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1    Summary 

In this final report we summarize our accomplishments in the research program supported by Grant F33615- 
97-1-1014 over the period from August 1, 1997 to December 31, 2000. The basic objective of this research 
program was to pursue an integrated set of research problems associated with automatic target detection 
and recognition (ATD/R) using multiscale, multiresolution, and/or multiaspect approaches. 

One of our major successes to date in prior work was in developing multiresolution stochastic models for 
SAR imagery that accurately capture the scale-to-scale statistical variability of speckle in SAR imagery. In 
one application, we used models for natural clutter and for man-made objects together with our fast statistical 
likelihood calculation methods to develop an enhanced discrimination feature that, when integrated into 
Lincoln Labs' ATR algorithm and tested on a very large data set, resulted in a factor of 6 reduction in false 
alarms over the previous best results. In the second application, we used our models to segment natural 
clutter (trees and grass) and to enhance anomalous pixels (due to man-made scatterers) that did not produce 
the scale-to-scale variability consistent with natural clutter. The results are very accurate segmentations and 
enhanced visibility of anomalies as compared to widely used constant false alarm rate (CFAR) methods. 

There are many additional applications for these multiscale models. For example, anomalies that result 
from man-made objects exhibit themselves as distinctive patterns across scale that differ significantly from 
the scale-to-scale textural variations. Consequently, chains of pixels across scale could in principle be viewed 
as robust and statistically meaningful features that can be further exploited for model-based recognition. In 
this work we turn our attention to the application and further development of multiscale features for higher 
level recognition and reasoning. Classically, target models include geometrical constraints on the appearance 
of features in space. In this new framework, models will also include information about the appearance of 
features across scale. The development of such models is a central objective of this project. Once we have 
such models, we can use our statistically optimal methods for evaluating likelihoods to evaluate match scores 
for hypothesized models and poses. 

Towards that end we integrate the following methodologies (related sections in paranthesis) in developing 
a unified multiscale statistical approach to SAR signal processing: 

multiscale modeling Sections 2, 5 
multiaspect, multiresolution modeling Sections 3, 4, 5, 6, 7, 8 
nonparametric statistics Sections 2, 3, 5, 6, 7, 8 
applied information theory Sections 5, 6 

We differentiate multiscale and multiresolution to indicate those methods which focus on modeling the 
log-magnitude image data versus the phase history, respectively, while multiaspect refers to those techniques 
which incorporate images acquired at disparate viewing angles. However, all of these methods can be 
viewed as statistical methods applied to the SAR view sphere. The application of these methodologies 
encompassed both the modeling of single scattering centers as well as objects (described by collections of 
these scatterers). Nonparametric statistics and information theory provide a richer means of modeling the 
complex uncertainties that arise when modeling SAR scattering at the distributed object level. 

The principal investigators for this effort were Professors W. Eric Grimson, P. Viola, and Alan S. Willsky. 
Drs. J. Fisher and W. M. Wells served as senior investigators for this project, and a considerable number 
of graduate research assistants and additional thesis students not requiring stipend or tuition support par- 
ticipated in this effort. Furthermore, in the course of our research, we established working relationships 
with several organizations with long histories of involvement in ATD/R. In particular, we have interacted 
closely with several groups of engineers and scientists at Lincoln Laboratory, including researchers directly 



involved in Defense Advanced Research Projects Agency (DARPA)-sponsored ATD/R programs. We have 
also interacted with engineers at Environmental Research Institute of Michigan (ERIM) and have several 
collaborations with Alphatech, Inc., which is involved in several ATD/R projects under DARPA support, 
including a Phase II Small Business Innovative Research (SBIR) program, a project under the joint Indus- 
try/University initiative in ATD/R, and two contracts in the MSTAR program. We believe that we have 
had considerable success in our research. Moreover, our work has also led to several significant transitions 
which have helped to establish and fuel the industrial interactions mentioned previously. In addition, a major 
element of the success that we have had can be seen in the continuing vitality of our efforts in this area. 
Indeed both our university research and our interactions with Lincoln, Alphatech, and ERIM have allowed 
us to identify research directions and areas for collaboration and transition that hold considerable promise 
for the some time to come. In the body of this report we provide a brief summary of the major elements 
of our research program all of which highlighted in detail in subsequent sections of this report which also 
include additional references. We also note that there are several manuscripts arising from this research 
currently under peer review for publication in various scholarly journals. 

1.1    Research Description 

In this section we briefly describe the major elements of the research in which we have been engaged during 
the tenure of this grant. We limit ourselves here to a succinct summary of these results and refer to the 
sections contained in the report for detailed developments. 

1.1.1 Nonparamtric Multiscale Target/Clutter Models 

This work, led by Professors Grimson and Viola and graduate student Jeremy De Bonet is a method for 
modeling SAR imagery as a multiscale random process. The method successfully captures aspects of both 
the structure and variability of SAR imagery exhibited in the log-magnitude domain. Section 2 details a 
SAR vehicle classifier based on this approach, which is applied to the public release MSTAR database and 
compared to the Wright-Patterson Air Force Base (WPAFB) baseline template classifier. Section 5 details an 
application to SAR scene registration for multiple aspect views. Note that the method described in section 5 
includes a technique for automatic tie-point selection which could easily be adapted to the general problem 
of anomaly detection. 

1.1.2 Attribution of Anisotropie Scattering Centers 

This work, led by Professor Willsky, Dr. Fisher, and graduate student Andrew Kim, addresses the shortcom- 
ing of standard SAR imaging in that energy from scattering centers is assumed to occupy the full aperture. 
The well known phenomenon of speckle in SAR imagery belies to fault in this assumption. This work, 
detailed in sections 3 and 3, establishes a generic model of unimodal scattering derived from a multireso- 
lution (multiaperture) representation of pixel reflectivities. Section 3 describes the initial approach as an 
extension of the multiscale models described in section 2, while section 4 further develops the model as well 
incorporating it into the Ohio State University matching engine (also supported under the same research 
program). 

1.1.3 SAR Vehicle Model Building from Multiple Aspect Imagery 

This work, led by Professor Willsky, Dr. Fisher, and graduate student John Richards (now working for 
Sandia National Laboratory) develops an approach for generating a vehicle scattering center models from 



multiple aspect views. This technique is of particular interest for denied-target modeling or refining extant 
cad models. Section 7 describes the initial approach in the expectation-maximization framework while section 
8 extends the approach to building target models. 

1.1.4    Information Theoretic Approaches to SAR Scene Analysis 

This work, led by Dr. John Fisher, looks at an information theoretic approach for extracting statistically 
relevant features for estimation. Section 6 describes the approach and demonstrates the efficacy for pose 
estimation of vehicles within SAR imagery. This work is currently being transitioned to Alphatech, Inc. to 
be used in a DOD-sponsored feature-aided tracking program. 



2    Flexible Histograms:  A Multiresolution Target Discrimination 
Model 

In previous work we have developed a methodology for texture recognition and synthesis that estimates 
and exploits the dependencies across scale that occur within images[l, 2]. In this paper we discuss the 
application of this technique to synthetic aperture radar (SAR) vehicle classification. Our approach measures 
characteristic cross-scale dependencies in training imagery; targets are recognized when these characteristic 
dependencies are detected. We present classification results over a large public database containing SAR 
images of vehicles. Classification performance is compared to the Wright Patterson baseline classifier [3]. 
These preliminary experiments indicate that this approach has sufficient discrimination power to perform 
target detection/classification in SAR. 

2.1    Introduction 
The detection and classification of targets in imagery is a difficult problem. Any successful algorithm must 
be able to correctly classify the very wide range of images generated by a single target class. The sources of 
image variations in SAR are many: target rotation, translation, articulation, sensor noise, depression angle, 
overlay, camouflage, and many others. Typically classifiers attempt to deal with these variations in one of two 
ways: invariance and duplication. For example, translation invariance could be achieved by solely measuring 
the distance between detected scatters, since distance is invariant to translation. However, such a method 
does not work as well as the target rotates, since scatters may appear and then disappear. Alternately, a 
duplicative technique could be used at the cost of additional computation - by using several separate models 
for a single target class, each tuned to a different target orientation. 

In this paper we compare a nonparametric multiscale approachwith a baseline classifier proposed and 
implemented by a group at WPAFB [3]. Their intent was to provide a reasonable standard for comparison 
of new SAR target recognition approaches. Their approach is duplicative: each target class is modeled by a 
number distinct templates each tuned to a different orientation. Targets are recognized if one of the target 
templates is nearby in the vector space defined by the cells of a SAR image.1 The history of templates in 
recognition is extensive (see Duda and Hart[4] for an early review). Measuring the distance to a template is 
equivalent to measuring the negative log likelihood of a Gaussian process whose mean value is the template. 
Since each target is modeled as a collection of templates, the model is essentially a mixture of Gaussians. 
This is the optimal classification approach when we believe that rotation has been sampled finely enough, and 
that the other variations in SAR imagery can be modeled as a Gaussian noise. Over many years, template 
matching has proven to be a very effective technique. It is not surprising that the template-based classifier 
yields very good performance. However, it may be infeasible in practice to acquire the large number of 
example images needed. 

In this paper we present an alternative statistical model for the variations in SAR imagery. Models are 
developed from far fewer target vehicle examples than are needed by template techniques. We show that it 
effectively classifies targets in the presence of a difficult set of confusion vehicles. These results have been 
quantified and compared with the performance of our reimplementation of the WPAFB baseline classifier. 

xwe refer to the amplitude of the complex signal in a resolution cell as a cell. 



2.2    Multiresolution Models of Targets 

Recently it has been shown that multiresolution models of statistical processes can be effective for target 
detection in SAR data [5, 6, 7]. These model have decomposed the SAR signal into a number of different 
images at different scales from coarse-to-fine. Irving et al. define a coarse to fine statistical process in 
which the distribution of higher frequency data is conditioned on lower frequency data. This conditional 
distribution is modeled as a Gaussian. Using these conditional distributions a multiscale Markov chain is 
defined which can model complex dependencies both across scale and space. A target detection algorithm 
is constructed from a pair of such distributions, one for targets and one for clutter. Each statistical model 
is trained from example data: a set of chips containing targets and another set of chips containing only 
clutter. From these chips, multiscale representations are computed, cross-scale conditional distributions are 
observed, and the parameters of the cross-scale Gaussian distribution are estimated. 

In many ways our classification approach is a generalization of these multiscale detection algorithms, 
with three key differences: i) our multiresolution representation separates and distinguishes information 
represented at different orientations; ii) we consider full (non-Markovian) cross-scale conditional distributions; 
and iii) our cross-scale model is nonparametric and as a result, can model non-Gaussian processes. 

2.2.1    A Coarse-to-Fine Generative Process 

As in previous work[6, 7], the generative model that underlies our statistical classification approach is a 
conditional probability distribution across scale. This probability chain defines a statistical distribution for 
the entire SAR signal (including information at every frequency). This is accomplished by modeling the 
dependency of the highest frequencies on lower frequencies. 

Unlike previous approaches, we define the conditional chain on a multiscale wavelet transformation. The 
wavelet transform is most efficiently computed as an iterative convolution using a bank of filters. First a 
pyramid of low frequency downsampled images is created: G0 = I, G\ = 2 J,(g®Go), and Gi+i = 2 |(ff<8><?i), 
where 2 j downsamples an image by a factor of 2 in each dimension, ® is the convolution operation, and g is 
a low pass filter. At each level, a series of filter functions is applied: Fj = ft® Gh where the fc's are various 
types of filters (see Figure 1). Computation of the Fj's is a linear transformation that can thought of as a 
single matrix W. With careful selection of g and ft (as done in [8]) this matrix can be constructed so that 
W1 = WT. Computation of the inverse wavelet transform is algorithmically similar to the computation of 
the forward wavelet transform. 

For every resolution cell in an SAR data we define the parent vector. 

9(x,y)=   [F°(x,y),FZ(x,y),---,F0
M(x,y), (1) 

^(LU.Lifjj.^afj.L^.-.^afj.Lifj).-. 

where N is the top level of the pyramid and M is the number of features. The parent vector can be visualized 
schematically as in Figure 2, in which the image is decomposed from coarsest (on the left) to finest resolution 
(on the right). Each element in these arrays represents the collected feature responses at that location and 
resolution. 

We define a probability distribution over SAR images as a multiresolution wavelet tree across scale. In 



Figure 1: Wavelet Decomposition of a SAR Target Chip. In the upper left are the original SAR amplitudes. 

coarse 

Parent Vector 

V(x,v)={()   Of   if) 

Figure 2: Parent Vector. Each cell in these arrays represents the collection feature responses at that location 
and resolution. 



this tree the generation of the lower levels depend on the higher levels: 

p(V(x,y))=  p(VM(x,y))  x p(VM^(x,y)\VM{x,y)) (2) 

x p(VM-2{x,y)\VM-i(x,y),VM(x,y)) 
x ... 
x p(Vo(z,Z/)|Vi(a;,7/), ...,VM-i(x,y),VM(x,y)) 

where Vi(x, y) is the a subset of the elements of V(x, y) computed from Gt. Usually we will assume ergodicity, 

i.e. that p(V(x,y)) is independent of x and y. The generative process starts from the top of the pyramid, 

choosing values for the VM(x,y) at all points. Once these are generated the values at the next level, 

VM-i(x,y), are generated. The process continues until all of the wavelet coefficients are generated. Finally 
the image is computed using the inverse wavelet transform. 

The probabilistic model is not made up of a collection of independent chains, one for each V(x, y), rather 
parent vectors for neighboring cells have substantial overlap as coefficients in the higher pyramid levels 
(which are lower resolution) are shared by neighboring cells at lower pyramid levels. Thus, the generation 
of nearby cells will be strongly dependent. 

2.2.2    Estimating the Conditional Distributions 

The conditional distributions in equation (2) must be estimated from observations. We choose to do this 

directly from the data in a nonparametric fashion. Given a sample of parent vectors I S(x, y) \ from an 

example image, we estimate the conditional distribution as a ratio of Parzen window density estimators: 

Vl+l[X'y>>     p(V^(x,y)) ~ Zx,iy,R{Vtf1(.x,y)Jg1(x',y>)) 
p(Vl(x,y)\Vl+1(x,y)) = —7^7 -»— T--T7- <3M,,,m (3) 

where Vt
k(x, y) is a subset of the parent vector V(x, y) that contains information from level I to level k, and 

R(-) is a function of two vectors that returns maximal values when the vectors are similar and smaller values 
when the vectors are dissimilar. We have explored various R(-) functions. In the results presented the R(-) 
function returns a fixed constant if all of the coefficients of the vectors are within some threshold 9 and zero 
otherwise. 

The cross-scale conditional distributions defined in equation (3) can be used to define the distribution 
of parent vectors in a target image. This directed conditional structure is very useful when one wishes 
to sample from the distribution - no computationally expensive operations such as Gibbs sampling are 
necessary (this is in distinct contrast to Markov Random Fields[9] or in the FRAME method[10]). Given 

this simple definition for R(-) sampling homp(Vi(x,y)\Vl
I^1(x,y)) is very straightforward: find all x',y' such 

that R^^^x', y'), S^_1(x, y)) is non-zero and pick from among them to set Vi(x,y) = Si(x',y'). 
In previous work we have demonstrated that images generated by sampling from the above distribution 

are of very high quality [1, 11]. By synthesizing new images from models built from SAR imagery, we can 
visualize the ability of this model to capture the complex structural patterns inherent in SAR. An image 
synthesized by sampling from this distribution is shown in Figure 3. 

2.3    Target Classification 

Given a particular distribution over parent vectors, it might at first seem as though classification of a target 
chip could be best accomplished by computing the likelihood that that chip was generated by each of the 
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Figure 3: Target chips synthesized by sampling directly from the probabilistic distribution generated by the 
flexible histogram model generated from several example vehicles. 

multiscale target models. If target chip is viewed as a single sample from a vector valued random process, 
this is the optimal Bayesian classification scheme. However, each target chip is actually a collection of many 
samples from the ergodic process characterized by the distribution. The distinction between these two views 
is subtle, and is crucial for obtaining a powerful classification measure. 

Here is a simple example to illustrate this: consider a process which creates random binary images by 
repeatedly flipping a single coin. Each cell is colored white with an independent probability of 0.75. Suppose 
you were asked to decide which of two images is more likely to have been generated by this process: the first 
has 75 white cells and 25 black ones; the second image has 100 white cells (and 0 black). Intuitively, it seems 
more likely that the first image was generated by this process. But if we treat each image as single sample 
from a joint distribution, the probabilities indicate otherwise. The probability of generating the first image 
is much lower than that of the all white image (roughly 3 x 10~25 compared to roughly 3 x 10~13). Why 
does this approach fail to pick out the correct image? It does not take into account that the overwhelming 
majority of samples which are generated by this process will have about 75 white cells. While it is true that 
the first image is more likely than the second, it is much less typical. Formally, typical images are those 
whose entropy is approximately the same as the entropy of the class to which they belong. The fact that 
most images are typical is known as the Asymptotic Equipartition Property [12]. 

A better way to decide which of these two images was generated by the above process is to measure 
which is more typical. This is done using the Kullback-Liebler (KL) divergence or cross-entropy2. The 
cross-entropy is a measure of the difference between two distributions: 

D(p\\q)    =     fp(V(x,y))\ogP^'y))dXdy 
J q(V(x,y)) 

=     f p(V(x,y)) logp{V(x,y))-  fp{V(x,y)) log q(V(x,y))dxdy 

=    -H{p)- jp{V{x,y))logq{V{x,y))dxdy 

(4) 

(5) 

(6) 

2 Cross entropy is not symmetric and is therefore not a metric. 



It can be viewed as the difference between two expected log likelihoods: the log likelihood of samples of 
p(x) under the distribution p(x), and the log likelihood of samples of p(x) under q(x). For the first image 
we estimate the probability of white cells to be pi = 0.75. For the second image set we estimate P2 = 1-0. 
The true probability of a white cell is q = 0.75. For the first image, the cross-entropy is D(p\\\q) = 0.28, 
while the second is D{p2\\q) = 0.0, a perfect fit. 

We have implemented a cross-entropy discrimination measure, and have tested it both on optical images 
and SAR data[2]. Here we present a discrete version which is far more efficient computationally. 

2.4    Flexible Histograms: Efficient Divergence Approximation 

We approximate the distribution in equation (2) by the Parzen density estimator: 

p{V (x, y))=J2R (V (x, y), V (x', </')) (7) 
x',y' 

where R(-) is the boxcar Parzen density kernel defined by: 

R(-) = Q(T- I [V (x, y)-V (x', y')] (I?)"1 ||J (8) 

where each component diti of diagonal matrix D scales the corresponding feature response; and 0 (•) = 1 if 
its argument is greater than 0, and is 0 otherwise; Z is a normalization factor. The Lx norm (|| ■ ||oo) is 
equal to the largest difference along any dimension. The value of p(V) is proportional to the count of parent 
vectors which fall within a N x M dimensional hypercube centered at V (I, x, y). We can define a histogram 

whose bins are given by B (x, y) = p(v {x,y)j. We call this representation a flexible histogram because the 
centers of the bins are determined by the the parent vectors that appear in the training data. In this way, 
when building models for different targets the bins used in the histogramming process are specialized. The 
process of construction is outlined schematically in Figure 4. 

By using the boxcar Parzen density kernel in equation (8), a significant computational advantage is 
obtained. Because the parent vectors for neighboring cells share coefficients at lower resolutions, the com- 
putation of p (V {x,y)j is not independent for regions neighboring (x,y). Thus, if a parent vector fails to 
fall into the histogram bin because some feature at a particular resolution is beyond the threshold distance, 
then all parent vectors which share that coefficient can be eliminated from consideration. In practice this 
reduces the complexity of the algorithm from O (TV2) in the number of cells to an average case complexity 
of n(N). 

The cross-entropy between two distributions can be effectively approximated by a chi-squared (x2) test 
on the bin counts in the flexible histogram (the \2 measure is in fact a two term Taylor series expansion of 
the cross-entropy [12]). Using the \2 measure in this way can be viewed as a comparison of Parzen density 
estimates: 

(B(x,y)-B'(x,y))2      ^ / Y.x;y R [? (J> *.?).? (J> < v') 

*2='    '    'B(x,y)     '      K^1 " {Zx',y>R\V(I,x,y),V(r,x',y>) 
(9) 

where R(-) is the Parzen kernel in equation (8). This process is outlined in Figure 5. 
A classification decision is made by comparing the likelihood measure of a target image to a threshold 

Vmodei-   Using standard x2 tables a value for rjmodei for any desired level of certainty can be determined. 



model 

Figure 4: The flexible histogram accumulates the frequency of parent vectors which are within an N x 
M dimensional hypercube centered at each parent vector in the model image, to provide a measure of 
multiresolution redundancy. 
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test 

Figure 5: By comparing flexible histograms with the \2 measure we obtain a measure of the multiresolution 
similarity between the model image Imodei and the test image /test ■ 
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However, we do not assume that the flexible histogram completely describes the target class distribution; 
choosing a fixed \2 likelihood could eliminate true-positives which fall below the chosen threshold, yet 
which lie far above the false-positives and should therefore be detected. By choosing T]modei empirically, we 
maximize the percentages of true-positives while guaranteeing an expected level of false-positives. 

2.5 Incorporating multiple model images 

Given access to multiple example images of the target vehicle, it is reasonable to assume that that a discrim- 
ination system should be able to perform better by taking advantage of the additional information. With 
slight modification, we can extend the single model flexible histogram technique to incorporate information 
from multiple examples of the target. 

Consider now the situation where we have a set model images {IMOJMI,- ■ ■, IMU}- We begin with the 
initial flexible histogram generated by accumulating the frequency of similar parent vectors in IMO measured 
with respect to itself; information from the additional images can be incorporated into this histogram by 
adding the frequencies for each of the parent vectors in IM\ through IMn which are within the bins defined by 
I MO- The additional parent vectors thus have the effect of refining the the frequency-counts in the histogram 
bins, but does not affect the number of bins present. This improves the target model by incorporating the 
relative frequencies of parent vectors in the additional model images, which will increase the accuracy of the 
histogram approximation to the distribution. And the flexible histogram becomes a more accurate estimate 
of the redundancy of the entire target class. 

Using each of the n images as a base image for determining the bins in a flexible histogram, we can 
build n such estimators of class membership. Thus we can build a set of histograms {B\, B2,..., Bn} where 
histogram Bt is a measurement of the redundancy of each of {IMO, IMI,- ■ ■, IMU) measured with respect to 

the parent vectors in IMI- 

2.6 Experimental Setup 

We now discuss experiments testing the performance of the flexible histogram method for detection and 
classification of SAR images of vehicles. The images used in this experiment are drawn from a library of 
SAR images of vehicles measured at X-band. The images are of approximately 1-foot-by-1-foot resolution. 
Our experiments are similar to those described in Veiten et cd. [3] which describes a template-based approach 
to classification and reports results on a database which has high intersection with the one we use here. The 
primary difference being that the confusion class in these experiments contains a greater number of vehicle 
types. 

In one sense, getting meaningful detection or classification results is problematic. In our experiments 
we are only considering images of SAR vehicles. Presumably, in a full ATR system, large regions of clutter 
would be considered and some simpler test (e.g. a CFAR detector) would pass along regions of interest 
(ROIs) to a classifier. As observed by Veiten et al. [3], the set of images we are using represent a more 
difficult set of ROIs than clutter or other man-made objects and so these experiments are a more stringent 
test than would be encountered in a practical ATR system. Furthermore, our primary goal is to provide 
a comparison between two approaches and for that purpose the data set we are using (with its restricted 
imagery) is perfectly valid. It is from the comparison standpoint that we would like these results to be 
viewed primarily. 
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2.6.1 Template-Based Approach Used for Comparison 

For comparison purposes, we have implemented the algorithm described in Veiten et al. [3]. The algorithm 
described there compares a thresholded and normalized template, M, to a thresholded normalized image chip 
(or ROI), 5. As described, the template, M, is computed as an average over images within a designed aspect 
range. The detection statistic is the minimum L\ difference between the template and the ROI computed 
over all template aspect ranges for a give vehicle type. In our implementation, we compute 36 templates 
for each vehicle model. Templates are computed using anywhere from three to nine images (from a training 
vehicle) depending on the number of aspect views that fall within the each 10 degrees of aspect. The total 
number of images used to compute each vehicle template model was 233 images. 

2.6.2 Flexible Histogram Approach Used for Comparison 

The results described here are based upon models for the target vehicle developed from 10 training images 
of each vehicle. The images were chosen uniformly in aspect, every 36°. From these images 10 flexible 
histograms were generated for each vehicle using the extended procedure described in section 2.5. The 
detection statistic is the minimum x2 difference between the 10 pairs of flexible histograms generated for the 
training and testing images (measured with respect to each of the ten training images). 

The choice of relatively small number, 10, images to generate each vehicle model is far less than the 233 
images used in the template based approach, and was made to reflect a more reasonable estimation of the 
information available in real applications. 

2.6.3 Description of Training and Test Set 

As in Veiten et al. [3] we consider three vehicle types, BMP-2, BTR-70, and T-72, in our classifier. Figure 6 
shows example SAR images of the vehicles used to train the class models for both the template-based 
approach and the flexible histogram approach. 

Images of different vehicles (same type of vehicle, different serial number) are used as the test set for the 
recognition class. Examples are shown in figure Figure 7. The images of training vehicles were collected at 
a depression angle of 17°, while performance was tested on images of vehicles collected at 15°. As stated, 
testing vehicles have different serial numbers than the vehicles used for training, except in the case of the 
BTR-70 (only one serial number in the data set). Another set of vehicles are used as confusers and are shown 
in figure Figure 8. 

In this experiment we have a total of 777 independent testing vehicles for the recognition class (exclusive 
of 196 BTR-70 images which were collected from the same vehicle at different depression angles) and 1643 
confusion images, for a total of 2616 images tested in this experiment. 

2.6.4 Detection Results 

Figure 9 compares the detection performance of both methods over the same image set. The detection statis- 
tic from a single vehicle model is used as a discriminant versus the rest of the test set. Figure 9 (a) (flexible 
histogram) and Figure 9 (d) (template method), for example, use the BMP-2 statistic as a discriminant 
against the confusion vehicles of figure Figure 8 as well as the remaining vehicles in the recognition class (i.e. 
T-72 and BTR-70). The results of figure Figure 9 do not include detection statistic from the training vehicle 
(except for the BTR70, for reasons stated above). As is readily observed, the flexible histogram approach 
compares favorably to the template-based approach for all three vehicle types. 
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Figure 6: Training Vehicles for Recognition Class. 
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BMP-2 (sn 9563) BMP-2 (sn 9566) BTR-70 (sn c71) 

T-72 (sn 812) T-72 (sn s7) 

Figure 7: Testing Vehicles for Recognition Class. 
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t62 (sn a51) ZIL-131 (sn el2) ZSU23-4 (sn d08) 

Figure 8: Testing Vehicles for Confusion Class. 
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Figure 9: ROC curves for models generated by models for BMP2 (a,d), BTR70 (b,e) and T72 (c,f) vehicle 
types using the flexible histogram model (a-c) and the template matching method (d-f). 
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2.6.5    Classification Results 

As stated, in this set of experiments, we lack a true detection statistic and so for the purposes of our 
experiment we use the following for both methods: 

1. Given an ROI, compute each model statistic. 

2. Choose the most likely (max or min statistic) over all of the vehicle models as the class label. 

3. Compare the designated statistic against a threshold. 

4. If it passes the threshold, label the ROI with the winning class, otherwise designate the ROI as "not 
classified". 

In the steps described above, the threshold is model dependent and is set such that 90% of test vehicles of 
that model type will pass. The classification results (as a percentage) of this experiment are shown in table 
Table 1. Numbers in parentheses are the corresponding classification rate for the template-based approach. 
As the detection rate is the same for both methods it is not surprising that the classification performance on 
recognition vehicles is nominally the same. We do observe that the "not classified" rate is less than 10% for 
some cases, in particular the T-72. This is due to the confusion among the models (e.g. some of the rejected 
T-72s do pass the BMP-2 test). 

It is in the performance on the confusion class that we note the largest difference. This is not surprising 
in light of the ROC curves from the detection results. 

2.7    Discussion 
The flexible histogram multiresolution target discrimination approach described here makes explicit the 
requirement that to be considered similar, images must contain similar distributions of joint feature responses 
over multiple resolutions. SAR classification rates shown here, though preliminary, compare favorably to 
the Wright Patterson baseline classifier. Further analysis, including experiments on larger data sets, and 
on data which includes images with targets and clutter in close proximity, are required to further refine the 
system and obtain a better estimate of its overall potential. 

Future research suggested by this work includes specializing the flexible histogram technique to the 
particular characteristics of SAR imagery. In the work presented here, we only considered images generated 
from the magnitude of the SAR signal. In future work we plan to examine using the full complex signal to 
increase model specificity. Additionally, the particular wavelet decomposition used here is generic, and in 
future work we will be considering different decompositions which may be able to better match the images 
generated from SAR. 
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Table 1: Confusion matrix for the flexible histogram approach versus template-based results in parentheses 
at 90% detection rate. 

Flexible Histogram 
BMP2-C21 BTR-C71 T72-132 not classified 

BMP2-9563 @ 15° 0.837 0.053 0.011 0.099 
BMP2-9566 @ 15° 0.858 0.063 0.005 0.074 

BTR70-C71 @ 15° 0.042 0.853 0.005 0.100 

T72-812 @ 15° 0.021 0.053 0.858 0.068 
T72-S7 @ 15° 0.021 0.126 0.779 0.074 

BRDM2 @ 15° 0.174 0.174 0.132 0.520 
D7 @ 15° 0.542 0.137 0 0.321 
T62 @ 15° 0.626 0.121 0.068 0.185 
ZIL131 @ 15° 0.379 0.168 0 0.453 
ZSU-23-4 @ 15° 0.474 0.089 0.021 0.416 
2S1 @ 15° 0.616 0.179 0.079 0.126 

Template-Based Approach 
BMP2-C21 BTR-C71 T72-132 not classified 

BMP2-9563 @ 15° 0.903 0.005 0.005 0.087 
BMP2-9566 @ 15° 0.847 0.015 0.015 0.122 

BTR70-C71 @ 15° 0 0.898 0 0.102 

T72-812 @ 15° 0.041 0 0.795 0.164 
T72-S7 @ 15° 0.047 0.010 0.921 0.021 

BRDM2 @ 15° 0.285 0.332 0.029 0.354 
D7 @ 15° 0.529 0.153 0.223 0.095 
T62 @ 15° 0.524 0.117 0.264 0.095 
ZIL131 @ 15° 0.274 0.310 0.314 0.102 
ZSU-23-4 @ 15° 0.394 0.095 0.453 0.058 
2S1 @ 15° 0.493 0.234 0.069 0.204 
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3    Nonparametric Estimation of Aspect Dependence for ATR 

In conventional SAR image formation, idealizations are made about the underlying scattering phenomena in 
the target field. In particular, the reflected signal is modeled as a pure delay and scaling of the transmitted 
signal where the delay is determined by the distance to the scatterer. Inherent in this assumption is that 
the scatterers are isotropic, i.e. their reflectivity appears the same from all orientations, and frequency 
independent, i.e. the magnitude and phase of the reflectivity are constant with respect to the frequency 
of the transmitted signal. Frequently, these assumptions are relatively poor resulting in an image which 
is highly variable with respect to imaging aspect. This variability often poses a difficulty for subsequent 
processing such as ATR. However, this need not be the case if the nonideal scattering is taken into account. 
In fact, we believe that if utilized properly, these nonideal characteristics may actually be used to aid in 
the processing as they convey distinguishing information about the content of the scene under investigation. 
In this paper, we describe a feature set which is specifically motivated by scattering aspect dependencies 
present in SAR. These dependencies are learned with a nonparametric density estimator allowing the full 
richness of the data to reveal itself. These densities are then used to determine the classification of the image 
content. 

3.1    Introduction 

The problem of target recognition is generally quite difficult, particularly in the context of SAR. Speckle poses 
an obvious impediment, but the task is further complicated by the high variability of the image with respect 
to imaging aspect. Actual vehicles are composed of a multitude of different fundamental scattering types. 
Individually, most of these atomic scatterers will exhibit an aspect dependence, but to further complicate 
matters, the effects of their mutual interaction will depend on their positioning relative to the impinging 
radar signal resulting in a highly convoluted aspect dependence. 

Although the speckle and aspect dependence in SAR will limit performance when ignored or treated as a 
nuisance, we conjecture that they can actually be used to enhance ATR performance. The starting point of 
this work is a tree representation composed of multiresolution subaperture SAR images formed from recursive 
partitions of the full aperture. With access to images formed from multiple subaperture lengths and offsets, 
one can differentiate between different signatures across the aperture. Speckle also provides information 
which can be utilized in this structure. Speckle arises from the constructive and destructive interference 
associated with coherent imaging. Although the representation used is composed of only of log-magnitude 
imagery, the relative phase between subapertures is implicit as a result of the recursive partitioning. Thus, 
not only does the representation expose the magnitude of the aspect dependence but also the phase. 

A nonparametric density estimator is used to learn the aspect dependence of targets within this sub- 
aperture data representation. In addition to revealing the aspect dependencies of a scatterer, the proposed 
subaperture feature set affords an efficient density estimation procedure via pruning methods. Classification 
of an object is determined by using the estimated density functions with an efficient approximation of the 
maximum likelihood (ML) classifier. 

The algorithm proposed here is similar to the flexible histogram technique proposed by DeBonet[13]. 
Both techniques use nonparametric density estimators to characterize the behavior of the data in the feature 
space which is followed by a Chi-Square test to compare densities. The prominent distinction between 
the two techniques is in the feature set used. Motivated by the obvious visual structure present in high 
resolution SAR imagery, DeBonet et al. proposed a steerable wavelet feature set to extract phenomena 
such as edges and ridges in the image. In contrast, we are motivated by the scattering physics in SAR and 
propose a subaperture feature set designed to reveal the aspect dependent scattering behavior in the image. 
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Another difference between the two techniques is in the comparison of densities. Motivated by the high 
computational complexity of the approach by DeBonet et al, all densities are evaluated at a fixed set of 
points that is invariant to both the test image and hypothesis being checked. Use of this invariant set of 
points affords a significant reduction in the computational order of the algorithm. 

The remainder of the paper presents these ideas in more detail as follows. Section 3.2 describes the 
subaperture feature set used to exploit aspect dependencies. Section 3.3 describes the density estimator 
used and presents the test applied to the density estimates. Section 8.4 presents results of this technique 
applied to the MSTAR database. Section 3.5 contains concluding remarks and a summary. 

3.2    Subaperture Analysis 

An essential component of the framework described in this paper is the feature extraction prior to the density 
estimation. The features selected should contain class discriminating information from SAR data. In this 
section, we present a set of filters motivated by the scattering physics involved in SAR image formation 
to accomplish this task. The resulting data representation reveals the anisotropy of the scattering with a 
multiscale tree structure which allows for efficient estimation of the probability density. 

There has recently been a considerable amount of work [14, 15, 16, 17] studying the fundamental behavior 
of anisotropic scatterers in SAR for the purpose of target recognition. With the exception of the approach 
by McClure and Carin[16], these limit consideration to isolated atomic scatterers, and in the case of McClure 
and Carin's approach, they treat the scattering behavior of multiple scatterers as a simple linear superposi- 
tion of those scatterers. This superposition allows a computationally tractable algorithm, but neglects the 
electromagnetic coupling among neighboring scatterers. In contrast to the atomic scattering approach, we 
present a method based on a feature set which is intended to focus on the anisotropic scattering behavior of 
the vehicle as a whole instead of the individual scatterers of which it is composed. It does this by analyzing 
the scattering response across the aperture as the cross-range resolution is varied. 

3.2.1     Subaperture Coverings 

Our goal is to exploit the aspect dependencies associated with man-made objects. Towards this end, we 
introduce a set of subaperture images. In order for these subapertures to clearly expose the dependencies, 
the subapertures should have some structure to them. Before describing one such structure, we first define 
some notation. A subaperture will be defined by a half-open interval I = [a, b) with 0 < a < b < 1 where a 
and b specify the endpoints of the subaperture normalized so that the full aperture is [0,1). For example, 
[0, .5) and [.5,1) denote two disjoint half-apertures. Since the phenomena we seek to detect are localized 
in the aperture, each subaperture will correspond to a single convex interval. Naturally, the collection of 
subapertures used should cover the unit interval so that none of the data is ignored, i.e. the union of all 
the intervals should correspond to [0,1). Such a collection of apertures will be referred to as a subaperture 
covering. 

There are numerous coverings from which to choose. We will consider only those which can be mapped 
to a tree, one example of which is given in Figure 10. Each subaperture within the same level of the tree will 
be restricted to have the same length. A subaperture / is the descendant of another subaperture J if I C J. 
Furthermore, for any two subapertures / and J with the length of J larger than that of /, either I C\ J = I 
or / n J = 0, i.e. the smaller aperture is either entirely included in the larger one or disjoint from it. Within 
this tree structure, it will frequently be convenient to index the subapertures by two subscripts m and I 
specifying the resolution (or subaperture length) and center of the subaperture as depicted in Figure 10. For 
a tree with M + 1 levels, the root level of the tree will be denoted with m = M and successively smaller 
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apertures will have corresponding smaller integer values down to m = 0 at the bottom of the tree.  Thus, 
larger values of m correspond to larger subaperture lengths. 

'2,0 = (o.i) 
m = M = 2 
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Figure 10: A subaperture covering in the form of a binary tree of subapertures that is obtained by iteratively 
partitioning each subaperture into two disjoint intervals of equal length. 

The subaperture covering in Figure 10 is obtained by iteratively partitioning each subaperture into two 
disjoint half-apertures. For another example, consider the covering generated by dividing each subaperture 
into half-overlapping half-apertures as illustrated in Figure 11(a). Note that for this covering, at a given level 
m < M - 1, there are duplicate subapertures. Thus, the subapertures can be presented as in Figure 11(b) 
giving a more intuitive visualization of the covering. 
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Figure 11: Example of a subaperture covering obtained by iteratively partitioning each subaperture into 
three half-overlapping half-apertures, (a) Tertiary tree showing parent-child subaperture structure, (b) 
Simplified graph representation with redundant subapertures removed. 

Different types and sizes of a scatterer will yield different aspect dependencies. The motivation for using 
the subaperture tree is that it is expected to reveal distinguishing aspect dependencies in the scattering. 
For example, a small metal sphere will have a strong response in all directions and thus produce a strong 
reflectivity estimate from each of the subapertures. However, as depicted in Figure 12, a flat plate produces 
a significantly stronger response when oriented broadside with respect to the radar as compared to off- 
broadside orientation. Thus, the reflectivity estimates will vary across the subapertures with the largest 
estimate coming from the subaperture oriented broadside to the plate. Furthermore, because various sized 
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subapertures are used, the duration of the broadside flash is captured in this representation. In particular, 
while the subaperture is contained within the mainlobe of the response, the reflectivity estimate will be 
consistently large, but as the subaperture is extended beyond the mainlobe, the additional energy received 
will be relatively insignificant and result in a lower reflectivity estimate. This comparison between a sphere 
and flat plate illustrates the extraction of features associated with atomic scatterers, but we expect this to 
extend to extracting the more complex scattering pattern from a collection of scatterers associated with an 
entire target. 

Figure 12: The predicted response ofalmx \m flat plate and a depiction of the resulting reflectivity estimate 
for each of the subapertures. Lighter shaded subapertures convey larger reflectivity estimates. 

A slightly different viewpoint of this subaperture feature set comes from considering the cross-range 
resolution versus azimuthal3 resolution trade-off. Cross-range resolution is inversely proportional to the 
aperture length. Thus, at lower levels of the subaperture tree, spatial resolution has been sacrificed for 
azimuthal resolution, i.e. the ability to better observe anisotropic phenomena.   This is the classic time- 

3For clarity, we will use the term "cross-range" when referring to the cross-range in the spatial (image) domain, and we will 
exclusively use the term "azimuthal" when referring to the corresponding dimension in the sensor domain. 
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frequency resolution tradeoff in Fourier analysis, and each level of the tree represents the data under a 
particular cross-range-azimuth resolution. The presence of multiple resolutions is attractive because we 
expect the best representation for different objects to be nonunique as the importance between resolution in 
the two domains is balanced. 

3.2.2    Subaperture Feature Vector 

We will now describe the subaperture feature vector. For each spatial location, every subaperture in the 
covering is used to produce an estimate of the log-magnitude of the reflectivity. These estimates are taken 
to comprise a feature vector x G Rd, where d is the number of subapertures. A feature vector is computed 
for each spatial location in the SAR target field producing an image of feature vectors that together describe 
the aspect dependence throughout the image. We consider subaperture coverings in which the lengths of the 
subapertures are such that the ratio of sizes of larger to smaller apertures is always an integer, thus allowing 
the feature vectors to be mapped to a tree based on the area covered by a resolution cell. Note that it is 
immaterial whether the disjoint or the overlapping covering is used here since the resolution is completely 
determined by the lengths of the subapertures. Thus, for the half-aperture splitting we will always end up 
with a binary tree with vector valued entries. However, the number of subapertures with a given length, 
i.e. the type of half-aperture covering, will determine the dimensionality of each of the nodes on the binary 
tree. 

Prior to moving on to the next section, it is important to make clear the difference between the two 
different trees with which we are working. The first is the subaperture tree which arranges the subapertures 
used to produce reflectivity estimates. Each node on this tree is a pair of numbers defining an interval which 
specifies a subaperture section. This tree has nothing to do with spatial location. The second tree is the 
feature vector tree which is used to represent the reflectivity estimates over the entire target field under 
different subapertures. This tree is composed of vector valued reflectivity estimates. A path down this tree 
represents a feature vector and different levels of the tree correspond to estimates at different resolutions. 

Although the feature vector tree and subaperture trees are different, there are relationships between the 
two. In fact, the topology of the subaperture tree determines the topology of the feature vector tree and vice- 
versa. Figure 13 depicts these relations for the half-overlapping half-aperture covering. First, the number of 
levels in the two trees are the same because the levels of both trees are defined by resolution. However, the 
root node of the subaperture tree corresponds to the leaves of the feature vector tree and vice-versa. To see 
why this reversal arises, recall that the root node of the subaperture tree is the full aperture, and use of the 
entire aperture generates the finest cross-range resolution. Thus, the corresponding entries in the feature 
vector tree are at the leaves of the tree. Similarly, the shortest apertures in the subaperture tree are at the 
bottom of their tree, but their corresponding nodes are at the root of the feature vector tree since they give 
the coarsest cross-range resolution. Due to this bijective relation for resolution, the same label m will be 
used to denote scale in both trees. However, to account for the reversed progression of resolution down the 
tree, we reverse the values of m at each scale on the feature vector tree, i.e. m = 0 for the root node and 
m = M for the leaves. The number of children that each node on feature vector tree spawns is equal to 
the ratio of subaperture lengths between adjacent levels in the subaperture tree. For example, any covering 
with half-aperture splitting will produce a binary tree of feature vectors. The dimensionality of the nodes 
at any level in the feature vector tree is equal to the number of subapertures for the associated resolution 
since each subaperture corresponds to a reflectivity estimate. 
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Figure 13: The relationship between the subaperture and feature vector trees for the half-overlapping half- 
aperture covering. 

3.2.3    Phase Information 

Speckle is commonly thought of as a nuisance in SAR imagery, but in fact, it can provide a valuable 
source of information that is implicit in this subaperture feature set. Speckle arises from the constructive 
and destructive interference associated with coherent imaging systems such as SAR. It is by way of this 
interference that one can determine the relative phase between pixels at different resolutions. Consider a 
portion of the disjoint half-aperture covering illustrated in Figure 14 where a, b, and c represent the complex 
reflectivity of multiresolution pixels corresponding to the same resolution cell center. Then, the complex 
reflectivities b and c can be combined to produce a finer resolution reflectivity estimate a = be~^ + ce^ 
where 4> determines the cross-range sampling rate and is thus known so the phase term can be absorbed 
into b and c. However, our subaperture representation only provides the magnitudes \a\, \b\, and |c|. But, 
this corresponds to being given three sides of a triangle. Thus, fixing one of the angles, say the phase of a 
is 0, then the other two angles can be determined up to a sign. Thus, relative to the phase of a, the value 
of b and c can be determined, up to a sign, in this data representation even though it is composed solely of 
real-valued log-magnitude imagery. 

a = be-M + ce^ 

b c 

Figure 14: Relation between reflectivity a and its corresponding subaperture reflectivities b and c. 

3.3    Classification 

Having presented the subaperture feature set, we now proceed to describe a method to exploit it for classi- 
fication. The first step is to learn the scattering behavior using a nonparametric density estimator. These 
density estimates are then used to determine classification by matching the pdf of the test data to the 
"closest" pdf in the hypothesis class. 

3.3.1    Density Estimation 

Knowledge of probability densities is essential in classification. Thus, the relevant densities must somehow 
be estimated to some degree.   Some techniques require only a few statistics whereas others require the 
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entire pdf, and the former often make strong assumptions about the underlying density. Techniques for 
density estimation broadly fall into one of two categories: parametric and nonparametric. We choose a 
nonparametric density estimator because it can fully capture the complex relationships we expect to observe 
in SAR imagery. Before describing the estimator used, we will define some notation. Capital boldface letters 
are used to denote random vectors, e.g. X, and samples of it are denoted with a corresponding lower case 
letter, e.g. x. Calligraphic letters, e.g. X, will be used to denote the corresponding space of possible samples. 
The distribution for a random variable will be denoted by F(-) and the corresponding pdf4 will be denoted 

by /(•)• 
The nonparametric estimator we use is the Parzen[18] density estimator which is defined as follows: given 

N i.i.d. samples xi,..., Xjv ~ F, the Parzen density estimate for / is 

1    N 

where K(-) is the kernel and h is a vector of kernel widths for each dimension. The kernel used must 
be nonnegative and integrate to one in order for / to be a valid pdf. In particular, kernels that are well 
localized and symmetric are commonly preferred as one would expect that each data sample tells more about 
the probability in the neighborhood of that value than the probability at some distant value. An attribute 
of this technique is that when a pdf with finite second moment is used as the kernel, the density estimator is 
consistent, i.e. / converges to the true pdf in probability, if the kernel width is an appropriately decreasing 
function of n [18]. 

3.3.2    Score Function 

We wish to classify a set of i.i.d. samples from an unlabeled distribution given a set of samples from each 
of the candidate distributions. To do this, we will employ the Parzen density estimator to obtain density 
estimates to describe both the unknown distribution and each of the known distributions based on the 
observed samples. An appropriate use of these distributions in this case is to compare them with the 
theoretic concept of Kullback-Leibler (KL) divergence between pdf's. The KL divergence between two pdf's 
/ and g is defined as 

£>(/||ff) = |/(x)log(ffi)dx (11) 

which is the expected value, under /, of the log-likelihood ratio of / and g.5 It is useful to think of the KL 
divergence as a distance between two pdf's, even though it does not qualify as a metric since neither the 
symmetry condition nor the triangle inequality hold. One property of metrics that it does possess is that 
the KL divergence between two pdf's is always nonnegative, and it is zero if and only if the two pdf's are 
equal. 

To see why the KL divergence is an appropriate criterion, consider the following problem. We are 
presented with L sets {Si,... ,SL} of data each containing N samples. For each I, all the samples in <S; are 
generated as i.i.d. samples from the unknown distribution F;(x). We are now presented with another set 
£0 = {xi,... ,xjv} of data consisting of i.i.d. samples drawn from one of the distributions ^(x). The problem 
is to choose under which Ft the samples in the set SQ was produced.  Because we do not know the actual 

4Only absolutely continuous distributions will be considered, and thus the corresponding density function does exist. 
5For continuity, 0 log(2) is denned to be 0. 
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pdf's ft, we use their Parzen estimates /; for each le{0,...,L}. We now show the asymptotic equivalence 
between the minimization of KL divergence and the ML classifier. Starting from the ML classifier for the 
density generating the data set <So, we get 

arg    max    {/I(XJ 
ie{i,...,£} 

= arg max 

arg max 

arg max 

= arg mm 

arg mm 

log m 

,Xjv)} 

' /j(Xi,...,Xjv) 

,/O(XI,...,XJV) 

'/i(Xi,...,X;y) 

,/O(XI,...,XJV) 

/((Xi) 

,XAT )} 

,XAT )) 

i /o(xi) 
(since the x* are assumed to be independent) 

1    N 

N 
/o(Xi) 

dx.} = argmin|jD(/o||/i)|- (12) 

All approximations are meant in the sense that the argument of the argmax{-} is approximate. The 
first approximation is that the estimated pdf's are close to the true underlying pdf's which follows from 
the consistency of the Parzen density estimator. The second approximation follows from the law of large 
numbers so that the relative frequency of the x £ 50 converge to the estimated probability /o(x). This 
result says that the choosing the ft which is "closest" to f0 in terms of the KL divergence is asymptotically 
equivalent to ML classification. 

For the proposed classifier, we will take the subaperture feature vector as the random vector X for the 
reasons described in Section 3.2. An advantage of this feature set is that it allows for efficient estimation 
of the pdf due to its tree structure. Computing the distances used in the Parzen kernel in a top-down 
manner allows for the density estimation for each point to be done in 0{N\ log(iV2)) instead of Ö(N\N2) 
by exploiting the tree structure in cross-range. With the computational efficiency afforded by the tree 
structure comes a liability. A tree structure can be used because the feature vectors are multiresolution. But 
inherent to multiresolution feature vectors are coarse scale dependencies, due to overlapping resolution cells, 
thus violating the independence assumption used in Eq. (12). Thus, it is reasonable that other divergence 
measures may outperform the KL divergence. We have empirically found that one such statistic is the Chi- 
Square (x2) divergence, which is a first order approximation of the KL divergence. The x2 divergence for 
two pdf's / and g is given as 

■</.*> = / 
(/(x) - fl(x))' 

S(x) 
dx. (13) 

Because of its better performance, the %2 divergence will be used in place of the KL divergence for the results 
presented in the following section. The appropriate divergence measure for multiresolution feature vectors 
such as the subaperture feature set is an area currently under study. 

In light that this is an approximation of the ML classifier, it is reasonable to ask why should the KL or 
X2 divergence approach above be used in place of a direct comparison of likelihoods. Our motivation for 
choosing the former is the gain in computational efficiency.   Letting Ntest be the number of different test 
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data sets, i.e. the number of times the classifier will be run, the computational order of the two approaches 
can be broken down as follows. If we were to directly perform ML classification, then a total of (L + l)Ntest 
likelihoods would have to be computed since L + 1 likelihoods would have to be computed for each of the 
different test sets. Furthermore, the computation of each likelihood requires a density value to be estimated 
at each of the sample points. Since density estimation for a single point is in an Ö(N\ log(AT2)) procedure, this 
produces an 0(AT1

2Ar2log(Ar
2) LNtest) algorithm to classify all the data. Now consider the KL or x2 approach 

used with a fixed set of k points giving a discrete approximation of X. Here, only L + Ntest densities need to 
be estimated since the estimates are made at a fixed set of locations which are invariant with respect to the 
data samples, whereas in the direct ML application the estimates are made at the data samples themselves. 
Furthermore, the densities only need to be computed at k locations which could be much less than A^A^ 
for reasonably smooth densities. This gives an algorithm which is ö{kN\ log(AT2) (L + Ntest))- That k can 
be much less than the number of data samples is reasonable because the number of points at which the pdf 
is estimated should not depend on the number of data samples but the smoothness of the underlying pdf. 
Considering Nyquist's sampling criterion, it is intuitive that smooth pdf's will not need to be sampled as 
finely as pdf's with less regularity since evaluating the pdf at an excessive number of locations is redundant 
as each estimate will be largely dependent on the others. However, the accuracy and implications of the 
Riemann sum approximation to the integral with a sparse sampling of points is an open issue currently under 
investigation. 

3.4    Experimental Results 

Public release MSTAR data is used for the results presented here. These contain 128 x 128 images with a 
resolution of 0.3m in both range and cross-range. The transmitted signal had a bandwidth of 0.591GHz and 
a center frequency of 9.60GHz. 

This paper is based on the assumption that the subaperture feature set captures the aspect dependence 
in SAR imagery. An illustration of this is given in Figure 15 which shows the image generated from each 
subaperture in the disjoint half-aperture covering for a bmp2 tank at a 17° elevation and 0.19° azimuth. 
From these images, the aspect dependence of the broadside flash on the front side of the tank is clear. One 
can deduce that the duration of the flash is less than half of the aperture length and is centered at slightly 
greater than 0.5 on the aperture. That the flash duration is less than half the aperture is apparent from 
the quarter-aperture imagery, where the majority of the energy of this flash can be seen to be contained in 
the [0.25,0.5) and [0.5,0.75) subapertures. That more of the flash is contained in the [0.5,0.75) subaperture 
is apparent from the larger reflectivity as compared to the [0.25,0.5) subaperture. This along with the 
observation that the [0.5,1) subaperture produces a stronger response than the [0,0.5) subaperture indicates 
that the center of the flash is located slightly above 0.5 on the aperture. As is done for this example, 
we will use the disjoint half-aperture subaperture covering with three resolutions for the remainder of the 
experiments in this section. 

The training data for this experiment consist of the following vehicles at a 17° elevation with their serial 
number in parentheses: bmp2 (c21), btr70 (c71), and t72 (132). The testing data consists of the following 
vehicles at a 15° elevation angle: bmp2 (9563 and 9566), btr70 (c71), t72 (812 and s7), 2sl (bOl), drbm2 
(e71), d7 (9vl3015), t62 (a51), zill31 (el2), and zsu23-4 (d08). The serial numbers of the testing set vehicles 
are different than those for the training set vehicles with the exception of the btr70 (c71) in which case there 
is only one serial number available. 

The hypothesis space is discretized according to each of the three vehicle types and azimuthal pose. In 
these preliminary experiments, the azimuthal coordinate is sampled every 36°, thus producing a hypoth- 
esis space with a total of L = 30 hypotheses.   Each hypothesis is associated with a single training image 
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corresponding to that vehicle type and azimuthal orientation. 
Recall that the underlying pdf s for the data sets are estimated at a finite number of locations or kernel 

centers. For the results presented here, these locations were chosen as so to be approximately uniformly 
distributed over the union of supports of all the hypothesis pdf 's. The number of kernel centers k is fixed 
apriori, and the uniform distribution is obtained via a slight modification of the k-means algorithm described 
in Appendix 3.6. The number of kernel centers used for the experiments presented here is k = 512. 

The density estimator employed is the Parzen density estimator using a hyper-rectangle kernel, i.e. the 
kernel in Eq. (10) is 

«(x;h) = (1    :||x<»>||»<h(«.>.Vm 

I 0    : otherwise 

where x(m) represents the subvector of x corresponding to scale m, and h(m) represents the kernel width 
used for all feature vector components at scale m. 

The role of the kernel width in density estimation is to balance the trade-off between the bias and variance 
of the estimated density. As our ultimate goal is discrimination, we choose the kernel width to satisfy a 
Neymann-Pearson criterion at a particular scale at a time. Holding the kernel widths constant for all but 
a single scale, the kernel width for that scale is chosen to minimize the probability of false alarm given 
a particular probability of detection6. The resolutions are repeatedly cycled through, finding the optimal 
kernel width for each scale until a maximum is reached. 

In Figure 16, we show the receiver operating characteristic (ROC) curves for the bmp2 tank, btr70 
transport, and t72 tank. The probability of detection is measured on all the testing data for the same 
vehicle; the probability of false alarm is measured on the entire testing set minus those for the target vehicle. 
For each vehicle, we compare the performance with the subaperture feature set to a similar technique by 
DeBonet et al.[13] in which a steerable wavelet pyramid is used for the feature set and also the Wright 
Patterson Air Force Base standard template matching algorithm [19]. These results are quite promising 
especially considering the small number of kernel centers used (k = 512 instead of N1N2 = 16,384) and 
reduced computational complexity7. 

3.5 Conclusions 

In this paper, we have presented a classification algorithm designed to utilize the aspect dependence of 
scatterers in SAR imagery to enhance classification performance. The aspect dependence of the imagery is 
exploited by the use of a subaperture feature set that captures the scattering behavior across the aperture. 
A nonparametric density estimator is then used to learn the particular patterns for each hypothesis class 
and test image. The classification of the test image is then determined via a \2 divergence between the 
estimated densities. By using a common set of points to evaluate the pdf's and the tree structure of the 
feature set, significant gains in the computational order of the algorithm can be achieved. 

3.6 Discretization of the sample space 

A slight modification of the k-means algorithm is used to generate an approximately uniform sampling of 
points at which to estimate the pdf's.   Let k denote the number of points to choose.   The steps in the 

6A11 the data involved in this training of the kernel width is from the 17° depression data used for training, and does not 
involve any 15° depression data. 

7The order of the technique proposed by DeBonet[13] is the same as direct ML classification since the pdf's are evaluated 
at the test data points and not on a common set of evaluation points. 
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procedure are illustrated in the flow diagram in Figure 17. First, fc points are initialized by setting them to 
randomly chosen training feature vectors. Regions are then defined by assigning each training vector to the 
closest point. "Closeness" is measured in terms of the supremum norm since a hypercube is used for the 
density estimation. Each of the k points is then redefined to be the center of the region, i.e. the center of 
the smallest bounding box containing all points in that region. A distortion measure is then computed as 
the root-mean-square (RMS) of the sizes of the regions, where the size of a region is taken as its side length. 
If the relative change in distortion from the previous iteration has decreased by less than some amount S, 
then the algorithm stops, otherwise it returns to step 2 and continues. 

The intuition behind the algorithm is to adjust the sizes of the box regions until they are all the same 
size, i.e. the points are uniformly spaced with respect to the supremum norm distance. If there is a box 
larger than surrounding ones, then the after computing the center of the box and redefining the region, the 
larger box should shrink as its former members are moved to another region where they are closer to the 
center. 

This procedure differs from the standard k-means algorithm in step 3 of Figure 17 and the distortion 
measure used. The k-means algorithm computes the centroid of each region instead of the center. The 
centroid of a region is the average of the vectors in the region and can be thought of as the center of mass in 
contrast to its geometric center. The natural distortion measure used in this case is the RMS of the distances 
from each training vector to the nearest centroid. Using the k-means algorithm produces a sampling that 
is approximately proportional to the underlying density of the training data which results in many closely 
spaced samples where the density is large and few sparse samples where the density is small. However, a 
uniform sampling is preferred in the context of this research because values where the density is small may 
be very important and thus should not be neglected. Given a particular point which has a small density 
value under one hypothesis and a large value under another, this location is important in deciding how well 
each hypothesis describes the observed data. Recall that we compute the x2, distance between pdf's / and g 
as in Eq. (13). Thus, locations where g is small would contribute significantly if / is not small since it would 
be an anomaly for those points to occur under g. This is consistent with the idea that it is the unusual, 
i.e. low probability, events that offer the most distinguishing features. 

The dominance of clutter in the image chips has a significant impact on the allocation of pdf evaluation 
points. In particular, many of them will be associated with the nondiscriminating clutter. Such points will 
not help to distinguish between target types since they are measuring the scattering properties of clutter 
and not of the target. As a preliminary remedy to this waste of evaluation points, the modified k-means 
algorithm is only run over feature vectors that are either above or below a particular threshold so that the 
resulting evaluation points will be more representative of the bright scatterers and shadows associated with 
vehicles. 

Although the modification of the k-means algorithm, like the original, is computationally burdensome, 
it can be performed offline and need only be done once to define where the pdf's for a specific vehicle are to 
be estimated. 
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Figure 15: Subaperture images of a bmp2 at 17° elevation and 0.19° azimuth. For each image, the front of 
the vehicle is the portion nearest the top of the image. 
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Figure 16:  ROC detections curves using the subaperture feature set, DeBonet's steerable wavelet feature 
set, and template matching. 
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Step 1: 
Initialize k region centers 

Step 2: 
Define new regions by assigning 

each training feature vector 
to the nearest center. 

Step 3: 
Compute the center of each region 

as the center of the smallest bounding 
box containing all points in that region 

Step 4: 
Compute the distortion 

as the RMS of the region sizes 

Figure 17: Flow diagram illustrating the clustering procedure used to generate a uniform sampling over the 
union of the supports of the training image pdf's. 
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4    Attributing Scatterer Anisotropy for Model Based ATR 

Note that this section includes work that was done jointly with Professor Randolph Moses and his graduate 
student Sinan Doogan at the Ohio State University. Professor Moses and his student were supported under 
both the DARPA IU and MEP-3 programs and the US Air Force Research Laboratory under grant F33615- 
979191020 
Scattering from man-made objects in SAR imagery often exhibit aspect and frequency dependences which 
are not well modeled by standard SAR imaging techniques. If ignored, these deviations may reduce recog- 
nition performance due to model mismatch, but when appropriately accounted for, these deviations can be 
exploited as attributes to better distinguish scatterers and their respective targets. Chiang and Moses[20] 
developed an ATR system that allows the study of performance under various scatterer attributions. Kim 
et. al.[21] examined a nonparametric approach for exploiting non-ideal scattering using a multi-resolution 
sub-aperture representation. Both of these works are extended here to examine the effect of anisotropic 
scattering attribution for model-based ATR. In particular, predicted and extracted peak scatterers are at- 
tributed with a discrete anisotropy feature. This feature can be obtained in a computationally efficient 
manner by performing a set of generalized log-likelihood ratio (GLLR) tests over a pyramidal sub-aperture 
representation. Furthermore, an approximate probabilistic characterization of the feature set allows for a 
natural inclusion into the approach of Chiang and Moses which will be used to evaluate the benefit of our 
attribution to the X-band MSTAR data and infer the phenomenology behind anisotropic scattering. 

4.1    Introduction 

Scatterers composing a target in SAR imagery often exhibit nonideal scattering in the form of aspect and 
frequency dependences. Standard SAR image formation ignores this variability resulting in unstable scin- 
tillating reflectivity estimates complicating the recognition problem. These deviations from the ideal point 
scattering model should not be viewed as a hindrance and approximated away, but instead, they should be 
seen as an attribute which can be used to distinguish scatterers and thus their respective targets. 

This paper is an extension of two separate works presented at Aerosense 1999. Chiang and Moses[20] 
presented a full ATR system which allowed performance comparisons to be made between systems based 
on different feature attributes. It was used to demonstrate the improvement in ATR performance achieved 
by using models based on the Geometric Theory of Diffraction (GTD) with synthetic data. Kim et. al.[21] 
presented a classification technique that utilizes aspect dependence by learning these dependences in a 
nonparametric fashion on a multi-resolution pyramid of sub-apertures. 

The work presented here uses the same sub-aperture structure introduced in by Kim et. al, but simplifies 
the information conveyed into a single scalar parameter characterizing the azimuthal concentration of uni- 
modal scattering. Motivated by canonical scattering models, we conjecture that knowledge of the azimuthal 
duration of a scatterer can be used to infer properties of its geometry. Scattering models such as the physical 
optics model or the Geometric Theory of Diffraction (GTD) predict that for many physically large scatterers 
there is an inverse relation between the size of the scatterer and the duration of its response in azimuth. 
Thus, knowing the anisotropy of a scatterer allows one to infer properties of the physical structure of the 
object under investigation thereby aiding the classification procedure. Incorporating the resulting anisotropy 
attribution into the feature based classifier and applying it to real SAR data allows us to study the utility 
of and phenomenology behind azimuthal anisotropy. 

The remainder of this paper is organized as follows. Section 4.2 presents the multi-resolution sub-aperture 
pyramid used to represent the SAR data. Section 4.3 then describes the set of hypotheses that we will con- 
sider and develops the hypothesis tests on the sub-aperture pyramid.   Section 4.4 describes the matching 
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algorithm that we use to evaluate our anisotropy attribution on collected SAR data. Section 4.5 presents 
experimental results demonstrating the utility of anisotropy attribution and discusses its underlying phe- 
nomenology. The paper concludes with a summary and discussion in Section 4.6. 

4.2    Sub-aperture Analysis 

The foundation of our analysis is the sub-aperture pyramid which we present in this section. This structure 
is motivated by the scattering physics involved in SAR and presents information in a way that allows for 
simple and intuitively reasonable hypothesis tests. Because of the linear structure of the aperture, we will 
associate it with an interval of the real line throughout this paper. In particular, the full-aperture will be 
denoted by the interval [0,1). 

4.2.1    Definition 

The intuitive idea of the sub-aperture pyramid is to generate an over-complete covering of the full-aperture 
with sub-apertures that can be arranged on a pyramidal structure. These sub-apertures will be used to 
represent both our set of candidate hypotheses and to form our reflectivity estimates. The prototypical 
sub-aperture covering that we will use throughout this paper is the half-overlapping half-aperture pyramid 
shown in the lower portion of Figure 18. 

We take as a sub-aperture pyramid a set S of sub-apertures with the following structure. The set S is 
partitioned into smaller sets Sm which correspond to a particular degree of anisotropy. For reasons which will 
become apparent, we associate m with scale. So refers to the set consisting of the largest sub-apertures, and 
SM refers to the set of the smallest sub-apertures. A second subscript on S denotes a specific sub-aperture 
at the given scale. To obtain the necessary structure on the sub-aperture pyramid for what follows later, the 
following conditions are imposed on S: 

(51) VSmii, Smii = [a, b) for some 0 < a < b < 1, 
(52) V5m,j with m > 1, 3Sm-ij such that Smj C Sm-i,j, and 
(53) VSm,i, 3 a partition V(m,i) C SM of Sm,,. 

The first condition simply restricts the sub-apertures to be a single connected interval. This is motivated 
by our search for concentrated unimodal scattering in azimuth. The second condition asserts that each 
sub-aperture, except those in So, has a parent which contains it. This allows us to construct a telescopic 
hypothesis test on a tree which will not only afford computationally efficiency but also robustness. The third 
condition requires the existence of a partition of each sub-aperture by coarsest scale sub-apertures. This will 
allow for the set of measurements given by SM to form a sufficient statistic for all the measurements in S. 
Herein, the term sub-aperture pyramid will always refer to one satisfying conditions (S1)-(S3). 

Any sub-aperture can be used to form a SAR image. The images formed with smaller values of m have a 
finer cross-range imaging resolution because of their larger apertures. This is our motivation for associating 
scale with m. Each sub-aperture Smj generates an associated reflectivity estimate qm^. The collection of 
reflectivity estimates from the sub-apertures in SM is denoted as qM- The measured reflectivity qm^ is not 
normalized with respect to the aperture length, i.e. 

M = /      a(s) ds (15) 
JSm.i 
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where a(s) is the azimuthal response of the scatterer8. Thus, when interested in the normalized reflectivity 
estimate, one should divided qmii by the sub-aperture length Lm,i = K^m,i), where A denotes Lebesgue 
measure. 

4.2.2    Interpretation and Motivation 

Different types and sizes of scatterers will yield different aspect dependencies. The motivation for using the 
sub-aperture pyramid is that it is expected to reveal distinguishing aspect dependences in the scattering. 
For example, a small metal sphere will have a strong response in all directions and thus produce a strong 
reflectivity estimate from each of the sub-apertures. However, as depicted in Figure 18, a flat plate produces 
a significantly stronger response when oriented broadside with respect to the radar as compared to off- 
broadside orientation. Thus, the reflectivity estimates will vary across the sub-apertures with the largest 
estimate coming from the sub-aperture oriented broadside to the plate. Furthermore, because various sized 
sub-apertures are used, the duration of the broadside flash is captured in this representation. In particular, 
while the sub-aperture is contained within the main-lobe of the response, the reflectivity estimate will be 
consistently large, but as the sub-aperture is expanded, the additional energy received will be relatively 
insignificant and result in a lower reflectivity estimate when normalized with respect to the sub-aperture 
length. While this framework will capture general degrees of anisotropy, it is not overly-sensitive to azimuthal 
dependencies in that slight deviations on the scatterer geometry are modeled. This relieves of the burdens 
associated with such models that requires an excessive number of parameters. 

A slightly different viewpoint of this sub-aperture feature set comes from considering the cross-range 
resolution versus azimuthal9 resolution trade-off. Recall that the cross-range resolution is inversely propor- 
tional to the aperture length. Thus, at lower levels of the sub-aperture pyramid, spatial resolution has been 
exchanged for azimuthal resolution, i.e. the ability to better observe anisotropic phenomena. This is the 
classic time—frequency resolution tradeoff in Fourier analysis, and each level of the pyramid represents the 
data under a particular cross-range-azimuth resolution. The presence of multiple resolutions is attractive 
because we expect the best representation for different objects to be nonunique as the importance between 
resolution in the two domains is balanced. 

4.3    Anisotropic Scattering Models 

Having presented the sub-aperture pyramid, we now proceed to formulate our hypothesis testing problem 
for anisotropy. The hypotheses will be drawn directly from the sub-aperture pyramid. Two models will be 
presented here. The first is a simple single scatterer model with an intuitive sufficient statistic. This test 
however is susceptible to the influence of neighboring scatterers. This motivates the second model which 
explicitly accounts for the contributions from neighbors. The tests presented in this section are for a fixed 
scattering location which we assume to be specified. These locations could come from a peak extraction 
process or a pre-specified grid of points to produce an image of anisotropy. 

8By azimuthal response, we mean the 1-D cross-range uncompressed signal for a given down-range location. The signal 
a(s) is assumed to have already been appropriately demodulated to have zero phase modulation for the inspected cross-range 
location. 

9For clarity, we will use the term "cross-range" when referring to the cross-range in the spatial (image) domain, and we will 
exclusively use the term "azimuthal" when referring to the corresponding dimension in the sensor domain. 
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4.3.1    Single Scatterer Model 

Each sub-aperture Sm,i defines an associated scattering hypothesis #m>, over the aperture s via 

Hm,i : a(s) = lSm,i (s) (16) 

where 1A (•) denotes the indicator function over the set A. Thus, our hypotheses correspond to scattering 
responses that are uniform over the sub-aperture in question and zero elsewhere. Naturally, this is an 
idealization for anisotropic scattering, but because we are only looking for a general characterization of 
anisotropy, it will serve our purposes here. Although we will call this a test of anisotropy, the ideal isotropic 
scattering hypothesis is included in our hypothesis set if the full-aperture is included in the sub-aperture 
pyramid. The set of all possible hypotheses associated with the sub-aperture pyramid will be denoted as H. 

A reasonable choice of features to test these hypotheses would be all the measured sub-aperture reflectiv- 
ities {qm,i}- From the definition of the qm^ in Eq. (15) and partition property (S3), it is sufficient to consider 
the subset qM C {qm,i} since all sub-aperture reflectivities qm<i can be computed from qM by summing all 
the qM • which form a partition of Sm,i- Thus, we will take qM as our feature vector. The value of this 

feature vector under hypothesis Hmii is b(m, i) whose jth element is given by 

b(m,i)j =  / 1.« 

= X(SMJ n s„ 

(s) ds 

(17) 

i.e. it is the portion of the response one expects to see over the jth sub-aperture at scale M. We now define 
our scattering model conditioned on anisotropy hypothesis ifm,» as the signal plus noise model, 

<lM,j = /       A1sm,i {s)+v(s) ds, (18) 

where A is the scattering amplitude of the signal and rj(s) is circularly complex white Gaussian noise with 
spectral density a2. This leads to the model 

qM = Ab(m, i) + e, with e ~ Af(0, 2a2A), (19) 

where A is the noise covariance structure inherited from the sub-aperture pyramid. The noise in the mea- 
sured reflectivities in Eq. (19) are characterized as zero-mean circularly complex Gaussians with covariances 
dictated by the amount of sub-aperture overlap. The elements of its covariance matrix A are given by 
[A]ij = \(SM,I H SMJ), which for the half-overlapping half-aperture pyramid in Figure 18 is 

A: 

To classify the anisotropy of a scatterer from our vector of sub-aperture measurements qM, we apply a 
log-likelihood ratio (LLR) test to the model in Eq. (19) where each log-likelihood is compared to the full- 
aperture hypothesis. Because there is the unknown reflectivity parameter A, we actually use a generalized 
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LLR (GLLR) test where for each hypothesis, we take A to be its maximum likelihood (ML) estimate under 
that hypothesis. Thus, for Hm,i, we take A = qm,ilLm,i- This produces the GLLR 

£m,i ~  4(T2 km,i|2 - ko,o|2 (20) 

Thus, the most likely sub-aperture in this case is the one whose average energy is largest. We note the simi- 
larity here to the approach taken by Chaney et. al.[15] in which they replace, within the image, the standard 
reflectivity estimate with the maximum sub-aperture reflectivity estimate qm,ilLm<i, thus using normalized 
reflectivity (instead of normalized energy) as their criterion for choosing anisotropy. Their approach however 
is based on intuitive arguments and not a derived statistic. 

Though simple and intuitive, the GLLR in Eq. (20) is susceptible to the effects of close proximity neigh- 
boring scatterers which are not included in our model in Eq. (18). Recall that the images formed by the 
smaller sub-apertures have a coarser resolution. Thus, if a scatterer were located outside the finest resolu- 
tion cell but within a coarser resolution cell, then the finest resolution reflectivities qoj would be 0, but qm<i 
would be large if the resolution cell associated with scale m included the scatterer. We illustrate this with 
the example shown in Figure 19. Here a scatterer with amplitude A is located outside the finest resolution 
cell of size 5 but is contained within the coarser resolution cell of size 25 associated with half-aperture esti- 
mates. If this scatterer is isotropic, then its response is the complex exponential illustrated. Integrating over 
the full aperture gives a 0 reflectivity estimate as expected, but integrating over a half aperture produces a 
normalized reflectivity with magnitude Aj\f2. Eq. (20) would then classify the center of the resolution cell 
as anisotropic, even though no scatterer is present. 

The problem above is a consequence of not modeling the influence of neighboring scatterers. One of the 
ways in which the neighboring scatterer manifests itself is through its corruption of the estimated reflectivity 
as the size of the resolution cell varies. Choosing A = qm^ is the maximum likelihood reflectivity estimate for 
the resolution cell associated with Sm,i- Alternatively, we may instead choose the best reflectivity estimate 

constrained to lie in the finest resolution cell which is the full aperture estimate go,o- Choosing A = qo,o for 
all hypotheses can be shown to produce the GLLR statistic 

m'J      4<r2 km,i|2 - 7 ko,0 - <7m,i|2 - |<70,o|2 

L'mj, 
(21) 

This statistic is identical to that in Eq. (20) except for the extra term comparing the reflectivity estimates 
</o,o and qm,i- Recall that Eq. (20) compared the average energy in a sub-aperture to the full-aperture. This 
new GLLR accounts for the average energy outside the current sub-aperture as well. Viewed differently, 
under our scattering model in Eq. (18), the values of Lmtiqoß and qmii should simply be noisy perturbations 
of each other. The new term penalizes when this is not the case. Under the example in Figure 19, since 
the the contribution of each of the half-apertures would be the same, the GLLR is equal to zero for all 
hypotheses, which is reasonable, since there is no underlying scattering at the focused location. 

4.3.2    Multiple Scatterer Model 

The modification in Eq. (21) addresses the problem when a neighboring scatterer is isotropic, however, when 
the neighboring scatterer is anisotropic, problems such as that illustrated by the example in Figure 19 can 
still arise as its contribution will not integrate out over the full-aperture estimate. To alleviate this problem 
we generalize the model in Eq. (18) to account for multiple scatterers. 
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First, we must generalize the sub-aperture scattering model to account for the modulations produced by 
neighboring scatterer. Again, we assume that the sub-apertures have been formed while being focused on 
cross-range location yo. The possibility of other scatterers are considered at discrete locations yo + kAp, 
where Ap specifies a cross-range sampling resolution. To model the effect of a scatterer at location yo + kAp 

on the measurements at location yo, we simply modulate the focused response 1# (•) to account for the shift 
in the image domain. The observed effect over the sub-apertures is then given by 

bk{m,i)j =  f      ei2^slHmti (s) ds (22) 

where Ar is the null-to-null resolution associated with the full aperture. Incorporation of the neighboring 
scatterers is now modeled via superposition, i.e. 

qM = ^2Akb
k(Hk)+> (23) 

where the noise model is the same as in Eq. (19). The summation over k in Eq. (23) should be over a 
range that at least includes all scatterers contained in the largest resolution cell. Thus, if L* is the smallest 
aperture length, then we need to consider k E {—K,..., K} where 

KA„ > —— = size of coarsest resolution cell p ~ 2L, 

K 
2L/*/\p 

(24) 

and k = 0 corresponds to the resolution cell under investigation. Rewriting Eq. (23) as a matrix equation 
we get 

qM = [b-K{H.K) 

= BA+e 

bK(HK)} 

-K 

AK 

+ e 

(25) 

where B and A are appropriately defined. Thus, we can use weighted least squares (WLS) to implicitly 
estimate the values of the interfering Ak and account for their contribution to qM. In order to have our 
least squared error minimization correspond to ML, we need to have our inner product effectively whiten 
the noise. This is accomplished by using the inner product weighted by the inverse of the noise covariance, 
i.e. (u,v) = 2^2-M

T
A

_1
V. We estimate the hypothesis as the one which minimizes the norm of e when the 

WLS estimate of A is used. The ML estimate for A is obtained from this model as 

arg min {| llA-i } = (B'A-^r^'A-1^ (26) 

which simplifies to Eq. (20) in the case of limiting the model order to K = 0. 
Note that the hypotheses are now in a higher dimensional space. In particular, the hypothesis set is now 

H2K+1 since each location k has a scatterer associated with it. For the initial work presented in this paper, 
we will restrict ourselves to hypotheses where only the k = 0 (the focused resolution cell) is allowed to vary. 
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Thus, our hypothesis space is effectively still H. We note that this constraint will be relaxed in the future 
in order to appropriately take into account the scattering of neighboring scatterers. 

To classify the anisotropy of the fc = 0 scatterer, we use ML, i.e. we choose the sub-aperture hypothesis 
which minimizes the weighted norm of e in Eq. (23) 

\\e\\U = \\qM - BA\\U 

= ^«'M [A"1 - A-^B'A-1!?)-1^-1] <ZM (27) 

where the weighting matrix in the last line is independent of the data and thus can be precomputed for each 
of the candidate hypotheses. 

The model in Eq. (23) is too unconstrained for the test given by the minimization in Eq. (27) to work. In 
particular, if one chooses K sufficiently large to account for all scatterers in the coarsest resolution cell, then 
the model order is greater than the number of sub-aperture measurements and e can be made zero for all 
hypothesis of k = 0. Thus, we need to regularize the model. In order for the error e to be made small under 
the incorrect model, many of the values in A generally have to be made unreasonably large and result in an 
unrealistic scenario. Thus, we impose a 2-norm regularization penalty in the estimation of A. In particular, 
instead of minimizing the weighted squared error to estimate A, we take 

Ä= argmin{||£|ß_1+7A'ÄA} 

= {B'A-1B + -yR)-1B'A-1qM 

= PqM (28) 

where P is defined accordingly, 7 is the regularization parameter, and R is the regularization matrix that 
penalizes the energy in all Au other than fc = 0, i.e. 

R=I- eKe'K = diag(l,..., 1,0,1,..., 1). 

This produces the following value for the weighted error norm as 

\\s\\U = \\qM - BA\\U 

= 2^2?M [A"1 - 2A-1 BP + P'B'A^BP] qM (29) 

which can be used for our hypothesis test. 

4.3.3    Telescopic Testing 

The sub-aperture pyramid which we use to form our measurements and base our hypotheses is convenient 
not only for providing anisotropy information, but also for providing an efficient means of performing the 
hypothesis tests. We can obtain an efficient approximation to the test by evaluating only a small subset of 
the candidate hypotheses. Due to the nested structure of the sub-apertures (condition (S2) in Section 4.2), 
we can perform the tests in a telescopic fashion by traversing down the tree of sub-apertures as depicted in 
Figure 20. We expect the likelihoods to increase as the hypothesized sub-apertures "shrink down to" the 
correct sub-aperture, and then to decrease as the hypothesized sub-apertures "shrink beyond" the correct 
sub-aperture. This motivates performing the hypothesis test in the following manner: 
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1. Start with the set of largest sub-aperture(s) at scale m = 0. Find the most likely hypothesis at that 

scale and denote it as -ffo.i* • 

2. Consider those hypotheses at scale n = m + 1 for which Snj C Sn 

highest likelihood and denote it as Hnj*. 

Find the one which has the 

3. If the parent is more likely (i.e. -ym^ > 7„,j.)>tnen stop and return Hm,i* as the estimated hypothesis. 

4. If m = M, we are at the bottom of the tree so stop and return Hnj- as the estimated hypothesis. 
Otherwise, set m = n and i* = j* and goto step 2. 

The intuition described above can be justified under the single scattering models. In particular, consider 
the expected value of £nj when the true hypothesis is Em^ and the proportion of overlap between Snj and 

Sm,i is given by a = A(^".|ns"».j). For Eq. (20) in which A = qmj is used, the expected value is 

Wn, 
1 

a2 

a2 

\qn,j\ - ko,o| H„ 

1 ) \A\2 + (2LnJ + l)a2 

1 I \A\2 (30) 

where the approximation is for high SNR. From this, we see the intuitive behavior described above. When 
Snj contains Smii, the overlap is a = 1 and the GLLR increases with decreasing Lnj. When the sub- 
aperture becomes too small, i.e. Snj C Smti, the overlap is a = Lnj/Lm:i, and thus the expected GLLR 
decreases when the sub-aperture becomes too small. 

For Eq. (21) in which A = go,o, the expected value of the GLLR is 

Eknj   HmA = E 
1 

a-1 

\qn, 
1 

\Qo,o — Qn,j\ 

1 

l9o,oI Hr, 

\A\2 + ( j^- - 1 ) (\A\2 - 2a2). 
ni3 

(31) 

Again, we see the intuitive behavior described above.  In particular, when Snj contains Sm>j, the overlap 
a = 1 and the GLLR increases with decreasing Lnj. When the sub-aperture becomes too small, i.e. Snj c 
Smti, the overlap is a = Lnj/Lmti, and the GLLR can be written as 

EKTIJ   HmA = 2-  
\A\2      \A\2+2a2 

Ln, 
\A\2+2a2 

which is a decreasing function of Lnj for strong scatterers, i.e. |J4|
2
 3> 2a2. 

Because the difficult form of our regularized multiple scatterer log-likelihood given in Eq. (29), we have 
not yet shown the same pattern for this extended test, however intuition leads us to believe it holds here 
too. 
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4.3.4    Boxcar Model Deviations 

The hypothesis set defined in Eq. (16) are simplified models to which real scatterers will not exactly corre- 
spond. One may question whether deviations from this model may drastically effect our hypothesis tests. 
For example, if the scattering has a sinc(-) like dependence in azimuth, then the sidelobes will have a large 
response for a strong scatter and cannot be well modeled as background noise. To address this issue, we 
incorporate deviations from the boxcar response into our model. In particular, we start by assuming the 
underlying scattering pattern has been perturbed by white Gaussian noise. For the single scatterer model, 
this changes the model response in Eq. (17) to 

b(m,i)j =  /       lsm,i (s) + Ks) ds 

J S M -i 

where i/(s) is a white Gaussian process with spectral density p2 and is independent of the measurement noise 
rj(s). Thus, our modeled measurement vector is now a random vector characterized as 

b(m,i) ~ Af(b(m,i),2p2A). 

This results in the new measurement model as 

qM = Ab(m, i) + w, with w ~ JV(0,2(\A\2p2 + a2)A). 

Thus, we have essentially the same model as in Eq. (19) except that the variance of the noise now depends 
affinely on the square-magnitude of the underlying scatterer. The effect in Eqs. (20) and (21) is a simple 
scaling of the GLLR's of all the hypotheses. For the multiple scatterer model, the extension is similar and 
has the same result. 

4.4    Bayes Classification 
With a method for anisotropy attribution in hand, we describe in this section a classifier based on Bayesian 
probability theory. This matcher allows us to evaluate the utility and explore the phenomenology of 
anisotropy in SAR by incorporating the labeled anisotropy of scatterers into the feature set. A more thorough 
description of this classifier can be found in the paper by Chiang and Moses[20]. 

4.4.1     Classification Problem Statement 

The Bayes matching problem is given as follows. At the input to the classifier stage, we are given a set of 
n feature vectors Y = [Y"i, Y2, ■.., Yn]T extracted from a measurement, and for each candidate hypothesis10 

H eHwe are given a set of m predicted feature vectors X = [X1,X2,... ,Xm}T (where m may vary with 
H). We wish to find the hypothesis whose posterior likelihood of the observed features, Y, is maximum. 
From Bayes' rule, we have 

f(Y\H,n)P(n\H)P(H) 

^n]X> f(Y\n)P(n) 

10The hypotheses in this section correspond to possible vehicle classifications. They are not the anisotropic hypotheses used 
in Section 4.3. 
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Since the denominator does not depend on hypothesis H, the MAP decision is found by maximizing the 
numerator f(Y\H,n)P(n\H)P(H) over H £ H. In this paper, we assume the priors P(H) and P{n\H) are 
uniform, so we need only compute f(Y\H,n). 

We incorporate uncertainty in both the predicted and extracted feature sets, and assume the predict and 
extract uncertainties are conditionally independent. This gives[22] 

f(Y\H, n) = J f(Y\X, H, n)f(X\H, n) dX (32) 

where f(X\H,n) models the feature prediction uncertainty, and f(Y\X,H,n) models feature extraction 
uncertainty. 

The computation of f(Y\X, H, n) requires a correspondence between the elements of Y and X, or equiv- 
alently between Y and X. We consider two correspondence mappings. The first is a probabilistic many-to- 
many map, in which we assume that 

f(Y\X) = f(Y\H) = IJ m\X,H) = J] 
j=l j=l 

BfFAiYj) + J2Di(H)f(Yj\Xi,H) (33) 

where A is the average number of false alarms features present, fFA models false alarm probability of a 
particular feature vector, Pk(H) is the detection probability of the ith predicted feature under hypothesis 
H, B = A/[A + Y^k=i Pk{H)] is the probability that an extracted feature is a false alarm, and Di{H) = 
(l-B)Pi(H)/[jy^=1 Pk(H)} is the probability that an extracted feature comes from the ith predicted feature. 

The second mapping considered is a deterministic one-to-one map, in which the correspondence is assumed 
to be a deterministic nuisance parameter and the match score is maximized over the correspondence. In this 
case the likelihood score is given by 

f(Y\r,H,n)    =    I P(nFA false alarms)     J}    fPA(Yj) \ 
[ 0^=0} J 

n p^lJ/Mir^i.ff.n) n (i-w))|    (34) 

where F defines the feature correspondences, including the nFA extracted features that correspond to no 
predicted features (denoted {j : Tj = 0}) and the predicted features that correspond to no extracted features 
(denoted {i: Tj / i, Vj}). 

For the case that P(nFA false alarms) obeys an exponential rule P(nFA false alarms) = ce~PnFA for 
constants c and ß, the search for the correspondence that maximized the above likelihood can be efficiently 
implemented. [22] 

To implement either Eq. (33) or (34), we require a probability model for f(Y\X,T,H,n). We assume 
that the uncertainties of the Xt are conditionally independent given H, and that the uncertainties of the Y,- 
are conditionally independent given H, X, and n. This yields 

n 

f(Y\T,H,n) = l[f(Yj\T,H,n). 

43 



Each extracted feature Yj either corresponds to a predicted feature or is a false alarm. If Yj is a false 
alarm, we assign F,- = 0, and we model the feature attribute as a random vector with probability density 
function 

f(Yj\Tj=0,H,n) = fFA(Yj). 

If Yj corresponds to a predicted feature Xi: we write Tj = i (for i > 0) and compute the feature match score 
from Eq. (32). In particular, from Eq. (32) it follows that for i > 0, 

f{Yj\Tj =i,H,n) = I f(Yj\Xi,H,n)f(Xi\Xi,H)dXi. (35) 

For the special case of Gaussian uncertainties, we have f(Yj\Xi,H,n) ~ M{Xi, Ee), and f(Xi\Xi,H,n) ~ 
7V(Xi, Ep), so from Eq. (35) we obtain 

f{Yj\Yj = i,H,n) = f{Yj\X^H,n) ~ N{XUY,V + Ee). (36) 

Similarly, for features whose attributes are discrete-valued, the likelihood is the sum 

P(Yj\Xi,H,n) = Y,P(YAXi,H>n)P(Xi\XuH,n). (37) 
Xi 

4.5    Results 

Public release MSTAR data is used for the results presented here. These images have a resolution of 0.3m in 
both range and cross-range. The transmitted signal had a bandwidth of 0.591GHz and a center frequency 
of 9.60GHz. 

All of the results in this section are based on the three-level half-overlapping half-aperture pyramid 
depicted in Figure 18. The multiple scatterer model will be used to characterize anisotropy. The number of 
neighboring scatterers considered is set by K = 6. The value of the regularization parameter on neighboring 
reflectivities is set to 7 = 0.5. We incorporate a bias in our anisotropy test towards full-aperture scattering. 
In particular, to be declared anisotropic, an anisotropic likelihood must be at least twice the full-aperture 
likelihood. The purpose of this higher threshold is to aid in protecting against the effects of neighboring 
scatterers whose reflectivities may not have been estimated exactly, and will thus induce a modulation across 
the aperture which can be mistaken as anisotropy. 

This paper is based on the idea of detecting anisotropic scattering in SAR imagery. To illustrate the 
anisotropy assignments made by our model, we show in Figure 21 the results for a BMP2 (serial number 
c21) at 0°, 20°, 40°, 60°, and 80° azimuths with a 17° depression. Even though the aperture associated with 
this data set is relatively small (about 3°), we note that we are still able to detect anisotropic scattering. In 
particular, it usually appears to be associated with the turret, barrel, or leading edge of the tank. We make 
particular note of the classifications at the 0° azimuth. Here we see many clutter pixels being classified as 
anisotropic. The cause of this error is the unmodeled behavior of neighboring anisotropic scatterers. Recall 
that in our current formulation, we only consider the possibility of neighboring scatterers which are isotropic. 
However, the front edge of the tank generates a strong anisotropic response which is not accurately captured 
in our current model. Extending our model to account for such scattering should alleviate problems such as 
this. 

The images in Figure 21 show that scatterers are being classified as anisotropic, however it does not 
convey how useful that information is in characterizing targets or explaining phenomenology.   To address 
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these issues, we consider empirical confusion matrices of anisotropy based upon the MSTAR data set. In 
particular, we consider the data set composed of the following vehicles: 2S1 (bOl), BMP2 (c21), BRDM2 
(E-71), D7 (92vl3015), T72 (132), ZIL131 (E12), and ZSU23-4 (d08) where truth is taken to be the empirical 
results from 17° depression data and test data is taken from the 15° depression data at the same azimuth 
as the truth. For each pair of training and testing images at the same azimuth, a set of peaks are extracted 
from each image and a correspondence match based on relative location is performed and taken as truth. 
The empirical confusion matrices are then computed from the anisotropy attributions of these peaks. For 
the remainder of this section, the use the term "confusion matrix" will refer to one computed in this fashion. 

The confusion matrix for this data set is given in Table 2. One noticeable property from the confusion 
matrix is that regardless of the conditioned training anisotropy, the full-aperture hypothesis is the most 
likely testing anisotropy. We give the following reasons for this. First, recall that we bias our anisotropy 
decision towards the full-aperture hypothesis which partially accounts for this. The bias in the confusion 
matrix may also be attributed to incorrect correspondences. It is widely believed that anisotropic scatterers 
are less stable than isotropic scatterers and therefore are not always extracted as peaks [23]. If an anisotropic 
training scatterer is not extracted in the testing data and there is a nearby isotropic scatterer, then our 
correspondence will incorrectly match the two. We also note that there is the unmodeled dependence on 
depression. 

Another prominent aspect of this confusion matrix is the apparent independence of testing anisotropy 
and training anisotropy which would support the argument that anisotropy is not a stable feature. Under 
the model that anisotropy is caused by irresolvable interfering scatterers, this is reasonable especially when 
one considers that the depression angle has been changed. However, this result counters intuition gained 
from the canonical scatterer model. To further evaluate the source and stability of anisotropic phenomena, 
we partition the data set into those images at a near-cardinal azimuth (±2.5° of a cardinal angle) and those 
at off-cardinal azimuths. The motivation being that for near-cardinal azimuths, we expect the influence 
of canonical scatterers to be most pronounced because of the natural rectangular shape of vehicles. Thus, 
near-cardinal azimuths should exhibit canonical anisotropic scattering associated with flat plates and other 
large simple scatterers oriented orthogonal to the impinging radar signal. 

The confusion matrices for the near-cardinal and off-cardinal azimuths are given in Table 3. Here, we 
see striking differences. There is still a tendency to favor the full-aperture hypothesis, which we explain by 
the same reasoning as for the confusion matrix in Table 2. One significant difference in the near-cardinal 
confusion matrix from the other two is that there is a noticeable presence along the diagonal, signaling 
that anisotropy is more stable at these near-cardinal angles as expected for canonical scatterers. The off- 
cardinal confusion matrix however shows that training anisotropy is independent of testing anisotropy. This 
leads us to believe that there are at least two fundamental sources of anisotropy. The first is canonical 
scattering which dominates at cardinal azimuths and not much at other azimuths. The second is an unstable 
source of anisotropy which is more commonly exhibited at off-cardinal azimuths. A likely candidate for this 
unstable anisotropy is the scintillation produced by irresolvable interfering scatterers. Anisotropy arising 
from such interference is highly variable and changes unpredictably with depression, which may account for 
lack of correlation in the anisotropy classifications between the 15° and 17° data in the off-cardinal confusion 
matrix. 

To explore how anisotropy attribution might help the recognition problem, we use anisotropy as a feature 
in the matcher described in Section 4.4. The confusion matrices in Table 3 are used to characterize uncer- 
tainty in anisotropy. Our experiments involve detection of the BMP2 and T72 from a test set composed of 
BMP2's, T72's, T62's, and BTR70's. In particular, for the predict data, we use peak extractions from the 
BMP2 (c21) and T72 (132) at a 17° depression. The extract data consists of the following vehicles at a 15° 
depression angle: BMP2 (9563 and 9566), T72 (812 and s7), BTR70 (c71), and T62 (a51). For the BMP2 
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Table 2: Anisotropy confusion matrix for 2S1, BMP2, BRDM2, D7, T72, ZIL131, and ZSU23-4. 

Training \ Testing full-aperture 1/2-aperture 1/4-aperture 

full-aperture 0.88 0.09 0.03 
half-aperture 0.83 0.13 0.15 

quarter-aperture 0.81 0.12 0.07 

Table 3: Anisotropy confusion matrix for vehicles at near-cardinal and off-cardinal angles. 

Near-cardinal Off-cardinal 
Training \ Testing full-ap. 1/2-ap. 1/4-ap. full-ap. 1/2-ap. 1/4-ap. 

full-ap. 0.82 0.11 0.07 0.89 0.08 0.03 
half-ap. 0.72 0.26 0.02 0.83 0.12 0.05 

quarter-ap. 0.61 0.09 0.30 0.83 0.12 0.05 

detection statistic, we compare the likelihood ratio of the test vehicle under the BMP2 model to the T72 
model, where we are treating the T72 as our model for "non-BMP2" vehicles. Similarly, we take the recip- 
rocal for the detection statistic of the T72 letting BMP2's serve as the model for "non-T72" scatterers. We 
recognize that modeling the "other" class with a single vehicle is simplistic and crude, however it is not our 
current goal to build a full classifier, but to setup a framework where we can study anisotropic phenomena. 
The T62 and BTR70 are used in the testing set because they are well known to be difficult confusers. The 
resulting ROC's are displayed in Figure 22 for three different sets of scatterer features: 

(Fl)    location 
(F2)   location and anisotropy 
(F3)   location and anisotropy (while restricting predict scatterers to be full-aperture). 

Each feature set uses the top 10 amplitude scatterers, except the third set which uses the top 10 amplitude 
scatterers which are declared to be full-aperture in the predict stage. The motivation behind the conditioning 
in (F3) is that if anisotropic scatterers are unstable, then they are unlikely to match in the extract data, so 
we remove them from consideration. 

At first glance of the ROC's in Figure 22, it appears that all the tests perform equally well and the 
anisotropy is not useful as an attribution. However, these vehicles contain quite complex scattering phe- 
nomena and many of the anisotropy declarations may be due to volumetric interference between irresolvable 
scatterers which would change unpredictably with depression. With this in mind, we examine the ROC's for 
the test vehicles at near-cardinal (±2.5°) azimuths. These ROC's are shown in Figure 23. Although there 
is less statistical significance in these numbers due to the relatively small number of test vehicles at these 
orientations, there does appear to be a separation between each of the tests. The feature set using both 
location and anisotropy appears to perform the best which is what we would expect since the scattering 
at near-cardinal azimuths is heavily influenced by canonical scatterers. The worst performer of the three 
feature sets is (F3) which uses location and anisotropy, but only considers predicted scatterers which are 
full-aperture. Thus, this test is discarding the anisotropic scatterers it observed on the model, which is 
valuable information since the anisotropy exhibited from these canonical scatterers should be stable. 
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4.6    Summary and Discussion 

We have proposed a general characterization of anisotropy based on a sub-aperture pyramid. The sub- 
aperture pyramid generates a tree of multi-resolution images at a variety of cross-range versus azimuthal 
resolution trade-offs allowing for the detection of anisotropic phenomena. With each sub-aperture in the 
pyramid, we associate a hypothesis that the azimuthal scattering is confined to and uniform over that sub- 
aperture. This then leads to a sequence of hypothesis tests to classify the anisotropy for a pixel which can 
be approximated with an efficient pruning algorithm due to the tree-structure over the sub-apertures. 

This characterization of anisotropy allows us to explore the underlying phenomenology of anisotropic 
scattering. In particular, our results show that while apparent at all orientations, there seems to be markedly 
different sources for anisotropy. At near-cardinal azimuths, anisotropic scatterers are stable as we would 
expect under canonical scattering models. However, at off-cardinal angles, anisotropy is erratic and difficult 
to predict from a different depression. This suggests that there is a different source of anisotropy at these 
intermediate azimuths. A likely candidate for this anisotropy is the scintillating scattering produced by 
volumetric scattering. Such a group of irresolvable scatterers would exhibit anisotropic behavior due to their 
interference and would be unpredictable with changes in depression like we observed in our experiments. 

As demonstrated by the ROC curves, these different sources of anisotropy will need to be addressed 
separately in order to fully utilize the information contained in each. The classification approach here used 
here is useful at near-cardinal angles where anisotropy is stable, but not at off-cardinal angles. The sub- 
aperture models used here are in their elementary stages and as they develop, they should further aid in the 
studying of anisotropic scattering in SAR. Even though they are motivated by canonical scattering, they 
detect anisotropic behavior regardless of the source and can be used to study the phenomenon in general. 
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Figure 18: The response of a .5m x .5m flat plate and a depiction of the reflectivity estimate for each of the 
sub-apertures. Lighter shaded sub-apertures convey larger reflectivity estimates. 
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Figure 19:  Illustration of a scatterer not in the finest resolution cell that can produce a false anisotropy 
classification in Eq. (20). 

48 



Figure 20: Illustration of how the anisotropy testing can be done in a decision directed fashion by starting 
with the largest aperture and at each scale, inspecting only the children of the most likely sub-aperture. 

Figure 21: Anisotropy characterization of several instances of a BMP2. Top row: Log-magnitude reflectivity 
image. Bottom row: Log-magnitude reflectivity image with pixel locations declared to be anisotropic masked 
out in white. 
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Figure 22: ROC curves for the BMP2 (left) and T72 (right) using features (F1)-(F3). 
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Figure 23: ROC curves for the BMP2 (left) and T72 (right) at near-cardinal angles using features (F1)-(F3). 

50 



5    Structure-driven SAR image registration 

We present a fully automatic method for the alignment SAR images, which is capable of precise and robust 
alignment. A multiresolution SAR image matching metric is first used to automatically determine tie-points, 
which are then used to perform coarse-to-fine resolution image alignment. A formalism is developed for the 
automatic determination of tie-point regions that contain sufficiently distinctive structure to provide strong 
constraints on alignment. The coarse-to-fine procedure for the refinement of the alignment estimate both 
improves computational efficiency and yields robust and consistent image alignment. 

5.1 Introduction 

The ability to bring multiple synthetic aperture radar (SAR) images into alignment is crucial in many appli- 
cations. For example, a need for accurate alignment commonly occurs when multiple partially overlapping 
image are "stitched" together to form a single larger image. Even with geocoding information, precise pixel- 
level registration is need to accurately align the images along seams. Precise alignment is also needed in 
applications performing change detection; for example, detecting vehicle or missile movement. Here align- 
ment must be accurate enough to guarantee that each stationary target is properly registered, ensuring that 
correspondence is correctly determined. 

Here we present a fully automatic method for alignment SAR images, which is capable of precise and 
robust alignment. 

5.2 Overview of the Algorithm 

The automatic registration algorithm presented here can be broken into several stages, as illustrated by 
Figure 24. In an initial preprocessing stage, the input images are amplitude equalized to enhance the relative 
importance of scene elements such as roads or trees, which can often be critical in accurately determining 
alignment. These images are then aligned by a coarse-to-fine registration procedure, in which processing is 
first done on low resolution versions of the input image, producing an initial alignment transformation. This 
alignment is then refined by reestimating the transformation with higher resolution images, beginning from 
the estimate obtained at the lower resolution. 

At the coarsest resolution, a set of tie-point regions are automatically determined from the base im- 
age. Alignment transformations are evaluated by comparing the tie-point regions in the base image to the 
corresponding points in the transformation of the second image. Regions are compared using the flexible 
histogram texture comparison method [24, 1,1]. 

A stochastic hill climbing algorithm is used to find successively better alignment transformations. When 
the hill climbing procedure converges, refinement of the alignment transformation begins at the next higher 
resolution. For each successive resolution, the tie-points used in the previous resolution are mapped into the 
higher resolution and then refined. The hill climbing procedure is then re-initiated from the convergence 
point achieved at the previous resolution. 

After convergence at the finest resolution, in the experiments described here, an alignment transformation 
was obtained to within a pixel of perfect alignment as measured by manual registration. 

5.3 Histogram Equalization 

Unlike the problem of vehicle detection, where natural objects are distractors, when performing SAR image 
registration low-reflection scene elements - such as roads, water, or forest - contain useful information. To 
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Figure 24: An overview of the image alignment pipeline 
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Figure 25: Equalization of the input images enhances the relative importance of low-reflection scene elements 

enhance the relative importance of these regions, the input SAR images are preprocessed by dynamically 
redistributing the pixel brightnesses. 

This is done by standard histogram equalization, in which the brightness of each pixel is reassigned by 
an equalization function F (■) chosen to satisfy the following: 

\{{x,y)\F{I(x,y)) = VJ}\=K Vi,i (38) 

While simultaneously guaranteeing that if I(x, y) < I(x', y') for any two original pixels, then F(I(x, y)) < 
F(I(x',y')), i.e. that F(-) is stictly monotonic. Thus a constant number of pixels are histogram equalized 
to each value Vj, and the brightnesses of pixels are not reordered by the histogram equalization. Though 
it clearly cannot increase the information available in the image, equalization does enhance the effective 
contrast of elements such as roads, trees, and brick or wood structures, while retaining the highlights and 
detail on the vehicles. 

In Figure 25(a) a SAR scene is shown as a standard log-magnitude image. In this image only the vehicles 
form high contrast, distinctive regions. After equalization the effective contrast in the road has improved 
significantly while maintaining high contrast in the vehicle regions. By preprocessing the images in this way 
the weight of evidence contributed by less reflective objects in the scene can be increased. 

5.4    Automatic Tie-point Determination 

One method for bringing images into alignment is by choosing several distinctive image regions and carefully 
registering them. These regions are commonly known as "tie-points" or "landmarks". The quality of a 
proposed alignment transformation can be determined by evaluating the similarity between the tie-points and 
the corresponding regions proposed by the transformation. This, counterintuitively, reduces computational 
cost while simultaneously improving alignment quality. 
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Figure 26: Two SAR images of the same region measured at different aspect angles. If chosen as a tie-point, 
region (1) constrains alignment to match the circled regions in (b); choosing (2) provides a weaker constraint 
along region within the oval in (b); while (3) provides no constraint, as it matches with most regions in (b). 
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Using tie-points has several advantages over the alternative technique of feature matching. Because the 
nature of SAR imagery, finding features is computationally intensive, and often requires an initial denoising 
stage [25]. Due to the image speckle and geometry of the SAR imaging process, the features found tend to 

be unstable and highly variable [26, 25]. 
The notion of using tie-points to improve measurement in this way is not new, and has been used 

before[27, 28]. Each of these, however, requires that the tie-points be selected by human operators. We 
present a method for automatically selecting good tie-points. This technique is highly generalizable and can 
be used given any particular matching metric for measuring the similarity between two image regions. In 
the results presented here, we use one such matching metric which has been shown to work well with SAR 
imagery, the flexible histogram texture matching metric described in a companion paper in these proceedings 
[29], and elsewhere[24, ?, ?]. 

In Figure 26(a) three distinct types of image elements have been identified. Localized scene elements - 
such as the vehicle highlighted in the square (1) - provide the strongest constraints on the possible alignment 
between two images. Because each localized element is only similar to a few regions in the second image, 
specifically the region around the true corresponding region and the regions around other similar localized 
elements, the similarity measured between two images at these localized scene elements is a good indication of 
the quality of an alignment transformation. Even if one were to use a relatively weak matching metric, such 
as a CFAR statistic or correlation, the distinctness of such localized scene elements can be used to greatly 
reduce the number of possible alignment transformations under consideration. Each such local element 
effectively eliminates all but a small set of possible transformations from consideration. For Figure 26 it 
rules out any transformation which does not map (1) onto one of the circled regions in image (b). In ideal 
situations enough such localized elements exist, and are shared by the two images, so that using these regions 
as tie-points will be sufficient constraints to align the two images closely. Other examples of localized scene 
elements which are commonly seen are: buildings, isolated trees, or bridges. However, such localized elements 
tend to be rare, and a general and robust SAR registration algorithm cannot reasonably assume that for 
all input images, sufficient localized scene elements will exist. Additionally, localized scene elements tend to 
correspond to objects which could potentially move between the times that two SAR images were acquired. 
This is particularly evident in the case of vehicles, but is also true to a lesser degree to other local scene 
elements, such as mobile equipment, supplies or even small buildings. 

Regions selected from extended scene elements - such as the section of road highlighted in the square 
marked (2) in Figure 26a - provide weaker, though still valuable, constraints on the possible alignment 
transformation. Other examples of such extended scene elements include transitions between different types 
of terrain, such as tree or water lines, fences or power lines, or large building complexes. Because such 
extended elements are self-similar, a region in one of these elements will tend to be similar to other regions 
along the same scene element. Thus, a region chosen from along the road in Figure 26 will match well with 
any of the regions in the oval in (b). This is true even when using a strong matching metric - such as the 
flexible histogram texture match[24, ?, ?, 29], or evaluation by a human observer. Such tie-points selected 
from within extended elements constrain the final solution to a curve or small local region. 

Common scene elements - such as the grass in square (3) in Figure 26a - provide virtually no constraint on 
the possible alignment transformation. Other examples of scene elements which tend to occur too frequently 
to be useful include the interior regions of farmland, forest, or water. Because the interior of these types 
of regions are self-similar, any region within them will be similar to any other such region. Thus, even if a 
such a region matches well under a proposed alignment transformation, little information is gained - because 
there are a large number of other transformations under which it will match equally well. 

By selecting as many localized scene elements and a sufficient number of extended scene elements to 
use as tie-points, accurate of alignment can be obtained from comparing just these regions.  Clearly there 
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is a significant computational advantage of comparing only those pixels within tie-points regions versus 
comparing all pixels which overlap under the proposed transformation. Intuitively this corresponds with 
examining only those regions which are likely to be different if the proposed alignment is inexact. 

More importantly, however, limiting the alignment quality estimate to tie-point regions eliminates the 
additional noise which would otherwise be introduced by the small variations in similarity between the 
uninformative common scene elements. Even though it is expected that the variation between any two 
common element regions (i.e. two patches of grass) would be relatively small, the combined effect of all of 
such regions could introduce sufficient noise to "drown out" the real information from the more localized 
scene elements. 

We present here a formalism for determining tie-point regions in a completely automated fashion. The 
utility of using a given region as a tie-point is inversely proportional to the frequency with which similar 
types of regions occur in the input images. Because we can assume that if the images contain views of 
roughly the same scene it is sufficient to locate distinct points in a single image by comparing them to other 
regions in the same image. 

5.4.1    Tie-Points are High Entropy Regions 

Given a statistical model of a SAR imagery we can in principle measure the entropy of a candidate tie-point, 
t. The entropy of such a patch, HModel (*), is directly proportional to the frequency at which similar patches 
are expected to appear. The search for distinctive patches is then a search for the image regions with high 
entropy: 

max [HModei (t)} (39) 

This notion is quite general; there are potentially many possible estimators of tie-point entropy. For 
example, edges are useful features in imagery precisely because they have high entropy[25]. We have chosen 
to use the multi-scale statistical models of SAR imagery defined by De Bonet and Viola[24, ?]. These models 
can be trained directly from SAR imagery. In this case the above entropy can be written as follows: 

max {Ex[H(t\x)]} (40) 

where £ is a patch of SAR imagery drawn at random directly from the image to be registered, and Ex (•) is 
an expectation taken over all possible image patches. 

By manipulating equation (40) we can obtain an expression in terms of mutual information: 

argmaxt{E[H(t\x)]}    =    argminf {-E [H (t\x)]} (41) 

(=>    argmmt{E[H(x)]-E[H(t\x)]} (42) 

argmint {E[H(x)-H(t\x)]} (43) 

argmint{£[/(x;t)]} (44) 

where I (x; t) is the mutual information between x and t. Equality (a) holds because E [H (x)} is independent 
of t and therefore does not change the result of argmint; (b) follows from the fact that expectation is linear; 
and (c) follows from the definition of mutual information. Thus the best tie-point selections are those which 
have the lowest expected mutual information with other regions in the image. 

The output of any image similarity metric, S(-) can be viewed as an approximation of the mutual 
information between two regions. Thus optimal tie-points can be found from: 

argmint {E [S (x, t)]} « argmint {E [I (x; £)]} (45) 
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Figure 27: Two typical examples of the tie-points automatically found by this algorithm. 

The quality of this approximation is directly related to the quality of the similarity metric. However, if we 
use the same similarity metric S(-) to determine tie-points as we use to evaluate alignment transformations, 
then it can be shown equation (45) is optimal with respect to the later measurement. 

To reduce computational cost the expectation of £>(■) is stochastically approximated. The number of 
comparisons used in this approximation can be easily tuned to meet specific computational criteria. 

In a similar fashion, a set of good set of tie-points T = ii, *2, • • • > tn can be found by finding the n most 
distinct regions in the image as measured by equation (45). In practice, however, it is imperative that the 
tie-points used not only be distinctive, but that they also cover the image, so that at least some tie-points 
will lie in the overlapping region under any alignment transformation. To guarantee this, any of a number of 
schemes can be employed. Here we use a scheme which subdives the image into multiple partitions, considers 
candidate regions from within each partition, and requires that at least one candidate from each partition 
be chosen as a tie-point. 

In later sections we discuss the coarse-to-fine refinement of the alignment estimate, in which sets of tie- 
points are needed at each resolution. Each set of tie-points need not be recomputed from scratch if we make 
the following assumption: distinctive regions at some resolution are likely to be at or around the distinctive 
regions at lower regions. Clearly this assumption is not true in the general case, as it prohibits small objects, 
or those which are distinct because of high frequency detail, from ever being chosen as tie-points. Empirically, 
however, they are valid for mm-wave SAR imagery because high frequency detail tends to be unstable due 
to speckle. Given this assumption, it is sufficient to locate higher resolution tie-points only in those areas 
which are within a small region surrounding the tie-points used at the previous resolution. 

Two typical examples of the tie-points found by this algorithm are shown in Figure 27. In (a), which 
contains several vehicles, tie-points are selected in regions around each vehicle; thus, evaluating an alignment 
transformation, to a first approximation, corresponds to measuring how many vehicles line up with other 
vehicles. The quality of each match only becomes important when fine tuning the alignment transformation. 
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In (b), fewer localized elements exist and tie-point selections include some of the extended elements in the 
scene. 

5.5    Stochastic Alignment Optimization 

Given a set of tie-points in the base image, we can evaluate the quality of a proposed alignment trans- 
formation. One could imagine simply computing the quality of every possible alignment and returning the 
maximum quality alignment. If we were to consider only the class of translations, such an approach might be 
feasible though still computationally taxing, requiring O (X x Y x N) region similarity comparisons for an 
X by Y image with N tie-points. However, when we even consider adding another dimension (e.g. rotation) 
this direct approach clearly becomes infeasible. 

Instead we employ a directed search through the space of transformations, in an attempt to determine 
the best transformation. We do this by using simulated annealing, a standard non-linear optimization search 
technique, at each resolution. We initiate the search with the convergence point reached at the previous 
(lower) resolution. 

In employing a multiresolution gradient based technique, the following two assumptions are made: 

• though there may be noise in the objective function - the alignment transformation quality measure- 
ment - its maximum will be surrounded by points whose values are also good. 

• the objective function will be smoother at lower resolutions, though the maximum at lower resolutions 
may deviate from the true fine-resolution maximum. 

The rationale behind this methodology is shown schematically in the the curves shown on the top of 
Figure 28 

Using the low resolution estimate to initialize the search at the next higher resolution obtains a significant 
computational benefit in three ways: 

• alignment quality evaluations are less computationally expensive at lower resolutions 

• as the low resolution objective function surface is smoother, we can use a lower "temperature" in the 
search 

• since low resolution estimates are close to the higher resolution optimum, fewer local optimal are likely 
to exist between the global maximum and the low resolution estimate than if we were to begin at some 
random initialization point; this also allows for the use of a lower search temperature. 

For SAR imagery these assumptions are in most cases valid. This can be visualized by examining 
the objective functions shown in Figure 28. In these graphs, alignment quality is shown as a function of 
translation. At the lowest resolution (a) the surface is smoothest, however, at this resolution each pixel 
represents an uncertainty of 4 pixels at the finest resolution, so the estimate of (0,0) is effectively 8 to 12 
pixels away from the true alignment. At the next finer resolution (b) the estimate of (2,0), though farther 
from the true alignment (which is at (0,0)), it is nevertheless slightly more accurate due to the increased 
resolution yielding an offset of 6 pixels. At the finest resolution, the global optimum is exact; however, the 
surface begins to show local optima which could trap a hill climbing procedure. By initiating the search at 
the estimate obtained from (b) such local optima can be avoided altogether. 
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Figure 28: Coarse-to-fine registration is used to improve computational efficiency and to avoid local extrema. 
A typical example of surface of the alignment quality as a function of translation, at coarse (a), medium (b) 
and fine (c) scales. 
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5.6    Overview of Simulated Annealing 

Though we do not have space to discuss it in depth here, we present a brief description of the simulated 
annealing phase of the alignment procedure. A more complete discussion of simulated annealing can be 
found in [30, 31, 32, 33], 

Simulated annealing is a stochastic hill climbing algorithm in which the objective function is explored 
around a single estimate of the function's optimum. During this exploration, the estimate of the optimum 
is updated and search begins from this new estimate. In this work we explore the objective function by 
choosing potential alignment transformations from a probability distribution centered at the current estimate. 
In this work, new transformations are chosen from a Gaussian distribution about each parameter in the 
transformation. I.e.: 

x[    =    xi+rji 771 ~ N(0,(Ti) 

x'2    =    S2+772 V2 ~ A/"(0,<72) 

(46) 

—     ^n ~r 1)n r)n ~ Af(Q, an) 

where X = (xi,x2,. ■ ■ ,xn) are the parameters for the current estimate of the optimal alignment transfor- 
mation, and X' = (x^x^,... ,x'n) the parameters for the new point under consideration. 

If the objective score at X' is better than that at the current estimate X, then estimate of the optimum 
is updated to X'. Additionally, if the objective score at X' is worse than at X then the estimate is updated 
with probability: 

Pv(X - X'\S(X) > S{X')) = e-
s(XKs{x'} (47) 

where S(X) is the objective score at X, and r is the temperature of the search. 
In the case of image alignment S(X) is the combined similarity measurement between all of the tie-points 

in the base image and their corresponding regions in the second image under the transformation defined by 

X. 
For SAR image alignment, we consider full six dimensional affine transformations. However, in practice 

most of this transformation consists of a rigid transformation (translation, and rotation) between the two 
images. We therefore decompose the affine transformation in the following way: 

a    b 
c    d 

X + dx 
dy — 

cos(r) sin(r) 
— sin(r) cos(r) 

cos(s) sin(s) 
— sin(s) cos(s) 

m 
0 

0" 
n 

X 

X dx 

. y. 
+ 

dy _ 
(48) 

in which there is a translational component (dx,dy) a rotation (r) and stretching along a major and minor 
axis (m, n, along direction defined by s). In decomposing the affine transformation in this way, the simulated 
annealing search can be directed to explore each of these dimensions with different size steps, as defined by 
the corresponding {cr»} in equation (47) 

The temperature parameter r in equation (47) is annealed according to a fixed schedule for each resolution. 
The values for the parameters cr's and r were chosen manually to optimize search time on several pairs of 
SAR images. 
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Figure 29: A typical registration 

The analysis up to this point has only used the similarity metric S(-) abstractly. Many algorithms have 
been shown to be good similarity metrics for SAR imagery[27, 28, 6, 5, 34, 35] and would be reasonable 
candidates for S(-) In this work we use the flexible histogram texture matching metric, which is described 
in a companion paper in these proceedings[29], and elsewhere [24, ?, ?]. 

5.7 Results 

Several examples of aligned pairs of SAR images are shown in Figures 29 and 30. Automatically selected 
tie-point regions, highlighted by the white squares, cluster around the distinctive regions in the images. 

Though alignment performance is difficult to fully quantify, we have informally been able to make some 
preliminary measurements of the systems performance. The parameters of the alignment procedure were 
manually tuned using several image pairs. Alignment was then measured for a collection of 36 different 
image pairs, with randomly selected initial alignment. Alignment was generally within a few pixels of 
the optimal affine transformation, as defined by manual alignment. Furthermore, alignment quality was 
consistent regardless of initial alignment of image pairs. 

5.8 Discussion 

The two key developments we have presented, which make robust and consistent alignment possible, are 
the process for the automatic determination of tie-points and the use of coarse-to-fine alignment. Useful 
tie-points correspond to regions which have a low expected mutual information with other regions in the 
SAR images. Regions selected in this way correspond to the distinct elements in SAR imagery which are 
inherently useful in achieving accurate alignment. This formulation for the automatic determination of 
tie-point regions is extremely general and can can be used by many tie-point based techniques.   Using a 
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Figure 30: A typical registration 

coarse-to-fine progression to refine the estimate of the image alignment improves computational efficiency 
and results in more robust alignment. At each resolution, simulated annealing is used to determine the 
optimal alignment, and is greatly aided by the initialization obtained from the alignment at the previous 
(coarser) resolution. 

The alignment of all of the vehicles in Figure 30 is not perfect even though the optimal affine alignment 
has been found indicating that the class of affine transformations are not sufficient to completely align two 
images. In future research we intend to examine larger classes of transformations to attempt to achieve even 
tighter registration between images. 

Although the flexible histogram texture matching metric performs well on SAR imagery, as seen by 
the smoothness of the objective functions in Figure 28, in this direct framework it can only make SAR to 
SAR comparisons. One of the long term objects of image registration is the alignment of data from several 
sensors into a single reference frame. The mutual information technique used by Viola and Chao[27] presents 
a method for measuring the mutual information between pixel brightnesses. We hope to extend this work by 
examining the mutual information between the flexible histogram texture measures obtained from multiple 
sensors. 
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6    Information Theoretic Feature Extraction for ATR 

Utilizing principles of information theory, non-parametric statistics and machine learning we describe a task- 
driven feature extraction approach. Specifically, the features preserve information related to the specific 
estimation problem. Mutual information, motivated by Fano's inequality, is the criterion used for feature 
extraction. The novelty of our approach is that we optimize mutual information in the feature space (thereby 
avoiding the curse of dimensionality) and we do so without explicit estimation or modeling of the underlying 
density. We present experimental results for pose estimation of high-resolution SAR imagery. 

6.1    Introduction 

Modern ATR system designers are faced with the difficult problem of processing data of increasingly higher 
dimension. Classical decision approaches are not well suited to high-dimensional data and so dimensionality 
reduction, or feature extraction, is often performed. This is notionally represented in figure 31 by the function 
<;([■],a) which maps high-dimensional data to a much lower dimension and which has some finite set of 
parameters, a, which must be set. Popular methods for data driven feature extraction, however, are optimal 
only in the signal reconstruction sense (e.g. eigenvector methods such as PCA) or make strong assumptions 
about the underlying data densities (e.g. independent components analysis). It is these shortcomings that 
we seek to address here. 

low 
dimensional 

output 

Figure 31: Notional diagram of the feature extraction problem. Our input is high-dimensional data (e.g. SAR 
imagery) which we wish to map to some low-dimensional representation. We learn the mapping parameters 
a from data examples. 

We discuss an information theoretic approach to feature extraction. Our approach is novel in that 
it combines a non-parametric density estimator with an information theoretic criterion, namely mutual 
information. In so doing we formulate a learning approach for features which preserves information related 
to the parameters of interest. 

6.2    Information Theoretic Approach 

Our intuition is as follows. High dimensional data, such as images, convey many "bits" of information 
only some of which we may interested in decoding (e.g. background clutter type, object class, object pose, 
etc.). Given an estimation task, other pieces of information may not be of interest and can be thought of as 
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nuisance parameters. It seems only logical that in choosing a feature extraction method we should seek to 
preserve information about the parameters of interest. This prompts the following questions: 

1. Can we find "informative" directions within the high-dimensional input space? 

2. Can we learn these directions from data? 

The questions are related. What we seek in the first question should guide our choice of a learning criterion 
in the second. As a first step we can view the feature extraction process as a Markov chain, as in figure 32, 
beginning with the parameter of interest, 9, proceeding to the observed data, x, and ending in the computed 
feature, y. 

parameter 

X 

observed data 

y 

feature 

Figure 32: Feature extraction as a Markov process, p(9, x, y) = p(9)p(x\9)p(y\x). 

A learning criterion which addresses both questions is mutual information (MI). We learn the parameters, 
a, of the mapping in figure 31 so as to maximize the MI between 9 and y. MI between two random variables 
is defined in three equivalent ways as [36] 

I(8,y)    =    H(9)+H(y)-H(ß,y) 

=    H{e)-H{9\y) 

=    H{y)-H{y\9) 

(49) 

where H (z) is either the differentiable or discrete entropy of the random variable z (depending on whether 
z is continuous or discrete). Entropy is defined as 

H(z) = {: 
/nJog(p(z))p(z)d2 
£log (p(Zi))p(zi) 

z  continuous 
z  discrete 

(50) 

Consider the case in which 6 is discretely distributed (although x and y need not be).   We can lower 
bound the probability of error in estimating 9 as a function of MI by Fano's inequality [36]. 

Pr{9(y) jt 9} > 
H(P)-I(0,y) 

log2(iV) 
(51) 

Where 9 is the estimator of 9 as a function of the feature vector y and N is the number of values which 
9 takes. Observe that the only degree of freedom in the inequality is the choice of y. Effectively, Fano's 
inequality relates the inference power (as measured by the lowest potential probability of error) to the MI 
in the features. Another issue to note is the data processing inequality [36] which states that in a Markov 
chain: 

I(9,y)<I(9,x), 
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so that by extracting features we can only destroy information about 6 (or at best maintain it). Estimation 
of continuous parameters can be similarly motivated by the idea of a sufficient statistic. A property of a 
sufficient statistic is that if 1(8, y) = 1(9, x) then y is a sufficient statistic for 9. 

These desirable properties of MI are well recognized within the statistical pattern recognition community. 
What is novel here is that we will present a machine learning approach which incorporates MI as a criterion 
for setting the mapping parameters, a. We face a key challenge, however, in that entropy and by extension 
MI is an integral function of joint probability densities which we do not know. 

6.3    Approximating Entropy 

Examining equation 49 we see that MI is a combination of entropy terms. Therefore if we can approximate 
entropy (or its gradient) then by extension we can perhaps approximate MI. In previous work we have 
presented an approach for approximating entropy [37, 38]. For the sake of brevity we summarize the results 
of that work, the details can be found therein. In estimating entropy and its gradient we make use of the 
following: 

1. the maximum entropy probability density over a finite region is the uniform density, and 

2. expanding p\og(p) as a second order Taylor series about the uniform density equates minimizing the 
integrated squared error between the estimated density and the uniform density to maximizing entropy. 

So an approximate criterion for maximizing (or minimizing) entropy is 

3 f   (p(u) - Pu(u)f du (52) 
Ja,L 

where pu(u) is the uniform density over the finite extent region flu and p(u) is a density estimator. For the 
estimate we use the Parzen density estimate [39] defined as 

i 

where «([•], h) is a Gaussian function with variance h2 and {j/j} are a set of N data samples. In application 
j/i are the outputs of our mapping function, i.e. y, = g(xi,a) where Xi are high-dimensional input data. 
Additionally, in order to satisfy the finite range extent we choose a multi-layer perceptron (MLP) with 
squashing nonlinearity as the mapping function. The parameters, a are therefor the weights of the network. 
As shown in [37, 38] the update term for the networks weights becomes 
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dJ     4 £«£'(**.«> w da N^    da 

fr{yi)--^^Ka{yi-yj,h) (55) 

«1(2/*-!^ (56) 

fr{Vi)k 

2 

Ka(u,h)    =    K,(u,h) * n'(u,h) (57) 

exp(~4^) 

(2M+lj»/2/iM+2)' 
(58) 

where M is the dimensionality of the feature vector y. Both fr(yi) and na(u,h) are M-dimensional vector- 
valued functions and d is the support of the output of the mapping (i.e. a hyper-cube with sides of length d 
centered at the origin). The notation fr(Vi)k refers to the fcth element of fr(yi) [38]. 

Despite their appearance, the set of equations has a natural interpretation in the context of maximizing 
entropy. The gradient update of equation 54 consists of two terms: et is the error direction term, while 
9g^'a) is the network sensitivity term encountered in back propagation training of an MLP. Consequently, 
the key difference between using MI as the learning criterion versus a supervised learning approach is solely in 
the computation of the error terms. The error term in equation 55 is comprised of two additional terms. The 
first, fr{vi) directs samples away from the boundary of the output map (consequently preventing saturation). 
The second, -ka(y - yj,h) summed over all samples pair wise repels samples away from each other. The 
net effect when maximizing entropy is that samples are uniformly distributed in the output space. If, on 
the other hand, one were minimizing entropy, these terms change sign and have the opposite effect. A 
combination of maximizing unconditional entropy and minimizing conditional entropy are used for MI. 

We should also note that the above algorithm computes an exact gradient to the integral criterion of 
equation 52 while requiring function evaluations only at the sample points. This is somewhat surprising as 
the criterion is an integral function over the density. 

6.4    Estimation of Pose from Learned Features 

We now present the results of a simple experiment. Given SAR images of vehicles, we wish to derive two 
features (i.e. y is two-dimensional) which convey information about the pose of the vehicle. Examples of 
these images are shown in figure 31. The images, of dimension 128 x 128, are taken from the MSTAR public 
release data base. Specifically we use images of a single vehicle type, T-72 tank. We train on 116 images 
from one vehicle (s/n s7) sampling about every three degrees of aspect and test on another (s/n 812). We 
use a single layer perceptron with two outputs. Each of the training images is labeled with an approximate 
pose angle (relative to the radar platform). We use this information jointly with the images to train the 
network. Recall there is no desired signal as in the supervised training case, rather we desire only that 
the feature vector conveys maximal information about the pose of the vehicle as computed from the image. 
Minor pre-processing is done to each image, namely, normalization to unit energy followed by subtraction of 
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the mean image over all training samples (also applied to new testing images). As a comparison we use the 
two largest principal components as a competing set of features. 

In applying the technique we maximize entropy in the feature space (i.e. in general samples repel each 
other) except for samples with poses that are close in which case we minimize entropy (i.e those samples 
attract each other). Figure 33 shows the resulting feature space using MI (top) as compared to the two 
largest principle components. Although not unique, the plot at the top is a natural solution to the competing 
criterion. Furthermore, although not perfect, the mapping generalizes to the testing set quite well. It is not 
hard to imagine that the features would be useful for estimating the pose of the image, although we will give 
better evidence of that later. By comparison, although PCA features might useful for something, there is 
little visual evidence that pose information has been preserved. 

MI feature space PCA feature apace 
1000 1           '           ■     1     ■     ■     ■     ■     I 

- 

500 - 

vi 

0 " Jp» 

-500 -       ^ I 

i     ....     1     ...           1 

■ 

Figure 33: Comparison of feature spaces. MI feature space (top) and PCA feature space (bottom). Training 
samples are denoted by triangle symbols while testing examples are denoted by diamond symbols. Adjacent 
pose angles are connected. 

As further evidence of the information preserving properties of the approach examine figure 34. Since 
the input to the single layer network is linear we can examine the subspace of the input projection. That 
is, we can remove the null space components from the original input image and see which image features 
remain. We can, of course, do this with the PCA features as well. In the figure we show two examples 
of a training image (on the left) at two different poses. Alongside these are the back-projected images for 
both MI (middle) and PCA (right), respectively. A simple psycho-physical test, in which one covers up the 
original image and tries to determine the vehicle pose by inspecting the back-projected images demonstrates 
that the MI features yield a slightly better estimate, particularly for the set of images at the top of the 
figure. Furthermore, leaving the original image uncovered and covering up either the MI image or the PCA 
image shows that the MI image has slightly better agreement than PCA image. Admittedly this is hardly 
conclusive and so we present an additional result. 

Having computed the features, we are still left with question: how do we use them? Presumably they 
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original MI PCA 

Figure 34: Comparison of back-projected images 

convey the information we are interested in, but we must still decode it. One approach is to use the same 
Parzen density estimator upon which the technique is based to estimate the parameter encoded by the 
features. Note that this would have been unthinkable in the original input space, but is easily done in the 
new low dimensional feature space. 

Specifically, given a new image and its induced features j/j, we compute 

9 = arg max p(6 \y = y{) = 
p{8,yi) 

p(yi) 
(59) 

where 9 is the MAP estimate of the vehicle pose. 
Four examples are illustrated in figures 35-38. We estimate the conditional density above using both 

sets of features computed from the training samples and compare the results in the figures. We choose four 
examples, two training and two test images. A training and test example are taken from the ambiguous 
region of the MI feature space (i.e. where the curve crosses over itself). Presumably this is the region where 
the MI features will be least useful for estimating pose due to the competing hypotheses.  The other two 
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Figure 35: Training image whose projection lies in benign region of MI feature space. 

examples are taken from a benign region of the MI feature space. The vertical line indicates the actual pose 
of the vehicle under test. Unsurprisingly, the MAP estimate using the MI features performs very well on the 
training sample from the benign region (figure 35), although the PCA features give nearly the same result. 
In figure 36 the result is quite different. Although the MAP estimate using the MI features is close, as can 
be seen in the figure another mode in the estimated density is nearly as high. Still, the MI features yield a 
density which is much less uncertain than the one obtained using the PCA features. The results of figures 
37 and 38 are of more interest as they apply to testing data. Once again in the benign case the MI features 
slightly outperform the PCA features (both in the bias of the estimate and the compactness of the estimated 
density). Finally the MI features perform much better than the PCA features for the testing sample taken 
from the ambiguous region. 

6.5    Conclusions 

We have presented what we believe to be a quite general technique for information theoretic feature extrac- 
tion. Our choice of PCA features as a comparison was primarily to illustrate the difference in the nature of 
the feature selection approach, that is, signal representation versus information preservation. Nevertheless, 
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Figure 36: Training sample whose projection lies in ambiguous region of MI feature space. 

we feel that these preliminary results are quite promising. Certainly more exhaustive experimentation will 
have to be done in order to characterize the approach more fully. 
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Figure 37: Testing image whose projection lies in benign region of MI feature space. 
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Figure 38: Testing image whose projection lies in ambiguous region of MI feature space. 
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7    Target model generation from multiple SAR images 

An important problem driving much research in the SAR and model-based ATR communities is the gener- 
ation and modification of target models for ATR system databases. We propose a method for generating or 
updating 3-D reflector primitive target models. We utilize an existing 2-D extraction algorithm to extract 
feature locations and classifications (such as scattering primitive type) from each image in a set of SAR data. 
We formulate the 3-D model generation in terms of a data association problem. We present an iterative 
algorithm, based on the expectation-maximization (EM) method, to solve the data association problem and 
yield a maximum likelihood estimate of target feature locations and types from the set of 2-D extracted 
features. Finally, we present examples and results for sets of simulated SAR imagery. 

7.1 Introduction 

Recent research into model-based approaches to SAR ATR has yielded significant results. As the sophisti- 
cation of model-based ATR techniques and model representations grows, however, an increasingly difficult 
problem is the generation and modification of diverse model libraries necessary for such an approach. Model 
generation is typically a tedious and difficult task, often requiring detailed descriptions of targets in the 
form of blueprints or CAD models. Unfortunately, the very targets which are of utmost interest in ATR 
applications are often those for which little or no detailed prior information is available. An important goal 
driving much research in the radar and ATR communities is the development of methods for generating re- 
flector primitive target models directly from SAR imagery. Recently, efforts to generate models from a single 
1-D radar range profile [40, 41] or a single 2-D SAR image [42, 43] have met with some success. However, 
the models generated from these data sets are of limited use to most ATR systems because they are not 
three-dimensional. 

Many model-based ATR systems rely on a detailed representation of targets in terms of a small set 
of canonical reflector primitives such as flat plates, cylinders, tophats, dihedrals, and trihedrals. These 
reflector primitives enable compact yet physically relevant descriptions of a rich class of targets. A reflector 
primitive model describes a target in terms of a small set of parameters, specifying information relevant to 
target recognition and signature prediction, such as the location, type, pose, and size of each of the target's 
component primitives. 

This paper addresses the problem of generating 3-D reflector primitive models for simple targets directly 
from SAR imagery. Our method relies on a pre-processing step that extracts scattering centers from each 
2-D SAR image in the data set, and the expectation-maximization (EM) method to associate extractions 
implicitly between images. Section 7.2 describes the problem setup and pre-processor; Section 7.3 describes 
our application of the EM method to the problem; Section 8.4 presents experimental results obtained using 
XPatch SAR data. Section 8.5 concludes the paper. 

7.2 3-D Target Model Extraction 

We are given a set of K polarimetric spotlight-mode SAR images (each comprising linear polarizations 
HH, HV, and VV). Each image k was obtained at an arbitrary look angle defined by center azimuth <j>k 

and depression i/'fc- Perfect ground truth data is available for cj>k, ipk, and all imaging parameters (such as 
bandwidth, aperture, range and cross-range locations of each pixel). We wish to extract a 3-D target reflector 
primitive model directly from these images. This model will describe the target as a collection of discrete 
scattering primitives. The model will describe the 3-D ground location and discrete type (e.g. , trihedral, 
tophat) of each target primitive, as well as the radius of curvature for certain curved primitives. 
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We perform a simple scattering center extraction on each polarimetric vector-intensity SAR image as a 
pre-processing step, and use the resulting set of K parameterizations as the basis for the 3-D model gener- 
ation. Examining only the 2-D scattering center extractions instead of the complete data provided by the 
full set of raw SAR imagery necessarily overlooks information that would be relevant to 3-D model construc- 
tion; however, this approach greatly simplifies the model generation problem and provides a springboard for 
ongoing and future research. 

7.2.1 2-D Scattering Center Extraction Pre-Processor 

The pre-processor used to extract scattering centers from each polarimetric SAR image set provides estimates 
of the slant-plane locations and discrete types of prominent scattering centers in each polarimetric SAR image. 
The pre-processor has two distinct steps: first, the peak detector from the MSTAR "extract" module [44] is 
used to estimate scattering center locations from a noncoherent sum of the three polarimetric images at each 
look angle (i.e. , the pixelwise polarimetric vector magnitude). The peak detector identifies all local maxima 
with peak-to-background intensity above a tunable threshold, subject to a proximity constraint; bilinear 
interpolation is used to yield a subpixel estimate of scattering center location in slant-plane coordinates. 
The second step is a polarimetric type classification. The extracted polarimetric signature at each extracted 
peak location is classified as one of M discrete scattering primitive types, using an M-ary type classification 
procedure based on canonical polarimetric scattering signatures [45]. The pre-processor thus produces a set 
of K parameterizations from the K polarimetric SAR images, each describing a set of extracted scattering 
centers in terms of their estimated 2-D slant-plane locations and discrete primitive types. 

The front-end pre-processor does not do a perfect job of detecting and classifying scattering centers: 
there will be missed detections, false alarms, extracted location uncertainty, and incorrect classifications. 
Characterization of pre-processor performance in terms of these considerations will prove essential to the 
design of our model generation algorithm, described below. 

7.2.2 Definitions and Notation 

We now introduce notation that will aid in the development of a model characterizing the front-end 2-D 
extraction process. (Figure 47, described at the end of this section, illustrates some of the notation presented 
here.) The set of parameters associated with each 2-D extracted scattering center (i.e. , each combined 
location and type output from the pre-processor) will be known as a report. The full set of reports for any 
given SAR image or phase history will be called a frame. All extracted parameters will be indexed by an 
argument and subscript, denoting the frame and report to which it corresponds. For instance, ym(k) denotes 
the estimated slant plane cross-range location y for the mth report extracted from frame k. Finally, M(k) 
will denote the number of reports (extracted scattering centers) in frame k. 

The target model will describe the 3-D location and discrete type of each primitive, and the radius of 
certain curved primitives. This model must be estimated from the output of the pre-processor, namely, from 
the K frames of extraction parameters. Each report comprises three parameters: am(k), specifying estimated 
discrete scattering type, and xm{k) and ym{k), specifying estimated slant plane down-range and cross-range 
location. It will be convenient to define the quantity Xm(k) = \xm{k) ym(k)]T combining the estimated slant 
plane down-range and cross-range locations for each report into a single vector quantity. Zm(k) will denote 
a single report, i.e. , the full set of parameters associated with any extraction: Zm(k) = {Xm(k),am(k)}. 
Further notation will include Z{k) to denote the full set of reports for frame k (Z(k) = {Zm(k)}m^), and 
ZK to denote the full set of reports in all frames (ZK = {Z(fc)}f=1 = {{Zm(k)}^}^=1). 
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The set ZK represents all of the data provided by the front-end extraction process. The 3-D target 
primitive model must be estimated from ZK. Let Nt denote the number of primitives comprising the target. 
We will let ©t denote the set of parameters specifying the ground location and discrete type (and radius of 
curvature, if applicable) of target primitive t (for t = 1,..., Nt). The notation ©f will refer to the ground 
location of reflector primitive t, i.e. , 0* = [xt yt zt]

T where xt, yt, and zt are the ground-frame Cartesian 
coordinates of reflector primitive t. Similarly, 0" will refer to the discrete type of reflector primitive t, i.e. , 
to the index specifying which of Na possible discrete type classes primitive t represents. Likewise, ©£ will 
refer to the scalar radius of curvature of primitive t (if applicable), with respect to its axis of symmetry. 
The symbol 0 will denote the complete, all-encompassing parameter vector describing the target model, 
i.e. , © = {Qt}t±i- Our goal is to produce an estimate of 0 given ZK. On occasion we will find it useful 
to indicate only the discrete types or location parameters of the target model. For this purpose we define 
0* = {©*}&, 9° = {0?}&, and O^ = {0[}^x. 

In order to estimate 0 from ZK, we must specify how ZK depends on 0. To do this, it will be convenient 
to define an unobservable label parameter for each report Zm(k) as follows: 

ft,    if report m in frame k corresponds to target primitive t .    . 
m 1 0,    if report m in frame k is spurious (corresponds to no primitive). 

Thus Xm(k) is an integer index specifying which of the Nt target primitives, if any, gave rise to report Zm(k). 
As before, we introduce notation to refer to sets of these parameters within each frame and throughout all 
frames. Specifically, let X(k) — [Ai(fc), • • • , AM(fc) (k)]T and A*" = {A(fc)}f=1. The set XK is unobservable 
because ZK does not explicitly contain information about these labels (although it depends on them implic- 
itly). Note that X(k) is subject to certain restrictions: no more than JVt of its elements may be nonzero, it 
cannot contain the same nonzero index twice, and so on. (Figure 47 contains an example of label parameter 
assignments.) We will denote the space of all possible A(fc) by A(fc); similarly, we will denote the space of 
all possible XK by A* = A(l) x • • • x A(K). 

Finally, it will prove convenient to define several parameters that are explicit functions of X(k). We 
introduce a primitive detection indicator function St(k), where 

X   (l,\   -   j1'        ^ ^™(fc)   =  t  for  SOme   1   -  m  -   M(k)' (Ql) 
1 0,    otherwise. 

Thus 6t(k) indicates whether primitive t generated a report in frame k. A framewise vector of target indicators 
can be built by concatenating the individual target detection indicators: S(k) = [Si (k), ■ ■ ■ , Jjvt (^)]T- Finally, 

we define detection and false alarm totals for each frame: let D(k) = Yjt=\ $t(k) and F(k) = M(k) — D{k) = 
|A(fc)| — D(k) such that D(k) is the number of target primitives that generated reports in frame k, and F(k) 
is the number of spurious reports in frame k. 

Figure 47 is a pictorial depiction of some of the notation described in this section. In this figure, there 
are two target primitives (Nt = 2), three frames (K = 3), and two possible types (Na = 2). The primitives 
comprising the target and the reports comprising each frame are numbered in the figure. If the triangle 
symbol corresponds to type 1, and the circle symbol to type 2, then we have ©" = 2, ©£ = 1, and other 
quantities as given in the table on the right of the figure. 

7.2.3    Model Generation as a Data Association Problem 

Reports generated by reflector primitives appear approximately in locations determined by their projections 
into the slant plane [46].   Recall that image k was obtained at center azimuth 4>k and depression ipk-  An 
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FRAME 1 

41 
\ 02 

03 
\ 

FRAME 2 FRAME 3 

02 

P1 

A4 

A3 

TARGET PRIMITIVES 

FRAME 1 FRAME 2 FRAME 3 

M(l) = 3 M(2) = 4 M(3) = 4 

ai(l) = l 
a2(l) = 2 
a3(l) = 2 

ai(2) = 2 
a2(2) = 1 
Q3(2) = 1 
Q4(2) = 1 

QI(3) = 2 
Q2(3) = 2 
o3(3) = 1 
Q4(3) = 1 

Ai(l) = 2 
A2(1) = 0 

A3(l) = 1 

Ai(2) = 0 
A2(2) = 1 
A3(2) = 0 
A4(2) = 0 

Ai(3) = 1 
A2(3) = 0 
A3(3) = 2 
A4(3) = 0 

*i(l) = l 
<52(1) = 1 

5i(2) = 1 
62(2) = 0 

*i(3) = 1 
<52(3) = 1 

D(l) = 2 D(2) = 1 D(3) = 2 
F(l) = 1 F(2) = 3 F(3) = 2 

Figure 39: Notation example 
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approximate model for the extracted location of a scattering center in the slant plane is given by 

Xm(k) = }{Qxm{k)MAk)+wm{k) (62) 

where /(•) is a projection operator described below, and where wm(k) is white Gaussian noise (uncorrelated 
between reports and frames) with mean 0 and covariance Rk. This model does not capture coupling effects 
between primitives, such as obstruction and multi-bounce scattering, but succeeds in describing the apparent 
location of primitives in SAR images under many circumstances. The atomic (i.e. , non-coupled) form of /(•) 
and the whiteness of wm (k) will enable us to decouple the model estimation problem into Nt independent 
primitive estimation problems. 

Many target primitives produce a SAR response whose apparent specular reflection point remains essen- 
tially constant as viewing angle varies: trihedrals, dihedrals, and point scatterers are of this type. [47] Let us 
denote the set of discrete type indices a for these primitives as //{„.<*. Other target primitives with curved 
surfaces, however, produce a response whose apparent location varies with viewing angle; let us denote the 
set of discrete type parameters for these primitives as Icurv. Cylinders, tophats, and spheres are of this latter 
category. [47] If we restrict Icurv to primitives with an axis of symmetry perpendicular to the ground plane, 
then /(•) takes the following form: 

f (®\r„(k),^k,<ßk) = < 

Ak®xm(k)> °L(fcl € -W 

Ai.<~>x 

'Am(fc) 

(63) 
eAm(fc)C0S(^fc)'      0L(fc) G /cu™ 

where Ak is the ground-to-slant-plane transformation matrix for look angle (ipk, 4>k)'- 

Ak = 
COSIpkCOSCpk      COSIpk s™(4>)k      ~~ SmWfc 
- sin(<£)fc cos0fc 0 

(64) 

(The form of /(•) for primitives in class Icurv captures the fact that the radar responses from these primitives 
appear to emanate up-range from the center of the primitive, due to their convex surfaces.) 

Suppose that XK were known exactly. Then estimation of Qx would be straightforward via a weighted 
least-squares approach. Estimation of 0" and 0r would also be straightforward given A*'. Unfortunately, 
\K is unknown. If we want to base our estimation on this information, we will need to find a way to estimate 
\K from ZK, the observable data. The estimation of XK is essentially a correspondence or data association 
problem; a large body of literature exists describing theory and methods for solving data association problems 
in many contexts and applications. [48, 49, 50] We will utilize the expectation-maximization (EM) method 
[51], which has been used in numerous applications to facilitate simultaneous consideration of a large set of 
possible data associations [50]. In order to implement the EM method, described in Section 7.3, we will first 
need to derive an expression for the pdf p (\K, ZK\ 6). This entails specifying a model for the behavior of 
the pre-processor. 

7.2.4    Model Generation Front End: the Pre-Processor 

Given a number of reasonable assumptions about the 2-D scattering center extractor pre-processor, we will 
be able to derive an expression for p (\K ,ZK;Q), the pdf for XK and ZK parameterized by ©. The whiteness 
of the noise in (62) means that the Xm(k) are conditionally independent given 0. We will assume the same 
of the discrete type indices am(k). (This assumption, like the one that allowed us to write (62), is violated 
for effects like multi-bounce reflections; however, this assumption is reasonable in many circumstances, and 
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will allow us to treat distinct primitives and distinct frames independently, greatly simplifying the model 
estimation problem.) Specifically, we will assume that the probability that a primitive of type ax is classified 
as being of type a2 in an arbitrary frame (given that it generates a report in that frame) is given by the 
confusion probability paia2- Suppose that report Zm(k) is not spurious; then the prior probability of that 
report's estimated type being am(fc) (given that it was detected in frame k) is /9ejm(t)am(fc)- Because this 
notation is unwieldy at best, we define the shorthand notation p'm^ = Pe°      am(k)- 

The front-end pre-processor has two distinct stages: namely, a peak extraction stage and a classification 
stage. Since these stages are distinct and memoryless, and because the peak extractor operates on the 
magnitude of the polarimetric vector, while the classifier utilizes its direction, we will make the reasonable 
assumption that the type confusion and location uncertainty processes are independent between reports and 
frames. Finally, we assume that primitive detection and false alarm processes are independent across frames. 
While this is not true in many cases—consider the case of a primitive with a highly directional response, such 
as a flat plate or a trihedral—it has the great benefit (when taken with the other independence assumptions 
we have made) of enabling us to represent p (\K, ZK; 0) as a product of independent terms. Specifically, 
we may write 

K 

p(\K,ZK;e) = l[p(\(k),Z(k);Q) (65) 
fc=i 

which means that if estimation of XK is our goal, it may be accomplished by solving K smaller estimation 
problems—namely, K decoupled estimations of p(X(k), Z(k); 0). 

Experimentation suggests that false alarms may be modeled as a Poisson process (we shall denote its 
arrival rate by ^FA) with locations uniformly distributed across the sensor volume V and with types equally 
distributed among the Na possibilities. Let us denote the probability of detection of a primitive of type 
a in an arbitrary frame as PD{O) (a function that takes on only Na values and is constant over all look 
angles, by our framewise detection independence assumption above). Given our assumptions in this and 
previous sections, we can now fully specify p (A(fc), Z(k); 0). The full derivation of this quantity is given in 
Section 7.6; this derivation yields the expression 

e-lFAV 
FW 

( \    *■  ' / 

,«*>.*<*);*)   -    ii^r—inc-ftW»     .ELr-ftte-^) 
, \m(k)^0 

II /m(!:\1/2exp   -hf(Qxmlk),^,4>k)-Xm(k))TRi 
„(/,)#o27r(det^) 2 

(f{®\m(k),'<Pk,(t>k) -Xm(k)) 

TD-1 
■k 

(66) 

where /(•) is the projection operator defined in (89). It is clear that (95) gives a complete model for 
the probabilistic dependence of Z(k) and A(fc) (and thus ZK and \K via (65)) on 0. We see from the 
above equation that the dependence of report parameters ZK and unobservable label parameters \K on 
© is parameterized by several attributes of the front-end pre-processor—namely, the false alarm rate ~/FA, 

the probabilities of detection PD (©"), the type confusion probabilities p'm^ky and the extraction location 
covariances Rk-   If these pre-processor parameters are known in advance, then (95) provides a complete 
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description of the dependence of ZK and \K on 0; if these pre-processor parameters are unknown, they may 
be estimated by running the pre-processor on characteristic imagery for which target ground truth data is 
available. 

7.3    EM Formulation of Model Generation 

We have cast the target model generation problem in the framework of a data association problem; we have 
made several simplifying assumptions that allow us to specify the probabilistic dependence of the observed 
data (ZK) and the unobservable report-to-primitive associations (XK) on the complete target parameter 
vector 0 in (95). We now turn to the expectation-maximization (EM) method as a tool to produce a 
target model within this framework. The EM method is an iterative procedure for producing a maximum 
likelihood estimate of parameters in incomplete-data problems, i.e. , when there is a many-to-one mapping 
from a postulated set of "complete" data to the set of observed data.[50, 51] In our context, the complete 
data is the full set of all observations and label parameters, ZK and \K; there are combinatorically many 
primitive-to-report associations XK G A^ that could give rise to the observations ZK. 

Each iteration of the EM method consists of two steps: an expectation (E) step and a maximization (M) 
step. The E step takes into account all feasible association possibilities by calculating the expectation over 
A^ of the log likelihood of 0 given the observed data ZK and assuming the previous parameter iterate ©["'. 
(In our context, the E step entails calculation of the report-to-primitive association probabilities for each 
feasible report-primitive pair.) The M step produces a new iterated estimate, ©tn+1l, by maximizing the 
expected log likelihood from the E step over 0. The E and M steps are alternated until p(ZK; ©) converges. 
Under relatively weak assumptions, the EM method is guaranteed to converge to at least a local maximum 
of the likelihood function p{ZK; 0) [51, 52]. 

Suppose that we have an initial guess ©^ for 0. The E step of the nth iteration of the EM algorithm 
requires calculation of the quantity 

Q(e;eM) = E[logp(\K,ZK;e)\zK;eM]=    £   [\ogP(XK,ZK;Q)]p(\K\zK;eW). (67) 
\K€AK 

The M step then requires maximization of Q(©;©["!) over 0. Specifically, the M step determines the next 
iterate value ©In+1] = arg maxe Q(©; ©'"')• We now derive the precise forms the E and M steps for the 
application of the EM method to the 3-D model generation problem, and discuss the initialization and 
termination of the algorithm. 

7.3.1    Formulation of the E Step 

We seek an expression for the expectation <Q(0;©'n') required in the E step of the EM algorithm. The 
derivation of Section 7.7 shows that 

Nt 

Q(e-,eW) = YlQt(&f,e[n]) +CK 
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where 

gt(et;ew)   =  £ 
K 

k=\ 

M(k) 

log (1 - PD (0f)) + E    log {PD (©?)) - log (1 - PD (9f)) + \ogp'm{k) 

m=l ^ 

i(/ (0t) Vfc, 0fc) - Xm(k))TR?{f (0t, Vfc, <M - Jfm(Ä)) 

Pr(Am(fc) = i|Z(A:);eH) (69) 

and cK is constant with respect to 0. Note that Q(0; ©W) in (97) is separable into Nt terms Qt(@t\ @[n]) 
each depending only on a single primitive, and that each Qt (0t; ©I™!) in (69) is further separable into K terms 
each depending only on a single frame. This is the benefit of our independence assumptions of Section 7.2: 
the E step can be achieved frame by frame (and, as we will discuss shortly, the M step can be achieved 
primitive by primitive). This is an encouraging result, because it means that computational complexity of 
the E step will increase only linearly with K, and not exponentially as might have been expected if the E 
step had in fact required enumeration of the space AK (which grows exponentially with K). We also see 
that all the terms in (69) but one have been specified exactly: we have not yet described how to obtain 
the report-to-primitive association probabilities Pr (Am(fc) = t \Z(k); Ow). Completion of the E step thus 
requires us to calculate this probability for all {m,t) pairs in frame k. Bayes' rule allows us to write 

For any Z(k), X(K), and ©I™', (95) gives p (A(fc), Z(fc);©[n])- This appears to provide the means for com- 
puting Pr (Am(fc) = t \Z(k); 0'nl). Unfortunately, calculation of this probability by way of (70) is generally 
intractable due to the enormous size of A(fc). 

Examining (95), we see that the Gaussian exponential term ensures that Pr (Xm(k) = t \Z{k)\ 0'nl )«0 
except when / (©Am(fc),ipk, 4>k) is relatively near Xm(k) for all m = 1,..., M(k). That is, the association of 
a measurement with a distant target primitive is extremely unlikely. This suggests that the size of A (A;) can 
be reduced by excluding all distant associations. One way to do this is by gating. Gating is a procedure 
often used in data association problems [48] to reduce the size of the feasible association set by including only 
those associations that meet a proximity criterion. In this context, gating could be implemented by including 
in A(fc) only those X(k) that satisfy the criterion ||A"m(fc) - / (&xm(k),ipk,^k)\\2 < rgate, m= l,...,M(k). 
(Proximity can be quantified by defining rgate as a function of Rk.) Gating greatly simplifies the E step 
calculation by allowing us to dismiss out of hand a majority of all possible associations as being infeasible, 
and considering only those associations that are relatively likely. Gating thus has the important effect of 
reducing the required enumeration and sets of calculation from the billions to thousands, enabling us to 
implement the E step. The price of gating is the possibility (albeit unlikely, if the gate radius is large 
enough) that a report generated by the gated primitive falls outside of the gate region and is thus neglected. 

7.3.2    Formulation of the M step 

We now examine how to maximize <5(0; ©tnl) in (97) to obtain iterated estimates of the target parameters. 
First of all, because CK is constant with respect to 0, it does not affect the maximization and thus can 
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be neglected as far as the M step is concerned. Additionally, because our reflector primitive independence 
assumptions enabled us to write the non-constant portion of Q (©;©["!) as a sum of terms of the form 
Qt(0t;0

[™]), the maximization is independent for each primitive. This is good news, because it indicates 
that the M step will require not a joint maximization of Nt parameter sets, but rather Nt independent 
maximizations. 

Each Qt(©t; 0^) must be maximized over continuous parameters (0f and possibly 0[) and a discrete 
parameter (0"). Because ©f is chosen from a discrete (and typically small) set, we can achieve the max- 
imization of Qt(©t;0'nl) by maximizing over 0* and 0£ with 6" fixed at each of its Na possible values, 
then picking the largest of the Na resulting quantities. Define Qt,a(&t; @[™!) = <?*(©*; ©[n')le°=a for each 

a = 1,..., Na. Let Q?a and ©[a be the location and radius parameters that maximize Qt,a(@u ©'n')for 

each a. Then the type ©f that maximizes Qt(@t;Q^) is given by 

0? = arg max Qt)Q(0t; e
[n])\ex_§x   Qr_§r 

and the maximizing location and radius are given by 

(71) 

(72) 

and 

©: = © t,e« (73) 

respectively.  Thus we can maximize Qt(<S>t',®^) by performing Na maximizations over <S>f and ©£.  We 
now show how these maximizations may be achieved. 

In the case when 0™ E I fixed, we must maximize Qt,a(®t; ©'"') over 0* only. In this case, (69) becomes 

K    /M(k) 

gt,Q(0t;©
["!) = £ £ 

fc=l \m=\ 

za - \{AkQ* - Xm{k))TRz\AkQ? - Xm{k)) 

Pr(Am(fc) = t|Z(fc);©N (74) 

where ca is constant with ©" fixed, and the remaining term is quadratic in ©^ .   Then straightforward 
calculations show that the maximizing ©^ for iteration n + 1 is given by 

© A>+1] 
K -i -1 

J^AlR^Ak ■ Pr (6t(k) = 1 \Z(k); ©N 
fc=i 

' K   M(k) 

£ £ AT
kR-k

lXm(k) ■ Pr (Xm(k) = t \Z(k); &M 
k=l m=l 

(75) 

where the inverse explicit in the first term exists except in degenerate cases (i.e. , except when the rows of 
all {Ak}k=i fail to form a basis for 5ft3). 
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When 0? e Icurv, we must maximize Qt(Qt;Q^) over ©f and 0£ simultaneously.  In this case, (69) 

becomes 

K   M(k) 

Qt,Q(0t;0H)    =    ££ 
k=\ m=l 

T 

Ca-^AkQ?-Xm(k)-    I    9[cos(^))   Kl 

AkQf-Xm{k)- 9tCos(i/>fc) Pr(Am(fc)=t|Z(fe);e["l).       (76) 

Proceeding by setting partial derivatives gfx [Qt,a(Qu ©N)] and ä% [<?«,« (©*; eW)] to zero> and check" 
ing the second derivative to ensure maximization, we arrive at a necessary and sufficient condition for 

maximization of Qt,a(®u ©'"'): 

Qr[n+1] 

K 

E 
k=\ 

Pr(<5t(/c) = l|Z(fc);©[' 

-AIK1 AlKlAk 

-[10] R^AkCosfa    [1    0 ] R^1 

cosV'i 

COS2!/'*: 

-1 

K   M(k) 

EE 
fc=l m=l 

AkRk Xm{k) 
1    0 ] R^cosiPkXm(k) 

Pr(Am(fc)=i|Z(fc);eW)       (77) 

which is essentially an augmented version of (75). Again, the inverse implicit in the first term of (77) will 
exist except in degenerate cases. 

We see that (75) and (77) both take the form of a weighted least-squares solution to the parameter 
estimation problem, where the weights are determined by the probabilities of association. Additionally, we 
see that in either case, the maximization of Qt (0t; 0^) over Qt requires only 0(Na X)/t=i M(k)) operations; 

thus the M step in each iteration will require only 0(NtNa SfcLi M(k)) operations. The E step, on the 
other hand, requires the calculation of p (A(fc), Z{k); ©tn') for all points in the gating-reduced AK space. 
Although gating reduces the space to a manageable size, the calculations are still much more burdensome 
than the relatively trivial matrix multiplications and inversions required for the M step. Thus the E step 
will be responsible for the bulk of the computational burden of the algorithm. 

7.3.3    Initialization and Termination 

We have specified a procedure for producing a sequence of estimates of the target parameters given a 
previous iterate. We must also describe the initialization and termination criteria. The original proponents 
of the EM algorithm [51] showed that at each iteration the likelihood term will increase or remain constant, 
i.e. , p(Zx;0[n+1l) > p (ZK; 0tnl), and thus in principle the likelihood p (ZK; B^)could be monitored 
for convergence. However, since neither the E nor M step of the algorithm requires explicit calculation of 
p (ZK; ©'"I), in practice it is more convenient to monitor the estimate iterates ©tnl and halt when locations, 
radii, and types have all reached apparent convergence. 

The initialization of the EM method with an initial guess ©^ is a more sophisticated issue. If a prior 
model of the target is available, this provides a natural iteration.  If no prior model is available, then the 
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Table 4: Imaging parameters 
imaging parameter value 

image size 32x32 
range resolution 0.3 m 

cross-range resolution 0.3 m 
range pixel spacing 0.2 m 

cross-range pixel spacing 0.2 m 
center frequency 9.6 GHz 

squint angle 90° 
sidelobe weighting -35 dB Kaiser 

initialization must be generated by other means. In this paper, we assume that we are provided with an 
initialization 0[ol that differs from truth according to some uncertainty statistics, via a prior model or some 
other initialization oracle. 

7.4    Experimental Results 

In this section we present results from the application of our algorithm to synthetic SAR imagery generated 
by the XPatch electromagnetic simulation software package, based on a facetization model of a simple 
target. The imaging parameters used as inputs to XPatch are given in Table 4. Clutter was modeled as a 
polarimetric K-distributed process with parameters (covariance and alpha) set to values typically observed 
for grassy terrain [53]. 

As described in Section 7.2, the MSTAR peak detector [44] and a polarimetric type classifier [45] form the 
front-end pre-processor. Because probabilities of detection, false alarm rates, type confusion probabilities, 
and location extraction covariances required to calculate quantities needed in the EM iteration are not known 
a priori, they were estimated from characteristic imagery containing all types of interest as a preliminary step 
to the experiments presented here. The experiments in this section were performed on a target containing 
only two primitives: a trihedral and a tophat. The estimated pre-processor statistics used for all experiments 
in this section are given in Table 5, where trihedral is defined as type 1 and tophat is defined as type 2. 
(These parameters were obtained with a pre-processor extraction signal-to-background threshold of 6.7 dB, 
and a proximity constraint of 3 pixels.) Note that although a trihedral generally has a brighter specular 
response than a tophat, its probability of detection is generally smaller because it is visible over a narrower 
aspect region. Additionally, because a trihedral exhibits a triple-bounce response over only part of this region 
(it produces a double- or single-bounce response when illuminated far enough from its specular angle) there 
is a higher probability of confusing a trihedral as a tophat than vice-versa. 

7.4.1    Experiment 1 

In this section we examine the performance of the algorithm on a simple target comprising two primitives: a 
one-foot square-plate trihedral at ground coordinates [xt yt zt] = [30" 30" 0"], and a tophat with cylinder 
radius of six inches and base radius of twelve inches centered at [-34.24" - 34.24" 0"]. The estimated 
pre-processor statistics required for the EM algorithm are given in Table 5. For this experiment, 72 SAR 
images were generated by XPatch: 36 of these were equally spaced at 10° azimuth intervals from 5° to 355° 
at depression angle 30°; the other 36 were generated at 45° depression at the same azimuths. 
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Table 5: Estimated pre-processor statistics 
statistic notation estimated value 

probabilities of detection PD(1)    PD{2) 0.24   0.93 

normalized false alarm rate IFA/V 1.9 

(extracted location covariance)1/2 RT 0.88" x I 

type confusion matrix {pij} 
0.86    0.14 
0.03    0.97 

As described in Section 7.3.3, we assume that we are given an initialization ©I°l for the EM iteration. 
In this experiment, we produce an initialization by perturbing the true target model (described above) as 
follows. The model order (Nt) of the initialization is the same as that of the true target. The initial guess for 

the location of each primitive, ©f , is Gaussian distributed with mean ©f and covariance [3" x I]2, such 
that the error in each direction is uncorrelated, has zero mean, and has a standard deviation of three inches. 
The initial guess for the type of each primitive, 0"[o1, is equally distributed among the Na =2 types, i.e. , 
the initial guess for the type of each primitive has probability 1/2 of being correct. For any primitives with 
9«[°1 = 2 (tophat), the initial guess for the radius of the primitive, Q^°K is zero. The gate radius used for 
this experiment was 2 m. 

Figure 40 is a scatter plot of the estimated x and y locations (estimated z locations not shown) and 
estimated types of each primitive for 500 trials of this experiment. (For each trial, a new random initialization 
©I°l and random clutter were generated.) Triangle symbols correspond to an estimated type of trihedral; 
circles correspond to an estimated type of tophat. We see that in all cases but one, the estimated types of 
each primitive are correct. Furthermore, all but one of the estimated tophat locations, and all but 11 of the 
estimated trihedral locations, are clustered around the true locations of these primitives. The clustering of 
the estimated trihedral locations is looser than that of the tophat; this is to be expected, since the trihedral 
produces a response over a narrower aspect region than the tophat and hence we have fewer measurements 
of its position (roughly one-quarter as many, according to Table 5). The elongation of the trihedral cluster 
corresponds to the specular orientation of the trihedral. The mean and error covariance of the clustered 
location estimates for each primitive (including the radius estimate for the tophat) are given in Table 6. 
(All units are in inches; the outlying location estimates have been omitted from this calculation.) The off- 
diagonal terms for the trihedral square-root error covariance matrix correspond to the elongated trihedral 
location cluster in Figure 40. The large correlation between the z-location error and the radius error in the 
tophat square-root error covariance matrix are due to the fact that an increase in radius and a corresponding 
increase in z-coordinate are projectionally indistinguishable when viewed from a depression angle of 45°, and 
nearly indistinguishable for depression angles near 45°. (We postulate that this is also responsible at least 
in part for the bias in the ^-location and radius estimates.) Figure 41 is a histogram of the radius estimates 
for the tophat. 

7.4.2    Experiment 2 

In this section we examine the performance of the algorithm on the same target model and under circum- 
stances identical to those in the previous experiment, with one difference: the location initialization for each 
primitive now has covariance [6" x I]2. Figure 42 is a scatter plot of the estimated x and y locations and 
types of each primitive for 500 trials of this experiment. Comparing to Figure 40, we see that the larger 
variance of the location initialization degrades performance by reducing the fraction of estimates that cluster 
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Table 6: Experiment 1 statistics 
trihedral 

fraction in cluster 97.8% 

mean! 0* J 
" 29.92 " 

29.92 
0.04 

[cov(ef)]1/2 
0.28      0.14     -0.24 ' 
0.14       0.28     -0.25 

-0.24    -0.25     0.56 

tophat 

fraction in cluster 99.8% 

mean 1 
) 

' -34.21 
-34.22 

0.23 
5.76 

cov I 
) 

,1/2 
0.14     -0.00    -0.00    -0.00 " 

-0.00     0.13       0.00     -0.01 
-0.00     0.00       0.53     -0.38 
-0.00    -0.01    -0.38     0.44 
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Figure 40: Experiment 1: Estimated locations and types of primitives 
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Figure 41: Experiment 1: Estimated radius of tophat 
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Table 7: Experiment 2 statistics 
trihedral 

fraction in cluster 84.0% 

mean f 9^ J 
" 29.94 " 

29.95 
-0.02 

[cov(ef)]1/2 
0.30       0.15     -0.27 
0.15       0.29     -0.27 

-0.27    -0.27     0.59 

tophat 

fraction in cluster 99.2% 

mean 1 
) 

" -34.21 " 
-34.22 

0.21 
5.77 

cov 1 
) 

1/2 
0.13     -0.01    -0.00    -0.00 " 

-0.01     0.14      0.00     -0.01 
-0.00     0.00       0.56     -0.41 
-0.00    -0.01    -0.41     0.45 

around the true location. There are now four outliers in the tophat location estimate (compared to one in 
experiment 1) and 80 in the trihedral location estimate (compared to 11 in experiment 1). Estimation of 
types is not adversely affected: the only misclassified primitives are the outlying tophats. The mean and 
error covariance of the clustered location estimates for each primitive (including the radius estimate for the 
tophat) are given in Table 7. (Again, units are in inches, and the outlying estimates have been omitted 
from the calculation.) Comparing Tables 6 and 7, we see that although the larger location initialization 
covariance results in fewer location estimates in each cluster, the statistics for those that within the cluster 
are nearly identical. This suggests that as long as the initialization is "sufficiently good," the resulting error 
in the location estimate will not depend strongly on the precise initialization location. If the initialization is 
poor, however, then convergence toward the true location is unlikely. Figure 43 is a histogram of the radius 
estimates for the tophat. 

7.5    Summary and Future Work 

We have presented an iterative algorithm for producing a 3-D target model from a collection of SAR images. 
This model describes the target in terms of a collection of reflector primitives. We cast the estimation problem 
as a data association problem. We made several simplifying assumptions to decouple the underlying target 
model estimation problem into smaller reflector primitive estimation problems, and to model the report-to- 
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primitive associations as independent between frames. We utilized the EM method to produce a target model 
specifying primitive locations and types (and radii for curved primitives with axis of symmetry perpendicular 
to the ground plane) by considering all feasible 2-D scattering center extraction associations across images. 
We presented experimental results for the application of our algorithm to a simple target. 

Direct extensions to this research we hope to undertake in the near future include investigation into 
initialization procedures for the model generation iteration, model order estimation, and the incorporation 
of other physically relevant features (such as amplitude information) to enhance the current algorithm and 
to enable estimation of additional target information such as primitive pose and size. We will eventually 
relax some of the assumptions utilized here in favor of less restrictive, more physically faithful ones enabling 
us to capture the spatial scattering dependence of primitives and to accommodate non-discrete primitive 
types. Other, more fundamental issues we wish to examine as research progresses involve the theoretical 
limits of model estimation accuracy given a specific choice of reflector primitive parameterization, and how 
observability and robustness issues might influence the model estimation process. 

7.6    Derivation of p (A(fc), Z{k); 9) 

We seek an expression for p(X(k), Z(k); 0) based on the formulation and assumptions of Section 7.2. We 
can write 

p (X(k), Z(k); 9) = p(X(k)\X(k); 0) ■ p(a(k)\X(k); 0) ■ p(X(k)\5(k), F(k);Q) ■ p(S(k), F(k); 0) (78) 

because X(k) and a(k) were assumed conditionally independent given 0 and because 6(k) and F(k) are 
functions of X(k). We will now specify p (X(k), Z{k)\ 0) by specifying models for the components of the 
preceding equation. 

We have already specified the model for p{X{k)\X{k); 0) in the case when reports correspond to target 
primitives (i.e. , are not false alarms) by (62) and (89). We have also assumed that false alarms are uniformly 
distributed across the sensor volume V. Thus we may write 

/ i \ *"(*) exp f-I (/ (0Am(fc), ^, fa) ~ Xm(k))T R^1 (/ (eAm(fc)) tffc, fa) - Xm(k))] ,W-pW;e,. (-)   Jj-I -^-^ 1. p.) 

We have also specified the model for p(a(k)\X(k); 0) when reports correspond to target primitives by the 
definition of the confusion term paia2- Furthermore, type parameter estimates of spurious reports were 
assumed to be uniformly distributed across the JVa allowable types. This allows us to write 

/  1   \F{k) 

p(a(k)\X(k);Q)=    — I]    p'm(k). (80) 

We now must describe p(X(k)\5(k), F(k); 0) and p(6(k),F(k);@). Describing the first of these is very 
simple. Given F(k) and S(k), we can compute D(k) and M(k). Furthermore, X(k) contains exactly F(k) 
zero entries, and the remaining D(k) entries are some permutation of the positions of the nonzero entries of 
S(k). Because we have assumed that there is no preferential or systematic way of ordering the Xm(k) within 
A(fc) for each frame, each permutation is equally likely. Thus we may write 

p(X(k)\S(k),F(k);Q) 
(F(k) + D(k)y.! , 

F(k)lD(k)\       [ >\ 

89 

M{ky.- (81) 



We have assumed that each detection or false alarm is conditionally independent from any other detection 
or false alarm given 9. Recall also the assumptions that F(k) is determined by a Poisson process with mean 
■JFAV, and that the probability of detection for a primitive of type a is PD(Q). All these assumptions allow 
us to write 

p(5(k),F(k);Q) 
-~1FAV (JFAV) 

F(k)      Nt 

F{k)\ n (i-^(e?))- n Ztkk))) (82) 

where 5{k) is implicitly restricted to be a Nt-vector with binary entries and F(k) to be a non-negative integer. 
We can now combine the preceding equations according to (78) to yield a single expression for p (X(k), Z(k); 0). 

After cancelling some terms and rearranging others, this yields the expression given in (95). 

7.7    Derivation of Q(0; G^) 

We seek an expression for Q(@; 0'n') in order to describe the E step of the EM algorithm as presented in 
Section 7.3.1. Utilizing the independence of report parameters between frames and exchanging the order of 
summation in (95), we can write 

K 

Q(0;0N) = ^ 
fc=i 

Y,   logp(A(fc),Z(fc);e) 
AK6AK 

■ p (\(k) \Z(k); 9N) • p (A* \ A(fc) \zK \ Z{k); ©N)    (83) 

where the notation "A^ \ A(/s)" is shorthand for "A(l), ...,X(k- 1), A(fc + 1),..., X(K)" (an analogous def- 
inition applies to "ZK \ Z(k)"). It then follows that 

K 

Q(Q-QM) = J2 
fc=l 

52     [\ogp(X(k),Z(k);e)] .p(A(A:)|Z(fc);eH 
A(fc)6A(fc) 

(84) 

Replacing the symbolic term log [p (X(k), Z(k); 0)] in the above expression with its value according to (95), 
we obtain 

K ( /       \ Nt 

g(0;©W)    =    Y,     E    ]-7F^^ + F(fc)log(^)-log(M(fc)!) + Elog(1-PD (©«)) + 
fc=l A(fc)GA(fc) ^ V      « / i=i 

E   ~\ C (@AmW,V</c,^) - xm{k))T R-k
l (/ (eAm(fc), v*,0fc) - xm{k)) + 

lpgi PDp&hk)) ^ - lo^det Rk)
1'2 + hgp'J ) ■ p (X(k) \Z(k); 0H) (85) 

Now, to simplify this expression, let us define an indicator function for each t = 0,..., Nt'. 

X{\m(k)=t} 
1,    if Am(fe) = * 
0,    otherwise. 

(86) 
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Then note that for any expression (m{k), we have 

M(k) N. 

■(m(k)-P(\(k)\Z(k);G^ £    £ Uk)-P(x(k)\z(k);&M) =    E   E £x{Am(*)=t} 
A(fc)£A(fc) Am(fc)^0 A(fc)€A(fc) m=l   L*=l 

M(fc)  Nt 

=   T,T,^{k)\Xm{k)=t-Pv(xm(k) = t\z(ky,eM)     (87) 
m=l t=l 

which allows us to rewrite (85) as 

Nt   (  K 

g(e;GN)  =  Yfc: 
t=i U=i 

M(fc)   , 

log (1 - PD (&?)) + E   l°g (J°D (©?)) " log (1 - pD (©?)) + log/4 
m=l ^ 

(fc) 

£(/ (9t, ^fc, <A/c) - Xm(k))TRk1 (/ (Gt) Vfc, 00 - *„,(*))) Pr (Am(fc) = i \Z(k); 0H) + 

A: 

E -7F/1 V - . 

M(fc)  Wt 

M(fc) 

V-log(M(k)\)+log(^)- EPr(Am(A) = 0|Z(fc);eW)- 
iVQ / 1=1 

E Elog (2TT (det Äfc)
1/2) • Pr (M*0 = * |Z(fc); ö[n 

m=l t=l 

Defining Qt{@u ©'"') to be the argument of the "£ = 1 to JVt" summation (enclosed in the curly braces in 
the first two lines of (88)) and CK to be the remaining portion of (88) (which is constant with respect to 0), 
we arrive at the expression for Q(G; G'"') given in (97). 
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8    An Expectation-Maximization Approach to Target Model Gen- 
eration from Multiple SAR Images 

A key issue in the development and deployment of model-based automatic target recognition (ATR) systems 
is the generation of target models to populate the ATR database. Model generation is typically a formidable 
task, often requiring detailed descriptions of targets in the form of blueprints or CAD models. Recently, 
efforts to generate models from a single 1-D radar range profile or a single 2-D synthetic aperture radar (SAR) 
image have met with some success. However, the models generated from these data sets are of limited use 
to most ATR systems because they are not three-dimensional. We propose a method for generating a 3-D 
target model directly from multiple SAR images of a target obtained at arbitrary viewing angles. This 3-D 
model is a parameterized description of the target in terms of its component reflector primitives. We pose 
the model generation problem as a parametric estimation problem based on information extracted from 
the SAR images. We accomplish this parametric estimation in the context of data association using the 
expectation-maximization (EM) method. Although we develop our method in the context of a specific data 
extraction technique and target parameterization scheme, our underlying framework is general enough to 
accommodate different choices. We present results demonstrating the utility of our method. 

8.1    Introduction 

In recent years there has been a surge of interest in model-based automatic target recognition (ATR) algo- 
rithms for use with synthetic aperture radar (SAR) imaging systems. The broad utility of SAR as an imaging 
methodology is well-known, and SAR imaging techniques and systems have been extensively documented 
[54, 46]. The effectiveness of SAR as a remote sensing tool has motivated research into the development of 
model-based ATR systems [55, 56]. Model-based ATR systems identify targets by comparing image features 
to classification hypotheses generated from a database of physical target models. The generation of target 
models to populate this database is a problem that is central to the implementation of any model-based 
ATR system [55]. 

In this paper we present a framework for producing a three-dimensional target model from multiple SAR 
images of a target. Our models consist of spatial collections of reflector primitives such as cylinders, tophats, 
dihedrals, and trihedrals [56, 47]. Reflector primitive models offer compact representations of many targets, 
highlighting and parameterizing observable features in terms of information of direct use to ATR, including 
primitive locations, types, poses, sizes, and possibly other information relevant to describing the scattering 
signatures of man-made targets. Reflector primitives couple physical relevance to predictive utility in ATR, 
facilitating the model manipulation and component articulation required to form classification hypotheses. 
Our reflector primitive models describe each component primitive with a small number of parameters, namely, 
a discrete index identifying the scatterer as one of a small number of canonical scattering types, and several 
continuous parameters including location and pose, completely describing the scattering behavior of that 
type of primitive. 

Our framework entails estimation of the number of scatterers and their descriptive parameters based 
on the observed set of SAR images. In principle the optimal way to do this is to use all of the available 
imagery to perform the parameter estimation directly. Note that the explicit inclusion of location as one 
of the parameters describing each primitive implies that the model estimation procedure must deal with 
establishing a correspondence between each postulated primitive and the observed scattering responses in 
all of the SAR images. In principle the optimal way to do this is to use all of the SAR images directly 
to establish these correspondences at the same time that the parameters of each primitive are estimated. 
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Figure 44: Target model generation block diagram 

However, because of the complexity of such a task, the fact that our ultimate objective is a low-dimensional 
description of the target as a set of primitives, and the fact that model-based ATR systems already operate 
in this manner, we propose to view the estimation problem as a two-step procedure. Each SAR image 
is first compressed into a set of augmented detections consisting of relevant information about significant 
scattering responses in each image, including location and other data extracted from the individual images or 
phase histories. These compressed representations are then fused in order to estimate the 3-D locations and 
characteristics of the target primitives. This framework offers great flexibility in the choice of a compression 
scheme, with possibilities ranging from fine-grained extractions in which the compression of each SAR image 
involves keeping a great many basis functions that capture most of the energy in the raw image, to more 
coarse-grained representations in which only a small number of dominant scatterers are kept from each image, 
with only a few parameters describing each response. In order to introduce our framework and to highlight 
representations commonly used in ATR, we focus here on a parameterization at the coarser end of this 
spectrum. This choice also highlights the importance of the correspondence problem mentioned previously. 

Much of this paper represents a continuation of work first presented at last year's conference [57]. The 
research reported here represents a significant expansion of this earlier work. In particular, the model 
generation algorithm described here estimates not only primitive location and type, but also primitive pose 
and amplitude; another significant advance is the inclusion of unsupervised initialization and model order 
estimation stages. Our new framework also incorporates a broader set of scattering primitives than previously 
considered. In the next section we present our formulation of the target model estimation problem, and 
in Section 8.3 we describe our application of the expectation-maximization (EM) method to its solution. 
In Section 8.4 we present experimental results illustrating the performance of our algorithm. Section 8.5 
concludes the paper. 

8.2    Problem Formulation 

A block diagram representation of our approach to 3-D target model estimation is depicted in Figure 44. A 
target is observed through a set of K SAR images. Each of these images corresponds to a particular viewing 
geometry, as illustrated in Figure 45: each image k is characterized by a line-of-sight vector from the center 
of the synthetic aperture to the center of the target region being imaged. The azimuth 0fc and elevation tpk 
defining this line-of-sight vector in terms of a fixed ground frame of reference are arbitrary; we assume each 
image has been formed at a squint angle of 90°. (Extension of our approach to allow arbitrary squint angles 
is straightforward.) The synthetic aperture along the platform motion vector and the line-of-sight vector 
define the slant plane, the imaging plane for the SAR image [54]. 

As indicated in Figure 44, each of the K SAR images is processed to extract a set of observed features 
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Figure 45: Imaging geometry and the slant plane for image k 

which are then fused in order to produce a 3-D target model; the feature extraction considered in this paper 
is described in Section 8.2.2. Our fundamental focus is the design of the data fusion module in Figure 44. 
This requires specification of exactly what we wish to estimate (i.e. , the parameterization of our target 
models) and how the features serving as input to this module are related to the quantities to be estimated. 
The latter step involves modeling both the SAR image collection process and the subsequent data processing 
that produces the observables on which the fusion module will operate. We first describe the notation and 
basic assumptions defining the problem and then present the measurement model that relates observables 
and target parameters. 

8.2.1    Target Models: Assumptions and Notation 

Our target models consist of collections of reflector primitives, each of which is described by a small set of 
parameters that completely specify the scattering behavior of such a primitive given any imaging geometry. 
As we indicated previously, in this paper we will restrict attention to a comparatively constrained set of 
primitives, each of which can be completely described for our purposes by a short vector of parameters. 
In particular, a target model will be specified by the number of primitives TV comprising the target and a 
vector of parameters 0, associated with each component primitive i = I,... ,N. In general, we can express 
this vector as Oi = [B\,B? ,01], where B\ is an integer index designating the primitive as one of nt canonical 
primitive types, Bf is the 3-D location of the primitive, and Q\ is a generic vector parameter corresponding 
to a set of continuous-valued parameters that, along with B\ and Bf, completely specify the log-amplitude 
scattering response or radar cross section (RCS) of the primitive from any viewing angle [47]. We will denote 
the log-RCS observed from a primitive parameterized by 6i and viewed from elevation V" and azimuth <f> as 
A(Oi,ip,<f>), which we typically quote in dBsm. 

For this paper, we will constrain the set of scattering types to a small class of idealized primitives 
consisting of trihedrals, tophats, dihedrals, and cylinders (so that nt = 4), depicted in Figure 46; we assign 
type indices 1 through 4 to these primitives, respectively. For these primitives, 0| will consist of at most three 
parameters: an overall base amplitude Ö" related to the physical size of the scatterer, a pose of indicating the 
orientation of the scatterer, and a radius of curvature B\ for radially symmetric primitives including tophats 
and cylinders. Each primitive's location Bf is defined to correspond to the origin of the primitive's local axes 
in Figure 46; primitive pose indicates the orientation of these axes with respect to the fixed ground-based 
coordinate system in terms of three Euler angles [58].   Primitive pose and the absolute viewing angle of 
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image k together define a relative viewing elevation i/^fc and azimuth 4>'ik for each primitive, as depicted in 

Figure 46. 
The complete vector Oi provides a concise yet accurate description of a primitive's appearance in an 

arbitrary SAR image. Location Of and radius of curvature 0\ (for those primitives for which it is defined), 
along with viewing angle, determine the apparent location of the primitive in the slant plane [54]. In 
particular, as described elsewhere [57], we can model the location of primitive i in image k as a projection of 
Of into the slant plane, with an uprange offset for radially symmetric curved primitives: 

Hköf, ÖjeTflxod, 

1 nk{0i)-^Hke? 
0 

(89) 
eicosip'ik,  o\ £ Tcurved, 

where %))[ k is as pictured in Figure 46, where TCUrved is the set of type indices for radially symmetric prim- 
itives (i.e. , tophats and cylinders) and Tfixcd is the set of the others (i.e. , dihedrals and trihedrals), and 
where Hk is the 2 x 3 ground-to-slant-plane transformation matrix for image k [57].n The other components 
of Oi determine other features of the observed response: discrete type 0j specifies the basic dependence of 
the response on viewing angle [47] (and, if polarimetric measurements are made, the polarimetric signature 
vector [59]); pose 6>f orients this response by rotating it to correspond to the orientation of the primitive; 
base amplitude Of scales the response intensity according to the physical size of the primitive. In particular, 
physical optics provides expressions for the RCS of each primitive as the product of a size-dependent am- 
plitude term and a unique type-dependent shaping function capturing the dependence of RCS on relative 
viewing angle and possibly size [47]. Our log-RCS models are based on these physical optics results and take 
the form 

A(Oi, 1>kAk) = 0? + S9< «fc) <*), (90) 

where Set (•) is the physical optics log-shaping function describing the variation in scattering response in 

terms of viewing angle for all primitives of type Of, and where Of encapsulates the fundamental size de- 
pendence described by physical optics[47]. For each primitive, Sgt(ip'i>k,<j>'itk) is scaled to give a maximum 
response of 0 dBsm, so that Of will correspond to the maximum amplitude of the primitive response. A 
difficulty in the specification of the Set (•) as in (90) is the fact that each primitive's physical optics shaping 
function depends on its dimensions. This dependence is most pronounced for the dihedral and cylinder, 
which exhibit sine-like elevation responses depending on b and h, respectively. Additionally, the trihedral, 
dihedral, and tophat responses, each of which comprises both single- and multiple-bounce response mecha- 
nisms, depend on primitive dimensions to determine the relative phase between each component response. 
Although 6\ could be enhanced to include primitive dimension and the shaping functions of (90) expanded 
to model these dependences, we maintain our chosen parameterization in the interest of presenting a basic 
framework with which to demonstrate model construction, and which can be broadened as necessary. Our 
models for the dihedral and cylinder shaping function models are constructed using empirically chosen nom- 
inal values for b and h, respectively, and our trihedral, dihedral, and tophat models combine the highest- 
and lower-bounce response mechanisms via a noncoherent sum without regard to the size-dependent relative 
phase. 

nThe model of (89), while accurate for most primitives viewed from most angles, will be inaccurate for trihedrals and 
dihedrals viewed at angles at which the lower-bounce reflection mechanisms dominate and the apparent specular reflection 
point does not correspond to 9f (e.g. , when a single- or double-bounce response is observed from a trihedral). 
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Figure 46: Reflector primitives: trihedral, tophat, dihedral, and cylinder. Relative elevation ip'^k and azimuth 
4>\ k are determined by the absolute viewing elevation ipk and azimuth 4>k and the pose of primitive, indicated 
by the orientation of its local axes; primitive dimensions relevant to physical optics RCS models are indicated. 

Before proceeding, we introduce notation 6 = [6\,... ,0N]. (Note that 6 implicitly specifies the model 
order N.) Target model generation in our framework is thus estimation of the vector 8. We will model 6 
(and thus N) as unknown parameters about which no information is available other than that provided by 
the SAR images. 

8.2.2    Observable Features for Model Generation 

We assume that we have multiple spotlight-mode SAR images [54, 46] of the target, formed at arbitrary 
viewing angles as depicted in Figure 45. Each of these images is polarimetric, comprising linear polarizations 
HH, HV, and VV. Furthermore, we assume that all SAR imaging parameters (such as bandwidth, aperture 
width, range and cross-range locations of each pixel center, and azimuth and depression to the target center) 
are known, and can be related to the absolute ground-based frame of reference. Such information could be 
provided, for instance, by geolocation or global positioning measurements taken as the images are collected, 
coupled with accurate ranging and positioning of the target. 

As previously described in the introduction and in conjunction with Figure 44, we compress the full set 
of raw SAR imagery by extracting information from each image prior to the model generation stage. For 
this purpose we utilize a simple peak-extraction routine, similar to that of the MSTAR "extract" module 
[44] and described in detail in a previous work[57]. This processor extracts an arbitrary number of intensity 
peaks Mfc from each image k, and describes each peak j = 1,..., Mk in terms of three parameters: a 2-D 
slant-plane range/cross-range location X^j, a discrete polarimetric-signature type index tkj, and a scalar 
log-amplitude a^j- Location and amplitude are obtained using a simple subpixel-interpolation procedure, 
and polarimetric signature type is obtained via a generalized likelihood ratio test to distinguish between 
odd-bounce and even-bounce responses[59]. The extracted type is thus a binary variable; we designate 
an odd-bounce classification as t^j = 1 and an even-bounce classification as tkj = 2. Note that because 
trihedrals and cylinders are predominantly odd-bounce scatterers, and dihedrals and tophats predominantly 
even-bounce scatterers, discrimination between trihedrals and cylinders, or between dihedrals and tophats, 
will be based predominantly on location and amplitude information. The effect of the indistinguishable type 
measurements for these primitive classes is investigated in Section 8.4. 

For convenient reference, the three-parameter location/amplitude/type description of the jth. peak of 
image k will be called a report and denoted by Zk,j- At times it will be convenient to refer to the collection 
of reports within a single image or across images. For these purposes we define notation for all reports in a 
single image, Zfc = [Zk,i ,■■■, Z>k,Mk]> and notation for all reports in all images, Z = [Zi,..., Z/f ]. 
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Figure 47: Notation example 

8.2.3    Measurement Model 

In this section we describe the probabilistic model relating features extracted by the data processor to 
the target parameters that must be estimated from those features. The uncertainties in the extracted 
features come at two levels of granularity, one coarse and one fine. The coarse-level uncertainty involves 
the identity of each measurement: given a set of reports extracted from a single SAR image and a set of 
target primitives, there is no way of knowing with certainty which reports correspond to which primitives. 
The fine-level uncertainty involves the stochastic nature of the elements of Zk,j, even given the report's 
proper correspondence. Compounding the coarse-level uncertainty is the fact that, like any detector, the 
data processor is subject to missed detections and false alarms, so in general there will not be exhaustive 
correspondence between the sets of reports and target primitives. To formalize the coarse-level uncertainty 
we will introduce a vector of hidden parameters A that describes the correspondences between reports and 
target primitives in concrete terms. In particular, we define a label parameter describing the identity of each 
report Zkj as follows: 

Afc.j — 
i,    if report Z^j corresponds to target primitive i, 

0,    if report Z^j is spurious (corresponds to no primitive). 

We also define Fk to be the number of false alarms in image fc, i.e. , the number of Xkj which equal 0 for a 
given k. Figure 47 presents an illustrative example of the notation and concepts encapsulated in Afcj. This 
figure depicts a scenario involving two target primitives (N = 2) and three images (K = 3). 

It will be convenient to define a vector A/, collecting the label parameters for all of the reports in image k: 
Afc = [A^i, • • • , \k,Mk\- The vector A introduced above can be formally defined as A = [Ai, • • • , XK}- Given 
knowledge of A, the uncertainty remaining in Z is the distribution of the components of each report Z^-; 
this is our fine-level uncertainty. Characterization of the fine-level uncertainty can be done conditionally, 
and the measurement model can be specified as 

p(A,z|0) = p(z|A,e)p(A|e)J (91) 

a product of the fine-level probability density function (pdf) and the coarse-level probability mass function 
(pmf).12 

We make a number of general assumptions about the relationship of A and Z to 0 that will facilitate the 
specification of a measurement model. The first three of these concern the coarse-level uncertainty expressed 

12Throughout this paper we will describe discrete random variables and vectors such as A by their pmfs, and continuous 
random variables and vectors such as Z by their pdfs, using the same notation p(») in both cases. 
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by p(X\6); the remaining two concern the remaining fine-scale uncertainty expressed by p(Z\\,6). All five 
of these assumptions are largely justifiable on simple physical grounds, and are standard in a variety of data 
association contexts [48]. These assumptions are as follows: 

Assumption 1  False alarms are independent from image to image and do not depend on 6. 

Assumption 2 The detectability of the ith primitive in any image depends only on Qi and on the viewing 
angle of the image; furthermore, missed detections are conditionally independent from image to image and 
from report to report given 6 and are also independent of false alarms. 

Assumption 3 Any primitive generates at most one report in each image, and any report is attributable to 
at most one primitive. 

Assumption 4 Reports in a single image and between images are conditionally independent given 0 and X, 
whether they are detections or false alarms. 

Assumption 5 The component measurements X^j, akj, andtkj comprising each report are conditionally 
independent given 0 and X, whether the report is a detection or a false alarm. 

Together, Assumptions 1, 2, and 3 imply the conditional independence of the label parameter vectors for 
each image: 

K 

p(X\e)=Hp(Xk\0). (92) 
k=\ 

Similarly, Assumptions 4 and 5 imply that p{Z\X,6) can be factored as 

K K     /Mk \ 

p(Z\X,8) = ~[[p(Zk\Xk,0) = J]    Y[p(Xkij\\kij,0)p(akij\\kij,8)p(tkij\\kJ,0)    . (93) 
fc=i fc=i \j=i / 

Although there are situations in which these assumptions will fail—for instance, obstruction will violate 
Assumption 2, multiple-bounce reflections will violate Assumption 3, and phenomena that fall outside of 
the chosen parameterization of Sections 8.2.1 and 8.2.2 could compromise Assumption 4—these assumptions 
are largely realistic and greatly facilitate the specification of a measurement model, which now requires only 
specification of the terms on the right-hand sides of (92) and (93). 

Specification of p(Xk\6) as required by (92) is almost completely determined by Assumption 3 and the 
constraints it imposes on Xk: no more than N of its elements may be nonzero, it cannot contain the same 
nonzero index twice, and so on. We complete p(Xk\8) by assuming a standard Poisson false-alarm model and 
defining a probability-of-detection function that depends only on a primitive's amplitude in any image k. 
In particular, we write Po'k; = PD(A{8i,ipk,<fik)), where PD(

9
) is a function that we assume is empirically 

estimated by running the processor on characteristic imagery. It can then be shown [57] that 

Ai^-""y|S-ni-^) n r^. w 
where V denotes the sensor volume and where ^FA is the false-alarm rate, a parameter that we assume is 
empirically estimated in the same manner as PD(

9
)- 
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Completing the specification of our model now requires only the specification of the densities for ~X.kj, 
akj, and tkj in (93). We model the continuous location parameter for a report corresponding to primitive 
t as a Gaussian with mean Ttk(9i) and some covariance R; we assume that false alarms are uniformly 
distributed throughout the SAR images. Likewise, we model the amplitude of a report corresponding to the 
ith primitive in image k as a Gaussian with mean A(9i,ipk,4>k) and some variance a\\ false alarms have a 
separate amplitude distribution denoted by PFA(*)- (The parameters R, a\, and PFA(') can be estimated 
from characteristic imagery.) Finally, to model the type extraction process, we assume the availability of 
an nt x 2 confusion matrix {/?}, where pij is the probability that the data processor classifies a primitive 
of type i as having polarimetric signature type j, given that the primitive is detected. As with our other 
assumed parameters, {p} can be estimated by processing training data. To simplify notation in subsequent 
expressions, we write p'k ■ = p(tkj \Xkj,9) = pet     t   . for any detection (i.e. , when Xkj ^ 0). We assume 

false alarms are equally likely to be classified as either polarimetric type. 
We now have all the required components to specify p(Z\X,6) as in (93); this can in turn be combined 

with p(X\9) according to (91) to yield a complete measurement model that can be factored into K product 

terms, one for each image. In particular, p(X, Z|0) = J~Jfc=1 p(Xk, Zfc|0), where 

 fFAV ( IF A \ ^k      N pi 

p(Xk,Zk\9)    =    ? JLiJ_ . IJ(i - PD'k .) .    J]    PFA(akJ).    J]     l_p*"'i       "' 
i=l j:*k,j=0 rMjyto '      * °kM,j 

n 

Pk,i ■ 

exP (-^(ofcj -A(eXkJ,^k,<l>k))2 - 5 M0^) -x*,i)TÄ-1 (nk(eXkij)~xktj)) 
.Xk^o (27r)3/2,Q(detß)V2 

8.3    A Data Association Approach to Model Generation 

The measurement model specified in Section 8.2.3 relies on the introduction of a vector of unobservable label 
parameters A describing the origin of each report. This vector provides not only a convenient device for 
the specification of a measurement model, but also a conceptual foothold for the estimation of the target 
parameters. Specifically, if these label parameters were observable—if report data could be associated across 
images—estimation of 9 would be straightforward. This suggests approaching model generation by way of 
the underlying data association problem. There is a large body of literature describing theory and methods 
for solving data association problems in various contexts and applications [48, 50]. The chief difficulty facing 
almost all data association problems, including the one described here, is the combinatorial proliferation of 
possible correspondences. One way to manage the combinatorial explosion of possibilities is to dismiss as 
infeasible a majority of associations corresponding to extremely unlikely events; we will utilize a technique 
known as gating, to be described later, for this purpose [48]. Even with such a simplification, however, the 
remaining data association problem is still formidable and requires a powerful tool for solution. The tool we 
apply is the expectation-maximization (EM) method [50, 51]. In the following section we briefly describe 
the EM method, and in subsequent sections describe its application to the problem of model generation in 
the framework we have constructed. 

8.3.1     The Expectation-Maximization Method 

The EM method is an iterative procedure for producing a maximum likelihood (ML) estimate of parameters 
when there is a many-to-one mapping from a postulated set of "complete" data to the set of observed data 
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Figure 48: Expectation-maximization (EM) method block diagram 

[50]. In data association problems, the set of complete data comprises the observed data and the vector 
of associations—Z and A in our context. Each iteration of the basic EM method consists of two steps: an 
expectation (E) step and a maximization (M) step. The E step averages the log-likelihood of the complete 
data over all feasible association vectors given the observed data and the latest parameter estimate iterate. 
The result is an expected log-likelihood that is a function of the true parameter vector 0. The M step then 
maximizes this expected log-likelihood with respect to the parameter vector. This yields an estimate of 0 
for the current iteration that may be used to recompute the expected log-likelihood in the next iteration's 
E step. Under relatively mild conditions, the EM method is guaranteed to converge to at least a local 
maximum of the likelihood function of the observed data [51, 52]. 

In our context, the EM method proceeds as follows. Let fll™-1! be the estimate of 0 produced by the M 
step in iteration n — 1. The E step of the nth iteration requires calculation of the expected log-likelihood 

QCÖiel"-1') = E [logp(A, Z|0) I Z, 0t"-1! ] = £ [logp(A, Z|0)]p(A|Z, 0[n-1]), 
AeA 

(95) 

where A is the set of all possible A. The M step then requires maximization of Q(0|0'n    ') over 0. Specifically, 
the M step determines the nth iterate value: 

0{n] argmaxQ(0|01' 
0 

(96) 

We describe the implementation of the E and M steps for our problem in Sections 8.3.2 and 8.3.3, respec- 
tively. Because the EM method is an iterative procedure, it requires an initialization 0'°' and a criterion for 
termination. We describe these components of the algorithm, as well as a modification that enables adaptive 
selection of model order as the algorithm progresses, in Section 8.3.4. Figure 48 depicts a block diagram of 
the complete algorithm. 

8.3.2    Implementation of the E Step 

It can be shown[60] that the expected log-likelihood to be calculated in the E step as in (95) can be expressed 

N N     K 

Q(0|0H) = ^Qwr)+C
K = EE^*(9«ifl«)+CK

> (97) 
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where Q^O^) = ££=i Qi,k{öi\ef]) and 

PD'U 
Qi,k(Oi\0l?])    =    £Pr(Afeii = i|Zfc)0M) log—-^4- + i°g/»'fcJ- - ^ (x*j - MOi)) R-1 (xfcJ- - 7Tfc(eo) 

1 - -Po/i.i 2 

2a! (akj - A(0i,ipk,4>k)Y + \og(l-PD'Ki). (98) 

In other words, the expected log-likelihood separates into NK terms, each depending only on a single target 
primitive and the reports in a single image. This decoupling of the expected log-likelihood is a consequence 
of our independence assumptions of Section 8.2.3. (A similar decomposition will be possible in the M step.) 
This is an encouraging result, because it means that the computational complexity of the E step will increase 
only linearly with K and N. 

Examining (98), we see that the computation of the E step uses quantities specified previously, as well 

as the report-to-primitive association probabilities Pr(Afc)J- = i|Zfc, ö'n'). In theory these probabilities can be 
calculated via Bayes' rule. In practice, however, this computation is typically intractable even for problems 
of modest size.13 To overcome this difficulty we use a common and easily justifiable simplification known as 
gating [48]. Specifically, complete enumeration of the set of possible Afc entails consideration of all possible 
associations, even very unlikely ones in which measured locations Xfcj are associated with target primitives 
that project to points in the slant plane far from Xfcj. Gating is a method for excluding such unlikely 
pairings from consideration by adaptively defining the set of feasible associations to be the much smaller set 
of Afc that correspond to associations between reports and primitives that are believed to be "close enough," 
i.e. , for which ||Xfcj - ^k(0xkJ)\\2 < reatc, j = 1, • • • ,Mk. Typically rgate is taken as a small multiple of 
(trace(fi))1/2. 

8.3.3    Implementation of the M step 

The M step requires maximization of the E step's expected log-likelihood Q(0|0'™') with respect to 0 as 
in (96). The separation of this expected log-likelihood into independent terms for each primitive in (97) 
implies that this maximization may be achieved independently for each primitive. In particular, the M 

step requires N independent maximizations, each of a single Qi{9i\0^) over 0<. Since 0j includes both 
continuous parameters (9f, 9f, 6f, and possibly 6\) and a discrete parameter (6\), we are faced with a 
hybrid maximization problem for each primitive, with the discrete parameter limited to a small, finite space 

of nt elements. We thus maximize Qi{0i\6^) by performing nt separate trial maximizations, one for each 
possible value of 6\. Examination of (98) reveals that each trial maximization is nontrivial: there is a 

complicated relationship between Qi(9i\0\n') and the set of continuous parameters. Specifically, the pose, 
location, and radius terms are coupled due to 7Tfc(0;), and the pose and base amplitude are coupled due to 

PD'k,i and A(6i,ipk,<i>k)- 
Consider the following approximate maximization over the continuous parameters with 6\ fixed, equivalent 

to a single-iteration coordinate ascent: first, maximize Qi(0i\6^') over pose while fixing amplitude, location, 
and radius at their maximizing values from the previous iteration; this can be accomplished with a coarse- 
to-fine search over pose. Second, perform a line search to maximize over amplitude with pose fixed at the 
value just obtained, and with location and radius fixed at their values from the previous iteration. Finally, 

13For the multiple-primitive example of Section 8.4, the set of possible association vectors numbers in the hundreds; for a 
problem involving as few as a dozen primitives, the cardinality increases to billions. 
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maximize Qi(öj|öp) over location and radius while fixing pose and amplitude at the values just obtained; 
this can be done in closed form due to the quadratic dependence of Qi(9i\0f'') on location and radius. 
This type of partitioned maximization is known as "expectation-conditional maximization" (ECM) and is 
sufficient to ensure eventual convergence of the EM method to a maximum of the likelihood function under 
the same conditions as an algorithm that achieves a true maximum at each M step [50]. If not for the pose 
search, the computational burden of the M step would generally be insignificant compared to that of the E 
step. As it is, however, the M step greatly exceeds the E step in execution time. 

8.3.4    Initialization, Termination, and Model Order Estimation 

The block diagram of Figure 48 depicts three stages in addition to the E and M steps described above: 
a test for termination, an initialization procedure, and a model order reduction stage. Specification of 
a termination criterion is straightforward. Rather than directly monitoring p(Z|0'n') for convergence, we 
adopt the computationally simpler and widely used procedure of monitoring the estimates 9^n' themselves. 
Once the estimates of 6\ produced by the M step remain fixed between iterations and the changes in the 
continuous parameter estimates all drop below specified thresholds, the iteration is terminated and the final 
iteration's O^1' is used as the final estimate of 6. 

Our initialization and model order reduction stages are somewhat more involved, and are fully described 
elsewhere[60]. Together these components enable adaptive model order selection as the iteration progresses. 
Our model order adjustment stage is capable only of reducing the model order or leaving it unchanged at the 
conclusion of each EM iteration. This imposes the important guideline that the initialization should be biased 
toward overestimating N: any overfit can be corrected in subsequent iterations by the model order reduction 
stage, but any underfit is permanent. Briefly, the initialization procedure groups reports from separate 
images into clusters based on ~Kkj using an iterative chi-squared-statistic-based agglomerative clustering 
algorithm; reports that can be well-explained as projections from a single point in 1R3 are grouped into a 
single cluster. Each cluster produced by this agglomerative method is used to initialize a single primitive 
in ö'°! according to means similar to those described in Section 8.3.3. We implement this initialization so 
that it tends to overestimate model order N, in accordance with the above observation regarding the model 
order reduction stage. The model order reduction stage examines the set of report-to-primitive association 
probabilities calculated in the E step, and removes any primitives which do not seem to correspond to 
enough reports, i.e. , whose primitive-correspondence probabilities sum to a near-zero quantity. In this way 
the initialization and model order reduction stages enable adaptive estimation of N as the EM iteration 
progresses. 

8.4    Results 

In this section we present results of the application of our algorithm to synthetic SAR imagery generated by 
XPatch, an electromagnetic simulation package capable of accurately simulating arbitrary electromagnetic 
scattering measurements obtained by interrogating a facetization-model target with radiation [61]. We use 
the XPatch-T module of the package to produce image chips at a range and cross-range resolution of 0.3 m, 
a range and cross-range pixel spacing of 0.2 m, and a center frequency of 9.6 GHz, and use a —35 dB Kaiser 
sidelobe weighting function for image formation from phase history data. XPatch produces an image of a 
target in the absence of natural clutter; we model clutter as an additive ff-distributed process independent 
for each pixel, with grassy-terrain parameters [53]. 

Recall that the measurement model described in Section 8.2.3 is parameterized by several quantities 
that must be specified in advance.  The quantities we use for the experiments in this section are given in 
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quantity notation value 

location covariance R (5.0 cm)2 x I 

normalized false alarm rate 1FA 0.0023 / pixel 

type confusion matrix M 
" 0.78    0.01    0.17   0.87 ' 

0.22    0.99    0.83    0.13 

T 

amplitude variance °l (5 dBsm)2 

Table 8: Measurement model parameters 

Table 8. The location covariance, false alarm rate, and confusion matrix given in Table 8 are average values 
compiled by processing a set of training images, each containing a single primitive in the grassy-terrain clutter 
environment. The probability-of-detection function and false-alarm amplitude pdf are histograms compiled 
from the training results. The amplitude variance term is a heuristic value chosen with the intention of 
capturing some of the variability in primitive responses encountered in the real world that would be difficult 
to model in a training set (e.g. , geometrical deviations or perturbations from ideality). Finally, the primitive 
dimensions used to construct primitive scattering models as described in Section 8.2.1 are equal to the true 
primitive dimensions in all examples presented here; there is a slight degradation in performance when these 
dimensions are mismatched [60]. 

For each target described below, we generated a superset of 2736 XPatch images—one for each point 
on a 2.5° elevation/azimuth grid with elevations from 5° to 50° and azimuths from 0° to 357.5°. For each 
Monte Carlo run in the trials described below, we selected a random subset of 180 images (if equally spaced 
on the 2.5° grid, a set of 180 images would form a 10° grid in azimuth and elevation) and corrupted each 
image with independent if-distributed clutter as described above. 

8.4.1     Single-Primitive Targets 

Our first set of experiments details the performance of the algorithm on four targets, each consisting of a 
single primitive. This is useful in establishing a benchmark for the algorithm's performance on more complex 
targets: results similar to those obtained for a single-primitive target would indicate that the algorithm is 
performing the data association successfully. Each of the four targets in this section corresponds to a single 
primitive (a unique type for each target) located at ground coordinates [ 12" 0" 6" ]. The trihedral and 
tophat are oriented with their bases parallel to the ground plane, the trihedral rotated to give a maximum 
specular response at azimuth 0°; the dihedral and cylinder are oriented so that a maximum specular response 
is obtained at elevation 25° and azimuth 0°. Each primitive is sized to give a maximum specular RCS of 
10 dBsm: the trihedral plate dimension is 4.99", the tophat has radius 7.24" and height 14.48", the dihedral 
is composed of 5.53" square plates, and the cylinder has radius 6.97" and height 20.88". A total of 100 
Monte Carlo runs were performed for each single-primitive target. 

Tables 9 and 10 present the performance of the algorithm on these four targets. The "Pact" column of 
Table 9 lists the fraction of runs in which an estimate was produced for the primitive, i.e. , in which it was 
captured by the initialization stage and survived the model order reduction stage through convergence of the 
EM iteration. Note that the values in this column reflect the relative observability of the primitive types: 
trihedrals and tophats have broad angular responses, whereas dihedrals and cylinders have narrow responses 
largely confined to a single plane [47]. Additionally, the relative heights of the cylinder and dihedral indicate 
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Pdot confusion pose az/el rms pose rot rms 

trihedral 1.000 [ 1.000    0.000    0.000   0.000 ] 2.331 7.799 
tophat 1.000 [ 0.000    1.000    0.000   0.000 ] 1.413 n/a 

dihedral 0.590 [ 0.000   0.000    1.000   0.000 ] 11.778 7.289 
cylinder 0.350 [ 0.000    0.000   0.086    0.914 ] 0.301 n/a 

Table 9: Single-primitive model order, confusion, and pose statistics 

that the dihedral response will be broader than the cylinder response [47]; this accounts in part for the better 
detection of the dihedral.14 

Of note in Table 9 is the excellent type classification performance of the algorithm: in almost every 
trial in which the primitive is detected, its type is correctly identified. This suggests that the limited 
type information provided by the even-bounce/odd-bounce discriminator in the data extraction stage, as 
discussed in Section 8.2.2, is not an impediment to type estimation. Table 9 also displays statistics from 
the pose estimation. In general, three Euler angles, corresponding essentially to elevation, azimuth, and 
rotation, are required to define the pose of a primitive; due to rotational symmetry, two angles suffice for 
the tophat and cylinder. The "pose az/el rms" column lists the joint root-mean-squared (rms) error in the 
azimuth and elevation angles, specified as the angular separation in degrees between two points on a sphere. 
The "pose rot rms" column presents the rms error in the rotation angle for those primitives to which it 
applies. On the whole, the pose results are encouraging, considering the average spacing between images 
(10° in elevation and azimuth). The dihedral pose errors, which are larger than those observed for the other 
primitive types, are attributable to the fact that there is an elevation/azimuth/rotation vector along which 
direction dihedral responses look very similar [60]. 

Table 10 displays statistics from the amplitude and location estimation. In the absence of other effects, 
we would observe a small negative bias in the amplitude estimates, as is observed for the tophat and cylinder; 
this is attributable to the frequency windowing inherent in the SAR imaging process [54, 46]. In particular, 
a primitive's brightness in an image is affected by its location in the slant plane relative to the pixel centers. 
Unless a primitive projects directly onto a pixel center, it will appear dimmer than its RCS would indicate. In 
the case of the dihedral and trihedral, this effect is counteracted by a slight mismatch between Set(») and the 
true scattering responses, induced by forming Set (•) as a noncoherent sum of all the response mechanisms 
without regard to their relative phases as indicated in Section 8.2.1. Because of the small dimensions of 
the trihedral and dihedral in this example, their lower-bounce responses are relatively broad and have a 
noticeable effect on the amplitude estimate in the form of a positive bias. 

The Table 10 location estimation statistics are presented in inches. The dihedral and trihedral location 
estimates exhibit a bias attributable to the influence of the lower-bounce responses from these primitives 
(e.g. , the double- and single-bounce responses from the trihedral), which do not appear to emanate from 
the same point as the highest-bounce response and thus violate (89), as described in Section 8.2.1. This 
effect can be corrected by a post-processing step that re-estimates location using only the highest-bounce 
reports, as indicated by the estimated primitive pose [60]. Note that the location estimates of the trihedral 
and tophat have much smaller covariances than that of the dihedral or cylinder; this is due to the relatively 
narrow responses and resulting low observability of the latter two primitives. Another effect of the narrow 
responses of the dihedral and cylinder is the large uncertainty along the axis perpendicular to their specular 

14 Also contributing to the better detection of the dihedral as compared to the cylinder is the detrimental effect of the cylinder 
curvature on the behavior of the initialization stage[60]. 
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base amplitude [ location ] or 
location 
radius 

primitive truth mean std dev truth mean (covariance)1/2 

trihedral 10 10.185 0.408 
12 
0 
6 

13.588 
0.020 
4.015 

0.670     0.011    -0.405 
0.011     0.340     0.019 

-0.405    0.019     0.832 

tophat 10 8.590 0.166 

12 
0 
6 

7.24 

12.055 
0.001 
6.199 
7.111 

0.086 -0.003 0.005 -0.001 
-0.003     0.097      0.003     -0.002 
0.005 0.003 0.386 -0.284 

-0.001    -0.002    -0.284     0.291 

dihedral 10 9.591 1.293 
12 
0 
6 

13.560 
-0.060 
2.390 

1.142     -0.056    -1.613 
-0.056     0.447      0.065 
-1.613     0.065      3.882 

cylinder 10 8.795 0.959 

12 
0 
6 

6.97 

11.709 
-0.028 
7.446 
6.743 

0.670 0.142 -0.207 -0.369 
0.142 0.840 -0.333 -0.174 

-0.207 -0.333 5.562 -1.142 
-0.369    -0.174    -1.142     1.165 

Table 10: Single-primitive base amplitude, location, and radius statistics 

Pdot confusion pose az/el rms pose rot rms 

trihedral 1.000 [ 1.000   0.000   0.000    0.000 ] 2.693 12.134 
tophat 1.000 [ 0.000    1.000   0.000    0.000 ] 1.861 n/a 

dihedral 0.940 [ 0.000   0.000    1.000   0.000 ] 9.746 4.670 
cylinder 0.280 [ 0.000   0.000   0.000    1.000 ] 0.371 n/a 

Table 11: Multiple-primitive model order, confusion, and pose statistics 

plane.   Note also that due to layover effects, there is significant coupling between the radius and location 
errors for the tophat and cylinder. 

8.4.2    A Multiple-Primitive Target 

This section details the performance of our algorithm on a target incorporating one of each of the four primi- 
tive types. These primitives are located at four corners of a square, centered at coordinates [ ±18" ±18" 0" ], 
as indicated in Table 11. The cylinder and tophat are the same size as those tested in the previous section; 
the dihedral and trihedral are larger in order to demonstrate the dependence of the algorithm performance on 
primitive amplitude. Specifically, the dihedral is composed of 13.11" square plates to give a maximum RCS 
of 25 dBsm, and the trihedral is composed of 11.02" square plates to give a maximum RCS of 23.75 dBsm. 
The results from 50 Monte Carlo trials are portrayed in Tables 11 and 12 in a format identical to that of 
Tables 9 and 10. 

Examining statistics for the tophat and cylinder in Tables 11 and 12, we see that they are on the whole 
slightly worse than, but still comparable to, those in Tables 9 and 10. (The slight improvement in the 
cylinder confusion and location covariance is likely due to the reduced statistical significance stemming 
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base amplitude [ location ] or 
location 
radius 

primitive truth mean std dev truth mean (covariance)1' 

-18 -19.465 0.361    0.122   0.307 
trihedral 23.75 22.512 0.511 -18 

0 
-19.408 
-2.637 

0.122    0.327   0.290 
0.307   0.290   0.753 

-18 -18.070 0.101     0.001       0.004      0.008 

tophat 10 8.879 0.230 
18 
0 

7.24 

17.999 
0.244 
7.082 

0.001     0.107     -0.012     0.002 
0.004    -0.012     0.442     -0.282 
0.008     0.002     -0.282     0.298 

18 18.705 0.670       0.267     -0.886 
dihedral 25 23.626 1.879 18 

0 
18.670 
-2.496 

0.267       0.767     -1.036 
-0.886    -1.036     3.698 

18 18.119 0.491     -0.173    -0.343    -0.045 

cylinder 10 9.000 1.017 
-18 

0 
6.97 

-18.119 
-1.324 
7.196 

-0.173     0.582       0.354      0.098 
-0.343    -0.354     4.743     -1.188 
-0.045     0.098     -1.188     0.896 

Table 12: Multiple-primitive base amplitude, location, and radius statistics 

from the small number of trials in which the cylinder was successfully detected.) This is an indication 
that the algorithm is generally successful in performing the data association that is implicitly required to 
solve the model generation problem. Comparing the statistics for the dihedral and trihedral in Tables 11 
and 12 to those observed in Tables 9 and 10, several things are apparent. First, and most markedly, the 
dihedral detection performance has improved drastically for the brighter primitive in this target. Second, 
the dihedral and trihedral amplitude estimates no longer exhibit the positive bias observed in Table 10, 
and instead exhibit roughly the same negative bias as the cylinder and tophat. This is because the larger- 
sized trihedral and dihedral of this experiment have less pronounced lower-bounce responses, and thus the 
positive bias described in Section 8.4.1 disappears. Third, these primitives still exhibit a location bias, as 
explained in Section 8.4.1. Fourth, due to the increased observability of these primitives, we obtain smaller 
location covariances. Finally, the dihedral pose errors have been reduced while the trihedral pose errors have 
increased; this is because increasing the trihedral amplitude from 10 dBsm has less marginal benefit to the 
primitive's observability than increasing the dihedral amplitude from the same value, because a 10-dBsm 
trihedral is already broadly observable. Overall comparison of the results of this experiment to those of the 
previous section suggests that algorithm performance for simple multiple-primitive targets is similar to the 
performance when the underlying data association problem is trivial. This is an encouraging result. 

8.5    Summary 

We have presented an iterative algorithm for producing a 3-D reflector-primitive target model from a collec- 
tion of SAR images. We simplified the model generation problem by considering only a compressed version 
of the full set of available data, namely, the locations, amplitudes, and polarimetric signature types of the 
peaks in each image. This compression, along with the reflector primitive parameterization, enabled us to 
pose the model generation problem as a data association or fusion problem. We constructed a measurement 
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model with two major components to relate target primitive parameters to observed data: the first compo- 
nent was a correspondence model describing the detection of target components and false alarms; the second 
component was a conditional measurement model describing the fine characteristics of the data given the 
previous component's correspondences. We then showed how the EM method can be applied to the problem; 
in addition to the E and M steps of the standard EM method, we indicated two modifications that enable 
adaptive selection of model order as the EM iteration progresses. The algorithm we presented, while tailored 
to our specific measurement model, is adaptable to a broad class of measurement models. We presented 
experiments demonstrating the performance of the algorithm on several targets. We demonstrated that di- 
hedrals and especially cylinders are more difficult to detect than either tophats or trihedrals, due to the wider 
angular response of the latter two primitives. We demonstrated that the performance of the algorithm on a 
target consisting of a handful of primitives compares favorably to its performance on individual primitives, 
suggesting that it is successfully solving the implicit data association problem underlying the target model 
generation problem. 
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LIST OF ACRONYMS 

ACRONYM    DESCRIPTION 

ATD/R Automatic target detection/recognition 

ATR Automatic target recognition 

CFAR Constant false alarm rate 

DARPA Defense Advanced Research Projects Agency 

ERIM Environmental Research Institute of Michigan 

GLLR Generalized log-likelihood ratio 

GTD Geometric thoery of diffraction 

KL Kullback-Leibler 

LLR log-likelihood ratio 

MI Mutual information 

MLP Multi-layer perceptron 

MSTAR Moving and stationary target acquisition and recognition 

PCA Principal components analysis 

RMS Root mean square 

ROC Receiver operating characteristic 

ROI Region(s) of interest 

SAR Synthetic aperture radar 

SBIR Small business innovative research 

WLS Weighted least squares 
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