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the region of interest that is continuous, but which varies with location and time in both magnitude and direction. 

The plume shape takes a time varying sinuous form that is determined by the integrated effect of the wind field. 

Simulated and field data are compared. The motivation for the development of such a simulation model was the desire 

to evaluate various strategies for tracing odor plumes to their source, under identical conditions. The performance of 

such strategies depends in part on the instantaneous response of target receptors; therefore, the sequence of events 

is of considerable consequence and individual exemplar plume realizations are required. Due to the high number of 

required simulations, computational efficiency was critically important. 
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1.   Introduction 

Olfactory-based mechanisms have been used to explain a variety of biological orientation behaviors 

for resource location [1, 2, 3, 4]: homing by Pacific salmon [5] and green sea turtles [6]; foraging 

by Antarctic procellariiform seabirds [7], lobsters [8, 9, 10], and blue crabs [11]; and mate finding 

and foraging by insects [12, 13, 14]. Typically, olfactory-based mechanisms proposed for biological 

entities combine orientation behaviors at long-range based in part on olfaction with a local search 

in the vicinity of the source governed by multiple sensor modalities. The olfactory portion of the 

search strategy is contingent on the fact that a turbulent flow can transport above threshold parcels 

of odor over relatively long distances, making feasible the detection of an upflow odor emitter over 

considerable distances. A further advantage to the searcher is that the odor signal can be highly 

'specific, resulting in rare false positive responses [15]. The flight of a male moth along a wind- 

dispersed plume of pheromone, emitted either by a female or a dispenser charged with synthetic 

pheromone is particularly well-documented [12, 16, 17, 18, 19, 20]. Models of moth navigation 

generally propose that males fly upwind when they sense an above-threshold concentration of 

pheromone. This mechanism is termed 'positive anemotaxis.' Because in a rapidly-flying insect, 

navigational decisions require continual review of the sensor by the insect, the fine-scale plume 

structure is of considerable consequence. 

The fact that various biological entities use olfactory based search with high degrees of success 

has prompted research1 into the design of autonomous vehicles capable of olfactory based search 

and chemical plume tracing. Such autonomous vehicle capabilities have applicability in searching for 

environmentally interesting phenomena, hazardous chemicals, and pollutants. In addition to vehicle 

development, sensor development, and analysis of the fluid environment, design and optimization of 

the chemical plume tracing (CPT) strategies are of critical importance to the solution of this prob- 

lem. Evaluation of CPT strategies requires hardware and software evaluation platforms. During the 

initial design stages, software evaluation is preferred, since such tools allow competing strategies to 

be evaluated under identical conditions for various environmental scenarios. The tradeoffs between 

field testing, wind tunnel testing, and simulation testing are discussed in, for example, [33, 34]. 

To calculate reliable performance statistics, numerous2 batches of such evaluations are required. 

Therefore, the computational efficiency of the software simulation tools is a key concern. To ensure 

that strategies that perform well in simulation will also perform well in hardware experiments, the 



Simulation must contain the key features that complicate the problem of CPT. This article presents 

a plume simulation implementation that addresses the tradeoffs between computational efficiency 

and inclusion of realistic complicating features. 

Plume models can represent concentration by its mean or probability density function. For 

example, dispersion in a turbulent medium is frequently represented as a Gaussian distribution 

such as [21, 22, 23, 24] 

^(W) = 2^s7üeXP{- {2Sl + Jsl)) (1) 

where C{x, y, z) represents the average concentration profile as a function of position. In this 

expression, and throughout this article, x, y, and z denote the downwind, crosswind, and vertical 

position coordinates relative to the odor source with x positive along the mean wind direction. 

Sy and Sz are the standard deviations of the time-averaged plume concentration in the crosswind 

and vertical directions. Both parameters are functions of the downwind position. The parameters 

of the functional fit may be based on theoretical considerations (i.e., Sy = 0.5Cyx^2~n^2 and 

Sz - 0.5Czx(2~n^2) [23, 24] or selected to match experimental data for the atmospheric conditions 

of interest [22, 25, 26]. The application of Gaussian plume concentration models is well established 

and the results they produce are well understood. Predictions based on Gaussian plume studies yield 

results that match experimental results reasonably well when long-term exposure is of interest and 

the effect of the exposure is a linear function of the time averaged concentration [27]. Probability 

density plume models, however, do not set out to provide information related to the short time-scale 

signature of the concentration, the instantaneous peak concentration, or the intermittent nature of 

the plume. Although the fine-scale characteristics of a plume are of little interest in many cases, for 

example in some kinds of regulatory work related to permitting or safety, they are of considerable 

importance in others, for example in assessing flamability and the health impacts of toxic release, 

in studies of biological response to odor [14, 28], and pollution damage to plants [29]. Because 

behavioral reactions are governed by instantaneous or nearly instantaneous concentrations of odor 

[30] and such probability density estimates cannot be used to accurately predict where in space an 

odor is instantaneously above threshold, probability density plume models are not appropriate for 

the CPT strategy performance analysis. 

This article presents a model for dispersion in a turbulent medium. The specific purpose of 

this plume dispersion model is to facilitate modeling and analysis of navigation strategies designed 



to locate a wind-dispersed odor plume and then to trace it to its source3. It is well known (e.g., 

[31, 32]) that direct numeric simulation (DNS) of turbulent flow in reasonable amounts of time is 

limited by computational power to large grid size or low Reynolds numbers. Therefore, this article 

presents the design of a simplified plume simulation, based on physical principles, that resulted 

in a computationally feasible simulation (i.e., 100 batches of 100 source relative starting locations 

evaluated on a 100 by 100 m area in less that 24 hours on a typical desktop computer). The 

simulation design presented herein addresses the following tradeoffs: 

1. Field studies have shown that odor detection events can have pulse widths on the order of 0.01s 

[27]. Moths have been shown to respond to odorant pulse widths on the order of 0.1 s [14]. 

Therefore, the fine-time scale structure of the sensed odor is important. 

2. Although the fine structure of the turbulent flow is important in the process of transporting 

relatively undiluted parcels of odor over long distances, the anticipated vehicle flow sensors will 

be unable to resolve the fine-scale flow structure. Therefore, accurate simulation of the fine-scale 

flow itself is not important. 

3. The plume must have an intermittent internal structure in the sense that a snapshot of the 

plume appears as patches of above threshold odor. 

4. The sinuous (or meandering) nature of the plume is a key complicating factor to plume trac- 

ing. The simulation must generate plumes that meander. In addition, the meander should be 

coherent with the flow field in the sense that the odor distribution down wind from the source 

is the result of advection by the flow field. 

5. The simulation must generate exemplar plumes, not time-averaged odor distributions. The 

simulation should be capable of returning measured concentration at location x{t) at time t. 

Both position and time will change as the searcher executes its mission. The searcher trajectory 

will respond to the sensed flow and odor detection events. This searcher trajectory cannot be 

predicted prior to the simulation. Therefore, the simulation must maintain models of the flow 

and odor concentration as a function of position and time. 

6. The effect of the searcher on the flow and the odor distribution are not considered important 

for this application, because the searcher, which is trying to make progress up the plume, 



mainly affects the downwind flow and odor distribution. Inclusion of these effects would signifi- 

cantly increase the computational burden without, significantly affecting the strategy evaluation 

results. 

The goal of the simulation discussed herein is, therefore, to produce a more challenging and physi- 

cally plausible simulation model than those currently used in insect behavioral and robotic strategy 

design studies, e.g., [34, 33, 35, 36], while achieving significant computational simplification relative 

to the turbulence simulation models in the literature, e.g., [37, 38, 39, 40, 41, 32]. 

1.1.  ARTICLE OVERVIEW 

To generate realistic simulated plumes we considered the following three characteristic structural 

features to be of primary concern. First, the sensed plume at a fixed location should have an 

intermittent internal structure that closely duplicates experimental observations. Second, the plume 

that results from a semi-continuous release of odor should be sinuous and time varying. Third, the 

plume shape and wind field history should be coherent. 

The first characteristic feature is achieved herein by representing the odor plume as a sequence 

of puffs [33, 55]. Puffs are released sequentially at the source location. Each puff is composed of 

n filaments. After release, the filament center location is determined by integration of the wind 

velocity: 

Pi = v(p0 (2) 

where p.; and v(p*) are the 3 dimensional position of the i-th filament and wind velocity at the 

location of the i-th filament. To achieve the second characteristic feature, our model incorporates 

a dynamic model of the wind. This model allows the wind, which transports the filaments, to be a 

continuous but varying function of position and time. Changes in wind direction cause the plume 

to meander (form a snake-like path when viewed from above). As the wind velocity changes, the 

instantaneous wind direction at given positions within the plume's boundaries sometimes will not 

point either toward the odor's source nor be coincident with the direction of the plume's centerline. 

These characteristics of the simulated plume reproduce experimentally observed phenomena [42, 43]. 

The puff-based model presented here is general and is designed so that it can be tuned for a range 

of applications. For the simulation results presented here, the parameters were tuned to correspond 



to odor plumes as perceived by male moths. The receptor system of some male moths is capable 

of resolving 10 odor pulses per second [44]. A flying male can react to odor filaments of 200 ms 

duration [14, 45]. Therefore, we designed the present model of plume dispersion with an integration 

time step of 10 ms. Similarly, the units of the sensed odor (see Section 2.4) were specified to be 

relevant to the male moth. 

Conventional time-averaged concentration models are in general time independent. It is assumed 

that the plume was fully developed prior to the initiation of data collection. Such concentration 

distributions (assuming stationarity and ergodicity) allow time independent predictions over an 

ensemble of plumes of the average concentration as a function of position. Measured instantaneous 

concentration of specific exemplar plumes can, however, deviate significantly from the ensemble 

average [27, 46, 47, 48]. Alternatively, instantaneous concentrations as produced by simulation 

models produce a model instance of an odor plume as an individual realization. By design, such a 

plume will be time varying; however, when time averaged, the mean concentration should match 

the above ensemble averages. In addition, simulated plume models enable certain types of analysis 

that are precluded by the loss of time signature information in mean concentration plume models, 

such as analysis of alternative biological strategies under uniform experimental conditions (see e.g., 

[34, 33]). 

The objective of this article is to present a simulation model for an odor plume that (1) realisti- 

cally reproduces the short time-scale signature for sensed concentrations, (2) accurately reproduces 

the long-term time-averaged plume data, (3) incorporates a simulated wind (advection) model that 

is continuous over a region of interest but time varying in magnitude and direction, and (4) is 

computable in reasonable time. The presentation of the model is followed by analysis of simulated 

results in relation to experimental results previously reported in the literature. 

2.   Model Overview 

A chemical released at a source location will be manipulated by turbulent and molecular diffusion 

while transported advectively by the wind. As described in [46, 49], the odor dispersion process is 

dominated by turbulent dispersion. Turbulent dispersion involves a wide range of length (or eddy) 

scales. Eddies larger than the scale of a section of the plume (i.e., a puff) transport the puff as a 



whole, causing the ensemble of puffs to appear as a sinuous plume. Eddies smaller that the puff 

mix the components of the puff causing little puff motion or growth. Eddies on the order of the 

puff size cause significant growth/distortion of the puff and motion of individual filaments relative 

to the instantaneous plume centerline. 

To develop a corresponding plume simulation model, the velocity vector will be decomposed into 

three components: vrf, vm, and va. Each component will be implemented by a distinct process as 

described in the subsequent sections. This decomposition of the velocity spectrum is motivated by 

the numerical implementation, but can be interpreted theoretically in terms of the eddy scales of 

the previous paragraph. To clarify this correspondence, it is first necessary to state that the puffs, 

for simulation, will be further decomposed into parcels referred to herein as filaments. The effect of 

the smallest eddies (i.e., slow growth of the filaments) of the wind fluid flow process (modeled by vd) 

will be implemented as an increase in filament size and change in shape, as described in Section 2.3. 

The term va represents the portion of the wind process with characteristic length much larger than 

the filaments. This portion of the wind process transports each filament as a body; therefore, the 

term va represents advection. The advection portion of the velocity is represented as a continuous 

(in time and space), but temporally and spatially varying function (see Section 2.1), so that a 

sequence of filaments released at the source will result in a sinuous trail of filaments leaving the 

source. The term vm represents the intermediate range of scales that transports (i.e., stirs) the 

filaments within the body of the plume. 

Although the position of individual molecules cannot be conveniently simulated, the idea is 

useful to consider for the purpose of defining the simulation. Therefore, the position of a single 

molecule is given by 

Pm   =   Vd+Vm+Va. (3) 

Because the intermediate and advective terms affect all molecules within a filament similarly, the 

model can be decomposed into two processes-the changing shape of the filament and the transport 

of the filament. The position of the i-th filament will be represented by p*. The changing position 

of the i-th filament is represented by 

Pi = vm; +va. (4) 

where the implementation of the vm; and va processes is discussed in subsequent sections. 

<»- 



Physically, the growing and changing shape of the filament is a very interesting process dom- 

inated by turbulent diffusion. However, numerical simulation of diffusion processes is a complex 

and (simulation) time consuming task. Therefore, at this level some compromise is required to 

achieve reasonable simulation times while still achieving the objectives of the simulation model. 

The approach herein is to use a template filament shape that can change size and orientation. The 

simulation results are not sensitive to the choice of template shape, as long as the change in shape 

is physically reasonable. 

Any mimeric flow simulation must satisfy various conservation equations (see Ch. 2 in [39]). 

For the simulation herein, conservation of the mass of the flowing material and conservation of 

momentum is addressed in Sections 2.1 and 2.2. Conservation of the mass of the odor is addressed 

through the filament representation as described in Section 2.3. 

2.1.   ADVECTION 

This section describes the theoretical model for va = (ü,v,w) suitable for simulation implemen- 

tation. The advection model is currently implemented in two dimensions (i.e., x and y) with the 

assumption that for the area of interest va is independent of z. This assumption is motivated by the 

assumption that the plume tracing will occur at a nearly constant altitude within a few meters of 

the ocean floor or earth surface. Issues related to plume dispersion in a stratified flow are discussed 

in [50]. 

Within the atmospheric surface layer, we have assumed that compared with turbulent forces, the 

following forces on an air parcel are negligible: Coriolis, geostrophic winds, and molecular viscosity. 

It is also assumed that time-averaged pressure terms can be neglected, so that the time-mean 

motion equations are 

du 
~di = 

_dü 
dx 

_dü      _dü 
dy        dz 

du'u' du'v'     du'w' 

dv 

dt 

dx 
_dv 

dx 

dy          dz 
_dv      _dv 

dy        dz 

dv'u' dv'v'     dv'w' 

(5) 

dx dy dz 



with the continuity equation 
du     dv     dw ,_, 

0 = 7T + 7T + IT (7) 
ox     oy      oz 

where u(t) = ü(t) + u'(t). To conserve computational resources we have used the simplest form of 

K-closure method [51, 39] under the assumption, applicable under near neutral conditions, that 

du    -j- dv 
s&    VV=-K»dy- 
du    ——-        „ dv 

-Kx^    W=-Ky^_ (8) 

u'w' = -Kz —    v'w' = -Kz — , (9) 
dz dz 

and 

*f = ™ = -\{*-TSi + K'%) m 

where the Kx,Ky, and Kz terms represent diffusivity. Assuming that, for the region of the plume 

with which we are concerned (approximately a hundred meters in length), turbulence is homoge- 

neous and approximately isotropic, 

Kx = Ky (11) 

0 = ^-^4. <H) dx        dy        dz 

Note that the Kx,Ky, and Kz terms could be assumed to be appropriate functions of position at 

minimal computational cost, with appropriate changes in eqns. (11-12). In the present simulation, 

Kx E [1,30]— is a constant. Under these assumptions, the dynamic wind (advection) model for 

the u-term simplifies as follows 

du _dü~    _du     _du 

dt dx       dy        dz 

„ d2ü     1       d  (du     dv\      „ d2ü .10, 
+K°d^+2Kyd-y{iry + d-x)+K^ (13) 

_du     _du     _du -  -u v w_ 
dx       oy        oz 

l„d2u     \„d2ü     1       (d2u ,    d2v \   ,  „ d2ü 

_dü    _du     _dü~ 
= -u- v- w— 

ox       oy        oz 

1      d2u     1      d2ü     1       d  (du     dv\  t       d
2ü 

_du     _du     _du 
=  -u- v- w—- 

dx        oy        oz 

1       d2ü     1      d2ü      1        d  (dw\   ,  „ d2ü 
+ 2K^+2K^-2^d-x{^)+K^ (16) 
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The model for v can be processed similarly. If it, is assumed that the model is applied in a narrow- 

layer near the surface of the earth, on a region where va = (ü,v,w) is independent of z, then the 

following simplified two dimensional model results: 

du  _     _du     _dü~ 

dt dx       dy 

1      d2ü     l      d2ü 
+ 2K*M + 2K*W (17) 

dv _dv     __dv 

dt dx       dy 

1 T, d2v      1 „ d2v ,. oN 
+ 2K*W + 2K»W (18) 

These equations can be solved numerically at a grid of points on the region of interest for a specific 

set of time-varying boundary conditions. The term va derived in this section has the sole function 

of transporting the fine-scale (filaments) of the plume. Therefore, the grid point separation A 

is defined to be larger than the scale of the filaments. The advective wind velocity at locations 

between the grid points is determined by interpolation based on the advective wind at the adjacent 

grid points. This approach yields a continuous, spatially varying, and time varying model of the 

advection of the plume elements with a reasonable characterization of the physics. Therefore, the 

wind velocities at distinct but nearby points are correlated, but spatially varying. 

When a sequence of filaments is released at a fixed location, the advection terms (ü, v, w) generate 

a meandering trail of filaments, as shown in Fig. 1. This figure depicts a top down view of a 100 by 

100 m field. The above equations were solved numerically for boundary conditions generated by a 

mean flow of [1,0] ™ plus a colored noise process. The colored noise process at each corner is im- 

plemented by filtering unit Gaussian white noise by H(s) = G si+
a

bs+a. For simulations in which we 

want to generate large amplitude meander, we typically select (a, b, G) = (0.04^, 0.04^, 20). For 

simulations in which we want to generate small amplitude meander, we typically select (a, b, G) — 

(0.5^-, 0.1 —, 3). The boundary condition along the edge nodes is then generated by interpolating 

between the values at the two adjacent corners. The components of the model that describe diffusion 

of the plume elements relative to the plume centerline and the growth of the filaments were turned 

off for the simulation that generated Fig. 1, so that the figure only shows an instantaneous example 

of plume centerline meander. Centerline relative filament diffusion and filament growth will be 

discussed in subsequent sections. The arrows on the figure indicate the instantaneous wind vector 

at the tail of the arrow. The instantaneous wind vector and the local plume centerline are highly 

11 
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correlated near the source of the plume. As the distance from the source of the plume increase, the 

correlation between the directions of these two vectors decreases. The physical explanation of such 

behavior is that each filament is transported instantaneously along the local wind vector; however, 

the plume centerline alignment is determined by the entire past history of local wind experienced 

by all filaments making up the plume. 

Implementation of the advective model as described herein yields a spatially and time varying 

flow field over an area of interest. Transport of odor filaments by this flow field yields a plume 

centerline with realistic characteristics. In particular, the meandering nature of the plume (with 

'semi-independent' instantaneous wind direction and plume centerline alignment) is a realistic 

characteristic of natural plumes [42, 43] and therefore is a significant advancement relative to 

the wind-tunnel type of puff models used previously for analysis of insect flight response, e.g. see 

[34, 33]. The finite element model for va is not intended to model the small-scale turbulent structure 

of the wind. Therefore, a relatively large spatial separation (i.e., 5-10 m) of the finite element nodes 

is reasonable. This large separation allows the approach to be computationally feasible. 

2.2.  CENTERLINE RELATIVE FILAMENT DIFFUSION 

This section describes the model for vm. This is the scale of the flow between A and the filament 

size. Assuming that A is specified judiciously, this scale of the flow distributes the filaments about 

the plume centerline. For computational reasons (i.e., the number of nodes increases as ^j for 

three dimensional implementations), this scale of the flow is not modeled through finite difference 

methods. Instead, the velocity of the i-th filament relative to the centerline vmi is modeled as a 

random process implemented in state-space notation [52] as 

ü = Au + B v vm. = C to + D v (19) 

where u> G 5Rn; A, B, C, and D are appropriately sized matrices; and v is a white noise process with 

power spectral density al (i.e., cov {v{t),u{t + r)) = cr^(r) where <*(*) is the impulse function, see 

p. 120 in [52] or pp. 81-85 in [53]). The transfer function from v to vm. is 

X2Ü. = H{s) = C{sI- A)'1 B + D (20) 
v 

12 



where s is the Laplace variable. Therefore, vm; is a colored noise process with spectral density 

defined by 

PSDVm(s)=H*(s)H(S)al (21) 

where H*(s) is the complex conjugate transpose of H. 

Note that if the bandwidth of H is large, then vm « Gv, where G = H(0), so that vm is a 

white noise process. In this case, let Y denote the standard deviation of the filament position in 

the y-direction (i.e., plume width) due only to vm (i.e., relative to the centerline) . In this case, 

Y — Gau\/f., where t is the time since the puff was released. This matches Robert's model (see [54] 

and eqn. (21) in [55]). 

Fig. 2 displays an example of the plume generated by the relative diffusion terms vmi, when 

advection is the constant vector va = [1,0,0] m/s and filament growth is turned off; therefore, this 

figure illustrates only the effect of vm (i.e., centerline relative diffusion). For this simulation, each 

component of vro; was a white noise process with spectral density given by av = 2^f==. 

2.3.  FILAMENT MODEL AND GROWTH 

When summed, vm>. and v„ describe the velocity of the filament center as the filament is bodily 

transported over the field of interest. The pointwise calculation of concentration and changing shape 

of the filament are the topics of this section. As shown in Fig. 2, the plume is the composition 

of a large number of advected and dispersed filaments. Given a large number of filaments, the 

overall instantaneous concentration at x = (x,y,z) due to all the filaments is just the sum of the 

concentrations at that location contributed by each filament: 

„,     N      \-^ „ ,     N molecules .„„. 
C(x,t) = Y,G(x,t)  3— 22 

f-f cm6 

where N is the number of filaments currently being simulated. Note that this model allows the in- 

stantaneous odor concentration to be evaluated at any position and time of interest. This pointwise 

concentration measurement can be converted into a flux by multiplying by the local wind velocity 

vn and the effective area of the sensor cross-section. 

The concentration at location x due to the i-th filament is modeled as 

.      .   _ Q (ZII1L1\    
moiecules 

~   V8TT*R^t) 6XP V RH*) ) cm3filament 

Ti(t)  —   ||x - pi(i)|| cm 

13 



where Q represents the amount of odor released (i.e., molecules per filament) and R is a parameter 

controlling the size of the i-th filament. This expression is derived based on the assumption that the 

filament contains material normally distributed relative to the filament center. Therefore, if C,;(x) 

is integrated over the (infinite) spatial extent of the filament, then it correctly predicts Q molecules 

in the filament. Therefore, the mass of the odor producing chemical is conserved as the filament 

size Ri changes. 

Various models are available for the time derivative of the radius of the i-th filament. Here, only 

two models are presented. For the first model, let the radius of the i-th filament be assumed to 

change as 
/   2 \- 

R(t) = (i?3(0)+7i)2 

then the rate of growth of the i-th filament is 

dR     3      i 

Note that the same solution can be obtained with fewer computations by solving 

dp = 

dt     7 

and defining R — p1-5. For the second model, let the radius of the i-th filament be assumed to 

change as 

R(t)=(R2{0)+Tt)* 

then the rate of growth of the i-th filament is 

dR_J_ 
~dt ~ 2R~' 

Note that the same solution can be obtained with fewer computations by solving 

dp 

and defining R = p*. These expressions are intended to account for molecular diffusion and growth 

of the filament due to the smallest length scales of the turbulent flow. Alternative models of filament 

growth could be combined to account for different regimes of filament growth. 

For the simulations presented herein, Q = 8.3 x 109mo'e;"'es = Unano^ams for a pheromone with 

molecular weight 282 g™0"
s, which is the rate of emission of pheromone by a female gypsy moth 

[56]. The parameter Q = & where n is the filament release rate in flla™ent, The filament release 

14 



rate is of considerable importance and is a user determined function. All simulations presented 

herein have n = \Q!
ü
—

U
 . The second model of filament growth is used with 7 = 0.001^- and 

R2 — 0.001m2 at the time of release. This initial filament size was selected to be characteristic of 

the size of the female gypsy moth. 

Fig. 3 displays an example of the plume that results when advection, centerline relative diffu- 

sion, and filament growth are all active. Again, the local instantaneous wind direction and plume 

centerline do not necessarily align, except near the source. Fig. 4 displays a typical example of the 

sensed concentration resulting from the simulated model. 

An alternative expression 

0 1   . 1, ^\ molecules .„„. 

<*w - vsAmexp ("<x -p,)p (x"p,)) -=?-        (23) 

with P a time varying positive definite matrix would allow both the size and shape of each filament 

to be altered while maintaining the number of molecules per filament as Q (i.e., conserving the 

mass of the the odor-producing chemical). 

2.4.  SENSOR MODEL 

The sensed concentration is modeled as a low pass filtered and threshold specified version of the 

instantaneous concentration, 

^P- = ~ac(t) + aC(x,(t)) (24) 
at 

, c(t)    if c(t) >T 
v(t) = {   U (25) 

0        otherwise 

where a is the filter bandwidth, r is the sensor threshold, c(t) is an internal state of the filter, 

and xs(t) is the (possibly time varying) sensor position. The filter input is the instantaneous 

concentration at the sensor location C(xs(t)). The filter output is y(t). The effect of the sensor 

on the downwind plume is not modeled. In the results that follow, a is varied. The threshold r 

was selected to match the threshold of male response to pheromone in the gypsy moth (Lymantria 

dispar) which is 4 x 104mo^'es [30]. 

15 



3.   Model Analysis 

This section presents simulated plume data in various formats (long-term averages, amplitude 

statistics, temporal statistics). The intent is to present sufficient information to allow verification 

that the simulated plume has the general characteristics of odor plumes encountered in field ex- 

periments. Our main interests in such a validation are the amplitude (i.e., mean versus distance, 

'in-plume' mean versus distance, and peak to mean) and short duration temporal statistics (i.e., 

intermittency, pulse width, and burst return interval). The higher order statistical information is 

presented for completeness. See the Appendix for definitions of the various statistical quantities. 

For analysis relative to field experiments, we compare the simulation results with field mea- 

surements presented by Jones in [27]. Jones analyzed experimental data acquired using specially 

designed instruments with a time resolution of 0.01 s. The data presented by Jones includes plume 

statistics as a function of sensor bandwidth and distance from the source. This portion of the Jones 

data is included herein for ease of reference as Tables I and II. In addition, the Jones article contains 

histograms that present short-term odor statistics (pulse amplitude, burst length, and burst return 

period) that are directly relevant to the studies motivating the development of this simulation 

model. Those figures could not be included herein, but they are compared qualitatively with the 

simulation results in Section 3.3. 

3.1.  LONG-DURATION TIME AVERAGES 

Gaussian models are widely used descriptions for the long-time average concentration. Although 

our main interest is to replicate in simulation the short-term intermittent structure of plumes, it is 

also of interest to investigate whether the long-term time average of the simulated plume replicates 

existing Gaussian models [24]. 

Fig. 5 plots the 3 minute time-average contour for the simulated plume corresponding to the 

threshold of 0.04 x 106 mol^fes, Also shown is the Sutton model isopleth, generated from eqn. (1) 

with Sy = Q.bCyX2-71!2 and Sz = Q.hCzx
2~nl2 for the parameters n=l, Q=20, C„=0.4, and Cz=0.2. 

The 3-minute time-averaged simulation data contour is in close agreement with the Gaussian 

contour. This is true even though the instantaneous plume has the desired characteristics (i.e., 

sinuous and intermittent). This fact is highlighted by a direct comparison of Figs. 3 and 5. In 
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simulated meters, both figures have the same x dimensions. The y-scale of Fig. 3 is twice the scale 

of Fig. 5. Fig. 3 plots instantaneous concentration as a function of position, whereas Fig. 5 shows 

the time-average contour. Misuse of Fig. 5 would imply that a sensor placed anywhere within the 

contour would detect above threshold concentrations. The instantaneous plume 'snapshot' of Figs. 

3 shows that the above threshold locations are actually localized and time varying. 

For clarity of presentation, additional time-averaged simulated plume contours are not included 

in Fig. 5; however, such contours match additional characteristics of the Gaussian plume model. 

For example, as the duration of the time-average increases, the width of a given contour increases. 

3.2.  AMPLITUDE STATISTICS 

Statistics4 related to the amplitude of the concentration time series are presented in this section. 

Because the intent of this section is to validate that the simulation data reproduce key characteristics 

of actual plume data, the form of the data presentation herein is defined to match that of [27]. To 

facilitate comparison, the tabular data from [27] is included here as Tables I and II. The simulated 

data used to compute the statistics of this section are from a simulation with an integration time 

step of 0.01 s and a duration of 10 minutes (i.e., 60000 points). During the simulation, the filament 

release rate was 10 filaments per second. The simulated data statistics are presented in Tables III 

and IV. 

The first row of data in Table III presents mean sensed concentration as a function of downwind 

distance (d =2, 5, 10, and 15 meters). As for the Jones data in Table I, the mean concentration 

decreases as a function of distance from the source. The top graph of Figure 6 plots the mean 

concentration versus downwind distance from the source for the simulation and Jones data. Because 

the units are distinct, both sets of data have been normalized to unit magnitude at a downwind 

distance of 2 m. The decrease of the mean with downwind distance is caused by the width of the 

plume increasing, each puff becoming wider, and the area over which the plume meanders increasing 

with distance from the source. As noted in [27], the mean concentration is not affected by filtering 

of the data. 

The second row of data in Table III presents the conditional mean of the simulated plume as 

a function of downwind distance from the source. This quantity is determined by calculating the 

mean concentration only when the sensor is in the plume. Note that, as expected based on physical 
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principles, the conditional mean is larger than the unconditional mean and the conditional mean 

decreases more slowly than the unconditional mean as a function of source distance. The bottom 

graph of Figure 6 plots the conditional 'in the plume' mean concentration versus downwind distance 

from the source for the simulation and Jones data. Again both sets of data have been normalized 

to unit magnitude at a downwind distance of 2 m. 

Table IV presents second through fourth order (non-dimensional) moments and other key pa- 

rameters of the concentration time series as a function of both downwind distance and filtering 

bandwidth. The indicated bandwidth is that of a first order low pass filter (20 dB per decade). 

The data in Table IV is presented in the same format as the Jones data of Table II. Although 

it is very difficult to match higher order statistics, the general trends of the data in these tables 

are very similar. The peak-to-mean ratio decreases as the filter bandwidth decreases, because the 

peak of the filtered quantity is decreased while the mean is unaffected. Also, the peak-to-mean 

ratio increases with distance, because the mean concentration decreases more rapidly (decreased 

by filament growth, dispersion about the centerline, and movement of the centerline) than does the 

peak concentration (decreased by filament growth). Lastly, the intermittency (percent out of the 

plume) increases with distance, because the meandering of the plume causes the plume to move 

across a larger area at greater distances from the 'source. 

3.3.  TEMPORAL STATISTICS 

Temporal statistics related to the concentration time series are analyzed and presented in this 

section. Again, comparison is made with the experimental statistics presented in [27]. The main 

temporal statistics that are of interest are the distribution of burst lengths and the distribution of 

burst return periods, where each of these terms is defined in the appendix. These distributions are 

presented in Fig. 7 for two downwind distances and for two thresholds. The threshold is important, 

as it defines when a sensed concentration is counted for constructing the histogram. The dynamic 

range of the sensor and data in this experiment was Cs{t) G [0.04,10000] x 106mo
c^3 es- 

The histograms correspond well with those of [27]. In both the field and simulation histograms, 

the burst lengths are significantly shorter than 1.0 s as dictated by the filamentous nature of the real 

and simulated plumes. As the threshold increases, the number and duration of the bursts decreases. 

In both the field and simulation data, the burst return distribution appears to be bimodal with 
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one peak at, or below 0.1 s and a second peak at or above 1.0 s. The physical explanation for this 

is that the sensor may not detect concentrations either due to the sensor being out of the plume or 

the sensor being between filaments while still 'in the plume.' Meandering of the plume causes the 

'out of plume' burst return period to have long duration and to increase with distance from the 

source. The burst return period between filaments while 'in the plume' has much shorter duration 

and increases slowly with distance. 

4.   Conclusions 

This article has presented a computationally feasible simulation model suitable for Monte Carlo type 

analysis of dispersion in a turbulent medium. This tool is particularly important in studies where 

the critical item of interest is instantaneous concentration rather than time-averaged exposure. 

The method presented paid particular attention to creating a model with a continuous but time 

varying plume centerline, dispersion about the centerline, experimentally valid long-term averages, 

and experimentally validated short duration temporal and amplitude statistics. The model allows 

calculation of the wind velocity and concentration at any location and at any simulated time step 

(increments of 0.01 s for the current implementation). The user definable parameters allow the 

model to be tuned for a wide variety of applications. 

To achieve the fast numeric computation required for the batch Monte Carlo simulation analysis 

of possible plume tracing strategies, the plume simulation did not attempt to model the fine-scale 

flow characteristics. This simplifying assumption was motivated by the characteristics of the plume 

tracing application, where the vehicle is expected to have only a low bandwidth («1 Hz) flow sensor. 

The simulation was designed to maintain the plume characteristics that significantly complicate 

the plume tracing problem (meander, intermittency, and varying flow). The simulation therefore 

provides a challenging environment for evaluation of plume tracing algorithms. 

The level of fine-scale resolution that is used by biological entities or that is required for engi- 

neered devices to perform plume tracing is still an open issue5. For biological entities the answer 

to this question is a key issue in research focused on identifying how nature solves such problems. 

For engineered systems, the answer to this question determines, in part, the quality of sensors 

that will be required. If the task can be solved without detailed analysis of the fine-scale plume 
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structure, then low performance and hence lower cost sensors can be used. If detailed analysis of 

the fine scale structure is required, then simulation based performance analysis will require higher 

fidelity modeling. Some possible directions for improving the simulation include: (1) adapting the 

sub-gridscale velocity characteristics based on the characteristics of the advective velocity [57, 58]; 

and, (2) adjusting the characteristics of vmi as a function of the scale of the puff (i.e., Richardson or 

scale-dependent dispersion). A key issue related to such improvements will be the tradeoff between 

increased model fidelity versus increased computation. 
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Appendix 

A.   Parameter Definitions 

Tables II and IV presents various statistics of the simulated plume. This appendix defines the 

presented statistical quantities. 

A.l. AMPLITUDE STATISTICS 

The concentration C(p, t) is a time varying function of position. Although the concentration is 

time varying, we will assume that the statistics of the process are stationary and ergotic. Therefore, 

ensemble statistics will be calculated based through time integrals. 

The mean concentration is defined by 

f(p) = i/o
TC(P,T)dr. (26) fT 

10 
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The n-t,h central moment is defined as 

rT 
n(p)=4/   [C(p,r)-t(p)]ndr. (27) 

1 Jo 
M,  

Jo 

For n=2,3,4, these moments are the fluctuation variance, skewness, and kurtosis, respectively. To 

allow direct comparisons between different experiments, it is useful to express the n-th central 

moment in the non-dimensional form 

r(p) 

The non-dimensional second moment is referred to as the relative intensity of fluctuations. In Table 

IV the skewness and kurtosis are expressed in non-dimensional form. 

The quantity f/f is the peak to mean ratio. This quantity is calculated herein as the peak over 

the entire experiment divided by the mean over the entire experiment. This quantity could also 

be calculated as the average peak height (over all peaks) divided by the mean concentration or 

as the average peak height (over all peaks) divided by the conditional (i.e., in the plume) mean 

concentration. 

Due to the sinuous nature of the plume, there exist periods of time when the sensor will not be 

'in the plume.' Relative to a threshold r, the intermittency I is defined as the percentage of time 

during the experiment that the sensed concentration was below threshold. The above amplitude 

statistics can be calculated over the entire duration of the experiment or only during the portion 

of the experiment when the sensor was in the plume. In this article, only the second row of data in 

Tables I and III is restricted to times when the sensor was in the plume. 

A.2.  TEMPORAL STATISTICS 

Fig. 4 displays a short segment of the simulated concentration at a position 2 m downwind from 

the source. The symbol tpi defines the width of the i-th peak (i.e., above threshold T). The symbol 

tgi defines the width of the i-th gap (i.e., below threshold r). The symbol tw = tpi + tgi defines the 

time between the start of two consecutive pulses (i.e., pulse return). Note that these time periods 

and their distribution are threshold dependent. Fig. 4 indicates the peak and gap duration of the 

first pulse corresponding to a threshold of 2000. Based on these definitions, if npi and ngi denote 
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the number of pulses and gaps in the experiment, respectively, then 

npi ngi 

T*E<* + £** (29) 
»=i i=i 

where T is the experiment duration and the approximation is only due to the experiment not 

starting and stopping at the beginning or end of pulses. Fig. 7 displays normalized histograms of 

the pulse widths (i.e., tpi) and pulse returns (i.e., t^). 

Notes 

1 In the last decade there have been at least three research programs in the United States: the DARPA Dog's Nose 

Program, the ONR Chemical Sensing in the Marine Environment Program, and the DARPA/ONR Chemical Plume 

Tracing Program. 

2 A typical Monte Carlo batch evaluation of a single strategy involves 10,000 (100 repetitions of each starting 

location from a grid of 100 source relative starting locations.) plume simulations each 300 seconds long. A single 

plume simulation must be capable of returning at time t the concentration and (low bandwidth) flow velocity at any 

location within a 100 x 100 m search area. 

3 A few simulation images are contained in this article. The time varying simulation output is more interesting. 

Therefore, an executable version (for Windows) of the simulation described herein is available for download at 

http://www.ee.ucr.edu/~farrell. The source code in C is available through the first author. 

4 See appendix for parameter definitions. 

5 The authors also thank the reviewers for their time and efforts. The ideas of this paragraph were formed based 

on suggestions from the reviewers. 
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Figure 1. Plume due only to the advection term va. The area represented is 100 by 100 m with the odor source at 

(x,y) = (5,0)m. Each arrow indicates the local wind vector at the tail of the arrow. The meandering of the plume 

centerline is due to advection of a sequence of odor filaments by the local wind. 
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Figure 2. Plume growth due only to relative diffusion with constant advection (i.e., v„ = [1,0,0]y). The area 

represented is 100 by 100 m with the odor source at (x,y) = (5,0)m. Each arrow indicates the local wind vector at 

the tail of the. arrow. The centerline of the instantaneous plume does not meander because the wind is constant. 
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Fig?ire 3. Meandering plume with centerline relative diffusion and filament growth. The area represented is 100 by 

100 m with the odor source at (x, y) = (5,0)m. Each arrow indicates the local wind vector at the tail of the arrow. 
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Figure. 4. Concentration time series 2 m downwind from the source. The time resolution is 0.01 sec. Release rate is 
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e^fes. 
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Figure 5. Contour plots for Sutton mode! and a three minute average of the simulated sensed concentration. 
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Figure 6. Plots comparing the mean concentration and 'in plume' mean concentration data between simulation (solid 

with 'x') and field data from [27] (solid with '*')• The actual data contained in Tables I and III has been normalized 

by their values at 2.0 m. 
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Figure 7. Top left—Burst length distributions for a stationary sensor located 2 m downwind from the source. Top 

right—Burst length distributions for a stationary sensor located 15 m downwind from the source. Bottom left—Burst 

return period distributions for a stationary sensor located 2 m downwind from the source. Bottom right—Burst return 

period distributions for a stationary sensor located 15 m downwind from the source. Compare with Figs. 6 and 7 in 

[27]. 
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Table I. Data from [27]. The mean over all data is presented in the top 
data line. The conditional mean for 'in the plume data' is presented in 
the second data line. 

Downwind distance (m) 2 5 10 15 

Mean Concentration, f (^) 
Conditional Mean Concentration, F 

4.21 
28.4 

0.525 

5.33 

0.239 
1.46 

0.159 
0.549 
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Table II. Data from [27]. Plume data statistics as a function of downwind distance and 
sensor bandwidth. Processed data for 2 m downwind is presented in the first five data rows. 
Processed data for 5 m downwind is presented in the second five data rows. Processed 
data for 10 m downwind is presented in the final five data rows. Skewness and kurtosis 
are expressed in non-dimensional form. 

Symbol Unfiltered 

With low- pass filtering 

Name 30 Hz 10 Hz 3 Hz 1 Hz 0.3 Hz 

Standard deviation „         nC 12.6 11.0 8.71 5.60 3.77 2.40 

Skewness ST 4.95 4.87 4.62 4.31 4.18 3.93 

Kurtosis Kr 30.2 29.6 27.6 25.5 23.2 21.5 

Peak to mean ratio f/f 36.4 31.9 25.6 18.4 13.9 6.74 

Intermittency 

_        nC 

85.2 82.7 80.9 78.8 79.1 86.5 

Standard deviation 2.21 2.08 1.83 1.39 1.03 0.722 

Skewness Sr 7.18 6.46 6.27 5.47 4.24 3.29 

Kurtosis Kr 66.6 53.3 51.4 39.3 23.7 13.0 

Peak to mean ratio f/f 78.2 62.7 58.9 43.3 22.2 10.6 

Intermittency H%) 90.1 87.9 82.6 84.8 81.0 82.9 

Standard deviation CTr>    ^ 0.818 0.765 0.679 0.536 0.395 0.279 

Skewness Sv 8.82 7.82 7.48 5.62 4.49 3.50 

Kurtosis Kr 129 97.0 89.8 47.0 30.6 14.9 

Peak to mean ratio r/r 112 90.4 79.0 48.0 28.5 12.2 

Intermittency /(%) 83.7 83.9 85.2 83.7 83.7 85.2 
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Table III. Mean concentration of simulation data over 10 minutes (60000 
time samples) as a function of distance from the source (unfiltered data). 
The mean over all data is presented in the top data line. The conditional 
mean for 'in the plume data' is presented in the second data line. This table 
is compared with the field data of Table I in Fig. 6. 

Downwind distance (m) 2 5 10 15 

Mean Concentration, f (Mmo'c'J
Us)     698.01     232.22     69.38     40.48 

Conditional Mean Concentration, f       1494.0      655.4      237.3     136.9 
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Table IV. Simulated plume data statistics as a function of downwind distance and sensor band- 
width. Processed data for 2 m downwind is presented in the first six data rows. Processed data 
for 5 m downwind is presented in the second six data rows. Processed data for 10 m downwind 
is presented in the final six data rows. Ten minutes (60000 samples) of data. Compare with field 
data of [27] that is contained in Table II. Skewness and kurtosis are expressed in non-dimensional 
form. 

Symbol Unfiltered 

With low- pass filtering 

Name 30 Hz 10 Hz 3 Hz 1 Hz 0.3 Hz 

Standard deviation „        \rmolec. 2064 2037 1923 1608 1206 873 

Skewness SY 4.53 4.45 4.14 3.36 2.32 1.52 

Kurtosis Kv 5.81 5.70 5.29 4.21 2.89 1.80 

Peak to mean ratio r/r 14.33 14.33 14.33 14.03 11.76 7.49 

Intermittency /(%) 53.28 52.58 48.54 38.27 28.11 13.15 

Relative intensity 7r 2.96 2.92 2.76 2.30 1.73 1.25 

Standard deviation _         i/motec. 958 944 889 750 570 411 

Skewness Sr 7.75 7.57 6.90 5.47 3.80 2.46 

Kurtosis Kr 11.20 10.88 9.78 7.54 5.08 3.15 

Peak to mean ratio f/f 43.06 43.06 42.59 36.63 23.58 13.73 

Intermittency I(%) 64.57 64.38 63.00 56.84 47.56 28.70 

Relative intensity 7r 4.13 4.07 3.83 3.23 2.46 1.77 

Standard deviation —         Ti/rmolec. 339 333 312 265 204 148 

Skewness Sr 11.13 10.66 9.40 7.30 5.02 3.15 

Kurtosis Kr 18.82 17.76 15.07 11.13 7.21 4.17 

Peak to mean ratio f/f 144.14 143.88 130.83 81.64 46.86 20.33 

Intermittency /(%) 70.76 70.70 70.17 66.49 59.54 42.30 

Relative intensity 7r 4.90 4.80 4.50 3.82 2.95 2.14 
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