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Abstract 

With the recent advent of 3D graphics hardware for personal computer 

(PC), it is worthwhile to exploit the cost effectiveness and OpenGL 

performance issues among currently available commercial off-the-self 

(COTS) computers. Graphics hardware vendors typically list several 

gross measurements of system performance when releasing new graphics 

hardware. Often these coarse or subjective figures do not represent how a 

software application performs. On the other hand, one seldom sees the 

same benchmark performed on machines across multiple platforms and 

operating systems, i.e., Intel-based PCs and RISC-based UNIX 

workstations. This document reports the results obtained from running 
two OpenGL benchmark programs, SPECviewperf 6.1.2 and SPECglpcrf 

3.1.2, on existing computer workstations at ARL. 
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1.   Introduction 

Virtual Geographic Information System (VGIS) [1] is a geographic informa- 
tion 3-D visualization system developed in-house on top of OpenGL. Since 
it does not rely on any commercial package, it is portable to any computer 
platform with OpenGL [2] support. Consequently, it is worthwhile to ex- 
ploit the cost-effectiveness and OpenGL-performance issues among cur- 
rently available commercial off-the-shelf (COTS) computers. Graphics hard- 
ware vendors typically list several gross measurements of system perfor- 
mance when releasing new graphics hardware. Often these coarse or sub- 
jective figures do not represent how an application performs. On the other 
hand, one seldom sees the same benchmark performed on machines across 
multiple platforms and operating systems, i.e., Intel-based PCs and RISC- 
based UNIX workstations. This report presents the results obtained from 
running two OpenGL benchmark programs, SPECviewperf 6.1.2 [3] and 
SPECglperf 3.1.2 [4] on existing computer workstations at ARL. These in- 
clude an SGI Onyx InfiniteReality, an SGI Octane MXE workstation, and a 
Micron Intel processor-based PC with a GeForce 256 graphics card. Both 
Windows 98 SE and RedHat 7.0 are installed and benchmarked on the same 
PC. Table 1 shows the hardware specifications on the three target systems: 

Table 1. This table 
shows the hardware 
specifications on the 
three target systems. 

SGI Onyx IR SGI Octane MXE Micron PC 

CPU 194-MHz 
MIPS R10000 

250-MHz 
MIPS R10000 

800-MHz 
Intel Pentium III 

CPU 
count 

4 2 1 

Memory 
size 

2048 MB 896 MB 256MB 

Operating 
System 

IRIX 6.5 IRIX 6.5 Windows 98 
SE/Linux 2.2.16-22 

OpenGL 
Vendor 

SGI SGI NVIDIA Corporation 

OpenGL 
Version 

1.2 1.2 1.2.1 

OpenGL 
Renderer 
Driver 

IRS/S/1(RM6)/ 
64(MB)/4(GE) 

SGI 

IMPACT 
2(GE)/2(RE)/4(MB) 

SGI 

GeForce 
256/APG/DDR(32MB) 

NVIDIA Detonator 
3/Xfree86 4.0.1 build 0.9.5 

Display 
resolution 

1600 x1200 
32-bit color depth 

1600 x 1024 32-bit 
color depth 

1600 x1200 
32-bit color depth 



2. SPECviewperf.and SPECglperf 

2.1   Common Background 

SPECviewperf and SPECglperf are portable OpenGL performance bench- 
mark programs written in C. Both were developed by the OpenGL Perfor- 
mance Characterization (OPC) group of the Standard Performance Evalua- 
tion Corporation (SPECopc) [5]. The goal of the SPECopc project is to pro- 
vide unambiguous, vendor-neutral measures for comparing the performance 
of OpenGL implementations across vendor platforms, operating systems, 
and windowing environments. The SPECopc project group maintains a 
single source code version of the SPECviewperf and SPECglperf code. The 
sources were downloaded, compiled, and linked on the target Onyx, Oc- 
tane, and Linux systems. The Windows version of the benchmarks was in- 
stalled via Microsoft's InstallShield. 

2.2    Some Differences 

Even though both benchmarks measure the graphics performance of a com- 
puter system through the OpenGL Applications Programming Interface 
(API), they were designed with different goals in mind. SPECviewperf draws 
models with different sizes of primitives as one would see in an actual ap- 
plication. On the other hand, SPECglperf artificially assigns a specific size 
to every primitive drawn within a test. SPECviewperf emulates what an 
application would do graphically and measures it; SPECglperf makes no 
such attempt. Instead, SPECglperf measures the highest performance or 
upper bound of the target system in a more controlled environment. 

SPECviewperf reports result in frames drawn per second (FPS), whereas 
SPECglperf reports in primitives drawn per second. As an analogy, 
SPECglperf is like a speedometer measuring top speed, while SPECviewperf 
would be a stopwatch measuring the average speed through a slalom course. 
For this report, data collected from running the two benchmarks will be 
presented. Abrief description of the test and a conclusion will precede and 
follow the results, respectively. For both benchmarks, raw data are omitted 
to shorten the report and results are presented in graphical form for ease of 
comparison. 



3.   SPECviewperf 

SPECviewperf is a real-world benchmark in the sense that it is comprised 
of the OpenGL rendering portion of independent software vendor (ISV) 
applications. It consists of six viewsets. A viewset is a group of individual 
runs of SPECviewperf that attempts to characterize the graphics-rendering 
portion of an ISV's application. The SPECopc project group does not de- 
velop these applications, but instead they are provided by the ISVs them- 
selves. A brief description of each viewset will be presented. A more de- 
tailed description on each viewset and its individual test cases can be found 
on the following website: http://www.spec.org/gpc. 

3.1   Test Procedures 

Source codes were compiled and linked with the most up-to-date OpenGL 
library on the Onyx, Octane, and Linux systems. Only essential tasks as 
required by the OS were running during the test. At the end of each test run 
within a viewset, an image was captured in portable network graphics (PNG) 
format [6] for the purposes of visual quality assessment and verification. 
The PNG format uses loss less compression and supports up to 16 bits per 
color component. 

3.2 Results 

3.2.1 Awardvs-04 

This viewset is extracted from Alias/Wavefront's Advanced Visualizer soft- 
ware (Awadvs-04). It tests the animation of a 3-D model with varying shad- 
ing methods, e.g., material, smooth, and flat. All operations within this 
viewset are performed in immediate mode with double-buffered windows 

As can seen from figure 1, the GeForce 256-based system outperforms the 
SGIs by at least 30 percent. The Linux system performs better than its Win- 
dows counterpart in this test. 

Figure 1. This graph 
shows the performance 
of the four target 
systems from running 
the Awadvs-04 
benchmark in 
SPECviewperf 6.1.2. 
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3.2.2 DRV-07 

3.2.3 DX-06 

3.2.4 Light-04 

DesignReview, provided by Intergraph Corporation, is a 3-D computer 
model review package specifically tailored for plant design models. The 
shaded model used here contains 367,178 vertices in 42,821 primitives. The 
wire frame model contains 1,599,755 vertices in 94,275 primitives. 

As can be seen from figure 2, the GeForce 256-based PC system's frame rate 
doubles that of the SGI Onyx IR. 

The IBM Visualization Data Explorer (DX) is a general-purpose software 
package for scientific data visualization and analysis. These tests visualize 
a set of particle traces through a vector flow field. The object represented in 
the test has about 3000 triangle meshes containing approximately 100 verti- 
ces each. All tests assume Z buffering with one light source in addition to 
specification of a color at every vertex. Triangle meshes are the primary 
primitives for this viewset. 

The GeForce 256 performed better than the SGIs in 9 of the 10 tests as shown 
in figure 3. The only case in which the Onyx outperforms the GeForce 256 is 
in test 8 where the model is rendered in triangle meshes with two-sided 
lighting. 

The Lightscape Visualization System from Discreet Logic Incorporated uses 
a progressive refinement radiosity algorithm to produce useful visual re- 

Figure 2. This graph 
shows the performance 
of the four target 
systems from running 
the DRV-07 benchmark 
in SPECviewperf 6.1.2. 
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Figure 3. This graph 
shows the performance 
of the four target 
systems from running 
the DX-06 benchmark in 
SPECviewperf 6.1.2.       [ 
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3.2.5 MedMCAD-01 

suits almost immediately upon processing. The quality of the visualization 
improves as the process continues. Performances in full-screen, solid, and 
wire-frame walkthroughs of the parliament-building model are recorded. 
Figure 4 clearly shows that the GeForce 256 system outperforms the SGIs 
consistently by 45 percent. 

Unlike other viewsets, the medMCAD-01 viewset is a "generic" viewset, 
i.e., it is a representative of a class of applications rather than a single appli- 
cation. The medMCAD-01 viewset is intended to model the graphics per- 
formance of a range of medium-scale, immediate-mode, Mechanical Com- 
puter Aided Design (MCAD) applications such as Pro/ENGINEER™ from 
Parametric Technology Corporation (PTC) and SolidWorks from SolidWorks 
Corporation. The viewset consists of 12 tests, each representing a different 
mode of operation. Four of the tests use a wire frame model; the other eight 
use a shaded model. All tests use immediate mode and vertex arrays 
(glDrawArrays). Each test has two runs: (a) with orthographic projection, 
and (b) with zoom, and pan (walkthrough) in perspective projection. The 
shaded model uses 47,000 triangle strips with approximately 444,000 verti- 
ces resulting in 349,000 triangles total. 

The wire frame model consists of 26,500 line strips, with around 192,000 
vertices giving 120,000 lines total. The mean line length is seven pixels. Fig- 
ure 5 reveals that the GeForce 256 system outperforms the SGIs by at least 
50 percent except in two cases, 6 and 10, where a user-defined clipping plane 
is used. 

Figure 4. This graph 
shows the performance 
of the four target 
systems from running 
the Light-04 benchmark 
in SPECviewperf 6.1.2. 
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Figure 5. This graph 
shows the performance 
of the four target 
systems from running 
the MedMCAD-01 
benchmark in 
SPECviewperf 6.1.2. 
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3.2.6 ProCDRS-03 

The ProCDRS-03 is intended to model the graphics performance of PTC's 
CDRS industrial design software. The viewset consists of 10 tests, each of 
which represents a different mode of operation within CDRS. The first two 
tests use a wireframe model, and the remaining 8 use a shaded model. The 
shaded model is a mixture of triangle strips and independent triangles, with 
approximately 562,000 vertices in 9300 OpenGL primitives, giving 262,000 
triangles total. The wire frame model consists of only line strips, with around 
404,000 vertices in 37,000 strips, giving 388,000 lines total. All tests are run 
in display-list mode. The wireframe tests use antialiased lines since these 
are the default in CDRS. The shaded tests use one infinite light and two- 
sided lighting. The texture used in tests 5 through 8 is 512 by 512 pixels in 
size with 24-bit color. 

The GeForce 256 system outperformed the SGIs in all tests except the first 
two where Onyx led by a wide margin. The first test is a simple wire frame 
test and the second is a wire frame test with walkthrough. Both tests use 
antialiased lines which means that the Onyx has hardware antialiasing sup- 
port whereas the GeForce does not. As figure 6 shows, the Onyx closes the 
performance gap somewhat in this viewset with textured models in tests 5 
through 8. 

3.2.7 Weighted Geometric Mean 
To derive a composite number for a viewset, each creator of a viewset as- 
signs a weight based on the percentage of time in each path. This composite 
metric is a derived quantity that is exactly what one would get if one ran 
the viewset tests for 100 seconds, in which test 1 was run for (100 times 
weight^ seconds, test 2 for (100 times weight2) seconds, and so on. The 
WGM formula is Iln

i=1 (frames per second,)^', where n is the test number 
in a viewset. Table 2 and figure 7 represent the calculated WGM for the six 
viewsets or benchmarks. 

Figure 6. This graph 
shows the performance 
of the four target 
systems from running 
the ProCDRS-03 
benchmark in 
SPECviewperf 6.1.2. 
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Table 2. Results in WGM for the six viewsets in SPECviewperf 6.1.2. 

 Awardvs-04    DRV-07     DX-06     Light-04    MedMCAD-01    ProCDRS-03 
SGI Octane MXE 12.22 2.17 4.47 1.39 4.84 3.32 

SGI Onyx IR 21.76 4.27 6.90 2.05 6.50 11.03 

Linux 2.2.16-22 40.95 10.47 11.50 3.44 12.44 7.55 

Windows 98SE 42.15 11.42 11.50 3.79 12.22 8.78 

Figure 7. This graph 
shows the plotted 
WGM results for the 
six viewsets in 
SPECviewperf 6.1.2. 
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3.3   SPECviewperf Conclusion 

The Micron PC with the NVIDIA GeForce 256 graphics card running Win- 
dows 98 is clearly the winner. From the WGM results, one can see that it 
outperforms the SGI Octane MXE in every viewset by at least 152 percent 
and in some cases 426 percent. It also outperforms the SGI Onyx in every 
viewset by at least 67 percent except the ProCDRS-03 viewset, where the 
Onyx outperforms it by 26 percent. As mentioned earlier, the GeForce 256 
suffers greatly from its lack of line antialiasing hardware support in the last 
viewset. The successors to GeForce 256, however, do have hardware 
antialiasing support. After close examinations of all the captured images 
side by side from each viewset test on the same monitor, I found no visible 
difference, i.e., the image qualities generated by all systems were compat- 
ible. 

As expected, the scores revealed little difference in OpenGL performance 
from the same PC running different operating systems, namely, Windows 
98 and Linux. In fact, Windows 98 scored slightly higher than Linux on four 
of the six viewsets. However, this does not imply that Windows 98 is supe- 
rior to Linux. This difference is most likely because the NVIDIA's Windows 
OpenGL driver, the Detonator 3, is more mature than its Linux counterpart, 
0.95. 



4.   SPECglperf 

SPECglperf is the second benchmark used to measure the performance of 
OpenGL 2D and 3D graphics operations. Its operations are performed on 
low-level primitives (points, lines, triangles, pixels, etc) rather than on en- 
tire models such as those used in the SPECviewperf benchmark. A 
SPECglperf script describes the graphics primitives that will be included in 
performance tests. Ten RGB scripts are run; their descriptions and results 
are as follows. 

4.1   Results 

4.1.1 BgnEnd 

Figure 8. This graph 
shows the performance 
of the four target 
systems on the 
rendering of disjoint 
lines in immediate, 
RGB, and flat-shaded 
mode. 

This test measures a system's performance in rendering batched primitives 
between glBegin and glEnd pairs. The number of batched primitives is 
incremented from 1 to 495. 

All lines and line strips are 10 pixels wide. Triangle strips are 25 pixels wide 
and the quads are 40 pixels wide. The graphs in figures 8 through 15 are 
generated with varying rendering states and modes. 
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Figure 9. This graph 
shows the 
performance of the 
four target systems on 
the rendering of 
disjoint lines in 
display-list, RGB, 
and flat-shaded 
mode. 
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Figure 12. This graph 
shows the performance 
of the four target 6.OOE+06 
systems on the | 5.00E+06 
rendering of triangle jj 4.00E+06 
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Figure 13. This graph 
shows the performance 
of the four target 600E+06 T 
systems on the | 5.OOE+O6 

rendering of triangle      $ 4.00E+06 
strips in display-list, Z   13.00E+06 
buffer, and smooth 
shaded mode with 1 
infinite light source. 
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The Windows system consistently renders lines and line strips about three 
times faster than the SGI Onyx system. The gap narrows in the rendering of 
triangles and quads, however, the Windows system is only about 30 per- 
cent faster than the SGI Onyx in triangle rendering, 100 percent faster in 
rendering of quads in immediate mode and only 20 percent faster in the 
display-list mode. Surprisingly, the performance of the Linux system is the 
worst in most of the SPECglperf tests. The driver was installed correctly as 
shown by the results from the previous SPECviewperf benchmark. The only 
possible reason is that the 0.95 Xfree 4 Linux driver was not fully imple- 
mented to use the GeForce 256's hardware. 

Figure 14. This graph 
shows the performance 
of the four target 
systems on the 
rendering of quads in 
immediate, Z buffer, 
and smooth shaded 
mode with 1 infinite 
light source. 
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Figure 15. This graph 
shows the performance 
of the four target 
systems on the 
rendering of quads in 
display-list, Z buffer, 
and smooth shaded 
mode with 1 infinite 
light source. 
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4.1.2 CopyPixl (glCopyPixels) 

Figure 16 benchmark shows the speed at which the graphics hardware cop- 
ies various sizes of rectangular pixel arrays from one part of the frame buffer 
to another. The results are in pixels per seconds. 

The GeForce 256 outperformed the SGI Onyx by 800 percent in the 512 x 
512 image test. This case is also rare in that the Linux system performed 
better than its Windows counterpart in all image sizes. 

4.1.3 DrawPixl (glDrawPixels) 

This script, as presented in figures 17 through 24, determines the rate at 
which an image is written to the framebuffer in pixels per second. 

Figure 16. This graph 
shows the performance 
of the four target 
systems on copying 
pixels of varying image $ 3.OE+08 
sizes within the frame 
buffer. 
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Figure 17. This graph 
shows the performance 
of the four target 
systems on writing 
pixels of varying image 
sizes to the framebuffer 
in immediate and RGB 
mode. 
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Figure 18. This graph 
shows the performance 
of the four target 
systems on writing 
pixels of varying image 
sizes to the framebuffer 
in display-list and RGB 
mode. 
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In the RGB cases in which no zooming is used, the GeForce 256 is faster in 
writing images with sizes of 32 pixels by32 pixels or smaller. But the SGIs 
draw large images to the framebuffer faster than the GeForce 256 does. 
However, in the RGBA mode, the performance gap is not as great between 
the GeForce and the SGIs in large images. An unexpected result, which is 
significant, is that the SGI Octane outperformed the Onyx in most of these 
tests. 

Figure 19. This graph 
shows the performance 
of the four target 
systems on writing 
pixels of varying image 
sizes to the framebuffer I. 3.0E+07 
in immediate and | 2.0E+07 
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Figure 20. This graph 
shows the performance 
of the four target 
systems on writing 
pixels of varying image 
sizes to the framebuffer 
in display-list, and 
RGBA mode. 

6.0E+07 

■o 5.0E+07 

Q 4.0E+07 

* 3.0E+O7 

£ 2.0E+07 

£   1.0E+O7 

0.0E+O0 

SPECglperf 3.12 DrawPbd (Display List, RGBA) 

H 
O SGI Octane MXE 

■ SGI Onyx IR 

oLnux 22.16-22 

D Windows 98 SE 

16x16 32x32 64x64 128x128 

Image Sze 

256x256 512x512 

Figure 21. This graph 
shows the performance 
of the four target 
systems on writing | 
pixels of varying image ™ 
sizes to the framebuffer jf 
in immediate, 2x zoom, 
and RGBA mode. 
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When zooming (glPixelZoom) is used, the GeForce 256 Windows version 
outperforms the SGIs across all image sizes by a wide margin. Contrarily, 
the Linux version was the worst performer in these tests. Once again this 
indicates that the Linux 0.95 Xfree86-4 OpenGL driver from NVIDIA is not 
complete. 

Figure 22. This graph 
shows the performance 
of the four target | 
systems on writing | 
pixels of varying image g 
sizes to the framebuffer a 
in display-list, 2x zoom, g 
and RGBA mode. 
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Figure 23. This graph 
shows the performance 
of the four target 
systems on writing 
pixels of varying image 
sizes to the framebuffer 
in immediate, 0.5x 
zoom, and RGBA mode. 
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Figure 24. This graph 
shows the performance 
of the four target 
systems on writing 
pixels of varying image £ 
sizes to the framebuffer | 
in display-list, 0.5x 
zoom, and RGBA mode. 
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4.1.4 ReadPixl (glreadPixels) 

This script, as depicted in figures 25 and 26, tests how fast a rectangular 
array of pixels can be read from the framebuffer and stored in processor 
memory. 

Once again, the SGIs are significantly faster in reading large images from 
the framebuffer. The SGI Octane is again faster than the Onyx and the 
GeForce is faster than the SGIs in reading images of sizes 64x64 or smaller. 

4.1.5 Fillrate 

The fill rate, as depicted in figure 27, is a measure of the speed at which 
primitives are converted to fragments and drawn into the framebuffer. Frag- 
ments are pixels in the framebuffer with color, alpha, depth and other data 
(not just the raw color data that appears in an image). Fill rates reflect the 
performance in the rasterization phase of a graphics pipeline and are re- 
ported as the number of pixels drawn per second. 

Figure 25. This 
graph shows the 
performance of the 
four target systems 
on reading pixels of 
varying image sizes 
in RGB mode from 
the framebuffer. 
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Figure 26. This graph 
shows the 
performance of the 
four target systems 
on reading pixels of 
varying image sizes 
in RGBA mode from 
the framebuffer. 
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Figure 27. This graph 
shows the fill rate of 
each target system in 
various modes. 

4.5E+08 ! 
4.0E+08 
3.5E+08 
3.0E+O8 
2.5E+08 

S 2.0E+08 
?• 1.5E+08 

■S 1.0E+08 
| 5.0E+O7 

O.OE+00 

SPECglperf 3.1.2 FIRate(500xSOO Quads) 

mmm mfrHfrU 
Ffet Z,Fbt Smooth Z,Smoolh     Z, 64x64 Z, 64x64 2,64x64 

NMT, LMT, TMT, 
Smooth Smooth Smooth 

Test Cases 

D SGI Octane MXE 

■ SGICnyxIR 

DLtiuxZ2.16-22 

D Wfidows 98 SE 

14 



4.1.6 LineFill 

The Windows GeForce 256 is clearly the fastest here. Note that its greatest 
leads come when Z buffer is turned off. This indicates that the Z buffer 
implementation on the GeForce 256 is slower than that of the SGI's. In other 
words, the SGIs may have an edge on rendering scenes with high depth 
complexity. 

This script measures the effect of increasing primitive size on the drawing 
rates of line segments. Six graphs depicted in figures 28 through 33 are gen- 
erated from the data collected. 

The first two graphs (figures 28 and 29) show that the Windows/GeForce 
256 can render more lines per second than the SGIs can. However, when the 
Z buffer is turned on, the drawing rate on the GeForce 256 drops sharply. 
The SGI Onyx soon outperforms the others when lines with pixel sizes of 3 
or greater are drawn. Once again, this reveals that the Z buffer hardware on 
the GeForce 256 is slower than that of the SGIs'. With both the Z buffer and 
anti-aliasing turned on, the SGI Onyx leads from the start. Clearly we see 
that the SGI has an edge on its Z buffer and line antialiasing hardware imple- 
mentation. 

Figure 28. This graph 
shows the performance 
of the four target 
systems on rendering 
varying sizes of line 
strips in immediate, and 
flat shaded mode. 
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Figure 29. This graph 
shows the performance 
of the four target 
systems on rendering 
varying sizes of line 
strips in display-list, 
and flat shaded mode. 
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Figure 30. This graph 
shows the performance 
of the four target 
systems on rendering 
varying sizes of line 
strips in immediate, and 8. 
flat shaded mode with I 
the Z buffer turned on. 
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Figure 31. This graph 
shows the performance 
of the four target 
systems on rendering 
varying sizes of line 
strips in display-list, 
and flat shaded mode 
with the Z buffer turned 
on. 
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Figure 32. This graph 
shows the performance 
of the four target 
systems on rendering 
varying sizes of line 
strips in immediate, and §. 3.0E+06 
flat shaded mode with   | 2.0E+06 
both the Z buffer and     ^ J™ 
antializsing turned on. 
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Figure 33. This graph 
shows the performance 
of the four target 
systems on rendering 
varying sizes of line 
strips in display-list, 
and flat shaded mode 
with the Z buffer turned 
on. 
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4.1.7 TriFill 

Figure 34. This graphs 
shows the 
performance of target 
systems on rendering 
triangles strips of 
varying sizes in 
immediate and flat 
shaded mode. 

Figure 35. This graphs 
shows the performance 
of target systems on 
rendering triangles 
strips of varying sizes in 
display-list and flat 
shaded mode. 

Rather than measuring line strips, this test measures the effect of increasing 
primitive size on the drawing rates of triangle strips. Data from eight tests 
are collected and graphed (see figures 34 through 41). 

The Windows/GeForce 256 consistently renders faster in this test. Compar- 
ing figures 34 and 36 figures 38 and 40 reveals that the GeForce 256 perfor- 
mance drops significantly when the Z buffer is turned on, whereas the per- 
formance the SGIs does not. This is consistent with earlier results that SGIs 
have a faster Z buffer implementation. No significant difference between 
the SGI and GeForce in either flat or smooth shading or between immediate 
and display-list mode was evidence. 
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Figure 36. This graphs 
shows the 
performance of target 
systems on rendering 
triangles strips of 
varying sizes in 
immediate and flat 
shaded mode with Z 
buffer turned on. 
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Figure 37. This graphs 
shows the 
performance of target 
systems on rendering 
triangles strips of 
varying sizes in 
display-list and flat 
shaded mode with Z 
buffer turned on. 
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Figure 38. This graphs 
shows the performance 
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Figure 39. This graphs 
shows the 
performance of target 
systems on rendering 
triangles strips of 
varying sizes in 
display-list and 
smooth shaded mode. 
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Figure 40. This graphs 
shows the 
performance of target 
systems on the 
rendering triangles 
strips of varying sizes 
in immediate and 
smooth shaded mode 
with Z buffer turned 
on. 
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Figure 41. This graphs 
shows the performance 
of target systems on 
rendering triangles        | 
strips of varying sizes in • 
display-list and smooth & S.OE+06 
shaded mode with Z 
buffer turned on. 
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4.1.8 Light 

This test, shown in figures 42 through 45, measures the effect of varying the 
number of enabled light sources on the drawing of triangle strips and quads 
primitives. 

The graphs show that the GeForce 256 is the clear winner in rendering both 
types of primitives under various numbers of infinite light sources. How- 
ever, the performance differences narrow between the Onyx and GeForce 
as more lights are added in the scene. 
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Figure 42. This graph 
shows the performance 
of the four target 
systems on rendering 
triangle strips with 
varying number of light | 4.0E+06 
sources in immediate     g> 2 0E+06 

and smooth-shaded       | 
mode with Z buffer 
turned on. 
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Figure 43. This graph 
shows the performance 
of the four target 
systems on rendering    "I 
triangle strips with        $ 

• u        n.  u.™ 6.0E+06 varying number of light £ 
sources in display-list    J 4.0E+06 
and smooth-shaded        § 2.0E+06 
mode with Z buffer 
turned on. 
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Figure 44. This graph 
shows the performance 
of the four target 
systems on rendering 
quads with varying 
number of light sources 
in immediate and 
smooth-shaded mode 
with Z buffer turned on. 
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Figure 45. This graph 
shows the performance 
of the four target 
systems on rendering 
quads with varying 
number of light 
sources in display-list 
and smooth-shaded 
mode with Z buffer 
turned on. 
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4.1.9 OPClist 

The OPClist scripts contain a number of tests for a variety of graphics primi- 
tives and other operations (such as window-clears). These tests are the clos- 
est parallel to primitive-level results available from most vendors today. 
Seven results are presented in figures 46 through 56. 

The graph in figure 46 reveals that the SGI Onyx is faster in clearing the 
color buffer than the GeForce 256, but slower in clearing the depth buffer. 
This is also one of the few cases in which the Linux system performs better 
than its Windows counterpart. Observing the rest of the results, one sees 
that the Win98/GeForce 256 outperforms the SGI Onyx in all disjoint primi- 
tives tests that include points, lines, triangles, and quads. One also sees that, 
once again, the Linux/GeForce 256 performed significantly poorer than its 
Windows counterpart in all the primitives' tests. 

Figure 46. This graph 
shows the performance 
of the four target 
systems on clearing the 
color buffer in various 
modes. 
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Figure 49. This graph 
shows the performance 
of the four target 
systems on rendering 
disjoint triangles in 
various modes. 

SPECglperf 3.12 OPCIist (Disjoint Triangle Test) 

Figure 51. This is 
second of the five 
graphs that show the 
performance of the four 
target systems on 
rendering disjoint 
quads in various 
modes. 
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Figure 50. This is one of 
the five graphs that 
show the performance 
of the four target 
systems on rendering 
disjoint quads in 
various modes. 
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Figure 53. This is forth 
of the five graphs that 
show the performance 
of the four target 
systems on rendering 
disjoint quads in 
various modes. 
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Figure 55. This graph 
shows the performance 
of the four target 
systems on the 
rendering of 10-sided 
disjoint polygons in 
various modes. 

Figure 56. This graph 
shows the performance 
of the four target 
systems on rendering 
text strings in various 
modes. 
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the five graphs that 
show the performance 
of the four target 
systems on rendering 
disjoint quads in 
various modes. 
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4.1.10   Teximage 

This script, shown in figures 57 through figure 62, tests how fast the graph- 
ics hardware can draw textures with increasing image sizes. The results are 
in texels per second. Figures 61 and 62 show how fast textures can be bound 
with the use of either glCallList or texture object with or without mipmapped 
textures. 

Figure 57. This graph 
shows the performance 
of the four target 
systems on rendering 
images of various sizes 
in RGB format. 
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Figure 58. This graph 
shows the performance 
of the four target 
systems on rendering 
images of various sizes 
in RGBA format. 
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Figure 59. This graph 
shows the performance 
of the four target 
systems on rendering 
mipmapped textures of 
various sizes in RGB 
format. 
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The graphs in figures 57 through 60 clearly show that the SGIs are faster in 
rendering textures with images greater than 128x128. They also show that 
the Octane is faster than the Onyx; the Linux/GeForce 256 is faster than its 
Windows counterpart in this respect. Figures 61 and 62 reveal that the 
GeForce 256 is faster in binding textures whether it is mipmapped or not. 
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mipmapped textures of | 
various sizes in RGBA 
format. 

4.00E+07 
CO 
£ 3.00E+07 

I  2.00E+07 

1.00E+07 

O.OOE+00 

SPECglpeif 3.1.2Texlmage(RGBA, Mpmapped) 

SGI Octane MXE SGI Onyx IR Linux 2.2.16-22 

Machines Tested over Various Image Sizes 

Wridows 98 SE 

TJ 

i 
i 
l 

, A\   iTiil~ii 

D32x32 

B 64x64 

D 128x128 

D 256x256 

■ 512x512 

□ 1024x1024 

■ 2048x2048 

Figure 61. This graph 
shows the performance 
of the four target 
systems on bounding 
non-mipmapped 
textures. 

SPECglperf 3.1.2 Texlmage(Switch Test, Non-mipmapped Texture) 

1.50B-04 

1.00E+04 

pNone 
a Point 
a Triangle 

SGI Octane MXE SGI Onyx IR Linux 2.216-22 Windows 98 SE 

Machines Tested Different Texture Objects 

Figure 62.This graph 
shows the performance 
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4.2   SPECglperf Conclusion 

Most graphics hardware has a set of fast paths that execute a subset of ren- 
dering operations much faster than others. The rendering operations per- 
formed on these fast paths are based on the primitives and modes directly 
supported by the underlying hardware. The use of a primitive type or ren- 
dering mode that is not directly supported by the hardware causes the graph- 
ics-rendering pipeline to fall back to a less optimal path or to software ren- 
dering. If one knows the hardware fast paths of a particular system, one can 
design an application that will stay on them to achieve best performance. 

In this benchmark, the GeForce 256 is significantly faster than the SGIs in 
rendering primitives whether they are batched or not, smooth- or flat- 
shaded. On the other hand, the SGIs are faster in their Z buffer, antialiasing 
and large-texture rendering. The Onyx is faster than the Octane in most 
cases except in texture rendering where the Octane is consistently faster. In 
regards to NVIDIA's 0.95 Xfree 4 Linux driver, the benchmark results re- 
vealed that there is obviously room for improvement. All in all, the GeForce 
256 performed surprisingly well against the SGIs. NVIDIA's latest effort to 
boost OpenGL performance for Linux users is a successful one. 
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5.   Summary 

5.1   Performance Per Dollar 

5.2   The Future 

One might assume that since the Micron PC outperforms the Octane (up to 
five times faster in some cases), it must cost much more. Contrarily, the 
Micron PC costs about $1400 as compared to the over $10,000 price tag for 
the Octane. The next question might be "Will the better performance of the 
Octane2 be great enough to justify its $14000 CPU/graphics upgrade cost?" 
Until we do the upgrade and perform the same benchmark, the question 
cannot be answered. Nevertheless, according to SGI, "Octane2 equipped 
with single or dual MIPS R12000A 400 MHz processors offers three times 
the graphics price/performance of Octanel and boasts 33% faster CPU per- 
formance." [7] These claims remain to be proven. However, the new Oc- 
tane2 does have some advantages over an Intel-based PC. Two of these are: 
Octane's V8 graphics has 128 MB graphics memory including up to 104 MB 
texture memory as opposed to 64 MB on a GeForce or Quadro chip-based 
board and Octane2's system board can accommodate up to 8 GB of system 
memory as compared to 2 GB on the best PC system board. 

On the other hand, the GeForce 256 used in this test was one year old or two 
generations old! It was released in August of 1999. Since then, NVIDIA re- 
leased the GeForce2 GTS in May of 2000, the Quadro2 Pro in July, the 
GeForce2 Ultra in August of 2000 and GeForce3 in March of 2001. Currently, 
the GeForce2 GTS sells for about $200, the GeForce2 Ultra sells for about 
$300, the GeForce3 sells for about $500, and the Quadro2 Pro about $1000. 
On the other hand, SGI's entire line of Intel processor-based (NT/Linux) 
visual workstations also uses a "custom performance enhanced" Quadro 
GPU from NVIDIA [8]. As far as bang for the buck goes, the GeForce is, 
without a doubt, the winner. 

With the rapid development of PC-based graphics cards and the maturing 
of Linux, the performance gap between PC and SGI/SUN-based worksta- 
tions is narrowing. Recently, NVIDIA released the first mobile graphics pro- 
cessing unit (GPU), GeForce2 Go, for laptops. This is a step toward being 
able to render complicated 3D applications, e.g., VGIS, on a laptop. On the 
other hand, SGI has been a recognized leader in 3D graphics for the past 15 
years, but changes are evident. Looking at the benchmark scores, one can 
see that SGI is losing ground on its low- to middle-range line of products. 
SGI will have to narrow its performance per dollar gap with the intel-based 
systems in the future to justify its higher prices. Benchmarking our newly 
acquired SGI Origin 3200, Octane2 and NVIDIA's GeForce3 would further 
show how state-of-art graphics hardware compares. 
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