
AFRL-IF-RS-TR-2001-198
Final Technical Report
October 2001

JAGUAR: EXTENDING THE PREDATOR
DATABASE SYSTEM WITH JAVA

Cornell University

Philippe Bonnet and Johannes Gehrke

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20020308 046

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-198 has been reviewed and is approved for publication.

APPROVED: / s^ „-* U S7 'JUII-XXA

RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR : (M^ÜDfe
MICHAEL L. TALBERT, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to sverage 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Sand comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank/ 2. REPORT DATE

OCTOBER 2001
3. REPORT TYPE AND DATES COVERED

 Final Sep 98 - Aug 00
4. TITLE AND SUBTITLE

JAGUAR: EXTENDING THE PREDATOR DATABASE SYSTEM WITH JAVA

6. AUTHOR(S)

Philippe Bonnet and Johannes Gehrke

5. FUNDING NUMBERS

C - F30602-98-C-0266
PE - 62702F
PR - 4600
TA- II
WU-D1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Cornell University
4130 Upson Hall
Ithaca New York 14853

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

Air Force Research Laboratory/IFTD
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-198

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTD/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words!

The Jaguar project is aimed at breaking down the traditional barriers that require SQL query processing to reside on the
database server.
Indeed, database applications will soon be accessed by large number of clients ranging from Web applications to small-scale
personal devices and they will in turn access large collections of data sources ranging from Web servers to mobile sensor
devices. In such applications, a large amount of computing resources lie outside the database server: they should be utilized
for performance and security reasons.
The objective of the Jaguar project was to define portable query execution plans that could be executed either on the server,
or on a client or on a remote data source (a web site, an active disk or a sensor device). Java was chosen as a platform for
the execution of these portable execution plans.
New techniques supporting the execution of portable query plans on the client-site or on the server-site are the major
contributions of the Jaguar project. They have been implemented as extensions to the Cornell Predator object-relational
system.

14. SUBJECT TERMS

Computers, Database Software, Computer Networks, Architectures
IS. NUMBER OF PAGES

44
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDI0R, Oct 94

Table of Contents

1. Summary 1

2. The Jaguar System 2
2.1 Architecture 2
2.2 Server-Site and Client-Site Database Extensions 3
2.3 Database Extensions in Java 3
2.4 A Compression Framework for Query Results 3
2.5 Parallel Query Processing in Heterogeneous Environments 3

3. Publications 4

Appendix 1. Secure and Portable Database Extensibility 5
Appendix 2. Client-Site Query Extensions 17

List of Figures

Figure 2: The Jaguar architecture for ubiquitous query processing

1. Summary

The Jaguar project aimed at breaking down the traditional barriers that require SQL query
processing to reside on the database server. Database applications will soon be accessed
by a large number of clients ranging from Web applications to small-scale personal
devices and they will in turn access large collections of data sources ranging from Web
servers to mobile sensor devices. In such applications, a large amount of computing
resources lie outside the database server: they should be utilized for performance and
security reasons.

The objective of the Jaguar project was to define portable query execution plans that
could be executed either on the server, or on a client or on a remote data source (a web
site, an active disk or a sensor device). Java was chosen as a platform for the execution of
these portable execution plans.

As a first step, we extended the Cornell Predator object-relational database system so that
user defined functions (UDFs) could be defined in Java and executed with any query on
the server-site. In this first step, we studied the feasibility of our approach and we
explored security and performance issues. In a second step, we developed new techniques
for the execution of portable Java UDFs on the client-site. We showed that it is inefficient
to use a remote procedure call mechanism to invoke remote UDFs; instead we modeled
remote UDFs as relations (we take advantage of the tabular representation of functions)
and we reused distributed join techniques to incorporate them efficiently into a portable
query execution plan. We successfully applied this new technique to access resources that
should remain local to the client-site and also to access data produced by sensor devices.
New techniques supporting the execution of portable query plans on the client-site or on
the server-site are the major contributions of the Jaguar project. They have been
implemented as extensions to the Cornell Predator object-relational system.

2. The Jaguar System

2.1. Architecture

Jaguar extends the Cornell Predator object-relational database engine. The architecture of
the Jaguar system is shown in Figure 2. We are transforming the traditional client-server-
storage database architecture to a ubiquitous query processing architecture where queries
(or query fragments) can run at clients, servers, or storage (shown in Figure 2).

v I

SOL

Answers
+ Code

^lter

Figure 2: The Jaguar architecture for ubiquitous query processing.

The Cornell Predator System is an extensible object-relational system. The Jaguar project
adds extensibility through Java user-defined functions (UDFs) that are executable on the
server, or on the client. We have transferred parts of the native Predator query execution
engine to Java to allow the migration of subplans to the client and to active storage.
Predator, as a system implemented in C++, allows us to explore the integration of
portable execution environments into a large, native code system.

The Java programming language is used as one possible underlying platform for portable
execution. One motivation is portability: Java Virtual Machines exist on many different
platforms, especially as integrated part of most web browsers. Another motivation lies in
Java's security features: Untrusted client code can be executed safely on the server, while
server code can be downloaded and executed on clients as an applet. Java is widely
available and generally considered 'easy to use', which allows extensions by naive users.

The next sections give an overview of the contributions we have made in the Jaguar
project in the areas of server-site and client-site server extension, resource control for
Java server-site extensions, the usage of compression for moving query results across the

network, and parallel query processing in heterogeneous environments including clusters
of servers connected to active storage components.

2.2. Server-Site and Client-Site Database Extensions
How can client functionality be added to a database server? This is what object-relational
databases are supposed to accomplish. Our goal is to allow extensions to the database that
are written, tested and debugged at the client, and transparently moved to the server.
Further, the security and integrity of the server should not be compromised.

Can extensions that have to be executed on the client site be integrated efficiently?
Motivations for such client-site extensions are the confidentiality of the client's data and
algorithms, client-site specific resources, scalability, and the security of the server. We
examined in how far known techniques for expensive server-site UDFs and techniques
from distributed query processing apply. Our main observation was that function
application should be viewed as a distributed join with a virtual table. Based on this, we
developed efficient execution techniques for client-site UDFs and optimization
algorithms for queries with such client-site extensions.

The server-site and client-site extensions supported by the Jaguar system were
demonstrated at SIGMOD'99.

2.3. Database Extensions in Java
How can the resource consumption of a Java UDF be controlled? This is necessary to
avoid Quality of Service attacks and allows to charge clients according to their actual
usage. Beyond security, we explored how resource consumption feedback can be used to
dynamically optimize Java UDFs. We explored some possible optimizations and
examined the achievable performance improvements. Our implementation was based on
the JRes Java Resource control. (The JRes project was part of the SLK project at Cornell
aiming at providing operating systems infrastructure for extensible servers based on safe-
language technology - see http://www.cs.cornell.edu/slk/ for details.)

2.4 A Compression Framework for Query Results
Portable query processing requires that query computation be movable to different
platforms. What is equally important is that the results of queries (which may be very
large) also be efficiently moved across networks or stored efficiently. We have developed
a comprehensive framework for compressing the results of database queries. It is possible
to achieve significantly better compression ratios than a default tool like WinZip would.
This is because we exploit the semantics of the query that created the result, and the
structured nature of the data.

2.5 Parallel Query Processing in heterogeneous environments
The vision underlying the Jaguar project involves active storage and network
components, clients and external sites contributing their data, functionality and
processing power to make data processing more scalable, flexible and powerful. These

. 3

highly heterogeneous processing environments must be integrated to form reliable and
scalable data processing systems.

Performance asymmetries in parallel systems are a significant problem for the classical
data-flow paradigm. Past research has focused on the distribution of data. However, this
approach is relatively coarse-grained and, while it alleviates sites that form bottlenecks, it
does little for bottlenecks of a specific resource within a site. We proposed an extension
of the data-flow paradigm that adds flexibility in the positioning of some of the operators
and thus adapts the usage of specific resources across the sites of the system. We
parallelized the PREDATOR system to study the performances of these techniques. The
underlying idea is that parallel systems must be aware of the heterogeneity of their
components to process data efficiently and to fully integrate all components.

3. Publications

• M.Godfrey, T.Mayr, P.Seshadri, and T. von Eicken. Secure and Portable Database
Extensibility. In Proceedings of the 1998 ACM-SIGMOD Conference on the
Management of Data, Seattle, WA, June 1998.

• G.Czajkowski, T.Mayr, P.Seshadri, and T.von Eicken. Resource Control for Database
Extensions. COOTS'99.

• Tobias Mayr and Praveen Seshadri. Client-Site Query Extensions. In Proceedings of
the 1999 ACM-SIGMOD Conference 1999, Philadelphia, PA, May 1999.

• Philippe Bonnet, Kyle Buza, Zhiyuan Chen, Victor Cheng, Randolph Chung, Takako
M. Hickey, Ryan Kennedy, Daniel Mahashin, Tobias Mayr, Ivan Oprencak, Praveen
Seshadri, Hubert Siu: The Cornell Jaguar System: Adding Mobility to PREDATOR.
In Proceedings of the 1999 ACM-SIGMOD Conference 1999, Philadelphia, PA, May
1999.

• Tobias Mayr, Philippe Bonnet, Johannes Gehrke, Praveen Seshadri. Query Processing
with Heterogeneous Resources. Technical Report TR00-1790, Cornell University,
Computer Science Department, Ithaca, NY, March 2000.

• Z.Chen, P.Seshadri. An Algebraic Compression Framework for Query Results. In
Proceedings of the International Conference on Data Engineering ICDE'00, San
Diego, CA, March, 1999

Two publications are attached. They describe the heart of the Jaguar system: server-site
and client-site database extensions in Java.

Secure and Portable Database Extensibility

Michael Godfrey Tobias Mayr Praveen Seshadri

Computer Science Department

Cornell University, Ithaca, NY 14853

{migod,mayr ,praveen,tve}@cs.cornell.edu

Thorsten von Eicken

Abstract

The functionality of extensible database servers can be aug-
mented by user-defined functions (UDFs). However, the
server's security and stability are concerns whenever new
code is incorporated. Recently, there has been interest in
the use of Java for database extensibility. This raises sev-
eral questions: Does Java solve the security problems? How
does it affect efficiency?

We explore the tradeoffs involved in extending the PREDA-
TOR object-relational database server using Java. We also
describe some interesting details of our implementation. The
issues examined in our study are security, efficiency, and
portability. Our performance experiments compare Java-
based extensibility with traditional alternatives in the na-
tive language of the server. We explore a variety of UDFs
that differ in the amount of computation involved and in
the quantity of data accessed. We also qualitatively com-
pare the security and portability of the different alterna-
tives. Our conclusion is that Java-based UDFs are a viable
approach in terms of performance. However, there may be
challenging design issues in integrating Java UDFs with ex-
isting database systems.

1 Introduction

In an extensible DBMS, the database server can be extended
dynamically with new functionality. An important class
of such systems are "universal" database servers (e.g., In-
formix, DB2, Oracle 8) which support user-defined functions
(UDFs). While extensibility increases the functionality and
flexibility of such a system, there are also serious concerns
with respect to security. The focus of this paper is on the de-
ployment of extensible client-server database technology in
a user environment such as the World Wide Web (WWW).
For example, consider a database of stock market data that
is accessible through a web site. A valid user is any amateur

investor with a web browser, a credit card, and an invest-
ment formula InvestVal. The following query would then
find technology stocks of interest to the user:

SELECT *
FROM Stocks S
WHERE S.type = "tech" and

InvestVal(S.history) > 5;

Here, InvestVal is a user-defined function. Ideally, it
should be possible (and relatively straightforward) for a large
number of such users in a web environment to create their
own UDFs and use them within SQL queries. If there are
many users, each desiring to extend the system without spe-
cial knowledge about its architecture, several issues arise:
• Security: Since the UDFs are supplied by unknown or
untrusted clients, the DBMS must be wary of UDFs that
might crash the database system, that modify its files or
memory directly, circumventing the authorization mecha-
nisms, or that monopolize CPU, memory or disk resources
leading to a reduction in DBMS performance (i.e., de-
nial of service). Even if the developer of a UDF is not
malicious, the new code might inadvertently cause some
of these problems. Clearly, some security mechanism is
needed.

• Portability: How portable are the UDFs and how easy
are they to develop? Users need to be able to develop, test
and debug their UDFs on their local machines. It should
then be possible to register the UDFs with the server. Do
the security mechanisms adversely affect the portability
and ease of extensibility by users?

• Efficiency: How does the security mechanism affect the
performance of queries? Does the portability of UDFs
affect their efficient execution?

Until recently, the UDF extensibility mechanisms used
in database systems have been unsatisfactory with respect
to security and portability. However, with the growing ac-
ceptance of Java as a relatively secure and portable pro-
gramming language, the question arises: can the use of Java
aid database extensibility? We are exploring this question
through implementation and performance measurement in
the PREDATOR OR-DBMS[SLR97].

Specifically, this work is performed in the context of the
Jaguar project which explores various benefits of incorporat-
ing Java into PREDATOR. The motivation of the project
is the next-generation of database applications that will be
deployed over the web. In such applications, a large num-
ber of physically distributed end-users working on diverse

platforms interact with the database server through their
web browsers. Because of the large user community with
diverse needs, the utility of UDFs increases, along with con-
cerns for the security of the system. In this environment,
Java seems a good choice as a language for UDFs, because
Java byte code can be run with security restrictions within
Java Virtual Machines (JVMs) supported by web browsers
on diverse platforms. The full scope of the project envi-
sions UDFs which must be run exclusively at the client, or
at the server, or at either site. This paper represents our
initial work on this subject, and is limited to studying the
execution of UDFs at the database server.

Many vendors of universal database servers are in the
process of adding Java-based extensibility [Nor97]. How-
ever, to the best of our knowledge, there has been no study
of the design needed or of the tradeoffs underlying vari-
ous design decisions. This paper presents such a qualitative
study, and a quantitative comparison of Java-based UDFs
with other UDF technologies. The experimental conclu-
sions are consistent with results from the Java benchmarking
community [NCW98].
• Java UDFs suffer marginally in performance compared to
native UDFs when the functions are computationally in-
tensive. Given current trends in JIT compiler technology,
we expect the difference in computation time to become
insignificant.

• For functions with significant data accesses, Java exhibits
relatively poor performance because of run-time checks.
However, this is a reasonable price to pay for security.
Our experiments also indicate that when analogous run-
time checks are added to native code UDFs that run out-
side of the server, performance is comparable to (but still
somewhat better than) that of Java UDFs.

The paper also discusses specific issues that arise when in-
tegrating Java into a typical database server. Although the
Java language has security features, current Java environ-
ments lack resource control mechanisms needed to fully in-
sulate the server from malicious or buggy UDFs. Conse-
quently, some traditional security mechanisms are still needed
to protect the resources of the server. Further, many database
servers use proprietary implementations of operating system
features like threads. The server-side support for Java UDFs
can be non-trivial, since the Java virtual machine can inter-
act undesirably with the database operating system. Con-
sequently, it may be undesirable to embed an off-the-shelf
Java Virtual Machine within the database server. Finally,
we present the implementation details in PREDATOR that
allow Java UDFs to be developed in a portable fashion, so
that they can be used at either client or server.

2 Related Technologies

In this section, we outline research and technology relevant
to this paper. We divide the work into four categories: (a)
web-based database deployment (b) work on database ex-
tensibility, (c) work on secure kernel extensions in operating
systems, and (d) work on safe programming languages such
as Java.

2.1 Web-Based Database Deployment

The architectures of web-based database applications fall
into two broad categories: Two-Tier and Three-Tier archi-
tectures. In both categories, a database server runs on a

machine accessible via the Internet, and user interact with
web browsers on their local machines.

In a Two-Tier architecture, a Java applet running within
the web browser also acts as the database client, meaning
that it directly connects to the database server, sends re-
quests to the server and displays the results to the user.
This resembles the familiar "query-shipping" architecture
of client-server database systems [FJK96] . The Java ap-
plets that act as client programs are downloaded from a
web server (i.e., HTTP server) running on the same ma-
chine as the database server. In a Three-Tier architecture,
the work of the client program is divided into two compo-
nents: presentation and program logic. The program logic is
abstracted into a separate tier of software which usually runs
on the same machine as the web server (and is sometimes
implemented as an extension of the web server). This "mid-
dleware" tier is responsible for connecting to the database
server, issuing queries and receiving replies. The presen-
tation tier runs within the user's browser and handles the
graphical input and output functionality. In such an envi-
ronment, the application developers who build the middle-
ware are typically the "users" who would create UDFs. Our
work applies to applications developed using either architec-
ture; however, for the rest of the paper, we will assume the
simpler Two-Tier architecture.

2.2 Database Extensibility

Since the early 1980s, database servers have been built to be
extensible; that is, to allow new application-specific function-
ality to be incorporated. While extensibility mechanisms
were developed in both object-relational (OR) and object-
oriented(OO) databases, similar issues apply in both cate-
gories of systems. In this paper, we focus on OR-DBMS sys-
tems, because they are the dominant commercial database
systems, and because PREDATOR falls into this category.
However, our results apply equally to OO-DBMSs as well.

While some research has addressed the ability to add new
data types [Sto86, SRG83] and new access methods [SRH90,
HCL+90], most extensible commercial DBMSs and large re-
search prototypes have been built to support user-defined
functions (UDFs) that can be added to the server and ac-
cessed within SQL queries. The motivation for server-side
extensibility (rather than implementing the same functional-
ity purely at the database client) is efficiency; a user-defined
predicate could greatly reduce query execution time if ap-
plied at the early stages of a query evaluation plan at the
server. Further, this may lead to a smaller data transfer to
the client over the network.

Given the focus on efficiency, most research on UDFs
has investigated the interaction between database query op-
timization and UDFs. Specifically, cost-based query opti-
mization algorithms have been developed to "place" UDFs
within query plans [Hel95, Jhi88]. Some recent research
has explored the possibility of evaluating queries partially
at the server and partially at the client (this has been called
"hybrid-shipping") [FJK96]. However, this work has not
been applied to extensible systems. Portability and ease
of extensibility have largely been neglected by current OR-
DBMS technology.

Traditionally, it has been assumed that most database
extensions would be written by authorized and experienced
"DB Developers", and not by naive users. This assump-
tion was reasonable because extending a database server
required non-trivial technical knowledge, and because few
automatic mechanisms were available to verify the safety of

untrusted code. Consequently, a large "third-party vendor"
industry has evolved around the relational database indus-
try, developing and selling database extensions (e.g., Virage,
Verity). Commercial extensible database systems usually
provide three options to those customers who prefer to write
UDFs themselves: (a) incorporating UDFs directly into the
server (and thereby incurring the substantial risks that this
approach entails), (b) running UDFs in a separate process
at the server, providing some simple operating system secu-
rity guarantees, or (c) running UDFs on the client-side in a
client environment that mimics the server environment. We
describe these options in detail in Section 3.

2.3 Secure Kernel Extensions

The operating systems community has explored the issue
of security and performance in the context of kernel exten-
sions. The main sources of security violations considered are
illegal memory accesses and the unauthorized invocation of
procedures. One proposed technique is to use safe languages
to write the extensions, and to ensure at compile and link
time that the extensions are safe. The Spin project [Ber95],
for example, uses a variant of Modula-3 and a sophisticated
linker to provide the desired protection. Another proposed
mechanism, called Software Fault Isolation (SFI)[WLAG93],
instruments the extension code with run-time checks to en-
sure that all memory access are valid (usually by checking
the higher order bits of each address to ensure that it lies
within a specific range). This work on kernel extension has
recently seen renewed interest with particular emphasis on
extending applications using similar techniques. Extensi-
ble web servers are a prime example, since issues such as
portability and ease of use are especially important. When
extending a server process, another option is to run the ex-
tension code in a separate process and use a combination of
hardware and operating system protection mechanisms to
"sandbox" the code; the virtual memory hardware prevents
unauthorized memory accesses, and system call interception
examines the legality of any interaction between the exten-
sion code and the environment.

One of the shortcomings of all the work on extensions
we are aware of is that only the safety of memory accesses
and control transfers is taken into account. In particu-
lar, the memory, CPU, and I/O resource usage of indi-
vidual extensions are not monitored or policed, and this
makes simple denial-of-service attacks (or simple resource
over-consumption) possible.

2.4 Safe Languages

Strongly typed languages such as Java, Modula-3, and ML
enforce safety of memory accesses at the object level1. This
finer granularity makes it possible to share data structures
between the system core and the extensions. Access to
shared data structures is confined to well-defined methods
that cannot cause system exceptions. Additional mecha-
nisms allow the system designer to limit the extension's ac-
cess rights to the necessary minimum2.

'in a strongly typed language each identifier has a type that can be
determined at compile time. Any access using such an identifier has
to accord to the rules of that type. The necessary information that
cannot be determined statically, like array bounds and dynamic casts,
is checked at runtime (for a survey of type systems, see [Car97]).

2The security community calls this the 'least privilege'
principle[SS75]. Every user is granted the least set of privileges
necessary.

Safe languages depend on the trustworthiness of their
compilers: the compiled code is guaranteed to have no in-
valid memory accesses and perform no invalid jumps. Un-
fortunately, these properties cannot, in general, be verified
on resulting compiled code because the type information of
the source program is stripped off during compilation. Pos-
sible solutions to this problem are the addition of a verifi-
able certificate to the compiled code either in the form of
proof carrying code [Nec97] or as typed assembly language
[MWCG98].

Another approach is the use of typed intermediate code
as the target language for compilation. This code can be
verified and executed by platform-specific interpreters while
the code itself remains platform independent. The safety of
strongly-typed languages is preserved without the need for
a trusted compiler. The negatives of this approach include
the need for and overhead of an interpreter on each plat-
form, and the overhead of verifying the type-safety of the
code. Java uses exactly this design: source programs are
compiled into Java bytecode that is verified by the Java vir-
tual machine (JVM) when loaded. Typically, the JVM also
compiles parts of the byte codes to machine code before ex-
ecution.

Since the JVM is a controlled execution environment,
it can apply further constraints to the executed programs,
including absolute bounds on the memory usage (for exam-
ple, the JVM in the Netscape 4.0 browser uses a limit of
4MB for the memory usage of Java applets). However, the
current JVMs do not provide any form of generic resource
management.

2.5 Contrast with Databases

Database systems provide an attractive application environ-
ment for user extensions, and therefore some of the work
from other areas mentioned in this section is applicable to
DBMS UDFs as well. However, there are some subtle dif-
ferences in perspective:
• In the case of database systems, the portability of the
UDFs is an important consideration. The users who are
developing UDFs may have different hardware/OS plat-
forms.

• The portability of the entire DBMS server is also a con-
cern; it is undesirable to tie the UDF mechanism to a
specific hardware/OS platform.

• In OS research, there is usually some concern at the ini-
tial overhead associated with running new code (e.g., time
to start a new process). This may not be a concern in a
database system, since the cost can be amortized over sev-
eral invocations of the UDF on an entire relation of tuples.
Similarly, the overhead associated with compilation of new
code is often not a concern, since it can be performed of-
fline.

• In OS research, there is usually concern over the per-
invocation overhead for new code (e.g., message passing
overhead). Since there are several invocations of the UDF
in a database environment, it may be possible to reduce
the overhead through batching.

3 UDF Design Alternatives

We now examine the various design alternatives for adding
UDFs to a DBMS. Specifically, we examine two broad issues:
Location (i.e., where the UDF runs), and Language (i.e.,

how the UDF is specified). For each design alternative, we
are interested in its effect on efficiency, security, and ease
of use. We assume that the database server is written in a
language (like C or C++) that is compiled and optimized
to platform-dependent machine code. We call this language
"native" in contrast to languages with platform-independent
portable code, like Java. The clients are not necessarily
implemented in the native language and may run on diverse
platforms.
Location: There are three alternatives.
• The UDF runs at the server site, within the server pro-
cess.

• The UDF runs at the server site, in a process isolated
from the server.

• The UDF runs at the client site.3

Language: The UDF could be written in the native lan-
guage of the DBMS or in a different language. If the UDF
is run at the client, the availability of language tools (com-
pilers, interpreters, etc.) at the client is an important con-
sideration. Languages that are supported on a wide range
of clients are obviously preferable. If the UDF is run at the
server site within the server process, there must be some
interface mechanism from the native language to the UDF
language.

To make the discussion concrete, we will assume in this
paper that the native language of the DBMS is C++,4 and
we will consider C++ and Java as representative UDF lan-
guages. These assumptions also correspond to our imple-
mentation. Our results with respect to C++ should general-
izable to any native language that is compiled into platform-
dependent machine code without strong security features
like type and array bounds checking.

3.1 Client-Side UDF Execution

The client-side execution of a UDF is obviously secure for
the server; however it can lead to unacceptably poor per-
formance. For example, consider a function REDNESS(I)
that computes the percentage of red pixels in image I. The
following query finds images of bright sunsets from upstate
New York:

SELECT *
FROM Sunsets S
WHERE REDNESS(S.picture) > 0.7 and

S.location = ''fingerlakes''

If the UDF were not available at the server, all the im-
ages would need to be shipped to the client where their
"redness" would be checked as a post-processing filter. This
would correspond to the "data-shipping" approach used by
object-oriented databases [Fra96] which is known to be a
poor choice for certain queries, as both the server and the
network perform significant unnecessary work. An alterna-
tive strategy is for the server to contact the client for each
UDF execution. This too has obvious drawbacks in the la-
tency of many such calls (UDFs are often applied to each
tuple of a relation) and the cost of shipping the function

3A fourth alternative is for the UDF to run at some intermedi-
ate site. However, we consider this equivalent to running it at the
client site, since the advantages of server-side execution as well as the
connected security problems are not present.

* Most database servers including PREDATOR are written in C
or C++, making this a reasonable assumption. In an interesting de-
velopment, a few research projects and small companies are building
database systems totally in Java [Cim97].

arguments to the client. A further problem which is often
overlooked is that UDFs may require access to other func-
tions and facilities in the database server (for example, to
store intermediate results). Consequently, we will focus on
server-side UDFs in this paper. In future work, we intend to
explore client-side UDFs and find query optimization tech-
niques to choose between server-side and client-side execu-
tion.

3.2 Server-Side UDF Execution

Table 1 shows the design space for server-side UDFs. There
are four possible designs: the language of the UDF can be
the native server language or a non-native language, and
the UDF can be integrated within the same process or in an
isolated process.

Language Same Process Different Process

Native
(C++)

Design 1
(C++ Integrated)

Design 2
(C++ Isolated)

Non-Native
(Java)

Design 3
(Java Integrated)

Design 4
(Java Isolated)

Table 1: Design Space for Server-Side UDFs

Clearly, Design 1 will have the best performance of all
the options since it essentially corresponds to hard-coding
the UDF into the server. However, the obvious concern is
that system security might be compromised. Buggy UDF
code could cause the server to crash, or otherwise result
in denial-of-service to other clients of the DBMS. Malicious
code could modify the server's memory data structures or
even the database contents on the local disks. Low-level OS
techniques such as software fault isolation (see Section 2.3)
can address only some of these concerns. Additionally, it
may be difficult for a client to develop a UDF in the server's
native language without access to the server's compilers and
its environment.

Using Design 2, one could prevent the UDF from directly
crashing the server process. However, the UDF could still
compromise security by modifying files or killing the server.
While Design 2 is less efficient than Design 1, the concerns
about ease of use (or lack thereof) are similar. One of the
attractions of Design 2 is that since the UDF computation
occurs in a separate process, system call interception tech-
niques can be used to control its behavior (see Section 2.3).

This paper explores the possibilities of Design 3, compar-
ing it to the other alternatives. A Java UDF has some very
desirable properties: it is portable and supported on most
platforms. With an adequate environment on the client and
the server side, the UDF can be developed and tested at the
client and then migrated to the server. In Section 6, we de-
scribe such an environment built in PREDATOR. Because
Java was designed with the intent to allow secure and dy-
namic extensibility in a network environment, the addition
of an UDF and its migration between client and server is well
supported by the language features (see Section 6). How-
ever, there are some possible drawbacks with Java UDFs.
Java code may run more slowly than corresponding native
code. Further, whenever the language boundary is crossed,
there is an "impedance mismatch" that may be expensive5.
This is usually reflected in the efficiency of the system. Note

5In our case, the impedance mismatch is incurred by using the
Java native interfacing mechanism (e.g., JNI). There are different
implementations available from Sun [JNI] and Microsoft [RNI].

that the language boundary needs to be crossed for each
UDF invocation, and there may be several such invocations.

In this paper, we quantify the efficiency tradeoffs be-
tween the design alternatives, so that database developers
and UDF builders may balance them against the qualita-
tive advantages in the areas of security and portability. We
do not consider Design 4 explicitly — we assume that its
behavior can be extrapolated as a combination of Design 2
and Design 3.

4 Implementation in PREDATOR

PREDATOR is an object-relational database system devel-
oped at Cornell [SLR97]. It provides a query processing
engine on top of the Shore storage manager [CDF+94]. The
server is a single multi-threaded process, with at least one
thread per connected client. While the server is written
in C++, clients can be written in several languages, in-
cluding C++ and Java. Specifically, considerable effort has
been invested in building Java applet clients than can run
within web browsers and connect directly with the database
server [PS97].

The feature of PREDATOR most relevant to this paper
is the ability to specify and integrate UDFs. The original
implementation supports only Design 1 (i.e., UDFs imple-
mented in C++ and integrated into the server process). No
protection mechanism (like software fault isolation) was used
to ensure that the UDF is well-behaved. From published
research on the subject [WLAG93], we expect such a mech-
anism to add an overhead of approximately 25%. For the
purposes of this study, we have also implemented Design 2
(C++ UDFs run jn a separate process) and Design 3 (Java
UDFs run within the server process). We now discuss these
implementations. The main details of interest are the mech-
anisms used to pass data/parameters to and results from the
UDF. Further, some UDFs may require additional commu-
nication with the database server. For example, a UDF that
extracts pixel (i,j) of an image may be given a handle to
the image, rather than the entire image. The UDF will then
need to ask the server for the appropriate data, based on
the parameters i and j. We call such requests "callbacks".

The actual mechanism used to load UDFs is not relevant
to this paper; either recompilation or dynamic loading can
be used. We assume that UDFs are free of side-effects; with-
out this assumption, it is difficult to describe the semantics
of an SQL query that uses a UDF. Since PREDATOR is not
a parallel OR-DBMS, all expressions (including UDFs) are
evaluated in a serial manner.

4.1 Isolated Execution of Native UDFs

We added the ability to execute C++ UDFs in a separate
process from the server. When a query is optimized, one re-
mote executor process is assigned to each UDF in the query.
These executors could be assigned from a pre-allocated pool,
although in our implementation, they are created once per
query (not once per function invocation). The task of a re-
mote executor is simple: it receives a request from the server
to evaluate the UDF, performs the evaluation, and then re-
turns the evaluated result to the server. Communication be-
tween the server and the remote executors happens through
shared memory. The server copies the function arguments
into shared memory, and "sends" a request by releasing a
semaphore. The remote executor, which was blocked trying
to acquire the semaphore, now executes the function and

Client

- ,

'

Database Server

UDF Handler

/ \ \
UDF

(native lang.)

UDF

(native lang.)

Figure 1: Design 1: Integrated Native UDFs

places the results back into shared memory. The hand-off
for callback requests and for the final answer return also
occur through a semaphore in shared memory.

We expect that there will be some overhead associated
with the synchronization and process switching. This over-
head will be independent of the computational complexity
of the UDF, but possibly affected by the size of the data (ar-
guments and results) that has to be passed through shared
memory.

4.2 Integrated Execution of Java UDFs

In our implementation, Java functions are invoked from within
the server using the Java Native Interface (JNI) provided as
part of Sun's Java Development Kit (JDK) 1.1 [JNI]. The
first step is to instantiate a Java Virtual Machine (JVM) as
a C++ object. Any classes that need to be used should have
been compiled from Java source (.Java files) to Java byte-
codes (.class files). The classes are loaded into the JVM
using a specified interface. When methods of the classes
need to be executed, they are invoked through the JNI in-
terface. Parameters that need to be passed must first be
mapped to Java objects.

The creation of a JVM is a heavyweight operation. Con-
sequently, a single JVM is created when the database server
starts up, and is used until shutdown. Each Java UDF is
packaged as a method within its own class. If a query in-
volves a Java UDF, the corresponding class is loaded once
for the whole query execution.

The translation of data (arguments and results) requires
the use of further interfaces of the JVM. Callbacks from the
Java UDF to the server occur through the "native method"
feature of Java. There are a number of details associated
with the implementation of support for Java UDFs. Im-
portantly, security mechanisms can prevent UDFs from per-
forming unauthorized functions. We describe these details
in Section 6.

5 A Performance Study

Database Server

UDF Handler

) results) results

Shared
Memory

Shared
Memory

results I results

UDF
(native lang.)

UDF
(native lang.)

Figure 2: Design 2: Isolated Native UDFs

Database Server

UDF Handler

Java VM (JNI)

Idata I results Idata 1 results

UDF
(Java) n UDF

(Java)

Figure 3: Design 3: Java UDFs

We now present a performance comparison of three imple-
mentations of UDF support:

1. Design 1: C++ within the server process [Marked
"C++" in the graphs]

2. Design 2: C++ in a separate (isolated) process [Marked
"IC++"]

3. Design 3: Java within the server process using the JNI
from Sun's JDK 1.1.4 [Marked "JNI"]

The purpose of the experiments was to explore the rela-
tive performance of the different UDF designs while varying
three broad parameters:
• Amount of Computation: How does the computational
complexity of the UDF affect the relative performance?

• Amount of Data: How does the total amount of data
manipulated by the UDF (as parameters, callbacks, and
result) affect the relative performance?

• Number of Callbacks: How does the number of callbacks
from the UDF to the database server affect the relative
performance?

The three UDF designs were implemented in PREDATOR,
and experiments were run on a Sparc20 with 64MB of mem-
ory running Solaris 2.6. In all cases, the JVM included a
JIT compiler.

5.1 Experimental Design

Since UDFs can vary widely, the first decision to be made
is: how does one choose representatives of real UDFs? Real
UDFs may vary from something as simple as an arithmetic
operation on integer arguments, to something as complex as
an image transformation. We used a "generic" UDF that
takes four parameters (ByteArray, NumDatalndepComps,
NumDataDepComps, NumCallbacks) and returns an integer.

• The first argument (ByteArray) is an array of bytes of
variable size. This models all the data passed as parame-
ters to the UDF and during callback requests. By varying
the size of the bytearray, we explore the effect of variable
data access.

• The second argument (NumDatalndepComps) is an inte-
ger that controls the amount of "data independent" com-
putation in the UDF. The computation within the UDF
performs a simple integer addition operation several times
within a loop — the number of iterations is specified by
NumDat alndepComps.

• There is also a separate loop in which the entire byte ar-
ray is repeatedly iterated over, as many times as specified
by NumDataDepComps, the third parameter. This is meant
to model many real UDFs (such as image transformations)
in which the amount of computation depends on the size
of the parameters.

• The fourth parameter (NumCallbacks) specifies the num-
ber of callback requests that the UDF makes to the database
server during its execution. No data is actually transferred
during the callback; instead, all data transfers are modeled
in the first parameter (ByteArray). While this is slightly
inaccurate (real callbacks involve the transfer of data), we
chose this model for its simplicity.

10

The simplest UDF has values of 0 for its second, third and
fourth parameters. In all our experiments, parameter values
are 0 unless otherwise specified.

In all our experiments, we used three relations of cardi-
nality 10,000. Each relation has an attribute of type ByteArra;
and all the bytearrays in tuples of the same relation are of
the same size. Relations Rell, RellOO, and RellOOOO have
byte arrays of size 1, 100, 10000 bytes respectively in each
tuple. The basic query run for each experiment is:

SELECT UDF(R.ByteArray, NumDatalndepComps,
NumDataDepComps, NumCallbacks)

FROH Rel* R
WHERE <condition>

We vary the number of UDFs applied by specifying re-
strictive (and inexpensive) predicates in the WHERE clause.
In all experiments, our goal is to isolate the cost of applying
the UDFs and ignore the basic cost of scanning the relations.
All the graphs measure response time along the Y-axis, while
a single parameter is varied along the X-axis.

5.2 Calibration

The first two experiments act as calibration for the remain-
ing measurements. We first measure the basic cost of execut-
ing the query in Figure 5.1 with a trivial integrated C++
function that does no work. In Figure 4, the number of
UDF invocations is varied along the X-axis. The different
lines correspond to different sizes of bytearrays in the rela-
tions (the larger bytearrays being more expensive to access).
These numbers represent the basic system costs that we sub-
tract from the later measured timings to isolate the effects
of UDFs. In most experiments, we will use 10,000 UDF
invocations — the last point on the X-axis.

1 10 100 1000 1O0OO

#offanccans

Figure 4: Calibration: Table Access Costs

In Figure 5, the number of UDF invocations is fixed at
10,000. The three UDF designs (C++, IC++ and JNI) are
compared as the bytearray size is varied along the X-axis.
The UDFs themselves perform no work. Note that 10,000
invocations of a Java UDF incurs only a marginal cost. In
fact, for the smaller bytearray sizes, the invocation cost of
IC++ is higher than for JNI. This indicates that the cost
of using the various JNI interfaces is lower than the context
switch cost involved in IC++. For the highest bytearray
size, JNI performs marginally worse than IC++, probably
because of the effect of mapping large bytearrays to Java.

However, for both JNI and IC++, the extra overhead is
insignificant compared to the overall cost of the queries.

100

u
0)

10

-e-c-H-B-ic-H-T 3 JM J&

n f u l 0

I 1 1

1 100 10000

byte array six

Figure 5: Calibration: Function Invocation Costs

5.3 Effect of Computation

In this set of experiments, our goal is to measure the effect
of computationally intensive UDFs. The number of UDF
invocations is set at 10,000 and the bytearray size is set
at 10,000 bytes. Along the X-axis is the UDF parameter
NumDatalndepComps that controls the amount of computa-
tion. We expected Java UDFs to perform worse than com-
piled C++. The results in Figure 6 indicate that JNI per-
forms worse than both C++ options. However, the differ-
ence is a constant small invocation cost difference that does
not change as the amount of computation changes. This in-
dicates that the Java UDF is run as efficiently as the C++
code (essentially, the result of a good JIT compiler).

The lower graph shows the performance of IC++ and
JNI relative to the best possible performance (C++). Even
when the number of computations is very high, there is
no extra price paid by JNI. In the UDFs tested, the pri-
mary computation was integer addition. While other op-
erations may produce slightly different results, the results
here lead us to the conclusion that it is perfectly reasonable
to expect good performance from computationally intensive
UDFs written in Java.

5.4 Effect of Data Access

The next step is to measure performance when there is sig-
nificant data access involved. Once again, we fix the num-
ber of UDF invocations at 10,000 and the bytearray size at
10,000. The data dependent computation, NumDataDepComps,
varies along the X axis. The other UDF parameters,
NumDatalndepComps and NumCallbacks, are set to 0 to iso-
late the effect of data access.

Java performs run-time array bounds checking which we
expect will slow down the Java UDFs. The results in Fig-

. ure 7 reveal that this assumption is indeed valid, and there
is a significant penalty paid. We did not run JNI with 1000
NumDataDepComps because of the large time involved. The
lower graph shows the relative performance of the different
UDF designs.

In a sense, this is an unfair comparison, because the Java
UDFs are really doing more work by checking array bounds.
To establish the cost of doing this extra work, we tested
a second version of the C++ UDF that explicitly checks

11

eoi
C/3

0>
50

40

-^-GH--frIGH-^rJM

0 10 100 1000

QMndepGbnps

10000

s 15
*J

V
> 1

• PN
s-t
CO

■■

a 05

C++0IC++IJM

mm
o 100 10000 1000000

IltäfrikpGiips

Figure 6: Pure Computation

the bounds of every array access. When compared to this
version of a C++ UDF, JNI performs only 20% worse even
with large values of NumDataDepComps. It is evident that the
extra array bounds check affects C++ in just the same way
as Java.

Most UDFs are likely to make no more than a small
number of passes over the data accessed. For example, an
image compression algorithm might make one pass over the
entire image. For a small number of passes over the data, the
overall performance of Java UDFs is not very much worse
than C++.

5.5 Effect of Callbacks

In our final set of experiments, we examine the effects of call-
backs from UDFs to the database server. It is our experience
that many non-trivial methods and functions require some
database interaction. This is especially likely for functions

that operate on large objects such as images or time-series,
but require only small portions of the whole object (a vari-
ety of ClipO and Lookup() functions fall in this category).
For each callback, the boundary between server and UDF
must be crossed.

In Figure 8, the number of callbacks varies along the
X-axis, while the functions themselves perform no compu-
tation (data dependent or independent). The isolated C++
design performs poorly because it faces the most expensive
boundary to cross. For Java UDFs, the overhead imposed
by the Java native interface is not as significant. The higher
values of NumCallbacks occur rarely; one might imagine a
UDF that is passed two large sets as parameters, and com-
putes the "join" of the two using a nested loops strategy.
Even for the common case where there are a few callbacks,
IC++ is significantly slower than JNI.

12

10000

ä 1000

S 100

10

^-GH-^-IGH-^JNI

0 1 10 100 1000

0)4 s I C++! IC-t+lJM

0 1 10 100 1000

EötäDtpQnps

Figure 7: Data Access

5.6 Conclusion from Study

To summarize the conclusions of our performance study:
• Java seems to be an acceptable choice to build UDFs.
Its performs poorly relative to C++ only when there is
a significant data-dependent computation involved. This
is the price paid for the extra work done in guaranteeing
memory accesses (array bounds checking).

• Remote execution of C++ functions incurs small over-
heads due to the cost of crossing process boundaries. While
this overhead is minimal if incurred only once per UDF
invocation, it may be more significant when incurred mul-
tiply due to UDF callbacks.

• There is a tradeoff in the design of a UDF that accesses
a large object. Should the UDF ask for the entire object
(which is expensive), or should it ask for a handle to the
object and then perform callbacks? Our experiments in-
dicate the inherent costs in each approach. In fact, our

experiments can help model the behavior of any UDF by
splitting the work of the UDF into different components.

6 Java-based UDF Implementation

Based on our experience with the implementation of Java-
based UDFs, we now focus on the following issues generally
relevant to the design of Java UDFs:
• Security and UDF isolation: Our goal was to extend the
database server without allowing buggy or malicious UDFs
to crash the server. On the other hand, limited interaction
of the UDFs and the server environment is desirable.

• Resource management: Even when a restrictive security
policy is applied, we face the problem of denial-of-service
attacks. The UDF could consume excessive amounts of
CPU time, memory or disk space.

• Integration of a JVM into a database server: The execu-
tion environment of the UDF is not necessarily compatible

13

1000

S 100

g 10

-^C++-^IC++-£rJM

Q B^—Sv— ~~~ W

 r- i

 1>

1

0 1 10

Gated«

100

251
S20 C+filC+fiJM

100

Figure 8: Callbacks

with the operating environment of the database system.

• Portability and Usability: The Java UDF design should
establish mechanisms to easily prototype and debug UDFs
on the client-side and to migrate them transparently be-
tween client and server.

6.1 Security and UDF Isolation

Isolating a Java UDF in the database is similar to isolating
an applet within a web browser. The four main mechanisms
offered by the JVM are:
• Bytecode Verification: The JVM uses the bytecode ver-
ifier to examine untrusted bytecodes ensuring the proper
format of loaded class files and the well typedness of their
code.

• Class Loader: A class loader is a module of the JVM man-
aging the dynamic loading of class files. New restricted
class loaders can be instantiated to control the behavior
of all classes that it loads from either a local repository or
from the network. A UDF can be loaded with a special
class loader that isolates the UDF's namespace from that
of other UDFs and prevents interactions between them.

• Security Manager: The security manager is invoked by
the Java run-time libraries each time an action affecting
the execution environment (such as I/O) is attempted. For
UDFs, the security manager can be set up to prevent many
potentially harmful operations.

• Thread Groups: Each UDF is executed within its own
thread group, preventing it from affecting the threads ex-
ecuting other UDFs.

Under the assumption that we trust the correctness of the
JVM implementation, these mechanisms guarantee that only
safe code is loaded from classes that the UDF is allowed to
use[Yell96]. These can include other UDF classes, but, for
example, not the classes in control of the system resources.
The security manager allows access restriction with a finer
granularity: a UDF might be allowed by its class loader to
load the 'File' class, but only with certain path arguments,
as determined by the security manager. The use of thread
groups limits the interactions between the threads of differ-
ent UDFs.

We note that while these mechanisms do provide an in-
creased level of security, they are not foolproof; indeed, there
is much ongoing research into further enhancements to Java
security. The security mechanisms used in Java are com-
plex and lack formal specification [DFW96]. Their correct-

14

ness cannot be formally verified without such a specifica-
tion, and further, their implementations are complex and
have been known to exhibit vulnerabilities. Additionally,
the three main components: verifier, class loader, and secu-
rity manager are strongly inter-dependent. If one of them
fails, all security restrictions can be circumvented. Another
problem of the Java security system is the lack of auditing
capabilities. If the security restrictions are violated, there no
mechanism to trace the responsible UDF classes. Although
we are aware of these various problems, we believe that the
solutions being developed by the large community of Java
security researchers will also be applicable in the database
context.

6.2 Resource Management

One major issue we have not addressed is resource manage-
ment. UDFs can currently consume as much CPU time and
memory as they desire. Limiting the CPU time would be
relatively straight-forward for the JVM because each Java
thread runs within its own system thread and thus operating
system accounting could be used to limit the CPU time allo-
cated to a UDF or the thread priority of a UDF. Memory us-
age, however, cannot currently be monitored: the JVM does
not maintain any information on the memory usage of indi-
vidual UDFs. The J-Kernel project at Cornell [vEHCCH98]
is exploring resource management mechanisms in secure lan-
guage mechanisms, like JVMs. Specifically, the project is de-
veloping mechanisms that will instrument Java byte-codes
so that the use of resources can be monitored and policed.
Such mechanisms will be essential in database systems.

6.3 Threads, Memory, and Integration

It may be non-trivial to integrate a JVM into a database
server. In fact, some large commercial database vendors
have attempted to use an off-the-shelf JVM, and have en-
countered difficulties that have lead them to roll-their-own
JVMs [Nor97]. The primary problem is that database servers
tend to build proprietary OS-level mechanisms. For in-
stance, many database servers use their own threads package
and memory management mechanisms. Part of the reason
for this is historical — given a wide variance in architectures
and operating systems on which to deploy their systems,
database vendors typically chose to build upon a "virtual
operating system" that can be ported to multiple platforms.
For example, PREDATOR is built on the SHORE storage
manager which uses its own non-preemptive threads pack-
age. Systems like Microsoft's SQLServer which run on lim-
ited platforms may not exhibit these problems because they
can use platform-specific facilities.
• Threads and UDFs: The JVM uses its own threads pack-
age, which is often the native threads mechanism of the
operating system. The presence of two threads packages
within the same program can lead to unexpected and un-
desirable behavior. The thread priority mechanisms of the
database server may not be able to control the threads cre-
ated by the JVM. If the database server uses non-preemptive
threads, there may be no database thread switches while
one thread is executing a UDF (this is currently the case in
PREDATOR). Further, with more than one threads pack-
age manipulating the stack, serious errors could result.

• Memory Management: Many commercial database servers
implement proprietary memory managers. For example, a
common technique is to allocate a pool of memory for a

query, perform all allocations in that pool, and then re-
claim the entire pool at the end of the query (effectively
performing a coarsely-grained garbage collection). On the
other hand, the JVM manages its own memory, perform-
ing garbage collection of Java objects. The presence of
two garbage collectors running at the same time presents
further integration problems. We do not experience this
problem in PREDATOR, because there is no special mem-
ory management technique used in our implementation of
the database server.

6.4 Portability and Usability

We have developed a library of Java classes that helps de-
velopers build Java applets that can act as database clients.
The details of this library are presented in [PS97]. It is
roughly analogous to a JDBC driver (in fact, we have built
a JDBC driver on top of it) with extensions for handling
complex data types. The user sits at a client machine and
accesses the PREDATOR database server through a stan-
dard web browser. The browser downloads the client applet
from a web server, and the applet opens a connection to the
database server.

Our goal is to be able to allow users to easily define new
Java UDFs, test them at the client, and migrate them to
the server. This mechanism is currently being implemented.
The basic requirement is that there should be similar inter-
faces at the client and at the server for UDF development
and use. Every data type used by the database server is mir-
rored by a corresponding ADT class implemented in Java.
These ADT classes are available both to the client and the
server6. Each ADT class can read an attribute value of its
type from an input stream and construct a Java object rep-
resenting it. Likewise, the ADT class can write an object
back to an output stream. Thus the arguments of an UDF
can be constructed from a stream of parameter values, and
the result can be written to an output stream. At both
client and server, Java UDFs are invoked using the identical
protocol; input parameters are presented as streams, and
the output parameter is expected as a stream. This allows
UDF code to be run without change at either site.

6.5 Experience

We have described a relatively well-understood usage of the
Java security mechanisms that is essentially identical to run-
ning multiple applets within a web browser. Our implemen-
tation has developed a common internal interface that can
be supported at both client and server for the development
of portable Java UDFs.

There are interesting design issues in integrating a JVM
into the database server, especially in dealing with threads
and memory allocation. Based on our experiments, we ob-
serve that the cost of isolated-process UDFs is reasonable
unless there are a large number of callbacks. Consequently,
it may be practical to consider running the JVM in a sep-
arate process from the database server. The attraction of
this solution lies in its simplicity and the ability to use off-
the-shelf JVMs.

7 Conclusion

This paper presented an initial study of the issues involved
in extending database systems using Java. The conclusion is

eThe client can download Java classes from the server-site.

15

that an extensible database system can support secure and
portable extensibility using Java, without unduly sacrificing
performance. We are currently developing the infrastruc-
ture to move Java UDFs between clients to servers, and
optimization mechanisms to choose between the various ex-
ecution options. We also intend to build applications that
will test this infrastructure in the real world.

References

[Ber95]

[Car97]

Brian Bershad. Extensibility, safety and per-
formance in the spin operating system. In Fif-
teenth Symposium on Operating Systems Prin-
ciple, 1995.

Luca Cardelli. Type Systems The Computer
Science and Engineering Handbook 1997: 2208-
2236

[CDF+94] M.J. Carey, DJ. DeWitt, M.J. Franklin, N.E.
Hall, M. McAuliffe, J.F. Naughton, D.T. Schuh,
M.H. Solomon, C.K. Tan, 0. Tsatalos, S. White,
and M.J. Zwilling. Shoring up persistent ob-
jects. In Proceedings of ACM SIGMOD '94 In-
ternational Conference on Management of Data,
Minneapolis, MN, pages 526-541, 1994.

[Cim97] Cimarron Taylor. Java-Relational Database
Management Systems, http://www.jbdev.com/,
1997.

[DFW96] Drew Dean, Edward W. Feiten, and Dan S. Wal-
lach Java Security: From HotJava to Netscape
and Beyond 1996 IEEE Symposium on Security
and Privacy, Oakland, CA

[Fra96] M.J. Franklin. Client Data Caching. Kluwer
Academic Press, Boston, 1996.

[FJK96] M.J. Franklin, B.T. Jonsson and D. Kossman.
Performance Tradeoffs for Client-Server Query
Processing. In Proceedings of ACM SIGMOD
'96 International Conference on Management of
Data 1996.

[HCL+90] L. Haas, W. Chang, CM. Lohman, J. McPher-
son, P.F. Wilms, G. Lapis, B. Lindsay, H. Pira-
hesh, M. Carey, and E. Shekita. Starburst mid-
flight: As the dust clears. IEEE Transactions on
Knowledge and Data Engineering, March 1990.

[Hel95] Joseph M. Hellerstein. Optimization and Exe-
cution Techniques for Queries With Expensive
Methods. PhD thesis, University of Wisconsin,
August 1995.

[Jhi88] Anant Jhingran. A Performance Study of Query
Optimization Algorithms on a Database System
Supporting Procedures. In Proceedings of the
Fourteenth International Conference on Very
Large Databases, pages 88-99, 1988.

[JNI] JNI - Java Native Interface
http://www.javasoft.eom/products/jdk/l.l
/docs/guide/jni/index.html

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and
Neal Glew. From System F to Typed Assembly
Language To appear in the 1998 Symposium on
Principles of Programming Languages

[NCW98] Just In Time for Java vs. C++
http://www.ncworldmag.com/ncworld/ncw-01-
1998/ncw-01-rmi.html

[Nec97] George C. Necula. Proof-Carrying Code Pro-
ceedings of the 24th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Lnaguages (POPL'97), Paris, France,
1997.

[Nor97] Anil Nori. Personal Communication, 1997.

[RNI] Microsoft Raw Native Interface
http://premium.microsoft.com/msdn/library/
sdkdoc/java/htm/rni introduction.htm

[PS97] Mark Paskin and Praveen Seshadri. Building an
OR-DBMS over the WWW: Design and Imple-
mentation Issues. Submitted to SIGMOD 98,
1997.

[SLR97] Praveen Seshadri, Miron Livny, and Raghu Ra-
makrishnan. The Case for Enhanced Abstract
Data Types. In Proceedings of the Twenty
Third International Conference on Very Large
Databases (VLDB), Athens, Greece, August
1997.

[SRG83] M. Stonebraker,
B. Rubenstein, and A. Guttman. Application
of Abstract Data Types and Abstract Indices to
CAD Data Bases. In Proceedings of the Engi-
neering Applications Stream of Database Week,
San Jose, CA, May 1983.

[SRH90] Michael Stonebraker, Lawrence Rowe, and
Michael Hirohama. The Implementation of
POSTGRES. IEEE Transactions on Knowledge
and Data Engineering, 2(1):125-142, March
1990.

[SS75] Jerome H. Saltzer, Michael D. Schroeder. The
Protection of Information in Computer Sys-
tems http://web.mit.edu/Saltzer/www/ publi-
cations/protection

[Sto86] Michael Stonebraker. Inclusion of New Types in
Relational Data Base Systems. In Proceedings of
the Second IEEE Conference on Data Engineer-
ing, pages 262-269, 1986.

[vEHCCH98] Thorsten von Eicken, Chris Hawblitzel.Chi-
Chao Chang, Gzegorz Czajkowski, and Deyu
Hu. Implementing Multiple Protection Do-
mains in Java to appear, Usenix 1998 Annual
Technical Conference, June 15-19, New Orleans,
Louisiana.

[WLAG93] R. Wahbe, S. Lucco, T. Anderson, and S. Gra-
ham. Efficient software-based fault isolation.
In Fourteenth Symposium on Operating Systems
Principle, 1993.

[Yell96] Frank Yellin. Low Level Security in Java
http://www .Javasoft.com:81/sfaq/verifier.html

16

Client-Site Query Extensions

Tobias Mayr and Praveen Seshadri

Cornell University

mayr,pra veen @ cs. Cornell, edu
Contact Author:

Praveen Seshadri
e-mail: praveen@cs.cornell.edu
Office Phone: (607)255-1045
Office Fax: (607)255-4428

Abstract

We explore the execution of queries with client-site user-defined functions (UDFs). Many UDFs can
only be executed at the client site, for reasons of scalability, security, confidentiality, or availability of
resources. How should a query with client-site UDFs be executed? We demonstrate that the standard
execution technique for server-site UDFs performs poorly. Instead, we adapt well-known distributed
database algorithms and apply them to client-site UDFs. The resulting query execution techniques are
implemented in the Cornell Predator database system, and we present performance results to
demonstrate their effectiveness.
We also reconsider the question of query optimization in the context of client-site UDFs. The known
techniques for expensive UDFs are inadequate because they do not take the location of the UDF into
account. We present an extension of traditional 'System-R' optimizers that suitably optimize queries
with client-site operations.

1 Introduction

Optimization techniques have been studied thoroughly for object-relational SQL queries with expensive
user-defined functions (UDFs). The assumptions made in these studies are that (a) the cost of each
UDF invocation is known a priori, and invariant, (b) the UDF itself is a blackbox characterized by a
single cost value (which may be broken into CPU and I/O costs). In some systems, the cost may be
specified as a function of the sizes of the function arguments. These assumptions implicitly expect that
the user is extending the server with a new function. However, experience with object-relational
databases shows that extending the database server is difficult even for experienced programmers,
and impossible for large numbers of non-expert users. In large-scale environments like the WWW,
users need to incorporate client-site UDFs into SQL queries run at a server. Consider the following
motivating example:

A DBMS offers stock market data to its clients over the WWW. The users connect to the
database to analyze the performance of companies and to extract the necessary information
about prospective candidates for their investments. Sophisticated investors will have their own
local collections of data and analysis algorithms that must be integrated into the process of
choosing and retrieving the desired information.

Take the following example query:

SELECT S.Name, S.Report
FROM StockQuotes S
WHERE S.Change / S.Close > 0.2 AND ClientAnalysis(S.Quotes) > 500

Figure 1: Use of a Client-Site UDF

The investor requests names and financial reports of companies that accord to his criteria. The first
predicate, filtering companies on a 20%+ uptick, can be expressed with simple SQL predicates and will

17

be executed on the server. However, the second predicate involves a UDF that has to be executed on
the client site for a variety of reasons.
In this and many other examples, it becomes clear why client-site UDFs need to be supported:
a) The investor's analysis UDFs are a valued asset that is ideally not revealed.
b) The UDFs may use data that resides exclusively on the client. These data might only be available

in a client-specific representation, or it might represent confidential information.
c) The UDFs may not be trusted by the server. In earlier work [GMHE98], we showed that the server

can trust UDFs written in Java to a certain extent, and we are developing further security
mechanisms [CSM98]. However, the security demands of the server constrain the UDFs. Further,
many UDFs are not written in Java, and if these are allowed to run at the server, they could
compromise its security.

d) The UDFs may be resource intensive and it may be inappropriate to burden the server with their
execution.

e) In the context of such expensive operations, there is a serious scalability concern, since resource
intensive UDFs of a multitude of users would together degrade the server performance.

In our research, the UDFs and their client-site execution environment were implemented in Java.
However, there are many other architectural frameworks and distributed implementation models, like
CORBA.DCOM, or JavaBeans, which we could have chosen instead, and to which the research
results apply. For the rest of this paper, we will assume that the network connecting the clients with the
server forms the bottleneck of client-site UDF execution. This applies for example to clients connected
over the Internet, or over an asymmetric connection, where only the downlink has high bandwidth while
the uplink will form the bottleneck.

1.1 Summary of Contributions

We believe that client-site UDFs are central to scalable object-relational applications. Existing query
processing techniques for expensive UDFs are not appropriate for client-site UDFs. Indeed, the use of
traditional approaches leads to slow and inefficient execution. This can be explained by three key
observations:
a) Client-site UDF execution time can involve network latency. , the latency needs to be hidden

through the appropriate use of concurrency.
b) Client-site UDF performance can depend on the optimized usage of network bandwidth.

Specifically, the asymmetry between client uplink and downlinks needs to factor into query
evaluation decisions. It may be possible to trade off bandwidth on the uplink for bandwidth on the
downlink.

c) The optimal placement of client-site UDF operators in the query plan is different from the
placement of expensive server-site UDFs.

The primary contribution of the paper is the development of techniques to process and optimize queries
with client-site UDFs. These techniques blend object-relational query processing with the distributed
database algorithms. Specifically, our research makes the following contributions:
1. We develop efficient execution algorithms for client-site UDFs, and describe their implementation.
2. We explore the tradeoffs between algorithms due to asymmetric network connections, and

propose options that save bandwidth on the client's uplink at the cost of increased traffic on the
downlink.

3. We present performance results of the prototype implementation in the Cornell Predator database
system.

4. We present a simple cost model that allows us to determine the optimal choice of the execution
algorithms and their parameters

5. We develop query optimization techniques for complex queries with client-site UDFs. The
techniques are extensions of a traditional System-R style optimizer.

18

Our conclusion is that a database system needs to recognize the special characteristics of client-site
UDFs and apply appropriate query evaluation and optimization strategies to such queries.

1.2 Related Work

To summarize, our work on queries with client-site UDFs builds on existing work on expensive UDF
execution and distributed query processing. The main issues are: (a) how should the UDFs be
executed, (b) how should query plans be optimized?
Client-site UDFs are expensive; they cannot simply be treated like built-in, cheap predicates. The
existing research on the optimization of queries with expensive server-site functions is closely related.
The execution of UDFs is considered straightforward; they are executed one at a time, with caching
used to eliminate duplicate invocations. The process of efficient duplicate elimination by caching has
been examined in [HN97]. Predicate Migration[HS93,Hel95] determines the optimal interleaving of join
operators and expensive predicates on a linear join tree by using the concept of a rank-order on the
expensive predicates. Its per-tuple cost and selectivity determine the rank of any operation. The
concept was originally developed in the context of join order optimization [IK84, KBZ86, SI92]. The
Optimization Algorithm with Rank Ordering [CS97] uses rank order to efficiently integrate predicate
placement into a System-R style optimization algorithm. UDF optimization based on rank ordering
assumes that the cost of UDF operators is only determined by the selectivity of the preceding
operators. We show in Section 5 that rank order does not apply well to client-site operations. Our
optimization algorithm does not rely on it. Another approach models UDF application as a relational join
[CGK89, CS93] and uses join optimization techniques. Our approach to optimization takes this route.
There is a wealth of research on distributed join processing algorithms[SA80,S+79,ML86] that our work
draws upon. The distribution of query processing between client and server has also been proposed
independently of client-site UDFs in [FJK96], as a hybrid between data and query shipping. Joins with
external data sources, specifically text sources, have been studied in [CDY95]. To avoid the per-tuple
invocation overhead of accessing the text source, a semi-join strategy is proposed: Multiple requests
are batched in a single conjunctive query and the set of results is joined internally. Earlier work on
integration of foreign functions [CS93] proposes the use of semantic information by the optimizer. Our
work is complementary in that semantic information can be used in PREDATOR to transform UDF
expressions[S98]. We consider the execution of queries after such transformations have been applied.
To summarize, our work is incremental in that it builds upon existing work in this area. However, the
novel aspects of the work are
(a) we identify client-side UDFs as an important problem and adapt existing approaches to fit the new

problem domain,
(b) while earlier work modeled UDFs as joins for the purpose of optimization, we go further by using

join algorithms for the purposes of execution too,
(c) we identify and exploit important tradeoffs related to network asymmetry that lead to interesting

optimization choices.

2 Client-Site UDF Execution

In this section we explore different execution techniques for a single client-site UDF applied to all the
tuples of a relation. For now, we ignore the issue of query optimization and operator placement. In the
first subsection, we expose the poor performance of a naive approach that treats client-site UDFs like
expensive sever-site UDFs. The next subsection models UDFs as joins, leading to the development of
evaluation algorithms based on distributed joins. We use the example query in Example 1.
In our terminology, the input relation consists of the columns that are arguments to the UDF - the
argument columns (Quote) - and the non-argument columns (Report .Name). The input relation has
two different kinds of duplicates: those which are identical in all columns, called tuple duplicates, and
those only identical in the argument columns, called argument duplicates. Simple predicates that rely
on the values in the result columns, but can be executed on the client, for example
ClientAna1ysis(S.Quotes)>500, are called pushable predicates. Similarly, projections that can

19

be applied immediately after the UDF are called pushable projections, as in our example the projection
on Report and Name.

2.1 Traditional UDF Execution

Current object-relational databases support server-site UDFs. It is tempting to treat a client-site UDF as
a server-site UDF that happens to make an expensive remote function call to the client. If
ClientAnalysis were a server-site UDF, the established approach is to treat it as a black-box
extension. The evaluation pseudo-code for the classical 'iterator-model' query processor is shown
below.

while (Input.availableO)
Record := Input.getRecordO
Result := UDF(getArgumentsC Record))
output.putRecord(addColumnC Record, Result)

The encapsulation of the client communication within a black-box UDF makes some optimizations
impossible. On each call to ClientAnalysis, the full latency of network communication with the
client is incurred. This is because most iterator-model execution engines do not apply one operator of
the query plan pipeline to multiple tuples concurrently. (We show the timeline of execution in Figure 2a).

Server:

Client:

H

Downlink Itolink

vy
UDF

(a) (b)

Figure 2: Timeline of Nonconcurrent and Concurrent Execution

The key observation here is, that even if the client might not process multiple tuples concurrently, the
network is capable of accepting further messages while others are already being transferred. This
means that we can keep a number of messages concurrently in the pipeline formed by downlink, client
UDF-processing, and uplink. We refer to this number as the pipeline concurrency factor. Figure 2(b)
shows the timeline for a concurrency factor of 5.
Another problem of the traditional approach is the ignorance of network bandwidth. But it is possible to
vary the bandwidth usage using different execution techniques. Consider the UDF in Figure 1: It seems
straightforward to simply send the quotes and wait for the results. Then the selection that depends on
the results can be applied on the server site. Depending on the networking environment the
performance might be far from optimal. For example, assume that the client's uplink turns out to be the
bottleneck, as is the case with modern communication channels like ADSL, cable modems, and
wireless networks. We might accept additional traffic on the downlink if we could in exchange reduce
the demand on the uplink. We will explore different execution strategies that allow these kinds of
tradeoffs.

2.2 UDF Execution as a Join

It is possible to model UDF application on a table as a join operation: The user defined function in
Figure 1 can be seen as a virtual table with the following schema:

ClientAnalysis(< PriceQuoteArgument :: TimeSeries , Rating :: Integer >)

The PriceQuoteArgument column forms a key, and the only access path is an "indexed" access on
the key value. Indexed access in this manner incurs costs independent of the size of the table. UDF
execution as a join with such a UDF table would work analogously to an equi-join with a relation
indexed on the join columns. The pseudo code for the join of a relation with the UDF is shown below:

20

for each tuple tl from outer relation
retrieve tuple t2 with matching argument columns from virtual UDF table
join tl with t2 on argument columns
output result

Since UDF application is modeled as a join, client-site UDF application is modeled as a multi-site join.
We now examine distributed join algorithms as they apply to this context.

2.3 Distributed Join Processing

There are three standard distributed algorithms[SA80,ML86] to join the outer relation fland the inner F,
residing on sites S(erver) and C(lient):

• Join at S: Send Fto S and join it there with ft (Not feasible for UDFs since there is no file-scan
access to F)

• Join at C: Send R to C and join it there with F.

• Semi-Join : Send a projection on the join columns of R to C, which returns all matching tuples of F
to S, where they are joined with ft

Identifying S with the server and C with the client, we get two variants for client-site UDF application
from the last two options. We will briefly introduce each one now, and go into more detail in the later
part of this section.

2.3.1 Semi-Join
Semi-joins are a natural 'set-oriented' extension of the traditional 'tuple-at-a-time' UDF execution
strategy. Consider the pseudo code below:
For each batch of tuples in R:

Step 0: eliminate duplicates (server)
Step 1: send a set of unique S.x values to the client (downlink)
Step 2: evaluate UDF(S.x) on all S.x values (client)
Step 3 : send results back to the server (uplink)
Step 4: 'join' each result with the corresponding tuples (server)

Note that steps 0 through 4 may be executed concurrently because they use different resources
(except 0 and 4). If the set sent in step 1 consists of only one argument tuple, then this is the 'tuple-at-a-
time' approach described in the previous section. If the entire relation R is treated as the 'batch', we
have a classical semi-join. The details of the different steps vary depending on the execution strategy. It
is convenient to model this conceptually by Figure 3 below, where the different steps are identified as
components of a pipeline, with the potential for pipeline concurrency.
For server-site UDFs it is considered acceptable if the execution mechanism blocks for each UDF call
until the UDF returns the result. However, for client-site UDFs a large part of the over-all execution time
for one tuple consists of network latencies - steps 1 and 3 above. Instead, we can ship several tuples
on the downlink at the same time, while another tuple is processed by the UDF, and other results are
being sent back over the uplink. Concurrency between the server, the client, and the network can hide
the latencies. To obtain this goal we will architecturally separate the sender of the UDFs arguments
from the receiver of its results, and have them and the client work concurrently. These components
form a pipeline, whose architecture is shown in Figure 3.

Server

Client

Figure 3: Semi-Join Architecture

21

The joining of the UDF results with the processed relation depends in its complexity on the
correspondence between the tuple streams coming to the receiver from the client and from the sender.
Since the sender eliminates duplicates, the receiver has to do an actual join between the two streams.
Any join technique (for example, hash-join) is applicable at the receiver. If the sender sorts and groups
its input on the argument column before sending it to the client, then the receiver has to perform a
merge-join. We will assume this in the rest of the paper.

2.3.2 Join at the Client

.
Server

UDF Execution
Client

L, UDF _l

Figure 4: Client-Site Join Architecture

Join at the client-site is possible by sending the entire stream of tuples from the outer relation to the
client site. The UDF is applied to the arguments from each tuple, and the UDF result is added to the
tuple and shipped back to the receiver. The sender and receiver of the tuple streams on the server do
not need to coordinate, since the entire tuples (with duplicates) flow through the client, (as shown in
Figure 4.). Note that this does not mean that the client makes duplicate UDF invocations, since the
server may sort the stream of tuples on the argument attributes.
An advantage of this strategy is that pushable selections and projections can be moved to the client
site. This reduces the bandwidth used on the client-server uplink. On the other hand we have to send
back the full records minus applicable projections, and not just results, as for the semi-join. Compared
to the semi-join, more data is also sent on the downlink. Further, on both downlink and uplink, the
semijoin method eliminates argument duplicates, whereas the client-site join performs no duplicate
elimination. The difference between semi-join and client-site join is visualized in Figure 5. The left side
shows what is being sent by each join method, the right side shows what is being returned. The
horizontals correspond to the transferred columns while the verticals correspond to rows. We will
quantify and experimentally evaluate these tradeoffs in the next section.

Downlink: Uplink:

CSJ
SJ

CSJ

SJ

Duplicates
Duplicates
UllDliCatRR
Arguments Non-Arguments

CSJ SJ
/■ >

UuDlicates
Duplicates
Duplicates

SJ
■ CSJ

Arguments Non-Arguments Results

Figure 5: Tradeoffs between Client-Site and Semi-Join

3 Implementation

We have implemented relational operators that execute client-site UDFs in the Cornell PREDATOR
ORDBMS. All server components were implemented in C++ and all client-site components are written
in Java. Three different execution strategies were implemented:

22

a) Naive tuple -at-a-time execution
b) Semi-join
c) Client-site join
We first describe the implementation of the algorithms, and then compare their performance. Our goals
for the performance evaluation are:

• Demonstrate the problems of the naive evaluation strategy.

• Show the tradeoffs between semi-join and client-site join evaluation of the UDF.

3.1 Join Implementation

3.1.1 Semi-Join
This relational operator implements the semi-join of a server-site table with the non-materialized UDF
table on the client site. In our architecture (see Figure 3), the server side consists of three components:
the sender, the receiver, and the buffer with which both communicate records. The sender gets the
input records from the child operators and, after sending off the argument columns, enqueues them on
the buffer. The receiver dequeues the records from the buffer and then attempts to receive the
corresponding results from the client. Sender and receiver are implemented as threads, running
concurrently. The buffer as a shared data structure is needed to keep the full records, while only the
arguments are sent to the client. Also, records whose argument columns form duplicates of earlier
records have to be joined with cached results at the receiver.

3.1.2 Concurrency
The size of the buffer that holds records that are 'between' sender and receiver, corresponds to the
pipeline concurrency factor: The number of tuples that are transferred and processed on the client
concurrently. A concurrency factor of 1 corresponds to tuple-at-a -time evaluation.
How large should the concurrency factor be? Analytically, we would expect that the number of records
between sender and receiver should equal the number of records that can be processed by the
pipeline sender - client - receiver in the time that it takes for one tuple to pass this pipeline. Let B be the
minimum of the bandwidths of the downlink, the client UDF processor, and the uplink. One of these
forms a bottleneck of the pipeline and thus limits the overall bandwidth. Let T be the time that it takes
for one argument to travel to the client, for the result to be computed, and to be returned to the server.
This is the time for which a record stays in the buffer, after its argument columns have been sent off
until its result is received. The number of records that can be processed in this time is simply B * T,
which is the necessary size for the buffer.

3.1.3 Client-Site Join
The client-site join uses a variation of this architecture: The sender dispatches the whole records to the
client, which sends back the records with the additional argument column. We have the same
components as above, but without the buffer between sender and receiver. The client-site join does not
require any synchronization between both components, in contrast to the semi-join, where the buffer is
used to synchronize sender and receiver.

3.2 Cost Model

We show in the performance evaluation section that the network latency problems of tuple-at-a-time
UDF execution can be solved through concurrency (either semi-join or client-site join). Consequently,
we focus in our cost-model on these two smarter algorithms. Both algorithms incur nearly identical
costs at the client and on the server. We assume that neither client nor server is the pipeline bottleneck,
and propose a simple cost model based on network bandwidth. We do recognize that this is a
simplification and that a mixture of server, client and network costs may be more appropriate in certain
environments (as was shown for distributed databases[ML86]). We also ignore the possibly significant
cost of server-site duplicate elimination because the issues are well understood [HN97] and not
necessarily central in the Web/Internet large-scale environment that we address.

23

3.2.1 Cost Model for Semi-Join and Client-Site Join
We now analyze and empirically evaluate the involved tradeoffs with respect to the factors that were
visualized in Figure 5. To quantify the amount of data sent across the network, we define the following
parameters:

A: Size of the argument columns /total size of the input records

D: Number of different argument tuples / cardinality of the input relation

S: Selectivity of the pushable predicates
P: Size of projected output record / size of output record before pushable projections are applied
(i.e. the column selectivity of the projections)

/: Size of one input record

R: Size of one UDF result
N: Asymmetricity of the network: (bandwidth of the downlink / bandwidth of the uplink.)

On a per- tuple basis, a semi-join will send the (duplicate free) argument columns:

D * (A * I) (semi-join, bytes transferred on downlink, per tuple average)

The client will return the results without applying any selections or projections:

N * D * R (semi-join, bytes transferred on uplink, per tuple average)
The client-site join will send the full input records, without eliminating duplicates:

/ (client-site join, bytes transferred on downlink, per tuple average)
The client will return the received records, together with the UDF results, after applying pushable
projections and selections:

N * (I + R) * P * S (client-site join, bytes transferred on uplink, per tuple average)
The bandwidth cost incurred at the bottleneck link is the maximum of the costs incurred at each link. N,
the network asymmetricity weighs these costs in the direct comparison. The link with maximum cost will
be the link whose used bandwidth is closer to its capacity and who will thus determine the turnaround
for the join execution.

3.2.2 Duplicate elimination
The proportion of duplicates present in the input relation influences down- and uplink cost identically.
For the semi-join, it reduces the necessary bandwidth because duplicate arguments and the
corresponding duplicate results are never transferred. The client-site join cannot exploit the presence of
argument duplicates because it transfers the whole record, including the columns on which such
duplicates might differ.
Duplicate elimination on the client site could be used with both join methods to reduce the processing
time on the client. If sorting is used, the duplicate elimination could be prepared on the server site, but
again, without affecting the necessary network bandwidth.

4 Performance Measurements

We present the results of four experiments: We demonstrate the problems of the naive approach by
measuring the influence of the pipeline concurrency factor. The next two experiments show the
tradeoffs between semi-join and client-site join on a symmetric and an asymmetric network. Finally we
show these tradeoffs in their dependence on the size of the returned results for different selectivities.
Our results show that client-site joins are superior to semi-joins for a significant part of the space of
UDF applications. Exploiting the tradeoffs between both join methods, especially in the context of
asymmetric networks, allows essential performance improvements.
All of our experiments were executed with the server running on a 300Mhz Pentium PC with 130
Mbytes of memory. The client ran as a Java program on a 150Mhz Pentium with 80 Mbytes of
memory, connected over a 28.8KBit phone connection. The asymmetric network was modeled on a
10Mbit Ethernet connection by returning Ntimes as many bytes as actually stated.

24

4.1 Concurrency

We evaluated the effect of the concurrency factor on performance for the following simple query:

SELECT UDF(R.DataObject) FROM Relation R

Relation is a table of 100 Dataobjects, each of the same size. UDF is a simple function that
returned another object of the same size. Figure 6 gives the overall execution time of the query in
seconds, plotted against the concurrency factor (size of the buffer) on the x-axis, for object sizes 100,
500, and 1000 bytes.

IbUUUU -

140000 -

120000 -
i'-

M
ill

is
ec

on
ds

o

 o

 o

o

 o

 o

o

 o

 o

o

 o

 o
 V

40000 -

20000 -

0 -

11 16

Pipeline Concurrency Factor

21

■100 Bytes 500 Bytes 1000 Bytes

Figure 6: Effect of Concurrency

Our analysis suggested that the optimal concurrency factor is bandwidth times latency The number of
tuples that can be processed concurrently, while one tuple travels through the whole pipeline. Following
our assumption, the network is the bottleneck and its bandwidth limits the overall throughput. In this
graph, we can observe that the optimal level for 1000 bytes is reached at 5 and for 500 bytes at 10:
This would correspond to 5000 bytes as the product of bandwidth and latency. Presumably, for 100
byte object, the optimal concurrency level would be 50.
The presented data were determined with a nonthreaded implementation of the presented architecture:
This facilitates the simple manipulation of the concurrency factor. All further experiments ran on an
implementation that simply uses different threads for sender and receiver.

4.2 Client-Site Join and Semi-Join on a Symmetric Network

Our analysis suggests that the uplink bandwidth required by the client-site join is linear in the selectivity
while the downlink bandwidth is independent of the selectivity. For the total execution time, this means
that as long as the downlink is the bottleneck, selectivity will have no effect, but when the uplink
becomes the bottleneck, the execution time will increase linearly with selectivity. The semi-join is not
affected by a change in selectivity.
We measured the overall execution time for the query in Figure 7. Relation has 100 rows, each
consisting of two data objects, together of size 1000 bytes. A was fixed at 50%: The Argument and the
NonArgument object were each 500 bytes. P, the projection factor is adjusted to the result size, such
that: P*(l+R) = l*(1-A)+R, meaning that no arguments have to be returned by the client-site join, only

25

the non-argument columns and the results. UDFl takes an object from the Argument column and
returns true or false, while UDF2 takes the same object and returns a result of known size.

SELECT R.Argument, R.NonArgument, UDF2(R.Argument)
FROM Relation R
WHERE UDFl(R.Argument)

Figure 7: Measured Query

In Figure 8 we plot the overall execution time of the client-site join relative to that of the semi-join
against the selectivity of UDFl on the x-axis. Thus, the line at y = 1.0 represents the execution time of
the semi-join. We varied the selectivity from 0 to 1.0 and plot curves for result sizes 100, 1000, 2000,
and 5000 bytes. The execution time of a semi-join is independent of the selectivity because semi-joins
do not apply predicates early on the client. Thus all client-site join execution time values of one curve
are given relative to the same constant. In this, as in all other experiments, we set D=1.
We will first discuss the shape of each curve, meaning the slope of the different linear parts, and then
its height. It can be observed that for each result size the curve runs flat up to a certain point and from
then on rises linearly. For the flat part of the curve the downlink is the bottleneck of the client-site join's
execution Only from a certain selectivity on will its uplink form the bottleneck and thus determine the
shape of the curve. For result size 1000 bytes, this point is at selectivity 0.6, when the returned data
volume (S * (P*(l+R)) = 0.6 * 1500) approaches the received data volume (I = 1000). The larger the
result size the earlier this point will be reached because the ratio of received to returned data changes
in favor of'the latter. The received data are independent of the selectivities: As long as the the downlink
dominates the curve is constant. The increasing, right part of the curves is part of a linear function
going through the origin of the graphs: At zero selectivity the uplink would incur no cost. Its cost is linear
in the amount of data sent on it, which is linear in the selectivity of the predicate.

2 i

3
O
oi
6 1
i=

JS 0.8

0.2 0.3 0.4 0.5 0.6
Selectivity

[100 Bytes 1000 Bytes 2000 Bytes 5000 Bytes [

Figure 8: Client-Site Join versus Semi-Join on a Symmetric Network

The height of the curve is influenced by the relative execution time of the semi-join. With larger result
sizes the flat part of the curve on the left side of the graph will run deeper, because of the relatively
higher costs of the up-link dominated semi-join, compared to the downlink dominated client-site join.

26

For example, the curve for 2000 goes flat at 0.5 (1000 bytes on s.j.downlink / 2000 bytes on
c.s.j.uplink).

4.3 Client-Site Join and Semi-Join on an Asymmetric Network

In this experiment, we explored the same tradeoffs as above in a changed setting: The network is
asymmetric with the downlink bandwidth being hundred times as much as that of the uplink (N=100).
This choice was motivated by assuming a 10Mbit cable connection as a downlink that is multiplexed
among a group of cable customers. With a 28.8Kbit uplink this would result in N = 350 for exclusive
cable access and, as a rough estimate, N= 100 after multiplexing the 10Mbit cable.

The same query as above is executed (Figure 7). The argument columns consist of 4000 bytes and the
non-argument columns of 1000 (A=80%), and again, only the non-argument columns and the results
are returned after the pushable projections (P*(l+R) = l*(1-A)+R). The selectivity is varied along the x-
axis from 0 to 1 and we give curves for result sizes 500, 1000, and 5000 bytes. The relative execution
time of the client-site join with respect to the semi-join is given in Figure 9.

3.5

2.5-

S2
3 2
o

1.5

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Selectivity

| 500 Bytes 1000 Bytes 5000 Bytes I

0.8 0.9

Figure 9: Client-Site Join versus Semi-Join on Asymmetric Network

As our cost model predicts, the bandwidth of the uplink depends linearly on the selectivity. The flat part
of the curves in the last graph is absent because the downlink never forms a bottleneck. Our model
predicts a selectivity of less than: l/(N*P*(R+l)) = 0.0083 to make the downlink the bottleneck of the
lowest curve (result size 5000 bytes).

27

4.4 Influence of the Result Size

Finally, we fixed the selectivity S and varied the result size R along the x-axis from 0 to 2000 bytes.
Four different curves are shown, for selectivities 25%, 50%, 75%, and 100%. The argument size was
100 bytes, the overall input size 500 bytes. Again, only non-arguments and results are returned and, as
in the second experiment, the network is symmetric. The resulting execution times of the client-site join
relative to those of the semi-join are given in Figure 10.

800 1000 1200

Result Size (Bytes)

1800

-0.25 0.5 0.75 •

Figure 10 : Influence of the Result Size

It can be seen that the client-site join will only be cheaper if the pushable predicates are selective
enough to reduce the uplink stream sufficiently and if the results are large enough to realize the gain in
comparison to the records that have to be shipped on the downlink. The steep initial decline of the
curve represents the change from a downlink bottleneck to an uplink bottleneck. While the former is
disadvantageous for the client-site join, the latter emphasizes the role of pushed down predicates and
projections. The crossing points of the curves with the 1.0 line satisfies, as expected, that the client-site
join's returned data times the selectivity are equal to the semi-join's returned data. The curve for
selectivity one will never cross that line. The curves' slope decreases because the size difference
between the client-site joins and the semi-joins returns becomes less significant as results are getting
larger. The curves assymptotically approach the horizontal lines that correspond to their selectivity.

5 Query Optimization

We showed that existing UDF execution algorithms are inadequate for client-site UDF queries. Now we
show that existing query optimization techniques are also inadequate. There are two reasons for this:
(a) Multiple client-site operations can exhibit interactions that affect their cost. Even for plans with a

single client-site UDF these interactions are relevant, because the result operator of every plan,
which ships the results to the client, can be modeled like a client-site "printing" UDF.

(b) The cost of the client-site join is sensitive to the number of duplicates in its input stream.
The existing approaches rely on the concept of a rank order: Every operation has a rank, defined as its
cost per tuple divided over one minus its selectivity. Unless otherwise constrained, expensive

28

operations appear in the plan ordered by ascending rank. The validity of a rank-order optimization
algorithms is based on two assumptions that are violated by client-site UDFs:
a) The per-tuple execution cost of an operation is known a priori, independent of its position in the

query plan.

b) The total execution cost of an operation is its per-tuple cost times the size of the input after
duplicate removal. UDFs can be pulled up over a join, without suffering additional invocations on
duplicates in the argument columns.

Neither assumption is valid for network- intensive client-site UDFs. The cost of a client-site operation is
strongly dependent on its location next to other such operations with which it can be combined. And
client-site joins as well as combinations of semi-joins are dependent on the number of duplicates.
We propose an extension of the standard System-R optimization algorithm for such queries. As a
running example, we will use the query in Figure 11. A client tries to find cases in which his analysis
results in the same rating than that of a broker. Ratings contains the ratings of many companies'
stocks by several brokers.

SELECT S.Name, E.BrokerName
FROM StockQuotes S, Estimations E
WHERE S.Name = E.CampanyName AND

ClientAnalysis(S.Quotes) = E.Rating

Figure 11: Example Query : Placement of Client-Site UDF Cl i entAnal ysi s

5.1 UDF Interactions

It is important to observe that the execution costs of a client-site UDF depend on the operations
executed before and after it. If a client-site operation's input is produced by another client-site operation,
the intermediate result does not have to be shipped back to the server. If such operations share
arguments, they can be executed on the client as a group and the arguments are shipped only once.
For example, a client-site UDF that is executed immediately before the result operator can be executed
together with it, without ever shipping back its results. We will first discuss the case of client-site joins,
then that of semi-joins.

91 inal A
IT™

SelProj

3E
Join

Ä
E°L§

0

/
s

Final W

SelProj

UDF 0

Join

/\

R

Final *
ASM'/,
/ SelProj '

UDF
<M-^T - !>

Join z\
a) b) c) d)

Figure 12 : Possible Plans for the Query in Figure 11

5.1.1 Client-Site Join Interactions

Consider our example from Figure 11 with the possible query plans shown in Figure 12. There are
only two possible orderings of the operators, one executing the client-site function before the join, one

29

after. In the latter case there are three different options. We describe all four options in more detail and
give possible motivations:
a) UDF before the join: This avoids duplicates that the join might generate. The result of the UDF can

also be used during the join, for example, to use an index on Rati ng.
b) UDF after the join: The number of tuples and/or the number of distinct argument tuples in the

relation might be reduced by the join.
c) UDF and pushable operations after join: If the UDF uses the client-site-join algorithm, the selection

can be pushed down to the client site, reducing the size of the result stream. Further, projections
may also be pushed to the client. In this example, only Name and BrokerName of the selected
records are returned to the server.

d) UDF combined with result delivery: For many queries, the results need to be delivered to the client
(this is not true for INSERT INTO queries). Since there is no other server-site operation between
the UDF and the final result operator, the UDF with the pushable operations can be executed in
combination with the final operator. This avoids the costs of returning any results from the client
and also of shipping the final results.

It can be seen that the locations of UDFs in the query plan (a vs. b) determines the available options for
communication cost optimizations: The cost of a UDF application is dependent on the operators before
and after it! These locations and the locations of pushable predicates need special consideration during
plan optimization. Similar observations can be made about semi-joins, which we consider in the
following section.

5.1.2 Semi-Join Interactions
Semi-joins differ from client-site joins in their interactions: Neither the final result operator, nor pushable
selections or projections are relevant for grouping. There are three motivations for grouping semi-joins:

• The result of one client-site UDF is input to another. This avoids sending the results back on the
uplink and transferring them, with the other arguments of the second UDF, on the downlink. The
superset of the arguments is sent to the first and only duplicates on this superset are eliminated.

• The arguments of one function are a subset of the arguments of another. This saves the costs of
sending the subset twice, but implies transferring all duplicates that are not duplicates in all of the
superset's columns.

• The argument sets of two functions intersect. In this case it is not generally true that we save
communication costs when sending the superset instead of the two subsets. Especially, when
considering the duplicates sent on each subset because they are not duplicates on the whole
superset.

As an example consider the query in Figure 11 with an additional expression in the select clause:
VolatilityCS.Quotes, S.FuturePrices). The client requests an estimation of the price
volatility for the company stocks selected in the query, as computed by the client-site UDF. Some query
plans of interest are shown in Figure 13.
The first two options are extensions of Figure 12(a), while the last two are extensions of Figure 12 b)
and (c):
a) Vol ati 1 i ty is pushed down to the location of Cl i entAnalysi s, so that both can be executed

together: The columns Quotes and Futures are shipped once for both UDFs. This saves
shipping Quotes twice, but it does not allow the elimination of all duplicates in this column.
Identical quotes that are paired with different Futures objects, have to be shipped several times.
In this plan, cli entAnal ysi s does not benefit from the join's selectivity, volatility waives
both the join's and the selection's selectivities.

b) Cl i entAnal ysi s is executed before the join, for example, because its result is used for index
access to Esti mates, vol ati 1 i ty is executed after the last selection, to benefit from combined
selectivity. It is not joined with the result operator as a client-site join because then its arguments
would have to be sent with duplicates.

c) If Cl i entAnal ysi s is moved after the join, it can be executed together with vol ati 1 i ty. Both
benefit from the join's selectivity, while the duplicates generated by the join in both needed input

30

columns can be eliminated. Again, the input of ClientAnalysis input might involve some
duplicates.

d) To avoid all duplicates on Quotes, Cl i entAnal ysi s is executed separately, with the selection
pushed down. Volatility is also not merged with the result operator, to avoid duplicates in its
input columns.

■ Final I

SelProj

Join

S R

SelProj

Join

X
S R

a) b) c) d)

Figure 13 : Possible Plans for the Query in Figure 11 with Additional UDF

5.2 Optimization Algorithm

We will start by presenting the basics of System-R style optimization, then we discuss the standard
extensions for expensive server-site UDFs, before we finally present our algorithm.

5.2.1 System-R Optimizer

System R[SAC+79] uses a bottom-up strategy to optimize a query involving the join of N relations1.
Assume that there are join predicates between every pair of relations (this is not very realistic but one
can always assume the existence of a trivially true predicate). Three basic observations influence the
algorithm:

• Joins are commutative

• Joins are associative

• The result of a join does not depend on the algorithm used to compute it. Consequently, dynamic
programming techniques may be applied.
Initially, the algorithm determines the cheapest plans that access each of the individual relations. In the
next step, the algorithm examines all possible joins of two relations and finds the cheapest evaluation
plan for each pair. In the next step, it finds the cheapest evaluation plans for each three-relation join.
With each step, the sizes of the constructed plans grow until finally, we have the cheapest plan for a
join of N relations. At each step, the results from the previous steps are utilized.
This last principle is not totally justified, because the physical properties of the result of a join can affect
the cost of some subsequent joins (thereby violating the dynamic programming assumptions that allow

•expensive plans to be pruned). The System R optimizer deals with this by maintaining the cheapest
plan for every possibly useful interesting property, thereby growing the search space. These properties
were called "interesting orders", since at the time, sort ordering was the primary property of interest.
The System-R optimizer also applies some heuristics that further limit the plans considered:

1 A description of the algorithm, relevant to expensive UDF placement, can be found in [CS97].

31

• Only binary join algorithms are considered. Consequently, a three-relation join evaluation plan
involves the combination (i.e. join) of a two-relation join result and a stored relation.

• In order to find the best plans for K-relation join, the only combinations examined use (K-1)-relation
joins and stored relations. Other possible combinations (e.g. K-2 and 2) are not considered. The
resulting query plans that look like "left-deep" trees.
• While the intermediate results of a join can act as inputs for another join, they cannot appear as the
inner relation of a nested-loops join algorithm.
• Selections and projections are always applied as early as possible, assuming that such operations
are cheap.
The optimization algorithm with rank ordering, proposed in [CH97] uses the concept of physical
properties to integrate rank-ordered application of expensive operations into this optimization algorithm.
The idea is to tag each plan with the set of operations that are not yet applied in the plan. A plan that
already applied an expensive UDF should not be pruned because of another, cheaper plan that yet has
to apply it. The former can turn out to be optimal because of the early application of the operation, or
the latter may be optimal because of the late application. The optimizer cannot decide this and keeps
both plans. When there are many expensive UDFs in the query, ranks are used to reduce the number
of possibly optimal interesting properties and thus the complexity of the algorithm.

5.2.2 Client-Site Join Optimizatio n
We will first explain our proposed algorithm in terms of client-site joins and introduce analogous
techniques for semi-joins later. In this discussion we will only talk about client-site operations, joins,
pushable predicates and projections. Our strategy is to treat client-site UDFs in the same way as join
operators. This approach has been followed before [LDL] in the case of expensive UDFs, but for client-
site operations we also have to consider physical location of the operation (like [FJK96][SA80]).
Our running example will be the construction of the optimal plan for the query in Figure 11, as executed
by our optimization algorithm (shown in Figure 15). The steps of the algorithm, iterations of the
outermost loop, are shown as horizontal layers in Figure 14.

Final Plan Final Plan
1 \ A

Step 3
S,CA,E,Sel S,E,CA,Sel

/ \ JL
Step 2 /

s,
r

CA S,E v..^ S.E
ß

E
Stepl

s

Figure 14: Client-Site Join Optimization of the Query in Figure 11

We introduce a new bi-valued physical property, a plan's site, indicating the location of its results: In a
server-site plan (cornered boxes), the last applied operation is executed on the server. In a client-site
plan (round boxes), the last applied operation is a client-site UDF. As an example for a client-site plan,
take the plan that applies ClientAnalysis on relation S, resulting in a relation residing on the client.
Joining S with E forms a server-site plan because the result of the join resides on the server.
When applying the next operation to a plan, we have to determine the communication costs with
respect to the plan's site. A real join applied on a client-site plan requires that the records are shipped
from the client to the server, while a client-site function applied on a server-site plan requires the
opposite. Take the application of the final result operator to the right plan in step 3: It will not incur any
additional communication costs because the relation already resides on the client. Operations have to
move the records to the site where they are needed and leave their results on the site of their
execution.

32

To take the final site of a subplan as a physical property implies that only subplans that end on the
same site will be compared and pruned if suboptimal. To be more precise, only subplans that joined the
same set of relations, that applied the same set of client-site operations, and that end up with their
result on the same site will be compared and pruned. In Figure 14, pruning happens after steps 2 and
4: in the latter case all plans have the same physical properties after the final operator moved their
results to the client.
A client-site UDF is executed by a join with a given inner table - the virtual UDF table. To unify our
handling of virtual and real joins we will see joins as operations with a given inner table. Every relation
in the query introduces such a join operator: In our example we have to consider three operations: The
join with S, the join with E, and the client-site join with Cl i entAnal ysi s. Thus real joins are applied in
the same way as UDF joins. The application of a join to a yet empty plan simply results in the base
relation of the join. The algorithm for the set of real and virtual joins J) to Jm is given in Figure 15.

FOR i:=l TO m DO
{ FOR ALL J C {Ji,...,Jn} S.t. |j|=i DO

{ BestPlan := dummy plan of infinite cost
FOR ALL j, J' S.t.: |j'| = i AND

{j} U J' = J DO
{ P := BestApplication(OptPlan[J']/ j)

IF cost(P) < cost(BestPlan)
THEN BestPlan := P

}
OptPlan[S] := BestPlan
}

}
RETURN* OptPlan[{01,...,Om}])

Figure 15 : Client-Site UDF Optimization Algorithm

5.2.3 Semi-Join Optimization
For the semi-join UDF algorithm, a small modification is necessary. We need to capture the fact that the
results of plans after a semi-join are distributed between client and server. To do so, we introduce
locations for each column of the intermediate results as physical properties. As an example consider
again the plans for the query of Figure 11, extended with volatility(S.Quotes,
S.FuturePrices) in the select clause. We show part of the optimization process in Figure 16,
omitting all plans that do not start with the join of S and E.
The initial plan, S®E, can be extended by applying either Cli entAnal ysi s or volatility. Each
client-site UDF can deliver its result column and its argument columns on the client site, available for
any further operation. If Vol ati 1 i ty is applied first, Cl i entAnal ysi s can follow without shipping its
arguments because its arguments are already on the client.
The application of vol ati 1 i ty after Cl i entAnal ysi s, on the left side of the tree, cannot use the
Quotes column on the client: Duplicates were eliminated on it that were originally paired with different
FuturePri ces values. Everything has to be shipped back to the server before the adequate columns
can be transferred. Similarly, server-site operations, like the selection, always ship everything back to
the server before their execution.
The described plan generation happens with the algorithm given in the previous section. All described
modifications are an extension of the set of relevant physical properties and new variations for the
described execution operators: Any client-site UDF can be applied as a semi-join that is executed
duplicate-free, as a semi-join that accepts duplicates to avoid shipping, and as a client-site join. The
latter has to return client-site results of semi-joins to the server before it can ship the full records to the
client. This is also true for the final result operator.

33

Step 4

S,E,Vol,CA

Step 3

yieiti S,E,CA,Vol,Sel

S,E,Vol,CA

Quotes,
FuturePrices
Vol. Result,
CA.Result

S,E,CA,Sel,Vol

S,E,CA,Vol
[I Quotes,
IFuturePrices,
iVol.Result

jQuotes,
iFuturePrices,
iVol.Result

,E,CA,SeM

Figure 16: Semi-Join Optimization for the Query in Figure 11

5.2.4 Features of the Optimization Algorithm
The key characteristics of this algorithm are:
. The number of joins in the plan is 2

(*ioinst#cslx),s), that is, the algorithm is exponential in the number of
real joins plus the number of client site UDFs.

• Simple, pushable selections and projections are not modeled as operations, although they are,
where possible, pushed to the client.

• For query nodes that apply client-site UDFs, an additional physical property is introduced: The
distributed location of the optimized subplan's result relation: The subset of its columns that resides
on the client. If none, server-site operations incur no communication cost - if all, client-site joins
don't have to transfer data. For a certain set of columns that is a superset of an UDF's arguments,
there is a choice of using the columns on the client, including possible duplicates, or of returning
them and shipping only the arguments, duplicate-free.

• Grouping of client-site operations, motivated by shared arguments or by result dependencies, is
integrated in a uniform way, using the location property.

6 Conclusions

Client-site query extensions (UDFs) will play an increasingly important role in extensible database
systems due to scalability, confidentiality, and security issues. We demonstrate that existing UDF
evaluation and optimization algorithms are inappropriate for client-side UDFs. We present more
efficient evaluation algorithms, and we study their performance tradeoffs through implementation in the
Cornell PREDATOR database system. We also present a query optimization algorithm that handles
the client-site UDFs appropriately and finds an efficient query plan.

Acknowledgements

This work on the Cornell Jaguar project was funded in part through an IBM Faculty Development award
and a Microsoft research grant to Praveen Seshadri, through a contract with Rome Air Force Labs
(F30602-98-C-0266) and through a grant from the National Science Foundation (IIS-9812020).

34

Bibliography
[CDY95] S.Chaudhuri, U.Dayal, T.Yan. Join queries with external text sources: Execution an

optimization techniques. In Proceedings of the 1995 ACM-SIGMOD Conference on the
Management of Data, pages 410-422. San Jose, CA.

[CGK89] D.Chimenti, R.Gamboa, and R.Krishnamurthy. Towards an open architecture for LDL. In
Proceedings of the 15th International VLDB Conference, pages 195-203, Amsterdam,
August 1989.

[CS93] S.Chaudhuri and K.Shim. Query optimization in the presence of foreign functions. In
Proceedings of the 19*1 International VLDB Conference, Dublin, Ireland, August 1993.

[CS97] S.Chaudhuri and K.Shim. Optimization of queries with user-defined predicates. Technical
Report MSR-TR-97-03, Microsoft Research, 1997.

[CSM98] G.Czajikowski, P.Seshadri, and T.Mayr. Resource Control for Database Extensions.
Submitted for Publication. 1998.

[FJK96] Michael J. Franklin, Björn Pör Jönsson, Donald Kossmann: Performance Tradeoffs for
Client-Server Query Processing. In Proceedings of the 1996 ACM-SIGMOD Conference on
the Management of Data, pages 149-160.

[GMHE98] M.Godfrey, T.Mayr, P.Seshadri, and T. von Eicken. Secure and portable database
extensibility. In Proceedings of the 1997 ACM-SIGMOD Conference on the Management of
Data, pages 390-401, Seattle, WA, June 1998.

[Hel94] J.M.Hellerstein. Practical predicate placement. In Proceedings of the 1994 ACM-SIGMOD
Conference on the Management of Data, pages 325-335, Minneapolis, MN, May 1994.

[Hel95] J.M.Hellerstein. Optimization and Execution Techniques for Queries with Expensive
Methods. PhD thesis, University of Wisconsin, Madison, May 1995.

[HN97] J.M.Hellerstein and J.F.Naughton. Query execution techniques for caching expensive
methods. In Proceedings of the 1997 ACM-SIGMOD Conference on the Management of
Data, pages 423-434, Tucson, AZ, May 1997.

[HS93] J.M.Hellerstein and M.Stonebraker. Predicate Migration: Optimizing queries with expensive
predicates. In Proceedings of the 1993 ACM-SIGMOD Conference on the Management of
Data, pages 267-276, Washington, D.C., May 1993.

[IK84] Y.E.Ioannidis, R.Ng, K.Shim, and T.Sellis. Parametric query optimization. In Proceedings of
the 1990 ACM-SIGMOD Conference on the Management of Data, pages 312-321, Atlantic
City, NJ, May 1990.

[KBZ86] R.Krishnamurti, H.Boral, and C.Zanialo. Optimization of nonrecursive queries. In
Proceedings of the International VLDB Conference, pages 128-137, Kyoto, Japan, August
1986.

[ML86] LF.Mackert, G.M.Lohman R* Optimizer Validation and Performance Evaluation for
Distributed Queries. VLDB 1986:149-159.

[S98] P.Seshadri: Enhanced Abstract Data Types in Object-Relational Databases. VLDB Journal
7(3): 130-140 (1998).

[S+79] Patricia G. Selinger, Michel E. Adiba: Access Path Selection in Distributed Database
Managementsystems. ICOD 1980: 204-215.

[SA80] P.G.Selinger, M.Adiba. Access path selection in distributed database management systems.
IBM Research Report RJ2883 (36439). August 1980.

[SI92] A.Swami and B.R.Iyer. A polynomial time algorithm for optimizing join queries. Research
Report RJ 8812, IBM Almaden Research Center, June 1992.

«U.S. GOVERNMENT PRINTING OFFICE: 2002-710-038-10191

35

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

1

