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1. Summary 

The Jaguar project aimed at breaking down the traditional barriers that require SQL query 
processing to reside on the database server. Database applications will soon be accessed 
by a large number of clients ranging from Web applications to small-scale personal 
devices and they will in turn access large collections of data sources ranging from Web 
servers to mobile sensor devices. In such applications, a large amount of computing 
resources lie outside the database server: they should be utilized for performance and 
security reasons. 

The objective of the Jaguar project was to define portable query execution plans that 
could be executed either on the server, or on a client or on a remote data source (a web 
site, an active disk or a sensor device). Java was chosen as a platform for the execution of 
these portable execution plans. 

As a first step, we extended the Cornell Predator object-relational database system so that 
user defined functions (UDFs) could be defined in Java and executed with any query on 
the server-site. In this first step, we studied the feasibility of our approach and we 
explored security and performance issues. In a second step, we developed new techniques 
for the execution of portable Java UDFs on the client-site. We showed that it is inefficient 
to use a remote procedure call mechanism to invoke remote UDFs; instead we modeled 
remote UDFs as relations (we take advantage of the tabular representation of functions) 
and we reused distributed join techniques to incorporate them efficiently into a portable 
query execution plan. We successfully applied this new technique to access resources that 
should remain local to the client-site and also to access data produced by sensor devices. 
New techniques supporting the execution of portable query plans on the client-site or on 
the server-site are the major contributions of the Jaguar project. They have been 
implemented as extensions to the Cornell Predator object-relational system. 



2. The Jaguar System 

2.1. Architecture 

Jaguar extends the Cornell Predator object-relational database engine. The architecture of 
the Jaguar system is shown in Figure 2. We are transforming the traditional client-server- 
storage database architecture to a ubiquitous query processing architecture where queries 
(or query fragments) can run at clients, servers, or storage (shown in Figure 2). 
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Figure 2: The Jaguar architecture for ubiquitous query processing. 

The Cornell Predator System is an extensible object-relational system. The Jaguar project 
adds extensibility through Java user-defined functions (UDFs) that are executable on the 
server, or on the client. We have transferred parts of the native Predator query execution 
engine to Java to allow the migration of subplans to the client and to active storage. 
Predator, as a system implemented in C++, allows us to explore the integration of 
portable execution environments into a large, native code system. 

The Java programming language is used as one possible underlying platform for portable 
execution. One motivation is portability: Java Virtual Machines exist on many different 
platforms, especially as integrated part of most web browsers. Another motivation lies in 
Java's security features: Untrusted client code can be executed safely on the server, while 
server code can be downloaded and executed on clients as an applet. Java is widely 
available and generally considered 'easy to use', which allows extensions by naive users. 

The next sections give an overview of the contributions we have made in the Jaguar 
project in the areas of server-site and client-site server extension, resource control for 
Java server-site extensions, the usage of compression for moving query results across the 



network, and parallel query processing in heterogeneous environments including clusters 
of servers connected to active storage components. 

2.2. Server-Site and Client-Site Database Extensions 
How can client functionality be added to a database server? This is what object-relational 
databases are supposed to accomplish. Our goal is to allow extensions to the database that 
are written, tested and debugged at the client, and transparently moved to the server. 
Further, the security and integrity of the server should not be compromised. 

Can extensions that have to be executed on the client site be integrated efficiently? 
Motivations for such client-site extensions are the confidentiality of the client's data and 
algorithms, client-site specific resources, scalability, and the security of the server. We 
examined in how far known techniques for expensive server-site UDFs and techniques 
from distributed query processing apply. Our main observation was that function 
application should be viewed as a distributed join with a virtual table. Based on this, we 
developed efficient execution techniques for client-site UDFs and optimization 
algorithms for queries with such client-site extensions. 

The server-site and client-site extensions supported by the Jaguar system were 
demonstrated at SIGMOD'99. 

2.3. Database Extensions in Java 
How can the resource consumption of a Java UDF be controlled? This is necessary to 
avoid Quality of Service attacks and allows to charge clients according to their actual 
usage. Beyond security, we explored how resource consumption feedback can be used to 
dynamically optimize Java UDFs. We explored some possible optimizations and 
examined the achievable performance improvements. Our implementation was based on 
the JRes Java Resource control. (The JRes project was part of the SLK project at Cornell 
aiming at providing operating systems infrastructure for extensible servers based on safe- 
language technology - see http://www.cs.cornell.edu/slk/ for details.) 

2.4 A Compression Framework for Query Results 
Portable query processing requires that query computation be movable to different 
platforms. What is equally important is that the results of queries (which may be very 
large) also be efficiently moved across networks or stored efficiently. We have developed 
a comprehensive framework for compressing the results of database queries. It is possible 
to achieve significantly better compression ratios than a default tool like WinZip would. 
This is because we exploit the semantics of the query that created the result, and the 
structured nature of the data. 

2.5 Parallel Query Processing in heterogeneous environments 
The vision underlying the Jaguar project involves active storage and network 
components, clients and external sites contributing their data, functionality and 
processing power to make data processing more scalable, flexible and powerful. These 
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highly heterogeneous processing environments must be integrated to form reliable and 
scalable data processing systems. 

Performance asymmetries in parallel systems are a significant problem for the classical 
data-flow paradigm. Past research has focused on the distribution of data. However, this 
approach is relatively coarse-grained and, while it alleviates sites that form bottlenecks, it 
does little for bottlenecks of a specific resource within a site. We proposed an extension 
of the data-flow paradigm that adds flexibility in the positioning of some of the operators 
and thus adapts the usage of specific resources across the sites of the system. We 
parallelized the PREDATOR system to study the performances of these techniques. The 
underlying idea is that parallel systems must be aware of the heterogeneity of their 
components to process data efficiently and to fully integrate all components. 

3. Publications 

• M.Godfrey, T.Mayr, P.Seshadri, and T. von Eicken. Secure and Portable Database 
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• Tobias Mayr and Praveen Seshadri. Client-Site Query Extensions. In Proceedings of 
the 1999 ACM-SIGMOD Conference 1999, Philadelphia, PA, May 1999. 

• Philippe Bonnet, Kyle Buza, Zhiyuan Chen, Victor Cheng, Randolph Chung, Takako 
M. Hickey, Ryan Kennedy, Daniel Mahashin, Tobias Mayr, Ivan Oprencak, Praveen 
Seshadri, Hubert Siu: The Cornell Jaguar System: Adding Mobility to PREDATOR. 
In Proceedings of the 1999 ACM-SIGMOD Conference 1999, Philadelphia, PA, May 
1999. 

• Tobias Mayr, Philippe Bonnet, Johannes Gehrke, Praveen Seshadri. Query Processing 
with Heterogeneous Resources. Technical Report TR00-1790, Cornell University, 
Computer Science Department, Ithaca, NY, March 2000. 

• Z.Chen, P.Seshadri. An Algebraic Compression Framework for Query Results. In 
Proceedings of the International Conference on Data Engineering ICDE'00, San 
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Two publications are attached. They describe the heart of the Jaguar system: server-site 
and client-site database extensions in Java. 
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Abstract 

The functionality of extensible database servers can be aug- 
mented by user-defined functions (UDFs). However, the 
server's security and stability are concerns whenever new 
code is incorporated. Recently, there has been interest in 
the use of Java for database extensibility. This raises sev- 
eral questions: Does Java solve the security problems? How 
does it affect efficiency? 

We explore the tradeoffs involved in extending the PREDA- 
TOR object-relational database server using Java. We also 
describe some interesting details of our implementation. The 
issues examined in our study are security, efficiency, and 
portability. Our performance experiments compare Java- 
based extensibility with traditional alternatives in the na- 
tive language of the server. We explore a variety of UDFs 
that differ in the amount of computation involved and in 
the quantity of data accessed. We also qualitatively com- 
pare the security and portability of the different alterna- 
tives. Our conclusion is that Java-based UDFs are a viable 
approach in terms of performance. However, there may be 
challenging design issues in integrating Java UDFs with ex- 
isting database systems. 

1    Introduction 

In an extensible DBMS, the database server can be extended 
dynamically with new functionality. An important class 
of such systems are "universal" database servers (e.g., In- 
formix, DB2, Oracle 8) which support user-defined functions 
(UDFs). While extensibility increases the functionality and 
flexibility of such a system, there are also serious concerns 
with respect to security. The focus of this paper is on the de- 
ployment of extensible client-server database technology in 
a user environment such as the World Wide Web (WWW). 
For example, consider a database of stock market data that 
is accessible through a web site. A valid user is any amateur 

investor with a web browser, a credit card, and an invest- 
ment formula InvestVal. The following query would then 
find technology stocks of interest to the user: 

SELECT * 
FROM Stocks S 
WHERE S.type = "tech" and 

InvestVal(S.history) > 5; 

Here, InvestVal is a user-defined function. Ideally, it 
should be possible (and relatively straightforward) for a large 
number of such users in a web environment to create their 
own UDFs and use them within SQL queries. If there are 
many users, each desiring to extend the system without spe- 
cial knowledge about its architecture, several issues arise: 
• Security: Since the UDFs are supplied by unknown or 
untrusted clients, the DBMS must be wary of UDFs that 
might crash the database system, that modify its files or 
memory directly, circumventing the authorization mecha- 
nisms, or that monopolize CPU, memory or disk resources 
leading to a reduction in DBMS performance (i.e., de- 
nial of service). Even if the developer of a UDF is not 
malicious, the new code might inadvertently cause some 
of these problems. Clearly, some security mechanism is 
needed. 

• Portability: How portable are the UDFs and how easy 
are they to develop? Users need to be able to develop, test 
and debug their UDFs on their local machines. It should 
then be possible to register the UDFs with the server. Do 
the security mechanisms adversely affect the portability 
and ease of extensibility by users? 

• Efficiency: How does the security mechanism affect the 
performance of queries? Does the portability of UDFs 
affect their efficient execution? 

Until recently, the UDF extensibility mechanisms used 
in database systems have been unsatisfactory with respect 
to security and portability. However, with the growing ac- 
ceptance of Java as a relatively secure and portable pro- 
gramming language, the question arises: can the use of Java 
aid database extensibility? We are exploring this question 
through implementation and performance measurement in 
the PREDATOR OR-DBMS[SLR97]. 

Specifically, this work is performed in the context of the 
Jaguar project which explores various benefits of incorporat- 
ing Java into PREDATOR. The motivation of the project 
is the next-generation of database applications that will be 
deployed over the web. In such applications, a large num- 
ber of physically distributed end-users working on diverse 



platforms interact with the database server through their 
web browsers. Because of the large user community with 
diverse needs, the utility of UDFs increases, along with con- 
cerns for the security of the system. In this environment, 
Java seems a good choice as a language for UDFs, because 
Java byte code can be run with security restrictions within 
Java Virtual Machines (JVMs) supported by web browsers 
on diverse platforms. The full scope of the project envi- 
sions UDFs which must be run exclusively at the client, or 
at the server, or at either site. This paper represents our 
initial work on this subject, and is limited to studying the 
execution of UDFs at the database server. 

Many vendors of universal database servers are in the 
process of adding Java-based extensibility [Nor97]. How- 
ever, to the best of our knowledge, there has been no study 
of the design needed or of the tradeoffs underlying vari- 
ous design decisions. This paper presents such a qualitative 
study, and a quantitative comparison of Java-based UDFs 
with other UDF technologies. The experimental conclu- 
sions are consistent with results from the Java benchmarking 
community [NCW98]. 
• Java UDFs suffer marginally in performance compared to 
native UDFs when the functions are computationally in- 
tensive. Given current trends in JIT compiler technology, 
we expect the difference in computation time to become 
insignificant. 

• For functions with significant data accesses, Java exhibits 
relatively poor performance because of run-time checks. 
However, this is a reasonable price to pay for security. 
Our experiments also indicate that when analogous run- 
time checks are added to native code UDFs that run out- 
side of the server, performance is comparable to (but still 
somewhat better than) that of Java UDFs. 

The paper also discusses specific issues that arise when in- 
tegrating Java into a typical database server. Although the 
Java language has security features, current Java environ- 
ments lack resource control mechanisms needed to fully in- 
sulate the server from malicious or buggy UDFs. Conse- 
quently, some traditional security mechanisms are still needed 
to protect the resources of the server. Further, many database 
servers use proprietary implementations of operating system 
features like threads. The server-side support for Java UDFs 
can be non-trivial, since the Java virtual machine can inter- 
act undesirably with the database operating system. Con- 
sequently, it may be undesirable to embed an off-the-shelf 
Java Virtual Machine within the database server. Finally, 
we present the implementation details in PREDATOR that 
allow Java UDFs to be developed in a portable fashion, so 
that they can be used at either client or server. 

2    Related Technologies 

In this section, we outline research and technology relevant 
to this paper. We divide the work into four categories: (a) 
web-based database deployment (b) work on database ex- 
tensibility, (c) work on secure kernel extensions in operating 
systems, and (d) work on safe programming languages such 
as Java. 

2.1    Web-Based Database Deployment 

The architectures of web-based database applications fall 
into two broad categories: Two-Tier and Three-Tier archi- 
tectures.   In both categories, a database server runs on a 

machine accessible via the Internet, and user interact with 
web browsers on their local machines. 

In a Two-Tier architecture, a Java applet running within 
the web browser also acts as the database client, meaning 
that it directly connects to the database server, sends re- 
quests to the server and displays the results to the user. 
This resembles the familiar "query-shipping" architecture 
of client-server database systems [FJK96] . The Java ap- 
plets that act as client programs are downloaded from a 
web server (i.e., HTTP server) running on the same ma- 
chine as the database server. In a Three-Tier architecture, 
the work of the client program is divided into two compo- 
nents: presentation and program logic. The program logic is 
abstracted into a separate tier of software which usually runs 
on the same machine as the web server (and is sometimes 
implemented as an extension of the web server). This "mid- 
dleware" tier is responsible for connecting to the database 
server, issuing queries and receiving replies. The presen- 
tation tier runs within the user's browser and handles the 
graphical input and output functionality. In such an envi- 
ronment, the application developers who build the middle- 
ware are typically the "users" who would create UDFs. Our 
work applies to applications developed using either architec- 
ture; however, for the rest of the paper, we will assume the 
simpler Two-Tier architecture. 

2.2    Database Extensibility 

Since the early 1980s, database servers have been built to be 
extensible; that is, to allow new application-specific function- 
ality to be incorporated. While extensibility mechanisms 
were developed in both object-relational (OR) and object- 
oriented(OO) databases, similar issues apply in both cate- 
gories of systems. In this paper, we focus on OR-DBMS sys- 
tems, because they are the dominant commercial database 
systems, and because PREDATOR falls into this category. 
However, our results apply equally to OO-DBMSs as well. 

While some research has addressed the ability to add new 
data types [Sto86, SRG83] and new access methods [SRH90, 
HCL+90], most extensible commercial DBMSs and large re- 
search prototypes have been built to support user-defined 
functions (UDFs) that can be added to the server and ac- 
cessed within SQL queries. The motivation for server-side 
extensibility (rather than implementing the same functional- 
ity purely at the database client) is efficiency; a user-defined 
predicate could greatly reduce query execution time if ap- 
plied at the early stages of a query evaluation plan at the 
server. Further, this may lead to a smaller data transfer to 
the client over the network. 

Given the focus on efficiency, most research on UDFs 
has investigated the interaction between database query op- 
timization and UDFs. Specifically, cost-based query opti- 
mization algorithms have been developed to "place" UDFs 
within query plans [Hel95, Jhi88]. Some recent research 
has explored the possibility of evaluating queries partially 
at the server and partially at the client (this has been called 
"hybrid-shipping") [FJK96]. However, this work has not 
been applied to extensible systems. Portability and ease 
of extensibility have largely been neglected by current OR- 
DBMS technology. 

Traditionally, it has been assumed that most database 
extensions would be written by authorized and experienced 
"DB Developers", and not by naive users. This assump- 
tion was reasonable because extending a database server 
required non-trivial technical knowledge, and because few 
automatic mechanisms were available to verify the safety of 



untrusted code. Consequently, a large "third-party vendor" 
industry has evolved around the relational database indus- 
try, developing and selling database extensions (e.g., Virage, 
Verity). Commercial extensible database systems usually 
provide three options to those customers who prefer to write 
UDFs themselves: (a) incorporating UDFs directly into the 
server (and thereby incurring the substantial risks that this 
approach entails), (b) running UDFs in a separate process 
at the server, providing some simple operating system secu- 
rity guarantees, or (c) running UDFs on the client-side in a 
client environment that mimics the server environment. We 
describe these options in detail in Section 3. 

2.3 Secure Kernel Extensions 

The operating systems community has explored the issue 
of security and performance in the context of kernel exten- 
sions. The main sources of security violations considered are 
illegal memory accesses and the unauthorized invocation of 
procedures. One proposed technique is to use safe languages 
to write the extensions, and to ensure at compile and link 
time that the extensions are safe. The Spin project [Ber95], 
for example, uses a variant of Modula-3 and a sophisticated 
linker to provide the desired protection. Another proposed 
mechanism, called Software Fault Isolation (SFI)[WLAG93], 
instruments the extension code with run-time checks to en- 
sure that all memory access are valid (usually by checking 
the higher order bits of each address to ensure that it lies 
within a specific range). This work on kernel extension has 
recently seen renewed interest with particular emphasis on 
extending applications using similar techniques. Extensi- 
ble web servers are a prime example, since issues such as 
portability and ease of use are especially important. When 
extending a server process, another option is to run the ex- 
tension code in a separate process and use a combination of 
hardware and operating system protection mechanisms to 
"sandbox" the code; the virtual memory hardware prevents 
unauthorized memory accesses, and system call interception 
examines the legality of any interaction between the exten- 
sion code and the environment. 

One of the shortcomings of all the work on extensions 
we are aware of is that only the safety of memory accesses 
and control transfers is taken into account. In particu- 
lar, the memory, CPU, and I/O resource usage of indi- 
vidual extensions are not monitored or policed, and this 
makes simple denial-of-service attacks (or simple resource 
over-consumption) possible. 

2.4 Safe Languages 

Strongly typed languages such as Java, Modula-3, and ML 
enforce safety of memory accesses at the object level1. This 
finer granularity makes it possible to share data structures 
between the system core and the extensions. Access to 
shared data structures is confined to well-defined methods 
that cannot cause system exceptions. Additional mecha- 
nisms allow the system designer to limit the extension's ac- 
cess rights to the necessary minimum2. 

'in a strongly typed language each identifier has a type that can be 
determined at compile time. Any access using such an identifier has 
to accord to the rules of that type. The necessary information that 
cannot be determined statically, like array bounds and dynamic casts, 
is checked at runtime (for a survey of type systems, see [Car97]). 

2The security community calls this the 'least privilege' 
principle[SS75]. Every user is granted the least set of privileges 
necessary. 

Safe languages depend on the trustworthiness of their 
compilers: the compiled code is guaranteed to have no in- 
valid memory accesses and perform no invalid jumps. Un- 
fortunately, these properties cannot, in general, be verified 
on resulting compiled code because the type information of 
the source program is stripped off during compilation. Pos- 
sible solutions to this problem are the addition of a verifi- 
able certificate to the compiled code either in the form of 
proof carrying code [Nec97] or as typed assembly language 
[MWCG98]. 

Another approach is the use of typed intermediate code 
as the target language for compilation. This code can be 
verified and executed by platform-specific interpreters while 
the code itself remains platform independent. The safety of 
strongly-typed languages is preserved without the need for 
a trusted compiler. The negatives of this approach include 
the need for and overhead of an interpreter on each plat- 
form, and the overhead of verifying the type-safety of the 
code. Java uses exactly this design: source programs are 
compiled into Java bytecode that is verified by the Java vir- 
tual machine (JVM) when loaded. Typically, the JVM also 
compiles parts of the byte codes to machine code before ex- 
ecution. 

Since the JVM is a controlled execution environment, 
it can apply further constraints to the executed programs, 
including absolute bounds on the memory usage (for exam- 
ple, the JVM in the Netscape 4.0 browser uses a limit of 
4MB for the memory usage of Java applets). However, the 
current JVMs do not provide any form of generic resource 
management. 

2.5    Contrast with Databases 

Database systems provide an attractive application environ- 
ment for user extensions, and therefore some of the work 
from other areas mentioned in this section is applicable to 
DBMS UDFs as well. However, there are some subtle dif- 
ferences in perspective: 
• In the case of database systems, the portability of the 
UDFs is an important consideration. The users who are 
developing UDFs may have different hardware/OS plat- 
forms. 

• The portability of the entire DBMS server is also a con- 
cern; it is undesirable to tie the UDF mechanism to a 
specific hardware/OS platform. 

• In OS research, there is usually some concern at the ini- 
tial overhead associated with running new code (e.g., time 
to start a new process). This may not be a concern in a 
database system, since the cost can be amortized over sev- 
eral invocations of the UDF on an entire relation of tuples. 
Similarly, the overhead associated with compilation of new 
code is often not a concern, since it can be performed of- 
fline. 

• In OS research, there is usually concern over the per- 
invocation overhead for new code (e.g., message passing 
overhead). Since there are several invocations of the UDF 
in a database environment, it may be possible to reduce 
the overhead through batching. 

3    UDF Design Alternatives 

We now examine the various design alternatives for adding 
UDFs to a DBMS. Specifically, we examine two broad issues: 
Location (i.e., where the UDF runs), and Language (i.e., 



how the UDF is specified). For each design alternative, we 
are interested in its effect on efficiency, security, and ease 
of use. We assume that the database server is written in a 
language (like C or C++) that is compiled and optimized 
to platform-dependent machine code. We call this language 
"native" in contrast to languages with platform-independent 
portable code, like Java. The clients are not necessarily 
implemented in the native language and may run on diverse 
platforms. 
Location: There are three alternatives. 
• The UDF runs at the server site, within the server pro- 
cess. 

• The UDF runs at the server site, in a process isolated 
from the server. 

• The UDF runs at the client site.3 

Language: The UDF could be written in the native lan- 
guage of the DBMS or in a different language. If the UDF 
is run at the client, the availability of language tools (com- 
pilers, interpreters, etc.) at the client is an important con- 
sideration. Languages that are supported on a wide range 
of clients are obviously preferable. If the UDF is run at the 
server site within the server process, there must be some 
interface mechanism from the native language to the UDF 
language. 

To make the discussion concrete, we will assume in this 
paper that the native language of the DBMS is C++,4 and 
we will consider C++ and Java as representative UDF lan- 
guages. These assumptions also correspond to our imple- 
mentation. Our results with respect to C++ should general- 
izable to any native language that is compiled into platform- 
dependent machine code without strong security features 
like type and array bounds checking. 

3.1    Client-Side UDF Execution 

The client-side execution of a UDF is obviously secure for 
the server; however it can lead to unacceptably poor per- 
formance. For example, consider a function REDNESS(I) 
that computes the percentage of red pixels in image I. The 
following query finds images of bright sunsets from upstate 
New York: 

SELECT * 
FROM Sunsets S 
WHERE REDNESS(S.picture) > 0.7 and 

S.location = ''fingerlakes'' 

If the UDF were not available at the server, all the im- 
ages would need to be shipped to the client where their 
"redness" would be checked as a post-processing filter. This 
would correspond to the "data-shipping" approach used by 
object-oriented databases [Fra96] which is known to be a 
poor choice for certain queries, as both the server and the 
network perform significant unnecessary work. An alterna- 
tive strategy is for the server to contact the client for each 
UDF execution. This too has obvious drawbacks in the la- 
tency of many such calls (UDFs are often applied to each 
tuple of a relation) and the cost of shipping the function 

3A fourth alternative is for the UDF to run at some intermedi- 
ate site. However, we consider this equivalent to running it at the 
client site, since the advantages of server-side execution as well as the 
connected security problems are not present. 

* Most database servers including PREDATOR are written in C 
or C++, making this a reasonable assumption. In an interesting de- 
velopment, a few research projects and small companies are building 
database systems totally in Java [Cim97]. 

arguments to the client. A further problem which is often 
overlooked is that UDFs may require access to other func- 
tions and facilities in the database server (for example, to 
store intermediate results). Consequently, we will focus on 
server-side UDFs in this paper. In future work, we intend to 
explore client-side UDFs and find query optimization tech- 
niques to choose between server-side and client-side execu- 
tion. 

3.2    Server-Side UDF Execution 

Table 1 shows the design space for server-side UDFs. There 
are four possible designs: the language of the UDF can be 
the native server language or a non-native language, and 
the UDF can be integrated within the same process or in an 
isolated process. 

Language Same Process Different Process 

Native 
(C++) 

Design 1 
(C++ Integrated) 

Design 2 
(C++ Isolated) 

Non-Native 
(Java) 

Design 3 
(Java Integrated) 

Design 4 
(Java Isolated) 

Table 1: Design Space for Server-Side UDFs 

Clearly, Design 1 will have the best performance of all 
the options since it essentially corresponds to hard-coding 
the UDF into the server. However, the obvious concern is 
that system security might be compromised. Buggy UDF 
code could cause the server to crash, or otherwise result 
in denial-of-service to other clients of the DBMS. Malicious 
code could modify the server's memory data structures or 
even the database contents on the local disks. Low-level OS 
techniques such as software fault isolation (see Section 2.3) 
can address only some of these concerns. Additionally, it 
may be difficult for a client to develop a UDF in the server's 
native language without access to the server's compilers and 
its environment. 

Using Design 2, one could prevent the UDF from directly 
crashing the server process. However, the UDF could still 
compromise security by modifying files or killing the server. 
While Design 2 is less efficient than Design 1, the concerns 
about ease of use (or lack thereof) are similar. One of the 
attractions of Design 2 is that since the UDF computation 
occurs in a separate process, system call interception tech- 
niques can be used to control its behavior (see Section 2.3). 

This paper explores the possibilities of Design 3, compar- 
ing it to the other alternatives. A Java UDF has some very 
desirable properties: it is portable and supported on most 
platforms. With an adequate environment on the client and 
the server side, the UDF can be developed and tested at the 
client and then migrated to the server. In Section 6, we de- 
scribe such an environment built in PREDATOR. Because 
Java was designed with the intent to allow secure and dy- 
namic extensibility in a network environment, the addition 
of an UDF and its migration between client and server is well 
supported by the language features (see Section 6). How- 
ever, there are some possible drawbacks with Java UDFs. 
Java code may run more slowly than corresponding native 
code. Further, whenever the language boundary is crossed, 
there is an "impedance mismatch" that may be expensive5. 
This is usually reflected in the efficiency of the system. Note 

5In our case, the impedance mismatch is incurred by using the 
Java native interfacing mechanism (e.g., JNI). There are different 
implementations available from Sun [JNI] and Microsoft [RNI]. 



that the language boundary needs to be crossed for each 
UDF invocation, and there may be several such invocations. 

In this paper, we quantify the efficiency tradeoffs be- 
tween the design alternatives, so that database developers 
and UDF builders may balance them against the qualita- 
tive advantages in the areas of security and portability. We 
do not consider Design 4 explicitly — we assume that its 
behavior can be extrapolated as a combination of Design 2 
and Design 3. 

4    Implementation in PREDATOR 

PREDATOR is an object-relational database system devel- 
oped at Cornell [SLR97]. It provides a query processing 
engine on top of the Shore storage manager [CDF+94]. The 
server is a single multi-threaded process, with at least one 
thread per connected client. While the server is written 
in C++, clients can be written in several languages, in- 
cluding C++ and Java. Specifically, considerable effort has 
been invested in building Java applet clients than can run 
within web browsers and connect directly with the database 
server [PS97]. 

The feature of PREDATOR most relevant to this paper 
is the ability to specify and integrate UDFs. The original 
implementation supports only Design 1 (i.e., UDFs imple- 
mented in C++ and integrated into the server process). No 
protection mechanism (like software fault isolation) was used 
to ensure that the UDF is well-behaved. From published 
research on the subject [WLAG93], we expect such a mech- 
anism to add an overhead of approximately 25%. For the 
purposes of this study, we have also implemented Design 2 
(C++ UDFs run jn a separate process) and Design 3 (Java 
UDFs run within the server process). We now discuss these 
implementations. The main details of interest are the mech- 
anisms used to pass data/parameters to and results from the 
UDF. Further, some UDFs may require additional commu- 
nication with the database server. For example, a UDF that 
extracts pixel (i,j) of an image may be given a handle to 
the image, rather than the entire image. The UDF will then 
need to ask the server for the appropriate data, based on 
the parameters i and j. We call such requests "callbacks". 

The actual mechanism used to load UDFs is not relevant 
to this paper; either recompilation or dynamic loading can 
be used. We assume that UDFs are free of side-effects; with- 
out this assumption, it is difficult to describe the semantics 
of an SQL query that uses a UDF. Since PREDATOR is not 
a parallel OR-DBMS, all expressions (including UDFs) are 
evaluated in a serial manner. 

4.1    Isolated Execution of Native UDFs 

We added the ability to execute C++ UDFs in a separate 
process from the server. When a query is optimized, one re- 
mote executor process is assigned to each UDF in the query. 
These executors could be assigned from a pre-allocated pool, 
although in our implementation, they are created once per 
query (not once per function invocation). The task of a re- 
mote executor is simple: it receives a request from the server 
to evaluate the UDF, performs the evaluation, and then re- 
turns the evaluated result to the server. Communication be- 
tween the server and the remote executors happens through 
shared memory. The server copies the function arguments 
into shared memory, and "sends" a request by releasing a 
semaphore. The remote executor, which was blocked trying 
to acquire the semaphore, now executes the function and 
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Figure 1: Design 1: Integrated Native UDFs 

places the results back into shared memory. The hand-off 
for callback requests and for the final answer return also 
occur through a semaphore in shared memory. 

We expect that there will be some overhead associated 
with the synchronization and process switching. This over- 
head will be independent of the computational complexity 
of the UDF, but possibly affected by the size of the data (ar- 
guments and results) that has to be passed through shared 
memory. 

4.2    Integrated Execution of Java UDFs 

In our implementation, Java functions are invoked from within 
the server using the Java Native Interface (JNI) provided as 
part of Sun's Java Development Kit (JDK) 1.1 [JNI]. The 
first step is to instantiate a Java Virtual Machine (JVM) as 
a C++ object. Any classes that need to be used should have 
been compiled from Java source (.Java files) to Java byte- 
codes (.class files). The classes are loaded into the JVM 
using a specified interface. When methods of the classes 
need to be executed, they are invoked through the JNI in- 
terface. Parameters that need to be passed must first be 
mapped to Java objects. 

The creation of a JVM is a heavyweight operation. Con- 
sequently, a single JVM is created when the database server 
starts up, and is used until shutdown. Each Java UDF is 
packaged as a method within its own class. If a query in- 
volves a Java UDF, the corresponding class is loaded once 
for the whole query execution. 

The translation of data (arguments and results) requires 
the use of further interfaces of the JVM. Callbacks from the 
Java UDF to the server occur through the "native method" 
feature of Java. There are a number of details associated 
with the implementation of support for Java UDFs. Im- 
portantly, security mechanisms can prevent UDFs from per- 
forming unauthorized functions. We describe these details 
in Section 6. 



5    A Performance Study 
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Figure 3: Design 3: Java UDFs 

We now present a performance comparison of three imple- 
mentations of UDF support: 

1. Design 1:   C++ within the server process [Marked 
"C++" in the graphs ] 

2. Design 2: C++ in a separate (isolated) process [Marked 
"IC++"] 

3. Design 3: Java within the server process using the JNI 
from Sun's JDK 1.1.4 [Marked "JNI"] 

The purpose of the experiments was to explore the rela- 
tive performance of the different UDF designs while varying 
three broad parameters: 
• Amount of Computation: How does the computational 
complexity of the UDF affect the relative performance? 

• Amount of Data: How does the total amount of data 
manipulated by the UDF (as parameters, callbacks, and 
result) affect the relative performance? 

• Number of Callbacks: How does the number of callbacks 
from the UDF to the database server affect the relative 
performance? 

The three UDF designs were implemented in PREDATOR, 
and experiments were run on a Sparc20 with 64MB of mem- 
ory running Solaris 2.6. In all cases, the JVM included a 
JIT compiler. 

5.1    Experimental Design 

Since UDFs can vary widely, the first decision to be made 
is: how does one choose representatives of real UDFs? Real 
UDFs may vary from something as simple as an arithmetic 
operation on integer arguments, to something as complex as 
an image transformation. We used a "generic" UDF that 
takes four parameters (ByteArray, NumDatalndepComps, 
NumDataDepComps, NumCallbacks) and returns an integer. 

• The first argument (ByteArray) is an array of bytes of 
variable size. This models all the data passed as parame- 
ters to the UDF and during callback requests. By varying 
the size of the bytearray, we explore the effect of variable 
data access. 

• The second argument (NumDatalndepComps) is an inte- 
ger that controls the amount of "data independent" com- 
putation in the UDF. The computation within the UDF 
performs a simple integer addition operation several times 
within a loop — the number of iterations is specified by 
NumDat alndepComps. 

• There is also a separate loop in which the entire byte ar- 
ray is repeatedly iterated over, as many times as specified 
by NumDataDepComps, the third parameter. This is meant 
to model many real UDFs (such as image transformations) 
in which the amount of computation depends on the size 
of the parameters. 

• The fourth parameter (NumCallbacks) specifies the num- 
ber of callback requests that the UDF makes to the database 
server during its execution. No data is actually transferred 
during the callback; instead, all data transfers are modeled 
in the first parameter (ByteArray). While this is slightly 
inaccurate (real callbacks involve the transfer of data), we 
chose this model for its simplicity. 
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The simplest UDF has values of 0 for its second, third and 
fourth parameters. In all our experiments, parameter values 
are 0 unless otherwise specified. 

In all our experiments, we used three relations of cardi- 
nality 10,000. Each relation has an attribute of type ByteArra; 
and all the bytearrays in tuples of the same relation are of 
the same size. Relations Rell, RellOO, and RellOOOO have 
byte arrays of size 1, 100, 10000 bytes respectively in each 
tuple. The basic query run for each experiment is: 

SELECT UDF(R.ByteArray,   NumDatalndepComps, 
NumDataDepComps,   NumCallbacks) 

FROH      Rel* R 
WHERE <condition> 

We vary the number of UDFs applied by specifying re- 
strictive (and inexpensive) predicates in the WHERE clause. 
In all experiments, our goal is to isolate the cost of applying 
the UDFs and ignore the basic cost of scanning the relations. 
All the graphs measure response time along the Y-axis, while 
a single parameter is varied along the X-axis. 

5.2    Calibration 

The first two experiments act as calibration for the remain- 
ing measurements. We first measure the basic cost of execut- 
ing the query in Figure 5.1 with a trivial integrated C++ 
function that does no work. In Figure 4, the number of 
UDF invocations is varied along the X-axis. The different 
lines correspond to different sizes of bytearrays in the rela- 
tions (the larger bytearrays being more expensive to access). 
These numbers represent the basic system costs that we sub- 
tract from the later measured timings to isolate the effects 
of UDFs. In most experiments, we will use 10,000 UDF 
invocations — the last point on the X-axis. 

1 10 100        1000      1O0OO 

#offanccans 

Figure 4: Calibration: Table Access Costs 

In Figure 5, the number of UDF invocations is fixed at 
10,000. The three UDF designs (C++, IC++ and JNI) are 
compared as the bytearray size is varied along the X-axis. 
The UDFs themselves perform no work. Note that 10,000 
invocations of a Java UDF incurs only a marginal cost. In 
fact, for the smaller bytearray sizes, the invocation cost of 
IC++ is higher than for JNI. This indicates that the cost 
of using the various JNI interfaces is lower than the context 
switch cost involved in IC++. For the highest bytearray 
size, JNI performs marginally worse than IC++, probably 
because of the effect of mapping large bytearrays to Java. 

However, for both JNI and IC++, the extra overhead is 
insignificant compared to the overall cost of the queries. 
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Figure 5: Calibration: Function Invocation Costs 

5.3 Effect of Computation 

In this set of experiments, our goal is to measure the effect 
of computationally intensive UDFs. The number of UDF 
invocations is set at 10,000 and the bytearray size is set 
at 10,000 bytes. Along the X-axis is the UDF parameter 
NumDatalndepComps that controls the amount of computa- 
tion. We expected Java UDFs to perform worse than com- 
piled C++. The results in Figure 6 indicate that JNI per- 
forms worse than both C++ options. However, the differ- 
ence is a constant small invocation cost difference that does 
not change as the amount of computation changes. This in- 
dicates that the Java UDF is run as efficiently as the C++ 
code (essentially, the result of a good JIT compiler). 

The lower graph shows the performance of IC++ and 
JNI relative to the best possible performance (C++). Even 
when the number of computations is very high, there is 
no extra price paid by JNI. In the UDFs tested, the pri- 
mary computation was integer addition. While other op- 
erations may produce slightly different results, the results 
here lead us to the conclusion that it is perfectly reasonable 
to expect good performance from computationally intensive 
UDFs written in Java. 

5.4 Effect of Data Access 

The next step is to measure performance when there is sig- 
nificant data access involved. Once again, we fix the num- 
ber of UDF invocations at 10,000 and the bytearray size at 
10,000. The data dependent computation, NumDataDepComps, 
varies along the X axis. The other UDF parameters, 
NumDatalndepComps and NumCallbacks, are set to 0 to iso- 
late the effect of data access. 

Java performs run-time array bounds checking which we 
expect will slow down the Java UDFs. The results in Fig- 

. ure 7 reveal that this assumption is indeed valid, and there 
is a significant penalty paid. We did not run JNI with 1000 
NumDataDepComps because of the large time involved. The 
lower graph shows the relative performance of the different 
UDF designs. 

In a sense, this is an unfair comparison, because the Java 
UDFs are really doing more work by checking array bounds. 
To establish the cost of doing this extra work, we tested 
a second version of the C++ UDF that explicitly checks 
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Figure 6: Pure Computation 

the bounds of every array access. When compared to this 
version of a C++ UDF, JNI performs only 20% worse even 
with large values of NumDataDepComps. It is evident that the 
extra array bounds check affects C++ in just the same way 
as Java. 

Most UDFs are likely to make no more than a small 
number of passes over the data accessed. For example, an 
image compression algorithm might make one pass over the 
entire image. For a small number of passes over the data, the 
overall performance of Java UDFs is not very much worse 
than C++. 

5.5    Effect of Callbacks 

In our final set of experiments, we examine the effects of call- 
backs from UDFs to the database server. It is our experience 
that many non-trivial methods and functions require some 
database interaction.  This is especially likely for functions 

that operate on large objects such as images or time-series, 
but require only small portions of the whole object (a vari- 
ety of ClipO and Lookup() functions fall in this category). 
For each callback, the boundary between server and UDF 
must be crossed. 

In Figure 8, the number of callbacks varies along the 
X-axis, while the functions themselves perform no compu- 
tation (data dependent or independent). The isolated C++ 
design performs poorly because it faces the most expensive 
boundary to cross. For Java UDFs, the overhead imposed 
by the Java native interface is not as significant. The higher 
values of NumCallbacks occur rarely; one might imagine a 
UDF that is passed two large sets as parameters, and com- 
putes the "join" of the two using a nested loops strategy. 
Even for the common case where there are a few callbacks, 
IC++ is significantly slower than JNI. 
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Figure 7: Data Access 

5.6    Conclusion from Study 

To summarize the conclusions of our performance study: 
• Java seems to be an acceptable choice to build UDFs. 
Its performs poorly relative to C++ only when there is 
a significant data-dependent computation involved. This 
is the price paid for the extra work done in guaranteeing 
memory accesses (array bounds checking). 

• Remote execution of C++ functions incurs small over- 
heads due to the cost of crossing process boundaries. While 
this overhead is minimal if incurred only once per UDF 
invocation, it may be more significant when incurred mul- 
tiply due to UDF callbacks. 

• There is a tradeoff in the design of a UDF that accesses 
a large object. Should the UDF ask for the entire object 
(which is expensive), or should it ask for a handle to the 
object and then perform callbacks? Our experiments in- 
dicate the inherent costs in each approach.   In fact, our 

experiments can help model the behavior of any UDF by 
splitting the work of the UDF into different components. 

6    Java-based UDF Implementation 

Based on our experience with the implementation of Java- 
based UDFs, we now focus on the following issues generally 
relevant to the design of Java UDFs: 
• Security and UDF isolation: Our goal was to extend the 
database server without allowing buggy or malicious UDFs 
to crash the server. On the other hand, limited interaction 
of the UDFs and the server environment is desirable. 

• Resource management: Even when a restrictive security 
policy is applied, we face the problem of denial-of-service 
attacks. The UDF could consume excessive amounts of 
CPU time, memory or disk space. 

• Integration of a JVM into a database server: The execu- 
tion environment of the UDF is not necessarily compatible 
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with the operating environment of the database system. 

• Portability and Usability: The Java UDF design should 
establish mechanisms to easily prototype and debug UDFs 
on the client-side and to migrate them transparently be- 
tween client and server. 

6.1    Security and UDF Isolation 

Isolating a Java UDF in the database is similar to isolating 
an applet within a web browser. The four main mechanisms 
offered by the JVM are: 
• Bytecode Verification: The JVM uses the bytecode ver- 
ifier to examine untrusted bytecodes ensuring the proper 
format of loaded class files and the well typedness of their 
code. 

• Class Loader: A class loader is a module of the JVM man- 
aging the dynamic loading of class files. New restricted 
class loaders can be instantiated to control the behavior 
of all classes that it loads from either a local repository or 
from the network. A UDF can be loaded with a special 
class loader that isolates the UDF's namespace from that 
of other UDFs and prevents interactions between them. 

• Security Manager: The security manager is invoked by 
the Java run-time libraries each time an action affecting 
the execution environment (such as I/O) is attempted. For 
UDFs, the security manager can be set up to prevent many 
potentially harmful operations. 

• Thread Groups: Each UDF is executed within its own 
thread group, preventing it from affecting the threads ex- 
ecuting other UDFs. 

Under the assumption that we trust the correctness of the 
JVM implementation, these mechanisms guarantee that only 
safe code is loaded from classes that the UDF is allowed to 
use[Yell96]. These can include other UDF classes, but, for 
example, not the classes in control of the system resources. 
The security manager allows access restriction with a finer 
granularity: a UDF might be allowed by its class loader to 
load the 'File' class, but only with certain path arguments, 
as determined by the security manager. The use of thread 
groups limits the interactions between the threads of differ- 
ent UDFs. 

We note that while these mechanisms do provide an in- 
creased level of security, they are not foolproof; indeed, there 
is much ongoing research into further enhancements to Java 
security. The security mechanisms used in Java are com- 
plex and lack formal specification [DFW96]. Their correct- 
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ness cannot be formally verified without such a specifica- 
tion, and further, their implementations are complex and 
have been known to exhibit vulnerabilities. Additionally, 
the three main components: verifier, class loader, and secu- 
rity manager are strongly inter-dependent. If one of them 
fails, all security restrictions can be circumvented. Another 
problem of the Java security system is the lack of auditing 
capabilities. If the security restrictions are violated, there no 
mechanism to trace the responsible UDF classes. Although 
we are aware of these various problems, we believe that the 
solutions being developed by the large community of Java 
security researchers will also be applicable in the database 
context. 

6.2 Resource Management 

One major issue we have not addressed is resource manage- 
ment. UDFs can currently consume as much CPU time and 
memory as they desire. Limiting the CPU time would be 
relatively straight-forward for the JVM because each Java 
thread runs within its own system thread and thus operating 
system accounting could be used to limit the CPU time allo- 
cated to a UDF or the thread priority of a UDF. Memory us- 
age, however, cannot currently be monitored: the JVM does 
not maintain any information on the memory usage of indi- 
vidual UDFs. The J-Kernel project at Cornell [vEHCCH98] 
is exploring resource management mechanisms in secure lan- 
guage mechanisms, like JVMs. Specifically, the project is de- 
veloping mechanisms that will instrument Java byte-codes 
so that the use of resources can be monitored and policed. 
Such mechanisms will be essential in database systems. 

6.3 Threads, Memory, and Integration 

It may be non-trivial to integrate a JVM into a database 
server. In fact, some large commercial database vendors 
have attempted to use an off-the-shelf JVM, and have en- 
countered difficulties that have lead them to roll-their-own 
JVMs [Nor97]. The primary problem is that database servers 
tend to build proprietary OS-level mechanisms. For in- 
stance, many database servers use their own threads package 
and memory management mechanisms. Part of the reason 
for this is historical — given a wide variance in architectures 
and operating systems on which to deploy their systems, 
database vendors typically chose to build upon a "virtual 
operating system" that can be ported to multiple platforms. 
For example, PREDATOR is built on the SHORE storage 
manager which uses its own non-preemptive threads pack- 
age. Systems like Microsoft's SQLServer which run on lim- 
ited platforms may not exhibit these problems because they 
can use platform-specific facilities. 
• Threads and UDFs: The JVM uses its own threads pack- 
age, which is often the native threads mechanism of the 
operating system. The presence of two threads packages 
within the same program can lead to unexpected and un- 
desirable behavior. The thread priority mechanisms of the 
database server may not be able to control the threads cre- 
ated by the JVM. If the database server uses non-preemptive 
threads, there may be no database thread switches while 
one thread is executing a UDF (this is currently the case in 
PREDATOR). Further, with more than one threads pack- 
age manipulating the stack, serious errors could result. 

• Memory Management: Many commercial database servers 
implement proprietary memory managers. For example, a 
common technique is to allocate a pool of memory for a 

query, perform all allocations in that pool, and then re- 
claim the entire pool at the end of the query (effectively 
performing a coarsely-grained garbage collection). On the 
other hand, the JVM manages its own memory, perform- 
ing garbage collection of Java objects. The presence of 
two garbage collectors running at the same time presents 
further integration problems. We do not experience this 
problem in PREDATOR, because there is no special mem- 
ory management technique used in our implementation of 
the database server. 

6.4 Portability and Usability 

We have developed a library of Java classes that helps de- 
velopers build Java applets that can act as database clients. 
The details of this library are presented in [PS97]. It is 
roughly analogous to a JDBC driver (in fact, we have built 
a JDBC driver on top of it) with extensions for handling 
complex data types. The user sits at a client machine and 
accesses the PREDATOR database server through a stan- 
dard web browser. The browser downloads the client applet 
from a web server, and the applet opens a connection to the 
database server. 

Our goal is to be able to allow users to easily define new 
Java UDFs, test them at the client, and migrate them to 
the server. This mechanism is currently being implemented. 
The basic requirement is that there should be similar inter- 
faces at the client and at the server for UDF development 
and use. Every data type used by the database server is mir- 
rored by a corresponding ADT class implemented in Java. 
These ADT classes are available both to the client and the 
server6. Each ADT class can read an attribute value of its 
type from an input stream and construct a Java object rep- 
resenting it. Likewise, the ADT class can write an object 
back to an output stream. Thus the arguments of an UDF 
can be constructed from a stream of parameter values, and 
the result can be written to an output stream. At both 
client and server, Java UDFs are invoked using the identical 
protocol; input parameters are presented as streams, and 
the output parameter is expected as a stream. This allows 
UDF code to be run without change at either site. 

6.5 Experience 

We have described a relatively well-understood usage of the 
Java security mechanisms that is essentially identical to run- 
ning multiple applets within a web browser. Our implemen- 
tation has developed a common internal interface that can 
be supported at both client and server for the development 
of portable Java UDFs. 

There are interesting design issues in integrating a JVM 
into the database server, especially in dealing with threads 
and memory allocation. Based on our experiments, we ob- 
serve that the cost of isolated-process UDFs is reasonable 
unless there are a large number of callbacks. Consequently, 
it may be practical to consider running the JVM in a sep- 
arate process from the database server. The attraction of 
this solution lies in its simplicity and the ability to use off- 
the-shelf JVMs. 

7    Conclusion 

This paper presented an initial study of the issues involved 
in extending database systems using Java. The conclusion is 

eThe client can download Java classes from the server-site. 
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that an extensible database system can support secure and 
portable extensibility using Java, without unduly sacrificing 
performance. We are currently developing the infrastruc- 
ture to move Java UDFs between clients to servers, and 
optimization mechanisms to choose between the various ex- 
ecution options. We also intend to build applications that 
will test this infrastructure in the real world. 
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Abstract 

We explore the execution of queries with client-site user-defined functions (UDFs). Many UDFs can 
only be executed at the client site, for reasons of scalability, security, confidentiality, or availability of 
resources. How should a query with client-site UDFs be executed? We demonstrate that the standard 
execution technique for server-site UDFs performs poorly. Instead, we adapt well-known distributed 
database algorithms and apply them to client-site UDFs. The resulting query execution techniques are 
implemented in the Cornell Predator database system, and we present performance results to 
demonstrate their effectiveness. 
We also reconsider the question of query optimization in the context of client-site UDFs. The known 
techniques for expensive UDFs are inadequate because they do not take the location of the UDF into 
account. We present an extension of traditional 'System-R' optimizers that suitably optimize queries 
with client-site operations. 

1 Introduction 

Optimization techniques have been studied thoroughly for object-relational SQL queries with expensive 
user-defined functions (UDFs). The assumptions made in these studies are that (a) the cost of each 
UDF invocation is known a priori, and invariant, (b) the UDF itself is a blackbox characterized by a 
single cost value (which may be broken into CPU and I/O costs). In some systems, the cost may be 
specified as a function of the sizes of the function arguments. These assumptions implicitly expect that 
the user is extending the server with a new function. However, experience with object-relational 
databases shows that extending the database server is difficult even for experienced programmers, 
and impossible for large numbers of non-expert users. In large-scale environments like the WWW, 
users need to incorporate client-site UDFs into SQL queries run at a server. Consider the following 
motivating example: 

A DBMS offers stock market data to its clients over the WWW. The users connect to the 
database to analyze the performance of companies and to extract the necessary information 
about prospective candidates for their investments. Sophisticated investors will have their own 
local collections of data and analysis algorithms that must be integrated into the process of 
choosing and retrieving the desired information. 

Take the following example query: 

SELECT S.Name,   S.Report 
FROM       StockQuotes  S 
WHERE     S.Change  /  S.Close  >  0.2 AND ClientAnalysis(S.Quotes)   >  500 

Figure 1: Use of a Client-Site UDF 

The investor requests names and financial reports of companies that accord to his criteria. The first 
predicate, filtering companies on a 20%+ uptick, can be expressed with simple SQL predicates and will 
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be executed on the server. However, the second predicate involves a UDF that has to be executed on 
the client site for a variety of reasons. 
In this and many other examples, it becomes clear why client-site UDFs need to be supported: 
a) The investor's analysis UDFs are a valued asset that is ideally not revealed. 
b) The UDFs may use data that resides exclusively on the client. These data might only be available 

in a client-specific representation, or it might represent confidential information. 
c) The UDFs may not be trusted by the server. In earlier work [GMHE98], we showed that the server 

can trust UDFs written in Java to a certain extent, and we are developing further security 
mechanisms [CSM98]. However, the security demands of the server constrain the UDFs. Further, 
many UDFs are not written in Java, and if these are allowed to run at the server, they could 
compromise its security. 

d) The UDFs may be resource intensive and it may be inappropriate to burden the server with their 
execution. 

e) In the context of such expensive operations, there is a serious scalability concern, since resource 
intensive UDFs of a multitude of users would together degrade the server performance. 

In our research, the UDFs and their client-site execution environment were implemented in Java. 
However, there are many other architectural frameworks and distributed implementation models, like 
CORBA.DCOM, or JavaBeans, which we could have chosen instead, and to which the research 
results apply. For the rest of this paper, we will assume that the network connecting the clients with the 
server forms the bottleneck of client-site UDF execution. This applies for example to clients connected 
over the Internet, or over an asymmetric connection, where only the downlink has high bandwidth while 
the uplink will form the bottleneck. 

1.1 Summary of Contributions 

We believe that client-site UDFs are central to scalable object-relational applications. Existing query 
processing techniques for expensive UDFs are not appropriate for client-site UDFs. Indeed, the use of 
traditional approaches leads to slow and inefficient execution. This can be explained by three key 
observations: 
a) Client-site UDF execution time can involve network latency. , the latency needs to be hidden 

through the appropriate use of concurrency. 
b) Client-site UDF performance can depend on the optimized usage of network bandwidth. 

Specifically, the asymmetry between client uplink and downlinks needs to factor into query 
evaluation decisions. It may be possible to trade off bandwidth on the uplink for bandwidth on the 
downlink. 

c) The optimal placement of client-site UDF operators in the query plan is different from the 
placement of expensive server-site UDFs. 

The primary contribution of the paper is the development of techniques to process and optimize queries 
with client-site UDFs. These techniques blend object-relational query processing with the distributed 
database algorithms. Specifically, our research makes the following contributions: 
1. We develop efficient execution algorithms for client-site UDFs, and describe their implementation. 
2. We explore the tradeoffs between algorithms due to asymmetric network connections, and 

propose options that save bandwidth on the client's uplink at the cost of increased traffic on the 
downlink. 

3. We present performance results of the prototype implementation in the Cornell Predator database 
system. 

4. We present a simple cost model that allows us to determine the optimal choice of the execution 
algorithms and their parameters 

5. We develop query optimization techniques for complex queries with client-site UDFs. The 
techniques are extensions of a traditional System-R style optimizer. 
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Our conclusion is that a database system needs to recognize the special characteristics of client-site 
UDFs and apply appropriate query evaluation and optimization strategies to such queries. 

1.2 Related Work 

To summarize, our work on queries with client-site UDFs builds on existing work on expensive UDF 
execution and distributed query processing. The main issues are: (a) how should the UDFs be 
executed, (b) how should query plans be optimized? 
Client-site UDFs are expensive; they cannot simply be treated like built-in, cheap predicates. The 
existing research on the optimization of queries with expensive server-site functions is closely related. 
The execution of UDFs is considered straightforward; they are executed one at a time, with caching 
used to eliminate duplicate invocations. The process of efficient duplicate elimination by caching has 
been examined in [HN97]. Predicate Migration[HS93,Hel95] determines the optimal interleaving of join 
operators and expensive predicates on a linear join tree by using the concept of a rank-order on the 
expensive predicates. Its per-tuple cost and selectivity determine the rank of any operation. The 
concept was originally developed in the context of join order optimization [IK84, KBZ86, SI92]. The 
Optimization Algorithm with Rank Ordering [CS97] uses rank order to efficiently integrate predicate 
placement into a System-R style optimization algorithm. UDF optimization based on rank ordering 
assumes that the cost of UDF operators is only determined by the selectivity of the preceding 
operators. We show in Section 5 that rank order does not apply well to client-site operations. Our 
optimization algorithm does not rely on it. Another approach models UDF application as a relational join 
[CGK89, CS93] and uses join optimization techniques. Our approach to optimization takes this route. 
There is a wealth of research on distributed join processing algorithms[SA80,S+79,ML86] that our work 
draws upon. The distribution of query processing between client and server has also been proposed 
independently of client-site UDFs in [FJK96], as a hybrid between data and query shipping. Joins with 
external data sources, specifically text sources, have been studied in [CDY95]. To avoid the per-tuple 
invocation overhead of accessing the text source, a semi-join strategy is proposed: Multiple requests 
are batched in a single conjunctive query and the set of results is joined internally. Earlier work on 
integration of foreign functions [CS93] proposes the use of semantic information by the optimizer. Our 
work is complementary in that semantic information can be used in PREDATOR to transform UDF 
expressions[S98]. We consider the execution of queries after such transformations have been applied. 
To summarize, our work is incremental in that it builds upon existing work in this area. However, the 
novel aspects of the work are 
(a) we identify client-side UDFs as an important problem and adapt existing approaches to fit the new 

problem domain, 
(b) while earlier work modeled UDFs as joins for the purpose of optimization, we go further by using 

join algorithms for the purposes of execution too, 
(c) we identify and exploit important tradeoffs related to network asymmetry that lead to interesting 

optimization choices. 

2 Client-Site UDF Execution 

In this section we explore different execution techniques for a single client-site UDF applied to all the 
tuples of a relation. For now, we ignore the issue of query optimization and operator placement. In the 
first subsection, we expose the poor performance of a naive approach that treats client-site UDFs like 
expensive sever-site UDFs. The next subsection models UDFs as joins, leading to the development of 
evaluation algorithms based on distributed joins. We use the example query in Example 1. 
In our terminology, the input relation consists of the columns that are arguments to the UDF - the 
argument columns (Quote) - and the non-argument columns (Report .Name). The input relation has 
two different kinds of duplicates: those which are identical in all columns, called tuple duplicates, and 
those only identical in the argument columns, called argument duplicates. Simple predicates that rely 
on the values in the result columns, but can be executed on the client, for example 
ClientAna1ysis(S.Quotes)>500, are called pushable predicates. Similarly, projections that can 
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be applied immediately after the UDF are called pushable projections, as in our example the projection 
on Report and Name. 

2.1 Traditional UDF Execution 

Current object-relational databases support server-site UDFs. It is tempting to treat a client-site UDF as 
a server-site UDF that happens to make an expensive remote function call to the client. If 
ClientAnalysis were a server-site UDF, the established approach is to treat it as a black-box 
extension. The evaluation pseudo-code for the classical 'iterator-model' query processor is shown 
below. 

while (Input.availableO) 
Record := Input.getRecordO 
Result := UDF( getArgumentsC Record ) ) 
output.putRecord( addColumnC Record, Result ) 

The encapsulation of the client communication within a black-box UDF makes some optimizations 
impossible. On each call to ClientAnalysis, the full latency of network communication with the 
client is incurred. This is because most iterator-model execution engines do not apply one operator of 
the query plan pipeline to multiple tuples concurrently. (We show the timeline of execution in Figure 2a). 

Server: 

Client: 

H 

Downlink  Itolink 

vy 
UDF 

(a) (b) 

Figure 2: Timeline of Nonconcurrent and Concurrent Execution 

The key observation here is, that even if the client might not process multiple tuples concurrently, the 
network is capable of accepting further messages while others are already being transferred. This 
means that we can keep a number of messages concurrently in the pipeline formed by downlink, client 
UDF-processing, and uplink. We refer to this number as the pipeline concurrency factor. Figure 2(b) 
shows the timeline for a concurrency factor of 5. 
Another problem of the traditional approach is the ignorance of network bandwidth. But it is possible to 
vary the bandwidth usage using different execution techniques. Consider the UDF in Figure 1: It seems 
straightforward to simply send the quotes and wait for the results. Then the selection that depends on 
the results can be applied on the server site. Depending on the networking environment the 
performance might be far from optimal. For example, assume that the client's uplink turns out to be the 
bottleneck, as is the case with modern communication channels like ADSL, cable modems, and 
wireless networks. We might accept additional traffic on the downlink if we could in exchange reduce 
the demand on the uplink. We will explore different execution strategies that allow these kinds of 
tradeoffs. 

2.2 UDF Execution as a Join 

It is possible to model UDF application on a table as a join operation: The user defined function in 
Figure 1 can be seen as a virtual table with the following schema: 

ClientAnalysis(<  PriceQuoteArgument   ::   TimeSeries   ,   Rating   ::   Integer >) 

The PriceQuoteArgument column forms a key, and the only access path is an "indexed" access on 
the key value. Indexed access in this manner incurs costs independent of the size of the table. UDF 
execution as a join with such a UDF table would work analogously to an equi-join with a relation 
indexed on the join columns. The pseudo code for the join of a relation with the UDF is shown below: 
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for each tuple tl from outer relation 
retrieve tuple t2 with matching argument columns from virtual UDF table 
join tl with t2 on argument columns 
output result 

Since UDF application is modeled as a join, client-site UDF application is modeled as a multi-site join. 
We now examine distributed join algorithms as they apply to this context. 

2.3 Distributed Join Processing 

There are three standard distributed algorithms[SA80,ML86] to join the outer relation fland the inner F, 
residing on sites S(erver) and C(lient): 

• Join at S: Send Fto S and join it there with ft (Not feasible for UDFs since there is no file-scan 
access to F) 

• Join at C: Send R to C and join it there with F. 

• Semi-Join : Send a projection on the join columns of R to C, which returns all matching tuples of F 
to S, where they are joined with ft 

Identifying S with the server and C with the client, we get two variants for client-site UDF application 
from the last two options. We will briefly introduce each one now, and go into more detail in the later 
part of this section. 

2.3.1 Semi-Join 
Semi-joins are a natural 'set-oriented' extension of the traditional 'tuple-at-a-time' UDF execution 
strategy. Consider the pseudo code below: 
For each batch of tuples in R: 

Step 0: eliminate duplicates (server) 
Step 1: send a set of unique S.x values to the client (downlink) 
Step 2: evaluate UDF(S.x) on all S.x values (client) 
Step 3 : send results back to the server (uplink) 
Step 4: 'join' each result with the corresponding tuples (server) 

Note that steps 0 through 4 may be executed concurrently because they use different resources 
(except 0 and 4). If the set sent in step 1 consists of only one argument tuple, then this is the 'tuple-at-a- 
time' approach described in the previous section. If the entire relation R is treated as the 'batch', we 
have a classical semi-join. The details of the different steps vary depending on the execution strategy. It 
is convenient to model this conceptually by Figure 3 below, where the different steps are identified as 
components of a pipeline, with the potential for pipeline concurrency. 
For server-site UDFs it is considered acceptable if the execution mechanism blocks for each UDF call 
until the UDF returns the result. However, for client-site UDFs a large part of the over-all execution time 
for one tuple consists of network latencies - steps 1 and 3 above. Instead, we can ship several tuples 
on the downlink at the same time, while another tuple is processed by the UDF, and other results are 
being sent back over the uplink. Concurrency between the server, the client, and the network can hide 
the latencies. To obtain this goal we will architecturally separate the sender of the UDFs arguments 
from the receiver of its results, and have them and the client work concurrently. These components 
form a pipeline, whose architecture is shown in Figure 3. 

Server 

Client 

Figure 3: Semi-Join Architecture 
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The joining of the UDF results with the processed relation depends in its complexity on the 
correspondence between the tuple streams coming to the receiver from the client and from the sender. 
Since the sender eliminates duplicates, the receiver has to do an actual join between the two streams. 
Any join technique (for example, hash-join) is applicable at the receiver. If the sender sorts and groups 
its input on the argument column before sending it to the client, then the receiver has to perform a 
merge-join. We will assume this in the rest of the paper. 

2.3.2 Join at the Client 

. 
Server 

UDF Execution 
Client 

L, UDF _l 

Figure 4: Client-Site Join Architecture 

Join at the client-site is possible by sending the entire stream of tuples from the outer relation to the 
client site. The UDF is applied to the arguments from each tuple, and the UDF result is added to the 
tuple and shipped back to the receiver. The sender and receiver of the tuple streams on the server do 
not need to coordinate, since the entire tuples (with duplicates) flow through the client, (as shown in 
Figure 4.). Note that this does not mean that the client makes duplicate UDF invocations, since the 
server may sort the stream of tuples on the argument attributes. 
An advantage of this strategy is that pushable selections and projections can be moved to the client 
site. This reduces the bandwidth used on the client-server uplink. On the other hand we have to send 
back the full records minus applicable projections, and not just results, as for the semi-join. Compared 
to the semi-join, more data is also sent on the downlink. Further, on both downlink and uplink, the 
semijoin method eliminates argument duplicates, whereas the client-site join performs no duplicate 
elimination. The difference between semi-join and client-site join is visualized in Figure 5. The left side 
shows what is being sent by each join method, the right side shows what is being returned. The 
horizontals correspond to the transferred columns while the verticals correspond to rows. We will 
quantify and experimentally evaluate these tradeoffs in the next section. 

Downlink: Uplink: 

CSJ 
SJ 

CSJ 

SJ 

Duplicates 
Duplicates 
UllDliCatRR 
Arguments       Non-Arguments 

CSJ SJ 
/■                                   > 

UuDlicates 
Duplicates 
Duplicates 

SJ 
■ CSJ 

Arguments       Non-Arguments      Results 

Figure 5: Tradeoffs between Client-Site and Semi-Join 

3 Implementation 

We have implemented relational operators that execute client-site UDFs in the Cornell PREDATOR 
ORDBMS. All server components were implemented in C++ and all client-site components are written 
in Java. Three different execution strategies were implemented: 
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a) Naive tuple -at-a-time execution 
b) Semi-join 
c) Client-site join 
We first describe the implementation of the algorithms, and then compare their performance. Our goals 
for the performance evaluation are: 

• Demonstrate the problems of the naive evaluation strategy. 

• Show the tradeoffs between semi-join and client-site join evaluation of the UDF. 

3.1 Join Implementation 

3.1.1 Semi-Join 
This relational operator implements the semi-join of a server-site table with the non-materialized UDF 
table on the client site. In our architecture (see Figure 3), the server side consists of three components: 
the sender, the receiver, and the buffer with which both communicate records. The sender gets the 
input records from the child operators and, after sending off the argument columns, enqueues them on 
the buffer. The receiver dequeues the records from the buffer and then attempts to receive the 
corresponding results from the client. Sender and receiver are implemented as threads, running 
concurrently. The buffer as a shared data structure is needed to keep the full records, while only the 
arguments are sent to the client. Also, records whose argument columns form duplicates of earlier 
records have to be joined with cached results at the receiver. 

3.1.2 Concurrency 
The size of the buffer that holds records that are 'between' sender and receiver, corresponds to the 
pipeline concurrency factor: The number of tuples that are transferred and processed on the client 
concurrently. A concurrency factor of 1 corresponds to tuple-at-a -time evaluation. 
How large should the concurrency factor be? Analytically, we would expect that the number of records 
between sender and receiver should equal the number of records that can be processed by the 
pipeline sender - client - receiver in the time that it takes for one tuple to pass this pipeline. Let B be the 
minimum of the bandwidths of the downlink, the client UDF processor, and the uplink. One of these 
forms a bottleneck of the pipeline and thus limits the overall bandwidth. Let T be the time that it takes 
for one argument to travel to the client, for the result to be computed, and to be returned to the server. 
This is the time for which a record stays in the buffer, after its argument columns have been sent off 
until its result is received. The number of records that can be processed in this time is simply B * T, 
which is the necessary size for the buffer. 

3.1.3 Client-Site Join 
The client-site join uses a variation of this architecture: The sender dispatches the whole records to the 
client, which sends back the records with the additional argument column. We have the same 
components as above, but without the buffer between sender and receiver. The client-site join does not 
require any synchronization between both components, in contrast to the semi-join, where the buffer is 
used to synchronize sender and receiver. 

3.2 Cost Model 

We show in the performance evaluation section that the network latency problems of tuple-at-a-time 
UDF execution can be solved through concurrency (either semi-join or client-site join). Consequently, 
we focus in our cost-model on these two smarter algorithms. Both algorithms incur nearly identical 
costs at the client and on the server. We assume that neither client nor server is the pipeline bottleneck, 
and propose a simple cost model based on network bandwidth. We do recognize that this is a 
simplification and that a mixture of server, client and network costs may be more appropriate in certain 
environments (as was shown for distributed databases[ML86]). We also ignore the possibly significant 
cost of server-site duplicate elimination because the issues are well understood [HN97] and not 
necessarily central in the Web/Internet large-scale environment that we address. 
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3.2.1 Cost Model for Semi-Join and Client-Site Join 
We now analyze and empirically evaluate the involved tradeoffs with respect to the factors that were 
visualized in Figure 5. To quantify the amount of data sent across the network, we define the following 
parameters: 

A: Size of the argument columns /total size of the input records 

D: Number of different argument tuples / cardinality of the input relation 

S: Selectivity of the pushable predicates 
P: Size of projected output record / size of output record before pushable projections are applied 
(i.e. the column selectivity of the projections) 

/: Size of one input record 

R: Size of one UDF result 
N: Asymmetricity of the network: (bandwidth of the downlink / bandwidth of the uplink.) 

On a per- tuple basis, a semi-join will send the (duplicate free) argument columns: 

D * ( A * I)     (semi-join, bytes transferred on downlink, per tuple average) 

The client will return the results without applying any selections or projections: 

N * D * R       (semi-join, bytes transferred on uplink, per tuple average) 
The client-site join will send the full input records, without eliminating duplicates: 

/ (client-site join, bytes transferred on downlink, per tuple average) 
The client will return the received records, together with the UDF results, after applying pushable 
projections and selections: 

N * (I + R ) * P * S (client-site join, bytes transferred on uplink, per tuple average) 
The bandwidth cost incurred at the bottleneck link is the maximum of the costs incurred at each link. N, 
the network asymmetricity weighs these costs in the direct comparison. The link with maximum cost will 
be the link whose used bandwidth is closer to its capacity and who will thus determine the turnaround 
for the join execution. 

3.2.2 Duplicate elimination 
The proportion of duplicates present in the input relation influences down- and uplink cost identically. 
For the semi-join, it reduces the necessary bandwidth because duplicate arguments and the 
corresponding duplicate results are never transferred. The client-site join cannot exploit the presence of 
argument duplicates because it transfers the whole record, including the columns on which such 
duplicates might differ. 
Duplicate elimination on the client site could be used with both join methods to reduce the processing 
time on the client. If sorting is used, the duplicate elimination could be prepared on the server site, but 
again, without affecting the necessary network bandwidth. 

4 Performance Measurements 

We present the results of four experiments: We demonstrate the problems of the naive approach by 
measuring the influence of the pipeline concurrency factor. The next two experiments show the 
tradeoffs between semi-join and client-site join on a symmetric and an asymmetric network. Finally we 
show these tradeoffs in their dependence on the size of the returned results for different selectivities. 
Our results show that client-site joins are superior to semi-joins for a significant part of the space of 
UDF applications. Exploiting the tradeoffs between both join methods, especially in the context of 
asymmetric networks, allows essential performance improvements. 
All of our experiments were executed with the server running on a 300Mhz Pentium PC with 130 
Mbytes of memory. The client ran as a Java program on a 150Mhz Pentium with 80 Mbytes of 
memory, connected over a 28.8KBit phone connection. The asymmetric network was modeled on a 
10Mbit Ethernet connection by returning Ntimes as many bytes as actually stated. 
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4.1 Concurrency 

We evaluated the effect of the concurrency factor on performance for the following simple query: 

SELECT UDF(R.DataObject)   FROM Relation R 

Relation is a table of 100 Dataobjects, each of the same size. UDF is a simple function that 
returned another object of the same size. Figure 6 gives the overall execution time of the query in 
seconds, plotted against the concurrency factor (size of the buffer) on the x-axis, for object sizes 100, 
500, and 1000 bytes. 
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Figure 6: Effect of Concurrency 

Our analysis suggested that the optimal concurrency factor is bandwidth times latency The number of 
tuples that can be processed concurrently, while one tuple travels through the whole pipeline. Following 
our assumption, the network is the bottleneck and its bandwidth limits the overall throughput. In this 
graph, we can observe that the optimal level for 1000 bytes is reached at 5 and for 500 bytes at 10: 
This would correspond to 5000 bytes as the product of bandwidth and latency. Presumably, for 100 
byte object, the optimal concurrency level would be 50. 
The presented data were determined with a nonthreaded implementation of the presented architecture: 
This facilitates the simple manipulation of the concurrency factor. All further experiments ran on an 
implementation that simply uses different threads for sender and receiver. 

4.2 Client-Site Join and Semi-Join on a Symmetric Network 

Our analysis suggests that the uplink bandwidth required by the client-site join is linear in the selectivity 
while the downlink bandwidth is independent of the selectivity. For the total execution time, this means 
that as long as the downlink is the bottleneck, selectivity will have no effect, but when the uplink 
becomes the bottleneck, the execution time will increase linearly with selectivity. The semi-join is not 
affected by a change in selectivity. 
We measured the overall execution time for the query in Figure 7. Relation has 100 rows, each 
consisting of two data objects, together of size 1000 bytes. A was fixed at 50%: The Argument and the 
NonArgument object were each 500 bytes. P, the projection factor is adjusted to the result size, such 
that: P*(l+R) = l*(1-A)+R, meaning that no arguments have to be returned by the client-site join, only 
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the non-argument columns and the results. UDFl takes an object from the Argument column and 
returns true or false, while UDF2 takes the same object and returns a result of known size. 

SELECT R.Argument,   R.NonArgument,  UDF2(R.Argument) 
FROM       Relation R 
WHERE    UDFl(R.Argument) 

Figure 7: Measured Query 

In Figure 8 we plot the overall execution time of the client-site join relative to that of the semi-join 
against the selectivity of UDFl on the x-axis. Thus, the line at y = 1.0 represents the execution time of 
the semi-join. We varied the selectivity from 0 to 1.0 and plot curves for result sizes 100, 1000, 2000, 
and 5000 bytes. The execution time of a semi-join is independent of the selectivity because semi-joins 
do not apply predicates early on the client. Thus all client-site join execution time values of one curve 
are given relative to the same constant. In this, as in all other experiments, we set D=1. 
We will first discuss the shape of each curve, meaning the slope of the different linear parts, and then 
its height. It can be observed that for each result size the curve runs flat up to a certain point and from 
then on rises linearly. For the flat part of the curve the downlink is the bottleneck of the client-site join's 
execution Only from a certain selectivity on will its uplink form the bottleneck and thus determine the 
shape of the curve. For result size 1000 bytes, this point is at selectivity 0.6, when the returned data 
volume (S * (P*(l+R)) = 0.6 * 1500) approaches the received data volume (I = 1000). The larger the 
result size the earlier this point will be reached because the ratio of received to returned data changes 
in favor of'the latter. The received data are independent of the selectivities: As long as the the downlink 
dominates the curve is constant. The increasing, right part of the curves is part of a linear function 
going through the origin of the graphs: At zero selectivity the uplink would incur no cost. Its cost is linear 
in the amount of data sent on it, which is linear in the selectivity of the predicate. 
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Figure 8: Client-Site Join versus Semi-Join on a Symmetric Network 

The height of the curve is influenced by the relative execution time of the semi-join. With larger result 
sizes the flat part of the curve on the left side of the graph will run deeper, because of the relatively 
higher costs of the up-link dominated semi-join, compared to the downlink dominated client-site join. 
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For example, the curve for 2000 goes flat at 0.5 (1000 bytes on s.j.downlink / 2000 bytes on 
c.s.j.uplink). 

4.3 Client-Site Join and Semi-Join on an Asymmetric Network 

In this experiment, we explored the same tradeoffs as above in a changed setting: The network is 
asymmetric with the downlink bandwidth being hundred times as much as that of the uplink ( N=100). 
This choice was motivated by assuming a 10Mbit cable connection as a downlink that is multiplexed 
among a group of cable customers. With a 28.8Kbit uplink this would result in N = 350 for exclusive 
cable access and, as a rough estimate, N= 100 after multiplexing the 10Mbit cable. 

The same query as above is executed (Figure 7). The argument columns consist of 4000 bytes and the 
non-argument columns of 1000 (A=80%), and again, only the non-argument columns and the results 
are returned after the pushable projections (P*(l+R) = l*(1-A)+R). The selectivity is varied along the x- 
axis from 0 to 1 and we give curves for result sizes 500, 1000, and 5000 bytes. The relative execution 
time of the client-site join with respect to the semi-join is given in Figure 9. 
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Figure 9: Client-Site Join versus Semi-Join on Asymmetric Network 

As our cost model predicts, the bandwidth of the uplink depends linearly on the selectivity. The flat part 
of the curves in the last graph is absent because the downlink never forms a bottleneck. Our model 
predicts a selectivity of less than: l/(N*P*(R+l)) = 0.0083 to make the downlink the bottleneck of the 
lowest curve (result size 5000 bytes). 
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4.4 Influence of the Result Size 

Finally, we fixed the selectivity S and varied the result size R along the x-axis from 0 to 2000 bytes. 
Four different curves are shown, for selectivities 25%, 50%, 75%, and 100%. The argument size was 
100 bytes, the overall input size 500 bytes. Again, only non-arguments and results are returned and, as 
in the second experiment, the network is symmetric. The resulting execution times of the client-site join 
relative to those of the semi-join are given in Figure 10. 
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Figure 10 : Influence of the Result Size 

It can be seen that the client-site join will only be cheaper if the pushable predicates are selective 
enough to reduce the uplink stream sufficiently and if the results are large enough to realize the gain in 
comparison to the records that have to be shipped on the downlink. The steep initial decline of the 
curve represents the change from a downlink bottleneck to an uplink bottleneck. While the former is 
disadvantageous for the client-site join, the latter emphasizes the role of pushed down predicates and 
projections. The crossing points of the curves with the 1.0 line satisfies, as expected, that the client-site 
join's returned data times the selectivity are equal to the semi-join's returned data. The curve for 
selectivity one will never cross that line. The curves' slope decreases because the size difference 
between the client-site joins and the semi-joins returns becomes less significant as results are getting 
larger. The curves assymptotically approach the horizontal lines that correspond to their selectivity. 

5 Query Optimization 

We showed that existing UDF execution algorithms are inadequate for client-site UDF queries. Now we 
show that existing query optimization techniques are also inadequate. There are two reasons for this: 
(a) Multiple client-site operations can exhibit interactions that affect their cost. Even for plans with a 

single client-site UDF these interactions are relevant, because the result operator of every plan, 
which ships the results to the client, can be modeled like a client-site "printing" UDF. 

(b) The cost of the client-site join is sensitive to the number of duplicates in its input stream. 
The existing approaches rely on the concept of a rank order: Every operation has a rank, defined as its 
cost per tuple divided over one minus its selectivity. Unless otherwise constrained, expensive 
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operations appear in the plan ordered by ascending rank. The validity of a rank-order optimization 
algorithms is based on two assumptions that are violated by client-site UDFs: 
a) The per-tuple execution cost of an operation is known a priori, independent of its position in the 

query plan. 

b) The total execution cost of an operation is its per-tuple cost times the size of the input after 
duplicate removal. UDFs can be pulled up over a join, without suffering additional invocations on 
duplicates in the argument columns. 

Neither assumption is valid for network- intensive client-site UDFs. The cost of a client-site operation is 
strongly dependent on its location next to other such operations with which it can be combined. And 
client-site joins as well as combinations of semi-joins are dependent on the number of duplicates. 
We propose an extension of the standard System-R optimization algorithm for such queries. As a 
running example, we will use the query in Figure 11. A client tries to find cases in which his analysis 
results in the same rating than that of a broker. Ratings contains the ratings of many companies' 
stocks by several brokers. 

SELECT S.Name, E.BrokerName 
FROM  StockQuotes S, Estimations E 
WHERE S.Name = E.CampanyName AND 

ClientAnalysis(S.Quotes) = E.Rating 

Figure 11: Example Query : Placement of Client-Site UDF Cl i entAnal ysi s 

5.1 UDF Interactions 

It is important to observe that the execution costs of a client-site UDF depend on the operations 
executed before and after it. If a client-site operation's input is produced by another client-site operation, 
the intermediate result does not have to be shipped back to the server. If such operations share 
arguments, they can be executed on the client as a group and the arguments are shipped only once. 
For example, a client-site UDF that is executed immediately before the result operator can be executed 
together with it, without ever shipping back its results. We will first discuss the case of client-site joins, 
then that of semi-joins. 
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Figure 12 : Possible Plans for the Query in Figure 11 

5.1.1 Client-Site Join Interactions 

Consider our example from Figure 11 with the possible query plans shown in Figure 12. There are 
only two possible orderings of the operators, one executing the client-site function before the join, one 
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after. In the latter case there are three different options. We describe all four options in more detail and 
give possible motivations: 
a) UDF before the join: This avoids duplicates that the join might generate. The result of the UDF can 

also be used during the join, for example, to use an index on Rati ng. 
b) UDF after the join: The number of tuples and/or the number of distinct argument tuples in the 

relation might be reduced by the join. 
c) UDF and pushable operations after join: If the UDF uses the client-site-join algorithm, the selection 

can be pushed down to the client site, reducing the size of the result stream. Further, projections 
may also be pushed to the client. In this example, only Name and BrokerName of the selected 
records are returned to the server. 

d) UDF combined with result delivery: For many queries, the results need to be delivered to the client 
(this is not true for INSERT INTO queries). Since there is no other server-site operation between 
the UDF and the final result operator, the UDF with the pushable operations can be executed in 
combination with the final operator. This avoids the costs of returning any results from the client 
and also of shipping the final results. 

It can be seen that the locations of UDFs in the query plan (a vs. b) determines the available options for 
communication cost optimizations: The cost of a UDF application is dependent on the operators before 
and after it! These locations and the locations of pushable predicates need special consideration during 
plan optimization. Similar observations can be made about semi-joins, which we consider in the 
following section. 

5.1.2 Semi-Join Interactions 
Semi-joins differ from client-site joins in their interactions: Neither the final result operator, nor pushable 
selections or projections are relevant for grouping. There are three motivations for grouping semi-joins: 

• The result of one client-site UDF is input to another. This avoids sending the results back on the 
uplink and transferring them, with the other arguments of the second UDF, on the downlink. The 
superset of the arguments is sent to the first and only duplicates on this superset are eliminated. 

• The arguments of one function are a subset of the arguments of another. This saves the costs of 
sending the subset twice, but implies transferring all duplicates that are not duplicates in all of the 
superset's columns. 

• The argument sets of two functions intersect. In this case it is not generally true that we save 
communication costs when sending the superset instead of the two subsets. Especially, when 
considering the duplicates sent on each subset because they are not duplicates on the whole 
superset. 

As an example consider the query in Figure 11 with an additional expression in the select clause: 
VolatilityCS.Quotes, S.FuturePrices). The client requests an estimation of the price 
volatility for the company stocks selected in the query, as computed by the client-site UDF. Some query 
plans of interest are shown in Figure 13. 
The first two options are extensions of Figure 12(a), while the last two are extensions of Figure 12 b) 
and (c): 
a) Vol ati 1 i ty is pushed down to the location of Cl i entAnalysi s, so that both can be executed 

together: The columns Quotes and Futures are shipped once for both UDFs. This saves 
shipping Quotes twice, but it does not allow the elimination of all duplicates in this column. 
Identical quotes that are paired with different Futures objects, have to be shipped several times. 
In this plan, cli entAnal ysi s does not benefit from the join's selectivity, volatility waives 
both the join's and the selection's selectivities. 

b) Cl i entAnal ysi s is executed before the join, for example, because its result is used for index 
access to Esti mates, vol ati 1 i ty is executed after the last selection, to benefit from combined 
selectivity. It is not joined with the result operator as a client-site join because then its arguments 
would have to be sent with duplicates. 

c) If Cl i entAnal ysi s is moved after the join, it can be executed together with vol ati 1 i ty. Both 
benefit from the join's selectivity, while the duplicates generated by the join in both needed input 
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columns can be eliminated. Again, the input of ClientAnalysis input might involve some 
duplicates. 

d) To avoid all duplicates on Quotes, Cl i entAnal ysi s is executed separately, with the selection 
pushed down. Volatility is also not merged with the result operator, to avoid duplicates in its 
input columns. 
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Figure 13 : Possible Plans for the Query in Figure 11 with Additional UDF 

5.2 Optimization Algorithm 

We will start by presenting the basics of System-R style optimization, then we discuss the standard 
extensions for expensive server-site UDFs, before we finally present our algorithm. 

5.2.1 System-R Optimizer 

System R[SAC+79] uses a bottom-up strategy to optimize a query involving the join of N relations1. 
Assume that there are join predicates between every pair of relations (this is not very realistic but one 
can always assume the existence of a trivially true predicate). Three basic observations influence the 
algorithm: 

• Joins are commutative 

• Joins are associative 

• The result of a join does not depend on the algorithm used to compute it. Consequently, dynamic 
programming techniques may be applied. 
Initially, the algorithm determines the cheapest plans that access each of the individual relations. In the 
next step, the algorithm examines all possible joins of two relations and finds the cheapest evaluation 
plan for each pair. In the next step, it finds the cheapest evaluation plans for each three-relation join. 
With each step, the sizes of the constructed plans grow until finally, we have the cheapest plan for a 
join of N relations. At each step, the results from the previous steps are utilized. 
This last principle is not totally justified, because the physical properties of the result of a join can affect 
the cost of some subsequent joins (thereby violating the dynamic programming assumptions that allow 

•expensive plans to be pruned). The System R optimizer deals with this by maintaining the cheapest 
plan for every possibly useful interesting property, thereby growing the search space. These properties 
were called "interesting orders", since at the time, sort ordering was the primary property of interest. 
The System-R optimizer also applies some heuristics that further limit the plans considered: 

1 A description of the algorithm, relevant to expensive UDF placement, can be found in [CS97]. 
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• Only binary join algorithms are considered. Consequently, a three-relation join evaluation plan 
involves the combination (i.e. join) of a two-relation join result and a stored relation. 

• In order to find the best plans for K-relation join, the only combinations examined use (K-1 )-relation 
joins and stored relations. Other possible combinations (e.g. K-2 and 2) are not considered. The 
resulting query plans that look like "left-deep" trees. 
• While the intermediate results of a join can act as inputs for another join, they cannot appear as the 
inner relation of a nested-loops join algorithm. 
• Selections and projections are always applied as early as possible, assuming that such operations 
are cheap. 
The optimization algorithm with rank ordering, proposed in [CH97] uses the concept of physical 
properties to integrate rank-ordered application of expensive operations into this optimization algorithm. 
The idea is to tag each plan with the set of operations that are not yet applied in the plan. A plan that 
already applied an expensive UDF should not be pruned because of another, cheaper plan that yet has 
to apply it. The former can turn out to be optimal because of the early application of the operation, or 
the latter may be optimal because of the late application. The optimizer cannot decide this and keeps 
both plans. When there are many expensive UDFs in the query, ranks are used to reduce the number 
of possibly optimal interesting properties and thus the complexity of the algorithm. 

5.2.2 Client-Site Join Optimizatio n 
We will first explain our proposed algorithm in terms of client-site joins and introduce analogous 
techniques for semi-joins later. In this discussion we will only talk about client-site operations, joins, 
pushable predicates and projections. Our strategy is to treat client-site UDFs in the same way as join 
operators. This approach has been followed before [LDL] in the case of expensive UDFs, but for client- 
site operations we also have to consider physical location of the operation (like [FJK96][SA80]). 
Our running example will be the construction of the optimal plan for the query in Figure 11, as executed 
by our optimization algorithm (shown in Figure 15). The steps of the algorithm, iterations of the 
outermost loop, are shown as horizontal layers in Figure 14. 
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Figure 14: Client-Site Join Optimization of the Query in Figure 11 

We introduce a new bi-valued physical property, a plan's site, indicating the location of its results: In a 
server-site plan (cornered boxes), the last applied operation is executed on the server. In a client-site 
plan (round boxes), the last applied operation is a client-site UDF. As an example for a client-site plan, 
take the plan that applies ClientAnalysis on relation S, resulting in a relation residing on the client. 
Joining S with E forms a server-site plan because the result of the join resides on the server. 
When applying the next operation to a plan, we have to determine the communication costs with 
respect to the plan's site. A real join applied on a client-site plan requires that the records are shipped 
from the client to the server, while a client-site function applied on a server-site plan requires the 
opposite. Take the application of the final result operator to the right plan in step 3: It will not incur any 
additional communication costs because the relation already resides on the client. Operations have to 
move the records to the site where they are needed and leave their results on the site of their 
execution. 
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To take the final site of a subplan as a physical property implies that only subplans that end on the 
same site will be compared and pruned if suboptimal. To be more precise, only subplans that joined the 
same set of relations, that applied the same set of client-site operations, and that end up with their 
result on the same site will be compared and pruned. In Figure 14, pruning happens after steps 2 and 
4: in the latter case all plans have the same physical properties after the final operator moved their 
results to the client. 
A client-site UDF is executed by a join with a given inner table - the virtual UDF table. To unify our 
handling of virtual and real joins we will see joins as operations with a given inner table. Every relation 
in the query introduces such a join operator: In our example we have to consider three operations: The 
join with S, the join with E, and the client-site join with Cl i entAnal ysi s. Thus real joins are applied in 
the same way as UDF joins. The application of a join to a yet empty plan simply results in the base 
relation of the join. The algorithm for the set of real and virtual joins J) to Jm is given in Figure 15. 

FOR i:=l  TO m DO 
{   FOR ALL J C   {Ji,...,Jn}   S.t.    |j|=i  DO 

{  BestPlan  := dummy plan of infinite cost 
FOR ALL  j,   J'   S.t.:    |j'|   =  i AND 

{j}   U J'   =     J DO 
{  P   := BestApplication(OptPlan[J']/   j) 

IF cost(P)   <  cost(BestPlan) 
THEN BestPlan   :=  P 

} 
OptPlan[S]   := BestPlan 
} 

} 
RETURN*   OptPlan[{01,...,Om}]   ) 

Figure 15 : Client-Site UDF Optimization Algorithm 

5.2.3 Semi-Join Optimization 
For the semi-join UDF algorithm, a small modification is necessary. We need to capture the fact that the 
results of plans after a semi-join are distributed between client and server. To do so, we introduce 
locations for each column of the intermediate results as physical properties. As an example consider 
again the plans for the query of Figure 11, extended with volatility(S.Quotes, 
S.FuturePrices) in the select clause. We show part of the optimization process in Figure 16, 
omitting all plans that do not start with the join of S and E. 
The initial plan, S®E, can be extended by applying either Cli entAnal ysi s or volatility. Each 
client-site UDF can deliver its result column and its argument columns on the client site, available for 
any further operation. If Vol ati 1 i ty is applied first, Cl i entAnal ysi s can follow without shipping its 
arguments because its arguments are already on the client. 
The application of vol ati 1 i ty after Cl i entAnal ysi s, on the left side of the tree, cannot use the 
Quotes column on the client: Duplicates were eliminated on it that were originally paired with different 
FuturePri ces values. Everything has to be shipped back to the server before the adequate columns 
can be transferred. Similarly, server-site operations, like the selection, always ship everything back to 
the server before their execution. 
The described plan generation happens with the algorithm given in the previous section. All described 
modifications are an extension of the set of relevant physical properties and new variations for the 
described execution operators: Any client-site UDF can be applied as a semi-join that is executed 
duplicate-free, as a semi-join that accepts duplicates to avoid shipping, and as a client-site join. The 
latter has to return client-site results of semi-joins to the server before it can ship the full records to the 
client. This is also true for the final result operator. 
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Figure 16: Semi-Join Optimization for the Query in Figure 11 

5.2.4 Features of the Optimization Algorithm 
The key characteristics of this algorithm are: 
. The number of joins in the plan is 2

(*ioinst#cslx),s), that is, the algorithm is exponential in the number of 
real joins plus the number of client site UDFs. 

• Simple, pushable selections and projections are not modeled as operations, although they are, 
where possible, pushed to the client. 

• For query nodes that apply client-site UDFs, an additional physical property is introduced: The 
distributed location of the optimized subplan's result relation: The subset of its columns that resides 
on the client. If none, server-site operations incur no communication cost - if all, client-site joins 
don't have to transfer data. For a certain set of columns that is a superset of an UDF's arguments, 
there is a choice of using the columns on the client, including possible duplicates, or of returning 
them and shipping only the arguments, duplicate-free. 

• Grouping of client-site operations, motivated by shared arguments or by result dependencies, is 
integrated in a uniform way, using the location property. 

6 Conclusions 

Client-site query extensions (UDFs) will play an increasingly important role in extensible database 
systems due to scalability, confidentiality, and security issues. We demonstrate that existing UDF 
evaluation and optimization algorithms are inappropriate for client-side UDFs. We present more 
efficient evaluation algorithms, and we study their performance tradeoffs through implementation in the 
Cornell PREDATOR database system. We also present a query optimization algorithm that handles 
the client-site UDFs appropriately and finds an efficient query plan. 
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