal type theory is a conservative extension of
LF [7]. Our approach follows the outline of [8], adapted
here to our more general type theory. The interested reader
may find additional details in [19].

2.1 Syntax

The syntax is stratified into objects, families, and kinds
as for LF.

Kinds K ::= type | Ux:A. K
| Ux::A. K \ Ux+A. K

Families A ::= a \ AM \Ux:Ai. A2

\A»M\ Uxr.Ai.A2
|AoM| Ux^Ai. A2

Objects M ::= c\x\ \x:A. M\MXM2

| \x::A. M\M1»M2

I \x~A. M\MloM2

Signatures E ::= • | £, a:K | E, c:A

Contexts T ::= ■ \T,x:A\T,x:\A\T,x+A

Here, Mi • M2 is an application whose argument (M2)
is treated as an expression (intensionally), while Mi o M2

is an application whose argument is treated as a proof (ir-
relevant for equality). We use K for kinds, A, B, C for
type families, M, N, P for objects, T for contexts and E
for signatures. We also use the symbol "kind" to clas-
sify the valid kinds. We consider terms that differ only in
the names of their bound variables as identical. We write
[N/x]M, [N/x\A and \N/x]K for capture-avoiding substi-
tution. Signatures and contexts may declare each constant
and variable at most once. For example, when we write
r, x:A we assume that x is not already declared in T. If
necessary, wc tacitly rename x before adding it to the con-
text T. Since a signature is generally fixed, and constants
may be used anywhere, we have permitted only two forms
of constant declaration, namely a:K and c:A. Note that this
is not a restriction for our applications, since it is the use not
the definition of a constant which determines its status with
respect to definitional equality.

2.2 Judgments

The modal type theory is defined by the following prin-
cipal judgments.

h E sig
h: T ctx

Th;M:A
TH.A-.K
T Hz K : kind

T h;: M = N : A
Th:A = B:K
Th,K = L: kind

Th.M = N:A

E is a valid signature
T is a valid context

M has type A
A has type K
K is a valid kind

A/ extcnsionally equals N
A extcnsionally equals B
K extensionally equals L

M intensionally equals N

As explained later, intensional equality for types and
kinds is not needed directly, and proof irrelevance is a de-
rived concept.

222

For the judgment l-E T ctx we presuppose that E is a
valid signature. For the remaining judgments of the form
F hE J we presuppose that E is a valid signature and that T
is valid in £. For the sake of brevity we omit the signature
E from all judgments but the first, since it does not change
throughout a derivation.

If J is a typing or equality judgment, then we write
[M/x]J for the obvious substitution of M for x in J. For
example, if J is N : B, then [M/x]J stands for the judg-
ment [M/x]N : [M/x]B.

We also have several derived judgments that are central
the nature of our type theory. Each of them is defined by
only a single rule. In order to explain these additional judg-
ments we need two critical operations on contexts. The
first, Te, hides all term variables x:A by converting them to
proof variables x+A. The second, T®, resurrects all proof
variables x~A by converting them to term variables x:A.
Other declarations are unaffected in both cases.

(•)e (■r
(r,a -.A)® = r®, X- ~A (T,a :A)® = r® x:A
(r> :A)e = re; x: :A (T,x ■A)® = r® x::A
;r, x- M)® = r®, x- ̂ A (T,x- -A)® = r® x:A

Intensional Expressions. The new judgments

r 1-E M :: A M is an expression of type A
r l-j; A :: K A is an expression type of kind K

F \~x M = N :: A M and N are equal expressions
F hj; A = B :: K A and B are equal expression types

are defined by the following rules

re h, M : A TefaA:K

fh, M ::A

Te fa M= N : A

T hF M = N :: A

TfaAv.K

T~faA = B:K

TfaA = B::K

The idea is that an expression cannot refer to a term vari-
able x:B, which would violate intensionality. Thus we mark
these variables as irrelevant, x+B, which is accomplished
by the ()e operation. Note, however, that intensionality and
irrelevance interact: proof variables may still occur in an in-
tensional expression, but only inside otherproofs! The rules
for equality indicate that only intensionally equal terms are
considered as equal expressions. We do not directly refer
to a-convertibility here because expressions may contain
proofs that must be identified, even as subterms of expres-
sions. Note that expression types are not intensional, but
that there is a restriction regarding their validity: expression
types can not depend on term variables directly.

In general, M :: A is inherently stronger than M : A,
that is, M :: A implies M : A but not vice versa. In partic-
ular, x:A fa x :: A.

Irrelevant Proofs. The new judgments

r hs M -=- A M is a proof of type A
r hE A -f K A is a proof type of kind K
r hs M = N -j- A M and N are equal proofs
r l-E A — B -f- K A and B are equal proof types

are defined by the following rules

r® hE M : A Y®bsA:K

Th-vM + A TV-^A + K

r® hE M = M : A T®h:N = N:A

r hE M = N + A

T®^A = B:K

T\-SA = B + K

The idea is that a proof may depend on expression vari-
ables, term variables, and proof variables. This effect is
achieved by relabelling hypotheses x-^-B to x:B in the ()®
operation. Note that equality between proofs implements
proof irrelevance in the classical sense. We could replace
the premise T® hE M = M : A with T® h: M : A (and
similarly for N), but for technical reasons it is simpler if
the equality judgment does not refer to the typing judgment
here.

It is important that M 4- A is inherently weaker than M :
A. In particular, x~A fa x : A. In other words, terms can
not depend on proof variables, but other proofs can. Under a
functional interpretation, it is this property which allows the
consistent erasure of all proof objects without affecting the
observable outcome (assuming proofs are not observable).

Note that, unlike the systems in [5, 20], the rules have the
property of variable monotonicity: when viewed bottom-
up, every variable is preserved—only its status might
change from the conclusion to the premise of a rule. This is
inspired by a similar idea in [13] and is needed for a clean
interaction between expressions and proofs.

2.3 Typing Rules

Our formulation of the typing rules is similar to the sec-
ond version given in [7] and directly based on [8]. In prepa-
ration for the various algorithms we presuppose and induc-
tively preserve the validity of contexts involved in the judg-
ments, instead of checking these properties at the leaves.
This is a matter of expediency rather than necessity. Fur-
thermore, in order to the shorten the presentation we use
the following notation:

"*" stands for either ":", "::", or "4" were all occur-
rences in a rule must be consistent.

223

Objects.

c:A in E

The: A r,x:A,T'^-x:A

T\- Ai * type T, x*A: h M2 : A2

r,x::i4,r'l-x:i4

r h A/j : n.x*A2. Ax

no rule for x-r- A

r i- A/2 * A2

r h Ax*yli. M2 : Hx*Ai. A2 T h A/j * A/2 : [A^/x]^

r h M : vi Thyl = ß: type

T I- M : B

Families.

a:AT in E r h ,4 : ILr*R Ä" F h A/ * ß

rhoiÄ- r h .4 * A/ : [M/x]K

T\- Ay* type T, x*Al h- 42 : type r h ,4 : tf r h tf = L : kind

T h Ex*Ai. A-2 : type Thyl : L

Figure 1. Rules for Validity of Objects and Families

"*" stands for cither juxtaposition (an application of
a function of type Ylx.A. B), "•" (an application of
a function of type Ux::A. B), or "o" (an application
of a function of type Tlx — A. B). Occurrences of "*"
must be coordinated with occurrences of "*" in a rule
schema in the indicated manner.

Signatures. The rules for validity of signatures are
straightforward and omitted here. From now on we fix a
valid signature E and omit it from the judgments.

Contexts. Validity of contexts must guarantee that we
cannot incorrectly refer to a proof variable in a term or
expression, or a term variable in an expression. This is
achieved by the following rules.

I- • ctx

h T ctx r h A * type

I- T,x*A ctx

Note that the second rule schema actually stands for
three rules, depending on whether x:A, x::A, or x~A ap-
pear in the conclusion and premise.

Objects. Here we proceed as in LF, except that we need to
make sure that arguments fit the type and disposition (inten-
sional, cxtensional, or irrelevant) of the function. The rules
can be found in Figure l. The rule schema for application
is the most complex and has three instances. One of them,
for example, replaces * by :: and * by •.

Families and Kinds. The rules for application and con-
version are copies of the rules from the level of objects.
Valid function types restrict occurrences of the dependent
variable based on whether the corresponding argument is
interpreted as an expression, a term, or a proof. This is nec-
essary to guarantee that the type of an application, which is
obtained by substitution, is valid. The rules at the level of
kinds mirror the ones at the level of families and are elided
here.

Generally, in our theory the judgments on families only
reflect the judgments on the objects embedded in them. This
is typical of type theories such as the one underlying LF.

2.4 Definitional Equality

The rules for definitional arc written with the presuppo-
sition that a valid signature E is fixed and that all contexts
T arc valid. The intent is that equality implies validity of
the objects, families, or kinds involved (sec Lemma 2). In
contrast to the original formulation of LF in [7], equality
of terms is based on a notion of parallel conversion plus
extensionality, rather than ^//-conversion, but the two def-
initions turn out to be equivalent. In addition we have to
take care of intensionality for expressions and irrelevance
of proofs. This is reflected in the rules for intensional appli-
cation M • N and irrelevant application M o N.

Some of the typing premises in the rules are redundant,
but for technical reasons we cannot prove this until valid-
ity has been established. Such premises are enclosed in
{braces}.

224

Simultaneous Congruence.

c:A in E

Y\-c = c:A T,x:A,T'hx = x:A F,x::A,T' h x = x : A

r h Mi = AT!: nx-*A2. Ai r i- M2 = N2 * A2

r h M1*M2=N1*N2: [M2/x]A!

r h A; = Ai * type T h A'/ = ^ * type T, x*Ax \- M2 = N2 : A2

r I- Ax*^. M2 = \x*A'{. N2 : Tix-kAx. A2

Extensionality.

n-Ai*type {T\-M:Ux*A1.A2} {T h N : ILr*^. A2} F,x*Ai h M * x = N * x : A2

Th M = N:Ux*A1.A2

Parallel Reduction.

Type Conversion.

{rhAj* type} T, x-kAi h M2 = N2:A2 T h Mi = JVi * ^

T h (Ax*^i. M2) * Mi = [Wi/z]JV2
: [^i/1!^

rhM = A^:yl Th A = B: type

T 1- M = TV : B

Figure 2. Extensional Equality Between Objects

Objects. The extensional equality rules for objects are
shown in Figure 2, where we have elided rules stating sym-
metry and transitivity. Conversion is modelled by parallel
reduction, a choice motivated by technical concerns. Re-
flexivity is admissible, which is typical for equality based
on parallel reduction.

The crux of intensionality and irrelevance is in the cases
for the corresponding applications, M • N and M o N.
We therefore explicitly consider the second premise in the
rule schema for application in its three specific instances.

If we compare Mi M2 = Ni N2, then the second
premise requires M2 = N2 : A2, just as in LF.

If we compare M\ • M2 = Ni • N2 then the ar-
guments are treated intensionally and equality will only
succeed if M2 and N2 are well-typed and intensionally
equal expressions. This is enforced with the judgment
T h M2 = N2 ■'■ A2 defined before, which holds if and
only if Te hM2 =iV2 : A2.

If we compare Mi o M2 = Ni o N2 then the arguments
are proofs and are always considered equal. We only need
to check that they are well-typed, which is accomplished
with the judgment r h M2 = N2 4- A2 defined before.
This holds if and only if T® h M2 : A2 and T® h N2 : A2.

Since the main equality judgment compares terms and

not expressions or proofs, the extensionality principle holds
for all three kinds of functions. Modulo the construction of
the right kind of context and some redundant premises re-
quired for technical reasons, these are straightforward. Sim-
ilarly, the rule of parallel reduction is available for all three
kinds of functions.

Families and Kinds. The rules in Figure 2 are repeated
with straightforward adaptations at the levels of families
and kinds and omitted here. Details can be found in the
technical report [19].

Intensional Equality. The intensional equality between
objects, r h M = N : A, is defined as a simultaneous
congruence just as the extensional equality, but we delete
the rules for extensionality and parallel conversion. In the
modified rules, arguments to functions that are to be treated
as proofs, however, are considered irrelevant for equality as
before. Hence irrelevance takes precedence over intension-
ality, which seems most appropriate for the intended appli-
cations as outlined in Section 7. The reader can find the full
set of rules in [19].

225

2.5 Elementary Properties

We establish some elementary properties of the judg-
ments pertaining to the interpretation of contexts. All of
these have standard or straightforward proofs on the struc-
ture of derivations. First we show weakening for all judg-
ments of the type theory. Secondly, reflexivity holds for
valid objects, families, and kinds.

For all lemmas and theorems from here on we tacitly
assume that the contexts in the given derivations are well-
formed. Furthermore, in the statement of a mcta-thcoretic
property, several occurrences of "•" must still be instanti-
ated consistently as for inference rules.

Lemma 1 (Substitution) IfT, x*A, T'\- J and T h M *
AthenT,[M/x]r'\- [M/x\J.

Proof: By induction over the structure of the first given
derivation. □

Note that this is shorthand for several separate substitu-
tion properties. Now there is a series of technical lemmas
(which we omit), culminating in validity and functionality.

Lemma 2 (Validity)

/. IfT h M * A then T h A • type.

2. IfT \- M = N + A, then T h M * A, T V- N * A,
and T \- A * type.

Analogous properties hold at the levels of families and
kinds.

Lemma 3 (Functionality) If T \~ M = N * A and
T,x*A h O = P : B then T h [M/x}0 = [N/x]P :
[ftl/x] B and similarly at the level of types and kinds.

Another consequence of validity is a collection of stan-
dard inversion properties. In the interest of space, we elide
these properties here. We can further show, from validity,
that the premises enclosed in {...} are indeed redundant,
that is, follow from the other premises.

3 An Algorithm for Deciding Equality

The algorithm for deciding definitional equality can be
summarized as follows:

1. When comparing objects at function type, apply exten-
sionality.

2. When comparing objects at base type, reduce both
sides to weak head-normal form and then compare
heads directly. If they are equal, we compare each cor-
responding pair of arguments according to their status.

(a) When the corresponding arguments are extcn-
sional (terms), recursively compare for exten-
sional equality.

(b) When the corresponding arguments are in-
tensional (expressions), compare for syntactic
equality modulo a-conversion, ignoring only
embedded proof terms.

(c) When the corresponding arguments are irrelevant
(proofs), we always treat them as equal.

Since this algorithm is type-directed in case (1) we need to
carry types. Unfortunately, this makes it difficult to prove
correctness of the algorithm in the presence of dependent
types, because transitivity is not an obvious property. For-
tunately, we do not need to know the precise type of the
objects we are comparing.

We therefore define a calculus of simple approximate
types and an erasure function ()~ that eliminates dependen-
cies for the purpose of this algorithm. Note that there arc
three forms of non-dependent function type which we write
as T\ A T2 and similarly for kinds.

We write a to stands for simple base types and we have
two special type constants, type" and kind", for the equal-
ity judgments at the level of types and kinds.

Simple Kinds K ::= type- |T4K|T4K|T4K

Simple Types r ::= a | T\ -4 T2 | T\ —> T2 | TI A r2

Simple Contexts A ::= ■ | A,X:T | A,X::T | A,X+T

We use r, 9. ö for simple types and A for contexts declar-
ing simple types for variables. We also use "kind-" in a
similar role to "kind" in the LF type theory.

We write A~ for the simple type that results from eras-
ing dependencies in A, and similarly K~. We translate each
constant type family a to a base type a~ and extend this to
all type families. We extend it further to contexts by apply-
ing it to each declaration.

AA-

We now present the algorithm in the form of four judg-
ments. These can be interpreted as an algorithm in the man-
ner of logic programming.

M ^ M' (M weak head reduces to M') Algorithmi-
cally, we assume M is given and compute M' (if M
is head reducible) or fail.

(«)- = a'
(A * M)~ = A

(nx*Ax. A2)~ = A

A h M <=> N : T (M is equal to N at simple type r) Al-
gorithmically, we assume A, M, N, and r are given
and we simply succeed or fail. We only apply this
judgment if M and N have the same type A and
T=A~.

226

AhM <—> N : T (M is structurally equal to TV) Algo-
rithmically, we assume that A, M and TV are given
and we compute r or fail. If successful, r will be the
approximate type of M and TV.

AhAf (=) TV (M is intensionally equal to TV) Algorith-
mically, we assume that A, M, and TV are given and
we either succeed or fail.

Note that the structural and type-directed equality are mutu-
ally recursive, while weak head reduction does not depend
on the other three judgments.

Weak Head Reduction.

(Xx*Ai. M2) * Mi ™ [Mi/x]M2

A/j ^ M[

Mi * M2 ^ M[* Mo

Type-Directed Object Equality.

whr
M ^\M' Ah M' TV: a

Ah M ^^7V : a

TV ^4 TV' A h M <=> TV' : a

Ah M <=> N :a

Ah M i—> N :a

Ah M <==> TV :Q

A,X*TI h M * x <=> TV * x : T2

Ah 71/

Structural Object Equality.

c:A in E

N :TI ->T2

x:r or X::T in A

A h c <—> c: A~ Ah x ■

A h A/i <—> Ni : T2 -4 n Ah A/2 /V2:r2

A h A/i A/2 ^^ TVi 7V2 : n

A h A/i <—> TVj 72 4ri A h A/2 ¥) N2

A h Mi • A/2 ^^ TVi • 7V2 : Tj

Ah Mi ^TVi : T-2 ^ n

Structural Intensional Object Equality.

c:A in E x:r or X::T in A

Ahc A h x {=) x

A\- A <=> ß : type- A,x*A" " hM (EE)TV

A h \x*A. M (=) Xx-kB TV

A h Mi (=) TVj AhM2 HiV2

A h Mi M2 H M N2

Ah Mi (=) Ni AhM2 HiV2

A h Af i • M2 (=) iVi • ; v2

Ah Mi ^JVj

A h MI o M2 (EE) TVI o TV2

The crux of the definitions above are the rules for struc-
tural equality for applications. We omit the corresponding
rules at the level of families. Briefly, kind-directed equality
simple decomposes II-types, while structural type equality
reprises the rules for structural object equality above.

The algorithmic equality judgments satisfy some
straightforward structural properties, including weakening.
Furthermore, the algorithm is essentially deterministic in
the sense that when comparing terms at base type we have to
weakly head-normalize both sides and compare the results
structurally. This is because terms that are weakly head re-
ducible will never be considered structurally equal. This
property, as well as the symmetry and transitivity of the al-
gorithm are completely straightforward.

4 Completeness of the Equality Algorithm

In this section we summarize the completeness theorem
for the type-directed equality algorithm. That is, if two
terms are definitionally equal, the algorithm will succeed.
The central idea is to proceed by an argument via logical
relations denned inductively on the approximate type of an
object, where the approximate type arises from erasing all
dependencies.

The completeness direction of the correctness proof for
type-directed equality states:

IfTh A/= TV : 71 then T- h A/ N:A-

Onc would like to prove this by induction on the structure of
the derivation for the given equality. However, such a proof
attempt fails at the case for application. Instead we define a
logical relation A h M = TV e |rj that provides a stronger
induction hypothesis so that both

A h Mi o M2 <—> Ni o TV2 : TX

1. ifThM = TV rylthenT- h M = TV e [/TJ.and

2. if r- h M = TV e fA-j then r~ h M *=> TV e if r-
A-,

227

can be proved.
The development can be found in [19], following [8]

quite closely, so we omit it here in the interest of brevity.

Theorem 4 (Completeness of the Equality Algorithm)
IfThM = N:A then T~ h M <=^ TV : A~. Further-
more, an analogous property holds at the level of families.

5 Soundness of the Equality Algorithm

In general, the algorithm for type-directed equality is not
sound. However, when applied to valid objects of the same
type, it is sound and relates only equal terms. This direction
requires a number of syntactic lemmas from Section 2.5, but
is otherwise mostly straightforward.

Lemma 5 (Subject Reduction) If M ^A M' and
r h M : A then T h M' : A and T h M = M' : A.

Proof: By induction on the definition of weak head reduc-
tion, making use of inversion and substitution properties. D

For the soundness of the equality algorithm we need sub-
ject reduction and validity (Lemma 2).

Theorem 6 (Soundness of the Equality Algorithm)

/. IfT h M : A and T h TV : A and T~ h M <=> TV :
A~, thenTh M = TV : A.

2. IfT h M : A andT h TV : B andT~ h ,1/ <—> N :
T, then T h M = TV : A, T h A = B : type and
A' = D~ =T.

3. IfT h- M : A andT h TV : B andT- h M (=) TV then
Th A = B : type andT h M = TV : A.

Analogous properties hold for types and kinds.

Proof: By induction on the structure of the given deriva-
tions for algorithmic equality, using validity and inversion
on the typing derivations. D

6 Decidability

We can now show that the judgments for the equality al-
gorithm constitute a decision procedure on valid terms of
the same type. This result is then lifted to yield decidability
of all judgments in the type theory. This part of the develop-
ment is relatively standard. An exposition of the necessary
auxiliary judgments and lemmas can be found in [19]. We
only show the final result.

Theorem 7 (Decidability)

1. IfT h M : A and T h TV : A then it is decidahle
whether T h M = TV : A.

2. Given a valid T, M, and A, it is decidahle whether
T h M : A

Corresponding properties hold at the level of families and
kinds and for other equality judgments.

We also have that our type theory is conservative over
LF. This is important for logical framework applications,
since previously established adequacy theorems for encod-
ings will continue to hold in the modal framework.

7 Further Developments and Potential Appli-
cations

In this section we consider various possible further de-
velopments and potential applications of our ideas.

7.1 Logical Frameworks

The addition of intensional expressions and irrelevant
proofs to the logical framework may leads to more direct
and more compact encodings in a number of examples.

First, the intensional nature of expressions constitutes a
weak form of reflection: arbitrary LF terms are accessible
in LF without regard to /^//-conversion. At present we do
not have any concrete applications for this added expressive
power—the primary application of intensional expressions
we have in mind is in the richer setting of functional pro-
gramming explained in Section 7.2 below.

Second, the irrelevant nature of proofs can be used to
encode similar situations in object theories, which is quite
frequent. For example, in an encoding of linear functions in
LF we often have to deal with pairs consisting of the actual
function and the proof certifying its linearity. The nature of
this proof is. however, irrelevant, as long as it exists. An
encoding of this kind might look as shown below. Here we
use A —> B for II.r:A B where x docs not occur in B.

rau'tcrm
loin
app

linear

Imtcrm

type
(rawtc.rm —> rawtcrm) —> ra.vitc.rm
rawtcrm —> rawtcrm —> rawtcrm

rawtcrm type

TlE:rawtcrm. HL+lmc.ar E. type

The definitional equality at type lintcrm now ignores the
proofs that the expressions E are indeed linear. A simi-
lar situation arises in the encoding of object languages with
subtyping, where often all proofs of subtype relationships
should be considered equal. The logic programming inter-
pretation of such encodings can go from infcasiblc to practi-
cal if all choice points are discarded after the first proof has

228

been found. Such an optimization is justified by our modal
type theory without any loss of soundness or completeness.

Moreover, the Twelf system [21] can verify automati-
cally that type families (such as linear or one implementing
object-language subtyping) are in fact decidable using mode
and termination analysis [22]. If we agree that irrelevant ob-
jects need not be shown in the user interface, then the proofs
of type linear E that occur in linear terms actually do not
need to be represented at all, leading to a potentially signif-
icant space savings that may be critical in applications such
as proof-carrying code [14] and certifying decision proce-
dures [23]. Another situation in which an implementation
may mark objects as irrelevant is if they are uniquely de-
termined, either for syntactic [15] or semantic [16] reasons.
While our modal analysis does not cover all of these op-
timizations, it generalizes some of the core ideas from a
fragment of LF to the full type theory.

7.2 Functional Programming

Our given type theory is fully adequate as a logical
framework, but clearly not expressive enough to develop
verified functional programs as in various implementations
of type theory such as Nuprl [4] or Coq [6]. Besides stan-
dard constructs such as inductive types or E-types that are
orthogonal to our considerations, we need to internalize ex-
pressions and proofs as modal operators, rather than just
arguments to functions. The blueprint for such an integra-
tion for expressions has been given in prior work [5, 20], the
correct notion of definitional equality in the presence of de-
pendencies was the main missing ingredient. The presence
of both expressions and proofs allows a new twist. We show
the formation and introduction rules for the corresponding
modal operators, expanding the derived judgments:

re h A : type

T\- DA: type

r® h A : type

TBh M :A

ThboxM : UA

T®hM:A

r I-A4: type rhtriM:AA

The elimination rules (especially for the A modality) are
unfortunately quite complex. To give the idea: we can now
represent, for example, the subset type as a proof-irrelevant
version of the the strong sum.

{x:A | B} = Zx:A. AB

The triangle operator appears to serve the same purpose as
the squash type in [10], except here it derived directly from
the judgmental level rather than from identity types.

If our operational interpretation of type theory is based
on staged computation [5], then the A modality is necessary

to reason about staged programs. Besides a natural symme-
try between intensionality and irrelevance as extreme forms
of decidable equality, this has been our main motivation for
developing a type theory that simultaneously supports these
concepts. As an example, consider the specification of a
staged power function (presuming a type nat and a prepo-
sitional equality =):

f Hn:nat. 0(lib:nat. Jim:nat. m = bn) : type

This not well-formed because the term variable n is not
available in the expression underneath the □ constructor.
This problem is neatly solved with the A modality as fol-
lows:

h Un:nat. D(Ub:nat. Hm:nat. A(m = bn)) : type

This further specifies that the correctness proof for the
staged power function may be erased before execution since
it is computationally irrelevant.

7.3 First-Order Intuitionistic Modal Logic

If we consider the first-order fragment of our type the-
ory, the three forms of II-abstraction correspond to three
forms of universal quantification. In terms of a Kripke se-
mantics with varying domains, ILc: A B quantifies over the
elements of the current domain only. This means, for ex-
ample, that ILr:A DP(x) is only well-formed if P has
kind Ylx-^-A. type, because otherwise the truth of P(x)
may need to be investigated in worlds in which x does
not exist. Yet it is still possible that x occurs, even if P
can only talk about elements of the current world, as in
Ux:A. P(x) ->• DAP(i) (which is true, incidentally). The
quantifier Iix::A. B quantifies over elements existing in all
domains and thus, in general, fewer than Iix:A. B. Finally,
ILr-^A B quantifies over all elements of the current world
and also elements that existed in some past world. Thus our
approach has the potential to shed new light on old debates
by allowing various interpretations of quantification to co-
exist peacefully in a single modal logic.

8 Conclusion

We have presented a dependent type theory that inte-
grates intensionality, extensionality, and proof irrelevance
as judgmental notions, based on considerations from modal
logic. We proved that equality and type-checking are de-
cidable on the fragment presented here and sketched some
possible applications.

The most pressing item of future work is the inclusion
of first-class modal operators important for applications in
functional programming. The most difficult question here
is the right notion of the "default" equality on terms. In

229

this paper, the term equality was fully extensional; for func-
tional programming applications, this will not be tenable
and must be replaced by a dccidable judgmental equality
that is sound with respect to the operational semantics. We
conjecture that this can be done without upsetting the "ex-
treme" equalities of expressions and proofs for which there
appears to be little leeway. Furthermore, some type theo-
retic constructs such as universes may require generaliza-
tions of our proof techniques.

Acknowledgments. We would like to thank the anony-
mous referees for various helpful comments and sugges-
tions.

References

[1] S. Bcrardi, M. Coppo, F. Damiani, and P. Giannini. Type-
based useless-code elimination for functional programs. In
W. Taha, editor, Proceedings of the International Workshop

on Semantics, Applications, and Implementation of Pro-

gram Generation (SAIG 2000), pages 172-189, Montreal,
Canada, Sept. 2000. Springer-Verlag LNCS 1924.

[2] U. Bcrgcr, W. Buchholz, and H. Schwichtenbcrg. Retined
program extraction from classical proofs. Annals of Pare
and Applied Logic, 2001. To appear.

[3] I. Cervcsato and F. Pfenning. A linear logical framework.
Information and Computation, 1998. To appear in a special
issue with invited papers from LICS'96, E. Clarke, editor.

(4] R. L. Constable ct al. Implementing Mathematics with the
Nuprl Proof Development System. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1986.

[51 R. Davics and F Pfenning. A modal analysis of staged com-
putation. Journal of the ACM, 2000. To appear. Preliminary

version available as Technical Report CMU-CS-99-153, Au-

gust 1999.
[6] G. Dowck, A. Felty, H. Herbclin, G. Huct, C. Murthy,

C. Parent, C. Paulin-Mohring, and B. Werner. The Coq

proof assistant user's guide. Rapport Techniques 154. IN-
RIA, Rocqucncourt, France, 1993. Version 5.8.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of the Association for Computing

Machinery A0(1): 143-184, Jan. 1993.
[8] R. Harper and F. Pfenning. On equivalence and canonical

forms in the LF type theory. Technical Report CMU-CS-
00-148, Department of Computer Science, Carnegie Mellon

University, July 2000.
[9] J. Hodas and D. Miller. Logic programming in a fragment

of intuitionistic linear logic. Information and Computation,

110(2):327-365, 1994. A preliminary version appeared in

the Proceedings of the Sixth Annual IEEE Symposium on
Logic in Computer Science, pages 32-42, Amsterdam, The

Netherlands, July 1991.

[10] M. Hofmann. Extensional Concepts in Intensional Type
Theory. PhD thesis, Department of Computer Science, Uni-
versity of Edinburgh, July 1995. Available as Technical Re-

port CST-117-95.

[11] P. Martin-Löf. Analytic and synthetic judgements in type
theory. In P. Parrini, editor, Kant and Contemporary Episte-

mology, pages 87-99. Kluwer Academic Publishers, 1994.
[12] P. Martin-Löf. On the meanings of the logical constants

and the justifications of the logical laws. Nordic Journal

of Philosophical Logic, 1(1):11-60, 1996.
[13] A. Momigliano. Elimination of Negation in a Logi-

cal Framework. PhD thesis, Department of Philosophy,

Carnegie Mellon University, Aug. 2000. Available as Tech-
nical Report CMU-CS-00-175.

[14] G. C. Necula. Proof-carrying code. In N. D. Jones, editor,

Conference Record of the 24th Symposium on Principles of

Programming Languages (POPL'97), pages 106-119, Paris,

France, Jan. 1997. ACM Press.
[15] G. C. Necula and P. Lee. Efficient representation and vali-

dation of logical proofs. In Proceedings of the 13th Annual

Symposium on Logic in Computer Science (LICS'98), pages

93-104, Indianapolis, Indiana, June 1998. IEEE Computer

Society Press.
[16] G. C. Necula and S. Rahul. Oracle-based checking of

untrusted software. In H. R. Nielson, editor, Conference

Record of the 28th Annual Symposium on Principles of Pro-

gramming Languages (POPL'OI), pages 142-154, London,
England, Jan. 2001. ACM Press.

[17] B. Nordström, K. Pctcrsson, and J. Smith. Programming in

Martin-Löf's Type Theory: An Introduction. Oxford Univer-
sity Press, 1990.

[18] C. Paulin-Mohring. Extraction de Programmes dans le Cal-

cul des Constructions. PhD thesis, Universite Paris VII, Jan.
1989.

[19] F. Pfenning. Intensionality, extcnsionality, and proof irrel-
evance in modal type theory. Technical Report CMU-CS-
01-116, Department of Computer Science, Carnegie Mellon
University, Apr. 2001.

[20] F Pfenning and R. Davics. A judgmental reconstruction of

modal logic. Mathematical Structures in Computer Science,

11, 2001. To appear. Notes to an invited talk at the Workshop

on Intuitionistic Modal Logics and Applications (IMLA'99),

Trcnto. Italy, July 1999.
[21] F. Pfenning and C. Schürmann. System description: Twclf

— a meta-logical framework for deductive systems. In
H. Ganzinger, editor. Proceedings of the I6th International

Conference on Automated Deduction (CADE-I6), pages
202-206, Trento, Italy, July 1999. Springer-Verlag LNAI

1632.
[22] E. Rohwcddcr and F Pfenning. Mode and termination

checking for higher-order logic programs. In H. R. Niel-
son, editor, Proceedings of the European Symposium on Pro-
gramming, pages 296-310, Linköping, Sweden, Apr. 1996.

Springer-Verlag LNCS 1058.
[23] A. Stump and D. L. Dill. Generating proofs from a decision

procedure. In A. Pnucli and P. Travcrso, editors, Proceed-

ings of the FLoC Workshop on Run-Time Result Verification,

Trento, Italy, July 1999.

230

Dependent Types for Program Termination Verification

Hongwei Xi
University of Cincinnati
hwxidececs.uc.edu

Abstract

Program termination verification is a challenging re-
search subject of significant practical importance. While
there is already a rich body of literature on this subject, it
is still undeniably a difficult task to design a termination
checker for a realistic programming language that supports
general recursion. In this paper, we present an approach to
program termination verification that makes use of a form of
dependent types developed in Dependent ML (DML), demon-
strating a novel application of such dependent types to es-
tablishing a liveness property. We design a type system that
enables the programmer to supply metrics for verifying pro-
gram termination and prove that every well-typed program
in this type system is terminating. We also provide realistic
examples, which are all verified in a prototype implemen-
tation, to support the effectiveness of our approach to pro-
gram termination verification as well as its unobtntsiveness
to programming. The main contribution of the paper lies
in the design of an approach to program termination veri-
fication that smoothly combines types with metrics, yielding
a type system capable of guaranteeing program termination
that supports a general form of recursion (including mutual
recursion), higher-order functions, algebraic datatypes, and
polymorphism.

1 Introduction

Programming is notoriously error-prone. As a conse-
quence, a great number of approaches have been developed
to facilitate program error detection. In practice, the pro-
grammer often knows certain program properties that must
hold in a correct implementation; it is therefore an indication
of program errors if the actual implementation violates some
of these properties. For instance, various type systems have
been designed to detect program errors that cause violations
of the supported type disciplines.

It is common in practice that the programmer often knows
for some reasons that a particular program should termi-
nate if implemented correctly. This immediately implies
that a termination checker can be of great value for detect-
ing program errors that cause nonterminating program ex-

* Partially supported by NSF grant no. CCR-0092703

ecution. However, termination checking in a realistic pro-
gramming language that supports general recursion is often
prohibitively expensive given that (a) program termination
in such a language is in general undecidable, (b) termination
checking often requires interactive theorem proving that can
be too involved for the programmer, (c) a minor change in a
program can readily demand a renewed effort in termination
checking, and (d) a large number of changes are likely to be
made in a program development cycle. In order to design a
termination checker for practical use, these issues must be
properly addressed.

There is already a rich literature on termination verifica-
tion. Most approaches to automated termination proofs for
either programs or term rewriting systems (TRSs) use var-
ious heuristics, some of which can be highly involved, to
synthesize well-founded orderings (e.g., various path order-
ings [3], polynomial interpretation [1], etc.). While these
approaches are mainly developed for first-order languages,
the work in higher-order settings can also be found (e.g.,
[7]). When a program, which should be terminating if im-
plemented correctly, cannot be proven terminating, it is of-
ten difficult for the programmer to determine whether this
is caused by a program error or by the limitation of the
heuristics involved. Therefore, such automated approaches
are likely to offer little help in detecting program errors that
cause nonterminating program execution. In addition, auto-
mated approaches often have difficulty handling realistic (not
necessarily large) programs.

The programmer can also prove program termination in
various (interactive) theorem proving systems such as NuPrl
[2], Coq [4], Isabelle [8] and PVS [9]. This is a viable prac-
tice and various successes have been reported. However, the
main problem with this practice is that the programmer may
often need to spend so much time on proving the termination
of a program compared with the time spent on simply im-
plementing the program. In addition, a renewed effort may
be required each time when some changes, which are likely
in a program development cycle, are made to the program.
Therefore, the programmer can often feel hesitant to adopt
(interactive) theorem proving for detecting program errors in
general programming.

We are primarily interested in finding a middle ground. In
particular, we are interested in forming a mechanism in a pro-
gramming language that allows the programmer to provide
key information needed for establishing program termination

231

0-7695-1281-X/01 $10.00 © 2001 IEEE

fun ack m n =
if m = 0 then n+1
else if n = 0 then ack (m-1) 1 else ack (m-1) (ack m (n-1))

withtype {i:nat,j:nat} <i,j> => int(i) -> int(j) -> [k:nat] int(k)

Figure 1. An implementation of Ackerman function

and then automatically verifies that the provided information
indeed suffices. An analogy would be like allowing the user
to provide induction hypotheses in inductive theorem prov-
ing and then proving theorems with the provided induction
hypotheses. Clearly, the challenging question is how such
key information for establishing program termination can be
formalized and then expressed. The main contribution of this
paper lies in our attempt to address the question by present-
ing a design that allows the programmer to provide through
dependent types such key information in a (relatively) simple
and clean way.

It is common in practice to prove the termination of recur-
sive functions with metrics. Roughly speaking, we attach a
metric in a well-founded ordering to a recursive function and
verify that the metric is always decreasing when a recursive
function call is made. In this paper, we present an approach
that uses the dependent types developed in DML [18, 14] to
carry metrics for proving program termination. We form a
type system in which metrics can be encoded into types and
prove that every well-typed program is terminating. It should
be emphasized that we arc not here advocating the design
of a programming language in which only terminating pro-
grams can be written. Instead, we arc interested in designing
a mechanism in a programming language, which, if the pro-
grammer chooses to use it, can facilitate program termination
verification. This is to be manifested in that the type system
we form can be smoothly embedded into the type system of
DML. We now illustrate the basic idea with a concrete exam-
ple before going into further details.

In Figure 1, an implementation of Ackerman function is
given. The withtype clause is a type annotation, which
states that for natural numbers i and j, this function takes
an argument of type int(i) and another argument of type
int(j) and returns a natural number as a result. Note that
we have refined the usual integer type int into infinitely
many singleton types int(o) for a = 0,1,-1,2,-2,...
such that int (a) is precisely the type for integer expres-
sions with value equal to a. We write {i :nat, j mat}
for universally quantifying over index variables i and j of
sort nat, that is, the sort for index expressions with values
being natural numbers. Also, wc write [k:nat] int (k)
for E/c : nat.int(k), which represents the sum of all types
int(fc) fork = 0,1,2,.... The novelty here is the pair {i.j)
in the type annotation, which indicates that this is the met-
ric to be used for termination checking. Wc now informally
explain how termination checking is performed in this case;
assume that i and j are two natural numbers and m and n
have types int(i) and int(j), respectively, and attach the
metric (i,j) to ack rn n; note that there are three recursive
function calls to ack in the body of ack; we attach the met-

ric (i - 1,1) to the first ack since m-1 and 1 have types
int(i - 1) and int(l), respectively; similarly, wc attach the
metric (i - 1,A:) to the second ack, where k is assumed to
be some natural number, and the metric {i, j - 1) to the third
ack; it is obvious that (i - 1,1) < (i,j), (i -l,k) < (i,j)
and {i.j - 1) < {ij) hold, where < is the usual lexico-
graphic ordering on pairs of natural numbers; wc thus claim
that the function ack is terminating (by a theorem proven in
this paper). Note that although this is a simple example, its
termination cannot be proven with (lexicographical) struc-
tural ordering (as the semantic meaning of both addition +
and subtraction — is needed).'

More realistic examples are to be presented in Sec-
tion 5, involving dependent datatypes [15], mutual recursion,
higher-order functions and polymorphism. The reader may
read some of these examples before studying the sections on
technical development so as to get a feel as to what can actu-
ally be handled by our approach.

Combining metrics with the dependent types in DML
poses a number of theoretical and pragmatic questions. We
briefly outline our results and design choices.

The first question that arises is to decide what metrics we
should support. Clearly, the variety of metrics for establish-
ing program termination is endless in practice. In this pa-
per, wc only consider metrics that are tuples of index expres-
sions of sort nat and use the usual lexicographic ordering
to compare metrics. The main reasons for this decision are
that (a) such metrics are commonly used in practice to estab-
lish termination proofs for a large variety of programs and
(b) constraints generated from comparing such metrics can
be readily handled by the constraint solver already built for
type-checking DML programs. Note that the usual structural
ordering on first-order terms can be obtained by attaching to
the term the number of constructors in the term, which can be
readily accomplished by using the dependent datatype mech-
anism in DML. However, we are currently unable to capture
structural ordering on higher-order terms.

The second question is about establishing the soundness
of our approach, that is, proving every well-typed program
in the type system we design is terminating. Though the idea
mentioned in the example of Ackerman function seems intu-
itive, this task is far from being trivial because of the pres-
ence of higher-order functions. The reader may take a look
at the higher-order example in Section 5 to understand this.
Wc seek a method that can be readily adapted to handle var-
ious common programming features when they are added,

'There is an implementation of Ackerman function that involves only
primitive recursion and can thus be easily proven terminating, but the point
we drive here is that this particular implementation can be proven terminat-
ing with our approach.

232

including mutual recursion, datatypes, polymorphism, etc.
This naturally leads us to the reducibility method [12]. We
are to form a notion of reducibility for the dependent types
extended with metrics, in which the novelty lies in the treat-
ment of general recursion. This formation, which is novel to
our knowledge, constitutes the main technical contribution
of the paper.

The third question is about integrating our termination
checking mechanism with DML. In practice, it is common
to encounter a case where the termination of a function / de-
pends on the termination of another function g, which, unfor-
tunately, is not proven for various reasons, e.g., it is beyond
the reach of the adopted mechanism for termination check-
ing or the programmer is simply unwilling to spend the effort
proving it. Our approach is designed in a way that allows the
programmer to provide a metric in this case for verifying the
termination of / conditional on the termination of g, which
can still be useful for detecting program errors.

The presented work builds upon our previous work on the
use of dependent types in practical programming [18, 14].
While the work has its roots in DML, it is largely unclear,
a priori, how dependent types in DML can be used for es-
tablishing program termination. We thus believe that it is a
significant effort to actually design a type system that com-
bines types with metrics and then prove that the type sys-
tem guarantees program termination. This effort is further
strengthened with a prototype implementation and a variety
of verified examples.

The rest of the paper is organized as follows. We form
TT y1

a language ML0' in Section 2, which essentially extends
the simply typed call-by-value A-calculus with a form of de-
pendent types, developed in DML, and recursion. We then
extend ML0 ' to ML0 '^ in Section 3, combining metrics

with types, and prove that every program in ML"'^ is termi-

nating. In Section 4, we enrich ML^'Ji with some significant
programming features such as datatypes, mutual recursion
and polymorphism. We present some examples in Section 5,
illustrating how our approach to program termination verifi-
cation is applied in practice. We then mention some related
work and conclude.

There is a full paper available on-line [16] in which the
reader can find details omitted here.

{a : int \ a > 0}. We use S(i) for a base type indexed with
a sequence of index expressions £ which may be empty. For
instance, bool(0) and bool(l) are types for boolean values
false and true, respectively; for each integer i, int(i) is the
singleton type for integer expressions with value equal to i.

We use 4> [= P for a satisfaction relation, which means
P holds under <fi, that is, the formula (4>)P, defined below, is
satisfied in the domain of integers.

(■)$ = $ (0, a : int)§ = (<£)Va : int.§
(0,a:{a:7|P})* = (0,a:7)(PD$)

(</>,P)$ = (0)(PD$)

For instance, the satisfaction relation

a : nat, a ^ 0 \= a — 1 > 0

holds since the following formula is true in the integer do-
main.

Va : int.a >0D(a/0Da-l>0)

Note that the decidability of the satisfaction relation depends
on the constraint domain. For the integer constraint domain
we use here, the satisfaction relation is decidable (as we do
not accept nonlinear integer constraints).

We use rio : 7.T and Sa : 7.T for the usual depen-
dent function and sum types, respectively. A type of form
Ha : 7.T is essentially equivalent to Ilai : 71 ... Uan : jn.T,
where we use a : 7 for ai : 71,..., an : jn.

2 We also in-
troduce A-variables and /9-variables in ML0 ' and use x and
/ for them, respectively. A lambda-abstraction can only be
formed over a A-variable while recursion (via fixed point op-
erator) must be formed over a p-variable. A A-variable is a
value but a p-variable is not.

We use A for abstracting over index variables, lam for ab-
stracting over variables, and fun for forming recursive func-
tions. Note that the body after either A or fun must be a
value. We use (i \ e) for packing an index i with an expres-
sion e to form an expression of a dependent sum type, and
open for unpacking an expression of a dependent sum type.

2.2 Static Semantics

2 ML, 0

We start with a language ML^'E, which essentially ex-
tends the simply typed call-by-value A-calculus with a form
of dependent types and (general) recursion. The syntax for

TT y ML0 ' is given in Figure 2.

2.1 Syntax

We fix an integer domain and restrict type index expres-
sions, namely, the expressions that can be used to index a
type, to this domain. This is a sorted domain and subset sorts
can be formed. For instance, we use nat for the subset sort

We write 4> h r : * to mean that r is a legally formed type
under <f> and omit the standard rules for such judgments.

index substitutions 8j
substitutions 8

Or [a M- i\
8[x »-> e] I 0[f K> e]

A substitution is a finite mapping and [] represents an empty
mapping. We use 61 for a substitution mapping index vari-
ables to index expressions and dom(0/) for the domain of
61. Similar notations are used for substitutions on variables.
We write •[#/] (•[#]) for the result from applying 6] (8) to
•, where • can be a type, an expression, etc. The standard

2In practice, we also have types of form Ea : 7.7-, which we omit here
for simplifying the presentation.

233

index constants c;
index expressions i
index propositions P
index sorts 7
index variable contexts 4>
index constraints $
types r
contexts 1'
constants c
expressions e

values

— | —2 | — J. | 0 f 1 | 2 | - - -
a | c/ | i\ + i-2 | i\ - i-i \ i\ * i-2 \ h/h
h < 12 | l'l < «2 | i'i > i-2 I «1 > «2 | »I = 12 | h ^ h I P\ A P2 I -Pi V P2

int | {a : 7 | P}
• | 0,0:7 I 0,P
P I P D $ I Va : 7.$
<5(f) I Ila : 7.r | Eft : 7.T
• I T,x : r I T,/ : r
<r«e |/a/se | 0 | 1 | -1 | 2 | -2 | • ■ •
c I x I / I if (e, e\, e2) | \a : j.v | lam x : r.e \ e\ (e2) |
fun f[a : 7] : T is v | e[i] | (i | e) | open ei as (a | x) in e2

c I x I Xa : ~f.v | lam x : r.e | (i | t>)

Figure 2. The syntax for MLf, n,s

— (type-eq) (type-A-var) ^-T, L f _ (type-p-var)
6; T h e : r2

0, a : 7; T h i; : r
(type-ilam)

rhx : r v"-""" " '""' <t>;Y\- f :T

; T h e : Ha : J.T 0 h 1*: 7
f>; T h An : 7.1; : lift : j.r w r~ ' 0; T h e[i\ : r[a >-> 1]

(A, ft : 7; r, / : lift : 7.T h» :T , . „
 — " ;J ^ - (type-fun)
0; F h fun /[ft : 7] : r is v : Ilo : J.T

0;Fh e :bool(i) 0, ?' = 1; T h c, : r 0, i = 0: Th e2 : r

0; T h if(e,ei,e2) : r
0; r, x : ri h e : r2 ,, , , 0; F I- (^ : n -> r2 0; F h e2 : n

(type-iapp)

(type-if)

/. r u 1 v " (type"131") 0; I h lam x : T\.c : T\ —> T2

0; T h ei : Eft : 7.T1 0, n : 7; T. x : T] h c2 : T->

0; T I- open c\ as (n | x) in e-> : r->
(type-open)

0; T h ei(e2) : r2

0 h j : 7 0; T h e : r[a >->• i

0; r h (i I e) : Ea : 7.T

(type-app)

(type-pack)

Figure 3. Typing Rules for ML n.E

definition is omitted. The following rules arc for judgments
of form (f>\- 6[: 0', which rouehly means that Q\ has "type"
0'.

(sub-i-empty)
0H]

0 1- 0, : 0' 0 h i : 7[0/]

0 h ö/[« H-> f] : 0',o : 7
0hfl/:0' 0|=P[6>/]

0ho/:0',P

- (sub-i-var)

(sub-i-prop)

We write dom(r) for the domain of F, that is, the set of
variables declared in V. Given substitutions 0/ and 9, we say
0;T h {9j;0) : (0'; V) holds if 0 h 0/ : 0'and dom(ö) =
dom(r') and 0;T h Ö(x) : T'(x)[6i] for all x G dom(r').

We write 0 |= r = r' for the congruent extension of
0 |= i = j from index expressions to types, determined by
the following rules. It is the application of these rules that

generates constraints during type-checking.

0 N i = j 0 \= r[= T! 0 |= T2 = T2
0 |= (5(0 = JO') 0 (= ri -> r2 = T[-> r^

0, n : 7 |= r = r' 0,0, : 7 (= r = r'

0)= lift : J.T = fin : J.T' 0 |= Eo. : J.T = Ea : J.T'

We present the typing rules for ML0 ' in Figure 3. Some
of these rules have obvious side conditions, which arc omit-
ted. For instance, in the rule (type-ilam), n cannot have free
occurrences in T. The following lemma plays a pivotal role
in proving the subject reduction theorem for ML0

standard proof is available in [14].

II, E whose

Lemma 2.1 Assume 0,
0;T h (6i;0) : (4>';Tr

e[9i][0] : r[9,}.

0';r,r' h e : T is derivable and
holds. Then we can derive 0; T h

234

2.3 Dynamic Semantics 3 ML, o,<

TT y We present the dynamic semantics of ML0 ' through the
use of evaluation contexts defined below. Certainly, there are
other possibilities for this purpose, which we do not explore
here. i

evaluation contexts E ::=

[]|if(£!ei!e2)r£[I]|£(e)N£)l
(i | E) | open E as (a \ x) in e

We write E[e] for the expression resulting from replacing
the hole [] in E with e. Note that this replacement can never
result in capturing free variables.

Definition 2.2 A redex is defined below.

• if(c,ei,e2) are redexes for c = true, false, which re-
duce to e\ and e2, respectively.

• (lam x : r.e)(v) is a redex, which reduces to e[x H-> V].

• Let e be fun f[a : 7] : r is v Then e is a redex, which
reduces to \a : j.v[f t->- e].

• (Xa : 7.i>)[l] is a redex, which reduces to v[a ►-> i\.

• open (i | v) as (a j x) in e is a redex, which reduces
to e[a *-> i][x H-»- V}.

We use r for a redex and write r <-> eifr reduces to e. If
e\ = E[r], e-2 = E[e] andr M- e, we write ei <-» e2 and say
e\ reduces to e2 in one step.

Let <->* be the reflexive and transitive closure of <-». We say
ei reduces to e2 (in many steps) if e\ ^>* e2. We omit the
standard proof for the following subject reduction theorem,
which uses Lemma 2.1.

Theorem 2.3 (Subject Reduction) Assume •;■ h e : r /s
derivable in ML0' . //e <-»* e', f/ie« ■; ■ h e' : r w «/so
derivable in MLn ' .

We combine metrics with the dependent types in ML0' ,
forming a language ML0 '<. We then prove that every well-

typed program in ML0 ^ is terminating, which is the main
technical contribution of the paper.

3.1 Metrics

We use < for the usual lexicographic ordering on tuples
of natural numbers and < for the strict part of <. Given
two tuples of natural numbers {ii, ...,in) and (i[, ...,i'n,),
(ii,...,in) < {i[, ■■■ ,i'ni) holds if n = n' and for some
0 < k < n, ij = i'j for j = 1,..., k - 1 and ik < i'k. Evi-
dently, < is a well-founded. We stress that (in theory) there
is no difficulty supporting various other well-founded order-
ings on natural numbers such as the usual multiset ordering.
We fix an ordering solely for easing the presentation.

Definition 3.1 (Metric) Let ß = (ii,... ,in) be a tuple of
index expressions and <f> be an index variable context. We
say p. is a metric under <f> if 0 \- ij : not are derivable for
j = 1,..., n. We write <f> h p : metric to mean p is a metric
under (j).

n,E r, and A decorated type in ML0 ^ is of form Ila : j.p
the following rule is for forming such types.

0, a : 7 I- T : * 0, a : 7 h p : metric
0 h Ila : 7*./i => r : *

The syntax of ML"^ is the same as that of ML"
,S
 except

that a context T in ML0 ^ maps every p-variable / in its do-

main to a decorated type and a recursive function in MLQ '^
is of form fun f\a : 7] : p =4> r is v. The process of
translating a source program into an expression in ML0 '^ is
what we call elaboration, which is thoroughly explained in
[18, 14]. Our approach to program termination verification
is to be applied to elaborated programs.

2.4 Erasure 3.2 Dynamic and Static Semantics

n,£ We can simply transform MLn ' into a language MLn ^, . r, „ n E ■ ,
erasing all svntax related to tvne index exnresMons in The dynamlc semant.es of MLo;<< is formed in precisely by erasing all syntax related to type index expressions in

ML0' . Then ML0 basically extends simply typed A-
calculus with recursion. Let |e| be the erasure of expression
e. We have e\ reducing to e2 in ML0 'E implies |ei| reduc-
ing to |e2| in ML0. Therefore, if e is terminating in ML"'2

then |e| is terminating in ML0. This is a crucial point since
TT y the evaluation of a program in ML0 ' is (most likely) done

through the evaluation of its erasure in ML0. Please find
more details on this issue in [18, 14].

3For instance, it is suggested that one present the dynamic semantics in
the style of natural semantics and then later form the notion of reducibility
for evaluation rules.

the same manner as that of ML^'E and we thus omit all the
details.

The difference between MLQ
1
'^ and MLQ'E lies in static

semantics. There are two kinds of typing judgments in
n y ML0 ' , which are of forms 0; T h e : r and 0; F h e : r C/

p0. We call the latter a metric typing judgment, for which
we give some explanation. Suppose 0; T h e : r <C/ po
and T(/) = Ua : ■y.fi => r; roughly speaking, for each
free occurrence of / in e, / is followed by a sequence of
index expressions [i] such that p[a H* i], which we call
the label of this occurrence of /, is less than po under 0.
Now suppose we have a well-typed closed recursive function

235

e = fun f[a : 7] : p =► r is u in ML0 '^ and fare of sorts 7;

then /[!][/ ►-> e] = e[i] <->•* t> [a i-> !][/ H-» e] holds; by the
rule (type-fun), we know that all labels of / in v are less than
n[a i-> i], which is the label of/ in /[i]; since labels cannot
decrease forever, this yields some basic intuition on why all

n y
recursive functions in ML0 '^ are terminating. However, this
intuitive argument is difficult to be formalized directly in the
presence of high-order functions.

The typing rules in ML0 ^ for a judgment of form 0; T h
IT y

e : T arc essentially the same as those in ML0 ' except the
following ones.

r(/) = Ila : 7> => T
(type-p-var)

0;T h / : Ilo : J.T

0, a : 7; T, / : Ila : 7.// => r h it : r <C/ /U
——— -p— —; _ (type-fun)
0; 1 h tun /[a : 7] : p =>■ r is it : Ila : 7.T

We present the rules for deriving metric typing judgments in
Figure 4. Given p = (iu...,in) and p! = (i\ ,...,«'„),
0 f= /1 < //' means that for some 1 < k < n, <f>,i\ =
i'j,..., ij_i = ij._j (= ij < i'j are satisfied for all 1 < j < k

and 0, «i = i'j,..., ij,_j = ij,._j |= ik < i'A. is also satisfied.

Lemma 3.2 We have the following.

1. Assume 0,0'; r,r' h e : r i.? derivable and 0: F h
(0/;0) : {<j)';T') holds. Then we can derive 0:Y h
e[ö/][0] : T[9,\

2. Assume (j),(j)';T,T' h e : r -C/ // is derivable and
0;T h (0;;0) : (0';r') holds and f G dom(F). 7/;«;
nr «w <7™vr 0: T h e[8,)[9] : T[0,} «C/ //[#/].

Proof (1) and (2) arc proven simultaneously by struc-
tural induction on derivations of 0,0'; T.T' \- e : T and
0, 0'; r, T' h f! : T C/ //., respectively. ■

Theorem 3.3 (Subject Reduction) Assume ■: • \- e : T is

derivable in ML"'^. If C <->* e', ?/;e« ■; ■ h e' : r i.v a/.v

derivable in ML,
3,«

II,£
o,<-

Obviously, we have the following.

Proposition 3.4 Assume that V is a derivation 0; Y h r :
r -Cy //,(). 77«'« then there is a derivation of 0; F h e : r
w/f/j //;c .vrt/Hc height4 as V.

3.3 Reducibility

Wc define the notion of reducibility for well-typed closed
expressions.

Definition 3.5 (Reducibility) Suppose that e is a closed ex-
pression of type T and e ■—>* v holds for some value v. The
reducibility of c is defined by induction on the complexity of
T.

1. r is a base type. Then e is reducible.

2. T = Tj —> r2. Then e is reducible if e(vi) arc reducible
for all reducible values V\ of type r.

3. T = Ua : 7.T1. Then e is reducible if e[i] arc reducible
for all f: 7.

4. r = £a : 7.T1. Then e is reducible if v = (i | i>i) for
some i and iti such that vi is a reducible value of type
T\ [a >-->• i].

Note that reducibility is only defined for closed expressions
that reduce to values.

Proposition 3.6 Assume that e is a closed expression of type
T and e ■—> e' holds. Then e is reducible if and only if e' is
reducible.

Proof By induction on the complexity of r. ■

The following is a key notion for handling recursion,
which, though natural, requires some technical insights.

Definition 3.7 (p-Reducibility). Let e be a well-typed closed
recursive function fun /[« : 7] ://.=> r is v and fi^ be a
closed metric, e is fi0-reducible if c[T\ are reducible for all
f: 0 satisfying fi[a >-> \\ < [IQ.

Definition 3.8 Let 0 be a substitution that maps variables to
expressions; for every .r £ dom(ö), 0 is x-reducible ifO(x)
is reducible; for every f G dom(#), 8 is (j', // j)-reducihle if
0(f) is fif-reducible.

In some sense, the following lemma verifies whether the
notion of reducibility is formed correctly, where the difficulty
probably lies in its formulation rather than in its proof.

Lemma 3.9 (Main Lemma) Assume that cj>; F h e : T and
■ h (6i\6) : (0; T) are derivable. Also assume that 0
is x-reducible for every x G dom(F) and for every f G
dom(r), -,r[9i} h e[6,} : T[0,} «/ fif is derivable and 0
is (/. pf)-reducible. Then <'[9 ,]\9] is reducible.

Proof Let V be a derivation of 0; F h c. : r and we pro-
ceed by induction on the height of V. We present the most
interesting case below. All other cases can be found in [16].
Assume that the following rule (type-fun) is last applied in
V,

cp.di : 7i;r,/i : IT«i : 7V//1 => T"I ^ "1 : n </, //,

0: T h fun /1 [d\ : 71] : p\ => T\ is V\ : Y\a\ 7i -ri

4For a minor technicality reason, we count neither of the rules
(type-p-var) and (<C-/>var) when calculating the height of a derivation.

where we have e = fun /1 [r7j : 71] : p\ => T\ is V\
and T = IIoj : 71 .Tj. Suppose that c* = e.[6i][6] is
not reducible. Then by definition there exist 7Q : j* such
that e*[i0] is not reducible but e*[i\ arc reducible for all
f : Oi satisfying p*[cti >-> i\ < (i*[(ii *-> k,], where
7j* = 7i[ö/] and //* = p\[9i). In other words, e* is //./,-
reducible for ///, = /'*["l ^ i*o]- Note that wc can derive
■;r[0,],/, : n«j : ^.r,^/] r- ^^[n, ^ f0]] : r, [#,[«! ^

236

T(x) =
«-A-var) r(/i) fxtf «-p-var)

4>; r h e : bool(i) <y p0 0, i = 1; T h et : r <C/ ;»o 0, i = 0; T h e2 : r </ (U0

jTr- if(e,ei,e2) : r <C/ po («-if)

0, a : 7; T r-1; : r </ /ip
0; T h Aa : 7.1; : IIo : 7.T </ /i0

0; T, a; : n h e : r2 <£/ p0

«-ilam)
/>; T h e : ITa : 7.T </ p0 </> h f: 7

0; T I- e[i] : r[a H> i] </ /x0
«-iapp)

«-lam)
</>; T I- ei : TI ->■ r2 <C/ p0 0; T h e2 : n <Cy p0

0;T h lamx : rx.e : n -> T2 <C/ /x0
v"" ' ^Thei(e2) : r2 </ ^0

<t>, oi : 7i I r, /1 : Ilai : Mi =*> 7i -n H «i : n «/> /iX

<£, ai : 7i; T, /1 : flai : 71 .n h e1 : n <£/ /j0

(<-app)

<?!>; T h fun /x [ai : 7^ : px =» n is vx : II01 : 71 .n </ /U0

4>\-\:^ <j> \= p[a H» i] < /j0 T(/) = fig : f./i =^> r

0; T h /[T] :r[a4i] «/ ^o

</> I- i : 7 4>\ T I- e : r[a H-> i] <y /x0
—, _ , . . — «-pack)

<p; T \- (1 I e) : £a : 7.x </ ^o

ft; r h ei : Sa : 7.T1 <C/ /z0 </>, a : 7; T, a; : n r- e2 : r2 </ MO

05 r I- open ei as (o | a;) in e2 : r2 </ ^o

«-fun)

«-lab)

«-open)

Figure 4. Metric Typing Rules for MLj <

To]] <SC/ yu/j. By Proposition 3.4, there is a derivation 2?! of
0,ai : 7i;I\/i : IKi : ji.pi => rx V vx : T\ such that the
height of X>i is less than that of X>. By induction hypothesis,
we have that v\ = ui[0/[ai M- r0]][ö[/! i-» e*]] is reducible.
Note that e*[f0] <->* v{ and thus e*[r0] is reducible, contra-
dicting the definition of f0. Therefore, e* is reducible.

The following is the main result of the paper.

Corollary 3.10 If ■;■ \- e : T is derivable in ML"'%., then e

in ML0 ^ is reducible and thus reduces to a value.

Proof The corollary follows from Lemma 3.9. ■

4 Extensions

■n,£ We can extend ML0 ^ with some significant program-
ming features such as mutual recursion, datatypes and poly-
morphism, defining the notion of reducibility for each ex-
tension and thus making it clear that Lemma 3.9 still holds
after the extension. We present in this section the treatment
of mutual recursion and currying, leaving the details in [16].

4.1 Mutual Recursion

The treatment of mutual recursion is slightly different
from the standard one. The syntax and typing rules for
handling mutual recursion are given in Figure 5. We use

(Ti , • ■ •, Tn) for the type of an expression representing n mu-
tually recursive functions of types n,... ,r„, respectively,
which should not be confused with the product of types
Ti,..., r„. Also, the n in e.n must be a positive (constant)
integer. Let v be the following expression.

funs fi [Si : 7!] : n is vx and ... and /„ [an 7„J : Tn is vn

Then for every 1 < k < n, v.k is a redex, which reduces to
Aa* : 7VM/1 ^ v.l, ...,/„!-)• v.n). Let / = fr,..., fn

and we form a metric typing judgment 0; T h e «,- fi0 for
verifying that all labels of /x ,...,/„ in e are less than fi0 un-
der <p. The rules for deriving such a judgment are essentially
the same as those in Figure 4 except «-lab), which is given
below.

/ in / T(/) = fig : j.fj, =» r 0 |= p[g 1-» i] < /x0

4>;Th f[r\ :T[ä^i\^:f-ß0

The rule «-funs) for handling mutual recursion is straight-
forward and thus omitted.

Definition 4.1 (Reducibility) Let e be a closed expression of
type (n,..., T„) and e reduces to v. e is reducible ife.k are
reducible for k = 1,..., n.

4.2 Currying

A decorated type must so far be of form Yla : j.p => r
and this restriction has a rather unpleasant consequence. For

237

types r
expressions e
values v

(Uäi : ji.Ti,...,Uan : 7„.rn)
e.n | funs f\ [ö*i : 71] : n is V\ and... and fn[an : jn] : rn is v„
funs /1 [äi : 7J] : Ti is Vi and ... and fn[an : jn] : T„ is vn

f = fi,---,fn T= (ITai : 71 -n,..., Uan : 7n.r„)
j>, äi : 71; r, /1 : ITai : 71 : A*i => Ti ,...,/„ : IIan : % : //„ =>• rn I- ui : n «Cy /Ji

i, an : 7„; I\ /1 : IHi : 71 : Mi => n ,...,/„ : ITan : fn : /x„ => rn h i>„ : rn «Cy /jn

6; T h funs /1 [a*i : 71] : /ii => rx is i>i and... and fn[an : 7,,] : /j.n =$> rn is vn : T

0; T h e : (ri,..., r„) 1 < fc < n
0; T h e./c : r*

(type-choose)

(type-funs)

Figure 5. The Syntax and Typing Rules for Mutual Recursion

instance, we may want to assign the following type r to the
implementation of Ackerman function in Figure 1:

{i:nat} int(i) -> {j:nat} int(j) -> int,

which is formally written as

ritti : nat.int(aj) -> Tla-i : nat.int (a?) -> En : nnt.int(n)

If we decorate r with a metric //., then //. can only involve
the index variable 0,1, making it impossible to verify that the
implementation is terminating.

We generalize the form of decorated types to the follow-
ing so as to address the problem.

Uäi ■ 7i -T\ ->■ > n«„ : 7„.T„ -> no : 7./; => r.

Also, we introduce the following form of expression e. for
representing a recursive function.

fun /[«j : 7i](./'i : TI) ■ ■ • [a,, : 7„](.r„ : Tn)[a : 7] : r is f0

Wc require that c0 he a value if 7) = 0. In the following, we
only deal with the case n = 1. For n > 1, the treatment is
similar. For e = fun /[«i : 7i](3'i : TI)[O : 7] : r is p0» wc

have e <-> A«i : 7*! .lam .TI : rj .\a : 7.P0 and the following
typing rule

(/>,»! : 71, a : 7; T, / : TQ, .Ti : Tj h c : T «/ /1

</;; T I- fun /[«1 : 7i](xi : n)[a : 7] : /J => r is r : r0

where T() = IlrTi : 71 .T\ —> Ilö* : 7.T, and the following
metric typing rule

<l> \=h ■ 7i 0 (= r; 7["i ^1*1]
0 |= //.[fi M- ä*i][n H->i] < //o

0;T h ei : n[«] t->T\] C/ /i0

T(/) = n«i : 71 .ri -> II« : 7.// => r

0; T h fW-iM : r[«i ^ n][a ^ I] «, //0

Definition 4.2 (u-reducibility) Let e be a closed recursive
function fun /[a* : H](x\ : n)[a : 7] : T is e and /J0 be
a closed metric, e is ^-reducible if e\\\)(v)\}\ are reducible
for all reducible values v : Ti[«i i-> i*i] and \\ : 71 a/?f/
f: 7[ä*i >->• fi] satisfying /i[«i 1—> rx][a H-> I] < //0.

5 Practice

n,E We have implemented a type-checker for ML0 '^ in a pro-
totype implementation of DML and experimented with vari-
ous examples, some of which are presented below. Wc also
address the practicality issue at the end of this section.

5.1 Examples

Wc demonstrate how various programming features arc
handled in practice by our approach to program termination
verification.

Primitive Recursion The following is an implementation
of the primitive recursion operator R in Gödcl's T, which is
clearly typablc in ML""^. Note that Z and S arc assigned
the types Nat(0) and Tin : nat.Nat(n) -> Nat(n + 1),
respectively.

datatype Nat with nat =
Z(0) I {n:nat} S(n+1) of Nat(n)

fun('a) R Z u v =
u I R (S n) u v = v n (R n u v)

withtype
{n:nat} <n> =>
Nat(n) -> 'a -> (Nat -> 'a -> 'a) -> 'a
(* Nat is for [n:nat] Nat(n) in a type *)

By Corollary 3.10, it is clear that every term in T is termi-
nating (or weakly normalizing). This is the only example in
this paper that can be proven terminating with a structural
ordering. The point wc make is that though it seems
"evident" that the use of R cannot cause non-termination, it
is not trivial at all to prove every term in T is terminating.
Notice that such a proof cannot be obtained in Pcano
arithmetic. The notion of rcducibility is precisely invented
for overcoming the difficulty [12]. Actually, every term in
T is strongly normalizing, but this obviously is untrue in

238

ML,

Nested Recursive Function Call The program in Figure 6
involving a nested recursive function call implements Mc-
Carthy's "91" function. The withtype clause indicates
that for every integer x, J91(x) returns integer 91 if x < 100
and x — 10 if x > 101. We informally explain why the
metric in the type annotation suffices to establish the termi-
nation of /91; for the inner call to /91, we need to prove that
0 \= max(0,101 - (i + 11)) < max(0,101 - i) is satisfied
for 0 = i : int,i < 100, which is obvious; for the outer
call to /91, we need to verify that 0i (= max(0,101 - j) <
max(0,101 — i), where 0i is <p,j : int, P and P is

(i + 11 < 100 A j = 91)V(i + ll > 101A j = i + 11 — 10)

If i + 11 < 100, then j = 91 and max(0,101 - j) = 10 <
12 < 101-i; if i + 11 > 101, then j = i + 11 - 10 = i + 1
and max(0,101 — j) < 101 — i (since i < 100 is assumed
in 0). Clearly, this example can not be handled with a
structural ordering.

Mutual Recursion The program in Figure 7 implements
quicksort on a list, where the functions qs and par are de-
fined mutually recursively. We informally explain why this
program is typable in ML0 ^ and thus qs is a terminating
function by Corollary 3.10.

For the call to par in the body of qs, the label is (0 +
0 + a, a + 1), where a is the length of xs'. So we need to
verify that 0 f= (0 + 0 + a, a + 1) < (n, 0) is satisfied for
0 = n : nat, a : nat, a + 1 = n, which is obvious.

For the two calls to qs in the body of par, we need to
verify that 0 (= (p,0) < (p + q + r, r + 1) and 0 (= (q,0) <
(p+q + r, r+1) for 0 = p : nat,q : nat,r : nat, r = 0, both
of which hold since 0 \= p < p + q and 0 \= q < p + q and
0 \= 0 < 1. This also indicates why we need r + 1 instead
of r in the metric for par.

For the two calls to par in the body of par, we need
to verify that 0 |= ((p + 1) + q + a, a) < (p + q + r,r)
and 0 (= (p + (q + 1) + a, a) < {p + q + r,r) for
0 = p : nat, q : nat, r : nat, a : nat, r = a + 1, both of
which hold since 0 |= (p + 1) + q + a = p + q + r and
0 \=P+{q + l)+a = p + q + r and 0 |= a < r. Clearly,
this example can not be handled with a structural ordering.

Higher-order Function The program in Figure 8 imple-
ments a function accept that takes a pattern p and a string
s and checks whether s matches p, where the meaning of a
pattern is given in the comments.

The auxiliary function ace is implemented in continua-
tion passing style, which takes a pattern p, a list of char-
acters cs and a continuation k and matches a prefix of cs
against p and call k on the rest of characters. Note that k
is given a type that allows k to be applied only to a char-
acter list not longer than cs. The metric used for proving
the termination of ace is (n,i), where n is the size of p,
that is the number constructors in p (excluding Empty) and
i is the length of cs. Notice the call ace p es' k in the

last pattern matching clause; the label attached to this call is
(n,i'), where i' is the length of cs'; we have i' < i since the
continuation has the type Ila' : 7. (char) list (a1) —> bool,
where 7 is {a : nat \ a < i}; we have i ^ i' since
length(cs') = length(cs) must be false when this call hap-
pens; therefore we have i' < i5 and then (n,i') < (n,i). It
is straightforward to see that the labels attached to other calls
to ace are less than (n,i). By Corollary 3.10, ace is termi-
nating, which implies that accept is terminating (assuming
explode is terminating). In every aspect, this is a non-trivial
example even for interactive theorem proving systems.

Notice that the test length(cs') — length(cs) in the body
of ace can be time-consuming. This can be resolved by using
a continuation that accepts as its arguments both a character
list and its length. In [5], there is an elegant implementa-
tion of accept that does some processing on the pattern to be
matched and then eliminates the test.
Run-time Check There are also realistic cases where termi-
nation depends on a program invariant that cannot (or is diffi-
cult to) be captured in the type system of DML. For instance,
the following example is adopted from an implementation of
bit reversing, which is a part of an implementation of fast
Fourier transform (FFT).

fun loop (j, k) =
if (k<j) then loop (j-k, k/2) else j+k

withtype
{a:nat,b:nat} int(a) * int(b) -> int

Obviously, loop(l,0) is not terminating. However, we may
know for some reason that the second argument of loop can
never be 0 during execution. This leads to the following im-
plementation, in which we need to check that k > 1 holds
before calling loop(j — k, k/2) so as to guarantee that k/2 is
a positive integer.

fun loop (j, k) =
if (k < j) then

if (k > 1) then loop (j - k, k / 2)
else raise Impossible

else j+k
withtype {a:nat,b:pos} <max(0, a-b)> =>

int(a) * int(b) -> int

It can now be readily verified that loop is a terminating func-
tion. This example indicates that we can insert run-time
checks to verify program termination, sometimes, approxi-
mating a liveness property with a safety property.

5.2 Practicality

There are two separate issues concerning the practicality
of our approach to program termination verification, which
are (a) the practicality of the termination verification pro-
cess and (b) the applicability of the approach to realistic pro-
grams.

5Note that length(cs') and length(cs) have the types int(i') and
int(i), respectively, and thus length(cs') — length(cs) has the type
bool(i' = i). where i' = i equals 1 or 0 depending on whether i' equals i.
Thus, i' < i can be inferred in the type system.

239

fun f91 (x) = if (x <= 100) then f91 (f91 (x + 11)) else x - 10
withtype

{i:int} <max(0, 101-i)> =>
int(i) -> [j:int | (i<=100 /\ j=91) \/ (i>=101 A j=i-10)] int(j)

Figure 6. An implementation of McCarthy's "91" function

fun('a) qs cmp xs =
case xs of [] => [] | x :: xs' => par cmp (x, [], [], xs')

withtype ('a * 'a -> bool) -> (n:nat) <n,0> => 'a list(n) -> 'a list(n)

and('a) par cmp (x, 1, r, xs) =
case xs of

[] => qs cmp 1 @ (x : : qs cmp r)
| x' :: xs' => if cmp(x', x) then par cmp (x, x' :: 1, r, xs')

else par cmp (x, 1, x' :: r, xs')
withtype ('a * 'a -> bool) -> {p:nat,q:nat,r:nat} <p+q+r,r+l> =>

'a * 'a list(p) * 'a list(q) * 'a list(r) -> 'a list(p+q+r+1)

Figure 7. An implementation of quicksort on a list

It is easy to observe that the complexity of type-checking
in ML0 '^ is basically the same as in MLn '" since the only
added work is to verify that metrics (provided by the pro-
grammer) are decreasing, which requires solving some extra
constraints. The number of extra constraints generated from
type-checking a function is proportional to the number of re-
cursive calls in the body of the function and therefore is likely
small. Based on our experience with DML. we thus feel that
type-checking in MLn '^ is suitable for practical use.

As for the applicability of our approach to realistic pro-
grams, we use the type system of the programming language
C as an example to illustrate a design decision. Obviously,
the type system of C is unsound because of (unsafe) type
casts, which are often needed in C for typing programs that
would otherwise not be possible. In spite of this practice, the
type system of C is still of great help for capturing program
errors. Clearly, a similar design is to allow the programmer
to assert the termination of a function in DML if it cannot be
verified, which we may call termination cast. Combining ter-
mination verification, run-time checks and termination cast,
we feel that our approach is promising to be put into practice.

6 Related Work

The amount of research work related to program termina-
tion is simply vast. In this section, we mainly mention some
related work with which our work shares some similarity ei-
ther in design or in technique.

Most approaches to automated termination proofs for ci-
ther programs or term rewriting systems (TRSs) use various
heuristics to synthesize well-founded ordcrings. Such ap-
proaches, however, often have difficulty reporting compre-
hensible information when a program cannot be proven ter-

minating. Following [13], there is also a large amount of
work on proving termination of logic programs. In [I I]. it is
reported that the Mercury compiler can perform automated
termination checking on realistic logic programs.

However, we address a different question here. We are
interested in checking whether a given metric suffices to es-
tablish the termination of a program and not in synthesiz-
ing such a metric. This design is essentially the same as the
one adopted in [10], where it checks whether a given struc-
tural ordering (possibly on high-order terms) is decreasing in
an inductive proof or a logic program. Clearly, approaches
based on checking complements those based on synthesis.

Our approach also relates to the semantic labelling ap-
proach [19] designed to prove termination for term rewrit-
ing systems (TRSs). The essential idea is to differentiate
function calls with labels and show that labels are always
decreasing when a function call unfolds. The semantic la-
belling approach requires constructing a model for a TRS to
verify whether labelling is done correctly while our approach
docs this by type-checking.

The notion of sized types is introduced in [6] for prov-
ing the correctness of reactive systems. There, the type sys-
tem is capable of guaranteeing the termination of well-typed
programs. The language presented in [6], which is designed
for embedded functional programming, contains a significant
restriction as it only supports (a minor variant) of primitive
recursion, which can cause inconvenience in programming.
For instance, it seems difficult to implement quicksort by us-
ing only primitive recursion. From our experience, general
recursion is really a major programming feature that greatly
complicates program termination verification. Also, the no-
tion of existential dependent types, which we deem indis-
pensable in practical programming, docs not exist in [6].

When compared to various (interactive) theorem proving

240

datatype pattern with nat =
Empty(0) (* empty string matches Empty *)

| Char(l) of char (* "c" matches Char (c) *)
| {i:nat,j:nat} Plus(i+j+l) of pattern(i) * pattern(j)

(* cs matches Plus(pi, p2) if cs matches either pi or p2 *)
| {i:nat,j:nat} Times(i+j+l) of pattern(i) * pattern(j)

(* cs matches Times(pi, p2) if a prefix of cs matches pi and
the rest matches p2 *)

| {i:nat} Star(i+1) of pattern(i)
(* cs matches Star(p) if cs matches some, possibly 0, copies of p *)

(* 'length' computes the length of a list *)
fun('a)

length (xs) = let
fun len ([], n) = n

| len (x :: xs, n) = len (xs, n+1)
withtype

{i:nat,jmat} <i> => 'a list(i) * int(j) -> int(i+j)
in

len (xs, 0)
end

withtype {i:nat} <> => 'a list(i) -> int(i)
(* empty tuple <> is used since 'length' is not recursive *)

fun ace p es k =
case p of

Empty => k (cs)
| Char(c) =>

(case cs of
[] => false

| c' :: cs' => if (c = c') then k (cs') else false)
| Plus(pi, p2) => (* in this case, k is used for backtracking *)
if ace pi cs k then true else ace p2 es k

| Times(pi, p2) => ace pi cs (fn cs' => ace p2 cs' k)
j Star(pO) =>

if k (cs) then true
else ace pO cs (fn cs' =>

if length(cs') = length(cs) then false
else ace p cs' k)

withtype {n:nat} pattern(n) ->
{i:nat} <n, i> => char list(i) ->
({i':nat | i' <= i} char list(i') -> bool) -> bool

(* 'explode' turns a string into a list of characters *)
fun accept p s =

ace p (explode s) (fn [] => true | _ :: _ => false)
withtype <> => pattern -> string -> bool

Figure 8. An implementation of pattern matching on strings

241

systems such as NuPrl [2], Coq [4], Isabcllc [8] and PVS [9],
our approach to program termination is weaker (in the sense
that [many] fewer programs can be verified terminating) but
more automatic and less obtrusive to programming. We have
essentially designed a mechanism for program termination
verification with a language interface that is to be used dur-
ing program development cycle. We consider this as the main
contribution of the paper. When applied, the designed mech-
anism intends to facilitate program error detection, leading
to the construction of more robust programs.

7 Conclusion and Future Work

We have presented an approach based on dependent types
in DML that allows the programmer to supply metrics for
verifying program termination and proven its correctness.
We have also applied this approach to various examples that
involve significant programming features such as a general
form of recursion (including mutual recursion), higher-order
functions, algebraic datatypes and polymorphism, support-
ing its usefulness in practice.

A program property is often classified as either a safety
property or a liveness property. That a program never per-
forms out-of-bounds array subscripting at run-time is a safety
property. It is demonstrated in [17] that dependent types in
DML can guarantee that every well-typed program in DML
possesses such a safety property, effectively facilitating run-
time array bound check elimination. It is, however, unclear
(a priori) whether dependent types in DML can also be used
for establishing liveness properties. In this paper, we have
formally addressed the question, demonstrating that depen-
dent types in DML can be combined with metrics to estab-
lish program termination, one of the most significant liveness
properties.

Termination checking is also useful for compiler opti-
mization. For instance, if one decides to change the exe-
cution order of two programs, it may be required to prove
that the first program always terminates. Also, it seems fea-
sible to use metrics for estimating the time complexity of
programs. In lazy function programming, such information
may allow a compiler to decide whether a thunk should be
formed. In future, we expect to explore along these lines of
research.

Although we have presented many interesting examples
that cannot be proven terminating with structural ordcrings,
we emphasize that structural ordcrings are often effective in
practice for establishing program termination. Therefore, it
seems fruitful to study a combination of our approach with
structural ordcrings that handles simple cases with either au-
tomatically synthesized or manually provided structural or-
dcrings and verifies more difficult cases with metrics sup-
plied by the programmer.

References

[1] A. BenChcrifa and P. Lescannc. Termination of rewriting sys-
tems by polynomial interpretations and its implementation.
SCP, 9(2): 137-160, 1987.

[2] R. L. Constable et al. Implementing Mathematics with the
NuPrl Proof Development System. Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[3] N. Dershowitz. Orderings for term rewriting systems. Theo-
retical Computer Science, 17(3):279-301, 1982.

[4] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Par-
ent, C. Paulin-Mohring, and B. Werner. The Coq proof assis-
tant user's guide. Rapport Techniques 154, INRIA, Rocquen-
court, France, 1993. Version 5.8.

[5] R. Harper. Proof-Directed Debugging. Journal of Functional
Programming, 9(4):471-477, 1999.

[6] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of
reactive systems using sized types. In Conference Record of
23rd ACM SICPLAN Symposium on Principles of Program-
ming Languages, pages 410-423, 1996.

[7] J.-P Jouannaud and A. Rubio. The higher-order recursive
path ordering. In Proceedings of 14th IEEE Symposium on
Logic in Computer Science, pages 402-411, July 1999.

[8] P. Lawrence. Isahelle: A Generic Theorem Prover. Springer-
Verlag LNCS 828, 1994.

[9] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas.
PVS: Combining specification, proof checking, and model
checking. In R. Alur and T. A. Henzinger, editors, Proceed-
ings of the 8th International Conference on Computer-Aided
Verification, CAV '96, pages 4-11 —414, New Brunswick, NJ,
July/August 1996. Springer-Verlag LNCS 1102.

[10] B. Pientka and F Pfenning. Termination and Reduction
Checking in the Logical Framework. In Workshop on Au-
tomation of Proofs by Mathematical Induction, June 2000.

[11] C. Spcirs. Z. Somogyi, and H. S0ndcrgarrd. Termination
Analysis for Mercury. In Proceedings of the 4th Static Anal-
ysis Symposium, pages 157-171, September 1997.

[12] W. W. Tait. Intensional Interpretations of Functionals of Fi-
nite Type I. Journal of Symbolic Logic, 32(2): 198-212, June
1967.

[13] J. D. Ullman and A. V Gelder. Efficient tests for top-down
termination of logic rules. Journal of the ACM, 35(2):345-
373. 1988.

[14] H. Xi. Dependent Types in Practical Programming. PhD
thesis, Carnegie Mellon University, 1998. pp. viii+189.
Available as
http://www.cs.emu.edu/~hwxi/DML/thesis.ps.

[15] H. Xi. Dependcntly Typed Data Structures. In Proceedings of
Workshop on Algorithmic Aspects of Advanced Programming
Languages, pages 17-33, September 1999.

[16] H. Xi. Dependent Types for Program Termination Verifica-
tion. July 2000. Available as
http://www.ececs.uc.edu/~hwxi/DML/Term.

[17] H. Xi and F. Pfenning. Eliminating array bound checking
through dependent types. In Proceedings of ACM S1GPLAN
Conference on Programming Language Design and Imple-
mentation, pages 249-257, Montreal, June 1998.

[18] H. Xi and F. Pfenning. Dependent types in practical program-
ming. In Proceedings of ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages, pages 214-227, San An-
tonio, January 1999.

[19] H. Zantema. Termination of term rewriting by semantic la-
belling. Fundamenta Informaticac, 24:&9-\05, 1995.

242

Short Paper Session

Invited Talk

Foundational Proof-Carrying Code

Andrew W. Appel*
Princeton University

Abstract

Proof-carrying code is a framework for the mechani-
cal verification of safety properties of machine language
programs, but the problem arises of quis custodiat ip-
sos custodes—who will verify the verifier itself? Founda-
tional proof-carrying code is verification from the small-
est possible set of axioms, using the simplest possible ver-
ifier and the smallest possible runtime system. I will de-
scribe many of the mathematical and engineering prob-
lems to be solved in the construction of a foundational
proof-carrying code system.

1 Introduction

When you obtain a piece of software - a shrink-
wrapped application, a browser plugin, an applet, an OS
kernel extension - you might like to ascertain that it's safe
to execute: it accesses only its own memory and respects
the private variables of the API to which it's linked. In a
Java system, for example, the byte-code verifier can make
such a guarantee, but only if there's no bug in the verifier
itself, or in the just-in-time compiler, or the garbage col-
lector, or other parts of the Java virtual machine (JVM).

If a compiler can produce Typed Assembly Language
(TAL) [14], then just by type-checking the low-level rep-
resentation of the program we can guarantee safety - but
only if there's no bug in the typing rules, or in the type-
checker, or in the assembler that translates TAL to ma-
chine language. Fortunately, these components are signif-
icantly smaller and simpler than a Java JIT and JVM.

Proof-carrying code (PCC) [15] constructs and verifies
a mathematical proof about the machine-language pro-
gram itself, and this guarantees safety - but only if there's
no bug in the verification-condition generator, or in the
logical axioms, or the typing rules, or the proof-checker.

What is the minimum possible size of the components
that must be trusted in a PCC system? This is like ask-
ing, what is the minimum set of axioms necessary to

'This research was supported in part by DARPA award F30602-99-
1-0519 and by National Science Foundation grant CCR-9974553.

prove a particular theorem? A foundational proof is one
from just the foundations of mathematical logic, without
additional axioms and assumptions; foundational proof-
carrying code is PCC with trusted components an order
of magnitude smaller than previous PCC systems.

Conventional proof-carrying code. Necula [15]
showed how to specify and verify safety properties of
machine-language programs to ensure that an untrusted
program does no harm - does not access unauthorized
resources, read private data, or overwrite valuable data.
The provider of a PCC program must provide both the
executable code and a machine-checkable proof that
this code does not violate the safety policy of the host
computer. The host computer does not run the given code
until it has verified the given proof that the code is safe.

In most current approaches to PCC and TAL [15, 14],
the machine-checkable proofs are written in a logic with
a built-in understanding of a particular type system. More
formally, type constructors appear as primitives of the
logic and certain lemmas about these type constructors
are built into the verification system. The semantics of
the type constructors and the validity of the lemmas con-
cerning them are proved rigorously but without mechnical
verification by the designers of the PCC verification sys-
tem. We will call this type-specialized PCC.

A PCC system must understand not only the language
of types, but also the machine language for a particular
machine. Necula'sPCC systems [15,7] use a verification-
condition generator (VCgen) to derive, for each program,
a verification condition - a logical formula that if true
guarantees the safety of the program. The code producer
must prove, and the code consumer must check the proof
of, the verification condition. (Both producer and con-
sumer independently run the VCgen to derive the right
formula for the given program.)

The VCgen is a fairly large program (23,000 lines of C
in the Cedilla Systems implementation [7]) that examines
the machine instructions of the program, expands the sub-
stitutions of its machine-code Hoare logic, examines the
formal parameter declarations to derive function precon-

247
0-7695-1281-X/01 $10.00 © 2001 IEEE

ditions, and examines result declarations to derive post-
conditions. A bug in the VCgen will lead to the wrong
formula being proved and checked.

The soundness of a PCC system's typing rules and
VCgen can, in principle, be proved as a metatheo-
rem. Human-checked proofs of type systems are almost
tractable; the appendices of Necula's thesis [16] and Mor-
risett et al.'s paper [14] contain such proofs, if not of the
actual type systems used in PCC systems, then of their
simplified abstractions. But constructing a mechanically-
checkable correctness proof of a full VCgen would be a
daunting task.

Foundational PCC. Unlike type-specialized PCC, the
foundational PCC described by Appcl and Fclty [3]
avoids any commitment to a particular type system and
avoids using a VC generator. In foundational PCC the op-
erational semantics of the machine code is defined in a
logic that is suitably expressive to serve as a foundation
of mathematics. We use higher-order logic with a few ax-
ioms of arithmetic, from which it is possible to build up
most of modern mathematics. The operational semantics
of machine instructions [12] and safety policies [2] are
easily defined in higher-order logic. In foundational PCC
the code provider must give both the executable code plus
a proof in the foundational logic that the code satisfies
the consumer's safety policy. The proof must explicitly
define, down to the foundations of mathematics, all re-
quired concepts and explicitly prove any needed proper-
ties of these concepts.

Foundational PCC has two main advantages over type-
specialized PCC — it is more flexible and more secure.
Foundational PCC is more flexible because the code pro-
ducer can "explain" a novel type system or safety argu-
ment to the code consumer. It is more secure because the
trusted base can be smaller: its trusted base consists only
of the foundational verification system together with the
definition of the machine instruction semantics and the
safety policy. A verification system for higher-order logic-
can be made quite small [10, 17].

In our research project at Princeton University (with
the help of many collcages elsewhere) we are building
a foundational PCC system, so that we can specify and
automatically prove and check the safety of machine-
language programs. In this paper I will explain the com-
ponents of the system.

2 Choice of logic and framework

To do machine-checked proofs, one must first choose
a logic and a logical framework in which to manipulate
the logic. The logic that we use is Church's higher-order
logic with axioms for arithmetic; we represent our logic,
and check proofs, in the LF mctalogic [10] implemented
in the Twelf logical framework [18]. We have chosen LF
because it naturally produces proof objects that we can
send to a "consumer."

The Twelf system allows us to specify constructors of
our object logic. Our object logic has types tp; its prim-
itive types are propositions o and numbers num; there is
an arrow constructor to build function types, and pair
to build tuples. For any object-logic type T, object-logic
expressions ofthat type have metalogical type tm T. Fi-
nally, for any formula A we can talk about proofs of A,
which belong to the metalogical type pf {A).

tp : type.
tm : tp -> type.
O: tp. num: tp.
arrow: tp -> tp -> tp.

%infix right 14 arrow.
pair: tp -> tp -> tp.
pf : tm o -> type.

We have object-logic constructors lam (to construct
functions). @ (to apply a function to an argument, written
infix), imp (logical implication), and forall (universal
quantification):

lam: (tm Tl -> tm T2) -> tm (Tl arrow T2).
@ : tm (Tl arrow T2) -> tm Tl -> tm T2.

%infix left 20 @.
imp : tm o -> tm o -> tm o.

%infix right 10 imp.
forall : (tm T -> tm o) -> tm o.

The trick of using lam and @ to coerce between met-
alogical functions tm Tl -> tm T2 and object-logic
functions tm (Tl arrow T2) is described by Harper,
Honscll, and Plotkin [10]. We need object-logic functions
so that we can quantify over them using forall; that is,
the type of F in forall [F] predicate(F) must
be tm T for some T such as num arrow num, but can-
not be tm Tl -> tm T2.

We have introduction and elimination rules for these
constructors (rules for pairing omitted here):

beta__e: {P: tm T -> tm o)
pf(P (lam F @ X)) -> pf(P (F X)).

beta_i: {P: tm T -> tm o)
pf(P (F X)) -> pf(P (lam F @ X)).

imp_i: (pf A -> pf B) -> pf (A imp B).
imp_e: pf (A imp B) -> pf A -> pf B.

248

forall_i:
({X:tm T}pf(A X)) -> pf(forall A) .

forall_e:
pf(forall A) -> {X:tm T}pf(A X).

not_not_e: pf ((B imp forall [A] A)
imp forall [A] A)

-> pf B.
Our proofs don't need extensionality or the general axiom
of choice.

Once we have defined the constructors of the logic,
we can define lemmas and new operators as definitions
in Twelf:

and : tm o -> tm o -> tm o =
[A] [B]
forall [C] (A imp B imp C) imp C.

%infix right 12 and.

and_i : pf A -> pf B -> pf (A and B) =
[pi: pf A][p2: pf B]
forall_i [c: tm o]
imp_i [p3] imp_e (imp_e p3 pi) p2.

and_el : pf (A and B) -> pf A =
[pi: pf (A and B)]
imp_e (forall_e pi A)
(imp_i [p2: pf A] imp_i [p3: pf B] p2).

Of course, the defined lemmas are checked by machine
(the Twelf type checker), and need not be trusted in the
same way that the core inference rules are. Our interactive
tutorial [1] provides an informal introduction to our object
logic.

3 Specifying machine instructions

We start by modeling a specific von Neumann ma-
chine, such as the Sparc or the Pentium. A machine state
comprises a register bank and a memory, each of which
is a function from integers (addresses) to integers (con-
tents). Every register of the instruction-set architecture
(ISA) must be assigned a number in the register bank: the
general registers, the floating-point registers, the condi-
tion codes, and the program counter. Where the ISA does
not specify a number (such as for the PC) we use an arbi-
trary index:

0: rO 0:
1:
2:

1: rl

31- r31
32:

63:

fpO

fp31
64: cc
65: PC

unused

A single step of the machine is the execution of one in-
struction. We can specify instruction execution by giving
a step relation (r,m) H-> {iJ,m') that describes the relation
between the prior state (r,m) and the state (r1',m') of the
machine after execution.

For example, to describe the instruction r\ <— r-± + r-x,
we might start by writing,

(r,m) H-> (r',m') ~
rJ{\) = r{2) + r(3) A (Vjf ^\.rJ{x)= r(x)) Am' = m

In fact, we can define add(i.j,k) as this predicate on
four arguments (/", m,r',m'):

add(i,j,k) =
Xr,m.y,m'. r1'(/) = r(j) + r(k)

A(Vx^i.iJ{x) = r(x))
A m' = m

Similarly, we can define the instruction r, m\r; + c\
as

load(/,7,c) =
\r,my,m'. r1'(/) = m(r(j) + c)

A (Vjt y£ i. r'(jc) = r(x)) A m' = m

But we must also take account of instruction fetch and
decoding. Suppose, for example, that the add instruction
is encoded as a 32-bit word, containing a 6-bit field with
opcode 3 denoting add, a 5-bit field denoting the destina-
tion register i, and 5-bit fields denoting the source regis-
ters j,k:

3 i j k
26 21 16 5

The load instruction might be encoded as,
0

12 i / c
26 21 16 0

Then we can say that some number w decodes to an
instruction instr iff,

249

dccode(w, instr) =

0<i<25 A 0<;<25 A 0 < k < 25 A
w = 3-226 + j-221+;-216 + it-2() A
instr = add((',y,&))

V(3/,;,c.
0<i'<25 A 0<7<25 A 0<c<216 A
w= 12-226 + (-221+;-216 + c-2° A
instr — load(/,y,sign-extend(c)))

V

with the ellipsis denoting the many other instructions of
the machine, which must also be specified in this formula.

Neophytos Michael and I have shown [12] how to scale
this idea up to the instruction set of a real machine. Real
machines have large but semiregular instruction sets; in-
stead of a single global disjunction, the decode relation
can be factored into operands, addressing modes, and so
on. Real machines don't use integer arithmetic, they use
modular arithmetic, which can itself be specified in our
higher-order logic. Some real machines have multiple
program counters (e.g., Sparc) or variable-length instruc-
tions (e.g., Pentium), and these can also be accommo-
dated.

Our description of the decode relation is heavily fac-
tored by higher-order predicates (this would not be pos-
sible without higher-order logic). We have specified the
execution behavior of a large subset of the Sparc archi-
tecture (without register windows or floating-point). For
PCC, it is sufficient to specify a subset of the machine ar-
chitecture; any unspecified instruction will be treated by
the safety policy as illegal, which may be inconvenient for
compilers that want to generate that instruction, but which
cannot compromise safety.

Our Sparc specification has two components, a "syn-
tactic" part (the decode relation) and a semantic part (the
definitions of add, load, etc.). The syntactic part is de-
rived from a 151-line specification written in the SLED
language of the New Jersey Machine-Code Toolkit [19];
our translator expands this to 1035 lines of higher-order
logic, as represented in Twclf; but we believe that a more
concise and readable translation would produce only 500-
600 lines. The semantic part is about 600 lines of logic,
including the definition of modular arithmetic.

4 Specifying safety

Our step relation (r.m) i—+ (r1 ,m') is deliberately par-
tial; some states have no successor state. In these states

the program counter r(pc) points to an illegal instruction.
Now we will proceed to make it even more partial, by
defining as illegal those instructions that violate our safety
policy.

For example, suppose we wish to specify a safety pol-
icy that "only readable addresses will be loaded," where
the predicate readable is given some suitable definion
such as

readable^) = 0 < x < 1000

(see Appel and Feiten [2] for descriptions of security poli-
cies that are more interesting than this one).

We can add a new conjunct to the semantics of the load
instruction,

Ioad(f',y',c) =
Xr.m.r1 ,m'. r1 (i) = m(r(j) + c)

A readable(r(y) + c)
A (VA- ^ i. r'ix) = r(x)) A m' = m.

Now, in a machine state where the program counterpoints
to a load instruction that violates the safety policy, our
step relation >—> docs not relate this state to any succes-
sor state (even though the real machine "knows how" to
execute it).

Using this partial step relation, we can define safety; a
given state is safe if, for any state reachable in the Klcenc
closure of the step relation, there is a successor state:

safe-statc(/\ m) =
W.m'. (r./H—V,/«') => 3iJ'.m". r1 ,m' -» r",m"

A program is just a sequence of integers (representing
machine instructions); we say that a program p is loaded
at a location start in memory m if

Un\dcd(p.m. start) = V/edom(/?). m(i + start) — p(i)

Finally (assuming that programs arc written in
position-independent code), a program is safe if, no mat-
ter where we load it in memory, we get a safe state:

safe)» =
W.w. start. \ondcd(p.m. start) A r(pc) = start =>

safe-statc(r, m)

The important thing to notice about this formulation is
that there is no verification-condition generator. The syn-
tax and semantics of machine instructions, implicit in a
VCgcn, have been made explicit - and much more con-
cise -in the step relation. But the Hoare logic of machine
instructions and typing rules for function parameters, also
implicit in a VCgcn, must now be proved as lemmas -
about which more later.

250

5 Proving safety trust the assembler.

In a sufficiently expressive logic, as we all know, prov-
ing theorems can be a great deal more difficult than
merely stating them - and higher-order logic is certainly
expressive. For guidance in proving safety of machine-
language programs we should not particularly look to pre-
vious work in formal verification of program correctness.
Instead, we should think more of type checking: auto-
matic proofs of decidable safety properties of programs.

The key advances that makes it possible to generate
proofs automatically are typed intermediate languages
[11] and typed assembly language [14]. Whereas con-
ventional compilers type-check the source program, then
throw away the types (using the lambda-calculus principle
of erasure) and then transform the program through pro-
gressively lower-level intermediate representations until
they reach assembly language and then machine lan-
guage, a type-preserving compiler uses typed intermedi-
ate languages at each level. If the program type-checks
at a low level, then it is safe, regardless of whether the
previous (higher-level) compiler phases might be buggy
on some inputs. As the program is analyzed into smaller
pieces at the lower levels, the type systems become pro-
gressively more complex, but the type theory of the
1990's is up to the job of engineering the type systems.

source code source code
Compiler
Front-end

IR (or byte codes)

Optimizer

\ check \

Compiler
Front-end

IR (or byte codes)
Type-preserving

Optimizer

lower-level IR typed lower-level
Code

Generator

\ check \

7i /type- / IR \ check\
Type-preserving
Code Generator

assembly-level IR
Register

Allocator

typed assembly lang. wjJeckx
Type-preserving
Res. Allocator

native machine code

Conventional Compiler

/proof /
;\ check \

Type-preserving Compiler

proof-carrying
native machine code'

TAL was originally designed to be used in a certify-
ing compiler, but one that certifies the assembly code and
uses a trusted assembler to translate to machine code. But
we can use TAL to help generate proofs in a PCC system
that directly verifies the machine code. In such a system,
the proofs are typically by induction, with induction hy-
potheses such as, "whenever the program-counter reaches
location /, the register 3 will be a pointer to a pair of in-
tegers." These local invariants can be generated from the
TAL formulation of the program, but in a PCC system
they can be checked in machine code without needing to

Typing rules for machine language. In important in-
sight in the development of PCC is that one can write
type-inference rules for machine language and machine
states. For example, Necula [15] used rules such as

m r- x : ti X T2

m h m(x) : Tj A m(x + 1) : T2

meaning that if x has type Xi x X2 in memory m - meaning
that it is a pointer to a boxed pair - then the contents of
location x will have type Ti and the contents of location
x+ 1 will have type X2.

Proofs of safety in PCC use the local induction hy-
potheses at each point in the program to prove that the
program is typable. This implies, by a type-soundness ar-
gument, that the program is therefore safe.

If the type system is given by syntactic inference rules,
the proof of type soundness is typically done by syntac-
tic subject reduction - one proves that each step of com-
putation preserves typability and that typable states are
safe. The proof involves structural induction over typing
derivations. In conventional PCC, this proof is done in the
metatheory, by humans.

In foundational PCC we wish to include the type-
soundness proof inside the proof that is transmitted to
the code consumer because (1) it's more secure to avoid
reliance on human-checked proofs and (2) that way we
avoid restricting the protocol to a single type system. But
in order to do a foundational subject-reduction theorem,
we would need to build up the mathematical machinery to
manipulate typing derivations as syntactic objects, all rep-
resented inside our logic using foundational mathematical
concepts - sets, pairs, and functions. We would need to
do case analyses over the different ways that a given type
judgement might be derived. While this can all be done,
we take a different approach to proving that typability im-
plies safety.

We take a semantic approach. In a semantic proof one
assigns a meaning (a semantic truth value) to type judge-
ments. One then proves that if a type judgement is true
then the typed machine state is safe. One further proves
that the type inference rules are sound, i.e., if the premises
are true then the conclusion is true. This ensures that
derivable type judgements are true and hence typable ma-
chine states are safe.

The semantic approach avoids formalizing syntactic
type expressions. Instead, one formalizes a type as a set
of semantic values. One defines the operator x as a func-
tion taking two sets as arguments and returning a set. The

251

above type inference rule for pair projection can then be
replaced by the following semantic lemma in the founda-
tional proof:

t=*:mT| xx2

\=m(x) :„, Ti A m(x+ \) ,Ti

Although the two forms of the application type-
inference rule look very similar they are actually signif-
icantly different. In the second rule Xi and \i range over
semantic sets rather than type expressions. The relation
1= in the second version is defined directly in terms of a
semantics for assertions of the form x :„, X. The second
"rule" is actually a lemma to be proved while the first rule
is simply a part of the definition of the syntactic relation
k For the purposes of foundational PCC, we view the se-
mantic proofs as preferable to syntactic subject-reduction
proofs because they lead to shorter and more manageable
foundational proofs. The semantic approach avoids the
need for any formalization of type expressions and avoids
the formalization of proofs or derivations of type judge-
ments involving type expressions.

5.1 Semantic models of types

Building semantic models for type systems is inter-
esting and nontrivial. In a first attempt, Amy Fclty and
I 13] were able to model a pure-functional (immutable
datatypes) call-by-value language with records, address
arithmetic, polymorphism and abstract types, union and
intersection types, continuations and function pointers,
and covariant recursive types.

Our simplest semantics is set-theoretic: a type is a set
of values. But what is a value? It is not a syntactic con-
struct, as in lambda-calculus; on a von Neumann machine
we wish to use a more natural representation of values that
corresponds to the way procedures and data structures arc
represented in practice. This way, our type theory can
match reality without a layer of simulation in between.
We can represent a value as a pair (ni.x), where m is a
memory and .v is an integer (typically representing an ad-
dress).

To represent a pointer data structure that occupies a
certain portion of the machine's memory, we let .v be the
root address ofthat structure. For example, the boxed pair
of integers (5.7) represented at address 108 would be rep-
resented as the value ({108 H-> 5.109 >-> 7}, 108).

x m

X

■ 200

201

m

200^ 1111

4070

To represent a function value, we let x be the entry ad-
dress of the function; here is the function f(x) — x+ 1,
assuming that arguments and return results arc passed in
register 1:

r, :=/-,+1

jump(r7)

This model of values would be sufficient in a semantics
of statically allocated data structures, but to have dynamic

heap allocation we must be able to indicate the set a of
allocated addresses, such that any modification of mem-
ory outside the allocated set will not disturb already al-
located values. A state is a pair (a.m), and a value is a
pair ((a.m).x) of state and root-pointer. The allocsct a
is virtual: it is not directly represented at run time, but is
existentially quantified.

Limitations. In the resulting semantics [3] we could
model heap allocation, but we could not model mutable
record-fields; and though our type system could describe
datatype 'a list = nil

| : : of 'a * 'a list
we could not handle recursions where the type being de-
fined occurs in a negative (contravariant) position, as in
datatype exp = APP of exp * exp

I LAM of exp -> exp
where the boxed occurrence of exp is a negative occur-
rence. Contravariant recursion is occasionally useful in
ML. but it is the very essence of object-oriented program-
ming, so these limitations (no mutable fields, no con-
travariant recursion) are quite restrictive.

5.2 Indexed model of recursive types

In more recent work. David McAllester and I have
shown how to make an "indexed" semantic model that can
describe contravariant recursive types [4], Instead of say-
ing that a type is a set of values, we say that it is a set of
pairs (k.v) where k is an approximation index and v is a
value. The judgement (k.v) <E x means, "v approximately
has type x, and any program that runs for fewer than A' in-
structions can't tell the difference." The indices k allow
the construction of a well founded recursion, even when
modeling contravariant recursive types.

The type system works both for von Neumann ma-
chines and for X-calculus; here I will illustrate the latter.
We define a type as a set of pairs (k. v) where k is a non-
ncsiative integer and v is a value and where the set X is

252

such that if (A:,v) € x and 0 < j < k then (7» e x. For
any closed expression e and type x we write e :* x if e is
safe for & steps and if whenever e >—>J v for some value v
with j < k we have (k - j, v) e x; that is,

e :* x = V/Ve'. 0< j <k A e^> e' A nf(e') =>

where nf(e') means that e' is a normal form — has no suc-
cessor in the call-by-value small-step evaluation relation.

We start with definitions for the sets that represent the
types:

-L = {}
T = {{k,v} \k>0}
int = {<Jt,0>, <Jt, 1>,... |*>0}

T!XT2 = {{k,{vUV2))\Vj<k.{j,V1)eX]A(j,V2)€l2}
O -> T = {(k,Xx.e) I V; < kVv. (;» 60^ e[v/x] :; x}

pF = {<*,v> I (*,v)eF*+,(±)}

Next we define what is meant by a typing judgement.
Given a mapping r from variables to types, we write
r \=f, e : a to mean that

Vc.G-.k T =» a(<?) :* a

where a(e) is the result of replacing the free variables in e
with their values under substitution o. To drop the index
k, we define

The: a = V*. T\=ke:a.

Soundness theorem: It is trivial to prove from these
definitions that if \=e : a
stuck, that is, e' >—> e".

and e e then e' is not

Well founded type constructors. We define the notion
of a well founded type constructor. Here I will not give
the formal definition, but state the informal property that
if F is well founded and x: F(T), then to extract from x
a value of type x, or to apply x to a value of type x, must
take at least one execution step. The constructors x and
—> are well founded.

Typing rules. Proofs of theorems such as the following
are not too lengthy:

n=7t!(e):xi r>7t2(e):x2 T\=e:i\xx2

T\=e :%\ XX2

I>ei :a->ß

r>rci(e):x,

T\=e2 : a

Finally, for any well founded type-constructor F, we have
equirecursive types: pF = F(pF).

Our paper [4] proves all these theorems and shows the
extension of the result to types and values on von Neu-
mann machines.

5.3 Mutable fields

Our work on mutable fields is still in a preliminary
stage. Amal Ahmed, Roberto Virga, and I are investigat-
ing the following idea. Our semantics of immutable fields
viewed a "state" as a pair (a, m) of a memory m and a set
a of allocated addresses. To allow for the update of ex-
isting values, we enhance a to become a finite map from
locations to types. The type a{l) at some location / speci-
fies what kinds of updates at that location will preserve all
existing typing judgements. Then, as before, a type is a
predicate on states (a,m) and root-pointers x of type inte-
ger. In our object logic, we would write the types of these
logical objects as,

allocset
value

type

fin
num —+ type
allocset x memory x num
num x value —■» o

The\e2 : ß

The astute reader will notice that the metalogical type of
"type" is recursive, and in a way that has an inconsistent
cardinality: the set of types must be bigger than itself.
This problem had us stumped for over a year, but we now
have a tentative solution that replaces the type (in the al-
locset) with the Gödel number of a type. We hope to re-
port on this result soon; we are delayed by our general
practice of machine-checking our proofs in Twelf before
submitting papers for publication, which in this case has
saved us from some embarrassment.

5.4 Typed machine language

Morrisett's typed assembly language [14] is at too high
a level to do proof-carrying code directly. Kedar Swadi,
Gang Tan, Roberto Virga, and I have been designing
a lower-level representation, called typed machine lan-
guage, that will serve as the interface between compilers
and our prover. In fact, we hope that a clean enough def-
inition of this language will shift most of the work from
the prover to the compiler's type-checker.

In order to avoid overspecializing the typed machine
language (TML) with language-specific constructs such
as records and disjoint-union variants, our TML will use
very low-level typing primitives such as union types, in-
tersection types, offset (address-arithmetic) types, and de-

253

pendent types. This will make type-checking of TML dif-
ficult; we will need to assume that each compiler will have
a source language with a decidable type system, and that
translation of terms (and types) will yield a witness to the
type-checking of the resultant TML representation.

Abstract machine instructions. One can view ma-
chine instructions at many levels of abstraction:

1. At the lowest level, an instruction is just an integer,
an opcode encoding.

2. At the next level, it implements a relation on raw ma-
chine states (r.m) i—> (V,m').

3. At a higher level, we can say that the Sparc add in-
struction implements a machine-independent notion
of add, and similarly for other instruction.

4. Then wc can view add as manipulating not just regis-
ters, but local variables (which may be implemented
in registers or in the activation record).

5. We can view this instruction as one of various typed
instructions on typed values; in the usual view, add
has type int x int —> int, but the address-arithmetic
add has type

(TO x I, x ... x x„) x const(/) —> (X; X T,_.] X .

for any /.

XT„)

X m
108

y\) ■ to

v+2 V| : t|

v,: t2
1 IU-

>'): t?

6. Finally, we can specialize this typed add to the par-
ticular context where some instance of it appears, for
example by instantiating the /, /;, and T, in the previ-
ous example.

Abstraction level 1 is used in the statement of the theorem
(safety of a machine-language program p). Abstraction
level 5 is implicitly used in conventional proof-carrying
code [15]. Our ongoing research involves finding seman-
tic models for each of these levels, and then proving lem-
mas that can convert between assertions at the different
levels.

Hoare logic. In reasoning about machine instructions at
a higher level of abstraction, notions from Hoare logic
are useful: preconditions, postconditions, and substition.
Without adding any new axioms, we can define a notion
of predicates on states to serve as preconditions and post-
conditions, and substitution as a relation on predicates.
But this can rapidly become inefficient, leading to proofs
that are quadratic or exponential in size. Kedar Swadi,
Roberto Virga, and I have taken some steps in lemma-
tizing substitution so that proofs don't blow up [5]; in-
teresting related work has been done in Compaq SRC's
extended static checker [9].

Software engineering practices. We define all of these
abstraction levels in order to modularize our proofs. Since
our approach to PCC shifts most of the work to the hu-
man prover of static, machine-checkable lemmas about
the programming language's type system, we find it im-
perative to use the same software engineering practices in
implementing proofs as are used in building any large sys-
tem. The three most important practices arc (1) abstrac-
tion and modularity, (2) abstraction and modularity, and
(3) abstraction and modularity. At present, wc have about
thirty thousand lines of machine-checked proofs, and wc
would not be able to build and maintain the proofs without
a well designed modularization.

6 Pruning the runtime system

Just as bugs in the compiler (of a conventional system)
or the proof checker (of a PCC system) can create security
holes, so can bugs in the runtime system: the garbage col-
lector, debugger, marshaller/unmarshaller, and other com-
ponents. An important part of research in Foundational
PCC is to move components from the runtime system to
the type-checkable user code. Then, any bugs in such
components will either be detected by type-checking (or
proof-checking), or will be type-safe bugs that may cause
incorrect behavior but not insecure behavior.

Garbage collectors do two strange things that have
made them difficult to express in a type-safe language:
they allocate and deallocate arenas of memory contain-
ing many objects of different types, and they traverse (and
copy) objects of arbitrary user-chosen types. Daniel Wang
has developed a solution to these problems [22], based on
the motto,

Garbage collection = Regions + Intcnsional types.

That is, the region calculus of Tofte and Talpin [20] can

254

be applied to the problem of garbage collection, as no-
ticed in important recent work by Walker, Crary, and Mor-
risett [21]; to traverse objects of unknown type, the inten-
sional type calculi of originally developed by Harper and
Morrisett [11] can be applied. Wang's work covers the
region operators and management of pointer sharing; re-
lated work by Monnier, Saha, and Shao [13] covers the
intensional type system.

Other potentially unsafe parts of the runtime system
are ad hoc implementations of polytypic functions - those
that work by induction over the structure of data types
- such as polymorphic equality testers, debuggers, and
marshallers (a.k.a. serializers or picklers). Juan Chen and
I have developed an implementation of polytypic primi-
tives as a transformation on the typed intermediate repre-
sentation in the SML/NJ compiler [6]. Like the XR trans-
formation of Crary and Weirich [8] it allows these poly-
typic functions to be typechecked, but unlike their calcu-
lus, ours does not require dependent types in the typed
intermediate language and is thus simpler to implement.

7 Conclusion

Our goal is to reduce the size of the trusted comput-
ing base of systems that run machine code from untrusted
sources. This is an engineering challenge that requires
work on many fronts. We are fortunate that during the
last two decades, many talented scientists have built the
mathematical infrastructure we need - the theory and im-
plementation of logical frameworks and automated theo-
rem provers, type theory and type systems, compilation
and memory management, and programming language
design. The time is ripe to apply all of these advances
as engineering tools in the construction of safe systems.

References

[1] Andrew W. Appel. Hints on proving theorems
in Twelf. www.cs.princeton.edu/~appel/twelf-tutorial,
February 2000.

[2] Andrew W. Appel and Edward W. Feiten. Models for se-
curity policies in proof-carrying code. Technical Report
TR-636-01, Princeton University, March 2001.

[3] Andrew W. Appel and Amy P. Felty. A semantic model of
types and machine instructions for proof-carrying code. In
POPL '00: The 27th ACM S1GPLAN-S1GACTSymposium
on Principles of Programming Languages, pages 243-253.
ACM Press, January 2000.

[4] Andrew W. Appel and David McAllester. An indexed
model of recursive types for foundational proof-carrying
code. Technical Report TR-629-00, Princeton University,
October 2000.

[5] Andrew W. Appel, Kedar N. Swadi, and Roberto Virga.
Efficient substitution in hoare logic expressions. In 4th In-
ternational Workshop on Higher-Order Operational Tech-
niques in Semantics (HOOTS 2000). Elsevier, September
2000. Electronic Notes in Theoretical Computer Science
41(3).

[6] Juan Chen and Andrew W. Appel. Dictionary passing for
polytypic polymorphism. Technical Report CS-TR-635-
01, Princeton University, March 2001.

[7] Christopher Colby, Peter Lee, George C. Necula, Fred
Blau, Ken Cline, and Mark Plesko. A certifying compiler
for Java. In Proceedings of the 2000 ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation (PLD1 '00). ACM Press, June 2000.

[8] Karl Crary and Stephanie Weirich. Flexible type analy-
sis. In ACM SIGPLAN International Conference on Func-
tional Programming Languages, September 1999.

[9] Cormac Flanagan and James B. Saxe. Avoiding exponen-
tial explosion: Generating compact verification conditions.
In POPL 2001: The 28th ACM S1GPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages
193-205. ACM Press, January 2001.

[10] Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics. Journal of the ACM,
40(1): 143-184, January 1993.

[11] Robert Harper and Greg Morrisett. Compiling polymor-
phism using intensional type analysis. In Twenty-second
Annual ACM Symp. on Principles of Prog. Languages,
pages 130-141, New York, Jan 1995. ACM Press.

[12] Neophytos G. Michael and Andrew W. Appel. Machine
instruction syntax and semantics in higher-order logic. In
17th International Conference on Automated Deduction,
June 2000.

[13] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled
scavenging. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI'01),
page to appear, June 2001.

[14] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. ACM Trans,
on Programming Languages and Systems, 21(3):527—568,
May 1999.

[15] George Necula. Proof-carrying code. In 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 106-119, New York, January
1997. ACM Press.

[16] George Ciprian Necula. Compiling with Proofs. PhD the-
sis, School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, PA, September 1998.

255

[17] Frank Pfenning. Elf: A meta-language for deductive sys-
tems. In A. Bundy, editor, Proceedings of the 12th Inter-
national Conference on Automated Deduction, pages 811-
815, Nancy, France, June 1994. Springer-Verlag LNAI
814.

[18] Frank Pfenning and Carsten Schürmann. System descrip-
tion: Twclf—a meta-logical framework for deductive sys-
tems. In The 16th International Conference on Automated
Deduction. Springer-Verlag, July 1999.

[19] Norman Ramsey and Mary F. Fernandez. Specifying rep-
resentations of machine instructions. ACM Trans, on Pro-
gramming Languages and Systems, 19(3):492—524, May
1997.

[20] Mads Tofte and Jean-Pierre Talpin. Implementation of the
typed call-by-value X-calculus using a stack of regions. In
Twenty-first ACM Symposium on Principles of Program-
ming Languages, pages 188-201. ACM Press. January
1994.

[21] David Walker, Karl Crary, and Greg Morrisett. Typed
memory management via static capabilities. ACM Trans,
on Programming Languages and Systems. 22(4):701 —771.
July 2000.

[22] Daniel C. Wang and Andrew W. Appel. Type-preserving
garbage collectors. In POPL 2001: The 28th ACM
S1GPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 166-178. ACM Press. January
2001.

256

Session 7

Intuitionistic Linear Logic and Partial Correctness

Dexter Kozen
Cornell University

kozen@cs.Cornell.edu

Jerzy Tiuryn
Warsaw University

tiuryn@mimuw.edu.pi

Abstract

We formulate a Gentzen-style sequent calculus for par-
tial correctness that subsumes propositioned Hoare Logic.
The system is a noncommutative intuitionistic Linear Logic.
We prove soundness and completeness over relational and
trace models. As a corollary we obtain a complete sequent
calculus for inclusion and equivalence of regular expres-
sions.

1 Introduction

In formulating logics for program verification such as
Hoare Logic (HL), Dynamic Logic (DL), or Kleene Algebra
with Tests (KAT), it is tempting to treat tests and correctness
assertions as a uniform syntactic category. This temptation
is best resisted: although both are classes of assertions, they
have quite different characteristics. Tests are local asser-
tions whose truth is determined by the current state of exe-
cution. They are normally immediately decidable. The as-
sertion x > 0, where a; is a program variable, is an example
of such a test. Tests occur in all modern programming lan-
guages as part of conditional expressions and looping con-
structs. Correctness assertions, on the other hand, are state-
ments about the global behavior of a program, such as par-
tial correctness or halting. They are typically much richer
in expressive power than tests and undecidable in general.

DL does not distinguish between these two categories of
assertions. The two are freely mixed, and both are treated
classically. For this reason, the resulting system is unnec-
essarily complex for its purposes. The rich-test version of
DL, in which one can convert an arbitrary correctness as-
sertion to a test using the operator ?, is II}-complete (see
[9]). Even with systems that do make the distinction, such
as KAT, care must be taken not to inadvertently treat global
properties as local; doing so can lead to anomalies such as
the Dead Variable Paradox [13].

One major distinguishing factor between tests and cor-
rectness assertions that may not be immediately apparent is
that the former are classical in nature, whereas the latter are

intuitionistic. For example, the DL axiom

[p][q]b = [p;q]b

can be regarded as a noncommutative version of the intu-
itionistic currying rule

p —> q -» b = p A g —> b.

Gödel [8] first observed the strong connection between
modal and intuitionistic logic, foreshadowing Kripke's for-
mulation of similar state-based semantics for these logics
[16, 17] (see [1]). Kripke models also form the basis of the
standard semantics of DL(see [9]), although as mentioned,
DL does not realize the intuitionistic nature of partial cor-
rectness.

In this paper we give a Gentzen-style sequent calculus
S that clearly separates partial correctness reasoning into
its classical and intuitionistic parts. In Section 4, where we
introduce the system, we will explain why we view partial
correctness reasoning in S as intuitionistic rather than clas-
sical. System S has the flavor of a noncommutative intu-
itionistic Linear Logic and is in some ways related to a sys-
tem of Girard [6, 7], It is linear because expressions cannot
be indiscriminately duplicated or eliminated.

The system does not contain any contraction rules. The
linear implication operator takes only programs as left ar-
gument, while arbitrary partial correctness formulas can oc-
cur on the right. There is a very limited way in which the
weakening rule for programs can be used—programs can
be inserted only at front of an environment. There is a co-
contraction rule: a program of the form p+ already present
in the environment can be duplicated. Troelstra [20, p. 25]
remarks that contraction has more dramatic proof theoretic
consequences than weakening when added to Linear Logic.

We give relational and trace semantics for this logic
and show how the logic captures partial correctness. We
then prove soundness and completeness over both classes of
models. As a corollary we obtain a complete sequent calcu-
lus for inclusion and equivalence of regular expressions.

We mention that our two equivalent semantics of Section
3 are both special cases of a more general approach to the

259
0-7695-1281-X/01 $10.00 © 2001 IEEE

semantics of noncommutative Linear Logic via quantales
[21]. We restrict our attention to two special kinds of quan-
tales: sets of traces and binary relations. Our completeness
result is thus stronger than it would be for the more general
semantics based on arbitrary quantales.

2 Syntax

The syntax of S comprises several syntactic categories.
These will require some intuitive explanation, which we de-
fer until after the formal definition. In particular we dis-
tinguish between two kinds of propositions, which we call
tests and formulas.

tests

programs

b, c, d.

P, 1, r,.

b :— (atomic tests) | 1
\b->c

p := (atomic programs) | b
\pUq\p C<: q | p+

<p := b | /; —> p
V: :=e\T,p\T,p

formulas ip, ijj,.
environments T,A,.
sequents F h p

In the above grammar, —> is called linear implication, C-: is
a noncommutative multiplicative connective called tensor,
U is a commutative additive connective called disjunction.
and + is a unary operation called positive iteration. We use
brackets where necessary to ensure unique readability. We
abbreviate b —> 1 by b, J_ by 1, /; X q by pq, and 1 U p+

by;/.
Several formalisms, such as PDL [5] and KAT [14], arc

based on * rather than +. We can freely move between the
two languages since * and + are mutually definable:

P 1 U/^ P PP

For this reason, models for one language can be viewed as
models for the other.

We base S on + instead of * because the resulting de-
ductive system is cleaner—it contains no contraction rule1.
This is perhaps due to the fact that + can be viewed as a
more primitive operation than *.

A test is cither an atomic test, the symbol ± represent-
ing falsity, or an expression b —> c representing classical
implication, where b and c arc tests. We use the symbols
b,c,d,... exclusively to stand for tests. The set of all tests
is denoted B. The sequent calculus to be presented in Sec-
tion 4 will encode classical propositional logic for tests.

A program is cither an atomic program, a test, or an ex-
pression ;; U q, p ® q, or p+, where p and q are programs.
We use the symbols p, q, r,... exclusively to stand for pro-
grams. The set of all programs is denoted V. As in PDL

1 In fact, one of the natural rules for '
a strong form of a contraction rule.

[5], the program operators can be used to construct con-
ventional procedural programming constructs such as con-
ditional tests and while loops.

A formula is either a test or an expression p —> p, read
"after p, ip," where p is a program and p is a formula. In-
tuitively, the meaning is similar to the DL modal construct
[p] ip. The operator —> associates to the right. We use the
symbols p, i/>,... to stand for formulas.

Environments are denoted F, A,... . An environment
is a (possibly empty) sequence of programs and formulas.
The empty environment is denoted e. Intuitively, an envi-
ronment describes a previous computation that has led to
the current state.

Sequents are of the form T \- p, where F is an en-
vironment and p is a formula. We write h p for
s r- p. Intuitively, the meaning of T h p> is similar
to the DL assertion [T]^, where we think of the envi-
ronment T = ... ,p.... , V»,... as the rich-test program
••■ :/);••• ;t"?;--- of DL.

The partial correctness assertion {b} p {<-•} of HL is en-
coded by the formula b —* p —> c. The Hoare-stylc rule

{MM^}, {(>„} Pn {'■„}

{b}p{c}

is encoded by the sequent

Pi <•'!■ • bn —> Pi, —> <",, h /;—>/;—> c.

is a co-weakenin2 rule, which is

It follows from Theorem 6.1 that all relationally valid rules
of this form are derivable: this is false for HL (see [II. 151).

3 Semantics

3.1 Guarded Strings

Guarded strings over P, B were introduced in [14]. We
review the definition here.

Let B = {l>i,... , bk} and P = {j>1,... , pm } be fixed
finite sets of atomic tests and atomic programs, respectively.
An atom of B is a program (\ ■ ■ ■ (k such that (:, is cither b,
or bj. We require for technical reasons that the (', occur in
this order. An atom represents a minimal nonzero element
of the free Boolean algebra on B. We denote by ^4B the set
of all atoms of B. For an atom a and a test b, we write a < b
if o —> b is a classical propositional tautology.

A guarded string is a sequence

a = ttotfini •••o„_i</„a,!,

where n > 0, each n, e AB, and q, e P. We define
first(cr) = no and last(cr) = n„.

If last(rr) = first(r), we can form the fusion product
or by concatenating a and r, omitting the extra copy of

260

last(cr) = first(r) in between. For example, if a = apß
and T = ßqj, then ar = apßqj. If last(o-) ^ first(r),
then OT does not exist.

For sets X, Y of guarded strings, define

def
XoY = {err | a G X, T G Y, or exists}

Xn+l =f XoXn. X° =f AB, Yn+1 ^

Although fusion product is a partial operation on guarded
strings, the operation o is a total operation on sets of
guarded strings. If there is no existing fusion product be-
tween an element of X and an element of Y, then X oY =
0.

Each program p denotes a set GS(p) of guarded strings:

GS(p) = {apß | a,ß G AB}, p atomic

GS(b) d= {a£AB\a<b}, b a test
def

GS(p U q) = GS(p) U GS(q)

GS(p ® q) =f GS(p) o G5(g)

G5(p+) d= \J GS(p)n.
n>\

It follows that GS{p*) = \Jn>0 GS(p)n. A guarded string
a is itself a program, and GS[a) = {er}.

A set of guarded strings over P, B is regular if it is
GS(p) for some program p. The regular sets of guarded
strings form the free Kleene algebra with tests on genera-
tors P, B [14]; in other words, GS(p) = GS(q) iff p = <? is
a theorem of KAT.

Lemma 3.1 The regular sets of guarded strings are closed
under the Boolean operations.

Proof. Closure under 0 and union are explicit by means
of the constructs ± and U. It was shown in [14] that for
any program p, there is an equivalent program p such that
GS(p) = GS(p) = R(p), where R(p) is the regular set of
strings over the alphabet P U B U {b \ b G B} denoted by
p under the usual interpretation of regular expressions. For
example, if w = (pi U • ■ • U pm)*, we might take w =
(6(pi U ■ • ■ U pm))*b, where b = (bi U h) • • • (bk U bk).
The set GS(w) = GS(w) = R(w) is the set of all guarded
strings.

It remains to show closure under complement; closure
under intersection follows by the De Morgan laws. Let p'
be an expression such that R(p') = R(w) - R(p). The
expression p' exists since the regular sets of strings over P U
B U {b | b 6 B} are closed under the Boolean operations.
Then Rip') is a set of guarded strings since R(w) is, and

GS(p') = R(p') = R{w) - R{p) = GS(w) - GS(p).

3.2 Trace Models

Traces are similar to guarded strings but more general.
They are defined in terms of Kripke frames. A Kripke frame
over P, B is a structure (K, ma), where

mK : P -»• 2KxK mK : B -> 2K.

Elements of K are called states. A trace in K is a sequence
of the form so<7iSi ■ ■ ■ sn-\qnsn, where n > 0, Sj G K,
qt G P, and (si,si+i) G mK{qi+i) for 0 < i < n -
1. The first and last states of a are denoted first(cr) and
last(cr), respectively. If last(cr) = first(r), we can fuse
a and r to get the trace or. If last(cr) ^ first(r) then
ar does not exist. A trace so<7iSi ■ • ■ sn-iqnsn is acyclic
if the Si are distinct. The model K is acyclic if all traces
are acyclic. It is no loss of generality to restrict attention
to acyclic models; every model is equivalent to an acyclic
model obtained by "unwinding" the original model (see [9,
p. 132] for an explicit construction).

If X and Y are sets of traces, define

XoY = {ar | a G X, T G Y, OT exists}

X° = K, Xn+1 = XoX'\

Tests, programs, formulas, and environments are interpreted
as sets of traces according to the following inductive defini-
tion:

\LP1K — {spt | (s,t) G trtA'(p)}, patomic

[[b^K — Hi/f(6), b atomic
def

[[LI K = 0
def

KpUqJlK = \LPHKU C<?IA-

\Lp®qllK =f \LP$K°WK

[lp+]]K = U WVA
n>l

def
Kp-xp^K —' {s | Vr first(r) = s and r G II pi A:

=>-last(r) G [{<pl\K}
rr -n ^ef „

[[r,Al^ =f [[T]]Ko][A]]K.

It follows that

mK = K - [ib]\K

[[HA- = K

HP*HA = U KP^-
n>0

Every trace cr has an associated guarded string gs (a) de-
fined by

gs(so9iSi •■•sn_ig„s„) = a0giQi---an_ig„Qn,

261

where ai is the unique atom of B such that s, G [[ail A-

Thus gs(<r) is the unique guarded string over P, B such that
CT<E ttgs(«r)]]K.

The sequent r r- ip is valid in the trace model K if for
all traces a G [[T]]^, last(cr) G IT^IA'. equivalently, if
ttr]]K c nr)VjDK.

The relationship between trace semantics and guarded
strings is given by the following lemma.

Lemma 3.2 In any trace model K, for any program p and
tracer, r G KPIA iff gs(r) G GS(p). In other words,
CPIA- = gs_1 (G5(p)). The map X i-> gs^A') isa KAT
homomorphism from the algebra of regular sets of guarded
strings to the algebra of regular sets of traces over K.

Proof. Induction on the structure of p. I

3.3 Relational Models

Kripkc frames (K, IHA) also give rise to relational mod-
els. In a relational model, tests, programs, formulas, and en-
vironments arc interpreted as binary relations on K. Tests
and formulas denote subsets of the identity relation.

[-U/V

{pUq]K

[P+]K

tjef
mji(p), p atomic

clef
{(.s,,s) | semK(b)}, b atomi

tief
0

tief
[p]l< U {([],<

(jot
[ph< ° [<?]A-

tjef U wr<
1>1

tief
[p->¥>]*- = {{s,s)\Vt{s,t)e [p]K

=» (t,t)e [p],<]

tr,A]

le)K = {(s,s)\s€K}
def

A' [T]A-o [A; A'-

Here o denotes ordinary composition of binary relations. It
follows that

W/v = {(«.») I (s,s) ^ [6]A-}

[HA = {(s,s)|.seA'}

[P*]A- = U WÄ-
»>0

Writing .s 1= ip for (s,s) G [<P]K, the defining clause for
p -^ <p becomes

s^p-^tp •«• W (s,<) G [/)]/<• => t N (,3,

thus the meaning of p —>• <^ is essentially the same as the
meaning of the box formula [p] p of DL.

The sequent r h tp is valid in the relational model on
(K, mK) if for all s,t G K, if (s,i) G [TIA-, then
(t,t) G [(/?]«•; equivalently, if the DL formula [V]tp is
true in all states under the rich-test semantics [5], where the
environment T = ... ,p,... , ij>,... is interpreted as the
rich-test program • • ■ ; p; ■ ■ ■ ; ?/>?;

3.4 Relationship between Trace and Relational
Models

It can be shown by induction on syntax that the map

r:X ■-> {(first(ff),last(a)) | a G X}

from sets of traces on K to binary relations on K maps
Up]]A' to [p]A and \[tp]\K to [</?]A> using the fact that r
commutes with the operators U and o on sets of traces and
binary relations. It follows that validity over relational mod-
els is the same as validity over trace models. We include
these remarks to establish the connection with the standard
relational semantics of DL.

4 A Deductive System

The rules of System S arc given in Figure 1. All rules
arc of the form

Ti H pi rn i- <Pn
r\-p

The sequents above the line are the premises and the sequent
below the line is the conclusion. Since programs cannot
occur positively on the right hand side of h, the system has
introduction and elimination rules on the left of K

Wc will use the notation F h tp ambiguously as both
an object and a mcta-asscrtion. As an object it denotes a
sequent, i.e. a sequence of symbols over the appropriate vo-
cabulary. As a mcta-assertion it says that the sequent r h tp
is provable in 5. In particular, FF^ means that the sequent
r h tp is not provable in S. The proper interpretation should
always be clear from context.

A rule is admissible if for any substitution instance for
which the premises are provable, the conclusion is also
provable. The proof of the conclusion may depend on the
structure of the expressions substituted for the metasymbols
appearing in the rule or on the proofs of the premises. To
show admissibility, it suffices to derive the conclusion in S
augmented with the premises as extra axioms, considering
the metasymbols appearing in the rule as atomic symbols
in the object language. Any such derivation will then be
uniformly valid over all substitution instances.

262

Axiom: b\- c, where 6 —> c is a classical
propositional tautology

Arrow Rules

(R-+) rhp->9

(I->)
r,p,ii>,A h ip

r,p-> V>,P,A h ip

Introduction Rules:

(I®)
r,p,g,Ah<^

r,p ®5,AI-^

(IU)
r,p,A I-I,? r,5,Ah^

F,p U g. A h (/;

(I-L) r,i,A^

(I+) g-> V.P
1-
 <P Q -+ -PiP-.qh v

(J -> iy5,p+ h ^

Elimination Rules:

(E®)
r,p® <7, A h v3
r,p.3, A h (p

(E+)
r,p+,Ah if
T,p, A h ^

(El U)
T,p U g, A h y?

r,p, A h ^

(E2U)
T,p U g, A 1- -p>

T,g, Ah ^

Structural Rules:

(W</0
r,Ah^

(Wp)
p.r \- ip

(CC+)
r,p+,A\-tp

r,p+,p+, A h <^

Cut Rule:

(cut)
r\-ip r,ip,A\-ip

r,Ah95

4.1 Basic Properties

Figure 1. Rules of System S

Lemma 4.1 The rule

(El)

is admissible.

r,Ah^

Proo/ From (I _L) and (R —») we get T h 1. The desired
conclusion follows from (cut). I

Lemma 4.2 The rule and sequent

u)\- ib
(mono) ■ (ident) <p h </?

P —> <y9 h p —> f/)

are admissible.

Proof. The following diagram gives a proof of (mono).

P,<Pr- V
(Wp)

P ip,p\-l/)
d->)

P —» iyj h p —> Ip
(R->)

The identity sequent (ident) follows by induction on the
structure of ip using (mono). The basis b h b is an instance
of the axiom. I

Lemma 4.3 The rules

n-p-
(MP)

are admissible.

<+>
r,ph <£

(W±)
rhi

r,ph±

Proo/ For (MP), we have ^ h y> by Lemma 4.2. The
following fiaure eives the remainder of the derivation.

<p\-<p
(Wp)

p,tp\- if

: (Wp).(w^)

T,p,ip\- if

r h p —>• <y3 r,p -4- i/?,p h </5
d->)

(cut)

To derive (W _L), the sequent r, _L,p I- _L is an instance
of (I _L). Applying (cut) to this and the premise F h 1
yields the desired conclusion. I

We wish to pause and discuss briefly why we view par-
tial correctness reasoning in S as intuitionistic rather than
classical. It is not immediately obvious, since formulas are
of the form pi -»•••-» pn —> b, where pi,... ,pn are pro-
grams and & is a test. In particular, formulas are not closed
under implication. But we can argue that the implication in

263

the formula p —> <p has intuitionistic flavor by considering
the rules that introduce implication. Rule (R ->) is a typical
rule of introduction of implication on the right of k Rule
(I ->■) is not so typical, but it can be shown that this rule is
derivable from (ident), (MP), (W^), (Wp), and (cut) as
follows.

p -> tjj h /; -> xj)

p —> tj>,p h xj)

: (Wi/').(Wp)

(MP)

r,p,v^A i- tp

r,p ->• V', P I" V; T, p -> V;, P, V;, A I- p
r,p->- </>,p, A i- V?

(W r)

(cut)

Since each of the rules used in the above derivation
clearly has an intuitionistic flavor, it follows that (I -») has
as well.

Lemma 4.4 The rule

(iter) 9.Ph V
</5,P+ l~ y>

/'.? admissible.

Proof. Taking q in (1+) to be 1, by (cut) it suffices to
show ip \- I -> p. 1 -^ p \- p, and p>. 1,1 h p. These fol-
low without difficulty from (R ->), (MP). (E 1), and (\V v).

Lemma 4.5 The rules

(curry)

(uncurry)

are admissible.

Tpj) —> q -> I;'; At"y1

r,/j(7 —► i/Ji A 1- p

r,pq->i!>,A\- p

r,p —> <7 —> •(,.•, A h 9

Proo/i By (cut), it suffices to show pq -> t'- h
p -> q —> i/> and p -> g —> ?/; h pg -> 0. For the former,
starting with pr/ -^ -ip \- pq -> ^/;, apply (MP) and (E '/:) to

get pq -> V;iP:f? I" V;> then apply (R ->) twice. For the lat-
ter, starting with ij> h 0, apply (Wp) twice to get p, r/. V- h
V', then apply (I ->) twice to get p -> (/ -> V, P, 9 t" V'- The
result then follows from (I C3) and (R ->). I

4.2 Relation to Kleene Algebra

We show in this section that S induces a left-handed
Kleene algebra structure on programs. Recall that a Kleene
algebra (KA) is an idempotent semiring such thatp*</ is the
least solution to q + px < x and qp* is the least solution to
q + xp < x. Equivalently, a Kleene algebra is an idempotent
semiring satisfying

1+pp* 1 + p p = p

px < x -» p*x < X

xp < x —> xp* < X.

(1)

(2)

(3)

Boffa [2, 3], based on results of Krob [18], shows that for
the cquational theory of the regular sets, the right-hand rule
(3) is unnecessary. We will call an idempotent semiring sat-
isfying (1) and (2) a left-handed Kleene algebra. Boffa's re-
sult says that for regular expressions p and q. R(p) = R(q)
iff p = q is a logical consequence of the axioms of left-
handed Kleene algebra, where Ft is the usual interpretation
of regular expressions as sets of strings.

More specifically. Krob [18] shows that the elassieal
equations of Conway [4], along with a certain infinite but
independently characterized set of axioms, logically entail
all identities of the regular sets over P. The classical equa-
tions of Conway are the axioms of idempotent semirings,
the equations (1). and the equations

P*

(P'lf

(/' (?) P

l+p(qp)*q

(p")*(l+p)'-\ H>0.

Boffa [2. 3] actually shows that these equations plus the rul

p- - p -y p = 1 + p (4)

—which the reader will note is neither left- nor right-
handed—imply all the axioms of Krob, therefore the classi-
cal equations of Conway plus Boffa's rule (4) are complete
for the cquational theory of the regular sets over P. The
classical equations and Boffa's rule are all easily shown to
be theorems of left-handed KA.

Our first task is to extend these results to Kleene algebra
with tests and cuarded strinss.

Lemma 4.6 Every p is provably equivalent to some p —> _L
in the sense that p> h p —> ± and p —> _L h p.

Proof. The formula rp ->•■■-» qn -» b is equivalent
to <7i • • • qnb -> 1. The proof of this fact is quite easy using
Lemma 4.5 and is left to the reader. I

Lemma 4.7 Left-handed KAT is complete for the cqua-
tional theory of the regular sets of guarded strings over P
and B. //; other words, for every pair of programs p, (/ in

the language of KAT, GS(p) = GS{q) if and only if the
equation p = q is a logical consequence of the axioms of
left-handed KAT.

264

Proof. We adapt an argument of [14], in which the same
result was proved for KAT with both the left- and right-hand
rule. It was shown there that for any program p, there is an
equivalent program p such that

(i) p = p is a theorem of KAT, and

(ii) GS(p) = R{p), where R(p) is the regular set of strings
over the alphabet PUBU{6|6eB} denoted by p
under the usual interpretation of regular expressions.

In other words, any p can be transformed by the axioms
of KAT to another program p such that the set of guarded
strings denoted by p is the same as the set of strings denoted
by p.

Now to show completeness of KAT over guarded strings,
[14] argued as follows. Suppose GS(p) = GS(q). Then

R(p) = GS(p) = GS(p) = GS(q) = GS(q) = R(q).

Since KA is complete for the equational theory of the regu-
lar sets, p = g is a theorem of KA. Combining this with (i)
for p and q implies that p = q is a theorem of KAT.

To adapt this to the present situation, we observe that
p = qis a theorem of left-handed KA by the results of Boffa
and Krob. Thus in order to complete the proof, we need
only ascertain that the right-hand rule (3) is not needed in
the proof of p — p. This does not follow from Boffa's and
Krob's results, since the argument is in KAT, not KA. How-
ever, a perusal of [14] reveals that the proof of p = p uses
neither the left- or the right-hand rule, but can be carried
out using only the classical equations of Conway and the
axioms of Boolean algebra. I

We now describe the left-handed KAT structure induced
by S. Define pQq if q^ip\-p->ip is admissible; that
is, if q —>■ ip h p —> tp is provable for all tp. Define p = q
ifpQq and gCp. The relation C is a preorder, therefore
= is an equivalence relation and C is a partial order on =-
classes. Reflexivity is (ident) (Lemma 4.2) and transitivity
follows from a single application of (cut).

Lemma 4.8 The operators U and <g> are monotone with re-
spect to C.. That is, ifp C. q, then p U r C q U r, pr C qr,
and rp C rq.

Proof. The rules (El U), (E2 U), and (I U) imply that
p U q is the C-least upper bound of p and q modulo =. The
monotonicity of U follows by equational reasoning:

pQq =>• pQqlir and r Q qli r =>p\JrIZq\Jr.

For <g>, we must show that if q -> ip h p -> ip for any
ip, then qr -> (p h pr -> <p and rq —> ip \- rp —► <p for
any ip. Using (cut), (curry), and (uncurry) (Lemma 4.5),
it suffices to show that q —» r —> tp \- p —>■ r —>■ <p and

r —► q —)• (p h r —)• p -> ip for any ip. The former.is im-
mediate from the assumption, and the latter follows from
(mono) (Lemma 4.2). I

Lemma 4.9 Ifp C q and qq C q, then p+ C q.

Proof. Certainly pq Qq by monotonicity. Then

q —t tp I- pq -» ip

q -> ip \- p —> ip

q-><p,p\-(p
(MP)

q -> <p,p,qh- ip

q^<p,p+ \~ p

q —> ip h p+ —> ip

(MP)

(E®)

(1+)

(R->)

Lemma 4.10 Let V/= denote the set of —equivalence
classes. The operations LI, ®, a/zrf * are well defined on

V/=, and the quotient structure (P/=, U, <S), *, -L, 1) is
a left-handed KA.

Proof. We must argue that all the following properties
hold:

pU{qUr) = (pUq)Ur
p U q = q U p
p U ± = p
p U p = p
p(q U r) = pq U pr
(p U g)r = pr U gr

p(gr) = (pq)r
Ip = pi = p
Lp = p_L = _L
1 U pp* = p*
1 U p*p = p*

pq Q q =>■ p*9 E ?•

These are just the laws of left-handed KA written with the
symbols of S.

To derive the distributive law

p(q U r) C pq U pr,

first from (MP), (El U), and (E <8>), one can derive
pq\J pr ^ ip,p,q\- ip from pq U pr —» ip h pg U pr —»■ </?.
Similarly, one can derive pg U pr -> ip,p,r h 93 using
(E2 U) instead of (El U). Then

pg U pr —>• tp,p, q h y3

pg

twUpr->w,n,rl-w : !- Zli£2 1. (iu)
po U pr -> w, p, A U r h (j?
 7 —■!—- (I (»), (R-»

U pr —>• 93 h p(g U r) —>■ (/?

All the other axioms of idempotent semirings follow in an
equally straightforward manner. Since U and <g> are mono-
tone with respect to C (Lemma 4.8), they are well defined
on =-classes.

The inequality p+p+ C p+ follows from (CC +) by:

(MP)
p+ -> ip h p+ —>• ip

p+ -+ ip,p+ \- ip

p+ ^ ip,p+ ,p+ \- ip
(CC+)

</3 h p+p+ -> yJ
(I®),(R->)

265

The inequality pCp+ follows from (E +) in a similar
fashion. Monotonicity of + and * then follow from Lemma
4.9 by equational reasoning:

j)Cg+ and q+q+ C q+
PEI

=> p+ Qq+

pCq =$■ p* = lUp+ ClUq+ =q*.

We now prove the KA identities involving *. Arguing
equationally, we have

p U pp+ C p+ U p+p+ C p+ U p+ C p+,

and similarly p U p+p Q p+. For the opposite inequalities
we will use Lemma 4.9. Clearly we have pCpU pp+.
We also have ;;;; C ;>j5+, pp/;+ C pp+, pp+p C pp+ and
pp+pp+ C pp+, hence

(p U p/;+) (p U pp+) C pp+ C])U pp+.

By Lemma 4.9, p+ CpU pp+. Since the opposite inequal-
ity was already established, we have p+ = pU pp+.

Now we can show that 1 U pp* = p*:

p* = lUp+ = lUpUpp+ = lUp(lUp+)

= 1 U pp*.

The identities ;;+ = p U ;j+p and 1 U p*p = p* are ob-
tained in a similar fashion.

It remains to show pq C q => ;;*(/ C g. This is estab-
lished by the following derivation:

q -» 9 (- p<7 —> 9

7 ->^p,(il"v3

(MP)

(Eg-.)

o ->• G3 h r; ->• G9 q ^ tp,p\- q
(VVv) V

<^, 1 h- g -4 <^ <7 -> V,P+ h 9 ->• V
(/ —> if, 1 U p+ h 7 —> f

(R->)

(itt-r)

(IU)

q -4 f h (1 U j?+)r/
(MP). (IK). (R->)

V

Lemma 4.11 Ifb—>c is a classical tautology, then b C. c.
Thus the tests form a Boolean algebra modulo =.

Proof. Wc have c —> f, b h c by the axiom b h c and the
weakening rule (W 0), and wc have c —► f, c h ip by (MP).
The desired conclusion c-» (,? h 6-> ^ then follows from
(cut) and (R ->). I

Combining Lemmas 4.10 and 4.11 and the fact that the
regular sets of guarded strings form the free KAT on gener-
ators P and B, we have

Lemma 4.12 The structure (V/=, B/ = , LI, <g>, *, ~, 1, 1)
is a left-handed KAT and is isomorphic to the algebra of
regular sets of guarded strings over P and B. Thus for any
programs p and q, p C q iff GS(p) C GS(q) andp = q iff
GS(p) = GS(q).

5 Soundness

Theorem 5.1 IfT h ip is provable, then it is valid in all
trace and relational models.

Proof. We need only show soundness over trace models.
This is easily established by induction on proofs in S with
one case for each proof rule. We argue the cases (cut) and
(I —>) explicitly.

For (cut), we need to show that

[[r,A]]K C lT,A,ip]iK

under the assumptions

\LT]1K C [[T,xj;]\K

ir.^AD/f C [[r,V;,A,v?]]/c.

Using monotonicity of o,

= l[T]]Ko HA]]K

C [[T,0]]A-° HAIK

= [[T^,,A]]K

= [[T]]Ko [[0]]A° \[A,ip]]K

C [[T]]A-o IUKO \LA,<PHK

= [[T]]Ko \[A,ip])K

= \LT,A,ip]\K.

For (I —>), we want to show that if

[[r,;;,V,A]]A- C lasr1 ([[</>]] A),

then

ttr,p->V>,P,A]]A- C last-1 ([[¥>]]/<:).

It suffices to show that

Up ->■ V'IA- ° ttpIU- C [tpIA- o [['01A'.

But

r€ Hp-K"]]A- ° EPIA-

•» first(r) € [[p -> V^IA and r £ [[PIA

=► r € [[/>]] A andlast(r) 6 [WA

& T G [[p]]A- o ttV'I/f-

The other cases are equally straightforward. I

266

6 Completeness

Theorem 6.1 IfTYp, then there exist an acyclic trace
model K and a trace <r G \[T]]K such that last(cr) g"

Proof. By Lemma 4.6, we can assume without loss of
generality that tp is of the form p ->• _L. The proof pro-
ceeds by induction on the length of V. For the basis of
the induction, suppose F is empty, so that Y p -> _L.
Thenp ^ _L By Lemma 4.12, GS(p) ^ 0. Construct a
Kripke frame K consisting of a single acyclic trace a such
thatgs(cr) G GS(p). By Lemma 3.2, a G lplK- Then
first(a) G {[£}}K andfirst(CT) £ [[p -> L]]K.

For the induction step in which the environment ends
with a program, say T, p Y ip, we have F Y p -» <p by (MP).
Applying the induction hypothesis, there exist an acyclic
trace model K and traces a and r such that er G [[F]]x,
last(o-) = first(r), r G Uplx, and last(r) £ II^IA'-

Then err G [[F,p]] A-and last (err) g" [[<p]]A-.
Finally, we argue the induction step in which the environ-

ment ends with a formula, say T, ip Y p. By Lemma 4.6, we
can rewrite this as T, q -> J_ Y p -> _L Let iu be an expres-
sion representing the set of all guarded strings (see Lemma
3.1). Let r and s be programs such that GS(r) = GS(p) D
GS{qw) and GS(s) = GS(p) - GS{qw). These pro-
grams exist by Lemma 3.1, and GS(p) = GS(r U s). By
Lemma 4.12, we can replace p by r U s to get T,q —> J_ Y
r U s ->• ±. By (R ->), T, g -> _L, r U s F ±, and by (I U),
either r, q -> J_, r / _L or T, g ->• ±, s Y _L. But it can-
not be the former, since T,q -t ±,q,w h ±, therefore
F, g —> ± h qw —>• JL, and by Lemma 4.12, r C gtf, there-
fore by (cut), r,q^lhr->l.

Thus it must be the case that r,g -> _l_,,s Y _L, so
F, g —> _L F s —> J_. By weakening we have r Y s —> J_.
Then by the induction hypothesis, there exist an acyclic
trace model K and traces a G [[TIA- and r G [[S]]A-

such that last(cr) = first(r). Construct a trace model M
consisting only of the acyclic trace or. By Lemma 3.2,
T & [IqivliM, therefore no prefix of r is in UglU^- Then
last(er) G [[g ->■ ±]]M, therefore o G [[T,g -> ±]]M.
Moreover, last(a) ^ [[p ->■ _L]]A/, since last(cr) = first(r)
andr G [[p]]M- ■

7 Conclusions and Future Work

It has recently been shown that deciding whether a given
sequent is valid is PSP/lCf-complete [12]. Several interest-
ing questions present themselves for further investigation.

1. The completeness proof relies on the results of Boffa
[2, 3], which are based in turn on the results of Krob
[18]. Krob's proof is fairly involved, comprising an

entire journal issue. One would like to have a proof of
completeness based on first principles.

2. The relative expressive and deductive power of S com-
pared with similar systems such as KAT, PDL, and
PHL is not completely understood. S is at least as
expressive as PHL and the equational theory of KAT,
and apparently more so, since it is not clear how to ex-
press general sequents pi,pi,<p2, ■■ ■ ,pn-i,fn I" i>
in PHL or KAT. On the other hand, it is not clear
how to express general Horn formulas of KA such as
px = xq -> p*x = xq* in S.

3. Application of the linear implication operator -> is
limited to programs on the left-hand side and formu-
las on the right-hand side. It would be interesting to
see whether more general forms correspond to any-
thing useful and whether the system can be extended
to handle them. The operator —> is a form of residu-
ation (see [19, 10]), and this connection bears further
investigation.

4. We would like to extend S to handle liveness proper-
ties and total correctness.

5. We would like to undertake a deeper investigation into
the structure of proofs with an eye toward establishing
normal form and cut elimination theorems.

Acknowledgements

We thank Riccardo Pucella for pointing out an error in
an earlier draft and the anonymous reviewers for their valu-
able comments. The support of the National Science Foun-
dation under grant CCR-9708915 and Polish KBN Grant
7 Tl 1C 028 20 is gratefully acknowledged.

References

[1] S. Artemov. Explicit provability and constructive semantics.
Bull. Symbolic Logic, 7(1): 1-36, March 2001.

[2] M. Boffa. Une remarque sur les systemes com-
plets d'identites rationnelles. Informatique Theoretique
et Applications/Theoretical Informatics and Applications,
24(4):419^t23, 1990.

[3] M. Boffa. Une condition impliquant toutes les iden-
tites rationnelles. Informatique Theoretique et Applica-
tions/Theoretical Informatics and Applications, 29(6):515-
518, 1995.

[4] J. H. Conway. Regular Algebra and Finite Machines. Chap-
man and Hall, London, 1971.

267

[5] M. J. Fischer and R. E. Ladncr. Propositiona! dynamic logic
of regular programs. J. Comput. Syst. Sei., 18(2): 194-211,
1979.

[6] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1-102, 1987.

[7] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types.
Cambridge University Press, 1989.

[8] K. Gödel. Eine Interpretation des intuitionistischen Aus-
sagcnkalküls. Ergebnisse eines mathematischen Kolloqui-
ums, 4:39-40, 1933. Reprinted in: S. Feferman, ed., Col-
lected Works of Kurt Gödel, v. 1, New York, Oxford Univer-
sity Press, 1986.

[9] D. Harel, D. Kozcn, and J. Tiuryn. Dynamic Logic.
Press, Cambridge, MA, 2000.

MIT

[10] D. Kozcn. On action algebras. In J. van Eijck and A. Visser.
editors, Logic anil Information Flow, pages 78-88. MIT
Press, 1994.

[11] D. Kozen. On Hoarc logic and Kleenc algebra with tests.
Trans. Computational Logic, 1 (1):60-76, July 2000.

[12] D. Kozcn. Automata on guarded strings and applications.
Technical Report 2001-1833, Computer Science Depart-
ment, Cornell University, January 2001.

[13] D. Kozcn and M.-C. Patron. Certification of compiler op-
timizations using Klccne algebra with tests. In J. Lloyd.
V. Dahl, U. Furbach, M. Kerber, K.-K. Lau. C. Palamidcssi.
L. M. Pcrcira, Y Sagiv, and P. J. Sluckey, editors. Proc. 1st
Int. Conf. Computational Logic (CL2000), volume 1861 of
Lecture Notes in Artificial Intelligence, pages 568-582. Lon-
don, July 2000. Springer-Verlag.

[14] D. Kozcn and F. Smith. Kleenc algebra with tests: Com-
pleteness and decidability. In D. van Dalen and M. Bczem.
editors, Proc. 10th Int. Workshop Computer Science Logic
(CSL'96), volume 1258 of Lecture Notes in Computer Sci-
ence, pages 244-259, Utrecht, The Netherlands, September
1996. Springer-Verlag.

[15] D. Kozcn and J. Tiuryn. On the completeness of proposi-
tional Hoarc logic. In J. Desharnais, editor, Proc. 5th Int.
Seminar Relational Methods in Computer Science iRc/MiCS
2000), pages 195-202, January 2000.

[16] S. Kripkc. Semantic analysis of modal logic. Zeitscht: f
math. Logik und Grundlagen d. Math., 9:67-96, 1963.

[17] S. Kripke. Semantical analysis of intuitionistic logic I.
In J. N. Crosslcy and M. A. E. Dummctt, editors. For-
mal Systems and Recursive Functions, pages 92-130. North-
Holland, 1965.

[18] D. Krob. A complete system of ß-rational identities. Theo-
retical Computer Science, 89(2):207-343, October 1991.

[19] V. Pratt. Action logic and pure induction. In J. van Eijck,
editor, Proc. Logics in AI: European Workshop JELIA '90.

volume 478 of Lecture Notes in Computer Science, pages
97-120, New York, September 1990. Springer-Verlag.

[20] A. S. Troelstra. Lectures on Linear Logic, volume 29 of CSU
Lecture Notes. Center for the Study of Language and Infor-
mation. 1992.

[21] D. N. Yctter. Quantalcs and (noncommutative) linear logic.
J. Symbolic Logic. 55:41-64, 1990.

268

Perturbed luring Machines and Hybrid Systems

Eugene Asarin *
VERIMAG,

2 av. de Vignate, 38610 Gieres, France.

Email: Eugene.Asarin@imag.fr

Ahmed Bouajjani
LlAFA, University of Paris 7, Case 7014,

2 Place Jussieu, 75251 Paris cedex 5, France.

Email: abou@liaf a . jussieu. f r
Phone: (+33) 4 76 63 48 33, Fax: (+33) 4 76 63 48 50. Phone: (+33) 1 44 27 78 19, Fax: (+33) 1 44 27 68 49.

Abstract

We investigate the computational power of several
models of dynamical systems under infinitesimal perturba-
tions of their dynamics. We consider in our study mod-
els for discrete and continuous time dynamical systems:
Turing machines, Piecewise affine maps, Linear hybrid au-
tomata and Piecewise constant derivative systems (a sim-
ple model of hybrid systems). We associate with each of
these models a notion of perturbed dynamics by a small
e (w.r.t. to a suitable metrics), and define the perturbed
reachability relation as the intersection of all reachability
relations obtained by e -perturbations, for all possible val-
ues ofe. We show that for the four kinds of models we con-
sider, the perturbed reachability relation is co-recursively
enumerable, and that any co-r.e. relation can be defined
as the perturbed reachability relation of such models. A
corollary of this result is that systems that are robust, i.e.,
their reachability relation is stable under infinitesimal per-
turbation, are decidable.

1 Introduction
Recently, the investigation of the relations between dy-

namics and computation attracted attention of several re-
search communities (see e.g. [1] where Turing machines
are considered as dynamical systems, and [2] and [3] where
discrete and continuous time dynamical systems are con-
sidered as computation models).

Our initial motivation for this research was related to
hybrid systems (see e.g. [4]). Since the first undecidability
results were stated for hybrid systems (such as Linear hy-
brid automata [5] or Piecewise constant derivative systems
[3]), a folklore conjecture appeared, saying that this unde-
cidability is due to non-stability, non-robustness, sensitiv-
ity to initial values of the systems, and that it never occurs
in "real" systems. There were several attempts to formalize
and to prove (or to disprove) this conjecture [6, 7] (cf. Re-
lated Work below). We think however that this conjecture

*The work of this author was supported in part by the NATO under
grant CRG-961115

is more rich than these formalizations and that exploring
relations between complexity of behaviours of a dynamical
system (not necessarily hybrid) and its properties related to
stability, robustness, chaos is an important scientific chal-
lenge (see [8]).

In this paper we explore one facet of this problem: how
small perturbations of dynamics influence the computa-
tional power of the system. We consider different kinds
of transition systems corresponding to widely used mod-
els of dynamical systems: Turing machines (TM), Piece-
wise affine maps (PAM), Linear hybrid automata (LHA),
and Piecewise constant derivative (PCD) systems. We in-
troduce for these models a notion of "perturbed" dynam-
ics and study the computational power of the correspond-
ing perturbed systems. Perturbations are defined for each
model using a notion of metrics on the state space (allow-
ing to define how distant is the ideal dynamics from the
perturbed one). The notion of small perturbation is easier
to understand for computational models with a continuous
state-space (such that PCD, LHA, and PAM) than for dis-
crete ones like TM. For such models, given a transition sys-
tem with a reachability relation R, the idea is to perturb the
dynamics by a small e, and then, to take (as the perturbed
dynamics of the system) the limit (intersection) Rw of the
perturbed reachability relations as this e tends to 0. We say
that a system is robust if its reachability relation does not
change under small perturbations of the dynamics, i.e., R
is equal to Ru.

We show that for the three models of RAM, LHA, and
PCD, the relation Ru belongs to the class 11° (i.e. it is
co-recursively enumerable), and moreover, any n° relation
can be reduced to a relation Ru of a perturbed system. In
other words, any complement to a r.e. set can be semi-
decided by an infinitesimally perturbed system. This result
is somehow surprising since it means that noise by itself
does not make the reachability problem decidable, but it
transforms it in a rather non-trivial way (from S° to 11°).
Furthermore, an immediate corollary of the result above is
the following fact: the reachability problem is decidable
for the class of robust systems.

0-7695-1281-X/01 $10.00 © 2001 IEEE
269

In the case of Turing machines, the analogous notion
of small perturbation is obtained by considering the pre-
fix distance (Cantor distance) as metrics on the set of tape
configurations. In fact, this metrics is an adequate charac-
teristics for these machines; in particular, the dynamics of
these machines has good properties w.r.t. this metrics, e.g.,
the transition function of a TM is always Lipshitz w.r.t.
it (see [1] for a detailed argument). So, we consider that
a TM is subjected to a small noise if its configuration is
slightly perturbed in the sense of this metrics, or equiva-
lently, all the perturbations of the tape content happen far
from the head. Similarly to the other models, given a TM
recognizing a language L, for every natural number n, we
define Ln to be the set of all words that are accepted if we
allow perturbations (arbitrary changes in the tape) beyond
a distance n from the head, and we take Lw to be the in-
tersection of all the languages Ln. It can be understood
intuitively that the notion of robustness of a TM according
to this notion of perturbation actually coincides with the
notion of boundedness since only machines that can visit
arbitrarily far positions from their initial position can have
a different perturbed language. We prove that for TM also
the same results as for the other models hold: the language
Lw is in up and every 11° language can be represented
as a perturbed language of a TM, which means that robust
TM's correspond precisely to machines recognizing recur-
sive languages.

We give in the paper the proofs for the models men-
tioned above in an increasing technical complexity order.
The TM case unveils the mechanism of the effect of pertur-
bation and allows to understand the essence of this mecha-
nism on a common and relatively simple model. The PAM
case makes it clear how this mechanism works in the con-
tinuous state space, without unnceded technical complex-
ity. Essentially the same techniques used for PAM can also
be applied to the more popular model of LHA (we omit in
this extended abstract the proofs concerning LHA). More-
over, the proof for PAM is a good introduction to the trick-
ier one for PCD, which is a simple and natural model for
hybrid systems, and perhaps the most motivating case.

Related work. Recently, a similar approach to ours was
independently invented and applied in a completely differ-
ent context to the analysis of numerical methods for chaotic
dynamical systems by Kloeden and Kozyakin. In [9], they
refer to the procedure of infinitesimal perturbation of dy-
namical systems as inflation.

The notion of perturbation we use (especially in the
case of continuous state space systems) was inspired by
the work of Anuj Puri who studied the reachability rela-
tion of timed automata (with finitely many control states)
under infinitesimal perturbation [10]. He showed that for

these models, the perturbed reachability relation is still de-
cidable and he gives an effective representation of this rela-
tion. Our work concerns models that are more general than
timed automata, and aims to show that infinitesimal per-
turbation has the same effect on several common models
of dynamical systems, namely that the perturbed dynamics
corresponds in all cases to a co-recursively enumerable re-
lation (set), and that robustness coincides with decidability.

Concerning the decidability issue of the reachability
problem, there are two works closely related to ours [6, 7]:
Martin Fränzle has shown in [6] a similar result to ours for
a certain model of hybrid systems. Our work shows that the
fact that "robustness implies decidability" can be proved
for other different types of transitions systems. Moreover,
our hardness results (inverse implication) show that the re-
lation between robustness and decidability is really tight.
Our result is in contrast with Thomas Henzingcr's result
[7] stating that reachability is still undccidable for hybrid
systems that allow small perturbations of the trajectory. It
is interesting to see that a small semantical difference be-
tween these two approaches drastically changes the com-
plexity.

Finally, the effect of noise on the power of analog com-
putational models and the dependence of this power from
the level of this noise arc explored in [11, 12, 13]. Dif-
ferently, we consider in our work the limit behavior with
noise level tending to zero.

Outline. The rest of the paper is organized as follows:
in section 2 we define the computation models (kinds of
dynamical systems) we consider: TM, PAM, and PCD, and
their perturbed versions. In sections 3-5 we formulate and
prove the main results for these models. For lack of space,
we omit here the case of LHA since the proofs concerning
these models are technically very similar to those for PAM.

Acknowledgments. We would like to thank Vincent
Blonde], Victor Kozyakin, Odcd Maler and Anuj Puri for
useful discussion.

2 Perturbed Models
2.1 Perturbed Turing machines (PTMs)

Let us recall the definition of a Turing machine (TM for
short) (sec figure 1(a)).

Let E be a finite alphabet, and let B be a special symbol
ß^S. ATM over E is a tuple (Q, </„„■,, F, F) where Q is
a finite set of control states, qinjt £ Q is the initial control
state, F C. Q is a set of accepting states, and T is a set of
transitions of the form (q,a) -> (q',b,8) where q,q' G Q,
a,be EU{Z?},and<5<E {-1,0,1}.

A configuration of the machine is an un-
bounded sequence (from left and right) of the form

270

(a) £7 a-n-1 a-n a-2 a-i ao ai a2 3n an*1 ...

(b)------. ill
AtoÄse X ,*' N

IL * a-n a-2 a-i ao ai a2 an *
•

Noise

Figure 1: (a) A Turing machine, (b) Its n-perturbed ver-
sion.

• • -0,-20—\{q,ao]aiü2 ■ ■ • where the a;s are symbols in
S U {B}. Intuitively, [q, a0] means that the current control
state of is q and that the head of the machine is at symbol
a0.

Given a transition (q, a) —> (q',b,5) in T, if the sym-
bol pointed by the head of the machine is equal to a, then
the machine can change its configuration in the following
manner: the symbol pointed by the head is replaced by b
and then the head is moved to the left or to the right, or it
stays at the same position according to whether S is — 1,1,
or 0, respectively.

Let w = ai, ■ • ■, an be a word in £*. We say that
w is accepted by M if, starting from the configuration
• ■ ■ BBB[qinit,ai] ■ ■ -anBBB ■ ■ ■ the machine M even-
tually stops in an accepting state. Let L(M) denote the set
of such words, i.e., the recursively enumerable (r.e.) lan-
guage semi-recognized by M.

Now, let us introduce the concept of perturbed Turing
machines (PTMs for short). Given an integer n > 0, the
n-perturbed version of the machine M is defined exactly
as M. except that before any transition all the symbols at
the distance n or more from the head of the machine can be
altered (i.e., replaced by other symbols) arbitrarily: Given
a configuration

■ ■ -a_„_ia_„a_„+i • • ■a.-i[q,a0]ai ■■ ■an-ianan+i ■■ ■

the n-perturbed version of M. may replace any symbols
to the left of a_„ (starting from a_n_i) and to the right
of an (starting from a„+i) by any other symbols in E U
{B} before executing a transition of M (at a0). Hence,
the machine becomes a nondeterministic transition system
(see figure 1(b)).

A word w is accepted by the n-perturbed version of M.
if there exists a run of this machine which stops in an ac-
cepting state. Let Ln{M) be the n-perturbed language of
M, i.e., the set of words in £* that are accepted by the
n-perturbed version of M.

It is easy to see that if a word is accepted by M, then
it can also be recognized by all the n-perturbed versions
of Ai, for every n > 0 (perturbed machines have more
behaviors). Moreover, if the (n + 1)-perturbed version ac-

cepts a word w, the n-perturbed version will also accept it
since obviously all alterations at distance greater than n +1
from the head can also happen in the n-perturbed machine.
Hence, we have:

Lemma 1 Li(M) 2 L2{M) D ■■■ D L(M)

This technically justifies the following crucial definition
(explained in the introduction): uj-perturbed language of
the machine M is given by

LUM) = f]Ln(M)
n

Informally speaking, LU(M) consists of all the words that
can be accepted by M when it is subject to arbitrarily
"small" perturbations. The previous lemma could be triv-
ially extended to:

Lemma 2 LX(M) 2 L2{M) D-D^) D L{M)

2.2 Piecewise affine maps
The second kind of systems to which we apply small

perturbations was introduced as a computation model in
[2]. Recall some definitions and results from that paper.

Definition 1 (PAM System) A Piecewise affine map sys-
tem (PAM) is a discrete-time dynamical system V defined
by an assignment x := f(\) on a bounded polyhedral set
X C M , where f is a (possibly partial) function from X
to X represented by a formula:

f(\) = AiX + biforxe Pi, i = l..N

where A, are rational d x d-matrices, b^ £ Q and Pi are
rational polyhedral sets in X.

A trajectory of V is a sequence xn evolving according to
/, i.e. such that xn+i = /(xn) for all n.

In other words, a PAM system consists of partitioning
the space into convex polyhedral sets ("regions"), and as-
signing an affine update rule x := AiX + bi to all the points
sharing the same region (see figure 2 (a)).

(a)

J. ̂
 \

Pi ■''' /

"'/ A i .

"'••-^!x+f?-v' '"""Az'x+bz \Aix+bi±// '■'••Ä2X+b2±£

Figure 2: (a) A 2-dimensional PAM system with 2 regions,
(b) Its e-perturbed version.

271

It is important to emphasize that since we assume that
all constants in the system's definition are rational, the ex-
pressive power of PAM is not achieved using the introduc-
tion of some non-computable real numbers.

To each PAM V we associate its reachability relation
Rv(-, ■) onQ . Namely, for two rational points x and y
the relation Rv(x,y) holds iff there exists a trajectory of
V from x to y.

The following result on the computational power of
PAMs was proved in [14, 2]

Theorem 1 (Simulation of TM by PAM) Let M be a

TM. We can effectively construct a PAM V and an encod-

ing e : S* —> Q such that for any word w the following

equivalence holds, w G L{M) iff Rv(e(w),0), where O
denotes the origin in lRe.

The following characterization of the complexity of the
reachability relation is now immediate:

Corollary 1 (Computational power of PAM)

• For any PAM V its reachability relation is r.e.

• Any r.e. set S is l-reducible (see [15]) to the reacha-
bility relation of a PAM.

2.3 Perturbed PAMs (PPAMs)

Now wc can apply the paradigm of small perturbations
to PAMs. Consider a PAM V described by the assignment
x := /(.r). For any e > 0 we consider the s-perturbed
system Vz (sec figure 2 (b)). Its trajectories arc defined as
sequences x„ satisfying the inequality ||x„+i — /(x„)|| < e
for all 7i. This non-deterministic system can be considered
as V submitted to a small noise with magnitude e. We
denote reachability in the system V€ by 7?f (•, •). All tra-
jectories of a non-perturbed system V are also trajectories
of the e-perturbed system Vs. If ci < £■> then any trajec-
tory of the Ei -perturbed system is also a trajectory of the
e^-perturbcd PAM.

Like for TM we can pass to a limit for e —> 0. Namely
Il£(x,y) iff Ve > 0 R?{x,y). This means reachability
with arbitrarily small perturbing noise.

The following analog of Lemmata 1 and 2 is now im-
mediate:

Lemma 3 For any e-> > E\ > 0 and rational points
x and y the following implications hold: Rv(\.y) =>
C(x,y)^<(x,y)^i?^(x,y)

2.4 Piecewise Constant Derivative Hybrid Sys-
tems (PCDs)

The last kind of systems to which wc apply small per-
turbations was introduced in [3] in the context of hybrid
systems. Recall some definitions and results.

Figure 3: (a) A 2-dimcnsional PCD system with 4 regions
and a trajectory from x to y. (b) The e-perturbed version of
this PCD.

Definition 2 (PCD System) A piecewise-constant deriva-
tive (PCD) system is a continuous-time dynamical sys-
tem Ft defined by a differential equation x = /(x) on a
bounded polyhedral set X C 1R (the slate-space), where
f is a (possibly partial) function from X to IR' represented
by a formula:

f(\) =Ciforxe Pi. 1..A'

where c, £ Q' and P, are rational polyhedral sets in X.

A trajectory of H starting at some x0 £ A" is a solution
of the differential equation with initial condition x = Xo,
defined as a continuous function £ : 1RV —► A' such that
£(()) = x0 and for every t, f{£{t)) is defined and is equal
to the right derivative of £(/).

In other words, a PCD system consists of partitioning
the space into convex polyhedral sets ("regions"), and as-
signing a constant derivative c ("slope") to all the points
sharing the same region (sec figure 3 (a)). The trajectories
of such systems are broken lines, with the breakpoints oc-
curring on the boundaries of the regions. In order to rule
out some pathologies wc consider only PCDs H which sat-
isfy an additional assumption of being strongly non-zeno
i.e. the time interval between two consecutive visits of the
same region should be bounded from below by a positive
constant A.

To each PCD Fl we associate its reachability relation
RH{-, ■) on Q'. Namely, for two rational points x and y
the relation Rn(x.y) holds iff there exists a trajectory of
FL from x to y.

The following result on the computational power of
PCDs was proved in [3]

Theorem 2 (Simulation of TM by PCD) Let M be a

TM. Wc can effectively construct a PCI) Fl and an encod-
ing c : E* —> Q' such that for any word w the following
equivalence holds, w G L(M) iff Rn(e{w),0), where O
denotes the origin.

Ill

Corollary 2 (Computational power of (strongly non-
zeno) PCD)

• For any PCD 7i its reachability relation is r.e.

• Any r.e. set S is 1-reducible (see [15]) to the reacha-
bility relation of a PCD.

2.5 Perturbed PCDs (PPCDs)
Consider a PCD U described by an ODE x = /(x).

For any e > 0 the e-perturbed system Hs is described
by the differential inclusion ||x — /(x)|| < e. This non-
deterministic system can be considered as H submitted to
a small noise with magnitude e (see figure 3 (b)). We de-
note reachability in the system He by i?^(-, ■)■ The limit
reachability relation i?^(x,y) is introduced and an analog
of Lemma 3 is stated exactly as for PAMs.

3 Results on PTMs
Our first result is that the w-perturbed language of a TM

is the complement of a recursively enumerable language.

Theorem 3 (Perturbed reachability is co-r.e.) LU(M)
is in the class 11°.

Proof: First, we show that for every n £ N, Ln(M) is a
regular language:

Let us associate with the n-perturbed version of M a
finite-state machine AM defined as follows: (1) Each of
its configurations is composed of a control state of M and
a finite sequence of length 2n + 1 corresponding to the part
of the configuration in the radius n from the head. There
are \Q\ x |E 4- \\2n+1 such configurations. (2) The transi-
tion relation -> is constructed by simulating the transitions
of M and considering that, when the head is moved to the
left (resp. to the right), a symbol in E U {B} is nondeter-
ministically chosen and appended to the left (resp. right) of
the configuration and the right-most (resp. left-most) one
is lost (it belongs now to the perturbed area of the configu-
ration and hence it can be replaced by any other symbol).

To formulate the link between the computations of AM

and those of the n-perturbed version of M we need some
definitions and notations: Let Accept = (E U B)n x [F x
(S U B)] x (E U B)n. Given a configuration of M

c = • • ■ a-n-ia^na-n+i ■ ■ ■ a-i[q,a0]ai ■ ■ ■ an-ianan+i ■

we define the sequence

c\n = a_na_n+i • • • a_i[q, a0]ai ■ • • an_xOn

of length 2n + l.
Then, it is easy to see that:

The n-perturbed version of M has an accepting
run starting from a configuration c, if there exists
f £ Accept such that c|„ A / in AM-

Hence, we can effectively construct Ln(M) as a fi-
nite union of computable regular languages: Let Basis be
the finite set of sequences a0oi ■ • • an £ En+1 such that
Bn[qinit,ao}ai ■ • -an -> / for some / £ Accept. Let
Short be the finite set of sequences üQCLI ■ ■ ■ a,k £ E* with
k < n such that Bn[qinit,a0]ai ■■ ■ a,kBn~k A /for some
/ £ Accept. Then, we have

Ln(M) = Short UBasisE*

Since Ln(M) is regular and effectively constructible,
the same holds for its complement Ln(M). Hence, the
set Un Ln(M) = LU(M) is recursively enumerable as a
union of a computable sequence of regular languages. D

A consequence of the theorem above is that robust lan-
guages (i.e. LU(M) = L(M)) are necessarily recursive
(since they must be in E° D U°):

Corollary 3 (Robust => decidable) If LU(M) = L(M)
then L(M) is recursive.

The converse holds if we add another requirement on M:

Proposition 1 (Decidable => robust) // M always stops
(andhence L(M) is recursive) then L,^(M) = L(M)

Now, we show that in general, w-perturbed languages are
not recursively enumerable. In fact, the following result
says that some of them are complete among 11° languages.

Theorem 4 (Perturbed reachability is complete in 11°)
For every TM M, we can effectively construct another TM
M' such that L^M1) = L[M).

Proof: Let M = {Q,qinu,F,T) be a TM over E. Sup-
pose w.l.o.g. that the machine M is such that, for every
input w # L(M), M never stops and uses an unbounded
working space (the head goes arbitrarily far from the initial
position).

Now, let us consider an extra symbol # ^ E. Then, we
define the TM M' = (Q',q'init,F',r') over E U {#} as
follows: Q' = Q U {q/}, q'init = qinit, F' = {qf}, and
r' = ru {(<?,#)->(g/,#) : q£Q}.

This means that M' is constructed as M except that
all accepting states of M are rejecting for M' and that
whenever M1 sees the symbol #, it stops in its unique
accepting state qf. Let us prove that we have indeed
LÜJ(M

,) = LjM).
Consider a word w G L(M). Then, there exists an

accepting run of M on w. By definition of M', this run
is rejecting for M'. Let iV be size of the space used by
this run. It can be seen that the (N + l)-perturbed version
of M' has exactly the same behavior as M! on w since
perturbations in the non-visited part of the configuration

273

have no effect. Hence w $ L^+x, and consequently w £
Lu (Lemma 2).

Consider now a word w $ L(M). We show that for
every n > 0, the n-perturbed version of M' recognizes w,
which implies that w belongs to LU(M'). Let n > 0 and
let us exhibit an accepting run of the n-perturbed version
of M1 on w: Suppose that, in the perturbed machine,
starting from the initial configuration, two symbols at the
distance n + 1 to the left and to the right from the head arc
replaced by the symbol #. Then, since w 0 L(M), the
machine M has an unbounded run on w (see above the
initial hypothesis on M). Since M' has all the transitions
of M, it has also the same unbounded run on w, visiting
positions arbitrarily far from the initial position of the
head. Hence, the considered run of the n-perturbed
version of M! eventually finds the # symbol and goes to
the accepting state. D

Proof: (1) Suppose that ||/(x) - y|| < e. Let ae(x) = qk

anda£(y) = qj. Then dist(f(Vk), Vj) < dist{f(x),y) <
e. Hence by definition of the automaton A£ the state qj is
reachable from qk.

(2) Suppose that ag(x) = qk and as(y) = qj
and the state q3 is reachable from qk. In this case
dist(f(Vk),Vj) < 6. Hence there exist x0 G 14 and
y0 € Vj such that ||/(x0) - y0|| < S. As x0 and x are
in the same cube 14 the distance between them is inferior
to the diameter of this cube \/d5. The same is true for y0

and y. Finally

ll/(x)-y||<ll/(x)-/(xo)|| + ||/(xo)-y0|| +

+ ||y0-y||<Lv/rf<5 + <5 + v/d<5,

where the Lipschitz constant L can be found as
L = max,-||4;||. We can take now C > Ly/d + 1 + y/d.
D

4 Results on PPAMs
We consider now the case of perturbed PAMs and show

that their perturbed reachability relation is co-recursivcly
enumerable.

Theorem 5 (Perturbed reachability is co-r.e.) The rela-
tion R%(x,y) is Jtf on Qcl.

Remember that in the case of TM, the proof of the similar
result was based on the fact that the /(.-perturbed TM is in
fact a finite-state system. For PAM. this actually docs not
hold, but we can show that each e-pcrturbed PAM can be
"faitfully " approximated by a finite-state automaton we
define hereafter:

Consider a PAM x := /(x) = 4,x + b, for x e
Pi, i = 1..JV. For any S we can partition A' into
finitely many cubes \\,... \'s of size 6. We say that !•)
is a ^-successor of 1> if dist(f(Vk),Vj) < S, that is
if some point of Vk can be mapped to a point near V}.
Now wc can construct a finite automaton .4,5 with states
Qs = {<7i! • • • i <7.s}» and with a transition from qk to qj au-
thorized iff Vj is a (^-successor of 14. Informally speaking,
the automaton 4^ represents the PAM with accuracy S. In
order to formalize it wc introduce the following abstrac-
tion function from A' to Qs'- fv^(x) = q, for x £ V,

Lemma 4 (Simulation) (I) for any s > 0 f/||/(x) -y|| <
£ (i.e. the e-perturhed system can make a transition from
x to y) then the automaton 4=- can make a transition from
at-(x) to o£(y); (2) for any S > 0 if the automaton As can
make a transition from a<s(x) to ag(y), then ||/(x) — y|| <
C5 (i.e. the CS-perturhed system can make a transition
from x to y), where C is a rational constant independent of
S;

Corollary 4 R^(x,y) holds iff for all rational S > 0 in
the automaton As the state a<$(y) is reachable from ag(x).

Hence by complementation -i/?.^(x,y) iff for some ratio-
nal S > 0 the state a$(y) is unreachable from ng(y) in the
automaton As- Unrcachability in this automaton is (uni-
formly in 8) dccidablc for any particular S, and hence the
relation ^R^ is recursively enumerable, which terminates
the proof of Theorem 5.

Corollary 5 (Robust => decidable) // R^ = Rv then
R is recursive.

Let us consider now the converse of Theorem 5. Wc
prove the following fact:

Theorem 6 (Perturbed reachability is complete in 11^)
Let M be a TM. We can effectively construct a PAM V
and an encoding e : E* —> Qn such that for any word w,
the following fact holds: w $ L(M) iffR^(e.(w),0).

Proof: W.I.o.g. suppose that on any input word the ma-
chine M either stops in an accepting state, or computes
forever. First wc construct a 2-dimensional PAM VQ (and
an input encoding c : E* —> Qn) that simulates M and
semi-recognizes L(M) as described in [2]. Its main prop-
erty is that for any word w the following equivalence holds:
w G L{M) iff R^°{c{w),0). It is easy to verify that if a
rather small neighborhood ! (e.g. a l/10-square)of the ori-
gin is reachable from e(w) then w £ L(M). The last use-
ful property of this simulation is that all the points of the
trajectory starting from e(w) arc internal points of polyhc-
draP,-.

representing the accepting slate of the TM

274

Now we construct a new 3-dimensional RAM V whose
perturbed version will "semi-recognize" L{M). We will
use notation x or y for 2-dimensional vectors and h for
the third dimension (so the generic element of E? will be
(x,/i)). It is mainly the original system VQ embedded in
the plane h = 2 of the space B3. However there are 2
changes (compare with the proof for TMs) — informally:

• The accepting state 0 (with his small neighborhood)
of the original system Vo becomes rejecting for the

m V new system V.

• The zone h < 1 becomes accepting for the new sys-
tem.

The idea is that for any w £ L(M) the original PAM Vo
will eventually arrive to O (and accept) and hence the per-
turbed PAM V will arrive to the neighborhood of O x {2}
and reject. For any w g L(M) the perturbed PAM V
will slowly drift "down" until it reaches the accepting zone
h<\.

Formally, let the original system be defined on a subset
of the cube [—T, T]2 C Ft~ by equation x := /(x). Denote
the squared neighborhood of the origin [-0.1.0.1]2 C IB2

by C. Then the new system will be defined on the rectan-
gular set [-T - 1, T + l]2 x [-1,3] C E3 by the equation
x := g(x, h) where g(\, h) is defined as follows:

• if 1 < h < 3, and x £ C, then g(x:h) = (f(\),h).
Informally speaking, in the layer 1 < h < 3 the sys-
tem V simulates the original system Vo without mod-
ifying h

• if 1 < h < 3 and x G C, then g(x, h) is undefined

• if h < 1 we go to the origin : g(x, h) = (0. 0)

The input encoding function for the system V is as follows:
e(w) = (e0(w),2) where eo is the encoding function of the
original system V,.

Now we have to prove that R%(e(w),0) iff w $
L(M). Suppose first that w £ L{M). In this case the TM
M has an infinite-length run on w and the PAM Vo has an
infinite trajectory xn starting in eo(ui). For any e > 0 we
can construct a trajectory g of the e-perturbed system V as
follows:

• gn = (x„, 2 - en) for n e [0, fl/e]]; during the first
[1/s] time units the system simulates VQ along first
two dimensions slowly drifting down in the third one

• gn = 0 for n > [1/e] the trajectory jumps to the
origin and stays there.

It is easy to see that gn is a trajectory of the e-perturbed
system, and hence R^(e(w),0) holds.

Now consider the other case when w £ L{M). Then
the trajectory x„ of Vo starting in e0{w) eventually arrives
to the origin. The non-perturbed trajectory gn of V
starting in e(w) will follow xn in the plane h = 2 until it
reaches the neighborhood C of the origin. Once in this
neighborhood the system V dies immediately. The only
thing to verify is that all perturbed trajectories of V starting
in e(w) are close enough to gn for e small enough. Let T
be the time of arrival to the origin (i.e. such that gr = 0),
A — max{l,||Aj||} and 9 = mindzst(x„,9Pi(r!)). If we

n<T v

take e < 8A~T, then a straightforward induction shows
that any e-perturbed trajectory g'n is close to gn and the
same affine maps are applied until it enters the deadly
neighborhood of the origin. D

Theorem 7 All the results stated in this section can be
proved in a very similar manner for Linear hybrid au-
tomata (LHA).

5 Results on PPCDs
We consider finally the case of PCDs and prove the

same results as for PAMs (and LHAs). The overall struc-
ture of the proofs is the same as in the previous case. How-
ever, the proofs for the two kinds of models are technically
different due to the fact that the rules for accumulating er-
rors (resulting from perturbations) are different for each
of these models. An e-perturbation of a PAM results in
moving the state by e in any direction at each transition,
which ensures the simulation lemma 4 (the same holds in
the LHA model). Differently from this, a perturbed trajec-
tory in an g-perturbed PCD deviates from the ideal trajec-
tory after crossing a region by ~ re, where r stands for the
time needed to cross this region, and this time depends on
the entry point to a region and the slope at this region and
cannot be bounded from below.

Our solution to this consists in observing (and approxi-
mating by an automaton) the states of the PCD only when
it enters some special good regions. In a non-Zeno system,
the time r' between consecutive visits of good regions is
bounded from below and the accumulated error ~ r'e is
large enough to ensure simulation.

Theorem 8 (Perturbed reachability is co-r.e.) The rela-
tion R%(x,y) onQd is in Ii\.

We proceed in a similar manner as for PAMs: We approx-
imate the e-perturbed system by a finite-state automaton.
However, relations between the system and the automaton
are somewhat subtler. First of all, let N be the number of
regions in the PCD, and a > 0 a positive constant specified
below. Without loss of generality we can suppose that the

275

norm used in the definition of e-perturbed system is || ■ Hoc,
which means that e-ball centered in a pointx is in fact a
cube with side 2e. Let us introduce now some definitions:

Definition 3 (Good points) A point x on the boundary of
a region is good if the trajectory starting from x does not
change direction during at least a time. Formally let c =
/(x) be the slope in x. Then the vector field /(y) should be
constant (and equal to c)for all y £ [x, x + ac]

Lemma 5 (Good regions) The set G of all good points is

a finite union of polyhedra of dimensionality < d.

The following lemma, saying that the good regions are
visited often, enough follows from the strong non-zcnoncss
of the PCD.

Lemma 6 Each perturbed trajectory crossing N regions
visits a good region at least once.

Let us sec now how wc define an "approximating au-
tomaton": For any S we can partition G into finitely
many polyhedra \\,... V's of size 5. Wc say that \) is
a (^-successor of I\. if there exists a trajectory of the 6-
pcrturbed system no more than N links from an x € Ij
to an y £ V). It is easy to see that the property of being a
(^-successor can be reduced to a linear programming prob-
lem, and hence is dccidable.

Then, wc can construct a finite automaton Ag with states
Qs = {<h i ■ ■ ■! <7.s'}, and with a transition from r/j. to q} au-
thorized iff V) is a ^-successor of \ \.. Informally speaking,
the automaton .4,5 represents the (5-perturbed PCD with ac-
curacy S. In order to formalize it we introduce the follow-
ing abstraction function from A' to Qg: og(x) = q, forx £
V,.

Hereafter, wc explore in which sense Ag simulates FL-::

Lemma 7 (Quasi-Simulation) Let x. y £ G be two good
points. (I) for any e > 0 if the e-perturbed system can go
from x to y via a trajectory with less than N links, then the
automaton As can make a transition from nr(x) to n.-(y);
(2) for any S > 0 if the automaton Ag can make a tran-
sition from ag(x) to ag(y), then CS-perturbed system can
go from x to a good point y' via a trajectory with less than
N links, where C is a rational constant independent of S,
andag(y) = ctS(y');

Corollary 6 (Many steps) Let x,y £ G be two good
points. (I) for any e > 0 if the e-perturbed system has

a trajectory from x to y , then the automaton A, has a run
from as{x) to ne(y); (2) for any S > 0 if the automa-

ton Ag has a run from r><s(x) to as(y), then CS-perturbed
system has a trajectory from x to a good point y'), where

a<s(y) = My')-

It is still not the result that wc want, because first it con-
cerns only reachability between good points, and, second,
the target point y is replaced by a neighbor point y'.

In order to deal with these two issues wc introduce the
following (5-test for perturbed reachability between arbi-
trary points. First of all wc construct the Ag automaton.
Next, we proceed in three steps:

1. Find the set Si of indices i such that \\ is reach-
able by Tig from x via a trajectory with less then JV
links. This can be done algorithmically using linear
programming.

2. Find the set S-2 of indices of all the states qj of the .4^
automaton reachable in this automaton from {q, \ i £
S\}. This is a reachability problem in a finite-state
automaton.

3. For each j £ S2 test whether y is reachable by %,>•
from \'j via a trajectory with less then N links. This
can be solved as in the first step using linear program-
ming. In case of positive answer for any j £ 5L>, the
rf-tcst succeeds, otherwise it fails.

Notice that S-\csl always terminates. Then, it is easy to see
that the following fact holds:

Lemma 8 (Correctness of (5-test) For any two points x
and y (1) if n^(x.y). then 6-test succeeds for x and y.
(2) IfS-test succeeds for x and y. then 7?('f(j (x. y).

Corollary 7 (x.y) ^ R^ if and only if for some n £ N
the I /n-test fails for x and y.

By the corollary above, a semi-decision algorithm for
-■/?" is immediate, which terminates the sketch of proof
of Theorem 8.

Corollary 8 (Robust => decidablc) // iVj = RH then
recursive. RH is ,

Finally, we can prove the converse result of Theorem 8.
The proof is given in the appendix.

Theorem 9 (Perturbed reachability is complete in Of,')
Let M be a TM. We can effectively construct a PCD
FL and an encoding c : E* —> Q" such that for any
word w the following equivalence holds: w $ L(M) iff
n*(c(w),ö).

6 Conclusion
Wc have shown that when we consider infinitesimal per-

turbations in the dynamics of a system, the reachability re-
lation becomes co-rccursively enumerable, which proves
that robust systems are dccidable. It is interesting to ob-
serve that these results hold for several different discrete

276

and continuous time models of dynamic systems, which
shows that they correspond to a general phenomenon. The
proofs of these results have also a common scheme, al-
though they differ significantly depending from the speci-
ficity of the dynamics of each class of models.

Our results establish a tight link between the notions of
decidability and robustness for infinitesimal perturbations.
This link is of a semantical nature. An interesting question
is to find sufficient "syntactical" conditions on the models
of dynamical systems ensuring their robustness, leading to
decidability results for classes of dynamical systems.

References
[1] Cris Moore, "Generalized shifts: Undecidability and

unpredictability in dynamical systems," Nonlinearity,
vol. 4, pp. 199-230,1991.

[2] Pascal Koiran, Michel Cosnard, and Max Gar-
zon, "Computability with low-dimensional dynam-
ical systems," Theoretical Computer Science, vol.
132, pp. 113-128, 1994.

[3] Eugene Asarin, Oded Maler, and Amir Pnueli,
"Reachability analysis of dynamical systems having
piecewise-constant derivatives," Theoretical Com-
puter Science, vol. 138, pp. 35-65, 1995.

[4] Bruce Krogh and Nancy Lynch, Eds., Hybrid Sys-
tems: Computation and Control (HSCC 2000), vol.
1790 of LNCS. Springer, 2000.

[5] Thomas A. Henzinger, P.W. Kopke, Anuj Puri, and
Pravin Varaiya, "What's decidable about hybrid au-
tomata?," in Proceedings of the 27th Annual Sym-
posium on Theory of Computing. 1995, pp. 373-382,
ACM Press.

[6] Martin Fränzle, "Analysis of hybrid systems: An
ounce of realism can save an infinity of states," in
Computer Science Logic (CSL'99), Jörg Flum and
Mario Rodriguez-Artalejo, Eds. 1999, vol. 1683 of
LNCS, pp. 126-140, Springer.

[7] Thomas A. Henzinger and Jean-Francois Raskin,
"Robust undecidability of timed and hybrid systems,"
In Krogh and Lynch [4], pp. 145-159.

[8] E. Asarin, "Chaos and Undecidability," Tech. Rep.,
Verimag, 1995.

[9] Peter Kloeden and Victor Kozyakin, "The inflation of
attractors and discretization: the autonomous case,"
Nonlinear Anal, TMA, vol. 40, pp. 333-343, 2000.

[10] Anuj Puri, "Dynamical properties of timed au-
tomata," Discrete Event Dynamic Systems, vol. 10,
no. 1/2, pp. 87-113,2000.

[11] M. Casey, "The dynamics of discrete-time compu-
tation, with application to recurrent neural networks
and finite-state machine extraction," Neural Compu-
tation, vol. 8:6, 1996.

[12] W. Maass and P. Orponen, "On the effect of analog
noise in discrete-time analog computations," in Neu-
ral Information Processing Systems, 1996.

[13] C. Moore, "Finite-dimensional analog computers:
Flows, maps, and recurrent neural networks," in 1st
Intern. Conf. on Unconventional Models of Compu-
tation. 1998, Springer-Verlag.

[14] C. Moore, "Undecidability and unpredictability in
dynamical systems," Physical Review Letters, vol.
64, pp. 2354-2357,1990.

[15] Hartley Rogers, Theory of Recursive Functions and
Effective Computability, McGraw-Hill, 1967.

A Proof of Theorem 9
The idea of this proof is similar to the case of PAMs

(Theorem 6). We take a PCD Tio simulating the machine
M, and add one more dimension h. We start at the level
h = 4. Accepting states of the PCD Ti0 become reject-
ing in the new PCD Ti. In order to be accepting in li the
trajectory should go down and reach the plane h = 0. It
is possible for arbitrarily small e only if the original PCD
7io can evolve during arbitrarily long time, that is the per-
turbed version of ri accepts a word iff %0 does not accept
it.

First let us construct a 4-dimensional PCD Ho (and an
input encoding e : E* —> Qn) which simulates M and
semi-recognizes L(M) as described in [3]. Its main prop-
erty is that for any word w the following equivalence holds.
w G L{M) if and only if R^°(e(w), O) It is easy to verify
that if a rather small neighborhood (e.g. a 1/10-ball) of the
origin is reachable from e(w) then w G L(M).

Now we construct a new 5-dimensional PCD V. whose
perturbed version will "semi-recognize" L(M). We will
use notation x, y for 4-dimensional vectors and h for the
fifth dimension (so the generic element of M5 will be
(x, h)). It is mainly the original system HQ submerged in
the hyperplane h = 3 of the space R5. However there are 2
changes (compare with the proof for PAMs) — informally:

• The accepting state O (with his small neighborhood)
of the original system %0 becomes rejecting for the
new system H.

• The zone h < 1 becomes accepting for the new sys-
tem

The idea is that for any w € L(M) the original PCD
7^0 will eventually arrive to O (and accept) and hence the

277

perturbed PCD H will arrive to the neighborhood of O x 2
and reject. For any w $ L(M) the perturbed PCD H will
slowly drift "down" until it reaches the accepting zone h <
1.

Formally, let the original system be defined on a subset
of the cube [-T,T]4 C RA by equation x = /(x). Denote
the cubic neighborhood of the origin [—0.1,0.1]4 C iR4

byC.
Then the new system will be defined on the rectangular

set [-T - 1,T + l]4 x [-1,5] C M5 by the equation
(x, h)' = g(\, h) where g(x, h) is defined as follows:

• if /;, > 4, then g(x, h) = (0,1) : anything that arrives
in the layer h > 4 goes "up" and is rejected

• if 2 < h < 4 and /(x) is defined, then g(x,h) —
(/(x),0). Informally speaking, in the layer 2 < h <
4 the system H simulates the original system Ho

• if 2 < h < 4 and x £ C , then g(x, h) = (0,1)

• if 2 < It. < 4 and /(x) is undefined, then g(x,h) =
(0,1)

• if 1 < li < 2 we go down : g(x, h) = (0, —1)

• finally in the layer — 1 < h < 1 we put a (piecewisc
constant) vector field with all the trajectories going to
the oriüin.

The input encoding function for the system % is as fol-
lows: e(iv) = (eo(iu),3) where eo is the encoding function
of the original system T-LQ.

Now we have to prove that R%-(e(w),0) if and only if
not w $ L(M). Suppose first that w $ L{M). In this case
the TM M has an infinite-length run on w and the PCD Ho
has an infinite trajectory x(t) starting in e.o(w). For any
£ > 0 we can construct a trajectory g of the e-perturbed
system "K as follows:

• g(t) = (\(t), 3 - et) for t £ [0, l/e]\ during the first
1/e time units the system simulates %o along first
four dimensions slowly drifting down in the fifth one

. 5(0 = (x(l/e),2-(t-l/e))for*€[l/e;l/e+l]-
the next trajectory segment goes straight down with
unit velocity during one time unit.

• The last trajectory segment goes straight to the origin.

Now consider the other case when w $ L{M). Then
the trajectory x(t) of Ho starting in eo(w) eventually ar-
rives to the origin. The non-perturbed trajectory g(t) ofH
starting in e(w) will follow x(t) in the plane h = 3 until
it reaches the neighborhood C of the origin. Once in this
neighborhood the system H goes straight up to the death.
The only thing to verify is that all perturbed trajectories
of H starting in e(w) are close enough to g(t) fore small
enough. This can be done similarly to PAMs.

278

From Verification to Control:
Dynamic Programs for Omega-regular Objectives"

Luca de Alfaro Thomas A. Henzinger Rupak Majumdar

Electrical Engineering and Computer Sciences, University of California, Berkeley
{dealfaro, tan,rupak}@eecs.berkeley.edu

Abstract. Dynamic programs, or fixpoint itera-
tion schemes, are useful for solving many problems
on state spaces, including model checking on Kripke
structures ("verification"), computing shortest paths
on weighted graphs ("optimization"), computing the
value of games played on game graphs ("control"). For
Kripke structures, a rich fixpoint theory is available
in the form of the //-calculus. Yet few connections
have been made between different interpretations of
fixpoint algorithms. We study the question of when
a particular fixpoint iteration scheme p for verifying
an w-regular property $ on a Kripke structure can
be used also for solving a two-player game on a game
graph with winning objective *. We provide a suf-
ficient and necessary criterion for the answer to be
affirmative in the form of an extremal-model theorem
for games: under a game interpretation, the dynamic
program p solves the game with objective * if and
only if both (1) under an existential interpretation on
Kripke structures, p is equivalent to 3*, and (2) un-
der a universal interpretation on Kripke structures, <p
is equivalent to V*. In other words, p is correct on
all two-player game graphs iff it is correct on all ex-
tremal game graphs, where one or the other player has
no choice of moves. The theorem generalizes to quan-
titative interpretations, where it connects two-player
games with costs to weighted graphs.

While the standard translations from w-regular
properties to the //-calculus violate (1) or (2), we give
a translation that satisfies both conditions. Our con-
struction, therefore, yields fixpoint iteration schemes
that can be uniformly applied on Kripke structures,
weighted graphs, game graphs, and game graphs with
costs, in order to meet or optimize a given w-regular
objective.

1 Introduction

If * is a property of a Kripke structure, then every //-
calculus formula y? that is equivalent to * prescribes
an algorithm for model checking *. This is because
the //-calculus formula p can be computed by itera-
tive fixpoint approximation. Indeed, the /i-calculus
has been called the "assembly language" for model
checking.

In control, we are given a two-player game struc-
ture and an objective, and we wish to find out if
player 1 (the "controller") has a strategy such that
for all strategies of player 2 (the "plant") the out-
come of the game meets the objective. If the out-
come of a game is an infinite sequence of states, then
objectives are naturally specified as w-regular prop-
erties [15]. A simple but important objective is the
reachability property OT, for a set T of states, which
asserts that player 1 wins if it can direct the game
into the target set T, while player 2 wins if it can
prevent the game from entering T forever. We write
((l))OT for the reachability game with target T for
player 1. A dynamic program for solving the reach-
ability game can be viewed as evaluating a fixpoint
equation, namely,

((l))OT = nx.{TV lPre{x)),

where lPre{T) is the set of states from which player 1
can force the game into Tina single step. It is not
difficult to see that this fixpoint equation is identical
to the //-calculus expression for model checking the
reachability property 30T, namely,

BOT = fix.{TW EPre{x)), (1)

"This research was supported in part by the DARPA SEC
grant F33615-C-98-3614, the MARCO GSRC grant 98-DT-660,
the AFOSR MURI grant F49620-00-1-0327, the NSF Theory
grant CCR-9988172, and the NSF ITR grant CCR-0085949.

except for the use of the predecessor operator EPre in
place of lPre, where EPre(T) is the set of states that
have a successor in T.

For every w-regular property $, it is well-known
how to construct an equivalent //-calculus formula p>

0-7695-1281-X/01 $10.00 © 2001 IEEE
279

[7, 4], which can then be used to model check 3$,
i.e., to compute the set of states from which there is a
path satisfying $. Now suppose we want to solve the
control problem with objective "f. The question we
set out to answer in this paper is whether p is of any
use for this purpose; more specifically, if we simply
replace all EPre operators in ip by lPre operators,
do we obtain an algorithm for solving the game with
objective "3/, i.e., for computing the set of states from
which player 1 can ensure that $ holds?

In general, the answer is negative. Consider the
co-Biichi property OOT, which asserts that, eventu-
ally, the target T is reached and never left again. The
Emerson-Lei translation [7] yields the equivalent //-

calculus formula

BOGT = Li,x.(EPrc(x) V {vy.EPre{y) A T)). (2)

The Dam translation [4] gives

30DT = ti,x.(EPre{x)V(TAEPre(vy.(TAEP7-c{i/))))),

(3)
and Bhat-Clcaveland [2] produce the same result. But
neither of these formulas give the correct solution for
games. To see this, consider the following game on the
state space {«I ,A'2, .S:J}. At S\, player 2 can play two
moves: one of them keeps the game in .sj, the other
takes the game to .s_>. At s->- player 1 can play two
moves: one of them keeps the game in .s_>, the other
takes the game to ,s:!. Once in .S:J, the game remains
in S;J forever. The target set is T — {s\.s^}. Then.
((l))OGT = {äI,.S2,.S:J}. However, both equations (2)
and (3) denote the smaller set {.s-2, «3} when EPrc. is
replaced by lPre.

We present an extremal-model theorem which says
that the fixpoint formula ip over IP re solves the game
with w-regular objective "P if and only if both of the
following conditions arc met:

E The EPrc version of p is equivalent to the exis-
tential property 3$.

A The A Pre version of p is equivalent to the uni-
versal property V^. (Here, APrc(T) is the set
of states all of whose successors lie in T, and VvE'
holds at a state if all paths from the state sat-
isfy *.)

In other words, for a fixpoint formula ip to solve the
game with w-regular objective "P, it is not only neces-
sary but also sufficient that <p coincides with $ under
the two extremal, non-game interpretations. In the co-
Biichi example, while the expressions (2) and (3) sat-
isfy condition E of the extremal-model theorem, they
violate condition A. By contrast, in the reachability

example, the expression (1) meets also condition A,
because

VOr = p.(rv APre(x)).

We show constructively that for every u>-regular ob-
jective $ there is indeed a fixpoint formula p which
meets both conditions of the extremal-model theorem.
The construction is based on the determinization of
üj-automata [12, 13], and on the translation from al-
ternating w-automata to /j.-calculus [5]. In particular,
for the co-Biichi property we obtain

((l))OüT = nx.i/y.(lPrc{x)V (lPrc(y) AT)). (4)

The reader may check that both

30GT = iixMj/.{EPre(x)V {EPrc(y) AT)),
VOGT = fixMy.(APre(x) V {APrc{y) A T)).

In general, our translation provides optimal algo-
rithms for solving games with w-regular objectives: in
particular, if the objective is given by a formula XP of
linear temporal logic, then the resulting algorithm has
a 2EXPTLME complexity in the length of # [11].

Our results also shed light on a related question:
given a ''verification" //-calculus formula p,. that uses
only the predecessor operator EPrc. what is the rela-
tion between pv and its ''control" version pi,., obtained
by replacing EPrc. with lPre? From [G] we know that
if pv is deterministic, i.e., if every conjunction in p,.
has at least one constant argument, then pv speci-
fies an u>regular language: that is, p,. is equivalent
to 3$ for some u,'-regular property xi. We introduce
the syntactic class of stronyly deterministic //-calculus
formulas, a subclass of the deterministic formulas, and
we show that if i^,. is strongly deterministic, then pv

solves the verification problem for specification 3*1' iff
pc solves the control problem for objective VI'. This
correspondence does not hold in general for determin-
istic formulas.

We extend the connection between verification and
control also to quantitative properties. Consider a
graph with nonnegative edge weights, which repre-
sent costs. By defining an appropriate quantitative
predecessor operator Pre.., the dynamic program for
reachability. iix.{T V Pnu (./:)), computes the cost of
the shortest path to the target T. Similarly, consider
a game whose moves incur costs. Then again, for a
suitable quantitative predecessor operator IPre.f, the
dynamic program fix.(T\/ lPre , (x)) computes the real
value of the game, which is defined as the minimal
cost for player 1 to reach the target T (or infinity, if
player 1 has no strategy to reach T). For general ir-
regular objectives, we define the cost of the infinite

280

outcome of a game as the cost of the shortest (possi-
bly finite) prefix that is a witness to the objective. We
show that the extremal-model theorem applies to this
quantitative setting also. This gives us dynamic pro-
grams for solving the real-valued games with respect
to all w-regular objectives. For example, equation (4)
with lPre replaced by lPrej! specifies a dynamic pro-
gram for the quantitative co-Buchi game, whose value
is the minimal cost for player 1 to reach and stay inside
the target T (this cost is infinite unless player 1 can
enforce an infinite sequence of moves all but finitely
many of which have cost 0).

2 Reachability and Safety

We define our setting, and in doing so, review some
well-known results about iterative solutions for sim-
ple verification, optimization, and control problems,
where the objective is to reach or avoid a given set of
states (expending minimal cost).

2.1 Game structures

We define game structures over a global set A of ac-
tions, and a global set P of propositions. A (two-
player) game structure G = (S,Ti,T2,6, (•)) (over A
and P) consists of a finite set S of states, two action
assignments Fi,r2: S —> 2A \ 0 which define for each
state two nonempty, finite sets of actions available to
player 1 and player 2, respectively, a transition func-
tion 6: SxAxA-+S which associates with each state
s and each pair of actions a G Ti(s) and b £ r2(s) a
successor state, a weight function w: S xAx A —> R>o
which associates with each state s and each pair of ac-
tions a £ Ti(s) and b G T2(s) a nonnegative real, and
a proposition assignment (•): 5 —> 2P which defines
for each state s a finite set (s) C P of propositions that
are true in s. Intuitively, at state s, player 1 chooses an
action a from Ti(s) and, simultaneously and indepen-
dently, player 2 chooses an action b from T2(s). Then,
the game proceeds to the successor state 6(s, a, b). The
nonnegative real w(s,a,b) represents the "cost" of the
transition 6(s, a, b) (if it is to be minimized), or a "re-
ward" (if it is to be maximized). Given a proposition
p £ P, a state s 6 Sis called a p-state iff p £ (s). If
S is not given explicitly, then we write S° to denote
the state space of the game structure G.

Game structures are "concurrent" [1]; they subsume
"turn-based" game structures (i.e., and-or graphs),
where in each state at most one of the two players has
a choice of actions. A special case of turn-based games
are the one-player structures. A one-player structure

is either a player-1 structure or a player-2 structure.
The game structure G is a player-1 structure if T2(s)
is a singleton for all states s G 5; and G is a player-2
structure if T\(s) is a singleton for all s £ S. In player-
1 structures, player 2 has no choices, and in player-
2 structures, player 1 has no choices. Every game
structure G defines an underlying transition structure
KG = (5, —>, (■)), where for all states s,t G 5, we have
s —> t iff there exist actions a G Ti(s) and b G T2(S)
such that 6(s,a,b) = t. Transition structures do not
distinguish between individual players.

Restrictions of game structures. A player-1 re-
striction of the game structure G = (S,Ti,T2,6, (•))
is a game structure of the form Gi = (S,T[,T2,6, (•))
with T[(s) C Ti(s) for all states s G 5. Symmetri-
cally, a player-2 restriction of G is a game structure
oftheformG2 = (5,ri,r2,5,(-)) with T'2{s) C T2(s)
for all s £ S. In other words, for i = 1,2, a player-
i restriction of a game structure restricts the action
choices that are available to player i.

Strategies and runs. Consider a game structure
G = (S,Ti,T2,6,(-)). A player-i strategy, for i = 1,2,
is a function &: S+ —> A that maps every nonempty,
finite sequence of states to an action available to
player i at the last state of the sequence; that is,
£i(s-s) £ Ti(s) for every state sequence s £ S* and ev-
ery state s £ S. Intuitively, £;(s-s) indicates the choice
taken by player i according to strategy & if the current
state of the game is s, and the history of the game is s.
We write E^ for the set of player-i strategies. We dis-
tinguish the following types of strategies. The strategy
£; is memoryless if in every state s £ S, the choice of
player i depends only on s; that is, &(s ■ s) = £;(s) for
all state sequences s £ S*. The strategy & is finite-
memory if in every state s £ S, the choice of player i
depends only on s, and on a finite number of bits about
the history of the game; the formal definition is stan-
dard [5].

A run r of the game structure G is a nonempty,
finite or infinite sequence so(ao,b0)si(ai,bi)s2 ... of
alternating states Sj £ S and action pairs (a,j,bj) £
Ti(sj) x T2(SJ) such that Sj+i = 6(sj,a,j,bj) for all
j > 0. The first state so is called the source of the run.
The weight of the run is w(r) = Y<j>ow(sj,aj,bj);
the weight w(r) is either a real number, or infinity
(if the sum diverges). Let £i G Hi and £2 G E2

be a pair of strategies for player 1 and player 2, re-
spectively. The outcome R^^2(s) from state s £ S
of the strategies £i and £2 is a source-s infinite run
of G, namely, Rilti2(s) = s0(a0,b0)sl(a1,b1)s2...
such that (1) s0 = s and (2) for all j > 0, both
aj ~ 6(soSi •••Sj) and bj = £2(so«i ••■Sj)-

281

npr4
\2PreG

(EPreGA
\APreGJ

(f)(s) =

(/)(*) =

{3ber2{s).vaer1(s)\-ms>a>b))

(3aeT1(s)3beT2(s)\

(5)

(6)

Figure 1: Boolean game and transition predecessor operators

2.2 Single-step verification and control

Values and valuations. A value lattice is a complete
lattice (V, U, n, T, 1) of values V with join U, meet l"l,
top element T, and bottom element 1. Given u,v G
V, we write uQviSu = uf\ v. Consider a game
structure G = (5, Ti, r2, S: (■))■ A valuation f for G on
the value lattice V is a function from states to values;
that is, /: 5 -+ V. The set [S —► V] of valuations is
again a lattice, with the lattice operations (U, I~l, T, J_)
defined pointwise; for example, for two valuations /i
and /,, we have (/, U /2)(.s) = ^(.s) U /2(.s) for all
states .s e S. If /: S —> V" is a valuation such that
/(.s) G {T,l} for all states s G 5, then by -/ we
denote the "complementary" valuation with —f(s) =
T if /(.s) = 1, and -/(.s) = 1 if /(.s) = T. For a set
T C S of states, we write [T]: S —> \' for the valuation
with [T](.s) = T if s G T, and [T](.s) = J_ if .5 £ T.
For a proposition p £ P, we write [;;]: 5 —» V for the
valuation with \p]{s) = T if p G (s), and [/)](.■>) = J_ if
;;£(.s).

Predecessor operators. Let F be a value lat-
tice. Let Pre. be a family of functions that contains,
for every game structure G, a strict (i.e., bottom-
preserving), monotone, and continuous function Pre ':
[SG -> V] -> [SG -> F]. The function family Pre
is a predecessor-1 operator on V if for every game
structure G, every player-1 restriction G\ of 6", ev-
ery player-2 restriction Go of G, and every valua-
tion /:' S° -> V, both Prea{f) 3 PrcG'(f) and

C Pre ■{}). Symmetrically, the function Prc6'(/)
family .P're is a predccessor-2 operator on F if for every
game structure G, every player-1 restriction G\ of G,
every player-2 restriction G2 of G, and every valuation
/: S° -►" F, we have both Pre6'(/) E Prec,{f) and
Prc.c'(f) 3 PTCC'2{f)- Intuitively, the more actions are
available to player 1 in a game structure, the "better"
(i.e., closer to top in the valuation lattice) the result
of applying a predecessor-1 operator to a valuation,
and the "worse" (i.e., closer to bottom) the result of
applying a predecessor-2 operator.

Example 1: boolean game structures ("con-

trol"). Consider the boolean value lattice Vj —
(B, V,A,T,F), where truth T is the top element and
falsehood F is the bottom element. The valuations
for a game structure G on Vj are called the boolean
valuations for G; they correspond to the subsets
of SG. Figure 1 defines the predecessor operators
IPre-a and 2Prej, applied to a game structure G =
(S,ri,r2,<5, (•)), boolean valuation /: S —* B, and
state s G S. For a set T C S of states, the boolean
valuation lPrc{\T}: S —* B of "controllable prede-
cessors" is true at the states from which player 1 can
force the game into T in a single step, no matter which
action player 2 chooses. The operator 2Prej behaves
symmetrically for player 2, and therefore solves the
control problem for the player-2 objective of reach-
ing the target set T in a single step. The operator
lPre. is a predecessor-1 operator on Vn, and 2Pre\\ is
a predecessor-2 operator.

Example 2: boolean transition structures
("verification"). Consider again the boolean value
lattice \\. Figure 1 defines the predecessor operators
EPre,, and APrej. For a set T C S of states, the
boolean valuation EPrc°[T}: S —> B of "possible pre-
decessors" is true at the states that have some succes-
sor in T; the boolean valuation APre^[T]: S —► B of
"unavoidable predecessors" is true at the states that
have all successors in T. For each game structure G,
the functions EPreG and APreG correspond to the
branching-time "next" operators 30 an(' VO> respec-
tively, of temporal logic interpreted over the under-
lying transition structure KG. Therefore, EPre.% and
A Pre , solve the verification problems with the specifi-
cations of possibly or certainly reaching the target set
T in a single step. The operators EPrc& and APre-$ are
both predecessor-1 and predecessor-2 operators on Vj.

Example 3: quantitative game structures ("op-
timal control"). Consider the quantitative value, lat-
tice Vf = (R>o U {oo},min,max,0, oo), where 0 is
the top element and oo is the bottom element. Intu-
itively, each value represents a cost, and the smaller
the cost, the "better." In particular, u C v iff cither
v,v G R>o and u > v, or u = oo; that is, the lattice

282

lPre\\

2PreG

EPreG

APreG

(/)(«) =

(/)(') =

f mino6rj(s) . max66r2(s) I ^^&) + ^^ ^ ft))

f mina6r](s) . min^,) 1 ^ &) + ^^ ^ fc))

[maxaeri(s).max66r2(s)J

(7)

(8)

Figure 2: Quantitative game and transition predecessor operators

is based on the reverse ordering of the reals. The val-
uations for a game structure G on V$-, are called the
quantitative valuations for G; they are the functions
from SG to the interval [0,oc]. Figure 2 defines the
predecessor operators lPrej and 2Prey, applied to a
game structure G = (S,Ti,T-2,S, (•)), quantitative val-
uation /: S —> [0, oo], and state s £ S. For a set
T C 5 of states, the quantitative valuation lPreJ [T\:
S —> [0, oo] gives for each state the minimal cost for
player 1 of forcing the game into T in a single step
(if player 1 cannot force the game into T, then the
cost is oo). The operator 2Pret behaves symmetri-
cally for player 2, and therefore solves the optimal-
control problem with the player-2 objective of reach-
ing the target set T in a single step at minimal cost.
The operator lPre_f is a predecessor-1 operator on Vf,
and 2Prej is a predecessor-2 operator.

Example 4: quantitative transition structures
("optimization"). Consider again the quantitative
value lattice T>. Figure 2 defines the predecessor op-
erators EPrey and APref. For a set T C S of states,
the quantitative valuation EPreG[T}: S -* [O.oo]
gives for each state the weight of the minimal tran-
sition into T (or oo, if no such transition exists), and
APreG[T): S —> [0,oc] gives for each state the weight
of the maximal transition into T (or oo, if some tran-
sition does not lead into T). These are the single-
step shortest-path and single-step longest-path prob-
lems on the underlying transition structure KG. The
operators EPrey and APrtj are both predecessor-1
and predecessor-2 operators on Vj.

2.3 Multi-step verification and control

Multi-step verification ("Can a target set be reached
in some number of steps?"), optimization ("What is
the shortest path to the target?"), and control prob-
lems ("Can one player force the game into the target,
in some number of steps, no matter what the other
player does?") can be solved by iterating the single-
step solutions ("dynamic programming"). Here, we
exemplify the solutions for the goals of reachability

and safety; more general objectives will be dealt with
in Section 4. In the following, consider a game struc-
ture G = (S,Ti,T2,S, (■)) and a proposition p e P.

Reachability. We define Op to be the set of mini-
mal finite runs of G that end in a p-state; that is, the
run s0(a0,b0)si{aubi)...sm is in Op iff (1) p E (sm)
and (2) for all 0 < j < m, we have p g (SJ). Figure 3
defines four boolean valuations in [S —> B]. The valua-
tion ((l))GOp is true at the states from which player 1
can control the game to reach a p-state; the valua-
tion ((2))°Op is true at the states from which player 2
can control the game to reach a p-state; the valuation
3GOp is true at the states from which the two players
can collaborate to reach a p-state; the valuation Vf Op
is true at the states from which no matter what the
two players do, a p-state will be reached. The first two
valuations specify boolean games with the reachability
objective Op for players 1 and 2, respectively; the last
two valuations specify the branching-time properties
30p and VOp on the underlying transition structures.

Figure 3 also defines the four corresponding quan-
titative valuations in [S —> [0,oo]]; we use the con-
vention that the infimum of an empty set of nonneg-
ative reals is oo, and the supremum is 0. The valu-
ation ((l))GOp gives for each state the minimal cost
for player 1 to direct the game to a p-state (or oo, if
player 1 cannot direct the game to a p-state); the val-
uation ((2))GOp gives for each state the minimal cost
for player 2 to direct the game to a p-state; the val-
uation 3G.Op gives for each state the minimal cost to
reach a p-state if both players collaborate; the valu-
ation yGOp gives for each state the maximal reward
achievable, if both players collaborate, before a p-state
is reached. The first two valuations specify quantita-
tive games with the reachability objective Op for play-
ers 1 and 2, respectively; the last two valuations spec-
ify shortest-path and longest-path problems on the un-
derlying transition structure.

The boolean and quantitative, valuations for the
reachability objective Op can be characterized by
least-fixpoint expressions on the corresponding valu-

283

1((2))?}(0P)(S)

'((1»?

V«

■{
36 €E1.V&eE2

36 GH2.V6 eEx

34i eHj.3^ eE2

V6 6 H,.V6 G Ei

(■Rfi,f2(
s) has a prefix in Op)

(ß{,,£2(s) has a prefix in Op)

/((i»v\,. w, ji

(Op)(.s) =

nif^g-j .sup. e- 1

inf. - sun ~2 f • ^'(r) I T iS a Prefix °f ^«i.«^5) and T 6 °P)

/ inf^es, -inf^GH2 1 r / x - . P , D , , .
< >. |w(r) r is a prefix of Re f f.s and r 6 OH

(9)

(10)

(11)

(12)

Figure 3: Boolean and quantitative reachability games

ation lattice:

((l))v:^ = fix. (\p]UlPrefix)),

((2)>?Op = flx. ([p] U 2Pre\;ix)),

3yOp

(13)

(14)

fix. ([p}uEPre\;i.r)). (15)

(16) VV-Oj; = ^.([plu^lH/)).

whore V G {B.R}, and the variable x ranges over
the boolean valuations in [S —> B] if F = B. and
over the quantitative valuations in [5 —> [0, oc]] if
V = U. In other words, a single fixpoint expression
(namely, "Op = //,;:.(p Vprc(.r))") suffices for the solu-
tion of boolean and quantitative verification and con-
trol problems, provided the pre-oporator is interpreted
appropriately.

Fixpoint expressions proscribe1 algorithms. The so-
lutions to the fixpoint equations (13) (16) can be com-
puted itoratively on the valuation lattice as the limit
of a sequence. x0,Xi,x-i,... of valuations: let x0 = ±.
and for all k > 0, let xk+i = [p] U Prefix,.), where
Pre £ {lPrc,2Pre,EPrc,APre}. For our four exam-
ples, the iteration converges in a finite number of steps.
This is well-known in the case of boolean game struc-
tures and in the case of quantitative transition struc-
tures; finite convergence can be shown inductively also
for quantitative game structures.

Safety. The complement of a reachability objective
is a safety objective. We define Dp to be the set of

infinite runs of the game structure G that never leave
p-states; that is, the run s0(a0:b0)sl(ni,bi). ■ ■ is in Dp
iff p <E (sj) for all j > 0. Figure 4 defines the boolean
and quantitative valuations for the safety objective
Dp. For example, the boolean valuation ((l))fOp is
true at the states from which player 1 can control the
game to stay within p-states; the quantitative valua-
tion 3f Dp gives for each state the minimal cost of an
infinite path that stays within p-states; the boolean

valuation \/fOp is true at the states from which p is
an invariant.

The boolean and quantitative valuations for the
safety objective Dp can be characterized by groatost-
fixpoint expressions on the corresponding valuation
lattice:

l»r'°P = vx ([p] HI Prefix)). (21)
2)){'Dp = vx ([p}n2Pref(x)). (22)
3r

;Dp = vx. ([pjnEPref■(.,-)), (23)
VfaP = vx ([p}n A Prefix)). (24)

where V e {B.R}. The solutions to these fixpoint
equations can again be computed itoratively as the
limit of a sequence x().xi.x-, of valuations: let
./•() = T. and for all k > 0. let ;/>+1 = [p] n Prefix,,.).
This iteration converges for boolean game structures
in a finite number of stops, but not necessarily for
quantitative game or transition structures, whore con-
vergence may require uj many steps.

3 An Extremal Model Theorem

For verification problems, fixpoint solutions are known
for much richer objectives ("specifications") than
reachability and safety, and a fixpoint theory the
//-calculus is available for this purpose. In the

case of reachability and safety, the fixpoint expres-
sions we provided (namely. Op = /ix. (p V pre.(x)) and
Dp = v.r. (p A pre(x))) solve both the verification and
control problems. This is not always the case: as we
pointed out in the introduction, there are fixpoint ex-
pressions that solve a verification problem over tran-
sition structures, but do not solve the corresponding
control problem over game structures. We now char-
acterize the fixpoint expressions that, solve both verifi-

284

<(1»£(°P)(3
'3?

(Dp)(s) =

«1)>?(°P)(«)

© (Op)(S) =

k2eE2.V6GHj-(^^(5)€Dp)

inf . sup . Mä£I,£2(S)) I %,{,(«) € Op}

{sup6"31 Tup"'2 }■ M^.£,W) I W*) e OP}

(17)

(18)

(19)

(20)

Figure 4: Boolean and quantitative safety games

cation and control problems, provided the predecessor
operators are interpreted appropriately.

3.1 Linear temporal logic
Consider a game structure G = (S,Ti,T2,6, (■)). We
express winning objectives for the infinite game played
on G by formulas of linear temporal logic (LTL). The
LTL formulas are generated by the grammar

$::= p|-* | * V* |0* I *^*,

where p e P is a proposition,O is the "next" operator,
and U is the "until" operator. Additional constructs
such as 0$ = TOT and D* = -iO-.$ can be defined
in the standard way. A trace IT: u> —► 2P is an infinite
sequence of sets of propositions. Every LTL formula
* has a truth value on each trace. We write L(*) for
the set of traces that satisfy *; a formal definition of
£($) can be found in [9].

Boolean LTL games. Every infinite run r =
so(ao,bo)si(ai,bi)s-2 ■ ■ ■ of the game structure G in-
duces a trace (r) = {s0){si)(s2) ■ ■ ■ Consider a state
s e S and an LTL formula *. We say that player 1
can control state s for objective $ in the game struc-
ture G if player 1 has a strategy fi e Si such that for
all strategies £2 € S2 of player 2, the trace induced
by the outcome of the game satisfies the formula *;
that is, (R^,^(s)) e £(*). A suitable strategy & is a
winning player-1 strategy for $ from s in G. We write
((l»f *: 5 -> B for the boolean valuation that is true
at the states which can be controlled by player 1 for
* in G; see Figure 5. The player-2 winning valuation
((2))f * is defined symmetrically. Figure 5 also defines
the boolean valuation 3f *: 5 —> B, which is true at
the states that satisfy the existential CTL* formula
3* in the underlying transition structure KG; and
the boolean valuation Vf *: S —> B, which is true at
the states that satisfy the universal CTL* formula V*
mKG.

Quantitative LTL games. By ((l))f * we wish to
denote the minimal cost for player-1 to achieve the ob-
jective \P. Recall the previous section. In reachability
games, we compute the cost of winning as the weight
of a finite run that reaches the target, while in safety
games, the cost of winning is the weight of an infi-
nite run. This is because upon reaching the target, we
know that the reachability objective is satisfied, while
a safety objective can be witnessed only by the entire
infinite run generated by a game. We generalize this
principle to arbitrary LTL formulas by defining the
satisfaction index of a trace with respect to an LTL
formula. Given a trace TT = TY0TTITT2 ■ ■ ■ and a nonnega-
tive integer k, the trace 7r' = -K'^'^-K^ ... is a k-variant
of 7T iff -KJ = TTJ for all 0 < j < k. Let A(7r, k) be
the set of fc-variants of -K. For a trace 7r and an LTL
formula $, the satisfaction index K(TT, $) is the small-
est integer k > 0 such that A(TY, k) C £(*) if such
a k exists, and K(TT, *) = OO otherwise. Intuitively,
n(ir, $) the minimal number of steps after which we
can conclude that the trace 7r satisfies the formula $.

For an infinite run r and a nonnegative integer k,
let r[0..fc] be the the prefix of r that contains k states.
Given an LTL formula $, the quantitative valuation
((l))-pf\I>: 5 —> [0,oo] is formally defined in Figure 5.
For each state s G 5, we say that ((l))^'\E,(s) is the
player-1 value of the game with objective \£ at the state
s of the game structure G. A strategy £i that attains
the infimum is an optimal player-1 strategy for $ from
s in G. The player-2 valuation ((2})Gty is defined sym-
metrically. Figure 5 also defines the quantitative val-
uation 3:f VP: 5 —* [0, oo], which for each state 5 gives
the minimum cost necessary for determining that some
path from s in the underlying transition structure KG

satisfies $> (or oo, if no such path exists). Dually, the
valuation Vf*: S —> [0, oo] gives for each state s the
maximal reward attainable along some path from s in
KG until \I> can no longer be violated.

285

(!»£*(«)

V£
9(s)

(l»?*(s) = inf . sup . Mr[O..K((r),$)])|r = Ä£li£j(s)and(r)€L(*)}

3°
*(s) = infCl6El -inf^es

sup^26E2 .sup?

652 }. {W(r[0..«((r), *)]) | r = RUtU(s) and (r) € L(9)}

(25)

(26)

(27)

(28)

Figure 5: Boolean and quantitative LTL games

3.2 Fixpoint calculi for games

We define a family of fixpoint logics on game struc-
tures. The fixpoint, formulas arc generated by the
grammar

f ::= p\ ~^P \ '-r- \ <p\/ <p \ <p Aip \
pre^ip) | pre2(<p) \ px.ip | ux.ip,

for propositions p £ P and variables x. A fixpoint
formula ip is a one-player formula if either it contains
no 7>7r:2-operat.or, or it contains no prex-operator. In
the former case, <p is a player-1 formula; in the latter
case, a play er-2 formula. Given a value lattice V, a
predecessor-1 operator Pre,\ on I*, and a predecessor-
2 operator Pre-, on V, the closed fixpoint formulas
form a logic on game structures: for every game struc-
ture G, every closed fixpoint formula p{Pre.i, Pre-))
specifies a valuation [tp]G: S° —> V. The syntac-
tic operator pre{ is interpreted semantically as the
predecessor-1 operator Prc\, and pre-, is interpreted
as Prc.->. To make the interpretation of the pre-
operators exi>licit, we sometimes write p{Prc\, Pre-))
when naming a fixpoint formula. Then, ip(Prc[, Pre',)
describes the syntactically identical fixpoint formula,
with the py'fi,-operator interpreted as Pre\, and pre-,
interpreted as Prc2. Likewise, the one-player formulas
have only a single predecessor operator as argument.

We now define the semantics of fixpoint formulas
formally. Let V be a value lattice V, let Prey be
a predecessor-1 operator on V, and let Pre-) be a
predecessor-2 operator on V. Let G be a game struc-
ture. A variable environment £ for G is a function that
maps every variable x to a valuation in [SG —> V']. We
write £[x H-> /] for the function that agrees with £ on
all variables, except that x is mapped to the valua-
tion /. Given V, Prei, Pre-,, G, and a variable envi-
ronment £ for G, each fixpoint formula (p specifies a
valuation ftp}0: So —> V, which is defined inductively
by the following equations:

\P\GE = [P]

= ~[P]

v\f=mx„n)

MR = £(x)

II^IMJF = {
P
;S)M

G

im*- A? = {u){r-sa-
All right-hand-side (semantic) operations are per-
formed on the valuation lattice [SG —> V]. If (p is
a closed formula, then [^|6' = \ip\G for any variable
environment £.

Provided that the predecessor operators Prc\ and
Pre.) on V are computable, each formula ip{Prc\, Pre2)
prescribes a dynamic program for computing the val-
uation \ip\G over a game structure G by iterative ap-
proximation.

Example: mu-calculus. Choose the boolean value
lattice V'L, and the predecessor operators Prei =
EPre.i and Prc-i = APrc.g. The resulting logic on
game structures coincides is the //.-calculus [8] on the
underlying transition structures.

Example: boolean game calculus. Choose the
boolean value lattice V%, and the predecessor opera-
tors Prei = lPre,; and Pre-, = ZPrc%. The result-
ing logic on game structures is the alternating-time
//-calculus of [1]. The player-i fragment, for i = 1,2,
is expressive enough to compute the winning states for
player i with respect to any LTL objective.

Example: quantitative game calculus. Choose
the quantitative value lattice Vf, and the predeces-
sor operators Prei = lPrey and Pre2 = 2Prc-$-. The
resulting logic may be called the quantitative game
calculus. We shall see that the player-i fragment, for
i = 1,2, is expressive enough to compute all player-2'
values with respect to any LTL objective.

Example: quantitative mu-calculus. Choose the
quantitative value lattice Vy-, and the predecessor op-

286

erators Prt\ = EPrej: and Pre2 = APrej. The result-
ing logic may be called the quantitative fi-calculus. It
can be used to compute, for example, the minimal and
maximal weights of paths that satisfy LTL formulas in
transition structures.

Monotonicity. The following monotonicity property
of fixpoint formulas will be useful.

Lemma 1 For every game structure G, every 1-
restriction G\ of G, every 2-restriction G2 of G, and
every player-1 fixpoint formula tp, we have [tp]G Zj
[</?]Gl and [tpjG C. \<p\G2. A symmetrical result holds
for player-2 formulas.

Lean fixpoint formulas. We shall use fixpoint for-
mulas as algorithms for computing the values of LTL
games. The quantitative interpretation of a fixpoint
formula, however, does not take into account the sat-
isfaction index of the corresponding LTL formula, and
may compute the cost of a trace even beyond the sat-
isfaction index. For example, the LTL formula OT has
the satisfaction index 0, because every state has a suc-
cessor. Hence (3G'0 T)(s) = 0 for all game structures
G and states s G SG. While 3G<3 T = [£Pre:B:(T)]G

for all game structures G, if s G SG is a state all of
whose outgoing transitions have positive weights, then
[^Pre^T)]6'^) > 0. This motivates the definition of
lean fixpoint formulas. A fixpoint formula tp is valid if
for every game structure G and every state s G SG, we
have [ip(1 Pre&, 2Pre;S)]G(5) = T. A fixpoint formula
is lean if no valid subformula contains pre-operators.

From now on we will make heavy use of the following
convenient notation. If fG and gG are two families
of valuations, one each for every game structure G,
then we write / = g short for "/G = gG for all game
structures G."

Lemma 2 Let $ be an LTL formula, and let tp be
a lean one-player fixpoint formula. Then 3u$ =
lip{EPre%)] iff 3:p* = [<p{EPre-*)\, and V,* =
MAPre,)] iffV»* = MAPrey)}.

3.3 From verification to control:
a semantic criterion

The following theorem characterizes the fixpoint for-
mulas that can be used for solving boolean as well as
quantitative games with LTL winning objectives. The
characterization reduces problems on two-player struc-
tures (control) and on quantitative structures (opti-
mization) to problems on boolean one-player struc-
tures (verification), which are well-understood.

Theorem 1 For every LTL formula \? and every lean
player-i fixpoint formula tp, where i = 1,2, the follow-
ing four statements are equivalent:

• ({ih^ = y{iPrey)].

• ((ih.y=lv(iPrej.)l

• 3;R* = \ip{EPre-k)\ and V:R* = \tp{APre9)\.

• 3;S* = y(EPre-M)j and V** = [<p(APn3)).

The theorem can be stated equivalently as follows:

((i))G$ = y(iPrey;)]
G for all game struc-

tures G iff ((»'»£# = y{iPreM)]G for all one-
player structures G.

In other words, the fixpoint formula tp prescribes an
algorithm for computing the boolean or quantitative
values of games with the winning objective $ iff it does
so on all boolean, extremal game structures, where one
or the other player has no choice of actions.

Proof sketch. Clearly, a fixpoint formula tp that
solves games with objective $ also works over one-
player structures, which are special cases of games.
For the implication from one-player to game struc-
tures, we argue by contradiction. We start with the
boolean player-1 interpretation (the proof for player 2
is symmetric). First we notice that given a game
structure G for which the two valuations ((l))f *
and \tp{lPrej)\G differ, we can construct a turn-
based game structure G' for which the valuations dif-
fer as well. There are two cases. If ((l))G'*(s) <
[tp(lPres,)jG (s) for some state s € SG', then we fix a
finite-memory optimal strategy of player 2 and show
that in the resulting player-1 structure G\, there is a
state t such that (3Gl*)(t) < [tp(EPrej)\G' (t). Sim-
ilarly, if ((l))G'*(s) > ltp(lPreM)]G'{s) for some state
5 G SG , then we fix a finite-memory optimal strategy
of player 1 and argue on the resulting player-2 struc-
ture. The proof for quantitative games follows by a
similar argument. Finally, we go from quantitative to
boolean structures using Lemma 2. G

Suppose we are given an LTL formula *. For ver-
ifying whether some path of a transition structure
KG satisfies *, we can construct a /^-calculus formula
tp(EPrej.) that is equivalent to 3j* over all transition
structures, and check tp(EPreM) over KG; this is, in
fact, a symbolic model checking algorithm for LTL [3].
Now suppose that we want player 1 to control the
game structure G for the objective *. Theorem 1 tells
us whether we can simply substitute the controllable
predecessor operator lPrej for the ^-calculus prede-
cessor operator EPre-% in the fixpoint formula tp: the
substitution works if and only if by substituting APrej.

287

for EPrcj in <p we obtain a formula that is equivalent
to the universal interpretation Vft$ of the LTL formula
over all transition structures.

To see that this property is not trivial (i.e., not
satisfied by every /f-calculus formula ip(EPrei) that
is equivalent to B;B\P), consider the co-Büchi formula
$ = OOp. Over transition structures, BOOp is
equivalent to 3030p, which is equivalent to the p-
calculus formula px.(vy.(p A EPrejiy)) V EPrefr(x));
indeed, this is the result of the standard transla-
tion from LTL to the //-calculus for co-Büchi formu-
las [7, 4]. However, the corresponding game formula
px.(vy.(p A lPreg(y)) V lPreg(x)) does not compute
the boolean valuation ((l))f ODp for all game struc-
tures G: the game structure given in the introduction
provides a counterexample. The criterion of Theo-
rem 1 fails, because over transition structures, V.OD;;
is not equivalent to VOVüp, and therefore V.J\P is not
equivalent to fi/x.{vy.(ph APre^{y))\/ APrc ,{x)). This
is not surprising, given that the solution of w-regular
games requires deterministic (and hence Rabin chain)
^-automata [15], whereas nondeterministic (and hence
Biichi) cj-automata suffice for w-regular verification.
The translations of [7, 4] from LTL to the //-calculus go
via nondeterministic Biichi automata, and thus can-
not be used to solve w-regular games.

The- following theorem characterizes the cost of
checking the criterion given in Theorem 1. There is a
gap between the lower and upper bounds, which is due
to the gap between the best known lower and upper
bounds for the equivalence problem between an LTL
formula and a //-calculus formula.

Theorem 2 Let $ be an LTL formula, and let p
be a one-player fixpoint formula. The complexity of
checking whether 3,,* = |^] is in 2EXPTIME and
PSPACE-hard in the size of $, and in EXPTIME
in the size of p. The complexity of checking whether
Vji VE' = [ipj is the same.

3.4 From verification to control:
a syntactic criterion

Not all fixpoint formulas correspond to verification
or control problems with respect to linear-time objec-
tives. This is always the case, however, for the deter-
ministic fixpoint formulas. The deterministic fixpoint
formulas are generated by the grammar

ip ::= p | -i/j | x | if V ip | p A tp | ip A p |

prex(p) | pre.,(<p) | px.p \ vx.p.

From [6] we know that if p(EPree) is a one-player de-
terministic fixpoint formula, then there is an w-regular
language 6 such that 3lt0 = \p(EPre ^)\. However,

the examples (2) and (3) in the introduction illustrate
that for such a formula <p(EPrc&), in general it is not
the case that ((l))a0 = \p{lPre.j)\. In other words,
the correspondence between the deterministic fixpoint
formula and the w-rcgular language does not necessar-
ily carry over from verification to control. It is then
natural to ask what other conditions we need, in addi-
tion to determinism, for a one-player fixpoint formula
to have related meanings in verification and control.
We answer this question by introducing a subclass of
the deterministic formulas. A fixpoint formula p is
strongly deterministic iff ip consists of a string of fix-
point quantifiers followed by a quantifier-free part i/>,
which is generated by the grammar

V» ::= P \ ^P \ V; V i' I P A V; I ~~7' A V' I
pre^x) I prc-,(x),

X ■■= ■■r \x V X-

Note that every strongly deterministic fixpoint for-
mula is lean. The following theorem shows that
the one-player strongly deterministic fixpoint. formu-
las provide a syntactic class of fixpoint formulas for
which the criterion of Theorem 1 applies. In partic-
ular, it follows that for every LTL formula yi, every
one-player strongly deterministic fixpoint formula p.
and / = 1.2. we have ((/)). <I< = [p(iPre.)J.

Theorem 3 For every LTL formula (I' and every one-
player strongly deterministic fixpoint formula p. we
have 3, * = \p{EPrc .)] iff V. * = fp{APre .)].

Proof sketch. A strongly deterministic formula
starts with a quantifier prefix. In the sequence
px\.vx> .. .vx2k of alternating fixpoints. the "evalua-
tion order"' is ./■■_> >- x.\ y ■■ ■ y ./-2A' >- .'•■_>*-1 >-■■■>- ./'1
(this reflects the extension of the variables when the
expression is being evaluated). Using this evaluation
order, every one-player strongly deterministic fixpoint
formula p{EPre ,) can be brought into the normal

form //.TI./ATO . . . ux->k ■(<•/() V'\J~=l(<l'j A EPre ,(x /))). for
some k > 0 and some mutually exclusive boolean com-
binations //(). d\... .. d>k of propositions. The theorem
follows from the fact that this formula has essentially
the same structure as the solution formula of a Rabin-
chain game (cf. [5] and Section 4). D

While the one-player strongly deterministic fixpoint
formulas obey strict syntactic conditions, the proof of
Theorem 3 shows that they suffice for solving all con-
trol problems with Rabin-chain objectives. In turn,
every w-regular property can be specified by a de-
terministic Rabin-chain automaton [10, 15]. We can
therefore transform every control problem with an u>-
regular objective into a control problem with a Rabin-
chain objective that is to be solved on the autoinata-

288

theoretic product of the given game structure and a
Rabin-chain automaton. Hence, at the cost of possibly
enlarging the game structure, the one-player strongly
deterministic fixpoint formulas suffice for the solution
of games with arbitrary w-regular objectives.

4 Dynamic Programs for LTL

We show that for every LTL formula Vf we can con-
struct an equivalent fixpoint formula <p* that meets
the criterion of Theorem 1. The formula ipy has the
following properties: it solves both the verification
problem (on transition structures) for specification \t
and the control problem (on game structures) for ob-
jective $>, both under boolean and quantitative in-
terpretations. The construction of ipy is optimal for
the boolean case, in that the 2EXPTIME complexity
of the resulting algorithm for solving boolean games
with LTL objectives matches the hardness of the prob-
lem [11].

4.1 (Co)Büchi and Rabin-chain games

The objective of a Biichi game is an LTL formula of
the form OOp, for a proposition p £ P, and the objec-
tive of a co-Büchi game is an LTL formula of the form
OOp. For V = {B,R} and i = 1,2, the Büchi and
co-Büchi valuations can be computed by the fixpoint
formulas

{(i))vOOp = \i>y.px.(iPrev(x) V (p A iPrev{y)))\,
{(i))vODp = \iix.vy.(iPrev{x)\j{pMPrev(y)))\.

The objective a Rabin-chain game is an LTL formula
of the form $ = V*~o(D<>rf2j A -nDOd2j+1), where
k > 0 is called the index of $, and d0,...,d2k are
boolean combinations of propositions such that 0 =
[d2k] C [ofefc-i] C • • • C [d0] = SG for all game struc-
tures G. An alternative characterization of Rabin-
chain games with objective $ can be obtained by
defining a family fig: SG -> {0,1,..., 2k - 1} of in-
dex functions, one for every game structure G, such
that fi$(s) = j for all states s £ [dj] \ [dj+i]. Given
an infinite run r of G, let Inf(r) C SG be the set
of states that occur infinitely often along r, and let
Maxlndex(tt$,r) = max{fi$(s) \ s £ Inf(r)} be the
largest index of such a state. Then, the run r satis-
fies the objective $ iff Maxlndex(fl^,,r) is even. For
VeB,R and i = 1,2, the Rabin-chain valuation can
be computed by the fixpoint formula

((i))v$ = [A2ft-ix2jt-i -ßx\ -VXQ.

where Xj = v if j is even, and Xj = /x if j is odd
(cf. [5]). Note that the fixpoint solutions for Biichi,
co-Büchi, and Rabin-chain games are all one-player
strongly deterministic fixpoint formulas.

4.2 LTL games

Given an LTL formula $, we construct a lean one-
player fixpoint formula ipy such that

((i))vy = lw(iPrev)] (29)

vS1^ A->dj+i AiPrev(xj))],

for V £ {B,R} and i = 1,2. Following [5, 10], our
construction is based on deterministic Rabin-chain au-
tomata (also called parity automata [14]). A Rabin-
chain automaton of index k over the input alphabet
2P is a tuple C = (Q,Q0,A,(-),Q), where Q is a fi-
nite set of states, QQ C Q is the set of initial states, A:
Q —> 2^ is the transition relation, (•): Q —> 2P assigns
propositions to states, and Q: Q —> {0,..., 2fc - 1} is
the acceptance condition. An execution of C from a
source state q0 £ Q is an infinite sequence qoqiq-2 ■ • ■ of
automaton states such that gj+1 £ A(g;) for all j > 0;
if qo £ Qo, we say that the execution is initialized.
The execution e = qoqiq-2 ■ ■ ■ is generated by the trace
(e) = (cJo)(li)(a2) ■ ■ ■■ The execution e is accepting if
MaxIndex(Q,e) is even. The language L(C) is the set
of traces ir such that C has an initialized accepting
execution e generated by -K. The automaton C is de-
terministic and total if (la) for all states q', q" £ Q0, if
q' ^ q", then (q1) ^ (q"); (lb) for all proposition sets
P' C P, there is a state q' £ Q0 such that (q') = P';
(2a) for all states q £ Q and q',q" £ A(q), if q' ^ q".
then (q1) ^ (q"); (2b) for all states q £ Q and all
proposition sets P' C P, there is a state q' £ A(q)
such that (q1) = P'. If C is deterministic and total,
then we write A(q,P') for the unique state q' £ A(q)
with (q1) = P'.

From the LTL formula *, we construct a determinis-
tic, total Rabin-chain automaton Cm such that L('ä') =
L(Cxa), by first building a nondeterministic Büchi au-
tomaton with the language L(*) [16], and then deter-
minizing it [12, 13]. Let C* = (Q,Q0,A,(-),n). In
order to obtain a lean fixpoint formula ipy, we need
to compute the set F C Q of automaton states q such
that all executions with source q are accepting. To
this end, it suffices to compute the set Q \ F of states
q' such that there is an execution e with source q' and
Maxlndex(ü',e) is even, where Q' is the complemen-
tary acceptance condition with fl'(q) = (2fc — 1) — Q(q)
for all states q £ Q. This corresponds to checking the
nonemptiness of a Rabin-chain automaton [5].

We derive the fixpoint formula <py that satisfies
(29) in two steps. First, we build a fixpoint for-

289

mula <p' that solves the game with objective $ on
the product structure GxC, for all game struc-
tures G. From ip', we then construct the for-
mula w that solves the game directly on G, for
all G. Consider an arbitrary game structure G =

(S,r1;r2,<$,<•)). Define GxC = (S'.ri,^,«', (•».
where S' = {(s,q) E S x Q \ (s) = (q)}, where
rj(s,g) = Ti(s) for i = 1,2, where (5'((s,9),a1,a2) =
(ö(,s,o,i,a2),A((/, {6{s,aua2)))). Finally, for g £ F

let (s,</) = (s) U {cn(,)}, and for g e F let (s,g) =
(5) U {f,cn{q)}, where /,c0,... ,C2A-I are new propo-
sitions.

We construct ip' by proceeding similarly to [2]. We

give the fixpoint formula <// in equational form; it
can then be unfolded into a nested fixpoint formula
in the standard way. The formula <p' is composed
of blocks By,... ,B'2k_l, where B'Q is the innermost
block and B'.7k_l the outermost block. The block
B'0 is a /y-block which consists of the single equation

*o =f V Vj-ip'te A W*j)))- For 0 < (. < 2k - 1,
the block B't is a //.-block if I is odd, and a i/-block if
I is even; in either case it consists of the single equa-
tion X(— X(-\. The output variable is XOA-I- Then,
({(l))^*)(.s) = lp'(lPre,)}CxC(s,q) for all states s E
S and for the unique q E Qn such that (s,q) E S'.

The formula py mimics on G the evaluation of p' on
GxC. For each variable x(of tp', for 0 < (. < 2k - 1,
the formula py contains the set {xf | q E Q} of
variables: the value of xq

(at ,s keeps track of the
value of X(at (s,q). The formula py is composed
of the blocks Bu,..., B-n-r- for 0 < (< 2k - 1, the
block B[consists of the set {EJ \ q E Q} of equa-
tions. The equation E''(is derived from the equa-
tion for x.(in p' by replacing the variable .77 on
the left-hand side with the variable xQ

c, by replac-
ing c.j with T if Sl(q) = j and F otherwise, by re-
placing / with T if q E F and F otherwise, and by

, xq-); the right- replacing prc.1(xj) with prel(\/ ti

hand side is then conjuncted with the propositions
in (q). The block Bok~\ contains the extra equation

Xavt = Vfgo, X
'A--1'

wnicn defines the output vari-
able x„vt. Note that <py is independent of the game
structure G, and contains no propositions other than
those in $.

Theorem 4 For every LTL formula \f and i = 1,2,
we have ((i))j.Mt = [p^(iPrci)}. Moreover, the fixpoint
formula py is lean and its size is doubly exponential

in the size of 5'.

Since p^ is lean, by Theorem 1 it follows that
((j)) p. $ — Ip^(iPre-f)]. The doubly exponential size
of ipy is optimal, because boolean games with LTL
objectives arc 2EXPTIME-hard [11].

References
[I] R. Alur, T.A. Henzinger, and O. Kupferman.

Alternating-time temporal logic. In Proc. 38th Symp.
Foundations of Computer Science, pp. 100-109. IEEE
Computer Society, 1997.

[2] G. Bhat and R. Cleaveland. Efficient model checking
via the equational/z-calculus. In Proc. 11th Symp. Logic
in Computer Science, pp. 304-312. IEEE Computer So-
ciety, 1996.

[3] E.M. Clarke, O. Grumberg, and D.E. Long. Verifi-
cation tools for finite-state concurrent systems. In A
Decade of Concurrency: Reflections and Perspectives,
LNCS 803, pp. 124-175. Springer, 1994.

[4] M. Dam. CTL* and ECTL* as fragments of the modal
/i-calculus. Theoretical Computer Science, 126:77-96,
1994.

[5] E.A. Emerson and C. Jutla. Tree automata, mu-
calculus, and determinacy. In Proc. 32th Symp. Foun-
dations of Computer Science, pp. 368-377. IEEE Com-
puter Society, 1991.

[6] E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model
checking for fragments of ^-calculus. In CAV 93:
Computer-aided Verification, LNCS 697, pp. 385-396.
Springer, 1993.

[7] E.A. Emerson and C. Lei. Efficient model checking in
fragments of the proposittonal/i-calculus. In Proc. First
Symp. Logic in Computer Science, pp. 267-278. IEEE
Computer Society, 1986.

[8] D. Kozen. Results on the propositional ^-calculus.
Theoretical Computer Science, 27:333-354, 1983.

[9] Z. Manna and A. Pnueli. The Temporal Logic of Re-
active and Concurrent Systems: Specification. Springer,
1992.

[10] A.W. Mostowski. Regular expressions for infinite
trees and a standard form of automata. In Proc. 5th
Symp. Computation Theory, LNCS 208, pp. 157-168.
Springer, 1984.

[II] R. Rosner. Modular Synthesis of Reactive Systems.
PhD Thesis, Weizmann Institute of Science, Rehovot,
Israel, 1992.

[12] S. Safra. On the complexity of w-automata. In Proc.
29th Symp. Foundations of Computer Science, pp. 319-
327. IEEE Computer Society, 1988.

[13] S. Safra. Exponential determinization for u-automata
with strong-fairness acceptance condition. In Proc. 2J,th
Symp. Theory of Computing, pp. 275-282. ACM, 1992.

[14] W. Thomas. Automata on infinite objects. In Hand-
book of Theoretical Computer Science, vol. B, pp. 133-
191. Elsevier, 1990.

[15] W. Thomas. On the synthesis of strategies in infinite
games. In STAGS 95: Theoretical Aspects of Computer
Science, LNCS 900, pp. 1-13. Springer, 1995.

[16] M.Y. Vardi and P. Wolper. Reasoning about infinite
computations. Information and Computation, 115:1-37,
1994.

290

Deterministic Generators and Games for LTL Fragments

Rajeev Alur
University of Pennsylvania &

Bell Labs
alur@cis.upenn.edu

Salvatore La Torre t
University of Pennsylvania &

Universitä degli Studi di Salerno
latorreOseas.upenn.edu

Abstract 1 Introduction

Deciding infinite two-player games on finite graphs
with the winning condition specified by a linear tem-
poral logic (LTL) formula, is known to be 2EXPTIME-

complete. In this paper, we identify LTL fragments
of lower complexity. Solving LTL games typically in-
volves a doubly-exponential translation from LTL for-
mulas to deterministic w-automata. First, we show
that the longest distance (length of the longest simple
path) of the generator is also an important parame-
ter, by giving an 0(d\og n)-space procedure to solve
a Büchi game on a graph with n vertices and longest
distance d. Then, for the LTL fragment with only
eventualities and conjunctions, we provide a transla-
tion to deterministic generators of exponential size and
linear longest distance, show both of these bounds to
be optimal, and prove the corresponding games to be
PsPACE-complete. Introducing next modalities in this
fragment, we provide a translation to deterministic
generators still of exponential size but also with ex-
ponential longest distance, show both of these bounds
to be optimal, and prove the corresponding games to
be ExPTiME-complete. For the fragment resulting by
further adding disjunctions, we provide a translation
to deterministic generators of doubly-exponential size
and exponential longest distance, show both of these
bounds to be optimal, and prove the corresponding
games to be EXPSPACE. Finally, we show tightness of
the double-exponential bound on the size as well as
the longest distance for deterministic generators for
LTL even in the absence of next and until modalities.

"This research was partially supported by NSF Career award
CCR97-34115, NSF award CCR99-70925, SRC award 99-TJ-
688, and Alfred P. Sloan Faculty Fellowship.

^Partially supported by the M.U.R.S.T. in the framework of
project TOSCA.

Linear temporal logic (LTL) is a popular choice
for specifying correctness requirements of reactive sys-
tems [14, 13]. An LTL formula is built from state
predicates, boolean connectives, and temporal modal-
ities such as next, eventually, always, and until, and is
interpreted over infinite sequences of states modeling
computations of reactive programs. The most studied
decision problem concerning LTL is model checking:
given a finite-state abstraction G of a reactive system
and an LTL formula ip, do all infinite computations of
G satisfy pp. The first step of the standard solution to
model checking involves translating a given LTL for-
mula to a (non-deterministic) Büchi automaton that
accepts all of its satisfying models [12, 21]. Such a
translation is central to solving the satisfiability prob-
lem for LTL also. The translation can be exponential
in the worst case, and in fact, both model checking
and satisfiability are PsPACE-complete [18].

The standard interpretation of LTL over infinite
computations is the natural one for closed systems,
where a closed system is a system whose behavior
is completely determined by the state of the system.
However, the compositional modeling and design of re-
active systems requires each component to be viewed
as an open system, where an open system is a system
that interacts with its environment and whose behav-
ior depends on the state of the system as well as the
behavior of the environment. In the setting of open
systems, the key decision problem is to compute the
winning strategies in infinite two-player games. In the
satisfiability game, we are given an LTL formula ip
and a partitioning of atomic propositions into inputs
and outputs, and we wish to determine if there is a
strategy to produce outputs so that no matter which
inputs are supplied, the resulting computation satis-
fies tp. This problem has been formulated in different
contexts such as synthesis of reactive modules [15], re-
adability of liveness specifications [4], and receptive-
ness [5]. In the model-checking game, we are given an

0-7695-1281-X/01 $10.00 © 2001 IEEE
291

LTL specification y>, and a game graph G whose states
are partitioned into system states and environment
states. We wish to determine if the protagonist has
a strategy to ensure that the resulting computation
satisfies tp in the infinite game in which the protago-
nist chooses the successor in all system states and the
adversary chooses the successor state in all environ-
ment states. This problem appears in contexts such
as module checking and its variants [9, 10], and the
definition of alternating temporal logic [2]. Such game-
based model checking for restricted formulas such as
"always p" has already been implemented in the soft-
ware MOCHA [3], and shown to be useful in construc-
tion of the most-general environments for automating
assume-guarantee reasoning [1].

We focus on the game version of model checking:
given a game graph G and an LTL formula <p, what
is the complexity of deciding whether a given player
has a winning strategy starting from a given initial
state (game version of satisfaction is a special case,
and similar bounds apply). It is known that the com-
plexity of this problem is doubly-exponential in the
size of the LTL formula, and the problem is 2EXPTI\1L-

complete [15]. Note that the complexity is much lower
for formulas of specific form: generalized Büchi games
(formulas of the form A/DO;;,) are solvable in poly-
nomial time, and Streett games (formulas of the form
A,(nOj;, -> üO<7,-)) are coNP-complete (the dual. Ra-
bin games are NP-complctc) [16, 7]. It is worth men-
tioning that, in the standard model checking, while
full LTL is PsPACK-completo. the fragment which al-
lows only eventually and always operators (but no
next or until) has a small model property and is NP-
complete [18] (see also [C] for complexity results on
simpler fragments of LTL). This motivated us to con-
sider the problem addressed in this paper: are there
fragments of LTL for which games have complexity
lower than 2EXPTLME?

The standard approach to solving games for LTL is
by reduction to a game on the product of the game
graph and a deterministic automaton that accepts all
the models of the given formula. The winning con-
dition in this reduced game corresponds to the type
of the acceptance condition (e.g. Büchi or Rabin) for
the deterministic generator l. To obtain a determinis-
tic generator, the standard approach is to first build a

'in the automata-theoretic formulation of the problem [20],
the game graph can be viewed as a tree automaton that gener-
ates all the strategies of one of the players. From the formula <p,
we can construct a tree automaton that accepts precisely those
trees all of whose paths satisfy ip, take product, with the game
tree automaton, and test for emptiness. This approach has the
same computational essence, and requires determinization.

nondeterministic generator and then detcrminizc it.
Each of these steps costs an exponential, and it is
known that there are LTL formulas whose determinis-
tic generators have to be doubly-exponential [11].

In this paper, we give a comprehensive study
of deterministic generators and game complexities
of various LTL fragments. We use the notation
LTL(opi,..., opk) to denote the fragment of LTL given
by top-level boolean combination of formulas which
use only the boolean connectives and the temporal
operators in the list opu..., op*. Our first result is
a construction of a singly-exponential deterministic
Büchi automaton for the fragment LTL(0,A). This
construction is different from the standard tableau-
based construction, and builds the automaton for a
formula in a modular way from the automata for its
subformulas. This immediately gives a single exponen-
tial bound for LTL(0, A) games by using the standard
algorithm for Büchi games. However, the determinis-
tic generators have the property that the longest sim-
ple path is at most linear in the size of the formula.
We show that this property can be exploited to reduce
space requirement. In fact, we show a general result:
in a game graph with n vertices and longest distance <7
(that is, length of longest simple path), a Büchi game
can be solved in space ()(d\og v) (the conventional
algorithm uses O(n) space). This leads us to the re-
sult that LTL(O.A) games can be solved in Psi'ACK,
and we show a matching lower bound. Note that the
fragment Ln.(0, A) contains boolean combinations of
invariant ("always //') and termination ("eventually
(f) properties, and thus includes many of the com-
monly used specifications.

Combining next modalities with the eventuali-
ties raises the complexity. For any formula in
LTL(0.0, A), we show how to construct a determinis-
tic Büchi generator with both states and longest dis-
tance of exponential size. The construction is op-
timal since there exists an LTL(0,0, A) formula for
which all deterministic generators must have expo-
nential longest distance. This construction leads to an
EXPTIMF: algorithm for solving games in LTL(0,0, A),
and we show a matching lower bound.

Adding disjunctions to LTL(0,0, A) raises com-
plexity. Given an LTL(0,0, A,V) formula, we show
how to construct a corresponding deterministic Büchi
automaton with doubly-exponential states and singly-
exponential longest distance. The construction is op-
timal since we show that there is an LTL(O.A,V) for-
mula whose deterministic generator must be doubly-
exponential with singly-exponential longest distance.
Our construction leads to an ExPSPACE algorithm for

292

solving games in LTL(0,0, A, V). A matching lower
bound remains an open problem.

The nesting of eventually and always modalities
causes a further increase in the complexity. We
prove that there exists a formula in LTL(U,0,A,V)

whose deterministic generator must be doubly-
exponential with doubly-exponential longest distance,
that matches the upper bound for the full LTL. This is
in sharp contrast to the fact that the longest distance
of nondeterministic generators for LTL(D, O, A, V) for-
mulas is only linear, and becomes exponential only by
addition of next or until modalities.

2 Definitions

2.1 Linear Temporal Logic

We first recall the syntax and the semantics of linear
temporal logic. We will define temporal logics by as-
suming that the atomic formulas are state predicates,
that is, boolean combinations of atomic propositions.
Given a set of atomic propositions, a linear temporal
logic (LTL) formula is composed of state predicates,
the boolean connectives conjunction (A) and disjunc-
tion (V), the temporal operators Next (O), Eventually
(O), Always (□), and Until (U). Formulas are built
up in the usual way from these operators and connec-
tives, according to the following grammar

(p:=p\ipAtp\(pV(p\0<p\ Otp\ Oip\ipU ip.

An ui-word over a given alphabet £ is a mapping
from N into £, that is, an infinite sequence of sym-
bols over £. LTL formulas are interpreted on an u-
word w = w0wiw2 ■ . . over the alphabet £ = 2P and
the satisfaction relation w \= ip is defined in the stan-
dard way. In the following, we will use the notation
LTL(O£>I ,..., opk) to denote the fragment of LTL which
contains boolean combination of basic formulas which
use only the boolean connectives and the temporal op-
erators in the list opi,..., opk ■

2.2 Finite automata on w-words

Automata on w-words have been extensively stud-
ied in relation to temporal logic [8]. In this section,
we will recall the definition of Biichi automata and the
results relating them to LTL as generators of models.

A nondeterministic transition graph is a 4-tuple
(£, S, So, A), where E is an alphabet, S is a finite set
of states, So C S is the set of initial states, and A is a

subset of S x E x S. A transition graph is determin-
istic if | So | = 1 and A defines a total function S from
5 x E into S. In the following, when we consider deter-
ministic transition graphs, we will define directly this
function S instead of the transition relation A. The
behavior of a transition graph on a word is captured
by the concept of a run. Let A = (£,5, So, A) be a
transition graph and w be an w-word, a run of A on
w is a mapping r : N —> S such that r(0) £ So and
for all i G N, (r(i),w(i),r(i + 1)) e A. Given a run r
on a word w, we denote with Inf(r) the set of states
appearing infinitely often in r. A clear property of de-
terministic transition graphs is that they have exactly
one run for each word.

Given a transition graph we define an automaton
by specifying the acceptance conditions. A nonde-
terministic (resp. deterministic) Biichi automaton is
a 5-tuple A = (E,S,S0, A, F), where (£,S,S0,A)
is a nondeterministic (resp. deterministic) transition
graph and F C S is the set of the accepting states. An
w-word w is accepted by a Biichi automaton A iff there
exists a run r of A on w such that Inf(r)C\F / 0. The
language accepted by A, denoted by L(A), is defined
to be the set {w \ w is accepted by A}.

For our results, besides the size, another character-
izing measure of an automaton A is the length of the
longest simple directed path connecting two states in
the transition graph. We will refer to this measure as
the longest distance of A.

For every LTL formula if, it is possible to con-
struct an automaton on w-words accepting all mod-
els of it. We will denote such an automaton as Av

and we will refer to it as a generator of models for ip.
A deterministic generator for an LTL formula of size
0(exp(exp(\(p\)) can be obtained in the following way:
from the formula <p, by the tableau construction, it is
possible to construct a nondeterministic Biichi gener-
ator of size 0(exp(\ip\)) [12, 21]; this automaton can
then be determinized so that we obtain a deterministic
Rabin automaton of size 0(exp(exp(\ip\)) [17]. Notice
that in general, for a given formula ip, a determinis-
tic Biichi generator may not exist but, when this ex-
ists, it has been proved that the translation from LTL

formulas to deterministic Biichi automata is doubly-
exponential [11], and thus, the above construction is
asymptotically optimal.

2.3 Game graphs

In this section we will introduce the notation con-
cerning two-player games. A two-player game is mod-
eled by a game graph and a winning condition. A
game graph is a tuple G = (V,Vo,Vi,'E,ry) where V

293

is a finite or countable set of vertices, V0 and V\ de-
fine a partition of V, £ is a finite set of actions and
7 : V x E -> V is a partial function. For i = 0,1, the
vertices in V* are those from which only Playeri can
move and the allowed moves are given by the function
7. A winning condition is a predicate over w-words of
vertices, and depending on its type, we can have dif-
ferent kinds of games. In this paper we will consider
only Biichi and LTL games. In a Büchi game, the wan-
ning condition is given by a set of vertices F C V
with the requirement that at least a state in F must
repeat infinitely often. In an LTL game, the winning
condition is instead an LTL formula.

A piny of a game G is constructed as a sequence
of vertices corresponding to the actions taken by the
two players. Formally, a play starting at x0 is a se-
quence x0xi ...z/, in V* with the property that there
exists a sequence of actions «i,..., «/, G E such that
7(;jTj_i,o.j) = x.j, for j = l,...,h. Starting from a
vertex it, a game G can be seen as the w-tree T(Gu),
called a game, tree, which is obtained by unwinding
G from u. Each node of this tree corresponds to a
play starting at. u: the root corresponds to u and, if a
node v corresponds to a play Xi ... x/,, then each of its
children corresponds to a possible continuation of the
play X()...x/|, i.e. to a play x0 .. . x/,.T/i +] such that
7(x/, ,a) = x/, + 1 for an action a. e E. A strategy for
Player, gives an allowed move to continue each play
ending at a vertex in V';. More formally, a strategy for
Player j is a total function / : \'*\) —► V mapping a
node in the function domain into one of its successors
in the game tree. A strategy then corresponds to a tree
obtained from the game tree T^a.u) D>' pruning all the
subtrees containing plays that are not. constructed ac-
cording to /. When a strategy depends only on the
last vertex of a play, it is called a memoriless strategy.

Given a game G and a winning condition W, a
strategy / is said to be a whining strategy if the re-
quirement expressed by W holds on all the paths of the
tree corresponding to /. In a two-player game, given
a game G and a winning condition W, we consider
the decision problem: "Is there a strategy for Playeri
satisfying the winning condition IT?" We remark that
while Buchi games admit memoriless winning strate-
gies and can be solved in quadratic time, LTL games
in general do not have a memoryless winning strat-
egy and are decidable in time polynomial in |G| and
doubly-exponential in \ip\ [15].

3 Deterministic generators

We begin this section by introducing a proper sub-
class of deterministic Biichi automata whose transition
function defines a partial order over the states. To
emphasize this property, we call an automaton in this
class a partially-ordered deterministic Biichi automa-
ton (PODB). Then, we will show that, for formulas
in some fragments of LTL, it is possible to construct a
deterministic generator which is a PODB.

A PODB is a deterministic Biichi automaton whose
transition graph is a directed acyclic graph except
for the self-loops. Obviously, the longest distance of
a PODB is the longest distance between the initial
state and a sink state, where an initial and a sink
state are respectively a minimal and a maximal state
with respect to the partial order induced by the tran-
sition function of the PODB. PODBs are closed under
boolean operations.

Proposition 3.1 For i = 1,2, let At be PODBs of
size n, and longest distance rf;. There exists a PODB

AiHA-2 (resp. A1UA2) accepting the language L(A\)r\
L(A2) (respectively, L(A])UL(A'2)), and such that its
size is 0{n\ n-i) and its longest distance is not greater
than d\ + do- Moreover, for i = 1,2, there exists a
PODB Aj of size /?,- and longest distance, d; accepting

£-U(.4,).
Note that to prove the above proposition, the con-
struction for intersection does not require the intro-
duction of a counter as in the case of general deter-
ministic Biichi automata. Moreover, the above results
on intersection and union are naturally extended to
a tuple of automata Ai,...,A* and we will denote
the corresponding automata with A\ D ... D .4* and
Ai U ... U A/,., respectively.

The following automaton construction will be used
in the next sections to build the generator for 0(pr\tp)
given the generator for ip. Let A = (E, S, s0,S, F) be a
Biichi automaton and p be a predicate over E. Given a
s'0 $ S, we define the (deterministic) Biichi automaton
A°<""4) as {j:,SU{s'0},s'0,6',F) where:

• ö'(s,a) = 6(s,a) for s £ S,
• 6'(s'0,a) = S(s0,a) for a satisfying p, and
• S'(s'Q,a) = s'0, otherwise.

The construction is illustrated in Figure 1.

Proposition 3.2 Let A = (T,,S,SQ,S,F) be a (deter-
ministic) Biichi automaton of size, n and longest dis-
tance, el such that E L(A) C L(A), andp be, a predicate
over E. The (deterministic.) automaton A°'p,/1' has
size 0(n), longest distance, d+1 and accepts the lan-
guage E* [p] L(A), where [p] = {a € E | a satisfies p).

294

Figure 1: Graphical representation of the automaton

Moreover, if A is a PODB then A^P'A) is a PODB
also.

3.1 Generators for LTL(0, A)

The fragment LTL(0,A) contains boolean combi-
nations of formulas built from state predicates using
eventualities and conjunctions. Thus, negations and
disjunctions are allowed only at the top-level and at
the atomic level. By definition, LTL(0,A) is equiva-
lent to LTL(D, V). A sample formula of this fragment
is öpv 0(q A Or). This fragment includes combina-
tions of typical invariants and termination properties.

Let us consider the formula tp = O p\ A ... A O pn,
where p{ G P for i = l,....n. Obviously, ip is in
LTL(0,A). This formula asserts that each one of
Pi,... ,p„ has to be true sometimes. Then, a deter-
ministic generator A^ for p has to keep track only of
the set of atomic propositions which have been already
fulfilled. The size of A^ is 0(2") and its longest dis-
tance is the cardinality of the maximal totally ordered
set of states with respect to the subset relation, that is,
n. We proceed to show that all the LTL(0, A) formu-
las have a deterministic generator which is a PODB of
exponential size and linear longest distance, but first,
we introduce a characterization of the formulas in the
considered fragment. A formula <p in LTL(0, A) is a
boolean combination of formulas defined inductively
by the following rules:
• ip is a state predicate over P or,
• for k > 0, ip is p A O ipi A ... A O pk where p is

a state predicate over P and px,... ,pk are for-
mulas in LTL(<>, A) that do not contain negations
and disjunctions at the top-level.

Theorem 3.3 There exists a deterministic Büchi au-
tomaton A accepting all the models of a formula ip in
LTL(0, A) such that A is a PODB of 0{exp(\<p\)) size
and 0(\ip\) longest distance.

Proof. We inductively define a deterministic Büchi
automaton A accepting all the models of a given for-
mula Otp in LTL(0,A) such that A is a PODB of
exponential size and linear longest distance in \<p\,
and then by Proposition 3.1 this result is extended
to a general formula in LTL(0,A). For a state
predicate p, we define Ap and Aop as the minimal
deterministic generator for p and Op, respectively.
Clearly, Ap and Aop are PODBs and Aop is such
that Y,*L(Aop) C L{Aop). Now, let %p be the for-
mula 0(p A Ofa A ... A Ofa) and, for a formula
7 G {^i,..., fa}, Ao-y be a PODB accepting all the
models of O7. By inductive hypothesis we have that
size of Aoy is 0{exp(\ O7D) and longest distance of
Ao7 is 0(| 07|). Obviously, E*L(A<>7) C L(AoJ
also holds. Then, by Proposition 3.1, A' = Ao^ n
...nAo ^k is a PODB of 0(exp(\ O fa | +... +1 O fa|))
size, 0(I O fa I +...+1 O fa I) longest distance, and such
that Y,*L{A') C L(A'). Thus, from Proposition 3.2,
we have that At = A°{p'A"> is the generator for fa I

The previous result is optimal in the sense that we
may not have a smaller generator for some formula in
LTL(0, A), as shown in the following theorem.

Theorem 3.4 There exists a formula ip in LTL(0, A)

such that all generators of ip have Q(exp(\ip\)) size and
fi(|v?|) longest distance.

Proof. Consider the formula p> = Opx A ... A Op„,
where p{ G P for i = l,...,n and n > 2. Clearly,
\<p\ = 0(n). The first assertion can be easily proved by
contradiction showing that the initial state of a <p> gen-
erator must have at least 2n-1 successors. The second
assertion can be proved by contradiction by showing
that if a generator Av for ip has longest distance less
than n, from the tp model w = {pi}{p-2} ■ ■ ■ {Pn}^, we
can derive another word which is not a model of ip but
is accepted by A^. I

3.2 Generators for LTL(0,0, A)

In this section we use the notation O" as a short-
hand for n nested next modalities. We therefore con-
sider size of On ip to be \ip\ + n. Let us consider the
formula p = 0(pAOn q), where p, q G P. This formula
asserts that p has to be fulfilled at a position i and q at
a position i + n for some i G N. A deterministic gener-
ator for p has to keep track of the truth values of p in
the previous n positions. This can be done by running
n copies of the deterministic generators for (p A O" q).
Such a generator requires exponentially many states
and has exponential longest distance. We prove that
this upper bound holds for all LTL(0,0, A) formulas:

295

Theorem 3.5 There exists a deterministic Büchi au-
tomaton A accepting all the models of a formula ip in
LTL(0,0, A) such that A has both size and longest dis-
tance at most exponential in \tp\.

Proof. The construction is done inductively on the
structure of formulas in LTL(0,0, A). We observe
that given a formula ij>, the next operators in ij) can
be pushed inside so that we can obtain an equivalent
formula »/>' having only state predicates in the scope
of a finite sequence of next operators, and such that
tp' — 0(\tj>\2). As a consequence most of the cases
are handled as for the construction of a determinis-
tic generator for LTL(0, A) formulas. The interest-

ing case is to construct a deterministic generator for
ip = 0(p A O q A </?') given a deterministic genera-
tor A^i for ip' of both size and longest distance ex-
ponential in l^l, and such that E*L(.4^-) C L(A^>).
A deterministic generator Av for <p can be obtained
by running in parallel k copies of A^> and checking

for the fulfillment of (p A O q). At every position
i of the input word a copy of ,4v-< is started and if

i > k and (p A O q) is not true at position (/ — k)
then the copy started at position (?' — k) is dismissed.
As soon as (;; A O q) becomes true, A^ dismisses all
copies of Api but the one started at the position where

(p A O q) is true, and continues as A^>. The size of
,4^, is thus ()(<<xp(k\P\)\A^'\) and hence exponential
in \ip\. Its longest distance is 0(exp(k) +d'). wlmrc d'
is the longest distance of .4^-, and thus is exponential
in \<p\. I

The previous result is optimal in the sense that we
may not have a smaller generator for some formula in
LTL(0,0, A), as shown in the following theorem.

Theorem 3.6 There exists a formula p> in
LTL(0,0, A) such that all generators of ip have
Q(cxp(\ip\)) size and fl(cxp(\ip\)) longest, distance.

Proof. Consider the formula tp = D(p —> O" q).
where p,q G P and n > 2. Clearly, \p\ = 0(n). Since
LTL(0, A) is a fragment of LTL(0,0, A), we only need
to prove that all generators for ip have a simple path of
length at least 2". Assume that A^ = (2P, S, .s0, A. F)
is a generator for ip. Consider words iv = «i ...an

and w' = a\ ...a'n such that w,w' G (2P)*, and p $
a; and p G a' for some i. Let y G {2py be such
that y = bi . ..b), ..., q $ bj, and xwy is a model of
ip for some x £ (2P)*. We have that xw'y is not a
model of tp. Thus a generator .4^ cannot enter the
same state after reading xw and xw', since it must
accept xwy and reject xw'y. Clearly we can prove
this for any pair of words w,w' of length n that differs
with respect to the truth of ;; at least in a position.

Since we can determine 2" words Wi,... ,%U2» which
are pairwise different with respect to truth values of
/J, there are 2" pairwise disjoint sets of states each of
them contains the states which are reached on all runs
of A^ by reading a prefix of a model for ip ending in «;,■.
To conclude this proof we just need to prove that there
exists a word that forces .4^ to visit a state from each
of these sets without rcentering any of them before
reading at least one state from each set. But this is
equivalent to prove that there is an exponentially long
word w in {0,1}* such that any two subwords of w of
length n differ at least in a. position, and thus we are
done. I

3.3 Generators
LTL(O,O. A,V)

for LTL(0,A,V) and

The fragment LTL(0,0, A, V) contains boolean
combinations of formulas built from state predicates
using eventualities, next, disjunctions, and conjunc-
tions. This fragment includes combinations of safety
and guarantee properties, and belongs to the class of
syntactic obligation properties [13].

Let us consider the formula ip = O /\"=1 (pi V O r/,),
where /;,-.(/,• G P. for i — l,...,n and n > 2. Ob-
viously p is an LTI.(0,A.V) formula. This formula
assents that at a same position in the model all the
clauses (/), V Ory,-) have to be satisfied. Since the ful-
fillment of a clause at a position implies either p,Vr/, at
that position or q, at a later position, a nondeterminis-
tic generator for p is the one that nondeterininisticallv
guesses the first position at which all the clauses are
satisfied and. then, check for their fulfillment. Such a
generator has an exponential size and a linear longest
distance. We can detenninize this strategy to obtain
a deterministic generator for <p with C)(2'2) states and
()(2") longest distance. It. is possible to prove that
this result indeed holds for all Ln.(0,0, A,V) formu-
las, as stated by the following theorem.

Theorem 3.7 There exists a deterministic Büchi au-
tomaton A accepting all the models of a formula
tp in LTL(0,0, A, V) such that, A has size doubly-
exponential in \p\ and lojiqc.st. distance exponential in

M-
Proof. To construct a deterministic generator for
LTL(0,0. A,V) formulas we first transform them into
a "layered" conjunctive normal form where1 we have
either LTI.(0,0, A) formulas or formulas of typt1 V' =
"^ V,{Pi AO'C/; A V'I)- This translation may cause an
exponential blow-up in the size of the formula. The
results obtained for Ln'U(0,0,A) then give the up-
per bound on the size of the deterministic genera-

296

tor for LTL(0,0, A,V) formulas. An accurate anal-
ysis of the longest distance in the construction given
for LTL(0,0, A) gives an 0(exp(k \P\) + \ip\) upper
bound, where k is the largest number of nested next
modalities in the starting formula. Since the trans-
formation into the layered CNF does not increase this
parameter, given an LTL(0,0, A,V) formula we get
that the longest distance of the deterministic genera-
tor obtained by the given construction is exponential
in \tp\. I

The following theorem shows that the above result
is optimal also in the case of LTL(0, A, V) formulas.

Theorem 3.8 There exists a formula ip in
LTL(0, A, V) such that all the deterministic genera-
tors of (p have Cl(exp(exp(\if\))) size and Q(exp(\tp\))
longest distance.

Proof. Consider the formula ip = O A"=i (P» v ^ ?»)>
where Pi, qt 6 P for i = 1,..., n and n > 2. Obviously,
\<p\ = 0(n). Denote with Pp the set {pi,... ,pn} and
Pq the set {qi,..., qn}. We prove that a minimal de-

terministic generator for ip has 22 " states. With a
similar argument it is also possible to show that all
the deterministic generators for ip have a simple path
of length 2"("). Assume that Av = (2p,S,s0,S,F)
is a deterministic generator for ip. Given a subset
b of Pp, define q(b) as the set {qt\pi £ b}. Define
Ej; as the set of Pp subsets of cardinality k, that is,
£fc = {a C Pp | \a\ = k}. The cardinality of £*> is
(I \ . If we choose k = fs], then |Sfe| = 2^n\ Ob-

serve that for w,w' G T,*k such that w = O-QOI .. . <rm,
w' = a'0a[...a'm, and U™^} ^ U™'^}, it must
hold that 5(SQ, W) ^ 6(so, w'). In fact, we can suppose
without loss of generality that there is a a G U^ {a{\
such that a £" U™'^}. Thus, for any w" G (2P)W,
the word wq(a)w" is a model of (p and w'q{a)%... 0 ...
is not. Since Av accepts all and only the models
of ip, and there is an accepting run for any word
wq(a)w", HS(so,w) = S(s0,w') then Av accepts also
w'q{a)% ... 0 ..., and this contradicts the hypothesis
Ay, being a generator of models for ip. Since the num-
ber of subsets of St is 2^h^, Av must have at least

2lEfcl states. Thus, for A; = [§], this means 22"'")

states. I

3.4 Generators for LTL(U,0,A,V)

In section 2.2 we recalled the results concerning the
construction of a deterministic generator for a given
formula in LTL. In this section we prove that a match-
ing lower bound to that construction even in absence
of next and until modalities.

Theorem 3.9 There exists a formula ip in
LTL(H, O, A, V) such that all the deterministic
generators of ip have an fl(exp(exp(\<p\)) longest
distance.

Proof. Consider the formula

n n

°{o /\(oiV Obi) ->o f\(ciV Odi)),
i=i t=i

where ai,b,,Ci,di £ P for i = l,...,n and n > 2.
Assume that Av = (2p,S,s0,6,F) is a deterministic
generator for ip. Denote by Px the set {x\,... ,xn).
Moreover, denote by pj a subset of Pa and by qj a
subset of Pc. By arguments similar to those used in the
proof of Theorem 3.8, it is possible to prove that: 1) a
deterministic generator for ip has to keep track of the
Pj's that have been fulfilled and for each pj the list of
qf/t's which have been fulfilled starting at the position
where p3 was true the last time; 2) we may need to
store exponentially many pj's and exponentially many
<7j's, to check the fulfillment of O /\"=1 (a* V O bi) and
° Ar=i(c* v °dt). respectively. Thus for k = fi(2"),
let pi,..., pk and qi,... ,qk such sets. We observe that
only one among all pj's (respectively, qj's) can be true
at each position. Every time a pj is true at a position
i, A resets the list for pj with only the q^ which is true
at position i. Every time a qj is true, A adds qj to
all lists. To conclude the proof it is sufficient to show
that there exists a word w in (Pp UP,U {pj U q^ \ pj G
PP,qh G QP})* of length 2k such that the A run on w
is such that r(i) ^ r(j) for any i ^ j. To see this, we
map each state s of A into a binary fc-tuple {x\,..., xk)
such that Xi = 1 if and only if qi is in the list for pi.
Clearly, if two states s and s' are mapped into two
different tuples then s ^ s'. Moreover, by the above
observations, if neither qi or pi is true at the current
position the i-th bit of the tuple associated to the next
A state is the i-th bit of the current state, while if qi
true then the i-th. bit becomes 1, otherwise if pi is true
the i-th bit becomes 0. Since at most a pi and a qj
are true at each position, the tuples of two consecutive
states in a run may differ for at most 2 bits. Since it is
possible to list all the 2k binary tuples in such a way
two consecutive tuples differs in exactly 1 or 2 bits,
we have proved that any deterministic generator for ip
has tt(2k) = ft(22") longest distance. I

4 Biichi games

In this section we present a new decision algorithm
for Biichi games, which mainly performs a depth-first

297

traversal of a portion of the game tree and is space-
efficient when the longest distance is 0(^—). Stan-
dard techniques to solve Biichi games involve fix-point
computation [19], and requires space 0(n) no matter
what the longest distance is. An interesting aspect of
our algorithm is that it can be applied to all the games
in which the winning condition can be translated into
a deterministic Büchi automaton, as for the formulas
in the fragments of LTL we have studied in sections 3.1,
3.2 and 3.3. Then we combine this algorithm with the
results on LTL generators from the previous section
and study the complexity of the obtained solutions.

In this section we search for winning strategies of
Playero, while Playeri will be our adversary. Con-
sider a game graph G and a subset F of G vertices.
We denote by II the set of plays whose last state is
the first state which repeats, that is, plays of the form
XQ .. .x/i such that x^ — Xi for some 0 < i < h, and
for all 0 < i,j < h, xi ^ Xj. We have that any long-
enough play in G has a prefix which is in II, and each
of the plays from II is constituted by an acyclic prefix
followed by a loop. Moreover, we denote by 11/.- the
set of plays in IT containing a state from F in their
loop, and by 11/ the set of plays from II which can be
constructed using the strategy /. We define a game
(C7, F)jjn as the game where Playero wins from a state
u if there is a strategy / from ?/ such that 11/ C Ü/.-.
Since Biichi games arc memoryless, we have:

Lemma 4.1 There exists a winning strategy for
Playero from a vertex u in a Biichi game (G, F) if
and only if their exists a winning strategy for Player0

from, u in (G, F)fi„ .

Directly from the definition of a winning strategy
in a game1 (G,F)fm, we have the following lemma.

Lemma 4.2 Any winning strategy f for Playero in
a game. (G,F)fin is such that, the lenght of a play in
Ily is 0(d), where d is the longest, distance of G.

By the above lemmas, there is a decision algorithm
for Biichi games which explores a tree whose height is
the longest distance of the game graph.

Theorem 4.3 Given a game graph G with m vertices
and longest distance d, the Biichi game (G, F) is de-
cidable in space O(rflogm).

Given a game (G, W), if the winning condition
W can be translated to a deterministic Biichi au-
tomaton, it is possible to use the algorithm by Lem-
mas 4.1 and 4.2 to decide it. In particular, let .4 be a
deterministic Biichi automaton equivalent to winning
condition W, in the sense that the language accepted
by A is the language of the w-words satisfying W. De-
fine G x A as the game graph whose vertices V x Q,

where Q is the set of A states, are partitioned accord-
ing to the V partition, and from a vertex (v,q) it is
possible to reach a vertex (v1, q') by taking an action a
if and only if A enters q' from q by reading the subset
of atomic propositions true at v and in G it is possible
to move from v to v' taking the action a. Let F and
so be the set of final states and the initial state of A,
respectively, then there is a winning strategy in the
Biichi game (G x A,V x F) starting at a vertex (u, s0)
if and only if there is a winning strategy in (G, W)
starting at u.

As a consequence of the results from section 3 and
the above argument, Theorem 4.3 applies to games
with winning condition expressed by formulas in the
LTL fragments we have considered so far. In fact, the
following theorems hold.

Theorem 4.4 LTL(0, A) games are PSPACE-
complete.

Proof. Membership in PsPACE is a consequence of
Theorems 3.3 and 4.3. To prove PsPACE-hardness,
we can reduce the satisfiability of quantified boolean
formulas in conjunctive normal form to deciding the
existence of a winning strategy in an LTL(0, A) game.
This also shows that LTL(ü,V) games are PsPAOE-
hard. Let tp = AiX\.... Anxn. /\'-=i ci ^c a quantified
boolean formula over the variables x,\,... ,xn. Con-
sider the LTL(0>,A) formula <p' = /\™, O c* over the
atomic propositions {c.\,... ,c,„}. The game graph
G is defined in such a way that each literal corre-
sponds only to a vertex, a path of the game tree cor-
responds to the assignment given by assuming true
the literals corresponding to its vertices, each vertex
is labeled with the conjuncts which contain the corre-
sponding literal, and a strategy corresponds to a selec-
tion of paths fulfilling the requirements of quantifiers
.4],..., .4,,. We have that ip is satisfiable if and only
if there is a winning strategy in the game (G,<p'). I

Theorem 4.5 LTL(0,0, A) games are EXPTIME-
complete.

Proof. By Theorem 3.5, LTL(0,0, A) has
exponentially-sized deterministic generators, and
hence, membership in EXPTIME follows. For the
lower bound, we reduce the halting problem for
alternating linear bounded automata. We briefly
sketch the construction. Consider a Turing machine
M that uses n tape positions over a tape alphabet
T, and let Q be the set of control states that are
partitioned into Qo and Q\ corresponding to the two
players. The transitions of the machine are of the
form (q,a,q' ,a' ,L/R) meaning that if control state
is q and current symbol is a, then the machine can

298

overwrite the current cell with a', update control
state to q', and move left (L) or right (R). If multiple
transitions are applicable, then depending on whether
the current control state belongs to Qo or Q\, one of
the two players gets to choose the transition. The
problem of deciding whether Player0 has a strategy
to reach a specified control state, say q^, is EXPTIME-

complete. Given such a machine M, we build a
game graph GM as follows. For every tape symbol
a and position i, GM has a vertex iv,i belonging to
\\. For every control state q, tape symbol a and
position i, GM has a vertex i>?iCT,i belonging to VQ

if q is in Q0 and to V\ otherwise. For every control
state q, and symbol a, GM has a vertex i>g,CT,L and a
vertex vq^tR, both belonging to V\. For i < n, there
is an edge from va^ to every ?v,z+i- There is an
edge from tv,n to every f9,CT',i. For every transition
(q,a,q',a',L/R) of M, there is an edge from every
vq,a,i to vq,^',L/R- Finally, every vq^,L/R has an edge
to every TV,I- The intuition is that Player\ chooses
a sequence of vertices fCTl,i,... iv„,,i, denoting the
tape content, followed by a vertex vq<aj, meaning
that current control is in state q with head reading
symbol a in position i. The next vertex of the form
vq\a',L/R indicates the choice of the transition (and
hence, new control state and new symbol in position
i, and movement of the head), and is determined by
one of the players depending on whether q belongs
to Qo or Qi. Playero wins if either the control state
qh is encountered or Playeri does not make the
choices for encoding the configuration according to
the intended interpretation. Assume that there are
enough propositions to identify each vertex uniquely
by a state predicate. Then, the winning condition for
Playero is a top-level disjunction of several formulas
that use only eventualities and conjunctions. For
instance, a mistake in the encoding of the content of
i-th tape position is described by the formula

n — i + l n — i+2 n+2
V<>KiA O Ug,CT,;A O Vq,ta,:L/Rh O lV'?£<r',«)

Theorem 4.6 LTL(0,0, A, V) games are ExPSPACE.

Proof. Directly from Theorems 3.7 and 4.3. I

5 Conclusions

For the problem of solving infinite games with the
winning condition specified by an LTL formula, we

have studied the impact of different connectives on
the complexity. In the same way as model checking
(or satisfiability) is related to translation from LTL to
nondeterministic w-automata, solving games is related
to translation from LTL to deterministic w-automata.
We have established that the longest distance, besides
the size, of the automaton produced by the translation
is an important parameter. The results are summa-
rized in the table of Figure 2 for various fragments 2.
As the table indicates the sources of complexity for
games are different from the ones for model check-
ing. The matching lower bounds for the games in
the LTL fragments LTL(0, A,V), LTL(0,0, A, V), and
LTL(U,0,A,V) are open problems, while the results
on the corresponding deterministic generators are
tight with respect to both the size and the longest dis-
tance. We observe that LTL(ü, O, A, V) and thus LTL,

formulas may not have deterministic Biichi generators,
but it is known that they have doubly-exponential de-
terministic Streett generators.

Besides the classification of complexity of games for
various fragments, the constructions of this paper can
be used to solve synthesis problems for certain kinds of
formulas more efficiently. In particular, the fragments
LTL(0, A) and LTL(0, A, V) contains many commonly
occuring specifications that are boolean combinations
of safety and guarantee properties, and for these, we
have provided a direct construction of deterministic
generators in a modular manner.

References

[1] R. Alur, L. de Alfaro, T. Henzinger, and F. Mang.
Automating modular verification. In CON-
CUR'99: Concurrency Theory, Tenth Int. Con-
ference, LNCS 1664, pages 82-97, 1999.

[2] R. Alur, T.A. Henzinger, and 0. Kupferman.
Alternating-time temporal logic. In Proc. of the
38th IEEE Symposium on Foundations of Com-
puter Science, pages 100 - 109, 1997.

[3] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Ra-
jamani, and S. Tasiran. MOCHA: Modularity in
model checking. In Proc. of the Tenth Int. Con-
ference on Computer Aided Verification, LNCS
1427, pages 521 - 525. Springer-Verlag, 1998.

[4] M. Abadi, L. Lamport, and P. Wolper. Re-
alizable and unrealizable specifications of reac-

2Some of the entries in the table concerning nondeterministic
generators and model checking are not explicitly stated in the
literature, and will be explained in detail in the full paper.

299

Nondet. Generators Det. Generators Model
Checking

Games
Size Long. Distance Size Long. Distance

LTL(0,A) e(Exp) O(LINEAR) 0(EXP) 0(LINEAR) NP-complete PsPACE-complete
LTL(0,0,A) 6(EXP) e(Exp) 0(EXP) 0(EXP) PsPACE-complete ExPTIME-complete
LTL(0,A,V) e(Exp) 0(LINEAR) 0(2EXP) 0(EXP) NP-complete EXPSPAOE

LTL(<0,O, A,V) 0(EXP) e(Exp) 0(2EXP) 0(EXP) PsPACE-complete EXPSPACE
LTL(D,O,A,V) 6(EXP) ©(LINEAR) 0(2EXP) 0(2EXP) NP-complete 2EXPTIME
LTL 6(EXP) 9(EXP) 0(2EXP) 0(2EXP) PsPACE-complete 2ExPTIME-complete

Figure 2: Complexity results in LTL.

tive systems. In Proc. of the 16th Int. Collo-

quium on Automata, Languages and Program-

ming, ICALP'89, LNCS 372, pages 1-17, 1989.

[5] D.L. Dill. Trace Theory for Automatic Hier-
archical Verification of Speed-independent Cir-
cuits. ACM Distinguished Dissertation Series.
MIT Press, 1989.

[6] S. Demri and Ph. Schnoebelen. The complex-
ity of propositional linear temporal logics in sim-
ple cases. In Proc. of the 15th Annual Sympo-
sium on Theoretical Aspects of Computer Sci-
ence, STACS'98, LNCS 1373, pages 61 - 72.
Springer-Verlag, 1998.

[7] E.A. Emerson and C.S. Jutla. Tin- complexity of
tree automata and logics of programs. In Proc.
of the 29th IEEE-CS Symposium on Foundations
of Computer Science, pages 328 337, 1988.

[8] E.A. Emerson. Temporal and modal logic. In
Handbook of Theoretical Computer Science, vol-
ume B, pages 995 - 1072. Elsevier Science Pub-
lishers, 1990.

[9] O. Kupferman and M.Y. Vardi. Module checking.
In Computer Aided Verification, Proc. Eighth Int.
Workshop, LNCS 1102, pages 75 - 86. Springer-
Verlag, 1996.

[10] 0. Kupferman and M.Y. Vardi. Module checking
revisited. In Proc. of the. Ninth Int. Conference
on Computer Aided Verification, CAV'97, LNCS
1254, pages 36 -47, 1997.

[11] O. Kupferman and M.Y. Vardi. Freedom, weak-
ness, and determinism: From linear-time to
branching-time. In Proc. of the 13th IEEE Sym-
posium, on Logic in Computer Science, pages 81
- 92, 1998.

[12] O. Lichtenstein and A. Pnueli. Checking that
finite-state concurrent programs satisfy their lin-

ear specification. In Proc. of the 12th ACM Sym-

posium on Principles of Programming Languages,
pages 97 - 107, 1985.

[13] Z. Manna and A. Pnueli. The temporal logic, of
reactive and concurrent systems: Specification.
Springer-verlag, 1991.

[14] A. Pnueli. The temporal logic of programs. In
Proc. of the 18th IEEE Symposium on Founda-
tions of Computer Science, pages 46 77, 1977.

[15] A. Pnueli and R. Rosner. On the synthesis of a
reactive module». In Proc. of the 16th ACM Sym-
posium on Principles of Programming Languages,
pages 179 190. 1989.

[16] M.O. Rabin. Automata on infinite objects and
Church's problem. Trans. Amc.r. Math. Soc,
1972.

[17] S. Safra. On the complexity of cj-automata. In
Proc. of the 29th IEEE Symposium on Founda-
tions of Computer Science, pages 319 327, 1988.

[18] A.P. Sistla and E.M. Clarke. The complexity of
propositional linear temporal logics. The Journal
of the. ACM. 32:733 749. 1985.

[19] \V. Thomas. On the synthesis of strategies in in-
finite games. In 12th Annual Symposium on The-
oretical Aspects of Computer Science, STACS'95,

LNCS 900, pages 1 - 13. Springer-Verlag, 1995.

[20] M.Y. Vardi. Verification of concurrent programs:
the automata-theoretic framework. In Proc. of
the Second IEEE Symposium on Logic in Com-
puter Science, pages 167 - 176, 1987.

[21] M.Y. Vardi and P. YVolper. Reasoning about in-
finite computations. Information and Computa-
tion, 115:1 - 37, 1994.

300

Session 8

Normalization by evaluation
for typed lambda calculus with coproducts

T. Altenkirchf P. DybjerJ M. Hofmann* P. Scott§

Abstract

We solve the decision problem for simply typed
lambda calculus with strong binary sums, equivalently
the word problem for free cartesian closed categories
with binary coproducts. Our method is based on the se-
mantical technique known as "normalization by evalua-
tion " and involves inverting the interpretation of the syn-
tax into a suitable sheaf model and from this extracting
appropriate unique normal forms. There is no rewriting
theory involved, and the proof is completely construc-
tive, allowing program extraction from the proof.

1 Introduction
In this paper we solve the decision problem for sim-
ply typed lambda calculus with categorical coprod-
uct (strong disjoint sum) types. While this calculus
is both natural and simple, the decision problem is a
long-standing thorny issue in the subject. Our solu-
tion is based on normalization by evaluation (NBE)
(also called "reduction-free normalisation") introduced
by Martin-Löf [ML75] for weak typed lambda calcu-
lus, and by Berger and Schwichtenberg [BS91] for typed
lambda calculus with /^-conversion. The technique has
been further refined by the authors and coworkers using
category-theoretic methods [CD97, AHS95, CDS97]. It
has also been extended to other systems, such as System
F [AHS96]. As shown by Berger, Eberl, Schwichten-
berg, and Danvy [BES98, Da96], NBE techniques yield
fast normalization algorithms, with applications in inter-
active proof systems [BBSSZ98] and type-directed par-
tial evaluation [Da96, Da98, FilOl].

Here we show how to considerably extend the NBE

* School of Computer Science and IT, University of Nottingham,
Nottingham, UK, e-mail: txa@cs . nott .ac.uk

t Department of Computing Science, Chalmers Uni-
versity of Technology, S-412 96 Göteborg, Sweden,
e-mail: peterdScs . Chalmers . se

* Division of Informatics (LFCS), University of Edinburgh, Edin-
burgh EH9 3JZ, UK, e-mail: mxhOdcs .ed.ac.uk

§ Department of Mathematics, University of Ottawa, Ottawa, On-
tario, KIN 6N5, Canada, e-mail: phil@mathstat .uottawa . ca.
The author's research is supported by a grant from NSERC

techniques to take into account type systems with strong
sums. The NBE method involves constructing a model
M and effectively "inverting" the evaluation of lambda
terms in M and thereby extracting certain unique syn-
tactic normal forms, from which a decision procedure
easily follows (we outline the proof below). The proof
uses no rewriting theory.

Typed lambda calculi with (strong) sum types arise
very naturally:

• In programming language theory, coproducts
model variant and enumerative types. The added
categorical equation for coproducts corresponds to
a kind of uniqueness for pattern matching or Case
construction [AC98, Mit96, GLT89].

• In proof theory, under the Curry-Howard Iso-
morphism, terms correspond to natural deduction
proofs in intuitionistic propositional {A, V, =>, T}
logic. One then considers terms (proofs) mod-
ulo certain equations, which guarantee, for exam-
ple, that the formula A V B acts as a coproduct
type (with copairing), as well as including the the-
ory of commutative conversions (cf [GLT89], pp
80-81). In category theoretic terminology, such
lambda theories correspond exactly to almost bi-
cartesian closed categories, that is, cartesian closed
categories with nonempty finite coproducts (gener-
ated by a set of atomic types) [LS86].

• As proved by Dougherty and Subrahmanyam
[DS95], a Friedman completeness theorem in Set
holds for cartesian closed categories with binary
coproducts. Therefore, the equality we decide
is the natural extensional equality on proofs in
intuitionistic propositional logic and on terms of
the typed lambda calculus with sums.

Much of traditional lambda calculus theory carries
through unscathed when we add products (and even
weak categorical data types) to the simply typed case.
Unfortunately, the addition of coproducts is consider-
ably more subtle. The difficulties with adding coprod-
ucts are detailed in [Do93, DS95]: for example, the ana-
log of Statman's 1-Section theorem fails in the presence
of coproducts, confluence (of various standard rewriting

0-7695-1281-X/01 $10.00 © 2001 IEEE
303

presentations) fails, and the proof of Friedman's com-
pleteness theorem for the case of coproducts uses diffi-
cult and involved syntactical arguments [DS95].

A decision procedure for cartesian closed categories
with binary coproducts has been presented in Ghani's
thesis [Gh95a] (see [Gh95b] for a summary) although
the proof involves intricate rewriting techniques whose
details are daunting. Our method described here is quite
different and we believe conceptually simpler.

An algorithm for type-directed partial evaluation for
a call-by-value typed lambda calculus with sums has
been given by Danvy [Da96, Da98] and Filinski [FilOl].
This algorithm uses continuations and is therefore also
quite different from ours. In particular, it does not de-
cide equality in cartesian closed categories with binary
coproducts.

Like Ghani and Dougherty and Subrahmamyam, we
only consider the case of finite non-empty coproducts,
that is, an initial object (empty type) is not part of the
structure. We conjecture that the present approach can
be extended to full bicartesian closed categories includ-
ing initial objects. However, this complicates the struc-
ture of our normal forms, and wc have not yet com-
pletely checked that all properties hold for the extended
language.

Outline of Proof
Let £ be a lambda theory. Our aim is to decide if

define

nf(e) = q([e](u(lr)))

r \-e ct A,

that is, if two possibly open terms c.\ and e> of type .4
arc equal wrt £, where T is a type environment . We
associate with each term c a normal form nf (e). In this
paper, these normal forms are not themselves terms, but
there is a function d mapping normal forms to terms in
such a way that the following two properties hold (cf.
[CD97, CDS97]):

NF1 T \-e d(nf(e)) = e

NF2 F \-£ ci = e-> implies nf(ej nf(r-2)

This implies that F \-£ e\ = e2 if and only if
nf(Pi) — nf{?■■>), so that comparing normal forms will
yield a decision procedure for £.

When £ = the typed lambda calculus with ßij-
conversion, the authors and coworkers showed in
[AHS95, CDS97] how to obtain a function nf by
inverting the preshcaf interpretation of £. One defines
two natural transformations qA : J.4J —> NF(.4) and
uA : NE(,4) -* [.4], where NF(.4) is the preshcaf
of normal forms and NE(.4) is the preshcaf of neutral
terms of type A from £. Given a typing judgement
r \-£ e : A, where Y = X\ : A\,... ,xn : An, we

where lr is the sequence (x,\,... , xn) and wc omit type
superscripts. Since [—]] is an interpretation, wc have im-
mediately that r h ei = e2 implies [ei] = [e2], and
hence NF2 follows and NF1 is proved by induction on
e, using for example logical relations.

How do we obtain a function nf when wc add strong
sums to £? The problem is that although the category of
presheaves has coproducts, a difficulty arises when wc
try to invert the interpretation of coproducts. The maps
q and u are defined by induction on types, so in par-
ticular wc need to define u

Ao+A> jn terms of u/ln and
uAl. But coproducts in presheaves are calculated point-
wise; so, for example, how do we define u'4o+/1' (.s) £
[.40]r + |.4i]r for a neutral term fhs: .40 + -4i?
Since variables are neutral terms, we must in particular
define u'4o + '4' (x), but there is no sensible way to decide
whether this should be in the first or the second disjunct.

As we shall show, the solution of this problem is to in-
troduce an appropriate Grothcndicck topology and con-
sider the sheaves for that topology. This will give us a
way to "amalgamate" the contributions of ul" and u1'
in the definition of u-',0+-'1'.

Plan of the paper
In Section 2 we formally define the typed lambda calcu-
lus with strong sums and show how it yields a free carte-
sian closed category with binary coproducts. In Section
3 we introduce our normal forms, and the auxiliary no-
tions of pure normal forms and neutral terms. The main
idea is to introduce a parallel case statement, and im-
pose variable conditions and a condition of redundancy-
freeness to obtain uniqueness of normal forms. In Sec-
tion 4 we introduce the category of constrained envi-
ronments, where objects are environments (type assig-
ments) equipped with equational constraints. This will
serve as the underlying category of our Grothcndicck
topology which is defined in Section 5. There we also
introduce the category of sheaves for this topology and
its bicartesian closed structure. This yields a canonical
interpretation of the syntax in the category of sheaves
and in Section 6 wc show how to invert this interpreta-
tion and obtain normal forms.

2 Syntax
We follow the treatment of sums in natural deduction,
as in [GLT89, pp 80-81]. For case of presentation, wc
restrict ourselves to one base type.

Types are given by the grammar

.4::=o|.4=>.4|.4x.4|TL4-l-.4

304

Terms are given by

e ::= x \ Xx.e | ee | (e,e) 17To(e) | iri(e) \ {) \

io(e) | ti(e) | (5 (x.e) (x.e) e

The Case term S (zo-eo) (xi-ei) e2 simultaneously
binds xo in eo and x\ in ei.

A fy/?e environment V is a finite function from vari-
ables to types. The typing judgement rhe:i meaning
e Aas fy/?£ A in type environment T is defined in the ob-
vious way. For example, the rule for Case is:

(r,Xj : Aj h g : C)ig{o,i} r \- e : A0 + Ax

r h <5 (zo.eo) (ii.ei) e : C

Definition 2.1 Equality between terms in environment
T, denoted r r- — = — : A, is the least (typed) congru-
ence generated by the following rules (omitting types to
improve readability):

(ß) (\x.e0)ei=e0[ei/x]
(j]) e — Xx.ex, if x ^ FV(e)
Projj 7ri((e0,ei)) = et

SP e = (7T0(e),7ri(e))
Unit e = ()
In; 6 (x0.e0) (xi.ei) tj(e2) = ej[e2/:ci]
Coprod 5 (x0.t.o(xo)) (^l-ti^i)) e = e
Distrib e (S (xo-eo) (zi-ei) 02) =

6 (x0.ee0) (xi.eei) e2

if 10,2; 1 $■ FV(e)

We will refer to this equational theory as BiCCC. The
key categorical axiom (Coprod) is dual to (SP) and guar-
antees uniqueness of the co-pairing arrow out of a co-
product. BiCCC entails all the usual commutative con-
versions for sums, [GLT89], pp. 80-81.

It can be shown (cf. [LS86, CDS97]) that the free
almost bicartesian closed category Bo over one base ob-
ject o can be obtained as the category whose objects are
type environments and where a morphism from Y =
xi : Ai,... , xm : Am to A = yi : Bi,... , yn : Bn is
asequenceofterms(ei,... , e„), modulo BiCCC equal-
ity, where T \- a : Bi. Freeness means that for
each BiCCC B and object [o] G B we have a unique
structure- and equation-preserving interpretation functor
H : Bo -> B.

3 Normal Forms
Normal forms are defined simultaneously with pure nor-
mal forms and neutral terms. Normal (and pure normal)
forms are not genuine terms, but defined inductively by
the clauses below. If T is a type environment we write
T f-NF t : A, resp. T KPNF t '■ A, resp. F hNE t : A
to mean that expression t is a normal form, resp. pure
normal form, resp. neutral term of type A. We write

FV(t) for the set of free variables occurring in t. We
write Guards(i) for the set of guards of a normal form
t; this will be defined below as part of the rule for form-
ing normal forms.

x G dom(r) T I~NE s : o
T I~NE X : T(x) T hpNF 8 : o

r r-pNF () : T

T 1-pNF tp : A0 r 1-pNF h : Ai

rhPNF (to,h) :A0 x Ai

T hNE t : A0 x Ai

T i~NE TTi(t) : A,

T hpNF t : Ai

ie{o,i}

ie {0,1}
ri-pNF ii(t) :A0+Ai

r hNE S : A =» B T 1-PNF t : A

T 1~NE st : B

T,x:A\-NF t: B

r hpNF Xx.t : A=> B

where in the last rule we have the variable condition that
x G FV(s) for each s G Guards(i).

We have two rules for forming normal forms:

(a)
r hpNFt : A

n-NFt:i
and Guards(i) =

(b) Let M = {si,..., sn} be a nonempty finite set of
neutral terms (so we assume the s, are pairwise dis-
tinct). For each / : M -> {0,1} we use the abbre-
viation Tf = T,Xi:A1

f{si),...,xn:A'^{Sn). Define

(rhNES,:^ + .4*)!e{i,...,n}

{Tf hNF tf : C)/:M->{O,I}

r\-NFC(M,(xi---xn.tf)f):C

and Guards(C(A/, (xi ■ ■ ■ xn.tf)f)) = M

where (£/)/:M->{O,I} is a family of normal forms
satisfying the following two side conditions:

Variable-condition: for each s G Guards(£/) we
have{ii,...,a:n}nFV(s)^0.

Redundancy-freeness: The family (£/)/ is not re-
dundant at any s* G M, where (£/)/ is redun-
dant at Si whenever for all g : M \{si} ->
{0,1}, tg[Si^o] and <9[Si^i] are equal and
neither contains the variable Xi.

The variables x\,...,xn become bound in the C-
construct. For brevity we shall often use the al-

305

ternativc notation C(M, (t'j)f), where the t1, range
over abstractions x,\,..., xn.tf.

The idea is that C performs a simultaneous case split
over all the "guards". For example, £/[SK_>o] corresponds
to a branch to be taken when s is of the form IQ{X).

Example 3.1 The following examples show how the
side-conditions ensure uniqueness of normal forms as
computed by nf in Section 1. For simplicity let the vari-
ables z (possibly with indices) in the examples below
have type o, so that they are normal terms.

1. The normal form of Xw.S (x\.zo) (x\.zi) y will
be C({y], (xi.tf)f) where i^,-] = Xw.Zj. Note
that the expression \w.C({y},(xi.tf)j), where
t[y>-yi] = zi' violates the side condition for (pure)
normal forms of A-form.

2. The normal form of the term

6 {xi.S (x2-zoo) {x-2-Zoi) y-i)

(xi.S (x-2-Zio) {x2.zn) y2)

will be

4 Neutral constrained environments
Like Dougherty and Subrahmanyam [DS95] and Fiore
and Simpson [FS99] we need to supply our type envi-
ronments with constraints. These will be the objects of
a category of constrained environments J\f, where the
morphisms will be injective renamings. The constraints
are of the form s = ii{x,i) and express which branch
a certain guard s takes. This is the idea behind our
Grothendieck topology on N: a "covering" expresses
case-splitting. This use of Grothendieck topologies is
closely related to [FS99] where they were used for prov-
ing a definability result for a language with coproducts.

Definition 4.1 A neutral constrained environment, en-
vironment for short, is a pair T | E where T is a type
environment and E is a set of constraints of the form
s — I.O(X,Q) or s = ii(a;i) where T I-NE s : A0 + A\ and
x0 : A0 (resp. x\ : A\) is contained in T and moreover,

• no two distinct constraints involve the same neutral
term, for example, E cannot contain S=LQ{X,Q) and
s=ii(x1)

• no two distinct constraints refer to the same vari-
able, for example, E cannot contain s = to^o)
and s' = to(xo) unless s and s' arc identical.

C({yi,y2},{xix2.tf)f)

where ^J/lM.,i,y.,,_>j] = £,_;. Note that the cx-
prc^kmC({yi},{xl.C{{y2},{x2.tf1uh)h)fi)) is
not a normal form since it violates the variable-
condition: xi is not free in the guard y2 of the nor-
mal form C({y2}, (x-2.tflUh)h).

3. The normal form of'<5 (x.z) (x.z) y will be 2. Note
that C({y}, {x.z);) is not a normal form as {x.z)j
is redundant at y.

4. Note however, that the normal form of
S {z.z) (z.z) y will be C({y},(z.z)j) which
is not redundant at y because of the variable
condition in the definition of redundancy.

Definition 3.2 The function d mapping T \~x t : ^4 with
A' <E {NF,PNF,NE} to terms T H d(t) : A is defined
in the following way:

• d commutes with all the term formers except C (in
particular, preserves variables).

. d(C(M U {*},(*/)/)) = 6 (x0.e0) (*i.e,) d(s),
where e,: = d(C(A/, (<s[sh_>i])s)).

It is easy to see that up to BiCCC equality this does not
depend on the choice of the witnessing term er and on
the order of the guards.

A morphism from environment A | $ to envi-
ronment FIE is given by an injective function
a : dom(r) —> dom(A) satisfying A(<T(X)) = r(x)
and (T(s)—tj(a(x)) is in ^ for each constraint .s=/,(.x)
in E. In this way the environments form a category Af
in which composition is composition of functions.

If A extends T and $ extends E then the inclusion
a : dom(F) <—> dom(A) defines a morphism from A | "if
to T I E which we call a. projection.

We are interested in studying equality of terms rela-
tive to a neutral constrained environment. The following
definition is due to [DS95].

Definition 4.2 Let T | E be an environment and d be a
list of dummy terms of the same length as E and of ap-
propriate (to be explained) type. A (variable-binding)
type environment C- [] is defined as follows.

Cr'0[] = []

T.x0:Ao I ~.s=in(xa)\
cl.d

<J(a;o.Cjl=[])(a:i.diXi)d(a)

l\f\:Ai I =.s=l i(Ti)r 1 _

d,d0 ,r|: <5(.r0.d0.r0)(z1.C(;-.
l"[])d(.s)

-.r|: Note that C - [el binds all variables mentioned in E.
d

306

Given two terms T h e\ : C and T h e2 : C we write
r I E h ei = e2 : C to mean that

r'hc^[ei
= Cj's[e2]:C

in the theory BiCCC for all appropriate T' and d. Here
d must be chosen such that the terms C- ~ [ei\ are type
correct and V is obtained from T by removing the vari-
ables mentioned in E and possibly adding^any extra free
variables occurring in the dummy terms d.
Remark 4.3 Note that ordinary type environments have
no constraints but it follows immediately from the above
definition that r|0 h ei = e2 implies T h e\ = e2.

of
5 Sheaves over environments
We consider the functor category N = Sets
presheaves and natural transformations between them.
We recall the following definitions of the structure of N.
A presheaf is given by a family of sets Fr \ 3 indexed by
environments and for each morphism a : A | * —> T | E
a function Fa : FT \ = ->■ FA | * such that JFI = 1 and
FaoT = FT«Fa. Ifa € Fr|5 we may write a\A^ for
Fa(a) in case a is clear from the context. This notation
will in particular be used when a is a projection.

A natural transformation from presheaf F to
presheaf G is given by a family gT\z of maPs

.9r 1 E : FT|S -> Gr\s such that Ga«gT\■= = 9A\<a°Fa

(naturality). If a e Fr | = we may write g(a) for
gr\s(a)- Naturality then readsg(a)fA|4, = 9(a|"r |E)-

As any category of presheaves, the category N is bi-
cartesian closed, that is, supports the interpretation of
the type formers T, x, =>, +, (and _L). If we denote the
interpreting presheaves with the same symbols thus writ-
ing e.g. F =>■ G for the function space of presheaves, we
have the following explicit constructions of the type for-
mers in Sets M

op.

Tr|E
(FxG)r,H

(F + G)r\E

(F=i>G)r|E

= «)}
= Fr 1E x Gr 1
= Fr 1E + G
= M(X(-,T\E)xFG)

However, as we mentioned in the introduction, we
are not able to obtain normal forms by inverting this
presheaf interpretation. Instead we shall consider the in-
terpretation of terms in the category of sheaves over a
certain topology, and show that this can be inverted.

Recall that the basis of a Grothendieck topology is
a collection of basic coverings, satisfying the axioms
of identity, transitivity, and stability [MM92, p.l 11]. A
covering of an object T | E in A^ is here a family of ar-
rows with codomain T | E. Since the category M does
not have pullbacks in general, we use a modified axiom
of stability [MM92, p.156]. Moreover, like [FS99] we

only require that the identity is a singleton covering, not
that all isomorphisms are coverings.
Definition 5.1 The basis K for a Grothendieck topol-
ogy on M is inductively generated by the following
clauses:

• The identity covering containing only the arrow
lr 1 s is a basic covering of T | E.

• If T l-NE s : Ao + Ai and s is not mentioned in
E, and if the family of projections from (Ti | Ej),
forms a basic covering of T,x0 : Ao|E,s = to{xo)
and the family of projections from (Tj \ Ej)j forms
a basic covering of T, x\ : Ai |E, s = L\ (XI), then
the disjoint union of the projections from (Ti | Ej)i
and (Tj | Ej)j forms a basic covering of T \ E.

The general concept of sheaves for Grothendieck
topologies need not be presented, since it here spe-
cialises to the following rather digestible definition:

Proposition 5.2 A presheaf F is a sheaf for K iff
wheneverT \ E is covered by T,x0'-A0 | E,s=io(xo) and
T,xi:Ai\E, s=n (xi), that is, T hNE s : A0 + A\ and

/o G -FT,.T0:.4O|S,S=!O(ZO)

/1. G -Fr.ijiA] |E,s=M(zi)

then there exists a unique / £ Fr | E (called pasting)
such that

f\r,x0:Ao\E,s=L0{xo) = f°

f\r,xv.Al\E,s=Li(x1) = /l

The following result follows from general properties
of Grothendieck topologies and will therefore not be
proved, see [MM92] for an exposition.

Proposition 5.3

/. The terminal object in Af is a sheaf,

2. ifF, G are sheaves so is FxG (cartesian product),

3. ifG is a sheaf and F is a presheaf then F =^ G is
a sheaf (function space)

4. for each presheaf F there exists a sheaf aF (the
associated sheaf or sheafification) and a natural
transformation 7/ : F -> aF such that whenever
G is a sheaf and f : F -> G then there exists a
unique /' : aF -> G with /8«r? = /. In other
words, the sheaves form a reflective subcategory of
M,

5. The sheafification functor a preserves binary prod-
ucts.

307

6. ifF, G are sheaves the coproduct F + G is in gen-
eral not a sheaf, but a(F + G) is the coproduct of
F and G in the suhcategory of sheaves.

7.ifu,v:F-*G and F, G are sheaves then the
equaliser ofu and v is a sheaf.

We write T | E FNF t : A to mean that T hNF t : A
and, moreover, none of the neutral terms mentioned in
E is contained in Guards(f). Intuitively, this is because
no case split is ever needed for a guard whose value is
already known through the environment. Note that there
is no need to define T | E FNE t : A and T | E f-pNF t :

A, since all guards inside neutral and pure normal terms
include variables bound by A's. Hence the constraints in
E cannot affect t.

For a type A we define the presheaves XF(.4),
PNF(4), NE{A), Term(A) as follows:

NFMns = {t | r | H I-.XF * : -4}

PNF(.4)r|E = {t | rhPNFt:^}

NE(.4)F|H = {t | rhlNES:.4}

Term(.4)r,E = {t | F | E h r. : .4}/~h

where t ~h t' stands for T | E I- t = f : A.

Ha : A | <P -> T | E and T | E hNK t : A then
NE(,4)a(«) G NE(.4)A | y is defined by replacing each
free variable x in * by a(x). The morphism parts Tornv
and PXFff are defined analogously.

If« G NFr ,E(.4) then NF„(f) is defined by first re-
placing each free variable x in t by rr(.r) and then plug-
ging in all the constraints mentioned in $ by repeat-
edly performing the following atomic restriction oper-
ation (an analogous operation appears in Ghani's thesis
[Gh95a] under the name "first and second residue").

Definition 5.4 Let t G XF(C)r)E and F hXE ,s :
A0 + A]. Then we define the restriction t[s:=ij(x,)}
oft to r, :r; : -4,|E, s=ij(x,) (along the projections) as
follows.

t[s:=t.j(x)] = tif.s-0Guards(r)

C(MU {*},(*,),)[«:=,,(*,)] = C^M,^^,^)

where C"f computes a normal form to be defined be-
low. Note that we cannot simply replace Cnf by C be-
cause the set of guards can become empty upon plug-
ging in a constraint, new redundancies may be created,
and the variable conditions may be violated. We de-
fine C"f(0,{*}) to be t and C(M U {s}.{tf)f) to be
6»((x0.C"l(M,(tf[^0])f)) (xt.C'^MAtj^))) s.

To compute S"{ (x0.t0) (xi.ti) s we first check
whether tt depend on x\ and arc different (see the
definition of redundancy). If not, we return r0(= <i), or
otherwise, we return C({s} U A/0 U Mi, tg), where

Mi = {Si e Guards^)!*,- i FV(.s,-)}

for i = 0,1, and the family tg is adjusted accordingly.

Proposition 5.5 d defines natural transformations
XF(.4) -» Term(.4), PNF(.4) -> Term(,4),
NE(/1) -> Term(,4).

If / : B(A, F) is a morphism in the free BiCCC B,
that is, a sequence of terms in type environment A, then
[t] >-> [ft] defines a natural transformation Tcrm(/) :
Term(A) -> Term(r). This makes Term(-) a functor

from B to .V preserving T and cartesian products.

Proposition 5.6 The presheaf Term(.4) is a sheaf.

Proposition 5.7 The presheaf NF(.4) is a sheaf and

is isonwrphic to the shcafification o(PNF(.4)) of
PNF(.4) with the embedding rj : PNF(.4) -> NF(.4)
given by r]r \E(t) = t.

If T h s : A0 + Ai, then the pasting of two normal
forms tt G NF(.4)r,:ri...li(H_s=li{Ti) is the normal form

<5"f(.7:0.r0)(.r1i1)seXF(.4)r|E.'

Let us write Sh(Ar) for the full suhcategory of .V
consisting of the sheaves. We know from Prop. 5.3 that
Sh(.\') is a BiCCC. Since the category Bo of sequences
of types and terms is a free BiCCC there is a unique
interpretation functor |-] : #„ -> Sh(.V), determined
by

XFi

Concretely, this functor is given by defining a canonical
BiCCC structure on Sh{.\').

6 Inverting the interpretation function
Wc will now define natural transformations

qA : [.4] -> XF(.4)
u-> : XE(.4) -> [,4J

in such a way that for a term F h c : .4,

nf(0=fqi?(W("!:(lr)))

will satisfy NF1:

• q° : XF(o) -> XF(r>) is the identity function.

u° : XE(o) -> XF(o) is the injection from neutral
terms to normal terms given by the obvious term-
formation rules.

• qT : T -> XF(T) is the constant function return-
ing the normal form ().

uT : XE(T) -> T is the constant function return-
ing the element () G T. (As before we use the same
signs for corresponding syntactic and semantic no-
tions.)

308

• qA°xAi = pairnf°(qA° x qAl) where pairnf :
NF(A0) x NF(Ai) -» NF(A0 X AI) is the unique
map satisfying pairnf(ti,t2) = (t\, t2) for pure
normal forms t\,t2- This map exists by Proposi-
tion 5.7 and the fact that a preserves products.

Proposition 6.1 In order to establish NF1, that is, e =
d(qA([e](u(lr))) for T h e : A we define a family of
subsheavesRA,S C [-A]r,s x Term(.A)r|E> suchthat

(i) For all a £ {A} and r h e : 4:

-A

r|:

oi?^|He=»r|Ehd(q^H(a)) = e

Let 6 G \A =* B]r|s = AA(Af(-,r|E) x (») ßra/Zs e NE(A)r

M], [£]). Then
Ur|3(a)Är|Sd(s)

where <r is the projection from T, x : A\E to T | E.
Here Anfa;.C(M, (x\ ... xn.tj)j) is obtained by di-
viding M into two sets, Mo which contains the
guards which do not depend on x, and Mi, which
contains the guards which do. Then we return

C(M0, (xi ...x„0.Ax.Cn (Mi,(xi. ..ini.t/0u/i)/i))/o)

Compare also example 1 in 3.1.

Let s G NE(A =S> B)r|s- Then u£j|B(s) G
[A => B]r 13 is defined by

(ufJ||B(s))A|*(ff,0) =

u£|lt(NECT(S)(qA^(a)))e[i?]A^

where a G Af(A | *, T | S) and a € [AJA | ^.

^o-Mi is the unique map (arising from the coprod-
uct property of IA0 + Ai}) satisfying

q^+^(^h(a)) = tS
f(q^(a))

qAo+i4l(i;h(6)) =t?f(qi4l(6))

Here t0
h> 4ih are tne coproduct injections in Sh(Af)

and tgf : NF(A0) -> NF(^0 + Ai) is the unique
map satisfying tgf (t) = t0(i) for pure normal form
t: A0. Similarly for t"f.

To construct

UA0+A1 e NE(ylo + M) ^ ^ + Aij

considers 6 NE(^40+^i)r| ~: eithers = t0(x) G
E in which case we put /r|=(s) = toh(ur?_(a;)),
or s = ii{y) G S and we put fr\s(s) =
t|h(upfH(y)), or s is not mentioned in E in which
case we define /r | =(s) as the unique pasting of

d_£f ,sh/ a0 = t;

Oi 4if ,sh,
r,x:Ao | E,s=t0(z)
.^1

'l vur,x:Ai |s,s=n(i)

It follows by straightforward calculations that all these
are indeed natural transformations.

We can extend R to type environments by letting
(ai,... ,a„) i?£|H (/i,... ,/„) iffaii?p]E /j for 1 <
i < n, where r = x\ : A\,...xn : An. Similarly, we
can extend q and u to type environments as well.

Proposition 6.2 (Logical Relations Lemma) //
r h e : C and a R^ , - / then

lej(a)R^Be[f/xl

where x are the variables in T.

Theorem 6.3 The equational theory BiCCC is decid-
able.

Proof. The above shows that the normalisation function
nf satisfies NF1, because by (ii) and d(lp) = lr, we
know that

uF(lr)i?Flr

Hence by Proposition 6.2, we know that

lej(ur
r(lT))RAe

Hence, by (i) (cf. Remark 4.3)

rhd(nf(e)) = d(qA([e]K(lr))))=e

As we pointed out in the introduction NF2 holds auto-
matically, and hence it follows that

r h ei = e2 <=> nf(ei) = nf(e2)

This yields a decision procedure since equality of nor-
mal forms is decidable. (Note that when writing the al-
gorithm we represent the finite set of guards as a list
or a tree, so that normal forms are only unique up to
the ordering of the guards.) Furthermore, the interpre-
tation in Sh(J\f) as well as the definition of q,u are
clearly algorithmic. In fact, the whole development can
be formalised in extensional Martin-Löf type theory us-
ing standard methods for formalizing category theory
in Martin-Löf type theory. This would be one way of
demonstrating explicitly that all functions we construct
by abstract mathematical means are computable. Ü

309

References
[AHS95] T. Altenkirch, M. Hofmann, T. Streicher,

Categorical reconstruction of a reduction-free
normalisation proof, Proc. CTCS '95 Springer
LNCS 953, 182-199.

[AHS96] T. Altenkirch, M. Hofmann, T. Streicher,
Reduction- free normalisation for a polymor-
phic system, 11th Annual IEEE LfCS Sympo-
sium, 1996,98-106.

[AC98] R. M. Amadio, P-L. Curien, Selected Domains
and Lambda Calculi, Camb. Univ. Press, 1998.

[BBSSZ98] H. Benl, U. Bergcr, H. Schwichtenberg,
M. Seisenberger and W. Zuber, Proof theory at
work: Program development in the Minlog sys-
tem, in: Automated Deduction, W. Bibel and
PH. Schmitt, eds., Vol. II, Kluwer 1998).

[BES98] U. Berger, M. Eberl, H. Schwichtenberg Nor-
malization by evaluation, Prospects for hard-
ware foundations (NADA), Springer LNCS
1546, 1998, pp. 117-137.

[BS91] U. Bergcr and H. Schwichtenberg, An inverse
to the evaluation functional for typed A- cal-
culus, 6th Annual IEEE LICS Symposium, 1991,
203-211.

[CD97] T. Coquand and P. Dybjer, Intuitionistic Model
Constructions and Normalization Proofs, Math.
Structures in Compter Science 7, 1997, 75-94.

[CDS97] D. Cubric, P. Dybjer and P.J.Scott. Normaliza-
tion and the Yoncda Embedding, Math. Struc-
tures in Compter Science 8, No.2, 1997, 153-
192.

[Da96] O. Danvy. Type-directed partial evaluation,
POPL'96, ACM Press, 242-257.

[Da98] O. Danvy. Type-directed partial evaluation. Par-
tial evaluation, Practice and Theory, Proceed-
ings of the 1998 DIKU Summer School, Springer
LNCS 1706, 367-411.

[DiCo95] R. Di Cosmo. Isomorphism of Types: from X-
calculus to information retrieval and language
design, Birkhäuscr, 1995.

[Do93] D. Dougherty. Some lambda calculi with cat-
gorical sums and products, RTA5, Springer
LNCS 690, 1993, 135-151.

[DS95] D. Dougherty and R. Subrahmanyam, Equality
between Functionals in the Presence of Coprod-
ucts, Inf. & Comp. (to appear). Prelim, version
in: 10th Annual IEEE LICS Symposium, 1995,
282-291.

[FilOl] A. Filinski, Normalization by Evaluation for the
Computational Lambda-Calculus, to appear in
the proceedings of TLCA 2001.

[FS99] M. Fiore and A. Simpson. Lambda Definability
with Sums via Grothcndicck Logical Relations,
TLCA'99, Springer LNCS 1581.

[Gh95a] N. Ghani, Adjoint Rewriting, PhD thesis,
LFCS, Univ. of Edinburgh, Nov. 1995.

[Gh95b] N. Ghani, /?7?-equality for coproducts. TLCA
'95 Springer LNCS 902,1995,171-185.

[GLT89] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and
Types, Cambridge Tracts in Theoretical Com-
puter Science 7, 1989.

[JGh95] C. B. Jay and N. Ghani, The virtues of eta ex-
pansion, Journal of Functional Programing, 5,
no.2, 1995,135-154.

[LS86] J. Lambek and P. J. Scott. Introduction to
Higher Order Categorical Logic, Cambridge
Studies in Advanced Mathematics 7, Cambridge
University Press, 1986.

[MM92] S. Mac Lane, I. Moerdijk. Sheaves in Geome-
try and Logic, Springer-Verlag, 1992.

[ML75] P. Martin-Löf. An Intuitionistic Theory of
Types: Predicative Part, Logic Colloquium '73,
North-Holland, 1975.

[Mit96] J. C. Mitchell. Foundations for Programming
Languages, MIT Press, 1996.

310

Strong Normalisation in the 7C-Calculus

(Extended Abstract)

Nobuko Yoshida * Martin Berger * Kohei Honda

Abstract

We introduce a typed 7t-calculus where strong normali-
sation is ensured by typability. Strong normalisation is a
useful property in many computational contexts, including
distributed systems. In spite of its simplicity, our type dis-
cipline captures a wide class of converging name-passing
interactive behaviour. The proof of strong normalisability
combines methods from typed ^.-calculi and linear logic
with process-theoretic reasoning. It is adaptable to systems
involving state and other extensions. Strong normalisation
is shown to have significant consequences, including
finite axiomatisation of weak bisimilarity, a fully abstract
embedding of the simply-typed X-calculus with products
and sums and basic liveness in interaction.

Strong normalisability has been extensively studied as a
fundamental property in functional calculi, term rewriting
and logical systems. This work is one of the first steps to
extend theories and proof methods for strong normalisabil-
ity to the context of name-passing processes.

1. Introduction

Background The formal study of types in programming
languages and computational calculi has led to the under-
standing that types can ensure a wide range of desirable
computational properties, ranging from error-free execu-
tion to logical specification of program behaviour. One im-
portant property in this context, widely found in typed X-
calculi, is strong normalisation (SN), which says that com-
putation in programs necessarily terminates regardless of
evaluation strategy. This is interesting from a logical view-
point especially because, by the correspondence between
proofs and programs, SN of certain ^.-calculi implies con-
sistency of the corresponding logical systems. For this rea-

* Department of Mathematics and Computer Science, University
of Leicester, UK. E-Mail: nyll@mcs.le.ac.uk. 'Department of
Computer Science, Queen Mary, University of London, E-Mail:
{martinb, kohei}@dcs.qmw.ac.uk. Partially supported by EPSRC
grant GR/N/37633.

son functional calculi and logics have been the main focus
in the study of strong normalisability so far.

The significance of SN is, however, not limited to this
traditional setting. SN is also interesting in the context
of communicating processes. As an example, consider a
distributed client-server interaction: when a client requests
some service, s/he may naturally wish the computation on
the server's side to terminate and return an answer. SN
is thus a basic requirement for, say, interaction between
banks and their customers. As another example, the re-
source preservation guaranteed by SN has been one of the
main reasons for Gunter and his colleagues to develop their
typed programming language for active networks (PLAN)
[15,33] on the basis of a simply typed ^.-calculus. Such
languages require primitives for communication and con-
currency. This suggests a systematic effort to extend the
accumulated theories of functional SN types to the realm of
interactivity is a worthwhile endeavour.

We are thus motivated to reposition and study strong
normalisability in the context of process theory. In par-
ticular, is there a basic typed process calculus in which
strongly normalising functional calculi are faithfully em-
beddable? By faithful, we mean that typability of the en-
coding automatically ensures strong normalisability of the
source calculus. More ambitiously, can we obtain exact se-
mantic correspondence, including full abstraction and full
completeness? Obtaining affirmative answers to these ques-
tions would not be of mere theoretical interest: as typed
^.-calculi offer a basic theory of procedure calls, a funda-
mental abstraction in programming, embeddability of SN
functional calculi would capture interactive behaviour pow-
erful enough to involve non-trivial procedural calls while
maintaining SN. Exploration of strong normalisability in
this broader context might also shed new light on typed
functional computation itself.

The present work is a trial in this direction, introduc-
ing a typed 7t-calculus in which the first-order strongly nor-
malising ^.-calculi are fully abstractly embeddable. The
type discipline simply adds the minimum form of causal
chains to the system introduced in [8] where we established
a fully abstract encoding of PCF. This small addition radi-

311
0-7695-1281-X/01 $10.00 © 2001 IEEE

cally changes the class of typable process behaviour, turn-
ing possibly diverging computation into a strongly normal-
ising one. As would be imagined by the embeddability
of typed ^.-calculi, the proof of SN is non-trivial, defying
naive structural induction. We adapt methods developed for
strongly normalising ^.-calculi [6,13,37], combined with
process-algebraic reasoning [8,30,32,36,40]. As far as wc
know, this is the first time a compositional principle for en-
suring SN has been established for name passing processes
with non-trivial use of replication. The proof method for
SN is applicable to extensions of the presented formalism.
In the following, we outline key technical ideas and relate
our work to the existing literature.

The n-Calculus Following [8], we use an asynchronous
variant of the rc-calculus [10,19]; computation in this cal-
culus is generated by interaction between processes.

x(y).P\x{v) —> P{v/y}

Here y denotes a potentially empty vector vi...v„, | de-
notes parallel composition, x(y).P is input, and x(v) is asyn-
chronous output. Operationally this reduction represents
the consumption of an asynchronous message by a recep-
tor. The idea extends to a receptor with replication

\x(y).P\x{v) lx(y).P\P{v/y},

where the replicated process remains in the configuration
after reduction. As a simple example of a process, first con-
sider the forwarder agent Fw(«/;)

Fv(ab)= !a(.v).£(.v)

which repeatedly inputs a value at a and outputs it imme-
diately at /;. As another example, the following is a client
which requests at a to have returned a value via a private
name c

ä(c)c(y).P

where ä(c)c(y).P stands for (vc)(ä(c) \ c(y).P) with (vr)
being a restriction operator. Using these agents, R below is
a simple but interesting example of livelock

R = Fv(aa)\ä{c)c(y).P

since R causes an infinite reduction sequence and the recep-
tor c(y).P waits forever for an answer at c. In an untyped
setting, R is equal to a(c)c(y).P up to asynchronous bisim-
ilarity, but the two are quite different regarding resource
consumption. The next example shows how subtleties arise
through new link creation of the 7i-calculus.

a{x).Fw(bx) \a{c)Fw(cb) \b

After a one step reduction via a, we obtain Fv(bc) | Fv(cb) | b
which exhibits divergence.

Type Discipline for SN The type discipline of this pa-
per is a simple refinement of [8]. Concretely, the system is
based on two central ideas:

• Linear types [12, 26, 27,40], which ensure that a chan-
nel is used exactly once for input/output and, for a
replicated channel, an input occurs exactly once and
output occurs zero or more times [8, 24,29, 32, 36].

• Action types with causality, where causality is repre-
sented by edges in a directed graph whose acyclicity
ensures the absence of circular dependencies [26,27,
40], Transmission of causality is controlled by a form
of cut elimination in action types.

Let us illustrate these points by examples. First, Fv(ab) is
typed as follows, assuming an appropriate environment V.

ThFw(ab)>\a->lb

Here \a -> '?/; indicates that the process repeatedly inputs
at a and then outputs at b. Cut elimination occurs between
input and output with the same name. For example, given
an appropriate base T, wc can type (® being disjoint union):

F h Fw(«i c) I Fv{a2c) | Fw(cb) t> !«r->?/> ® !ai->?/; ® !<—>?/>

r> !«(.v).(£(.v) \b(x)) | !fo(.v).(r(.v) |F(.v)) > (!„ -> ?<•) ® (!/>->•>,-)

We can detect a cyclic dependency such as Fw(ab) \ Fv(ba)
by looking at their types \a -> lb and lb -> ?« [20, 24.40].

Proving SN for the re-Calculus To prove SN for typable
processes, the first idea would be. in the light of the previ-
ous examples, to show that reduction steps follow a non-
circular ordering on free channels, e.g. the reductions of
Ti(v)\Fv(ab)\Fw(bc) proceed at a, b and c in this order, but
in Ti{v)\Fv(ab)\Fv(ba) arc repeated between a and b. How-
ever, due to creation of new links and replication of terms,
both crucial features of n-calculi, such reasoning is infeasi-
ble. at least in its naive form. Consider the process

!«(.v).(l(r,)|.v(v2)) \ü(c)Fv(cb) | lb(x).(ä{x)\ä(x)) (1)

which has type !«® lb. The process owns reductions first at
a. then at b, then at a again. Further, the number of redexes
increases exponentially in its course, but the computation
terminates. Such behaviour occurs when a process requests
the same resource more than once in an interaction, e.g. in
an encoding of the A.-term ?LVV:.((A\-)(V:)) [281. The diffi-
culty in analysing (1) can be seen by considering the fol-
lowing subterm of a one step descendant of (1).

(vf)(F(v,)|F(v2>|Fw(rA>)

It contains a chain !c- ->'?/;, which is difficult to determine
before c is passed. In fact, if we naively represent causality

312

incorporating bound names in (1), there is a circular chain
a —> c —> b —> a, although this cycle never arises in actual
interaction. How can we then prove termination? Simple
structural inductions would not be usable for the same rea-
son they do not work in typed ^.-calculi [6,11].

The idea we use is suggested by SN proofs for typed
^-calculi, due to, among others, Tait [37]. His method em-
ploys a semantic interpretation of each type [[a]] as a col-
lection of strongly normalising ^-terms, and shows that all
typable terms are indeed in these sets. A key step is to prove
that foe: G.M £ [[a -> TJ for each M : x (for which by induc-
tion M £ [[TJ), which means, by definition, (foc.M)N £ [xj
for each N £ [oj. But all semantic types have the prop-
erty that M{N/x} £ [xj and (foc.M)N —► M{N/x] imply
(foc.M)N £ |T], hence we have only to show M{N/x} £ [[xj.
To be able to do this we strengthen the induction hypoth-
esis M 6 [xj to M 6 [[xjp for each environment p, map-
ping each variable of type a to some term in [[a]. Now
the result is immediate. While we cannot use an identical
framework due to the different nature of reduction in the
Jt-calculus, a similar technique works "for the induction to
go through". A key observation concerns the close corre-
spondence between the substitution M{N/x} and the con-
sumption of a message x(v) by a replicated process \x(y).Q.
Thus, at each induction step, we prove that P\(R\\...\R„)
converges for each possible "environment" R\\...\Rn which
complements P. Termination behaviour is calculated via the
extended reduction suggested by strong bisimilarity (which
does not change termination) together with replication the-
orems [8, 30,36]. Then acyclicity in causality yields strong
normalisation.

Summary of Contributions The following summarises
main technical contributions of the present work. (3) solves
an open problem in [28] for the simple type hierarchy.

1. Introduction of a typed rc-calculus where strong nor-
malisability is ensured by typability. SN has signifi-
cant consequences for the calculus, including the finite
axiomatisation of the weak bisimilarity and the basic
liveness in interaction.

2. Establishment of strong normalisability of typable pro-
cesses combining ideas from traditional SN proofs for
typed X-calculi with process-theoretic reasoning.

3. Embedding, using Milner's encoding [28], of the
simply typed X-calculus with sums and products
(X_>.iXi+) into our typed 7t-calculus. The embedding
is fully abstract w.r.t. the observational congruence of
X._>iXi+, justifying all commutative conversions and in-
equations [13] and automatically leads to SN in the
source calculus.

Related Work Strong normalisation in typed ^.-calculi
has been studied extensively in the past; detailed surveys

can be found in [6,11]. Abramsky extends the Curry-
Howard correspondence to linear logic [12] using proof ex-
pressions and proves SN [1], guiding our present usage of
acyclicity in names. This programme is taken further with
realisability semantics of linear logic in [5] where CCS pro-
cesses act as realisers. The operational structure of [5] fol-
lows his own rc-calculus encoding of proof nets [2]. The
appeal of realisability lies in treating semantics and syntax
uniformly on a logical basis. In the context of SN types for
the 7t-calculus, sharing of names and dynamic link creation
would make the framework in [1,5] hard to apply directly.
In contrast, the present work offers a possibly basic type
discipline that does not directly correspond to known log-
ical systems but is based on simple operational principles,
resulting in a new effective method to ensure SN for name
passing processes.

As our initial example of server-client interaction sug-
gests, SN in processes is closely related to liveness proper-
ties in interaction. Yoshida [40] presents a typed 7t-calculus
with a local liveness property. Kobayashi and his col-
leagues [23-26] propose several typing systems which en-
sure a form of liveness (in [25] time quotas are assigned to
communications for this purpose). Unlike the present work,
these and other preceding typing systems for 7t-calculus
[8,16,17,34,36] do not guarantee SN and the associated
liveness properties for processes involving non-trivial use of
replication. As a result, embeddability of, say, X_> in these
systems does not guarantee the SN of the source calculus in
these systems.

Structure of the Paper Section 2 introduces the syntax
and the type discipline. Section 3 proves the main result,
the strong normalisability. Section 4 presents the complete
axiomatisation of weak bisimilarity. Section 5 gives a fully
abstract encoding of A,_>iX,+ . Section 6 briefly outlines fur-
ther results. The technical details, including omitted proofs,
can be found in the full version [41].

2. Processes and Typing

2.1. Processes

Following [8], we use the asynchronous version of the 7i-
calculus [10,19] with bound output [35]. '

::= x(y).P input 1 P\Q parallel
1 *{y)P output 1 (vx)P hiding
1 \x{y).P replication 1 o inaction

The bound/free names are defined as usual and we assume
the variable convention for bound names. The structural
rules are standard except for omission of \P =\P\P and

'The full syntax includes branching, which is discussed in Section 5.2.

313

for incorporation of congruence rules making output asyn-
chronous [8].

x(z)(P\Q) = (x(z)P)\Q

x{z)(vw)P EE {vw)x(z)P

iffn(ß)n{2}=0
if w g {xz}

The reduction —> is generated by the following rules.

x(y).P\x{y)Q

\x{y).P\x(y)Q
(vy)(P\Q)
\x(y).P\(vy)(P\Q)

The relation is defined over processes modulo = and is
closed under parallel composition, restriction and output.

2.2. TVpes

Channel Types The following pairs of action modes [8,
20] prescribe how each channel is used in typed processes.

4- Linear input
! Replicated input

Linear output
Output to !

We also use _1_ to indicate the presence of both input and
output at a linear channel. p,q,... range over action modes.
For p ^ _L, we write ~p for the dual of p, a self-inverse map
on the action modes such that 4- =t ar)d T — ?. The modes
correspond to !|,?i, !m and ?u introduced in [8], except that
the present modes indicate true linearity for linear channels
(i.e. input and output occurs precisely once) and lack of di-
vergence for replicated channels.

Using action modes, we first define the set of channel
types: they are assigned to names and indicate how channels
would be used.

a ::= (x, T)

X ::= Ti | To

Xl

x0

(To)* I (To)'

(X:)T I (X:)"

In the first line f denotes the dual of x, which is the result of
dualising all action modes; md(x) indicates the (outermost)
action mode of T. A type of form (T,T), called a pair type,
is an unordered pair of mutually dual types.

Following [8] we only consider types where, in (T0)*,

each T, has mode ? (and dually for (Xi)^). This constraint,
which comes from game semantics, is not essential for SN
but simplifies presentation and proofs.

Action Types Channel types are assigned to free names
of a process to specify possible usage of names. Action
types, on the other hand, carry causality information [40]
and witness the real usage of channels. Formally, an action
type, denoted A,B,..., is a finite directed graph with nodes
of the form px, such that:

• no names occur twice; and

I*
tb

©

Id td
te _Lb

!a
?b

©

?d

.'e

Figure 1. Composition of Action Types

• edges are of the form !x —> ly or I x ->t y.

If px is in A and for no)' we have qy —> px, then we say x is
active in A. \A\ (resp. fn(/\), active(A), md(A)) denotes the
set of nodes (resp. names, active names, modes) in A. A\x is
the result of taking off nodes with names in x from A. Al+Iß
is the graph union of A and B.

Now define a symmetric partial operator 0 by: 1 © f=
_L, ? © ? = ? and ! © ? = !. Write A~B iff:

• whenever px G A and qx G B, pOq is defined; and

• whenever p\X\ -> p2
x2, Pixi ->• T^-*'.^ ••• , Pn*n ->

7?,r)|A'„;i in y4 l+f /? (/J > l),wehave,vi / x„.

Then A OB, defined iff A x B, is the following action type.

• px e \AQB\ iff either (1) px G \A\ and x g fn(ß) and
the symmetric case, or (2) qx G \A\ and rx G \B\ and
p = qQr.

• px ->• qy in A 0 B iff both (1) px,qy G \A 0 B\ and (2)
px = nz\ ->r2Z2,r2Z2^rT,Z},... ,r„z„->r„+lzn+\ =
qy\nA\ilB(n > 1).

We can easily check that 0 is a symmetric and associative
partial operation on action types with unit 0.

Example 2.1 Figure 1 shows examples of composition be-
tween action types. In the linear case, ordering from/to node
b disappears. On the other hand, in the replicated input
case, we need to keep the original ordering because \b{y).P
remains persistently. We can write down these examples
syntactically as follows (shared ?-nodes are duplicated in
syntax): 1 a -> (| b® t c)Q I b -> (t d® f e) =1 a -> (t
c© t do t e) ® lb, and \a ->• (?/;©?c)0 \b -> {ld®le)
= !o^ (?c©?J®?f)©!/?-> (?dO?e).

2.3. Linear Typing

We are now ready to present the typing rules. Sequents have
the form T h P t> A where V is a finite map from names to

314

(Zero)

rhOoO

(Par)

r\-Pj>Aj (/=i,2)
AixA2

r\-pl\p2>AlQA2

(Res)

Tx: cchP>A
px€ \A\ with pe{±,\}

T\- (vx:a)Pi>A/x

(Weak-_L)

rhx:|,T
r^p>A-x

r\-p\>A®±x

(Weak-?)
Thx:?
r\-Pt>A'x

r h P > A <g> ?x

(In4-) (C/y=ti4(8i?B)
r h x: (x)4

r-j:thPt>Cv

rhx(y:x).Pi>(.|.x->A)<g>B

(Out4) (C/y=A^x)
rhrp)t
r-j:xhPi>C

(ln!) (C/y = U)
Thx:(x)'
r-y:xh P>CX

r\-x(y:x)P\>AQtx rh!x(y : x).P> !x-M

Figure 2. Linear Typing Rules

(Out7) (C/y = Ax?x)
rhx:(x)?

r-y:x>P>C

r h jcfj: x)P > A © ?x

channel types, called a /rase. The typing rules are given in
Figure 2. The following notation is used.

A/x A\x such that x; E active(A) for each x,-
pA A such that md(A) = {p}
A'x A such thatx^fn(A)

Further, px —> A adds new edges from px to active nodes in
A, A®B (resp. T-A) denotes the disjoint union of A and B
(resp. r and A), and T h x : T denotes either x : x or x : (x,x)
is in T. The sequent r h P > A is often abbreviated to V h P.

We briefly illustrate the typing rules. In (Par), "x" con-
trols composability, ensuring linearity of channels, and pre-
vents circular dependency. In (Res), we do not allow -f, ?
or ^-channels to be restricted since they expect their dual
actions to exist in the environment (cf. [8, 17,20,26]). In
addition to recording causality, (In4) ensures that x occurs
precisely once (by C'x) and that no free input is suppressed
under the prefix. (Out4) also ensures that x occurs precisely
once but permits suppression by the prefix since output is
asynchronous. (Irr) is the same as (In4) except that no free
f-channels are suppressed (if a ^-channel is under replica-
tion then it can be used more than once). (Out7) and (Weak-
?) say that ?-channels occur zero or more times and do not
suppress actions.

Example 2.2 • A copy-cat copies all information from
one channel to another [4,22]. We show, step by step,

how [M ->• x]x =\u(a).x(b)b.a, the copy-cat from u to
x, can be typed. Let x = (()4)!, r = a : ()4 • b : ()4 •
«:x-x:x. Then: (l)rhO>0, (2) T h ä> | a, (3)
r h b.a> I b ->t a, (4) T\b h x(b)b.ä > ?x® t a (by {I
b ->f a)/b =t a) and finally (5) T\ab \-\u{a).x(b)b.a >
\u -> ?x (by (?x® t a)/a = ?x).

• Letcc= (04, ()4) andT = a:a-b:a-c:a-d:a. Then
T\-a.{b\c)> la_-+ {tb®^c) andT\- b.d> lb^>td.
By(Par)>n-a.(fc|c)|^>4.a->(tc®t^)i8>J-fc>and
by (Res), rI- (vb)(a.(b\c) \b.d)> la^(1;c®td).

• LctT = x: (x,x) -y: (x,x) ■ z: (x,x) andx= (()4)!. Then
the connection of two links (copy-cats) is typed as:

r I- [x -> y]T | [>■ -> z]T > (!x -». ?Z) ® (!y -> ?Z)

with (!x -> ?)■) ©(!)■-> ?z) = (\x ->■ ?z) ® (!j ->■ ?2).
However, [x -» x]T and [x ->• _y]T | [)• -» x]T are untypable
under any environment by the side condition Cx in
(In) and by definition of x, respectively.

Next we list two properties of name usage in typed pro-
cesses. Acyclicity becomes crucial in our SN proof later.

Proposition 2.3 Let V h P > A.

i. (linearity) If px e A SMCA r/?ar /? e {J.,t>!}. ?/ze" x oc-
curs precisely once in P.

ii. (acyclicity) G(P) denotes a directed graph s.L: (l)
nodes are fn(P); and (2) edges are given by: x rv y iff
P = (v?)(ß|P) such that Q~x(w).Qo orQ = lx(w).Q0

where y occurs free in Qo, x <£ {z} and y $. {zw}. A
cycle in G(P) is a sequence of form x rxy\... rxyn rxx
(n > 0) with yi ^ x. Then G(P) has no cycle.

Some notation which we use later:

>*Q-H. • Pi^Q U P

• Pij-U 3Q.P Jj Q. Further, P ft U V« e N. P ■
• SN(P) U

def

^11-

• CSN(P) m. SN(P)A(P^ß,,2=>ßi=ß2).

Proposition 2.4 Lef T K P t> A.

i. (subject reduction) //P —>* Q then T h Q > A.

ii. (one-step confluence) If P —> Qx (i =1,2) with Q\ ^
02 then there exists R s.t. Q, —> R (i = 1,2).

315

iii. (determinacy) (]) P—> f andSN(P') imply SfM(P).
(2) P Ü, Qi (i =\,2) imply ß, = Qi- And (3) P J|

<S> SfM(P) <£> CSN(P).

(i,ii) is proved as in [8]. (iii) is standard [1] all using (ii).

3. Strong Normalisation

This section proves the following result.

Theorem 3.1 (main theorem, strong normalisation)
r\-Pt>A => CSN(P)

A few significant consequences of the theorem will be dis-
cussed in Sections 4, 5 and 6. In the proof, we first intro-
duce the extended reduction relation i->, which eliminates
all cuts (mutually dual channels) in a typed process. Next
we define semantic types [[r,/\]], which arc sets of typed
terms that converge when composed with all necessary "re-
sources" (i.e. complementary processes). Finally we prove
that each typablc process is in the corresponding semantic
type. This part is divided into two stages. We start with
show all normal forms to be in their semantic types. Then
we establish that each typable process combined with re-
sources always reaches a normal form, which implies the
strong normalisability of —>. In the second stage acyclic-
ity (cf. Proposition 2.3) becomes crucial.

3.1. Extended Reductions

Definition 3.2 (extended reductions) We define n-i, H->r

and H->g as the compatible relations on processes modulo
= respectively generated by the following rules.

C[x(y)P}\x(y).Q
C[.v(y)P]|!.v(y).ß

(v.v)!.v(j).e

|->i

>->o

C[(vy)(P|ß)]

C[(vy)(P\Q)}\
0

!.v(v).ß

del" Here C[] is an arbitrary context not binding x. Then
(i—>i U I—>r U t->9) is the extended reduction relation.

The idea of H-> is to capture known process-algebraic laws
as one step reductions: H-»I, i~>r and >->g correspond to the
ß/lincar law [16, 17,26,40], the replication law [8,32,36]
and the garbage collection law, respectively. Immediately
—>Ch->. P\),e, SIM(,(P) and CSN,,(P) are given as P J].,
SN(P) and CSN(P), using ^ instead of —>. A ^t-redex is
a pair of terms which form a redex for i-> in a given term.
We say process P is prime with subject x if cither P is input
with subject at x or P = x(y\ ..y„)n,G/P; such that each P,
is prime with subject y, where n,<T/P, denotes the parallel
composition of {P,},e/ (if / = 0 then n,e/P, = 0). We as-
sume all prefixed terms to be primes throughout the rest of
the section (which docs not lose generality up to =). NF,

is given by {r h P,P >/>}. Note that a process is in NF,
if it does not contain complementary input and output and,
moreover, it docs not have substantial hiding (i.e. a hiding
(VA)P such that x £ fn(P)). Thus we can see NF, is induc-
tively generated by the following rules up to = (implicitly
assuming typability):

• 0 G IMF,,

• P e NF, then x{y : x).P, \x{y : x).P, x{y : z)P G NF(,.

• Pi G NF(, (/ e / ^ 0), Pi is a prime, and Pj\Pj ft (/' ^ j)
then ri/e/P £ NF,.

Proposition 3.3 Let all processes be typed below.

i. Ifr\-P>A and P M- />' then F h P' t> A.

ii. (CR) IfP (->•* Qi then Q, ^>* R (i =1,2).

iii. (determinacy) If P ^ P' and SN,(P') then SN,(P).
ThusP^, iffSNc{P) iffCSN,,(P).

Note that the Church-Rosscr property is no longer one-step.
The proof proceeds by 'postponing' applications of i—>g.

3.2. Semantic Types

Semantic types arc provably strongly normalising typed
terms of some kind. Wc need some preliminaries.

• c{A) = ®/,,v,c.-t./.,,-{r,-.'}7J/-v'-
• Let A x B and A © H = C® 1.x where 1 £ md(C). Then

A-B = C.

By c(A). called the complement of A, we indicate the (type
of the) environment which gives complementary linear and
replicated inputs for all free output channels in A. A-B is
a "semantic version" of AQB, where wc forget inessential
±-channcls. Wc write r h A if modes in A conform to T.
Wc can now define semantic types.

Definition 3.4 The semantic type [[r, A]] of a pair T and A
such that V\- A, and the prime semantic type ((V, px)) for a
pair T and px such that T h px with /; G {4-,!}, are defined
by the rules in Figure 3.

In Figure 3, V and TUT respectively denote the result of du-
alising all types in V and the name-wise union of types. The
rules are well-defined since the height of types decreases
in effect. Note that we can always assume T in [[F, A}} is
paired, i.e. contains only pair types, with no loss of gener-
ality. Some observations:

Lemma 3.5

i. IfP £ [[r, A} then VhP>A and SN,,(P).

ii. [[r, A}} c [[r, A®BI Also [[r, A ® i.v]] = [[r, A}}.

316

IT, A}

«r, Ix))

def

def

def

{ThP>A \\fQe((r,c(A))).P\Q^eRe((Tur,A-c(A)))}

{x(y : x).P | P G [[r-j:f, ®p,y,]] with T hrfx)1 and p{ = md(T,-)}

((r, !*» ^ {\x(y :x).P \ PG \T-y:%, ®pm\ with Thx: (x)! and/>,• = md(x/)}
def

«r, ®ieiPiXi)) = {n,e/p | ^ e <(r, />,*,» (ie/)}

Figure 3. None-Prime and Prime Semantic Types

iii. Lef P h-> P'. T/ien P G [T, Aj ij^P' G [T, A]].

iv. Lef P, G ((r, p,x;)) (1 < i < n) such that X[,..,x„ are
pairwise distinct. Then n,e/P G flr, ®,7?,x,]].

For the proof of (i), we use P\Q JJ.e implies P tye and Q i$.e.
For (iii), "then" is trivial, while "if" is by H-> being CR. (iv)
is because c(®/?,x,) = 0 in this case.

3.3. Main Proofs

First we show that all (typable) normal forms are semanti-
cally typed. The difficult case here is output a(x)P to repli-
cation \a(x).Q because after reduction ä{x)P\ \a(x).Q —>
(vx)(P\Q)\ \a(x).Q,P may interact again with \a(x).Q. Our
formulation of semantic types based on i—>■ makes the induc-
tive augument possible.

Lemma 3.6 lfT I- P > A and P G NFe then P G [[r, Aj.

PROOF: By Lemma 3.5 (ii), it suffices to consider only min-
imum action types. For brevity we write P(px) (p G {!,!})
for a process in normal form in a prime semantic type. Also
throughout the proof we set in(A) = {a,} and fn(P) = {bj}.
The proof proceeds by induction on the structure of P. We
only list two cases, see [41] for the remaining cases.

(Inaction). By c(0) = 0, if ß G ((r, c(0))), then Q = 0.
Hence 0|ß = 0 JL. 0 G ((r, 0)) with c(0) -0 = 0, immedi-
ately o G [[r, 0j.

(Replicated Output). Assume P £ §T-y : x, C® ?xj with
C/y =t A <g> 1B~X. We have to show x(y : x)P G [[r, A <g>
P® ?*]]. First we note that c(A ® B® Ix) = c(C® ?x) =
(A®P®!x). Assume Qe {(T, Ä®P®!x)). W.l.o.g. we
can write Q =\x{y).Q'0 \QX\Q2 where \x{y).Q'0 G ((r, !*»,
ßi = n,-ßi,-(4.a,-> and ß2 = nfß2y(»,)- Then we have:

Wlß —> (vjO(^lßo) I !*Ö0-ßo I ßi 102.
By induction, P^ÖO-ß^ßilßz ^ P'|!x()0^|fi2 s.t. P' G
[r-y : T, ®/?<}'; J with pi = md(t,) G {!,J,}. Hence we can
write P' = nkRik(ut) \ Tlfaiiiw,) with {y} = {zw}. We also
note that Q'0 G ((F-y-.x, ®p,;y,)). Hence, by assumption,

(v^OC'lßo) ->* (v50(n//?2/<!*,)) -*S °

Now by CR, we have P | ß JL>(>0-ßo I 02 G ((T, P® !*)),
as desired. ■

Corollary 3.7 7/r h P > px G NFe w/f/i /? G {4,!}, then
Pe((T,Px)).

We can now establish the main lemma below: given the
Lemma 3.6, prefix and restriction become trivial, but paral-
lel composition causes problems. Even if \a.b and (ä | \b.c)
are in NFC, their composition (with environment !c.0) al-
lows reductions. How can we prove termination? The key
idea is to contract ^-redexes from the end of the order of
names c-r\ b-^ a as:

\a.b\ä\\b.c\\c.O ^r \aJ>\ü\ lb.0 | !c.O
h->r !a.O|ä|!fo.O|!c.O ^r !a.O j lb.0 | !c.O

This reduction strategy always terminates due to acyclicity
of names. Formally, we prove:

Lemma 3.8 (main lemma) Suppose T h P > A.
P\Q^eforeachQelT,c(A)}}.

Then

PROOF: By induction on the typing rules. (Zero) and
(Weak-J_,-?) are trivial. For the prefix rules, by induction
the body of each prefix converges, hence so does the whole
term. Then we use Lemma 3.6 again. (Res) is similar,
by Lemma 3.5 (ii). For (Par), suppose T h P; > A; with
(' = 1,2 such that A\ a A2 and let A — A\ ©A2. By induc-

tion hypothesis Pj JJ.e P[and P2 J|e P'2. Let P = P[\P'2. Then
P = ßi \..\Qn where each Q\ is prime. If/; = 0 there is noth-

ing to prove. Assume n > 0 and let X = {1,2,..,/?}. We
define the relation \ on X as follows:

def
i\j & 3x£in(Qi),y£ln{Qj).xrxy

Since i \+ j \+ i implies the existence of a cycle x rx+ x
in the sense of Proposition 2.3 (ii), * is a partial order on
X. We now define a series of sets X\ ,X2,.. as follows, writ-
ing max(y, <) for the set of maximal elements of a partially
ordered set Y.

Xi =max(X,V) X/+,=fmax(X\U 1<7'<' *,V)

317

As X is finite, X\,..,X„, partition X for some m. Now let

Si = YljQXiQi for 1 < i < m. Then P = rii<,<mS; and S, £
NFt. for each i. Note the series S\,..,S„ is constructed so
that outputs in 5,-+i are always complemented by inputs in
Sj\Sj-\ |...|5i \R. Now let r h S, t> C, s.t. ©i<;<„,C; = /I and

let Ej = c(Ci) © Ci © .. © C,-_ i for 1 < i < AH. Then £,- =
c(C,) for each i. Note also £) = c(A) and £,„ = c(A) ©.4.
Choose any R £ ((r, c(A))). We now show, by induction on
1 < / < m + 1, that for some R, £ ((r, £/))

This proves the lemma when / = m + 1. For the base
case, take R\ = R. For the inductive step, assume P\R h->*
Nl<i<mSi\R[such that /?/ £ ((r, £/)). By Lemma 3.6
and by Si £ NF(, we know that St £ [[V, C/J. By £/ =
c(Q) = c(C|)©Ci ©...©C,_i, this implies Si\R, tye R' £
((r, £/.,. i)). We can now set /?'=/?/+], as desired. ■

Theorem 3.9 (strong normalisability in H->) T h P \> A im-
plies CSN,,(/°).

By —>Ci~) and Proposition 2.4 (iii-3), we have now estab-
lished Theorem 3.1.

4. Characterisation of Bisimilarity

As a striking consequence of the strong normalisability of
typed processes, this section shows that weak bisimilarity
has a finite axiomatisation.

4.1. Typed Transitions and Typed Bisimulations

Typed transitions describe the observations a typed observer
can make of a typed process. Typed transitions are a proper
subset of untyped transitions while not restricting T-actions:
hence typed transitions restricts observability, not computa-

tion. First, untyped transitions P —> Q, with labels t, .x(v)
and x(y) arc generated by the following rules.

x(y).P^\p m (v)
x(z)P —> P \x{y).P ^4 P\ \x{y).P

The communication and contextual rules are standard ex-
cept for closure under asynchronous output.

P —>P' withfn(/)n{y} x(y)P A.vCv)/"

Typed transitions, written T\~ P —> V-y.T h Q, where y:x
assigns names introduced in / as prescribed by V, are gen-
erated as follows, cf. Section 4.2 and Appendix E of [8]:

r\-P-^r-y:x\- Q iff (1) T<r P>A, (2) P -A Q with
bn(/) nfn(r) = 0, (3) if Lx£\A\ then fn(/) ^ x, and (4) if
\x £ \A\ and active(/) = x then / is input.

Using typed transitions, we define bisimulations. Let us
say a relation over typed processes is typed if it relates only
processes with identical base and action type. A typed re-
lation is a typed congruence when it is a typed equivalence
closed under typed contexts, contains = and allows weak-
ening of bases in the standard way [8,32]. A typed relation
R is a weak bisimulation, or a bisimulation, if T h PRQ im-

plies: whenever F h P —> P1 then there is a typed transition

sequence r h Q => Q' such that PRQ, as well as the sym-

metric case. By replacing => with —>, we obtain a strong
bisimulation. If T h PRQ for some weak (resp. strong)
bisimulation R, we write r h P « Q (resp. r h P ~ Q). Fi-
nally, K (resp. ~) is called weak (resp. strong) bisimilarity.
The weak bisimilarity is often simply called bisimilarity.

4.2. Characterisation

Let <—> be the transitive, symmetric closure of H-> U =. Wc
now show that <—» completely characterises bisimilarity.

Definition 4.1

• The relation =' is the least congruence such that
=aC=', P\Q =' Q\P and (P\Q)\R =' P\(Q\R).

• The relation t> is the least typed prccongrucncc
containing =' such that P|0 E> P, (vjt)O \> 0,
(vx)(P\Q) > P\(vx)Q if x i fn(/>), x{y){P\Q) >
P\x{y)Q if fn(P) n {y} = 0 and (vz)x{y)P > x{y){vz)P
if^{-v,v}.

• P is in \>-normal form if P £ NF(. and P t> Q implies
P=Q.

Clearly >-normal forms arc representatives of NF(,, in fact
precisely those generated by the rules in §3.1.

Lemma 4.2 i. If TV- P>A then there is a t>-normal form
Q such that P ^* Q.

ii. Let P and Q be two typable t> -normal forms. Then
P^QiffP='QiffP^Q.

The proof of Lemma 4.2 uses Theorem 3.9. The key obser-
vation for the proof of (ii) is that >-normal forms are a class
of processes where trace equivalence, ss and =' (hence also
~ and =) coincide.

Theorem 4.3 (characterisation ofzz) (i) K> C «, H->* C «;
and (ii) <—> = K.

The proof for (i) essentially proceeds by showing RUid to
be a typed bisimulation where R is inductively generated by
the following rules:

C[x(y)P)\x(y).Q R C[(vy)(P\Q)}

C[J(.y)P]|Lv(y).e R C[(vj)(P|ß)] | \x(y).Q
{vx)\x{y).Q R 0

318

Here C[] is an arbitrary context not binding x.
To establish (ii), assume that P « Q. By Lemma 4.2 (i)

we can find t>-normal forms P„f and Q„f of P and ß re-
spectively such that P H->* P„/ and Q H>* ß«/. Hence by (i)
Pi/ ~ on/- But Lemma 4.2 (ii) implies that « restricted to
>-normal forms is contained in <—>, hence P H->* P„/-<—» Qnj
and ß i->* ß„/ which means P <—» Q, as required.

5. Fully Abstract Embedding of X,_>iX,+

5.1. The Functional Calculus

We use the simply typed X-calculus with products and sums
(^_>)Xj+ from now on) as a testbed for the expressiveness of
the presented calculus. We have chosen X_>)Xi+ because of
its rich type structures and non-trivial equational theory. For
simplicity we omit base types other than unit. We review the
syntax of types and terms below, with /ranging over {1,2}.

T ::= unit | T\ -» T2 \ T\ x T2 j T\ + T2

M ::= x\{)\Xx:T.M \{M,N)\n,{M)
| in,(yW) | case L of {iiii(.*;)-^/}/e{i,2}

We write M =a N for the cx-equality on terms. A term is
closed if no variables occur free.

The reduction relation, written -~>, and the typing rules
are standard [14, 31]. We write E h M : T when a term M
is typable with type T under a base E. We write C[]j : T'
for a (typed) context of type T' with one hole of type T. We
often omit type annotations from terms and contexts. We
write M|/V when M -w* N and N /». A normal form is a
term which has no further reductions.

Equality in ^->,x,+ is not as simple as it may look, due
to the existence of sums [12]. To have a semantically mean-
ingful equality, we use observation of "values", cf. [31].

Let true = ini(Q) and false = iri2(()), both of type
def

B — unit + unit. Then E \~ M =\ N : T when, for each
context C[]T ■ B such that C[M] and C[N] are closed, we
have [C[M] JJ. true <=> C[N] JJ. true). The same equality
is obtained by taking observability at each sum type, justi-
fying all commuting conversions and T|-rules.

5.2. The 7r-Calculus: Extension with Branching

The additional reduction rules are defined as:

*[&,■$•).fl] |*in;()v)-ß-

lx[&i(yi).Pi\\xiaj($j)Q-

Mj)(Pj\Q)

>\x[&im-Pi\\(vmPj\Q)

Then i-> is defined similarly as Definition 3.2. The linear
typing rules are given in Appendix A. All arguments and
results in the preceding sections carry over to the full syntax
without alteration.2

Let us say A is closed when md(/l) C {!,!}. Now write
r h P 4i when P JJ. (vy)(x±ni(z)Po\R) with x <£ {y} where
r h P t> A® t x with A closed. We then define =sn as the
maximum typed congruence such that if T h P =sn ß and
r h P 4 then r h ß JJ-i (cf. [21,40]). We use the following
two lemma about =sn, which is proved as in [8].

Lemma 5.1 (context lemma) Let V h Pj \> A (j = 1,2) with
r paired. Then Pi ^sn P2 iff: P\ \R ^ <£• P2|P tyjor each
T ■ x :\®\rf h R> B s.t. A ^ B.

5.3. Embedding and Full Abstraction

The encoding of Ä.->,x,+ is given in Figure 4. It adapts Mil-
ner's call-by-name encoding [28] to our type structure by
adding an indirection at each X-abstraction. The basic cor-
respondence result follows. Note that in the second state-
ment, there is an exact operational correspondence between
~» and H* : ~» is simulated by \-> directly, not up to some
semantic equality.

Proposition 5.2 Let E\~ M :T below with fn(£) — {y}.

i. E° -u:T°\- [[M : 7"]],, > \u -> ?y is well-typed.

ii. M -> M' => IM}}„ ^+ [A/'l„.

Corollary 5.3 ^->,x,+ is strongly normalising.

PROOF: By Theorem 3.9 using: if [[/Vi],, = [[N2]]„ with Nt

in normal form then N\ =a N2. ■

The above corollary offers a faithful computational embed-
ding of X_>iX)+: we now show that this also extends to se-
mantics. First, by Proposition 5.2 and Corollary 5.3:

Before the encoding, we extend the typed rc-calculus to its
full syntax [8] by incorporating branching. Branching is
necessary to represent sums in J,4|Xi+ and is also used for
defining a reduction-based typed congruence [21,40].

P

TO

\x{&j(yr.Ti).Pi] | lx[&i(yr.v).Pi] \xim(y:T)P
I [&,T,f I [&/T/V

3/T/l

Lemma 5.4 (computational adequacy) Let M : B be closed.
Then M JJ true iff [[M]]„ JJ, [[true]],,.

Corollary 5.5 (soundness) [£hM: 7"]],, ^sn [[E\-N: T\,
implies E\- M =\N :T.

-A minor change is Proposition 2.3 (i): for a t-channel, "precisely
once" becomes, under a branching input, "precisely once in each branch".

319

def
(Type) unit" 1Ü (()t)! (h ^ T2T = (T° (T^)'■ (7, x Ti

def

(Base) 0° =f 0
def

(E-x:T)° = E°-x:T

(Terms) (if T2 = T|2 =>7*22 then z = z\z2 else z = z)

llx:r]]„^'[«^.v]^

IMN : 7-2]]„ t
f !„(!).(v«W)([W : T^T2\)m | [[/V : r,]]„ | Arg(,™5>^;

IX» : T, .M : 7, => r2]]„ ^
f!M(.VZ).Z(,»)[[W : T2]}m

l(Mi,M2) : r, x r2]]„ =!„((•). r(,„,»,2)([[M, : 7,]],,,, | |A/2 : r2]],„;)

[[re, (M) : 7,]|„ =!«(?).(vm)(|W : 7, x 72]]„, | Proj, (mz)T<)

def ,
: unit !«(.»)..»

def,
[[inl(M): 7, + 72]]„ = !»(c).cinl(m)[[W : 7,]

[[case L of inl(.V|)W] or inr(.»2)A/2 : 7"]],,
def,

((777?)T) (7,+72)° = ([7-,oe7-2
0]t)!

def_. Arg(mnz)1'^1- = m{n'c')([n' -> »]ri | c'(«')-Con{«'z>r2)

Proj,(m?)r = m(e)e(v\ v2).Con(v,z)r

Sum(/c,(.v,)M,)r

^ /(Od&Mf-v-j.fvraXIW, : 7-]]„, | Con(m;)7'°))

Con(.rv)m,d^f.v(?)nM->.v1f

[, _> y]&,ft)' ^ .^(y,).?!^,)^^ -> v,,Fl

[x _^ y]*,(T,)' *Lf !,[&,K).yin,(Vi)ni/K/ -> vyF]

^\u(z).(vl)([{L: 7, + 72]]/|Sum<r5,(.v,)M,}7~)

Wc omit inr(A/) and TI2(/W). For the copy-cats of unary types we assume the indexing sets to be singletons

Figure 4. Encoding of X >iXjJ

For completeness, wc use a specific class of linear pro-
cesses. Let us say P is sequential [8] if it is typable by
the same system as Figures 2 and rules in Appendix A. aug-
mented with the scqucntiality constraint in Figure 1 of [8].
A key lemma for completeness follows.

Lemma 5.6 (sequential testability) Let E = y.S and
E" -n:T° h P„ t> !H <g> ?y (n = 1,2). Then Pt =sn P2 iff:

(njRj\Pi\Q)iyx o (n,7?,-|ft_|ß)4i (1 = 1,2)

/<-;r ear/i sequential y; : 5° h /?y t> ! v, «m/ sequential

u:T°,x: [®i,2]T h Ö t> ?H® t-V.

For the proof, wc use Lemma 5.1, and by assuming, via
Theorem 3.9, the context to be in NF,,, we obtain UjRj and
Q of desired types.

The final step is to show that each process with X ,jX|. -
types is translatable to a canonical normal form [4, 22]
(CNF) whose grammar is given below.

F ::= () I .v I Xx.F \ (FUF2) | in,(F) [

let () = z in F | let x - zF in F1

let (.v, v) = z in F | case x of {in, (A,)./•)}

Wc omit the typing and reduction rules. CNFs are translated
to X. >,x,+ -terms in the standard way without changing their
compositional behaviour, which wc write F° (see [41] for
definition). The range of this map exhausts all normal forms
of X.>iX](. We can now prove:

Proposition 5.7 (definability) Let E' -u : 7° h Pt> \u -> ?v
sequential with fn(E) = {y}. Then P =sn [[/*'°)]„ for some
£ h F : 7

The proof is by induction on the si/.c of sequential processes
under all X , , . -bases and types. We can now establish lull
abstraction.

Theorem 5.8 (full abstraction) £hM, =*x M2 : T iff
f;j-((:7

0h[[M, :7]],,Ssn[[A-/2:7]],,

PROOF: By Corollary 5.5. we only have to show the
'"then" direction. Suppose M\ ~-K M2 but \M\\, ^sn

jMi]],,. By the latter, take URj and Q as in Lemma 5.6

s.t. (vvH)(n/?7-|[[M,-]]((|Ö') 4, M«. (1 =1,2) with Q' =
\w(x).Q, bi = true and b2 = false. By Proposition 5.7,
we have F and F' s.t. (Xy.F'°x)M,F° JJ. b, (/ =1,2). which
contradicts Lemma 5.4, hence done. ■

6. Discussion and Further Work

Summary The present study is part of our quest to ar-
ticulate significant classes of computational behaviour us-
ing typed K-calculi. Previous work [8] introduced affine,

sequential types for the 71-calculus and established full ab-
straction for an encoding of PCF. Using causality between
names, the present text refines affine, sequential types into
linear types to ensure strong normalisability and full ab-
straction for X->JXIX. Figure 5 shows the relationship be-
tween these results.

320

PCF FA A,~+xFC
Aff+& + Seq Aff+& + Seq + -

Af'+&

Aff Aff +
determinacy SN

Figure 5. A Family of Affine/Linear Systems

• The addition of branching types is indicated by &, ->■
adds causality to action types, and Seq stands for the
inclusion of the sequentiality constraints used in [8].

• Determinacy, SN and sequentiality are properties guar-
anteed by each typing system.

• FC denotes full completeness of the embedding of the
corresponding ^.-calculus into the 7t-calculus (in the
sense of [3]), while FA stands for full abstraction.

For example, the linear typing system in § 2 corresponds to
Aff + —>, its branching extension in §5 to Aff + & + —» and
the sequential system in [8] to Aff + & + Seq. Note also that
the development in § 5 shows that our encoding is already
'almost' fully complete intensionally and indeed becomes
fully complete by quotienting with the observational con-
gruence. It is also notable that we could have used the call-
by-value encoding in [28] to obtain exactly the same result,
indicating the flexibility of the proposed calculus to encode
functional SN behaviour.

Liveness in Interaction A consequence of strong nor-
malisability is liveness in interaction: if a typed agent calls
another replicated typed agent and waits for its answer at
a truly linear channel x, then an answer is guaranteed to
eventually arrive at x, however complex intermediate inter-
action sequences would be. Below see § 5.2 for the notion
of closed action types.

Proposition 6.1 (linear honesty) Let T h x: (z)' be such that

md(t) =t- Suppose T h P o A with A closed. Then P

implies P' —>* —> where I is an output at y.

M P'

We can strengthen Proposition 6.1 by incorporating the pos-
sibility that the client itself interacts with the server towards

the eventual answer [18]. The central point of the present
liveness property is that, in spite of such nested, complex
webs of procedure calls, each client is still guaranteed to
receive an answer, strengthening preceding related type dis-
ciplines, cf. [24,25,40].

State and Non-functional Control It is an important sub-
ject of study to extend our typing system to allow incor-
poration of state and non-functional control. The resulting
calculi would be useful as a theoretical basis for the appli-
cation of SN in a wider realm. Such a formalism might
also be useful as a meta-language for logical systems with
e.g. non-deterministic cut elimination procedures.

So far we have verified that our proof method is also ap-
plicable to SN for first-order stateful processes, albeit un-
der a sequentiality constraint [8]. We foresee no fundamen-
tal difficulty in extending the results to concurrent stateful
computation, although the lack of the Church-Rosser prop-
erty would make reasoning harder.

Complex Causality The present work adds minimum
causality to the system in [8] to ensure SN of replicated
processes. However, our SN proof seems to be able to cope,
without significant change, with more complex causality re-
lations: for example, we could relax the channel type con-
straints and extend action types to finite graph structures be-
tween arbitrary linear nodes as in [40]. An even wider class
of SN interactions would be typable if we further allowed
edges of the more general form px —> qy, where p £ {4,t, ?}
and q G {!,|,t} (i-e- replicated and linear nodes can be
mixed). Diverse structures would be embeddable in such an
extension, including full proof nets [7]. The status of strong
reduction would become subtle in this setting, cf. [12].

Second-order and Other Extensions Can the presented
results be augmented to cover more expressive notions of
types studied in functional calculi? Adding recursive types
[29,39] easily leads to a system that is not strongly nor-
malising: for example, the encoding, following Figure 4, of
(Xx.xx) (Xx.xx) would be typable. Regarding second-order
types, our recent work [9] demonstrates that such extensions
coexist harmoniously with SN, as they do in the correspond-
ing functional calculi. In particular, the causality constraints
formalised in the present paper are sufficient to encode Sys-
tem F fully abstractly in the second-order extension of the
present system. Other, more refined type structures would
also be worth studying in the present context: the 7t-calculus
offers a natural habitat to SN typing systems for stateful, in-
teractive and mobile computation.

Game Semantics In game semantics, "winning strate-
gies" represent strong normalisation [3]. This representa-
tion ensures, essentially by definition, that composition of
two winning strategies will never go into infinite x-actions
(which would make the strategy partial). This extensional

321

representation of SN does not directly suggest concrete type
disciplines to ensure SN for mobile processes (although the
liveness property discussed in Proposition 6.1 closely corre-
sponds to the games-based characterisation of SN). On the
other hand, the present work may offer new ways to formu-
late the notion of SN in game semantics, where acyclicity
conditions are explicitly incorporated into game types.

References

[1] Abramsky, S., Computational interpretation of linear logic. TCS,
Vol. Ill (1993)3-57, 1993.

[2] Abramsky, S., Proofs as Processes, TCS, Vol. 135 (1994) 5-9, 1994.

[3] Abramsky, S. and Jagadeesan, R., Games and Full Completeness for
Multiplicative Linear Logic. JSL, Vol. 59, 1994.

[4] Abramsky, S., Jagadeesan, R. and Malacaria, P., Full Abstraction for
PCF, Info. & Comp. 163 (2000), 409-470.

[5] Abramsky, S„ Process Realizability, A Tutorial Workshop on
Realizability Semantics and Applications. 1999. Available at
web.comlab.ox.ac.uk/oucl/work/samson.abramsky.

[6] Barendregt. H.. Lambda Calculi with Types, Handbook of Logic in
Computer Science, Vol 2. 118-310, Oxford, 1992.

[7] Bellin. C and Scott. P.J.. On the Pi-calculus and linear logic. TCS,
Vol. 135, 11-65, 1994.

[8] Berger, M., Honda, K. and Yoshida. N., Sequentiality and the n-
Calculus. to appear in Prof. TLCAOI. LNCS, Springer, 2001. Avail-
able at www.dcs.qmw.ac.ukrkohei.

[9] Berger. M., Honda. K. and Yoshida. N„ Genericity and the 7t-
Calculus. To appear as a CS technical report. Queen Mary. Available
at www.dcs.qmw.ac.uk/"martinb.

[10J Boudol, G.. Asynchrony and the pi-calculus, INRIA Research Report
1702, 1992.

[11] Gallier, J. H., On Girard's "Candidats de Reductibilite", 123-203.
Logic and Computer Science, Academic Press Limited. 1990.

[12] Girard. J.-Y., Linear Logic, TCS. Vol. 50. 1-102, 1987.

[13] Girard, J.-Y., Lafont Y. and Taylor, P., Proofs and Types, vol. 7 of
Cambridge Tracts in Theoretical Computer Science. CUP, 1989.

[14] Gunter, CA., Semantics of Programming Languages: Structures and
Techniques, MIT Press, 1992.

[15] Hicks, M.. Kakkar, P.. Moore, J.T., Gunter. CA. and Nettles, S.
PLAN: A Packet Languaee for Active Networks. Proc. ICFPVS,
cf. [33],

[16] Honda, K„ Types for Dyadic Interaction. CONCUR'93, LNCS 715,
509-523, 1993.

[17] Honda. K., Composing Processes. POPL'96. 344-357, ACM, 1996.

[18] Honda, K„ Kubo, M. and Vasconcelos, V, Language Primitives and
Type Discipline for Structured Communication-Based Programming.
ESOP'9S, LNCS 1381, 122-138. Springer-Verlag. 1998.

[19] Honda, K. and Tokoro, M., An Object Calculus for Asynchronous
Communication. ECOOP9I, LNCS 512, 133-147, Springer-Verlag
1991.

[20] Honda, K. Vasconcelos, V, and Yoshida, N. Secure Information
Flow as Typed Process Behaviour. ESOP '00, LNCS 1782, 180-199,
Springer-Verlag, 2000.

[21] Honda, K. and Yoshida, N., On Reduction-Based Process Semantics.
TCS, 437-486, Vol. 151, North-Holland, 1995.

[22] Hyland, M. and Ong. L., "On Full Abstraction for PCF": I, II and III.
Info. & Comp. 163 (2000), 285-408.

[23] Igarashi, A. and Kobayashi, N., A generic type system for the pi-
calculus, POPL01, ACM, 2001.

[24] Kobayashi. N., A partially deadlock-free typed process calculus,
ACM TOPLAS, Vol. 20, No. 2, 436-482, 1998.

[25] Kobayashi, N., Type Systems for Concurrent Processes: From
Deadlock-Freedom to Livelock-Freedom, Time-Boundedness,
Proc. ofTCS2000, LNCS 1872, 365-389, Springer, 2000.

[26] Kobayashi, N., Pierce, B., and Turner, D., Linear Types and 7t-
calculus, POPL'96, 358-371, ACM Press, 1996.

[27] Lafont, Y, Interaction Nets, POPL90, 95-108, ACM Press, 1990.

[28] Milner, R., Functions as Processes. MSCS, 2(2), 119-146, CUP,
1992.

[29] Milner. R., Polyadic ir-Calculus: a tutorial. Proceedings of the Inter-
national Summer School on Logic Algebra of Specification, Markto-
berdorf, 1992.

[30] Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobile Pro-
cesses, Info. & Comp. 100(1), 1-77, 1992.

[31] Mitchell, J. Foundations for Programming Languages, MIT Press,
1996.

[32] Pierce. B.C. and Sangiorgi. D, Typing and subtyping for mobile pro-
cesses. L1CS 93. 187-215, IEEE, 1993.

[33] PLAN: A Packet Language for Active Networks, Switch-
Ware Project, University of Pennsylvania, available from
www.cis.upenn.edu/~switchware/.

[34] Quaglia, P. and Walker, D., On Synchronous and Asynchronous Mo-
bile Processes, FoSSaCS 00, LNCS 1784, 283-296, Springer, 2000.

[35] Sangiorgi, D. re-calculus, internal mobility, and agent-passing cal-
culi. TCS, 167(2):235-271, North-Holland, 1996.

[36] Sangiorgi. D., The name discipline of uniform receptiveness,
ICALP'97. LNCS 1256, 303-313, Springer, 1997.

[37] Tait. W.. Intensional interpretation of functionals of finite type, I.
J. Symb. Log, 32. 198-212, 1967.

[38] Vasconcelos, V, Typed concurrent objects. F.COOP'94, LNCS 821,
100-117. Springer, 1994.

[39] Vasconcelos. V. and Honda, K„ Principal Typing Scheme for
Polyadic TT-Calculus. CONCUR'93, LNCS 715, 524-538, Springer-
Verlag. 1993.

[40] Yoshida. N., Graph Types for Monadic Mobile Processes,
FST/TCS'16. LNCS 1180, 371-387, Springer-Verlag, 1996. Full ver-
sion as LFCS Technical Report, ECS-LFCS-96-350, 1996.

[41] The full version of this paper, MCS technical report, 2001-
09, University of Leicester, March, 2001. Available at:
www.mcs.le.ac.ukrnyoshida/paper.html.

A. Appendix: Typing Rules for Branching

(Bra!) (C,/y, = ?ß)
rKv:[&,f,j'
r-v,:T,h/>q-

(Sei") (C,/y,=/lx?x)

r>x:[e/x/]?

r-y,:T,i-/-[>c

r h .v[&,(y,: X,).P,] > !.v -> B V h xin(v,' : xi)Pi>A ©7x

(Bra^) and (Sel^) are defined similarly.

322

A symbolic labelled transition system for coinductive subtyping of F^< types

Alan Jeffrey
DePaul University

Extended Abstract

Abstract. F< is a typed X-calculus with subtyping and
bounded polymorphism. Typechecking for F< is known to
be undecidable, because the subtyping relation on types is
undecidable. F^< is an extension of F< with recursive types.
In this paper, we show how symbolic labelled transition sys-
tem techniques from concurrency theory can be used to rea-
son about subtyping for F^<. We provide a symbolic labelled
transition system for Fß< types, together with an an appro-
priate notion of simulation, which coincides with the existing
coinductive definition of subtyping. We then provide a 'simu-
lation up to' technique for proving subtyping, for which there
is a simple model checking algorithm. The algorithm is more
powerful than the usual one for F<, for example it terminates
on Ghelli's canonical example of nontermination.

1 Introduction

Symbolic labelled transition systems [11] have been used in
concurrency theory to provide finite-state representations of
infinite systems. They have been used to model-check sys-
tems with data dependencies, where the riiave state space
exploration technique would produce an infinite state space,
and so not terminate.

In this paper, we apply symbolic Its techniques to a new
problem area: that of deciding subtyping for polymorphic X-
calculi.

Subtyping and polymorphism. Curien and Ghelli's [5] F<
is a typed ^.-calculus with bounded polymorphism and sub-
typing. It is based on Bruce and Longo's [2] development of
Cardelli and Wegner's [3] Fun language.

The most interesting rule in F< is that for subtyping of
polymorphic types:

rhr2<7"i Y.X<T2^U1<U2 (Full F<
r h (VX < Ti. U\) < (VX < T2 . u2

This is a stronger rule than the rule used in Fun, which is:

T.X<T\-Ui <U2

r>(vx<7\t/i)<(vx<7.[/2;
(Kernel F<)

It is routine to develop an algorithm to check the subtyping
property of Kernel F<, but subtyping for Full F< has turned
out to be surprisingly complex. Curien and Ghelli [5] gave
an algorithm for checking subtyping, with a correctness proof
provided by Ghelli [7]. Later, Ghelli [9] showed that this al-
gorithm is not guaranteed to terminate. Pierce [14] showed
that Ghelli's example of nontermination can be generalized
to code a Turing machine, and so subtyping (and hence type-
checking) for F< is undecidable.

Subtyping and recursive types. Recursive types are a
common programming language feature, typified by ML's
datatype construct. Amadio and Cardelli [17] investi-
gated the relationship between subtyping and recursive types.
Brand and Henglein [1] reformulated subtyping in terms of
coinductive relations on types, which we will use here. The
coinductive presentation of type systems for subtyping in
the presence of recursive types has been used by Pierce and
Sangiorgi [16] for the n-calculus, Turner [20] for Pict and
Sewell [19] for a distributed 7t-calculus. A good introduction
is by Gapeyev, Levin and Pierce [6].

Ghelli [8] has investigated the relationship between sub-
typing, recursive types and polymorphic types, in the recur-
sive extension to F<, called F^<. He has shown a number of
surprising results: adding recursion to F< is not conservative,
and F^< does not satisfy the transitivity elimination property.
These results are for the inductive definition of subtyping,
however, where here we look at the coinductive definition,
which is much better behaved. Colazzo and Ghelli have pro-
vided an algorithm for deciding subtyping of Kernel Fp< [4]:
much of this paper is based on that algorithm.

Symbolic labelled transition systems. Labelled transition
systems are a form of nondeterministic automaton, where all
states are considered to be accepting states. They were pro-
posed by Milner [12, 13] as an appropriate model for con-
current systems. They have since been used to model higher-
order computation, for example Gordon's [10] Its model of
the simply-typed ^.-calculus.

0-7695-1281-X/01 $10.00 © 2001 IEEE
323

One problem with Its models is that they can produce in-
finite models of systems which should be finite-state. For
example, the process defined:

P = in (x: int);out {x+\);P

has transitions:

(P) —* (out (n + 1);P) ■ 1 (P)

for every integer n and so is infinite-state. Hennessy and
Lin [11] proposed using symbolic labelled transition sys-
tems as an appropriate finitary representation. A symbolic
Its includes free variables, so rather than having nodes being
closed processes, and edges labelled with closed expressions,
the nodes are processes together with their free variables, and
the edges are labelled with open expressions. For example:

(Fp)m(^(x:inthout(_v+l);p)out(fll)(A.:mthp)

Unfortunately, this system is still infinite-state, since the con-
text can grow unboundedly:

in (,v:int)
,v: int h out (,v+ \):P)

x: int./ : inthout (/+ \);P)

(h-P)

(A- : int h 7)

(x: int./ : int h P)

For this reason, symbolic techniques often work 'up to
garbage collection' where unneeded free variables can be re-
moved from the context. For example, the above process can
be given a finite symbolic representation as:

in (.v:int
v: inthout (,v+ \);P)

out (.1+1)

(.v:inthP)

Symbolic lts's have been used to provide finite-state repre-
sentations of systems that would otherwise be infinite-state.

Contributions of this paper. In this paper, we apply the
techniques of symbolic labelled transition systems to the
problem of subtyping F^. In particular, we:

• Give an alternative characterization of subtyping for
Fp<, as polar simulation for an appropriate symbolic Its.

• Use a variant of Milner and Sangiorgi's [18] bisimula-
tion up to method to give a sound proof technique for
subtyping.

• Provide an algorithm for finding an appropriate polar
simulation, if one exists.

• Show that the algorithm is partially correct: if it termi-
nates, it does so with the right answer.

• Show that the algorithm is strictly more powerful than
the standard algorithm for F<, and at least as powerful
as Colazzo and Ghelli's algorithm for Kernel F^<.

Acknowledgements. I would like to thank Benjamin
Pierce, James Riely and Peter Sewell for useful discussions
about this material. Donald Knuth's TrfX typesetting system,
Leslie Lamport et al.'s LTgX document markup language,
and Paul Taylor's diagrams package were used in the prepa-
ration of this paper.

2 The type system of F^<

In this section, we review the types system used in
Ghelli's [8] F/(<. There are some minor syntactic differences
between the types presented here and Ghelli's, but they are
equally expressive. We have added type constants such as int
and real to the language, to make examples clearer, they are
not required for any of the technical development.

Let K range over a finite collection of type constants, such
as int and real. The syntax of types is given:

T.U.V ::= T -> U | Top | K | VX < T.U \ yTX . T | X

Define \he free variables of a type as:

fv(7) = fv^(7")Ufv-(r)

where the polarized free variables are:

fv=(7->£/) = fv=(r)Ufv=(L/)

fv= (Top) = 0

fv^(K) = 0

fv=(VX<7.t/) = fv-(7)U(fv±(L/)\{X})

^(fj-X.T) = fv±(7')\W

fv+W = {X}

fv"(X) = 0

A type context is a sequence of variables with type bounds:

r.A ::= Xi<Tu....X„ <Tn

where we ignore the order of bindings. The domain of a con-
text dorn (T) is defined:

dom(X, <Tl.....X„<T„) = {XU...,X„}

324

When X e dorn (r) we define T(X) as:

(T,X<T){X) = 7

The well-formed context judgment r H o is defined:

rnr
-[X gdom(r)]

©ho r,x<ri-ol

where the well-formed type judgment T \- 7 is defined:

T\-T rhu rho rho r,x<T\-u

A well-formed relation on types ü(_ is a relation ^, on well-
formed types rhr such that if (Ti h TO ^ (T2 h 72)
then ri = r2. We shall often write r t= 7i ^ 72 when
(r h 71) ^. (r h 72). For example, the inductive subtyping
relation < gives a well-formed relation on types:

T\=T<U iff T\-T<U

We regard well-formed relations on types up to cc-
equivalence, so we can complete the diagram:

T\-T-*U ThTop T\-K Th\/X<T.U

T,X<T\-O r,x<Topi-r,
T,X<ThX Th/j+X.T

-[X0fv-(7),7^y]

(rhr) A {T\-U)

Y/X Y/X

(r h T') (r h i/')

as

(ri-r) ^

£

(rht/)

Y/X

(r' h r') ~ (r' h t/'

Note that we have required X to occur positively in 7 in any
recursive type p.+X . T, and that we cannot form recursive
types of the form /J+

X . Y. These restrictions do not limit the
expressive power of the type system, since for any T(X) we
can find T'(X,X') such that:

T(X) = T'(X,X)

X$fv-{T'(X,X')) X'#fv+{T'(X,X'))

then we can define:

fjX.T(X) = {l+Xi.T'iXufi^.T'iX^Xt))

and we can give a greatest fixed point semantics fov/jX .T as:

A well-formed relation on types ^ is sound for subtyping if,
for every instantiated subtyping rule:

r, H 7i < t/i r„ h Tn < U„

T\-T<U

we have:

if r, t= Tx %. U\ and ... and Y„ ^Tn%_ U„ then r t= 7 %, U

A well-formed relation on types ^ is consistent with subtyp-
ing if it is sound for subtyping, and whenever T \= 7 ^ U we
can find an instantiated subtyping rule:

n i- r, < [/, r„^,< £/„

/iX.y = Top ifX = y
y otherwise

Th7<t/

such that:
We define a-equivalence on well-formed types as (when
F^dom(r)):

Y/X
{T,X < £/ h 7) = (T[Y/X],Y < U h T[Y/X])

We assume an ordering K\ < K2 on type constants, for ex-
ample int < real. This is extended to an inductive subtyping
judgment ThTi <To defined:

r h 72 < 7, T\-Ux<U2

Th7<7 rh (7}->£/,) <(72-»£/2)

 K{ < K2

T h 7 < Top rhKx<K2

YhT2<Tx T,X<T2hUi<U2 ThT(X)<T

rh(VX<7i./7i)<(VX<72.C/2) ThX<7

r\-Tl[fa+X.Tl)/X]<T2 r h 7, < 72 [fr+X. T2)/X]
Th(p+X.Tx)<T2 TH7i <(^+X.72)

H 1= 7, ^ Ui and ... and r„ t= 7„ % f/„

Let the coinductive subtyping relation C be the largest rela-
tion consistent with subtyping.

Proposition 1 < is the smallest relation consistent with sub-
typing, and so < C C.

3 Motivation for the symbolic Its semantics for Fp<

This paper provides an alternative characterization of subtyp-
ing for Ffj<, using a symbolic labelled transition system. By
recasting coinductive subtyping as an Its, it is possible to use
existing tools from concurrency theory, notably Milner and
Sangiorgi's bisimulation up to technique.

The Its has well-formed types as nodes, and edges which
reflect the structure of the type. For example, the Top type
has no transitions:

(rhToP)^(r'h7')

325

and the type constants have transitions with their name:

(rhint) — (rhTop) (rh real) ^ (rhTop)

We can think of the subtyping relation as a simulation [13]
relation: if T is a supertype of U then any transition of T
must have a matching transition from U. For example we
can complete the following diagram:

(H real) A (h int) (h real) £» (h int)

relation > is a polar simulation if it acts as a simulation on
positive labels, and on negative labels we can complete the
diagram:

(n-r,) -A (n-7i>) (n-ro -£» (ri- 7*2)

as cr

(f i- r,')
<

(f h r/) ä (r' h- r2')

real as real real

(h Top) (h Top) ~ (h Top)

We define the 'matching transition relation' => formally
in Section 4, for the moment we will just say that it includes

but also includes:

real
(rhint) ==> (rhTop)

This notion of a 'matching transition relation' is standard in
process calculi, where it is used to define weak bisimula-
tion [13]. In general, a simulation > is a well-formed relation
on types where we can complete the diagram:

To cope with recursive types, we allow silent actions X, where
recursive types can silently unwind:

(r hn+x. r) .1 (r h T\JJ
+
X . T/x])

For example, if we define:

T = fi+X. int^X 1/=/i+r. int-» real->K

then we have a polar simulation for T >U, since we define
the matching transition relation to ignore x actions:

int) (hint)
dom dorn

(hinter)

fr i- 7-, (Fhr-o (rhL (n-7-.

as

(f h 7^ .,, (r'h7,') A (r'h^)

Function types have domain and codomain transitions:

dom cod

cod

— (h int —> real —> t/}

cod

(h7) —-*- (h real-»!/)

(hint^7) ä (h realst/)

(TV-T) (Tr-U) (hr) (he/)

Since function types are contravariant in their first argument
and covariant in their second argument, we introduce polar-
ity to labels: dom is negative polarity, and cod is positive
polarity. This is important when we consider the subtyping
relation, for example:

(h int —> real)

dom
cod

(h real -> int)

dom,

(h real)

(hint) ~ ((-real)

>

cod

(hint)

Note that after a dom transition, the subtyping relation is in-
verted, but after a cod transition, it is not. A well-formed

Since we are giving a semantics for types with free vari-
ables, we need to give variables transitions: they can either
announce themselves, or behave like their bound:

(I-hX)

(rhTop) (rhrpo)

For example, X < int N int > X since:

(X< int hint) «£- (X<inthX)

(X < int h Top) -Ö- (X < int h Top)

326

Finally, we are left with the meat of the problem: modelling If we define:
bounded polymorphism. Modelling Kernel F^< is not too
difficult, we just add transitions which reveal the structure of T„ = X0 < G, X\ < X0, ■ ■., X„ < X„_ i
a polymorphic type:

(rhVX<7\£/)
bound / \ VX<7"

Gn — VX„+1 <X„.-Xn+i

then r„ N Gn > Xn for every n since:

(rh-r) {r,x<T\-u)

For example, 1= (VX < int. int) > (VX < int. X) since:

(hVX<int.int)
bound

VAX int

- (hVX<int.X)
bound„

(X< int hint)

(hint) -Ö- (hint)
>

VAXint

(X<inthX)

In order to model Full /^<, however, we have to allow the
bound of a polymorphic type to vary. We do this by adding
an additional transition to the matching transition relation:

(rhvx<r.t/)=^> (r.x<v\-u)

For example, 1= (VX < int. int) > (VX < real.X) since:

>
(hVX < int. int) -

bound
V,Y<int

- (KVX< real.X)
bound

(hint) ~ (hreal)

VAXint

(X < int hint) (X<inthX)

In general, since bound is a negative label, it is easy to see
that the following diagram models the Full F^< rule for sub-
typing bounded polymorphism:

(ThVX< T2.U2)
bound

V",Y<7"-

(r.X <!->!-[/->

-jn- vx <Ti. ux;
bound

(r„ h Gn) *-
bound

(r„hx„)

vx„^<xn
bound

(r„+i h -iX„+i) —

dom

(r„+i hx„+i)

(rhxn)^(n-Top)
>

vx„+1<x„

(r„+i h -'G„+i)

dom

(r„+i h Gn+\)

(n-r2) -*• (rhr,)
>

VAX 7"-.

(r.x<r,h(y.

As a final example, we consider Ghelli's [9] example of non-
termination of the standard algorithm for f< subtyping:

G = vx.-,(vr <X.-K)

where we write -*T as shorthand for T -> Top, and VX . T as
shorthand for VX < Top. T. Ghelli's example is to verify:

Xo<CN(VX,<X0.-tfi)>Xo

In particular, T0 h G0 > X0, which is Ghelli's example. Note,
however, that in order to show this subtyping, we had to con-
struct an infinite simulation: we cannot just use this Its di-
rectly in a model checker to get an algorithm for deciding
subtyping of F^<. We will return to this problem in Section 5.

4 Definition of the symbolic Its semantics for F/J<

We now provide formal definitions for the material discussed
in Section 3. The syntax of positive labels a+, negative labels
a- and labels a are given:

a

a"

a

= T I dom I VX < T I X

= cod I bound

= a+ I a~

The symbolic Its — is defined:

{r\-T->U)

{ThT->U)

(rhx)

(rhVX<7\<7)

(rhvx<7\t/)

(FhX)

(rhx)

(rh H+
X.T)

dom

cod

K

bound

VAXT *-
X

x

x

(ri-r)

(T\-U)

(FhTop)

(n-7)

(T,X<T\-U)

(rhTop)

(rhr(x))

(rhr^+x.r/x])

327

The symbolic Its — is defined:

(rhr->i/)

(T\-T-*U)

(T\-K)

{r\-vx<T.u)

(rhvx <T.U)

(r>x)

(r>x)

(rh^+x.7)

(n-7-)

dom

cod

K'

bound
 ►-

vx<v

(ri-r)

(rh(/)

(rhTop) (when K < K')

(rhr)

(r,X<Vh£/)

(rhTop)

(r>r(x))

(rh-r^+x.r/x])

(rnr)

We write for the transitive reflexive closure of

(n-r) -^ ••• -^ (r'hr'j
(rhr) (f h r

a . . a . .
We wnte => for the transition -*- ignoring x actions 'on

the left', and similarly for

(n-7")=*- • -» (fhr') (rhr) fr'hr''

5 Motivation for polar simulation up to polarized
substitution

We have now given an alternative characterization of coin-
ductive subtyping of F^<, but this does not directly give us
any benefits. We can now use standard model-checking tech-
niques to check subtyping, but these only terminate when
they find a finite polar simulation. As the Ghelli's example
(discussed in Section 3) shows, we can construct types which
generate an infinite polar simulation.

In this section, we shall provide a proof technique based on
Milner and Sangiorgi's [18] bisimulation up to methodology,
which can be used to find finite representations of infinite
polar simulations. It is based on the requirement to find fi-
nite symbolic graphs for process terms in Hennessy and Lin's

work [11].

Polar simulation up to garbage collection. Define the
garbage collection relation on well-formed types as discard-
ing unused type variables, for example:

(X<int.r <realhX) ^^ (X<inthX)

We can use polar simulation up to garbage collection to pro-
vide finite proofs of subtyping. for example if we define:

7" = /i+X.VK<int.X t/=/rX.W<real.X

then we have a finite proof that h T > U given by:

(rh7)=> (r'b-r (rhr)=^> (r'r-r)

A polar simulation 'J[_ is a well-formed relation on types such
that we can complete the diagram:

(rhr,) ~ (rhr.) (n-r,) *^ (n-7"2)

as a-

(r'y-Tl)

where we write 9(^ for:

(V h 7",') -^ (f' h T{)

{ThT)'Ji(rhU) {ThT)'Ji{r\-U)

(VhT)'JC {Vhu) (r\-u)%r{r\-T)

Let > be the largest polar simulation.

Proposition 2 > is a pre order.

Proposition 3 TtT >U iffTtU SIT.

which provides us with a finite representation of the proof
that h T > U. Polar simulation up to garbage collection is
a sound proof technique, but it does not cope with Ghelli's
example, since there are no unused type variables.

Polar simulation up to substitution. Our next failed at-
tempt to find a proof technique generalizes the notion of po-
lar simulation up to garbage collection, by observing that one
can often replace a type variable by its bound, for example:

(X<int.K <XhX^K) l^^ll (Y <int hinWK)

328

We can try to use this to show subtypings, for example
Ghelli's To 1= Go > XQ from Section 3 has a finite polar simu-
lation up to substitution:

and positive substitution in the subtype. For example, we
now have a valid finite proof of Ghelli's example:

(r0Hx0)

bound

(r0i-vxi<Xo.-Xi)~-
vx,<x0

(r0KTop)

bound

(r0hx0)

(r0hx0)*—

bound

(rohvxi^Xo.-Xj)
VX,<X0

(H h ^VX2 < Xi. -1X2)

s(A-,<X0)

► (r0r--vx,<Xo.^i)

Unfortunately, polar simulation up to substitution is not a
sound proof technique, for example:

(!-VX<int.X)
bound

VX<int

JhVX<int.int)
bound,

VX<int
■iy

{X < int I- X) (I- int) -0. (h int) (X < int h int)

s(X<int) s(X<int)
1 > *

(h int) - ► (h int)

As this example shows, we cannot always just replace type
variables by their bounds, and expect to get a valid subtype
relationship.

Polar simulation up to polar substitution. The technique
we adopt in this paper is a refinement of polar simulation up
to substitution. The crucial observation is that polar simula-
tion up to substitution is sound, as long as we only replace
negative occurrences of variables in the supertype, and posi-
tive occurrences of variables in the subtype.

Define the positive substitution relation as replacing any
positive occurrences of a type variable by its bound, and un-
defined if there are any negative occurrences, for example:

(X<int,F<XhF^X) s'(^int)
((y<inthy-^int)

(X<int,F<XhX->F) s+{xfmt). (F<inthint^F)

and the negative substitution relation similarly (but note that
we always substitute positively in the type context):

{X<\nt,Y<X\-X->Y) S"(X-int. (F< int hinter)

Then a polar simulation up to polar substitution is one where
we are allowed to use negative substitution in the supertype,

(r0F-Top)

bound

(F0hX0)

n t- -HVX2 < Xi. -.x2)

s-(X,<Xo)

(roh-vx^Xo.-x,)

and the counterexample for polar simulation up to substitu-
tion is no longer a counterexample, because it does not use
substitution with the right polarity.

Polar simulation up to polar substitution is the proof tech-
nique we adopt for the rest of this paper.

6 Definition of polar simulation up to polar
substitution

Let the garbage collection relation (T h T)
gcA

V \- n be:

(r.Ar-r) ¥£ (ri-r) (wnenri-r)

Let ^ be a polar simulation up to garbage collection when-
ever we can complete any diagram:

(ri-7-,:

(r h 7?)

m Th7V

(ri-r,)

as fr' h 77)

gcA

- (Th-T-,)

gcA

(r" h 7-,") £ (r" h r2"

Define a polar substitution T[U/X^ as:

r[[//X]± = T[U/X] (whenX^fvT(r))

Define a polar context substitution T[A\± as:

r[0]± = T

TfaX^U]* = 7'[t//X]±[A]± (whenX^fv(A))

Define a polar substitution relation {TV- T) —► (I"' h- T') as

(r.Ahr)^ (r[A]+1- r[A]±)

329

Note that polar substitution generalizes garbage collection:

if (r h 7) ^ (V h V) then (r h 7) ^ (T h 7')

Let ^ be a polar simulation up to polar substitution when-
ever we can complete any diagram:

(r\-Ti) *. (r h T2)

(n-7\) & (rhr2)

(r' h r/)

as (r' h r;) (r' h r2')

sxA

(r h r,") ~ (r h 7

We can then show that polar simulation up to polar substi-
tution (and hence up to garbage collection) is a sound proof
technique.

Proposition 4 // !%_ is a polar simulation up to polar substi-
tution and rN T HiU then Ti=T>U.

7 An algorithm for finding polar simulation up to
polar substitution

Polar simulation ->D to polar substitution gives us a proof
technique for s. owing subtyping. which can easily be con-
verted into a model checking algorithm. Since Fp< is deter-
ministic, a simple breadth-first search algorithm is sufficient.
The algorithm is given in Figure 1. The invariants for the
while loop in the algorithm are:

1. Either r0 f= 70 ^ U0 or r0 f= 70 S U0-

2. ^ is a polar simulation up to polar substitution mod S-

3. Ifr0N7b>(/0then(^U5)C>.

where ^ is a polar simulation up to polar substitution mod 5
whenever we can complete any diagram:

(rh-7.

fr'h7,M

(r>72

[V\-Ti)

as (r' h 7,')

£

s^A

fr" H 7, //^ ^=U5=

(rh72

(r' h T{)

s~A

fr" h 7,")

function suptype {YQ,TQ,UQ) {

let %_ = 0;

let5={r0t=705t/o};
while (5 ^ 0) {

let 5' = 0;
foreach(r, t=7"i 5I/i) {

■ foreach (T, h 7) -^ (r21- 72) {
if (a* = x) {

add T2 \= 72 5' t/i to 5';

} else if (H F £/,) ^=> (r2 F t/2) {

let A be the largest type context

such that (r2 F 72) ^ (r3 H 73)

and(r2h[/2) ^ (r3r-t/3);

add r3 N 73 5'± [/3 to 5'*;

} else {

return false;

}

It is not too difficult to establish partial correctness of this
algorithm, by establishing Invariants 1-3:

}
}

S = S\!K:,

}
return true:

Figure 1: The algorithm

Proposition 5 For any To I- 7o and To F £/0
we have:

1. If suptype {TQ.TQ.UQ) returns true then TQ F TQ ■> f/o-

2. If suptype (To. TQ, UQ) returns false then To N 7o ^ f/o.

We can show that the algorithm is guaranteed to terminate in
the case where r F 7 £ (7.

Proposition 6 // T t= 7 ^ £/ f/;en suptype (T,T,U) termi-
nates.

We can also show that if there is a finite polar simulation
up to polar substitution, then the algorithm will find it, and
so will terminate. For example, this means the algorithm is
guaranteed to terminate on Ghelli's example.

Proposition 7 // there exists a finite polar simulation up
to polar substitution %$ such that T F 7 %j U then
suptype (T,T,U) terminates.

330

Using this, we can show that the algorithm is at least as strong
as the standard algorithm for subtyping F<. We do this by
showing that ifT\-T>U then we can construct a finite polar
simulation % such that YVT %IJ.

Proposition 8 If the standard algorithm for subtyping F<
terminates, then suptype (Y,T,U) terminates with the same
result.

Since our algorithm is at least as powerful as the standard
algorithm, but terminates on Ghelli's example, we have that
our example is strictly more powerful.

8 Kernel Fp<

In [4], Colazzo and Ghelli provide an algorithm for subtyping
of Kernel Fp<. Their algorithm:

• Works directly on the structure of the types, rather than
via an Its semantics.

• Does not work 'up to a-conversion', which results in a
more efficient algorithm, at the cost of extra complexity.

We can easily modify our algorithm to check Kernel F^< sub-
typing, by changing the matching transition rule for polymor-
phic types to require bounds to be matched exactly:

(r>vx<7\(/) ^E (r,x<ri-t/)

We can show that this modified algorithm is as powerful as
theirs (although probably not as efficient, depending on how
a-conversion is handled), by showing that our algorithm ter-
minates on Kernel F^<.

Proposition 9 IfY\=T>U in Kernel F^<, then there is a
finite polar simulation 5^ up to garbage collection such that
Y^T S^U.

Together with Proposition 7, this gives us that our algorithm
is a decision procedure for subtyping of Kernel Fp<.

Proposition 10 If T \= T > U in Kernel F^<, then
suptype (r. T.U) terminates with true.

9 Colazzo and Ghelli's benchmark examples

We have already shown that our algorithm terminates on
Ghelli's example of nontermination of the standard subtyp-
ing algorithm for F<.

Colazzo and Ghelli [4] provide two motivating examples
for their algorithm for Kernel F^<, which act as useful bench-
marks for our approach. The examples make use of tuple

types T x U, and a bottom type _L: these can easily be given
an Its semantics:

{YhTxU) (rhj.)

fst/ X snd

(ri-r)
with matching transitions:

(YhTxU)

fst / \ snd

(n-r) (r)-u) (rhTop) (r>±)
For example, we can use this semantics to verify one of
Pierce's [15] requirements for subtyping with 1, that any
type variable bounded by _L is equivalent to _L:

X<1NI>1 X<±\=±>X

In the examples, we also use many syntactic abbreviations,
such as defining equations, missing Top bounds, and ignor-
ing some x steps.

The first example is a benchmark which checks that the al-
gorithm performs enough garbage collection to find a finite
polar simulation up to garbage collection. It is given in Fig-
ure 2.

The second example checks that the algorithm does not
produce false positives, caused by collapsing variables to-
gether incorrectly. It is given in Figure 3.

10 Conclusions and further work

This paper describes an application of symbolic labelled tran-
sition systems, which have previously been used to model
concurrent languages, to modelling subtyping. This allows us
to use the techniques from concurrency theory, such as sim-
ulations, and 'simulation up to' to reason about subtyping. It
also often makes proofs easier to read, even in the presence of
quite complex types such as Colazzo and Ghelli's benchmark
in Figure 2.

This technique should generalize to other examples such
as record subtyping, union types and intersection types. It
may be that Gordon's [10] work on Its semantics for ^.-calculi
could be applied here, to give a semantics of higher-order
features such as functions of kind Type ->• Type. We leave
the technical development of this to future work.

The main result which is missing from the current work
is a syntactic characterization of when the algorithm suptype
terminates. Also, we have not discussed how a-conversion
would be implemented: it should be possible to define a-
conversion as a strong bisimulation, and then use polar sim-
ulation up to strong bisimulation as a proof technique. We
also leave these issues for future work.

331

fst
snd

(Xi.X2\-T3{Xi)) - ► (Xi.X.hl

(X,.X2H±x(/3(X2))

snd

(x,.x2Hr,) (X,.X2h(/3(X2))

snd

gcX, gcA",

(X2^h)

V,Y,

(x,.x2i-r2(Xi

(X2f-t/3(X2))

(X,.X2h-t/4(X2)

vT:

gc

(X|.X2.X{ > (X|.X2.X^

Y, \- h(Xi) x 7-,) ** h t/5(X2) x UAX2))gcX,
snd

(X|.x2hr3(x,)xri)

fst

(X,.X2h7-3(X,))

(X,.X2r^(X2)x6';,(X2))

fst

- (Xi.X-.hU4X
fst

(X,.X2hXi

snd

(X,.X2hl)

(Xi.X2hTop) (X|.X2HX2)

def
T{

d= VX,.72(Xi)

r2(x,) = vx2.(r3(x,)x7-,;

73(X,) d= XixTopx^lX,) U3{Y2)
d= Wi.U^Y:
def

t/2 = vr2.(ixf73(r2))

U,(Y2) = VY4.(U5(Y2)xU}(Y2))

U5{Y2) = ±xY2xU2

Figure 2: Colazzo and Ghelli's first example: show that ^=T\>U\

332

References

0-7!)

WC,

2 ■(hi/,)

2 (x1hr2(x1))-^(x1hf/2(x1))

fst fst

z (Xi\-T3{Xl))*^*(Xl\-U2{Xl))

snd snd

2 (Zihr4(x1))^^(x1h[/3(x1))

snd snd

£ (X! H r5(xo) ^^—► (X! h- c/

vx5 vx5

I (X1,A:5h72(X1))^(X1,X5ht/2(X5))

fst fst

I (XuXshTifr)) & (XhX5\-U2(X5))

snd snd

(x1,x5hr4(x1)) A (xhx5hu3(x5))

fst I fst

(XuX5\-Top)

7j = yXi.T2(Xi)

T2(Xl) = r3(X,)xTop
def

UXi) = Top x 7i(Xi
def r4(x,) = xlXr5(Xi
def

T5{Xi) = VXs.TziXi)

£/, = Vy,.(/2(F1)

wo = f/2(n)x[/3m;
WO = F,X[/,

Figure 3: Colazzo and Ghelli's second example:

[1] M. Brandt and F. Henglein. Coinductive axiomatization of recursive
type equality and subbtyping. In Proc. Typed Lambda Calculi and

Applications, volume 1210 of Lecture Notes in Computer Science,
pages 63-81. Springer-Verlag, 1997.

[2] K. B. Bruce and G. Longo. A modest model of records, inheritance
and bounded quantification. Inform, and Comput., 87(l):196-240,
1990.

[3] L. Cardelli and P. Wegner. On understanding types, data abstraction
and polymorphism. Computing Surveys, 17(4):471—522, 1985.

[4] D. Colazzo and G. Ghelli. Subtyping recursive types in kernel Fun,
extended abstract. In Proc. Logic in Computer Science. IEEE Com-
puter Society Press, 1999.

[5] P.-L. Curien and G. Ghelli. Coherence of subsumtion: Minimum typ-
ing and type checking in F<. Math. Struct, in Comp. Sei., 2(1):55-91,
1992.

[6] V. Gapeyev, M. Levin, and B. C. Pierce. Recursive subtyping re-
vealed. In Proc. Int. Conf. Functional Programming, 2000.

[7] G. Ghelli. Proof Theoretic Studies about a Minimal Type System
Integrating Inclusion and Parametric Polymorphism. PhD thesis,
Universitä di Pisa, 1990.

[8] G. Ghelli. Recursive types are not conservative over F<. In M. Bezen
and J.F. Groote, editors, Proc. Typed Lambda Calculi and Appli-
cations, number 664 in Lecture Notes in Computer Science, pages
146-162. Springer-Verlag, 1993.

[9] G. Ghelli. Divergence of < type checking. Theoret. Comput. Sei.,
139(1-2):131-162, 1995.

[10] A. D. Gordon. Bisimilarity as a theory of functional programming.
In Proc. Math. Foundations of Programming Semantics, number 1 in
Electronic Notes in Comp. Sei. Elsevier, 1995.

[11] M. Hennessy and H. Lin. Symbolic bisimulations. Theoret. Comput.
Sei., pages 353-389, 1995.

[12] R. Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer-Verlag, 1980.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[14] B. C. Pierce. Bounded quantification is undecidable. Inform, and
Comput., 112(1):131-165, 1994.

[15] B. C. Pierce. Bounded quantification with bottom. Technical Report
492, Computer Science Department, Indiana University, 1997.

[16] B.C. Pierce and D. Sangiorgi. Typing and subtyping for mobile pro-
cesses. In Proc. LICS '93, pages 376-385. IEEE Computer Society
Press, 1993.

[17] M. Amadio R and L. Cardelli. Subtyping recursive types. ACM
Trans. Programming Languages and Systems, 15(4):575-631, 1993.

[18] D. Sangiorgi and R. Milner. The problem of 'weak bisimulation up
to'. In Proc. CONCUR 92, volume 630 of Lecture Notes in Computer

Science. Springer Verlag, 1992.

[19] P. Sewell. Global/local subtyping for a distributed 7t-calculus. Tech-
nical Report 435, Computer Laboratory, University of Cambridge,
1997.

show [20] D. N. Turner. The Polymorphic Pi-calculus: Theory and Implemen-
tation. PhD thesis, University of Edinburgh, 1995.

333

A continuum of theories of lambda calculus without semantics

Antonino Salibra

Dipartimento di Informatica, Universitä di Venezia
Via Torino 155, 30172 Venezia, Italy

salibra@dsi.unive.it

Abstract

In this paper we give a topological proof of the follow-

ing result: There exist 2N° lambda theories of the untyped
lambda calculus without a model in any semantics based
on Scott's view of models as partially ordered sets and
of functions as monotonic functions. As a consequence
of this result, we positively solve the conjecture, stated
by Bastonero-Gouy [6, 7] and by Berline [10], that the
strongly stable semantics is incomplete.

1. Introduction
Lambda theories arc consistent extensions of the lambda
calculus that arc closed under derivation. They arise by
syntactical considerations, a lambda theory may corre-
spond to a possible operational (observational) semantics
of lambda calculus (see e.g. [2, 3, 24]), as well as by se-
mantic ones, a lambda theory may be the theory of a model
of lambda calculus (see e.g. [3, 10]). Since the lattice of
lambda theories is a very rich and complex structure (see
e.g. [3, 10, 24, 25, 49]), syntactical techniques arc usually
difficult to use in the study of lambda theories. Therefore,
semantic methods have been extensively investigated.

Computational motivations and intuitionsjustify Scott's
view of models (see [44, 45]) as partially ordered sets (sets
of observations or informations) and of computable func-
tions as monotonic functions over these sets. After Scott,
mathematical models of lambda calculus in various cate-
gories of domains (see [1, 48]) were classified into seman-
tics according to the nature of their rcprcsentable functions
(sec [2, 3,4, 10, 16, 20, 25]). Scott's continuous semantics
[45] is given in the category whose objects arc complete
partial orders and morphisms are continuous functions.
The stable semantics introduced by Berry in [11] and the
recent strongly stable semantics introduced by Bucciarelli
andEhrhard in [12] arc strengthening of the continuous se-
mantics. The stable semantics is given in the category of
DI-domains with stable functions as morphisms, while the
strongly stable one in the category of DI-domains with co-
herence, and strongly stable functions as morphisms. All

these semantics are structurally and equationally rich in the
sense that it is possible to build up 2N° models in each
of them inducing pairwise distinct lambda theories (see
[28, 29]). The problem of the equational richness is re-
lated to the problem of the completeness/incompleteness
of a semantics: are the set of lambda theories determined
by these semantics equal or strictly included within the set
of consistent lambda theories?

The first incompleteness result was obtained by Hon-
sell and Ronchi della Rocca [25] for the continuous seman-
tics. They proved, via a hard syntactical proof, that the
contextual lambda theory induced by the set of essentially
closed terms does not admit a continuous model. Following
a similar method, Gouy [21] proved the incompleteness of
the stable semantics with a much harder syntactical proof.
Other more semantic proofs of incompleteness for the con-
tinuous and stable semantics can be found in [7]. Bastoncro
[6] provides an incompleteness result for the hypcrcohcr-
ence semantics.

Bastonero [6, Section 6], Bastoncro-Gouy [7, Section 7]
and Berline [10, Section 6.1] conjecture that the strongly
stable semantics is also incomplete. In this paper we give a
positive answer to this open question. We prove that any se-
mantics of lambda calculus based on Scott's paradigmatic
view of models as partially ordered sets and of computable
functions as monotonic functions is incomplete if the par-
tial order admits a bottom element. This incompleteness is
due to 2K° distinct lambda theories. The main theorem of
the paper unifies and subsumes incompleteness results for
different classes of models that have been proved in differ-
ent ways, using different approaches.

The proof of incompleteness is based on a general the-
orem of separation for topological algebras. We prove
that under a very weak condition, called weak subtrac-
tivity, a topological algebra admits two elements 0 and 1
which can be Tn -separated (i.e., there exist two open
neighbourhoods of 0 and 1 respectively whose closures
have empty intersection). All models of lambda calculus
based on Scott's paradigmatic view arc topological alge-
bras with respect to the Alcxandroff topology generated

0-7695-1281-X/01 $10.00 © 2001 IEEE 334

by the partial order over the model. Posets such as join
semilattices, meet semilattices, complete partial orderings,
lattices, posets with a least element, posets with a great-
est element cannot have T2l/2-separated elements w.r.t. the
Alexandroff topology. Then the incompleteness theorem
is determined by proving that there exist 2N° semisensible
lambda theories that admit only weakly subtractive models.

2. Preliminaries
To keep this article self-contained, we summarize some
definitions and results that we will need in the subsequent
part of the paper. With regard to the lambda calculus we
follow the notation and terminology of Barendregt (see
[3]).

For the general theory of lambda calculus the reader
may consult Barendregt [3] and Krivine [30]. For the gen-
eral theory of universal algebras the reader may consult
Burris and Sankappanavar [13], Gratzer [22], and McKen-
zie, McNulty and Taylor [32]. The main references for
topological algebras are Taylor [52,53], Gumm [23], Bentz
[8] andColeman[14, 15].

2.1. Lambda theories
A denotes the set of A-terms, while A0 denotes the set of
closed A-terms, where a A-term is closed if it does not admit
free occurrences of variables.

Lambda theories are consistent extensions of the lambda
calculus that are closed under derivation. Remember that
an equation is a formula of the form AI = N with AI, N £
A. The equation is closed if AI and N are closed A-terms.
If Tis a set of equations, then the theory X + T is obtained
by adding to the axioms and rules of the lambda calculus
the equations in T as new axioms. If T is a set of closed
equations, T+ is the set of closed equations provable in A +
T. T is a lambda theory if T+ = T (see [3, Def. 4.1.1]).
As a matter of notation, T h M = A'' stands for A + T H
M = A"; this is also written as AI =T N. [A/]f = {N E
A" : T \~ A* = AI} denotes the equivalence class of the
closed A-term AI.

The lambda theory 'H, generated by equating all the un-
solvable A-terms, is consistent [3, Thm. 16.1.3]. A lambda
theory T is called semisensible [3, Def. 4.1.7(iii)] if T \f
M = N whenever M is solvable and Ar is unsolvable.

2.2. Combinatory algebras and A-models
An algebra C = (C, •, k, s), where • is a binary opera-
tion and k, s are constants, is called a combinatory algebra
(Curry [17], Schönfinkel [43]) if it satisfies the following
identities (as usual the symbol • is omitted, and association
is to the left): kxy = x; sxyz = xz(yz). In the equational
language of combinatory algebras the derived combinator
1 is defined as 1 = s(ki). A function / : C -> C is called

representable if there exists an element c E C such that
cz = f(z) for all z £ C. If this last condition is satisfied,
we say that c represents map / in C.

Let C be a combinatory algebra and let c be a new sym-
bol for each c £ C. Extend the language of lambda cal-
culus by adjoining c as a new constant symbol for each
c £ C. Let A°(C) be the set of closed A-terms with con-
stants from C. The interpretation of terms in A°(C) with
elements of C can be defined by induction as follows (for
all M, AT £ A°(C) and c EC):

|c|c = c; \{MN)\c = |M|c|AT|c; |Ai.M|c = lm,

where m £ C is any element representing the following
map / : C -¥ C:

f(c) = \M[x:=c]\c, for alle EC.

The drawback of the previous definition is that, if C is an
arbitrary combinatory algebra, it may happen that map / is
not representable. The axioms of a subclass of combina-
tory algebras, called \-models or models of lambda calcu-
lus (Meyer [33], Scott [47], [3, Def. 5.2.7]), were expressly
chosen to make coherent the previous definition of interpre-
tation. For every A-model C, the set Th(C) = {AI = N :
AI, N E A0, C |= M = N} constitutes a lambda theory.
C is a model of the lambda theory T if T = Th(C).

We would like to point out here that there exists an
algebraic approach to the model theory of lambda calcu-
lus, alternative to combinatory logic, that allows to keep
the lambda notation and all the functional intuitions (see
[34,35,36,40,41,42]).

2.3. Topological algebras
A topological algebra is a pair (A, r) where A is an alge-
bra and r is a topology on the underlying set A with the
property that each basic operation of A is continuous with
respect to r. (We will occasionally avoid explicit mention
ofr.)

Let b be the closure of set {b}. For any (topological)
space (A, r) a preorder can be defined by

a <T b iff o. E 6 iff V/7 £ r{a £ U =>b£U).

We have

T is To iff <T is a partial order.

For any T0-space A the partial order <T is called the spe-
cialization order of r. Note that any continuous map be-
tween To-spaces is necessarily monotone and that the or-
der is discrete (i.e. satisfies a <T b iff a = 6) iff A is a
T'i-space.

Let (A, <) be a partially ordered set (poset). B C A is
an upper (lower) set if b £ B and b < a (a < b) imply

335

a G B. We utilize the notation B\ (S|) for the least upper
(lower) set containing a subset B of .4. We write «| for
{o}t and a[for {a}\..

Given a posct (A, <) we can find many To-topologies r
on A for which < is the specialization ordering of r (see
Johnstone [27, Section II. 1.8]). The Alexandroff topology
and the weak topology defined below are the maximal one
and the minimal one with this property.

The Alexandroff topology T^\,<) '
S
 constituted by the

collection of all upper sets in .4, i.e.,

U is an Alexandroff open iff U = t't-

Then «| is the least open set containing a. A function is
continuous w.r.t. the Alexandroff topology if, and only if,
it is monotonic. The closure of the open set of is (rcfU-

The weak topology w'(4,<) is constituted by the smallest
topology for which all sets of the form oj. arc closed, i.e.

the topology based by sets of the form ,4-(oi|U- • -U«A4).

Let (A, <) be a poset, r be a topology on .4. Then r
is 7o with specialization order < if, and only if, II\A,<) Q

3. The topological theorem
In this Section we prove a general theorem of separation for
topological algebras. Under a very weak condition, called
weak subtractivity, a topological algebra admits two ele-
ments 0 and 1 which can be 7^ -separated. We were in-
spired with Bent/. [8] and Coleman [14, 15] for the idea of
this theorem and for the techniques used in its proof. In the
last part of the Section we characterize the topological al-
gebras with Alexandroff topology which cannot be weakly
subtractivc.

The notion of subtractivity in Universal Algebra was in-
troduced by Aldo Ursini [54], A variety (equational class)
of algebras is subtractivc if there exist a term s(.r.;/) and a
constant 0 such that the identities

s(x.x) = 0; ,s(.r,0)=.r

arc satisfied by every algebra in the variety. Term .s simu-
lates part of subtraction: x minus x is equal to 0, while x
minus 0 is equal to x.

In this paper we introduce a weak form of subtractivity.

Definition 3.1 An algebra A is weakly subtractive if there
exist a term s(x, y) and two constants 0 and 1 in the simi-
larity type of A such that

s(x,x) = 0; .s(l,0) = l; 1^0.

Separation axioms in topology stipulate the degree to
which distinct points may be separated by open sets or
by closed neighborhoods of open sets. In the following

theorem we prove that in every weakly subtractive TQ-

topological algebra the elements 0 and 1 can be Tn ri-
separated. This means that there exist two open neighbour-
hoods of 0 and 1 respectively whose closures have empty
intersection.

As a matter of notation, if .4 is a space then the closure
of a subset V of .4 will be denoted by U. Recall that a G U
iff" n V ^ 0 for every open neighbourhood V of a.

Theorem 3.1 Let (A, r) be a weakly subtractive 7'n-
topological algebra. Then there exist an open neighbour-

hood V of\ and an open neighbourhood \V of() such that
FnTr = 0.

Proof: The proof is divided into claims.

Claim 3.1 There exists an open neighbourhood V of 1
such thatO £ {'.

Assume, by the way of contradiction, that 1 <T 0, i.e.,
every open neighbourhood of 1 contains 0. Then by the 7i)
hypothesis on r there exists an open neighbourhood / of
0 such that 1 £ Z. Then we have 0 = .s(l. 1) G Z. By
continuity in the second coordinate, there exists an open
neighbourhood R of 1 such that ,s(1, /?) C Z. By 1 <T 0 it
follows that 0 G R. so that 1 = s(1,0) G Z. Contradiction.

Claim 3.2 There exist an open neighbourhood P of\ and
an open neighbourhood W of() such that P HIT' = 0.

By Claim 3.1 there exists an open neighbourhood (' of
1 such that Ü £■ ('. From .s-(l.O) = 1 G I' and from
the continuity of s it follows that there exist two open
neighbourhoods \''AV of 1 and 0 respectively such that
.s(l'', IP) C l\ If there is an element /; G V n 11'' then
() = .s(/;. 6) G r that contradicts the hypothesis on Ir. Then
we have PfllP = 0.

We now provide the proof of the theorem. By Claim
3.2 there exist two open neighbourhoods I'' and IP of
1 and 0 respectively with empty intersection. Since .s is
continuous and s(1. 0) = 1 G V, there exist two other
open sets I' and U" containing 1 and 0, respectively, such
that s(V. \Y) C V. The sets V and U" will be the right
sets for the conclusion of the theorem. Since .s is continu-
ous the prc-image of V under the map .s is closed. From
s(\\ IT) C V C V the prc-image of F7, that is closed,
contains V x \V, so s(V, W) C V7.

We now prove that 1; fl 11' = 0. Assume, by the
way of contradiction, that there is (/ G V Pi 11'. Since
«(FIT) C P it follows that 0 = fi[d,d) G P. But by
definition of closure of a set this is possible only if for ev-
ery open neighbourhood Z of 0, we have that Z C\ V ^ 0.
But this contradicts our initial choice of V' and IP as two
open neighbourhoods of 1 and 0 respectively with empty
intersection. D

336

Connectedness axioms in topology examine the struc-
ture of topological spaces in an orthogonal way with re-
spect to separation axioms. They deny the existence of cer-
tain subsets of a topological space with properties of sep-
aration. For example, a space with no disjoint open sets
is called hyperconnected, while a space with no disjoint
closed sets is called ultraconnected (see Steen-Seebach [51,
Section 4]).

Definition 3.2 We say that a space is closed-open-
connected, co-connected for short, if it has no disjoint clo-
sures of open sets. In other words, if, for all open sets U
and V, we have that VnU^%.

We have the following implications:

hyperconnectedness =>• co-connectedness => connectedness

and

ultraconnectedness => co-connectedness => connectedness.

Then co-connectedness is a sort of meeting point between
ultraconnectedness and hyperconnectedness.

The following result is an easy consequence of
Thm. 3.1.

Corollary 3.1 There exists no weakly subtractive TQ-

topological algebra (A,r) whose topology T is co-
connected.

We say that a poset (A, <) is co-connected if the
Alexandroff topology T(A,<) is co-connected. This is
equivalent to say that, for all a, b £ A, (at)| f~l (6f)| ^
0. The following posets are co-connected: join semilat-
tices, meet semilattices, complete partial orderings, lat-
tices, posets with a least element, posets with a greatest
element.

By definition a topology T\ is weaker than a topology r2

if 7"! C T2.

Lemma 3.1 If the topology T\ is weaker than a co-
connected topology T2, then T\ is also co-connected.

Proof: The closure of a set grows up if there are less
open (and closed) sets. D

Theorem 3.2 There exists no weakly subtractive TQ-

topological algebra whose specialization order is co-
connected.

Proof: Let (A,r) be a weakly subtractive T0-
topological algebra whose specialization order < is co-
connected. By Thm. 3.1 there exist an open neighbour-
hood V of 1 and an open neighbourhood W of 0 such that

V n W = 0. Then the topology r is not co-connected.
The Alexandroff topology T^A,<) '

S
 the maximal topol-

ogy T\ with the property that < is the specialization or-
dering of TI (see Johnstone [27, Section II. 1.8]). Then r is
weaker than the Alexandroff topology T(,*,<)• By hypothe-
sis the Alexandroff topology is co-connected. By applying
Lemma 3.1 we get that r is also co-connected. This is a
contradiction. ü

4. The incompleteness theorem
A class C of models of lambda calculus represents a
lambda theory T if there is a model in C whose theory is
exactly T■ A class of models is incomplete if it does not
represent all the lambda theories.

We now define a class of 2K° semisensible distinct
lambda theories satisfying the following condition: if C is
model of a lambda theory in the class, then C is a weakly
subtractive combinatory algebra.

Consider the (consistent and) semisensible lambda the-
ory A axiomatized by

Qxx = fi; Qft3fi = ^3,

where fi = (Xx.xx)[Xx.xx), £l3 = (Xx .x x x) (Xx .x x x).
In the next theorem, the technically hardest part of the

work, we prove that the lambda theory A does not equate
Q and f^. This result implies that the term model of A is a
weakly subtractive combinatory algebra.

Theorem 4.1
Al/ft = fi3-

Proof: We provide an outline of the proof. Define

fi3 = nn3n-, (nn3n)* = o3. (i)

The definition of a context, i.e., a lambda term with some
holes in it, can be found in [3, Def. 2.1.18]. Let S be
the least lambda theory satisfying the following condi-
tions for every context C[], A-term TV, and element d £
{U3,QQ3Q}:

(i) E h Qxx = Q;

(ii) S h Q(C[d])N = fi implies E h Q(C[cT])TV = ft;

(iii) E h nN(C[d]) = fi implies S h QN[C[d*]) = Q.

E exists because the set of lambda theories satisfying the
three above conditions is closed under arbitrary intersection
and it is not empty (the lambda theory % equating all the
unsolvable satisfies (i)-(iii)).

E satisfies the following condition for all A-terms M, TV:

E h M = TV E h QMN = Q. (2)

337

From E F M = N and 5] F QNN = ft it follows that
S F ftMAf = ftvVN = ft.
Let —>s be the following reduction rule:

ÜA4N ->s ft (3)

for every M and TV such that E F QMN = ft. The re-
flexive closure of —>s satisfies the diamond property, and
the relations -»^ and -»s commute. Then the reduction
rule —ypz = —>yj U —>s is Church-Rosser by the Hindley-
Rosen Lemma (see Berarducci-Intrigila [9, Thm. 3.4] and
Barendregt [3, Prop. 3.3.5]).

Then we prove that E is the lambda theory generated by
conversion =ß^ from —^s, i.e.,

EhM = yViffMS^v N (4)

The proof of (4) is obtained as follows. Since QMN —»s
ft iff E F M\IN = ft, then it is obvious that M =/3S Ar

implies E F M = N. For the opposite direction, we utilize
conditions (ii)-(iii) in the definition of E to prove that, for
every d 6 {ft3, ftft3ft} and every A-tcrm P,

Pd S9S ft => Pd' ft. (5)

Then wc use (5) to show that the conversion relation =jv
satisfies conditions (i)-(iii) utilized in the definition of E.
Since E is the least lambda theory satisfying conditions (i)-
(iii) wc have the conclusion.

From (4) it follows that

E \f ft = ft., (6)

since ft and ft3 do not have a common reduct w.r.t. —»,*v.
The next step in the proof is to show that

E + ftft3ft = ft3 F/ ft = ft3. (7)

This result gives the conclusion of the theorem, i.e., A \f
ft = ft3, since the axioms defining the lambda theory A
arc contained in E + ftft3ft = ft3. In other words, A is in-
cluded into the lambda theory generated by E + ftft3ft =
f?3. The proof of (7) is obtained as follows. Assume, by
the way of contradiction, that E + fiQ3Q = 9.3 h Q. = Q3.
Wc apply the following version of Jacopini Lemma (see Ja-
copini [26] and Kuper [31]). There exist closed A-terms
Pi,..., P„, c 1,..., e„ (n > 0) such that the following
conditions are satisfied (recall the definition of operator "
from (1) above):

(i) e,- £ {fi,3, iir23Q} for every i = 1,..., ?»;

(ii) Shfi = Pjei;

(iii) E h Prc' = Pr+ier+1 for r = 1,..., 7» - 1;

(iv) sh/v; =Q3.

From (4), (5) and (i)-(iv) above it follows that

S h Pre* = !), for every r = 1,.. .,7i,

so that from (iv) it follows that

Shft=fi3

that contradicts (6). a

The following theorem by Visser as formulated in [3,
Thm. 17.1.10] will be used in Thm. 4.3 below.

Theorem 4.2 (Visser [55]) Let T C T' be recursively enu-
merable lambda theories such that T' F M — N and
T \f M — N. Then there exists a lambda theory S such
that

TCSCT'andS\/M = N.

Theorem 4.3 Let P. be the set of real numbers. There exists
a family S — (Sr : r 6 E) of semisensible distinct lambda
theories such that A C Sr and Sr \f Q = Q3forallr 6 R.

Proof: Let n be the consistent lambda theory axioma-
tized by Qxx = fi and ft = Q3. Then A C ü because
n h nft3fi = nnn = n = n3 and A 1/ ci = n3.
By Thm. 4.2 there exists a third lambda theory S such that
A C S C n and 5 Xf Q = n3. Using Thm. 4.2 one
can embed the rationals into the recursively enumerable
lambda theories included between A and H (sec [3, Corol-
lary 17.1.11]), i.e., construct a family {^>r}r6,Q, such that

r < r' ->■ Sr C Sr< (8)

holds for r, ?•' £ O.
5,. = U{S,, : q < r
for r, r' G E.

Now define for a real number r £ E
and q £ Q}. This clearly satisfies (8)

a

Theorem 4.4 Let T be any lambda theory such that A C
T and T' \f Q = ft3. Then every model ofT is a weakly
suhtractive combinatory algebra.

Proof: Let C be a model of T. The interpretation of
a closed A-term M is the clement |M|c of C (see Sec-
tion 2.2). For the sake of simplicity, we write directly
M for |.'W|c when there is no danger of confusion. We
have to define a binary term s(x,y) and two constants
0, 1 satisfying the conditions of Def. 3.1. Define 0 = ft,
1 = ft3 and s(x,y) = Qxy. Since T F Q.xx. = ft and
T F ftft3ft = ft3, then we have that C |= ftft3ft = ft3

and C |= A.;.ft.r.;' = A.;-.ft. This last identity implies
Qcc = {Xx.Qxx)c = (Xx.Q)c = ft for all c E C. So,
C is weakly suhtractive if ft and ft3 denote different ele-
ments of C. This is true because T 1/ ft = ft3 and then
every model of T distinguishes ft and ft3. D

A topological model of lambda calculus is any topolog-
ical algebra (C, r) such that C is a A-model.

338

Corollary 4.1 Let T be any lambda theory such that A C
T and T 1/ H = ^3. // (C, r) is a T0-topological model
ofT, then both r and the specialization order of T are not
co-connected.

Proof: By Thm. 4.4, Cor. 3.1 and Thm. 3.2. D

A T0-topological model (C, r) is called a partially or-
dered A-model, apo-model for short, if r is the Alexandroff
topology defined in Section 2.3. In such a case, the appli-
cation operator is monotone w.r.t. the specialization order
of T.

Theorem 4.5 Let T be any lambda theory such that A C
T and T 1/ fi = O3. Then T cannot be the theory of a
po-model whose specialization order is co-connected.

Proof: A partial order is co-connected if, and only if, the
corresponding Alexandroff topology is co-connected. Then
the conclusion follows from the definition of po-model and
from Cor. 4.1. D

The models of lambda calculus are classified into se-
mantics according to the nature of their representable func-
tions. A semantics is usually constituted by a class of suit-
able po-models. This last condition is justified by Scott's
view of models as sets of sets of observations (or informa-
tions) and of computable functions as monotone functions
over such sets (see [47]).

Scott's continuous semantics [45] is the class of po-
models whose specialization order is a complete partial or-
dering and the representable functions are all the continu-
ous ones w.r.t. the Scott topology. The graph model se-
mantics (see [46], [19], [37], [38], [10, Section 5.5]) is a
subclass of the K-semantics isolated by Krivine (see [30],
[10, Section 5.6.2]) within the continuous semantics. The
filter model semantics was defined by Coppo, Dezani, Hon-
sell and Longo in [16] (see also [4]) within the continuous
semantics.

The stable semantics introduced by Berry [11] is the
class of po-models whose specialization order is a DI-
domain and the representable functions are all the stable
ones.

The strongly stable semantics introduced by Bucciarelly
and Ehrhard in [12] is the class of po-models whose spe-
cialization order is a DI-domain with coherence and the
representable functions are all the strongly stable ones. The
hypercoherence semantics introduced by Ehrhard [18] is a
subclass of the strongly stable semantics.

Stability and strong stability constitute restrictions of
continuity to capture the notion of sequentiality.

The first incompleteness result was given by Honsell
and Ronchi della Rocca [25] for the continuous semantics.
They proved that the contextual lambda theory induced by

the set of essentially closed terms does not admit a continu-
ous model. Following a similar method, Gouy [21] proved
the incompleteness of the stable semantics. Other more se-
mantic proofs of incompleteness for the continuous and sta-
ble semantics can be found in [7]. Bastonero [6] provides
an incompleteness result for the hypercoherence semantics.

Bastonero [6, Section 6], Bastonero-Gouy [7, Section 7]
and Berline [10, Section 6.1] conjecture that the strongly
stable semantics is also incomplete. We give a positive an-
swer to this open question in the following theorem. We es-
sentially prove that any semantics of lambda calculus based
on the concept of approximation of the information is in-
complete because of Thm. 4.6(xii) below.

Theorem 4.6 (The Incompleteness Theorem) The follow-
ing semantics of the lambda calculus are incomplete. More
precisely, there exist 2N° semisensible lambda theories
which cannot have a model in the following semantics.

(i) The graph model semantics.

(ii) The K-semantics.

(Hi) The filter model semantics.

(iv) The continuous semantics.

(v) The stable semantics.

(vi) The hypercoherence semantics.

(vii) The strongly stable semantics.

(viii) The po-models with a structure of complete partial or-
dering.

(ix) The po-models with a structure of meet semilattice.

(x) The po-models with a structure of join semilattice.

(xi) The po-models with a structure of lattice,

(xii) The po-models with a bottom element,

(xiii) The po-models with a top element.

Proof: All the above semantics are given in terms of
po-models whose specialization order is co-connected. The
conclusion follows from Thm. 4.5 and from Thm. 4.3. G

Recently we have found a simpler proof of the incom-
pleteness theorem based on a more general topological the-
orem and on the lambda theory axiomatized by the unique
identity Clxx = Q. This new proof can be found in the
Appendix.

339

5. Conclusions
We have introduced a new technique to prove the incom-
pleteness of a wide range of lambda calculus semantics (in-
cluding the strongly stable one, whose incompleteness had
been conjectured). Roughly, the technique used for proving
that a class C of models is incomplete is the following:

1. Find a (topological) property P verified by all models

inf.

2. Find a lambda theory whose models do not verify P.

To begin with, we remark that the models of lambda cal-
culus based on domains (continuous, stable, strongly sta-
ble models in particular) are topological combinatory alge-
bras w.r.t. the Alexandroff topology (the strongest topology
whose specialization order is the order of the considered
domain), and that they arc co-connected (i.e. that the clo-
sures of two open sets cannot be disjoint).

Then we define a class of topological algebras which arc
not co-connected, the weakly subtractive topological alge-
bras.

What has to be shown next is that there exist lambda
theories which admit only weakly subtractive combinatory
algebras as models. We define a theory A and prove that
all its models arc weakly subtractive, then by standard tech-
niques we get, starting from A, a continuum of lambda the-
ories with this same property.

We are working to get a generalization of our incom-
pleteness theorem. The open sets of the Alexandroff topol-
ogy arc closed under arbitrary intersection. This implies
that, for every subset V of aposct (.1. <), there exist a least
open set V'|, a least closed set l'| and a least clopen (open
and closed) set, all of them including W The minimal
clopen sets constitute the partition of the space in connected
components. It is possible to prove that every weakly sub-
tractive 7'o-topological algebra with the Alexandroff topol-
ogy admits a clopen set U such that Ü £ (' and 1 ^ f\
This result implies the incompleteness of every semantics
of lambda calculus given in terms of po-modcls whose
Alexandroff topology is connected (recall that a space is
connected if there exists no proper clopen set). We conjec-
ture that the semantics of lambda calculus given in terms of
po-models whose Alexandroff topology has a finite number
of connected components is also incomplete.

Another interesting problem is related to the consistency
of the lambda theory 5 axiomatized by

Qxx = Q; QxQ = x.

We conjecture that c» is consistent. A po-model for £ is
a subtractive combinatory algebra (sec [54]), where Q is
not comparable with any other element in the model (i.e.
a < il or fi < a imply a — iT).

A partial order is trivial if it satisfies a < b iff« = 6.
The problem of the incompleteness of the semantics of
lambda calculus is also related to the open problem of the
order-incompleteness of the lambda theories: docs it exist
a lambda theory which cannot arise as the theory of any
non-trivially partially ordered model? Selingcr [50] gave
a syntactical characterization, in terms of so-called gener-
alized Mal'cev operators, of the order-incomplete lambda
theories. The problem of the ordcr-incomplctencss can be
stated as follows: does it exist a sequence M\,..., M„ of
closed A-tcrms such that the lambda theory T„. axioma-
tized by

.r = Muvyy; Mii;ry = Ml + ixy;/; Mnxxy - y (/ < n),

is consistent? Plotkin and Simpson (sec [49]) have shown
that 71 is inconsistent, while Plotkin and Selingcr (sec
[49]) obtained the same result for T->- It is an open prob-
lem whether 77, (n > 3) can be consistent. Order-
incompleteness is also related to Plotkin's conjecture (sec
[39, 49, 50]) about the existence of absolutely unordcrable
combinatory algebras, where a combinatory algebra is ab-
solutely unordcrable if it cannot be embedded in any order-
able combinatory algebra.

Acknowledgments

Many thanks to Chantal Bcrlinc. Benedetto Intrigila, Si-
monetta Ronchi della Rocca. Marta Simeoni and the refer-
ees for helpful comments and suggestions.

Appendix

We generalize the topological theorem of Section 3 and
provide a simpler proof of the incompleteness theorem
based on the lambda theory II axiomatized by the unique
identity Qxx = Q.

Definition 5.1 An algebra A is 3-weakly subtractive if
there exist a term .s(,r. y) and two constants 0. I in the sim-
ilarity type of A such that

s(x.x) = 0: 1^0: .s(1.0)^0: «(*(1, 0). 0) ^ 0.

Definition 5.2 A 3-weakly subtractive algebra A is 4-
weakly subtractive if

.s(.s(,(1.0).0).0)^0.

Every weakly subtractive algebra is both a 3-wcakly and
a 4-wcakly subtractive algebra.

Theorem 5.1 Let (A,r) be a 3-weakly subtractive '!})-
topological algebra. Then there exist an open neighbour-
hood V of 1 and an open neighbourhood \ V of 0 such that

rnir = 0.

340

Proof: The proof is divided into claims. Let

c = s(l,0); d=s(c,0).

Claim 5.1 There exists an open neighbourhood R ofc such
thatQ^R.

By the To hypothesis on r the elements 0 and d are To-
separated. We analyse two cases.

(1) There exists a neighbourhood Z of 0 with d £ Z.
Then

Q = s(c,c)eZ.

By continuity in the second coordinate, there exists an open
neighbourhood/?,of csuch that s(c, ft) C Z. If 0 G -ft then
d — s(c, 0) G Z that contradicts our hypothesis on Z. Then
we have an open neighbourhood R of c such that 0 ^ R.

(2) There exists a neighbourhood Z of d with 0 ^ Z.
Then

rf=s(c,0) GZ.

By continuity in the first coordinate, there exists an open
neighbourhood R of c such that s[R, 0) C Z. If 0 G R
then 0 = s(0,0) G Z that contradicts our hypothesis on
Z. Then we have an open neighbourhood R of c such that
Ogf?.

Claim 5.2 77?ere em? a« ope« neighbourhood V of I and
an open neighbourhood IV o/O such that V D W = 0.

By Claim 5.1 there exists an open neighbourhood ft of c
such that 0^7?. From «(1, 0) = c G R and from the con-
tinuity of s it follows that there exist two open neighbour-
hoods V. \V of 1 and 0 respectively such that s(V. \V) C R.
If there is an element b G V n \V then 0 = s(b. b) G ft that
contradicts the hypothesis on ft. Then we have 1'nll' = 0.

D

Theorem 5.2 Let (A. r) be a 4-weakly subtractive T0-
topological algebra. Then there exist an open neighbour-
hood V of\ and an open neighbourhood \V ofO such that
FnTf = 0.

Proof: Let

c=s(L0); f/=s(c,0); e = s(d,0).

A is 3-weakly subtractive in two different ways. It is obvi-
ous that the constant 1 satisfies the conditions of Def. 5.1.
But the constant c also satisfies the conditions of Def. 5.1:

c^O; s(c, 0)^0; s(s(c,0), 0) ^ 0.

Then we can apply Thm. 5.1 to c to get an open neighbour-
hood V of c and an open neighbourhood W of 0 such that
V n W = 0.

Since s is continuous and s(l, 0) = c G V, there exist
two other open sets V and W containing 1 and 0, respec-
tively, such that s(V, W) C V. The sets V and W will be
the right sets for the conclusion of the theorem. Since s is
continuous the pre-image of V under the map s is closed.
From s(V, W) C V C V the pre-image of V, that is
closed, contains V x W'', so s(V, W) C V.

We now prove that V H W = 0. Assume, by the
way of contradiction, that there is / G VOW. Since
s{V,W) C V7 it follows that 0 = s(f,f) G V7. But
by definition of closure of a set this is possible only if for
every open neighbourhood Z of 0, we have that ZC\V ^ 0.
But this contradicts our initial choice of V and W as two
open neighbourhoods of c and 0 respectively with empty
intersection. D

Consider the semisensible lambda theory II axiomatized

Qxx = Q.
by

Define
t0 = n3; tn+1=Q{t„)Q.

Theorem 5.3 We have:

n\ftn = Q for all n.

Proof: Let —^n be the following reduction rule:

QMN ->n ^ (9)

for every M and N such that FI h M = YV. The re-
flexive closure of ^n satisfies the diamond property, and
the relations —»^ and -^n commute. Then the reduction
rule —»OT = —>/5 U —>n is Church-Rosser by the Hindley-
Rosen Lemma (see Berarducci-Intrigila [9, Thm. 3.4] and
Barendregt [3, Prop. 3.3.5]).

Then we prove that II is the lambda theory generated by
conversion =gn from —^n, '-e->

II h M = N iff M -im N. (10)

Since QMN ->n ft iff II h A/ = N, then it is obvious
that ,1/ =pn N implies U h M = N. For the opposite
direction, it is sufficient to consider that Qxx —>-ri ft for
the unique axiom Qxx = ft of II.

We now prove by induction that II \f tn = ft. First we
have that II \f to = ft because t0 = &3 and ft do not have a
common /ifl-reduct. By the way of contradiction, assume
n h tn + 1 = ft, so thaUn+i = ft(*„)ft ^/in ft. Then
there exists a reduction Q(tn)Q^ßnQ. This is possible
only if ft(/„)ft is a Il-redex i.e. if U \- tn = ft. But this
contradicts the induction hypothesis. D

Theorem 5.4 Every model of the lambda theory Ü is a 4-
weakly subtractive combinatory algebra.

341

Proof: Let C be a model of II. We have to define a
binary term s(x,y) and two constants 0, 1 satisfying the
conditions of Dcf. 5.2. Define 0 = ft, 1 = ü:i and
s(x,y) = Qxy. The proof of the theorem is now similar
to that of Thm. 4.4 and it is omitted. □

Theorem 5.5 The lambda theory U cannot he the theory
of a po-model whose Alexandroff topology is co-connected.

Proof: It follows from Thm. 5.4 and from Thm. 5.2. ü

Corollary 5.1 The lambda theory H, axiomatized by

Q.XX = il, cannot have a model in the semantics specified
in Thm. 4.6.

References

[1] S. Abramsky, "Domain theory in logical form". Annals of
Pure and Applied Logic, 51 (1991), pp. 1-77

[2] S. Abramsky and C.H.L. Ong, "Full abstraction in the
lazy A-calculus", Information and Compulation. 105 (1993),
pp. 159-267

[3] H.P. Barendrcgt, The lambda calculus: Its syntax and seman-
tics. Revised edition, Studies in Logic and the Foundations
of Mathematics 103, North-Holland Publishing Co., Amster-
dam (1984)

[4] H.P. Barendrcgt, M. Coppo and M. Dczani-Ciancaglini. "A
filter model and the completeness of type assignment". Jour-
nal of Symbolic Logic. 48 (1983), pp. 931 -940

[5] O. Bastonero, Modeles fortement stables du X-ca/cul et
resultats d'incompletude, These, Universite de Paris 7 (1996)

[6] O. Bastonero, Equational incompleteness and incomparabil-
ity results for X-calculus semantics, manuscript

[7] O. Bastonero and X. Gouy, "Strong stability and the incom-
pleteness of stable models of A-calculus", Annals of Pure and
Applied Logic, 100 (1999), pp. 247-277

[8] W. Bcntz, "Topological implications in varieties". Algebra
Universalis, 42 (1999), pp. 9-16

[9] A. Bcrarducci and B. Intrigila, "Some new results on easy
lambda-terms". Theoretical Computer Science 121 (1993),
pp. 71-88

[10] C. Berlinc, "From computation to foundations via functions
and application: The A-calculus and its webbed models",
Theoretical Computer Science 249 (2000), pp. 81-161

[11] G. Berry, "Stable models of typed lambda-calculi", Proc. 5th
Int. Coll. on Automata, Languages and Programming, LNCS
vol.62, Springer-Verlag (1978)

[12] A. Bucciarclli andT. Ehrhard, "Scquentiality and strong sta-
bility", Sixth Annual IEEE Symposium on Logic in Com-
puter Science (1991), pp. 138-145

[13] S. Burris and H.P. Sankappanavar./l course in universal al-
gebra. Springer-Verlag, Berlin (1981)

[14] J.P. Coleman, "Separation in topological algebras", Algebra
Universalis, 35 (1996), pp. 72-84

[15] J.P. Coleman, "Topological equivalents to >?-pcrmutability",
Algebra Universalis, 38 (1997), pp. 200-209

[16] M. Coppo, M. Dczani-Ciancaglini, F. Honsell andG. Longo,
"Extended type structures and filter A-models", Logic Collo-
quium'82, Elsevier Science Publishers (1984), pp. 241-262

[17] H.B. Curry and R. Feys, Combinatory Logic, Vol. I, North-
Holland Publishing Co., Amsterdam (1958)

[18] T Ehrhard. "Hypcrcohcrences: a strongly stable model of
linear logic", Mathematical Structures in Computer Science,
2(1993), pp. 365-385

[19] E. Engelcr, "Algebras and combinators". Algebra Univer-
salis, 13 (1981), pp. 389-392

[20] J.Y. Girard, "The system F of variable types, fifteen years
later". Theoretical Computer Science, 45 (1986), pp. 159-192

[21] X. Gouy, Etude des theories equationnelles et desproprietes
algebriques des modeles stables du \-calcul. Those, Univer-
sity de Paris 7 (1995)

(22] G. Grützer. Universal Algebra. Second edition. Springer-
Verlag. New York (1979)

[23] H.P. Gumm. "Topological implications in n-permutable va-
rieties". Algebra Universalis. 19(1984), pp. 3 19-32 1

[24] F. Honsell and M. Lenisa. "Final semantics for untyped
A-calculus", LNCS 902. Springer-Verlag, Berlin (1995),
pp. 249-265

[25] F. Honsell and S. Ronchi della Rocca. "An approximation
theorem for topological A-models and the topological incom-
pleteness of A-calculus", Journal Computer and System Sci-
ence .45 (1992), pp. 49-75

[26] C. Jacopini. "A condition for identifying two elements in
whatever model of combinatory logic", LNCS 37 (C. Böhm
ed.). Springer-Verlag. Berlin (1975)

[27] P.T Johnstone. Stone Spaces, Cambridge University Press
(1982)

[28] R. Kerth. "Isomorphism and equational equivalence of con-
tinuous lambda models", Studia Logica, 61 (1998), pp. 403-
415

[29] R. Kerth. "On the construction of stable models of A-
calculus", Theoretical Computer Science (to appear)

342

[30] J.L. Krivine, Lambda-Calcul, types et modeles, Masson,
Paris (1990)

[31] J. Kuper, "On the Jacopini technique", Information and
Computation, 138 (1997), pp. 101-123

[32] R.N. McKenzie, G.F. McNulty and W.F. Taylor, Algebras,
Lattices, Varieties, Volume I, Wadsworth Brooks, Monterey,
California, (1987)

[33] A.R. Meyer, "What is a model of the lambda calculus?",
Information and Control, 52, (1982), pp. 87-122

[34] D. Pigozzi and A. Salibra, "Lambda abstraction algebras:
representation theorems", Theoretical Computer Science,
140 (1995), pp. 5-52

[35] D. Pigozzi and A. Salibra, "The abstract variable-binding
calculus", Studio Logica, 55 (1995), pp. 129-179

[36] D. Pigozzi and A. Salibra, "Lambda abstraction algebras:
coordinatizing models of lambda calculus", Fundamenta In-
formaticae 33 (1998), pp. 149-200

[37] G.D. Plotkin, "A set theoretic definition of application",
Memorandum MIP-R-95, University of Edinburgh (1972)

[38] G.D. Plotkin, "Set-theoretical and other elementary mod-
els of the A-calculus", Theoretical Computer Science, 121
(1993), pp. 351-409

[39] G.D. Plotkin, "On a question of H. Friedman", Information
and Computation, 126 (1996), pp. 74-77

[40] A. Salibra, "Nonmodularity results for lambda calculus",
Fundamenta Informaticae (to appear)

[41] A. Salibra, "On the algebraic models of lambda calculus",
Theoretical Computer Science, 249 (2000), pp. 197-240

[42] A. Salibra and R. Goldblatt, "A finite equational axiomati-
zation of the functional algebras for the lambda calculus",
Information and Computation, 148 (1999), pp. 71-130

[43] M. Schönfinkel,"Uber die bausteine der Mathematischen
Logik", Mathematischen Annalen (english translation in J.
van Heijenoort ed.'s book'Trom Frege to Gödel, a source
book in Mathematical Logic, 1879-1931", Harvard Univer-
sity Press, 1967), 92 (1924), pp. 305-316

[44] D.S. Scott, "Some ordered sets in computer science", In: Or-
dered sets (I. Rival ed.), Proc. of the NATO Advanced Study
Institute (Banff, Canada), Reidel (1981), pp. 677-718

[45] D.S. Scott, "Continuous lattices", In: Toposes, Algebraic
geometry and Logic (F.W. Lawvere ed.), LNM 274, Springer-
Verlag (1972), pp. 97-136

[46] D.S. Scott, "Data types as lattices", SIAM J. Computing, 5
(1976), pp. 522-587

[47] D.S. Scott, "Lambda calculus: some models, some philoso-
phy", The Kleene Symposium (J. Barwise, H.J. Keisler, and
K. Kuneneds.), Studies in Logic 101, North-Holland (1980)

[48] D.S. Scott and C. Gunter, "Semantic domains", Handbook
of Theoretical Computer Science, North-Holland, Amster-
dam (1990)

[49] P. Selinger, Functionality, polymorphism, and concurrency:
a mathematical investigation of programming paradigms,
PhD thesis, University of Pennsylvania (1997)

[50] P. Selinger, "Order-incompleteness and finite lambda mod-
els", Eleventh Annual IEEE Symposium on Logic in Com-
puter Science (1996)

[51] LA. Steen and JA. Seebach, Jr., Counterexamples in topol-
ogy, Springer-Verlag (1978)

[52] W. Taylor "Varieties of topological algebras", Austral. Math.
Soc, 23 (1977) pp. 207-241

[53] W. Taylor, "Varieties obeying homotopy laws", Canad.
Journal Math., 29 (1977), pp. 498-527

[54] A. Ursini, "On subtractive varieties, I", Algebra Universalis,
31 (1994), pp. 204-222

[55] A. Visser, "Numerations, A-calculus and arithmetic", To
H.B. Curry: Essays on Combinatory Logic, Lambda-
Calculus and Formalism (J.R. Hindley and J.P. Seldin eds.),
Academic Press, New York (1980), pp. 259-284

343

Session 9

Relating levels of the mu-calculus hierarchy and levels of the monadic hierachy

David Janin Giacomo Lenzi
LaBRI

Universite de Bordeaux I - ENSERB
351 cours de la Liberation,

F-33 405 Talence cedex
{j anin|lenzi}@labri.u-bordeaux.fr

Abstract

As already known [14], the mu-calculus [17] is as ex-
pressive as the bisimulation invariant fragment of monadic
second order Logic (MSO). In this paper, we relate the ex-
pressiveness of levels of the fixpoint alternation depth hier-
archy of the mu-calculus (the mu-calculus hierarchy) with
the expressiveness of the bisimulation invariant fragment of
levels of the monadic quantifiers alternation-depth hierar-
chy (the monadic hierarchy).

From van Benthem 's result [3], we know already that the
fixpoint free fragment of the mu-calculus (i.e. polymodal
Logic) is as expressive as the bisimulation invariant frag-
ment of monadic So (i.e. first order logic). We show here
that the v-level (resp. the vp-level) of the mu-calculus hi-
erarchy is as expressive as the bisimulation invariant frag-
ment of monadic Si (resp. monadic T,o) and we show that
no other level Ej. for k > 2 of the monadic hierarchy can
be related similarly with any other level of the mu-calculus
hierarchy.

The possible inclusion of all the mu-calculus in some
level £;. of the monadic hierarchy, for some k > 2, is also
discussed.

1 Introduction

The propositional modal fixpoint calculus (or mu-
calculus for short) introduced by Kozen [17] is considered
in this paper. The mu-calculus was initially introduced as a
specification formalism for processes modeled as states in
transition systems.

However, using the mu-calculus as a logic of processes
has a major drawback : the model-checking problem, which
is to decide if a (finite) model (given as input) satisfies a
formula (also given as input), remains somehow difficult.
More precisely, the best model checking algorithms known

so far - see [16] for the lastest development - have (time)
complexity 0((mn)fd/2l+1) where m is the size of the in-
put graph, n is the size of the formula and d is the fixpoint
alternation-depth of the formula which depends on the in-
put formula. Moreover the restriction to mu-calculus for-
mulas with a bounded fixpoint alternation-depth is (theo-
retically) not an issue because it also strictly reduces the
expressive power of the logic. Indeed, Bradfield [4] and,
in some weaker sense, Lenzi [18], prove that the hierarchy
induced by the fixpoint alternation-depth, (the mu-calculus
hierarchy) is strict.

In practice, temporal logics [6], which all belong to low
levels of the alternation depth hierarchy, are often preferred
to the full mu-calculus since in that case the model check-
ing problem has a low degree polynomial (even linear) time
complexity.

It is also known that the model-checking problem be-
longs to NPCico-NP [15]. From Fagin's famous corre-
spondence between the class NP and the existential frag-
ment of second order logic [7], this upper bound tells us
that all mu-calculus formulas belongs to the level Si n 111
of the second order quantifier alternation hierarchy.

Since all mu-calculus formulas can be translated into
monadic second order logic (MSO) one may ask whether
similar descriptive complexity results are available for the
monadic quantifier alternation hierarchy (the monadic hier-
archy) which is known to be strict (even over finite models
as shown by Matz and Thomas [20]). More precisely, since
the mu-calculus is as expressive as (or equivalent to) the
bisimulation invariant fragment of MSO [14], one may ask
whether the full mu-calculus or any level of the mu-calculus
hierarchy is equivalent to the bisimulation invariant frag-
ment of some level of the monadic hierarchy.

Van Benthem [3] already shows that the fixpoint free
fragment of the mu-calculus (i.e. Polymodal Logic also
called Hennessy-Milner logic among computer scientists)
is equivalent to the bisimulation invariant fragment of

0-7695-1281-X/01 $10.00 © 2001 IEEE 347

Levels of the mu-calculus
Mu-calculus

Polymodal Logic
(/-level of the mu-calculus

i//i-level of the mu-calculus
Properties (all1) of arbitrary levels

Levels of the monadic hierarchy
Monadic Second Order Logic

FOL
monadic Ei
monadic £•>
monadic £•?

Reference
Janin-Walukicwicz 1996

VanBcnthem 1976
shown here
shown here
shown here

Figure 1. Correspondance between levels of the mu-calculus hierarchy and levels of the bisimulation
invariant fragment of the monadic hierarchy

monadic E0 (i.e. FOL).
Here, we complete the picture showing that:

Theorem 1.1 The v-level (resp. the p-level) of the mu-
calculus hierarchy is equivalent to the bisimulation invari-
ant fragment of the level E, (resp. Ui) of the monadic hier-
archy.

and

Theorem 1.2 The vp-level (resp. the pv-level) of the mu-
calculus hierarchy is equivalent to the bisimulation invari-
ant fragment of the level £•_> (resp. IT) of the monadic hier-
archy.

From Arnold's proof of the strictness of the mu-calculus
hierarchy [21, we also show that :

Theorem 1.3 For each integer k > 2 there exists a bisimu-
lation invariant formula of monadic E3 that does not belong
to the kth level of the mu-calculus hierarchy.

In other words, no other equivalence similarly relates lev-
els of the mu-calculus hierarchy with levels of the monadic-
hierarchy.

The question whether the mu-calculus is equivalent to
the bisimulation invariant fragment of monadic Efr, for
some integer k > 2, remains, strictly speaking, open. How-
ever, the following theorem, which is a consequence of the
work of Courccllc [5], shows that, on a quite general class
of graphs (or the class of all graphs1), this is already true
with monadic £:!.

Theorem 1.4 Over the class of graphs of bounded degree
(or bounded tree-width) all mu-calculus formulas can be
translated into monadic E3 formulas.

Figure 1 above summarizes all these results. One must
be aware that, for these results, we are considering arbitrary
finite and infinite models. Rosen [28] shows that van
Benthcm's result still holds over finite models only. All
other statements mentioned in Figure 1 are open problems
over finite models.

'provided, as in MS2 in [5], quantification over edges is available !

Allthough these new results essentially have a theoretical
flavor they can also be seen as a general toolkit to analyse,
from syntax, the model-checking complexity of logics of
programs. Indeed, most logics of programs arc (implicitly
defined as) particular fragments of the bisimulation invari-
ant fragment of MSO. The result above says that, as soon
as these logics can be translated into monadic A! (resp.
monadic A2) then the model checking complexity is linear
(resp. quadratic) in the size of the input program.

Related works

The study of various bisimulation invariant fragments of
logical formalisms leads to some other results.

Following Hafer and Thomas [10] logical characteri-
zation of CTL* over the binary tree, Möller and Rabi-
novich [21] obtain a similar characterization of CTL* over
arbitrary trees : CTL* is as expressive as the bisimulation
invariant fragment of MSO over trees with path quantifiers
instead of general set quantifiers.

With a more expressive language than the mu-calculus,
Grädel. Hirsch and Otto show the expressive completeness
of the guarded lixpoint calculus w.r.t. the bisimulation in-
variant fragment of guarded second order logic [9[.

Over finite models, Otto gives a fixpoint characterization
of bisimulation invariant PTIME [25].

In his PhD thesis [11], Hollenberg also characterizes the
bisimulation invariant fragment of MSO via bisimulation-
quantifiers [8]. It is an open question whether his approach
extends to the bisimulation invariant fragment of monadic
Ei or monadic E->.

Investigating bisimulation invariance inside MSO also
leads to apply works on MSO over trees. The pioneer-
ing works of Rabin [26][27] on the monadic second or-
der theory of the binary tree (S2S) arc obviously relevant
here. Also the many automata characterization of various
mu-calculi over trees which starts in the early 80's with the
results of Niwinski [24] or Street and Emerson [32] among
others arc fundamental. In this paper, we use one of the last
and most achieved extension of these techniques and results
obtained by Walukiewicz [33],

348

Note however, Theorems 1.1 and 1.2 are not immediate
consequences of these results.

For the analysis of bisimulation invariance inside
monadic Si, the restriction to trees is even misleading
since, with properties definable in monadic Si, bisimula-
tion invariance over trees is less restrictive than bisimula-
tion invariance over arbitrary graphs. Indeed, the monadic
Si formula 3xp(x), although bisimulation invariant over
trees, would mean, as a bisimulation invariant property over
graphs, that there is a directed path from a distinguished ver-
tex (the root of the graph) to some vertex x where p holds.
This property is at least as difficult to express as directed
reachability which, as shown by Ajtai and Fagin [1], is not
expressible in monadic Si.

For the analysis of bisimulation invariance inside
monadic S2, it is true that bisimulation invariance over trees
or graphs coincides. But then, there is no real characteriza-
tions of FOL or monadic Si logic of trees so no simple in-
ductive proof is available. To prove Theorem 1.2, we shall
extend to all trees a new similar result of Lenzi [19], re-
proved by Skurcziriski [31] in a more automata theoretical
way, which says that, on the binary tree, languages defin-
able in monadic S2 are exactly the languages recognizable
by tree automata with Büchi conditions.

Overview

The paper is organized as follows. First we recall the
definition of bisimulation equivalence. Then, in relation
with it, we present the notions of «-expansions which pro-
vide, in some sense, canonical representatives of bisimula-
tion equivalences classes of graphs.

In the third part, we recall the definitions of Monadic
Second Order Logic and the modal and counting mu-
calculus. We also recall most of the known results relating
these languages.

In the fourth part, we give a definition of tree automata
which, with various acceptance criteria, will constitute the
main technical tools to prove our results.

In the fifth and sixth parts, bisimulation invariance in
monadic Si and in monadic S2 are analyzed. Sketch of
proofs for Theorem 1.1 and Theorem 1.2 are given.

In the last part, the case of levels S/t for k > 2 is consid-
ered and Theorem 1.3 and Theorem 1.4 are proved.

Acknowledgement

Thanks to Andre Arnold and Igor Walukiewicz for many
stimulating and helpful discussions on this topic. Thanks to
Mike Robson for his help writting this final version.

2 Graphs, Bisimulation and Expansion

We recall here the notions of transition systems, bisim-
ulation equivalence and expansion of transition systems.
Since a transition system is simply a directed graph with
a distinguished vertex called its source or root, we use in
the following the vocabulary of (directed) graphs.

Also, in order to simplify statements and proofs, we only
consider here unlabeled directed graphs (built over a single
binary relation symbol). One can check that all the results
presented here can easily be generalized to (finitely) labeled
directed graphs, i.e. graphs built over a finite set of binary
relation symbols.

Let Prop be a set of unary predicate symbols and let R
be a binary relation symbol. A graph with a root, simply
called graph in the sequel, is a tuple:

M=(SM,rM,RM,{pM}peProp)

with a set SM of vertices, a root rM G SM, a binary suc-
cessor relation RM C SM x SM and for each p G Prop, a
subset pM CSM.

Graphs M and N are called bisimilar when there exists a
relation R C SM x SN, called a bisimulation relation, such
that (rM, r1*) G R and for every (s, t) G R and p G Prop,
s G pM iff t G pN, and whenever (s, s1) G RM for some s',
then there exists t' such that (t, £') G RN and (s', t') G R,
and whenever (t, t') G RN for some t', then there exists s'
such that (s, s') G RM and (s', t') G R.

Given any set K (disjoint from SM), a n-indexed path in
M is a non empty finite or infinite word iv G 5A/

.(K.5
M

)
OC

such that whenever w = u.s.k.s'.v with u G (5
A/

.K)*,

s G SM, k G K, s' G Sm and v G (K.S
M

)°° one has
(s,s') G RM. The length \w\ of K-index path w is defined
as the number of occurrences of elements of SAI in w, e.g.
when w = so.ki.si. ■ ■ ■ -kn.sn we put \w\ = n + 1. In this
case, we say So is the source of w, sn is the target of w and
w is a (/c-indexed) path from so to sn.

Remark that (up to isomorphism) the notion of K-indexed
path only depends on the cardinality of K. In particular,
when K is a singleton, K-indexed paths are nothing but the
usual (directed) paths in a graph.

The K-expansion TK(M) of system M is defined as fol-
lows : set ST"(M) is the set of all finite «-indexed paths
of M with root rM, the root rT"(M) equals rM, relation
fjTK(M) js tne set 0f aj[pajrs 0f tne form (u.s,u.s.k'.s') G
ST«(M) x ST-(M) with u £ (SMmKyf s and j £ gM and

k' G K such that (s,s') G RM, and, for any p G Prop,
pT"(M) js t^e set Qf a|| K_indexecj path 0f tne form u.s G

Sr"(M> with u G (S
M

.K)* and s G pM.
Any «-expansion is a tree. Moreover, when K is a single-

ton, the /t-expansion of M, from now on denoted by T(M),
is nothing but what is usually called the unwinding or un-

349

raveling of graph M from its root rAI. Vertices of T(M)
are all finite paths from the root.

When M is a tree, i.e. when M and T(M) are isomor-
phic, we shall use the notation <M for the order relation
induced by the tree-structure of M, i.e. relation <M is the
reflexive and transitive closure of relation RM.

The notion of K-expansion gives in some sense canonical
representatives of equivalence classes under bisimulation as
illustrated by the following fact.

Fact 2.1 For any infinite set n and for any graphs M and N
of cardinality at most \K\, M and N are bisimilar iffTK(M)
andTK{N) are isomorphic.

3 First order and monadic second order logic
and the propositional //-calculus

In this section we define first order logic (FO) and
monadic second order logic (MSO) and two variants of
the propositional //-calculus [17]. All logics arc inter-
preted over transition systems. Note that a transition sys-
tem 71/, as defined above, is a FO-structure with domain
dom(M) = SA! on the vocabulary {r, 7?} U Prop with r a
constant symbol standing for the root, R a binary relation
symbol and Prop a set of unary relation symbols.

3.1 FO and MSO

Let var = {./:, y, • • •} and Var = {X.Y, • ■ •} be respec-
tively some disjoint sets of first order and monadic second
order variable symbols.

First order logic over the vocabulary {r, /?} U Prop can
be defined as follows. The set of FO formulas is the small-
est set containing formulas p(t), t = t', R(t,t'), X(t) for
p G Prop, X G Var and t G var U {/} and closed under
negation ->, disjunction V, conjunction A and existential 3
and universal V quantifications over FO variables.

Monadic second order logic over the vocabulary {r, R] U
Prop can be defined as follows. The set of MSO formulas is
the smallest set containing all FO formulas and closed under
negation -i, disjunction V, conjunction A and existential 3
and universal V quantifications over set variables.

For any MSO formula, we use the notation
(fi{x[, ■ ■ ■ ,xm, Xi, ■ ■ ■ ,Xn) for the formula p with
free first order variables among {x\, • • ■, xm } and free set
variables among {A'I, • • ■, A',,}. For any graph M, any
elements su ..., sm G SA/, any sets Si, ..., S„ C SA/,
we use the notation

71/ |= ip(si,---,sm,Si,---,Sn)

to say that formula ip is true in M, or 71/ satisfies <p, under
the interpretation of each FO variable :r, by the vertex ,s,

and each set variable Xj by the set Sj. We do not repeat
here the definition of this satisfaction relation.

A class C of graph is said MSO definable when there
exists a sentence p G MSO, i.e. a formula with no free
variable, such that M G C iff M \= ip. A class C of tran-
sition systems is bisimulation closed (resp. closed under
unwinding) if whenever 71/ G C and M' is bisimilar to M
then M' G C (resp. if for any M,M G C iff T(M) G C).
A sentence ip is bisimulation invariant (resp. unwinding in-
variant) if the class of transition systems it defines is bisim-
ulation closed (resp. closed under unwinding). Remark that
bisimulation invariance implies unwinding invariance since
any graph M is bisimilar to its unwinding T(M).

The notion of bisimulation invariance (or unwinding in-
variance) extend to arbitrary formula <p{Xi, ■ ■ ■, Xn) with
no free FO variable considering graphs over the set of pred-
icate symbols Prop' = Prop U {Xt, ■ ■ ■, Xn). Since fix-
point formulas, which we will consider later, may have free
set variables, we shall implicitly consider this extension of
graph to Prop' whenever there is no ambiguity.

Finally, the monadic quantifier alternation-depth hierar-
chy is defined as follows. The first level E0 = IIo is defined
as the set of all formulas of first order logic. Then , for each
integer k, level Ej.+ i (resp. level uj.+i) is defined as the
set of all formulas of the form 3Arj • • • 3Xnip with <p G II*.
(resp. VA'i ■ • ■ VX„<p with ip G £*■). The bisimulation in-
variant (resp. unwinding invariant) fragment of the level £*.
of MSO formulas is defined as the set of all bisimulation in-
variant (resp. unwinding invariant) formulas of E*. with no
free first order variables.

3.2 Modal and counting //-calculus

The set of the modal /z-calculus formulas is the smallest
set containing Prop U Var which is closed under negation,
disjunction and the following formation rules:

• if a is a formula then Oa and Da arc formulas,

• if a(X) is a formula and A^ occurs only positively
(i.e. under even number of negations) in a(X) then
pX.a(X) and vX.a(X) are formulas.

The set of counting //-calculus formulas is defined as above
replacing standard modalities O and □ by counting modal-
ities 0* and □*• for any integer k.

Wc use the same convention as for MSO with free set
variables, i.e. we denote by Q(A'I , • • •, Xn) a formula with
free variables among {A"i, ■ ■ ■, A',,}. For convenience, we
may also omit these free set variables in formula a consid-
ering then implicitly that graphs have been built over the set
of unary predicate symbols Prop' = Prop U { A'i, • • •, X„}.
In the sequel, we call fixpoint formula any formula of the
modal or counting //-calculus.

350

Atomic formulas: ifp =p{r), (px =X(r),
Boolean connectives: <PaAß = <Pa A ß, ipaVß = Wa V ß and yj-,Q = -upa

Modalities : ipoa = 3z R(r, z) A <pa[z/r], ip0a = Vz R{r, z) => <pa[z/r]
Counting modalities : ipoka = 3z1,---,zk diff(zi, ■ ■ ■, zk) A f\i(-[lk] R{r, Zi) A ipa[zi/r]

and </>□,« =\/zir--,zk (diff(zu ■ ■ ■ ,zk) A Aie[1 k] R{r,Zi)) =* Vi6[i k] <£<* hM
Fixpoints: VnXMX) = VX(Vzipa{X)[z/r} => X(z)) =* X(r)

and <pvX.a(X) = 3X(VzX(r) =^> pa{X)[z/r}) A X{r)

Figure 2. Semantics of fixpoint formulas

The meaning of a fixpoint formula a in a transition sys-
tem M can be defined as an MSO formula ipa with no free
first order variables and with the same free set variables.
The inductive definition of ipa is described in Figure 2 be-
low. In this figure, dijf[z\, • ■ •, zk) is the quantifier free FO
formula stating that ZJ ^ Zj for all i ^ j, a and ß are ar-
bitrary formulas, k is any integer, X any second order vari-
able, and z,z\, ..., zk any FO variables. Formula ipa[z/r]
is the formula obtained from ipa by replacing any occur-
rence of r by z, provided FO variable z has been chosen
in such a way it is never captured by a FO quantification
during this replacement.

Remark that one can choose FO variables in such a way
that, for any modal mu-calculus formulas a, formula ipa is
defined using at most two FO variables and, for any count-
ing mu-calculus formulas a, ipQ is defined using at most
k + 1 variables where k is the greatest integer such that
modality Ok or Dfr occurs in a.

For any fixpoint formula a, we shall write M |= a when
M \= ipQ. We say that an MSO formula ip is equivalent to
a fixpoint formula a when (= ipa o- ip.

The following fact follows from the above definitions :

Fact 3.1 For any fixpoint formula, if a is a modal (resp.
counting) mu-calculus formula then ipa is bisimulation in-
variant (resp. unwinding invariant).

The following theorems show that the above invariance
properties characterize in some sense the expressive power
of these fixpoint calculi.

Theorem 3.2 (from Walukiewicz [33]) A MSO sentence
is invariant under unwinding iff it is equivalent to some
counting mu-calculus formula.

and

Theorem 3.3 (Janin-Walukiewicz [14]) A MSO sentence
is invariant under bisimulation iff it is equivalent to some
modal mu-calculus formula.

Finally, the (modal or counting2) fixpoint alternation-
depth hierarchy defined as follows. The first level ./V0 = M0

is defined as the set of all (modal or counting) fixpoint free
formula with negation only applied to propositional con-
stants of Prop. Then, for each integer k, level Nk+i (resp.
level Mk+i) is defined as the closure of Nk UMk under dis-
junction, conjunction, substitution - provided no free vari-
able becomes bounded during the substitution process - and
greatest fixpoint construction (resp. least fixpoint construc-
tion). In the sequel, we shall also call ^-level (resp. /x-level)
or i//z-level (resp. /Ui/-level) of the fixpoint hierarchies, the
level Ni (resp. Mi) or N2 (resp. M2).

Theorem 3.4 (Bradfield [4]) For each integer k there is a
modal mu-calculus formula a € Nk which is not equivalent
to any modal mu-calculus formula in Nki with k' < k.

Arnold [2] shows that the above result still holds restricted
to the binary tree. From this stronger result we also have :

Theorem 3.5 (From Arnold [2]) For each integer k there
is a counting mu-calculus formula a £ Nk which is equiva-
lent to no counting mu-calculus formula in Nk' with k' < k.

Proof. Observe first that the binary tree is definable in the
counting mu-calculus with a formula of JVi. Moreover, over
the binary tree (with distinct left and right successors) the
counting and the modal mu-calculus are - level by level -
equally expressive. So Arnold's result extends to the count-
ing fixpoint hierarchy. D

4 Infinite tree automata

We define here tree automata that characterize the ex-
pressive power of the two mu-calculi defined above. Al-
though the main ideas and proof techniques go back to,
at least, the work of Streett and Emerson on the mu-
calculus [32], it took some times for these techniques to

2depending on the modalities one allows

351

be really understood and generalized to wider settings than
the non emptiness or the model checking problem for the
modal mu-calculus alone. In this section, we more or less
follow Walukiewicz's general approach [33].

In the sequel, the alphabet E is defined as the powcrsct
V(Prop) of Prop. The intuition behind this is that a vertex
x in a tree M is labeled by the "letter" X(x) G £ defined as
the set A(.-r) = {p G Prop : x G pAI}.

An alternating counting tree-automaton is a tuple

A = (Q,X,q0,Sl,6)

for a finite set of states Q, the finite alphabet E, an initial

state qo G Q, a parity index function Q : Q —» IN and
the transition function S : Q x E -> L(Q) where L(Q)
is the set of positive FO sentences, called transition specifi-
cations, built on the vocabulary Q where each state q G Q
is seen as a unary predicate, i.e. the least set of FO for-
mulas containing formulas q(x), x = y, x ^ y, and closed
under conjunction, disjunction, existential and universal FO
quantifications.

Remark that here counting means that the automaton is
capable, via equality and inequality inside transition speci-
fications, to count up to some bound the number of succes-
sors of vertices.

A tree-automaton A is called an alternating modal tree-
automaton when, for each q G Q, each a G E. the FO
formula S(q, a) is built without the atomic formulas .r = y
and .7: ^ y.

A tree-automaton A is called a non deterministic count-
ing tree-automaton when, for each q G Q, a G E. S(q. a) is
a disjunction of formulas of the form

3:('i, • • • , xk.diff{x{, ■■■ , xk) A qh (.c,) A • ■ • A q,k (.rA.) A

i'eQ'

with any states </,-,, ..., qik. not necessarily distinct and any
Q' C Q where, again, cliff predicates only says that each
variable is distinct from any other.

Note that non dcrministic modal automata can also be
defined (see [13]) but, apart for the non emptiness problem,
they don't have all the interesting properties of usual notions
of non deterministic automata such as, for instance, closure
under projection. This comes from the fact the modal mu-
calculus (or even polymodal logic) is not closed under set
quantifiers as shown by the "formula" 3A'(OA' A O-iA").

Given a graph M, a run of A over M is a graph p which
set of vertices V is some subset of the set of pairs (s, q) G
SAI x Q with (rM,q0) G V and which set of edges E» C
V x V is such that : for any pair {s,q) G Vp, given
the local structure Lp

s over the vocabulary Q defined by

dovi{LPq) = {s1 G 5'A/ : («,«') G RM} and, for each

p G Q,pL'- = {.s' : ((.s,g), (.<>■») G E"}, one has

LS,,M(7.A(.s))

A run p is caWcd functional when, for any s G 5A/ there is
at most one q G Q such that (.s, 7) G V'.

A run p of .4 over A/ is an accepting run when, for each

infinite path n in p of the form 7r = (rA',<7o)-(sii'7i)• • • •
the minimum min{0((7,) :]{;' G W : qi — qj}\ = oc} is
even.

The next lemma shows that, although runs arc defined
over arbitrary graphs, these automata implicitly "read" trees
as input.

Lemma 4.1 For each graph M there is an accepting run of
A over M iff there is an accepting run of A over T(M).

Proof. From left to right just notice that the unwinding of
an accepting run of A over M is an accepting run of A over
T(M). The converse, less immediate, can be proven within
parity game theory, the existence of an accepting run of A
over M being equivalent to the existence of a mcmoryless
winning strategy in some parity game built from A and M.
D

For the next lemmas and theorems, we shall concentrate
on trees.

Given an automaton .4. we denote by L{A) the class
of all trees M such that there exists an accepting run of
*4 over M. The class L(A) is called the language of trees
recognized by A.

The following theorem can be obtained from the results
presented in [33]. It also follows from [12].

Theorem 4.2 For each class of tree L. the following state-
ments are equivalent:
1. L is definable with an MSO sentence,
2. L is definable with a counting mu-calculus formula.
3. L = L(A) for some alternating counting tree automa-
ton A.
4. L = L(A) for some non deterministic* counting tree
automaton A.

and the next one follows from [32] and [14]

Theorem 4.3 For each class of tree L. the following state-
ments are equivalent:

L L is definable with a bisimulation invariant MSO sen-
tence.

2. L is definable with a modal p.-calculus formula.
3. L = L(A) for some modal tree automaton A.

Some particular subclasses of tree-automaton that will
be useful in the sequel. Automaton A = (Q, E, q{), fi.,6)

■'possibly with more parity indices

352

is called a v-automaton (resp. vp-automaton or Biichi au-
tomaton) when fi(Q) = {0} (resp. when O(Q) = {0,1}).

These automata characterize the i/-levels and z/^-levels
of the counting and modal mu-calculi in the following
sense.

Lemma 4.4 (Expressiveness) A class of tree L is recog-
nized by a (counting or modal) v-automaton (resp. v--
automaton) iffL is definable by a (modal or counting) mu-
calculus formula of the v-level (resp. of the vp-level).

Proof. This lemma is a particular case of the well-known
correspondence between level of the mu-calculus hierarchy
and the number of parity indices needed in alternating tree-
automata. This correspondance was first achieved, in the
case of the binary tree, by Niwiriski [24]. See [33] for a
proof in the counting mu-calculus case. D

This implies in particular that the classes of languages
recognized by i/-automata or i//x-automata are closed under
union and intersection.

For counting automata more properties are available :

Lemma 4.5 The class of languages recognizable by count-
ing v-automata (resp. by counting vp-automata) is closed
under projection.

Proof. This lemma follows from the next two. D

Lemma 4.6 (Simulation) A language recognized by a
counting v-automaton (resp. a counting v p-automat on)
is also recognized by a non deterministic counting v-
automaton (resp. a non deterministic counting vp-
automaton).

Proof. Extension to arbitrary trees of (a part of) Müller and
Schupp's simulation theorem [23] for alternating tree au-
tomata over the binary tree. D

and

Lemma 4.7 (Projection) The projection of a language rec-
ognized by a non deterministic counting automaton is also
recognized by a non deterministic automaton with the same
set of states and parity function.

Proof. When A is non deterministic counting one can re-
strict runs (over trees) to be functional without changing
the language recognized by A. Closure under projection
immediately follows from this restriction. D

To conclude this section on automata, we recall here the
heart of the bisimulation invariance result presented in [14]
as the following lemma which will be used in the sequel:

Lemma 4.8 For each non deterministic counting tree au-
tomaton A there exists a modal automaton B, with the same
set of states and parity function, such that, for each tree M,
any infinite set K, T

K
{M) £ L(A) iff M € L(B).

Proof. See [14] for a complete proof. The main idea is to
define B as the automaton obtained from A by replacing all
equalities or inequalities in the FO formula of 6 by some
true formula.

D

5 Bisimulation invariance in monadic £i

In this section, we prove theorem 1.1. For this, we first
prove the analogue for unwinding invariance, from which,
applying Lemma 4.4 and Lemma 4.8, we obtain the desired
result.

So our goal is to prove the following theorem :

Theorem 5.1 The unwinding invariant fragment of the
level Ei (resp. Hi) in the monadic hierarchy equals the
v-level (resp. the p-level) of the counting mu-calculus hier-
archy.

Proof. By duality, it is sufficient to prove the result
for monadic Si. Moreover, it is a classical result, from
Lemma 4.4 stated above, that properties definable in the v-
level of the counting mu-calculus are definable in monadic
Si. So it remains to prove that:

Lemma 5.2 Any unwinding invariant formula of monadic
Ei is equivalent to a formula of the the v-level of the count-
ing mu-calculus.

In order to do so, one must understand that, as stated in
the introduction, it is not sufficient to restrict our analysis
to trees - although an unwinding invariant property is fully
determined by its models among trees - because over trees,
monadic Ei is strictly more expressive than the //-level of
the counting mu-calculus as the (even FO) formula 3xp(x)
shows.

First, remark that an unwinding invariant property only
speaks about the vertices reachable from the root because
any graph M has the same unwinding as the subgraphs in-
duced by these vertices. This leads to the following defini-
tions. Let c(rn,i) be the set of all vertices which are reach-
able from the root TM via a (directed) path (called in the
sequel the directed connected component induced by r/v/).
For each MSO sentence ip, let us define ipc as the formula
ip relativized to the directed connected component c(r) of
r, i.e. (pc is obtain from if replacing any first order or set
quantification by quantifications over vertices or subsets of
c(r). With this definition and the previous remark it appears
that if ip is invariant under unwinding then ip is equivalent
to ipc; in particular, if f is in monadic Ei then fc is also
(definable) in monadic Ei.

So let f be an unwinding invariant monadic Ei formula.
By the Gaifman normal form theorem for first order logic,
there is some integer k such that ip is of the form

ip = 3Z.tpi

353

with Z a finite vector of sets variables and ipi is a finite
boolean combination of FO formulas G(Z) of the form

G(Z) = 3ul,...,ui.6(u1,...,uhZ)

where 9(ui,... ,u/, Z, Y) is a formula stating that for all
distinct indices s and t among [1,1], dist(us,ut) > 2k
and Ball(us,k) \= ips{Z) for some FO formulas jj>s(Z),
with dist(x, y) defined as the length of the shortest undi-
rected path from x to y and Ball(x,k) is defined as the
substructure of M induced by the set of all vertices y such
that dist(x,y) < k.

For notational simplicity we assume that ip is of the form

<p = 3Z.G(Z)A-<G'(Z)

with G{Z) of the form 3u9(u, Z) and G'{Z) of the form
3u'6'(u', Z). One can check that this proof easily extends
to the general case.

The rclativization ipc of tp to the strongly connected com-
ponents of r is then given by :

^ 3Z.GC(Z)A-<G'C(Z)

with GC{Z) given by 3u e c(r).9c(u, Z) and G'C(Z) given
by3u' er(r).e,c(u',Z).

Now, we know that the formula ipc cannot have for ar-
bitrarily large integers n a model AIn, where the points of
c(r) satisfying Bc have (directed) distance more than n from
r. Otherwise, the ultraproduct of the Mns modulo any non
principal ultralilter, would not satisfy ipc, contrary to the Si
definability of ipr and Los ultraproduct theorem (sec for in-
stance [29]) which says that the class of models of any Ej
formula is closed under ultraproduct.

So given integer n such that no model Mn for n > n
satisfies ipc, it turns out that formula ipc is equivalent to for-
mula 3Z.->G"'{Z) A G"(Z) with

G"{Z) = 3uecK{r).er(n,Z)

and cw(r) the set of all points directly accessible from r in
at most n steps.

Now it is not difficult to see that ~^G'C{Z) is a fixpoint
formula of the /./-level over trees (i.e. unwindings) and
Gn(Z) is even a fixpoint free formula on unwindings as
well. By unwinding invariance, this says that if is equiva-
lent to some formula of the form 3Z(pai (Z) with o' £ Ari.

Then, over trees, Lemma 4.5, ensures 3Z<pa>(Z) is
equivalent to some ipa for some a in the //-level as well
hence, again by invariance under unwinding, <p is equiva-
lent over arbitrary models to tpa. D

6 Bisimulation invariance in monadic E2

In this section, we prove theorem 1.2. For this, again,
we first prove the analogue for unwinding invariance, from

which, applying Lemma 4.4 and Lemma 4.8 we obtain the
desired result. So our goal is to prove the following theo-
rem :

Theorem 6.1 The unwinding invariant fragment of the
level £9 (resp. II2J in the monadic hierarchy equals the
vfi-level (resp. the [iv-level) of the counting mu-calculus
hierarchy.

Proof. By duality, it is again sufficient to prove the result for
monadic E2. Moreover, it is again a classical result, from
Lemma 4.4, that properties definable in the ////-level of the
counting mu-calculus are definable in monadic E2. So it
remains to prove that:

Lemma 6.2 Any unwinding invariant formula of monadic
£2 'S equivalent to a formula of the the ufi-level of the
counting mu-calculus.

Proof. Somehow, the proof in the case of £2 is simpler than
£1 for it is true that, over trees, any monadic £2 formula is
equivalent to a ///i-formula which remains to be shown.

For this, we use definability in weak monadic second
order logic as an intermediate step. Remember that weak
monadic second order logic is monadic second order logic
with set quantification restricted to finite sets.

A priori, using weak MSOL doesn't make sense. In-
deed, over arbitrary trees, weak MSOL is incomparable
with MSOL. However, Theorem 4.2 and the definition of
tree automata show that analyzing MSOL over trees can bc
made over finitely branching trees only. In fact any MS for-
mula satisfiable over the class of trees has a model which is
finitely branching, i.e. with finitely many successors from
each vertex.

For this reason, we can restrict our study to finitely
branching trees and then weak MSOL is a fragment of
MSOL since, in this case, finite sets are definable in MSOL.

The sketch of the proof is then the following. First we
prove

Lemma 6.3 Any language of (finitely branching) trees de-
finable in monadic £1 is definable in weak MSOL.

Then, by closure of weak MSOL under negation, this shows
that monadic IL is also included into weak MSOL. Hence
monadic £0 is included into the existential projection of
weak MSOL. Now, because the class of languages de-
finable by ////-automaton is closed under projection (sec
Lemma 4.5) we prove

Lemma 6.4 Any languages of (finitely branching) trees de-
finable in weak MSOL is recognizable by a i/fi-automaton.

which conclude the proof of Lemma 6.2. G

In order to prove Lemma 6.3 we can adapt the work of
Len/.i [19], to the case of finitely branching trees. Another

354

approach, following the idea of Skurcziriski [31], is to use
weak j//i-automaton as an intermediate step.

We recall here that a tree automaton A is a weak au-
tomaton when, for any q G Q, any a £ E, for each states q'
occurring in formula 5(q, a), fl(q) < Q(q').

Then, adapting the proof presented in [30] for the k-ary
case, one has :

Lemma 6.5 Any FO definable tree languages is recogniz-
able by a weak strongly non deterministic vfi-automaton.

But then, since languages recognizable by strongly non de-
terministic weak ^-automaton are closed under projection,
it is sufficient to show that

Lemma 6.6 Any languages of (finitely branchinbg trees)
recognizable by a weak automaton is definable by a weak
MSOL formula.

And this last lemma is an adaptation of similar result, by
Mostowski [22], over the binary tree. □

For Lemma 6.4, it shall be clear that it can be proved ex-
tending, in a quite straightforward way an analogous proof
due to Rabin [27] in the binary case.

This concludes the proof of Theorem 6.1 for, applying
Lemma 4.4, languages recognizable by i//z-automata equal
languages definable by (counting) fixpoint formulas of the
!//i-level. □

7 Above the level S2

In this section, we prove Theorem 1.3 and Theorem 1.4.
For this, we assume that the reader has a general knowledge
of the theory of parity games4. If not, Jurdziriski's [16] gives
an appropriate, and up to date, overview of the topic.

From [4] we know that, given an integer k, expressing
the fact that a position in an arbitrary parity game with sets
of parity indices [0, k] cannot be done with any mu-calculus
formula of the level Nk- From [2] we know that this is still
the case restricted to games of degree two.

Remark that in monadic second order logic, this may
also be difficult to express because in some sense it requires
some, at least implicit, construction of a (memory less) strat-
egy for player 0 which is winning for any plays starting in
the distinguished position. And winning strategies are pe-
culiar sets of edges which are, in general, not even definable
in MSOL.

Still we prove Theorem 1.3 redefining binary games on
graphs (over a more complex signature) on which guessing
a winning strategy will become possible with a single ex-
istential set quantification. The main difficulty is only to

4with the winning criteria defined as an even minimal index met in-
finitely often...!

ensure that such a definition leads to bisimulation invariant
class of parity games.

More precisely, given some integer k > 2, given Prop
defined by Prop = {pi,pr,Por •• ,Pk}> any graph M such
that both {p,M, pf } and {p^, ■ • ■, p£f } are partitions of the
set of vertices SM reachable from the source r - which is a
bisimulation invariant property - is from now on interpreted
as a parity game as follows :

1. any position (reachable from the root) is a position of
player 0,

2. a move from such a position is made as follows: player
0 chooses one predicate px G {pi,pr} and then player
1 chooses the new position y G SM such that y G
pM{y) and (x,y) G RM,

3. disjoint predicates po, ...,Pk encode the parity indices
of each of these positions.

Theorem 1.3 is then a consequence of the following lemma:

Lemma 7.1 For each integer k > 2, the class WQ of (en-
coded) games over the set of indices [0, k] where the root is
a winning position for player 0 is bisimulation closed, de-
finable with a monadic £3 formula and not definable in the
level Nk of the mu-calculus.

Proof. First observe that any bisimulation relation relates
winning positions for player 0 to winning position for player
0 so the class WQ is indeed bisimulation closed.

Then, it is clear that any binary game can be encoded in
such a way. Moreover, computing with a mu-calculus for-
mula the fact that the root r is a winning positions for player
0 in this encoding is as difficult - in terms of number of al-
ternations of least and greatest fixpoints - as computing the
fact that the root r is a winning position for the same player
in binary games so, following the result of Arnold [2], it
requires at least k + 1 alternations of least and greatest fix-
points.

Now, to conclude the proof it is sufficient to show that
the class WQ is definable in monadic S3. But this can eas-
ily be achieved as follows : first, with some existential set
quantifier, one can guess a winning strategy for player 0,
e.g. guessing the set of positions X from which player 0
chooses predicate pr. Then it is clear that a /^-formula of
the mu-calculus (henceforth a monadic II2 formula) is suffi-
cient to check that this set X is indeed a winning strategy for
player 0 in any plays that start at the root. Indeed, one has to
check the minimal parity condition on any cycle reachable
from the root when player 0 follows the strategy given by set
A". In the intended /«/-formula, one least fixpoint enables
us to reach any of these cycles and then, one nested greatest
fixpoint enables us to check that the minimum parity index
met on each of these cycles is even.

355

Guessing a winning strategy and checking that it is win-
ning for player 0 can thus be expressed in monadic E3. G

The proof of Theorem 1.4 is also almost done. Indeed,
from the proof of previous lemmas it is clear that with one
existential quantification over sets of edges the winning po-
sition for player 0 can be expressed as a monadic E3 unary
predicate. But it also follows from Lemma 4.4 that checking
a fixpoint formula on a graph can be done via a monadic Ej
transduction which leads to computing winning positions
with as many parity indices as the alternation depth of the
formula. Moreover, if the input graph is of bounded de-
gree (or bounded tree-width) then the resulting parity game
is also of bounded degree (or bounded tree-with). Now
Courccllc shows that over graphs with bounded degree (or
tree-width) quantification over edges can be "simulated" by
quantifications over vertices via, again, a monadic Ei trans-
duction. Altogether, this says that over graphs of bounded
degree (or bounded tree-width) mu-calculus formulas can
be translated into monadic E3 formulas. This concludes the
proof of Theorem 1.4. D

References

[1] M. Ajtai and R. Fagin. Reachability is harder for directed
rather than undirected finite graphs. Journal of Symbolic

Z^/c, 55:113-150, 1990.
[2] A. Arnold. The mu-calculus alternation-depth hierarchy

over the binary tree is strict. Theoretical Informatics and

Applications, 33:329-339, 1999.
|3] J. Bcnthem. Modal Correspondance Theory. PhD thesis.

University of Amsterdam, 1976.
[4] J. Bradlicld. The modal mu-calculus alternation hierarchy is

strict. Theoretical Comp. Science. 195:133-153, 1998.
[5] B. Courccllc. The monadic second-order logic of graphs VI:

On several representations of graphs by logical structures.
Discrete Applied Mathematics, 54:117-149, 1994.

[6] E. Emerson. Temporal and modal logic. In J. Van Leeuwen.
editor, Handbook of Theor. Comp. Science (vol. B). pages
995-1072. Elsevier. 1990.

[7] R. Fagin. Generalized first-order spectra and polynomial-
time recognizable sets. In Complexity of Computation, vol-
ume 7. SI AM-AMS, 1974.

[8] S. Ghilardi and M Zawadowski. A sheaf representation and
duality for finitely presented Hcyting algebras. Journal of

Symbole Logic, 60:911-939, 1995.
[9] E. Grädel, C. Hirsch, and M. Otto. Back and Forth Between

Guarded and Modal Logics. In Proceedings of 15th IEEE

Symposium on Logic in Computer Science LICS 2000, pages
217-228,2000.

[10] T. Hafer and W. Thomas. Computationnal tree logic CTL"
and path quantifiers in the monadic theory of the binary tree.
In ICALP'87, pages 269-279. LNCS 267, 1987.

[11] M Hollcnberg. Logic and Bisimulation. PhD thesis, Utrecht
University, 1998.

[12] D. Janin. Proprietes logiques du non determinisme et mu-

calcul modal. PhD thesis, Universite dc Bordeaux I, 1996.

[13] D. Janin and I. Walukiewicz. Automata for the modal mu-
calculus and related results. In Math. Found of Comp. Sci-

ence. LNCS 969, 1995.
[14] D. Janin and I. Walukiewicz. On the expressive complete-

ness of the modal mu-calculus w.r.t. monadic second order
logic. In CONCUR'96, pages 263-277. LNCS 1119, 1996.

[15] M. Jurdziriski. Deciding the winner in parity games is in

UP ("I co-UP. Information Processing Letters, 68(3): 119-
124, 1998.

[16] M. Jurdzihski. Small progress measures for solving parity

games. In Symp. on Theor. Aspects of Computer Science,

pages 290-301. LNCS 1770, 2000.
[17] D. Kozcn. Results on the propositional //,-calculus. Theoret-

ical Comp. Science, 27:333-354, 1983.
[18] G. Lenzi. The Mu-calculus and the Hierarchy Problem. PhD

thesis, Scuola Normale Supcriorc, Pisa, 1997.
[19] G. Lenzi. A new logical characterization of Biiehi automata.

In Symp. on Theor. Aspects of Computer Science, 2001.
[20] O. Matz and W. Thomas. The monadic quantifier alternation

hierarchy over finite graphs is infinite. In IEEE Symp. on

Logic in Computer Science, pages 236-244. 1997.
[21] F. Möller and A. Rabinovieh. On the expressive power of

CTL". In IEEE Symp. on Logic in Computer Science, pages
360-369, 1999.

[22] A. Mostovvski. Hierarchies of weak automata on weak
monadic formulas. Theoretical Comp. Science. 83:323-335,
1991.

[23] D. E. Müller and P. E. Schupp. Simulating alternating tree
automata by nondeterministic automata: New results and
new proofs of the theorems of Rabin. McNaughton and
Safra. Theoretical Comp. Science. 141:67-107. 1995.

[24] D. Niwiriski. On fixed point clones. In /.?;// ICAl.P. pages
464-473. 1986.

[25] M. Otto. Bisimulation-invariant Ptime and higher-
dimensional mu-calculus. Theoretical Comp. Science.

224:237-265. 1999.
[26] M. O. Rabin. Decidability of second order theories and au-

tomata on infinite trees. Trans. Amcr. Math. Soc. 141:1-35,
1969.

[27] M. O. Rahin. Weakly definable relations and special au-
tomata. In Mathematical Logic and Foundation of Set The-
ory, pages 1-23. North Holland, 1970.

[28] E. Rosen. Modal logic over finite structures. Journal of

Logic. Language and Information, 6:427-439, 1997.
[29] J. R. Shocntield. Mathematical Logic. Addison-Wesley,

Reading. Mass., 1967.
[30] J. Skurczynski. On three hierarchies of weak SkS formulas.

Aachener Informatik-Berichte 90-3, RWTH Aachen, 1990.
[31] J. Skurczynski. A characterization of Biiehi tree automata,

unpublished manuscript. Gdansk University, 2000.
[32] R. S. Strcett and E. A. Emerson. An automata theoretic de-

cision procedure for the propositional mu-calculus. Infor-
mation and Computation, 81:249-264. 1989.

[33] I. Walukiewicz. Monadic second order logic on tree-like
structures. InSymp. on Theor. Aspects of Computer Science,
1996. LNCS 1046.

356

Focus Games for Satisfiability and Completeness of Temporal Logic

Martin Lange Colin Stirling
LFCS, Division of Informatics, University of Edinburgh,

JCMB, King's Buildings, Edinburgh, EH9 3JZ
{martin,cps}@dcs.ed.ac.uk

Abstract

We introduce a simple game theoretic approach to satisfi-
ability checking of temporal logic, for LTL and CTL, which
has the same complexity as using automata. The mecha-
nisms involved are both explicit and transparent, and un-
derpin a novel approach to developing complete axiom sys-
tems for temporal logic. The axiom systems are naturally
factored into what happens locally and what happens in the
limit. The completeness proofs utilise the game theoretic
construction for satisfiability: if a finite set of formulas is
consistent then there is a winning strategy (and therefore
construction of an explicit model is avoided).

1 Introduction

tomata. The mechanism involved, the use of a "focus",
is both explicit and transparent, and underpins a novel ap-
proach to developing complete axiom systems for temporal
logic. The axiom systems are naturally factored into what
happens locally and what happens in the limit. The com-
pleteness proofs use the game theoretic construction for sat-
isfiability: if a finite set of formulas is consistent then there
is a winning strategy (and therefore construction of an ex-
plicit model is avoided).

Although the origin of these games is model checking
CTL* [12], it remains to be seen if the game technique
extends to satisfiability checking of CTL* and modal /.i-
calculus. Moreover, it remains to be seen if the technique is
practically viable for testing satisfiability of LTL and CTL.

2 LTL

The automata theoretic approach to satisfiability check-
ing for temporal logic is very popular and successful [6,17].
However there is a cost with the involvement of automata
mechanisms and in particular the book keeping implicit in
the product construction, when a local automaton is paired
with an eventuality automaton. While this is not an imped-
iment for checking satisfiability it appears to be for other
formal tasks such as showing that an axiomatisation of a
temporal logic is complete. When proving completeness,
one needs to establish that a finite consistent set of formulas
is satisfiable. It is not known, in general, how to plug into
such a proof automata theoretic constructions (such as prod-
uct and determinisation) for satisfiability. Instead standard
completeness proofs either appeal to "canonical" structures
built from maximal consistent sets [15, 8] or tableaux which
explicitly build models from consistent sets, as illustrated
by the delicate proofs of completeness for CTL* [14] and
modal //-calculus [18], and even the proofs of completeness
for LTL [7,13] (future linear time logic) and CTL [5] (com-
putation tree logic).

In this paper we introduce a simple game theoretic ap-
proach to satisfiability checking of temporal logic, for LTL
and CTL, which has the same complexity as using au-

We present LTL [7] in positive form, where only atomic
formulas are negated. Let Prop be a family of atomic propo-
sitions closed under negation, where ->-iq = q, and contain-
ing the constants tt (true) and f f (false). Formulas of LTL
are built from Prop using boolean connectives V and A, the
unary temporal operator X (next) and the binary temporal
connectives U (until) and its dual R (release).

We assume a usual w-model for formulas, consisting of
an infinite sequence of states which are maximal consistent
sets of atomic formulas. A state s therefore obeys the con-
dition that for any q e Prop, q £ s iff -i</ ^ s, and tt e s
and f f ^ s. The semantics inductively defines when an u-
sequence of states o satisfies a formula $, written a |= $.
In the case of q e Prop, a \= q iff q is in the initial state of
a. The clauses for the boolean connectives are as usual. If
a = s0si ... and i > 0 then ol = SjSj+1 ... is the zth suffix
of a. The remaining clauses are as follows.

iff
iff

a \= $## iff

a1 h$
3i > 0. a1 \= * and

Vj : 0 < j < i. a* \= $
Vz > 0. ai \= * or

3j ■ 0 < j < i. oj \= $

0-7695-1281-X/01 $10.00 © 2001 IEEE 357

Wc assume that F* (eventually *) abbreviates tt£/\T/ and
its dual G'i1 (always \I/) abbreviates f f Rty. The meanings
of U and R arc determined by their fixed point definitions,
$C/$ is the least solution to a = $ V (<J> A AT a) whereas
<I>F\I> is the largest solution of a = * A ($ V XQ).

A formula $ is satisfiable if there is a model <r such
that a |= <I>. In the naive tableau approach to deciding
satisfiability, one constructs an "or" decision tree. The
root is a finite set of initial formulas, and the decision
question is whether their conjunction is satisfiable. Child
nodes arc produced by local rules on formulas. A node
T U {<I> A *} has child F U {$, *}. A node T U {$ V *}

has two children TU {$} and T U {*}. Formulas $17* and
$#<]/ arc replaced by their fixed point unfolding, * V (<£ A

X($Uy)) and * A ($ V X(R)). After repeated appli-
cations of these rules, a node without children has the form
{<7i,...,</n,X<I>i,...,X<I>m}, where each q, e Prop. If
the set P = {//],... ,qn} is unsatisfiable then the node
is an unsuccessful leaf. If P is satisfiable and m = 0
then the node is a successful leaf. Otherwise a new child
{<I>i,.... $,„} is produced, which amounts to moving to a
new state.

Nodes with until or release formulas may continually
produce children, and therefore one also needs another cri-
terion for when a node counts as a leaf. An obvious candi-
date is when a node is a repetition, contains the same for-
mulas as an earlier node (and in between there is at least
one application of the new state rule). Whether or not such
a leaf is successful will depend on whether formulas are the
result of the fixed point unfolding of a release or an until
formula. A repeat of <I>F\I/ should be successful whereas a
repeat of <i>U^ is unsuccessful.

Consider the following example decision tree, where set
braces are dropped (and tt and f f arc dispensed with and
so the unfolding of FVI' is * V XFty and the unfolding of
G* is vp A XGV).

Fq. XGFq

q\J XFq.XGFq

q. XGFq

GFq
Next

XFq.XGFq

Fq. GFq
Next

Fq A XGFq

Fq. XGFq

Fq. Fq A XGFq

Fq. XGFq

Next labels a transition to a new state. Both leaves in this
tree are repetitions of the root. However the left leaf should
count as successful because the formula Fq at the initial
node is "fulfilled" in the left branch, giving the model sfi
where q e SQ. In contrast Fq is not fulfilled in the right
branch and is thereby "regenerated", and therefore the right
leaf should count as unsuccesful.

The problem of which fixed points are regenerated dis-
appears in the automata theoretic approach to satisfiability
[17]. Roughly speaking, the decision tree is then only part
of the story. It is captured by the "local" automaton and one
also needs to factor in the "eventuality" automaton which
automatically deals with regeneration of fixed points, and
therefore the problem docs not arise. However the cost is
the use of the product construction between the two au-
tomata. While this is not an impediment for checking satis-
fiability it appears to be for other formal tasks such as show-
ing that an axiomatisation of a temporal logic is complete.

We now show that a simple game theoretic approach to
satisfiability checking, where the mechanisms arc both ex-
plicit and transparent, has the virtue that it also leads to very
simple proofs of completeness for both LTL and CTL.

3 Games for LTL

In the naive tableau approach to satisfiability there are
"or" choices but there are no "and" choices. Recasting as a
game, "or" choices are 3-choiccs for the player 3 and "and"
choices are V-choices for the player V. The role of player 3
is that of verifier, "I want to show that the initial set of for-
mulas is satisfiable" whereas the role of V is that of rcfutcr,
"I want to show that the initial set of formulas is unsatisfi-
able". In a position T, $i V$2 player 3 chooses the disjunct
<I>,, and play continues from the position F, <F,. The idea is
that 3 (V) has a winning strategy iff the initial set of formu-
las is satisfiable (unsatisfiable).

We need to force player V to make choices. A new com-
ponent, the "focus", is introduced into a set of formulas for
this purpose. One of the formulas in a position is in focus.
Wc write [<I>]. T to represent the position F U {<I>} when <I>
is in focus. Player V chooses which formula is in focus. If
it is an "and" formula then V chooses which subformula to
keep in focus. During a play V may also change mind, and
move the focus to a different formula.

Given a starting formula <f>o (the conjunction of the ini-
tial formulas) we will define its focus game G((I>o). The
set of subformulas of $o> Sub(<I>o), is defined as expected
but with the requirement that the unfolding of an until
\I> V ($ A X(<&U<S>)) is a subformula of $[/\I> and the un-
folding of a release * A ($ Vl(M*)) is a subformula of
$>Rfy. A position in a play of G($o) is an clement [$},T

where <I> 6 Sub(*o) and F C Sub($0) - {$}• A play
of the game G($u) is a sequence of positions PQP\ ■ ■ ■ Pn

where FQ is the initial position [<f>0], and the change in po-
sition Pi to F, + i is determined by one of the moves of Fig-
ure 1. They are divided into three groups. First arc rules for
3 who chooses disjuncts in and out of focus. Second arc the
moves for player V who chooses which conjunct remains in
focus and who also can change focus with the rule change.
Finally, there are the remaining moves which do not involve

358

Player 3

Player V

[$0v$i],r [$],$0v$i,r
N,r [$],$<, r

[oAi],r [$],tt,r
[$i],$i_i,r [*],$.r

Other moves

[$17*], r

change

[$'],$c/#,r
[* v ($ A *($[/*))], r [$'].* v ($ A x($[/*)), r

[$i?*]T [$'],$#*, r

So 3 wins if player V is unable to focus on a X formula
so that next can be applied when the atomic formulas are
satisfiable. The other two conditions cover repeat positions.
First is the case if the repeat position has the same release
formula in focus, and second is the case of a repeat when
the same formula is in focus and change has been applied
between the repeat positions. The following upper bound
on the length of a play is obvious.

Fact 1 Even' play of G($0) has finite length less than
|Sub(*0)| x 2lSub<*°)l.

A player wins the game G($0) if the player is able to win
every play of the game, that is has a winning strategy1. The
following is a simple consequence of Fact 1 and the fact that
the winning conditions are mutually exclusive.

[* A ($ v X($J?.*))], r [$'], * A ($ v x($/?.*)). r Fact 2 Every game G($o) has a unique winner

[$],$„ A $i,r [X$1],...,X$m,ql,...,qn

[$].*0,$i,r [$l]....,$,:

next

Figure 1. Game moves

any choices, and so neither player is responsible for them.
These include the fixed point unfolding of until and release
in and out of focus, the removal of A out of focus and the
next state rule, next, where the focus remains with the sub-
formula of the next formula in focus. It is therefore incum-
bent on V to make sure that an X formula is in focus when
next is applied.

The next ingredient in the definition of the game is the
winning conditions for a player, when a play counts as a
win.

Definition 1 Player V wins the play P0,.... Pn if

1. Pn is [</]. T and (q is ff or -*q g T) or

2. Pn is [$[/*]. T and for some i < n the position P,
is [$[/*]. F and between P,■ ... Pn player V has not
applied the rule change.

Therefore V wins if there is a simple contradiction or a re-
peat position with the same until formula in focus and no
application of change between the repeats.

Definition 2 Player 3 wins the play P0,.... Pn if

1. Pn is [qi],... ,qn and {</1;... .qn} is satisfiable or

2. P„ is [$J?*]. T and for some i < n the position P% is
[$#*], Tor

3. Pn is [$],r and for some i < n the position Pt is
[$], T and between Pr. ..Pn player V has applied the
rule change.

Next we come to the game characterisation of satisfiabil-
ity, which we split into two halves.

Proposition 1 If 3 wins the game G($0) then $0 is satisfi-
able.

Proof: Assume 3 wins the game G($0)- Consider the
play where V uses the following optimal strategy. Let
$it/*! ..., $„£/*,, be a priority list of all until subfor-
mulas of $o, in decreasing order of size. We say that
<&[/* is present in a position P if either $£/* g P or
* V ($ A X($[/*)) e P or X(W*) g P. Player V
starts with the focus on <J>0. If the formula in focus is a
release formula <E>fi* and * contains an until subformula
then V chooses * when the release formula is unfolded. If
the formula is a conjunction then V chooses a conjunct with
an until subformula. If the focus remains on a release for-
mula or ends up on a member of Prop then V changes focus,
if this is possible, to the until formula which is present in the
position and which is earliest in the priority list. If the focus
is on an until formula $,[/*, then V keeps the focus on it
until it is "fulfilled", that is until player 3 chooses *j when
it is unfolded. This until formula is then moved to the end
of the priority list. Player V then changes focus to the ear-
liest until formula in the priority list which is present in the
position, if this is possible. This argument is then repeated.
By assumption player 3 wins against this strategy, and the
play has finite length. It is now straightforward to extract
an eventually cyclic model from the play, where every until
formula present in some position will be fulfilled. D

Next we prove the converse of Proposition 1. One proof
is to show how a winning strategy for 3 can be extracted

'Formally a winning strategy, see for example [9], for player 3 is a set
of rules 7r of the form, if the play so far is PQ .. . Pn and Pn is [$oV<f>i].r
([*], $o V *!,r) then choose [*i],T ([<*>]. <J>i, T). Similarly for player
V. A play obeys IT if all the moves played by the player obey the rules in
■K. A strategy 7r is winning for a player if she wins every play in which she
uses 7T.

359

from a model of <E>o- However we provide an alternative
proof whieh is the key to obtaining a complete axiom sys-
tem. We utilise an observation from fixed point logics about
least fixed points. Given Park's fixed point induction prin-
ciple (1) below and that a fixed point is equivalent to its un-
folding (2), Lemma 1 below holds (as observed by a num-
ber of researchers, for instance [10, 15, 19]). Standard sub-
stitution is assumed, ^{«D/Y} is the replacement of all free
occurrences of Y in $ with <I>. Moreover we write |= $ to
mean <I> is valid (true everywhere in all models).

(1) if |= *{$/Y} -> i> then |= [iY. * -> $

(2) |=/iY.tf «-»«{//y.tf/y}

Lemma 1 IfY is not free in <I> and <I> A pY. \f is satisfiablc

then the formula $ A ^{{ßY. -*$ A *)/Y} is satisfiablc.

Proof: Suppose <I> A pY. \t/ is satisfiablc, but (=
*{(//Y. -.$ A *)/Y} -» --$. Therefore (= *{(//Y. -$ A
*)/Y} -► -.$ A ${(//.Y-,$ A *)/Y}. Hence by (2)
^= *{(MY -<I> A #)/Y} -> ^Y. -n$ A * and so by (1)
|= pY. * —> -1$ which contradicts that <I> A /;Y * is satis-
fiablc. a

Lemma 1 sanctions the following property of until un-
folding.

Lemma 2 //<I>' A (<I> [/<]>) /.v satisfiablc then <!>' A («I» V (<I> A
X((<I> A -.ö')C7(* A -•$')))) ;'.v satisfiablc.

Proof: Assume <I>' A (<I>C/vp) js satisfiablc. So there is a
model a such that <r |= <I>' and a |= «I>[/$, and therefore
a1 |= * and a' |= <I> for j : 0 < j < •/, for some ;' > 0.
Also assume <I>' A (* V (<I> A A"((<I> A ^<b')U(<S> A -''I»')))) is
not satisfiablc, and so the following validity holds |= <I>' —-
(-.vpA(-<I>VX((-i<I>V<I>')tf(-#vV)))). Because a (= <I>'
therefore cr \= ^ A (-.<!> V A'((-<I> V <I>')/?(-^]> V <I>'))).
So a |= -i* and because a |= <I>[AP it follows that a (=
<I>. And so rr |= X ((-><!> V $')/?(->* V <I>')), and therefore
CT

1
 |= (-,<]> v <I>')/?(-.* V <I>'). And so a1 |= -.<£ V <I>' and

CT
1
 |= -,cI)V<I>'V.Y((-1<I>V€)')ß(-'*V<I»')). IfV f= <I>'then

a1 \= —'SI/ by the valid formula above, and so a1 |= -ity
and because (T1 |= <I>(/^ it follows that a1 \= <I>, and so
a1 \= X((-.$ V $')/?(^I' V $')). The argument is now
repeated for subsequent aJ, j > 0, which contradicts that
a |= $(7*. D

Proposition 2 //' <I>o is satisfiablc then player 3 wins the

game G(<I>o).

Proof: Assume that <I>o is satisfiablc. We show that
player 3 wins the game G($o). The idea is that 3 al-
ways chooses a move which preserves satisfiability (and
V has to choose moves which preserve satisfiability). If
T A (<I>o V $i) is satisfiablc then T A $, is satisfiablc for
at least one i 6 {0,1}, and so player 3 chooses such

an i. If the position is [<!>£/v£],r where the until for-
mula is in focus then player 3 adorns the interpretation

of it when it is unfolded, [* V ($ A A(<I>-,[-[/>]> _,r))]> r

where <J>^p and 'I'^r are to be understood as <I> A -> /\F
and ty A ^/\T. This adornment, which is justified by
Lemma 2. is repeated as long as the until formula is in fo-
cus. Whenever V changes mind, an adorned until subfor-

mula 5>^ri A...A-.r„ t/^-ri A...A^P„ loses its adornment and
is returned to its intended interpretation <I>[/\I/. Now it is
easy to see that V can never win. Condition 1 of the win-
ning condition for V can not be reached because 3 preserves
satisfiability. And condition 2, the repeat position, cannot

occur because (= <I)^r1A...A-,r„^vI'-r1A...A^r'„ -* _,Ari-
D

Proposition 3 The complexity of deciding the winner of

G($0) is in PS PACE.

Proof: Consider the tree of all plays in G(<I>o) where the
position of the focus is completely determined by the strat-
egy described in the proof of Proposition 1, above. Player
3 wins G(<I>o) iff there exists a path in this tree such that 3
wins the play of this path. An algorithm P can nondctcrmin-
istically choose this path. The required space is polynomial
in the size of the input. P only has to store a counter and
two configurations: the actual one which gets overwritten
every time a new game rule is applied, and the one which is
repeated in case 3 wins the play with her winning condition
2 or 3. The latter can be chosen nondcterministically, too,
and gets deleted every time the rule change is applied. The
counter is needed to terminate the algorithm if it did not lind
a repeat after |Sul)(<I>o)! * o^"1'1'1'"" configurations. Notice
that the size of the counter also is polynomial in the length
of the input I'I'oj. Hence by Savitch's Theorem the problem
can be solved in PSPACE. ü

4 A complete axiomatisation for LTL

The game theoretic characterisation of satisfiability of-
fers a simple basis for extracting a complete axiom sys-
tem for LTL. Given an axiom system A a formula <I> is A-
consistcnt if A Y/ -i<I>. The axiom system A is complete
provided that for any <I> if <I> is A-consistcnt then <I> has a
model. In this framework this becomes

(*) if <I> is A-consistent then 3 wins the game G(<I>).

The axiom system A for LTL is presented in Figure 2. The
axioms and rules were developed with the proof of (*) in
mind. Axioms 1-6 and the rules MP and XGcn provide "lo-
cal" justifications for the rules of the focus game for LTL,
and axiom 7 and the rule Rel capture 3's winning strategy.

Theorem 1 The axiom system A is sound and complete for
LTL.

360

Axioms

1. any tautology instance

2. $[f$->tf V($AX($t/*))

3. $#* -> * A ($ V X($fi*))

4. X-$ ♦-+ ->X$

5. I$AI*^I($A$)

6. X($ ^ *) ^ X$ ^ X*

7. -.($Ä¥) «-> -.$[/-.<&

Rules

MP if h $ and h $ —> \£ then h *

XGen ifr-$thenr-X$

Rel if 1- $' -» (* A ($ V X(($ V $')Ä(¥ V $'))))
then h $' -> ($##)

Figure 2. The axiom system A

Proof: Soundness of A is straightforward. Each axiom is
valid and each rule preserves validity. The interesting case
is the rule Rel, whose soundness was proved in lemma 2
of the previous section. For completeness of A we es-
tablish (*), if $o is A-consistent then 3 wins the game
G($o)- The proof is similar to Proposition 2 of the pre-
vious section. Given a finite A-consistent set of LTL for-
mulas we show that any player V move or other move in
Figure 1 preserves A-consistency, and that player 3 can pre-
serve A-consistency when she moves. If F, $i V $2 is
A-consistent then T, $j is A-consistent for some i by ax-
iom 1, and the rule MP. Axioms 2 and 3 are needed for the
fixed point unfolding moves. Axioms 4-6 and rule XGen
are required for the next move. If $i,..., $m is not A-
consistent then A h $i A ... A $m_i —> -><E>m and so
A h X$, A ... A X$m_! -> -^X$m using XGen and
axioms 6, 5 and one half of 4. Finally rule Rel is used to
capture 3's winning strategy. If the position is [$Lf\I>],r
and T, $<7\1> is A-consistent then by rule Rel, the other half
of axiom 4 and axiom 7 T, * V ($ A X($^rf/\I>^r)) is A-
consistent. D

In [7] soundness and completeness of the following ax-
iom system DUX for LTL is proved using maximal consis-
tent sets of formulas2.

2 A4, A5 and U2 as presented here differ slightly from their original
form which is due to the different semantics of the G and U operator used
there.

Al. fffl($ -> *) -> (ffi?$ _> ffßvf)

A2. X(--$) <-> ~X$

A3. X($ ->¥)-> (X$ -> X*)

A4. ff.R$->$AX(ff.R$)

A5. f f i?.($ A X$) -> ($ -» f f Ä$)

Ul. $C/*^F*

U2. $[/* ~ # V ($ A X($t/vT/))

Rl. any tautology instance

R2. if 1- $ and h $ -► * then h *

R3. if I- # then h f f Ä*

Soundness of DUX and completeness of A ensure that,
if DUX h $ then A I- <J>. However, it is also interesting to
compare the two axiomatisations in details.

Axioms and rules A2, A3, U2, Rl and R2 are present in
A. A4 is an instance of axioms 3 and Ul simply reflects an
abbreviation. R3 can be simulated in A as follows. Suppose
there is a proof using R3. Then there is a shorter proof of
^ in DUX for which by hypothesis there is an A-proof, too.
Instantiate Rel with $' = tt and $ = ff. This proves
h ffRty if h y A Xtt is provable. But this can be done
using the hypothesis, axiom 1 and rule XGen.

The remaining axioms Al and A5 are more complicated
to prove in A. A simple way is to show that V wins the focus
game on the negations of these axioms. The game rules
and winning conditions resemble the axioms and rules of A
which are needed for the proof. We show this for A5. The
negation of this axiom is $ A (f f i?($ M$)) A (tt [/-.$).
Let $' = $ A (f f Ä($ A X$)).

 $,fffl($AX$),[ttt/-.$]
$, X$, X(f f R{$ A X$)), [-.$ V Xjtt^U^^,}

$, X$, X(f ffl($ A X$)), [X(tt^l/^$-^]
$, f f Ä($ A X$), [tt^*. tf-.$-,*,]

The game rules used are the unfolding of R, the adorned
unfolding of U, the disjunctive choice and the next rule.
Player V wins with winning condition 2. Therefore the ax-
ioms and rules needed to prove A5 are 1 and MP (for V),
2 and 3 (for the unfoldings), 4-6, XGen (for next), 7 (to
reason about the negation of A5), and Rel to describe the
winning condition.

361

5 CTL

In this section wc define focus games for CTL. Again we
present CTL in positive form. Formulas of CTL are built
from Prop, the boolean connectives V and A, the two unary
temporal operators QX and the four binary temporal op-
erators Q(...U...),Q(...R...) where Q e {E,A}. E
is the "some paths" quantifier and A is the "for all paths"
quantifier.

A Kripke model for CTL formulas consists of a set of
states S, a binary transition relation R which is total (for
all s G S there is a t G S such that sRt) and a valuation
which assigns to each state s G S a maximal consistent set
of atomic formulas in Prop. The semantics defines when
a state s satisfies a formula $, s \= $, and it appeals to
full paths from a state so which is an w-sequence of states
s0si ... such that s,;Rs,-+i for each i > 0. In the case of q e
Prop, s |= q iff q belongs to the valuation of s. The clauses
for the boolean connectives are as usual. The remaining
clauses are as follows.

s |= £X<I> iff 3t. sRt and t |= $
s \= AXi> iff Vr. if sRt then t (= $
s0 \= E(<I>t/#) iff 3 full path s0si ... 3?' > 0. s, [= «P

and Vj : 0 < j < i. Sj j= $
s0 \= A($UV) iff Vfull paths so-si ... 3i > 0. ,s, |= *

and Vj : 0 < j < i. Sj |= <I>
s0 |= £($7?tf) iff 3 full path .s0.si ... Vi > 0. .s, \= *

or 3; : 0 < j < i. sj \= $
.s„ |= ,4($[/*) iff Vfull paths ,s'0.si . .. Vi > 0. s, f= *

or 3] : 0 < j < i. Sj (= <!>

The semantics of until and release formulas are determined
by their fixed point definitions. QföUty) is the least solu-
tion to n = vp V (<I> A QXa) and Q(<I>/?*) is the largest
solution to n = \I' A (<I> V QXa).

Wc now define the focus game G'(<I>0) for a CTL for-
mula <I>(). As with the LTL game, a position in a play
of G'(<I>o) is an element [<I>].r where <D e Sub(<I>0) and
T C Sub(<I>()) - {<I>}, and a play is a sequence of posi-
tions PtyP\ ... P„ where P0 is the initial position [<J>0]. The
change in position P, to P,+i is determined by one of the
moves of Figure 3. Again they are divided into three groups.
First are rules for 3 who chooses disjuncts in and out of
focus. Second are the moves for player V who chooses
which conjunct remains in focus and who also can change
focus with the rule change. Player V also chooses the next
state when an AX formula is in focus, by choosing a sin-
gle EXfyj, if there is one: we include here the case where
I = 0 and V does not have any choice. Finally, there are
the remaining moves which do not involve any choices, and
so neither player is responsible for them. These include the
fixed point unfolding of until and release in and out of fo-
cus, the removal of A out of focus and the next state rule

Player 3

Player V

[$0v$i],r [$],$0v$i,r
Pi],r [*],$*, r

[$i],$i-i,r [*],$,r
change

[AX$i],..., AX$n,EX*u ... EX^i,gi, ...,</„

(4>i],...,*n,^

Other moves

next

[Q($t/tt)],r
[#v($AQX<3($r/*))],r

[&],Q{$uv),r
[$'],* V($ A QXQ($C/#)),r

[Q(S/NQ],r
[$A($VQIQ(M*))],r

[$'],Q(<Ei?$);r
[$'],* A (<I> V QXQ{<t>RV)), r

[$],$„ A $i,r
[$],*o,*i,r

[EX*!] EXVt. AXQi AX<ln,gu.. .,qm

[*l],$l ■ ■■,$,.

Figure 3. CTL Game moves

next

362

when an EX formula is in focus. The winning conditions
for a player are almost identical to the LTL game.

Definition 1 Player V wins the play PQ ,..., Pn if

1. Pn is [q],T and (q is f f or -if; G F) or

2. Pn is [Q($C/\I/)],r and for some i < n the position
P is [Q($C/*)], T and between P... Pn player V has
not applied the rule change.

Definition 2 Player 3 wins the play PQ, ... ,Pn if

1. Pn is [<7i],..., <j>n and {gi,..., g„} is satisfiable or

2. P„ is {Q($Rty)], T and for some i < n the position Pt

is[Q($i?*)],ror

3. Pn is [$].T and for some i < n the position P, is
[$], r and between P, ... Pn player V has applied the
rule change.

Facts 1 and 2 of Section 3 also hold for CTL games. A
main result is again the game characterisation of satisfiabil-
ity.

Proposition 1 3 wins the game G'(<E>o) iff'&o is satisfiable.

Proof: Assume 3 wins the game G'(<J>o). The proof
is similar to that of Proposition 1 of Section 3, ex-
cept that all "next" state choices are examined, and so
we have a tree of plays instead of a single play. Let
<3i($it/*i).. ...Qn($'nUWn) bean initial priority list of
all until subformulasof $o in order of decreasing size. Each
play in the tree of plays has its own associated current prior-
ity list. Player V starts with the focus on <3>o- Once the focus
is on an until formula, Q,($J (7 <]>■), player V keeps the fo-
cus on it until it is fulfilled (player 3 chooses \tj) or there
is branching. At an application of next a play splits into all
choices, each with its own priority list. If the focus is on
a formula AX<$>\ then it will be on $i in all these plays
and they each have the same priority list. If the position is
[£X#i]...., EXVL,AX<S>U. .., AX^n,qi,..., qm and
/ is the current priority list then the focus remains on \I>i in
the play with this subformula with list I. Otherwise for each
i > 1 there is the play where V changes focus for the posi-
tion *,,$!,... .$„. If*! is E^'jUVj) then this formula
is moved to the end of the priority list li and V chooses as
focus the earliest until formula in /,; present in the position
EX$,,AX$)..... AX$n, if this is possible. This argu-
ment is repeated. By assumption player 3 wins the finite
tree of plays. It is now straightforward to read off a Kripke
model from this tree of plays where $o is true at the initial
state.

For the converse assume that $o is satisfiable. We show
that 3 has a winning strategy for the game G'(<3>o). We use

the fact that for each Q e {A,E} if $'AQ($C/*) is satisfi-
able then $' A (tfv($ AQXQ($ A-.$'£/# A-.$'))) is sat-
isfiable. So the interpretation of Q($lJfy) can be adorned
whenever it is unfolded in focus as with Proposition 2 of
Section 3. ü

One important difference with LTL is the complexity of
checking the winner of a game G'($o)> because of branch-
ing choices for V.

Proposition 2 The complexity of deciding the winner of
G'($o) is in EXPTIME.

Proof: The proof is very similar to that of Proposition 3 of
Section 3. However, the tree of all plays is now an and-or
tree because of player V's choices using rule next. There-
fore the polynomial space algorithm deciding the winner of
G'($o) is alternating instead of nondeterministic. By [3]
the problem is therefore in EXPTIME. D

6 A complete axiomatisation for CTL

The game theoretic characterisation of CTL satisfiabil-
ity also allows one to extract a sound and complete axiom
system for CTL, the system B in Figure 4.

Theorem 1 The axiom system B is sound and complete for
CTL

Proof: Soundness of B is straightforward. The most in-
teresting cases are soundness of ARel and ERel rules, and
in the case of ERel the rule captures "limit closure". For
completeness of B, the proof is similar to Theorem 1 of
Section 4. If <&o is B-consistent then player 3 wins the
game G'($o)- Given a finite B-consistent set of formu-
las, any move by player V or other move in Figure 1 pre-
serves B-consistency. The important cases are the next state
rules. Assume <3>i, • • •, ^n* ^j is not B-consistent, and so
Bh$] A...A$„-» -ivfj. So by AXGen and axioms 9,8
and 6 B h AX$i A ... A AX$n -> ^EX^j (and using
7 instead of 6 one deals with the case when I = 0). Finally
the ARel and ERel rules are used to capture 3's winning
strategy. D

In [5] soundness and completeness of the following ax-
iom system for CTL is proved using tableaux.

Axl. any tautology instance

Ax2. EF$ w £(ttf/$)

Ax3. AF<$> <-> A(ttU$)

Ax4. PX($ V *) ^ EX§ V EX<i>

Ax5. AX$ w -nEX^<f>

Ax6. E($t/tf) <-> * V ($ A EXE($U*))

363

Axioms

1. any tautology instance

2. E($UV) -> tf v ($ A EXE($UV))

3. A($UV) -* $ V (<I> A ^AM^t/tf))

4. £($/?*) -> * A ($ V EXE($IW))

5. A($RV) -► * A («I) V >1X.4($7?*))

6. 4X-.$ <-» -£A<I>

7. 4AT-<I> -> -IAX®

8. /1A<I> A AX$> -> AX(i> A *)

9. AX(® -+ *) -> ,4A<I> -> .4A*

10. -vl(<I>/N/) <-+ £(^<I>f/-,vi<)

11. -i£(<I>7?vp) w A{^MJ^V)

Rules

MP if I- <I> and I- <I> -^ <I» then h *

AXGen ifh <I> then h .4A<I>

ERcl ifh <I>' -> (* A (<I> V £A£((<I> V <I>')/?($ V <I>'))))
thenh <I>' -» £(<I>7?<]>)

ARel ifh <I>' -» (tf A (<I> V .4A.4((<I> V <I>')/?(f V <!>'))))
then h <I>' -> /l(<I>/?vp)

Figure 4. The axiom system B

Ax7. .4($[/*) <- * V (<I> A AXA(^U^))

Ax8. £A'tt A AXtt

Rl. ifh $ -> # then h EX® -> £A#

R2. if h $' — # A EX® then h ® -> £($7?$)

R3. if h $'--># A >1A($' V /!($/?*))
then h ® -> >!($/?$)

R4. if h <£> and h $ -> $ then h ty

The same arguments for comparing the two LTL axioma-
tisations also hold for the two axiomatisations of CTL. Ax 1,
Ax5 - Ax7, and R4 are already present in B. Ax2 and Ax3
are covered by the abbreviation of F. Ax4 can be proved by
a combination of 6 - 9, 1 and MP. 1, AXGen, 7, MP and 6
establish Ax8. Rule Rl is simulated using AXGen, 9, MP,
7 and the hypothesis of having a shorter proof of <I> -+ $ in
B. R2 is simulated in the following way. Suppose there is a
B-proof of <I>' -> # A EX®. Then, by 4, 1, and MP there is
also a proof of $' — * A ($ V£A£((<I> V $')/?(* V<I>')))
for any <I>. Using ERel yields a proof of <I>' —> £(<I>/?vp).
Simulating R3 is similar.

7 Conclusion

We have introduced a game theoretic approach to satis-
fiability checking of LTL and CTL. It remains to be seen
if focus games extend to richer logics such as CTL* and
modal //-calculus. In [12] it was shown that focus games
can also be used to solve the model checking problem for
CTL*. The game trees arising there are very similar to the
tableau structures used in [2. I]. However, in order to tackle
the problem of deciding whether fixed point constructs are
regenerated or reproduced these authors pursue a different
strategy. Take the unfolding of 'MAP for example. While
the focus highlights the case that player 3 always chooses
the term in which <I>£AP occurs again, a path in the tableaux
of [2] is successful if *P never occurs after <I>t/\P. The dif-
ference seems to be a point of view only. In the focus games
it is checked whether a fixed point construct is regenerated,
therefore it is never fulfilled. In the tableau approach it is
checked whether it is never fulfilled, therefore it is regener-
ated.

In [1] the authors define Tableau Biichi Automata which
are essentially the same as the tableaux of [2]. As with the
focus games, this enables the authors to handle the regener-
ation problem of fixed points implicitly. Instead of explic-
itly requiring tableaux to be processed with a depth-first-
search, the solution to the regeneration problem is encoded
in an acceptance condition, which is in that case a gener-
alised Biichi condition. However, this small difference is
the key to the strengthening lemma (Lemma 1 of Section 3)

364

which underpins the proofs of completeness of the axioma-
tisations.

A more recent automata theoretic approach to satisfi-
ability and model checking employs alternating automata
[16, 11]. Although these appear to be very game theoretic,
they rely upon automata over trees which capture the "and"
branching, both in the case of the boolean "and" and in
the case for CTL of branching through next states. In both
cases of LTL and CTL formulas are states of the automata,
and transitions are determined by maximal consistent sets
of atomic propositions. The acceptance conditions decide
acceptable fixed point regeneration. It is not clear if this ap-
proach can underpin sound and complete axiomatisations.

References

[1] Bhat, G., and Cleaveland, R. (1996). Efficient model
checking via the equational /^-calculus. Proc. 11th
Annual IEEE Symp. on Logic in Computer Science,
LICS'96, 304-312.

[2] Bhat, G., Cleaveland, R., and Grumberg, O. (1995).
Efficient on-the-fly model checking for CTL*. Proc.
10th Annual IEEE Symp. on Logic in Computer Sci-
ence, LICS'95, 388-397.

[3] Chandra, A., Kozen, D. and Stockmeyer, L. (1981).
Alternation. Journal of ACM, 28, 114-133.

[4] Clark, E., Emerson, E., and Sistla, P. (1986). Auto-
matic verification of finite state concurrent systems
using temporal logic. ACM Trans, on Programming
Languages and Systems, 8, 244-263.

[5] Emerson, E., and Halpern, J. (1985). Decision pro-
cedures and expressiveness in the temporal logic of
branching time. Journal of Comput. System Sei., 30,
1-24.

[10] Kozen, D. (1983). Results on prepositional mu-
calculus. Theoretical Computer Science, 27, 333-
354.

[11] Kupferman, O., Vardi, M., and Wolper, P. (2000).
An automata-theoretic approach to branching-time
model checking. Journal of ACM, 47, 312-360.

[12] Lange, M., and Stirling, C. (2000). Model checking
games for CTL*. Proc. Int. Conf. on Temporal Logic,
ICTL'2000.

[13] Lichtenstein, O., and Pnueli, A. (2000). Preposi-
tional temporal logics: decidability and complete-
ness. Logic Journal of the 1GPL, 8, 55-85.

[14] Reynolds, M. (2000). An axiomatisation of full com-
putation tree logic. To appear Journal of Symbolic
Logic.

[15] Stirling, C. (1992). Modal and temporal logics. In
Handbook of Logic in Computer Science, Vol 2, Ox-
ford University Press, 477-563.

[16] Vardi, M. (1996). An automata-theoretic approach to
linear temporal logic. Lecture Notes in Computer Sci-
ence, 1043, 238-266.

[17] Vardi, M„ and Wolper P. (1994). Reasoning about
infinite computations. Information and Computation,
115, 1-37.

[18] Walukiewicz, I. (2000). Completeness of Kozen's ax-
iomatisation of the prepositional mu-calculus. Infor-
mation and Computation, 157, 142-182.

[19] Winskel, G. (1991). A note on model checking the
modal nu-calculus, Theoretical Computer Science,
83, 157-167.

[6] Emerson, E., and Jutla, C. (1988). The complex-
ity of tree automata and logics of programs. Procs.
29th IEEE Symp. on Foundations of Comput. Sci-
ence, 328-337.

[7] Gabbay, D., Pnueli, A., Shelah, S., and Stavi, J.
(1980). The temporal analysis of fairness. Procs.
7th ACM Symp. on Principles of Programming Lan-
guages, 163-173.

[8] Goldblatt, R. (1992). Logics of Time and Computa-
tion, CSLI Lecture Notes No. 7.

[9] Hodges, W. (1993). Model Theory, Cambridge Uni-
versity Press.

365

Safety and Liveness in Branching Time

Panagiotis Manolios
Computer Sciences Department

University of Texas, Austin, TX, 78712, USA
pete@cs.utexas.edu

Richard Trefier
AT&T Labs-Research

180 Park Ave, P.O. Box 971, Room A013,
Florham Park, NJ, 07932, USA

trefler@research.att.com

Abstract

We extend the Alpern and Schneider linear time char-
acterization of safety and liveness properties to branching
time, where properties are sets of trees. We define two clo-
sure operators that give rise to the following four extremal
types of properties: universally safe, existentially safe, uni-
versally live, and existentially live. The distinction between
universal and existential properties captures the difference
between the CTL path quantifiers A (for all paths) and E
(there is a path). We show that every branching time prop-
erty is the intersection of an existentially safe property and
an existentially live property, a universally safe property
and a universally live property, and an existentially safe
property and a universally live property. We also examine
how our closure operators behave on linear time properties.

We then focus on sets of finitely branching trees and show
that our closure operators agree on linear lime safety prop-
erties. Furthermore, if a set of trees is given implicitly as
a Rabin tree automaton, B, we show that it is possible to
compute the Rabin automata corresponding to the closures
of the language of B. This allows us to effectively com-
pute Bsafc end Banc such that the language of B is the in-
tersection of the languages of Bsa;e and Buvc. As above,
Bsa;c eind Bu„r can be chosen so that their languages are
existentially safe and existentially live, universally safe and
universally live, or existentially safe and universally live.

A Introduction

Pnueli and Hard introduced the concept of a reactive
system, a system whose behavior is characterized by non-
termination and on-going interaction with an environment
over which the system has little control [14]. Many safety
critical systems, such as on-board controllers and network
protocols, can be modeled as reactive systems and, there-
fore, the problem of specifying and verifying the correct
behavior of reactive systems has become a very active area

of research. Linear time properties of reactive systems have
been grouped into three categories by Lamport [19]: safety
properties, liveness properties, and properties which are nei-
ther. Informally, safety properties assert that nothing bad
ever happens while liveness properties assert that something
good happens eventually. This distinction plays an impor-
tant role in the analysis of reactive systems since the proof
methods employed to check safety properties differ from
those used to check liveness properties. For example, proofs
of liveness properties frequently require the construction of
well-founded relations while safety properties arc usually
proven by induction on the transition relation. Furthermore,
liveness properties often cannot be handled by the auto-
matic proof techniques available for safety properties, e.g.,
in some infinite state systems it is possible to automatically
determine if a safety property can be violated, whereas the
existence of a fair computation cannot be determined auto-
matically [1].

In the linear time framework, where properties and the
semantics of programs are sets of infinite strings, the dis-
tinction between safety and liveness is well understood.
Alpern and Schneider [2] give a topological characteriza-
tion in which safety properties arc closed sets and live-
ness properties arc dense sets. They also show that every
linear time property can be given as the conjunction of a
liveness property and a safety property. These results are
well know and now appear in introductory textbooks on dis-
tributed systems. The topological characterization has been
extended by various researchers, e.g., Gumm has stated the
notions of safety and liveness in the more abstract setting of
Boolean algebras [13].

In the branching time framework —which includes pro-
cess algebra and logics such as CTL [7] (which is used by
many model checkers and is of great practical importance),
CTL* [10], and the p-calculus [21, 17, 9]—properties and
the semantics of programs are sets of infinite trees. While
there has been some work on characterizing safety and live-
ness for the branching time framework [6, 18], we present
the first characterization that distinguishes between the CTL

366
0-7695-1281-X/01 $10.00 © 2001 IEEE

path quantifiers A and E, an essential distinction. In ad-
dition, we allow infinitely branching trees; such trees are
closely related to considerations of fairness [5, 12, 4] and
are useful for modeling input and programs with statements
such as a; :=? (i.e., non-deterministically assign a number to
variable x). We define two closure operators which satisfy
the conditions of Gumm [13]. Interestingly, we show that
one of the operators defines a topology and the other does
not. The closures give rise to four extremal types of proper-
ties: universally safe, universally live, existentially safe, and
existentially live. Universally safe properties are those that
correspond to linear time safety properties over all compu-
tations while existentially safe properties are those which
guarantee at least one safe computation. In a similar man-
ner, universally live and existentially live properties distin-
guish between linear time liveness properties over all and
over some computations. For example, the CTL properties
AGP —along every computation all states satisfy P— is a
universally safe property, while EGP —there is a compu-
tation along which all states satisfy P— is an existentially
safe property.

The paper is organized as follows: in the next section the
basic notations and some preliminaries are given. Section 3
contains a review of the linear time results as well as the
definitions of prefixes of trees, our closure operators, and
safety and liveness in branching time. Section 3 also in-
cludes the results regarding the decomposition of properties
into the extremal properties as well as some examples taken
from Rem [22]. In Section 4 we consider finitely branching
trees and show that for any linear time safety property h,
Ah and Eh are both universally safe and existentially safe.
In addition, for any linear time liveness property h, Ah is
universally live and Eh is both universally live and existen-
tially live. We further specialize our results to properties
expressible as Rabin tree automata and show that if a set of
trees is given implicitly as a Rabin tree automaton, B, it is
possible to effectively compute Bsafe and Buve such that the
language of B is the intersection of the languages of Bsafe

and Biive, where Bsa;e and Biwe can be chosen so that their
languages are existentially safe and existentially live, uni-
versally safe and universally live, or existentially safe and
universally live. Finally, Section 5 contains a brief conclu-
sion and comparison with other work.

2 Preliminaries

N and u both denote the natural numbers, i.e.,
{0,1,...}. [i..j] denotes the set {k G N : i < k < j};
Dom.f denotes the domain of function /. Function ap-
plication is sometimes denoted by an infix dot "." and is
right associative. (Qx : r : b) denotes a quantified expres-
sion, where Q is the quantifier, x the bound variable, r the
range of a; (true if omitted), and b the body. V(S) denotes

the powerset of S. For a relation R, we write R\s for R
left-restricted to the set S, i.e., R\s = {{a,b} : ((a,6) 6
R) A (a £ S)}. S* denotes the set of finite sequences
over S; Su denotes the set of infinite sequences (functions
from w) over 5; S°° = S* U Sw. Suppose s,t G S°°, #s
denotes the length of s or, equivalently, the cardinality of
Dom.s; s is a prefix of t (s X t) iff Dom.s C Dom.t and
for all i e Dom.s, s.i = t.i; s is a proper prefix of t (s -< t)
iff s ^ t and s ^ t. A set U C 5°° is prefix-closed iff for
all u G U and for a\\t<u,te U.

From highest to lowest binding power, we have: paren-
theses, function application, binary relations (e.g., sBw),
equality (=) and membership (G), conjunction (A) and dis-
junction (V), implication (=>), and finally, binary equiva-
lence (=). Spacing is used to reinforce binding: more space
indicates lower binding.

Throughout this paper S denotes a fixed alphabet, a non-
empty set of symbols. An unlabeled tree is a prefix-closed
subset of N*. A tree w is a pair (W,w) where W is an
unlabeled tree and w : W -» E. A tree (W, w) is total
if W T^ 0 and for all a G W, there exists p G W such
that a- < p. A tree (W, w) is finite-depth if there exists
n G M such that for all a G W, #cr < n. By Atot, Ant, and
Af we denote the set of total, non^total, and- finite-depth
trees, respectively. The set of trees is denoted by Aalt; note
Aall = Atot uAnt mdAf c Ant^ Let t = (W, w) be 3

tree. A p C W is a path in t iff p is a totally ordered (by
■<), prefix-closed subset of W. Given a tree (W, w) and a
node a G W we define the path a = {a1 G W : a' ■< a).
We extend w to paths: given path p = p0Pi • • •, w(p) =
(w.p0)(w.pi)---.

We briefly describe CTL, CTL*, and LTL [20] formulae
(see [8] for complete details). LTL formula are formed from
propositions, boolean connectives and the temporal opera-
tors X (next time), F (eventually), G (always) and U (un-
til). LTL formulae define sets of infinite strings of (sets
of) propositions. CTL* adds the universal and existential
branching operators A and E to the LTL syntax. CTL is
formed similarly with the restriction that each LTL temporal
operator appear paired with its own path quantifier. CTL*
and CTL formulae define sets of infinite depth trees labeled
with (sets of) propositions.

3 Safety and Liveness

For the linear time framework, Alpern and Schneider
define a closure operator on S" and show that it defines
a topology [2]. Their closure operator, Id : V{T,U) ->■
P(SW), is defined as follows: Icl.T = {(E S" : (Vz :
x -< t : (3t' G T :: x ■< £'))}. Properties are subsets of
E"\ Safety properties are defined to be the closed sets in-
duced by Id and liveness properties are defined to be the
dense sets. It is shown that any property P is the intersec-

367

tion of Icl.P, a safety property, and Pö-^(lcl.P), aliveness
property. Gumm defines safety and liveness in the more ab-
stract setting of Boolean algebras [13]. Given Bi and E>2,
two V-complete Boolean algebras, and tp : B\ —> B2, a V-
preserving map, the closure ä of a € B\ is defined as V{a; £
B\ : <p.a = tp.x}. For element e £ B\, e is a safety element
iff e — e and e is a liveness element iff e = 1 (1 is the unit
(top) element of Bi). It is proved that every element of B\
is the conjunction of a safety element with a liveness ele-
ment. We obtain the Alpern Schneider result by setting B\

to <?>(£"), E",0,u,n,-i), B2 to (?(£*),E*,0,u,n,-),
and tp.T = {x £ E* : (3a £ T :: x < a)}.

To define safety and liveness properties for branching
time, wc start by defining what it means to concatenate trees
and use this notion to define what it means for one tree to be
a prefix of another. We then define two prefix operators cor-
responding to ip above. The closure, safety elements, and
liveness elements are defined as above. We then explore the
consequences and show that our characterization captures
the intuitive notions of safety and liveness in the branching
time framework.

3.1 A Partial Order for Trees

Given trees w and x, we define a preliminary notion of
tree concatenation, denoted w ■ x.

Definition 1 Let xu = (W, w) and x = (X, x) be trees,
w ■ x = (W U X, w U (x|X\W)).

Note that w ■ x is a tree and that this notion of concate-
nation amounts to superimposing x on w. Unfortunately,
the above notion of concatenation turns out not to be what
we need. The problem is that it allows us to extend w at
non-leaf nodes. Below, we define what it means to be a leaf
and then introduce the notion of concatenation we require,
where w concatenated with x is denoted by wx.

Definition 2 Let w = (W,w) be a tree. leaf(z,w) =
z S W A -i(3y £ W :: z -< y).

Definition 3 Let w = (W,w) and x = (X, x) be trees. Let
X' = {yeX : y £ W V (3z : leaf(z, w) : z -< y)}. Let

x' = (X',x|x'). wx = w ■ x'.

Note that wx is a tree; the proof amounts to showing that
x' is a tree. We now define what it means for one tree to be
a prefix of another.

Definition 4 x C y = (ßz :: xz = y)

Notice that when restricted to sequences, C agrees with
the usual notion of prefix.

Lemma 1 x C. y wx C. wy

Lemma 2 C is a partial order.

Note that, due to space restrictions, some of the proofs
are omitted.

Elements of V{Atot) are the branching time prop-
erties. Note that (V(Atot), Atot,®,U,n,^} and
(P{Aa"), Aa",(D, U, n, -1) are Boolean algebras.

3.2 Prefixes and Closures

We define the non-total and finite-depth prefix operators,
npref and fpref, functions from V{Atot) to V{Aa"), as
follows.

Definition 5 npref .p = {x £ Ant : (3y £ p :: x C y)}

Definition 6 fpref .p = {x £ A? : (3y £ p :: x C. y)}

The prefix operators correspond to ip, the V-prcscrving
map described above. The induced closure functions, from
r{Atot)[oV{Atot),arc:

Definition 7 ncl.p = L){q C A,ot : npref .q = npref .p)

Definition 8 fcl.p = U{<? C A1"' : fpref .q = fpref .p}

The closure functions have the following properties.

Lemma 3 ncl.p = { y £ A'"' : {Vx £ A"' : x C y : x €
npref .p) }

Lemma 4 fcl.p = { y £ A'"' : (V.r £ Af : x C. y : x £

fpref-p) }

After expanding the definitions of the prefix operators in
the above two lemmas, notice that the characterizations of
ncl and fcl arc very similar to the definition of lei.

Lemma 5 p C ncl.p and p C fcl.p

Lemma 6 ncl. ncl.p = ncl.p and fcl. fcl.p = fcl.p

3.3 Safety

We say that a property is a safety property if the property
is equal to its closure. Since wc have two types of closures,
wc have two types of safety properties: cxistentially safe
(ES) and universally safe (US). The intuition is that the
cxistentially safe properties guarantee at least one compu-
tation along which nothing bad happens. The universally
safe properties guarantee that nothing bad happens during
any computation. This type of distinction is made with the
CTL operators E, which cxistentially quantifies over paths,
and A, which universally quantifies over paths. In the se-
quel, we implicitly extend functions on sets to functions on
formulae, be applying the functions to the sets of trees or
strinsis which the formulae define.

368

Definition 9 (Existentially Safe) p G ES = p = ncl.p 3.4 Liveness

Definition 10 (Universally Safe) p € US = p = fcl.p

Lemma 7 ncl.p C /d.p

Proof The domain of the quantifier in the definition of fcl,
A*, is a subset of Ant, the domain of the quantifier in the
definition of ncl. D

Lemma 8 p G US p£ES

Proof p G US = p - fcl.p, but p C ncl.p and
nc/.p C fcl.p, sop = nd.p, i.e., p G £5. D

Lemma 9 ncl.fcl.p = fcl.p

Proof fcl.p C ncl. fcl.p C fcl. fcl.p = fcl.p D

We note that fcl.ncl.p = ncl.p does not hold, for exam-
ple, when p = EGa (there exists a path such that every node
in the path is labeled by an a), we will see that ncl.p = p,
but fcl.p T^ p.

Lemma 10 p C q => nd.p C nd.g A fcl.p C /c/.g

Recall that an operator c : V(X) ->• 7>(X) defines a
topology on X with closed sets {a C X : c.a = a} iff the
following four conditions hold [15]:

• a C c.a

• c.c.a = c.a

• c(aU b) = c.aU c.6

Therefore, the following lemma shows that fcl defines a
topology.

Lemma 11 fcl.pUfcl.q = fcl.(p\Jq)

Since ncl.(pUq) C ncl.p U ncl.q is not a theorem, ncZ
does not define a topology. This does not cause us any tech-
nical difficulties, but it is interesting because lei, the closure
operator in the linear time case, does define a topology. We
have the following, however.

Lemma 12 ncl.p U ncl.q C ncl.(pl>q)

We will now define what it means for a property to be a
liveness property. A liveness property is one whose closure
is the set of all trees. Given our two notions of closure, we
have two notions of liveness.

Definition 11 (Existentially Live) p G EL = ncl.p =
Atot

Definition 12 (Universally Live) p £ UL = fcl.p =
Atot

Lemma 13 p G EL pe UL

Proof p G EL = ncl.p = Atot, but since ncl.p C fcl.p,
fcl.p = Atot, i.e., pe UL a

Lemma 14 US D UL = { Atot }

Proof p G (US n C/L) = p = fcl.p A /c/.p =
.4tot = p = yl4oi D

Lemma 15 £5 n EL = { Atot }

Lemma 16 US D EL = { Atot }

Proof p G {US DEL) p = fcl.p A ncl.p =
p = ncl.p A rad.p = A tot

= p Atot D

Note that ES n UL = { Atot } does not hold, e.g.,
(AFa means along all futures a eventually holds) let p =
ncl.AFa, then p = ncl.p and fcl.p = Atot, but p / ,4*°*.

On account of Lemma 10, we have the following two
properties:.

Lemma 17 p C q A p E EL => q G EL

Lemma 18 p C q A p e UL => q G UL

Lemma 19 (pU -mcl.p) G ££

Proof nd.(p U -mcl.p) D nc/.p U ncl.(-^ncl.p) D
ncl.pl)-<ncl.p = ^4*°* D

Lemma 20 (p U -n/c/.p) G UL

Theorem 1 Every'property is the intersection of: (I) an ex-
istentially safe and an existentially live property, (2) a uni-
versally safe and a universally live property, and (3) an ex-
istentially safe and a universally live property.

369

Proof (1). ncl.p G ES and (p U -<ncl.p) G £X; their
intersection yields ncl.pD (pL)-<ncl.p) = ncl.p Dp = p.
(2). fcl.p G US and (p U -ifcl.p) G [/£; their intersec-
tion yields fcl.p fl(pU -'fcl.p) = fcl.p Dp = p. (3).
ncl.p G £5 and (p\J-<fcl.p) G f/L; their intersection yields
ncl.p D (p U ->fcl.p) = (nc/.p fl p) U (nc/.p D-i/c/.p) =
p U (ncl.p Pi -'fcl.p) = p, since nc/.p C fcl.p. D

The next theorem shows that certain properties do not
correspond to the intersection of a universally safe and an
existcntially live property.

Theorem 2 [16] Let Q be a subset of Atot such that

fcl.Q — Atot and ncl.Q ^ Atot. There do not exists
sets S,L C Atot such that fcl.S = S, ncl.L = Atot, and
SDL = Q.

Proof Suppose S H L = Q, fcl.S = S, and ncl.L = Atot,
then Q C S, which gives Atot = fcl.Q C fcl.S and hence
S = Aiot. Since Q = S n L, then L = Q which implies
that ncl.Q = Atot. D

We will sec shortly that the set of trees satisfying the
CTL formula AFp satisfies the preconditions on the previ-
ous theorem.

Our decomposition of a property into a safety property
and a liveness property is extreme in the following sense.

Lemma 21 lf(q £ ES V q G US) andp = (qC\ r). then
ncl.p C q and r C (p U -inc/.p).

Proof For the first part note that p = (q n r) => p C
q => ncl.p C nc/.g A nc/.g C /c/.g => nc/.p C g,
as by assumption g = nd.g V g = fcl.q.

For the other part, we have (g n r) = p, which by
ncl.p C g (the first part) implies (ncl.p D r) C p, which,
if wc union -mcl.p to both sides and simplify the left,
implies (-mcl.p U r) C (p U -^ncl.p), which implies
r C (pU -incl.p) D

Theorem 3 Lef /(/?<? an LTL formula which is a safety prop-
erty, then fcl.Ah = ncl.Ah = Ah and ncl.Eh = Eh.

Proof Suppose t G Atot, t = (T,r), t G fcl.Ah, and t g
Ah. Then there is some path x in t such that T(X) # h.
Since h is a safety property, Icl.h = h, this implies that for
some i G N, r(£0 • • ■ %i) cannot be extended to a string in
h. Hence for any u G Af such that u C t and includes
zo • • ■ Xi, u cannot be extended into a tree v such that v G
Ah. Hence there is no such t and fcl.Ah = Ah. We also
have Ah C ncl.Ah C /c/.A/i = A/i, so ncl.Ah = Ah.

Suppose t G i4fof, < = (T,T), and < G ncl.Eh and
< ^ Eft. Since t $ Eh then for no full path, y, in t is

r(j/) G h. Let a; be a path whose prefix T(X0 ••■Xi) cannot
be extended to a string in h. Let u G Ant be the tree
obtained from t by making Xi a leaf (i.e., removing all
its descendants). Then u cannot be extended into a tree
v such that v G Eh and hence t $ ncl.Eh. Therefore
ncl.Eh = Eh. D

The following property shows that/c/ is not an appropri-
ate closure operator for existentially quantified safety prop-
erties of paths. That is, a safety property to which existential
quantification is added is not necessarily closed under/c/.

Lemma 22 fcl.EGP^EGP

Proof Consider a total tree whose root has an infinite
number of children, but every other node has exactly one
child. Furthermore, the path through the first child is
labeled by a(-^a)w. The path through the second child is
labeled by aa(-ia)'" and so on. No path in the tree satisfies
Ga, so the tree is not in EGa, but any finite depth prefix of
the tree can be extended to a tree in EGa. D

Theorem 4 Let h he an LTL formula which is a liveness
property, then fcl.Ah = Atot and ncl.Eh = fcl.Eh = Atot.

Proof h is a liveness property implies that Icl.h = {a G
Ew}.

Let t G Atot, t = (T, T), and u C t such that u G Af.
Consider any full path x in u. T(X) is a prefix of some
a G Icl.h, hence, x can be extended to a path y such that
r(y) G h. Therefore u G fcl.Ah. Hence fcl.Ah = Atot.

Let t G Atoi, t = (T, T), and u C t, such that u G Ant.
If u contains a path a such that r(a) G h then t G ncl.Eh.
Else, consider any full finite path x in u. As in the first
proof above, x can be extended to an infinite path y £ h
and hence t G ncl.Eh. Therefore ncl.Eh = Atot. We also
have Atot = ncl.Eh C fcl.Eh, hence, fcl.Eh = Atot. D

The following property shows that ncl is not an appropri-
ate closure operator for universally quantified liveness prop-
erties of paths. That is, given a liveness property of paths,
adding universal quantification and taking the ncl closure
does not necessarily result in the set of all trees.

Lemma 23 ncl.AEP jt Atot

3.5 Examples

We now take a moment to consider the ramifications of
our approach by comparison with Martin Rem's [22] exam-
ple properties, listed below. Rem's examples are formulated
as predicates on t, an infinite (S) sequence.

370

pO: false (corresponds to 0);
pi: the first symbol of t is a;
p2: the first symbol of t differs from a;
p3: the first symbol of t is a, and t contains a

symbol that differs from a;
p4: the number of a's in t is finite;
p5: the number of a's in t is infinite;
p6: true (corresponds to Ew).

If we are dealing with sequences, pO, pi, p2, and p6 are
safety properties. The (linear) closure of p3 is pi, so p3 is
not a safety property. The closures of p4 and p5 are both
£"; so they are not safety properties, but they are liveness
properties.

Note that if we restrict t to infinite sequences, then both
fcl and ncl agree with lei. In order to examine the above
properties in a branching time framework, we will write
them down in LTL [20] and CTL*. Note that in translating
the above examples to properties over trees there is some
ambiguity. In particular, we have translated p4 into both
qAa and qAb and in fact neither of these translations cap-
tures the notion that there are only a finite number of a's in
a tree but rather that there are a finite number of a's on a
path (on all paths) in the tree.

gO: false false (corresponds to 0);
gl: a a;
g2: ->a -■a;
g3a: a A F-ia A(a A F-ia) = a A AF->a
qib: E(a A F->a) = a A EF->a
g4a: FG -i<2 A(FG -a);
qAb: E(FG^a);
g5a: GFa A(GFa);
q5b: E(GFa);
g6: true true (corresponds to Atot).

Below we give an informal translation of the above
CTL* sentences, gl is true of any tree whose root is labeled
with a; similarly for g2. q2>a is true of the trees whose root
is labeled with a and along each path have a node labeled
with ->a. g36 is true of the trees whose root is labeled with
a and along some path have a node labeled with -ia. g4a is
true of the trees where along each path, eventually all nodes
are labeled with ->a. qAb is true of the trees where along
some path, eventually all nodes are labeled with -ia. g5a
is true of the trees where along each path, infinitely many
nodes are labeled with a. q5b is true of the trees where along
some path, infinitely many nodes are labeled with a.

It is not difficult to show that gO, gl, g2, and g6 are uni-
versally safe (and hence existentially safe).

fcl.qSa = gl, as before, but ncl.qSa ^ gl (consider
a tree that has at least two paths such that along one of the
paths a always holds; this tree is not in ncl.qZa). ncl.qia ^
g3a (trees can be sequences, so {y : y £ Sw} C ncl.qia).
ncl.qib = gl and/c/.g36 = gl.

fcl.qAa = Atot, as before, but ncl.qAa / Atot (consider

a tree that has at least two paths such that along one of the
paths a always holds; this tree is not in ncl.q4a). ncl.qia ^
qAa (trees can be sequences, so {y : y £ £"} C ncl.qAa).
ncl.qAb = Atot, so fcl.qAb = Atot.

fcl.qba = Atot, as before, but ncl.q5a ^ Atot (con-
sider a tree that has at least two paths such that along one
of the paths ->a always holds; this tree is not in ncl.q5a).
ncl.qba ^ g5a (trees can be sequences, so {y : y € Ew} C
ncl.qSa). ncl.qSb = Atot, so fcl.q5b = Atot.

4 Finite Branching Trees

In the previous sections we studied sets of trees that in-
cluded infinitely branching trees. However, many systems
do not have such trees and it is interesting to see what bene-
fits are obtainable when considering only bounded branch-
ing structures.

Let k £ N. A tree (W, w) is a fc-branching tree iff for
all a £ W there exists exactly k unique elements of N,
ao,...,a&_i, such that aao,..., crak-i £ W. In what
follows we consider sets of trees which are /c-branching.
By Ak'tot and Ak'* we denote, respectively, the set of jfc-
branching trees and the set of finite trees whose non-leaf
nodes have exactly k successors. We carry over the defini-
tions of ncl and fcl from the previous sections, restricted
now to fc-branching trees over finite alphabets. Below we
show that ncl and fcl agree on linear time safety properties
(recall that ncl.p C fcl.p).

Theorem 5 Suppose h is a safety property over Sw then
fcl.Eh = ncl.Eh = Eh and fcl.Ah = ncl Ah — Ah.

Proof We have that Eh C fcl.Eh. So suppose t = (T, r) £
fcl.Eh, this means that for all u £ Ak'*, «Cf implies there
is a t' £ Ak-tot such that u C. t' and t' £ Eh.

We will show that t contains a path p such that r(p) (= h.
Consider the tree v = (V, <p) £ AaU defined as follows:
V = {a £ T : (3y £ Sw :: r{ä)y (= h)} and cp.a = r.a.
V has an infinite number of nodes as any prefix of t can
be extended to a tree in Eh. V is also finitely branching,
thus, by König's lemma, has an infinite path. For any such
infinite path p, r(p) \= h because h is a safety property.
Since v C (, p is a path in T, hence, t £ Eh.

The rest of the proof is along the lines of the proof of
Theorem 3. D

For linear time liveness properties, however, fcl and ncl
do not agree, e.g., fcl.AFP = Ak'tot whereas ncl.AFP ^
Ak'tct. We do have the following.

Lemma 24 Suppose h is a liveness property over Ew then
fcl.Eh = ncl.Eh = Ak<tot and fcl Ah = Ak'tot.

371

The close relationship between properties of programs
and automata has been well documented [24, 8]. In partic-
ular, given a finite state Biichi automaton, B, over infinite
strings (recall that Biichi automata recognize regular lan-
guages of w-strings), it is possible to decompose B into au-
tomata Bs and BL such that the set of strings accepted by
Bs is a safety property and the set of strings accepted by BL

is a liveness property [3], Furthermore, the set of strings ac-
cepted by B is equal to the intersection of the set of strings
accepted by Bs and BL- We show that a similar result for
Rabin tree automata is possible to achieve (recall that Rabin
automata recognize regular languages of w-trees). That is,
we show that any set of trees recognizable by a Rabin tree
automaton is decomposable into the intersection of: a uni-
versally safe set and a universally live set, an existentially
safe set and an existentially live set, and an existentially safe
set and a universally live set, all of which are Rabin tree au-
tomata definable.

A Rabin tree automaton B = (E, Q,qo, 5, $) on fc-ary
infinite trees is defined as follows: E is a finite alphabet,
Q is a finite set of states, q0 £ Q is the start state, S :
Q x E —> V(Qk) is the transition relation, and <£ is the
accepting condition.

Let t = <W,w) £ AkJot. A run of B on t is a Q

labeled tree r = (W, p) £ Akfot such that p.X = q0

and for all a £ W and successors aa(),..., aa^-i £ W,
(p.aao,... ip.aa^-i) £ ö(p.a,w.a). Run r is accepting
iff for all infinite paths p in W, p(p) \= $. C(B) = {t £
AkJot : there is an accepting run of B on t} is the lanizuaszc
ore.

The accepting condition, $, is given by specifying pairs
of sets (greenj, red,) £ (V(Q))2 for i £ [0..m], for some
m. $ holds on a path if for some i, some green state is vis-
ited infinitely often and all red states are visited finitely of-
ten,/.«'., $ = Vie[i..m][(Vse9m.„.GF3)A(Ar6rerf,FG-.r)].

For notational convenience, given a Rabin automaton
B = (T,,Q,q0,5, $) we will refer to B(q), q £ Q. as
the automaton given by (E,Q,q,6,$). Given automaton
B = (E,Q,g0,<5,$) such that C.B ^ 0, note that C.B =
C.{E,Q',qa,6',*) where Q' = {q £ Q : C(B(q)) ± 0}
and 5' is S restricted to Q'. We define the finite depth
closure, rfel, of an automaton as follows: if C.B = 0,
rfcl.B = B; otherwise, rfcl.B = (E,Q',q0,6',&) where
$' = VQ£Q'GFq is a condition that holds along all paths
and is generated from {(Q1,0)}.

Lemma 25 C{rfcl.B) = fcl.C{B).

Proof If C.B = 0, then C(rfcl.B) = fcl{C.B) = 0, so we
assume C ^ 0.

Suppose t = (W,w) G C(rfcl.B) then there is an ac-
cepting run r = (W, p) of rfcl.B on t. Consider any
u = (U, v) £ Ak'f such that u\Zt\r' = (U, p\u) is a par-
tial run of rfcl.B on u. By the construction of rfcl.B, each

leaf node a 6 U of r' is labeled by a node p.a £ Q'. This
means, however, that C.B(p.a) ^ 0 and therefore that each
leaf node is extendible into some tree which is accepted by
the automaton node labeling the leaf. This implies that for
some tree t' £ C.B, u C t' and hence t £ fcl(C.B).

Suppose t £ fcl(C.B), then for all tx C t, where t%

denotes the subtree of t up to level i, there exists m such
that t' C m and ut £ C.B, hence, there exists run r;
of B on Uj. We now define a run, r, of rfcl.B on t. r\

the subtree of r up to level i, is defined recursively as
follows. For the base case, r° labels the root by q0 and
R0 = to. For the recursive case, choose r'+1 so that
for infinitely many j £ R,,rj labels ti+1 by r':+1 and

Ri+i = Ri \ {j £ Ri : r)+l ^ ri+1}. Note that for all

i, Rt is an infinite set such that for all j £ Ri,r* — rl.
This is true for R0 as all runs label the root q0. Assuming
it is true for Rt, then by definition, if Ri+1 contains j,
rlj+l = r'+1. Since the number of possible labclings

of tl+1 is finite, by the pigeon-hole principle, an infinite
subset of Ri indexes runs that assign the same labeling to
t'. Since the acceptance condition for rfcl.B is trivially
satisfied, we have show that r is a run of rfcl.B on t. D

The consequence of this is the following:

Theorem 6 For any Rabin tree automaton, B. there exist
effectively derivable Rabin automata Bs„f, and ß/,-,,,. such
that C.B = C.Bsnfr n C.Biiv, and C.Bsnfr is universally
safe while C.Bi,,., is universally live.

Proof Recall that non-emptiness of Rabin tree automata is
decidable and Rabin automata are effectively closed under
complementation and union [24], Thus. Bsnf,. = rfcl.B
and Bu„, = B U (Ak-,ot \ rfcl.B) can be effectively
derived from B. That Bsnfv is safe follows from the
above lemma and ß;„,(is live because for any property P,
PU(Aktut\rfcl.P) is live. D

Similarly, it is possible to define the non-total closure of
a Rabin automaton, which gives rise to the following theo-
rem.

Theorem 7 For any Rabin tree automaton, B, there e.xist
effectively derivable Rabin automata Bsaft. and Z?/,,,,, such
that C.B = C.Bs„fl: n C.Bu„c and C.B„„],.. is existentially
safe (existentially safe) while C.Bn,,,. is existentially live
(universally live).

5 Conclusion

We have given a computation-tree based semantic char-
acterization of the intuitive notions of safety and liveness.
Our characterizations arc given in terms of the closures of

372

sets of trees in a manner analogous to Gumm's [13] general-
ization of the work of Alpern and Schneider for linear time
[2]. In fact, our results when restricted to sets of strings are
identical since in that case ncl.p = fcl.p = Icl.p. Our ap-
proach and examples draw heavily on Rem's very readable
presentation [22] of the Alpern and Schneider results.

Decomposing branching time properties into four ex-
tremal classes, viz., universally safe, universally live, ex-
istentially safe, and existentially live, has allowed a charac-
terization of safety and liveness properties which respects
the branching time temporal operators A and E of CTL. In
contrast, the work of Bouajjani et al. [6] is restricted to
the regular trees1 and does not distinguish between existen-
tially and universally safe. They consider only a single clo-
sure operator and choosing either fcl or ncl as that operator
results in either EGP not being a safety property or AFP
not being a liveness property. In particular, it is possible to
show that EGP is not definable by the class of safety recog-
nizers (a restricted class of Rabin tree automata) —see the
appendix for a proof— and therefore is not classified as a
safety property as defined by Bouajjani et al. even under
the restriction of finitely branching regular trees.

Possible directions for future work include defining sub-
classes of safety and liveness formulae and syntactically
characterizing them, as has been done in the linear time
framework by Sistla [23]. Another question is whether there
are efficient model checking algorithms for branching time
safety properties (see Kupferman and Vardi [18]).

Acknowledgments

We thank Nils Klarlund for many interesting discussions
regarding this work. We also thank an anonymous referee
for suggesting, among other things, the adverbs "univer-
sally" and "existentially" to distinguish between the two
types of safety and liveness properties.

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. Al-
gorithmic analysis of programs with well quasi-ordered do-
mains. Information and Computation. To appear.

[2] B. Alpern and F. B. Schneider. Denning liveness. Informa-
tion Processing Letters, 21(4): 181-185, Oct. 1985.

[3] B. Alpern and F. B. Schneider. Recognizing safety and live-
ness. Distributed Computing, 2(3):117-126, 1987.

[4] K. R. Apt and E.-R. Olderog. Verification of Sequential and
Concurrent Programs. Springer-Verlag, New York, 1991.

[5] K. R. Apt and G. D. Plotkin. Countable nondeterminism and
random assignment. Journal of the ACM, 33(4):724-767,
Oct. 1986.

'Regular trees are a strict subset of the set of trees [24].

[6] A. Bouajjani, J. C. Fernandez, S. Graf, C. Rodriguez, and
J. Sifakis. Safety for branching time semantics. In 18th
1CALP, Automata, Languages and Programming, volume
510 of LNCS. Springer-Verlag, 1991.

[7] E. M. Clarke and E. A. Emerson. Synthesis of synchroniza-
tion skeletons for branching time temporal logic. In Logic
of Programs: Workshop, volume 131 of LNCS, pages 52-71.
Springer-Verlag, May 1981.

[8] E. A. Emerson. Temporal and modal logic. In van Leeuwen
[25], pages 995-1072.

[9] E. A. Emerson and E. M. Clarke. Characterizing correctness
properties of parallel programs as fixpoints. In Proceedings
7th International Colloquium on Automata, Languages, and
Programming, volume 85 of LNCS. Springer-Verlag, 1981.

[10] E. A. Emerson and J. Y. Halpern. "Sometimes" and "not
never" revisited: on branching versus linear time temporal
logic. JACM, 33(1):151-178, Jan. 1986.

[11] W. Feijen, editor. Beaut}' is Our Business. Springer-Verlag,
1990.

[12] N. Francez. Fairness. Springer-Verlag, Berlin, 1986.

[13] H. P. Guram. Another glance at the alpern-schneider char-
acterization of safety and liveness in concurrent executions.
Information Processing Letters, 47(6):291-294, Oct. 1993.

[14] D. Harel and A. Pnueli. On the development of reactive sys-
tems. In K. R. Apt, editor, Logics and Models of Concurrent
Systems, volume F-13 of NATO ASI Series, pages 477-498.
Springer-Verlag, 1985.

[15] J. L. Kelly. General Topology. D. Van Nostrand, 1955.

[16] N. Klarlund. personal communication.

[17] D. Kozen. Results on the prepositional Mu-Calculus. Theo-
retical Computer Science, pages 334-354, December 1983.

[18] O. Kupferman and M. Y. Vardi. Model checking of
safety properties. In N. Halbwachs and D. Peled, edi-
tors, Computer-Aided Verification-CAV '99, volume 1633 of
LNCS, pages 172-183. Springer-Verlag, 1999.

[19] L. Lamport. Proving the correctness of multiprocess pro-
grams. IEEE Transactions on Software Engineering SE-3,
2:125-143, Mar. 1997.

[20] A. Pnueli. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science, pages 46-
57, Providence, Rhode Island, 31 Oct.-2 Nov. 1977. IEEE.

[21] V. R. Pratt. A decidable mu-calculus: Preliminary report.
In 22nd Annual Symposium on Foundations of Computer
Science, pages 421-427, Nashville, Tennessee, Oct. 1981.
IEEE.

[22] M. Rem. A personal perspective of the alpern-schneider
characterization of safety and liveness. In Feijen [11], pages
365-372.

[23] A. P. Sistla. Safety, liveness and fairness in temporal logic.
Formal Aspects of Computing, 6:495-511, 1994.

[24] W. Thomas. Automata on infinite objects. In van Leeuwen
[25], pages 135-192.

[25] J. van Leeuwen, editor. Handbook of Theoretical Computer
Science: Volume B: Formal Models and Semantics. Elsevier,
Amsterdam, 1990.

373

A Appendix

All definitions and terminology in the appendix are taken
from Bouajjani et al. [6]

Definition 13 A Kripke tree is a tuple K = (Q, E, go, R, tr)
where Q is a countable set of states, q0 is the initial state,
R C Q x Q is the transition relation (having no cycles
and enforcing finite branching), E is a finite alphabet and
IT : Q —> E is the labeling function.

Definition 14 A safety recognizer is a tuple S =
(T,,W,wo,p) where W is a finite set of states, w0 is the
initial state and p C W x E x V{W) is the transition rela-
tion.

Definition 15 A safety recognizer S = (T,,W,wo,p) ac-
cepts Kripke tree K = (Q,Y,,q0, R,n) iff there exists
A : Q —> W such that A(g0) = u;0 and for all q £ Q,
there exists F C W such that (\(q),ir(q),r) G p and
{X(q'):(q,q')eR}CT.

Lemma 26 There is no safety recognizer S such that, S
accepts K iff K satisfies EG P.

Proof Assume, to the contrary, that there is such an S =
CS,W,WQ,P).

Let K = (Q, E, qo, R, TT) be defined as follows, {q :
(qu,q) G R} = {91,92}- Furthermore, 7r(g0) = n(q2) = P
and 7r(gi) = -<P. Also, suppose K is a total tree and K
has one full path (through q2) which satisfies GP. Since K
satisfies EGP then by assumption K is accepted by S and
there exits A : Q -» W such that A (go) = w0 and for all
q G Q, there exists T C W such that (\(q),ir(q),T) G p
and {X(q') :(q,q') G ß} C T.

Consider K' = (Q',T,,q0,R',TT') defined as follows.
Intuitively, K' consists of the root of K, the subtree of K
rooted at q\ plus another copy of the subtree rooted at q± in
place of the subtree rooted at q2 which has been completely
excised. Formally, let Qi = {q G Q : q is a descendant
of qi in A'}. Then Q' = {q0j U Qx U {q1 : q G Qi}.
(a, b) G R' iff

• a = go and b = q\ or q[or

• a, b G Qi and (a, b) G R or

• g,r G Qi, (g,r) £ R,a — q', and 6 = r'.

7r' is defined as follows: 7r'(g0) = K{QO)\ for g G Qi,
7r'(g) = 7r(g); for g G Qi,7r'(g') = 7r(g). Clearly, K'
does not satisfy EGP.

Consider A' : Q' -> W defined as follows. A'(g0) =
A(g0). For all g G Qu A'(g) = A(g) and A'(g') = A(g).
Then A'(g0) = A(g0) = w0. Also, (A(g0),7r(g0),r) G

p and {A(gi),A(g2)} C T, for some T. Hence,
{A'(<7i),A'(gi)} C Tand (A'(g0),7r'(g0),r) G p.

Suppose g G <5i- (A(g),7r(g),r,) G p for some T,
and that {A(r) : (g,r) G R} C T,. This implies that
(A'(g),7r'(g),rg) G p and that {A'(r) : (g,r) G R'} C r,.
Furthermore (A'(g'),7r'(g'),r„) G p and that
{A'(r') : (g,r) G Ä'} C TJ. Hence, 5 accepts K',
contradicting the assumption that 5 accepts only those
trees satisfying EGP. D

374

Short Papers

Invited Talk

Semistructured Data: from Practice to Theory

Serge Abiteboul

Abstract

Semistructured data is data that presents some regu-
larity (it is not an image or plain text) but perhaps not
as much as some relational data or some ODMG data
(the standard of object databases). Such data is be-
coming increasingly important and, with XML, should
become the standard for publishing data on the Web.
With XML, the Web is turning into a worldwide, het-
erogeneous, distributed database. In this paper, we
briefly discuss typing and languages for semistructured
data and some new issues arising from the context of
data management on the Web.

1 Introduction

The amount of data of all kinds available electron-
ically has increased dramatically in recent years. The
data resides in different forms, ranging from unstruc-
tured data in file systems to highly structured in rela-
tional database systems. Data is accessible through a
variety of interfaces including Web browsers, database
query languages, application-specific interfaces, or data
exchange formats. A lot of information can already be
found on the Web, sometimes hidden behind forms (the
deep Web) or protected by passwords and fire walls.
Some of this data is raw data, e.g., images or sound.
Some is text (e.g., in HTML) allowing access to in-
formation via search engines. A lot of this informa-
tion has some structure, e.g., documents in HTML or
XML (the extensible Markup Language), the forthcom-
ing semistructured standard of the Web.

Semistructured data was first studied in the context
of integration of a large volume of data from heteroge-
neous sources. Data exchange formats, essentially syn-
tax for semistructured data, naturally arose in a num-
ber of fields that felt uncomfortable with the lack of
flexibility of traditional database systems, e.g., ASN.l.
With the popularity of the Web and the choice of XML,
such a model, for replacing HTML, the area gained a
lot of momentum. Indeed, I like to think of the Web
of tomorrow as a gigantic, distributed semistructured

database. This is somewhat the vision followed in the
Xyleme Project that we initiated at INRIA [20] which
aims at building a dynamic warehouse of XML data
found on the Web.

The main goal of the present paper is to discuss
essential aspects of semistructured data and consider
proposals for foundations for such data. We will see
that these borrow a lot from computer science theory:
database theory, logic and computer science, automata
and language theory, type theory.

The paper is organized as follows. In Section 2, we
define semistructured data. In the next two sections,
we discuss typing and query languages. The separation
between these two sections is somewhat arbitrary since
the topics are obviously closely related. Most works
on typing and queries for semistructured data have fo-
cused on single documents or small collections of doc-
uments. In a last section, we discuss new challenges
that arise from moving to the scale of the Web.

Although the area is rather young, it is very active
and the literature it generates keeps growing. For in-
stance, I found 74 references in the DBLP Anthology
[8] for "semistructured" and 54 for "semi-structured"
(which is why I am using the spelling "semistruc-
tured"). I will provide here only few references. Many
more can be found in the book [1]. More references
on the theory of semistructured data can be found in
Vianu's nice survey [17]. One might also want to look
at the tutorial on semistructured data and XML by Su-
ciu at VLDB99 [14]. References for databases can be
found in [15, 16, 2]. A good entry point for XML (and
everything on it) is W3C, the WWW Consortium [18].

2 Semistructured Data

In this section, we make more precise the notion
of semistructured data, how such data arises, and de-
scribe its main aspects.

Semistructured data is data that presents some reg-
ularity (it is not an image or plain text) but perhaps
not as much as some relational data or some ODMG
data (the standard of object databases). Clearly, this
definition is imprecise. For instance, would a BibTex

0-7695-1281-X/01 $10.00 © 2001 IEEE
379

file be considered structured or semistructured? In-
deed, the same piece of information may be viewed as
unstructured at some early processing stage, but later
become very structured after some analysis has been
performed. The first use of the term semistructured
(to my knowledge) is in the OEM model [12]. Essen-
tially the same model was proposed simultaneously in
[11]. The most popular example of semistructured data
today is XML [18]. We will focus on XML here, and
present it next (in simplified form).

An example of an XML document is the text given in
Figure 1, left. There is an alternative vision of the same
document as a tree, also given in the figure. Ignoring
details XML has three main components:

Ordered tree (elements and text nodes): An XML
piece of data is a tree where leaves are called
text nodes (grey discs in the figure) and other
nodes, the element nodes (white discs) may have
an unbounded number of ordered children. Each
node has a value (a string) attached to it. The
value of an element is called a label or a tag.

Attributes nodes: Element nodes may also have at-
tributes (represented by a square in the figure).
Each node may have at most one attribute with a
given label. Furthermore, the attributes of a node
arc viewed as unordered.

Graph: A standard trick allows to move to a graph
representation. Sec Figure 2. Some nodes are
given identifiers and references to these identifiers
may be used in other places of the document.

Ignoring attributes and text, i.e., focusing on the
core syntax of XML (i.e., tags), leads to a particular
class of context-free languages, see [6]. Let A be the set
of opening tags (e.g., (title)) and .4 the set of closing-
tags (e.g., (/title)). Then a well-formed XML docu-
ment is a string of tags of the form a...a for some tags
a, that is correctly parenthesized. Thus, a strong con-
nection exists between the XML world and languages
known in formal language theory under the name of
the set of Dyck primes.

What is exactly XML? Three alternative viewpoints
are shown in Figure 1.

1. A word: A piece of XML data is a word in some
standard language. This is a giant step: one needs
only one parser, one browser, one editor, etc.

2. A tree: The same data may be viewed as a tree,
the parse tree of the word.

3. An object: It may also be viewed as an object
with an interface, e.g., a method getjparent, in a

standardized application programming interface,
namely DOM for Document Object Model (the
main interface to program applications with XML
data).

XML provides three more viewpoints:

1. A document: Data may be displayed with stan-
dard Web browsers. For that, we attach a style-
sheet (in a format called XSL) to an XML string
to provide it with a presentation. The simple (and
old) idea of separating the data and its presenta-
tion is finally coming to the Web.

2. Type data: a type (in a format called DTD - Docu-
ment Type Definition) or a schema (XML-schema)
can be attached to some XML data. (See Section
3.) Now, this is the Web, so one should not expect
everybody to use the same tag (e.g., address) for
the same concept, or the same type for a given tag.

3. Semantics: Once typed information is provided,
one can attach semantics to it and describe that
semantics. For instance, the Resource Description
Framework (RDF) is a standard for publishing se-
mantic descriptions of Web resources. This is lead-
ing to the realm of "semantic Web".

Thus XML is reconciling many worlds. In particular,
one can view it as the convergence of databases and
(hypertext) documents. Viewing XML as text and pre-
sentation is central for document management but will
be little considered here. We are more concerned with
viewing XML as data, or knowledge. Furthermore, we
are primarily interested in considering the knowledge
available on the Wei) as a distributed XML database
that can be queried like any centralized database.

Given this worldwide, distributed, heterogeneous
database of semistructured data, a first, issue is its man-
agement. Can database technology be used? Observe
that database systems have been successful because
they are easy to use and very efficient. There are many
reasons for this: in database system, (i) data is very
structured and rigid: (ii) data has a precise known loca-
tion, generally centralized: (iii) a cost model for queries
is available (even if most of the time, it is very rough)
to perform optimization: (iv) data can be trusted and
is non-contradictory. Every single of these points is
defeated for semistructured data on the Web. A sec-
ond issue is that of formal foundations. Can database
theory be used? What else can be used?

3 Typing

We consider in this section the issue of typing
semistructured data.

380

<bibliodate="2001">
<book key="U">

<title>DBMS</title>
<author>J.D. Ullman</authoi>
</book>

<book key="AHV">
<title>DBTheory</title>
<author>Abiteboul</author>
<author>Hull</auhor>
<author>Vianu</author></book>

<book key="ABS">
<not entered/>
</book></biblio>

Text View

' node interface

get_tag_name
get_parent
get_root
get_attribute_list
get_first_child
get_childrem_by_tag
get_type

Object View

ook

title

DBMS Ullman U DBTheory Abiteboul Hull Vianu AHV ABS

Tree View

Figure 1. XML and trees

O © © o
sue sueid johnid '- John johnid /sueid iueid joh'Did

Figure 2. XML and graphs

381

First, wo shall stress that types should not be too
constraining in this context. For instance, it is accept-
able to have an XML document without type or XML
data with portions that are typed and others that are
not. More precisely, although the document has some
structure, the structure may be irregular (e.g., missing
data) and may even violate the type that it is sup-
posed to obey. In traditional databases, data may be
large and rapidly evolving whereas types are supposed
to be relatively small and stable. This is not true for
semistructured data. Indeed, the almost religious dis-
tinction between schema and data found in databases
is blurred here. Underlying all these aspects is a need
for flexibility. Flexible typing is not a new notion. For
instance, parameterized records have been studied in
the context of typed functional languages that allow to
type functions applying to records with variable collec-
tions of attributes. So, for instance, we may want to
see the "type" of a book as:

[title, author, editor?, year, more]

where the question mark means that editor is not a
compulsory attributes and more means that other la-
bels are acceptable there as well .

We next develop some (light) formalism for
semistructured data and XML typing. As already men-
tioned, XML is a syntax. Recall that it is based on
opening tags in .4 and closing tags in A with proper
parenthesizing. A grammatical approach can be used
to define the type of a document. More precisely, one
can specify that a particular document is valid with
respect to a certain Document Type Definition (DTD).
DTDs may be viewed as particular context-free gram-
mars. (An example of a possible DTD for the data
in Figure 1 and of the same type in a richer for-
malism, namely XML-schema are given in Figure 3.)
These grammars are special in that each word gener-
ated by one such grammar (almost) encodes its parse-
tree. More precisely, a DTD specifies for each tag o,
a regular expression Ra which tells what can be found
between a and a. An example of DTD (using formal
language notation and not XML notation) is as follows:

Xa —> a(X*\Xc)(i Xe —► e.Xce Xc —> cc

where, for instance, the regular expression defining
what may be found between a and ä is X*\XC. A valid
word for this DTD is, for instance, a e cce e ccea.

An XML-language is the set of valid words for a
given DTD. It is a context-free language. However,
XML-languages enjoy many properties that do not hold
in general for context-free languages. For instance, it
is not complicated to show that XML-languages are

closed under intersection [6]. Note however that the
situation is a bit more confusing because the field is
still changing rapidly. There are proposals to extend
DTDs (e.g., X-schemas) that may modify the kind of
results that hold for DTDs as they now stand.

To continue with the issue of semistructured data
typing, we may also think of XML as data and adopt
a more database-like approach. We may first try to
use what is known from the relational database world.
It is easy to represent XML data in tables (although
this is probably not a good idea for storing it). See
Figure 4 for a relational representation of the XML
tree of Figure 1. Like in relational dependency theory,
first-order logic can be used to express properties on
these tables. For set-oriented properties, this is a rather
convenient formalism. So, for instance, consider the
following DTD rule:

book —> (book)title(author)*year(/'book)

Ignoring positions, this can be captured by simple for-
mulas in the style of:

Vb(book(b) => 3t{title(t) A E(b,t)))
V&, t, t'(book(b) A title(t) A title(t')A

E(b,t)AE(b,t')=>t = t')
Vb,x(book(b) A E(b,x) => (title.(x)\l

author(x) V year(x)))

As already mentioned, this works fine for set-
oriented properties. On the other hand, in a relational
representation, the ordering of the children of a node
is captured by position and the list of these children is
not directly available. Furthermore, the tree structure
has been encoded/buried into this flat structure. So,
many useful properties and queries that typically re-
fer to paths in the tree cannot be directly captured in
first-order terms. Following are two examples:

1. regular expressions on the children of a node:
DTDs allow to state that, for instance, the
sequence of children labels for a node of label a
is a word in the language bc*d. This simple fact is
not easy to state in first-order terms.

2. regular expressions for a downward path: given a
document d, it is natural to ask for all the elements
o such that the labels on the path from the root to
o is, e.g., a word in the language c"(e\f)e. Indeed,
such features are supported in a language called
XPATH that allows to specify complex paths in
XML data and is used, in particular, for document
presentation. This is also not easy to state in first-
order terms.

382

DOCTYPE biblio [
element biblio (book)*>
element book (title, (author)*)I(\#PCDTA)>
element title (\#PCDATA)>
element author (\#PCDATA)>
attlist book key \#PCDATA>
attlist biblio date \#PCDATA>]>

Figure 3. Typing XML with DTD

source ti biblio title
&0... &0 &1 1 &0... &2...

value &1 &2 1
&3 DBMS &2 &3 - book author
&5 Ullman &1 &4 2 &1... &4...

&4 &5 —...

Figure 4. Relational Representation

This naturally suggests the need for recursion and ap-
proaches based on fixpoints or proofs (e.g.. logic pro-
gramming and deductive databases).

The two examples we used for illustrating the lim-
itations of first-order logic were based on regular lan-
guages. Indeed, approaches based on regular languages
and automata techniques seem appropriate in this con-
text and have been investigated. For instance, one
can describe paths in the XML tree corresponding
to a given DTD with regular languages. This has
been used to provide user-friendly graphic interfaces
to query such data (in the style of Query-by-Example
for relational data). The user navigates through the
documents, choosing which set of nodes to visit next
by selecting a path. It is also natural to describe the
type of a document by a tree or a graph. This sug-
gests a definition of typing based on graph homomor-
phism in the style of graph simulation used, e.g., in
program analysis. Last but certainly not least, there
have been a series of works on using tree automata
to define semistructured data types. Since we will en-
counter tree automata in the context of queries as well,
we postpone their discussion to the next section.

Between all these approaches, there is no clear win-
ner yet and there is still a long way until an analog
for semistructured data to dependency theory for re-
lational databases is obtained. The context is much
richer and it is likely that foundations for semistruc-
tured data typing will be more complex and borrow
from several of these approaches. To conclude this dis-
cussion on types, we consider two critical use of types
in the Web context:

1. Type integration: In a particular application do-
main, say biology, if each single person publishing
his data on the Web uses untyped XML or her own
DTD, the construction of a global view of all the
information of the Web in the biology domain will
have to rely on expensive AI techniques and will
probably remain an elusive goal for a long while.
On the other hand, if everyone agrees on one DTD
(or a small number of DTSs), this integration be-
comes feasible, see, e.g., [20].

2. Type discovery: As already mentioned, types are
often not specified in data found on the Web.
However, it is important to be able to understand
the structure of data (discover its type) for a num-
ber of reasons ranging from query optimization, to
explaining the data to users.

4 Logic and Queries

There are many relationships between logic and
computer science. One may argue that the most im-
pressive practical application of logic in computer sci-
ence as of today is relational databases, primarily ow-
ing to the algebraization of first-order logic. In a
nutshell, this result brings to millions of relational
database users an interface to state first-order formu-
las over a finite structure and get the bindings of vari-
ables as answers. Relational database technology has
revolutionized access to information. The next revolu-
tion may come from query languages for semistructured
data, when such data becomes the Web of tomorrow.

383

Before considering various approaches to query lan-
guages for semistructured data, one should note some
desired functionalities. First, declarative languages
are preferable. The old duality of relational calculus
(declarative) vs. relational algebra (operational) sur-
vives when we move to semistructured data. How-
ever, the distinction is not as clear cut since fea-
tures like regular expressions (for describing paths)
may be viewed both as declarative and procedu-
ral/navigational. Then, the language should support
information-retrieval-style features such as keyword
search. Also, as standard in such context, the lan-
guage should blur the distinction between schema and
data. Finally, since the Web keeps changing, query

languages should allow to query these changes. In re-
lational databases, notions such as versions and tem-
poral queries are often supported, see, e.g. [13]. In the
Web context, there is growing activity around query
subscriptions and continuous queries. An example of
(simple) query subscription is "let me know when a
page of this particular site changes". Such services arc
becoming available on the Web. The underlying tech-
nology is related to triggers and active databases [19].
An example of continuous query is "send me, every
Wednesday, the list of movies showing in Paris".

We next consider various approaches that have been
proposed for querying semistructured data. Every-
thing does not have to be built from scratch. Lan-
guages for hierarchical data have been studied for many
years. Some of this work has focused on extensions of
first-order logic with some controlled second-order fea-
tures, allowing the quantification over sets of values.
("Controlled" here is essential so that query evalua-
tion remains feasible.) From an algebraic/functional
viewpoint, this amounts to extending relational alge-
bra (projection, selection, join, etc.) with new oper-
ators such as filter, map, comprehension. Logics and
algebras have been studied for trees (nested relations)
or graphs (complex objects) that can be adapted to
semistructured data. For instance, a typical operation,
called nest, is as follows. Suppose R contains a set of
pairs. For each value a, we can group the correspond-
ing values with a nest operation. This corresponds to
the second-order formula:

{x,Y | 3y(R(x,y)) A Vy(R(x,y) ejel'))

Several query languages (typically using an SQL fla-
vor) have been proposed for semistructured data. For
XML alone, there is a flurry of recent competing pro-
posals. Many of them, originating in academia, are ar-
guing in favor of extending OQL [7], a reasonably clean
functional language that was adopted as the standard
for object databases. Others, mostly from industry,

lobby for ad-hoc (one might say inelegant or dirty?)
extensions of SQL. At the core of these extensions, one
finds tree-pattern matching and tree rewriting. Indeed,
one can view these languages as extensions of first-
order logic with tree-pattern matching and some form
of regular path expressions. Lorel [3] was, I believe, the
first OQL extension proposed for semistructured data.
An example of query, using a Lorel-like syntax, is:

select X/title, X/author

from X in MyBibliography/biblio/book
where X/author="Ullman" and X/year="1986"

The pattern here is a tree with two branches. A match-
ing pattern consists of a root (the given document My-

Bibliography labeled biblio), a child labeled book with
two children labeled author and year with appropriate
values, "Ullman" and "1986", respectively. Each such
pattern that is found produces an element of the answer
with a title and an author. As previously mentioned,
regular expressions and keyword search may come into
the picture as in, for instance:

select X/title, X/author

from X in MyBibliography/biblio/book
where X/author="Ullman" and

X/text//example contains "XML"

This asks for the books by Ullman that mention the
word XML in an example. In the query, the symbol
"/" is used to denote children of a node whereas "//"
is used for descendants.

Another line of investigation for query languages is
based on structural recursion. For instance, XSLT, a
transformation language supported by the Web con-
sortium, allows to specify iterators and tree rewriting
patterns to apply on a given document. (It has been
claimed recently that XSLT is Turing complete.)

Finally, two related approaches have been recently
considered: tree transducers (see, e.g., [10]) and k-
pebble transducers [9].

Tree transducers The starting point is the view
of an XML document as a tree. This suggests us-
ing devices over trees and in particular tree transduc-
ers. The transducers that are considered are not quite
standard in that trees have unbounded fan-out (the of-
ficial terminology is unranked) and a query does not
accept/reject the tree but returns a result, typically a
set of nodes in the tree. The automaton uses top-down
and bottom-up state transitions. A node is selected
depending on the state of the automaton when visit-
ing the node and the label of the node. This approach
is interesting also because of the equivalence of tree
automata and monadic second-order logic.

384

K-pebble transducers These devices subsume
most aspects of query languages and typing previously
introduced for semistructured data. They are varia-
tions of tree automata that we will not define here.
Intuitively, a k-pebble transducers performs a compu-
tation on a tree. It uses a stack of pebbles to describe
the state of the computation so far. The pebbles are
installed on tree vertices. At some point of the compu-
tation, the transducer may span several parallel com-
putations for the different children of the current node
and put them in charge of computing different parts of
the result. Figure 5 gives an intermediary state of a
computation. Two parallel computations are going on.
Each is in charge of computing one subtree of the root
of the result.

5 In Place of Conclusion

Essential differences with traditional databases arise
from the nature of the Web: (i) its size; (ii) its dis-
tributed nature; (iii) the absence of centralized control.
This suggests new research directions. To conclude, we
mention next (somewhat arbitrarily) five such direc-
tions.

Complexity: the complexity of relational queries has
been extensively studied. Theory has gone a long
way from showing logspace and AC0 bounds for
relational algebra to, for instance, obtaining many
results for recursive languages (datalog, fixpoint).
What is new? A lot when we consider the Web.
Logspace at the scale of the Web is simply too
much. There is clearly a need for new notions of
feasibility in this context.

Computability: Consider a Web crawler. It is essen-
tially an infinite computation. By the time it takes
to read the entire Web, a large portion of the data
that has been read has already changed, some has
disappeared, new data arrived. So, strictly speak-
ing, some queries such as give me the list of URLs
pointing to my homepage at the exact instant can
simply not be answered. Thus, even the notion of
computability has to be reconsidered, see [5] and
should encompass infinite computations.

A world of changes: The Web changes all the time.
Furthermore, as already mentioned, users are of-
ten directly interested in changes. So, they would
like a paradigm that allows to discuss change, and
yes, this brings us back to the notions of tem-
poral queries, continuous queries and subscription
queries (infinite computations for the last two). So
the new name of the game is infinite computation

in a changing world vs. finite computation in a
static one.

A world of uncertainly and incompleteness:
By the nature of the Web, the information that
can be acquired is incomplete and cannot be com-
pletely trusted (e.g. dangling pointers, changing
or disappearing data). Query languages have to
deal with this. (See, e.g., [4].)

Concurrency control: A major achievement of
database technology has been concurrency control
ensuring correct simultaneous interaction with the
database by multiple users. This works fine in a
centralized database with locks. It is still an elu-
sive goal in the context of the Web. There is a need
to develop more flexible notions of correctness and
the corresponding theory.

Acknowledgments: I wish to thank T. Milo, L.
Segoufm, D. Suciu, P. Veltri and, in particular, V.
Vianu, for discussions on this paper.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on
the Web: From Relations to Semistructured Data
and XML. Morgan-Kaufman, New York. 1999.

[2] S. Abiteboul, R. Hull, and V. Vianu. Founda-
tions of Databases. Addison-Wesley, Reading-
Massachusetts, 1995.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J. Wiener. The Lorel query language for
semistructured data. International Journal on
Digital Libraries, 1, 1997.

[4] S. Abiteboul, L. Segoufin, and V. Vianu. Repre-
senting and querying XML with incomplete infor-
mation. In Proc. ACM PODS, 2001.

[5] S. Abiteboul and V. Vianu. Querying the Web.
In Proc. ICDT, 1997.

[6] J. Berstel and L. Boasson. XML grammars. In
Proceedings of MFCS, 2000.

[7] R. G. Cattell. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann, 1997.

[8] Dblp bibliography.
www.informatik.uni-trier.de:80/ ley/db/.

385

DBMS L'llnun I DBTIK-.TI AhL+oul Hull V

Figure 5. K-Pebble Automata Configuration

[9] T. Milo, D. Suciu, and V. Vianu. Type-checking
for XML transducers. In Proc. ACM SIG-
MOD/SIGACT Conf. on Princ. of Database Syst.
(PODS), 2000.

[10] F. Neven and T. Schwentick. Query automata. In
Proc. ACM SIGMOD/SIGACT Conf. on Princ.
of Database Syst. (PODS), 1999.

[11] P.Buneman, S. Davidson, and D. Suciu. Program-
ming constructs for unstructured data. In Proc.
DBPL, 1995.

[12] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman,
and .1. Widom. Querying semistructured hetero-
geneous information. In T.W. Ling. A.O. Mendcl-
zon, and L. Vieille, editors, Proceedings of the
Fourth International Conference on Deductive and
Object-Oriented Databases (DOOD), Singapore,
1995. Springer-Verlag.

[13] R. Snodgrass and I. Ahn. Temporal databases.
IEEE Computer, 19(9):35-42, September 1986.

[14] D. Suciu. Semistructured data tutorial. VLDB99,
http://www.es.washington.edu/homes/suciu/,
1999.

[15] .I.D. Ullman. Principles of Data.ba.se and Knowl-
edge Base Systems, Volume I. Computer Science
Press, 1988.

[16] J.D. Ullman. Principles of Database and Knowl-
edge Base Systems, Volume II: The New Technolo-
gies. Computer Science Press, 1989.

[17] V. Vianu. A Web Odyssey: from Codd to XML. In
Proc. ACM SIGMOD/SIGACT Conf. on Princ.
of Database Syst. (PODS), 2001.

[18] The World Wide Web Consortium (W3C).
www.w3.org.

[19] J. Widom and S. Ceri. Active database systems:
Triggers and rules for advanced database process-
ing. Morgan Kaufmann Publishers, San Francisco,
CA, 1996.

[20] Xyleme Home Page, www.xyleme.com.

386

Session 10

Synthesizing Distributed Systems

Orna Kupferman
Hebrew University*

Moshe Y. Vardi
Rice University^

Abstract

In system synthesis, we transform a specification
into a system that is guaranteed to satisfy the specifi-
cation. When the system is distributed, the goal is to
construct the system's underlying processes. Results
on multi-player games imply that the synthesis prob-
lem for linear specifications is undecidable for general
architectures, and is nonelementary decidable for hi-
erarchical architectures, where the processes are lin-
early ordered and information among them flows in
one direction. In this paper we present a significant
extension of this result. We handle both linear and
branching specifications, and we show that a sufficient
condition for decidability of the synthesis problem is
a linear or cyclic order among the processes, in which
information flows in either one or both directions. We
also allow the processes to have internal hidden vari-
ables, and we consider communications with and with-
out delay. Many practical applications fall into this
class.

1 Introduction

In system synthesis, we transform a specification
into a system that is guaranteed to satisfy the speci-
fication. Early work on synthesis consider closed sys-
tems. There, a system that meets the specification
can be extracted from a constructive proof that the
specification is satisfiable [MW80, EC82]. As argued
in [ALW89, Dil89, PR89a], such synthesis paradigms
are not of much interest when applied to open sys-
tems, which interact with an environment. While syn-
thesis that is based on satisfiability assumes no envi-
ronment or a cooperative one, synthesis of open sys-
tems should assume a hostile environment, and should
generate a system that satisfies the specification no

•Work partially supported by BSF grant 9800096. Address:
School of Computer Science and Engineering, Jerusalem 91904,
Israel. Email: orna@cs.huji.ac.il

tWork partially supported by NSF grants CCR-9700061 and
CCR-9988322, BSF grant 9800096, and a grant from the In-
tel Corporation. Address: Department of Computer Science,
Houston, TX 77251-1892, U.S.A. Email: vardi@cs.rice.edu

matter how the environment behaves. The work in
[ALW89, PR89a] formulated the synthesis problem in
terms of a game between the system and the envi-
ronment, and is closely related to Church's solvability
problem [Chu63]. Given sets I and O of input and
output signals, respectively, we can view a system as
a strategy P : (21)* -> 2° that maps a finite sequence
of sets of input signals (the behavior of the environ-
ment so far) into a set of output signals (the reaction
of the system to this behavior).

When P interacts with an environment that gener-
ates infinite input sequences, it associates with each
input sequence an infinite computation over 2/u°.
We say that a specification ip is realizable iff there
is a strategy all of whose computations satisfy r/>,
in case V is a linear specification, or a strategy
whose induced computation tree satisfies xj), in case
ip is a branching specification. Synthesis of ip then
amounts to constructing such a strategy. Solutions
for the realizability and synthesis problems for spec-
ifications in the linear temporal logic LTL are pre-
sented in [ALW89, PR89a]. The solutions are ex-
tended in [PR89b, Var95] to asynchronous systems
and in [KV99] to systems with incomplete informa-
tion and specifications in the branching temporal logic
CTL*. Methods developed for synthesis of open sys-
tems are applicable also for supervisory control, where
instead of hostile environments we consider collabora-
tive controllers of nondeterministic systems [RW89].

While the transition to open systems has signifi-
cantly broaden the scope of synthesis to real-life de-
signs, it is still limited to settings in which the open
system consists of a single process. In a more real-
istic setting, that of a distributed system, the input
to the synthesis problem consists of both the spec-
ification and an architecture, which may consist of
more than one process and describes the communi-
cation channels between the different processes. More
formally, we assume a setting with n processes, with
process i referring to sets /,, Ot, and Hi, of input,
output, and hidden (internal) signals (input signals
may be external; i.e., generated by the environment),
and we want to construct for each process a strat-

389
0-7695-1281-X/01 $10.00 © 2001 IEEE

egy Pi : (27i)* -> 2°iUH' so that the composition of
the strategies satisfies the specification. The architec-
ture is given by a set of conditions like 02 U O4 C I3

("the only channels to P3 are from P2 to Pi"). The
exact definition of the composition of the strategies
then depends on assumptions on the communication
(e.g., whether communication involves a delay). If, for
example, we want to synthesize five dining philoso-
phers [Dij72], we can specify in temporal logic the
mutual exclusion and non-starvation requirements for
the philosophers, specify a two-way ring with five pro-
cesses, and ask the synthesis procedure to construct
appropriate strategies for the processes. Clearly, a so-
lution for the dining philosophers that refers to a single
process is not of much interest.

There are two possible ways to approach the syn-
thesis problem for distributed systems. One approach
is to use a synthesis procedure for a single process, and
then decompose the process according to the given ar-
chitecture [EC82, MW84]. While this approach has
a computational advantage, known decomposition al-
gorithms are not complete in the sense that a speci-
fication may be realizable with respect to a given ar-
chitecture yet the decomposition algorithm would fail
[PR.90]. Thus, one can view decomposition as a heuris-
tic for the synthesis problem, which is not guaranteed
to work. The second approach is to refer to the archi-
tecture of the distributed system from the outset and
construct the underlying processes directly [PR.90].

R.esults on multi-player games imply that the real-
izability problem for general distributed systems is un-
decidable [PR.79, PR90] (the results in [PR.79] refer to
multiple-person alternating Turing machines and are
extended in [PR90] to the synthesis setting). Essen-
tially, there is an architecture fl (in fact, a very simple
architecture, consisting of two independent processes
Pi and P> that interact with the same environment;
that is h n {O2 U H2) = 0 and I2 n (Oj U Hi) = 0)
such that for every deterministic Turing machine M,
there is an LTL formula T/J/I/ such that M halts on
the empty tape iff V->A/ is realizable in fl. The reduc-
tion is heavily based on Pi and P2 being independent,
and it fails, for example, if we assume that P> gets
its input from Pi (i.e., 0\ C I2). Indeed, it is shown
in [PR79, PR90] that once we consider hierarchical ar-
chitectures, in which the processes are linearly ordered
and information flows in one direction, the realizability
problem is nonelementary decidable for specifications
in LTL.

The decidability result in [PR90] suffers from two
limitations. First, when we synthesize a system from
an LTL specification %j>, we require ip to hold in all the

computations of the system. Consequently, we can-
not impose possibility requirements on the system (cf.
[DTV99]). In the dining-philosophers example, while
we can specify in LTL mutual exclusion, we cannot
specify deadlock freedom (every finite interaction can
be extended so that a philosopher eventually eats). In
order to express possibility properties, we should spec-
ify the system using branching temporal logic, which
enables both universal and existential path quantifi-
cation [EH86, Eme90]. Second, and more crucially,
the algorithm in [PR90] is not applicable for architec-
tures that are not hierarchical, and real-life designs
are rarely based on hierarchical architectures. We do
not count the nonelementary complexity as a limita-
tion, as it is accompanied by a matching lower bound
and, as we discuss further in Section 6, the worst-case
complexity rarely appears in practice.

In this paper we remove both limitations. We con-
sider specifications in the branching temporal logic
CTL* (which subsumes LTL), and we handle all archi-
tectures in which there is a linear or cyclic order among
the processes, in which information flows in either one
or both directions. Thus, our architectures can be ei-
ther chains or rings with both one-way and two-way
communication channels. In addition, we allow the
processes to have internal hidden variables, and we
consider communications with and without delay. We
show that the realizability problem stays decidable in
all these cases. The solution we present is based on
alternating tree automata, which separate the logical
and algorithmic aspects of the problem: given a spec-
ification xj> and an architecture fl, we construct an au-
tomaton An,f sucn that t]> is realizable in d iff .4^.0 is
not empty. To check realizability, the automaton has
to be tested for nonemptiness [E.I88, PR89a, KV98].
The nonemptiness algorithm also synthesizes the pro-
cesses in H that together realize ij>.

We argue that the results in the paper significantly
extend the scope of synthesis for distributed systems,
as commonly used architecture belong to the class of
architectures we handle [Tan87]. Examples of applica-
tions of these architectures include various communi-
cation protocols in which communication proceeds in
layers. For example, the so-called OSI model consists
of a seven-layer protocol stack (Application, Presen-
tation, Session, Transport, Network, Data link, and
Physical layers), where every layer communicates with
the layer above it and the layer below it. The envi-
ronment talks to the top layer and the bottom layer
[Man99]. Architectures with two-way communication
channels are common in scientific computations, say
when we iterate in order to solve a differential equa-

390

tion and each process works on part of the computed
domain. Then, it is useful to divide the domain to
layers so that in each iteration every layer updates its
neighbors with its results from the previous iteration
[PTVF92].

2 Preliminaries

2.1 Trees and labeled trees

Given a finite set T, an T-tree is a set T C T* such
that if x ■ v G T, where x G T* and v G T, then also
x G T. When T is not important or clear from the
context, we call T a tree. When T = T*, we say that
T is full. The elements of T are called nodes, and the
empty word e is the root of T. For every x G T, the
nodes x ■ v G T where v G T are the children of x.
Each node x of T has a direction, dir(x) in T. The
direction of e is u°, for some designated v° G T, called
the root direction. The direction of a node x ■ v is v.

Given two finite sets T and £, a H-labeled T-tree is
a pair (T, V) where T is an T-tree and V : T -> £
maps each node of T to a letter in E. When T
and E are not important or clear from the context,
we call (T,V) a labeled tree. For a E-labeled T-
tree (Y*,V), we define the memoryfull version of
(T*,V), denoted mem((T*,V)) as the E+-labeled T-
tree {T* ,V) where V'(e) = V(e), for v G T we have
V'(v) = V{e) ■ V{v), and for all x G T+ and v G T
we have V'(x ■ v) = V'(x) ■ V(v). Thus, the label of
a node x in mem({T*,V)) is the word obtained by
concatenating the labels of all the prefixes (including
e) of a; in (T*,V).

For a E-labeled T-tree (T*,V), we define the x-ray
of (T*,V), denoted xray({T*,V}), as the (T x £)-
labeled T-tree (T*, V) in which each node is labeled
by both its direction and its labeling in (T*, V). Thus,
for every i£T*,we have V'(x) - (dir(x),V(x)). Es-
sentially, the labels in xray((T* ,V)) contain informa-
tion not only about the surface of (T*, V) (its labels)
but also about its skeleton (its nodes).

For a E-labeled T-tree (T*,V), we define the delay
of (T*,V), denoted delay {{T*,V)), as the E-labeled
T-tree (T* ,V) in which V'{e) = V(e) and for all x G
T* and v G T, we have V'(x ■ v) = V(v0 ■ x), where
v0 = dir(e) is the root direction of T. Intuitively, the
delay of (T*, V) describes the label node x would have
when the sequence of directions leading to x arrives
with a delay, thus the last direction in x is missing
and x is prefixed by the root direction.

Consider a set X x Y of directions. For a node
T G (XxY)*, let hideY(r) be the node in X* obtained
from r by replacing each letter (x,y) by the letter

x. For example, the node (0,0) • (1,0) of the 4-ary
({0,1} x {0, l})-tree corresponds, by hide^0^, to the
node 0-1 of the {0, l}-tree. Note that the nodes (0,0) •
(1,1), (0,1) • (1,0), and (0,1) • (1,1) of the 4-ary tree
also correspond, by hide^^, to the node 0 • 1 of the
binary tree. For a Z-labeled X-tree (X*, V), we define
the Y-widening of (X*,V), denoted widey {(X* ,V)),
as the Z-labeled (X x y)-tree {{X xY)*, V) where for
every r G (XxY)*, we have V'{T) = V(hideY (r)). As
we explain further in Section 3, nodes TX and r2 with
hidey(Ti) = hidey(T2) = r are indistinguishable in
widey {{X*,V)) by someone that does not observe Y.
Indeed, for such an observer, both nodes are reached
by traversing r and are labeled by V(T).

2.2 Alternating automata

Alternating tree automata generalize nondeterministic
tree automata and were first introduced in [MS87]. An
alternating tree automaton A — (T,,Q,q0,S,a) runs
on full E-labeled T-trees (for an agreed set T of direc-
tions). It consists of a finite set Q of states, an initial
state go G Q, a transition function S, and an accep-
tance condition a (a condition that defines a subset of
Qw). For a set T of directions, let ß+(TxQ) be the set
of positive Boolean formulas over TxQ; i.e., Boolean
formulas built from elements in T x Q using A and
V, where we also allow the formulas true and false
and, as usual, A has precedence over V. The transi-
tion function 5 : Q x E -» B+(T x Q) maps a state
and an input letter to a formula that suggests a new
configuration for the automaton. For example, when
T = {0,1}, having 6(q, a) = (0, qi) A (0, q2) V (0, q2) A
(l,c/2) A (1,(73) means that when the automaton is in
state q and reads the letter a, it can either send two
copies, in states q\ and o2, to direction 0 of the tree, or
send a copy in state g2 to direction 0 and two copies,
in states g2 and g3, to direction 1. Thus, unlike nonde-
terministic tree automata, here the transition function
may require the automaton to send several copies to
the same direction or allow it not to send copies to all
directions.

A run of an alternating automaton A on an in-
put E-labeled T-tree (T,V) is a tree (Tr,r) in which
the nodes are labeled by elements of T* x Q. Each
node of Tr corresponds to a node of T. A node in
Tr, labeled by (x,q), describes a copy of the automa-
ton that reads the node x of T and visits the state
q. Note that many nodes of Tr can correspond to
the same node of T; in contrast, in a run of a non-
deterministic automaton on (T,V) there is a one-to-
one correspondence between the nodes of the run and
the nodes of the tree. The labels of a node and its

391

children have to satisfy the transition function. For
example, if (T, V) is a {0, l}-tree with V(e) — a and
<J(9ö,a) = ((0,gi)V(0,g2))A((01g3)V(l)g2)),thenthe
nodes of (Tr,r) at level 1 include the label (0,(71) or
(0,92)1 and include the label (0, q%) or (1, q-?). Each in-
finite path p in (Tr, r) is labeled by a word r(p) in Q".
Let inf(p) denote the set of states in Q that appear
in r{p) infinitely often. A run (Tr,r) is accepting iff
all its infinite paths satisfy the acceptance condition.
In Rabin alternating tree automata, a C 2^ x 2^,
and an infinite path p satisfies an acceptance condition
Q = {(Gi,ßi),...,(Gfe,ßfc)} iff there exists 1 < i < k
for which inf(p) n G; ^ 0 and inf(p) D Bt = 0. We
refer to the number of pairs in a as the index of A. An
automaton accepts a tree iff there exists an accepting
run on it. We denote by C{A) the language of the
automaton A; i.e., the set of all labeled trees that A
accepts. We say that an automaton is nonempty iff
C(A) ^ 0. For an acceptance condition a over Q and
a set S, we denote by a x 5 the acceptance condition
over Q x S obtained from a by replacing each set F
participating in a by the set F x S. For example, if
a is the Rabin acceptance condition {(G, 73)}, then
axS = {(GxS,BxS)}.

Nondeterministic tree automata can be viewed as a
special case of alternating tree automata, where the
formulas in ß+(T x Q) are such that if a formula
is rewritten in disjunctive normal form, then for ev-
ery direction v £ T, there is exactly one element of
{v} x Q in each disjunct. While nondeterministic tree
automata are not less expressive than alternating tree
automata, they are exponentially less succinct:

Theorem 2.1 [MS95] An alternating Rabin tree au-
tomaton with m states and k pairs can be translated to
an equivalent nondeterministic Rabin tree automaton
with ?;?°'"'A'' states and 0(mk) pairs.

3 Architectures and the synthesis
problem

Given sets 7 and O of input and output signals,
respectively, we can view a process P as a strategy
f : (21)* —> 2° that maps a finite sequence of sets
of input signals into a set of output signals. We of-
ten refer to the strategy / as the 2°-labcled 27-tree
((27)*,/). Let i0 be the root direction of 21. When
P interacts with an environment that generates in-
finite input sequences, it associates with each infi-
nite input sequence i\,i-2, ■ ■ •, an infinite computation
{io} U /(e), {h} U /(ii), {»'2} U /(Ü • i2),... over 2/u°.
The interaction of P with all possible input sequences
induces the (2/u°)-labeled 27-tree xray{{{2')*, /)).

The environment may have hidden internal signals,
which are not readable by P. Let 77 denote the set of
hidden signals. Then, a strategy for P is still a func-
tion / : (27)* -» 2°, but the interaction of P with an
outcome of the environment induces an infinite com-
putation over 2/u0u//, and its interaction with all pos-
sible outcomes induces the (2/u0uH)-labclcd (2,vH)-
tree xray(wide^2n)(((2r)*, /)))• Each node in this tree
has 2l/u//! children1, corresponding to the 2'/u//' pos-
sible assignments to 7 U 77. Note that since P cannot
see the signals in 77, and thus cannot distinguish be-
tween children that agree on their assignment to sig-
nals in 7, the tree above is the 2//-widening of the
interaction between P and its environment as seen by
P.

In a setting with n processes Pi,..., Pn, where pro-
cess Pi reads 7,, writes O;, and has hidden internal
signals Hi, a strategy for P, is a function /; : (2/')* —►
2o,u//, We denote (j1<i<n Ii by I, and similarly for O
and H. The n processes Pi,..., P„ interact with each
other and may also interact with an environment. We
denote by Ocnv the output signals of the environment
(that is, the external input to the n processes), and de-
note by Henl. the hidden signals of the environment.

Different architectures induce different communica-
tion channels between the processes. We consider here
four classes of architectures (see figure next page). In
all classes, each signal can be written by a single pro-
cess (that is, O, n Oj = 0 for all / ^ j), but can be
read by several processes (that is, possibly Iifllj ^ 0).

• In a one-way chain, Pi reads from the environ-
ment. P„ writes to the environment, and all the
other processes read from the process to their
left, and write to the process to their right. For-
mally, I\ = Of„,., and for all 2 < i < n we have
F = Oj-i. Note that P, cannot read the in-
ternal signals of the process to its left and that
7UO = /UO„ = 7, UO.

• A one-way ring extends a one-way chain by a
communication channel from P„ to Pi. Thus, Pi
reads from both P„ and the environment (i.e.,
7i = On U Oe,!r)i and P„ writes to both Pi and
the environment.

• In a two-way chain, Px reads from both P> and
the environment and writes to P), P„ reads from
P,,_i and writes to both Pn-\ and the environ-
ment, and all the other processes read from the

'\Vc consider synthesis with respect to maximal environ-
ments, which provide all possible input sequences. An extension
to non-maximal environment is possible, using the same tech-
niques as in [KMTV00].

392

processes to their left and right, and write to
the processes to their left and right. Formally,
h = Oenv U 02, for all 2 < i < n — 1 we have
J, = Oi-i U Oi+i, and /„ = On_i.

• A two-way ring extends a two-way chain by
a communication channel between Pn and Pi.
Thus, Pi reads from P2, Pn, and the environment
(i.e., 7i = Oenv U02 U0n), and writes to both P2

and P„, and P„ reads from both Pi and P„_i and
writes to both Pi, P„_i, and the environment.

Note that in all the four classes, and for all i and
j with i < j, the process Pt has complete informa-
tion about the input to Pj, thus Pi can simulate Pj
and have complete information also about its output2.
This means, for example, that in a two-way chain,
we could give up the channel from P2 to Pi, letting
Pi compute the information along this channel, and
similarly for the other right-to-left channels. While
this would not change the answer to the realizability
question, it may significantly increase the sizes of the
synthesized processes.

One-way chain Two-way chain

One-way ring Two-way ring

For all the architectures, we define the composition
of strategies /i,...,/„ as a function / : (2°'"")* -»
2°uH that describes the joint behavior of the processes
on an infinite sequence of external input signals. The
exact definition of a composition depends on the par-
ticular architecture as well as on assumptions on the
communication (e.g., whether communication involves
a delay). We define several compositions in Section 5.
In [PR90], Pnueli and Rosner study one-way channels
(called "hierarchical architectures" there) where com-
munication involves no delay. In this setting, com-
positions are defined as follows. For the strategy
<(2*)*,/i>, let «2*)*,/;> = mem«(2*)*,/i». Re-
call that in a one-way chain, Oenv = I\. Then, / :
(2oe„„)* _> 2outf is such that for eyery a € (20.-.)»,

2Indeed Pj, for j > i, generates also hidden signals, but these
signals are generated by a strategy that is known to P;, since our
framework assumes that the processes are collaborative, while
the environment is adversarial.

we have

f(a) = /i(a) U /2(/i(a)) U f3(W[(a)))U
■■•U/„(/^(---(^(/f(«7)))...)).

Intuitively, for all i, the output of Pt (and, conse-
quently, the contribution of fa to /), depends on the
history of the outputs of P*_i, namely the memory-
full version of /*_!, which by itself depends on the
memoryfull version of /i_2, and so on.

The compo-
sition / induces the computation tree of Pi,...,P„,
which is the (2Iu0uHuH—)-labeled (2°— u//—)-tree
xray{wide(2»^v){{{2°"lvY,/))). The transition from
the composition to the computation tree involves two
transformations. First, while the composition / cor-
responds to the composition as seen by the processes,
and thus ignores the signals in Henv and the nonde-
terminism induced by them, the computation tree cor-
responds to the composition as seen by someone that
sees all signals, which involves a 2Hcnv -widening. In
addition, as the signals in Oenv and Henv are repre-
sented in the widening of the composition only in its
nodes and not in its labels, we employ xray and obtain
a tree whose labels refer to all signals.

Given a CTL* formula ip over I UOUH U Henv,
and an architecture fi with processes Pi,...,Pn, we
say that ip is realizable in fl iff there are strategies
for Pi,..., Pn whose composition induces a compu-
tation tree that satisfies ip. The synthesis problem is
then to construct these strategies. The synthesis prob-
lem for one-way chains with complete information is
introduced and solved in [PR90] for specifications in
the linear temporal logic LTL (which is a strict sub-
set of CTL*). The synthesis problem for CTL* for
an architecture with a single process with incomplete
information is introduced and solved in [KV99]. In
this paper, we solve the synthesis problem for CTL*
for the four classes of architectures introduced above.
Our solution is based on automata on infinite trees.
For our purposes, the crucial feature of CTL* is the
following translation of CTL* formulas to alternating
Rabin tree automata.

Theorem 3.1 [KVWOO] Given a CTL* formula ip
over a set AP of atomic propositions and a set T of
directions, there exists an alternating Rabin tree au-
tomaton Ar,i, over 2AF'-labeled T-trees, with 20(-W>
states and two pairs, such that C{Ar,^) is exactly the
set of trees satisfying ip.

4 Useful automata constructions

Let X, Y, and Z be finite sets, and let z0 be the root
direction of Z. For an (X x relabeled Z-tree (Z*,f),

393

we say that (Z*, f) is a composition of an A-labeled Z-
trce (Z*,fx), where mem.{{Z\ fx)) = {Z*,f'x), and
a F-labeled A-tree (X*, fY) iff for every z\ and z2 in
Z and for every <r E Z*, we have

• m = fx(e)UfY(€).

• /(*i) = /x(*o)U/y(.fr(<0)-

• /(ff • zi • z2) = /x(z0 ■ o" • 21) U fy(f'x(z0 ■ o-)).

We then say that f = fx+fr- For a set Tof (X x Y)-

labeled Z-trecs, the set shapeX(T) consists of all Y-

labeled A-trees (X*,fy) for which there exists an A"-
labeled Z-trce {Z*,fx) such that the (A x relabeled

Z-tree (Z*,fx + fv) is in T.

Theorem 4.1 Let X, Y, and Z be finite sets. Given
a nondeterministic tree automaton A over (X x
Y)-labeled Z-trees, we can construct an alternating
tree automaton A' over Y-labeled X-trees such that
C(A') = shape X(C(A)) and the automata A' and A
have the same, size and index.

Proof: Let A = (X x Y, Q,q0, 6, a). Then, A' =
(Y,Q,qo,S',a), where for every q & Q and y 6 Y, we
have

<*'(<7,2/)= V (a;,si) A(.T,S2)A...A(X,S|^|).

»E.V,

<«i,*2 S|z|>6<5(r;,(.x,y))

Consider first the case where q = qo and A' reads the
root of the input tree (X*,fY). The letter y read at
the root is fY{(). Since in /.\- 4- /y the root is labeled
(/.v(f), /y (e)), we proceed according to 6(q0, (x, ?/)) for
some x which is our guess for /.v(c)- By the definition
of S', each copy of A that is sent to direction z 6 Z
and visits state s induces a copy of A' that is sent to
direction x and visits the state s. Since the choice of
x is joint to all z e Z, all the copies of .4' induced
as above are going to read the same letter, which is
our guess for fY{fx{())- Consider now a copy of A
that reads a node z £ Z and visits state s. Recall
that the automaton A' then has a copy that reads
the node fx(e), visits the state s, and the letter y
read by this copy (and all the other copies that read

the node fx{e)) is our guess for /y(/.v(e))- Since in
fx + /y the node z is labeled (fx(z0),fy{fx(e))), we
proceed according to 6(s, {x,y}), for some x which is
our guess for fx(zo)- Each copy of A that is sent
to direction z' £ Z and visits state s' then induces a
copy of A' that is sent to direction x and visits the
state s'. All these copies are going to read the same
letter, which is our guess for fY(f'x(z0)). The same

idea repeats in further levels: a copy of A that reads
a node a ■ z\ ■ z2 € Z* and visits state s is associated
with a copy of A' that reads the node f'x (z0 ■ a) and
visits the state s. The letter y read by this copy (and
all the other copies that read the node f'x(zo ■ cr)) is
our guess for fY{f'x(z0 ■ a)). Since in fx + fY the
node a-zi-z-2is labeled (fx(z0■ a■ zx), fy(f'x(z0■ a))),
we proceed according to S(s, (x,y)) for some x which
is our guess for fx(zo • o ■ z\). All the copies sent to
direction x are going to read the same letter, which is
our guess for fY(f'x(z0 -<r-zi)). D

Given a nondeterministic tree automaton A, let
shapeX(A) denote the corresponding automaton A'

constructed in Theorem 4.1. Note that while
shapeX(A) returns an alternating tree automaton, it
is defined for a nondeterministic tree automaton A.
Thus, successive applications of shape require an in-
termediate application of the exponential alternation-
removal procedure in Theorem 2.1.

The construction described in Theorem 4.1 will help
us to solve the realizability problem by successively
reducing the number of processes in the architectures.
The two constructions below will handle the external
input to the system and the incomplete information,
and they are presented in [KV99], where they are used
for the synthesis of a single process with incomplete
information.

Theorem 4.2 Given an alternating tree automaton
A over (T x 12)-labeled T-trees, we can construct an
alternating tree automaton A' over 12-labcled T-trees
such that A' accepts a labeled tree (T*, V) iff A accepts
xray((T*,V)), and the, automata A' and A have the
same size and index.

Theorem 4.3 Let X, Y, and Z be finite sets. Given
an alternating tree automaton A over Z-labeled (X x
Y)-trees, we can construct an alternating tree automa-
ton A' over Z-labeled X-trees such that A' accepts a
Z-labeled tree (X*,V) iff A accepts the Z-labeled tree
wideY {{X*, V)), and the automata A' and A have the
same size and index.

Finally, since we want our algorithm to be applica-
ble also for settings in which communication involves
a delay, we need a construction that handles such a
delay.

Theorem 4.4 Given an alternating tree automaton
A over 12-labeled t-trees, we can construct an alter-

nating tree automaton A' over 12-labeled T-trees such
that A' accepts a labeled tree (T*,V) iff A accepts
delay((T*,V)), and the automata A' and A have the
same size and index.

394

Given an alternating tree automaton A, let
cover (A), narrow y (A), and wait (A) denote the cor-
responding automata A' constructed in Theorems 4.2,
4.3 (for a set Y of directions), and 4.4, respectively.

5 Solving the synthesis problem

In this section we study the synthesis problem for
the architectures described in Section 3. We show
that for all the four classes, the problem is decid-
able, with a nonelementary complexity. Thus, given
a CTL* formula ip, a class C (one-way chain, two-way
chain, one-way ring, or two-way ring), and an integer
n, the complexity of constructing n strategies for n
processes in an architecture of class C that satisfies ip
is n-exp(\ip\).3

One-way chain We assume that communication in-
volves a delay. Thus, the input to P;+1 at time t is
the output of P, (or the environment, when i = 0) at
time t — 1. Accordingly, we define the composition f
of /i,.. •, fn as follows. For a string a = z$ • z\ ■ ■ ■ zk

and i > 0, let z0 ■ z\ ■ ■ ■ Zk-i be either the prefix of
length k — i + 1 of a. in case k — i > 0, or e, in case
k — i + l<0. Also, let z0 be the root direction of 2!l.
Then, / : (2h)* -> 2°uH is defined as follows.

• /(e)=/i(e)U---U/„(e).

• For a e (2h)* with a = z\ ■ ■ ■ zk, we have f(a) =
/l (z0 ■ Z! ■ ■ ■ 2A._i) U f2{f{ (z0 ■ zx ■ ■ ■ zk-2)) U ■ • ■ U
fn{f'n-\(zo -zi ■■■zk-„)).

Consider a CTL* formula ip over IUOUHUHenv.
Recall that in a one-way chain, we have IUO = h UO.
In order to solve the realizability problem, we build the
following tree automata.

• A$\ an' alternating Rabin tree automaton that
accepts a (2hu0uHuH—)-labeled (2IiUH—)-tvee
((2/lUH—)*,/) iff it satisfies ip [see Theorem 3.1].

• Ao- the alternat-
ing Rabin tree automaton wait(A^). Thus, Ao
accepts a (2/lUOu/fu^"»)-labeled (2/lU//—)-tree
((2/lU""-)*,/) iff delay (((2'^H^)*J)) satis-
fies ip [see Theorem 4.4].

AH- the
Rabin tree automaton narrow (2"e

A' ■ the alternating Ra-
bin tree automaton cover(Ao)- Thus, A'0 accepts
a (2°uff)-labeled (2hKjH—)-tree ((2IlUH"">)*,f)
iff delay(xray({(2huH"">)*,f))) satisfies ip [see
Theorem 4.2].

A'0' accepts a (2°u")-labeled 21

iff delay(xray(wide(2H'i'>){{(211)
ip [see Theorem 4.3].

For 1< i < n - 1,

alternating
M'o). Thus,

-tree <(2/')*,/>
\/)))) satisfies

3n-exp{k) is a stack of n exponents with k on the top; i.e..
l-exp(k) = 2°(fc), and (i + l)-exp(A;) = 2'-exP(kh

- Aim. a nondeterministic Rabin tree au-
tomaton equivalent to A"_1 [see Theo-
rem 2.1]. Note that the automaton
Ai runs on (20iUHiUOi+^uH^u-u0-uH")-
labeled 2°i-1-trees, where we take O0 = h-

- A\: the alternating Rabin au-
tomaton shape(2O;UH;)(.4J). Thus, A\ runs
on (2°<+>u^+iu-u°"uH")-labeled (2°iUHi)-
trees and it accepts a tree ((2°iUHi)*,})
iff there is a (2°-uHi)-labeled 2°«-1-tree
<(20i-i)*,/'> such that <(2°"-i)*,/ + /') is
accepted by Ai [see Theorem 4.1].

- A": the alternating Rabin automaton
narrow (2H i^A'i). Thus, A" accepts

a (2°<+iu".+iu-u0«utf")-labeled 2°'-tree
<(2°0*,/> iff ^e(2Hi)(((2°0*,/)) is ac-
cepted by A\ [see Theorem 4.3].

Intuitively, in each iteration 1 < i < n, we as-
sume that the strategies of P\,...,Pi-\ are given
(they are encapsulated in the transition function of
Ai) and the automaton Ai accepts all the composi-
tions of Pi,... Pn that together with the given strate-
gies satisfy ip. Thus, the transition from Ai to Ai+i
involves an encapsulation of the possible strategies of
Pi (and how they affect the behavior required from
Pi+i, ■ ■ -,Pn in order to satisfy ip) into the transition
function of Ai-

Lemma 5.1 ip is realizable iff A'n_1 is not empty.

The construction of Ai goes via i iterations. Each
iteration involves two automata transformations. One
transformation (narrow) gets and returns an alternat-
ing tree automaton. The other transformation (shape)
gets a nondeterministic tree automaton and return an
alternating tree automaton. While all the transforma-
tions involve no blow-up in the size of the automata,
the fact that shape handles nondeterministic automata
requires the application of an additional transforma-
tion, namely the translation of an alternating tree au-
tomaton to a nondeterministic one. This transforma-
tion involves an exponential blow-up, leading to an
overall nonelementary blow-up.

395

Theorem 5.2 The synthesis problem, for CTL* and
one-way chains is nonelementary decidable.

Proof: It follows from the constructions described in
Section 4 that the size of ,4"_i is (n-l)-exp(\ip\). The
nonemptiness problem for -4"_i can then be solved in
time n-exp{\%j}\) [MS95, KV98]. Lemma 5.1 then im-
plies that the realizability problem for if> can be solved
in time n-ea;p(|V->|). The nonemptiness algorithm can
be extended to produce a witness for the automaton
being nonempty (in fact, a witness that is a memory-
less strategy [Tho95]). A witness for the nonemptiness

of -4"_i induces a strategy /„ for Pn. In order to get
a strategy for P„_i, we combine A"_2 with /,, and
get an automaton that is guaranteed to be nonempty
and whose witness induces a strategy /„_i for Pn-\.
We continue similarly until strategies for all processes
are synthesized. □

A matching nonelementary lower bound is proved (for
LTL formulas) in [PR90] (cf. [PR79]). This lower
bounds applies also to the other architecture.

With appropriate simple modifications (skipping
the "wait construction" and redefining the "shape con-
struction" to ignore the delay), the method described
above can handle one-way channels in which commu-
nication involves no delay (the definition of composi-
tion then coincides with the one of [PR90]). As we
describe below, the method can also be extended to
handle the other classes of architectures described in
Section 3. The differences among the architectures in-
fluence the sets of labels and directions of the trees
over which the automata are defined (for example, in
a one-way ring A$ runs on (2°cn"u0")-trees, and in

ot„„u02uo„)-trees), in- a two-way ring, it runs on (2
fluence the definition of composition, and accordingly
influence the definition of shape X(T) and the "shape
construction" that handles. For all the architectures,
however, the idea is similar: a successive reduction in
the number of processes, where in each step we omit
a process and encapsulate its possible strategies into
the transition function of intermediate automata.

One-way ring. Recall that in a one-way ring, the
process Pi reads signals from both P„ and the envi-
ronment. We suggest two alternative modifications to
the method presented for one-way chains. The first is
rather simple: all the intermediate automata we con-
struct maintain (in their alphabet) the input that Pi
reads from Pn. Then, in the last automaton, which
corresponds to Pn's strategy, we close the ring by re-
quiring the output of Pn to agree with the maintained
input. The second approach is cleaner (and it also has

a computational advantage), yet it requires a more
substantial modification. The idea is to start with Pj
and proceed in both directions, encapsulating two pro-
cesses in each iteration. The two directions meet at
the automaton As., whose nonemptiness witnesses a
strategy for P« that satisfies the tasks inherited to PIL

by both the processes to his left and these to his right.

Two-way chain. The two-way chain architecture is
much richer than that of a one-way chain. Since the
difficulties imposed by incomplete information are or-
thogonal and are handled by the narrow construction,
we describe here the solution for systems with com-
plete information, thus H(,„v U H = 0. In a two-way
chain, the process Px reads both 0,_i and 0;+i, so
its strategy is a function /, : (2°'-iu°'+i)* -> 2°'.
Accordingly, while in the case of a one-way chain
the reduction of the process p involves a transition
from an automaton that runs on (20'u0'+'u'u0")-
labeled 2°'-*-trees to an automaton that runs on
(2°'+lU-u0-)-labeled 2°'-trees, here the reduction of
p should involve a transition from an automaton that
runs on (2°'u0' + 'u'"u0-)-labeled (2°-|UO' + ')-trces
to an automaton that runs on (2°'+lU "u°")-labeled
(20,u0'+2)-trees. In order to see the modifications
that are therefore needed in the shape construction,
let us first redefine the predicate shape and the com-
position operator it involves.

Let A',_i, Xj, A'1+i, A',+2, and A' be finite sets,
and let z0

and z'0 be the root directions of A',_i and
A', + i respectively. For our application, Xj stands
for 2°', and A stands for 2°'+:'u-u°". For an
(A', x A",-+i x A',-+2 x A)-labeled (A',_i x A',+i)-tree
<(AVi x A'i+1)*,/), we say that <(A,„i x A',-+,)*,/)
is a composition of an AVlabeled (A',-_i x A',+1)-
tree ((AVi x A,+i)*,/i) and an (A,+ i x A,+2 x AV-
labeled (Xj x A",+o)-tree ((A', x Xi+->y, f-2) iff for ev-
ery (z\,z[) and (22,22) in AVi x A',+i and for every
a G (A';-i x A',-+i)*, we have (/' and /{ are the mem-
oryfull versions of / and /'):

• M = <Me),Me)).

• f((zi,z[)) = (M(zo,z'0)),f2(fl{f))).

. /(a • {zuz\) ■ (Zl,z[)) = (/1((2ü,2^) • a ■
(^,^)),/2(/1'((2ü,2^-Cr)©/'((2o,2^-(7)|A-, + 2)),
where © is bitwise concatenation (e.g., 1/1 ■ 1/2®3/3 ■
2/4 = (i/i, 2/3) ■ (2/2,2/4)) and r|.Yi+2 is the projection
of T on A'j+2-

We then say that / = f\ + f\. Intuitively, / de-
termines its AVelement according to f\ and deter-
mines the (Xi+i x A i+2 A')-element by applying

396

f2 on an interleaving of an application of f[, which
gives the Xi element and an application of /' on a
strict prefix of the input, which returns an element in
Xi x Xi+i x Xi+2 x X and is then projected on X;+2.
In addition, since we assume that communication in-
volves a delay, / ignores the last letters in a sequence
and refers instead to the root directions.

For a set T of (Xi x Xi+1 x Xi+2 x X)-labeled
(Xj_! x X;+i)-trees, the set shape x.xX.+2(T) con-
sists of all (Xi+i x Xi+2 x X)-labeled (Xi x Xi+2)-
trees ((Xi x Xi+2)*,f2) for which there exists an X{-
labeled (Xj_i x X,+i)-tree ((X_i x Xi+i)*,fi) such
that ((Xi-! x Xi+1)*,/! + f2) is in T.

The shape construction in Theorem 4.1 can be mod-
ified to handle the definition of shape above. Essen-
tially, while in the current construction the automaton
A' guesses in each transition a direction x to proceed
with, in the new construction A' needs to guess two
elements, corresponding to both Xi and Xi+2, and it
should remember the Xi+2 element for the projection
described above.

Two-way ring. The solution for two-way rings is
based on the modified shape construction described
for two-way chains and the "two-direction reasoning"
described for one-way rings.

The important common property of the four classes
we handle is the fact that there are no two processes
both reading input from the envirponmrnt. Conse-
quently, the processes can be linearly ordered accord-
ing to the signals they know. More architectures fall
in this category. For example, it is possible to replace
a single processes in a chain by a group of processes
that share the same knowladge, and adjust the synthe-
sis algorithms accordingly. An exact characterization
of architectures for which the synthesis problem is de-
cidable is an open problem.

6 Discussion

One of the most significant developments in the
area of system verification over the last decade is the
development of algorithmic methods for verifying tem-
poral specifications of finite-state systems [CGP99].
This derives its significance both from the fact that
many synchronization and communication protocols
can be modeled as finite-state systems, as well as from
the great ease of use of fully algorithmic methods. A
frequent criticism against this approach, however, is
that verification is done after significant resources have
already been invested in the development of the pro-
gram. Since systems typically contain errors, verifica-
tion simply becomes part of the development process.

The critics argue that the desired goal is to use the
specification in the system development process in or-
der to guarantee the design of correct systems. This
is exactly what synthesis algorithms do. Despite this
criticism, synthesis tools are not as popular in the in-
dustry as verification tools. There are several reasons
for that: the scope of synthesis algorithms has been
quite limited, their complexity is high, and they do not
always produce practical systems, where practicality
is measured in a variety of ways, such as optimality
(say, number of latches required for implementing the
system in hardware, or number of messages needed to
be passed between the underlying processes), testabil-
ity (the ability to test hardware without access to all
the internal variables), and the like.

In this paper, we significantly extended the scope
of synthesis to include many practical applications.
We claim that the high complexity of the problem is
not really a serious objection to the potential useful-
ness of synthesis. First, we note that experience with
verification shows that nonelementary algorithms can
nevertheless be practical, since the worst-case com-
plexity does not arise often. For example, while the
model-checking problem for specifications in second-
order logic has nonelementary complexity, the model-
checking tool MONA [EKM98, Kla98] successfully ver-
ifies many specifications given in second-order logic.
Second, we argue that synthesis is not harder than
verification. This may sound as a wishful thinking, as
it contradicts the known fact that while verification is
easy (linear in the size of the model and at most ex-
ponential in the size of the specification), synthesis is
hard (nonelementary). There is, however, something
misleading in this fact: while the complexity of synthe-
sis is given in terms of the specification, the complexity
of verification is given with respect to both the speci-
fication and the (much bigger) system. In particular,
in a distributed setting, it is shown in [Ros92] that
there are LTL specifications ipn, of length 0(n), and
architectures with k processes such that the smallest
strategy that realizes ipn in the given architecture has
k-exp(n) states. What is the complexity of verifying
whether a system satisfies ?/>„? Even if verification is
linear in the size of the system, it would be nonele-
mentary in n for correct systems, just as the synthesis
problem, since such systems necessarily have at least
k-exp(n) states!

In summary, we believe that the real challenge that
synthesis algorithms and tools face in the coming years
is mostly not that dealing with computational com-
plexity, but rather that of making automatically syn-
thesized systems more practically useful.

397

References

[ALW89] M. Abadi, L. Lamport, and P. Wolpcr. Re-
alizable and unrealizable concurrent program
specifications. In Proc. 16th ICALP, LNCS
372, pp. 1-17, 1989.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled.
Model Checking. MIT Press, 1999.

[Chu63] A. Church. Logic, arithmetics, and automata.
In Proc. International Congress of Mathemati-
cians, 1962, pp. 23-35. institut Mittag-Leffler,
1963.

[Dij72] E.W. Dijksta. Hierarchical ordering of sequen-
tial processes, Operating systems techniques.
Academic Press, 1972.

[Dil89] D.L. Dill. Trace theory for automatic hier-
archical verification of speed independent cir-
cuits. MIT Press, 1989.

[DTV99] M. Daniele, P. Traverso, and M.Y. Vardi.
Strong cyclic planning revisited. In S. Biundo
and M. Fox, editors, 5th European Conference
on Planning, pp. 34-46, 1999.

[EC82] E.A. Emerson and E.M. Clarke. Using branch-
ing time logic to synthesize synchronization
skeletons. Science of Computer Programming,
2:241-266, 1982.

[EH86] E.A. Emerson and J.Y. Halpern. Sometimes
and not never revisited: On branching versus
linear time. Journal of the ACM. 33(1):151-
178, 1986.

[E.I88] E.A. Emerson and C. Jutla. The complexity
of tree automata and logics of programs. In
Proc. 29th FOCS, pp. 328-337, 1988.

[EKM98] J. Elgaard, N. Klarhmd, and A. Möller. Mona
1.x: new techniques for WS1S and WS2S.
In Proc 10th CAV, LNCS 1427, pp. 516-520,
1998.

[Eme90] E.A. Emerson. Temporal and modal logic.
Handbook of Theoretical Computer Science,
pp. 997-1072, 1990.

[Kla98] N. Klarlund. Mona k Fido: The logic-
automaton connection in practice. In Proc
CSL '97, LNCS, 1997.

[KMTV00] O. Kupferman, P. Madhusudan, P.S. Thia-
garajan, and M.Y. Vardi. Open systems in
reactive environments: Control and synthesis.
In Proc. 11th CONCUR, LNCS 1877, pp. 92 -
107, 2000.

[KV98] O. Kupferman and M.Y. Vardi. Weak alter-
nating automata and tree automata empti-
ness. In Proc. 30th STOC, pp. 224-233, 1998.

[KV99] O. Kupferman and M.Y. Vardi. Church's
problem revisited. The Bulletin of Symbolic
Logic, 5(2):245 - 263, June 1999.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An
automata-theoretic approach to branching-
time model checking. Journal of the ACM,
47(2):312-360, March 2000.

[Man99] Microsoft LAN Manager. The protocol stack.
http://www.rit.edu/~trb5541/p2.stack.html,
1999.

[MS87] D.E. Müller and P.E. Schupp. Alternating au-
tomata on infinite trees. Theoretical Computer
Science, 54:267-276, 1987.

[MS95] D.E. Müller and P.E. Schupp. Simulating al-
ternating tree automata by nondeterministic
automata: New results and new proofs of the-
orems of Rabin, McNaughton and Safra. The-
oretical Computer Science, 141:69-107, 1995.

[MW80] Z. Manna and R. Waldinger. A deductive ap-
proach to program synthesis. ACM TOPLAS,
2(1):90 121, 1980.

[MW84] Z. Manna and P. Wolper. Synthesis of commu-
nicating processes from temporal logic specifi-
cations. ACM TOPLAS, 6(l):68-93, January
1984.

[PR79] G.L. Peterson and J.H. Reif. Multiple-person
alternation. In Proc. 20st IEEE Symp. on
Foundation of Computer Science, pp. 348-363,
1979.

[PR89a] A. Pnueli and R. Rosner. On the synthesis of
a reactive module. In Proc. 16th POPL, pp.
179-190, 1989.

[PR89b] A. Pnueli and R. Rosner. On the synthesis
of an asynchronous reactive module. In Proc.
16th ICALP, LNCS 372, pp. 652-671, 1989.

[PR90] A. Pnueli and R. Rosner. Distributed reactive
systems are hard to synthesize. In Proc. 31st
FOCS, pp. 746-757, 1990.

[PTVF92] W.H. Press, S.A. Teukolsky, W.T. Vetterling,
and B.P. Flannery. Numerical recipes in C.
Cambridge University Press, 1992.

[Ros92] R. Rosner. Modular Synthesis of Reactive Sys-
tems. PhD thesis, Weizmann Institute of Sci-
ence, Rehovot, Israel, 1992.

[RW89] P.J.G. Ramadge and W.M. Wonham. The
control of discrete event systems. IEEE Trans-
actions on Control Theory, 77:81-98, 1989.

[Tan87] A.S. Tancnboum. Operating systems, design
and implementation. Prentice-Hall Interna-
tional Editors, New Jersy, 1987.

[Tho95] W. Thomas. On the synthesis of strategies in
infinite games. In E.W. Mayr and C. Puech,
editors, Proc. 12th TACAS, LNCS 900, pp. 1-
13, 1995.

[Var95] M.Y. Vardi. An automata-theoretic approach
to fair readability and synthesis. Proc 1th
CAV, LNCS 939, pp. 267-292, 1995.

398

Permutation Rewriting and Algorithmic Verification

Ahmed Bouajjani Anca Muscholl Tayssir Touili

LIAFA, Universite Paris VII
2, place Jussieu, case 7014

F-75251 Paris Cedex 05
e-mail: {Ahmed.Bouajjani,Anca.Muscholl,Tayssir.Touili}@liafa.jussieu.fr

Abstract

We propose a natural subclass of regular languages
(Alphabetic Pattern Constraints, APC) which is ef-
fectively closed under permutation rewriting, i.e.,
under iterative application of rules of the form ab —>
ba. It is well-known that regular languages do not
have this closure property, in general. Our result
can be applied for example to regular model check-
ing, for verifying properties of parametrized linear
networks of regular processes, and for modeling and
verifying properties of asynchronous distributed sys-

tems.
We also consider the complexity of testing mem-

bership in APC and show that the question is com-
plete for PSPACE when the input is an NFA, and
complete for NLOGSPACE when itisaDFA. More-
over, we show that both the inclusion problem and
the question of closure under permutation rewriting
are PSPACE-complete when we restrict to the class

APC

1 Introduction

Regular languages in their various representations
(finite state automata, regular expressions, monadic
first or second order logics, temporal logics, etc) are
extensively used for modelling and verifying prop-
erties of concurrent systems. The main reason is
that regular languages enjoy important closure and
decidability properties. They were used for mod-
elling behaviors of systems in form of sets of compu-
tational sequences, often modulo some abstraction
relation [6, 14, 23]. Recently, regular model check-
ing was proposed as a technique of symbolic rep-
resentation of sets of configurations in the analysis

of infinite state systems like pushdown automata,
fifo-channel systems, and parametrized networks of
processes, see e.g. [1, 3, 4, 5, 11, 19, 24]. A fun-
damental problem which appears in all these areas
is then the following one: Given a regular language
L and a relation 1Z on sequences given either by a
transducer or a rewriting system, we want to com-
pute - if possible- the set Tl*(L), which is the 11-
closure of L [TV denotes the reflexive, transitive
closure of 1Z). Since unrestricted rewriting systems
have full computational power, we have to impose
restrictions on the rewriting rules and on the reg-
ular languages we consider, in order to be able to
compute TZ*(L). In this paper we consider permu-
tation rewriting rules of the form ab —► 6a, where
a,b are letters of a given alphabet E. Such rewrit-
ing rules are usually called semi-commutation rules
in Mazurkiewicz trace theory [7]. Our primary goal
is to determine a suitable subclass of regular lan-
guages for which we can effectively compute the H-
closure, for any semi-commutation rewriting system

n.
The problem of computing the closure of a lan-

guage under a semi-commutation rewriting systems
appears naturally in several areas. For instance,
partial-order reduction methods [9, 17, 22] applied
in traditional model-checking rely on the fact that
the property we want to verify does not distinguish
different linearizations of the same partial order.
This allows to perform an improved, reduced ex-
ploration of large systems. In the simplest setting,
a partial-order property means that the property is
closed under partial commutation rules, i.e., (sym-
metric) rules of the form ab <-> 6a, meaning that two
actions a and 6 are causally independent. However,
it is often much more convenient to express a prop-

0-7695-1281-X/01 $10.00 © 2001 IEEE 399

erty (or its negation) as a set of behaviors (or bad
behaviors), regardless of all possible interlcavings
between independent actions. Therefore, if a given
property <j> is not a partial-order property, then we
can first compute its closure Tl*{<j>). The interest in
doing this is that closing <f> is in general much less
expensive than a full exploration of the system.

In the context of regular model checking [5, 11,
19], a set of configurations is represented as a regu-
lar language and the actions of a system are mod-

eled as a rewriting system 11. Then, the verification
problem amounts to compute the 7?.-closure U"(L)
for a given set of initial configurations L. This al-

lows for instance to analyze parameterized systems
with arbitrarily many identical finite state processes
which are connected linearly. Here, a configuration
is a sequence of control states of individual pro-
cesses, the i-th element of the sequence being the
state of the ?'-th process. Thus, sets of configura-
tions of arbitrary lengths, corresponding to systems
with arbitrary number of processes, are described
by a regular language. This allows a uniform veri-
fication, i.e., for any number of processes. In proto-
cols based on information exchange between neigh-
bors (e.g., token exchange, mutual exclusion, leader
election), certain transitions can be modeled by semi-
commutation rewriting rules of the form ab -> ha.
Being able to compute the ft-closure W(L) allows
for instance to compute the effect of meta-transitions
corresponding to the semi-commutation rewriting
rules. Take as an example a simple mutual exclu-
sion protocol, where linearly ordered processes can
exchange a token which gives the right to enter a
critical section. Suppose that the state of a pro-
cess is 1 if it owns the token, and 0 otherwise. The
initial configuration is then the regular expression
10* (note that the number of processes is not fixed).
An (abstract) transition rule of the system can be
represented by the semi-cornmutation one-rule sys-
tem U = {10 -> 01}. We can now compute the

reachable set of configurations 7?.* (10*) = 0*10* and
check for instance that the intersection with the set

of bad configurations (0 + 1)*1(0 + 1)*1(0 + 1)* is
empty.

Thus, given a regular language L and a srmi-
commutation relation 7v, we want to compute the
reflexive, transitive closure 7v*(L). However, it is
not hard to see that semi-commutation rewriting
does not preserve regularity. In our setting we would
like to have a subclass of regular languages which is
effectively closed under several operations, such as

union, intersection and semi-commutation rewrit-
ing. Closure under these operations allows us to
perform automatically a sequence of operations as
required for example in the iterative fixed point
computations of regular model checking. Clearly,
we want a subclass of regular languages with a de-
cidable membership problem. The solution pro-
posed by this paper is the class of Alphabetic Pat-

tern Constraints (APC), which appears naturally in
many contexts of verification of concurrent systems.
APC corresponds to finite unions of languages of
the form E^E* • • -anS*, where every E,- denotes
a subset of the alphabet E and every «,- G S denotes

a single letter. For instance, the regular expressions
in the token ring example above are APC expres-
sions. APCs can be used for example for (negated)
safety properties expressing the presence of patterns
within computations or configurations, such as re-
quired for mutual exclusion. The class of APCs ac-
tually corresponds to the E2-leveI of the quantifier-
alternation hierarchy of the first-order logic of se-
quences [21]. We show that this class satisfies all
the closure properties stated above. In particular,
our first main result is that APC! is closed under
semi-commutation rewriting and we provide an ef-
fective algorithm that computes the closure 7v*(/,),
given a semi-commutation system V and an APC!
language- f..

For regular mode] checking we consider also cir-
cular semi-commutation rewriting. Indeed, the sim-
plest interconnection topology in distributed com-
puting is the ring topology. A (parameterized) con-
figuration corresponds then to a circular word, i.e. a
word .j'! ■■-.»■„ with the understanding that j-\ fol-
lows .)■„. This means that .r, ■ • • x„ and its conju-
gat<d words x,:.rk +] ■ ■ -.)■„ j'i • • • xk_{ represent the
same configuration. Thus, the set of configurations
of a ring network is a set of words /, which is closed
under conjugacy, i.e. L = Conj(/,). For instance, for
the Token Ring Protocol the set of initial configu-
rations on a ring is Conj(10*) = 0*10*. Our second
main result shows that for any semi-commutation
rewriting system 7v., the circular 7v.-closure (Conj o
1Z*)'(L) of any language L C E* can be computed
as long as the reflexive, transitive closure 7v* (/,) is
computable. Por this we show that (Conjo7v*)* (L) =
(Conjo7?.*)2lsl(L). This implies that for each APC
language /. the circular ft-closurc (Conj o ■£*)*(/,)
is in APC and can be effectively computed.

In the last part of this paper we establish com-
plexity bounds for basic problems concerning the

400

class of APC languages. We show that deciding
whether a regular language belongs to APC is com-
plete for PSPACE when the language is given by
a non-deterministic automaton, respectively com-
plete for NLOGSPACE, when the input is a de-
terministic automaton. Moreover, we show that
testing whether an APC language is closed under
a semi-commutation rewriting relation, as well as
the inclusion problem for APC, are both PSPACE-
complete problems. These results suggest that APC
is as "hard" as the whole class of regular languages,
which means in some sense that APCs are expres-
sive enough for specifying interesting properties. It
is also interesting to note that APCs correspond to
the smallest level in the quantifier-alternation hi-
erarchy of first-order logic which has this "hard-
ness property". Indeed, languages in Ej and 111
correspond respectively to upward and downward
subword-closed sets. For example, 111 is precisely
the class SRE [1], for which it can be shown that
inclusion can be checked in polynomial time.

Related work: Problems related to closure of lan-
guages under semi-commutations have been studied
in the community of trace theory (see e.g. chap-
ter 12 in: [7] for a survey). However, the prob-
lems addressed here and our results have a differ-
ent flavor. Our aim is to identify subclasses of
regular languages which are closed under all semi-
commutation rewriting relations, whereas classical
results of trace theory aim at providing for a given
semi-commutation relation 1Z sufficient conditions
on regular languages L ensuring that the 7^-closure
of L remains regular. Moreover, these conditions
on the languages always depend on the relation 7£.

APC languages have been intensively studied in
logic and algebra. As mentioned above, they corre-
spond to the E2-level of the quantifier-alternation
hierarchy of first order logic, i.e., to formulas of the
form 3*V*0, where <j> is quantifier-free. The class
APC has also an algebraic characterization, it corre-
sponds to level 3/2 of Straubing's concatenation hi-
erarchy of star-free sets. Moreover, it is the largest
hierarchy level known to be decidable [18].

The complexity of deciding whether a regular
w-language is closed under commutation rewriting
was considered in [16, 20]. Several works on regular
model checking deal with the problem of computing
the closure of a regular language under a rewriting
system [2, 5, 8, 10, 19]. However, the techniques
proposed in these papers are not complete, in gen-

eral. Moreover, they do not cover the case of semi-
commutation rewriting.

2 Alphabetic Pattern
Constraints

In this section we define the class of Alphabetic Pat-
tern Constraints (APC) and show that APC is closed
under union, intersection and conjugacy, but not
under complementation.

Definition 2.1 Let'S be a finite alphabet. An atomic
expression over E is either a letter a ofS or a star
expression (a1+a2-|-- • -+an)*, where ai, a2,... , a„ £
E. The set of star expressions is denoted by 5(E).

A product p over E* is a (possibly empty) con-
catenation e\e2 ■ ■ ■ en of atomic expressions e\,... ,
en over E. We use e to denote the empty product.

An Alphabetic Pattern Constraint (APC) over
E* is an expression of the form Pi + - ■ -+pn, where
p\,... , pn are products over E*. By APC(E) we de-
note the set of regular languages described by some
APC over E*.

In the rest of the paper we will not distinguish
between a regular expression and the language that
it defines. However, the input for our algorithms in
Sections 3, 5 will be an APC expression.

It can be easily noted that the class of APCs
is not closed under complementation. Consider for
example the alphabet E = {a, 6} and the APC lan-
guage E*aaE* + E*66E* + 6E* + S*a. It is not dif-
ficult to check that its complement (ab)* does not
belong to APC.

Let us introduce some notations which will be
used in the analysis of operations on APCs. Let p =
ei ■ ■ -e„ be a product, then the length of p, denoted
l(p) = n, is the number of atomic expressions in
p. Let e = YliPi be an APC expression, then the
length of e is defined as /(e) = max; l(pi). The size
of an expression is the sum of the lengths of its
products. For a language L we denote by a(L) the
set of letters of E appearing in L. As usual, \L\
denotes the cardinality of L. For a string w £ E*
and a letter a £ E, we denote by |u>|a the number
of occurrences of a in w.

We recall that two words x and y £ E* are called
conjugated if x = uv and y = vu for some u, v £
E*. For a language L, we denote by Conj(L) the
set {uv £ E* | vu £ L} of conjugates of words

401

from L. For a class of languages C to be closed
under conjugacy we require that L £ C implies that
Conj(L) EC.

We conclude this section by stating some straight-
forward closure properties of APC The proofs are
not difficult and can be found in the full version of
the paper.

Proposition 2.1 The class APC is closed under

union, intersection and conjugacy.

Remark 2.1 While union and conjugacy are poly-

nomial operations, computing the intersection of two
APC languages yields an expression of exponential
size. The luorst-case is indeed exponential, as shown
by the following example. Consider the products
pn = b*(ab*)n andq„ = [a*b)"a* each ofsize2n + l.
Then {w £ (a + 6)* | |u>|a = |u>|b = n} = pn n q„
is a finite set with the property that every APC ex-
pression for pn Pi qn is of exponential size.

3 Semi-Commutation Rewrit-
ing and APC

Semi-commutations are a natural way of expressing
causal independence in concurrent systems in an al-
gebraic way. The original notion was proposed in
the late 70's by Mazurkiewicz [12] for the semantics
of Petri nets. Mazurkiewicz traces and semi-traces
are a model of true concurrency with nice algorith-
mical properties, which can be exploited for auto-
matic verification methods.

A semi-commutation relation TZ. defined over an
alphabet E of actions is an irrcfiexive binary rela-
tion, i.e., a subset of S x E \ {(a, a) \ a £ S}. The
idea is that two actions a,b with (a.b) £ TZ are
(partially) causally independent, in the sense that
we can rewrite ab into ba in every context. In many
cases the relation TZ. is asymmetric, for instance in a
producer-consumer model we may rewrite cp —> pc,
but not the other way round.

It is not difficult to see that semi-commutation
rewriting does not preserve regulairty. Consider for
example the set L = {ab)* and the semi-commutation
system TZ = {ba —>• ab}. Then. TZ*(L) is the (non-
regular) set of all words having the same number of
o's and 6's, and such that all their prefixes contain
at least as many a's as 6's. Therefore, we cannot
hope to represent the relation TZ* by a finite trans-
ducer, in general.

We associate with each semi-commutation rela-
tion TZ a rewriting relation pn C E* x E", which is
defined by (iv,w') £ p-jz if there exist wi, w2 £ E*
and a, b £ E such that (a,b) £ TZ, w — w\abw2,
and w' — wibau>2. As usual, we denote by p*^ the
reflexive, transitive closure of p-R. For a language
L C E*, we denote its U-closurt {v £ E* | 3M £
L,(u,v)ep*n} by 1l*(L).

The notation of semi-commutations can be ex-
tended to sets by letting for each subsets X, Y C E:

(A', Y) £ n if x x y c n.

Let TZ be a semi-commutation relation, then we de-
note by 6-R the value

STZ = max{|y| |yCE such that (a, Y) £ ft} .

We will assume throughout the paper that TZ ^ 0,
thus STZ > 0.

Our first main result is stated in the theorem
below. The remaining of this section consists in
describing the algorithm underlying Theorem 3.1.
Several proofs are omitted and can be found in the
full version of the paper.

Theorem 3.1 For each APC expression L, the 7Z-
closurc 7v.*(L) belongs to APC and can be computed
effectively. Moreover, the length of the computed
expression is in Ü[(SR + 1)" ').

Since L £ APC(E) is a finite union of prod-
ucts, its closure 7v*(L) is the union of closures of
its products. Hence, it suffices to show how to com-
pute effectively 7v*(p) for a given product p. For
this we use the TZ—shuffle operation defined be-
low. The idea is to compute TZ*(c\ ■••en) recur-
sively, i.e., computing first T*{e-) ■ ■ -e„) and using
that ^"(fi) = ei. The recursive step means that
we need to compute TZ'(cL), for an 7v-closed APC
expression L and an atomic expression e, an oper-
ation which will be performed also recursively. For
our computations we need the following notations:

Definition 3.1 LetTZ be a semi-commutation illa-
tion. Given two words x and y o/E*, the TZ—shuffle
of x and y, denoted by x UI-R y, is the set of words
of the form xiyi ■ ■ -xnyn with x = x\ ■ ■ -xn, y —

y\ • • • Vn ■ Xi: Vi £ S* for all 1 < i < n and such that
(a{xj), a{yj)) £ TZ. for all j < i.

The TZ.-shuf}le extends to sets X, Y C E* by let-

ting

X Uln Y = {x Hin y\z£ X, y £ Y}.

402

Note that for all 1,1/ 6 S*, we have TZ*(xy) =
TV (x) III-/? TV{y). The next lemma shows how to
compute TV{LK) when L and K are already Tl-
closed.

Lemma 3.1 Let L and K be two Tl-closed sets,
i.e., we suppose that we have both TV{L) = L and
n*{K) = K. Then we have TV{LK) = L mn K.

Since any atomic expression is 7v-closed we can
state the following lemma:

Lemma 3.2 Let t\, e.o,... ,en be atomic expressions
and let p = e\e2 ■ ■ ■ en be a product, then we have:

Tl*{p)=el HI* (e2mK (•••(en_1 mwe„) ■••))•

By the preceding lemma we can compute Tl*(p)
recursively. Lemma 3.3 and Proposition 3.1 below
are the basic cases of our algorithm.

Lemma 3.3 Let E be a subset of E and let a G E
be a letter, then we have:

E* HI* a = Tl*{E*a) = E*aE'* ,

where E' = {x G E \ [x, a) E Tl.}.

Example 3.1 Consider the product p = (e + / +
g)*d, and the semi-commutation relation Tl\ =
{(f>d),(g,d)}. Then the previous lemma yields

n\ (p) = (e + /+</)* III d = (e + / + g)*d(f + g)* .

The next proposition is the main technical result
needed for the proof of Theorem 3.1. It shows that
the 7v-closure of the product of two star expres-
sions belongs to APC. In particular, note that the
length of the products in the expression given below
is bounded above by a constant which is polynomial
in S and TZ.

Proposition 3.1 Let E and F be two subsets o/E,
then E* U1K F* = U*{E*F*) equals

Y,E*(El + Fly---(En+Fn)*F\

where the sum is taken over all subsets E, and F,-
of E satisfying the following conditions:

• %^EnC---CElCE,

• 0 / Fi C • • • C Fx C F,

• (E{, Fj) E Tl for all 1 < j < i < n.

Proof. The first equality can be inferred as previ-
ously from Lemma 3.1 since E* and F* are closed
under Tl.

Let us consider now the second equality. It is ob-
vious that F*(Fi+Fi)*... (En+Fn)*F* CTV{E*F*
whenever F,- and F,- satisfy (E,,Fj) E Tl for all

j < i-
Conversely, let w G E* EI-R F* = TV{E*F*).

We can write w = u\V\U2V2 ■ ■ ■ umvm with w,- G
E*, Vj E F*, and such that (Q(WJ), a(vj)) E Tl holds
for all j < i. Clearly, we can assume that U{,Vj ^ e
for all i ^ 1 and j ^ m.

Consider the sequences (fc,-)i<j<ni (F,)i<,-<n and
(F,)i<,<n defined inductively by:

• ki = 1, k{ = min{j I A;,-_i < j < m,Vj £

• Ei = a(uki+1 ■■■um),

• Fi = {y€F\Vxe Et, (x, y) G 7?.}.

By definition we have F!+i C F,- C F, hence F,- C
F+1 C F for all i. Moreover^F,-, F) G Tl holds for
all i, therefore (F,-, Fj) E Tl for all j < i. Finally, we
note that uk,+\ ■ ■ -uk,+1 E E* and vk, ■ ■ -ffc1+1-i G
F*, which yields the result.

D

Remark 3.1 Note that the cardinality of E\ is at
most ö<R , since we require that F\ / 0 and (E\,Fi) G
Tl.. Moreover, since there is a strict inclusion be-
tween the Ei 's, the length of the products in the ex-
pression for Tl* (E*F*) is at most 8-R +2.

Example 3.2 Consider the product p = (a + b +
c)*(e+ / + </)* > and the semi-commutation relation
Tl-2 = {(a, e), (c,g), (b, e), (6, /)}. From the proposi-
tion above it follows thatTl^(p) = (a + 6 + c)* IH-K2

{e + f +9)* = (a + b + c)*{c"+gy(e + f + g)* +(a +
b+c)*(a + b + e)*(b + e + f)*(e + f + g)*.

We are now going to compute effectively Tl* (p) =
TV{e\e2- ■ -en) and show that it belongs to APC.
By Lemma 3.3 and Proposition 3.1 we have shown
the result for n = 2. Suppose now that Tl*(e2 ■ ■ -e„)

—]C /1 /2 """ /fc 1 with fi denoting atomic expres-
sions, and let us show that 7J*(eie2 • • -en), which
equals J2 ei IIIn (/1/2 • • ■ fk), also belongs to APC.
Thus, we only need to compute ej III^ (/1/2 • • • fn)
and to show that it is of the required form. To do
this we will distinguish two cases, depending on ej

403

being a letter or a star expression. The first case is
straightforward:

Lemma 3.4 Let a £ E and f\
expressions, then

, fn be atomic

a HI7? (fih ■ ■ -fn) = Y!h ■ ■ -gjahjfj + x ■ ■ ■ fn

j

such that, for all i < j we have:

• if fi £ 5(E), then 9i £ 5(E) with a(gi) =

{x€a(fi) \(a,x)eK},

• if f,■ = b £ S and (a, b) £ 7v, then <]; = b.

Moreover, hj = fj when fj £ 5(E) and hj = s
when fj £ E.

Example 3.3 LetTZ^ be the semi-commutation re-
lation H3 = {(h,a),(h,e)}. Then the previous lemma
implies that h HI-/?, (a + b + c)* (a + b + e)* (b + e +
/)* = a*h(a + b + c)'{a + b + e)* (b + e + /)* + (a +
eyh(a + b+e)*{b + e+f)'.

The next proposition generalizes Lemma 3.3 and
Proposition 3.1.

Proposition 3.2 Let E and F be two subsets o/E.
a £ E a letter, and L be a language o/E*. then we
have:

1. E" III* («/,) = (F* III,; a){E'~ \\\R L).
where E' = {be E \ (b,a) £ V}.

2. E" III R (F'L) equals

Y (E' UIK F'')(E'' mn L).
(E',F')€K

E'CE .F'CF

Corollary 3.1 Let E and F be two subsets of E.
and let L be a language o/E*, then F* III* (F'L)
equals:

Y/E
t{E1+Flr(E2 + F2y ■■■{£,+ Fk)'(El til* L)

where the union is taken over all subsets E\ and F,-
of E satisfying:

• F,. C • • • C Fj C F,

. 0 ^ Fi C • • • C Fk C F,

• (E{, Fj) £ Tl for all 1 < j < i < k.

Proof. The inclusion from right to left is straight-
fonvard. By Proposition 3.2 it remains to show that

(F* III* F'*)(F'* III* L) C

Y E'(Ei + FiY ■ ■ ■ (Ek + F,)*(F* III* L),

where £" C F and F' C F are subsets satisfying
(F',F') E 7v. This can be obtained from Proposi-
tion 3.1 applied to E" III* F'*, by noting that the
sequence of (F;),- can be chosen such that each F;
is maximal with the property that (a, 6) £ 7v for all

a £ Ej.b £ Fi. HCIKT, F' C F,- for all i yields the
claimed expression.

D

Example 3.4 Let 1\..\ be the semi-commutation re-
lation nA = {(a,e).{c.g).{b,e),(bj),{a.d)}. Then
from the last proposition and from example 3.2 it
follows that
(a + b+ c)' III*., (e + f + g)*d{f + ,,)" =

(fl + 6 + c)'{c + g)'(c + / + g)'d(f + g)' +
(a + b+c)-(a + b + e)'{b + c + f)-{c + f+!i)'d(f+n)' +
[a +b+c)-(a + b + e)'da'{f + //)" .

Proposition 3.2 and Corollary 3.1 yield the re-
cursive step for computing E" 111 R (/I/J • • • /»):

Proposition 3.3 Let E C E and let f\ /„
be atomic <xpressions. Then E" III* (f\f>---f„)
equals

1. For a star <xpnssion f\:
EF*(F1+F1)*--(F,+F,)-(/':- III* /,■■■/„).
where the union is taken over all subsi ts /-.',, /•',■
satisfying F, + 1 C F; C F, 0 ^ L\ C Fi+l C
Q(/I) and (E,,Fj) £ K for all j < i.

2. For a single litter f\ = a:

F*«(F'*III* /,-■•/„).

We can now describe the algorithm for comput-
ing the closure of an APC expression ^ c i • • • e„ un-
der a semi-commutation rewriting relation 7v. We

compute recursively 7v*(f 2 • • •€„) =]T fi ■■■fk- Tlic^
recursive step is given by Lemma 3.4, if e 1 is a let-
ter. Otherwise, for fi = F* we apply Proposition
3.3, which is itself a recursive algorithm. It is easily
seen that each step preserves containment in APC.
This shows Theorem 3.1.

404

Remark 3.2 We note that for a product p of length
n the length of the products of the expression com-
puted for 1Z* (p) is at most 0((5n + l)n). Moreover,
since there exist 21s' + |£| different atomic expres-
sions, it follows that the size of1Z*{p) is at most
2o(|E|(«TC+i)")_

4 Applications

As mentioned in the introduction, we can use our re-
sults for applying partial-order reduction techniques
in model-checking, even if the original property is
not a partial-order property. This idea can be used
for example in the validation of scenarios described
by High-Level Message Sequence Charts (HMSC).
HMSCs are a graphical specification language for
communications protocols, standardized by the ITU
and integrated in UML. An HMSC scenario is a
partial-order model for asynchronous fifo message
exchange of concurrent processes. Assume for ex-
ample that we have a system S including two pro-
cesses P and Q and that we want to verify that P
cannot send more than two messages to Q before
getting an acknowledgement back from Q. Let us
denote the set of possible actions by E, the send
action of P to Q by s, the receive action of Q from
P by r and let EP (resp. EQ) denote events on
P (resp. on Q). Hence, a bad scenario contains
for example an occurrence of the sequence srsr,
which means that two messages have been transmit-
ted from P to Q without an acknowledgement be-
tween them. So, let <f> = E*srsrE* be the set of se-
quences containing this bad subsequence, and sup-
pose we want to verify that an HMSC system S sat-
isfies -i<j>. Clearly, <f> is not a partial-order property,
since <f> does not contain for example the sequence
ssrr. We can consider the semi-commutation rule
rs —> sr which expresses that communication is
asynchronous. By applying our algorithm with suit-
able rules such as 72. = {rs —> sr] we obtain the
partial-order property 7l*(<f>):

E*s(E \ EP)*r(E \ (£P U EQ))*s(E \ EQ)VE*

+E*s(E \ Ep)*sE*r(E \ EQ)*rE*.

Now, for verifying that S satisfies -xj) we can con-
sider a succinct representation of the system S, which
corresponds to the transition system underlying S
and which is polynomial in the size of the given
HMSC system, and then check that S DTI*((f)) is
empty. Since we consider an 7^-closed property, it

is not necessary to compute the closure of the sys-
tem S, which is an expensive operation, and even
impossible in general (linearizations of HMSCs are
not regular [13]). The same holds also in the case of
"positive reasoning": for verifying that S satisfies a
property <f>, it suffices to construct the 7£-closure of
4> and check that 5 C 11* (<j>).

Further examples showing that APC properties
occur naturally in the verification of concurrent sys-
tems is the so-called "matching with gaps" prob-
lem in HMSCs [15], which is a kind of weak model-
checking. Other examples from distributed comput-
ing are negations of (some) safety properties when
APCs are used to express bad patterns (scenarios)
like in the examples shown above. Furthermore, in
the context of regular model checking, it turns out
that the reachability sets of many infinite-state sys-
tems and parameterized systems, including commu-
nication protocols like the alternating bit and the
sliding window, and parameterized mutual exclu-
sion protocols such as the token ring, Szymanski's,
Burns', or Dijkstra's protocols, are all expressible as
APCs. Being able to compute the 72-closure 71* (L)
for a semi-commutation system TZ allows us to com-
pute the effect of meta-transitions corresponding to
the semi-commutation rules, and hence to acceler-
ate the process of computing the set of reachable
configurations.

5 Circular Rewriting

In this section we consider the problem of comput-
ing TV (L) when L consists of circular words. This
amounts to assume that L is closed under conju-
gacy, L = Conj(L). Recall that Conj(L) = {vu \
uv 6 L] denotes the closure of L under conjugacy.
The question of computing the 72-closure in this
framework arises naturally in regular model check-
ing when processes are ordered circularly in a ring.

Let 7?. C E x E be a semi-commutation relation
over E. We associate with 1Z the circular rewriting
relation TZC C E* x E* defined as follows. For any
pair of words x and y in £*, we define (x, y) £ 1ZC

if we can write

uv 6 1Z*(x) and y £ Tl*(vu),

for some u,v G £*. Note that the circular rewriting
relation Ttc is the composition of the (rewriting)
relations TV o Conj o TV, As usual, 1Z*C denotes the
reflexive, transitive closure of 1ZC- For a language

405

L we denote by ft*(L) the circular It-closure of L,
defined as the set:

ft*(L) = {«£E' |3wGLsuch that (u,t>) G ft*}.

We will show in this section that the circular
ft-closure ft*(L) of any language L (not neces-
sarily regular) can be obtained by applying alter-
natively conjugation and permutation rewriting a
finite number of times.

The main result of this section can be stated as
follows:

Theorem 5.1 Let L C £*, thenWc{L) = ftc|S|(L).

As a first corollary, we obtain the closure of the
class APC under circular rewriting.

Corollary 5.1 Let L be a APC expression, then
ft*(L) is in APC and is effectively computable. The
length of the expression computed for 1Z"(L) is at

most(Sr. + lfi!{L)^).

Proof. This follows directly from ft* (L) = ft.?|S|(L) =
(ft.*oCon.joft*)2lsl(L), together with and APC(S)
being closed under semi-commutation rewriting and
conjugacy (Theorem 3.1 and Proposition 2.1). D

In the remaining of the section we show Theorem
5.1. The proof uses ideas from [7][Ch. 3]. It gen-
eralizes (and simplifies) the proof given there for
the case where ft is a symmetric relation. As in
[7] we need a second relation C-R, called conjugacy
relation, which is defined as follows for x.y £ 5]*:

(•!-, y) € C-R if 3 z G E* such that zy G TZ'(xz) .

Lemma 5.1 ftc C C-R and Cn if> reflexive and tran-
sitive.

Proof. For the first claim let x,y G £* be such
that (x,y) G ftc. By definition, there exist u and
v G E* such that uv G ft*(.r) and y G ft*(e»), then
uy en'(uvu) C ft* (.!■«).

For the second claim it is easy to see that C-R

is reflexive. Let now x,y,z G E* be such that
(x, y) G C-R and (y, z) G CR. Let then w and / G E*
be such that wy G 1l*{xw) and tz G ft*(</0- Then,
[urt)z G Ti'{wyt) C 1Z"(x(wt)), which shows that

{x,z)€Cn. D

Theorem 5.2 Let x, y G E*. Suppose that z £ T,*
is such that zy £ TZ'(xz). Then there exist rn <

2|£|, and words tQ, • • • ,tm G E* satisfying the fol-
lowing properties:

• t0 ■ ■ -tm £ ft*(x-),

• 2/€ ft*(*m ■■•to),

• {a(tj),a(ti)) £11 for all j > i + l.

Proof. We only sketch the proof idea. We suppose
that zy £ 7Z*(xz). Then a combinatorial lemma
(Levi's Lemma for semi-traces, see [7][Ch. 12]) im-
plies that there exist words u,v,p,q £ E* such

that up £ ft*(x), qv £ ft*(z), z £ ft*(ur/), and
y £ ft'(pv), such that (a{p),a(q)) £ ft. Since
qv £ K'[uq) and |u| + |<?| < M + |~| if a: is nonempty,
we can apply induction on |o-| -f \z\ in order to ob-
tain the result. G

Corollary 5.2 ft*.
olvl

nv '.
2|S| Proof. First, we show that C-R C ft;1"'. Let (x,y) £

C-R with zy £ ft'(j-r) for some z. Let to, ■ ■ ■ ,tp be
as stated in the Theorem 5.2. It suffices to show
that {t0---tr,tp---t0) £ ft?|S|. This is clue to the
fact that {t01p ■■■tut,,

i£{l....,p-l}:

■to) £ ft.r and that for each

(1o---1i1P---ii+i,ta---U-iir---ti)€Kc

since

■1,-itr ■ti£-R'(tP---ti+lto---1i)

Indeed, to obtain the word to ■ ■ ■ ti-\tp ■ ■ ■ /; from
tP ■ ■ ■ tj+ito ■ ■ -ti by applying ft, we start by moving
/{+i from left to right, then /,+2, etc.

From Lemma 5.1 we obtain that ft* C C-R. Since

Cr. C ft
D

2|E|
rlude finally that, ft* ft^l

6 Complexity results

In this section we consider basic complexity ques-
tions concerning languages in APC. First, we ob-
tain that both the problem of testing inclusion (or
universality) and the problem of deciding whether a
language in APC is closed under a semi-commutation

406

relation are PSPACE-complete. Clearly, these are
basic operations when we want to perform model-
checking on APC properties. For example, we might
ask whether an APC property <j>i is covered by an-
other property fa, i.e., whether <j>i C <j>2. The test
for 7^-closure is important when we want to know
whether a property <j> is already closed under semi-
commutation rewriting, since it avoids computing
the 7£-closed expression which has products of ex-
ponential size. Moreover, in the fixed point compu-
tations of regular model checking we check whether
we have already computed the set of all reachable
configurations by an equality test.

For lack of space we omit all proofs of the section
and refer to the full version of the paper.

Theorem 6.1 The following problem is PSPACE-
complete:
Input: An APC expression L over'S*.
Question: /sL = S*?

Corollary 6.1 Deciding inclusion for languages in
APC is PSPACE-complete.

Theorem 6.2 The following problem is PSPACE-
complete:
Input: An APC expression L over S and a semi-
commutation rewriting system RCSxS,
Question: Does W{L) - L hold?

Next, we show that the membership problem for
the class APC is PSPACE-complete when we are
given a non-deterministic automaton. The same
question is NLOGSPACE-complete, hence polyno-
mial, when the input is a deterministic automaton.
These two last results rely on the characterization
of languages in APC by positive varieties given in
[18]. It is worthnoting that the algorithm obtained
in [18] has complexity in 0(|.4| • 21s'), i.e., it is lin-
ear in the size of the automaton and exponential in
the size of the alphabet. Theorem 6.4 below im-
proves the result by giving an algorithm which is
polynomial in both \A\ and |E|.

Theorem 6.3 Deciding whether a regular language,
given by a regular expression or a non-deterministic
automaton, is an APC language, is a PSPACE-
complete problem.

Theorem 6.4 Deciding whether a regular language,
given by a deterministic automaton, is an APC lan-
guage, is an NLOGSPACE-complete problem.

7 Conclusion

We have identified a class of regular expressions
which appears naturally in many contexts, in par-
ticular in modeling and verifying concurrent sys-
tems and in regular model checking, and we have
studied its closure properties and its complexity.

In particular, we have shown that the class of
APCs is effectively closed under semi-commutation
rewriting (for any such rewriting system). As far
as we know, this is the first time that a non-trivial
subclass of regular properties has been shown to en-
joy this property. As mentioned previously, APCs
correspond to level 3/2 in Straubing's concatena-
tion hierarchy, and to level £2 in the quantifier-
alternation hierarchy of first-order logic. It is inter-
esting to note that this is the largest class in both
hierarchies which is closed under semi-commutation
rewriting. However, this raises the question of find-
ing other subclasses of regular languages which have
the same closure properties as APC. A minimal
requirement on such classes is that Parikh images
of their languages should correspond to Presburger
formulas where linear constraints do not involve
more than one free variable. It can be seen for in-
stance that this property does not hold for (ab)'
whereas it holds for all APC languages.

Another novel contribution of our paper is to
show that APCs are also closed under circular semi-
commutation rewriting. Actually, our proof holds
for any class of languages which is effectively closed
under semi-commutation rewriting and conjugacy,
since we show that for any system TZ, computing
the circular 7v-closure reduces to a finite iteration
(two times the size of the alphabet) of the com-
putation of the 7v-closure in alternation with con-
jugacy. Our result on the closure of APC under
semi-commutation rewriting can be applied in mod-
eling and verifying automatically parametrized net-
works having a ring topology, where information is
exchanged between neighbors. Then, an interest-
ing problem is to extend this work to similar sys-
tems with other kinds of topologies such as trees
and grids.

References

[1] P. Abdulla, A. Bouajjani, and B. Jonsson. On-
the-fly analysis of systems with unbounded,

407

lossy fifo channels. In Proc. of CAV'98, LNCS
1427, pp. 305-318, 1998.

[2] P. Abdulla, A. Bouajjani, B. Jonsson, and
M. Nilsson. Handling global conditions in
parametrized system verification. In Proc. of

CAV'99, LNCS 1633, pp. 134-145, 1999.

[3] B. Boigelot and P. Godefroid. Symbolic verifi-
cation of communication protocols with infinite
state spaces using QDDs. In Proc. of CAV'96,

LNCS 1102, pp. 1-12, 1996.

[4] A. Bouajjani, J. Esparza. and 0. Maler. Reach-
ability analysis of pushdown automata: Appli-
cation to model checking. In Proc. of CON-

CUR'97, LNCS 1243, pp. 135-150, 1997.

[5] A. Bouajjani, B. Jonsson, M. Nilsson, and
T. Touili. Liveness and acceleration in
parametrized verification. In Proc. of CAX'00.
LNCS 1855, pp. 403-418, 2000.

[6] E. Clarke, O. Grumberg. and D. Peled. Model
Checking. MIT Press, 2000.

[7] V. Diekert and G. Hozenbcrg. editors. Tin
Book of Daces. World Scientific, Singapore.
1995.

[8] L. Fribourg and II. Olsen. Reachability sets of
parametrized rings as regular languages. Elec-
tronic Notes in Theoretical Computer Science,
pp. 1-12, 1997.

[9] P. Godefroid and P. Wolper. A partial ap-
proach to model checking. Information and
Computation, 110(2):305-326, 1994.

[10] B. Jonsson and M. Nilsson. Transitive closures
of regular relations for verifying infinite-state
systems. In Proc. of TACAS 2000, LNCS 1785.
pp. 220-234, 2000.

[11] Y. Kesten, O. Maler, M. Marcus, A. Pnueli,
and E. Shahar. Symbolic model checking with
rich assertional languages. In Proc. of CAV'97,
LNCS 1254, pp. 424-435, 1997.

[12] A. Mazurkiewicz. Concurrent program
schemes and their interpretations. DAIMI Rep.
PB 78, Aarhus University, Aarhus, 1977.

[13] A. Muscholl and D. Peled. Message sequence
graphs and decision problems on Mazurkiewicz
traces. In Proc. of MFCS'99, LNCS 1672,
pp. 81-91, 1999.

[14] Z. Manna and A. Pnueli. The temporal logic
of reactive and concurrent systems. Springer,
1991.

[15] A. Muscholl, D. Peled, and Z. Su. Decid-
ing properties of message sequence charts. In

Proc. of FoSSaCS'98, LNCS 1378, pp. 226-
242, 1998.

[16] A. Muscholl. Über die Erkennbarkeit un-
endlicher Spuren. Teubner Verlag, Stuttgart-
Leipzig. 1996.

[17] D. Peled. All from one, one from all: on model
checking using representatives. In Proc. of
CAV93, LNCS 697, pp. 409 423, 1993.

[18] J.-E. Pin and P. Weil. Polynomial closure and
unambiguous product. Theory of Computing
Systems, 30:383-422. 1997.

[19] A. Pnueli and E. Shahar. Liveness and acceler-
ation in parametrized verification. In Proc. of
CAV00. LNCS 1855. pp. 328 343, 2000.

[20] D. A. Peled. T. Wilke. and P. Wolper. An algo-
rithmic approach for checking closure proper-
ties of temporal logic specifications and omega-
regular languages. Tilt on tu ed Computer Sci-
ence, 195(2): 183-203, 1998.

[21] W. Thomas. Classifying regular events in sym-
bolic logic. Journal of Computer and Syste in
Sciences. 25:360-376. 1982.

[22] A. Valmari. A stubborn attack on state explo-
sion. Formal Methods in System Design. 1:297
322. 1992.

[23] M. Y. Yardi and P. Wolper. An automata-
theoretic approach to automatic program ver-
ification. In Proc. of LICS '86. pp. 332 344.
1986.

[24] P. Wolper and B. Boigelot. Verifying sys-
tems with infinite but regular state spaces. In
Proc. of CAV'98, LNCS 1427, pp. 88 97,1998.

408

Temporal Logic Query Checking
(Extended Abstract)

Glenn Bruns Patrice Godefroid
Bell Laboratories, Lucent Technologies

263 Shuman Boulevard, Naperville, IL 60566, U.S.A.
Email: {grb,god}@bell-labs.com

Abstract

A temporal logic query checker takes as input a
Kripke structure and a temporal logic formula with a
hole, and returns the set of propositional formulas that,
when put in the hole, are satisfied by the Kripke struc-
ture. By allowing the temporal properties of a system
to be discovered, query checking is useful in the study
and reverse engineering of systems.

Temporal logic query checking was first proposed
in [2]. In this paper, we generalize and simplify Chan's
work by showing how a new class of alternating au-
tomata can be used for query checking with a wide range
of temporal logics.

1 Introduction

As pointed out by Chan in [2], model checking is as
often used for understanding a design as for verifying
its correctness. One rarely begins the study of a design
with a complete specification in hand. Instead, one
identifies a few key properties, expresses them in tem-
poral logic, and checks them against the design. Some
of the properties usually fail to hold, so the properties
(and possibly the design) are revised and rechecked.
As this process iterates one develops a more detailed
picture of the properties the design satisfies or should
satisfy.

To speed the process of design understanding, Chan
proposed temporal logic query checking [2]. Here one
works with a temporal logic formula containing a place-
holder, or hole. A query checker returns the strongest
propositional formula that, when put into the hole, is
satisfied by the design. For example, given a design
and the CTL query AG?, the query checker will return
the strongest invariant of the system; i.e. the strongest
propositional formula that is satisfied in every state of

the design. Thus, a query checker allows the mecha-
nization of much of the trial-and-error work done while
analyzing a design.

The aim of this paper is to extend and simplify
Chan's work. Chan studied CTL query checking, and
was interested in queries for which a single strongest
solution exists, called valid queries in [2]. He showed
that it is expensive to determine whether a CTL query
is valid, and identified a syntactic class of CTL queries
such that every formula in the class is valid. His query-
checking algorithm works only with queries in this
class. In contrast, we are interested in all CTL queries,
even those that have multiple maximally-strong solu-
tions. Furthermore, we do not restrict our attention
to CTL. Our query-checking approach is defined for an
arbitrary temporal logic.

We simplify Chan's work by showing that query
checking can be accomplished by adapting existing
model-checking algorithms. In particular, we show how
to adapt the automata-theoretic approach to model
checking of Kupferman, Vardi and Wolper [8] to solve
the query-checking problem.

In the following section of the paper we define
the query-checking problem and compare it to model
checking. In Section 3, we present some properties of
lattices that are central to understanding the solution
space of query checking. In Section 4, we outline our
approach to query checking and introduce a new class
of alternating automata. In Section 5, we show how
a query-checking algorithm can be obtained for any
logic having a translation to alternating automata, and
we describe the application of this approach to CTL
queries. In Section 6 we present some examples. Proofs
of most theorems are omitted in this extended abstract.

409
0-7695-1281-X/01 $10.00 © 2001 IEEE

2 Problem Statement

In this section we define the query-checking prob-
lem. Our definition is relative to any temporal logic
that is interpreted on Kripke structures and that allows
atomic propositions as formulas. We write (A, s) |= 0
if state s of Kripke structure A satisfies temporal logic
formula 0.

A query is an expression obtained by replacing a sin-
gle atomic proposition in a temporal logic formula by
the symbol ?, which is referred to as the "placeholder
(or hole) of the query. Substituting the placeholder
of a temporal logic query by a propositional formula
(i.e., a formula built only from atomic propositions
and boolean operators) yields a temporal logic formula.
We write <j>[ip] for the formula obtained by substituting
propositional formula T/> for the placeholder in query <j>.
We also accept temporal logic formulas themselves as
queries. If 0 is a temporal logic formula, then 0[-0] is
identical to 0.

A propositional formula rp is a solution to a query
0, relative to state s of Kripke structure A, if (A', s) \=

0[#
A positive query is a query 0 that is monotonic with

respect to its placeholder: if -ip\ =>■ V'2 then 0[V']] =>
0['02] (where => denotes logical implication). In what
follows we consider only positive queries. With such a
query it makes sense to compute only maximally strong
solutions, because from these solutions all others can
be inferred1. Formally, let PF(P) stand for the set of
prepositional formulas that can be built from a set P of
atomic propositions. The ordering < on set PF(P) is
defined as -01 < -02 iff 4>\ => V;2- The resulting ordered
set (PF(P),<) is a boolean lattice, which we refer to
as Lp. For any ordered set (A,<) and B C .4, we
define min(B) by {b € B | W 6 B.b' < b => V = b}. A
subset B of A is minimal if min(B) = B.

Definition 1 Let P be a set of atomic propositions,
and let P' be a subset of P. Let K be a Kripke struc-
ture containing state s, and let 0 be a query, both
defined over P. The query-checking problem is to com-

pute the set min{V; <E PF(P') \ (K,s) (= 0[V']} of
strongest solutions to 0. ■

We write [(A', .s), <f\p>, or [(A', s), 0] for short, for the set
of strongest solutions to query ip relative to state s of
Kripke structure A and set P' of atomic propositions.

'Our restriction to positive queries does not reduce generality.
Suppose we had a query with a negated placeholder. We could
compute the solution set for this query by removing the negation
on the placeholder, computing the solution set. for the resulting
query, negating each formula in this set, and then interpreting
the result as the set of weakest solutions to the query.

For a query 0 without a placeholder, query check-
ing reduces to model checking. If (A, s) ^ 0, then

(A, s) \£ (t>bl'] f°r aM propositional formulas if), and
hence [(A, s),0] — 0. Otherwise (A, s) \= 0, so
(A, 5) |= <j>[i/j] for all propositional formulas, and hence
[(A, s), 0] = {false}. Since query checking is a general-
ization of model checking, it is at least as hard. Con-
versely, it is easy to show that query checking itself can
be reduced to several model-checking problems.

Theorem 2 Given a fixed set P' of atomic proposi-
tions and a temporal logic TL, the query-checking prob-

lem and the model-checking problem for TL have the

same complexity in the size of the Kripke structure and

in the size of the query/formula.

Proof: A naive query-checking algorithm for solving

[(A', s), 4>]p' consists of enumerating all L = 22 pos-
sible solutions ip, checking whether (A, s) |= </>[i/>] for
each such ip, and then returning only the minimal ele-
ments from that set. Query checking is thus reduced to

at most 22 model-checking problems with a formula
of length at most \4>\ +0(2lp'l). ■

Since there can be 0(22) minimal solutions to a
query-checking problem, parameter P' provides a way
to control the complexity of query checking in practice,
by specifying the atomic propositions that will appear
in solutions computed for the query.

In the remainder of this paper, we develop a
constructive algorithm for solving the query-checking
problem that can converge directly to its minimal so-
lutions, instead of guessing and checking exponentially-
many individual potential solutions one by one as done
with the above naive algorithm.

We illustrate the query-checking problem and our
ideas to solve it by presenting examples of queries in
the temporal logic CTL [5, 10]. Let p range over a set
P of atomic propositions. The abstract syntax of CTL
is defined from state formulas <j> and path formulas ip
as follows:

(j> ::= p -ip \ 4>i A 02 \ <t>i V 02 | A'ij> \ Ei/)

4> ::= X(f> U4>2 Ufa

A CTL formula is a state formula. The closure of a
CTL formula 0, written cl(<j>), is defined as the set of
all state subformulas of 0. The size |0| of a formula 0
is defined as the number of elements of c/(0).

A CTL formula is interpreted with respect to a
Kripke structure K = (P, 5, So, R, L) where P is a finite
set of atomic propositions, S is a finite set of states, s0

in S is the initial state, R C S x S is a total transi-
tion relation on states, and L : S —* 2 is a labeling

410

{p} {p}

(q) {p} {q} (P,q)

Figure 1. Example Kripke structures Kx and K2

function that maps each state to a set of atomic propo-
sitions. A path w = So, si,... of a Kripke structure is
an infinite sequence of states such that (s;,s;+1) £ R
for all i > 0. We write wl for the ith state of path w,
with w° the first state. Also, we write paths(s) for the
set of all paths w in K such that w° is s.

Given a Kripke structure K — (P,S,s0,R,L), a
state formula 0 satisfies a state s of K, and a path
formula ijj satisfies a path w of K, according to the
following inductive definitions.

(K,s)\=p

(K, s) \= -vp

(A» Ml A 02

(AT, a) Mi V 02

(K,S)\=ATI>

(K,S)\=E1>

(K, w) \= Ar0

def

def

def

def

def

def

def

def

peL(s)

{K, s) \= 02 and (K, s) \= 0

(K, s) \= 4>i or (K, s) \= cj>2

Vw £ paths(s).(A, w) (= iß

3w s paths(s).(A', w) \= 4>

(K, w)\=4>iU 02 = 3i.(üf,»') |= 02 and

Vj<i.(ürV)Mi
(X, w) (= 0x W 02 =

f Vi.(K, w') |= 02 or

3j < i.(A',wJ) (= 0x

The class of CTL queries we allow are those for
which negation is not applied to the placeholder. All
such queries are positive.

Consider the CTL query A{falseUl) (sometimes
written AC.) and Kripke structure K\, which is shown
on the left of Figure 1. The formula A(false U 0) holds
if formula 0 holds everywhere along all paths of a struc-
ture. A solution to the query is therefore a maximally-
strong propositional formula that holds everywhere in
the Kripke structure. Informally, the strongest solution
of true U ? for the left path in the example is p / q, and
strongest solution for the right path is p A -<q. There-
fore, the strongest solution that holds for all paths is

Consider the same query and Kripke structure K2-
Here the strongest solution on the left branch is p ^ q

and the strongest solution on the right branch is p. The
strongest solution for both paths is therefore p V q.

Now, consider the CTL query E(trueU?) (some-
times written EF1) and Kripke structure K\. A solu-
tion to this query is a maximally-strong propositional
formula that holds anywhere in the Kripke structure.
This query on K\ has two maximally-strong solutions:
p A -15 and q A ->p. The same query evaluated on K2

has three maximally-strong solutions: p A ->g, q A -ip,
and p A q.

3 Solutions to Queries

In model checking with alternating automata, con-
junction and disjunction operations are performed on
truth values. In our algorithm for query checking, anal-
ogous operations are performed on sets of maximally-
strong propositional formulas. These operations are
defined as the meet and join operations of a lattice. In
this section we define this lattice and show properties
of the meet and join operations.

To begin, recall that we write -01 < V'2 f°r propo-
sitional formulas tpi and tp2 if ipi => ip2. Also, given
a set P of atomic propositions we write Lp for the
boolean lattice (PF(P), <) having as its elements the
propositional formulas built from elements of P. The
left-most lattice of Figure 2 is Lp, where P contains
only the single atomic proposition p.

Before going directly to the definition of a lattice
on sets of maximally-strong propositional formulas, we
will define a related lattice. Consider the set of all so-
lutions to a query, not just the minimal ones. Because
our queries are positive, the set of all solutions to a
query is a set of propositional formulas that is closed
under "going-up" with respect to <. In other words,
if some propositional formula belongs to the the set,
then so does every weaker formula. Given an ordered
set (A, <) and a subset B of A, we define

]B =f {a G A I 36 £ B.b < a}

A subset B of A is an up-set if]B = B. We write
U(A) for the set of all up-sets of A. Lattice theory (see

411

{false,p,~p,true} _

true

false

-p,truc} -P)

Figure 2. Lattices LP, Lp, and Z/P"'n for P = {p}

Sec. 8.20 of [6]) tells us that if A is finite then U(A) is
a finite, distributive lattice, with elements ordered by
set inclusion. It is easy to see that the meet and join
operations of U(A) are just set intersection and union.

Given a set P of atomic propositions, let Lp be the
lattice U(PF(P)), which is finite and distributive, but
not boolean (see Lemma 8.21 of [6]). The middle lat-

tice of Figure 2 is Lp for P = {/>}. Each element
of this lattice is a possible set of solutions to a query
in which the set of atomic propositions contains only
atomic proposition ;;. Although not evident from Fig-
ure 2, lattice Lp grows much faster than Lp as the set
P of atomic propositions grows.

Each element of Lp can be represented by its min-
imal elements. Recall from Section 2 that min(.4)
stands for the minimal elements of an ordered set .4.

Proposition 3 Let, {A, <) be. an. ordered set. with
D,C C A. Then

Proposition 4 Let, A, B, and C be elements of L™'".
Then

min(]B) =

min(B Li C) =

min(B)

min(min{B) U min(C))

From Lp we get an isomorphic lattice L'p
in by ap-

plying min to each element. Each element of Lp'n

represents a set of maximally-strong prepositional for-
mulas, i.e., a candidate set of solutions to a query. The
ordering of L"p"

n is derived from the ordering of Lp:

A < B in Lp if \A C }B. Similarly, the meet and join
operations of Lp"" (which we write as _A_ and _V_) arc

derived from L„.

AA_B c= min(T/ln IB)

Ay_B c= min (TAU "\B)

The right-most lattice of Figure 2 is Lp'n for P = {p}.
Defining _A_ and _V_ as the meet and join operations

of a distributive lattice is helpful because we immedi-
ately learn some properties of _A_ and _V_.

AA_B

Ay_B

.4A(ßAC)

Ay_(By_C)

.4A(ßvC)

.4V(BAC)

BA_A

By_A

(.4Aß)AC

(Ay_B)y_c

(A_ALB)y_{Aj^C)

(Av_B)A.Uy-C)

It is awkward to compute AA_B and AV_B using
the definitions of _A_ and _V_ directly because they first
expand .4 and B to |.4 and }B. The following charac-
terizations allow _A_ and _V_ to be computed directly
using minimal sets.

Theorem 5 Let A and B be elements of £,'/,"'". Then

AA_B = min({(i V b\ a E A and b € B})

AV_B = min(AuB)

4 Extended Alternating Automata

Inspired by the automata-theoretic approach to
model checking of [8], we propose the following ap-
proach to query checking. Given a temporal logic query
4> and a Kripkc structure A', we (1) build an alternating
automaton representing (f>, (2) compute the product of
this automaton with A', and finally (3) check whether
the language accepted by the product automaton is
empty. A key step in developing this approach is to
discover a kind of alternating automaton appropriate
for representing a temporal logic query. In this sec-
tion we introduce a new type of alternating automata
for this purpose, which we call extended alternating au-
tomata (EAA).

The novel aspect of alternating automata [3] is that
the transition function maps an automaton state and

412

X3 respectively on the right-hand side are replaced by
{false}, since the state is accepting. Then, the values
for X2 and x$ are computed by applying the definition
of _A_: one obtains X2 — {q A -ip} and x3 = {p A -*q}.
The algorithm then backs up to X\ and computes the
value of xi, which is {p ^ q}. This value is the solution
to the query [(K\, sQ), A(false U ?)}.

7 Discussion

We have presented a general automata-theoretic ap-
proach to temporal logic query checking. The approach
is general in the sense that if one has a translation from
queries to EAA in the sense of Theorem 7, then check-
ing nonemptiness of the product automaton gives the
solution to the query. For CTL we showed how this
translation can be derived directly from the transla-
tion of CTL to alternating automata. Translations for
queries in other temporal logics (such as the modal mu-
calculus) can be derived similarly.

We have defined EAA relative to an arbitrary finite
lattice, although for query checking we need only EAA
based on a lattices of the form Upln. A general defini-
tion for EAA was chosen because it is simpler, and also
because we can imagine other uses for the more gen-
eral form. For example, EAA could be used for model
checking multi-valued temporal logics [7, 1, 4].

[8] O. Kupferman, M. Y. Vardi, and P. Wolper. An
Automata-Theoretic Approach to Branching-Time
Model Checking. Journal of the ACM, 47(2):312-360,
March 2000.

[9] D. Müller, A. Saoudi, and P. Schupp. Alternating
automata and the weak monadic theory of the tree and
its complexity. In Proceedings of ICALP '86, Lecture
Notes in Computer Science, pages 275-283. Springer-
Verlag, 1986.

[10] J. Quielle and J. Sifakis. Specification and verification
of concurrent systems in CESAR. In Proc. 5th Int'l
Symp. on Programming, volume 137 of Lecture Notes
in Computer Science, pages 337-351. Springer-Verlag,
1981.

References

[1] G. Bruns and P. Godefroid. Model Checking Par-
tial State Spaces with 3-Valued Temporal Logics.
In Proceedings of the 11th Conference on Computer
Aided Verification, volume 1633 of Lecture Notes in
Computer Science, pages 274-287, Trento, July 1999.
Springer-Verlag.

[2] W. Chan. Temporal-Logic Queries. In Proceedings of
the 12th Conference on Computer Aided Verification,
volume 1855 of Lecture Notes in Computer Science,
pages 450-463, Chicago, July 2000. Springer-Verlag.

[3] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer.
Alternation. Journal of the ACM, 28(1):114-133,
1981.

[4] M. Chechik, W. Easterbrook, and V. Petrovykh.
Model-Checking over Multi-Valued Logics. In Proceed-
ings of FME '01, pages 72-98, March 2001.

[5] E. Clarke, E. Emerson, and A. Sistla. Automatic ver-
ification of finite-state concurrent systems using tem-
poral logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244-263, Jan.
1986.

[6] B. Davey and H. Priestly. Introduction to Lattices and
Order. Cambridge University Press, 1990.

[7] M. Fitting. Many-valued modal logics I. Fundamenta
Informaticae, 15:235-254, 1992.

417

Session 11

Typechecking XML Views of Relational Databases'

Noga Alon Tova Milo
Tel Aviv University Tel Aviv University

noga@tau.math.ac.il milo@tau.math.ac.il

Dan Suciu
University of Washington

suciu@cs.washington.edu

Frank Neven1'
Limburgs Universitair Centrum

frank.neven@luc.ac.be

Victor Vianu*
U.C. San Diego

vianu@cs.ucsd.edu

Abstract

Motivated by the need to export relational databases
as XML data in the context of the Web, we inves-
tigate the typechecking problem for transformations
of relational data into tree data (XML). The prob-
lem consists of statically verifying that the output of
every transformation belongs to a given output tree
language (specified for XML by a DTD), for input
databases satisfying given integrity constraints. The
typechecking problem is parameterized by the class
of formulas defining the transformation, the class of
output tree languages, and the class of integrity con-
straints. While undecidable in its most general for-
mulation, the typechecking problem has many special
cases of practical interest that turn out to be decid-
able. The main contribution of this paper is to trace
a fairly tight boundary of decidability for typechecking
in this framework. In the decidable cases we exam-
ine the complexity, and show lower and upper bounds.
We also exhibit a practically appealing restriction for
which typechecking is in PTIME.

1 Introduction

Since Codd [8], databases have been modeled as
first-order relational structures and database queries
as mappings from relational structures to relational
structures. This captured well relational databases,
where both data and query answers are represented
as tables.

Today's technology trends require us to model data
that is no longer tabular. The World Wide Web Con-
sortium has adopted a standard data exchange for-

*Work supported in part by the U.S.-Israel Binational Sci-
ence Foundation under grant number 97-00128.

t Post-doctoral researcher of the Fund for Scientific Re-
search, Flanders.

*This author supported in part by the National Science
Foundation under grant number IIS-9802288.

mat for the Web, called Extended Markup Language
(XML) (see [1]), in which data is represented as a
labeled ordered tree, rather than as a table. XML
is rapidly becoming the de facto data format on the
Web, and many industries (e.g. financial, manufac-
turing, health care) are migrating their application-
specific formats to XML. All major database vendors
offer now tools for exporting relational data as XML,
thus making it easier for companies to define XML
views of their relational data and share it with busi-
ness partners over the Web. An important aspect
of XML is that it allows users to define types. A
type is a tree language, and the current standards
for XML types (DTD and XML-Schema) correspond
to restricted regular tree languages. XML data ex-
change is always done in the context of a fixed type:
a community (or industry) agrees on a certain type,
and subsequently all members of the community cre-
ate XML views of their relational data that are of
that type.

In this paper we study the problem of mapping
relational data into tree data, specifically addressing
the typechecking problem. Given a mapping and a
type for the output tree, we wish to automatically
check whether every database is mapped to a tree of
the desired output type. As explained, this is a crit-
ical problem in XML data exchange. In addition, as
we show here, this problem is also technically inter-
esting and non-trivial from a theoretical perspective.

We define a language, TreeQL, expressing map-
pings from relational structures to trees. A map-
ping m in TreeQL is specified as a tree where each
node is labeled by a logical formula, possibly with
free variables, and a symbol from a finite alphabet
S. An ordered relational structure is mapped into a
E-tree whose nodes consists of all tuples that satisfy
some formula in the tree, and whose edges are defined
based on the edges in m. In the typechecking prob-
lem we are given a regular tree language, called the
output type, and a set of integrity constraints, and are

0-7695-1281-X/01 $10.00 © 2001 IEEE
421

asked to check whether every input structure satisfy-
ing the constraints is mapped into a tree in the output
type. Solving the typechecking problem boils down
to checking whether the strings generated by the or-
dered sets of tuples satisfying a sequence of logical
formulas belong to some regular language. The type-
checking problem is parameterized by the fragment
of TrecQL, the class of output types, and the class of
integrity constraints.

The typechecking problem in its various instanti-
ations requires an understanding of the interaction
between logic and tree languages. We found this in-
teraction interesting, and had to develop distinct ap-
proaches for the different instances of the typecheck-
ing problem, combining techniques from finite-model
theory, language theory, and combinatorics.

It is easily seen that typechecking becomes unde-
cidable when arbitrary first-order logic (FO) formulas
are allowed in the mapping, due to a reduction from
the FO finite satisfiability problem. Hence, we fo-
cus our investigation on the particular case when the
formulas arc conjunctive queries. When the output
types are further restricted to star-free regular lan-
guages, typechecking is decidable. When the output
type is an arbitrary regular expression, typecheck-
ing is still decidable for projection-free conjunctive
formulas (the proof uses a combinatorial argument
based on Ramsey's theorem). On the other hand,
we show that even small extensions to the basic de-
cidable cases lead to undecidability of typechecking.
Thus, our results provide a fairly tight boundary of
decidability of typechecking. A side benefit is new
insight into the subtle interplay between constraints,
query languages, and output tree types.

Related work. Type inference is a well-studied
topic in functional programming languages [15]. A
type inference system consists of a set of inference
rules that can be used to check whether a function
(program) is type safe. This means that during exe-
cution the program will never get into a state where it
attempts to apply an operator to operands of wrong
types. The problem we consider here is differentWe
are checking a semantic property, namely whether ev-
ery input database is mapped to an output tree of
the right type, which is in contrast to the syntactic
nature of applying the type inference rules. In our
setting type checking rapidly becomes undecidable if
we allow the transformation language or the output
types to be too expressive. In contrast, type inference
for functional programming languages (that are Tur-
ing complete) is usually decidable for powerful type
systems but is only sound.

Our work is motivated by the practical need to
typecheck XML views from relational databases.

SilkRoute [10] is a research prototype enabling an
XML view to be defined from a relational database
using a declarative language. The language TreeQL
used in the present paper is an abstraction of the
language used by SilkRoute.

A different but related problem is that of type-
checking tree transformations. In previous work [14]
a subset of the authors studied the typechecking
problem for transformations of unranked trees ex-
pressed by fc-pebble transducers, and showed that
typechecking is decidable. The unranked trees con-
sidered there are labeled over a fixed, finite alphabet
S. So they do not take into account the data values
present in XML documents. In subsequent work [3]
we considered trees with labels from an infinite al-
phabet, that model more closely XML trees where
internal nodes have labels from a known, fixed al-
phabet, while leaves contain data values from an in-
finite domain. We showed that typechecking quickly
becomes undecidable, even if one considers very re-
stricted transformations. However, typechecking be-
comes decidable for several restrictions on the class of
transformations and/or the tree types. While some of
the techniques in [3] are similar in flavor to those in
the present paper, there are considerable differences
in the two settings. Relational structures can be en-
coded as XML. but the integrity constraints do not
have an analog in XML. Conversely, the DTDs that
constrain XML documents cannot be expressed by
the relational constraints we consider. However, some
of the lower bound results in the present paper can
be transferred to the XML context and strengthen
results from [3]. A more detailed comparison is de-
ferred to the full version of this paper.
Organization The paper is organized as follows.
The first section develops the basic formalism, in-
cluding our abstraction of XML documents, DTDs,
and the variant of TreeQL used as transformation
language. Section 3 presents the decidability results;
Section 4 the complexity analysis; and Section 5 the
undecidability results. The paper ends with brief con-
clusions. Due to space limitations, some proofs are
only sketched or omitted entirely.

2 Basic Framework

We introduce here the basic formalism used through-
out the paper, including our abstraction of XML doc-
uments, DTDs, and the query language TreeQL.

Trees. Trees are our abstraction of XML docu-
ments [1], They capture the nesting structure of XML
elements and their tags. We refrain from modeling
data values as they are not relevant w.r.t. typecheck-
ing. Indeed, output types only constrain the struc-

422

ture of the output tree not the data values at the
leaves. We consider ordered trees with node labels
from a finite alphabet E. We also refer to such trees
as E-trees. We denote by nodes(t) the set of nodes of
a tree t; for a node v, we denote by lab(v) the label of
v. There is no a priori bound on the number of chil-
dren of a node; we therefore call these trees unranked.
We denote the empty tree by e and the set of all trees
over E by 7s- By root(i). we denote the root of t.
To define the semantics of TreeQL programs we also
need the notion of a forest which is just a sequence
of trees. We employ the following notational conve-
nience. By o-(h, ...,tn), where ii, ..., tn are trees,
we mean the tree where the root is labeled with a
and the i-th subtree is t\.

Types and DTDs. DTDs and their variants pro-
vide a typing mechanism for XML documents. We
use several notions of types for trees. For C a class
of string languages over E, a DTD over E w.r.t. C is
a mapping from E to languages in C. We denote the
class of all such DTDs by DTD(C). Let d G DTD(C).
Then, a E-tree t satisfies d, if for every node v
of t with children vi,...,vn, lab(ui) • • • lab(vn) G
d(lab(v)). Note that, if n = 0, then s should be-
long to <i(lab(f)). The set of trees that satisfy d is
denoted by L(d).

Obvious examples of classes C are the regular lan-
guages (REG), the star-free regular languages (SF),
and the context-free languages (CFL). When C are
the regular languages our notion of DTDs corre-
sponds closely to the DTDs proposed for XML docu-
ments. Star-free regular languages are defined by the
star-free regular expressions, which are build from
single symbols and e, using concatenation, union, and
complement. They correspond exactly to the lan-
guages defined by first-order logic (FO) over the vo-
cabulary {<, (OCT)CT(=E} where < is a binary relation
and every Oa is a unary relation [13, 18]. A string
w — (J\ .. ■ an is then represented by the logical struc-
ture ({1,..., n}; <, (OtT)tTGE) where < is the natural
order on {1,..., n}, and for each i,i G Oa iff c, = a.

We will consider an even simpler class of DTDs,
which specify cardinality constraints on the tags of
children of a node, but does not restrict their order.
Such DTDs are useful either when order is irrelevant,
or when the order of tags in the output is hard-wired
by the syntax of the query and so can be factored out.
We use a logic called SC, inspired by [16]. The syntax
of the language is as follows. For every er G E and nat-
ural number i, a=l and a-1 are atomic SC formulas;
true is also an atomic SC formula. Every atomic for-
mula is a formula and the negation, conjunction, and
disjunction of formulas are also formulas. A string w
over E satisfies an atomic formula o=l if it has ex-

actly i occurrences of a, and similarly for a-1. Fur-
ther, true is satisfied by every string. x Satisfaction
of Boolean combination of atomic formulas is defined
in the obvious way. As an example, consider the
SC formula co-producer-1 —> producer-1. This ex-
presses the constraint that a co-producer can only oc-
cur when a producer occurs. One can check that lan-
guages expressed in SC correspond precisely to prop-
erties of structures over the vocabulary {<, (O^gs}
that can be expressed in FO without using the order
relation, <. Thus, SC forms a natural subclass of the
star-free regular expressions.

We have so far defined DTDs and several restric-
tions. We next consider an orthogonal extension of
basic DTDs, also present in more recent DTD propos-
als such as XML-Schemas [4, 5]. This is motivated
by a severe limitation of basic DTDs: their definition
of the type of a given tag depends only on the tag
itself and not on the context in which it occurs. For
example, this means that the singleton {t} where t is
the tree a(b(c),b(d)) cannot be described by a DTD,
because the "type" of the first b differs from that of
the second b. This naturally leads to an extension
of DTDs with specialization (also called decoupled
types) which, intuitively, allows defining the type of
a tag by several "cases" depending on the context.
Formally, we have:

Definition 2.1. For a class of languages C, a
specialized DTD over E w.r.t. C is a tuple r =
(E,E',d, fx) where (i) E and E' are finite alphabets;
(ii) d is a DTD over E' w.r.t. C; and (Hi) \x is a
mapping from E' to E. A tree t over E satisfies a
specialized DTD T, ifte fi{L(d)). We denote the set
of all such specialized DTDs by S-DTD{C).

Intuitively, E' provides for some a's in E a set of
specializations of a, namely those a' G E' for which
li(a') = a. We also denote by p the homomorphism
induced on strings and trees. Interestingly, it turns
out that the class S-DTD(REG) is precisely equiv-
alent to the class of regular tree automata over un-
ranked trees [7, 17]. This is more evidence that spe-
cialized DTDs are a robust and natural specification
mechanism.

Logic. Consider some fixed relational vocabulary S.
A database over S is just an S-structure defined in
the usual way [2, 9]. We denote the domain of a
database A by dom(A). Further, let £ be a logic
over S. Then we denote the free variables occurring
in ip G C by Free(ip). In the sequel, C will usually
be the set of conjunctive queries over S, denoted by

:The empty string is obtained by Acres <T=° and the emPty
set by -"true. We, hence, use e and 0 as shorthands in SC
formulas.

423

CQ. Formally, a conjunctive query is a positive exis-
tential first-order logic formula <p(xi,... ,xn) having
conjunctions as its only Boolean connective, that is,
a formula of the form 3yi • ■ • 3ymip(y, x), where ip is a
conjunction of atomic formulas over S (so, no equal-
ities). By CQ with superscripts in {=,-■} we mean
CQ where ip can contain equality and negations of
atomic formulas, respectively. A conjunctive query
is projection-free when there are no leading existen-
tial quantifiers. Another logic frequently referred to
in the sequel consists of the FO formulas of the form
3x\/yip(x,y) with ip quantifier-free. We denote this
class by FO(3*V*).

In relational databases, one usually considers
databases satisfying some integrity constraints [2].
These are sentences in a specific logic. A database
A satisfies a set of constraints $, if A f= <p for ev-
ery f e <t. We mainly consider constraints specified
in FO(3*V*). Note that they encompass functional
dependencies (FDs), but not, for instance, inclusion
dependencies (IDs). Recall that FDs are expressions
of the form X —> Y where X and Y are sets of coor-
dinates of a relation, and X —> Y holds in a relation
if whenever two tuples agree on X they also agree on
Y. IDs are of the form R{il ik] C S[ji jk]
where R and S are relation symbols, and i].-..,U-
and ji,. .. ,jk are natural numbers less than or equal
to the arity of R and S, respectively. A database sat-
isfies the above inclusion dependency iff 7rM H (/?) C
ftjx jk{S) where n denotes projection as usual. An
inclusion dependency is unary when k = 1. A set $
of dependencies is cyclic iff either one of the following
holds

• $ contains a dependency of the form R[i] C R[j]
with i 7^ j; or

TreeQL programs are trees in TsX£. In the next def-
inition, denote by formula(c) the formula associated
to a node v.

Definition 2.2. A TreeQL(£,E) program is a

tree P e T^xc such that Frec(formv,la(v)) C
Free(formula(v')), for all nodes v and v' where, v' is a
descendant of v; in addition, the formula in the label
of the root is equivalent to true.

If £ or £ are clear from the context or not im-
portant, we sometimes omit them. Sometimes, we
abbreviate the label (er, true) simply by er.

Let ^1 be a database over S, < a total order on
dom(.4), and P a TreeQL program.

Definition 2.3. The tree P(A, <) generated by P

from A and < is defined as follows. Its nodes consist
of pairs of the form (v. 8) where v is a node of P and 8

an x-substitution (where x = Frec(formula(u))) such
that A f= tp[6] for every formula ip labeling v or label-
ing an ancestor of v in P. The root is (root(P),())
and nodes are ordered component-wise, using the node
order in P for v and the lexicographic order < on 8.
The edges in P(A. <) are ((v. 6). (v',8')) such that v'
is a child of v in P and 8' is an extension of 8. Fi-
nally the label of o node (v. 8) is the £ label of v in
P.

Example 2.4. Consider the TrccQL(CQ) program

P = '-'oO-'i- i'2.'':i) (i-C- the tree has root node
i\) with children V1.V2.V3) and lab(i'()) = {a. true),
labivi) = (b.R(x.y)AR(y.x)). lab(v2) = (c.R(x.y)).
Inb(v-.i) = (d.R(x.y)AR(u.v)). and consider database
A in which R = {(i.j) | 0 < i < j < <)}. and the nat-
ural order < on {0 ,9}. Then P(A. <) is a tire
whose root has 10 children labeled b followed by 55

i> contains dependencies i?if?i] C R->[J>}. children labeled c and followed by 552 = 3025 chil-

R2H C R3\j3], Rm[i,n) C kljt}. " ' drr.n labeled d.

A set of dependencies is acyclic when it is not cyclic.
We denote the class of acyclic inclusion dependencies
by AcIDs.

Finally, we recall the following technical notion.
For a finite set of variables X. an X-substitution 8
for A is a mapping from X to dom(.4). Let x be
variables not occurring in X and let 5 be as many
elements of dom(.4). Then 8\J {x ^ a} denotes the
(X U {.x})-substitution that maps each x, to a, and
every y e X to %).

TreeQL. The transformation language we consider,
mapping databases to trees, is an abstraction of
RXL [10]. We refer to it as TreeQL. The queries
are tree patterns where nodes are labeled with label-
formula pairs. Therefore, denote by E x £ the set of
pairs (<r,tp(x)) with a 6 E, and ip{x) a formula in C.

We remark that RXL [10], the language TreeQL is
an abstraction of. also allows to output data values
occurring in the input database as labels of leaves in
XML documents. However, as we study typechecking
and output types do not constrain these data values
we chose to omit them from the formalism.

An extension: TreeQL with virtual nodes. We
will use an extension of TreeQL that allows programs
to define "temporary" nodes, called virtual that are
eliminated in the final answer. To see why this is
useful, consider an input binary relation R providing
titles and speakers of talks (ordered alphabetically
by title). Suppose we wish to output a tree listing
under the root the ordered title/speaker pairs. This
cannot be defined by a TreeQL program, because
it cannot group the titles and speakers as required.

424

However, suppose we can use temporary nodes,
identified by a special label #. Consider the query
root((#, R(t, s)){{title, R(s, t)), {speaker, R(s, t)))).
This produces one node labeled # for each tuple in
R, whose children are the corresponding title and
speaker. The ordered sequence of title/speaker pairs
can now be obtained by a "flattening" operation
that eliminates the # nodes and concatenates their
children.

More formally, let # be a special symbol not oc-
curring in E. We denote by E# the set Eu{#}. The
symbol # will be used to specify virtual nodes. De-
fine the function A# which maps trees to forests by
eliminating #-labeled nodes, recursively as follows.
Let t be the tree <r(ii,... ,tn). Then

M*)-{ A#(tl)>..
...,A#(i„)) ifa^#;
,X#(tn) if o- = #.

Definition 2.5. A TreeQL(£, E) program P with
virtual nodes is a TreeQL(£, E#) program where
lab(root(P)) ^ {#} x £. We denote the set of all such
programs by TreeQLvlrt(£, E). The tree generated by
P from A and < is defined as \#(P(A, <)), and de-
noted, by slight abuse of notation, also by P(A, <).

Typechecking. We next formalize the central prob-
lem of this paper.

Definition 2.6. A TreeQL program P typechecks
with respect to a set of constraints $ and an output
type d iff P(A, <) C L(d) for every database A that
satisfies <E> and every total order < on dom(A).

Example 2.7. Continuing with Example 2.4, con-
sider the DTD defined by the mapping d :
{a, b, c, d} —> REG given by:

d(a) = (b* .(c.c)* .(d.d)*) I (b* .(c.c)* x.(d.d)* .d)

and d(b) = d(c) = d(d) = e. The type says that there
are an even number ofc's and d 's or an odd number of
both under nodes labeled a. Then the TreeQL program
P in Example 2.4 typechecks w.r.t. this DTD.

The typechecking problem is parameterized by (1)
the fragment of TreeQL; (2) the output type; and (3)
the integrity constraints. Therefore, we denote by

TC[ft, V, 1C],

the above decision problem where 72. is a fragment
of TreeQL or TreeQLVIrt, V is a class of output
types, and TC is a class of integrity constraints.
To reduce notation, we abbreviate TreeQL(£) and
TreeQLvirt(£) by £ and £virt, respectively; and, we
abbreviate DTD(C) and S-DTD(C) by C and Cspec,
respectively.

Clearly, TC[£, V, XC] is undecidable for any logic
£ for which satisfiability is undecidable. Indeed, for
a sentence <p e £, consider the program result((a, ip))
with an output type d that maps d(result) to {e}.
Then ip is satisfiable iff the program does not type-
check w.r.t. d.

In the sequel we focus on conjunctive queries,
which correspond to the widely used select-project-
join queries in SQL. As shown in Section 5, the type-
checking problem quickly becomes undecidable. Nev-
ertheless, as shown in the next section, we obtain de-
cidability and even tractability for a large class of
transformations.

3 Decidability

We present in this section our decidability results on
typechecking TreeQL queries:

(i) When restricting output DTDs to star-free lan-
guages we show that typechecking is decidable
for TreeQL(CQ='") programs and integrity con-
straints in FO(3*V*). The proof gives a CO-
NEXPTIME upper bound. In Section 4, we pro-
vide the matching lower bound.

(ii) By restricting the queries to projection-free CQs
and the integrity constraints to FDs, we show
that typechecking w.r.t. DTDs with full regu-
lar expressions is decidable. The proof is based
on Ramsey theory and yields a non-elementary
upper bound. It is open whether this can be
improved.

In Section 5, we show that the above results are es-
sentially optimal: slight increase of the power of the
DTDs or the integrity constraints lead to undecidabil-
ity. However, it remains open whether in (ii) above,
the restriction to projection-free CQs is required. We
first consider star-free output types and integrity con-
straints in FO(3*V*).

Theorem 3.1. TC[CQ=
NEXPTIME.

SF, FO(3*V*)] is in co-

Proof. The decidability is shown by bounding the
size of inputs that need to be checked to detect a vio-
lation of the output DTD. Let R be a TreeQL(CQ='",)
program, let d e DTD(SF), and let <E> be a finite set
of FO(3*V*) sentences.

We start by stating a technical lemma. Extend the
star-free regular expressions by the constructs a=l

and <7-\ These denote the languages {a1} and {<xJ |
j > i}, respectively.

Lemma 3.2. Let r be a star-free regular expression.
Then r n a\ ■ ■ ■ <r* is equivalent to a disjunction pr

425

of expression of the form, cr*1*1 • • -cr*"*" where each Recall that if we find such an .4, R does not type-
*j G {=>>} and ij € N. Moreover, i\,...,in < \r\, check w.r.t. d. The overall algorithm consists of two
the size of pr is exponential in \r\ + n, and pr can be stages: (i) For every node v labeled with a and with

computed in time exponential in \r\ + n. children (Si,ipi(x,yi)), ..., (5n,i>n(x,yn)): compute
„ . . , , ._ the normal form for ->d(a) D St ■ ■ ■ 5* as specified in

Note that R does not typecheck w.r.t. am T „ „ „, ■ ,. , r , i Jt^ Lemma 3.2. I here is a linear number of nodes, so al-

• there is a path vi, ..., vk in R where (i) together we need exponential time, (ii) Subsequently,
vi is a child of the root; (ii) lab(t>,) = guess a path i»i,..., vk, a disjunct D, and a structure
(ai,ipi(xi,...,Xi)), for i £ {l,...,fc}; (in) A such that the above holds. As described above this
Vk has precisely n children with labels can all be done in NEXPTIME. O

(SI,MT-,VI)), ..-, (6nMx,yn)) and in that or- The following result ghows that decidability of

er' an typechecking holds even when DTDs use full regular

• there is an A with elements ä := ält.. .,äk such languages, as long as the conjunctive queries in the
that (i) A\=<$>; (ii) A \= <pi(äi,... ,a,) for each TreeQL program are restricted to be projection-free
i = l,...,fc; and (Hi) ^■■■6][' i d(ak) with and the constraints are FDs. The proof is non-trivial
|{6 | A |= ipj(ä, b)}\ = ij for all j = 1,..., n. and is based on Ramsey's theorem. It is similar to

the proof of an analogous but harder result in [3]. A
Let d(ak) be represented by the star-free regular self.contained proof will be provided in the full paper.

expression r. So, 8\l ■ ■ ■ S1^ g" L(r). Since for each A,
this string will be of the form 6[■■ ■<$*, it suffices to Theorem 3.3. TC[projection-free CQ=", REG,
restrict attention to -r D 6$ ■ ■ ■ 6*. By Lemma 3.2, FD] is decidable.
->r n St ■ ■ ■ 8* is equivalent to a disjunction, of expo-

,. , . c ■ r ,i r r*iji c* j It remains open whether the proiection-free restric-
nential size, of expressions or the form o, • • • o„' * ' J

, , ,_ r ._ i i ■ ^ i i T 4. n u tion can be removed or whether the class of con-
where each *,■ € { = ,>} and], < \r\. Let D be a

... ,. . . ,-tiii r* 'j \ 4.1 j. ,i • straints can be extended, particular disjunct dl
J ■ ■ ■ d*"-7" such that there is a

structure A with elements ä := ä\,..., ä.k with

(i) A \= $ and A |= if,(äl:... ,ä() for each j; and 4 Complexity

(2) \{b\ A |= V'i(ä, b)}\ *, ji for i = 1...., n. Theorem 3.1 provides an upper bound of CONEXP-
... „ r . , TIME on the complexity of type-checking. We show

We next show there is a structure B ot size polv- . ,, . ,. ,. \ il . . ^. ,' -. c . , . , „. , „ .,. . r . ,.. , /rT\ in this section that this is tight. Our proof requires
nonnal m \R\ + \d\ + $ satisfying (1) and (2). ^. . . v*. ■ ™ u u

, .' ' '. ' , " 1L. „ nesation and inequality in CQs. However, we show
lo see this, we introduce some notation. Sup- , • ■ , . i i ■ ■

i i -,_„>,-^ ,-r, -r,\ i \ that even without these, typechecking remains m-
pose $ = (\e3x?Vy?ac(x?,y?), f,(xx x,) = ^ .. . ,' Jy, l2 \. i. .
i,.^ , ^(-LS

C
C
K n^Jii] r>\ i ./ tractable, more precisely DP-hard/ Nevertheless,

3-'':i 7I"(
;I;

I x,.xj). for each z = l....,A', and ^ ,
'_ _ _w, ' I _ _^, by further restricting the structure of CQs and S£-

ft(x, fii) = 3.x,. ßi(x, y1,xl), for each i = 1...., n. formulas we obtain a PTIME algorithm for typecheck-
For each I, pick a tuple ä? such that A \= . To thig end define 5£r ^ the fragment of S£

Vj/?af (Ö», j/?). Let £, be the set of these elements. whprp therp arp nQ occurrcnces of the form ff=i and all

Next, pick fll .. ,a„ and for each i e {1,... ,*} occurrencPS of the form a>r are such that j e {0, l}.
pick a tuple äf such that ^ |= 7l(ai)..., a,, a,). Wp abbreviate a>i simply by ff. This fragment a].
Let E2 be the set of these elements. Further, for ready suffices tQ obtajn the npxt bwer bound

i = 1,..., n, pick j, tuples 6, and for each such tuple
pick a tuple öf such that A \= ß,(ai,... ,a,.fc,,äf). Theorem 4.1. TC[CQ"'=, SC, 0] is /iard for CO-
Let £3 be the set of these elements. Note that the NEXPTIME.
size of E :— E\ U E2 U £3 is at most polynomial in
\R\ + \d\ + |$|. Clearly, \{b \ A\E N 1>j{ä,b)}\ *iji for Proof- The Proof consists of a reduction from the
i = l,...,n. Moreover. A[E \= *■ The latter follows satisfiability problem of FO(3*V*) sentences without
by a standard argument (see, e.g., [61). Indeed, for equality, which is known to be hard for NEXPTIME

each £, (A, £1) |= Vy2aj(x2,yf), where the elements (see- e-g-. I6})- to tho complement of the typechecking

in E\ are taken as constants. As these resulting sen- problem,
fences are universal, (A^^Ey) |= Vyfae(x?,y?) for Let V be a formula of the form
each L Hence, A\E |= 3x?Vy?at(x?,yf) for each L 3*i x^Vi ymrp(x,y) over the relations
Then take B as A Ri,---,Rk without equality. The input database

Hence, to look for a database that satisfies the dis- 2
Reca„ that DP pi.operties are of the form t7l A &2 where

junct D it suffices to guess one of exponential size. o\ e .\p and a2 6 CO-NP.

426

for the TreeQL program consists of the relations
D\,... ,Dn,R\,... ,Rk. The sets D\, ..., Dn will
be singletons and will serve as the interpretations for
the variables x\,... ,xn.

We have to check whether there is a database A
with a tuple d such that A \= Myib{d,y). We test
the converse, that is A ^ Vyi/'(J, y) or equivalently
A \= 3y^iß(d,y). Assume that -^iß is of the form
\lj=\Lj(x,y) where each Lj(x,y) is a conjunction
/\ C of atomic formulas and negations thereof. Thus,
each Lj is a projection-free query in CQ". We define
a TreeQL program as follows: the root is labeled with
'result' and has exactly one child labeled with

n

(D, /\ Dt(xt))

giving the required interpretation to the x^s. Further,
D has the following children

1. for each i = l,...,n. (two,, 3zi3z'i(Di(zi) A
D^z'^AZi ^ z'j)), indicating that £>j has at least
two elements; and

2. for each j = 1,..., k. (@j.Lj(x, y)).

The output DTD d is of the following form
d(result) := true and

d(D) := V two, V V @j
!=1 J=l

Suppose the TreeQL program R does not typecheck.
Then at least one D and none of the two,s appear.
That is, all D, are singleton sets. Let Dj = {d,}
for each i. Further, none of the @,-s appear. Hence,
A ¥= 3y-np(d,y). Hence, A \= 3xVyiß and ip is sat-
isfiable. Conversely, if A is a model of if and we
instantiate Dlv .., Dn with the witnesses for the ex-
istential quantifiers then R does not typecheck for
A\J{Du...,Dn}. D

Although it is unclear whether in Theorem 4.1,
negation or inequality can be dispensed with, we show
that in any case the complexity of the problem, even
for the standard case, remains intractable. Indeed,
one can easily reduce the containment of conjunc-
tive queries and prepositional validity to typecheck-
ing. CQ7^ denotes CQ with inequality.

Proposition 4.2. 1. TC[CQ, <SZ7,0] is DP-hard.

2. TC[CQ^, S£r,0] isUp
2-hard.

The proof of Proposition 4.2 implies that, in or-
der to have a PTIME algorithm for typechecking, we

must at least restrict the queries so that testing con-
tainment is in PTIME and that validity of the SCT

formulas used must be in PTIME. We present one
set of restrictions that leads to a PTIME typecheck-
ing test. Let CQk denote the conjunctive queries in
FOfc, i.e. the set of conjunctive queries using at most
k variables. Such queries can be evaluated in com-
bined complexity PTIME [11, 20]. We restrict TreeQL
programs as follows: there exists some k such that,
for each node v in the program, the conjunction of
all queries of nodes along the path from root to v is
in CQk. Furthermore, no distinct siblings v,v' in the
query tree have labels (a, </?) and (a, <//) for the same
a £ E. We call such a program k-bounded and denote
the set of /c-bounded TreeQL programs by TreeQLfc.
Finally, we also need a restriction on the SCr formu-
las used in the DTD: they are in conjunctive normal
form. We call such SCr formulas conjunctive.

Theorem 4.3. TC[CQfc, conjunctive SCr, 0] is in
PTIME for TreeQLh programs.

Proof. Let R be a TreeQLfc program and let d be
a DTD using conjunctive SCr formulas. We assume
w.l.o.g. that every bound variable occurs only once
and is different from any free variable. For every non-
leaf node v of R with children Vi,. we do the
following. Let d(l&b(v)) = ipv, where ipv = A, Ct

and each C, is a disjunction of positive or negated
aj's. Further, let 7 be the conjunction of the formulas
occurring in labels along the path from root to v. The
program typechecks w.r.t. v if for every input, the
sequence of children of v in the output satisfies each
of the Cj's. So it is enough to typecheck separately
with respect to each of the CVs. Each Ct is of the
form ai V ... V afe V -161 V ... -i6m. For each a 6 E, let
ißa denote the formula associated to the unique child
of v labeled with a. There are three cases to consider:

1. k > 0 and m > 0. Then Ct is (61 A ... A
bm) —> («i V ... V a/j). We must check that

3(lpbl A ... A Vb,„ A 7)

-» 3((W A7)V V«V A 7))

where the 3 quantify all variables on the left,
resp. righthand sides. From standard conjunc-
tive query techniques it follows that the above
holds iff there exists j such that

3(ipbi A ... ißbm A 7) -> 3(V>ai A 7).

This in turn holds iff the result of evaluating the
conjunctive query 3{ipai A 7) on the canonical
structure associated to the matrix of 3(i/'61 A... A
ipb„, A 7) is true. Since 3(^a. A 7) is in CQk, this
can be checked in PTIME.

427

2. rn — 0. This amounts to testing that 3((</>ai A
7) V ... V (ipak A 7)) is true on every input. This
is false on the empty input, so the program does
not typecheck.

3. k = 0. Since 3(ipiH A ... A ^(,,„ A 7) is always
satisfiable, this never typechecks. □

result

(A'i,.ci

(X2,;i'i =.ri A.r2 = x-2

5 Undecidability Results

We have seen in the previous section that
TC[CQ'"'-=, SF, FO(3*V*)] is decidable. This is a
fairly tight bound. Indeed, we next show that even
minor extensions lead to undecidability. We con-
sider several extensions of the output DTDs, TreeQL
queries, and integrity constraints. Specifically, we
consider (i) specialization, (ii) virtual nodes, and
(Hi) acyclic inclusion dependencies (AcID), and show
that typechecking becomes undecidable with each of
these extensions. Another parameter in the formal-
ism is the class of string languages used by DTDs.
Recall that decidability still holds if we replace SF
by REG when restricting to projection-free CQs and
omit integrity constraints. We show that this most
likely cannot be extended beyond REG: allowing de-
terministic. CFLs (DCFL) in DTDs loads to undecid-
ability.

We first consider the impact of augmenting DTDs
with specialization.

Theorem 5.1. TC[projection-free CQ. SC1'^,. 0] is
undecidable.

Proof. We use a reduction from satisfiability of
first-order logic formulas over graphs without equal-
ity, which is well known to be undecidable (see, e.g..
[6]). The satisfiability problem is to check, given
an FO formula (/-S whether there is a non-empty
graph A such that A \= 4>. Let tp be the negation
of ip. We give the reduction by example Assume
ip — 3.TiV:r.'23.T;j<5(:ri, x^, .T3), where S is quantifier-free
and in disjunctive normal form, that is, of the form

Vili Lj, where each L, is of the form P' A A'/=i J\'

where P1 is a conjunction of atomic formulas and each
N* is the negation of a single atomic formula. For a
negated atomic formula N we denote the unnegated
formula by N. Recall that atomic formulas can only
be of the form E(xi,Xj).

Consider the TreeQL(CQ) program R depicted in
Figure 1. By L, we denote the sequence

{Pi,Pi)(N\,Ni)...(Nini,N;ni).

Recall that the first component of the pair is a label
while the second one is a formula. Intuitivelv. evorv

Figure 1: The TreeQL program Ft.

occurrence of an X, in the output tree represents a
value assignment for the variable x,. The specialized
DTD then takes care of the quantification pattern of
if. Indeed, it should verify that there is an Xj-node
such that for all its AVchildren there is an A'j-node
that satisfies d. To this end let £' = {F,.X, | i €
{1,n}} U {result}. Intuitively, whenever a node
is labeled Y,. this indicates that the path from 1 he
root to this node can he extended to a satisfiable
path. Define (/(result) := Y", V-, d(Yx) := Y2 A -..X2.
d(Y>) := YA. and t/(Xi) := d(X2) ■= d(XA). Hen-, s
makes sure the empty graph typechecks. Finally, set
for each i. //(A',) := A', and /i(Y,) :— A',. Clearly,
Ft typechecks w.r.t. d iff A \--r ^ for every non-empty
structure A.

One can get rid of equality in the CQ's by intro-
ducing a relation containing all elements in the active
domain. Details omitted. G

The next result shows that typechecking becomes
undecidable when queries can use virtual nodes. The
proof is similar to the proof of Theorem 5.1 and is
omitted.

Theorem 5.2. TC[projection-free CQ,,,-,.,, SF, 0] is
■undecidable.

Remark 5.3. The undecidability result in Theo-
rem 5.5 requires DTDs using SF formulas. The next
proposition shows that restricting the DTD language
to SC renders typechecking decidable. even when vir-
tual nodes are allowed.

Proposition 5.4. TC[CQ;;=, <S£, FO(3*V*)] is de-
cidable. o

Next, we consider the effect of the constraints on
decidability. We show that even the usually well-
behaved unary AcIDs (which are not definable in
FO(3*V*)) render typechecking undecidable.

Theorem 5.5. TC[CQ~" = , SCr, unary AcIDs] is un-
decidable.

428

Proof. We consider the fragment of FO consisting of
formulas of the form Vxip(x) where ip is a quantifier-
free formula over the vocabulary of two unary func-
tions / and g. It is well-known that it is undecidable
whether there is a non-empty structure A such that
A \= Vxip(x) (see e.g. [6]). The schema of the in-
put database consists of the two binary relations F
and G (representing the functions / and g), and a
unary relation D representing the active domain of
the structure. Using D will allow to get rid of circu-
lar dependencies.

First, we have to make sure that F and G are in-
deed functions, that their domain is D, and their
range is included in D. These are specified by the
cyclic unary inclusion dependencies

(a) F[l] C D[\] (e) D[l] C F[l]
(b) G\\) C D[l] (/) D[l] C G[l]
(c) F[2] C D[l]
(d) G[2] C D[l].

However, we will only keep the dependencies (e) and
(/): we show that (a)-(d) can be expressed by the
TreeQL program itself. We next describe this TreeQL
program in detail. We first check whether the inclu-
sion dependency (a) holds. If not we generate the
flag (a)_does_not_hold.

result

((a)_does_not_hold, 3x3y(F(x, y) A -<D(x))).

The same is done for the dependencies (b)-(d). Next
we have to check whether F is indeed a function and
not a relation. For instance, both (a, b) and (a,c),
with 5/c, could belong to F. This can be detected
as follows

result

(vrong„F,3x3y3z(F(x, y),F(x, z)Ay^z)).

The same is done for G. In particular, if G is a re-
lation and not a function then the flag wrong.G is
raised.

We test whether A ty= Vxip(x), that is, A \=
3x-i(p(x). We can rewrite 3x->ip(x) to

y(3x)Li,

where each Lt is of the form /\™I1 Cj where each Cj
is an equality or an inequality between terms. For
instance, Cx = fgx = ffx (parenthesis omitted for
clarity) or C2 = fgx ^ ffx. Obviously, there is a

canonical way to associate a CO.-'"1 with each C. For
instance,

Vcx (x) = 3y2,2/3, z2, z3(G(x, y2) A F(y2, y3)

A F(x, z2) A F(z2, z3) A y3 = z3),

and

yc2(a:) = 3V2,V3, Z2,z3(G(x,y2) A F(y2,y3)

A F(x, z2) A F{z2, z3) A 2/3 ^ z3).

Further, we define <pLi as <pc< (x)A.. -AipCi (x). The
just described part of the TreeQL query is then of the
form:

result

(Li,3a;^Ll(x)) (Ln,3xipLn(x)).

Hence, A ^ \/xtp{x) whenever one of the error flags
Lj is raised.

Finally, we have to make sure that D is non-empty.
Therefore we have

result

(D-not.empty, 3zD(z)).

The final TreeQL program is the concatenation of
the previous programs (that is, the concatenation of
all children under one result node). Note that a non-
empty input structure for which A |= Vxip(x) simply
generates the tree result(D-not_empty). The output
DTD d then maps result to D-not_empty —> error,
where error is the disjunction over all error flags. If
R does not typecheck w.r.t. d, then there is an A and
an ordering < such that R(A,<) $ L(d). By con-
struction, A is non-empty and no error flag is raised.
Therefore, A\D \= (\/x)ip(x). Conversely, if there is
an A such that A \= Vx(p(x) then for every ordering
<, R(A U D, <) & L(d), where D is interpreted by
the active domain of A. O

Theorem 3.3 showed that typechecking remains de-
cidable even for DTDs using full regular languages,
as long as the queries are restricted to be projection
free. As shown next, going beyond regular languages
quickly leads to undecidability.

Theorem 5.6. TC[projection-free CQ, DCFL, 0] is
undecidable.

Proof. The proof is a reduction from Hilbert's tenth
problem, diophantine equations, well-known to be
undecidable [12]. We consider the following variant.

429

For a polynomial P(x\,... ,xn) with integer coeffi-
cients, are there positive integers i\,..., in such that
P(i\,...,in) = 0? We only give the reduction by
example. The general case is a straightforward gen-
eralization. Consider, for instance, the polynomial
2xy — x2 + 1. The input database consists of two sets
X and Y where the cardinalities of X and Y stand
for the numbers x and y, respectively. We describe
a TreeQL program that generates from X and Y se-
quences of a's and 6's. A positive term in P generates
a's while a negative one generates 6's. Hence, an a
stands for +1, and a 6 stands for — 1. The output
DTD states that the number of a's differs from the
number of 6's. This holds iff \X\ and \Y\ do not form a
solution to P, and the language specified by the DTD
can easily be recognized by a deterministic PDA. The
TreeQL program is a tree of depth one. For the ex-
ample polynomial, the nodes under the root are:

(a,X(x)AY(y))-{a,X(x)AY(y))

■{b,X(Xl)AX(x2))
■ (a, true).

Here, the first two symbols correspond to the term
2xy and generate a's as the term is positive; similarly,
the third and the fourth symbol correspond to —x2

and +1, respectively. The output generates sequences
of a's and 6's. The deterministic PDA accepts when
the number of a's is different from the number of
6's. Hence, the TreeQL program typechecks iff the
diophantine equation has no positive solution. Ü

References

6 Conclusions

We investigated the problem of typechecking XML
views of relational databases satisfying given integrity
constraints. This is a practically important problem
in the context of the Web, where relational databases
must be exported in XML form that satisfies tar-
get DTDs. The formal query language TreeQL maps
first-order relational structures to tree data, and is
a faithful abstraction of the view definition language
used in the SilkRoute prototype. The results of the
paper trace a fairly tight border of decidability for the
typechecking problem. The parameters considered
include features of the query language, of the DTDs,
and the class of integrity constraints satisfied by the
relational database. The proofs bring into play a va-
riety of techniques at the confluence of finite-model
theory, language theory, and combinatorics.

[io.

[11

(12

[13

[14

[i5;

[is;

[i7;

[is:

[19

[20;

S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web : From Relations to Semistructured Data and XML.
Morgan Kaufmann, 1999.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.
XML with data values: typechecking revisited. To apper
in PODS 2001.

D. Beech, S. Lawrence, M. Maloney, N. Mendelsohn, and
H. Thompson. XML schema part 1: Structures, May
1999. http://www.w3.org/TR/xmlschema-l/.

P. Biron and A. Malhotra. XML
schema part 2: Datatypes, May 1999.
http://www.w3.org/TR/xmlschema-2/.

E. Borger, E. Grädel, and Y. Gurevich. The classical
decision problem. Springer, 1997.

A. Bruggemann-Klein, M. Murata, and D. Wood. Regular
tree languages over non-ranked alphabets, 1998.

E. F. Codd. A Relational Model for Large Shared Data-
banks. Communications of the ACM, 13 (6), pp. 377-387,
1970.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer, 1995.

M. Fernandez, D. Suciu and W. Tan. SilkRoute: trading
between relations and XML. Proceedings of the WWW9
Conference, Amsterdam, pp. 723-746, 2000,

N. Immerman. Upper and lower bounds for first-order ex-
prcssibility. J. of Computer and System Sciences, vol.25,
pp. 76-98, 1982.

Yuri V. Matiyasevich. Hilbert's tenth problem. Founda-
tions of Computing Series. MIT Press, 1993.

R. McNaughton and S. Papert. Counter-Free Automata.
MIT Press. 1971.

T.Milo, D. Suciu, and V. Vianu. Typechecking for
XML Transformers. In Proc. ACM SICMOD-S1GACT-
SIGART Symp. on Principles of Database Systems, pp.
11-22. 2000.

John C. Mitchell. Foundations for Programmng Lan-
guages. MIT Press, 1996.

F. Neven and T. Schwentick. Unordered DTDs. Unpub-
lished manuscript, 1999.

Y. Papakonstantinou and V. Vianu. DTD inference for
views of XML data. In Proc. ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems, pp.
35-46, 2000.

W. Thomas. Languages, automata, and logic. In Rosen-
berg and Salomaa, Handbook of Formal Languages, vol-
ume III, chapter 7. Springer, 1997.

R. van der Meyden. The complexity of querying infinite
data about linearly ordered domains JCSS, 54(1): 113-135,
1997.

M. Vardi. On the complexity of bounded-variable queries.
In Proc. ACM SIC MOD-SIG ACT-SIC ART Symp. on
Principles of Database Systems, pp. 266-276, 1995.

430

A Model-Theoretic Approach to Regular String Relations*

Michael Benedikt Leonid Libkin§ Thomas Schwentick1 Luc Segoufin'l
Bell Labs U. Toronto U. Jena INRIA

Abstract

We study algebras of definable string relations -
classes of regular n-ary relations that arise as the defin-
able sets within a model whose carrier is the set of all
strings. We show that the largest such algebra - the col-
lection of regular relations - has some quite undesirable
computational and model-theoretic properties. In con-
trast, we exhibit several definable relation algebras that
have much tamer behavior: for example, they admit
quantifier elimination, and have finite VC dimension.
We show that the properties of a definable relation al-
gebra are not at all determined by the one-dimensional
definable sets. We give models whose definable sets are
all star-free, but whose binary relations are quite com-
plex, as well as models whose definable sets include all
regular sets, but which are much more restricted and
tractable than the full algebra of regular relations.

1 Introduction

In the past 40 years, various connections between
logic, formal languages and automata have been ex-
plored in great detail. The standard setting for con-
necting logical definability with various properties of
formal languages is to represent strings over a finite al-
phabet E = {ai,..., an} as first-order structures in the
signature (Pai,...,Pan,<), so that the structure Ms

for a string s of length k has the universe {1,..., k},

*Part of this work was done while the second and the third
authors visited INRIA, and the second and the fourth authors
visited Mainz.

tBell Laboratories, 263 Shuman Blvd, Naperville, IL 60566,
USA. E-mail: benedikt@research.bell-labs.com.

§ Department of Computer Science, University of Toronto, 6
King's College Road, Toronto, Ontario M5S 3H5, Canada. E-
mail: libkin@cs.toronto.edu. Research affiliation: Bell Labs.

'Current address: Institut für Informatik, Friedrich-Schiller-
Universität Jena, Ernst-Abbe-Platz 3, 07740 Jena, Germany.
Email: tick@informatik.uni-jena.de. Work done while at
U. Mainz.

lllNRIA-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex,
France. E-mail: Luc.Segoufin@inria.fr.

with < being the usual ordering, and Pai being the
set of the positions / such that the /th character in s
is a;. Then a sentence $ of some logic C defines a
language L($) = {s G E* | Ms f= $}. Two clas-
sical results on logic and language theory state that
languages thus definable in monadic second-order logic
(MSO) are precisely the regular languages [8], and the
languages definable in first-order logic (FO) are pre-
cisely the star-free languages [25]. For a survey, see
[28, 29].

An alternative approach to definability of strings,
based on classical infinite model theory rather than fi-
nite model theory, dates back to [8, 10]. One considers
an infinite structure M consisting of (E*,f2), where Q
is a set of functions, predicates and constants on E*.
One can then look at definable sets, those of the form
{a | M (= <p(a)}, where ip is a first-order formula in the
language of M. A well-known result links definabil-
ity with traditional formal language theory. Let VlTeg

consist of unary functions la, a £ E, binary predicates
e\(x,y) and x <y, where la(x) = x ■ a, e\(x,y) states
that x and y have the same length, and x <y states
that a; is a prefix of y. Let S\en be the model (E*, fireg)
(we will explain the notation later). Then subsets of
E* definable in S\en are precisely the regular languages
[8, 10, 9].

An advantage of the "model-theoretic approach" is
that one immediately gets an extension of the notion
of recognizability from string languages to n-ary string
relations for arbitrary n. One gets an algebra of n-ary
string relations for every n, and these algebras auto-
matically have closure under projection and product,
in addition to the boolean operations. In the case of
the model Sien above, this algebra is not new: in fact,
the definable n-ary relations are exactly the ones rec-
ognizable under a natural notion of automaton running
over n-tuples [10, 15].

An obvious question to ask, then, is whether new
algebras of string relations arise through the model-
theoretic approach. In particular, if we restrict the
signature ft to be less expressive than fireg, do we get
new relation algebras lying within the recognizable re-

0-7695-1281-X/01 $10.00 © 2001 IEEE
431

lations?

A natural starting point would be to find a signa-
ture that captures properties of the star-free sets. Here
again, a simple example leaps out: consider the signa-
ture figf = (^,(i0)aeE), and let S = (E*,fisf). One
can easily show that the definable subsets of E* in S
are exactly the star-free ones. Furthermore, we will
show that the definable n-ary relations of this model
are exactly those definable by regular prefix automata
(cf. [1]) whose underlying string automata are counter-
free.

Just as there is a significant difference between the
complexity-theoretic behavior of regular languages and
star-free languages, we find that the model S is much
more tractable, in terms of its model-theory and its
complexity than Sien- In particular, we show that S has
quantifier-elimination in a natural relational extension,
while Sicn does not.

It would be tempting to think of S and S\en as canon-
ical extensions of the notions of regularity and star-free
to n-ary relations. However, we will show that in fact
there are many choices for Q. that, share the same one-
dimensional definable sets (either star-free or regular).
Furthermore, algebras of definable sets may be iden-
tical in terms of the string languages they define, but
differ considerably in the n-ary string relations in the
definable algebra. We thus say that an algebra of de-
finable sets based on (E*, fi), with fi C J7rcg is a regular
algebra of definable sets if the subsets of E* in it (i.e
the one-dimensional definable sets of (E*,fi)) are ex-
actly the regular sets. We likewise say that the algebra
based on definable sets for (E*, fi) is a star-free algebra
of definable sets if the subsets of E* in the algebra are
exactly the star-free sets.

The rest of the paper studies new examples of reg-
ular and star-free definable algebras. We give an ex-
ample of a star-free algebra with considerably more ex-
pressive power than the basic star-free algebra S. This
model, which we denote by Sieft (as it allows one to add
characters on the left of a string), shares most of the de-
sirable properties of S: in particular, it has quantifier-
elimination in a natural language, and membership test
in this algebra has low complexity.

More surprisingly, perhaps, we give examples of reg-
ular algebras (which we denote Sreg and Sreg,ieft) that
are strictly contained in S\en = (E*,£)reg). Although
the one-dimensional sets in these algebras are still the
regular sets, the algebra as a whole shares many of the
attractive properties of the star-free languages. In par-
ticular, we give quantifier-elimination results for these
algebras.

One key motivation for our work comes from

the field of databases, in particular, the study of
query languages with interpreted operations [3, 5, 19],
and constraint databases [23]. In those settings,
quantifier-elimination gives one closed-form evaluation
for queries; it says that one can evaluate queries whose
input is a quantifier-free definable set and get a closed
form solution as another quantifier-free definable set.
This approach has generally been applied to numerical
domains over the reals, since there are several pow-
erful quantifier-elimination results available there. It
is natural to extend this approach to databases over
strings: the string datatype, after all, is ubiquitous in
database applications, and languages such as SQL al-
ready give some capability of manipulating star-free
sets (via the LIKE predicate) defined from the in-
put data within queries. But in order to extend the
constraint-database approach to the string context, we
are first required to find definable algebras that ad-
mit quantifier-elimination in some natural yet power-
ful language. (Some of the previous results in this di-
rection considered query languages over undccidable
structures [20], or decidable ones but not capable of
expressing some very basic operations on strings [14].)
The quantifier-elimination results here thus yield new
examples where the constraint approach can be ap-
plied. In fact, the results we present here were used
in [7] to give expressiveness and complexity bounds for
the database query languages that arise from several
algebras of definable sets.

Our approach was also motivated by the study of
automatic structures [22, 9], which are a subclass of
recursive structures [21], and were introduced recently
as a generalization of automatic groups [16]. In an
automatic structure M = (E*,fi), every predicate in
Q is definable by a finite automaton. More precisely,
an n-ary predicate P is given by a letter-to-letter n-
automaton [15, 18]. Such an automaton is a usual
DFA whose alphabet is (E U {#})", # $ E. An n-
tuplc of strings S\,..., s„ can be viewed as a word of
length max; |s,| over the alphabet E U {#}, where the
jth letter is the tuple (s\,..., sf,); here s{ is the jth
letter of s*, if \sk\ < j, and # otherwise. We then say
that a predicate P C (E*)" is definable by a letter-to-
letter n-automaton .4 if (si,..., sn) G P iff A accepts
Si,...,Sn.

It is known [10, 9] that a structure is automatic iff
it can be interpreted in the structure Si011; hence S]Cn

is in some sense the universal automatic structure. It
is interesting then to look at subclasses of automatic
structures definable within S\Bn that are significantly
more restrictive, and that might have stronger model-
theoretic or computational properties than a rich struc-
ture like S\cn. One dividing line we focus on is be-

432

tween automatic structures that do admit quantifier-
elimination in a natural relational language, and those
that do not.

Our first result gives a partial answer to open ques-
tion 0 in [26], which asks whether Sien itself has
quantifier-elimination in a reasonable signature. We
show that it does not have quantifier-elimination in
any relational signature of bounded arity but does have
quantifier-elimination in a signature containing binary
functions. The other structures that we study — S,
Sreg, Sieft and Sreg,ieft — do admit such a quantifier-
elimination. A second dichotomy is between automatic
structures that admit star-free definable algebras ver-
sus those that have regular algebras. We show that the
models S and S]eft have star-free definable algebras,
while the model Sreg does not. Our results indicate
that the class of automatic structures that admit star-
free definable algebras is richer than one might have
guessed.

Organization Section 2 introduces the notation.
Section 3 explores the motivating example, the model
Sien, and proves a set of results concerning its limita-
tions. In Section 4 we turn to the minimal example of a
star-free algebra, the model S, and prove a quantifier-
elimination result for this model that contrasts with
the negative result proved for S\en. Section 5 extends
the results of the previous section to a more complex
example of a star-free algebra, the model S]eft- Sec-
tion 6 gives a restriction of S\en that admits a regular
algebra, and proves a quantifier elimination result for
this model. The section also connects this model to
the minimal model S. Section 7 gives an additional ex-
ample of a regular algebra, which contains each of the
previous examples. Section 8 gives conclusions. All
proofs are in the full version [6].

2 Notations

Throughout the paper, £ denotes a finite alphabet,
and £* the set of all finite strings over £. We consider
a number of operations on £*:

• x ■ y - concatenation of two strings x and y.

• x < y - x is a prefix of y.

• la(x), a 6 £, is x ■ a (adds last character).

• fa{x), a £ E, is a ■ x (adds first character).

• | a; | is the length of string x.

• x H y is the longest common prefix of the strings x
and y.

• x — y - the string z such that y ■ z = x, if it exists,
and e otherwise.

Note that |a;| does not return a string, so it is not
an operation of E*. Instead, we often consider the
predicate el(x,y) which is true iff \x\ = \y\.

We shall consider several structures on E*. The ba-
sic one is the structure S = (E*, ^, (/a)ags). We could
equivalently use unary predicates La, where La(x) is
true for strings of the form x' ■ a. Note that in the
presence of ■<, la and La are interdefinable, and we
thus shall use both of them.

We further consider a number of extensions of S.
In one of them characters can be added on the left
as well as on the right. This structure is denoted by

Sieft = (E*, <, (Does, (/a)ags)- Another extension,
denoted by S\en, adds length comparisons via the el
predicate (note that using < and el one can express
various relationships between lengths of strings, e.g.
M{=, 7^, <, >}\y\, \x\ = \y\ + k for a constant k, etc.).
To summarize, we mainly deal with the following struc-
tures:

. S = (E*,^,(/0)ae£>;

• Sieft = (E*,^,(/0)a6S>(/a)a€s);

. Sie„ = <£•,;<, (/a)aeE,el).

Once we consider regular algebras, we introduce two
more structures; however, operations in them will be
motivated by quantifier-elimination results for S and
Sieft and thus those structures will be defined later.

There is a very close connection between Sien and
an extension of Presburger arithmetic. Assume that
E = {0,1}. Let val(n), for n £ N, be n in binary,
considered as a string in E*. Let V2(n) be the largest
power of 2 that divides n. Then P C Nfc is definable in
(N, +, Vb) iff {(val(m),..., val(n*)) | (m,..., nk) £ P}
is definable in S)en [8, 10].

Model theory background Let Q be a finite or
countably infinite first-order signature, and M a model
over Ü. By FO(Af) we denote the set of all first-order
formulae in the language of Ü. The (complete) theory
of M, Th(M), is the set of all sentences in FO(M) true
in M. Two models M and M' over Q are elementary
equivalent if Th(M) = Th(M').

We say that M admits quantifier elimination (QE) if
for every formula ip(x) in FO(M) there is a quantifier-
free formula ip'(x) such that VäT ip(x) «->• <p'(x) is true
in M.

For a tuple a and a model M over fi, we let tpM(a)
be the type of a in M (the set of all formulae of FO(M)

433

satisfied by a), and atpM(a) be the atomic type in M
(the set of all quantifier-free formulae of FO(M) satis-
fied by a). If A is a subset of M, tpM(a/A) is the type
of o over A in M (the set of all FO-formulae over flUA
satisfied by a).

A ui-saturated model M over Q is a model such that
each consistent type over a finite set A in FO(M) is
satisfied in M. It is known [11] that every model M
over fi has an elementary equivalent w-saturated model
M*.

Isolation, VC-dimension Let T be a theory over
Q and M be a model of T. A subset A of M is said
to be pseudo-finite if (M, A) |= F(T,P), where P is a
unary predicate, and F(T, P) is the set of all formulae
of FO(0 U P) satisfied by all finite sets of elements in
any model of T.

If p is a type over A in M, a subset q of p isolates
p if p is the only type over A in M containing 5. A
complete theory T over fl is said to have the strong
isolation property if for any model AI of T and any
pseudo-finite set A and any element a in AI, there is
a finite subset .4o of A such that tp^j(a/Ao) isolates
tpAi(a./A). We say that it has the isolation property if
a countable AQ exists as above.

Isolation is an interesting property in the database
context because it implies certain collapse results for
query languages [3, 17] and it is used for that purpose
in [7]. Here we use it to provide bounds on the VC-
dimension of definable families.

For a family C of subsets of a set U, and a set F C U,
we say that C shatters F if {F n C \ C € C) is the
powerset of F. The VC-dimension of C is the maxi-
mum cardinality of a finite set shattered by C (or 00,
if arbitrarily large finite sets arc shattered by C). This
concept is fundamental to learning theory, as finite VC-
dimension of a hypothesis space is equivalent to learn-
ability (PAC-learnability) [2, 4].

Now consider a structure AI = (£*,fi), and a
FO(Af) formula <p(x,y). For each a, let ip(a, AI) = {b \
AI \= <p(a,b)}. The family of sets ip(a,M), where a
ranges over all tuples over 71/, is called a definable fam-
ily. We say that M has finite VC-dimension if every
definable family has finite VC-dimension. In particu-
lar, this implies learnability of concepts defined in FO
over AI.

3 Regular algebra based on Sien

As mentioned in the introduction, Sie„ is the canoni-
cal automatic structure, and relations definable in S\eu

are precisely the regular relations, that is, fc-ary de-
finable relations are precisely those given by letter-to-
letter fc-automata [9, 10]. In particular, this gives a
normal form for Sien-formulae. We introduce a new
type of length-bounded quantifiers of the form 3|x| < |y|
and V|x| < |y|. A formula 3|x| < \y\tp is meant as
an abbreviation for 3x(|x| < \y\) A <p. Since every fi-
nite automaton can be simulated by a length-bounded
FO(Sien) formula, we conclude that each FO(Sien) for-
mula is equivalent to a length-bounded FO(Sien) for-
mula. Note that this result can also be shown by a
straightforward Ehrenfeucht-Frai'sse game argument.

The universal property of Sien mentioned above in-
dicates that Sien may be "too rich" in relations for
many applications. We present evidence for this by
addressing the open question of [12, 26] whether S\en

has quantifier elimination in a reasonable signature.
One first needs to define what "reasonable" means here.
Clearly, every structure has quantifier elimination in a
sufficiently large expansion of the signature: add sym-
bols for all definable predicates, for example. One can
thus take reasonable to mean a finite expansion, but
this is not satisfactory: for example, Presburger arith-
metic has quantifier elimination in an infinite signature
(+, <,0,1, (mod fc)j(.>i). Note however that in this ex-
ample, the maximum arity of the predicates and func-
tions is 2. In fact, it appears to be a common phe-
nomenon that when one proves quantifier elimination
in an infinite signature, there is an upper bound on the
arity of functions and predicates in it.

We thus view this condition as necessary for a signa-
ture to be "reasonable". In general, a reasonable signa-
ture might contain relation symbols as well as function
symbols. Nevertheless, we can rule out the possibility
of a reasonable, purely relational signature for which
Sien has quantifier elimination. This is in contrast to
the weaker structures that we consider, all of which
have quantifier elimination in a relational signature of
bounded arity. Let S,^ be the expansion of SiCI1

with all definable predicates of arity at most n, and
definable functions of arity m. We show the following:

Theorem 1 (a) For any n > 0, and m = 0,1, S1(^
does not have QE. In particular, there is a property
definable in Sic„ which is not a Boolean combina-
tion of at most n-ary definable predicates in S\cn.

(b) S]cn , the expansion of Sien with all unary predi-
cates and binary functions, has QE.

Proof sketch. For (a), the property is whether for an
Ar-tuple of strings, for sufficiently large TV, there is a
position i such that the ith symbol of all N strings is
0. For (b), we show a stronger result, assuming that E

434

contains {0,1}. We prove QE in a signature that con-
tains the bitwise and, or, and not functions, left and
right shifts, and the following two families of functions.
Filer (iu) has a 1 at position i iff w[i] = a and a 0 other-
wise, and Patj^(w) has the same length as w and has
a 1 at position i iff i mod k = j and a 0 otherwise,
where j < k.

In cases of both (a) and (b), the proofs are based on
automata representations of definable sets, cf. [9]. □

Our next result shows another model-theoretic and
computational shortcoming of Sien: namely, a single
formula ip(x, y) can define a widely varying collection of
relations as we let the parameter x vary. We formalize
this through the notion of VC-dimension.

Proposition 1 There are definable families in Sien

that have infinite VC-dimension. G

4 Star-free algebra based on S

We now turn to the most obvious analog of Sien

for the star-free sets. This is the model S, which is
the most basic model among those studied in the pa-
per. We show that it has remarkably nice behavior:
it admits effective QE in a rather small extension to
the signature. This immediately tells us that definable
subsets of E* are precisely the star-free languages. We
then characterize the n-dimensional definable relations
in S by their closure properties, and by an automaton
model.

Note that S is very close to strings considered as
term algebras, that is, to (S,e, {la)ae^). It is of course
well-known that the theory of arbitrary term algebras
is decidable and admits QE [24]. However, adding the
prefix relation is not necessarily a trivial addition: for
arbitrary term algebras with prefix (subterm), only the
existential theory is decidable, but the full theory is un-
decidable [30] (similar results hold for other orderings
on terms [13]). The undecidability result of [30] re-
quires at least one binary term constructor; our results
indicate that in the simpler case of strings one recovers
QE with the prefix relation.

We start with a result that gives a normal form for
formulae of FO(S). Given a set S of strings , we let
Tree(S') be the tree (i.e. the partially-ordered struc-
ture) generated by closing 5 U {e} under n. In other
words, Tree(S) is the poset ({xlly | x,y £ 5u{e}}, -<).
(Note that for any set of strings si,...,Sk, there are
two indices i,j<k such that si n ... I~l s* = Sj n Sj.)

A complete tree-order description of a vector w of
variables is the atomic diagram of Tree(uT) in the lan-
guage of e, ^,n. In other words, it is a specification

of all the :< relations that hold and do not hold in
Tree(w).

For each L C £*, let PL be the set of pairs (x,y) of
strings such that x < y and y - x £ L. The following
lemma is obvious, since it is well-known that star-free
sets are first-order definable on string models [25].

Lemma 1 For each star free language L, there is a
formula tpi(x,y) in FO(S) which defines PL- □

We now give a normal form result for FO(S).

Proposition 2 Every formula ip(x) in FO(S) can
be effectively transformed into an equivalent formula
which is a disjunction of formulae of the form

j(x) A 8{x)

where j(x) is a complete tree-order description over
x and 5(x) is a conjunction of formulae of the form
ipL,(t(x),t'(x)), where L is star-free, t(x) andt'(x) are
either e or a term of the form XiHxj, and j(x) implies
that t(x) is an immediate successor oft'(x) in the tree-
order.

Proof is by induction on the structure of i\). D

Let S+ be the expansion of S to the signature that
contains e, (1 and a binary predicate PL for each star-
free language L. Note that S+ is a definable expansion
of S, as all additional functions and predicates are de-
finable. From the normal form we now immediately
obtain:

Theorem 2 S+ admits quantifier elimination.

Remark. As mentioned above there is no need
to nest the n-operator. Therefore, S+ can be
turned into a relational signature that admits quan-
tifier elimination as follows. For each star-free L let
P'L be the set of tuples (si,S2,«3,S4) of strings for
which -Pz,(n(si,s2),n(s3,s4)). Note, that n(si,s2) <
n(s3,s4) can be expressed as Pj> (n(si,s2),n(s3,s4)).
It is straightforward to check that this signature admits
quantifier elimination. In the same way, the quantifier
elimination results in the remainder of the paper can be
turned into quantifier elimination results in a relational
signature.

Note also that S+ could be considered as an expan-
sion of S with either functions la or predicates La in
the signature. In the latter case, predicates La are not
needed as La(x) iff Ps*a(e, #)■

Another corollary of the normal form is that in the
language of S, it suffices to use only bounded quan-
tification. That is, we introduce bounded quantifiers of

435

the form 3x <y and Vx < y (where 3x < y ip means
3x x ■< y A ip), and let FO(,(S) be the restriction of
FO(S) to formulae <p{yi,---,yk) in which all quanti-
fiers are of the form Qx < yi. From the normal form
and the fact that each <pi can be defined with bounded
quantifiers, we obtain:

Corollary 1 F06(S) = FO(S). D

Finally, we characterize S-definable subsets of E*
and (E*)*. Given a subset R C (E*)fc and a per-
mutation 7T on {l,...,fc}, by ir{R) we mean the set

{(s„(i),...,s„(fc)) | {si,...,sk) G R}.

Corollary 2

a) A language L C E* is definable in S iff it is star-

free.

b) The class of relations definable over FO(S) is the
minimal class containing the empty set, {e}, {a}
a G E, <, n, and closed under Boolean operations,
Cartesian product, permutation, and the operation
* defined by L\ * L2 = {(.si, si • ,s>) | .si G L\, s> G

L,} forLuL2 CE*.

Proof, a) S+ formulae in one free variable are Boolean
combinations of P[y(e,x). for L star-free, and thus they
define only star-free languages.

b) For one direction notice that f, {a}, -<, n are
definable in FO(S), and that FO(S) is closed under
boolean operations, permutation and Cartesian prod-
uct. The closure under * is an easy consequence of
Lemma 1 as L\ * L2 corresponds to {(x, y) \ i^/,, (f, x) A
<pi2{x,y)}. The otlier direction follows from the nor-
mal form. □

Note that the projection operation is not needed in
the closure result above.

Automaton We now give an automaton model char-
acterizing definability in FO(S). This automaton
model corresponds exactly to the counter-free variant
of regular prefix automaton as defined in [1].

Let us recall the definition of regular prefix automa-
ton. Let A be a finite non-deterministic automaton on
strings with state set Q, transition relation S and ini-
tial state ry0. We construct from .4 an automaton .4 =
(E, Q, qo,F, 5) accepting n-tuples w = (wi, • • •, wn) of
strings in the following way. F is a subset of Q" which
denotes the accepting states of A. Let prefix(iü) be the
set of all prefixes of all w,. A run of /I over «7 is a
mapping h from prefix (u7) to Q which assigns to every

node Q £ prefix(iv) a state q G Q such that h(e) — qo
and, ß = la(a) implies h(ß) € S(h(a),a). The run is
accepting if (h(uii), • • •, h(wn)) G F. The n-tuple iv is
accepted by A if there is an accepting run of A over w.

See [1] for more details.

For each finite non-deterministic automaton A the
corresponding automaton A is called regular prefix au-
tomaton (RPA). The subset of (E*)n, n G N, it defines
is called a regular prefix relation (RPR).

If the automaton A is counter-free then we say that
the corresponding automaton A is counter-free (CF-
PA). The following shows that the relations definable
in FO(S) are exactly those recognizable by a CF-PA.

Proposition 3 A relation is definable in FO(S) if and

only if it is definable, by a counter-free prefix automa-

ton. □

It should be noted that FO(S) can also be character-
ized by means of counter-free deterministic bottom-up
automata.

VC-dimension and Isolation In addition to quan-
tifier elimination, S has some further model-theoretic
properties that distinguish it from S|(,„.

Proposition 4 Th(S) has the strong isolation prop-
erty. □

As a corollary of the isolation property, we prove
that, unlike for S]0n. the definable families for S are
learnable. First, we need the following.

Proposition 5 Let M be a model with the isolation
property. Then its definable families have finite VC-
dimension.

We give two proofs of this result in the full version: one
is a complexity-theoretic argument, the other model-
theoretic. □

It follows that the model S, unlike Sj,,„, has learnable
definable families.

Corollary 3 Every definable family in S has finite.
VC-dimension. O

5 Star-free algebra based on S loft

We now study an example of a star-free algebra,
one where the n-ary relations in the algebra are more
complex than those definable- over S. Recall that

436

Sieft = (S*,^,(/a)o6S,(/a)a6E>; that is, in this struc-
ture one can add characters on the left as well as on
the right.

Without the prefix relation, this structure was stud-
ied in [27], where a quantifier-elimination result was
proved, by extending quantifier-elimination for term
algebras (in fact [27] showed that term algebras with
queues admit QE). However, as in the case of S, which
differs from strings as terms algebras in that it has the
prefix relation, here, too, the prefix relation compli-
cates things considerably.

We start with an easy observation that FO(Sieft) ex-
presses more relations that FO(S). Indeed, the graph
of fa, Fa = {(x,a ■ x) | x e £*} is not expressible in
FO(S), which can be shown by a simple game argu-
ment. More precisely, given a number k of rounds, let
n = 2k + l and consider the game on the tuples (0n, 10")
and (0n+1,10"). By Corollary 1 it is sufficient to play
on the prefixes of the participating strings. The dupli-
cator has a trivial winning strategy on the strings 10"
and a well-known winning strategy on 0" versus 0"+1.

Let Sj£ft be the extension of S]eft with the same (de-
finable) functions and predicates we added to S+ (that
is, a constant e for the empty string, the binary function
n for the longest common prefix, the predicate PL(X, y)
for each star-free language L), and the unary function
x H-> x — a, for each a 6 E (which is also definable).

Theorem 3 Sj^ft admits quantifier elimination.

Proof sketch. Let fls+ and Qc+ be the first-order
3left

signatures of S+ and S^ft. Let M be an w-saturated
model over fts+ elementary equivalent to Sj^ft. It suf-
fices to prove quantifier elimination in M. Note that
M can have both finite and infinite strings. To prove
QE, we must show that every two tuples of elements
of M that have the same atomic type, have the same
type. Define a nice term of 0«+ as a term of the form

°left

t(x) = x-a + b, where a and b are finite strings. Given
two tuples c and d of the same length over M, define
two relations on them:

• c = d iff for all sequences i\,..., ik from {1,..., n}
(where n is the length of c) and all sequences
ti,... ,tk of nice terms:

atps+itiia,),..., tk{cik))
= atps+(*i(dii),---,ifc(dij)

• (c',c) =i (d',d) iff for all sequences ii,...,ik

from {1,..., n) and all sequences t\,..., tk of nice
terms:

atPs+(c,,ti{cil),...,tk(cik))
= afps+Cd',*!^),...,^^))

Of course, (c',c) = (d',d) implies (c\c) =x (d',d),
as the identity is a nice term. We then prove the main
lemma, which shows that these two relations coincide;
that is, if {c',c) =j {d',d), then also (c',c) = (d',d).

Using this, we show that = has the back-and-forth
property in M (which is actually stronger than what
is needed for quantifier-elimination). The theorem
follows from the lemma, as each type of the form
a^Ps+(*i(cii), ■• -,tk(cih)) is also an atomic type of
S[£ft. Hence, the atomic types determine the types.
For details, see the full version [6]. D

From the previous theorem we get the following
corollaries. First, the back-and-forth property of =i
gives us the following normal form for FO(S^ft) for-
mulae.

Corollary 4 For every FO(S]eft) formula p(x, y) there
is an FO(S) formula p'{x,z) and a finite set of nice
^ieft *erms t such that

Vxy p(x,y) <r> p'(x,t(y))

holds in Sieft. □

Then Corollary 4 for the empty tuple y and Corol-
lary 2 imply:

Corollary 5 Subsets of T,* definable over Sieft are pre-
cisely the star-free languages. □

For formulae in the language of Sieft (as opposed
to S,+ft), we can show that bounded quantification
suffices, although the notion of bounded quantifica-
tion is slightly different here from that used in the
previous section. Let Np(s) be the prefix-closure of
{s - sx + s2 | |si|, \s2\ < p}. Clearly Np{s) is definable
from s over Sieft. We then define FO»(Sieft) as the class
of FO(Sieft) formulae ip(x) in which all quantification
is of the form 3z e Np(xi) and Vz 6 Np(xi), where Xi
is a free variable of tp and p > 0 arbitrary.

Corollary 6 FO,(Sleft) = FO(Sleft). D

Isolation and VC-dimension We now show that
the results about isolation and VC-dimension extend
from S to Sieft.

Proposition 6 Th(Sieft) has the isolation property. D

Since the argument for corollary 3 actually shows
that isolation implies finite VC-dimension, we con-
clude:

Corollary 7 Every definable family in S]eft has finite
VC-dimension. D

437

6 Regular algebra extending S

The previous sections presented star-free algebras
with attractive properties. We now give an example of
a regular algebra that has significantly less expressive
power than the rich structure Sien, and which shares
some of the nicer properties of the star-free algebras in
the previous sections.

This algebra can be obtained by considering two pos-
sible ways of extending FO(S): the first is by adding
the predicates Pi for all regular languages L\ that is,
predicates Pi(x,y) which hold for x < y such that
y — x £ L, where L is a regular language. The sec-
ond extension is by using monadic-second order logic
instead of only first-order logic. It turns out that these
extensions define exactly the same algebra. We show
this, and also show that the resulting regular algebra
shares the QE and VC-dimension properties of the star-
free algebras defined previously.

Let Sreg = (£*,:<, (Za)o6S,(Pj,)L regular)- Since il

defines arbitrary regular languages in £*, it is a proper
extension of S. Every FO(Sreg)-definable set is defin-
able over Sicn, because the predicates Pi are definable
in S|e„ (the easiest way to see this is by using the char-
acterization of Sic definable properties via letter-to-
lettcr automata). Thus, we have:

Proposition 7 Subsets of E* definable over S
precisely the regular languages.

reg

G

Let S+ be the extension of Srog with e and IT Most
of the results about S and S+ from Section 4 can be
straightforwardly lifted to Srcg and S+g. For example,
the normal form Proposition 2 holds for Sreg if one
replaces "star-free" with "regular": the proof given in
Section 4 applies verbatim. From this normal form we
immediately obtain:

Theorem 4 S+ admits quantifier elimination. Ü

The normal form result also shows that neither the
functions /„ nor the predicate el are definable in Sreg

(the former can also be seen from the fact that Sreg has
QE in a signature of bounded arity, and Sinn does not;
for inexprcssibility of /„ it suffices to apply the normal
form results to pairs of strings of the form (1 • 0A, 0A')).
One can also show, as in the case of S, that bounded
quantification over prefixes is sufficient.

Our next aim is to show that FO(Sreg) gives us ex-
actly the same algebra of definable sets as MSO(S).

Notice first that each relation definable in FO(Srcg)
is already definable in MSO(S) because each predicate

Pi is definable in MSO. We will show in the following
that the converse implication also holds.

The proof relies on a lemma which essentially shows
that the monadic second-order type of a tuple of strings
only depends on its tree-order type and the monadic
second-order types of the paths between the strings and
their common prefixes.

For a sequence a = (ai,...,an) of strings, let Tg be
the structure (E*, ;<, (LQ)ae£,a).

For each string w € E*, let lw be the finite structure
(Iw,<,(Ra.)aex,l,\w\) where /„, is {1,..., |iu|}, < is
the usual order and, for each a G E, Ra is the set of all
positions of w that carry the letter a. For two strings
u,!)£E*,we write u =s

k v if Xu =MSO». %V

Lemma 2 For each k > 0, there is k' > 0 such
that the following holds. Let a = (m,... ,an),b —
(bi,... ,bn) be sequences of strings for which there is
a tree isomorphism h : Tree(a) —> Tree(b) such that

(i) for each i 6 {1,... , n}, /i(n,) = bi, and

(ii) whenever u is the immediate predecessor of v in
Tree(o) then v — u =s

k h(v) — h(u).

Then Ts =Msot
Th- a

As both conditions (i) and (ii) of the Lemma are
expressible in FO(Sreg), we obtain:

Theorem 5 FO(Sr MSO(S). D

The bounded monadic second-order quantifier 3X <
y is defined as follows. A formula 3X < y if holds
if and only if 3X(VxX(x) —> x ^ y) A tp holds. We
define MSO),(S) by binding all first-order and monadic
second-order quantifiers.

From Theorem 5 we can easily derive the following
corollaries.

Corollary 8

• MS06(S) = MSO(S)

• Subsets o/E* definable in MSO(S) are exactly the
regular languages.

Automata model, isolation, and VC dimension
It was proved in [1] that Regular Prefix Relations
(RPR) (those definable by Regular Prefix Automata
(RPA), introduced in Section 4) are exactly those de-
finable in MSO(S). Thus Theorem 5 together with the
results of [1] gives a new characterization of FO(Sreg).

438

'len

Sleft

star-free algebras

reg,left regular algebras

>reg

Figure 1. Relationships between S, Sieft, Sreg, Sreg,ieft, and S 'len-

Corollary 9 The relations definable in FO(Sreg) are
exactly the RPR relations. Thus each relation definable
in FO(Sreg) is recognizable by a RPA. Q

The proof of the isolation property for S (Proposi-
tion 4) is unaffected by the change from star-free Pi
to regular PL- Thus, we obtain:

Corollary 10 Th(Sreg) has the isolation property,
and definable families
dimension.

of Sreg have finite VC-
G

7 Regular algebra extending S]eft

We now give a final example of a regular algebra.
Let Sreg,left be the common expansion of Sieft and Sreg,
that is, (E*,^,(Za)oeE,(/a)o€E,(P£,)Lregular). Since
Sreg cannot express the functions fa, and Sieft cannot
define arbitrary regular sets, we see that Sreg,ieft is a
proper expansion of Sreg and S]eft- Furthermore, all
Sreg,left-definable sets are Sien-definable; the finiteness
of VC dimension for Sreg,ieft, shown below, implies that
this containment is proper, too.

Let S+ left be the common expansion of Sj£ft and
Sreg, that is, the expansion of Sreg,ieft with e and FT
The techniques of the previous sections can be used to
show the following:

Theorem 6 Sf |eft has quantifier-elimination. Fur-
thermore, Th(Sreg,ieft) has the isolation property, and
definable families in Sreg,ieft have finite VC-dimension.
D

Similarly to Sieft, we derive from the proof of Theo-
rem 6 the following normal form for Sreg,ieft formulae:

Corollary 11 For every FO(Sreg,ieft) formula p(x,y)
there is an FO(Sreg) formula p'(x,z) and a finite set

of nice S^ft terms t such that

Vxy p(x,y) <-> p'(x,t(y))

holds in Sreg,ieft- G

We conclude this section with a remark show-
ing that arithmetic properties definable in structures
S, Sieft, Sreg, Sreg,left are weaker than those definable in
Sien- As we mentioned earlier, under the binary encod-
ing, Sien gives us an extension of Presburger arithmetic;
namely, it defines + and V-2, where V2 (x) is the largest
power of 2 that divides x. But even Sreg,ieft is much
weaker:

Proposition 8 Neither successor, nor order, nor
addition, are definable in Sreg,ieft (and hence in
S, Sreg, Sieftj. Q

8 Conclusion

There has been significant interest in theoretical
computer science in understanding the structure of the
regular languages, and in identifying subclasses of the
regular languages that have special properties [29, 28].
Our work can be seen as an extension of this program,
where we consider subclasses of the regular n-ary re-
lations rather than the regular sets. In our approach,
however, we do not focus on properties that hold of one
particular regular relation by itself, but rather look at
some desirable properties of a whole algebra of relations
lying within the structure Sien-

We have shown a sharp contrast between the behav-
ior of the full algebra of regular relations of Sien, and
those of various submodels such as S, Sieft, Sreg, and
Sreg,left- We show that the latter are more tractable in
many respects. Furthermore, we show that the behav-
ior of an algebra of relations is not at all determined by

439

the one-dimensional sets (subsets of £*) in the algebra:
for example, one can have fairly complex binary rela-
tions definable, yet still maintain the property that all
definable subsets of E* are star-free. Figure 1 summa-
rizes the relationships between the star-free and regular
algebras we considered here.

A key question is how many relations one can add
to the models Sieft or Sreg and still have the attrac-
tive properties like QE and finite VC-dimension. Is
there a model that is somehow maximal with respect
to these properties? We would very much like to know
the answer to this question. There are also several nat-
ural candidate models that would seem amenable to the
approach taken here, and where one would expect the
same results to go through: for example, if one allows
the operation concatenating a fixed sequence "in the
middle" of a string, rather than on the left or on the
right, is the resulting model still tractable?

References

[1] D. Angluin, D. N. Hoover. Regular prefix relations.
Mathematical Systems Theory 17(3),167-191,1984.

[2] M. Anthony and N. Biggs. Computational Learning

Theory. Cambridge Univ. Press, 1992.

[3] O. Belegradek, A. Stolboushkin, M. Taitslin. Ex-
tended order-generic queries. Annals of Pure, and Ap-

plied Logic. 97 (1999), 85-125.

[4] A. Blumer, A. Elirenfeuclit, D. Haussler, M. Warmuth.
Learnability and the Vapnik-Chervonenkis dimension.

Journal of the. ACM 36 (1989), 929 965.

[5] M. Benedikt, L. Libkin. Relational queries over inter-
preted structures. J. ACM 47 (2000), 644-680.

[6] M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin.
A model-theoretic approach to regular string rela-
tions. INRIA Technical Report, 2000. Available at
http://www-rocq.inria.fr/verso/publications/.

[7] M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin.
String operations in query languages. In PODS'01.

pages 183 194.

[8] J.R. Biichi. Weak second-order arithmetic and finite
automata. Zeit. Math. Logik Grundl. Math. 6 (1960),
66 92.

[9] A. Blumensath and E. Grädel. Automatic structures.

In LICS'00, pages 51-62.

[10] V. Bruyere, G. Hansel, C. Michaux, R. Villemaire.

Logic, and p-recognizable sets of integers. Dull. Belg.

Math. Soc. 1 (1994), 191-238.

[11] C.C. Chang and H.J. Keisler Model Theory. North
Holland, 1990.

[12] G. Cherlin and F. Point. On extensions of Presburger

arithmetic. In Proc. ^th Easter Model Theory Conf.,

Humboldt Univ. Berlin, 1986.

H. Comon, R. Treinen. The first-order theory of lexico-

graphic path orderings is undecidable. TCS176 (1997),

67-87.

E. Dantsin, A. Voronkov. Expressive power and data

complexity of query languages for trees and lists. In

PODS'2000, pages 157-165.

C. Elgot and J. Mezei. On relations defined by gener-

alized finite automata. IBM J. Res. Develop. 9 (1965),

47-68.

D. Epstein et al. Word Processing in Groups. Jones

and Bartlett Publ., 1992.

J. Flum and M. Ziegler. Pseudo-finite homogeneity

and saturation. Preprint, Freiburg University, 1998.

C. Frougny and J. Sakarovitch. Synchronized rational

relations of finite and infinite words. TCS 108 (1993),

45-82.

E. Grädel and Y. Gurevich. Metafinite model theory.

Information and Computation 140 (1998), 26-81.

G. Grahne, M. Nykänen, E. Ukkonen. Reasoning
about strings in databases. JCSS 59 (1999), 116 162.

D. Harel. Towards a theory of recursive structures. In
MFCS'98, pages 36 53.

B. Khoussainov and A. Nerode. Automatic presenta-
tions of structures. In LCC'0/,, pages 367 392.

G. Kuper, L. Libkin, J. Paredaens. editors. Constraint

Databases. Springer. 2000.

A. Maicev. On the elementary theories of locally free

universal algebras. Soviet Math.. Doklady 2 (1961),

768 771.

R. McXaughton and S. Papcrt.

tomata. MIT Press, 1971.
Counter-Free. Au-

C. Michaux, R. Villemaire. Open questions around
Biichi and Presburger arithmetics. In Logic: From

Foundations to Applications, Oxford Univ. Press,
1996, pages 353 383.

T. Rybina, A. Voronkov. A decision procedure for term
algebras with queues. LICS'2000, pages 279 290.

H. Straubing. Finite Automata, Formal Logic, and

Circuit Complexity. Birkhäuser, 1994.

\V. Thomas. Languages, automata, and logic. Hand-

book of Formal Languages, Vol. 3, Springer, 1997.

K. Venkataraman. Decidability of the purely existen-

tial fragment of the theory of term algebras. J. ACM

34 (1987), 492-510.

440

Author Index
Abiteboul, S 379
Adler, M 197
Alon,N 421
Altenkirch, T 303
Alur,R 291
Appel, A 247
Arnold, A 157
Asarin, E 269
Avigad, J 139
Barrett, C 29
Barrington, D 187
Benedikt, M 431
Berger, M 311
Blanqui, F 9
Bouajjani, A 269, 399
Brans, G 409
Cook, S 177
Das, S 51
de Alfaro, L 279
Dill, D 29, 51
Dybjer, P 303
Escardö, M 115
Fiore, M 93
Ganzinger, H 81
Godefroid, P 409
Godoy, G 38
Gurevich, Y 129
Henzinger, T 279
Hofmann, M 303
Honda, K 311
Huuskonen, T 167
Hyttinen, T 167
Immerman, N 187, 197
Janin, D 347
Jeffrey, A 323
Kirousis, L 71
Kolaitis, P 71
Kolokolova, A 177
Kozen, D 259
Kupferman, 0 389
La Torre, S 291
Laird, J 105

Lange, M 357
Lautemann, C 187
Lenzi, G 157, 347
Levitt, J 29
Libkin,L 431
Majumdar, R 279
Manolios, P 366
Marcinkowski, J 157
Milo.T 421
Mitchell, J 3
Muscholl, A 399
Neven, F 421
Nieuwenhuis, R 38
Pfenning, F 221
Ramanathan, A 3
Rueß,H 19
Salibra, A 334
Scedrov, A 3
Schweikardt, N 187
Schwentick, T 431
Scott, P 303
Segoufin, L 431
Shankar, N 19
Simpson, A 115
Stirling, C 357
Stoller, S 61
Stump, A 29
Suciu, D 421
Szwast, W 147
Teague, V 3
Tendera, L 147
Terui, K 209
Therien, D 187
Tiuryn, J 259
Touili,T 399
Trefler, R 366
Turi, D 93
Vardi, M 389
Vianu, V 421
Xi,H 231
Yoshida, N 311

441

Notes

Notes

Notes

r
Notes

IEEE

COMPUTER
SOCIETY

Press Operating Committee

Chair Editor-in-Chief
Mark J. Christcnscn Mike Williams

Independent Consultant Department of Computer Science, University of Calgary

Board Members

Roger U. Fujii, Vice President, Logicon Technology Solutions
Richard Thaycr, Professor Emeritus, California State University, Sacramento

Sallic Shcppard. Professor Emeritus, Texas A&M University
Deborah Plummer, Group Managing Editor, Press

IEEE Computer Society Executive Staff
Anne Marie Kelly, Acting Executive Director

Angela Burgess, Publisher

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available from most retail outlets.
Visit the CS Store at http://computer.org for a list of products.

IEEE Computer Society Proceedings
The IEEE Computer Society also produces and actively promotes the proceedings of more than 160
acclaimed international conferences each year in multimedia formats that include hard and softcover
books, CD-ROMs, videos, and on-line publications.

For information on the IEEE Computer Society proceedings, please e-mail to csbooks@computer.org or
write to Proceedings, IEEE Computer Society, P.O. Box 3014, 10662 Los Vaqucros Circle,
Los Alamitos, CA 90720-1314. Telephone +1-714-821-8380. Fax +1-714-761-1784.

Additional information regarding the Computer Society, conferences and proceedings, CD-ROMs,
videos, and books can also be accessed from our web site at http://computer.org/cspress

Revised April 20,2001

